max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
test_autolens/plot/grids/regular_grid.py
rakaar/PyAutoLens
0
12790151
import autolens as al grid = al.Grid.uniform(shape_2d=(10, 10), pixel_scales=1.0) aplt.Grid(grid=grid) grid = al.Grid.uniform(shape_2d=(10, 10), pixel_scales=1.0, origin=(5.0, 5.0)) aplt.Grid(grid=grid, symmetric_around_centre=False)
2.234375
2
data_utils.py
camille1874/ads_classify
0
12790152
<reponame>camille1874/ads_classify import tensorflow as tf import pandas as pd from collections import Counter from imblearn.combine import SMOTEENN from imblearn.combine import SMOTETomek from imblearn.under_sampling import NearMiss import numpy as np def scale(df, column): df[column] = (df[column] - df[column].min()) / (df[column].max() - df[column].min()) def read_data(data_file, num_epochs, shuffle): df_data = pd.read_csv( tf.gfile.Open(data_file), header=0, skipinitialspace=True, engine="python") process(df_data) if "test" in data_file: labels = None else: labels = df_data["y_buy"] inputs = tf.estimator.inputs.pandas_input_fn( x=df_data, y=labels, batch_size=128, num_epochs=num_epochs, shuffle=shuffle, queue_capacity=50000, num_threads=1) return inputs # 采样 def read_data_with_sampling(data_file, num_epochs, shuffle): df_data = pd.read_csv( tf.gfile.Open(data_file), header=0, skipinitialspace=True, engine="python") process(df_data) X = df_data.drop(["y_buy"], axis = 1) y = df_data["y_buy"] X_column = X.columns y_column = ["y_buy"] print(sorted(Counter(y).items())) # 直接欠采样 # nm = NearMiss(random_state=0, version=3) # X_resampled, y_resampled = nm.fit_sample(X, y) # print(sorted(Counter(y_resampled).items())) # 欠采样和过采样结合1 smote_enn = SMOTEENN(sampling_strategy=0.5, random_state=0) X_resampled, y_resampled = smote_enn.fit_sample(X, y) print(sorted(Counter(y_resampled).items())) ## 欠采样和过采样结合2 ##smote_tomek = SMOTETomek(sampling_strategy=0.1, random_state=0) ##X_resampled, y_resampled = smote_tomek.fit_resample(X, y) ##print(sorted(Counter(y_resampled).items())) X_resampled = pd.DataFrame(X_resampled, columns=X_column) y_resampled = pd.DataFrame(y_resampled, columns=y_column) process(X_resampled) inputs = tf.estimator.inputs.pandas_input_fn( X_resampled, y_resampled, batch_size=128, num_epochs=num_epochs, shuffle=shuffle, queue_capacity=70000, num_threads=1) return inputs def process(df): df.fillna(0, inplace=True) df["buy_freq"] = df["buy_freq"].astype(int) df["visit_freq"] = df["visit_freq"].astype(int) df["last_buy"] = df["last_buy"].astype(int) df["last_visit"] = df["last_visit"].astype(int) df["multiple_buy"] = df["multiple_buy"].astype(int) df["multiple_visit"] = df["multiple_visit"].astype(int) df["uniq_urls"] = df["uniq_urls"].astype(int) df["num_checkins"] = df["num_checkins"].astype(int)
2.484375
2
dolo/algos/dtmscc/accuracy.py
zlqs1985/dolo
0
12790153
from __future__ import division def compute_residuals(model, dr, grid): ff = model.functions['arbitrage'] gg = model.functions['transition'] aa = model.functions['auxiliary'] f = lambda m,s,x,M,S,X,p: ff(m,s,x,aa(m,s,x,p),M,S,X,aa(M,S,X,p),p) g = lambda m,s,x,M,p: gg(m,s,x,aa(m,s,x,p),M,p) P,Q = model.markov_chain parms = model.calibration['parameters'] controls = dr(grid) res = residuals(f, g, i_mc, grid, controls, mdr, P, Q, parms) return res def residuals(f, g, i_ms, s, x, dr, P, Q, parms): N = s.shape[0] n_s = s.shape[1] n_ms = P.shape[0] # number of markov states n_mv = P.shape[1] # number of markov variable res = numpy.zeros_like(x) XM = numpy.zeros_like(x) import time # solving on grid for markov index i_ms # m = P[i_ms,:][None,:] m = numpy.tile(P[i_ms,:],(N,1)) xm = x[:,:] for I_ms in range(n_ms): # M = P[I_ms,:][None,:] M = numpy.tile(P[I_ms,:], (N,1)) prob = Q[i_ms, I_ms] S = g(m, s, xm, M, parms) XM[:,:] = dr(I_ms, S) rr = f(m,s,xm,M,S,XM,parms) res[:,:] += prob*rr return res
2.21875
2
app/views/members/routes.py
sagarkaurav/worktable
3
12790154
import datetime from app import db, mail from app.models import Member, MemberInvite from flask import Blueprint, flash, redirect, render_template, request, url_for from flask_login import current_user, login_required, login_user from flask_mail import Message from .forms import MemberInviteForm, MemberJoinForm members = Blueprint( "members", __name__, subdomain="<org_username>", template_folder="templates" ) @members.route("/") @login_required def index(org_username): member_page = request.args.get("member_page", 1) members = Member.query.filter_by(organization=current_user.organization).paginate( int(member_page), 5 ) all_invites = MemberInvite.query.filter_by( organization=current_user.organization ).all() return render_template( "members/index.html", all_invites=all_invites, members=members ) @members.route("/invite/<invite_id>/remove", methods=["POST"]) @login_required def remove_invite(org_username, invite_id): invite = MemberInvite.query.filter_by( organization=current_user.organization, id=invite_id ).first() if invite is None: flash("Unable to find invite to remove", "error") else: db.session.delete(invite) db.session.commit() flash("Invite removed successfully", "success") return redirect( url_for( "members.index", org_username=current_user.organization.username, ) ) @members.route("/invite/", methods=["GET", "POST"]) @login_required def invite(org_username): member_invite = MemberInviteForm() if member_invite.validate_on_submit(): email = member_invite.email.data.lower() member = Member.query.filter_by( email=email, organization=current_user.organization ).first() if member: flash("Email is already a member", "error") return redirect( url_for( "members.index", org_username=current_user.organization.username, ) ) invite = MemberInvite.query.filter_by( organization=current_user.organization, email=email ).first() if invite: flash("Invite already sent.", "warning") return redirect( url_for( "members.index", org_username=current_user.organization.username, ) ) new_invite = MemberInvite(email=email, organization=current_user.organization) db.session.add(new_invite) db.session.commit() invite_link = url_for( ".join", org_username=current_user.organization.username, token=new_invite.token, _external=True, ) msg = Message( "Worktable organization join invite", sender="<EMAIL>", recipients=[new_invite.email], ) msg.body = render_template( "members/invite_mail.txt", join_link=invite_link, org_name=current_user.organization.name, ) msg.html = render_template( "members/invite_mail.html", join_link=invite_link, org_name=current_user.organization.name, ) mail.send(msg) flash("New member invite has been sent", "success") return redirect( url_for("members.index", org_username=current_user.organization.username) ) return render_template("members/invite.html", form=member_invite) @members.route("/join/<token>", methods=["GET", "POST"]) def join(org_username, token): invite = MemberInvite.query.filter_by(token=token).first() if not invite: flash("Invalid invite link", "error") return redirect(url_for("auth.login", org_username=org_username)) member_join = MemberJoinForm() if member_join.validate_on_submit(): new_member = Member( first_name=member_join.first_name.data, last_name=member_join.last_name.data, email=invite.email, organization=invite.organization, ) new_member.password = member_join.password.data db.session.add(new_member) db.session.delete(invite) db.session.commit() login_user(new_member) flash("New member invite has been sent", "success") return redirect( url_for("dashboard.index", org_username=invite.organization.username) ) return render_template( "members/join.html", invite=invite, form=member_join, token=token ) @members.route("/disable/", methods=["POST"]) @login_required def disable_account(org_username): member_id = request.form.get("member_id") member = Member.query.filter_by( id=member_id, organization=current_user.organization ).first() if member is None: flash("Member account is not found", "error") elif member.disabled_at: flash("Member account is already disabled", "error") elif member == current_user: flash("You can not disabled your own account", "error") else: member.disabled_at = datetime.datetime.utcnow() db.session.commit() flash("Member account has been disabled", "success") redirect_url = url_for(".index", org_username=current_user.organization.username) return redirect(redirect_url) @members.route("/enable/", methods=["POST"]) @login_required def enable_account(org_username): member_id = request.form.get("member_id") member = Member.query.filter_by( id=member_id, organization=current_user.organization ).first() if member is None: flash("Member account is not found", "error") elif member.disabled_at is None: flash("Member account is already enabled", "error") elif member == current_user: flash("You can not enable your own account", "error") else: member.disabled_at = None db.session.commit() flash("Member account has been enabled", "success") redirect_url = url_for(".index", org_username=current_user.organization.username) return redirect(redirect_url)
2.390625
2
HLTrigger/Configuration/python/HLT_75e33/tasks/pfClusteringECALTask_cfi.py
PKUfudawei/cmssw
1
12790155
<reponame>PKUfudawei/cmssw import FWCore.ParameterSet.Config as cms from ..modules.particleFlowClusterECALUncorrected_cfi import * from ..modules.particleFlowRecHitECAL_cfi import * from ..tasks.particleFlowClusterECALTask_cfi import * pfClusteringECALTask = cms.Task( particleFlowClusterECALTask, particleFlowClusterECALUncorrected, particleFlowRecHitECAL )
1.0625
1
examples/dataflow-python-examples/streaming-examples/slowlychanging-sideinput/sideinput_refresh/dofns.py
ruchirjain86/professional-services
2,116
12790156
# Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import List import apache_beam as beam from apache_beam.io.filesystems import FileSystems from sideinput_refresh import util @beam.typehints.with_input_types(bytes) @beam.typehints.with_output_types(beam.pvalue.TaggedOutput) class SplitToMultiple(beam.DoFn): """Generates a base path for each side input type combining root path received via file notification subscription and side input type. PCollection recieved will contain only single element representing base path and will be fired once every x hours matching the side input refresh frequency Attributes: sideinput_types: List of Side input types file_prefix: file_prefix matching required files. Default is * indicating all files """ def __init__(self, sideinput_types: List[str], file_prefix: str = "*"): self.sideinput_types = sideinput_types self.file_prefix = file_prefix def process(self, element, timestamp=beam.DoFn.TimestampParam, window=beam.DoFn.WindowParam, pane_info=beam.DoFn.PaneInfoParam): # Logging to audit triggering of side input refresh process. Statement will be logged only whenever the pubsub notification # triggers side input refresh process (i.e normally once in every x hours) if isinstance(window, beam.transforms.window.GlobalWindow): logging.info( f"(Re)loading side input data from basepath {element.decode()} for global window: {timestamp} - {window}" ) else: logging.info( f"(Re)loading side input data from basepath {element.decode()} for window: {util.get_formatted_time(window.start)} - {util.get_formatted_time(window.end)}" ) for sideinput_type in self.sideinput_types: yield beam.pvalue.TaggedOutput( sideinput_type, FileSystems.join(element.decode(), sideinput_type, self.file_prefix))
2.140625
2
backend/apps/mails/views.py
KuanWeiLee/froggy-service
174
12790157
<gh_stars>100-1000 from django.shortcuts import redirect from django.urls import reverse from rest_framework.viewsets import ModelViewSet from rest_framework.decorators import action from rest_framework.permissions import IsAdminUser from .models import SendGridMail from .serializers import SendGridMailSerializer class MailViewSet(ModelViewSet): queryset = SendGridMail.objects.all() serializer_class = SendGridMailSerializer permission_classes = [IsAdminUser] http_method_names = ['get', 'post', 'retrieve'] @action(methods=['GET'], detail=True) def resend(self, request, pk=None): mail = SendGridMail.objects.get(id=pk) mail.send() return redirect(reverse("admin:cases_case_change", args=(mail.case.id,)))
1.789063
2
Collection/ms/01 Arrays/01_two_sum.py
kmanadkat/leetcode-101
0
12790158
from typing import List class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: dt = {} for index, num in enumerate(nums): # Check If Complement Exists in dictionary complement = target - num if complement in dt and dt[complement] != index: return [index, dt[complement]] # Add entry for future checks dt[num] = index return []
3.421875
3
app/auth_app/views.py
ganggas95/simdus_app
0
12790159
from flask import ( render_template, request, redirect, url_for) from flask_login import login_user, logout_user from app.helpers import BaseView from .models import LoginForm, User class AuthView(BaseView): def dispatch_request(self): form = LoginForm(request.form) if request.method == 'GET': return render_template( self.template_name, form=form) user = User.get_username(form.username.data) print(user.check_password(form.password.data)) if user and user.check_password(form.password.data): login_user(user, form.remember.data) return redirect( url_for('dashboard_bp.dashboard_page') ) return redirect(url_for('auth_bp.auth_view')) class LogoutView(BaseView): def dispatch_request(self): logout_user() return redirect( url_for('auth_bp.auth_view') )
2.5
2
curiosity/interaction/update_step.py
neuroailab/curiosity_deprecated
0
12790160
<reponame>neuroailab/curiosity_deprecated ''' Defines the training step. ''' import sys sys.path.append('tfutils') import tensorflow as tf from tfutils.base import get_optimizer, get_learning_rate import numpy as np import cv2 from curiosity.interaction import models import h5py import json class RawDepthDiscreteActionUpdater: ''' Provides the training step. This is probably where we can put parallelization. Not finished! ''' def __init__(world_model, rl_model, data_provider, eta): self.data_provider = data_provider self.world_model = world_model self.rl_model = rl_model self.eta = eta self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.action = tf.placeholder = tf.placeholder(tf.float32, [None] + world_model.action_one_hot.get_shape().as_list()[1:]) self.adv = tf.placeholder(tf.float32, [None]) self.r = tf.placeholder(tf.float32, [None]) log_prob_tf = tf.nn.log_softmax(rl_model.logits) prob_tf = tf.nn.softmax(rl_model.logits) pi_loss = -tf.reduce_sum(tf.reduce_sum(log_prob_tf * self.ac, [1]) * self.adv) vf_loss = .5 * tf.reduce_sum(tf.square(rl_model.vf - self.r)) entropy = -tf.reduce_sum(prob_tf * log_prob_tf) self.rl_loss = pi_loss + 0.5 * vf_loss - entropy * 0.01 rl_opt_params, rl_opt = get_optimizer(learning_rate, self.rl_loss, ) def replace_the_nones(my_list): ''' Assumes my_list[-1] is np array ''' return [np.zeros(my_list[-1].shape, dtype = my_list[-1].dtype) if elt is None else elt for elt in my_list] def postprocess_batch_depth(batch, state_desc): obs, msg, act, act_post = batch depths = replace_the_nones(obs[state_desc]) obs_past = np.array([depths[:-1]]) obs_fut = np.array([depths[1:]]) actions = np.array([replace_the_nones(act)]) actions_post = np.array([replace_the_nones(act_post)]) return obs_past, actions, actions_post, obs_fut # def postprocess_batch_depth(batch): # depths = np.array([[timepoint if timepoint is not None else np.zeros(obs['depths1'][-1].shape, dtype = obs['depths1'][-1].dtype) for timepoint in obs['depths1']] for obs in batch.states]) # actions = np.array(batch.actions) # next_depth = np.array([batch.next_state['depths1']]) # return depths, actions, next_depth def postprocess_batch_for_actionmap(batch, state_desc): obs, msg, act = batch prepped = {} depths = replace_the_nones(obs[state_desc]) depths_past = np.array([depths[:-1]]) depths_fut = np.array([depths[:1]]) objects = np.array([replace_the_nones(obs[state_desc])[:-1]]) actions = np.array([replace_the_nones(act)]) action_ids_list = [] for i in range(2): action_msg = msg[i]['msg']['actions'] if msg[i] is not None else [] if len(action_msg): idx = int(action_msg[0]['id']) else: idx = -10000#just something that's not an id seen action_ids_list.append(idx) action_ids = np.array([action_ids_list]) return depths_past, objects, actions, action_ids, depths_fut # def postprocess_batch_for_actionmap(batch): # prepped = {} # for desc in ['depths1', 'objects1']: # prepped[desc] = np.array([[timepoint if timepoint is not None else np.zeros(obs[desc][-1].shape, dtype = obs[desc][-1].dtype) for timepoint in obs[desc]] for obs in batch.states]) # actions = np.array([[np.zeros(batch.next_state['action'][-1].shape, batch.next_state['action'][-1].dtype) if timepoint is None else timepoint for timepoint in batch.next_state['action']]]) # print('actions shape') # print(actions.shape) # print(len(batch.next_state['action'])) # action_ids_list = [] # for i in range(2): # action_msg = batch.next_state['msg'][i]['msg']['actions'] if batch.next_state['msg'][i] is not None else [] # if len(action_msg): # idx = int(action_msg[0]['id']) # action_ids_list.append(idx) # action_ids = np.array([action_ids_list]) # next_depths = np.array([batch.next_state['depths1']]) # return prepped['depths1'], prepped['objects1'], actions, action_ids, next_depths class ExperienceReplayPostprocessor: def __init__(self, big_save_keys = None, little_save_keys = None, big_save_len = None, big_save_freq = None, state_descriptor = None): self.big_save_keys = big_save_keys self.little_save_keys = little_save_keys self.big_save_len = big_save_len self.big_save_freq = big_save_freq self.state_descriptor = state_descriptor self.big_save_keys.append('map_draw') self.little_save_keys.append('map_draw') self.big_save_keys.extend(['act_lr', 'um_lr']) self.little_save_keys.extend(['act_lr', 'um_lr']) def postprocess(self, training_results, batch): global_step = training_results['global_step'] res = {} if (global_step) % self.big_save_freq < self.big_save_len: save_keys = self.big_save_keys #est_losses = [other[1] for other in batch['other']] #action_sample = [other[2] for other in batch['other']] res['batch'] = {} for desc, val in batch.iteritems(): if desc not in ['recent', 'depths1', 'objects1', 'images1']: res['batch'][desc] = val res['recent'] = batch['recent'] else: save_keys = self.little_save_keys res.update(dict(pair for pair in training_results.iteritems() if pair[0] in save_keys)) #if 'other' in batch['recent']: # entropies = [other[0] for other in batch['recent']['other']] # entropies = np.mean(entropies) # res['entropy'] = entropies if 'msg' in batch['recent']: looking_at_obj = [1 if msg is not None and msg['msg']['action_type'] == 'OBJ_ACT' else 0 for msg in batch['recent']['msg']] res['obj_freq'] = np.mean(looking_at_obj) elif type(batch['recent']) == list and len(batch['recent'][0]) > 0: mean_per_provider = [] for provider_recent in batch['recent']: looking_at_obj = [1 if msg is not None and msg['msg']['action_type'] == 'OBJ_ACT' else 0 for msg in provider_recent['msg']] mean_per_provider.append(np.mean(looking_at_obj)) res['obj_freq'] = np.mean(mean_per_provider) res['obj_freq_per_provider_noprint'] = mean_per_provider return res class UncertaintyPostprocessor: def __init__(self, big_save_keys = None, little_save_keys = None, big_save_len = None, big_save_freq = None, state_descriptor = None): self.big_save_keys = big_save_keys self.little_save_keys = little_save_keys self.big_save_len = big_save_len self.big_save_freq = big_save_freq self.state_descriptor = state_descriptor def postprocess(self, training_results, batch): global_step = training_results['global_step'] res = {} print('postprocessor deets') print(global_step) print(self.big_save_freq) print(self.big_save_len) if (global_step) % self.big_save_freq < self.big_save_len: print('big time') save_keys = self.big_save_keys est_losses = [other[1] for other in batch['recent']['other']] action_sample = [other[2] for other in batch['recent']['other']] res['batch'] = {'obs' : batch['depths1'], 'act' : batch['action'], 'act_post' : batch['action_post'], 'est_loss' : est_losses, 'action_sample' : action_sample} res['msg'] = batch['recent']['msg'] else: print('little time') save_keys = self.little_save_keys res.update(dict((k, v) for (k, v) in training_results.iteritems() if k in save_keys)) #res['msg'] = batch['msg'][-1] entropies = [other[0] for other in batch['recent']['other']] entropies = np.mean(entropies) res['entropy'] = entropies looking_at_obj = [1 if msg is not None and msg['msg']['action_type']['OBJ_ACT'] else 0 for msg in batch['recent']['msg']] res['obj_freq'] = np.mean(looking_at_obj) return res class DataWriteUpdater: def __init__(self, data_provider, updater_params): self.data_provider = data_provider fn = updater_params['hdf5_filename'] N = updater_params['N_save'] height, width = updater_params['image_shape'] act_dim = updater_params['act_dim'] print('setting up save loc') self.hdf5 = hdf5 = h5py.File(fn, mode = 'a') dt = h5py.special_dtype(vlen = str) self.handles = {'msg' : hdf5.require_dataset('msg', shape = (N,), dtype = dt), 'depths1' : hdf5.require_dataset('depths1', shape = (N, height, width, 3), dtype = np.uint8), 'objects1' : hdf5.require_dataset('objects1', shape = (N, height, width, 3), dtype = np.uint8), 'images1': hdf5.require_dataset('images1', shape = (N, height, width, 3), dtype = np.uint8), 'action' : hdf5.require_dataset('action', shape = (N, act_dim), dtype = np.float32), 'action_post' : hdf5.require_dataset('action_post', shape = (N, act_dim), dtype = np.float32)} print('save loc set up') self.start = 0 def update(self): batch = self.data_provider.dequeue_batch() bs = len(batch['recent']['msg']) end = self.start + bs for k in ['depths1', 'objects1', 'images1', 'action', 'action_post']: tosave = batch['recent'][k] if k in ['action', 'action_post']: tosave = tosave.astype(np.float32) self.handles[k][self.start : end] = batch['recent'][k] self.handles['msg'][self.start : end] = [json.dumps(msg) for msg in batch['recent']['msg']] self.start = end def close(self): self.hdf5.close() class LatentUncertaintyValidator: def __init__(self, models, data_provider): self.um = models['uncertainty_model'] self.wm = models['world_model'] self.targets = { 'act_pred' : self.wm.act_pred, 'fut_loss' : self.wm.fut_loss, 'act_loss' : self.wm.act_loss, 'um_loss' : self.um.uncertainty_loss, 'estimated_world_loss' : self.um.estimated_world_loss, 'loss_per_example' : self.um.true_loss, 'act_loss_per_example' : self.wm.act_loss_per_example } self.dp = data_provider def run(self, sess): batch = self.dp.dequeue_batch() feed_dict = { self.wm.states : batch['depths1'], self.wm.action : batch['action'], self.wm.action_post : batch['action_post'], self.wm.obj_there : batch['obj_there'] } res = sess.run(self.targets, feed_dict = feed_dict) res['batch'] = {} for desc, val in batch.iteritems(): print(desc) if desc == 'obj_there': res['batch'][desc] = val elif desc != 'recent': res['batch'][desc] = val[:, -1] res['recent'] = batch['recent'] class ObjectThereValidater: def __init__(self, models, data_provider): self.um = models['uncertainty_model'] self.wm = models['world_model'] self.targets = {'um_loss' : self.um.uncertainty_loss, 'loss_per_example' : self.um.true_loss, 'estimated_world_loss' : self.um.estimated_world_loss} self.dp = data_provider def run(self, sess): batch = self.dp.dequeue_batch() feed_dict = { self.wm.states : batch['depths1'], self.wm.action : batch['action'], self.wm.obj_there : batch['obj_there'] } return sess.run(self.targets, feed_dict = feed_dict) class ActionUncertaintyValidator: def __init__(self, models, data_provider): self.um = um = models['uncertainty_model'] self.wm = wm = models['world_model'] self.targets = {'act_pred' : self.wm.act_pred, 'act_loss' : self.wm.act_loss, 'estimated_world_loss' : self.um.estimated_world_loss, 'um_loss' : self.um.uncertainty_loss, 'loss_per_example' : self.um.true_loss} self.dp = data_provider def run(self, sess): batch = self.dp.dequeue_batch() feed_dict = { self.wm.states : batch['depths1'], self.wm.action : batch['action'], self.wm.action_post : batch['action_post'] } res = sess.run(self.targets, feed_dict = feed_dict) res['batch'] = batch return res class ActionUncertaintyValidatorWithReadouts: def __init__(self, model, data_provider): self.dp = data_provider self.wm = model['world_model'] self.um = model['uncertainty_model'] self.targets = {} self.targets.update({k : v for k, v in self.wm.readouts.items() if k not in self.wm.save_to_gfs}) self.targets.update({k : v for k, v in self.um.readouts.items() if k not in self.um.save_to_gfs}) #this should be changed for an online data provider, set to do nothing self.map_draw_mode = 'specified_indices' #relies on there being just one obs type self.state_desc = data_provider.data_lengths['obs'].keys()[0] self.insert_objthere = False if data_provider.num_objthere is None else True def run(self, sess): batch = self.dp.dequeue_batch() feed_dict = { self.wm.states : batch[self.state_desc], self.wm.action : batch['action'], self.wm.action_post : batch ['action_post'] } if self.insert_objthere: feed_dict[self.wm.obj_there_via_msg] = batch['obj_there'] res = sess.run(self.targets, feed_dict = feed_dict) #TODO case it for online res['recent'] = {} #if self.map_draw_mode == 'specified_indices': # map_draw_res = [] # for idx in self.map_draw_example_indices: # obs_for_actor = [batch[self.state_desc][idx][t] for t in self.map_draw_timestep_indices] # action_samples = self.action_sampler.sample_actions() # action, entropy, estimated_world_loss = self.um.act(sess, action_samples, obs_for_actor) # to_add = {'example_id' : idx, 'action_sample' : action, 'estimated_world_loss' : estimated_world_loss, # 'action_samples' : action_samples, 'depths1' : batch[self.state_desc][idx], # 'action' : batch['action'][idx], 'action_post' : batch['action_post'][idx]} # map_draw_res.append(to_add) #res['map_draw'] = map_draw_res return res class ObjectThereUpdater: def __init__(self, world_model, uncertainty_model, data_provider, optimizer_params, learning_rate_params, postprocessor, updater_params): self.data_provider = data_provider self.wm = world_model self.um = uncertainty_model self.postprocessor = postprocessor self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.um_lr_params, um_lr = get_learning_rate(self.global_step, ** learning_rate_params['uncertainty_model']) um_opt_params, um_opt = get_optimizer(um_lr, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model'], var_list = self.um.var_list) self.targets = {'um_loss' : self.um.uncertainty_loss, 'um_lr' : um_lr, 'um_optimizer' : um_opt, 'global_step' : self.global_step, 'loss_per_example' : self.um.true_loss, 'estimated_world_loss' : self.um.estimated_world_loss } self.state_desc = updater_params['state_desc'] def update(self, sess, visualize = False): batch = self.data_provider.dequeue_batch() state_desc = self.state_desc feed_dict = { self.wm.states : batch[state_desc], self.wm.action : batch['action'], self.wm.obj_there : batch['obj_there'] } res = sess.run(self.targets, feed_dict = feed_dict) res = self.postprocessor.postprocess(res, batch) return res class SquareForceMagUpdater: def __init__(self, models, data_provider, optimizer_params, learning_rate_params, postprocessor, updater_params): self.dp = data_provider self.wm = models['world_model'] self.um = models['uncertainty_model'] self.postprocessor = postprocessor self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.um_lr_params, um_lr = get_learning_rate(self.global_step, ** learning_rate_params['uncertainty_model']) um_opt_params, um_opt = get_optimizer(um_lr, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model'], var_list = self.um.var_list) self.targets = {'um_loss' : self.um.uncertainty_loss, 'um_lr' : um_lr, 'um_optimizer' : um_opt, 'global_step' : self.global_step, 'loss_per_example' : self.um.true_loss, 'estimated_world_loss' : self.um.estimated_world_loss } if self.um.exactly_whats_needed: self.targets['oh_my_god'] = self.um.oh_my_god self.state_desc = updater_params['state_desc'] def update(self, sess, visualize = False): batch = self.dp.dequeue_batch() state_desc = self.state_desc feed_dict = { self.wm.states : batch[state_desc], self.wm.action : batch['action'], self.wm.action_post : batch['action_post'] } if self.um.insert_obj_there: print('adding obj_there to feed dict') feed_dict[self.um.obj_there] = batch['obj_there'] res = sess.run(self.targets, feed_dict = feed_dict) res = self.postprocessor.postprocess(res, batch) return res class DebuggingForceMagUpdater: def __init__(self, models, data_provider, optimizer_params, learning_rate_params, postprocessor, updater_params): self.dp = data_provider self.wm = models['world_model'] self.um = models['uncertainty_model'] self.postprocessor = postprocessor self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0, dtype = tf.int32)) print(learning_rate_params.keys()) um_lr_params, um_lr = get_learning_rate(self.global_step, **learning_rate_params['uncertainty_model']) um_opt_params, um_opt = get_optimizer(um_lr, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model']) self.targets = {'um_loss' : self.um.uncertainty_loss, 'um_optimizer' : um_opt, 'global_step' : self.global_step, 'loss_per_example' : self.um.true_loss, 'estimated_world_loss' : self.um.estimated_world_loss, 'ans' : self.um.ans, 'oh_my_god' : self.um.oh_my_god, 'model_parameters' : self.um.var_list} def update(self, sess): batch = self.dp.dequeue_batch() feed_dict = { self.wm.action : batch['action'], self.wm.action_post : batch['action_post'], self.um.obj_there : batch['obj_there'] } res = sess.run(self.targets, feed_dict = feed_dict) res = self.postprocessor.postprocess(res, batch) return res class LatentFreezeUpdater: def __init__(self, models, data_provider, optimizer_params, learning_rate_params, postprocessor, updater_params): self.data_provider = data_provider\ if isinstance(data_provider, list) else [data_provider] self.wm = models['world_model'] self.um = models['uncertainty_model'] freeze_wm = updater_params['freeze_wm'] freeze_um = updater_params['freeze_um'] self.postprocessor = postprocessor self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.act_step = tf.get_variable('act_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.fut_step = tf.get_variable('fut_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.um_step = tf.get_variable('ext_uncertainty_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.targets = {} self.state_desc = updater_params.get('state_desc', 'depths1') if not freeze_wm: act_lr_params, act_lr = get_learning_rate(self.act_step, **learning_rate_params['world_model']['act_model']) fut_lr_params, fut_lr = get_learning_rate(self.fut_step, **learning_rate_params['world_model']['fut_model']) act_opt_params, act_opt = get_optimizer(act_lr, self.wm.act_loss, self.act_step, optimizer_params['world_model']['act_model'], var_list = self.wm.act_var_list + self.wm.encode_var_list) fut_opt_params, fut_opt = get_optimizer(fut_lr, self.wm.fut_loss, self.fut_step, optimizer_params['world_model']['fut_model'], var_list = self.wm.fut_var_list) self.targets['act_opt'] = act_opt self.targets['fut_opt'] = fut_opt self.targets['act_lr'] = act_lr self.targets['fut_lr'] = fut_lr if not freeze_um: um_lr_params, um_lr = get_learning_rate(self.um_step, **learning_rate_params['uncertainty_model']) um_opt_params, um_opt = get_optimizer(um_lr, self.um.uncertainty_loss, self.um_step, optimizer_params['uncertainty_model'], var_list = self.um.var_list) self.targets['um_opt'] = um_opt self.targets['um_lr'] = um_lr self.targets['global_step'] = self.global_step global_increment = tf.assign_add(self.global_step, 1) um_increment = tf.assign_add(self.um.step, 1) self.targets.update({'global_increment' : global_increment, 'um_increment' : um_increment}) self.targets.update(self.wm.readouts) self.targets.update(self.um.readouts) assert set(self.wm.readouts.keys()) != set(self.um.readouts.keys()) def update(self, sess, visualize = False): if self.um.just_random: print('Selecting action at random') batch = {} for i, dp in enumerate(self.data_provider): provider_batch = dp.dequeue_batch() for k in provider_batch: if k in batch: batch[k].append(provider_batch[k]) else: batch[k] = [provider_batch[k]] for k in ['action', 'action_post', self.state_desc]: batch[k] = np.concatenate(batch[k], axis=0) feed_dict = { self.wm.states : batch[self.state_desc], self.wm.action : batch['action'], self.wm.action_post : batch['action_post'] } res = sess.run(self.targets, feed_dict = feed_dict) res.pop('um_increment') res.pop('global_increment') global_step = res['global_step'] #if self.map_draw_mode is not None and global_step % self.map_draw_freq == 0: # if self.map_draw_mode == 'specified_indices': # map_draw_res = [] # for idx in self.map_draw_example_indices: # obs_for_actor = [batch[self.state_desc][idx][t] for t in self.map_draw_timestep_indices] # action_samples = self.action_sampler.sample_actions() # action, entropy, estimated_world_loss = self.um.act(sess, action_samples, obs_for_actor) # to_add = {'example_id' : idx, 'action_sample' : action, 'estimated_world_loss' : estimated_world_loss, # 'action_samples' : action_samples, 'depths1' : batch[self.state_desc][idx], # 'action' : batch['action'][idx], 'action_post' : batch['action_post'][idx]} # map_draw_res.append(to_add) # res['map_draw'] = map_draw_res res = self.postprocessor.postprocess(res, batch) return res, global_step class FreezeUpdater: def __init__(self, models, data_provider, optimizer_params, learning_rate_params, postprocessor, updater_params): self.data_provider = data_provider \ if isinstance(data_provider, list) else [data_provider] self.wm = models['world_model'] self.um = models['uncertainty_model'] freeze_wm = updater_params['freeze_wm'] freeze_um = updater_params['freeze_um'] self.postprocessor = postprocessor self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.act_lr_params, act_lr = get_learning_rate(self.global_step, ** learning_rate_params['world_model']['act_model']) self.um_lr_params, um_lr = get_learning_rate(self.global_step, ** learning_rate_params['uncertainty_model']) num_not_frozen = 0 self.targets = {} self.state_desc = updater_params.get('state_desc', 'depths1') if not freeze_wm: num_not_frozen += 1 act_opt_params, act_opt = get_optimizer(act_lr, self.wm.act_loss, self.global_step, optimizer_params['world_model']['act_model'], var_list = self.wm.act_var_list + self.wm.encode_var_list) self.targets['act_opt'] = act_opt if not freeze_um: num_not_frozen += 1 um_opt_params, um_opt = get_optimizer(um_lr, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model'], var_list = self.um.var_list) self.targets['um_opt'] = um_opt if num_not_frozen == 0: self.targets['global_step'] = self.global_step self.targets['increment'] = tf.assign_add(self.global_step, 1) else: self.global_step = self.global_step / num_not_frozen self.targets['global_step'] = self.global_step self.targets.update({'act_lr' : act_lr, 'um_lr' : um_lr}) assert set(self.wm.readouts.keys()) != set(self.um.readouts.keys()) self.targets.update(self.wm.readouts) self.targets.update(self.um.readouts) um_increment = tf.assign_add(self.um.step, 1) assert 'um_increment' not in self.targets self.targets['um_increment'] = um_increment self.obj_there_supervision = updater_params.get('include_obj_there', False) #self.map_draw_mode = None #Map drawing. Meant to have options, but for now just assuming one sort of specification #self.state_desc = updater_params.get('state_desc', 'depths1') #self.map_draw_mode = updater_params['map_draw_mode'] #this specification specifices batch example indices for which we do a forward pass. #need to do one forward pass each index because action sampling is the 'batch.' #self.action_sampler = action_sampler #assert self.map_draw_mode == 'specified_indices' and self.action_sampler is not None, (self.map_draw_mode, action_sampler) #self.map_draw_example_indices = updater_params['map_draw_example_indices'] #self.map_draw_timestep_indices = updater_params['map_draw_timestep_indices'] #self.map_draw_freq = updater_params['map_draw_freq'] def update(self, sess, visualize = False): if self.um.just_random: print('Selecting action at random') batch = {} for i, dp in enumerate(self.data_provider): provider_batch = dp.dequeue_batch() for k in provider_batch: if k in batch: batch[k].append(provider_batch[k]) else: batch[k] = [provider_batch[k]] for k in ['action', 'action_post', self.state_desc]: batch[k] = np.concatenate(batch[k], axis=0) feed_dict = { self.wm.states : batch[self.state_desc], self.wm.action : batch['action'], self.wm.action_post : batch['action_post'] } if self.obj_there_supervision: batch['obj_there'] = np.concatenate(batch['obj_there'], axis = 0) feed_dict[self.wm.obj_there_via_msg] = batch['obj_there'] print('state desc! ' + self.state_desc) res = sess.run(self.targets, feed_dict = feed_dict) res.pop('um_increment') global_step = res['global_step'] #if self.map_draw_mode is not None and global_step % self.map_draw_freq == 0: # if self.map_draw_mode == 'specified_indices': # map_draw_res = [] # for idx in self.map_draw_example_indices: # obs_for_actor = [batch[self.state_desc][idx][t] for t in self.map_draw_timestep_indices] # action_samples = self.action_sampler.sample_actions() # action, entropy, estimated_world_loss = self.um.act(sess, action_samples, obs_for_actor) # to_add = {'example_id' : idx, 'action_sample' : action, 'estimated_world_loss' : estimated_world_loss, # 'action_samples' : action_samples, 'depths1' : batch[self.state_desc][idx], # 'action' : batch['action'][idx], 'action_post' : batch['action_post'][idx]} # map_draw_res.append(to_add) # res['map_draw'] = map_draw_res res = self.postprocessor.postprocess(res, batch) return res, global_step class JustUncertaintyUpdater: def __init__(self, models, data_provider, optimizer_params, learning_rate_params, postprocessor, updater_params, action_sampler = None): self.data_provider = data_provider \ if isinstance(data_provider, list) else [data_provider] self.wm = models['world_model'] self.um = models['uncertainty_model'] self.postprocessor = postprocessor self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.um_lr_params, um_lr = get_learning_rate(self.global_step, ** learning_rate_params['uncertainty_model']) um_opt_params, um_opt = get_optimizer(um_lr, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model'], var_list = self.um.var_list) self.targets = {'global_step' : self.global_step, 'um_optimizer' : um_opt} assert set(self.wm.readouts.keys()) != set(self.um.readouts.keys()) self.targets.update(self.wm.readouts) self.targets.update(self.um.readouts) #self.targets = { # 'fut_pred' : self.wm.fut_pred, 'act_pred' : self.wm.act_pred, # 'fut_loss' : self.wm.fut_loss, 'act_loss' : self.wm.act_loss, # 'estimated_world_loss' : self.um.estimated_world_loss, # '' # } #self.targets.update({'um_loss' : self.um.uncertainty_loss, 'um_lr' : um_lr, 'um_optimizer' : um_opt, # 'global_step' : self.global_step, 'loss_per_example' : self.um.true_loss}) self.map_draw_mode = None #Map drawing. Meant to have options, but for now just assuming one sort of specification self.state_desc = updater_params.get('state_desc', 'depths1') self.map_draw_mode = updater_params['map_draw_mode'] #this specification specifices batch example indices for which we do a forward pass. #need to do one forward pass each index because action sampling is the 'batch.' self.action_sampler = action_sampler assert self.map_draw_mode == 'specified_indices' and self.action_sampler is not None, (self.map_draw_mode, action_sampler) self.map_draw_example_indices = updater_params['map_draw_example_indices'] self.map_draw_timestep_indices = updater_params['map_draw_timestep_indices'] self.map_draw_freq = updater_params['map_draw_freq'] def update(self, sess, visualize = False): batch = {} for i, dp in enumerate(self.data_provider): provider_batch = dp.dequeue_batch() for k in provider_batch: if k in batch: batch[k].append(provider_batch[k]) else: batch[k] = [provider_batch[k]] for k in ['action', 'action_post', 'depths1']: batch[k] = np.concatenate(batch[k], axis=0) feed_dict = { self.wm.states : batch[self.state_desc], self.wm.action : batch['action'], self.wm.action_post : batch['action_post'] } self.targets['global_step'] = self.global_step res = sess.run(self.targets, feed_dict = feed_dict) global_step = res['global_step'] if self.map_draw_mode is not None and global_step % self.map_draw_freq == 0: if self.map_draw_mode == 'specified_indices': map_draw_res = [] for idx in self.map_draw_example_indices: obs_for_actor = [batch[self.state_desc][idx][t] for t in self.map_draw_timestep_indices] action_samples = self.action_sampler.sample_actions() action, entropy, estimated_world_loss = self.um.act(sess, action_samples, obs_for_actor) to_add = {'example_id' : idx, 'action_sample' : action, 'estimated_world_loss' : estimated_world_loss, 'action_samples' : action_samples, 'depths1' : batch[self.state_desc][idx], 'action' : batch['action'][idx], 'action_post' : batch['action_post'][idx]} map_draw_res.append(to_add) res['map_draw'] = map_draw_res res = self.postprocessor.postprocess(res, batch) return res, global_step class ActionUncertaintyUpdater: def __init__(self, models, data_provider, optimizer_params, learning_rate_params, postprocessor, updater_params): self.data_provider = data_provider \ if isinstance(data_provider, list) else [data_provider] self.wm = models['world_model'] self.um = models['uncertainty_model'] self.postprocessor = postprocessor self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.act_lr_params, act_lr = get_learning_rate(self.global_step, ** learning_rate_params['world_model']['act_model']) self.um_lr_params, um_lr = get_learning_rate(self.global_step, ** learning_rate_params['uncertainty_model']) act_opt_params, act_opt = get_optimizer(act_lr, self.wm.act_loss, self.global_step, optimizer_params['world_model']['act_model'], var_list = self.wm.act_var_list + self.wm.encode_var_list) um_opt_params, um_opt = get_optimizer(um_lr, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model'], var_list = self.um.var_list) self.global_step = self.global_step / 2 self.targets = {'act_pred' : self.wm.act_pred, 'act_loss' : self.wm.act_loss, 'act_optimizer' : act_opt, 'um_optimizer' : um_opt, 'estimated_world_loss' : self.um.estimated_world_loss, 'um_loss' : self.um.uncertainty_loss, 'loss_per_example' : self.um.true_loss, 'global_step' : self.global_step} def update(self, sess, visualize = False): batch = {} for i, dp in enumerate(self.data_provider): provider_batch = dp.dequeue_batch() for k in provider_batch: if k in batch: batch[k].append(provider_batch[k]) else: batch[k] = [provider_batch[k]] for k in ['action', 'action_post', 'depths1']: batch[k] = np.concatenate(batch[k], axis=0) state_desc = 'depths1' #depths, actions, actions_post, next_depth = postprocess_batch_depth(batch, state_desc) feed_dict = { self.wm.states : batch[state_desc], self.wm.action : batch['action'], self.wm.action_post : batch['action_post'] } self.targets['global_step'] = self.global_step res = sess.run(self.targets, feed_dict = feed_dict) glstep = res['global_step'] res = self.postprocessor.postprocess(res, batch) return res, glstep class LatentUncertaintyUpdater: def __init__(self, world_model, uncertainty_model, data_provider, optimizer_params, learning_rate_params, postprocessor, updater_params = None): self.data_provider = data_provider self.wm = world_model self.um = uncertainty_model self.postprocessor = postprocessor self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.act_lr_params, act_lr = get_learning_rate(self.global_step, ** learning_rate_params['world_model']['act_model']) self.fut_lr_params, fut_lr = get_learning_rate(self.global_step, ** learning_rate_params['world_model']['fut_model']) self.um_lr_params, um_lr = get_learning_rate(self.global_step, ** learning_rate_params['uncertainty_model']) act_opt_params, act_opt = get_optimizer(act_lr, self.wm.act_loss, self.global_step, optimizer_params['world_model']['act_model'], var_list = self.wm.act_var_list + self.wm.encode_var_list) fut_opt_params, fut_opt = get_optimizer(fut_lr, self.wm.fut_loss, self.global_step, optimizer_params['world_model']['fut_model'], var_list = self.wm.fut_var_list) um_opt_params, um_opt = get_optimizer(um_lr, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model'], var_list = self.um.var_list) self.global_step = self.global_step / 3 self.targets = {'encoding_i' : self.wm.encoding_i, 'encoding_f' : self.wm.encoding_f, 'fut_pred' : self.wm.fut_pred, 'act_pred' : self.wm.act_pred, 'act_optimizer' : act_opt, 'fut_optimizer' : fut_opt, 'act_lr' : act_lr, 'fut_lr' : fut_lr, 'fut_loss' : self.wm.fut_loss, 'act_loss' : self.wm.act_loss, 'estimated_world_loss' : self.um.estimated_world_loss } self.targets.update({'um_loss' : self.um.uncertainty_loss, 'um_lr' : um_lr, 'um_optimizer' : um_opt, 'global_step' : self.global_step, 'loss_per_example' : self.um.true_loss}) self.state_desc = updater_params['state_desc'] #checking that we don't have repeat names def start(self, sess): self.data_provider.start_runner(sess) sess.run(tf.global_variables_initializer()) def update(self, sess, visualize = False): batch = self.data_provider.dequeue_batch() state_desc = self.state_desc #depths, actions, actions_post, next_depth = postprocess_batch_depth(batch, state_desc) feed_dict = { self.wm.states : batch[state_desc], self.wm.action : batch['action'], self.wm.action_post : batch['action_post'] } res = sess.run(self.targets, feed_dict = feed_dict) res = self.postprocessor.postprocess(res, batch) return res class UncertaintyUpdater: def __init__(self, world_model, uncertainty_model, data_provider, optimizer_params, learning_rate_params, postprocessor): self.data_provider = data_provider self.world_model = world_model self.um = uncertainty_model self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.wm_lr_params, wm_learning_rate = get_learning_rate(self.global_step, ** learning_rate_params['world_model']) self.wm_opt_params, wm_opt = get_optimizer(wm_learning_rate, self.world_model.loss, self.global_step, optimizer_params['world_model']) self.world_model_targets = {'given' : self.world_model.processed_input, 'loss' : self.world_model.loss, 'loss_per_example' : self.world_model.loss_per_example, 'learning_rate' : wm_learning_rate, 'optimizer' : wm_opt, 'prediction' : self.world_model.pred, 'tv' : self.world_model.tv} self.inc_step = self.global_step.assign_add(1) self.um_lr_params, um_learning_rate = get_learning_rate(self.global_step, **learning_rate_params['uncertainty_model']) self.um_lr_params, um_opt = get_optimizer(um_learning_rate, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model']) self.global_step = self.global_step / 2 self.um_targets = {'loss' : self.um.uncertainty_loss, 'learning_rate' : um_learning_rate, 'optimizer' : um_opt, 'global_step' : self.global_step} self.postprocessor = postprocessor self.world_action_time = self.world_model.action.get_shape().as_list()[1] def start(self, sess): self.data_provider.start_runner(sess) sess.run(tf.global_variables_initializer()) def update(self, sess, visualize = False): batch = self.data_provider.dequeue_batch() state_desc = self.um.state_descriptor wm_feed_dict = { self.world_model.states : batch[state_desc], self.world_model.action : batch['action'][:, -self.world_action_time : ] } world_model_res = sess.run(self.world_model_targets, feed_dict = wm_feed_dict) um_feed_dict = { self.um.s_i : batch[state_desc][:, :-1], self.um.action_sample : batch['action'][:, -1], self.um.true_loss : world_model_res['loss_per_example'] } um_res = sess.run(self.um_targets, feed_dict = um_feed_dict) wm_res_new = dict(('wm_' + k, v) for k, v in world_model_res.iteritems()) um_res_new = dict(('um_' + k, v) for k, v in um_res.iteritems()) wm_res_new.update(um_res_new) res = wm_res_new res['global_step'] = res.pop('um_global_step') res = self.postprocessor.postprocess(wm_res_new, batch) return res class DamianWMUncertaintyUpdater: def __init__(self, world_model, uncertainty_model, data_provider, optimizer_params, learning_rate_params, postprocessor): self.data_provider = data_provider self.world_model = world_model self.um = uncertainty_model self.global_step = tf.get_variable('global_step', [], tf.int32, initializer = tf.constant_initializer(0,dtype = tf.int32)) self.wm_lr_params, wm_learning_rate = get_learning_rate(self.global_step, ** learning_rate_params['world_model']) self.wm_opt_params, wm_opt = get_optimizer(wm_learning_rate, self.world_model.loss, self.global_step, optimizer_params['world_model']) self.world_model_targets = {'given' : self.world_model.processed_input, 'loss' : self.world_model.loss, 'learning_rate' : wm_learning_rate, 'optimizer' : wm_opt, 'prediction' : self.world_model.pred, 'tv' : self.world_model.tv} self.inc_step = self.global_step.assign_add(1) self.wm_lr_params, um_learning_rate = get_learning_rate(self.global_step, **learning_rate_params['uncertainty_model']) self.wm_lr_params, um_opt = get_optimizer(um_learning_rate, self.um.uncertainty_loss, self.global_step, optimizer_params['uncertainty_model']) self.um_targets = {'loss' : self.um.uncertainty_loss, 'learning_rate' : um_learning_rate, 'optimizer' : um_opt, 'global_step' : self.global_step} self.postprocessor = postprocessor def start(self, sess): self.data_provider.start_runner(sess) sess.run(tf.global_variables_initializer()) def update(self, sess, visualize = False): batch = self.data_provider.dequeue_batch() depths, objects, actions, action_ids, next_depth = postprocess_batch_for_actionmap(batch) wm_feed_dict = { self.world_model.s_i : depths, self.world_model.s_f : next_depth, self.world_model.action : actions, self.world_model.action_id : action_ids, self.world_model.objects : objects } world_model_res = sess.run(self.world_model_targets, feed_dict = wm_feed_dict) if visualize: cv2.imshow('pred', world_model_res['prediction'][0] / 4.)#TODO clean up w colors cv2.imshow('tv', world_model_res['tv'][0] / 4.) cv2.imshow('processed0', world_model_res['given'][0, 0] / 4.) cv2.imshow('processed1', world_model_res['given'][0, 1] / 4.) cv2.waitKey(1) print('wm loss: ' + str(world_model_res['loss'])) um_feed_dict = { self.um.s_i : depths, self.um.action_sample : actions[:, -1], self.um.true_loss : np.array([world_model_res['loss']]) } um_res = sess.run(self.um_targets, feed_dict = um_feed_dict) wm_res_new = dict(('wm_' + k, v) for k, v in world_model_res.iteritems()) um_res_new = dict(('um_' + k, v) for k, v in um_res.iteritems()) wm_res_new.update(um_res_new) res['global_step'] = res.pop('um_global_step') res = self.postprocessor.postprocess(wm_res_new, batch) return res
2.078125
2
tests/conftest.py
alex-torok/pybuildkite
1
12790161
<filename>tests/conftest.py import pytest from unittest.mock import Mock @pytest.fixture def fake_client() -> Mock: """ Build a fake API client """ return Mock(get=Mock())
2.28125
2
ImgOperator/Oporation.py
keyofdeath/AugmentedReality
0
12790162
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- class Oporation(): def __init__(self): pass def apply(self, img): pass if __name__ == "__main__": pass
1.398438
1
worknoteBookHelpers.py
JanKrAppel/worknoteBook
0
12790163
<reponame>JanKrAppel/worknoteBook # -*- coding: utf-8 -*- """ Created on Wed Sep 2 18:06:23 2015 @author: appel """ def parse_index(index): from worknote.items import parse_index return parse_index(index)[0:2] def gen_index(index): try: return u':'.join([str(i) for i in index[0:2]]) except TypeError: return unicode(index) def zip_worknote(src_dir, target_fn): from os.path import split, join from os import listdir from zipfile import ZipFile wn_dir = split(src_dir)[1] zf = ZipFile(target_fn, 'w') zf.write(src_dir, wn_dir) for fn in listdir(src_dir): zf.write(join(src_dir, fn), join(wn_dir, fn)) zf.close() def unzip_worknote(src_fn, target_dir = None): from zipfile import ZipFile, BadZipfile from os.path import split, exists, join from os import makedirs, listdir from shutil import move from tempfile import gettempdir try: with ZipFile(src_fn, 'r') as zipfile: files = zipfile.namelist() wn_dir = split(files[0])[0] if target_dir is None: target_dir = wn_dir if exists(target_dir): raise OSError('The target directory already exists') else: makedirs(target_dir) tmpdir = gettempdir() zipfile.extractall(tmpdir) for fn in listdir(join(tmpdir, wn_dir)): move(join(join(tmpdir, wn_dir), fn), target_dir) except BadZipfile, e: raise IOError(str(e)) class Configuration(object): def __init__(self, cfg_file, default_cfg = None): from ConfigParser import SafeConfigParser self.cfg_file = cfg_file self.config = SafeConfigParser() if not default_cfg is None: for section in default_cfg: for option in default_cfg[section]: self.__put_item([section, option], default_cfg[section][option]) self.read_cfg_file() def __getitem__(self, indices): indices = indices[0:2] section, option = indices if not section in self.config.sections(): return None if not option in self.config.options(section): return None val = self.config.get(section, option) try: val = int(val) except ValueError: pass else: return val try: val = float(val) except ValueError: pass else: return val if val == 'False': return False elif val == 'True': return True return val def __put_item(self, indices, value): indices = indices[0:2] value = str(value) section, option = indices if not section in self.config.sections(): self.config.add_section(section) if not option in self.config.options(section): self.config.set(section, option, value) def __setitem__(self, indices, value): self.__put_item(indices, value) self.update_cfg_file() def update_cfg_file(self): with open(self.cfg_file, 'w') as outfile: self.config.write(outfile) def read_cfg_file(self): from os.path import exists if exists(self.cfg_file): self.config.read(self.cfg_file) def get_sections(self): return self.config.sections() def get_options(self, section): return self.config.options(section)
2.421875
2
gpytorch/utils/grid.py
yushangdi/gpytorch
0
12790164
<filename>gpytorch/utils/grid.py<gh_stars>0 #!/usr/bin/env python3 import math import torch def scale_to_bounds(x, lower_bound, upper_bound): """ Scale the input data so that it lies in between the lower and upper bounds. Args: :attr:`x` (Tensor `n` or `b x n`): the input :attr:`lower_bound` (float) :attr:`upper_bound` (float) Returns: :obj:`torch.Tensor` """ # Scale features so they fit inside grid bounds min_val = x.min() max_val = x.max() diff = max_val - min_val x = (x - min_val) * (0.95 * (upper_bound - lower_bound) / diff) + 0.95 * lower_bound return x def choose_grid_size(train_inputs, ratio=1.0): """ Given some training inputs, determine a good grid size for KISS-GP. Args: :attr:`train_inputs` (Tensor `n` or `n x d` or `b x n x d`): training data :attr:`ratio` (float, optional): Ratio - number of grid points to the amount of data (default: 1.) Returns: :obj:`int` """ # Scale features so they fit inside grid bounds num_data = train_inputs.numel() if train_inputs.dim() == 1 else train_inputs.size(-2) num_dim = 1 if train_inputs.dim() == 1 else train_inputs.size(-1) return int(ratio * math.pow(num_data, 1.0 / num_dim)) def create_data_from_grid(grid): grid_size = grid.size(-2) grid_dim = grid.size(-1) grid_data = torch.zeros(int(pow(grid_size, grid_dim)), grid_dim, device=grid.device) prev_points = None for i in range(grid_dim): for j in range(grid_size): grid_data[j * grid_size ** i : (j + 1) * grid_size ** i, i].fill_(grid[j, i]) if prev_points is not None: grid_data[j * grid_size ** i : (j + 1) * grid_size ** i, :i].copy_(prev_points) prev_points = grid_data[: grid_size ** (i + 1), : (i + 1)] return grid_data
2.78125
3
cookbook/c07/p11_inline_callback.py
Xiao-jiuguan/python3-cookbook
3
12790165
<reponame>Xiao-jiuguan/python3-cookbook #!/usr/bin/env python # -*- encoding: utf-8 -*- """ Topic: 内联回调函数 Desc : """ from queue import Queue from functools import wraps def apply_async(func, args, *, callback): # Compute the result result = func(*args) # Invoke the callback with the result callback(result) class Async: def __init__(self, func, args): self.func = func self.args = args def inlined_async(func): @wraps(func) def wrapper(*args): f = func(*args) result_queue = Queue() result_queue.put(None) while True: print('1' * 15) result = result_queue.get() print('2' * 15) try: print('3' * 15) print('result={}'.format(result)) a = f.send(result) print('4' * 15) apply_async(a.func, a.args, callback=result_queue.put) print('5' * 15) except StopIteration: break return wrapper def add(x, y): return x + y @inlined_async def test(): print('start'.center(20, '=')) r = yield Async(add, (2, 3)) print('last={}'.format(r)) r = yield Async(add, ('hello', 'world')) print('last={}'.format(r)) # for n in range(10): # r = yield Async(add, (n, n)) # print(r) # print('Goodbye') print('end'.center(20, '=')) if __name__ == '__main__': test()
3.625
4
huggingface_transformers/preprocessing_fn.py
ML3ngiRNErT/funniness-regression
0
12790166
import pandas as pd import re import nltk import spacy import torch from nltk.corpus import stopwords from cleantext import clean from ekphrasis.classes.preprocessor import TextPreProcessor from torch.utils.data import Dataset # Params for clean_text_param = { "lower":False, # lowercase text "no_line_breaks":True, # fully strip line breaks as opposed to only normalizing them "no_urls":False, # replace all URLs with a special token "no_emails":False, # replace all email addresses with a special token "no_phone_numbers":False, # replace all phone numbers with a special token "no_numbers":False, # replace all numbers with a special token "no_digits":False, # replace all digits with a special token "no_currency_symbols":True, # replace all currency symbols with a special token "no_punct":True, # remove punctuations "replace_with_punct":"", # instead of removing punctuations you may replace them "replace_with_number":"", "replace_with_digit":"", "replace_with_currency_symbol":"", "lang":"en" # set to 'de' for German special handling } nlp = spacy.load('en_core_web_sm') class Task1Dataset(Dataset): def __init__(self, train_data, labels): self.x_train = train_data self.y_train = labels def __len__(self): return len(self.y_train) def __getitem__(self, idx): item = {key: torch.tensor(val[idx]) for key, val in self.x_train.items()} item['labels'] = torch.tensor(self.y_train[idx], dtype=torch.float) return item class Preprocessor: @staticmethod def PreprocessorBuilder(): return Preprocessor() def __init__(self): self.transformations = [] self.text_processor = TextPreProcessor( fix_html=True, # fix HTML tokens # corpus from which the word statistics are going to be used # for word segmentation segmenter="english", # corpus from which the word statistics are going to be used # for spell correction corrector="english", unpack_hashtags=False, # perform word segmentation on hashtags unpack_contractions=False, # Unpack contractions (can't -> can not) spell_correct=True, # spell correction for elongated words ) self.punct = "[\.,:;\(\)\[\]@\-\$£]" nltk.download('stopwords') self.stops = stopwords.words('english') self.nlp = spacy.load('en_core_web_lg') def _capitalisation_by_ner(self, sentence, entities=['GPE', 'ORG', 'NORP', 'PERSON']): edited_row = [] trial_doc = self.nlp(sentence) for tok in trial_doc: if tok.ent_type_ in entities: edited_row.append(tok.text) else: edited_row.append(tok.text.lower()) return ' '.join(edited_row) def with_word_replacement(self): self.transformations.append(("apply", {"func": (lambda x: re.subn("<.*/>", x[1], x[0])[0]), "axis":1})) return self def with_capitalisation_by_ner(self): self.transformations.append(("apply", {"func": (lambda x: self._capitalisation_by_ner(x))})) return self def with_joining_contraction_tokens(self): self.transformations.append(("str.replace", {"pat": " (?P<one>\w*'\w+)", "repl": (lambda x: x.group("one"))})) return self def with_spell_check(self): self.transformations.append(("apply", {"func": (lambda x: self.text_processor.pre_process_doc(x))})) return self def with_space_after_hashtags(self): self.transformations.append(("str.replace", {"pat": "#", "repl": "# "})) return self def with_ascii_quotes_replacement(self): self.transformations.append(("str.replace", {"pat": "[‘’]", "repl": "'"})) return self def with_possessive_elimination(self): self.transformations.append(("str.replace", {"pat": "'s", "repl": ""})) return self def with_punct_removal(self): self.transformations.append(("str.replace", {"pat": self.punct, "repl": "'"})) return self def with_digit_removal(self): self.transformations.append(("str.replace", {"pat": "[0-9]", "repl": ""})) return self def with_stopwords_removal(self): self.transformations.append(("apply", {"func": (lambda x: " ".join([w for w in x.split(" ") if w not in self.stops]))})) return self def build(self): return self def preprocess(self, df, clean_col_name='edited_sentence'): _df = pd.DataFrame(index=df.index, columns=[clean_col_name, 'meanGrade']) _df['meanGrade'] = df.meanGrade transformed_cols = df[['original', 'edit']] for (func, params) in self.transformations: func_to_apply = transformed_cols for f in func.split("."): print(f) func_to_apply = getattr(func_to_apply, f) transformed_cols = func_to_apply(**params) _df[clean_col_name] = transformed_cols return _df, clean_col_name
2.6875
3
projecto/urls.py
bfaguiar/Venda-d-Garagem
0
12790167
"""projecto URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, re_path from app import views urlpatterns = [ path('admin/', admin.site.urls), path('index/', views.index, name='index'), path('', views.index, name='index'), path('login/', views.login, name='login'), path('signup/', views.signup, name='signup'), path('profile/', views.profile, name='profile'), path('wishlist/', views.wishlist, name='wishlist'), path('about/', views.about, name='about'), path('model/', views.model, name='model'), path('add_announce/', views.add_announce, name='add_announce'), path('deleteAccount/', views.deleteAccount, name='deleteAccount'), path('remove_announcement/', views.remove_announcement, name="remove_announcement"), path('fav/', views.fav, name="fav"), path('rev/', views.rev, name="rev"), ]
2.75
3
models/support_vector_machine_regression_poly3.py
jtbai/glo-7027
0
12790168
from models.basemodel import BaseModel from sklearn import model_selection, svm class SupportVectorMachineRegressionPoly3(BaseModel): def _train(self, X_train, y_train): parametres = {'gamma': [0.01, 0.1, 1], 'C': [1, 10, 100], 'degree': [2,3,4,5,6]} grid_search = model_selection.GridSearchCV(svm.SVR(kernel="poly" ), parametres, n_jobs=6) grid_search = grid_search.fit(X_train, y_train) return grid_search def compute_and_output_r2_metric(self, trained_grid_search, y_train, y_train_pred, y_test, y_test_pred): self._printResults(y_train, y_train_pred, y_test, y_test_pred, str(trained_grid_search.best_params_))
2.5
2
tests/integration/load_balancer_types/test_load_balancer_types.py
cenkalti/hcloud-python
0
12790169
<filename>tests/integration/load_balancer_types/test_load_balancer_types.py class TestLoadBalancerTypesClient(object): def test_get_by_id(self, hetzner_client): load_balancer_type = hetzner_client.load_balancer_types.get_by_id(1) assert load_balancer_type.id == 1 assert load_balancer_type.name == "lb11" def test_get_by_name(self, hetzner_client): load_balancer_type = hetzner_client.load_balancer_types.get_by_name("lb11") assert load_balancer_type.id == 1 assert load_balancer_type.name == "lb11" def test_get_list(self, hetzner_client): result = hetzner_client.load_balancer_types.get_list() load_balancer_types = result.load_balancer_types assert load_balancer_types[0].id == 1 assert load_balancer_types[0].name == "lb11"
2.28125
2
nets/zoo/hrnet_config.py
hin1115/building_extraction_in_satellite_image
7
12790170
<reponame>hin1115/building_extraction_in_satellite_image import yaml import sys import os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname("__file__")))) def parse(path): with open(path, 'r') as f: config = yaml.safe_load(f) f.close() return config
2.546875
3
src/player.py
thacd/tennis-scoring-system
0
12790171
<filename>src/player.py<gh_stars>0 class Player: def __init__(self, name, set_point=0, game_point=0): self.name = name self.set_point = set_point self.game_point = game_point @property def set_point(self): return self.__set_point @set_point.setter def set_point(self, value): if value < 0: raise ValueError("Negative set point is impossible!") self.__set_point = value @property def game_point(self): return self.__game_point @game_point.setter def game_point(self, value): if value < 0: raise ValueError("Negative game point is impossible!") self.__game_point = value
3.34375
3
example.py
jlenain/PhotALPsConv
1
12790172
#Example script to show use of PhotALPsConv.calc_conversion module. # ---- Imports ------------------------------------- # import numpy as np import matplotlib.pyplot as plt import PhotALPsConv.calc_conversion as CC from PhotALPsConv.tools import median_contours from optparse import OptionParser # -------------------------------------------------- # # read in the config file parser=OptionParser() parser.add_option("-c","--config",dest="c",help="config yaml file",action="store") (opt, args) = parser.parse_args() # init the conversion calculation cc = CC.Calc_Conv(config = opt.c) # the energy array in GeV EGeV = np.logspace(cc.log10Estart,cc.log10Estop,cc.Estep) # init matrices that will store the conversion probabilities # for the different photon (t,u) and ALP (a) polarization states Pt = np.zeros((cc.nsim,EGeV.shape[0])) Pu = np.zeros((cc.nsim,EGeV.shape[0])) Pa = np.zeros((cc.nsim,EGeV.shape[0])) # calculate the mixing, nsim > 0 only if ICM or IGM are included for i in range(cc.nsim): try: cc.scenario.index('Jet') new_angles = False except ValueError: new_angles = True # calculate the mixing for all energies. If new_angles = True, # new random angles will be generated for each random realizatioin Pt[i],Pu[i],Pa[i] = cc.calc_conversion(EGeV, new_angles = new_angles) # calculate the median and 68% and 95% confidence contours MedCon = median_contours(Pt + Pu) # plot the results plt.figure() ax = plt.subplot(111) ax.set_xscale("log") ax.set_yscale("log") # plot the contours if we are dealing with many realizations if cc.nsim > 1: plt.fill_between(EGeV,MedCon['conf_95'][0],y2 = MedCon['conf_95'][1], color = plt.cm.Greens(0.8)) plt.fill_between(EGeV,MedCon['conf_68'][0],y2 = MedCon['conf_68'][1], color = plt.cm.Greens(0.5)) plt.plot(EGeV,MedCon['median'], ls = '-', color = 'gold', label = 'median') label = 'one realization' else: label = 'w/ ALPs' # plot the standard attenuation plt.plot(EGeV,np.exp(-1. * cc.ebl_norm * cc.tau.opt_depth_array(cc.z,EGeV / 1e3)[0]), ls = '--', color = 'red', label = r'w/o ALPs', lw = 3.) # plot the photon survival probability including ALPs plt.plot(EGeV,Pt[0] + Pu[0], ls = '-', color = '0.', label = label, lw = 3.) plt.xlabel("Energy (GeV)", size = 'x-large') plt.ylabel("Photon survival probability", size = 'x-large') plt.legend(loc = 3, fontsize = 'x-large') plt.axis([EGeV[0],EGeV[-1],1e-1,1.1]) plt.show()
2
2
daps/utils/deprecated/video.py
escorciav/deep-action-proposals
28
12790173
<filename>daps/utils/deprecated/video.py import cv2 def dump_video(filename, clip, fourcc_str='X264', fps=30.0): """Write video on disk from a stack of images Parameters ---------- filename : str Fullpath of video-file to generate clip : ndarray ndarray where first dimension is used to refer to i-th frame fourcc_str : str str to retrieve fourcc from opencv fps : float frame rate of create video-stream """ fourcc = cv2.cv.CV_FOURCC(**list(fourcc_str)) fid = cv2.VideoWriter(filename, fourcc, fps, clip.shape[0:2]) if fid.isOpened(): for i in xrange(clip.shape[0]): fid.write(clip[i, ...]) return True else: return False
3.046875
3
mathematics/number-theory/john-and-gcd-list.py
PingHuskar/hackerrank
41
12790174
# Mathematics > Number Theory > John and GCD list # Help John in making a list from GCD list # # https://www.hackerrank.com/challenges/john-and-gcd-list/problem # import math import functools def gcd(*numbers): """ greatest common divisor """ return functools.reduce(math.gcd, numbers) def lcm(*numbers): """ least common multiple """ return functools.reduce(lambda a, b: (a * b) // gcd(a, b), numbers, 1) # la réponse est le ppcm "glissant" des Ai for _ in range(int(input())): n = int(input()) A = list(map(int, input().split())) x = A[0] B = [x] i = 1 while i < n: y = A[i] B.append(lcm(x, y)) x = y i += 1 B.append(A[-1]) print(*B)
3.78125
4
Python Advanced/Advanced/Exams/19 August 2020/Task03.py
IvanTodorovBG/SoftUni
1
12790175
def numbers_searching(*args): answer = [] duplicate_nums = [] min_num, max_num = min(args), max(args) for search_num in range(min_num, max_num + 1): if search_num not in args: answer.append(search_num) for number in set(args): if args.count(number) > 1: duplicate_nums.append(number) answer.append(sorted(duplicate_nums)) return answer print(numbers_searching(1, 2, 4, 2, 5, 4)) print(numbers_searching(5, 5, 9, 10, 7, 8, 7, 9)) print(numbers_searching(50, 50, 47, 47, 48, 45, 49, 44, 47, 45, 44, 44, 48, 44, 48))
3.703125
4
examples/eeprom_example.py
melopero/Melopero_RV-3028
1
12790176
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME> """ import melopero_RV_3028 as mp import time def main(): # First initialize and create the rtc device rtc = mp.RV_3028() # setup the rtc to use the eeprom memory (disables the automatic configuration refresh) rtc.use_eeprom() my_reg_address = 0x00 my_data = 0x42 # to write to ram registers you must use rtc.write_register # to write to eeprom you must use rtc.write_eeprom_register # user eeprom address space : [0x00 - 0x2A] # configuration eeprom address space : [0x30 - 0x37] rtc.write_eeprom_register(register_address=my_reg_address, value=my_data) print("Saved {} at address {} in eeprom".format(my_data, my_reg_address)) # give some time to execute writing operation time.sleep(1) # to read from ram registers you must use rtc.read_register # to write to eeprom you must use rtc.read_eeprom_register # user eeprom address space : [0x00 - 0x2A] # configuration eeprom address space : [0x30 - 0x37] my_saved_data = rtc.read_eeprom_register(register_address=my_reg_address) print("Read {} from eeprom address {}".format(my_saved_data, my_reg_address)) if __name__ == "__main__": main()
3.109375
3
promort/clinical_annotations_manager/migrations/0018_auto_20211128_1525.py
mdrio/ProMort
3
12790177
# Generated by Django 3.1.13 on 2021-11-28 15:25 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('clinical_annotations_manager', '0017_auto_20210424_1321'), ] operations = [ migrations.RenameField( model_name='coreannotation', old_name='creation_start_date', new_name='action_start_time', ), migrations.RenameField( model_name='focusregionannotation', old_name='creation_start_date', new_name='action_start_time', ), migrations.RenameField( model_name='gleasonelement', old_name='creation_start_date', new_name='action_start_time', ), migrations.RenameField( model_name='sliceannotation', old_name='creation_start_date', new_name='action_start_time', ), ]
1.601563
2
ChallengeJinja/challengejinja.py
subash-kc/2022-01-04-Python
1
12790178
""" 192.168.30.22 hostA.localdomain # hostA 192.168.30.33 hostB.localdomain # hostB 192.168.30.44 hostC.localdomain # hostB """ """ groups = [{"hostname": "hostA","ip": "192.168.30.22", "fqdn": "hostA.localdomain"}, {"hostname": "hostB", "ip": "192.168.30.33", "fqdn": "hostB.localdomain"}, {"hostname": "hostC", "ip": "192.168.30.44", "fqdn": "hostC.localdomain"}] """ from flask import Flask, request, redirect, url_for, session, render_template # from flask import request # from flask import redirect # from flask import url_for # from flask import session # from flask import render_template app = Flask(__name__) app.secret_key= "random random RANDOM!" groups = [{"hostname": "hostA","ip": "192.168.30.22", "fqdn": "hostA.localdomain"}, {"hostname": "hostB", "ip": "192.168.30.33", "fqdn": "hostB.localdomain"}, {"hostname": "hostC", "ip": "192.168.30.44", "fqdn": "hostC.localdomain"}] @app.route("/", methods= ["GET","POST"]) def hosts(): # GET returns the rendered hosts # POST adds new hosts, then returns rendered hosts if "username" in session and session["username"] == "admin": if request.method == "POST": # pull all values from posted form hostname = request.form.get("hostname") ip = request.form.get("ip") fqdn = request.form.get("fqdn") # create a new dictionary with values, add to groups groups.append({"hostname": hostname, "ip": ip, "fqdn": fqdn}) return render_template("hosts.j2", groups=groups) @app.route("/form", methods=["GET","POST"]) def form(): # HTML form that collects hostname, ip, and fqdn values if request.method == "POST": session["username"] = request.form.get("username") if "username" in session and session["username"] == "admin": return render_template("formcollector.html.j2") else: return """ <form action = "" method = "post"> <p>Invalid Login.</p> <p><input type = text name = username></p> <p><input type = submit value = Login></p> </form> """ @app.route("/logout") def logout(): # accessing this page pops the value of username of the session session.pop("username", None) return redirect("/") if __name__ == "__main__": app.run(host="0.0.0.0", port=2224)
2.8125
3
CNN.py
tahanakabi/Deep-Reinforcenment-learning-for-TCL-control
6
12790179
import numpy as np import tensorflow as tf from read_data import get_X_y from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pickle class NN(): def __init__(self, batch_size = 300, graph = tf.get_default_graph(),test_size = 0.1, steps_back=8, num_TCL=30): self.num_TCL = num_TCL with graph.as_default(): # Training Parameters self.learning_rate = 0.1 self.num_steps = 100000 self.steps_back = steps_back self.batch_size = batch_size if batch_size==1: self.test_proportion = 0 else: self.test_proportion = test_size self.batch_tr_size = int(self.batch_size * (1 - self.test_proportion)) self.test_size = int(self.test_proportion*self.batch_size) self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') # dropout (keep probability) # display_step = 10 # Network Parameters self.cnn_num_input = num_TCL # MNIST data input self.fc_num_input = 4 self.num_output = 1 # MNIST total classes (0-9 digits) self.dropout = 0.85 # Dropout, probability to keep units # Placeholders self.Xb = tf.placeholder(tf.float32, [self.batch_tr_size, self.steps_back, self.cnn_num_input],name='Xb') self.Xe = tf.placeholder(tf.float32, [self.batch_tr_size, 1, 4], name='Xe') self.Y = tf.placeholder(tf.float32, [self.batch_tr_size, self.num_output], name='Y') if self.test_proportion != 0: # Test Placeholders self.Xb_test = tf.placeholder(tf.float32, [self.test_size, self.steps_back, self.cnn_num_input],name='Xb_test') self.Xe_test = tf.placeholder(tf.float32, [self.test_size, 1, 4], name='Xe_test') self.Y_test = tf.placeholder(tf.float32, [self.test_size, self.num_output], name='Y_test') # Store layers weight & bias self.weights = { # 5x5 conv 'wc1': tf.Variable(tf.random_normal([2, 8, 1, 32])), # 5x5 conv, 32 inputs, 64 outputs 'wc2': tf.Variable(tf.random_normal([2, 8, 32, 64])), # fully connected for cnn 'wd1': tf.Variable(tf.random_normal([self.steps_back*self.cnn_num_input*64//4, 1024])), 'wd11': tf.Variable(tf.random_normal([1024, 20])), # fully connected for fl_net, 'wd2': tf.Variable(tf.random_normal([4, 20])), # 1024+10 inputs, 1 output (class prediction) 'out': tf.Variable(tf.random_normal([20+20, 50])), # second fuly connected layer 100 inputs and 1 output 'out2': tf.Variable(tf.random_normal([50, self.num_output])) } self.biases = { 'bc1': tf.Variable(tf.random_normal([32])), 'bc2': tf.Variable(tf.random_normal([64])), 'bd1': tf.Variable(tf.random_normal([1024])), 'bd11': tf.Variable(tf.random_normal([20])), 'bd2': tf.Variable(tf.random_normal([20])), 'out': tf.Variable(tf.random_normal([50])), 'out2': tf.Variable(tf.random_normal([self.num_output])) } # Create some wrappers for simplicity def conv2d(self, x, W, b, strides=1): # Conv2D wrapper, with bias and relu activation x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME') x = tf.nn.bias_add(x, b) return tf.nn.relu(x) def maxpool2d(self, x, k=2): # MaxPool2D wrapper return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME') # Create model def conv_net(self,xb): xb = tf.reshape(xb, shape=[-1, self.steps_back, self.num_TCL, 1]) # Convolution Layer conv1 = self.conv2d(xb, self.weights['wc1'],self.biases['bc1']) # Max Pooling (down-sampling) conv1 = self.maxpool2d(conv1, k=2) # Convolution Layer conv2 = self.conv2d(conv1, self.weights['wc2'], self.biases['bc2']) # Max Pooling (down-sampling) # conv2 = self.maxpool2d(conv2, k=2) # Fully connected layer # Reshape conv2 output to fit fully connected layer input conv2_reshaped = tf.reshape(conv2, [-1, self.weights['wd1'].get_shape().as_list()[0]]) fc1 = tf.add(tf.matmul(conv2_reshaped, self.weights['wd1']), self.biases['bd1']) fc1_relued = tf.nn.relu(fc1) fc11 = tf.add(tf.matmul(fc1_relued, self.weights['wd11']), self.biases['bd11']) fc11_relued = tf.nn.relu(fc11) ## Apply Dropout return tf.nn.dropout(fc11_relued, self.keep_prob) def fc_net(self,xe): xe = tf.reshape(xe, shape=[-1, self.weights['wd2'].get_shape().as_list()[0]]) fc2 = tf.add(tf.matmul(xe, self.weights['wd2']), self.biases['bd2']) return tf.nn.relu(fc2) def combined_net(self, graph = tf.get_default_graph()): with graph.as_default(): conv_component = self.conv_net(self.Xb) fc_component = self.fc_net(self.Xe) # concatenate the to components fc = tf.concat([conv_component,fc_component], axis=1) # another fc net with sigmoid fc3 = tf.add(tf.matmul(fc, self.weights['out']), self.biases['out']) fc3_sigmoided = tf.nn.sigmoid(fc3) #linear fc prediction = tf.add(tf.matmul(fc3_sigmoided, self.weights['out2']), self.biases['out2'], name="prediction") # Define loss and optimizer loss_op = tf.losses.mean_squared_error(predictions = prediction ,labels = self.Y) optimizer = tf.train.AdamOptimizer(learning_rate = self.learning_rate) train_op = optimizer.minimize(loss_op,name="train_op") if self.test_proportion != 0: # Test graph conv_component_test = self.conv_net(graph.get_tensor_by_name("Xb_test:0")) fc_component_test = self.fc_net(graph.get_tensor_by_name("Xe_test:0")) # concatenate the to components fc_test = tf.concat([conv_component_test, fc_component_test], axis=1) # another fc net with sigmoid fc3_test = tf.add(tf.matmul(fc_test, self.weights['out']), self.biases['out']) fc3_sigmoided_test = tf.nn.sigmoid(fc3_test) # linear fc prediction_test = tf.add(tf.matmul(fc3_sigmoided_test, self.weights['out2']), self.biases['out2'], name="prediction_test") loss_op_test = tf.losses.mean_squared_error(predictions=prediction_test, labels=self.Y_test) def run_sess(self, sess, batch_xb, batch_xe, batch_y, saver, name): graph = sess.graph batch_xe = np.reshape(batch_xe,[-1,1,self.fc_num_input]) batch_xb = np.reshape(batch_xb, [-1, self.steps_back, self.cnn_num_input]) batch_y = np.reshape(batch_y,[-1,self.num_output]) batch_tr_xe = batch_xe[:self.batch_tr_size] batch_test_xe = batch_xe[self.batch_tr_size:] batch_tr_xb = batch_xb[:self.batch_tr_size] batch_test_xb = batch_xb[self.batch_tr_size:] batch_tr_y = batch_y[:self.batch_tr_size] batch_test_y = batch_y[self.batch_tr_size:] overfitting=0 for step in range(1, self.num_steps + 1): # Run optimization op (backprop) sess.run("train_op", feed_dict={graph.get_tensor_by_name("Xb:0"): batch_tr_xb, graph.get_tensor_by_name("Xe:0"): batch_tr_xe, graph.get_tensor_by_name("Y:0"): batch_tr_y, graph.get_tensor_by_name("keep_prob:0"): self.dropout}) # Calculate batch loss training_l = sess.run("mean_squared_error/value:0", feed_dict={graph.get_tensor_by_name("Xb:0"): batch_tr_xb, graph.get_tensor_by_name("Xe:0"): batch_tr_xe, graph.get_tensor_by_name("Y:0"): batch_tr_y, graph.get_tensor_by_name("keep_prob:0"): 1.0}) test_l = sess.run("mean_squared_error_1/value:0", feed_dict={graph.get_tensor_by_name("Xb_test:0"): batch_test_xb, graph.get_tensor_by_name("Xe_test:0"): batch_test_xe, graph.get_tensor_by_name("Y_test:0"): batch_test_y, graph.get_tensor_by_name("keep_prob:0"): 1.0}) if step % 10 == 0 or step == 1: print("Step " + str(step) + ", Minibatch training Loss= " + str(training_l)) print("Step " + str(step) + ", Minibatch validation Loss= " + str(test_l)) if test_l - training_l> 0.015: overfitting += 1 else: overfitting = 0 if overfitting >= 30 and training_l <= 0.01 : print("condition satisfied") break if test_l < 0.009 and training_l < 0.009 : print("condition satisfied") break # self.training_loss.append(training_l) # self.validation_loss.append(test_l) print("Optimization Finished!") # Save the variables to disk. save_path = saver.save(sess, name) print("Model saved in path: %s" % save_path) def train(self,xb, xe, y, name = "./model0.ckpt", graph = tf.get_default_graph() ): self.training_loss = [] self.validation_loss = [] with tf.Session(graph=graph) as sess: saver = tf.train.Saver() try: saver.restore(sess, name) except: sess.run(tf.global_variables_initializer()) for i in range(xb.shape[0]//self.batch_size): # Run the initializer index = i*self.batch_size self.run_sess(sess, xb[index:index+self.batch_size],xe[index:index+self.batch_size],y[index:index+self.batch_size], saver, name= name) # plt.plot(range(len(self.training_loss)), self.training_loss, label='Training') # plt.plot(range(len(self.validation_loss)), self.validation_loss, label='Validation') # plt.xlabel('Steps') # # plt.ylabel('Loss') # # plt.title("Loss function") # # plt.legend() # # plt.show() # def retrain(self,xb, xe, y,sess): # saver.restore(sess, "./model.ckpt") # self.run_sess(sess,xb,xe,y) def predict(self, xb, xe, sess): # tf Graph input graph = sess.graph xb = np.reshape(xb, [-1, self.steps_back, self.cnn_num_input]) xe = np.reshape(xe, [-1, 1, self.fc_num_input]) p = sess.run("prediction:0", feed_dict={graph.get_tensor_by_name("Xb:0"): xb, graph.get_tensor_by_name("Xe:0"): xe, graph.get_tensor_by_name("keep_prob:0"): 1.0}) return p if __name__ == '__main__': xb, xe, y = get_X_y(steps_back=7, filename="Q_data0.csv") neural_net = NN(batch_size = 100, steps_back=8) scaler1 = {} for i in range(xb.shape[1]): scaler1[i] = MinMaxScaler(feature_range=(0,1), copy=True) xb[:,i,:] = scaler1[i].fit_transform(xb[:,i,:]) scaler2 = MinMaxScaler(feature_range=(0,1), copy=True).fit(xe) scaler3 = MinMaxScaler(feature_range=(0, 1), copy=True).fit(y.reshape(-1,1)) xe= scaler2.transform(xe) y= scaler3.transform(y.reshape(-1,1)) # graph = tf.Graph() neural_net.combined_net() # saver = tf.train.Saver() # keep_prob = neural_net.keep_prob # init = tf.global_variables_initializer() # graph = tf.get_default_graph() neural_net.train(xb, xe, y)
2.75
3
_untuned_modeling.py
mcvenkat/Python-Programs
1
12790180
<reponame>mcvenkat/Python-Programs<filename>_untuned_modeling.py ###################################################### # _untuned_modeling.py # author: <NAME>, <EMAIL> # licence: FreeBSD """ Copyright (c) 2015, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ #first run feature_extraction.py #then run this file from the same directory ###################################################### # import dependencies import csv import numpy as np from sklearn.cross_validation import KFold from sklearn.ensemble import GradientBoostingClassifier,ExtraTreesClassifier from sklearn.metrics import log_loss ###################################################### # list ids and labels trainids=[] labels=[] with open('trainLabels.csv','r') as f: r=csv.reader(f) r.next() # skip header for row in r: trainids.append(row[0]) labels.append(float(row[1])) testids=[] with open('sampleSubmission.csv','r') as f: r=csv.reader(f) r.next() for row in r: testids.append(row[0]) ###################################################### # general functions def readdata(fname,header=True,selectedcols=None): with open(fname,'r') as f: r=csv.reader(f) names = r.next() if header else None if selectedcols: assert header==True data = [[float(e) for i,e in enumerate(row) if names[i] in selectedcols] for row in r] names = [name for name in names if name in selectedcols] else: data = [[float(e) for e in row] for row in r] return data,names def writedata(data,fname,header=None): with open(fname,'w') as f: w=csv.writer(f) if header: w.writerow(header) for row in data: w.writerow(row) ###################################################### # cross validation """ function docv input: classifier, kfolds object, features, labels, number of data rows output: holdout-set-predictions for all rows * run cross validation """ def docv(clf,kf,x,y,nrow,nlab=9): pred = np.zeros((nrow,nlab)) for trainidx, testidx in kf: clf.fit(x[trainidx],y[trainidx]) pred[testidx] = clf.predict_proba(x[testidx]) return pred """ function runcv input: name of train/ test file, classifier 1 and 2 to be used output: writes holdout-set-predictions for all rows to file * run cross validation by calling docv for both classifiers, combine and save results """ def runcv(filename,c1,c2): y=np.array(labels) nrow=len(y) x,_=readdata('train_%s'%filename) x=np.array(x) kf = KFold(nrow,10,shuffle=True) p1=docv(c1,kf,x,y,nrow) p2=docv(c2,kf,x,y,nrow) pcombi=0.667*p1+0.333*p2 print '%.4f %.4f %.4f'%(log_loss(y,p1),log_loss(y,p2),log_loss(y,pcombi)) with open('pred_%s'%filename,'w') as f: w=csv.writer(f) for row in pcombi: w.writerow(row) ###################################################### # submit and print feature importance """ function writesubm input: name of train/ test file, classifier 1 and 2 to be used output: writes testset predictions to file * train classifiers using all traindata, create testset predictions, combine and save results """ def writesubm(filename,c1,c2): xtrain,names=readdata('train_%s'%filename) xtest,_=readdata('test_%s'%filename) c1.fit(xtrain,labels) c2.fit(xtrain,labels) p1=c1.predict_proba(xtest) p2=c2.predict_proba(xtest) p=0.667*p1+0.333*p2 with open('subm_%s'%filename,'w') as f: w=csv.writer(f) w.writerow(['Id']+['Prediction%d'%num for num in xrange(1,10)]) for inum,i in enumerate(testids): w.writerow([i]+list(p[inum])) ###################################################### # go if __name__ == '__main__': gbm=GradientBoostingClassifier( n_estimators=400, max_features=5) xtr=ExtraTreesClassifier( n_estimators=400,max_features=None, min_samples_leaf=2,min_samples_split=3, n_jobs=7) for filename in [ '45c.csv', ]: print filename runcv(filename,gbm,xtr) writesubm(filename,gbm,xtr) print '' """ 45c.csv 0.0117 0.0168 0.0101 public LB: 0.008071379 private LB: 0.007615772 """
1.757813
2
tests/test_key.py
dajiaji/pyseto
25
12790181
<filename>tests/test_key.py from secrets import token_bytes import pytest from pyseto import DecryptError, Key, NotSupportedError from pyseto.key_interface import KeyInterface from pyseto.utils import base64url_decode from .utils import load_jwk, load_key class TestKey: """ Tests for Key. """ @pytest.mark.parametrize( "version, purpose, key", [ (1, "local", token_bytes(32)), (2, "local", token_bytes(32)), (3, "local", token_bytes(32)), (4, "local", token_bytes(32)), ], ) def test_key_new_local(self, version, purpose, key): k = Key.new(version, purpose, key) assert isinstance(k, KeyInterface) assert k.version == version assert k.purpose == purpose with pytest.raises(NotSupportedError) as err: k.sign(b"Hello world!") pytest.fail("Key.sign() should fail.") assert "A key for local does not have sign()." in str(err.value) with pytest.raises(NotSupportedError) as err: k.verify(b"xxxxxx") pytest.fail("Key.verify() should fail.") assert "A key for local does not have verify()." in str(err.value) @pytest.mark.parametrize( "version, purpose, key", [ (1, "public", load_key("keys/private_key_rsa.pem")), (1, "public", load_key("keys/public_key_rsa.pem")), (2, "public", load_key("keys/private_key_ed25519.pem")), (2, "public", load_key("keys/public_key_ed25519.pem")), (3, "public", load_key("keys/private_key_ecdsa_p384.pem")), (3, "public", load_key("keys/public_key_ecdsa_p384.pem")), (4, "public", load_key("keys/private_key_ed25519.pem")), (4, "public", load_key("keys/public_key_ed25519.pem")), ], ) def test_key_new_public(self, version, purpose, key): k = Key.new(version, purpose, key) assert isinstance(k, KeyInterface) assert k.version == version assert k.purpose == purpose with pytest.raises(NotSupportedError) as err: k.encrypt(b"Hello world!") pytest.fail("Key.sign() should fail.") assert "A key for public does not have encrypt()." in str(err.value) with pytest.raises(NotSupportedError) as err: k.decrypt(b"xxxxxx") pytest.fail("Key.verify() should fail.") assert "A key for public does not have decrypt()." in str(err.value) @pytest.mark.parametrize( "version, key, msg", [ (1, load_key("keys/private_key_ed25519.pem"), "The key is not RSA key."), (1, load_key("keys/public_key_ed25519.pem"), "The key is not RSA key."), ( 1, load_key("keys/private_key_ecdsa_p384.pem"), "The key is not RSA key.", ), ( 1, load_key("keys/public_key_ecdsa_p384.pem"), "The key is not RSA key.", ), (2, load_key("keys/private_key_rsa.pem"), "The key is not Ed25519 key."), (2, load_key("keys/public_key_rsa.pem"), "The key is not Ed25519 key."), ( 2, load_key("keys/private_key_ecdsa_p384.pem"), "The key is not Ed25519 key.", ), ( 2, load_key("keys/public_key_ecdsa_p384.pem"), "The key is not Ed25519 key.", ), ( 3, load_key("keys/private_key_ed25519.pem"), "The key is not ECDSA key.", ), ( 3, load_key("keys/public_key_ed25519.pem"), "The key is not ECDSA key.", ), (3, load_key("keys/private_key_rsa.pem"), "The key is not ECDSA key."), (3, load_key("keys/public_key_rsa.pem"), "The key is not ECDSA key."), (4, load_key("keys/private_key_rsa.pem"), "The key is not Ed25519 key."), (4, load_key("keys/public_key_rsa.pem"), "The key is not Ed25519 key."), ( 4, load_key("keys/private_key_ecdsa_p384.pem"), "The key is not Ed25519 key.", ), ( 4, load_key("keys/public_key_ecdsa_p384.pem"), "The key is not Ed25519 key.", ), ], ) def test_key_new_public_with_wrong_key(self, version, key, msg): with pytest.raises(ValueError) as err: Key.new(version, "public", key) pytest.fail("Key.new should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "version, purpose, key, msg", [ ("v*", "local", token_bytes(32), "Invalid version: v*."), ("v0", "local", token_bytes(32), "Invalid version: v0."), (0, "local", token_bytes(32), "Invalid version: 0."), ( "v*", "public", load_key("keys/private_key_rsa.pem"), "Invalid version: v*.", ), ( "v0", "public", load_key("keys/private_key_rsa.pem"), "Invalid version: v0.", ), ( 0, "public", load_key("keys/private_key_rsa.pem"), "Invalid version: 0.", ), (1, "xxx", token_bytes(32), "Invalid purpose: xxx."), (1, "public", "-----BEGIN BAD", "Invalid or unsupported PEM format."), ], ) def test_key_new_with_invalid_arg(self, version, purpose, key, msg): with pytest.raises(ValueError) as err: Key.new(version, purpose, key) pytest.fail("Key.new should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "version, key", [ # (1, load_jwk("keys/private_key_rsa.json")), # (1, load_jwk("keys/public_key_rsa.json")), (2, load_jwk("keys/private_key_ed25519.json")), (2, load_jwk("keys/public_key_ed25519.json")), (3, load_jwk("keys/private_key_ecdsa_p384.json")), (3, load_jwk("keys/public_key_ecdsa_p384.json")), (4, load_jwk("keys/private_key_ed25519.json")), (4, load_jwk("keys/public_key_ed25519.json")), ], ) def test_key_from_asymmetric_params(self, version, key): k = Key.from_asymmetric_key_params(version, x=key["x"], y=key["y"], d=key["d"]) assert isinstance(k, KeyInterface) assert k.version == version assert k.purpose == "public" @pytest.mark.parametrize( "paserk", [ "k1.local.AAAAAAAAAAAAAAAA", "k1.public.AAAAAAAAAAAAAAAA", "k2.local.AAAAAAAAAAAAAAAA", "k2.public.AAAAAAAAAAAAAAAA", "k3.local.AAAAAAAAAAAAAAAA", "k3.public.AAAAAAAAAAAAAAAA", "k4.local.AAAAAAAAAAAAAAAA", "k4.public.AAAAAAAAAAAAAAAA", ], ) def test_key_from_paserk_with_wrapping_key_and_password(self, paserk): with pytest.raises(ValueError) as err: Key.from_paserk(paserk, wrapping_key="xxx", password="<PASSWORD>") pytest.fail("Key.from_paserk should fail.") assert "Only one of wrapping_key or password should be specified." in str(err.value) @pytest.mark.parametrize( "paserk, msg", [ ("k1.local.AAAAAAAAAAAAAAAA", "Invalid PASERK type: local."), ("k1.public.AAAAAAAAAAAAAAAA", "Invalid PASERK type: public."), ("k2.local.AAAAAAAAAAAAAAAA", "Invalid PASERK type: local."), ("k2.public.AAAAAAAAAAAAAAAA", "Invalid PASERK type: public."), ("k3.local.AAAAAAAAAAAAAAAA", "Invalid PASERK type: local."), ("k3.public.AAAAAAAAAAAAAAAA", "Invalid PASERK type: public."), ("k4.local.AAAAAAAAAAAAAAAA", "Invalid PASERK type: local."), ("k4.public.AAAAAAAAAAAAAAAA", "Invalid PASERK type: public."), ], ) def test_key_from_paserk_with_password_for_wrong_paserk(self, paserk, msg): with pytest.raises(ValueError) as err: Key.from_paserk(paserk, password="<PASSWORD>") pytest.fail("Key.from_paserk should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "paserk, msg", [ ("v1.local.AAAAAAAAAAAAAAAA", "Invalid PASERK version: v1."), ("*.local.AAAAAAAAAAAAAAAA", "Invalid PASERK version: *."), ("k1.xxx.AAAAAAAAAAAAAAAA", "Invalid PASERK key type: xxx."), ], ) def test_key_from_paserk_with_invalid_args(self, paserk, msg): with pytest.raises(ValueError) as err: Key.from_paserk(paserk) pytest.fail("Key.from_paserk should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "version", [ 1, 2, 3, 4, ], ) def test_key_from_paserk_for_local_with_wrong_wrapping_key(self, version): k = Key.new(version, "local", token_bytes(32)) wk1 = token_bytes(32) wk2 = token_bytes(32) wpk = k.to_paserk(wrapping_key=wk1) with pytest.raises(DecryptError) as err: Key.from_paserk(wpk, wrapping_key=wk2) pytest.fail("Key.from_paserk() should fail.") assert "Failed to unwrap a key." in str(err.value) @pytest.mark.parametrize( "version", [ 1, 2, 3, 4, ], ) def test_key_from_paserk_for_local_with_wrong_password(self, version): k = Key.new(version, "local", token_bytes(32)) wk1 = token_bytes(32) wk2 = token_bytes(32) wpk = k.to_paserk(password=wk1) with pytest.raises(DecryptError) as err: Key.from_paserk(wpk, password=<PASSWORD>) pytest.fail("Key.from_paserk() should fail.") assert "Failed to unwrap a key." in str(err.value) @pytest.mark.parametrize( "version, key", [ (1, load_key("keys/private_key_rsa.pem")), (2, load_key("keys/private_key_ed25519.pem")), (3, load_key("keys/private_key_ecdsa_p384.pem")), (4, load_key("keys/private_key_ed25519.pem")), ], ) def test_key_from_paserk_for_private_key_with_wrong_wrapping_key(self, version, key): k = Key.new(version, "public", key) wk1 = token_bytes(32) wk2 = token_bytes(32) wpk = k.to_paserk(wrapping_key=wk1) with pytest.raises(DecryptError) as err: Key.from_paserk(wpk, wrapping_key=wk2) pytest.fail("Key.from_paserk() should fail.") assert "Failed to unwrap a key." in str(err.value) @pytest.mark.parametrize( "version, key", [ (1, load_key("keys/public_key_rsa.pem")), (2, load_key("keys/public_key_ed25519.pem")), (3, load_key("keys/public_key_ecdsa_p384.pem")), (4, load_key("keys/public_key_ed25519.pem")), ], ) def test_key_from_paserk_for_public_key_with_wrapping_key(self, version, key): k = Key.new(version, "public", key) wk = token_bytes(32) with pytest.raises(ValueError) as err: k.to_paserk(wrapping_key=wk) pytest.fail("to_paserk() should fail.") assert "Public key cannot be wrapped." in str(err.value) @pytest.mark.parametrize( "version, key", [ (1, load_key("keys/public_key_rsa.pem")), (2, load_key("keys/public_key_ed25519.pem")), (3, load_key("keys/public_key_ecdsa_p384.pem")), (4, load_key("keys/public_key_ed25519.pem")), ], ) def test_key_from_paserk_for_public_key_with_password(self, version, key): k = Key.new(version, "public", key) wk = token_bytes(32) with pytest.raises(ValueError) as err: k.to_paserk(password=wk) pytest.fail("to_paserk() should fail.") assert "Public key cannot be wrapped." in str(err.value) @pytest.mark.parametrize( "version, key, msg", [ ( 1, load_jwk("keys/private_key_rsa.json"), "v1.public is not supported on from_key_parameters.", ), (999, load_jwk("keys/private_key_ed25519.json"), "Invalid version: 999."), (0, load_jwk("keys/private_key_ed25519.json"), "Invalid version: 0."), ( 2, {"x": b"xxx", "y": b"", "d": b"ddd"}, "Only one of x or d should be set for v2.public.", ), (2, {"x": b"xxx", "y": b"", "d": b""}, "Failed to load key."), (2, {"x": b"", "y": b"", "d": b"ddd"}, "Failed to load key."), ( 2, {"x": b"", "y": b"", "d": b""}, "x or d should be set for v2.public.", ), ( 3, {"x": b"xxx", "y": b"", "d": b"ddd"}, "x and y (and d) should be set for v3.public.", ), ( 3, {"x": b"", "y": b"yyy", "d": b"ddd"}, "x and y (and d) should be set for v3.public.", ), (3, {"x": b"xxx", "y": b"yyy", "d": b""}, "Failed to load key."), ( 3, { "x": base64url_decode("_XyN9woHaS0mPimSW-etwJMEDSzxIMjp4PjezavU8SHJoClz1bQrcmPb1ZJxHxhI"), "y": base64url_decode("<KEY>"), "d": b"ddd", }, "Failed to load key.", ), ( 4, {"x": b"xxx", "y": b"", "d": b"ddd"}, "Only one of x or d should be set for v4.public.", ), (4, {"x": b"xxx", "y": b"", "d": b""}, "Failed to load key."), (4, {"x": b"", "y": b"", "d": b"ddd"}, "Failed to load key."), ( 4, {"x": b"", "y": b"", "d": b""}, "x or d should be set for v4.public.", ), ], ) def test_key_from_asymmetric_params_with_invalid_arg(self, version, key, msg): with pytest.raises(ValueError) as err: Key.from_asymmetric_key_params(version, x=key["x"], y=key["y"], d=key["d"]) pytest.fail("Key.from_asymmetric_key_params() should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "version, purpose, key", [ (1, "public", load_key("keys/public_key_rsa.pem")), (2, "public", load_key("keys/public_key_ed25519.pem")), (3, "public", load_key("keys/public_key_ecdsa_p384.pem")), (4, "public", load_key("keys/public_key_ed25519.pem")), ], ) def test_key_to_paserk_public(self, version, purpose, key): k = Key.new(version, purpose, key) assert k.to_paserk().startswith(f"k{k.version}.public.") @pytest.mark.parametrize( "version, purpose, key", [ (1, "public", load_key("keys/private_key_rsa.pem")), (2, "public", load_key("keys/private_key_ed25519.pem")), (3, "public", load_key("keys/private_key_ecdsa_p384.pem")), (4, "public", load_key("keys/private_key_ed25519.pem")), ], ) def test_key_to_paserk_secret(self, version, purpose, key): k = Key.new(version, purpose, key) assert k.to_paserk().startswith(f"k{k.version}.secret.") @pytest.mark.parametrize( "version, purpose, key", [ (1, "local", token_bytes(32)), (2, "local", token_bytes(32)), (3, "local", token_bytes(32)), (4, "local", token_bytes(32)), (1, "public", load_key("keys/private_key_rsa.pem")), (2, "public", load_key("keys/private_key_ed25519.pem")), (3, "public", load_key("keys/private_key_ecdsa_p384.pem")), (4, "public", load_key("keys/private_key_ed25519.pem")), ], ) def test_key_to_paserk_secret_with_wrapping_key_and_password(self, version, purpose, key): k = Key.new(version, purpose, key) with pytest.raises(ValueError) as err: k.to_paserk(wrapping_key="xxx", password="<PASSWORD>") pytest.fail("to_paserk() should fail.") assert "Only one of wrapping_key or password should be specified." in str(err.value)
2.3125
2
week4_2.py
SwapnilNair/Algorithms
0
12790182
def DFSInit(adjMAT): (rows,cols) = adjMAT.shape (visited,parents) = ({},{}) for i in range rows: visited[i] = False parents[i] = -1 return (visited,parents) def DFS(adjMAT,visited,parent,v): visited[v] = True for k in neighbours(v): if (not visited[k]): parent[k] = v (visited,parent) = DFS(adjMAT,visited,parent,k) return (visited,parent)
3.359375
3
solutions/067_add_binary.py
abawchen/leetcode
0
12790183
# Given two binary strings, return their sum (also a binary string). # For example, # a = "11" # b = "1" # Return "100". class Solution: # @param {string} a # @param {string} b # @return {string} def addBinary(self, a, b): if len(a) > len(b): b = "0" * (len(a)-len(b)) + b else: a = "0" * (len(b)-len(a)) + a ans = "" c = 0 for i in xrange(len(a)-1, -1, -1): val = int(a[i]) + int(b[i]) + c r, c = val % 2, int(val >= 2) ans = str(r) + ans if c == 1: ans = "1" + ans return ans
3.546875
4
Stack/Tower_of_Hanoi.py
harshil2004/Data-Structures-and-Algorithms
14
12790184
<gh_stars>10-100 #Contribiuted by <NAME> [github/YA12SHYAM] #implementing recusion solution of Tower of Hanoi in python def solve_hanoi(n,from_rod,to_rod,use_rod): if(n==1): print("Move disk 1 from rod {} to_rod {}".format(from_rod,to_rod)) else: #solve top n-1 disc from source rod to auxillary/Using rod solve_hanoi(n-1,from_rod,use_rod,to_rod) #Move remaining largest disc from Source rod to target rod print("Move disk {} from rod {} to rod {}".format(n,from_rod,to_rod)) #solve n-1 disc from auxillary rod to target rod solve_hanoi(n-1,use_rod,to_rod,from_rod) def main(): print("Enter the Number of disc") # the number of disc is n n=int(input()) print() # Source rod is rod 'a',Target rod is rod 'b',Using/auxillary rod is rod 'c' solve_hanoi(n,'a','b','c') if __name__ == "__main__": main()
4.03125
4
scripts/resources/config.py
KoMaTo3/Biominator
0
12790185
<gh_stars>0 config_platform = 'win32' #config_platform = 'android' #config_platform = 'linux'
1.101563
1
17B-162/HI/imaging/feather_comparisons.py
e-koch/VLA_Lband
1
12790186
''' Compare the data where they overlap in the uv plane. No offset correction is needed. ''' from spectral_cube import SpectralCube import numpy as np import astropy.units as u import matplotlib.pyplot as plt import os import scipy.ndimage as nd from uvcombine.scale_factor import find_scale_factor from cube_analysis.feather_cubes import feather_compare_cube from paths import (seventeenB_HI_data_02kms_path, seventeenB_HI_data_1kms_path, data_path, allfigs_path) from constants import hi_freq from plotting_styles import onecolumn_figure # Compare with the 1 km/s cube. Higher S/N # vla_cube = SpectralCube.read(seventeenB_HI_data_02kms_path("M33_14B_17B_HI_contsub_width_02kms.image.pbcor.fits")) vla_cube = SpectralCube.read(seventeenB_HI_data_1kms_path("M33_14B_17B_HI_contsub_width_1kms.image.pbcor.fits")) # pb_cube = SpectralCube.read(seventeenB_HI_data_02kms_path("M33_14B_17B_HI_contsub_width_02kms.pb.fits")) pb_cube = SpectralCube.read(seventeenB_HI_data_1kms_path("M33_14B_17B_HI_contsub_width_1kms.pb.fits")) # PB minimally changes over the frequency range. So just grab one plane pb_plane = pb_cube[0] # We need to define a tapered weighting function to ignore emission outside # of the VLA mosaic def taper_weights(mask, sigma, nsig_cut=3): dist = nd.distance_transform_edt(mask) gauss_dists = np.where(np.logical_and(dist < nsig_cut * sigma, dist > 0.)) flat_dists = np.where(dist >= nsig_cut * sigma) weight_arr = np.zeros_like(mask, dtype=float) weight_arr[gauss_dists] = \ np.exp(- (dist[gauss_dists] - nsig_cut * sigma)**2 / (2 * sigma**2)) weight_arr[flat_dists] = 1. return weight_arr weight = taper_weights(np.isfinite(pb_plane), 30, nsig_cut=5) gbt_path = os.path.join(data_path, "GBT") # gbt_cube = SpectralCube.read(os.path.join(gbt_path, "17B-162_items/m33_gbt_vlsr_highres_Tmb_17B162_02kms.fits")) gbt_cube = SpectralCube.read(os.path.join(gbt_path, "17B-162_items/m33_gbt_vlsr_highres_Tmb_17B162_1kms.fits")) beam_fwhm = lambda diam: ((1.18 * hi_freq.to(u.cm, u.spectral())) / diam.to(u.cm)) * u.rad # Already determined from the 14B HI analysis. Lowered spatial resolution # due to lack of overlap in the GBT fields centered at M33. So the data were # gridded with a Gaussian kernel, rather than a jinc function gbt_eff_beam = beam_fwhm(87.5 * u.m) # The shortest baseline in the 14B-088 data is ~44 m. las = (hi_freq.to(u.cm, u.spectral()) / (44 * u.m)).to(u.arcsec, u.dimensionless_angles()) radii, ratios, high_pts, low_pts, chan_out = \ feather_compare_cube(vla_cube, gbt_cube, las, num_cores=1, lowresfwhm=gbt_eff_beam, chunk=50, verbose=False, weights=weight, relax_spectral_check=False, # NOTE: there is an offset of ~0.4 km/s between the cubes # The big GBT beam means this really doesn't matter (I # manually checked). The difference is 0.36 times the # channel size. I have no idea where this shift is coming # from since the freq axis used in `gbt_regrid.py` matches # the frequency in the individual channel MSs used in # imaging. It's not even a half-channel offset like I # would expect if the MS frequency was the channel edge... spec_check_kwargs={'rtol': 0.4}) onecolumn_figure() sc_factor, sc_err = find_scale_factor(np.hstack(low_pts), np.hstack(high_pts), method='distrib', verbose=True) plt.grid(True) plt.xlabel(r"ln I$_{\rm int}$ / I$_{\rm SD}$") plt.tight_layout() plt.savefig(allfigs_path("Imaging/ratio_hist_17B_vla_gbt_9.8arcmin_v3_w_weights.png")) plt.savefig(allfigs_path("Imaging/ratio_hist_17B_vla_gbt_9.8arcmin_v3_w_weights.pdf")) print("Factor: {0}+/-{1}".format(sc_factor, sc_err)) # Factor: 1.125046+/-0.00394768 # This isn't a fantastic fit, so this error was significantly underestimated plt.close() # Compare properties per-channel sc_factor_chans = [] sc_err_chans = [] for low, high in zip(low_pts, high_pts): sc_f, sc_e = \ find_scale_factor(low, high, method='distrib', verbose=False) sc_factor_chans.append(sc_f) sc_err_chans.append(sc_e) sc_factor_chans_linfit = [] sc_err_chans_linfit = [] for low, high in zip(low_pts, high_pts): sc_f, sc_e = \ find_scale_factor(low, high, method='linfit', verbose=False) sc_factor_chans_linfit.append(sc_f) sc_err_chans_linfit.append(sc_e) sc_factor_chans_linfit = np.array(sc_factor_chans_linfit) sc_err_chans_linfit = np.array(sc_err_chans_linfit) chans = np.arange(len(low_pts)) onecolumn_figure() plt.errorbar(chans, sc_factor_chans, yerr=sc_err_chans, alpha=0.5, label='Distrib Fit') plt.errorbar(chans, sc_factor_chans_linfit, yerr=[sc_factor_chans_linfit - sc_err_chans_linfit[:, 0], sc_err_chans_linfit[:, 1] - sc_factor_chans_linfit], alpha=0.5, label='Linear fit') # plt.plot(chans, slope_lowess_85) plt.axhline(1, linestyle='--') plt.legend(frameon=True) plt.ylabel(r"Scale Factor") plt.xlabel("Channels") plt.grid(True) plt.tight_layout() plt.savefig(allfigs_path("Imaging/ratio_hist_perchan_17B_vla_gbt_9.8arcmin_v3_w_weights.png")) plt.savefig(allfigs_path("Imaging/ratio_hist_perchan_17B_vla_gbt_9.8arcmin_v3_w_weights.pdf")) plt.close() # Now refit with the channels near the systemic velocity, where most of the HI # structure falls within the mosaic PB chan_range = slice(80, 160) onecolumn_figure() sc_factor_chrange, sc_err_chrange = \ find_scale_factor(np.hstack(low_pts[chan_range]), np.hstack(high_pts[chan_range]), method='distrib', verbose=True) plt.grid(True) plt.xlabel(r"ln I$_{\rm int}$ / I$_{\rm SD}$") plt.tight_layout() plt.savefig(allfigs_path(f"Imaging/ratio_hist_17B_vla_gbt_9.8arcmin_chan_{chan_range.start}_{chan_range.stop}_v3_w_weights.png")) plt.savefig(allfigs_path(f"Imaging/ratio_hist_17B_vla_gbt_9.8arcmin_chan_{chan_range.start}_{chan_range.stop}_v3_w_weights.pdf")) print("Factor: {0}+/-{1}".format(sc_factor_chrange, sc_err_chrange)) # Factor: 1.105133+/-0.00463 # Error still underestimated # The >1 factor is due to some emission in the GBT data being cut-off by the # PB limit of the VLA mosaic. The factor increases far from the systemic # velocity, where bright HI gets cut-off (compared to the larger 14B data). # So, despite the != 1 factor, no factor will be applied to the SD data. # Besides, the 14B mosaic comparison gives a 1.0 factor with the GBT data. # The tests here were for consistency and that's what we find. plt.close()
2.21875
2
Shellcodes/Encoder-Scripts/xor_encoder.py
noamts/Malware
6
12790187
<filename>Shellcodes/Encoder-Scripts/xor_encoder.py #! /bin/python original_shellcode=("Enter the shellcode") encoder_byte="Enter the encoder byte" encoded_shellcode_format1=[] encoded_shellcode_format2=[] for byt in bytearray(original_shellcode): xor=byt^encoder_byte xor="%02x" %xor xor1="\\x" + xor xor2="0x" + xor +"," encoded_shellcode_format1.append(xor1) encoded_shellcode_format2.append(xor2) print("Format 1:\n") print''.join(encoded_shellcode_format1) print("\n\n\n") print("Format 2:\n") print''.join(encoded_shellcode_format2) print("\n") print("Length:" +str(len(bytearray(original_shellcode))))
3.15625
3
a.py
Pzzzzz5142/My-Music
2
12790188
<filename>a.py from tqdm import tqdm from random import randint class A(object): def __init__(self): self.a=self.aa() def aa(self): return 'aaa' class B(A): def __init__(self): super().__init__() def aa(self): return 'aaaaaa' a=A() print(a.a)
2.984375
3
exams/migrations/0020_auto_20210805_1401.py
ankanb240/otis-web
15
12790189
# Generated by Django 3.2.5 on 2021-08-05 18:01 import django.core.validators from django.db import migrations, models import re class Migration(migrations.Migration): dependencies = [ ('exams', '0019_auto_20210805_1334'), ] operations = [ migrations.AlterField( model_name='examattempt', name='guess1', field=models.IntegerField(blank=True, null=True, validators=[django.core.validators.MinValueValidator(-1000000000), django.core.validators.MaxValueValidator(1000000000)], verbose_name='Problem 1 response'), ), migrations.AlterField( model_name='examattempt', name='guess2', field=models.IntegerField(blank=True, null=True, validators=[django.core.validators.MinValueValidator(-1000000000), django.core.validators.MaxValueValidator(1000000000)], verbose_name='Problem 2 response'), ), migrations.AlterField( model_name='examattempt', name='guess3', field=models.IntegerField(blank=True, null=True, validators=[django.core.validators.MinValueValidator(-1000000000), django.core.validators.MaxValueValidator(1000000000)], verbose_name='Problem 3 response'), ), migrations.AlterField( model_name='examattempt', name='guess4', field=models.IntegerField(blank=True, null=True, validators=[django.core.validators.MinValueValidator(-1000000000), django.core.validators.MaxValueValidator(1000000000)], verbose_name='Problem 4 response'), ), migrations.AlterField( model_name='examattempt', name='guess5', field=models.IntegerField(blank=True, null=True, validators=[django.core.validators.MinValueValidator(-1000000000), django.core.validators.MaxValueValidator(1000000000)], verbose_name='Problem 5 response'), ), migrations.AlterField( model_name='practiceexam', name='answer1', field=models.CharField(default='', max_length=64, validators=[django.core.validators.RegexValidator(re.compile('^\\d+(?:,\\d+)*\\Z'), code='invalid', message='Enter only digits separated by commas.')]), preserve_default=False, ), migrations.AlterField( model_name='practiceexam', name='answer2', field=models.CharField(default='', max_length=64, validators=[django.core.validators.RegexValidator(re.compile('^\\d+(?:,\\d+)*\\Z'), code='invalid', message='Enter only digits separated by commas.')]), preserve_default=False, ), migrations.AlterField( model_name='practiceexam', name='answer3', field=models.CharField(default='', max_length=64, validators=[django.core.validators.RegexValidator(re.compile('^\\d+(?:,\\d+)*\\Z'), code='invalid', message='Enter only digits separated by commas.')]), preserve_default=False, ), migrations.AlterField( model_name='practiceexam', name='answer4', field=models.CharField(default='', max_length=64, validators=[django.core.validators.RegexValidator(re.compile('^\\d+(?:,\\d+)*\\Z'), code='invalid', message='Enter only digits separated by commas.')]), preserve_default=False, ), migrations.AlterField( model_name='practiceexam', name='answer5', field=models.CharField(default='', max_length=64, validators=[django.core.validators.RegexValidator(re.compile('^\\d+(?:,\\d+)*\\Z'), code='invalid', message='Enter only digits separated by commas.')]), preserve_default=False, ), ]
1.585938
2
utils/dirty.py
chua-n/particle
1
12790190
<gh_stars>1-10 import time from functools import wraps import numpy as np import scipy from scipy.spatial import ConvexHull from scipy.spatial.distance import jensenshannon from skimage import io, filters from skimage.color import rgb2gray from skimage.util import img_as_ubyte from skimage.filters import threshold_otsu from skimage import measure, transform from scipy import ndimage as ndi import torch def loadNnData(sourcePath, keyword: str = None) -> torch.Tensor: if sourcePath.endswith('.npy'): data = torch.from_numpy(np.load(sourcePath)) elif sourcePath.endswith('.npz'): data = torch.from_numpy(np.load(sourcePath)[keyword]) if data.max() == 255: data[data == 255] = 1 return data def project(tensor: torch.tensor, dim: int): return torch.max(tensor, dim=dim).values class TVSHelper: @staticmethod def getOutline(imgFile="img.jpg"): img = io.imread(imgFile, as_gray=True) # 检测到边缘并进行滤波 edge = filters.sobel(img) edge = img_as_ubyte(rgb2gray(edge)) edge = ndi.median_filter(edge, 3) # 二值化 thrd = threshold_otsu(edge) maskOfWhite = edge > thrd edge[maskOfWhite] = 255 edge[~maskOfWhite] = 0 # 提取 labeledImg = measure.label(edge, connectivity=2) regionProps = measure.regionprops(labeledImg) regionProps.sort(key=lambda prop: prop.area, reverse=True) targetImage = regionProps[0].filled_image return targetImage @staticmethod def putIntoCube(image, size=48, **kwargs): longToWidthRatio = max(image.shape) / min(image.shape) image = transform.resize( image, (size, size // longToWidthRatio), **kwargs) cube = np.zeros((64, 64), dtype=np.uint8) initRowInd, initColInd = ( np.array(cube.shape) - np.array(image.shape))//2 cube[initRowInd:initRowInd+image.shape[0], initColInd:initColInd+image.shape[1]] = image return cube class Circumsphere: """Copied from GitHub at https://github.com/shrx/mbsc.git, not my original. """ @classmethod def fit(cls, array): """Compute exact minimum bounding sphere of a 3D point cloud (or a triangular surface mesh) using Welzl's algorithm. - X : M-by-3 list of point co-ordinates or a triangular surface mesh specified as a TriRep object. - R : radius of the sphere. - C : 1-by-3 vector specifying the centroid of the sphere. - Xb : subset of X, listing K-by-3 list of point coordinates from which R and C were computed. See function titled 'FitSphere2Points' for more info. REREFERENCES: [1] Welzl, E. (1991), 'Smallest enclosing disks (balls and ellipsoids)', Lecture Notes in Computer Science, Vol. 555, pp. 359-370 Matlab code author: <NAME> (<EMAIL>) Date: Dec.2014""" # Get the convex hull of the point set hull = ConvexHull(array) hull_array = array[hull.vertices] hull_array = np.unique(hull_array, axis=0) # print(len(hull_array)) # Randomly permute the point set hull_array = np.random.permutation(hull_array) if len(hull_array) <= 4: R, C = cls.fit_base(hull_array) return R, C, hull_array elif len(hull_array) < 1000: # try: R, C, _ = cls.B_min_sphere(hull_array, []) # Coordiantes of the points used to compute parameters of the # minimum bounding sphere D = np.sum(np.square(hull_array - C), axis=1) idx = np.argsort(D - R**2) D = D[idx] Xb = hull_array[idx[:5]] D = D[:5] Xb = Xb[D < 1E-6] idx = np.argsort(Xb[:, 0]) Xb = Xb[idx] return R, C, Xb # except: #raise Exception else: M = len(hull_array) dM = min([M // 4, 300]) # unnecessary ? # res = M % dM # n = np.ceil(M/dM) # idx = dM * np.ones((1, n)) # if res > 0: # idx[-1] = res # # if res <= 0.25 * dM: # idx[n-2] = idx[n-2] + idx[n-1] # idx = idx[:-1] # n -= 1 hull_array = np.array_split(hull_array, dM) Xb = np.empty([0, 3]) for i in range(len(hull_array)): R, C, Xi = cls.B_min_sphere( np.vstack([Xb, hull_array[i]]), []) # 40 points closest to the sphere D = np.abs(np.sqrt(np.sum((Xi - C)**2, axis=1)) - R) idx = np.argsort(D, axis=0) Xb = Xi[idx[:40]] D = np.sort(D, axis=0)[:4] # print(Xb) # print(D) #print(np.where(D/R < 1e-3)[0]) Xb = np.take(Xb, np.where(D/R < 1e-3)[0], axis=0) Xb = np.sort(Xb, axis=0) # print(Xb) return R, C, Xb @classmethod def fit_base(cls, array): """Fit a sphere to a set of 2, 3, or at most 4 points in 3D space. Note that point configurations with 3 collinear or 4 coplanar points do not have well-defined solutions (i.e., they lie on spheres with inf radius). - X : M-by-3 array of point coordinates, where M<=4. - R : radius of the sphere. R=Inf when the sphere is undefined, as specified above. - C : 1-by-3 vector specifying the centroid of the sphere. C=nan(1,3) when the sphere is undefined, as specified above. Matlab code author: <NAME> (<EMAIL>) Date: Dec.2014""" N = len(array) if N > 4: print('Input must a N-by-3 array of point coordinates, with N<=4') return # Empty set elif N == 0: R = np.nan C = np.full(3, np.nan) return R, C # A single point elif N == 1: R = 0. C = array[0] return R, C # Line segment elif N == 2: R = np.linalg.norm(array[1] - array[0]) / 2 C = np.mean(array, axis=0) return R, C else: # 3 or 4 points # Remove duplicate vertices, if there are any uniq, index = np.unique(array, axis=0, return_index=True) array_nd = uniq[index.argsort()] if not np.array_equal(array, array_nd): print("found duplicate") print(array_nd) R, C = cls.fit_base(array_nd) return R, C tol = 0.01 # collinearity/co-planarity threshold (in degrees) if N == 3: # Check for collinearity D12 = array[1] - array[0] D12 = D12 / np.linalg.norm(D12) D13 = array[2] - array[0] D13 = D13 / np.linalg.norm(D13) chk = np.clip(np.abs(np.dot(D12, D13)), 0., 1.) if np.arccos(chk)/np.pi*180 < tol: R = np.inf C = np.full(3, np.nan) return R, C # Make plane formed by the points parallel with the xy-plane n = np.cross(D13, D12) n = n / np.linalg.norm(n) ##print("n", n) r = np.cross(n, np.array([0, 0, 1])) if np.linalg.norm(r) != 0: # Euler rotation vector r = np.arccos(n[2]) * r / np.linalg.norm(r) ##print("r", r) Rmat = scipy.linalg.expm(np.array([ [0., -r[2], r[1]], [r[2], 0., -r[0]], [-r[1], r[0], 0.] ])) ##print("Rmat", Rmat) #Xr = np.transpose(Rmat*np.transpose(array)) Xr = np.transpose(np.dot(Rmat, np.transpose(array))) ##print("Xr", Xr) # Circle centroid x = Xr[:, :2] A = 2 * (x[1:] - np.full(2, x[0])) b = np.sum( (np.square(x[1:]) - np.square(np.full(2, x[0]))), axis=1) C = np.transpose(np.linalg.solve(A, b)) # Circle radius R = np.sqrt(np.sum(np.square(x[0] - C))) # Rotate centroid back into the original frame of reference C = np.append(C, [np.mean(Xr[:, 2])], axis=0) C = np.transpose(np.dot(np.transpose(Rmat), C)) return R, C # If we got to this point then we have 4 unique, though possibly co-linear # or co-planar points. else: # Check if the the points are co-linear D12 = array[1] - array[0] D12 = D12 / np.linalg.norm(D12) D13 = array[2] - array[0] D13 = D13 / np.linalg.norm(D13) D14 = array[3] - array[0] D14 = D14 / np.linalg.norm(D14) chk1 = np.clip(np.abs(np.dot(D12, D13)), 0., 1.) chk2 = np.clip(np.abs(np.dot(D12, D14)), 0., 1.) if np.arccos(chk1)/np.pi*180 < tol or np.arccos(chk2)/np.pi*180 < tol: R = np.inf C = np.full(3, np.nan) return R, C # Check if the the points are co-planar n1 = np.linalg.norm(np.cross(D12, D13)) n2 = np.linalg.norm(np.cross(D12, D14)) chk = np.clip(np.abs(np.dot(n1, n2)), 0., 1.) if np.arccos(chk)/np.pi*180 < tol: R = np.inf C = np.full(3, np.nan) return R, C # Centroid of the sphere A = 2 * (array[1:] - np.full(len(array)-1, array[0])) b = np.sum( (np.square(array[1:]) - np.square(np.full(len(array)-1, array[0]))), axis=1) C = np.transpose(np.linalg.solve(A, b)) # Radius of the sphere R = np.sqrt(np.sum(np.square(array[0] - C), axis=0)) return R, C @classmethod def B_min_sphere(cls, P, B): eps = 1E-6 if len(B) == 4 or len(P) == 0: R, C = cls.fit_base(B) # fit sphere to boundary points return R, C, P # Remove the last (i.e., end) point, p, from the list P_new = P[:-1].copy() p = P[-1].copy() # Check if p is on or inside the bounding sphere. If not, it must be # part of the new boundary. R, C, P_new = cls.B_min_sphere(P_new, B) if np.isnan(R) or np.isinf(R) or R < eps: chk = True else: chk = np.linalg.norm(p - C) > (R + eps) if chk: if len(B) == 0: B = np.array([p]) else: B = np.array(np.insert(B, 0, p, axis=0)) R, C, _ = cls.B_min_sphere(P_new, B) P = np.insert(P_new.copy(), 0, p, axis=0) return R, C, P def timer(func): """Decorator that reports the function execution time. """ @wraps(func) def wrapper(*args, **kwargs): start = time.time() res = func(*args, **kwargs) end = time.time() timeCost = end - start hour, timeCost = divmod(timeCost, 3600) minute, second = divmod(timeCost, 60) hour, minute, second = int(hour), int(minute), round(second, 1) print( f"Function `{func.__name__}` runs for {hour}h {minute}min {second}s") return res return wrapper class Entropy: def __init__(self) -> None: pass @staticmethod def JSDivergence(p, q, tolerance=0.98, base=2): assert tolerance < np.sum(p) <= 1 and tolerance < np.sum(q) <= 1 return jensenshannon(p, q, base=base) if __name__ == '__main__': pass
1.84375
2
script/compile_fit_result.py
Wangyiquan95/NA_EPI
1
12790191
<filename>script/compile_fit_result.py<gh_stars>1-10 #!/usr/bin/python import os import sys import glob import numpy as np from Bio import SeqIO from collections import defaultdict from Bio.SeqUtils.ProtParam import ProteinAnalysis as PA def Mut2ID(Mut, WTseq, residues): ID = '' for residue, aa in zip(residues, WTseq): if str(residue) in Mut: ID += Mut.rsplit(str(residue))[1][0] else: ID += aa return ID def check_mut_in_lib(mut, lib_variants): if mut == 'WT': return 'yes' for m in mut.rsplit('-'): pos = m[1:-1] aa = m[-1] if pos not in lib_variants.keys(): return 'no' elif aa not in lib_variants[pos]: return 'no' return 'yes' def read_lib_variants(filename): lib_variants = {} infile = open(filename, 'r') for line in infile.readlines(): if 'pos' in line: continue pos, muts = line.rstrip().rsplit("\t") lib_variants[pos] = muts.rsplit(',') return lib_variants def read_WT_seqs(filename): WT_seqs = {} infile = open(filename, 'r') for line in infile.readlines(): if 'strain' in line: continue strain, seq = line.rstrip().rsplit("\t") WT_seqs[strain] = seq return WT_seqs def read_fasta(filename): refseq_dict = {} records = SeqIO.parse(filename,"fasta") for record in records: ID = str(record.id) seq = str(record.seq) refseq_dict[ID] = seq return refseq_dict def read_fitness_data(filename, fit_dict, WTseq, lib_variants, strain): infile = open(filename, 'r') for line in infile.readlines(): if 'Mut' in line: continue mut, sample, input_count, rep1_count, rep2_count, rep1_fit, rep2_fit, fit = line.rstrip().rsplit("\t") if check_mut_in_lib(mut, lib_variants) == 'no': continue if int(input_count) < 10: continue ID = WTseq if mut == 'WT' else Mut2ID(mut, WTseq, sorted(lib_variants.keys(), key= lambda x:int(x))) fit_dict[strain][ID] = {'input_count': input_count, 'fit':fit, 'fit_R1':rep1_fit, 'fit_R2':rep2_fit} return fit_dict def mutate_full_protein(WT_seq, mut, positions): mut_seq = WT_seq for pos, mutaa in zip(positions, mut): mut_seq = mut_seq[0:pos-1]+mutaa+mut_seq[pos::] return mut_seq def calculate_charge(mut): charge = 0 charge -= mut.count('D') charge -= mut.count('E') charge += mut.count('K') charge += mut.count('R') return charge def write_output_file(outfile, fit_dict, N2_seqs, lib_variants): print ("writing: %s" % outfile) outfile = open(outfile, 'w') mut_list = fit_dict['HK68'].keys() header = "\t".join(['ID', 'strain', 'pI', 'charge', 'rep1_fit', 'rep2_fit', 'fit']) outfile.write(header+"\n") positions = (sorted(map(int,list(lib_variants.keys())))) for strain in ['HK68','Bk79','Bei89','Mos99','Vic11','HK19']: for mut in mut_list: WT_seq = N2_seqs[strain] full_seq = mutate_full_protein(WT_seq, mut, positions) #pI = str(np.mean([PA('A'+aa+'A').isoelectric_point() for aa in mut])) #pI = str(PA('A'+mut+'A').isoelectric_point()) #pI = str(PA(mut).isoelectric_point()) pI = str(PA(full_seq).isoelectric_point()) chg = str(calculate_charge(mut)) fit = fit_dict[strain][mut]['fit'] R1fit = fit_dict[strain][mut]['fit_R1'] R2fit = fit_dict[strain][mut]['fit_R2'] outfile.write("\t".join([mut, strain, pI, chg, R1fit, R2fit, fit])+"\n") outfile.close() def main(): filenames = glob.glob('result/NA_Epi_*.tsv') outfile = 'result/NA_compile_results.tsv' lib_variants = read_lib_variants('data/lib_variants.tsv') N2_seqs = read_fasta('Fasta/N2.fa') WT_seqs = read_WT_seqs('data/WT_seq.tsv') fit_dict = defaultdict(dict) for filename in filenames: strain = filename.rsplit('_')[-1].rsplit('.')[0] WTseq = WT_seqs[strain] fit_dict = read_fitness_data(filename, fit_dict, WTseq, lib_variants, strain) write_output_file(outfile, fit_dict, N2_seqs, lib_variants) if __name__ == "__main__": main()
2.359375
2
test/tests/api/redfish_1_0/schema_tests.py
smiller171/RackHD
0
12790192
<filename>test/tests/api/redfish_1_0/schema_tests.py from config.redfish1_0_config import * from modules.logger import Log from on_http_redfish_1_0 import RedfishvApi as redfish from on_http_redfish_1_0 import rest from datetime import datetime from proboscis.asserts import assert_equal from proboscis.asserts import assert_false from proboscis.asserts import assert_raises from proboscis.asserts import assert_not_equal from proboscis.asserts import assert_true from proboscis.asserts import fail from proboscis import SkipTest from proboscis import test from json import loads,dumps LOG = Log(__name__) @test(groups=['redfish.schema.tests'], depends_on_groups=['obm.tests']) class SchemaTests(object): def __init__(self): self.__client = config.api_client self.__schemaList = None self.__membersList = None self.__locationUri = [] def __get_data(self): return loads(self.__client.last_response.data) @test(groups=['redfish.list_schemas']) def test_list_schemas(self): """ Testing GET /Schemas """ redfish().list_schemas() schemas = self.__get_data() LOG.debug(schemas,json=True) assert_not_equal(0, len(schemas), message='Schema list was empty!') self.__schemaList = schemas @test(groups=['redfish.get_schema'], depends_on_groups=['redfish.list_schemas']) def test_get_schema(self): """ Testing GET /Schemas/{identifier} """ self.__membersList = self.__schemaList.get('Members') assert_not_equal(None, self.__membersList) for member in self.__membersList: dataId = member.get('@odata.id') assert_not_equal(None,dataId) dataId = dataId.split('/redfish/v1/Schemas/')[1] redfish().get_schema(dataId) schema_ref = self.__get_data() LOG.debug(schema_ref,json=True) id = schema_ref.get('Id') assert_equal(dataId, id, message='unexpected id {0}, expected {1}'.format(id,dataId)) assert_equal(type(schema_ref.get('Location')), list, message='expected list not found') location = schema_ref.get('Location')[0] assert_equal(type(location.get('Uri')), unicode, message='expected uri string not found') self.__locationUri.append(location.get('Uri')) @test(groups=['redfish.get_schema_invalid'], depends_on_groups=['redfish.list_schemas']) def test_get_schema_invalid(self): """ Testing GET /Schemas/{identifier} 404s properly """ self.__membersList = self.__schemaList.get('Members') assert_not_equal(None, self.__membersList) for member in self.__membersList: dataId = member.get('@odata.id') assert_not_equal(None,dataId) dataId = dataId.split('/redfish/v1/Schemas/')[1] try: redfish().get_schema(dataId + '-invalid') fail(message='did not raise exception') except rest.ApiException as e: assert_equal(404, e.status, message='unexpected response {0}, expected 404'.format(e.status)) break @test(groups=['redfish.get_schema_content'], depends_on_groups=['redfish.get_schema']) def test_get_schema_content(self): """ Testing GET /SchemaStore/en/{identifier} """ assert_not_equal([], self.__locationUri) for member in self.__locationUri: assert_not_equal(None,member) dataId = member.split('/redfish/v1/SchemaStore/en/')[1] redfish().get_schema_content(dataId) schema_file_contents = self.__get_data() @test(groups=['redfish.get_schema_content_invalid'], depends_on_groups=['redfish.get_schema']) def test_get_schema_content_invalid(self): """ Testing GET /Schemas/en/{identifier} 404s properly """ assert_not_equal([], self.__locationUri) for member in self.__locationUri: assert_not_equal(None,member) dataId = member.split('/redfish/v1/SchemaStore/en/')[1] try: redfish().get_schema_content(dataId + '-invalid') fail(message='did not raise exception') except rest.ApiException as e: assert_equal(404, e.status, message='unexpected response {0}, expected 404'.format(e.status)) break
2.171875
2
sdk/python/pulumi_okta/app/get_app.py
brinnehlops/pulumi-okta
0
12790193
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables __all__ = [ 'GetAppResult', 'AwaitableGetAppResult', 'get_app', ] @pulumi.output_type class GetAppResult: """ A collection of values returned by getApp. """ def __init__(__self__, active_only=None, description=None, id=None, label=None, label_prefix=None, name=None, status=None): if active_only and not isinstance(active_only, bool): raise TypeError("Expected argument 'active_only' to be a bool") pulumi.set(__self__, "active_only", active_only) if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if label and not isinstance(label, str): raise TypeError("Expected argument 'label' to be a str") pulumi.set(__self__, "label", label) if label_prefix and not isinstance(label_prefix, str): raise TypeError("Expected argument 'label_prefix' to be a str") pulumi.set(__self__, "label_prefix", label_prefix) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if status and not isinstance(status, str): raise TypeError("Expected argument 'status' to be a str") pulumi.set(__self__, "status", status) @property @pulumi.getter(name="activeOnly") def active_only(self) -> Optional[bool]: return pulumi.get(self, "active_only") @property @pulumi.getter def description(self) -> str: """ `description` of application. """ return pulumi.get(self, "description") @property @pulumi.getter def id(self) -> Optional[str]: """ `id` of application. """ return pulumi.get(self, "id") @property @pulumi.getter def label(self) -> Optional[str]: """ `label` of application. """ return pulumi.get(self, "label") @property @pulumi.getter(name="labelPrefix") def label_prefix(self) -> Optional[str]: return pulumi.get(self, "label_prefix") @property @pulumi.getter def name(self) -> str: """ `name` of application. """ return pulumi.get(self, "name") @property @pulumi.getter def status(self) -> str: """ `status` of application. """ return pulumi.get(self, "status") class AwaitableGetAppResult(GetAppResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAppResult( active_only=self.active_only, description=self.description, id=self.id, label=self.label, label_prefix=self.label_prefix, name=self.name, status=self.status) def get_app(active_only: Optional[bool] = None, id: Optional[str] = None, label: Optional[str] = None, label_prefix: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAppResult: """ Use this data source to retrieve the collaborators for a given repository. ## Example Usage ```python import pulumi import pulumi_okta as okta example = okta.app.get_app(label="Example App") ``` :param bool active_only: tells the provider to query for only `ACTIVE` applications. :param str id: `id` of application to retrieve, conflicts with `label` and `label_prefix`. :param str label: The label of the app to retrieve, conflicts with `label_prefix` and `id`. :param str label_prefix: Label prefix of the app to retrieve, conflicts with `label` and `id`. This will tell the provider to do a `starts with` query as opposed to an `equals` query. """ __args__ = dict() __args__['activeOnly'] = active_only __args__['id'] = id __args__['label'] = label __args__['labelPrefix'] = label_prefix if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('okta:app/getApp:getApp', __args__, opts=opts, typ=GetAppResult).value return AwaitableGetAppResult( active_only=__ret__.active_only, description=__ret__.description, id=__ret__.id, label=__ret__.label, label_prefix=__ret__.label_prefix, name=__ret__.name, status=__ret__.status)
1.851563
2
tutorials/W0D1_PythonWorkshop1/solutions/W0D1_Tutorial1_Solution_01b86875.py
amita-kapoor/course-content
1
12790194
<gh_stars>1-10 # set random number generator np.random.seed(2020) # initialize step_end, t_range, v and syn step_end = int(t_max/dt) t_range = np.linspace(0, t_max, num=step_end) v = el * np.ones(step_end) syn = i_mean * (1 + 0.1*(t_max/dt)**(0.5)*(2*np.random.random(step_end)-1)) # loop for step_end values of syn for step, i in enumerate(syn): # skip first iteration if step==0: continue v[step] = v[step-1] + dt/tau * (el - v[step-1] + r*i) with plt.xkcd(): # initialize the figure plt.figure() plt.title('$V_m$ with random I(t)') plt.xlabel('time (s)') plt.ylabel(r'$V_m$ (V)') plt.plot(t_range, v, 'k') plt.show()
2.5
2
modifications/2020-03-11-ASCDB/add_dataset.py
PierMorgante/MQCAS
4
12790195
#!/usr/bin/env Python # This line is needed only for unix-based systems. # Written by <NAME>, <NAME>, <NAME>. # March 2020. # import qcportal as ptl from qcfractal import FractalSnowflake import pandas as pd import argparse parser = argparse.ArgumentParser() parser.add_argument("-d", "--dry-run", action="store_true") args = parser.parse_args() SNOWFLAKE = args.dry_run if SNOWFLAKE: snowflake = FractalSnowflake() client = snowflake.client() else: client = ptl.FractalClient.from_file() print(client) # The new subset you want to add. dataset_name = "ASCDB" ds = ptl.collections.ReactionDataset(dataset_name, client=client) # Add the paper ds.data.metadata["citations"] = [ ptl.models.Citation( bibtex=""" @article{morgante2019statistically, title={Statistically representative databases for density functional theory via data science}, author={<NAME> and <NAME>}, journal={Physical Chemistry Chemical Physics}, volume={21}, number={35}, pages={19092--19103}, year={2019}, publisher={Royal Society of Chemistry} } """, acs_citation="<NAME>. &amp; <NAME>. Statistically representative databases for density functional theory via data science. <em>Phys. Chem. Chem. Phys., </em><b>2019</b><i>, 21</i>, 19092-19103.", url="https://pubs.rsc.org/en/content/articlehtml/2019/cp/c9cp03211h", doi="10.1039/C9CP03211H", ) ] # The .csv file needed to build everything. filename = "ASCDB.csv" # We read the ASCDB.csv file. The encoding flag is optional, # but necessary if the csv is generated (for example) with Microsoft Excel. # with open(filename, "r", encoding="utf-8-sig") as handle: rxns = [x.split(",") for x in handle.read().splitlines()] # Where to find the geometry files (in .xyz) gpath = "ACCDB/Geometries" # We put names and reactions in the following lists: contrib_name = [] contrib_value = [] for row in rxns: # Datapoint's name. name = row[0] # Datapoint's reference energy. energy = row[1] # Datapoint's reaction: from 2 to the end of the rxns list. rxn = row[2:] # This is used to handle the list. half = len(rxn) // 2 molecules = rxn[:half] coefs = rxn[half:] rxn_data = [] # This loop handles the definition of a reaction, putting together molecules # and stoichiometric coefficients. # for mol_name, coef in zip(molecules, coefs): mol = ptl.Molecule.from_file(gpath + "/" + mol_name + ".xyz") coef = float(coef) rxn_data.append((mol, coef)) rxn = {"default": rxn_data} # We add the reaction to the dataset. ds.add_rxn(name, rxn) # We store the values to add in the "Contributed value" dictionary (see below). contrib_name.append(name) contrib_value.append(float(energy)) # Save the new subset. ds.save() # # Adding a contributed value based on the ASCDB csv file and the molecules # handled above. # contrib = { "name": "Benchmark", "theory_level": "CCSD(T), CASPT2, Experiment (see ref)", "values": contrib_value, "index": contrib_name, "theory_level_details": {"driver": "energy"}, "units": "kcal / mol", } ds.units = "kcal/mol" ds.set_default_benchmark("Benchmark") ds.add_contributed_values(contrib) ds.save() # Test ds = client.get_collection("ReactionDataset", dataset_name) print(ds.list_values()) ds._ensure_contributed_values() print(ds.get_values(native=False)) print(ds.data.metadata['citations'])
1.953125
2
resource_daily_scheduler/booking_req_views.py
weijia/resource-daily-scheduler
0
12790196
<filename>resource_daily_scheduler/booking_req_views.py import json from compat import View import datetime from django import forms from django.db.models import Q from django.http import HttpResponse from django.views.generic.edit import CreateView, UpdateView import pytz from djangoautoconf.class_based_views.ajax_views import AjaxableResponseMixin from djangoautoconf.class_based_views.create_view_factory import AjaxableFormContextUpdateMixin from djangoautoconf.django_utils import retrieve_param from guardian.shortcuts import assign_perm from resource_daily_scheduler.models import BookingRequest, get_timezone_aware_datetime_from_date_str class BookingRequestForm(forms.ModelForm): start = forms.DateField( required=False, widget=forms.TextInput(attrs={ 'class': 'datepicker' })) end = forms.DateField( required=False, widget=forms.TextInput(attrs={ 'class': 'datepicker' })) class Meta: model = BookingRequest exclude = ["is_approved", "requester", "approver", "is_ongoing", "is_completed", "is_canceled"] class BookingRequestUpdateForm(BookingRequestForm): class Meta: model = BookingRequest exclude = ["requester", "approver"] class AjaxableBookingRequestCreateView(AjaxableResponseMixin, AjaxableFormContextUpdateMixin, CreateView): form_class = BookingRequestForm template_name = "form_view_base_template.html" submit_button_text = "Create" def get_form_kwargs(self): """ Used to update end date in UI, as the end date in UI is included in the reservation :return: """ kwargs = super(AjaxableBookingRequestCreateView, self).get_form_kwargs() # kwargs.update({"prefix": "update"}) # tz = pytz.timezone("Asia/Shanghai") # kwargs["instance"].start = kwargs["instance"].start.astimezone(tz).strftime("%m/%d/%Y") # kwargs["instance"].end = (kwargs["instance"].end-datetime.timedelta( # days=1)).astimezone(tz).strftime("%m/%d/%Y") data = retrieve_param(self.request) if ("start" in data) and ("resourceId" in data): kwargs["initial"] = {"start": data["start"], "resource": int(data["resourceId"])} return kwargs def form_valid(self, form): candidate = form.save(commit=False) candidate.requester = self.request.user # use your own profile here candidate.save() response = super(AjaxableBookingRequestCreateView, self).form_valid(form) return response class RequestApprovalMixin(object): def is_request_can_be_approved(self, approval_request): conflicts = self.model.objects.filter( start__lt=approval_request.end, end__gte=approval_request.start, resource=approval_request.resource, ) conflicts_filter = conflicts.filter(~Q(id=approval_request.pk) & (Q(is_approved=True) | Q(is_ongoing=True))) # if any(conflicts_filter): # return False for i in conflicts_filter: return False return True def is_valid_approval(self, approval_request): return (approval_request.approver is None) and approval_request.is_approved and \ self.is_request_can_be_approved(approval_request) class AjaxableBookingRequestUpdateView(AjaxableResponseMixin, AjaxableFormContextUpdateMixin, RequestApprovalMixin, UpdateView): form_class = BookingRequestUpdateForm model = BookingRequest ajax_form_id = "bookingReqEditForm" template_name = "form_view_base_template.html" submit_button_text = "Update" success_url = "../" def get_form_kwargs(self): """ Used to update end date in UI, as the end date in UI is included in the reservation :return: """ kwargs = super(AjaxableBookingRequestUpdateView, self).get_form_kwargs() kwargs.update({"prefix": "update"}) tz = pytz.timezone("Asia/Shanghai") kwargs["instance"].start = kwargs["instance"].start.astimezone(tz).strftime("%m/%d/%Y") kwargs["instance"].end = (kwargs["instance"].end - datetime.timedelta( days=1)).astimezone(tz).strftime("%m/%d/%Y") return kwargs def form_valid(self, form): candidate = form.save(commit=False) if self.is_valid_approval(candidate): candidate.approver = self.request.user candidate.save() else: candidate.is_approved = False # In ModelFormMixin.form_valid, form.save() and its parent's form_valid will be called # And in FormMixin (ModelFormMixin's parent) HttpResponseRedirect(self.get_success_url()) will be called response = super(AjaxableBookingRequestUpdateView, self).form_valid(form) return response class ResourceApproverUpdater(object): create_resource_permission = 'change_bookableresource' def form_valid(self, form): candidate = form.save(commit=False) candidate.approver = self.request.user candidate.save() assign_perm(self.create_resource_permission, self.request.user, candidate) # In ModelFormMixin.form_valid, form.save() and its parent's form_valid will be called # And in FormMixin (ModelFormMixin's parent) HttpResponseRedirect(self.get_success_url()) will be called response = super(ResourceApproverUpdater, self).form_valid(form) return response class ColorSchema(object): COLOR_0_YOUR_REQUEST = "tomato" COLOR_1_WAITING_FOR_YOUR_APPROVAL = "yellow" COLOR_2_WAITING_FOR_APPROVAL_FROM_OTHERS = "limegreen" COLOR_3_APPROVED_COMMA_YOU_CAN_CHANGE = "DeepPink" COLOR_4_APPROVED_COMMA_YOU_CANNOT_CHANGE = "blue" COLOR_5_ONGOING = "green" # COLOR_CONFLICT = "DarkGray" # "black" COLOR_6_COMPLETED = "aqua" COLOR_7_CANCELED = "grey" def get_colors(self): colors = {} for attr in dir(ColorSchema): if attr != attr.upper(): continue if attr[:6] != "COLOR_": continue value = getattr(ColorSchema, attr) index = int(attr[6]) attr_name = attr[8:] attr_name = attr_name.replace("_COMMA", ",") attr_name = attr_name.lower() attr_name = attr_name.replace("_", " ") colors[attr_name.capitalize()] = (index, value) return colors class GetScheduleView(View, ColorSchema, RequestApprovalMixin): model = BookingRequest resource_approval_permission = "change_bookableresource" def get(self, request, *args, **kwargs): data = retrieve_param(request) tz = pytz.timezone("Asia/Shanghai") start = get_timezone_aware_datetime_from_date_str(data["start"]) end = get_timezone_aware_datetime_from_date_str(data["end"]) start_query = Q(end__lt=start) end_query = Q(start__gt=end) res_query = self.model.objects.filter(~(end_query | start_query)) res = [] for event in res_query: color = self.get_color(event) event = {"id": "%d" % event.pk, "resourceId": "%d" % event.resource.pk, "start": str(event.start), "end": str(event.end), "title": event.project, "color": color} if color in [self.COLOR_1_WAITING_FOR_YOUR_APPROVAL, self.COLOR_5_ONGOING, self.COLOR_3_APPROVED_COMMA_YOU_CAN_CHANGE, self.COLOR_0_YOUR_REQUEST]: event["className"] = "todo" res.append(event) return HttpResponse(json.dumps(res), content_type="application/json") def get_color(self, event): color = self.COLOR_2_WAITING_FOR_APPROVAL_FROM_OTHERS has_perm = self.has_permission_to_manage_resource(event) if event.is_canceled: color = self.COLOR_7_CANCELED elif event.is_completed: color = self.COLOR_6_COMPLETED elif event.is_ongoing: # tz = pytz.timezone("Asia/Shanghai") # end_datetime = event.end # if event.end < end_datetime.astimezone(tz): # color = self.COLOR_5_ONGOING color = self.COLOR_5_ONGOING elif event.is_approved: if has_perm: color = self.COLOR_3_APPROVED_COMMA_YOU_CAN_CHANGE else: color = self.COLOR_4_APPROVED_COMMA_YOU_CANNOT_CHANGE elif has_perm: if self.is_request_can_be_approved(event): color = self.COLOR_1_WAITING_FOR_YOUR_APPROVAL # else: # color = self.COLOR_CONFLICT elif event.requester == self.request.user: color = self.COLOR_0_YOUR_REQUEST return color def has_permission_to_manage_resource(self, event): return self.request.user.has_perm(self.resource_approval_permission, event.resource) class ApproveRequestView(View, RequestApprovalMixin): model = BookingRequest def get(self, request, *args, **kwargs): data = retrieve_param(request) req_id = data["requestId"] r = self.model.objects.get(pk=int(req_id)) if r.is_approved: r.is_approved = False result = "false" else: r.is_approved = True result = "true" r.save() return HttpResponse(json.dumps({"result": result}), content_type="application/json")
2.015625
2
transcrypt/development/automated_tests/transcrypt/classes/__init__.py
JMCanning78/Transcrypt
1
12790197
def run (autoTester): autoTester.check ('<br>General<br>') class A: p = 123 def __init__ (self, x): self.x = x autoTester.check (self.p) def show (self, label): autoTester.check ('A.show', label, self.x) def show2 (self, label): autoTester.check ('A.show2', label, self.x) class B: p, q = 456, 789 def __init__ (self, y): autoTester.check ('In B constructor') self.y = y autoTester.check (self.p) def show (self, label): autoTester.check ('B.show', label, self.y) class C (A, B): def __init__ (self, x, y): autoTester.check ('In C constructor') A.__init__ (self, x) B.__init__ (self, y) def show (self, label): A.show (self, label) B.show (self, label) autoTester.check ('C.show', label, self.x, self.y) a = A (1001) a.show ('america') autoTester.check (A.p) autoTester.check (a.p) b = B (2002) b.show ('russia') autoTester.check (B.p) autoTester.check (b.p) autoTester.check (b.q) autoTester.check (A.p) autoTester.check (a.p) c = C (3003, 4004) c.show ('netherlands') autoTester.check (C.p) autoTester.check (c.p) autoTester.check (c.q) c.show2 ('amsterdam') A.show2 (c, 'rotterdam') show3 = c.show show3 ('copy') autoTester.check (hasattr (a, 'x')) autoTester.check (hasattr (a, 'y')) autoTester.check (hasattr (a, 'p')) autoTester.check (hasattr (a, 'q')) autoTester.check ('<br><br>Augmented isinstance and issubclass<br>') # Augmented meaning: compatible with native JavaScript types simpleTypes = (dict, list, A, B, C, bool, str, float, int, object) tupleTypes = ((dict, list), (bool, int), (bool, A), (C, B), (B, object)) for i, types in enumerate ((simpleTypes, tupleTypes)): for j, aType in enumerate (types): for k, anObject in enumerate (({'a': 1}, [], a, C, c, C, b, True, 'a', 1, 1.2)): autoTester.check (i, j, k, isinstance (anObject, aType)) if types == simpleTypes: autoTester.check (i, j, k, isinstance (anObject, simpleTypes)) for i, types in enumerate ((simpleTypes, tupleTypes)): for j, aType in enumerate (types): for k, aClass in enumerate ((dict, list, A, C, B, bool, str, int, float)): autoTester.check (i + 2, j, k, issubclass (aClass, aType)) if types == simpleTypes: autoTester.check (i + 2, j, k, issubclass (aClass, simpleTypes)) autoTester.check ('<br><br>Method resolution order<br>') def mro (aClass, result = None): ''' Recursively assemble method resolution order from all base classes''' last = 0 if result is None: result = [aClass] last = 1 for aBase in aClass.__bases__: if not aBase in result and aBase != object: result.append (aBase) mro (aBase, result) if last and object in aClass.__bases__: aRoot.append (object) return result autoTester.check ([aClass.__name__ for aClass in mro (C)])
2.796875
3
polybius/utils/font.py
TStalnaker44/flappy_bird_game
0
12790198
import pygame class Font(): def __init__(self, name, size): self._name = name self._size = size self._font = pygame.font.SysFont(name, size) #TODO Add support for font files def getFontName(self): return self._name def getFontSize(self): return self._size def render(self, text, antialias, color, background=None): return self._font.render(text, antialias, color, background) def size(self, text): return self._font.size(text) def get_height(self): return self._font.get_height()
3.03125
3
test/mocks/mock_direct_receiver.py
markgreene74/mite
17
12790199
from mite.utils import pack_msg class DirectReceiverMock: def __init__(self): self._listeners = [] self._raw_listeners = [] def __call__(self, msg): return def add_listener(self, listener): self._listeners.append(listener) def add_raw_listener(self, raw_listener): self._raw_listeners.append(raw_listener) def recieve(self, msg): for listener in self._listeners: listener(msg) packed_msg = pack_msg(msg) for raw_listener in self._raw_listeners: raw_listener(packed_msg)
2.3125
2
statusbar.py
rmayherr/python
0
12790200
<gh_stars>0 #!/usr/bin/env python3 import time, subprocess,os class Progressbar(): def __init__(self): self.line = "" self.arrow = "" self.initbar() def initbar(self): print(("{0:143}{1}").format("[","]")) def terminal_length(self): cols,rows = os.get_terminal_size() return cols def update(self): self.line += "=" self.arrow = ">" print("{0}{1}{2:{l}}{3}".format("[", self.line, self.arrow, "]",l = 140 - len(self.line))) bar = Progressbar() for i in range(1,140): subprocess.call(["clear"]) # print(i) bar.update() time.sleep(0.02)
2.8125
3
inheritance/Multilevel.py
Anilkumar95/python-75-hackathon
0
12790201
class My(object): y = 5988 class Mt(My): z = 598 class Mat(Mt): x = 54 p1=Mat() print(p1.x) print(p1.y) print(p1.z)
3.265625
3
airmozilla/main/tests/test_views.py
peterbe/airmozilla
0
12790202
<filename>airmozilla/main/tests/test_views.py<gh_stars>0 import datetime import uuid from django.contrib.auth.models import Group from django.test import TestCase from django.utils.timezone import utc from funfactory.urlresolvers import reverse from nose.tools import eq_, ok_ from airmozilla.main.models import ( Approval, Event, EventOldSlug, Participant, Tag ) class TestPages(TestCase): fixtures = ['airmozilla/manage/tests/main_testdata.json'] def setUp(self): # Make the fixture event live as of the test. event = Event.objects.get(title='Test event') event.start_time = datetime.datetime.utcnow().replace(tzinfo=utc) event.archive_time = None event.save() def test_home(self): """Index page loads and paginates correctly.""" response = self.client.get(reverse('main:home')) eq_(response.status_code, 200) response_empty_page = self.client.get(reverse('main:home', kwargs={'page': 10000})) eq_(response_empty_page.status_code, 200) def test_event(self): """Event view page loads correctly if the event is public and scheduled and approved; request a login otherwise.""" event = Event.objects.get(title='Test event') group = Group.objects.get() approval = Approval(event=event, group=group) approval.save() event_page = reverse('main:event', kwargs={'slug': event.slug}) response_fail_approval = self.client.get(event_page) eq_(response_fail_approval.status_code, 200) ok_('not approved' in response_fail_approval.content) approval.approved = True approval.processed = True approval.save() response_ok = self.client.get(event_page) eq_(response_ok.status_code, 200) event.public = False event.save() response_fail = self.client.get(event_page) self.assertRedirects(response_fail, reverse('main:login')) event.public = True event.status = Event.STATUS_INITIATED event.save() response_fail = self.client.get(event_page) eq_(response_fail.status_code, 200) ok_('not scheduled' in response_fail.content) def test_old_slug(self): """An old slug will redirect properly to the current event page.""" old_event_slug = EventOldSlug.objects.get(slug='test-old-slug') response = self.client.get( reverse('main:event', kwargs={'slug': old_event_slug.slug}) ) self.assertRedirects( response, reverse('main:event', kwargs={'slug': old_event_slug.event.slug}) ) def test_participant(self): """Participant pages always respond successfully.""" participant = Participant.objects.get(name='<NAME>') participant_page = reverse('main:participant', kwargs={'slug': participant.slug}) response_ok = self.client.get(participant_page) eq_(response_ok.status_code, 200) participant.cleared = Participant.CLEARED_NO participant.save() response_ok = self.client.get(participant_page) eq_(response_ok.status_code, 200) def test_participant_clear(self): """Visiting a participant clear token page changes the Participant status as expected.""" participant = Participant.objects.get(name='<NAME>') participant.cleared = Participant.CLEARED_NO token = str(uuid.uuid4()) participant.clear_token = token participant.save() url = reverse('main:participant_clear', kwargs={'clear_token': token}) response_ok = self.client.get(url) eq_(response_ok.status_code, 200) response_changed = self.client.post(url) eq_(response_changed.status_code, 200) participant = Participant.objects.get(name='<NAME>') eq_(participant.clear_token, '') eq_(participant.cleared, Participant.CLEARED_YES) def test_calendars(self): """Calendars respond successfully.""" response_public = self.client.get(reverse('main:calendar')) eq_(response_public.status_code, 200) ok_('LOCATION:Mountain View' in response_public.content) response_private = self.client.get(reverse('main:private_calendar')) eq_(response_private.status_code, 200) # Cache tests event_change = Event.objects.get(id=22) event_change.title = 'Hello cache clear!' event_change.save() response_changed = self.client.get(reverse('main:calendar')) ok_(response_changed.content != response_public.content) ok_('cache clear' in response_changed.content) def test_calendars_description(self): event = Event.objects.get(title='Test event') event.description = """ Check out the <a href="http://example.com">Example</a> page and <strong>THIS PAGE</strong> here. Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. If the text is getting really long it will be truncated. """.strip() event.save() response_public = self.client.get(reverse('main:calendar')) eq_(response_public.status_code, 200) ok_('Check out the Example page' in response_public.content) ok_('and THIS PAGE here' in response_public.content) ok_('will be truncated' not in response_public.content) event.short_description = 'One-liner' event.save() response_public = self.client.get(reverse('main:calendar')) eq_(response_public.status_code, 200) ok_('Check out the' not in response_public.content) ok_('One-liner' in response_public.content) def test_filter_by_tags(self): url = reverse('main:home') delay = datetime.timedelta(days=1) event1 = Event.objects.get(title='Test event') event1.status = Event.STATUS_SCHEDULED event1.start_time -= delay event1.archive_time = event1.start_time event1.save() eq_(Event.objects.approved().count(), 1) eq_(Event.objects.archived().count(), 1) event2 = Event.objects.create( title='Second test event', description='Anything', start_time=event1.start_time, archive_time=event1.archive_time, public=True, status=event1.status, placeholder_img=event1.placeholder_img, ) eq_(Event.objects.approved().count(), 2) eq_(Event.objects.archived().count(), 2) tag1 = Tag.objects.create(name='tag1') tag2 = Tag.objects.create(name='tag2') tag3 = Tag.objects.create(name='tag3') event1.tags.add(tag1) event1.tags.add(tag2) event2.tags.add(tag2) event2.tags.add(tag3) # check that both events appear response = self.client.get(url) ok_('Test event' in response.content) ok_('Second test event' in response.content) response = self.client.get(url, {'tag': 'tag2'}) ok_('Test event' in response.content) ok_('Second test event' in response.content) response = self.client.get(url, {'tag': 'tag1'}) ok_('Test event' in response.content) ok_('Second test event' not in response.content) response = self.client.get(url, {'tag': 'tag3'}) ok_('Test event' not in response.content) ok_('Second test event' in response.content) response = self.client.get(url, {'tag': ['tag1', 'tag3']}) ok_('Test event' in response.content) ok_('Second test event' in response.content) response = self.client.get(url, {'tag': 'Bogus'}) eq_(response.status_code, 301) response = self.client.get(url, {'tag': ['tag1', 'Bogus']}) eq_(response.status_code, 301) # the good tag stays ok_('?tag=tag1' in response['Location'])
2.0625
2
neurolab/data/caltech101.py
udday2014/HebbianLearning
6
12790203
<gh_stars>1-10 from torchvision.datasets.utils import extract_archive from torchvision.datasets import ImageFolder from torch.utils.data import Subset, WeightedRandomSampler import random import os from ..utils import download_large_file_from_drive from .data import DataManager from .. import params as P # Caltech101 Dataset class Caltech101(ImageFolder): def __init__(self, root, download=False, **kwargs): self.root = root self.download = download self.CALTECH101_DRIVE_ID = '137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp' self.CALTECH101_ZIP_FILE = '101_ObjectCategories.tar.gz' self.CALTECH101_ZIP_PATH = os.path.join(self.root, self.CALTECH101_ZIP_FILE) self.CALTECH101_FOLDER = os.path.join(self.root, '101_ObjectCategories') if not os.path.exists(self.CALTECH101_FOLDER): # Extract Caltech101 zip file if not os.path.exists(self.CALTECH101_ZIP_PATH): if not self.download: raise(FileNotFoundError("Dataset files not found")) print("Downloading {} file...".format(self.CALTECH101_ZIP_FILE)) download_large_file_from_drive(self.CALTECH101_DRIVE_ID, self.CALTECH101_ZIP_PATH) print("Done!") print("Extracting {} file...".format(self.CALTECH101_ZIP_FILE)) extract_archive(self.CALTECH101_ZIP_PATH, self.root) print("Done!") super(Caltech101, self).__init__(self.CALTECH101_FOLDER, **kwargs) self.samples_per_class = {k: self.targets.count(k) for k in self.class_to_idx.values()} # Data manager class for Caltech101 class Caltech101DataManager(DataManager): def __init__(self, config): self.CALTECH101_SIZE = 9144 self.indices = list(range(self.CALTECH101_SIZE)) super().__init__(config) def get_dataset_metadata(self): return { P.KEY_DATASET: 'caltech101', P.KEY_DS_TRN_SET_SIZE: 8144, P.KEY_DS_VAL_SET_SIZE: 1000, P.KEY_DS_TST_SET_SIZE: 1000, P.KEY_DS_INPUT_SHAPE: (3, 224, 224), P.KEY_DS_NUM_CLASSES: 102 } def prepare_rnd_indices(self): random.shuffle(self.indices) def get_sampler(self, split): # split is a Subset of Caltech101. split.dataset is Caltech101. From this we can access the number of samples # per class, to be used for weighted random sampling, together with the length of the split, to determine how # many samples to fetch. return WeightedRandomSampler([w for w in split.dataset.samples_per_class.values()], len(split)) def get_train_split(self, transform=None, num_samples=None): if num_samples is None: num_samples = self.TOT_TRN_SAMPLES return Subset(Caltech101(root=self.DATASET_FOLDER, download=True, transform=transform), self.indices[:num_samples]) def get_val_split(self, transform=None, num_samples=None): if num_samples is None: num_samples = self.NUM_VAL_SAMPLES if self.TRN_SET_SIZE - self.TOT_TRN_SAMPLES >= num_samples: # If there are enough samples left in the training set, use them for validation return Subset(Caltech101(root=self.DATASET_FOLDER, download=True, transform=transform), self.indices[self.TRN_SET_SIZE - num_samples:self.TRN_SET_SIZE]) # Validate directly on test set otherwise return Subset(Caltech101(root=self.DATASET_FOLDER, download=True, transform=transform), self.indices[self.TRN_SET_SIZE:self.TRN_SET_SIZE + num_samples]) def get_test_split(self, transform=None, num_samples=None): if num_samples is None: num_samples = self.NUM_TST_SAMPLES return Subset(Caltech101(root=self.DATASET_FOLDER, download=True, transform=transform), self.indices[self.TRN_SET_SIZE:self.TRN_SET_SIZE + num_samples])
2.359375
2
users/schema.py
theNegativeEntropy/digitalmenu
0
12790204
from django.contrib.auth import authenticate, login import graphene import django_filters from graphene_django import DjangoObjectType, DjangoListField from graphene_django.filter import DjangoFilterConnectionField from graphql_jwt.decorators import login_required from .models import User class UserType(DjangoObjectType): class Meta: model = User fields = '__all__' filter_fields = ['email'] interfaces = (graphene.relay.Node, ) class UserInput(graphene.InputObjectType): email = graphene.String(required=True) password = graphene.String(required=True) first_name = graphene.String() last_name = graphene.String() class Query: me = graphene.Field(UserType) all_users = DjangoFilterConnectionField(UserType) @login_required def resolve_me(self, info): user = info.context.user return user class RegisterUserMutation(graphene.Mutation): class Arguments: user_data = UserInput(required=True) user = graphene.Field(UserType) def mutate(self, info, user_data=None): user = User.objects.create( email=user_data.email ) user.set_password(user_data.password) user.save() return RegisterUserMutation(user=user) class CreateUserMutation(graphene.Mutation): class Arguments: user_data = UserInput(required=True) user = graphene.Field(UserType) def mutate(self, info, user_data=None): user = User.objects.create( email=user_data.email, first_name=user_data.first_name, last_name=user_data.last_name ) user.set_password(user_data.password) user.save() return CreateUserMutation(user=user) class UpdateUserMutation(graphene.Mutation): class Arguments: user_data = UserInput(required=True) user = graphene.Field(UserType) def mutate(self, info, user_data): user = User.objects.get(email=user_data.email) user.first_name = user_data.first_name user.last_name = user_data.last_name user.save() return UpdateUserMutation(user=user) class DeleteUserMutation(graphene.Mutation): class Arguments: email = graphene.String(required=True) user = graphene.Field(UserType) def mutate(self, info, email): user = User.objects.get(email=email) user.is_active = False #shop.slug = slug+'_deleted' user.save() return DeleteUserMutation(user=user) class UndeleteUserMutation(graphene.Mutation): class Arguments: email = graphene.String(required=True) user = graphene.Field(UserType) def mutate(self, info, email): user = User.objects.get(email=email) user.is_active = True #shop.slug = slug.replace('_deleted', '') user.save() return UndeleteUserMutation(user=user) class Mutation(graphene.ObjectType): register_user = RegisterUserMutation.Field() create_user = CreateUserMutation.Field() update_user = UpdateUserMutation.Field() delete_user = DeleteUserMutation.Field() undelete_user = UndeleteUserMutation.Field()
2.265625
2
src/scheduler/cli.py
PyconUK/ConferenceScheduler-cli
0
12790205
"""Procedures to define the Command Line Interface (cli)""" from pathlib import Path import click from conference_scheduler.scheduler import event_schedule_difference from conference_scheduler.converter import solution_to_schedule from conference_scheduler.validator import ( is_valid_solution, solution_violations) import daiquiri import scheduler.calculate as calc from scheduler.decorators import timed import scheduler.define as defn from scheduler import convert, io, logging, session logger = daiquiri.getLogger(__name__) def events_and_slots(resources): slots = defn.slots(resources) events = defn.events(resources) unavailability = defn.unavailability(resources, slots) clashes = defn.clashes(resources) unsuitability = defn.unsuitability(resources, slots) defn.add_unavailability_to_events(events, slots, unavailability) defn.add_clashes_to_events(events, clashes) defn.add_unsuitability_to_events(events, slots, unsuitability) return events, slots @click.version_option(message='%(prog)s %(version)s :: UK Python Association') @click.group() @click.option( '--verbosity', '-v', default='info', type=click.Choice(['critical', 'error', 'warning', 'info', 'debug']), help='Logging verbosity') def scheduler(verbosity): pass @scheduler.command() @click.option( '--verbosity', '-v', default='info', type=click.Choice(['critical', 'error', 'warning', 'info', 'debug']), help='Logging verbosity') @click.option( '--algorithm', '-a', default='pulp_cbc_cmd', type=click.Choice( ['pulp_cbc_cmd', 'glpk', 'hill_climber', 'simulated_annealing']), help='Solver algorithm') @click.option( '--objective', '-o', default=None, type=click.Choice(['efficiency', 'equity', 'consistency']), help='Objective Function') @click.option('--diff/--no-diff', default=False, help='Show schedule diff') @click.option( '--input_dir', '-i', default=None, help='Directory for input files') @click.option( '--solution_dir', '-s', default=None, help='Directory for solution files') @click.option( '--build_dir', '-b', default=None, help='Directory for output yaml files') @timed def build( verbosity, algorithm, objective, diff, input_dir, solution_dir, build_dir ): logging.setup(verbosity) if input_dir: session.folders['input'] = Path(input_dir) if solution_dir: session.folders['solution'] = Path(solution_dir) if build_dir: session.folders['build'] = Path(build_dir) resources = defn.resources() events, slots = events_and_slots(resources) slots_by_index = { idx: f'{slot.starts_at} {slot.venue}' for idx, slot in enumerate(slots)} logger.debug(f'\nSlots List:\n{slots_by_index}') kwargs = {} if objective == 'consistency' or algorithm == 'simulated_annealing' or diff: original_solution = io.import_solution(session.folders['solution']) revised_solution = [ item for item in original_solution if item[0] < len(events)] original_schedule = solution_to_schedule( revised_solution, events, slots) diff = True kwargs['original_schedule'] = original_schedule solution = calc.solution(events, slots, algorithm, objective, **kwargs) if diff: schedule = solution_to_schedule(solution, events, slots) event_diff = event_schedule_difference(original_schedule, schedule) logger.debug(f'\nevent_diff:') for item in event_diff: logger.debug(f'{item.event.name} has moved from {item.old_slot.venue} at {item.old_slot.starts_at} to {item.new_slot.venue} at {item.new_slot.starts_at}') if solution is not None: allocations = defn.allocations(resources) unbounded = defn.unbounded(resources) defn.add_allocations(events, slots, solution, allocations, unbounded) logger.debug(convert.schedule_to_text(solution, events, slots)) io.export_solution_and_definition( resources, events, slots, allocations, solution, session.folders['solution']) @scheduler.command() @click.option( '--verbosity', '-v', default='info', type=click.Choice(['critical', 'error', 'warning', 'info', 'debug']), help='Logging verbosity') @click.option( '--input_dir', '-i', default=None, help='Directory for input files') @click.option( '--solution_dir', '-s', default=None, help='Directory for solution files') @click.option( '--reload/--no-reload', default=False, help='Reload YAML definition') @timed def validate(verbosity, input_dir, solution_dir, reload): logging.setup(verbosity) if solution_dir: session.folders['solution'] = Path(solution_dir) solution = io.import_solution(session.folders['solution']) if reload: resources = defn.resources() events, slots = events_and_slots(resources) original_solution = io.import_solution(session.folders['solution']) solution = [ item for item in original_solution if item[0] < len(events)] else: solution = io.import_solution(session.folders['solution']) definition = io.import_schedule_definition(session.folders['solution']) events = definition['events'] slots = definition['slots'] logger.info('Validating schedule...') if is_valid_solution(solution, events, slots): logger.info('Imported solution is valid') else: for v in solution_violations( solution, definition['events'], definition['slots']): logger.error(v)
2.4375
2
api/save_containers_stats_job.py
NathanReis/BaleiaAzul
1
12790206
<reponame>NathanReis/BaleiaAzul from datetime import datetime from src.database.connection import DBConnection from src.helpers.docker_helper import extract_stats_container_data from src.services import container_service import schedule import time def save_containers_stats(): db_connection = DBConnection() db = db_connection.get_database() containers = container_service.get_all() for container in containers: stats = container_service.get_stats(container, True, False) stats_data = extract_stats_container_data(container, stats) db['container_stats'].insert_one(stats_data) print(datetime.utcnow()) time_to_wait = 10 schedule.every(time_to_wait).seconds.do(save_containers_stats) while True: schedule.run_pending() time.sleep(time_to_wait)
2.40625
2
src/questrade/api/streamer/JSONStreamObserver.py
stvhwrd/QuestradeAPI_PythonWrapper
31
12790207
<filename>src/questrade/api/streamer/JSONStreamObserver.py '''JSON Stream Observer @summary: An Observer in the Publish/Subscriber design pattern. This observer prints the JSON object returned from the stream. @see: http://www.questrade.com/api/documentation/streaming @copyright: 2016 @author: <NAME> @license: Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from Observer import Observer import json class JSONStreamObserver(Observer): def __init__(self): self.dict_symbs = {} def update(self, payload, isBinary): if not isBinary and payload is not None: s = payload.decode('utf8') j = json.loads(s) if 'quotes' in j: quotes = j.get('quotes') for q in quotes: symbol = q.get('symbol', '_na_') if symbol != '_na_': self.dict_symbs[symbol] = q def get_symbols(self): return self.dict_symbs.keys() def get_latest_quote(self, symbol): return self.dict_symbs[symbol]
2.3125
2
documents/views.py
livcarman/spekit
0
12790208
<reponame>livcarman/spekit<gh_stars>0 from rest_framework import viewsets from rest_framework import permissions from documents.models import Document, Folder, Topic from documents.serializers import DocumentSerializer, FolderSerializer, TopicSerializer from documents.filters import DocumentFilter, FolderFilter, TopicFilter class FolderViewSet(viewsets.ModelViewSet): """ API endpoint that allows CRUD operations on Folder objects """ queryset = Folder.objects.all().order_by('-created_at') serializer_class = FolderSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] filterset_class = FolderFilter class DocumentViewSet(viewsets.ModelViewSet): """ API endpoint that allows CRUD operations on Document objects """ queryset = Document.objects.all().order_by('-created_at') serializer_class = DocumentSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] filterset_class = DocumentFilter class TopicViewSet(viewsets.ModelViewSet): """ API endpoint that allows CRUD operations on Topic objects """ queryset = Topic.objects.all().order_by('-created_at') serializer_class = TopicSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] filterset_class = TopicFilter
2.3125
2
benchmarks/ligra-partition/graphtools/cilkpub_v105/perf_scripts/perf_summarize_file.py
jordanjohnston/manseglib
4
12790209
# Copyright (C) 2013 Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS # OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY # WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ## # \file perf_summarize_file.py # # \brief [<i>Performance test script</i>]: Reads in a file of performance # data, and merges all data points with the same key together. # # \author <NAME> # \version 1.02 import os import sys from PerfDataPoint import *; from PerfDataSet import *; import PerfDataParser; ## # Script to read in input file, and merge all data points with the # same key together. # # Usage: <this script> <infile> [outfile] [merge_type] # <infile> is a required argument." # <outfile> is \"tmp_summary_output.dat\" by default" # [merge_type] is \"avg\" by default (can also be \"min\")" # def main(): infile = None outfile = "tmp_summary_output.dat" merge_type = "avg" if (len(sys.argv) > 1): infile = sys.argv[1] else: print "Usage: <this script> <infile> <outfile> <merge_type>" print " <infile> is a required argument." print " <outfile> is \"tmp_summary_output.dat\" by default" print " <merge_type> is \"avg\" by default (can be \"min\")" exit(0) if (len(sys.argv) > 2): outfile = sys.argv[2] if (len(sys.argv) > 3): merge_type = sys.argv[3] if (merge_type not in { "avg", "min" }): merge_type = "avg" print "# Input file: %s" % infile print "# Output file: %s" % outfile print "# Merge type: %s" % merge_type # Compute a merged input/output file names. (infile_head, infile_tail) = os.path.split(infile) merged_in_fname = infile_head + merge_type + "_" + infile_tail (outfile_head, outfile_tail) = os.path.split(outfile) merged_out_fname = outfile_head + merge_type + "_" + outfile_tail print "Generating output file %s" % merged_out_fname if (merge_type == "min"): merge_val = PerfDataPoint.MERGE_MIN elif (merge_type == "max"): merge_val = PerfDataPoint.MERGE_MAX else: merge_val = PerfDataPoint.MERGE_SUM input_data = PerfDataParser.parse_data_file(infile, default_desc=merged_in_fname, merge_type=merge_val, compute_average=True) input_data.output_to_file(merged_out_fname) # Run if we aren't importing. # Right now, we can't really import this file... if __name__ == "__main__": main()
1.164063
1
pybiotools4p/utils.py
btrspg/pybiotools4p
0
12790210
# AUTOGENERATED! DO NOT EDIT! File to edit: utils.ipynb (unless otherwise specified). __all__ = ['load_config', 'config', 'load_yaml', 'default_yaml', 'dict_to_paras'] # Cell import pkg_resources import configparser import yaml # Cell def load_config(*configs): config = configparser.ConfigParser() config.read(configs) return config def config(new_config=None): default_config=pkg_resources.resource_filename('pybiotools4p','default.ini') if None is new_config: print('loading default_config['+default_config+']') return load_config(default_config) else: print('loading default_config and '+ new_config) return load_config(pkg_resources.resource_filename('pybiotools4p','default.ini'),new_config) def load_yaml(*yamls): my_dict={} for y in yamls: with open(y,'r') as yf: my_dict.update(yaml.load(yf)) return my_dict def default_yaml(new_yaml=None): default_config=pkg_resources.resource_filename('pybiotools4p','default.yaml') if None is new_yaml: print('loading default_config['+default_config+']') return load_yaml(default_config) else: print('loading default_config and '+ new_yaml) return load_yaml(pkg_resources.resource_filename('pybiotools4p','default.yaml'),new_yaml) def dict_to_paras(mydict): ''' using dict to store extension parameters ''' return ' '.join([f'{i} {mydict[i]}' for i in mydict.keys()])
2.3125
2
oembed/tests/tests/base.py
ericholscher/djangoembed
1
12790211
<reponame>ericholscher/djangoembed<filename>oembed/tests/tests/base.py import simplejson from django.conf import settings from django.core.urlresolvers import reverse, NoReverseMatch from django.test import TestCase import oembed from oembed.providers import BaseProvider from oembed.resources import OEmbedResource from oembed.tests.settings import MEDIA_ROOT, MEDIA_URL class BaseOEmbedTestCase(TestCase): fixtures = ['oembed_testdata.json'] urls = 'oembed.tests.urls' # third party providers (StoredProvider) flickr_url = 'http://www.flickr.com/photos/neilkrug/2554073003/' youtube_url = 'http://www.youtube.com/watch?v=nda_OSWeyn8' # django providers (DjangoProvider and DjangoDatebasedProvider) category_url = 'http://example.com/testapp/category/1/' blog_url = 'http://example.com/testapp/blog/2010/may/01/entry-1/' rich_url = 'http://example.com/testapp/rich/rich-one/' category_embed = '<img src="http://example.com/media/images/breugel_babel2_800x661.jpg" alt="Category 1" ></img>' def setUp(self): "Set up test environment" # load up all the providers and register the test-only provider oembed.autodiscover() # refresh the attribute-cached time the db providers were last updated oembed.site._db_updated = None self.media_root, self.media_url = settings.MEDIA_ROOT, settings.MEDIA_URL settings.MEDIA_ROOT = MEDIA_ROOT settings.MEDIA_URL = MEDIA_URL def tearDown(self): settings.MEDIA_ROOT = self.media_root settings.MEDIA_URL = self.media_url def _sort_by_pk(self, list_or_qs): # decorate, sort, undecorate using the pk of the items # in the list or queryset annotated = [(item.pk, item) for item in list_or_qs] annotated.sort() return map(lambda item_tuple: item_tuple[1], annotated) def assertQuerysetEqual(self, a, b): # assert list or queryset a is the same as list or queryset b return self.assertEqual(self._sort_by_pk(a), self._sort_by_pk(b))
2.125
2
tests/validation.py
GeoscienceAustralia/sira
1
12790212
<filename>tests/validation.py """ Params lists and functions for validation testing of models and config files Validates model and config files based on rules """ from pathlib import Path # ----------------------------------------------------------------------------- # Paths SIRA_ROOT_DIR = Path(__file__).resolve().parent path_to_test_models = Path(SIRA_ROOT_DIR, "tests", "models") # ----------------------------------------------------------------------------- # Worksheet names / primary JSON keys # XL_WORKSHEET_NAMES required_model_worksheets = [ 'system_meta', 'component_list', 'component_connections', 'supply_setup', 'output_setup', 'comp_type_dmg_algo', 'damage_state_def' ] # XL_COMPONENT_LIST_HEADERS required_col_names_clist = [ 'component_id', 'component_type', 'component_class', 'cost_fraction', 'node_type', 'node_cluster', 'operating_capacity', 'pos_x', 'pos_y' ] # MODEL_COMPONENT_HEADERS required_component_headers = [ "component_type", "component_class", "cost_fraction", "node_type", "node_cluster", "operating_capacity", "pos_x", "pos_y", "damages_states_constructor" ] # MODEL_CONNECTION_HEADERS required_col_names_conn = [ 'origin', 'destination', 'link_capacity', 'weight' ] # ALGORITHM_DEFINITION_PARAMS required_col_names = [ 'is_piecewise', 'damage_function', 'damage_ratio', 'functionality', 'recovery_function', 'recovery_param1', 'recovery_param2' ] # MODEL_SECTIONS required_headers = [ "component_list", "node_conn_df", "sysinp_setup", "sysout_setup" ] # -----------------------------------------------------------------------------
2.5625
3
server/blogsley/security.py
blogsley/blogsley-next
2
12790213
import os import hashlib def generate_password_hash(password): salt = os.urandom(32) key = hashlib.pbkdf2_hmac('sha256', password.encode('utf-8'), salt, 100000) return (salt, key) def check_password_hash(password, salt, key): # Use the exact same setup you used to generate the key, but this time put in the password to check new_key = hashlib.pbkdf2_hmac( 'sha256', password.encode('utf-8'), # Convert the password to bytes salt, 100000 ) success = False if new_key == key: success = True print('Password is correct') else: print('Password is incorrect') return success
3.46875
3
archives/histograma01.py
LBarros77/Python
0
12790214
''' Pasos: Pida al usuario el nombre del archivo de entrada. Lea el archivo (si es posible) y cuente todas las letras latinas (las letras mayúsculas y minúsculas se tratan como iguales). Imprima un histograma simple en orden alfabético (solo se deben presentar recuentos distintos de cero). Questión: Crea un archivo de prueba para tu código y verifica si tu histograma contiene resultados válidos. ''' from sys import path try: fl = f"{path[0]}/" + input("Escribe el nobre del archvo: ") with open(fl, "w") as f: f.write("aBca") except Exception as e: print(e) dic = {} try: f = open(fl, "r") data = f.read() f.close() for k in data: if k not in dic.keys(): dic[k] = 1 else: dic[k] += 1 for k, v in dic.items(): print(f"{k} -> {v}") except Exception as e: print(e)
3.453125
3
node/blockchain/inner_models/signed_change_request/base.py
thenewboston-developers/Node
18
12790215
<filename>node/blockchain/inner_models/signed_change_request/base.py from typing import Type as TypingType from typing import TypeVar, cast from pydantic import root_validator from node.blockchain.constants import BLOCK_LOCK from node.blockchain.mixins.crypto import HashableMixin, validate_signature_helper from node.blockchain.mixins.validatable import ValidatableMixin from node.blockchain.utils.lock import lock from node.core.exceptions import ValidationError from node.core.utils.cryptography import derive_public_key from ...types import AccountNumber, Signature, SigningKey from ..base import BaseModel from ..signed_change_request_message import SignedChangeRequestMessage T = TypeVar('T', bound='SignedChangeRequest') class SignedChangeRequest(ValidatableMixin, BaseModel, HashableMixin): signer: AccountNumber signature: Signature message: SignedChangeRequestMessage @classmethod def create_from_signed_change_request_message( cls: TypingType[T], message: SignedChangeRequestMessage, signing_key: SigningKey ) -> T: from node.blockchain.inner_models.type_map import get_signed_change_request_subclass class_ = get_signed_change_request_subclass(message.type) assert class_ # because message.type should be validated by now class_ = cast(TypingType[T], class_) return class_( signer=derive_public_key(signing_key), signature=message.make_signature(signing_key), message=message, ) @classmethod def parse_obj(cls, *args, **kwargs): obj = super().parse_obj(*args, **kwargs) type_ = obj.message.type from node.blockchain.inner_models.type_map import get_signed_change_request_subclass class_ = get_signed_change_request_subclass(type_) assert class_ # because message.type should be validated by now if cls == class_: # avoid recursion return obj return class_.parse_obj(*args, **kwargs) @root_validator def validate_signature(cls, values): if cls == SignedChangeRequest: # only child classes signature validation makes sense return values return validate_signature_helper(values) def validate_business_logic(self): self.message.validate_business_logic() def validate_account_lock(self, blockchain_facade): if blockchain_facade.get_account_lock(self.signer) != self.message.account_lock: raise ValidationError('Invalid account lock') @lock(BLOCK_LOCK, expect_locked=True) def validate_blockchain_state_dependent(self, blockchain_facade): self.message.validate_blockchain_state_dependent(blockchain_facade, bypass_lock_validation=True) self.validate_account_lock(blockchain_facade) def get_type(self): return self.message.type
2.28125
2
src/straitjacket/__main__.py
pombredanne/gitlab.com-mbarkhau-straitjacket
0
12790216
#!/usr/bin/env python # This file is part of the straitjacket project # https://gitlab.com/mbarkhau/straitjacket # # Copyright (c) 2018 <NAME> (<EMAIL>) - MIT License # SPDX-License-Identifier: MIT try: import backtrace # To enable pretty tracebacks: # echo "export ENABLE_BACKTRACE=1;" >> ~/.bashrc backtrace.hook(align=True, strip_path=True, enable_on_envvar_only=True) except ImportError: pass import sys from . import sjfmt if __name__ == '__main__': sjfmt.main() sys.exit(0)
1.375
1
terraform_to_ansible/parser.py
mrlesmithjr/terraform-to-ansible
16
12790217
"""terraform_to_ansible/parser.py""" import json import logging import os import subprocess import sys class Parser: """Main Terraform tfstate parser.""" def __init__(self, args): """Init a thing.""" # Define dictionary to hold all parsed resources self.all_resources = {} # Define Terraform tfstate file to load self.tfstate = args.tfstate # Define Terraform tfstate directory to load self.tfstatedir = args.tfstatedir # Setup logging self.logger = logging.getLogger(__name__) def load(self): """Load Terraform tfstate file.""" # Attempt to load tfstate file directly if self.tfstate is not None: # Log tfstate file path self.logger.info("Loading --tfstate %s", self.tfstate) try: # Open tfstate file with open(self.tfstate, "r") as stream: # Load JSON data try: data = json.load(stream) # Log and exit if JSON data not found except json.JSONDecodeError as error: self.logger.error(error) sys.exit(1) # Log and exit if file not found except FileNotFoundError as error: self.logger.error(error) sys.exit(1) # Attempt to load tfstate from directory using terraform state pull else: # Log tfstate directory self.logger.info("Loading --tfstatedir %s", self.tfstatedir) try: # Capture current working directory prior to changing to the # tfstate directory. So, we can changing back. current_dir = os.getcwd() # Change to the tfstate directory os.chdir(self.tfstatedir) try: # Try to load JSON output from terraform state pull command data = json.loads( subprocess.getoutput("terraform state pull") ) # Log and exit if JSON data not found except json.decoder.JSONDecodeError as error: self.logger.error(error) sys.exit(1) # Change back to the original current working directory os.chdir(current_dir) # Log and exit if file/directory not found except FileNotFoundError as error: self.logger.error(error) sys.exit(1) # Capture Terraform version from tfstate terraform_version = data.get("terraform_version") # Log Terraform version for additional logic if needed. Not used at # this time. self.logger.info("terraform_version: %s", terraform_version) # Capture resources to parse resources = data.get("resources") if resources is None: resources = [] modules = data.get("modules") if modules is not None: resources = modules[0].get("resources") return resources def parse(self): """Parse Terraform tfstate file.""" # Load resources up resources = self.load() # Check if resources are a list - newer Terraform versions if isinstance(resources, list): for resource in resources: self.resource_types(resource) instances = resource.get("instances") if instances is not None: for instance in instances: self.all_resources[resource["type"]].append( instance["attributes"] ) # Check if resources are a dict - older Terraform versions elif isinstance(resources, dict): for resource, resource_config in resources.items(): self.resource_types(resource_config) self.all_resources[resource_config["type"]].append( resource_config["primary"]["attributes"] ) return self.all_resources def resource_types(self, resource): """Populate resource types.""" # Check to see if all_resources is already populated with resource type resource_type_lookup = self.all_resources.get(resource["type"]) # Add resource type to all resources if not found in lookup if resource_type_lookup is None: self.all_resources[resource["type"]] = []
2.65625
3
setup.py
sam-bailey/tyme
0
12790218
#!/usr/bin/env python3 # Set this to True to enable building extensions using Cython. # Set it to False to build extensions from the C file (that # was previously created using Cython). # Set it to 'auto' to build with Cython if available, otherwise # from the C file. import sys from setuptools import setup, find_packages, Extension from distutils.command.sdist import sdist as _sdist import numpy USE_CYTHON = "auto" if USE_CYTHON: try: from Cython.Distutils import build_ext from Cython.Build import cythonize except ImportError: if USE_CYTHON == "auto": USE_CYTHON = False else: raise class CythonModule(object): def __init__(self, name: str, path: str): self.name = name self.path = path @property def name(self) -> str: return self._name @name.setter def name(self, name: str) -> None: self._name = name @property def path(self) -> str: return self._path @path.setter def path(self, path: str) -> None: self._path = path @property def pyx(self) -> str: return self.path + ".pyx" @property def c(self) -> str: return self.path + ".c" cython_modules = [ CythonModule( name="tyme.base_forecasters.exponential_smoothing_cy", path="src/cython/exponential_smoothing_cy", ), CythonModule( name="tyme.base_forecasters.robust_exponential_smoothing_cy", path="src/cython/robust_exponential_smoothing_cy", ), ] if sys.version_info[0] == 2: raise Exception("Python 2.x is no longer supported") if USE_CYTHON: class sdist(_sdist): def run(self): # Make sure the compiled Cython files in the distribution are up-to-date cythonize([module.pyx for module in cython_modules]) _sdist.run(self) ext_modules = [ Extension(module.name, [module.pyx]) for module in cython_modules ] cmdclass = dict(build_ext=build_ext, sdist=sdist) else: ext_modules = [ Extension(module.name, [module.c]) for module in cython_modules ] cmdclass = {} requirements = [ "Bottleneck", "cycler", "kiwisolver", "numpy", "pandas", "Pillow", "pyparsing", "python-dateutil", "pytz", "six", "scipy", "Cython", ] requirements_dev = ["pytest", "pytest-cov", "Cython", "pre-commit", "tox"] setup( name="tyme", # version="0.1.0", description="A timeseries forecasting package, specialised in forecasting grouped timeseries", author="<NAME>", author_email="<EMAIL>", url="http://github.com/sam-bailey/tyme", packages=find_packages(where="src"), package_dir={"": "src"}, cmdclass=cmdclass, ext_modules=ext_modules, include_dirs=[numpy.get_include()], long_description=open("README.md").read(), install_requires=requirements, extras_require={"dev": requirements_dev}, license="MIT", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.1", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Cython", "Topic :: Scientific/Engineering :: Mathematics", ], keywords="timeseries forecast forecasting time", )
2.015625
2
peek_plugin_base/agent/PluginAgentEntryHookABC.py
Synerty/peek_plugin_base
0
12790219
from typing import Optional from peek_plugin_base.PluginCommonEntryHookABC import PluginCommonEntryHookABC from peek_plugin_base.agent.PeekAgentPlatformHookABC import PeekAgentPlatformHookABC class PluginAgentEntryHookABC(PluginCommonEntryHookABC): def __init__(self, pluginName: str, pluginRootDir: str, platform: PeekAgentPlatformHookABC): PluginCommonEntryHookABC.__init__(self, pluginName=pluginName, pluginRootDir=pluginRootDir) self._platform = platform @property def platform(self) -> PeekAgentPlatformHookABC: return self._platform @property def publishedAgentApi(self) -> Optional[object]: return None
2.203125
2
test/testers/winforms/panel-regression.py
ABEMBARKA/monoUI
1
12790220
<filename>test/testers/winforms/panel-regression.py #!/usr/bin/env python # vim: set tabstop=4 shiftwidth=4 expandtab ############################################################################## # Written by: <NAME> <<EMAIL>> # Date: 10/21/2008 # Description: main test script of panel # ../samples/winforms/panel.py is the test sample script # panel/* is the wrapper of panel test sample script ############################################################################## # The docstring below is used in the generated log file """ Test accessibility of Panel widget """ # imports from panel import * from helpers import * from states import * from actions import * from sys import argv app_path = None try: app_path = argv[1] except IndexError: pass #expected # open the panel sample application try: app = launchPanel(app_path) except IOError, msg: print "ERROR: %s" % msg exit(2) # make sure we got the app back if app is None: exit(4) # just an alias to make things shorter pFrame = app.panelFrame ########################### # check children's AtkAction ########################### # check if checkbox and radiobutton in panel still have correct actions actionsCheck(pFrame.check1, "CheckBox") actionsCheck(pFrame.check2, "CheckBox") actionsCheck(pFrame.check3, "CheckBox") actionsCheck(pFrame.check4, "CheckBox") actionsCheck(pFrame.radio1, "RadioButton") actionsCheck(pFrame.radio2, "RadioButton") actionsCheck(pFrame.radio3, "RadioButton") ########################### # check panel's AtkAccessible ########################### # check panel states statesCheck(pFrame.panel1, "Panel") statesCheck(pFrame.panel2, "Panel") ########################### # check children's AtkAccessible ########################### # panel should be focused, but focus on its child # check if checkbox and radiobutton in panel still have correct states statesCheck(pFrame.check1, "CheckBox", add_states=["focused"]) statesCheck(pFrame.check2, "CheckBox") statesCheck(pFrame.check3, "CheckBox", add_states=["checked"]) statesCheck(pFrame.check4, "CheckBox", invalid_states=["sensitive", "enabled","focusable"]) statesCheck(pFrame.radio1, "RadioButton", add_states=["checked"]) statesCheck(pFrame.radio2, "RadioButton") statesCheck(pFrame.radio3, "RadioButton", invalid_states=["focusable", "sensitive", "enabled"]) # check if label in panel still have correct states statesCheck(pFrame.label1, "Label") statesCheck(pFrame.label2, "Label") statesCheck(pFrame.label3, "Label") # click on checkbox which is in panel1 to assert checked state rising pFrame.check2.click(log=True) sleep(config.SHORT_DELAY) # BUG525428 - doing click action doesn't move focus on that control #statesCheck(pFrame.check2, "CheckBox", add_states=["checked", "focused"]) statesCheck(pFrame.check3, "CheckBox", add_states=["checked"]) # doesn't change panel1's state statesCheck(pFrame.panel1, "Panel") # click on radiobutton which is in panel2 to update label pFrame.radio2.click(log=True) sleep(config.SHORT_DELAY) pFrame.assertText(pFrame.label3, 'You are Female') # BUG525428 - doing click action doesn't move focus on that control #statesCheck(pFrame.radio2, "RadioButton", add_states=["checked", "focused"]) # doesn't change panel2's state statesCheck(pFrame.panel2, "Panel") # close application frame window pFrame.quit() print "INFO: Log written to: %s" % config.OUTPUT_DIR
1.820313
2
tests/generated_test_extensions/extend_test_compute.py
rosalexander/oci-cli
0
12790221
# coding: utf-8 # Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved. # These mappings are used by generated tests to look up operations that have been moved in code in the CLI. MOVED_COMMANDS = { ('compute', 'app_catalog_listing', 'get'): ['compute', 'pic', 'listing', 'get'], ('compute', 'app_catalog_listing', 'list'): ['compute', 'pic', 'listing', 'list'], ('compute', 'app_catalog_listing_resource_version', 'get'): ['compute', 'pic', 'version', 'get'], ('compute', 'app_catalog_listing_resource_version', 'list'): ['compute', 'pic', 'version', 'list'], ('compute', 'app_catalog_listing_resource_version_agreements', 'get-app-catalog-listing-agreements'): ['compute', 'pic', 'agreements', 'get'], ('compute', 'app_catalog_subscription', 'create'): ['compute', 'pic', 'subscription', 'create'], ('compute', 'app_catalog_subscription', 'delete'): ['compute', 'pic', 'subscription', 'delete'], ('compute', 'app_catalog_subscription', 'list'): ['compute', 'pic', 'subscription', 'list'] }
1.625
2
contrib/cookiecutter/ckan_extension/{{cookiecutter.project}}/ckanext/{{cookiecutter.project_shortname}}/logic/schema.py
gg2/ckan
2,805
12790222
<reponame>gg2/ckan import ckan.plugins.toolkit as tk def {{cookiecutter.project_shortname}}_get_sum(): not_empty = tk.get_validator("not_empty") convert_int = tk.get_validator("convert_int") return { "left": [not_empty, convert_int], "right": [not_empty, convert_int] }
1.859375
2
src/hots/count_words.py
Brokenwind/hots
0
12790223
<reponame>Brokenwind/hots<filename>src/hots/count_words.py<gh_stars>0 # -*- coding: utf-8 -*- # @Time : 2020/9/1 18:00 # @Author : WangKun # @Email : <EMAIL> import os import pickle import sys from collections import Counter import numpy as np from joblib import Parallel, delayed from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer from hots import common from nlpyutil import preprocess as preprocore from hots import corpus from nlpyutil import Logger from .ltp import Ltp _mds = set() DEFAULT_CSV_COLS = 5 _logger = Logger() _ltp = Ltp(exword_path=common.SELF_USER_WV_DICT) _HOT_FILTER_WORDS = set([word.strip() for word in open(common.FILTER_HOT_WORDS_PATH, encoding='UTF-8').readlines()]) _STOPWORDS = preprocore.get_stopwords() def word_count_and_idf(corpus, idf=False): """ 词频统计 和 idf值计算 :param corpus: [文章1 空白分割, 文章2 空白分割] :return: word_list: 词典列表 word_count_list: 词统计列表 idf_list: idfs列表 """ if not corpus: return None, None, None cv = CountVectorizer(stop_words=_STOPWORDS) cv_fit = cv.fit_transform(corpus) # ['bird', 'cat', 'dog', 'fish'] 列表形式呈现文章生成的词典 word_list = cv.get_feature_names() # 词频统计 word_count_list = cv_fit.sum(axis=0).tolist() word_count_list = word_count_list[0] assert len(word_list) == len(word_count_list) # analyzer='word',token_pattern=u"(?u)\\b\\w+\\b" idf_list = [] if idf: transformer = TfidfTransformer() tfidf = transformer.fit(cv_fit) # 计算全局的tfidf值 idf_list = tfidf.idf_ assert len(idf_list) == len(word_count_list) return word_list, word_count_list, idf_list def count_and_filter_single(partial_corpus): word_list, word_count_list, idf_list = word_count_and_idf(partial_corpus, idf=False) if not word_list or not word_count_list: return Counter() # word_count_list = np.array(word_count_list) # idf_list = np.array(idf_list) # tfidf_list = word_count_list * idf_list # word_statistics_list = list(zip(word_list, word_count_list, idf_list, tfidf_list)) word_counter = Counter(dict(zip(word_list, word_count_list))) return word_counter def count_words_with_corpus(corpus_data, name_prefix, data_mark, allow_tags=['n', 'j', 'i'], deny_tags=['nt', 'nd']): """ 在处理好的数据集上进行词频统计 :param filepath: :param count_base: 词的最低频次 :param idf_base: 最低idf限制 :param tfidf_base: 最低tfidf限制 :param allow_tags: 统计指定词性的词,如果为空则表示所有词性 :return: """ corpus_data, _ = corpus.process_origin_corpus_data(corpus_data, split=False, level=corpus.CorpusItemLevel.Article) _logger.info("start counting with multi thread") num_task = max(1, common.NUM_CPU) partial_len = int(np.ceil(len(corpus_data) / num_task)) if partial_len == 0: partial_len = len(corpus_data) num_task = 1 partial_results = Parallel(n_jobs=num_task, backend="multiprocessing")( delayed(count_and_filter_single)(corpus_data[idx:idx + partial_len]) for idx in range(0, len(corpus_data), partial_len)) total_counter = Counter() for counter in partial_results: total_counter.update(counter) # 根据条件进行过滤 _logger.info("start filtering the with postag and count") # 根据词性过滤 for word in list(total_counter.keys()): if total_counter[word] < 10: del total_counter[word] continue if word in _HOT_FILTER_WORDS: del total_counter[word] continue word_tags = _ltp.ltp_postagger(word) if len(word_tags) == 1: word_tag = word_tags[0] # 如果当前词的词性属于deny_tags中,则直接跳过 deny = any(word_tag[1].startswith(tag) for tag in deny_tags) if deny: del total_counter[word] continue allow = any(word_tag[1].startswith(tag) for tag in allow_tags) if not allow: del total_counter[word] """ word_statistics_list_path = os.path.join(common.HOT_WORDS_PATH, "{}_word_statistics_{}.pkl".format(data_mark, name_prefix)) _logger.info("dump to pickle file") with open(word_statistics_list_path, 'wb') as f: pickle.dump(total_counter, f) _logger.info("finished the dump") """ return total_counter def load_word_statistics(name_prefix) -> Counter: """ :param name_prefix: :return: 返回词统计结果列表,每个元素:('词', 个数, idf值, 全局的tf-idf值) """ word_counter_path = os.path.join(common.HOT_WORDS_PATH, "word_statistics_{}.pkl".format(name_prefix)) with open(word_counter_path, 'rb') as f: word_counter = pickle.load(f) return word_counter if __name__ == '__main__': if len(sys.argv) != 2: raise ValueError("parameter error") name_prefix = sys.argv[1] filepath = os.path.join(common.DATA_PROCESSED_PATH, name_prefix + ".corpus") count_words_with_corpus(filepath) """ corpus = ["我 来到 北京 清华大学", "他 来到 了 网易 杭研 大厦", "小明 硕士 毕业 与 中国 科学院", "我 爱 北京 天安门"] word_list, word_count_list, idf_list = word_count_and_idf(corpus) print(word_list) print(word_count_list) print(idf_list) """
2.1875
2
udacity.py
davidvartanian/dand-ml-identify-fraud-enron-email
0
12790224
""" Code provided by Udacity """ import numpy as np def featureFormat( dictionary, features, remove_NaN=True, remove_all_zeroes=True, remove_any_zeroes=False, sort_keys = False): """ convert dictionary to numpy array of features remove_NaN = True will convert "NaN" string to 0.0 remove_all_zeroes = True will omit any data points for which all the features you seek are 0.0 remove_any_zeroes = True will omit any data points for which any of the features you seek are 0.0 sort_keys = True sorts keys by alphabetical order. Setting the value as a string opens the corresponding pickle file with a preset key order (this is used for Python 3 compatibility, and sort_keys should be left as False for the course mini-projects). NOTE: first feature is assumed to be 'poi' and is not checked for removal for zero or missing values. """ return_list = [] # Key order - first branch is for Python 3 compatibility on mini-projects, # second branch is for compatibility on final project. if isinstance(sort_keys, str): import pickle keys = pickle.load(open(sort_keys, "rb")) elif sort_keys: keys = sorted(dictionary.keys()) else: keys = dictionary.keys() for key in keys: tmp_list = [] for feature in features: try: dictionary[key][feature] except KeyError: print "error: key ", feature, " not present" return value = dictionary[key][feature] if value=="NaN" and remove_NaN: value = 0 tmp_list.append( float(value) ) # Logic for deciding whether or not to add the data point. append = True # exclude 'poi' class as criteria. if features[0] == 'poi': test_list = tmp_list[1:] else: test_list = tmp_list ### if all features are zero and you want to remove ### data points that are all zero, do that here if remove_all_zeroes: append = False for item in test_list: if item != 0 and item != "NaN": append = True break ### if any features for a given data point are zero ### and you want to remove data points with any zeroes, ### handle that here if remove_any_zeroes: if 0 in test_list or "NaN" in test_list: append = False ### Append the data point if flagged for addition. if append: return_list.append( np.array(tmp_list) ) return np.array(return_list) def targetFeatureSplit( data ): """ given a numpy array like the one returned from featureFormat, separate out the first feature and put it into its own list (this should be the quantity you want to predict) return targets and features as separate lists (sklearn can generally handle both lists and numpy arrays as input formats when training/predicting) """ target = [] features = [] for item in data: target.append( item[0] ) features.append( item[1:] ) return target, features
3.40625
3
emonitor/modules/settings/settings.py
Durburz/eMonitor
21
12790225
import os, math, yaml from emonitor.extensions import db class Struct(dict): def __init__(self, **entries): self.__dict__.update(entries) class Settings(db.Model): """Settings class""" __tablename__ = 'settings' __table_args__ = {'extend_existing': True} id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) _value = db.Column('value', db.Text) def __init__(self, name, value=""): self.name = name self._value = value @property def value(self): return yaml.load(self._value) @value.setter def value(self, val): self._value = yaml.safe_dump(val, encoding='utf-8') @staticmethod def num2deg(xtile, ytile, zoom=17 or db.config.get('DEFAULTZOOM')): """ Translate tile into coordinate (lat, lon) :param xtile: x-coordinate of tile :param ytile: y-coordinate of tile :param zoom: zoom level :return: lat, lon tuple """ n = 2.0 ** zoom lon_deg = xtile / n * 360.0 - 180.0 lat_deg = math.degrees(math.atan(math.sinh(math.pi * (1 - 2 * ytile / n)))) return lat_deg, lon_deg def getCarTypeNames(self): return self.value @staticmethod def getCarTypes(): ctypes = Settings.query.filter_by(name='cartypes') if ctypes.count(): return ctypes.one().value return "" @staticmethod def get_byType(type): return Settings.query.filter_by(name=type).first() or "" @staticmethod def getMapTiles(mid=0, zoom=17 or db.app.config.get('DEFAULTZOOM')): from emonitor.modules.maps.map import Map _map = Map.getMaps(mid) tiles = [] try: for ts in [f for f in os.listdir(_map.path + str(zoom) + '/') if f.endswith('png')]: tiles.append(ts.replace('-', '/')) except: pass return tiles @staticmethod def getFrontendSettings(area=""): s = Settings.query.filter_by(name='frontend.default') if s.count() == 1: if area == "": return s.first().value elif area in s.first().value.keys(): return s.first().value[area] return {'module': 'default', 'width': '.2', 'visible': '0', 'center': {'module': 'default'}, 'west': {'module': 'default', 'width': '.2'}, 'east': {'module': 'default', 'width': '.2'}} @staticmethod def get(option, default=''): """ Getter for option values :param option: name as string :param optional default: default value if not found in database :return: value of option """ s = Settings.query.filter_by(name=option) if s.count() == 1: # update return s.first().value return default # deliver default value @staticmethod def set(option, val): """ Setter for option :param option: name as string :param val: value of option :return: value of option """ s = Settings.query.filter_by(name=option).first() if s: # update settings s.value = val else: # add value s = Settings(option, yaml.safe_dump(val, encoding='utf-8')) db.session.add(s) db.session.commit() return s @staticmethod def getIntList(option, default=[]): try: return map(int, Settings.get(option, '').split(',')) except ValueError: return default @staticmethod def getYaml(option): try: return Struct(**(Settings.get(option))) except TypeError: return Struct()
2.453125
2
tests/test_ark.py
DerekRies/arkpy
19
12790226
<gh_stars>10-100 import pytest import pep8 import random import os from context import arktypes, ark, binary, utils data_dir = 'data/' output_dir = 'tests/output/' class TestArkProfile: def test_write_read(self): profile = ark.ArkProfile() profile.map_name = ark.GameMapMap.the_center profile.map_path = ark.GameMapMap.the_center_path profile.unique_id.set('11111111111111111') profile.player_name.set('<NAME>') profile.player_id.set(utils._gen_player_id()) profile.first_spawned.set(True) profile.character.name.set('GeneratedCharacter') profile.character.level_ups.set(9) profile.character.experience.set(450) profile.character.stat_points[ark.StatMap.Health].set(9) profile.save_to_file(output_dir + 'generatedprofile.arkprofile') # TODO: Create some functionality to compare the data dicts directly # to see if they are the same profile2 = ark.ArkProfile(output_dir + 'generatedprofile.arkprofile') assert profile2.map_name == profile.map_name assert profile2.map_path == profile.map_path assert profile2.unique_id.value == profile.unique_id.value assert profile2.player_name.value == profile.player_name.value assert profile2.player_id.value == profile.player_id.value profile2_female = profile2.character.isFemale.value profile_female = profile.character.isFemale.value assert profile2_female == profile_female assert profile2.character.stat_points[ark.StatMap.Health].value == 9 assert profile2.header_size != 0 assert profile2.header_size == profile.header_size class TestArkTribe: def test_write_read(self): owner_id = utils._gen_player_id() owner_name = arktypes.StrProperty(value='Generated Owner') tribe = ark.ArkTribe() tribe.name.set('Generated Tribe') tribe.tribe_id.set(utils._gen_tribe_id()) tribe.owner_id.set(owner_id) tribe.members_names.value.append(owner_name) member_id = arktypes.UInt32Property(value=owner_id) tribe.members_ids.value.append(member_id) tribe.save_to_file(output_dir + 'generatedtribe.arktribe') tribe2 = ark.ArkTribe(output_dir + 'generatedtribe.arktribe') assert tribe2.name.value == tribe.name.value assert tribe2.tribe_id.value == tribe.tribe_id.value assert tribe2.members_names.value[ 0].value == tribe.members_names.value[0].value assert tribe2.owner_id.value == tribe.owner_id.value @pytest.mark.slow class TestBulkReads: def test_read_profiles(self): path = 'data/Servers/Server01/' files = os.listdir(path) for file in files: if '.arkprofile' in file: try: file_path = path + file profile = ark.ArkProfile(file_path) except: print 'FAILED: %s' % file assert False def test_read_tribes(self): path = 'data/Servers/Server01/' files = os.listdir(path) for file in files: if '.arktribe' in file: try: file_path = path + file tribe = ark.ArkTribe(file_path) except: print 'FAILED: %s' % file assert False assert True @pytest.mark.style class TestStyle: def test_pep8(self): pep8style = pep8.StyleGuide() result = pep8style.check_files([ 'tests/test_ark.py', 'tests/test_arktypes.py', 'arkpy/binary.py', 'arkpy/utils.py', 'arkpy/ark.py', 'arkpy/arktypes.py', ]) assert result.total_errors == 0
2.328125
2
onadata/kobocat/__init__.py
BuildAMovement/whistler-kobocat
38
12790227
<reponame>BuildAMovement/whistler-kobocat<filename>onadata/kobocat/__init__.py from onadata.koboform import context_processors # remove this file when all servers are using new settings print """ context_processors setting must be changed from kobocat.context_processors to koboform.context_processors """
1.3125
1
scripts/sources/s_checklist_scenariobased_step04.py
dpopadic/arpmRes
6
12790228
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.5 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_checklist_scenariobased_step04 [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_checklist_scenariobased_step04&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=ex-vue-4-copmarg). # + import numpy as np import pandas as pd from scipy.stats import t as tstu import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from arpym.statistics import quantile_sp, simulate_markov_chain_multiv, \ simulate_t, project_trans_matrix from arpym.tools import histogram_sp, add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step04-parameters) # t_now is 31-Aug-2012. Set t_hor>t_now t_hor = np.datetime64('2012-10-26') # the future investment horizon j_ = 5000 # number of scenarios d_plot = 97 # projected risk driver to plot # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step04-implementation-step00): Load data # + path = '../../../databases/temporary-databases/' # Risk drivers identification # realizations of risk drivers up to and including time t_now db_riskdrivers_series = pd.read_csv(path + 'db_riskdrivers_series.csv', index_col=0, parse_dates=True) x = db_riskdrivers_series.values risk_drivers_names = db_riskdrivers_series.columns # additional information db_riskdrivers_tools = pd.read_csv(path + 'db_riskdrivers_tools.csv') d_ = int(db_riskdrivers_tools.d_.dropna()) d_credit = int(db_riskdrivers_tools.d_credit.dropna()) n_stocks = int(db_riskdrivers_tools.n_stocks.dropna()) d_implvol = int(db_riskdrivers_tools.d_implvol.dropna()) n_bonds = int(db_riskdrivers_tools.n_bonds.dropna()) i_bonds = n_bonds * 4 # 4 NS parameters x n_bonds c_ = int(db_riskdrivers_tools.c_.dropna()) ratings_tnow = np.array(db_riskdrivers_tools.ratings_tnow.dropna()) t_now = np.datetime64(db_riskdrivers_tools.t_now[0], 'D') # Quest for invariance # values of invariants db_invariants_series = pd.read_csv(path + 'db_invariants_series.csv', index_col=0, parse_dates=True) epsi = db_invariants_series.values t_, i_ = np.shape(epsi) # next step models db_invariants_nextstep = pd.read_csv(path + 'db_invariants_nextstep.csv') # parameters for next step models db_invariants_param = pd.read_csv(path + 'db_invariants_param.csv', index_col=0) # parameters for GARCH(1,1) next step models db_garch_sig2 = pd.read_csv(path + 'db_garch_sig2.csv', index_col=0, parse_dates=True) # estimated annual credit transition matrix p_credit = pd.read_csv(path + 'db_invariants_p_credit.csv').values.reshape(c_ + 1, c_ + 1) # Estimation # parameters for invariants modeled using Student t distribution db_estimation_parametric = pd.read_csv(path + 'db_estimation_parametric.csv', index_col=0) # estimated probabilities for nonparametric distributions db_estimation_nonparametric = pd.read_csv(path + 'db_estimation_nonparametric.csv', index_col=False) p_marginal = db_estimation_nonparametric.values # parameters for estimated Student t copula db_estimation_copula = pd.read_csv(path + 'db_estimation_copula.csv') nu_copula = int(db_estimation_copula['nu'].iloc[0]) rho2_copula = np.array(db_estimation_copula['rho2']).reshape(i_, i_) # parameters for the credit copula db_estimation_credit_copula = pd.read_csv(path + 'db_estimation_credit_copula.csv') rho2_credit = db_estimation_credit_copula.rho2_credit.values.reshape(2, 2) nu_credit = db_estimation_credit_copula.nu_credit[0] # - # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step04-implementation-step01): Determine number of projection steps and scenario probabilities # number of monitoring times m_ = np.busday_count(t_now, t_hor) # projection scenario probabilities p = np.ones(j_) / j_ # invariants modeled parametrically ind_parametric = np.arange(n_stocks + 1 + d_implvol, n_stocks + 1 + d_implvol + i_bonds) # invariants modeled nonparametrically ind_nonparametric = list(set(range(i_)) - set(ind_parametric)) # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step04-implementation-step02): Projection of invariants # + epsi_proj = np.zeros((j_, m_, i_)) for m in range(m_): # copula scenarios # simulate standardized invariants scenarios for copula epsi_tilde_proj = simulate_t(np.zeros(i_), rho2_copula, nu_copula, j_) # generate invariants scenarios # invariants modeled nonparametrically for i in ind_nonparametric: # project t-copula standardized invariants scenarios u_proj = tstu.cdf(epsi_tilde_proj[:, i], nu_copula) epsi_proj[:, m, i] = quantile_sp(u_proj, epsi[:, i], p_marginal[:, i]) # invariants modeled parametrically (estimated as Student t distributed) for i in ind_parametric: # project t-copula standardized invariants scenarios u_proj = tstu.cdf(epsi_tilde_proj[:, i], nu_copula) mu_marg = db_estimation_parametric.loc['mu', str(i)] sig2_marg = db_estimation_parametric.loc['sig2', str(i)] nu_marg = db_estimation_parametric.loc['nu', str(i)] epsi_proj[:, m, i] = mu_marg + np.sqrt(sig2_marg) * tstu.ppf(u_proj, nu_marg) # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step04-implementation-step03): Projection of risk drivers # + x_proj = np.zeros((j_, m_ + 1, d_)) dx_proj = np.zeros((j_, m_ + 1, d_)) sig2_garch = np.zeros((j_, m_ + 1, d_)) a_garch = db_invariants_param.loc['a'].values b_garch = db_invariants_param.loc['b'].values c_garch = db_invariants_param.loc['c'].values mu_garch = db_invariants_param.loc['mu'].values # risk drivers at time t_now are the starting values for all scenarios x_proj[:, 0, :] = db_riskdrivers_series.iloc[-1, :] # initialize parameters for GARCH(1,1) projection d_garch = [d for d in range(d_) if db_invariants_nextstep.iloc[0, d] == 'GARCH(1,1)'] for d in d_garch: sig2_garch[:, 0, d] = db_garch_sig2.iloc[-1, d] dx_proj[:, 0, d] = x[-1, d] - x[-2, d] # project daily scenarios for m in range(1, m_ + 1): for d in range(d_): # risk drivers modeled as random walk if db_invariants_nextstep.iloc[0, d] == 'Random walk': x_proj[:, m, d] = x_proj[:, m - 1, d] + epsi_proj[:, m - 1, d] # risk drivers modeled as GARCH(1,1) elif db_invariants_nextstep.iloc[0, d] == 'GARCH(1,1)': sig2_garch[:, m, d] = c_garch[d] + \ b_garch[d] * sig2_garch[:, m - 1, d] + \ a_garch[d] * (dx_proj[:, m - 1, d] - mu_garch[d]) ** 2 dx_proj[:, m, d] = mu_garch[d] + \ np.sqrt(sig2_garch[:, m, d]) * epsi_proj[:, m - 1, d] x_proj[:, m, d] = x_proj[:, m - 1, d] + dx_proj[:, m, d] # risk drivers modeled as AR(1) elif db_invariants_nextstep.iloc[0, d] == 'AR(1)': b_ar1 = db_invariants_param.loc['b'][d] x_proj[:, m, d] = b_ar1 * x_proj[:, m - 1, d] + epsi_proj[:, m - 1, d] # - # ## [Step 4](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step04-implementation-step04): Projection of credit ratings # + # compute the daily credit transition matrix p_credit_daily = project_trans_matrix(p_credit, 1 / 252) # project ratings ratings_proj = simulate_markov_chain_multiv(ratings_tnow, p_credit_daily, m_, rho2=rho2_credit, nu=nu_credit, j_=j_) # - # ## [Step 5](https://www.arpm.co/lab/redirect.php?permalink=s_checklist_scenariobased_step04-implementation-step05): Save databases # + # delete big files del dx_proj, sig2_garch # projected risk drivers out = pd.DataFrame({risk_drivers_names[d]: x_proj[:, :, d].reshape((j_ * (m_ + 1),)) for d in range(d_)}) out = out[list(risk_drivers_names[:d_].values)] out.to_csv(path + 'db_projection_riskdrivers.csv', index=None) del out # projected credit ratings out = pd.DataFrame({'GE': ratings_proj[:, :, 0].reshape((j_ * (m_ + 1),)), 'JPM': ratings_proj[:, :, 1].reshape((j_ * (m_ + 1),))}) out.to_csv(path + 'db_projection_ratings.csv', index=None) del out # number of scenarios and future investment horizon out = pd.DataFrame({'j_': pd.Series(j_), 't_hor': pd.Series(t_hor)}) out.to_csv(path + 'db_projection_tools.csv', index=None) del out # projected scenario probabilities out = pd.DataFrame({'p': pd.Series(p)}) out.to_csv(path + 'db_scenario_probs.csv', index=None) del out # - # ## Plots # + plt.style.use('arpm') # number of paths to plot num_plot = min(j_, 20) # market risk driver path fig1 = plt.figure(figsize=(1280.0 / 72.0, 720.0 / 72.0), dpi=72.0) # plot historical series f1 = plt.plot(np.arange(t_ + 1), db_riskdrivers_series.iloc[:, d_plot - 1], lw=1) # plot projected series for j in range(num_plot): f1 = plt.plot(np.arange(t_ + 1, t_ + 1 + m_ + 1), x_proj[j, :, d_plot - 1], lw=1) f, xp = histogram_sp(x_proj[:, -1, d_plot - 1], k_=10 * np.log(j_)) f1 = plt.barh(xp, f / 10, height=xp[1] - xp[0], left=t_ + 1 + m_, facecolor=[.3, .3, .3], edgecolor='k') plt.title('Projected path: ' + risk_drivers_names[d_plot - 1], fontweight='bold', fontsize=20) plt.xlabel('t (days)', fontsize=17) plt.xticks(fontsize=14) plt.yticks(fontsize=14) add_logo(fig1, set_fig_size=False) fig1.tight_layout() # plot projected ratings # select paths with rating changes ind_j_plot_GE = np.zeros(1) ind_j_plot_GE[0] = 0 k = 0 while k < num_plot: k = k + 1 for j in range(j_): if (j not in ind_j_plot_GE and ratings_proj[j, -1, 0] != ratings_proj[k, -1, 0]): ind_j_plot_GE = np.append(ind_j_plot_GE, j) break ind_j_plot_JPM = np.zeros(1) ind_j_plot_JPM[0] = 0 k = 0 while k < num_plot: k = k + 1 for j in range(j_): if (j not in ind_j_plot_JPM and ratings_proj[j, -1, 1] != ratings_proj[k, -1, 1]): ind_j_plot_JPM = np.append(ind_j_plot_JPM, j) break fig2, ax = plt.subplots(2, 1, figsize=(1280.0 / 72.0, 720.0 / 72.0), dpi=72.0) plt.sca(ax[0]) for j in ind_j_plot_GE: f5 = plt.plot(np.arange(m_ + 1), ratings_proj[int(j), :, 0] + 1) plt.title('Projected rating GE', fontweight='bold', fontsize=20) plt.yticks(np.arange(10), fontsize=14) ax[0].set_yticklabels(['', 'AAA', 'AA', 'A', 'BBB', 'BB', 'B', 'CCC', 'D', '']) plt.gca().invert_yaxis() plt.sca(ax[1]) for j in ind_j_plot_JPM: plt.plot(np.arange(m_ + 1), ratings_proj[int(j), :, 1] + 1) plt.title('Projected rating JPM', fontweight='bold', fontsize=20) plt.yticks(np.arange(10), fontsize=14) ax[1].set_yticklabels(['', 'AAA', 'AA', 'A', 'BBB', 'BB', 'B', 'CCC', 'D', '']) plt.gca().invert_yaxis() add_logo(fig2, set_fig_size=False) fig2.tight_layout()
1.945313
2
functions/proto_optim.py
jwen307/diamondintherough
4
12790229
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 4 08:24:48 2021 proto_optim.py - Find the protoimage vectors """ import torch import torch.optim as optim import torch.nn as nn import math from tqdm import tqdm from . import utils #Optimization to get the protoimages def proto_optim(og_latents,recovered_latents, model, model_type, device, lr = 0.1, Lambda = 3.0, epsilon = 0.0001, minibatch_size = 16): ''' Lambda: weight for the cosine similarity loss (3.0 for celeba_pgan, 5.0 for church_pgan, 10.0 for celebaHQ_pgan) ''' print('Searching for the protoimage latent vector...') #Get the number of samples and the dimensionality num_samples, num_dims = og_latents.size() #Number of batches needed num_batches = int(math.ceil(num_samples/minibatch_size)) #Vector for the found protoimage latent vectors protoLatents = torch.zeros(num_samples,num_dims) for batch_num in tqdm(range(num_batches)): #Check if there are fewer than minibatch_size images left if (batch_num + 1) * minibatch_size > num_samples: end = num_samples + 1 else: end = (batch_num + 1) * minibatch_size #Original latent vectors x = og_latents[batch_num * minibatch_size: end].to(device) batch_size,_ = x.size() #Recovered latent vectors y = recovered_latents[batch_num * minibatch_size: end].to(device) #Put both on the device x = x.detach().requires_grad_(False).to(device) y = y.detach().requires_grad_(False).to(device) og_x = x * 1.0 alpha = torch.ones(batch_size,512,device=device) alpha = alpha.requires_grad_(True) #Initial direction diff = y - x opt = optim.Adam([alpha], lr = lr) cosSim = nn.CosineSimilarity() #Learning rate scheduler sched = optim.lr_scheduler.StepLR(optimizer = opt, step_size = 200, gamma = 0.1) oldLoss = 0 for i in range(501): #Zero the gradients opt.zero_grad() #Move the direction of the difference vector ynew = y + (torch.mm(alpha,diff.t()).diagonal().unsqueeze(1) * ((diff / (diff.norm(dim=1).unsqueeze(1)**2)))) ynew = utils.normalize(ynew) #Get the images of the current latent vectors currImgs = model.netG(ynew) #Get the discriminator score discrimScore = model.netD(currImgs,getFeature = False) #Calculate the loss if model_type == 'wgangp': loss = discrimScore.mean() + 0.2*cosSim(ynew,og_x).mean() + 1.0*discrimScore.std() + 3.0*cosSim(ynew,og_x).std() else: loss = discrimScore.mean() + Lambda*cosSim(ynew,og_x).mean() #Backpropagate the error loss.backward() #Take a step with the optimizer opt.step() sched.step() #Early stopping condition if abs(loss-oldLoss) < epsilon: break else: oldLoss = loss x = y * 1.0 y = ynew.detach() diff = y - x #Show the progress # if i % 1 == 0: # print('Iterations: ' + str(i)) # print('Loss: ' + str(loss)) protoLatents[batch_num * minibatch_size: end] = ynew.detach().cpu() return protoLatents
2.640625
3
tfc/tfc.py
emregeldegul/tfc
29
12790230
<reponame>emregeldegul/tfc from .notify import Notify from googletrans import Translator from time import sleep from xerox import paste class Translation: def __init__(self, dest, src): self.translate = Translator() self.notify = Notify() self.dest = dest self.src = src def start(self): temp_value = '' while True: recent_value = paste() if recent_value != temp_value: try: result = self.translate.translate(recent_value, dest=self.dest, src=self.src) self.notify.send(recent_value, result.text) except Exception as e: self.notify.send('A Problem Occurred', str(e)) temp_value = recent_value sleep(2)
2.484375
2
scripts/gen_key_label.py
hua1024/OpenOCR
3
12790231
# coding=utf-8 # @Time : 2021/5/11 11:20 # @Auto : zzf-jeff train_list_file = '../test/train_rec_05.txt' test_list_file = '../test/test_rec_05.txt' keys_file = './key.txt' fid_key = open(keys_file, 'a+', encoding='utf-8') keys = '' def read_txt(txt_path, split_type): ''' 读取txt文件的标注信息,格式为 xxx/a/1.png,a xxx/a/2.png,a Args: txt_path: train/valid/test data txt or json Returns: imgs:list, all data info ''' with open(txt_path, 'r', encoding='utf-8') as f: infos = list(map(lambda line: line.strip().split(split_type), f)) return infos infos = read_txt(train_list_file, split_type=' ') for info in infos: txt_file, use_flag = info if int(use_flag) == 1: with open(txt_file, 'r', encoding='utf-8') as fid_train: lines = fid_train.readlines() for line in lines: line = line.strip().split('\t') keys += line[-1] infos = read_txt(test_list_file, split_type=' ') for info in infos: txt_file, use_flag = info if int(use_flag) == 1: with open(txt_file, 'r', encoding='utf-8') as fid_train: lines = fid_train.readlines() for line in lines: line = line.strip().split('\t') keys += line[-1] key = ''.join(list(set(list(keys)))) for _key in key: fid_key.write(_key + '\n')
2.78125
3
bblfsh_sonar_checks/checks/java/RSPEC-1215.py
stg-tud/sonar-checks
3
12790232
import bblfsh_sonar_checks.utils as utils import bblfsh def check(uast): findings = [] fin_calls = bblfsh.filter(uast, "//MethodInvocation//" "Identifier[@roleCall and @roleReceiver and @Name='System']/parent::MethodInvocation/" "Identifier[@roleCall and @roleCallee and @Name='gc']/parent::MethodInvocation") if len(list(fin_calls)): findings.append({"msg": "Don't use System.gc()", "pos": None}) fin_calls = bblfsh.filter(uast, "//MethodInvocation//" "Identifier[@roleCall and @roleReceiver and @Name='Runtime']/parent::MethodInvocation//" "Identifier[@roleCall and @roleCallee and @Name='getRuntime']/parent::MethodInvocation/parent::MethodInvocation//" "Identifier[@roleCall and @roleCallee and @Name='gc']/parent::MethodInvocation") if len(list(fin_calls)): findings.append({"msg": "Don't use Runtime.getRuntime().gc(})", "pos": None}) return findings if __name__ == '__main__': utils.run_default_fixture(__file__, check)
2.15625
2
Exercicios/tempCodeRunnerFile.py
eduardodarocha/Introducao_Ciencia_da_Computacao_com_Python_Parte_2_Coursera
1
12790233
print(elefantes(4))
1.1875
1
polymorphism.py
Sp-X/PCAP
0
12790234
<reponame>Sp-X/PCAP class One: def do_it(self): print("do_it from One") def doanything(self): self.do_it() class Two(One): def do_it(self): print("do_it from Two") one = One() two = Two() one.doanything() two.doanything()
2.53125
3
boundary/plugin_manifest.py
jdgwartney/boundary-api-cli
0
12790235
<filename>boundary/plugin_manifest.py<gh_stars>0 # # Copyright 2015 BMC Software, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import logging """ Reads and provides access to a plugin.json file the manifest of plugins. """ class PluginManifest(object): def __init__(self, path="plugin.json"): """ Initialize the PluginManifest instance """ self.path = path self.manifest_json = None self.manifest = None def get_metric_names(self): """ Returns the list of metrics associated with the plugin manifest """ return self.manifest['metrics'] def read(self): """ Load the metrics file from the given path """ f = open(self.path, "r") self.manifest_json = f.read() def parse(self): """ Parses the manifest JSON into a dictionary """ self.manifest = json.loads(self.manifest_json) def load(self): """ Read the JSON file and parse into a dictionary """ self.read() self.parse() @property def command(self): return self.manifest['command'] @property def command_lua(self): return self.manifest['command_lua'] @property def description(self): return self.manifest['description'] @property def icon(self): return self.manifest['icon'] @property def ignore(self): return self.manifest['ignore'] @property def metrics(self): return self.manifest['metrics'] @property def name(self): logging.debug(self.manifest) return self.manifest['name'] @property def param_array(self): return self.manifest['paramArray'] @property def post_extract(self): return self.manifest['postExtract'] @property def post_extract_lua(self): return self.manifest['postExtract_lua'] @property def tags(self): return self.manifest['tags'] @property def version(self): return self.manifest['version'] def get_manifest(self): """ Returns the dictionary from the parse JSON plugin manifest """ return self.manifest
2.34375
2
setup.py
btcfy/cloudify-utilities-plugin
0
12790236
<filename>setup.py # Copyright (c) 2017 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. import setuptools setuptools.setup( name='cloudify-utilities-plugin', version='1.9.6', author='<EMAIL>', author_email='<EMAIL>', description='Utilities for extending Cloudify', packages=['cloudify_deployment_proxy', 'cloudify_ssh_key', 'cloudify_files', 'cloudify_terminal', 'cloudify_configuration', 'cloudify_custom_workflow', 'cloudify_suspend', 'cloudify_cloudinit', 'cloudify_rest', 'cloudify_rest/rest_sdk', 'cloudify_scalelist'], license='LICENSE', install_requires=[ 'cloudify-plugins-common>=3.4.2', 'cloudify-rest-client>=4.0', # deployment_proxy 'paramiko', # terminal "Jinja2>=2.7.2", # terminal 'pycrypto', # ssh_key 'pyyaml', # cloudinit and rest 'xmltodict'] # rest )
1.164063
1
math/iteration_power.py
dimascapella/Python
1
12790237
<filename>math/iteration_power.py def iteration_power(number: int, exp: int) -> int: """ Perpangkatan dengan metode iteratif atau perulangan rumus matematika: number^exp >>> iteration_power(2, 5) 32 >>> iteration_power(100, 0) 1 >>> iteration_power(0, 100) 0 >>> iteration_power(1, 100) 1 """ result = 1 for _ in range(exp): result *= number return result if __name__ == "__main__": import doctest doctest.testmod() # Pangkat lebih dari 1 print(iteration_power(number=2, exp=5)) # Pangkat sama dengan 0 print(iteration_power(number=100, exp=0)) # Angka 0 dengan pangkat lebih dari 1 print(iteration_power(number=0, exp=100)) # Angka 1 dengan pangkat lebih dari 1 print(iteration_power(number=1, exp=100))
4.375
4
webtul/img.py
zagfai/webtul
1
12790238
<filename>webtul/img.py #!/usr/bin/python # -*- coding: utf-8 -*- """ Image tools """ __author__ = 'Zagfai' __date__ = '2018-02' from PIL import Image from PIL import ImageDraw from PIL import ImageFont class BoxWrapper(object): """BoxWrapper for Chinese and Alphas text wrapping""" def __init__(self, font_path, font_size): super(BoxWrapper, self).__init__() self.font_path = font_path self.font = ImageFont.truetype(font_path, font_size) def line_size(self, virtual_line): return self.font.getsize(virtual_line) def split(self, text): words = [] word_tmp = '' for chx in text: if ord(chx) > 255: if word_tmp: words.append(word_tmp) word_tmp = '' words.append(chx) else: word_tmp += chx if word_tmp: words.append(word_tmp) word_tmp = '' # split Alpha words split_words = [] for word in words: if len(word) == 1: split_words.append(word) else: split_words.extend(word.split()) for wordpos, word in enumerate(split_words): if len(word) > 1 and wordpos > 0 and \ len(split_words[wordpos-1]) > 1: split_words[wordpos] = ' ' + split_words[wordpos] # print(split_words) return split_words def wrap_as_box(self, text, box_width, color, place='left'): words = self.split(text) lines = [] line = '' for word in words: line_tmp = line + word size = self.line_size(line_tmp) text_h = size[1] if size[0] <= box_width: line = line_tmp else: lines.append(line) line = word.strip() if line: lines.append(line) return lines, (box_width, text_h*len(lines)), text_h def mkimg(self, text, box_width, color='#000', place='left', mode='RGBA', back_color=(255, 255, 255, 0), line_padding=0): lines, (w, h), line_h = self.wrap_as_box(text, box_width, color) image = Image.new( mode, (box_width, h+line_padding*len(lines)), color=back_color) draw = ImageDraw.Draw(image) x = 0 y = 0 for index, line in enumerate(lines): draw.text((x, y), line, font=self.font, fill=color) y += line_h + line_padding return image if __name__ == "__main__": charpath = '/usr/share/fonts/opentype/noto/NotoSansCJK-Regular.ttc' text = "【以色列钻石交易所:将发行两种数字货币】世界大型交易所之一的以色列钻石交易所宣布,将发行两种数字货币:一种为Carat,定位于广大投资券;另一种为Cut,预计将用于钻石市场专业参与者间的结算。25%的Carat价值将基于交易平台所拥有的钻石。" # NOQA x = BoxWrapper(charpath, 24) x.mkimg(text, 390, '#000')
3.046875
3
tools/dox.py
RyanSchuster/vos64
1
12790239
<gh_stars>1-10 #!/usr/bin/env python3 import os import sys import scanner import codemap # ------------------------------------------------------------------------------ # Parameterized output filenames def func_index_name(): return 'Function-Index.md' def func_index_graph_name(): return 'func_index_graph.dot' def mod_index_name(): return 'Module-Index.md' def mod_index_graph_name(): return 'mod_index_graph.dot' def func_page_name(func_name): return os.path.join('funcs', '{}.md'.format(func_name)) def func_graph_name(func_name): return os.path.join('funcs', '{}.dot'.format(func_name)) def mod_page_name(mod_name): return os.path.join('mods', '{}.md'.format(mod_name)) def mod_graph_name(mod_name): return os.path.join('mods', '{}.dot'.format(mod_name)) # ------------------------------------------------------------------------------ # Helpful builder functions def link(text, filename): return '[{}]({})'.format(text, text) def table_list(f, line_list): has_table = False has_lines = False table = '|location||description|\n' table += '|:---|:---:|:---|\n' lines = '' for line in line_list: findPtr = line.find('->') findEq = line.find('=') if findPtr > 0: has_table = True name = line[:findPtr].lstrip().rstrip() desc = line[findPtr + 2:].lstrip().rstrip() table += '|`{}`|->|{}|\n'.format(name, desc) elif findEq > 0: has_table = True name = line[:findEq].lstrip().rstrip() desc = line[findEq + 2:].lstrip().rstrip() table += '|`{}`|=|{}|\n'.format(name, desc) elif line != '': has_lines = True lines += '* {}\n'.format(line) if (not has_table) and (not has_lines): f.write('None\n\n') elif has_table: f.write('{}\n'.format(table)) elif has_lines: f.write('{}\n'.format(lines)) def callgraph(f, code_map, mod_filter, func_filter, mark_mod=None, mark_func=None): f.write('digraph Callgraph {\n') for mod_name, mod in code_map.mods_sorted(mod_filter): f.write('\tsubgraph cluster_{} {{\n'.format(mod_name)) f.write('\t\tnode [style=filled, color=white];\n') f.write('\t\tstyle = filled;\n') if mod_name == mark_mod: f.write('\t\tcolor = lightblue;\n') else: f.write('\t\tcolor = grey;\n') f.write('\t\tlabel = "Module {}";\n'.format(mod_name)) for func_name in mod.functions: func = code_map.funcs[func_name] if func_filter((func_name, func)): f.write('\t\t{};\n'.format(func_name)) f.write('\t}\n') for func_name, func in code_map.funcs_sorted(func_filter): if func_name == mark_func: f.write('{} [color=lightblue];\n'.format(func_name)) elif func.private: f.write('{} [color=lightgrey];\n'.format(func_name)) for callee_name in func.calls: callee = code_map.funcs[callee_name] if not func_filter((callee_name, callee)): continue f.write('\t{} -> {};\n'.format(func_name, callee_name)) f.write('}\n') # ------------------------------------------------------------------------------ # Output file builders def graph_mod_index(f, code_map): f.write('digraph Callgraph {\n') for mod_name, mod in code_map.mods_sorted(): for callee_name in mod.calls: f.write('\t{} -> {};\n'.format(mod_name, callee_name)) f.write('}\n') def page_mod_index(f, code_map): f.write('# Module Index\n\n') f.write('![Module Callgraph]({}.png)\n\n'.format(mod_index_graph_name())) for mod_name, mod in code_map.mods_sorted(): mod_link = link(mod_name, mod_page_name(mod_name)) f.write('* {} - {}\n'.format(mod_link, mod.brief)) def graph_func_index(f, code_map): def all_mods(kv): return True def public_funcs(kv): return not kv[1].private callgraph(f, code_map, all_mods, public_funcs) def page_func_index(f, code_map): f.write('# Function Index\n\n') f.write('![Full Callgraph]({}.png)\n\n'.format(func_index_graph_name())) for mod_name, mod in code_map.mods_sorted(): mod_link = link(mod_name, mod_page_name(mod_name)) f.write('* Module {} - {}:\n'.format(mod_link, mod.brief)) inmod = codemap.inmodule(mod_name) ispub = codemap.ispublic() filt = lambda f : inmod(f) and ispub(f) for func_name, func in code_map.funcs_sorted(filt): func_link = link(func_name, func_page_name(func_name)) f.write(' * {} - {}\n'.format(func_link, func.brief)) def graph_module(f, code_map, mod_name, mod): # Filter for functions that are in, are called by, or call a module def func_touches_mod(kv): test_name = kv[0] test = kv[1] if test_name in mod.functions: return True for func_name in mod.functions: func = code_map.funcs[func_name] if func_name in test.calls: return True if test_name in func.calls: return True return False # Filter for modules that are, are called by, or call a module def mod_touches_mod(kv): test_name = kv[0] test = kv[1] if test_name == mod_name: return True if test_name in mod.calls: return True if mod_name in code_map.mods[test_name].calls: return True return False callgraph(f, code_map, mod_touches_mod, func_touches_mod, mark_mod=mod_name) def page_module(f, code_map, mod_name, mod): f.write('# Module {}\n\n'.format(mod_name)) f.write('{}\n\n'.format(mod.brief)) f.write('## Detail:\n\n') f.write('{}\n\n'.format(mod.detail)) f.write('## Callgraph:\n\n') f.write('![Callgraph]({}.png)\n\n'.format(mod_graph_name(mod_name))) f.write('## Public Functions:\n\n') inmod = codemap.inmodule(mod_name) ispub = codemap.ispublic() filt = lambda f : inmod(f) and ispub(f) for func_name, func in code_map.funcs_sorted(filt): func_link = link(func_name, func_page_name(func_name)) f.write('* {} - {}\n'.format(func_link, func.brief)) f.write('\n') f.write('## Modules called by {}\n\n'.format(mod_name)) filt = codemap.iscalledby(mod) for callee_name, callee in code_map.mods_sorted(filt): callee_link = link(callee_name, mod_page_name(callee_name)) f.write('* {} - {}\n'.format(callee_link, callee.brief)) f.write('\n') f.write('## Modules that call {}\n\n'.format(mod_name)) filt = codemap.calls(mod_name) for caller_name, caller in code_map.mods_sorted(filt): caller_link = link(caller_name, mod_page_name(caller_name)) f.write('* {} - {}\n'.format(caller_name, caller.brief)) f.write('\n') def graph_function(f, code_map, func_name, func): # Filter for modules that contain or contain callers/callees of func def mod_touches_func(kv): test_name = kv[0] test = kv[1] if test_name == func.module: return True for f_name in test.functions: f = code_map.funcs[f_name] if func_name in f.calls: return True if f_name in func.calls: return True return False # Filter for functions that are or are callers/callees of func def func_touches_func(kv): test_name = kv[0] test = kv[1] if test_name == func_name: return True if test_name in func.calls: return True if func_name in test.calls: return True return False callgraph(f, code_map, mod_touches_func, func_touches_func, mark_func=func_name) def page_function(f, code_map, func_name, func): mod_link = link(func.module, mod_page_name(func.module)) f.write('# Function {}.{}\n\n'.format(mod_link, func_name)) f.write('{}\n\n'.format(func.brief)) f.write('## Detail:\n\n') f.write('{}\n\n'.format(func.detail)) f.write('## Pass:\n\n') table_list(f, func.inputs) f.write('## Return:\n\n') table_list(f, func.outputs) f.write('## Side Effects:\n\n') table_list(f, func.sideeffects) f.write('## Callgraph:\n\n') f.write('![Callgraph]({}.png)\n\n'.format(func_graph_name(func_name))) f.write('## Functions called by {}\n\n'.format(func_name)) filt = codemap.iscalledby(func) for callee_name, callee in code_map.funcs_sorted(filt): if callee.private: f.write('* {} - {}\n'.format(callee_name, callee.brief)) else: callee_link = link(callee_name, func_page_name(callee_name)) f.write('* {} - {}\n'.format(callee_link, callee.brief)) f.write('\n') f.write('## Functions that call {}\n\n'.format(func_name)) filt = codemap.calls(func_name) for caller_name, caller in code_map.funcs_sorted(filt): if caller.private: f.write('* {} - {}\n'.format(caller_name, caller.brief)) else: caller_link = link(caller_name, func_page_name(caller_name)) f.write('* {} - {}\n'.format(caller_link, caller.brief)) f.write('\n') # ------------------------------------------------------------------------------ # Top-level documentation builder def build_dox(code_map, output_dir): f = sys.stdout # Module index page filename = os.path.join(output_dir, mod_index_name()) with open(filename, 'w') as f: page_mod_index(f, code_map) filename = os.path.join(output_dir, mod_index_graph_name()) with open(filename, 'w') as f: graph_mod_index(f, code_map) os.system('dot -Tpng -O {}'.format(filename)) # Function index page filename = os.path.join(output_dir, func_index_name()) with open(filename, 'w') as f: page_func_index(f, code_map) filename = os.path.join(output_dir, func_index_graph_name()) with open(filename, 'w') as f: graph_func_index(f, code_map) os.system('dot -Tpng -O {}'.format(filename)) # Module pages for mod_name, mod in code_map.mods_sorted(): filename = os.path.join(output_dir, mod_page_name(mod_name)) with open(filename, 'w') as f: page_module(f, code_map, mod_name, mod) filename = os.path.join(output_dir, mod_graph_name(mod_name)) with open(filename, 'w') as f: graph_module(f, code_map, mod_name, mod) os.system('dot -Tpng -O {}'.format(filename)) # Function pages def ispub(kv): return not kv[1].private for func_name, func in code_map.funcs_sorted(ispub): filename = os.path.join(output_dir, func_page_name(func_name)) with open(filename, 'w') as f: page_function(f, code_map, func_name, func) filename = os.path.join(output_dir, func_graph_name(func_name)) with open(filename, 'w') as f: graph_function(f, code_map, func_name, func) os.system('dot -Tpng -O {}'.format(filename)) # ------------------------------------------------------------------------------ def test(): pass def main(): code_map = codemap.CodeMap() builder = codemap.MapBuilder(code_map) for token in scanner.scan_project('./src'): builder.absorb_token(token) build_dox(code_map, './doc/vos64.wiki') if __name__ == '__main__': main()
2.25
2
setup.py
ndraeger/rt1
0
12790240
# -*- coding: UTF-8 -*- """ This file is part of RT1. (c) 2016- <NAME> For COPYING and LICENSE details, please refer to the LICENSE file """ from setuptools import setup #from setuptools import find_packages from rt1 import __version__ setup(name='rt1', version=__version__, description='RT1 - bistatic single scattering radiative transfer model', packages=['rt1'], package_dir={'rt1': 'rt1'}, include_package_data=False, author="<NAME>", author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>', #~ license='APACHE 2', url='https://github.com/TUW-GEO/rt1', long_description=('A module to perform forward-simulation and ' + 'parameter-inversion of incidence-angle dependent ' + 'backscatter observations based on a first-order ' + 'radiative-transfer model describing a rough surface' + 'covered by a homogeneous layer of scattering' + 'media.'), install_requires=["numpy>=1.16", "sympy>=1.4", "scipy>=1.2", "pandas>=0.24", "matplotlib>=3.0"], extras_require={'symengine' : ["symengine>=0.4"]}, keywords=["physics", "radiative transfer"], # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Atmospheric Science', # Pick your license as you wish (should match "license" above) #~ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.7' ], )
1.523438
2
sdk/python/pulumi_ucloud/vpc/vpc.py
AaronFriel/pulumi-ucloud
4
12790241
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['VPCArgs', 'VPC'] @pulumi.input_type class VPCArgs: def __init__(__self__, *, cidr_blocks: pulumi.Input[Sequence[pulumi.Input[str]]], name: Optional[pulumi.Input[str]] = None, remark: Optional[pulumi.Input[str]] = None, tag: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a VPC resource. :param pulumi.Input[Sequence[pulumi.Input[str]]] cidr_blocks: The CIDR blocks of VPC. :param pulumi.Input[str] remark: The remarks of the VPC. (Default: `""`). :param pulumi.Input[str] tag: A tag assigned to VPC, which contains at most 63 characters and only support Chinese, English, numbers, '-', '_', and '.'. If it is not filled in or a empty string is filled in, then default tag will be assigned. (Default: `Default`). """ pulumi.set(__self__, "cidr_blocks", cidr_blocks) if name is not None: pulumi.set(__self__, "name", name) if remark is not None: pulumi.set(__self__, "remark", remark) if tag is not None: pulumi.set(__self__, "tag", tag) @property @pulumi.getter(name="cidrBlocks") def cidr_blocks(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: """ The CIDR blocks of VPC. """ return pulumi.get(self, "cidr_blocks") @cidr_blocks.setter def cidr_blocks(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "cidr_blocks", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def remark(self) -> Optional[pulumi.Input[str]]: """ The remarks of the VPC. (Default: `""`). """ return pulumi.get(self, "remark") @remark.setter def remark(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "remark", value) @property @pulumi.getter def tag(self) -> Optional[pulumi.Input[str]]: """ A tag assigned to VPC, which contains at most 63 characters and only support Chinese, English, numbers, '-', '_', and '.'. If it is not filled in or a empty string is filled in, then default tag will be assigned. (Default: `Default`). """ return pulumi.get(self, "tag") @tag.setter def tag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tag", value) @pulumi.input_type class _VPCState: def __init__(__self__, *, cidr_blocks: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, create_time: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, network_infos: Optional[pulumi.Input[Sequence[pulumi.Input['VPCNetworkInfoArgs']]]] = None, remark: Optional[pulumi.Input[str]] = None, tag: Optional[pulumi.Input[str]] = None, update_time: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering VPC resources. :param pulumi.Input[Sequence[pulumi.Input[str]]] cidr_blocks: The CIDR blocks of VPC. :param pulumi.Input[str] create_time: The time of creation for VPC, formatted in RFC3339 time string. :param pulumi.Input[Sequence[pulumi.Input['VPCNetworkInfoArgs']]] network_infos: It is a nested type which documented below. :param pulumi.Input[str] remark: The remarks of the VPC. (Default: `""`). :param pulumi.Input[str] tag: A tag assigned to VPC, which contains at most 63 characters and only support Chinese, English, numbers, '-', '_', and '.'. If it is not filled in or a empty string is filled in, then default tag will be assigned. (Default: `Default`). :param pulumi.Input[str] update_time: The time whenever there is a change made to VPC, formatted in RFC3339 time string. """ if cidr_blocks is not None: pulumi.set(__self__, "cidr_blocks", cidr_blocks) if create_time is not None: pulumi.set(__self__, "create_time", create_time) if name is not None: pulumi.set(__self__, "name", name) if network_infos is not None: pulumi.set(__self__, "network_infos", network_infos) if remark is not None: pulumi.set(__self__, "remark", remark) if tag is not None: pulumi.set(__self__, "tag", tag) if update_time is not None: pulumi.set(__self__, "update_time", update_time) @property @pulumi.getter(name="cidrBlocks") def cidr_blocks(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The CIDR blocks of VPC. """ return pulumi.get(self, "cidr_blocks") @cidr_blocks.setter def cidr_blocks(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "cidr_blocks", value) @property @pulumi.getter(name="createTime") def create_time(self) -> Optional[pulumi.Input[str]]: """ The time of creation for VPC, formatted in RFC3339 time string. """ return pulumi.get(self, "create_time") @create_time.setter def create_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "create_time", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="networkInfos") def network_infos(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['VPCNetworkInfoArgs']]]]: """ It is a nested type which documented below. """ return pulumi.get(self, "network_infos") @network_infos.setter def network_infos(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['VPCNetworkInfoArgs']]]]): pulumi.set(self, "network_infos", value) @property @pulumi.getter def remark(self) -> Optional[pulumi.Input[str]]: """ The remarks of the VPC. (Default: `""`). """ return pulumi.get(self, "remark") @remark.setter def remark(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "remark", value) @property @pulumi.getter def tag(self) -> Optional[pulumi.Input[str]]: """ A tag assigned to VPC, which contains at most 63 characters and only support Chinese, English, numbers, '-', '_', and '.'. If it is not filled in or a empty string is filled in, then default tag will be assigned. (Default: `Default`). """ return pulumi.get(self, "tag") @tag.setter def tag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tag", value) @property @pulumi.getter(name="updateTime") def update_time(self) -> Optional[pulumi.Input[str]]: """ The time whenever there is a change made to VPC, formatted in RFC3339 time string. """ return pulumi.get(self, "update_time") @update_time.setter def update_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "update_time", value) class VPC(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, cidr_blocks: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, remark: Optional[pulumi.Input[str]] = None, tag: Optional[pulumi.Input[str]] = None, __props__=None): """ Provides a VPC resource. > **Note** The network segment can only be created or deleted, can not perform both of them at the same time. ## Example Usage ```python import pulumi import pulumi_ucloud as ucloud example = ucloud.vpc.VPC("example", cidr_blocks=["192.168.0.0/16"], tag="tf-example") ``` ## Import VPC can be imported using the `id`, e.g. ```sh $ pulumi import ucloud:vpc/vPC:VPC example uvnet-abc123456 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Sequence[pulumi.Input[str]]] cidr_blocks: The CIDR blocks of VPC. :param pulumi.Input[str] remark: The remarks of the VPC. (Default: `""`). :param pulumi.Input[str] tag: A tag assigned to VPC, which contains at most 63 characters and only support Chinese, English, numbers, '-', '_', and '.'. If it is not filled in or a empty string is filled in, then default tag will be assigned. (Default: `Default`). """ ... @overload def __init__(__self__, resource_name: str, args: VPCArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Provides a VPC resource. > **Note** The network segment can only be created or deleted, can not perform both of them at the same time. ## Example Usage ```python import pulumi import pulumi_ucloud as ucloud example = ucloud.vpc.VPC("example", cidr_blocks=["192.168.0.0/16"], tag="tf-example") ``` ## Import VPC can be imported using the `id`, e.g. ```sh $ pulumi import ucloud:vpc/vPC:VPC example uvnet-abc123456 ``` :param str resource_name: The name of the resource. :param VPCArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(VPCArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, cidr_blocks: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, name: Optional[pulumi.Input[str]] = None, remark: Optional[pulumi.Input[str]] = None, tag: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = VPCArgs.__new__(VPCArgs) if cidr_blocks is None and not opts.urn: raise TypeError("Missing required property 'cidr_blocks'") __props__.__dict__["cidr_blocks"] = cidr_blocks __props__.__dict__["name"] = name __props__.__dict__["remark"] = remark __props__.__dict__["tag"] = tag __props__.__dict__["create_time"] = None __props__.__dict__["network_infos"] = None __props__.__dict__["update_time"] = None super(VPC, __self__).__init__( 'ucloud:vpc/vPC:VPC', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, cidr_blocks: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, create_time: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, network_infos: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['VPCNetworkInfoArgs']]]]] = None, remark: Optional[pulumi.Input[str]] = None, tag: Optional[pulumi.Input[str]] = None, update_time: Optional[pulumi.Input[str]] = None) -> 'VPC': """ Get an existing VPC resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Sequence[pulumi.Input[str]]] cidr_blocks: The CIDR blocks of VPC. :param pulumi.Input[str] create_time: The time of creation for VPC, formatted in RFC3339 time string. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['VPCNetworkInfoArgs']]]] network_infos: It is a nested type which documented below. :param pulumi.Input[str] remark: The remarks of the VPC. (Default: `""`). :param pulumi.Input[str] tag: A tag assigned to VPC, which contains at most 63 characters and only support Chinese, English, numbers, '-', '_', and '.'. If it is not filled in or a empty string is filled in, then default tag will be assigned. (Default: `Default`). :param pulumi.Input[str] update_time: The time whenever there is a change made to VPC, formatted in RFC3339 time string. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _VPCState.__new__(_VPCState) __props__.__dict__["cidr_blocks"] = cidr_blocks __props__.__dict__["create_time"] = create_time __props__.__dict__["name"] = name __props__.__dict__["network_infos"] = network_infos __props__.__dict__["remark"] = remark __props__.__dict__["tag"] = tag __props__.__dict__["update_time"] = update_time return VPC(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="cidrBlocks") def cidr_blocks(self) -> pulumi.Output[Sequence[str]]: """ The CIDR blocks of VPC. """ return pulumi.get(self, "cidr_blocks") @property @pulumi.getter(name="createTime") def create_time(self) -> pulumi.Output[str]: """ The time of creation for VPC, formatted in RFC3339 time string. """ return pulumi.get(self, "create_time") @property @pulumi.getter def name(self) -> pulumi.Output[str]: return pulumi.get(self, "name") @property @pulumi.getter(name="networkInfos") def network_infos(self) -> pulumi.Output[Sequence['outputs.VPCNetworkInfo']]: """ It is a nested type which documented below. """ return pulumi.get(self, "network_infos") @property @pulumi.getter def remark(self) -> pulumi.Output[str]: """ The remarks of the VPC. (Default: `""`). """ return pulumi.get(self, "remark") @property @pulumi.getter def tag(self) -> pulumi.Output[Optional[str]]: """ A tag assigned to VPC, which contains at most 63 characters and only support Chinese, English, numbers, '-', '_', and '.'. If it is not filled in or a empty string is filled in, then default tag will be assigned. (Default: `Default`). """ return pulumi.get(self, "tag") @property @pulumi.getter(name="updateTime") def update_time(self) -> pulumi.Output[str]: """ The time whenever there is a change made to VPC, formatted in RFC3339 time string. """ return pulumi.get(self, "update_time")
2.125
2
Sparse Representation/compute_PSNR_SSIM.py
ashishpatel26/SuperResolution-Medical-Imaging-using-SRGAN
1
12790242
<reponame>ashishpatel26/SuperResolution-Medical-Imaging-using-SRGAN import scipy import numpy as np import skimage import scipy.misc import skimage.measure image_list = ['27', '78', '403', '414', '480', '579', '587', '664', '711', '715', '756', '771', '788', '793', '826', '947', '994', '1076', '1097', '1099', '1141', '1197', '1263', '1320', '1389', '1463', '1563'] #image_list = ['27', '78', '403', '414', '480', '579'] gnd_truth_hr_image_path = 'Data/MRI/PaperTestData/HR_gnd/' generated_hr_image_path = 'Data/MRI/PaperTestData/HR_gen/' avg_psnr = 0 avg_ssim = 0 for im in image_list: gnd_truth_hr_img = scipy.misc.imread(gnd_truth_hr_image_path+'valid_hr-id-'+im+'.png', mode='L') generated_hr_img = scipy.misc.imread(generated_hr_image_path+'valid_hr_gen-id-'+im+'.png', mode='L') # print out PSNR and SSIM psnr_i = skimage.measure.compare_psnr(gnd_truth_hr_img, generated_hr_img) ssim_i = skimage.measure.compare_ssim(gnd_truth_hr_img, generated_hr_img, data_range=generated_hr_img.max() - generated_hr_img.min()) print('PSNR = ' + str(psnr_i) + ', SSIM = ' + str(ssim_i)) avg_psnr += psnr_i avg_ssim += ssim_i avg_psnr /= len(image_list) avg_ssim /= len(image_list) print('Average PSNR = ' + str(avg_psnr)) print('Average SSIM = ' + str(avg_ssim)) # resize ground truth to (384x384) image #gnd_truth_hr_img = scipy.misc.imread(gnd_truth_hr_image_path, mode='L') #gnd_truth_hr_img_resized = scipy.misc.imresize(gnd_truth_hr_img, [384, 384], interp='bicubic', mode='L') # read generated (384x384) image #generated_hr_img = scipy.misc.imread(generated_hr_image_path, mode='L') # print out PSNR #print(skimage.measure.compare_psnr(gnd_truth_hr_img_resized, generated_hr_img)) # print out SSIM #print(skimage.measure.compare_ssim(gnd_truth_hr_img_resized, generated_hr_img, data_range=generated_hr_img.max() - generated_hr_img.min()))
2.640625
3
nlutestframework/__main__.py
emundo/nlutestframework
0
12790243
<gh_stars>0 import argparse import asyncio import logging from signal import SIGINT, SIGTERM import sys from typing import Any import yaml from .nlu_benchmarker import NLUBenchmarker def eprint(*args: Any, **kwargs: Any) -> None: print(*args, file=sys.stderr, **kwargs) def main() -> None: parser = argparse.ArgumentParser(description="Benchmark NLU frameworks.") parser.add_argument( "-c", "--config-file", dest = "CONFIG", type = str, default = "config.yml", help = ( "Path to the configuration file." " Defaults to \"config.yml\" in the current working directory." "\nWARNING: Always verify externally supplied configurations before using them." ) ) parser.add_argument( "-v", "--verbose", dest = "VERBOSE", action = "store_const", const = True, default = False, help = "Enable verbose/debug output." ) parser.add_argument( "-p", "--python", dest = "python", type = str, help = ( "Path to the python executable to use instead of the current one." " Overrides the corresponding setting in the configuration file." "\nWARNING: Always verify externally supplied configurations before using them." ) ) parser.add_argument( "-i", "--iterations", dest = "iterations", type = int, help = ( "The number of iterations to benchmark." " Overrides the corresponding setting in the configuration file." ) ) parser.add_argument( "--ignore-cache", dest = "ignore_cache", action = "store_const", const = True, help = ( "If set, ignore all sorts of cached data." " Overrides the corresponding setting in the configuration file." ) ) args = parser.parse_args() # Set the general log level to DEBUG or INFO logging.basicConfig(level = logging.DEBUG if args.VERBOSE else logging.INFO) # Prevent various modules from spamming the log logging.getLogger("asyncio").setLevel(logging.INFO) logging.getLogger("docker").setLevel(logging.INFO) logging.getLogger("matplotlib").setLevel(logging.INFO) logging.getLogger("snips_nlu").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.INFO) logging.getLogger("msrest").setLevel(logging.INFO) global_config_override = {} for label, value in vars(args).items(): if label.islower() and value is not None: global_config_override[label] = value async def main_runner() -> None: def cancel(_sig: int) -> None: print( "Aborting execution in the next possible situation (this may take a while, as the" " current operation has to finish first)." ) NLUBenchmarker.getInstance().cancel() loop = asyncio.get_event_loop() for sig in (SIGINT, SIGTERM): loop.add_signal_handler(sig, cancel, sig) try: await NLUBenchmarker.getInstance().runFromConfigFile( args.CONFIG, **global_config_override ) except OSError as e: eprint("Error reading the config file: {}".format(e)) except yaml.YAMLError as e: eprint("Malformed YAML in the config file: {}".format(e)) asyncio.run(main_runner()) if __name__ == "__main__": main()
2.375
2
lpot/utils/logger.py
intelkevinputnam/lpot-docs
172
12790244
<reponame>intelkevinputnam/lpot-docs #!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging class Logger(object): __instance = None def __new__(cls): if Logger.__instance is None: Logger.__instance = object.__new__(cls) Logger.__instance._log() return Logger.__instance def _log(self): LOGLEVEL = os.environ.get('LOGLEVEL', 'INFO').upper() self._logger = logging.getLogger() self._logger.handlers.clear() self._logger.setLevel(LOGLEVEL) formatter = logging.Formatter( '%(asctime)s [%(levelname)s] %(message)s', "%Y-%m-%d %H:%M:%S") streamHandler = logging.StreamHandler() streamHandler.setFormatter(formatter) self._logger.addHandler(streamHandler) self._logger.propagate = False def get_logger(self): return self._logger def _pretty_dict(value, indent=0): prefix = '\n' + ' ' * (indent + 4) if isinstance(value, dict): items = [ prefix + repr(key) + ': ' + _pretty_dict(value[key], indent + 4) for key in value ] return '{%s}' % (','.join(items) + '\n' + ' ' * indent) elif isinstance(value, list): items = [ prefix + _pretty_dict(item, indent + 4) for item in value ] return '[%s]' % (','.join(items) + '\n' + ' ' * indent) elif isinstance(value, tuple): items = [ prefix + _pretty_dict(item, indent + 4) for item in value ] return '(%s)' % (','.join(items) + '\n' + ' ' * indent) else: return repr(value) level = Logger().get_logger().level DEBUG = logging.DEBUG def log(level, msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().log(level, line, *args, **kwargs) else: Logger().get_logger().log(level, msg, *args, **kwargs) def debug(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().debug(line, *args, **kwargs) else: Logger().get_logger().debug(msg, *args, **kwargs) def error(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().error(line, *args, **kwargs) else: Logger().get_logger().error(msg, *args, **kwargs) def fatal(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().fatal(line, *args, **kwargs) else: Logger().get_logger().fatal(msg, *args, **kwargs) def info(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().info(line, *args, **kwargs) else: Logger().get_logger().info(msg, *args, **kwargs) def warn(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().warning(line, *args, **kwargs) else: Logger().get_logger().warning(msg, *args, **kwargs) def warning(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().warning(line, *args, **kwargs) else: Logger().get_logger().warning(msg, *args, **kwargs)
2.328125
2
models/tl/ex1.py
bhneo/SparsePooling
0
12790245
import os import sys sys.path.append(os.getcwd()) import tensorflow as tf tf.get_logger().setLevel('ERROR') from tensorflow import keras from common.inputs.voc2010 import voc_parts from common import layers, losses, utils, train, attacks from common.ops.routing import activated_entropy, coupling_entropy import numpy as np import config WEIGHT_DECAY = 1e-4 kernel_regularizer = keras.regularizers.l2(WEIGHT_DECAY) kernel_initializer = keras.initializers.he_normal() BASE_NAME = 'ex4_3' def build_model_name(params): model_name = BASE_NAME model_name += '_{}'.format(params.model.backbone) model_name += '_fine{}'.format(params.model.fine) model_name += '_part{}'.format(params.caps.parts) model_name += '_{}'.format(params.routing.type) if params.routing.type == 'DR' or params.routing.type == 'EM': model_name += '_iter{}'.format(params.routing.iter_num) model_name += '_temper{}'.format(params.routing.temper) model_name += '_atoms{}'.format(params.caps.atoms) model_name += '_trial{}'.format(str(params.training.idx)) model_name += '_bs{}'.format(str(params.training.batch_size)) if params.dataset.flip: model_name += '_flip' if params.dataset.crop: model_name += '_crop' return model_name def get_loss_opt(type): optimizer = keras.optimizers.Adam(0.0001) if type == 'DR' or type == 'EM': loss = losses.MarginLoss(sparse=False, upper_margin=0.9, bottom_margin=0.1, down_weight=0.5) else: loss = keras.losses.CategoricalCrossentropy(from_logits=True) return loss, optimizer def build_model(num_out, params): model_name = build_model_name(params) inputs, probs, tensor_log = build(num_out, params.model.backbone, params.model.fine, params.routing.type, params.routing.iter_num, params.routing.temper, params.caps.parts, params.caps.atoms ) model = keras.Model(inputs=inputs, outputs=probs, name=model_name) log_model = keras.Model(inputs=inputs, outputs=tensor_log.get_outputs(), name=model_name + '_log') tensor_log.set_model(log_model) loss, optimizer = get_loss_opt(params.routing.type) model.compile(optimizer=optimizer, loss=loss, metrics=[]) model.summary() model.callbacks = [] return model, tensor_log def build(num_out, backbone, fine, routing, iter_num, temper, parts, atoms): log = utils.TensorLog() if backbone == 'VGG16': in_shape = (224, 224, 3) base = keras.applications.VGG16(include_top=False, input_shape=in_shape) elif backbone == 'VGG19': in_shape = (224, 224, 3) base = keras.applications.VGG19(include_top=False, input_shape=in_shape) elif backbone == 'InceptionV3': in_shape = (299, 299, 3) base = keras.applications.InceptionV3(include_top=False, input_shape=in_shape) elif backbone == 'ResNet50': in_shape = (224, 224, 3) base = keras.applications.ResNet50(include_top=False, input_shape=in_shape) else: in_shape = (299, 299, 3) base = keras.applications.InceptionV3(include_top=False, input_shape=in_shape) layer_num = len(base.layers) for i, layer in enumerate(base.layers): if i < layer_num-fine: layer.trainable = False else: for w in layer.weights: if 'kernel' in w.name: r = kernel_regularizer(w) layer.add_loss(lambda: r) inputs = keras.Input(in_shape) features = base(inputs) interpretable = keras.layers.Conv2D(filters=parts, kernel_size=1, activation='relu', kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer)(features) shape = interpretable.get_shape().as_list() if routing == 'avg': pool = keras.layers.GlobalAveragePooling2D()(interpretable) output = keras.layers.Dense(num_out)(pool) elif routing == 'max': pool = keras.layers.GlobalMaxPooling2D()(interpretable) output = keras.layers.Dense(num_out)(pool) elif routing == 'DR': child_pose, child_prob = layers.CapsuleGroups(height=shape[1], width=shape[2], channel=shape[3], atoms=16, method='channel', activation='squash')(interpretable) log.add_hist('child_activation', child_prob) transformed_caps = layers.CapsuleTransformDense(num_out=num_out, out_atom=atoms, share_weights=False, initializer=keras.initializers.glorot_normal(), regularizer=kernel_regularizer)(child_pose) parent_poses, parent_probs, cs = layers.DynamicRouting(num_routing=iter_num, softmax_in=False, temper=temper, activation='squash', pooling=False, log=log)((transformed_caps, child_prob)) log.add_hist('parent_activation', parent_probs[-1]) output = parent_probs[-1] return inputs, output, log def main(): args, params = config.parse_args() if params.task == 'train': params.dataset.name = 'voc2010' if params.model.backbone == 'InceptionV3': data_shape = (299, 299, 3) else: data_shape = (224, 224, 3) train_set, test_set, info = voc_parts.build_dataset3(batch_size=params.training.batch_size, shape=data_shape, arch=params.model.backbone) model, tensor_log = build_model(num_out=info.features['label'].num_classes, params=params) trainer = train.Trainer(model, params, info, tensor_log, finetune=True, inference_label=False, max_save=1) trainer.metrics['accuracy'] = tf.keras.metrics.CategoricalAccuracy(name='accuracy') if args.train: trainer.fit(train_set, test_set) else: trainer.evaluate(test_set) elif params.task == 'attack': do_adv(os.getcwd()) elif params.task == 'score': compute_entropies(os.getcwd()) def load_ckpt(model, model_dir): model.compile(optimizer=keras.optimizers.Adam(0.0001), loss=keras.losses.CategoricalCrossentropy(from_logits=False), metrics=[]) ckpt = tf.train.Checkpoint(optimizer=model.optimizer, net=model) manager = tf.train.CheckpointManager(ckpt, model_dir, max_to_keep=3) ckpt.restore(manager.latest_checkpoint) if manager.latest_checkpoint: print("Restored from {}".format(manager.latest_checkpoint)) def get_model_dir(backbone, log='log', routing='avg', dataset='voc2010', iter_num=None, temper=None, atoms=None, finetune=0, parts=128, bs=32, idx=1): model_dir = '{}/{}/{}_{}_fine{}_part{}_{}'.format(log, dataset, BASE_NAME, backbone, finetune, parts, routing) if routing == 'DR' or routing == 'EM': model_dir += '_iter{}'.format(iter_num) model_dir += '_temper{}'.format(temper) model_dir += '_atoms{}'.format(atoms) model_dir += '_trial{}_bs{}_flip_crop'.format(idx, bs) if not os.path.exists(model_dir): raise Exception('model not exist:{}'.format(model_dir)) return model_dir def load_model(backbone, iter_num, temper, atoms=16, log='log', routing='DR', finetune=0, parts=128, bs=128, idx=1): data_shape = utils.get_shape(backbone) model_dir = get_model_dir(backbone=backbone, log=log, routing=routing, finetune=finetune, parts=parts, bs=bs, iter_num=iter_num, temper=temper, atoms=atoms, idx=idx) inputs, probs, log = build(6, backbone, finetune, routing, iter_num, temper, parts, atoms) model = keras.Model(inputs=inputs, outputs=probs, name='x') load_ckpt(model, model_dir) return model, data_shape, model_dir def evaluate_attack(epsilons, root='', log='log', backbone='InceptionV3', metric='acc', all_target=False, method='FGSM', steps=10, finetune=0, routing='DR', black_box=False, iter_num=10, temper=1.0, atoms=16, parts=128, bs=64, idx=1): model, data_shape, model_dir = load_model(log=root + log, backbone=backbone, routing=routing, iter_num=iter_num, temper=temper, atoms=atoms, parts=parts, bs=bs, finetune=finetune, idx=idx) if black_box: print('load black box source model') model_src, data_shape, model_dir = load_model(log=root + log, backbone=backbone, routing=routing, iter_num=iter_num, temper=temper, atoms=atoms, parts=parts, bs=bs, finetune=finetune, idx=2) else: model_src = model loss, _ = get_loss_opt(routing) _, test_set, info = voc_parts.build_dataset3(root + 'data', batch_size=32, shape=data_shape) acc_adv = keras.metrics.CategoricalAccuracy(name='acc_adv') if metric == 'acc': results = attacks.evaluate_model_after_attacks(epsilons, acc_adv, test_set, model, loss, method=method, steps=steps, label_sparse=False, cost=True, model_src=model_src) elif metric == 'success': if all_target: categories = [i for i in range(6)] results = attacks.evaluate_attacks_success_rate_all_target(epsilons, test_set, model, loss, categories, method=method, steps=steps, label_sparse=False, cost=True, model_src=model_src) else: results = attacks.evaluate_attacks_success_rate(epsilons, test_set, model, loss, method=method, steps=steps, label_sparse=False, cost=True, model_src=model_src) return results def do_adv(root): epsilons = [0.1, 0.2, 0.3] tempers = [0.0, 20.0, 40.0, 60.0, 80.0] parts_list = [128] all_target = False black_box = False methods = ['PGD', 'BIM', 'FGSM'] backbones = ['InceptionV3'] routing = 'DR' for backbone in backbones: print('backbone:', backbone) for parts in parts_list: print('parts:', parts) for method in methods: print('method:', method) if routing == 'avg' or routing == 'max': tempers = [-1] for temper in tempers: print('temper:', temper) if all_target: epsilons = [0.1] evaluate_attack(epsilons, root=root, backbone=backbone, metric='success', all_target=all_target, method=method, steps=5, routing=routing, black_box=black_box, parts=parts, iter_num=2, temper=temper, atoms=16, bs=64, idx=1) def compute_entropy(root, backbone='InceptionV3', iter_num=2, activated=True, temper=10.0, atoms=16, routing='DR', finetune=0, parts=128, bs=32): model, data_shape, model_dir = load_model(log=root + 'log', backbone=backbone, iter_num=iter_num, temper=temper, atoms=atoms, routing=routing, finetune=finetune, parts=parts, bs=bs) train_set, test_set, info = voc_parts.build_dataset3(root + 'data', batch_size=32, shape=data_shape) test_model = keras.Model(model.layers[0].input, [model.layers[3].output, model.layers[5].output]) results = [] for images, labels in test_set: (child_poses, child_probs), (parent_poses, parent_probs, cs) = test_model(images) c = cs[-1] if activated: entropy = activated_entropy(c, child_probs) else: entropy = coupling_entropy(c) results.append(entropy) results = np.concatenate(results, 0) mean = np.mean(results) std = np.std(results) print('{:.4}/{:.3}'.format(mean, std)) def compute_entropies(root): tempers = [0.0, 20.0, 40.0, 60.0, 80.0] for temper in tempers: print('temper:{}'.format(temper)) compute_entropy(root, backbone='InceptionV3', iter_num=2, temper=temper, atoms=16, routing='DR', finetune=0, parts=128, bs=64) if __name__ == "__main__": main()
1.890625
2
code/ml/preprocessing/show_augmented_images.py
lbechberger/LearningPsychologicalSpaces
6
12790246
# -*- coding: utf-8 -*- """ Displays some of the augmented images. Can be used to visually check that augmentation is working fine. Created on Wed May 8 12:12:26 2019 @author: lbechberger """ import argparse, pickle import matplotlib.pyplot as plt import tensorflow as tf parser = argparse.ArgumentParser(description='Visualizing augmented images') parser.add_argument('input_file', help = 'pickle file containing the augmented images to display') parser.add_argument('-r', '--rows', type = int, help = 'number of rows', default = 3) parser.add_argument('-c', '--columns', type = int, help = 'number of columns', default = 4) args = parser.parse_args() with open(args.input_file, "rb") as f: images = pickle.load(f) # need to convert tensorflow string representation into numbers tf_image_string = tf.placeholder(tf.string) decoder = tf.image.decode_jpeg(tf_image_string) fig = plt.figure(figsize=(16,10)) with tf.Session() as session: session.run(tf.global_variables_initializer()) for i in range(args.rows * args.columns): ax = fig.add_subplot(args.rows, args.columns, i+1) img = session.run(decoder, feed_dict = {tf_image_string : images[i]}) # deal with greyscale images if img.shape[2] == 1: img = img.reshape((img.shape[0], img.shape[1])) ax.imshow(img, cmap = "gray") else: ax.imshow(img) plt.show()
3.328125
3
main.py
HelParadox/Nagito-Bot
0
12790247
<filename>main.py import discord, keep_alive, os, random, time from discord.ext import commands, tasks from asyncio import sleep import urllib.parse import urllib.request bot = commands.Bot(command_prefix="n!", case_insensitive=True) client = discord.Client() @bot.event async def on_ready(): print("bot ready!") @bot.command() async def hello(ctx): await ctx.send(f"Hello") @bot.command() async def CommandHelp(ctx): embed = discord.Embed( title = 'Help', description = 'Help For Commands!', colour = 0x33F2FF ) embed.set_footer(text="") embed.set_author(name=ctx.message.author.name) embed.add_field(name='Misc', value='`n!misc` for misc commands') await ctx.send(embed=embed) @bot.command() async def misc(ctx): embed = discord.Embed( title = 'Misc', description = 'Misc Commands', colour = 0x33F2FF ) embed.set_footer(text="Misc") embed.set_author(name=ctx.message.author.name) embed.add_field(name='Youtube', value='`n!Youtube (video) this will search youtube for videos') @bot.command() async def ping(ctx): await ctx.send(f"Pong! - {round(bot.latency * 1000)}ms!") @bot.command() async def youtube(ctx, *, search): query_string = urllib.parse.urlencode({ 'search_query': search }) htm_content = urllib.request.urlopen( 'http://www.youtube.com/results?' + query_string ) search_results = re.findall("href=\"\\/watch\\?v=(.{11})", htm_content.read().decode()) await ctx.send('http://www.youtube.com/watch?v=' + search_results[0]) @bot.command() async def purge(ctx, amount): await ctx.channel.purge(limit=amount) @bot.command() async def kick(ctx, member : discord.Member, *, reason=None): await member.kick(reason=reason) @bot.command() async def ban(ctx, member : discord.Member, *, reason=None): await member.ban(reason=reason) @bot.command() async def neon(ctx): await ctx.send(f"Join NeonGDPS today! https://discord.gg/YYfyYjJuH6") @bot.command() async def embed(ctx): embed = discord.Embed( title = 'UselessEmbed', colour = 0x33F2FF ) embed.set_footer(text="") embed.set_author(name=ctx.message.author.name) embed.add_field(name='Why', value='Did u use this command?') embed.set_image(url='https://cdn.discordapp.com/avatars/582670290950291476/5723169a306c581dd6d0d9ae41fa6a3c.png?size=1024') await ctx.send(embed=embed) @bot.command() async def dm(ctx,member : discord.Member,*,message= ""): await member.send(f"{message}") await ctx.channel.purge(limit=1) person = await bot.fetch_user(member.id) await ctx.channel.send(f"The DM to **{person}** was sent!") keep_alive.keep_alive() token = os.environ.get("token") bot.run(token, bot=True, reconnect=True) @client.event async def on_member_join(member): await member.send(f"Welcome To The discord!")
2.8125
3
p100-109/p105.py
kbrose/project_euler
1
12790248
from itertools import combinations f = open("p105_text.txt") fr = f.readline() sets = [] while fr: fs = (fr.strip()).split() for i in range(len(fs)): fs[i] = int(fs[i]) fs.sort() sets.append(fs) fr = f.readline() def test_rest(set, com): ret_set = list(set) for num in com: del(ret_set[ret_set.index(num)]) for m in range(1,len(ret_set)+1): for s in list(combinations(ret_set, m)): if sum(s) == sum(com): return False return True # sum(B) != sum(C) for non-empty, disjoint subsets B and C def test_1(s): for size in range(1,(len(s) / 2) + 1): for c in combinations(s, size): if not test_rest(s,c): return False return True # If B contains more elements than C then S(B) > S(C). def test_2(s): l = len(s) left = 2 right = l - 1 while right >= left: sum_1 = sum(s[:left]) sum_2 = sum(s[right:]) if not sum_1 > sum_2: return False left += 1 right -= 1 return True spec_sum_sets_sum = 0 for i in range(len(sets)): if test_2(sets[i]) and test_1(sets[i]): # reverse order for speed # print i, '\t', sets[i] spec_sum_sets_sum += sum(sets[i]) # for set in sets: # if test_2(set) and test_1(set): # spec_sum_sets_sum += sum(set) print spec_sum_sets_sum
3
3
humanlikehearing/library/__init__.py
neural-reckoning/HumanlikeHearing
6
12790249
<reponame>neural-reckoning/HumanlikeHearing from . import a_weighting from . import audio_format from . import speech_voltmeter_svp56 from . import voice_activity_detection
1.015625
1
wk_camera_pylon.py
WAKU-TAKE-A/pypylon_sample001
1
12790250
<filename>wk_camera_pylon.py<gh_stars>1-10 # -*- coding: utf-8 -*- import time from pypylon import pylon import cv2 class CameraPylon: def __init__(self, id=0, exposure_us=30000, gain=0.0): """ Init * When exposure_us is zero, auto exposure is enabled. * When gain is zero, auto gain is enabled. """ self.factory = pylon.TlFactory.GetInstance() # DeviceInfo class get the number of connected cameras, camera name, etc. self.devices = self.factory.EnumerateDevices() if len(self.devices) == 0: raise Exception('no camera present.') # Create a class to control the camera. self.camera = pylon.InstantCamera(self.factory.CreateDevice(self.devices[id])) # The camera settings cannot be changed without opening. self.camera.Open() if exposure_us == 0: self.camera.ExposureAuto.SetValue('Continuous') else: self.camera.ExposureAuto.SetValue('Off') self.camera.ExposureTime.SetValue(exposure_us) if gain == -1.0: self.camera.GainAuto.SetValue('Continuous') else: self.camera.GainAuto.SetValue('Off') self.camera.Gain.SetValue(gain) print('--------------------') print('CameraPylon.__init__') print('--------------------') print('Name = {0}'.format(self.devices[id].GetFriendlyName())) print('Width = {0}'.format(self.camera.Width.GetValue())) print('Height = {0}'.format(self.camera.Height.GetValue())) print('ExposureAuto = {0}'.format(self.camera.ExposureAuto.GetValue())) print('ExposureTime = {0}[us]'.format(self.camera.ExposureTime.GetValue())) print('GainAuto = {0}'.format(self.camera.GainAuto.GetValue())) print('Gain = {0}'.format(self.camera.Gain.GetValue())) self.camera.Close() # Set ImageFormatConverter. self.converter_bgr = pylon.ImageFormatConverter() self.converter_bgr.OutputPixelFormat = pylon.PixelType_BGR8packed self.converter_bgr.OutputBitAlignment = 'MsbAligned' # Set display magnification. self.disp_mag = 50 def open(self): """ Open. """ self.camera.Open() def close(self): """ Close. """ self.camera.Close() def setExposureTime(self, exposure_us=10000, en_print=True): """ Set exposure time. * When exposure_us is zero, auto exposure is enabled. * When en_print is True, display the set value. """ if not self.camera.IsOpen(): raise Exception('camera is not open.') if exposure_us == 0: self.camera.ExposureAuto.SetValue('Continuous') else: self.camera.ExposureAuto.SetValue('Off') self.camera.ExposureTime.SetValue(exposure_us) if en_print: print('ExposureAuto = {0}'.format(self.camera.ExposureAuto.GetValue())) print('ExposureTime = {0}[us]'.format(self.camera.ExposureTime.GetValue())) def setGain(self, gain=0.0, en_print=True): """ Set gain. * When gain is -1, auto gain is enabled. * When en_print is True, display the set value. """ if not self.camera.IsOpen(): raise Exception('camera is not open.') if gain == -1.0: self.camera.GainAuto.SetValue('Continuous') else: self.camera.GainAuto.SetValue('Off') self.camera.Gain.SetValue(gain) if en_print: print('GainAuto = {0}'.format(self.camera.GainAuto.GetValue())) print('Gain = {0}[dB]'.format(self.camera.Gain.GetValue())) def grab(self, timeout=1000, en_print=True): """ Grab. * Run StartGrabbing and StopGrabbing each time. * All convert to 24-bit BGR. * When en_print is True, display the set value. """ if not self.camera.IsOpen(): raise Exception('camera is not open.') t_start = time.time() self.camera.StartGrabbing(pylon.GrabStrategy_LatestImageOnly) grabResult = self.camera.RetrieveResult(timeout, pylon.TimeoutHandling_ThrowException) rslt_conv = self.converter_bgr.Convert(grabResult) grabResult.Release() self.camera.StopGrabbing() proc_time = time.time() - t_start if en_print: print('grab time : {0} ms'.format(proc_time)) return rslt_conv.GetArray() def view(self, delay=1): """ View. * Close with ESC. """ if not self.camera.IsOpen(): raise Exception('camera is not open.') k = 0 while k != 27: img = self.grab(en_print=False) w = int(self.camera.Width.GetValue() * self.disp_mag / 100) h = int(self.camera.Height.GetValue() * self.disp_mag / 100) img_resize = cv2.resize(img, (w, h)) cv2.imshow("img", img_resize) exp_cur = int(self.camera.ExposureTime.GetValue() / 1000) exp_max = int(self.camera.AutoExposureTimeUpperLimit.GetValue() / 1000) gain_cur = int(self.camera.Gain.GetValue()) gain_max = int(self.camera.AutoGainUpperLimit.GetValue()) mag_cur = int(self.disp_mag) mag_max = int(200) cv2.createTrackbar("Exp[ms]", "img", exp_cur, exp_max, self._changeExposure) cv2.createTrackbar("Gain[dB]", "img", gain_cur, gain_max, self._changeGain) cv2.createTrackbar("Mag[%]", "img", mag_cur, mag_max, self._changeMag) k = cv2.waitKey(delay) cv2.destroyAllWindows() def _changeExposure(self, val): exp = cv2.getTrackbarPos("Exp[ms]", "img") self.setExposureTime(exp * 1000, False) def _changeGain(self, val): gain = cv2.getTrackbarPos("Gain[dB]", "img") self.setGain(gain, False) def _changeMag(self, val): mag = cv2.getTrackbarPos("Mag[%]", "img") self.disp_mag = int(mag)
2.859375
3