max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
tests/test_bip69_bip49.py
hkrugersa/nowallet
63
12790651
<reponame>hkrugersa/nowallet<filename>tests/test_bip69_bip49.py # pylint: disable=W0621 import random import pytest from pycoin.serialize import b2h from pycoin.tx.TxOut import TxOut from pycoin.tx.Spendable import Spendable from connectrum.svr_info import ServerInfo from nowallet import bip49 @pytest.fixture def server(): return ServerInfo("onion", hostname="fdkhv2bb7hqel2e7.onion", ports=12345) def test_serverinfo_class(server): assert isinstance(server, ServerInfo) assert server.get_port("t") == ("fdkhv2bb7hqel2e7.onion", 12345, False) @pytest.fixture def txout_small_coin_small_script(): return TxOut(0, b"\x00") @pytest.fixture def txout_large_coin_small_script(): return TxOut(10, b"\x00") @pytest.fixture def txout_small_coin_large_script(): return TxOut(0, b"\xFF") @pytest.fixture def txout_large_coin_large_script(): return TxOut(10, b"\xFF") def test_txout_ordering(txout_small_coin_small_script, txout_large_coin_small_script, txout_small_coin_large_script, txout_large_coin_large_script): a, b = txout_large_coin_large_script, TxOut(10, b"\xFF") assert (a.coin_value, b2h(a.script)) == (b.coin_value, b2h(b.script)) txout_list = [txout_small_coin_small_script, txout_large_coin_small_script, txout_small_coin_large_script, txout_large_coin_large_script] random.shuffle(txout_list) txout_list.sort(key=lambda txo: (txo.coin_value, b2h(txo.script))) assert txout_list[0] == txout_small_coin_small_script assert txout_list[1] == txout_small_coin_large_script assert txout_list[2] == txout_large_coin_small_script assert txout_list[3] == txout_large_coin_large_script def test_txout(txout_small_coin_small_script): assert isinstance(txout_small_coin_small_script, TxOut) assert txout_small_coin_small_script.coin_value == 0 assert txout_small_coin_small_script.script == b"\x00" @pytest.fixture def spendable_small_hex_small_vout(txout_small_coin_small_script): return Spendable.from_tx_out(txout_small_coin_small_script, b"\x00", 0) @pytest.fixture def spendable_large_hex_small_vout(txout_large_coin_small_script): return Spendable.from_tx_out(txout_large_coin_small_script, b"\xFF", 0) @pytest.fixture def spendable_small_hex_large_vout(txout_small_coin_large_script): return Spendable.from_tx_out(txout_small_coin_large_script, b"\x00", 10) @pytest.fixture def spendable_large_hex_large_vout(txout_large_coin_large_script): return Spendable.from_tx_out(txout_large_coin_large_script, b"\xFF", 10) def test_spendable_ordering(txout_large_coin_large_script, spendable_small_hex_small_vout, spendable_large_hex_small_vout, spendable_small_hex_large_vout, spendable_large_hex_large_vout): spendable_list = [spendable_small_hex_small_vout, spendable_large_hex_small_vout, spendable_small_hex_large_vout, spendable_large_hex_large_vout] random.shuffle(spendable_list) spendable_list.sort(key=lambda utxo: (utxo.as_dict()["tx_hash_hex"], utxo.as_dict()["tx_out_index"])) assert spendable_list[0] == spendable_small_hex_small_vout assert spendable_list[1] == spendable_small_hex_large_vout assert spendable_list[2] == spendable_large_hex_small_vout assert spendable_list[3] == spendable_large_hex_large_vout def test_spendable(spendable_small_hex_small_vout): spendable = Spendable.from_tx_out(TxOut(0, b"\x00"), b"\x00", 0) assert isinstance(spendable, Spendable) assert spendable.tx_hash == b"\x00" assert spendable.tx_out_index == 0 @pytest.fixture def segwitbip32node_from_chbs(): secret = "CORRECT HORSE BATTERY STAPLE".encode("utf-8") return bip49.SegwitBIP32Node.from_master_secret(secret) def test_segwitkey_script(segwitbip32node_from_chbs): script = segwitbip32node_from_chbs.p2wpkh_script() assert isinstance(script, bytes) assert script == (b"\x00\x14\xe5\xba\xc1f\xbd[\x9fb\x04" + \ b"\xb1\xb4?\xb3\xc6!\x99qd\xc7\xfe") def test_segwitkey_script_hash(segwitbip32node_from_chbs): script_hash = segwitbip32node_from_chbs.p2wpkh_script_hash() assert isinstance(script_hash, bytes) assert script_hash == (b"H\x12\xe21\x90\x00:\xc2\xd2\xd7" + \ b"\xe3\x15\x99<\x96\x08\xaea\xac%") def test_segwitkey_electrumx_spkhash(segwitbip32node_from_chbs): script_hash = segwitbip32node_from_chbs.electrumx_script_hash() assert isinstance(script_hash, str) assert script_hash == ("41d8dc340e750287f1ef920956e1f9ae" + \ "8a724efa9bb3772352118fe26372be97") def test_segwitkey_address(segwitbip32node_from_chbs): address = segwitbip32node_from_chbs.p2sh_p2wpkh_address() assert isinstance(address, str) assert address == "38G7CQfoej3fZQbHHey7Z1XPUGpVpJv4em" def test_bech32_segwitkey_address(segwitbip32node_from_chbs): address = segwitbip32node_from_chbs.bech32_p2wpkh_address() assert isinstance(address, str) assert address == "bc1pqq2wtwkpv674h8mzqjcmg0anccsejutycllqmc65qs"
1.984375
2
tests/conftest.py
jeremyjordan/flower-classifier
6
12790652
import os import pytest import torch import torchvision from flower_classifier.datasets.csv import CSVDataset from flower_classifier.datasets.oxford_flowers import OxfordFlowers102Dataset, OxfordFlowersDataModule, split_dataset from flower_classifier.datasets.random import RandomDataModule from tests.datasets import TEST_CACHE_DIR @pytest.fixture(scope="module") def oxford_dataset() -> torch.utils.data.Dataset: transforms = [ torchvision.transforms.RandomResizedCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] dataset = OxfordFlowers102Dataset(root_dir=TEST_CACHE_DIR, download=True, transforms=transforms) return dataset @pytest.fixture(scope="module") def oxford_dataloader(oxford_dataset): dataloader = torch.utils.data.DataLoader(oxford_dataset, batch_size=8, shuffle=False) return dataloader @pytest.fixture(scope="module") def oxford_datamodule(): transforms = [ torchvision.transforms.RandomResizedCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] data_module = OxfordFlowersDataModule(data_dir=TEST_CACHE_DIR, batch_size=32, train_transforms=transforms) return data_module @pytest.fixture(scope="module") def oxford_csv_dataset() -> torch.utils.data.Dataset: split_dataset(root_dir=TEST_CACHE_DIR, target_dir=TEST_CACHE_DIR) train_filename = os.path.join(TEST_CACHE_DIR, "train_split.csv") transforms = [ torchvision.transforms.RandomResizedCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] dataset = CSVDataset(filename=train_filename, transforms=transforms) return dataset @pytest.fixture(scope="module") def oxford_csv_dataloader(oxford_csv_dataset): dataloader = torch.utils.data.DataLoader(oxford_csv_dataset, batch_size=8, shuffle=False) return dataloader @pytest.fixture(scope="module") def random_datamodule(): data_module = RandomDataModule(batch_size=32) return data_module
2.359375
2
Pzzzzz/plugins/rss/__init__.py
Pzzzzz5142/animal-forest-QQ-group-bot
5
12790653
<reponame>Pzzzzz5142/animal-forest-QQ-group-bot from nonebot import on_command, CommandSession, on_startup from nonebot.plugin import perm from nonebot.command import Command, call_command from nonebot.message import unescape, escape import asyncio import asyncpg import nonebot from aiocqhttp.exceptions import Error as CQHttpError from nonebot.argparse import ArgumentParser import sys from nonebot.log import logger from db import db import cq from utils import doc import feedparser as fp import re from .utils import sendrss, getrss, handlerss, AutoReply from .bcr import bcr from .mrfz import mrfz from .loli import loli from .pork_price import pprice from .bh3 import bh3 from .hpoi import hpoi from .xlOfficial import xl from .pixiv import pixiv import time __plugin_name__ = "rss 订阅" NOUPDATE = ["loli", "hpoi"] NOBROADCAST = ["gcores"] FULLTEXT = ["pprice"] BROADCASTGROUP = [ 145029700, ] @nonebot.scheduler.scheduled_job("cron", hour="5", minute="0") async def _(): bot = nonebot.get_bot() async with db.pool.acquire() as conn: values = await conn.fetch("select gid from mg where morningcall = true") for item in values: item = item["gid"] try: await bot.send_group_msg( group_id=int(item), message=f"Ciallo~(∠・ω< )⌒★,早上好。" ) except CQHttpError: pass @nonebot.scheduler.scheduled_job("cron", hour="0,6,12,18", minute="0") async def bk(): bot = nonebot.get_bot() async with db.pool.acquire() as conn: ls = await bot.get_group_member_list( group_id=bot.config.QGROUP, self_id=3418961367 ) await conn.execute("""delete from backup""") for item in ls: await conn.execute( f"""insert into backup values({item['user_id']},'{item['card']}','{item['role']}')""" ) @nonebot.scheduler.scheduled_job("interval", minutes=20) async def __(): bot = nonebot.get_bot() loop = asyncio.get_event_loop() async with db.pool.acquire() as conn: values = await conn.fetch("select gid from mg where rss = true") values = [int(item["gid"]) for item in values] for key in doc: if key in NOUPDATE or "pixiv" in key: continue asyncio.run_coroutine_threadsafe( handlerss( bot, key, gtfun(key), key not in NOBROADCAST, key in FULLTEXT, values, ), loop, ) @on_command("rss", only_to_me=False) async def rss(session: CommandSession): if "subs" in session.state: async with db.pool.acquire() as conn: for _, item in session.state["ls"]: try: await conn.execute( """insert into subs values ({},'{}','{}')""".format( session.event.user_id, "No Information", item ) ) await session.send(f"「{doc[item]}」的资讯已添加订阅了!有新资讯发布时,会私信你哦!") except asyncpg.exceptions.ForeignKeyViolationError: await session.send(f"貌似系统并没有支持该订阅源的订阅!") logger.error("no", exc_info=True) except asyncpg.exceptions.UniqueViolationError: await session.send(f"你已经添加过「{doc[item]}」的资讯订阅啦!") except: await session.send( f"发生未知错误!错误详细信息已记录了在log中!\n定位 message id 为:{session.event.message_id}" ) logger.error("some rss issue", exc_info=True) elif "route" in session.state: for rt in session.state["ls"]: resp = await sendrss( session.event.user_id, session.bot, "自定义路由", None, getrss, (1, 1), route=rt, ) if resp and session.event.detail_type != "private": await session.send( unescape(cq.at(session.event.user_id) + f"「{rt}」的资讯已私信,请查收。") ) elif "del" in session.state: async with db.pool.acquire() as conn: fail = [] success = [] for _, dl in session.state["ls"]: resp = await conn.execute( "delete from subs where qid = {} and rss = '{}'".format( session.event.user_id, dl ) ) if resp[len("delete ") :] == "0": fail.append(doc[dl]) else: success.append(doc[dl]) if len(fail) > 0: await session.send( cq.at(session.event.user_id) + f"这{'个' if len(fail)==1 else '些'}源「{'、'.join(fail)}」不在你的订阅列表里面哦~" ) if len(success) > 0: await session.send( cq.at(session.event.user_id) + f" 取消订阅「{'、'.join(success)}」成功!可喜可贺,可喜可贺!" ) elif session.state["list"]: async with db.pool.acquire() as conn: values = await conn.fetch( "select * from subs where qid = {}".format(session.event.user_id) ) if len(values) == 0: session.finish("貌似你没有订阅任何 rss 源") await session.send( cq.at(session.event.user_id) + "以下是你已订阅的源:\n{}".format( "\n".join([doc[i["rss"]] + " - " + i["rss"] for i in values]) ) ) else: loop = asyncio.get_event_loop() for item, nm in session.state["ls"]: asyncio.run_coroutine_threadsafe( sendrss( session.event.user_id, session.bot, nm, None, item, feedBack=session.event.group_id if session.event.detail_type != "private" else False, ), loop, ) @rss.args_parser async def _(session: CommandSession): if session.is_first_run: parser = ArgumentParser(session=session) subparser = parser.add_mutually_exclusive_group() subparser.add_argument("-s", "--subs", nargs="+", help="订阅指定的 rss 源") subparser.add_argument("-r", "--route", nargs="+", help="获取自定路由的 rss 源的资讯") subparser.add_argument("-d", "--delete", nargs="+", help="删除 rss 订阅") subparser.add_argument( "-l", "--list", action="store_true", default=False, help="列出已订阅的源" ) subparser.add_argument("-a", "--add", help="开通rss源") parser.add_argument("rss", nargs="*", help="获取已存在的 rss 源资讯") argv = parser.parse_args(session.current_arg_text.strip().split(" ")) session.state["ls"] = [] session.state["list"] = argv.list if argv.list: return if argv.subs != None: session.state["subs"] = argv.subs ls = argv.subs if argv.delete != None: session.state["del"] = argv.delete ls = argv.delete if argv.rss != []: session.state["rss"] = argv.rss ls = argv.rss if argv.route != None: session.state["route"] = argv.route session.state["ls"] = argv.route if len(session.state["ls"]) == 0: session.finish("查询路由地址不能为空哦!") return if argv.add != None: await session.send(str(session.event.user_id)) result = await add_rss(argv.add.strip(), str(session.event.user_id)) session.finish(result) ls = list(set(ls)) if session.event.detail_type == "group": async with db.pool.acquire() as conn: values = await conn.fetch( "select safe from mg where gid = {}".format(session.event.group_id) ) if len(values) > 0 and values[0]["safe"]: ls = [i for i in ls if "r18" not in i] for key in doc: if key in ls[:]: session.state["ls"].append((gtfun(key), key)) ls.remove(key) if len(ls) > 0 and " ".join(ls).strip() != "": await session.send( unescape( "没有添加「{}」的订阅源!请联系".format(" ".join(ls)) + cq.at(545870222) + "添加订阅!" ) ) if len(session.state["ls"]) == 0: await session.send( "本次资讯{}为空哦!".format("查看" if session.state["rss"] != [] else "订阅") ) session.finish( AutoReply( "Rss 指令帮助菜单", "以下是 rss 指令支持的源", [(i, j) for i, j in doc.items() if "r18" not in i], ) ) @on_command("订阅", only_to_me=False, shell_like=True) async def subs(session: CommandSession): ls = session.current_arg_text.strip(" ") flg = await call_command( session.bot, session.event, "rss", current_arg="-s " + ls, disable_interaction=True, ) if flg == False: session.finish("订阅失败") @on_command("取消订阅", only_to_me=False, shell_like=True) async def unsubs(session: CommandSession): ls = session.current_arg_text.strip(" ") flg = await call_command( session.bot, session.event, "rss", current_arg="-d " + ls, disable_interaction=True, ) if flg == False: session.finish("取消订阅失败") @on_command("up", only_to_me=False, shell_like=True, permission=perm.SUPERUSER) async def up(x): print(f"started at {time.strftime('%X')}") bot = nonebot.get_bot() loop = asyncio.get_event_loop() async with db.pool.acquire() as conn: values = await conn.fetch("select gid from mg where rss = true") values = [int(item["gid"]) for item in values] for key in doc: if key in NOUPDATE or "pixiv" in key: continue asyncio.run_coroutine_threadsafe( handlerss( bot, key, gtfun(key), key not in NOBROADCAST, key in FULLTEXT, values, ), loop, ) print(f"finished at {time.strftime('%X')}") @on_command("带礼包", only_to_me=False, shell_like=True, permission=perm.SUPERUSER) async def _(session: CommandSession): event = { "user_id": session.event.user_id, "message": session.event.message, "post_type": "message", "message_type": "private", "raw_message": session.event.raw_message, "sub_type": "friend", } if session.event.detail_type != "private": event["message_type"] = "group" event["sub_type"] = None event["group_id"] = session.event.group_id await call_command( session.bot, session.event, "rss", current_arg="pixiv_day_r18 pixiv_week_r18 pixiv_day_male_r18", ) def gtfun(name: str): if "pixiv" in name: name = "pixiv" return getattr(sys.modules[__name__], name)
2.109375
2
day 5/1-poisson.py
JackRab/10-days-of-statistics
0
12790654
""" Objective In this challenge, we learn about Poisson distributions. Task A random variable, X, follows Poisson distribution with mean of 2.5. Find the probability with which the random variable X is equal to 5. """ from math import exp, factorial def poisson(lam=2.5, k=5): """ Return the probability of X=k with possion distribution with mean lam """ return lam**k*exp(-lam)/factorial(k) print(round(poisson(), 3))
3.890625
4
tasks.py
bixind/JohnReboot
2
12790655
<gh_stars>1-10 # -*- coding: utf-8 -*- import weather.weather as weather import audio.audio as audio import aliases.aliases as aliases import instrate.instrate as instrate import history.history as history import pollanalyse.pollanalyse as pollanalyse import imageprocessing.imageprocessing as images from time import * import logging def defaultModule(com, vk): return {'message' : 'Nemo omnia potest scire'} class Dispenser: def __init__(self, vk): self.modules = {'погода' : weather.makeWeatherReport, 'аудио' : audio.getAudio, 'иначе' : aliases.setAlias, 'рейтинг' : instrate.getRating, 'история' : history.getHistory, 'опрос' : pollanalyse.getPollInfo, 'шакализировать' : images.getShakalized} self.vk = vk def dispense(self, com): try: command = com.args[0] if command in self.modules: return self.modules[com.args[0]](com, self.vk) newargs = aliases.getAlias(com.id, command) if newargs is None: return defaultModule(com, self.vk) args = (newargs + com.args[1:]) com = com._replace(args=args) command = com.args[0] if command in self.modules: return self.modules[com.args[0]](com, self.vk) return defaultModule(com, self.vk) except Exception as e: logging.exception(e) return 'Error'
2.21875
2
backend/apps/common/utils.py
sebastien-prudhomme/models-web-app
0
12790656
"""Common utils for parsing and handling InferenceServices.""" import os from kubeflow.kubeflow.crud_backend import api, helpers, logging log = logging.getLogger(__name__) KNATIVE_REVISION_LABEL = "serving.knative.dev/revision" FILE_ABS_PATH = os.path.abspath(os.path.dirname(__file__)) INFERENCESERVICE_TEMPLATE_YAML = os.path.join( FILE_ABS_PATH, "yaml", "inference_service_template.yaml") def load_inference_service_template(**kwargs): """ Return an InferenceService dict, with defaults from the local yaml. Reads the yaml for the web app's custom resource, replaces the variables and returns it as a python dict. kwargs: the parameters to be replaced in the yaml """ return helpers.load_param_yaml(INFERENCESERVICE_TEMPLATE_YAML, **kwargs) # helper functions for accessing the logs of an InferenceService def get_inference_service_pods(svc, components=[]): """ Return the Pod names for the different isvc components. Return a dictionary with (endpoint, component) keys, i.e. ("default", "predictor") and a list of pod names as values """ namespace = svc["metadata"]["namespace"] # dictionary{revisionName: (endpoint, component)} revisions_dict = get_components_revisions_dict(components, svc) if len(revisions_dict.keys()) == 0: return {} pods = api.list_pods(namespace, auth=False).items component_pods_dict = {} for pod in pods: for revision in revisions_dict: if KNATIVE_REVISION_LABEL not in pod.metadata.labels: continue if pod.metadata.labels[KNATIVE_REVISION_LABEL] != revision: continue component = revisions_dict[revision] curr_pod_names = component_pods_dict.get(component, []) curr_pod_names.append(pod.metadata.name) component_pods_dict[component] = curr_pod_names if len(component_pods_dict.keys()) == 0: log.info("No pods are found for inference service: %s", svc["metadata"]["name"]) return component_pods_dict # FIXME(elikatsis,kimwnasptd): Change the logic of this function according to # https://github.com/arrikto/dev/issues/867 def get_components_revisions_dict(components, svc): """Return a dictionary{revisionId: component}.""" status = svc["status"] revisions_dict = {} for component in components: if "components" not in status: log.info("Component '%s' not in inference service '%s'", component, svc["metadata"]["name"]) continue if component not in status["components"]: log.info("Component '%s' not in inference service '%s'", component, svc["metadata"]["name"]) continue if "latestReadyRevision" in status["components"][component]: revision = status["components"][component]["latestReadyRevision"] revisions_dict[revision] = component if len(revisions_dict.keys()) == 0: log.info( "No revisions found for the inference service's components: %s", svc["metadata"]["name"], ) return revisions_dict
2.265625
2
apps/trade/migrations/0042_auto_20190326_1424.py
lianxiaopang/camel-store-api
12
12790657
<reponame>lianxiaopang/camel-store-api<filename>apps/trade/migrations/0042_auto_20190326_1424.py # Generated by Django 2.1.7 on 2019-03-26 06:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('trade', '0041_auto_20190313_1418'), ] operations = [ migrations.AddField( model_name='orders', name='machine_code', field=models.CharField(blank=True, max_length=20, null=True, verbose_name='支付终端号'), ), migrations.AlterField( model_name='orders', name='model_type', field=models.CharField(choices=[('ord', '普通订单'), ('sub', '订阅订单'), ('repl', '积分换购订单'), ('qrpay', '线下支付订单')], default='ord', max_length=128, verbose_name='订单类型'), ), ]
1.539063
2
main.py
wur3/music-theor
1
12790658
from note import Note from majorScale import MajorScale from minorScale import MinorScale print("Hi welcome to my app.\n") note = None scale = None while(True): # if no scale is chosen if scale is None: # choose a note if note is None: note = input("Choose a note: ") menu = ("1. {0} major scale\n" "2. {0} minor scale\n" "3. Choose another note\n" "4. Exit").format(note) print(menu) # choose major or minor optn = input("\nChoose an option: ") if optn == "1": scale = MajorScale(note) elif optn == "2": scale = MinorScale(note) elif optn == "3": note = None elif optn == "4": break else: print("Invalid option. Try again.\n") # major scale if isinstance(scale, MajorScale): print(scale) menu = ("1. Get parallel minor\n" "2. Get relative minor\n" "3. Choose another note\n" "4. Exit").format(note) print(menu) optn = input("\nChoose an option: ") if optn == "1": scale = MinorScale(scale,1) elif optn == "2": scale = MinorScale(scale,2) elif optn == "3": note = None scale = None elif optn == "4": break else: print("Invalid option. Try again.\n") # minor scale if isinstance(scale, MinorScale): print(scale) menu = ("1. Get parallel major\n" "2. Get relative major\n" "3. Choose another note\n" "4. Exit").format(note) print(menu) optn = input("\nChoose an option: ") if optn == "1": scale = MajorScale(scale,1) elif optn == "2": scale = MajorScale(scale,2) elif optn == "3": note = None scale = None elif optn == "4": break else: print("Invalid option. Try again.\n") print("Bye!")
3.6875
4
display.py
majidaldo/boweb
2
12790659
#this could be in a repo on its own should have used a #obj oriented approach """manages GTK3 broadwayd displays .. and to minimize bash scripting ugggh usage: >displynum, port =display.add() >display.app('gedit',displaynum) #where gedit is a gtk3 app you may want to set the limits after import >import display >display.DisplayLimit=10 """ import signal import os import atexit import subprocess from collections import defaultdict from time import sleep import socket import psutil # optionally used port2display={} display2port={} class LimitError(Exception): val=None; pass class DisplayLimit(LimitError): """a limit to the number of displays""" val=10; pass class ApplicationLimit(LimitError): """a limit to the number of applications per display""" val=10 pass #should program onappstart onappclose #todo capture stdio on procs def get_openport(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('',0)) return s.getsockname()[1] class sequenceg(): #should have used a generator but cool to... #..hack classes dc=0 @staticmethod def getdisplay(self): self.dc+=1 ; return self.dc @staticmethod def __call__(self): return self.getdisplay(self) sequence=lambda p: sequenceg.__call__(sequenceg) def friendly_display(port,begin=8000): """for wehn you want some 'web' ports""" ret= port-begin if ret < 0 or port<0: raise ValueError('neg values') return ret def display_is_port(port): display=port return display #functions need to be one to one mappings bw out and in #port2display_function p2df=sequence port2display_function=p2df #don't use the port2dispaly_func ... #... in the code #display_is_port#friendly_display# # class keydefaultdict(defaultdict): # def __missing__(self, key): # if self.default_factory is None: # raise KeyError( key ) # else: # ret = self[key] = self.default_factory(key) # return ret class displaydict(defaultdict): #adding issues are covvered by add() def removemapping(self,display): port2display.pop(display2port.pop(display)) def __delitem__(self, display): super(displaydict, self).__delitem__(display) self.removemapping(display) def pop(self, display): super(displaydict, self).pop(display) self.removemapping(display) #procs assoc with each display running_displays=displaydict(list) #lesson learned: #def add(port,block=True) not a good idea to specify a port def add(portgetter=get_openport ,block=True):#don't see a reason to not block remove_zombie_apps(); kill_zombie_displays() if len(running_displays)==DisplayLimit.val: raise DisplayLimit(DisplayLimit.val) port=portgetter() #not safe. need to reserve port """runs the html5 part of the app returning the display number blocks until the dispaly server is up by default""" display=p2df(port) if display in running_displays: raise KeyError('display server already running') else: if isport_openable(port) is True: raise ValueError("can't get port "+str(port)) try: p=subprocess.Popen(['./start_display.sh' ,str(display),str(port)] #,preexec_fn=os.setsid ) except: #todo: problem: broadwayd does not exit if it #cant get the port. it gives back: #"Can't listen: Error binding to address: Address already in use" #dont' p.wait raise Exception("couldn't start display") #block until 'app' is ready on the port if block==True:#todo if port given not openable tries=0 while ( (isport_openable(port) is not True) ): tries+=1 ; #sometimes it gets stuck here if #rapid requests if tries>10: return add(portgetter,block) #not nice sleep(.1); continue #registrations running_displays[display].append(p) #the only reason it's a... #...default dict.. do i really need defaultdict? port2display[port]=display; display2port[display]=port # port->display should be 1 to 1 mapping if len(display2port) != len(port2display): raise Exception('display and port numbers are not 1-to-1') return display, port #what happens when the app spawns a window or another proc? #on multiple gedits only the first one is alive def app(cmd,display,**kwargs): """runs a gtk3 prog on display. """ if (display) not in running_displays: raise ValueError('display does not exist') remove_zombie_apps() if (len(running_displays[display])-1)==ApplicationLimit.val: raise ApplicationLimit(ApplicationLimit.val) #kwargs['preexec_fn']=os.setpgid sp=subprocess.Popen(['./display.sh',cmd,str(display)] ,**kwargs) running_displays[display].append(sp) return sp def isport_openable(port): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind(('127.0.0.1',port)) #if can bind then not busy s.close() return False except: return True # cr=s.connect_ex(('127.0.0.1', port)) # if cr==0: return True # else: return cr def stop(display,signal=signal.SIGKILL):#signal.SIGINT): # when using this with the server.. can't rely on being nice # so just kill it """stops display and everything running on it""" if display not in running_displays: raise KeyError('no display #'+str(display)+' to kill') #os.killpg(p.pid, signal.SIGTERM) proclist= running_displays[display] for p in reversed(proclist): p.send_signal(signal); #p.kill() p.wait() running_displays.pop(display) remove_zombie_apps() def remove_zombie_apps(): #the not immediate delthese=[] for adisplay in running_displays: for an,aproc in enumerate(running_displays[adisplay]): if an==0:continue #skip the broadway proc if aproc.poll() is None: continue# running else: delthese.append( (adisplay,an) ) for adisplay,an in delthese: #in case empty list try: running_displays[adisplay].pop(an) #the process... # ..will be removed by the garbage collector eventually except: pass def kill_zombie_displays(really=True):#seems to add robustness... #stop it if it become a problem if really is not True: return for ap in psutil.process_iter(): try: cmdline = ap.cmdline[0] except: continue if cmdline == 'broadwayd': # index 2 is the port if int(ap.cmdline[2]) not in port2display: ap.kill() def kill_all(): """kills all display apps on the server forcefully ...that it knows about that is.""" for ad in running_displays.keys(): stop(ad,signal=signal.SIGKILL) atexit.register(kill_all)
2.4375
2
trace_river/graph.py
andrew-houghton/river-flow-3
0
12790660
from collections import UserDict class Graph(UserDict): """Graph for holding which points are merged and connected Keys are tuple of tuples eg ((1,2), (2,2)) Values are sets of keys eg {((1,2), (2,2)), ((4,2), (1,4))} Relationships should be maintained in both directions """ def __delitem__(self, key): for neighbour in self[key]: old_neighbour_value = self[neighbour] old_neighbour_value.remove(key) super().__delitem__(key) def __setitem__(self, key, value): assert key not in value for neighbour in value: old_neighbour_value = self.get(neighbour, set()) old_neighbour_value.add(key) super().__setitem__(neighbour, old_neighbour_value) super().__setitem__(key, value) def __repr__(self): return f"{type(self).__name__}{self.data}"
3.515625
4
sorts/kth_smallest_ele.py
ami1708/Python
0
12790661
# //using pivot element and partition and merge sort basically import random def swap(A, i, j): A[i], A[j] = A[j], A[i] def partition(A, lo, hi): pivot = A[lo] i = lo + 1 j = hi while True: while A[i] < pivot: i += 1 if i == hi: break while A[j] > pivot: j -= 1 if j == lo: break if j <= i: break swap(A, i, j) swap(A, lo, j) print(A) return j def k_smallest(A, k): lo = 0 hi = len(A) - 1 k = k - 1 random.shuffle(A) while hi > lo: j = partition(A, lo, hi) if j == k: return A[k] elif j > k: hi = j - 1 else: lo = j + 1 return A[k] if __name__ == '__main__': test_case = int(input()) for _ in range(test_case): number_of_elements = int(input()) A = [int(x) for x in input().strip().split(' ')] k = int(input()) print(k_smallest(A, k))
3.78125
4
test/end-to-end/Exceptions/Python/main.py
HighSchoolHacking/GLS-Draft
30
12790662
try: raise Exception("Oh no!") except Exception as error: print("Found an error.") finally: # ...
2.375
2
util/api/core.py
IRIS-Team/tchecker
17
12790663
<gh_stars>10-100 import cfscrape, requests, json, os, sys, threading from bs4 import BeautifulSoup as bs from requests.adapters import HTTPAdapter from fake_headers import Headers from urllib3.util.ssl_ import create_urllib3_context from util.core import * from util.emails.core import * from util.scraper.core import * def banner(): if os.name == 'nt': _ = os.system('cls') else: _ = os.system('clear') print (f''' {colours.text}{colours.darktext} {colours.main}z {colours.darktext} {colours.main}z {colours.darktext} _____ ___ _ _ {colours.main} {colours.darktext} |_ _/ __| |_ ___ __| |___ _ {colours.main} z{colours.darktext} | || (__| ' \/ -_) _| / / '_| {colours.main} ᓚᘏᗢ {colours.darktext} |_| \___|_||_\___\__|_\_\_| {colours.sencondary}0.1{colours.text} {colours.darktext}▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬{colours.darktext} ''') def menu(): print(f'''{returnColor("[1]")} Target User {returnColor("[2]")} Target Email {returnColor("[3]")} Verified User Scraper {returnColor("[4]")} Gif Avatar Scraper ''') choice = int(input(f'{returnColor(">")} ')) if choice == 1: target = input(f'Username: {returnColor("@")}') check = checkUsername(target) if check == False: exit('Invalid Handle') else: print(f'Registed: {returnColor(check)}') twitterRequest = scraper(target) if choice == 2: target = input(f'Email Address: ') if checkEmail(target) == True: print(f'Email has been {returnColor("Taken")}') else: print(f'No account with this email') if choice == 3: verifyScraper() if choice == 4: gifScraper() def brutedomain(email, chars) -> str: guesses = [] domain_file = open('files/emails.txt', 'r').readlines() provider = email.split('@')[1] for domain in domain_file: domain = domain.rstrip() if provider[0] == domain[0]: if len(provider.split('.')[0]) == len(domain.split('.')[0]): guesses.append(email.split('@')[0]+"@"+domain) print(f'Possible Domain - {email.split("@")[0]}@{domain}') return guesses[-1] def scraper(target: str) -> str: url = "https://api.twitter.com/graphql/P8ph10GzBbdMqWZxulqCfA/UserByScreenName?variables=%7B%22screen_name%22%3A%22" + target + "%22%2C%22withHighlightedLabel%22%3Atrue%7D" headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9,bn;q=0.8", 'authorization': 'Bearer AAAAAAAAAAAAAAAAAAAAANRILgAAAAAAnNwIzUejRCOuH5E6I8xnZz4puTs%3D1Zv7ttfk8LF81IUq16cHjhLTvJu4FA33AGWWjCpTnA', "content-type": "application/json", "dnt": "1", 'origin': 'https://twitter.com', 'sec-fetch-dest': 'empty', 'sec-fetch-mode': 'cors', 'sec-fetch-site': 'same-site', 'user-agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.132 Mobile Safari/537.36', 'x-twitter-active-user': 'yes', 'x-twitter-client-language': 'en' } resp = json.loads(requests.get(url, headers=headers).text) try: if resp["data"]["user"]["id"] in resp: pass except: try: err = resp["errors"][0]["message"] if "Not found" == err: print(f'{colours.error}•{colours.text} Username Not Found On Twitter') else: print(err) except: print(f'{colours.error}•{colours.text} Username Not Found On Twitter') bio = resp["data"]["user"]["legacy"]["description"] followers = resp["data"]["user"]["legacy"]["followers_count"] location = resp["data"]["user"]["legacy"]["location"] name = resp["data"]["user"]["legacy"]["name"] Id = resp["data"]["user"]["id"] created = resp["data"]["user"]["legacy"]["created_at"] if location == '': location = 'Unknown' if bio == '': bio = 'Unknown' class CustomAdapter(HTTPAdapter): def init_poolmanager(self, *args, **kwargs): ctx = create_urllib3_context() super(CustomAdapter, self).init_poolmanager( *args, ssl_context=ctx, **kwargs ) try: url = 'https://twitter.com/account/begin_password_reset' header = Headers(browser='chrome', os='win', headers=True) scraper = cfscrape.create_scraper() scraper.mount('https://', CustomAdapter()) req = scraper.get(url, headers=header.generate()) soup = bs(req.text, 'html.parser') authenticity_token = soup.input.get('value') data = {'authenticity_token': authenticity_token, 'account_identifier': target} cookies = req.cookies response = scraper.post(url, cookies=cookies, data=data, headers=header.generate()) soup2 = bs(response.text, 'html.parser') try: if ( soup2.find('div', attrs={'class': 'is-errored'}).text == 'Please try again later.' ): exit(f'{colours.error}Rate Limit{colours.text}') except: pass try: info = soup2.find('ul', attrs={'class': 'Form-radioList'}).findAll('strong') except: exit(f'{colours.error}Rate Limit{colours.text}') try: phone = int(info[0].text) email = str(info[1].text) except: email = str(info[0].text) phone = 'None' except Exception as e: exit(f'{colours.error}{e}{colours.text}') email = brutedomain(email, None) return [name, email, phone] def checkUsername(username) -> str: url = f"https://api.twitter.com/graphql/P8ph10GzBbdMqWZxulqCfA/UserByScreenName?variables=%7B%22screen_name%22%3A%22{username}%22%2C%22withHighlightedLabel%22%3Atrue%7D" headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "en-US,en;q=0.9,bn;q=0.8", 'authorization': '<KEY>', "content-type": "application/json", "dnt": "1", 'origin': 'https://twitter.com', 'sec-fetch-dest': 'empty', 'sec-fetch-mode': 'cors', 'sec-fetch-site': 'same-site', 'user-agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.132 Mobile Safari/537.36', 'x-twitter-active-user': 'yes', 'x-twitter-client-language': 'en' } resp = json.loads(requests.get(url, headers=headers).text) try: return resp["data"]["user"]["legacy"]["created_at"] except: try: if "Not found" == resp["errors"][0]["message"]: return False else: return False except: return False
2.546875
3
gs_energy-prediction/scripts/reoptimize_ucc.py
cgyurik/qml_for_qchem
0
12790664
<reponame>cgyurik/qml_for_qchem<gh_stars>0 import os import sys import json # pylint: disable=wrong-import-position ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname( os.path.abspath(__file__)))) sys.path.append(ROOT_DIR) from convoQC.scripts.optimize_ucc import optimize_ucc from convoQC.utils import load_ucc_data, DATA_DIR, encode_complex_and_array # pylint: enable=wrong-import-position UCC_REOPT_DIR = DATA_DIR + 'ucc_reoptimized/' usage = ('Usage: python {} <target_filename> <init_params_filename>' .format(sys.argv[0])) if len(sys.argv) is not 3: raise Exception(usage) if not (isinstance(sys.argv[1], str) and isinstance(sys.argv[1], str)): raise TypeError('The first argument is not a string.\n' + usage) target_filename = sys.argv[1] source_filename = sys.argv[2] existing_ucc_reoptimized_files = os.listdir(UCC_REOPT_DIR) if (target_filename + '.json' in existing_ucc_reoptimized_files): print('The file data/ucc_reoptimized/{}.json exists already. Exiting.') exit() source_ucc_dict = load_ucc_data(source_filename) init_params = source_ucc_dict['params'] target_ucc_dict = optimize_ucc(target_filename, init_params) print('saving data to file.') with open(UCC_REOPT_DIR + target_filename + '.json', 'wt') as f: json.dump(target_ucc_dict, f, default=encode_complex_and_array) print(*((k, v) for k, v in target_ucc_dict.items()), sep='\n')
2.25
2
pywinutiltools/__init__.py
riag/pywinutiltools
0
12790665
<filename>pywinutiltools/__init__.py __version__ = '0.1.0' from pywinutiltools import powershell
1.109375
1
aiosqlite/__version__.py
PikalaxALT/aiosqlite
7
12790666
__version__ = "0.16.1"
1.039063
1
ProLib.py
marromlam/quick-memos
0
12790667
<reponame>marromlam/quick-memos # -*- coding: UTF-8 -*- ########################################################################################## # Importing packages. #################################################################### import numpy as np import csv import re import os import ast import math import sympy as sp import scipy as sc from scipy import stats import sys import time from termcolor import colored, cprint import subprocess from subprocess import DEVNULL, STDOUT, check_call from sympy.parsing.sympy_parser import (parse_expr,standard_transformations, implicit_multiplication) transformations = standard_transformations + (implicit_multiplication,) separ = '--------------------------------------------' sectspa = ' ' ########################################################################################## ########################################################################################## # Variable extractor class and function. ################################################# class IdentifierExtractor(ast.NodeVisitor): def __init__(self): self.ids = set() def visit_Name(self, node): self.ids.add(node.id) def VariableExtractor(FUN): extractor = IdentifierExtractor() extractor.visit(ast.parse(FUN)) extractor.ids = extractor.ids - set(vars(math)) return extractor.ids ########################################################################################## ########################################################################################## # Round uncertainty functions. ########################################################### def NumPow(X): Y = np.around(np.log10(abs(X))); Y = Y - (10 ** Y > abs(X)); return Y def UncRound(x, ux): if type(x) is float: x = np.array([[x]]) ux = np.array([[ux]]) elif type(x) is int: x = np.array([[x]]) ux = np.array([[ux]]) elif type(x) is np.ndarray: try: x.shape[1] except: x = x[:, np.newaxis] ux = ux[:, np.newaxis] n = NumPow(ux) Y = np.concatenate((x / (10 ** n), ux / (10 ** n)), axis=1) Y = np.concatenate((n, np.around(10 * Y) / 10), axis=1) # Correction if exact decimal in round. f, c = Y.shape for l in range(0, f): if Y[l][2] == 10: naux = n[l] + 1; xaux = x[l][0]; uxaux = ux[l][0] yaux = np.array([xaux, uxaux]) Y[l] = np.concatenate((naux, np.around(10*yaux)/10), axis=0) return Y def UncPrint(x, ux): try: aux1 = UncRound(x, ux) print(' ' + str(aux1[1]) + '(' + str(aux1[2]) + ') x 10[' + str(aux1[0]) + ']') except: aux1 = UncRound(x, ux); aux1 = aux1[0] print(' ' + str(aux1[1]) + '(' + str(aux1[2]) + ') x 10[' + str(aux1[0]) + ']') ########################################################################################## ########################################################################################## # Export table to LaTeX document. ######################################################## def TableToTeX(MAT, CAP, SYM, UNI, ppath): f, c = MAT.shape C = np.zeros([f, int((3 / 2) * (c))], ) for l in range(1, c, 2): B = UncRound(MAT[:, [l - 1]], MAT[:, [l]]) C[:, [int((3 / 2) * (l + 1) - 3)]] = B[:, [0]] C[:, [int((3 / 2) * (l + 1) - 2)]] = B[:, [1]] C[:, [int((3 / 2) * (l + 1) - 1)]] = B[:, [2]] with open(ppath + 'export_TeX' + '.txt', 'a') as aux: aux.write('\\begin{table}[H] \n\\centering\n') aux.write('\\begin{tabular}{|') for m in range(0, int((1 - 1 / 2) * c)): aux.write('c|') aux.write('} \\hline\n') # Headings. for n in range(0, int(c / 2)): if n == c / 2 - 1: aux.write('$ ' + SYM[n] + ' \\ \\mathrm{(' + UNI[n] + ')} $') aux.write('\\\\ \\hline \\hline\n') else: aux.write('$ ' + SYM[n] + ' \\ \\mathrm{(' + UNI[n] + ')} $ & ') # All rows and cols iterative. for o in range(0, f): for p in range(0, int(3 * c / 2 - 2), 3): if p == int(3 * c / 2 - 3): if C[o, [int(p)]] == -np.inf: aux.write('$ ( ' + str(float(C[o, [int(p + 1)]])) + ' \\pm ' \ + str(float(C[o, [int(p + 2)]])) + \ ' ) \\times 10^{\\infty} $ ') else: aux.write('$ ( ' + str(float(C[o, [int(p + 1)]])) + ' \\pm ' \ + str(float(C[o, [int(p + 2)]])) + \ ' ) \\times 10^{' + str(int(C[o, [int(p)]])) + '} $ ') else: if C[o, [int(p)]] == -np.inf: aux.write('$ ( ' + str(float(C[o, [int(p + 1)]])) + ' \\pm ' \ + str(float(C[o, [int(p + 2)]])) + \ ' ) \\times 10^{\\infty} $ & ') else: aux.write('$ ( ' + str(float(C[o, [int(p + 1)]])) + ' \\pm ' \ + str(float(C[o, [int(p + 2)]])) + \ ' ) \\times 10^{' + str(int(C[o, [int(p)]])) + '} $ & ') aux.write('\\\\ \\hline\n') # Final activities: caption and ending enviroment. aux.write('\\end{tabular}\n\\caption{' + CAP + '}\n\\end{table}\n\n\n\n') ########################################################################################## ########################################################################################## # Preview LaTeX table. ################################################################### def PreviewTableTeX(MAT, CAP, SYM, UNI, ppath): f, c = MAT.shape C = np.zeros([f, int((3 / 2) * (c))], ) for l in range(1, c, 2): B = UncRound(MAT[:, [l - 1]], MAT[:, [l]]) C[:, [int((3 / 2) * (l + 1) - 3)]] = B[:, [0]] C[:, [int((3 / 2) * (l + 1) - 2)]] = B[:, [1]] C[:, [int((3 / 2) * (l + 1) - 1)]] = B[:, [2]] with open(ppath + 'preview_TeX' + '.tex', 'w') as aux: aux.write('\\documentclass[varwidth=true,border=10pt,convert={size=640x}]{standalone}\n') aux.write('\\usepackage{graphicx,float}\n') aux.write('\\usepackage[utf8]{inputenc}') aux.write('\\usepackage[T1]{fontenc}\n') aux.write('\\begin{document}\n') aux.write('\\begin{table}[H] \n\\centering\n') aux.write('\\resizebox{12cm}{!}{\\begin{tabular}{|') for m in range(0, int((1 - 1 / 2) * c)): aux.write('c|') aux.write('} \\hline\n') # Headings. for n in range(0, int(c / 2)): if n == c / 2 - 1: aux.write('$ ' + SYM[n] + ' \\ \\mathrm{(' + UNI[n] + ')} $') aux.write('\\\\ \\hline \\hline\n') else: aux.write('$ ' + SYM[n] + ' \\ \\mathrm{(' + UNI[n] + ')} $ & ') # All rows and cols iterative. for o in range(0, f): for p in range(0, int(3 * c / 2 - 2), 3): if p == int(3 * c / 2 - 3): if C[o, [int(p)]] == -np.inf: aux.write('$ ( ' + str(float(C[o, [int(p + 1)]])) + ' \\pm ' + str(float(C[o, [int(p + 2)]])) + ' ) \\times 10^{\\infty} $ ') else: aux.write('$ ( ' + str(float(C[o, [int(p + 1)]])) + ' \\pm ' + str(float(C[o, [int(p + 2)]])) + ' ) \\times 10^{' + str(int(C[o, [int(p)]])) + '} $ ') else: if C[o, [int(p)]] == -np.inf: aux.write('$ ( ' + str(float(C[o, [int(p + 1)]])) + ' \\pm ' + str(float(C[o, [int(p + 2)]])) + ' ) \\times 10^{\\infty} $ & ') else: aux.write('$ ( ' + str(float(C[o, [int(p + 1)]])) + ' \\pm ' + str(float(C[o, [int(p + 2)]])) + ' ) \\times 10^{' + str(int(C[o, [int(p)]])) + '} $ & ') aux.write('\\\\ \\hline\n') # Final activities: caption and ending enviroment. aux.write('\\end{tabular}}\n\\caption{'+CAP+'}\n\\end{table}\n\\end{document}\n') # Comppiling check_call(['/usr/local/texlive/2017/bin/x86_64-darwin/pdflatex', ppath + 'preview_TeX.tex'], stdout=DEVNULL, stderr=STDOUT) os.system('rm preview_TeX.log') os.system('rm preview_TeX.aux') os.system('rm ' + ppath + 'preview_TeX.tex') #os.system('open -a Preview.app ' + '/Users/marcos/Documents/Python/ProjectMaker/' + 'preview_TeX.pdf') os.system('open preview_TeX.pdf') os.system('rm preview_TeX.pdf') ########################################################################################## ########################################################################################## # Wolfram. ############################################################################### def WolframEx(MAT, CAP, SYM, UNI, ppath): f, c = MAT.shape if c==4: with open(ppath + 'export_WMT' + '.txt', 'a') as aux: aux.write(separ + 'x' + separ + '\n\n$PlotTheme = "Classic";\nNeeds["ErrorBarPlots`"];\n\n') # Points. aux.write('data={\n'); p = 0 for l in range(0, f): if l == int(f - 1): aux.write('{' + str(float(MAT[l, [int(p + 0)]])) + ',' + str(float(MAT[l, [int(p + 2)]])) +'}') else: aux.write('{' + str(float(MAT[l, [int(p + 0)]])) + ',' + str(float(MAT[l, [int(p + 2)]])) + '},\n') aux.write('};\n\n') # Errorbars. aux.write('EL=ErrorListPlot[{\n'); p = 0 for o in range(0, f): if o == int(f-1): aux.write('{{' + str(float(MAT[o, [int(p + 0)]])) + ',' + str(float(MAT[o, [int(p + 2)]])) + '},ErrorBar[' + str(float(MAT[o, [int(p + 1)]])) + ',' + str(float(MAT[o, [int(p + 3)]])) + ']}') else: aux.write('{{' + str(float(MAT[o, [int(p + 0)]])) + ',' + str(float(MAT[o, [int(p + 2)]])) + '},ErrorBar[' + str(float(MAT[o, [int(p + 1)]])) + ',' + str(float(MAT[o, [int(p + 3)]])) + ']},\n') aux.write('}];\n\n') # Final activities: caption and ending enviroment. aux.write('LP = ListPlot[data];\n') aux.write('LL = ListLinePlot[data];\n') aux.write('Show[LP, LL, Frame -> True, FrameLabel -> {"' + SYM[0] + '(' + UNI[0] + ')", "' + SYM[1] + '(' + UNI[1] + ')"},AspectRatio -> 1 / GoldenRatio]\n\n') else: print(' Exporter can not export the selected data to Wolfram: bad selection.') ########################################################################################## ########################################################################################## # Load ALL variables in a database. ###################################################### def LoadVar(ppath, database): file = ppath + str(database) + '.csv'; Data = {} if os.path.isfile(file) is True: with open(file, newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=',') q = list(spamreader) print('# Loading ' + str(file) + '.') aux = np.zeros(len(q[0]) - 2, ) for l in range(0, len(q)): row = q[l]; nam = q[0] if l == 0: for m in range(0,int(len(row)/2)): Data[str(row[2*m])] = {} elif l == 1: for m in range(0,int(len(row)/2)): Data[str(nam[2*m])]['sym'] = row[2*m+0] Data[str(nam[2*m])]['uni'] = row[2*m+1] Data[str(nam[2*m])]['dat'] = np.zeros(len(q)-2,) Data[str(nam[2*m])]['unc'] = np.zeros(len(q)-2,) else: for m in range(0,int(len(row)/2)): if row[2*m+0] != '': Data[str(nam[2*m])]['dat'][l-2] = float(row[2*m+0]) else: Data[str(nam[2*m])]['dat'] = \ np.delete(Data[str(nam[2*m])]['dat'], \ l - 2 - aux[m - 1]) if row[2*m+1] != '': Data[str(nam[2*m])]['unc'][l - 2] = \ float(row[2*m+1]) else: Data[str(nam[2*m])]['unc'] = \ np.delete(Data[str(nam[2*m])]['unc'], \ l - 2 - aux[m - 1]) aux[m - 1] = aux[m - 1] + 1 print(' Load file success.') if len(Data) is 0: print(' Nothing to load.') Data = {} else: print(' Database does not exist!') Data = {} return Data ########################################################################################## ########################################################################################## # Store ONE variable in a database. ###################################################### def StoreVar(vardata, varname, ppath, database): Data = LoadVar(ppath,database) print(' Creating label in database dictionary.') Data[str(varname)] = vardata # Searching the biggest vector in Data aux1 = 0 for l in range(0, len(Data.keys())): aux1 = max(len(Data[list(Data.keys())[l]]['dat']), aux1) # Headers of data table for l in range(0, len(Data.keys())): if len(Data.keys()) == 1: aux = list(Data.keys())[l] rowNAME = str(aux) + ',' + ' ' + '\n' rowSYUN = str(Data[list(Data.keys())[l]]['sym']) + ',' + \ str(Data[list(Data.keys())[l]]['uni']) + '\n' print(' Variable name(s) are stored.') else: if l == 0: aux = list(Data.keys())[l] rowNAME = str(aux) + ',' + ' ' rowSYUN = str(Data[list(Data.keys())[l]]['sym']) + ',' + \ str(Data[list(Data.keys())[l]]['uni']) print(' Variable symbols and units are stored.') elif l == len(Data.keys()) - 1: aux = list(Data.keys())[l] rowNAME = rowNAME + ',' + str(aux) + ',' + ' ' + '\n' rowSYUN = rowSYUN + ',' + \ str(Data[list(Data.keys())[l]]['sym']) + ',' + \ str(Data[list(Data.keys())[l]]['uni']) + '\n' else: aux = list(Data.keys())[l] rowNAME = rowNAME + ',' + str(aux) + ',' + ' ' rowSYUN = rowSYUN + ',' + Data[list(Data.keys())[l]]['sym'] + \ ',' + Data[list(Data.keys())[l]]['uni'] with open(ppath + database + '.csv', 'w') as aux: aux.write(rowNAME) aux.write(rowSYUN) # Writing data and uncertainty row by row for l in range(0, max(aux1, len(vardata['dat']))): for m in range(0, len(Data.keys())): if len(Data.keys()) == 1: # 1 var rowDAUN = str(float(Data[list(Data.keys())[m]]['dat'][l])) + \ ',' + str(float(Data[list(Data.keys())[m]]['unc'][l])) + '\n' aux.write(rowDAUN) else: if m == 0: if l <= len((Data[list(Data.keys())[m]]['dat'])) - 1: rowDAUN = \ str(float(Data[list(Data.keys())[m]]['dat'][l])) + ',' + \ str(float(Data[list(Data.keys())[m]]['unc'][l])) else: rowDAUN = \ '' + ',' + \ '' elif m == len(Data.keys()) - 1: if l <= len((Data[list(Data.keys())[m]]['dat'])) - 1: rowDAUN = rowDAUN + ',' + \ str(float(Data[list(Data.keys())[m]]['dat'][l])) + ',' + \ str(float(Data[list(Data.keys())[m]]['unc'][l])) + '\n' else: rowDAUN = rowDAUN + ',' + \ '' + ',' + \ '' + '\n' aux.write(rowDAUN) else: if l <= len((Data[list(Data.keys())[m]]['dat'])) - 1: rowDAUN = rowDAUN + ',' + \ str(float(Data[list(Data.keys())[m]]['dat'][l])) + ',' + \ str(float(Data[list(Data.keys())[m]]['unc'][l])) else: rowDAUN = rowDAUN + ',' + \ '' + ',' + \ '' print(' Variable data and uncertainty are stored.') ########################################################################################## ########################################################################################## # Disp a ProjectMaker variable. ########################################################## def dispu(var): try: aux1 = ''; aux2 = ''; aux3 = '' for l in range(0,len(var)): aux1 = aux1 + 'Var[' + str(l+1) + '] - Symbol: ' + var[l]["sym"] + '\n' aux1 = aux1 + 'Var[' + str(l+1) + '] - Units : ' + var[l]["uni"] + '\n' aux2 = aux2 + 'd({})'.format(var[l]["sym"]).rjust(12) aux2 = aux2 + 'u({})'.format(var[l]["sym"]).rjust(12) aux3 = aux3 + '{}'.format('-').rjust(12,'-') aux3 = aux3 + '{}'.format('-').rjust(12,'-') try: len(var[l]['dat']) == len(var[0]['dat']) except: print('Variables have not the same lenght. So no printing.') print('Variables to print metadata.') print('The number of events is ' + str(len(var[0]['dat']))) print(aux1); print(aux3); print(aux2); print(aux3) for m in range(0, len(var[0]['dat'])): aux4 = '' for l in range(0,len(var)): aux4 = aux4 + '{}'.format(str(var[l]["dat"][m])).rjust(12) aux4 = aux4 + '{}'.format(str(var[l]["unc"][m])).rjust(12) print(aux4) print(aux3 + '\n') except: print('Status Failure.') def disp(var): try: aux1 = ''; aux2 = ''; aux3 = '' for l in range(0,len(var)): aux1 = aux1 + 'Var[' + str(l+1) + '] - Symbol: ' + var[l]["sym"] + '\n' aux1 = aux1 + 'Var[' + str(l+1) + '] - Units : ' + var[l]["uni"] + '\n' aux2 = aux2 + 'd({})'.format(var[l]["sym"]).rjust(15) aux3 = aux3 + '{}'.format('-').rjust(15,'-') try: len(var[l]['dat']) == len(var[0]['dat']) except: print('Variables have not the same lenght. So no printing.') print('Variables to print metadata.') print('The number of events is ' + str(len(var[0]['dat']))) print(aux1); print(aux3); print(aux2); print(aux3) for m in range(0, len(var[0]['dat'])): aux4 = '' for l in range(0,len(var)): aux4 = aux4 + '{}'.format(str(var[l]["dat"][m])).rjust(15) print(aux4) print(aux3 + '\n') except: print('Status Failure.') ########################################################################################## def SetUp(): print('Setting Current Path is needed. Set it writting:') print('CURRENTPATH = "your/path"\n') aux1 = 'Each time your database is modified you must refresh Data variable.' aux2 = 'The very first time importing database is compulsury. This can be done as:' aux3 = 'Data = LoadVar(ppath,"Data")' print(aux1 + aux2 + '\n' + aux3 + '\n') def write_to_clipboard(output): process = subprocess.Popen( 'pbcopy', env={'LANG': 'en_US.UTF-8'}, stdin=subprocess.PIPE) process.communicate(output.encode('utf-8')) def read_from_clipboard(): return subprocess.check_output( 'pbpaste', env={'LANG': 'en_US.UTF-8'}).decode('utf-8')
2.015625
2
app/services/vaccine_availability_timeslot.py
rayraykay/VaxFinder-backend
31
12790668
<gh_stars>10-100 from typing import List, Optional, Type, Union from uuid import UUID from loguru import logger from app.schemas.vaccine_availability import ( VaccineAvailabilityTimeslotCreateRequest, VaccineAvailabilityTimeslotCreateSprocParams, VaccineAvailabilityTimeslotResponse, VaccineAvailabilityTimeslotUpdateRequest, ) from app.services.base import BaseService from app.services.exceptions import ( InternalDatabaseError, InvalidAuthenticationKeyForRequest, ) class VaccineAvailabilityTimeslotService( BaseService[ VaccineAvailabilityTimeslotResponse, VaccineAvailabilityTimeslotCreateSprocParams, VaccineAvailabilityTimeslotUpdateRequest, ] ): read_procedure_name = "vaccine_availability_timeslots_Read" read_procedure_id_parameter = "id" create_procedure_name = "vaccine_availability_timeslots_Create" update_procedure_name = "vaccine_availability_timeslots_Update" update_procedure_id_parameter = "id" delete_procedure_name = "vaccine_availability_timeslots_Delete" delete_procedure_id_parameter = "id" @property def table(self) -> str: return "vaccine_availability_timeslot" @property def db_response_schema(self) -> Type[VaccineAvailabilityTimeslotResponse]: return VaccineAvailabilityTimeslotResponse @property def create_response_schema( self, ) -> Type[VaccineAvailabilityTimeslotCreateSprocParams]: return VaccineAvailabilityTimeslotCreateSprocParams @property def update_response_schema( self, ) -> Type[VaccineAvailabilityTimeslotUpdateRequest]: return VaccineAvailabilityTimeslotUpdateRequest async def get_multi( self, ) -> List[VaccineAvailabilityTimeslotResponse]: raise NotImplementedError("Get multi is not available for timeslots") async def get_by_vaccine_availability_id( self, vaccine_availability_id: UUID, auth_key: Optional[UUID] = None ) -> Optional[List[VaccineAvailabilityTimeslotResponse]]: procedure_name = "vaccine_availability_timeslots_ReadByParent" ret_value, db_rows = await self._db.sproc_fetch_all( procname=procedure_name, parameters={"parentID": vaccine_availability_id}, auth_key=auth_key, ) if db_rows is None: # We are assuming that any error on the stored procedure is due # to the fact that the object doesn't exist. return [] if ret_value == -1: raise InternalDatabaseError(f"Failed to execute {procedure_name}") return [VaccineAvailabilityTimeslotResponse(**o) for o in db_rows]
2.125
2
30os.py
Ulyssesss/Learn-Python
1
12790669
import os print(os.name) print(os.uname()) print(os.environ) print(os.environ.get('PATH')) p = os.path.join('.', 'test_dir') print(p) os.mkdir(p) os.rmdir(p)
2.421875
2
azext_concierge/concierge/common/shell.py
egineering-llc/azure-cli-concierge-extension
1
12790670
import os, subprocess def execute_shell_process(message, command): print(message) env_copy = os.environ.copy() output = subprocess.run(command, env=env_copy, shell=True) if output.returncode == 0: print("Success!") else: print("Oops! Please try again.")
2.75
3
tpot/models/df_caso_3_3_tpot_pipeline.py
nachovazquez98/COVID-19_Paper
0
12790671
<reponame>nachovazquez98/COVID-19_Paper import numpy as np import pandas as pd from sklearn.linear_model import SGDClassifier from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, make_union from sklearn.svm import LinearSVC from tpot.builtins import StackingEstimator # NOTE: Make sure that the outcome column is labeled 'target' in the data file tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) features = tpot_data.drop('target', axis=1) training_features, testing_features, training_target, testing_target = \ train_test_split(features, tpot_data['target'], random_state=None) # Average CV score on the training set was: 0.7222949874965342 exported_pipeline = make_pipeline( StackingEstimator(estimator=SGDClassifier(alpha=0.0, eta0=0.1, fit_intercept=True, l1_ratio=0.0, learning_rate="constant", loss="hinge", penalty="elasticnet", power_t=10.0)), LinearSVC(C=0.1, dual=False, loss="squared_hinge", penalty="l2", tol=1e-05) ) exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict(testing_features)
2.765625
3
rates/updater/updater.py
luisparravicini/backtesting-learning
0
12790672
<reponame>luisparravicini/backtesting-learning from datetime import datetime import ccxt import time import re from .db import Database from .exchange import build_exchange, timestamps_to_seconds, secs_to_millis class Updater: def __init__(self, exchange_name, symbol, db_base_path): self.exchange = build_exchange(exchange_name) self.symbol = symbol self.db = Database(exchange_name, self.symbol, db_base_path) self.sleep_time = 45 def fetch_ohlcv(self): since = self.db.newest_timestamp() # some exchanges use since as an exclusive limit # we ask again for the last candle in case the last time we # got that data, it was not closed yet and contained partial data if since is not None: since -= 1 # we store timestamps in seconds, ccxt uses millis since = secs_to_millis(since) try: data = self.exchange.fetch_ohlcv(self.symbol, timeframe='1m', since=since) timestamps_to_seconds(data) except ccxt.NetworkError as err: print(f'ERROR: {err}') data = [] return data def fetch_and_save(self): data = self.fetch_ohlcv() if len(data) > 0: self.db.add(data) for datum in data: date = datetime.fromtimestamp(datum[0]).strftime('%Y-%m-%d %H:%M:%S') print(date, datum) print() def run(self): print(f'sleep: {self.sleep_time}') while True: self.fetch_and_save() time.sleep(self.sleep_time)
2.625
3
rlpython/embed.py
ukleinek/rlpython
4
12790673
<reponame>ukleinek/rlpython<gh_stars>1-10 import inspect import logging import os def embed(single_threaded=False, bind='', permissions='600', multi_session=False, started_from_cmd_line=False, print=print, debug=False, **repl_kwargs): from rlpython.frontend import start_frontend from rlpython.repl_server import ReplServer from rlpython.repl import Repl # debug mode if debug: logging.basicConfig(level=logging.DEBUG) os.environ['RLPYTHON_DEBUG'] = 'True' # use namespace of caller instead of own if nothing is set if 'globals' not in repl_kwargs and 'locals' not in repl_kwargs: stack = inspect.stack() frame_info = stack[1] repl_kwargs['globals'] = frame_info.frame.f_globals repl_kwargs['locals'] = frame_info.frame.f_locals # setup warnings if 'warnings' not in repl_kwargs: repl_kwargs['warnings'] = [] if not started_from_cmd_line: repl_kwargs['warnings'].append('running single threaded: cancellation using CTRL-C will not work') # NOQA if single_threaded and not bind and not started_from_cmd_line: repl_kwargs['warnings'].append('running single threaded: Use "!" to cancel multi line statements') # NOQA # network embed if bind: single_threaded = True # FIXME # single threaded if single_threaded: repl_server = ReplServer( url=bind, permissions=permissions, repl_domain=Repl.DOMAIN.NETWORK, print=print, **repl_kwargs, ) if multi_session: return repl_server try: repl_server.setup() repl_server.print_bind_informations() repl_server.run_single_session(**repl_kwargs) except OSError as exception: exit('rlpython: ERROR: {}'.format(exception.args[1])) finally: repl_server.shutdown() # multi threaded else: raise NotImplementedError # local embed else: # single threaded if single_threaded: repl = Repl(**repl_kwargs) try: repl.interact() finally: repl.shutdown() # multi threaded else: repl_server = ReplServer( url='localhost:0', permissions=permissions, repl_domain=Repl.DOMAIN.LOCAL_NETWORK, ) repl_server.setup() port = repl_server.get_port() start_frontend(port) repl_server.run_single_session(**repl_kwargs)
2.109375
2
jsonconf/tests/commandLineTests.py
bponsler/jsonconf
0
12790674
from unittest import TestCase from jsonconf import CommandLineParser class ConfigTests(TestCase): def setUp(self): pass def test_constructor(self): parser = CommandLineParser() self.assertTrue(parser is not None) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), []) self.assertEqual(parser.getProgram(), None) def test_emptyArgs(self): args = [] parser = CommandLineParser() parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), []) self.assertEqual(parser.getProgram(), None) def test_singleArg(self): args = ["/usr/bin/whatever"] parser = CommandLineParser() parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), []) self.assertEqual(parser.getProgram(), "/usr/bin/whatever") def test_extraArgs(self): extraArgs = ["one", "two", "-d", "--ignore"] args = ["/usr/bin/whatever"] args.extend(extraArgs) parser = CommandLineParser() parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), extraArgs) self.assertEqual(parser.getProgram(), "/usr/bin/whatever") def test_keyArgs(self): kwargs = { "one": '1', "two": "2", "-d": "hello", "--ignore": '5', } extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.parse(args) self.assertEqual(parser.getKeywordArguments(), kwargs) self.assertEqual(parser.getExtraArguments(), extraArgs) self.assertEqual(parser.getProgram(), "/usr/bin/whatever") def test_complexKey(self): kwargs = { "one.two.three": '1', } extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.parse(args) self.assertEqual(parser.getKeywordArguments(), kwargs) self.assertEqual(parser.getExtraArguments(), extraArgs) self.assertEqual(parser.getProgram(), "/usr/bin/whatever") def test_both(self): kwargs = { "one": '1', "two.three": '1', } extraArgs = ["--test", "-v"] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.parse(args) self.assertEqual(parser.getKeywordArguments(), kwargs) self.assertEqual(parser.getExtraArguments(), extraArgs) self.assertEqual(parser.getProgram(), "/usr/bin/whatever") def test_requiredTest(self): kwargs = {} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.requireKey("verbose") self.assertRaises(Exception, parser.parse, args) def test_requiredTest2(self): kwargs = {"--verbose": 1} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.requireKey("--verbose") parser.parse(args) def test_invalidConverter(self): kwargs = {"--verbose": "hello"} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() # Cannot parse string to int parser.requireKey("--verbose", int) self.assertRaises(Exception, parser.parse, args) def test_invalidConverter(self): kwargs = {"--verbose": "1"} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.requireKey("--verbose", int) parser.parse(args) def test_renameKeywordArguments(self): kwargs = {"--verbose": "1"} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.get("verbose"), "1") self.assertEqual(parser.getExtraArguments(), []) kwargs = {"-v": "1"} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.get("verbose"), "1") self.assertEqual(parser.getExtraArguments(), []) kwargs = {"verbose": "1"} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.get("verbose"), "1") self.assertEqual(parser.getExtraArguments(), []) kwargs = {"verb": "1"} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.get("verbose"), "1") self.assertEqual(parser.getExtraArguments(), []) kwargs = {"verbose": "1", "--verbose": "1", "-v": "1", "verb": "1"} extraArgs = [] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.get("verbose"), "1") self.assertEqual(parser.getExtraArguments(), []) def test_renameExtraArguments(self): kwargs = {} extraArgs = ["-v"] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), ["verbose"]) extraArgs = ["--verbose"] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), ["verbose"]) extraArgs = ["verbose"] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), ["verbose"]) extraArgs = ["verb"] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), ["verbose"]) extraArgs = ["-v", "--verbose", "verb", "verbose"] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {}) self.assertEqual(parser.getExtraArguments(), ["verbose"]) def test_renameOtherArgs(self): kwargs = {"test": "255"} extraArgs = ["--verbose", "otherArg"] args = ["/usr/bin/whatever"] args.extend(map(lambda i: "%s=%s" % (i[0], i[1]), kwargs.items())) args.extend(extraArgs) parser = CommandLineParser() parser.renameKeys("verbose", ["-v", "--verbose", "verbose", "verb"]) parser.parse(args) self.assertEqual(parser.getKeywordArguments(), {"test": "255"}) self.assertEqual(parser.getExtraArguments(), ["verbose", "otherArg"])
3.125
3
tests/test_sfm2cldf.py
clld/pydictionaria
1
12790675
import unittest import pydictionaria.sfm2cldf as s import clldutils.sfm as sfm class SplitMarkersWithSeparators(unittest.TestCase): def test_lump_everything_together_if_seperator_isnt_found(self): sep = 'sep' input_markers = [ ('marker1', 'value1'), ('marker2', 'value2')] expected = [ [('marker1', 'value1'), ('marker2', 'value2')]] self.assertEqual( list(s.group_by_separator(sep, input_markers)), expected) def test_split_groups_on_separator(self): sep = 'sep' input_markers = [ ('marker1', 'value1'), ('sep', 'value'), ('marker2', 'value2')] expected = [ [('marker1', 'value1')], [('sep', 'value'), ('marker2', 'value2')]] self.assertEqual( list(s.group_by_separator(sep, input_markers)), expected) class SplitListByPredicate(unittest.TestCase): def test_no_element_matches_pred(self): def iseven(x): return x % 2 == 0 elements = [1, 3, 5] even, odd = s.split_by_pred(iseven, elements) self.assertEqual(even, []) self.assertEqual(odd, [1, 3, 5]) def test_all_elements_match_pred(self): def iseven(x): return x % 2 == 0 elements = [2, 4, 6] even, odd = s.split_by_pred(iseven, elements) self.assertEqual(even, [2, 4, 6]) self.assertEqual(odd, []) def test_some_elements_match_pred(self): def iseven(x): return x % 2 == 0 elements = [1, 2, 3, 4] even, odd = s.split_by_pred(iseven, elements) self.assertEqual(even, [2, 4]) self.assertEqual(odd, [1, 3]) class GenerateSequentialIDs(unittest.TestCase): def test_sequence_starts_with_one(self): gen = s.IDGenerator() first_id = gen.next_id() self.assertEqual(first_id, '000001') def test_sequence_counts_up(self): gen = s.IDGenerator() first_id = gen.next_id() second_id = gen.next_id() self.assertEqual(first_id, '000001') self.assertEqual(second_id, '000002') def test_adding_prefix(self): gen = s.IDGenerator('PRE') first_id = gen.next_id() second_id = gen.next_id() self.assertEqual(first_id, 'PRE000001') self.assertEqual(second_id, 'PRE000002') class LinkProcessing(unittest.TestCase): def setUp(self): id_index = { 'OLDID1': 'NEWID1', 'OLDID2': 'NEWID2', 'OLDID3': 'NEWID3'} label_index = { 'NEWID1': 'label 1', 'NEWID2': 'label 2', 'NEWID3': 'label 3'} link_markers = {'linkmarker1', 'linkmarker2'} link_regex = r'\bOLDID\d+\b' self.link_processor = s.LinkProcessor( id_index, label_index, link_markers, link_regex) def test_entries_without_links_dont_change(self): original_entry = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'no link'), ('othermarker', 'no link')]) expected = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'no link'), ('othermarker', 'no link')]) new_entry = self.link_processor(original_entry) self.assertEqual(new_entry, expected) def test_single_link_is_replaced(self): original_entry = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: OLDID1'), ('othermarker', 'no link')]) expected = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: [label 1](NEWID1)'), ('othermarker', 'no link')]) new_entry = self.link_processor(original_entry) self.assertEqual(new_entry, expected) def test_links_in_different_markers_are_replaced(self): original_entry = sfm.Entry([ ('linkmarker1', 'link: OLDID2'), ('linkmarker2', 'link: OLDID1'), ('othermarker', 'no link')]) expected = sfm.Entry([ ('linkmarker1', 'link: [label 2](NEWID2)'), ('linkmarker2', 'link: [label 1](NEWID1)'), ('othermarker', 'no link')]) new_entry = self.link_processor(original_entry) self.assertEqual(new_entry, expected) def test_links_in_same_marker_are_replaced(self): original_entry = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link 1: OLDID1; link 2: OLDID2'), ('othermarker', 'no link')]) expected = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link 1: [label 1](NEWID1); link 2: [label 2](NEWID2)'), ('othermarker', 'no link')]) new_entry = self.link_processor(original_entry) self.assertEqual(new_entry, expected) def test_same_link_twice_in_the_same_marker(self): original_entry = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link 1: OLDID1; link 2: OLDID1'), ('othermarker', 'no link')]) expected = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link 1: [label 1](NEWID1); link 2: [label 1](NEWID1)'), ('othermarker', 'no link')]) new_entry = self.link_processor(original_entry) self.assertEqual(new_entry, expected) def test_only_process_links_in_specified_markers(self): original_entry = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: OLDID1'), ('othermarker', 'link: OLDID2')]) expected = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: [label 1](NEWID1)'), ('othermarker', 'link: OLDID2')]) new_entry = self.link_processor(original_entry) self.assertEqual(new_entry, expected) def test_ignore_regex_matches_that_are_not_in_the_index(self): original_entry = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: OLDID1000'), ('othermarker', 'no link')]) expected = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: OLDID1000'), ('othermarker', 'no link')]) new_entry = self.link_processor(original_entry) self.assertEqual(new_entry, expected) def test_dont_mutate_original_entry(self): original_entry = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: OLDID1'), ('othermarker', 'no link')]) expected = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: OLDID1'), ('othermarker', 'no link')]) _ = self.link_processor(original_entry) self.assertEqual(original_entry, expected) def test_carry_over_attributes(self): original_entry = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: OLDID1'), ('othermarker', 'no link')]) original_entry.id = 'I have an ID, too!' expected = sfm.Entry([ ('linkmarker1', 'no link'), ('linkmarker2', 'link: [label 1](NEWID1)'), ('othermarker', 'no link')]) expected.id = 'I have an ID, too!' new_entry = self.link_processor(original_entry) self.assertEqual(new_entry, expected) class MediaCaptionExtraction(unittest.TestCase): def test_find_caption(self): entry = sfm.Entry([ ('marker1', 'val1'), ('pc', 'image-name'), ('cap', 'caption'), ('marker2', 'val2')]) caption_finder = s.CaptionFinder(['pc'], 'cap') _ = caption_finder(entry) expected = {'image-name': 'caption'} self.assertEqual(caption_finder.captions, expected) def test_find_multiple_captions(self): entry = sfm.Entry([ ('marker1', 'val1'), ('pc', 'image1-name'), ('cap', 'caption1'), ('marker2', 'val2'), ('pc', 'image2-name'), ('cap', 'caption2'), ('marker3', 'val3')]) caption_finder = s.CaptionFinder(['pc'], 'cap') _ = caption_finder(entry) expected = { 'image1-name': 'caption1', 'image2-name': 'caption2'} self.assertEqual(caption_finder.captions, expected) def test_captions_need_to_be_adjacent(self): entry = sfm.Entry([ ('marker1', 'val1'), ('pc', 'image-name'), ('marker2', 'val2'), ('cap', 'caption'), ('marker3', 'val3')]) caption_finder = s.CaptionFinder(['pc'], 'cap') _ = caption_finder(entry) expected = {} self.assertEqual(caption_finder.captions, expected) class MapSfmToCldf(unittest.TestCase): def setUp(self): self.mapping = {'marker1': 'Column1', 'marker2': 'Column2'} def test_map_id(self): sfm_entry = sfm.Entry() sfm_entry.id = 'id1' cldf_row = s.sfm_entry_to_cldf_row(None, self.mapping, {}, set(), sfm_entry) self.assertEqual(cldf_row, {'ID': 'id1'}) def test_map_columns(self): sfm_entry = sfm.Entry([('marker1', 'value1'), ('marker2', 'value2')]) sfm_entry.id = 'id1' cldf_row = s.sfm_entry_to_cldf_row(None, self.mapping, {}, set(), sfm_entry) self.assertEqual( cldf_row, {'ID': 'id1', 'Column1': 'value1', 'Column2': 'value2'}) def test_ignore_unexpected_sfm_markers(self): sfm_entry = sfm.Entry([('marker1', 'value1'), ('unknown', 'value2')]) sfm_entry.id = 'id1' cldf_row = s.sfm_entry_to_cldf_row(None, self.mapping, {}, set(), sfm_entry) self.assertEqual( cldf_row, {'ID': 'id1', 'Column1': 'value1'}) def test_map_entry_id(self): sfm_entry = sfm.Entry([('marker1', 'value1')]) sfm_entry.id = 'id1' sfm_entry.entry_id = 'entry1' cldf_row = s.sfm_entry_to_cldf_row(None, self.mapping, {}, set(), sfm_entry) self.assertEqual( cldf_row, {'ID': 'id1', 'Column1': 'value1', 'Entry_ID': 'entry1'}) def test_map_sense_ids(self): sfm_entry = sfm.Entry([('marker1', 'value1')]) sfm_entry.id = 'id1' sfm_entry.sense_ids = ['sense1', 'sense2'] cldf_row = s.sfm_entry_to_cldf_row(None, self.mapping, {}, set(), sfm_entry) self.assertEqual( cldf_row, {'ID': 'id1', 'Column1': 'value1', 'Sense_IDs': ['sense1', 'sense2']}) def test_map_language_id(self): sfm_entry = sfm.Entry([('marker1', 'value1')]) sfm_entry.id = 'id1' sfm_entry.sense_ids = ['sense1', 'sense2'] cldf_row = s.sfm_entry_to_cldf_row(None, self.mapping, {}, set(), sfm_entry, 'lang1') self.assertEqual( cldf_row, {'ID': 'id1', 'Column1': 'value1', 'Sense_IDs': ['sense1', 'sense2'], 'Language_ID': 'lang1'}) def test_map_media_ids(self): sfm_entry = sfm.Entry([('marker1', 'value1')]) sfm_entry.id = 'id1' sfm_entry.media_ids = ['file1', 'file2'] cldf_row = s.sfm_entry_to_cldf_row(None, self.mapping, {}, set(), sfm_entry) self.assertEqual( cldf_row, {'ID': 'id1', 'Column1': 'value1', 'Media_IDs': ['file1', 'file2']}) def test_gloss(): sfm_entry = sfm.Entry([('ge', 'abc\tdef')]) cldf_row = s.sfm_entry_to_cldf_row(None, {'ge': 'Gloss'}, {}, set(), sfm_entry) assert cldf_row['Gloss'] == 'abc\tdef' cldf_row = s.sfm_entry_to_cldf_row('ExampleTable', {'ge': 'Gloss'}, {}, set(), sfm_entry) assert cldf_row['Gloss'] == ['abc', 'def'] def test_cf(): sfm_entry = sfm.Entry([('cf', 'val1'), ('cf', 'val2;val3')]) cldf_row = s.sfm_entry_to_cldf_row('EntryTable', {'cf': 'Entry_IDs'}, {}, {'Entry_IDs'}, sfm_entry) assert cldf_row['Entry_IDs'] == ['val1', 'val2', 'val3'] def test_multimarkers(): sfm_entry = sfm.Entry([('cf', 'val1'), ('cf', 'val2')]) cldf_row = s.sfm_entry_to_cldf_row(None, {'cf': 'See_Also'}, {}, set(), sfm_entry) assert cldf_row['See_Also'] == 'val1 ; val2'
2.921875
3
ANLY-501-INTRO/LAB5-cluster/00-TWO-VARIABLE-NORMAL-DIST.py
rexarski/ggtown-ds
0
12790676
##------------------------------------------- ## 2 VARIABLE NORMAL DISTIBUTION ##------------------------------------------- import matplotlib.pyplot as plt import numpy as np #USER INPUTS FUNC=2 FS=18 #FONT SIZE CMAP='hsv' #'RdYlBu' #normal distribution param ux=0.5; uy=0.0 sx=2.0; sy=1.0 #STD-DEV rho=0.5; #[0,1) RHO=PEARSON CORRELATION u=np.array([[ux],[uy]]) #MEAN VECTOR u=[ux,uy] s=np.array([[sx**2.0,rho*sy*sx],[rho*sy*sx,sy**2.0]]) #COVARIANCE METRIC #GENERATE POINTS SAMPLED FROM DISTRIBUTION xp, yp = np.random.multivariate_normal(u.reshape(2), s, 1000).T # DEFINE FUNCTION def N(x, y): out=1.0/(2*3.1415*sx*sy*(1-rho**2.0)**0.5) out=out*np.exp(-(((x-ux)/sx)**2.0-2*rho*((x-ux)/sx)*((y-uy)/sy)+((y-uy)/sy)**2.0)/(2*(1-rho**2))) return out #MESH-1 (SMALLER) L=3*max(sx,sy) xmin=-L; xmax=L; ymin=-L; ymax=L x,y = np.meshgrid(np.linspace(xmin,xmax,20),np.linspace(ymin,ymax,20)) #MESH-2 (DENSER) X, Y = np.meshgrid(np.linspace(xmin, xmax, 40), np.linspace(ymin, ymax, 40)) #SURFACE PLOT fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) ax.set_xlabel('x', fontsize=FS); ax.set_ylabel('y', fontsize=FS); ax.set_zlabel('p(x,y)', fontsize=FS) surf=ax.plot_surface(X, Y, N(X, Y), cmap=CMAP) ax.scatter(xp, yp, 1.1*np.max(N(X, Y)) , '.') plt.show(); #SCATTER PLOT plt.plot(xp, yp,'.') #CONTOUR PLOT # plt.axis('equal') plt.contour(X, Y, N(X, Y), 20, cmap=CMAP); plt.show();
2.875
3
monhorn/console.py
EntySec/Monhorn
0
12790677
<reponame>EntySec/Monhorn<gh_stars>0 """ MIT License Copyright (c) 2020-2022 EntySec Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .plugins import Plugins from hatsploit.core.cli.badges import Badges from hatsploit.lib.runtime import Runtime from hatsploit.lib.session import Session from hatsploit.lib.commands import Commands from pex.fs import FS class Console(Plugins, Badges, Runtime, Commands, FS): """ Subclass of monhorn module. This subclass of monhorn module is intended for providing Monhorn main console. """ prompt = '%linemonhorn%end > ' core_commands = [ ('exit', 'Terminate Monhorn session.'), ('help', 'Show available commands.'), ('quit', 'Stop interaction.') ] commands = {} def check_session(self, session: Session) -> bool: """ Check is session alive. :param Session session: session to check :return bool: True if session is alive """ if session.channel.terminated: self.print_warning("Connection terminated.") session.close() return False return True def start_monhorn(self, session: Session) -> None: """ Start Monhorn. :param Session session: session to start Monhorn for :return None: None """ commands = session.monhorn + 'commands/' + session.details['Platform'].lower() exists, is_dir = self.exists(commands) if exists and not is_dir: self.commands.update( self.load_commands(commands) ) commands = session.monhorn + 'commands/generic' exists, is_dir = self.exists(commands) if exists and not is_dir: self.commands.update( self.load_commands(commands) ) for command in self.commands: self.commands[command].session = session def monhorn_console(self, session: Session) -> None: """ Start Monhorn console. :param Session session: session to start Monhorn console for :return None: None """ self.start_monhorn(session) if self.check_session(session): while True: result = self.catch(self.monhorn_shell, [session]) if result is not Exception and result: break def monhorn_shell(self, session: Session) -> bool: """ Start Monhorn shell. :param Session session: session to start Monhorn shell for :return bool: True if Monhorn shell completed """ command = self.input_empty(self.prompt) if command: if command[0] == 'quit': return True elif command[0] == 'help': self.print_table("Core Commands", ('Command', 'Description'), *self.core_commands) self.show_commands(self.commands) elif command[0] == 'exit': session.send_command("exit") session.channel.terminated = True return True else: self.check_session(session) self.execute_custom_command(command, self.commands) return False
1.875
2
irida_uploader_cl/parsers/miniseq/__init__.py
duanjunhyq/irida_uploader_cl
0
12790678
<reponame>duanjunhyq/irida_uploader_cl from irida_uploader_cl.parsers.miniseq.parser import Parser
1.039063
1
ETM/ETM.py
BlackmanWhite/Easy-Text-Menu-ETM
2
12790679
#!/usr/bin/env python #-*- coding:utf-8 -*- __author__ = ('<NAME> (<NAME>)') __version__ = ('3.5') __license__ = ('GNU General Public License v3.0') opt = [] index = 1 class Menu(): def __init__(self, title, character, char_length): self.title = title self.character = character self.char_length = int(char_length) def change_title(self, new_title): self.title = new_title def print_menu(self): return print('{0}{1}{0}'.format(self.character*self.char_length, self.title)) def print_options(self): option_n = 1 for Option in opt: print('[{}] {}'.format(option_n, Option.option)) option_n += 1 def print_all(self): self.print_menu() self.print_options() def add_option(self, option, command): o = Option(option, command) opt.append(o) def remove_option(self, _option): for Option in opt: if Option.option == _option: opt.remove(Option) def clear_option(self): opt.clear() def get_input(self): usr = input('> ') found = False for Option in opt: if usr == str(Option.index): found = True Option.command() if found == True: pass else: print("Invalid command") def about(self): return print('Made by {}\nVersion: {}\nLicense: {}'.format(__author__,__version__,__license__)) class Option(): def __init__(self, option, command): global index self.option = option self.command = command self.index = index opt.append(self) index += 1
3.546875
4
tests/test_engine.py
adithyavis/pywarm
194
12790680
<reponame>adithyavis/pywarm<filename>tests/test_engine.py # 08-31-2019; """ Test cases for warm.engine. """ import torch import torch.nn as nn import torch.nn.functional as F import copy from pathlib import Path import sys sys.path.append(str(Path(__file__).parent.parent)) from warm import engine def test_set_get_default_parent(): a = nn.Identity() b = nn.Identity() engine.set_default_parent(a) assert engine.get_default_parent() is a, 'get_default_parent result mismatchs set_default_parent.' engine.set_default_parent(b) assert engine.get_default_parent() is b, 'get_default_parent result mismatchs set_default_parent.' def test_auto_name(): a = nn.Identity() for i in range(10): assert engine._auto_name('test', a) == f'test_{i+1}', 'new calls to _auto_name failed to increment name count.' a(None) # test if forward pre hook is triggered to reset names assert engine._auto_name('test', a) == 'test_1', 'forward_pre_hook did not work.' def test_initialize(): a = nn.Parameter(torch.zeros(3, 4)) b = nn.Parameter(torch.zeros(3, 4)) c = nn.Parameter(torch.zeros(3, 4)) torch.manual_seed(1) engine.initialize_(a, 'normal_') torch.manual_seed(1) nn.init.normal_(b) assert torch.equal(a, b), 'initialize_ with str spec did not work correctly.' assert not torch.equal(a, c), 'initialize_ with str spec did not work.' torch.manual_seed(1) engine.initialize_(c, nn.init.normal_) assert torch.equal(a, c), 'initialize_ with function spec did not work correctly.' def test_activate(): a = torch.randn(3, 4) b = copy.deepcopy(a) a = engine.activate(a, 'hardshrink') b = F.hardshrink(b) assert torch.equal(a, b), 'activate with str spec did not work correctly.' a = engine.activate(a, 'relu') b = F.relu(b) assert torch.equal(a, b), 'activate with str spec did not work correctly.' def test_permute(): x = torch.randn(1, 2, 3) y = engine.permute(x, 'BCD', 'DCB') assert list(y.shape) == [3, 2, 1], 'permute 3d tensor with str in_shape and str out_shape did not work correctly.' y = engine.permute(x, 'BCD', None) assert list(y.shape) == [1, 2, 3], 'permute tensor with None out_shape did not work corretly.' y = engine.permute(x, 'BCD', [1, 0, 2]) assert list(y.shape) == [2, 1, 3], 'permute tensor with list out_shape did not work corretly.' x = torch.randn(1, 2, 3, 4) y = engine.permute(x, 'BCD', 'DCB') assert list(y.shape) == [3, 4, 2, 1], 'permute 4d tensor with str in_shape and str out_shape did not work correctly.' y = engine.permute(x, 'DBC', 'CDB') assert list(y.shape) == [4, 1, 2, 3], 'permute 4d tensor with str in_shape and str out_shape did not work correctly.' x = torch.randn(1, 2, 3, 4, 5) y = engine.permute(x, 'BDC', 'BCD') assert list(y.shape) == [1, 5, 2, 3, 4], 'permute 5d tensor with str in_shape and str out_shape did not work correctly.' x = torch.randn(1, 2) y = engine.permute(x, 'BDC', 'BCD') assert list(y.shape) == [1, 2], 'permute 2d tensor with str in_shape and str out_shape did not work correctly.' y = engine.permute(x, 'CBD', 'DBC') assert list(y.shape) == [2, 1], 'permute 2d tensor with str in_shape and str out_shape did not work correctly.' def test_unused_kwargs(): kw = {'unused1':0, 'unused2':0, 'base_class':0} unused = engine.unused_kwargs(kw) assert 'base_class' not in unused, 'unused_kwargs leaks used.' assert set(unused.keys()) == {'unused1', 'unused2'}, 'unused_kwargs did not filter kw correctly.' def test_prepare_model_is_ready(): class TestModel(nn.Module): def forward(self, x): x = engine.forward(x, nn.Linear, 'linear', base_arg=(x.shape[-1], 4, False), # in_features, out_features, bias in_shape=None, out_shape=None, base_shape=None, initialization={'weight':'ones_'}, activation=(F.dropout, {'p':1.0}), ) return x x = torch.randn(1, 2, 3) m = TestModel() assert not engine.is_ready(m), 'is_ready did not work correctly.' engine.prepare_model_(m, x) assert engine.is_ready(m), 'prepare_model_ did not work correctly.' assert m.linear_1.bias is None, 'linear_1 should not have bias.' assert torch.allclose(m.linear_1.weight, torch.Tensor([1.0])), 'linear_1.weight should be initialized to all 1s.' y = m(x) assert torch.allclose(y, torch.Tensor([0.0])), 'y should be all 0s because we dropout everything.' assert list(y.shape) == [1, 2, 4], 'y should have shape [1, 2, 4] after linear projection.' def test_forward(): x = torch.randn(1, 2, 3) m = nn.Module() engine.set_default_parent(m) class TripleOut(nn.Module): # to test tuple_out def forward(self, x, b=1, c='2'): return x+b, x, c y = engine.forward(x, base_class=TripleOut, base_name='tri', tuple_out=False) assert isinstance(y, torch.Tensor), 'tuple_out did not work correctly.' y = engine.forward(x, base_class=TripleOut, base_name='tri', tuple_out=True) assert isinstance(y, tuple) and len(y) == 3 and y[-1] == '2', 'tuple_out did not work correctly.' y = engine.forward(x, base_class=TripleOut, base_name='tri', forward_kw={'c':3}, tuple_out=True) assert y[-1] == 3, 'forward_kw did not work correctly.' y = engine.forward(x, base_class=TripleOut, base_name='tri', forward_arg=(2.0,)) assert torch.allclose(y-x, torch.Tensor([2.0])), 'forward_arg did not work correctly.' y = engine.forward(x, base_class=TripleOut, activation=(F.dropout, {'p':1.0})) assert torch.allclose(y, torch.Tensor([0.0])), 'activation did not work correctly.' y = engine.forward( x, base_class=nn.Linear, base_kw={'out_features':4}, infer_kw={'in_features':'C'}, base_shape='BDC') assert y.shape[1] == 4, 'base_kw, infer_kw did not work correctly.' def test_namespace(): m = nn.Module() engine.set_default_parent(m) @engine.namespace def f1(name=''): return ';'.join([f2(name=name) for i in range(2)]) @engine.namespace def f2(name=''): return name s0, s1, s2 = [f1() for i in range(3)] assert s0 == 'f1_1-f2_1;f1_1-f2_2' assert s1 == 'f1_2-f2_1;f1_2-f2_2' assert s2 == 'f1_3-f2_1;f1_3-f2_2'
2.140625
2
reviewboard/extensions/tests/test_filediffacl_hook.py
pombredanne/reviewboard
0
12790681
"""Unit tests for reviewboard.extensions.hooks.FileDiffACLHook.""" import kgb from djblets.features.testing import override_feature_check from reviewboard.extensions.hooks import FileDiffACLHook from reviewboard.extensions.tests.testcases import BaseExtensionHookTestCase from reviewboard.reviews.features import DiffACLsFeature class FileDiffACLHookTests(kgb.SpyAgency, BaseExtensionHookTestCase): """Tests for the FileDiffACLHook.""" fixtures = ['test_scmtools', 'test_users'] def setUp(self): super(FileDiffACLHookTests, self).setUp() self.user = self.create_user() self.review_request = self.create_review_request( create_repository=True) self.review_request.target_people.add(self.review_request.submitter) self.create_diffset(review_request=self.review_request, draft=True) self.review_request.publish(user=self.review_request.submitter) def test_single_aclhook_true(self): """Testing FileDiffACLHook basic approval with True result""" self._test_hook_approval_sequence([True], True) def test_single_aclhook_none(self): """Testing FileDiffACLHook basic approval with None result""" self._test_hook_approval_sequence([None], True) def test_single_aclhook_false(self): """Testing FileDiffACLHook basic approval with False result""" self._test_hook_approval_sequence([False], False) def test_multiple_aclhooks_1(self): """Testing FileDiffACLHook multiple with True and False""" self._test_hook_approval_sequence([True, False], False) def test_multiple_aclhooks_2(self): """Testing FileDiffACLHook multiple with True and None""" self._test_hook_approval_sequence([True, None], True) def test_multiple_aclhooks_3(self): """Testing FileDiffACLHook multiple with False and None""" self._test_hook_approval_sequence([False, None], False) def _test_hook_approval_sequence(self, accessible_values, result): """Test a sequence of FileDiffACLHook approval results. Args: accessible_values (list of bool): A list of the values to return from FileDiffACLHook implementations. result (bool): A resulting approval value to check. """ with override_feature_check(DiffACLsFeature.feature_id, enabled=True): for value in accessible_values: hook = FileDiffACLHook(extension=self.extension) self.spy_on(hook.is_accessible, op=kgb.SpyOpReturn(value)) self.assertEqual(self.review_request.is_accessible_by(self.user), result)
2.203125
2
vega/trainer/callbacks/hccl.py
This-50m/vega
724
12790682
<filename>vega/trainer/callbacks/hccl.py<gh_stars>100-1000 # -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Data parallel callback.""" import logging import vega from .callback import Callback from vega.common import ClassFactory, ClassType from vega.common.general import General logger = logging.getLogger(__name__) @ClassFactory.register(ClassType.CALLBACK) class Hccl(Callback): """Callback that saves the evaluated Performance.""" def __init__(self): """Initialize ModelCheckpoint callback.""" super(Hccl, self).__init__() self.priority = 260 def init_trainer(self, logs=None): """Set trainer object for current callback.""" if not self.trainer.hccl: return if vega.is_torch_backend(): self._init_pytorch_trainer() if vega.is_ms_backend(): self._init_ms_trainer() def _init_pytorch_trainer(self): import torch import torch.distributed as dist logger.info("init HCCL") model = self.trainer.model dist.init_process_group( backend='hccl', init_method=f"tcp://{General.cluster.hccl_server_ip}:{General.cluster.hccl_port}", world_size=self.trainer.num_workers, rank=self.trainer.rank_id) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[self.trainer.device_id], broadcast_buffers=General.cluster.enable_broadcast_buffers) self.trainer.model = model def _init_ms_trainer(self): from mindspore import context from mindspore.context import ParallelMode from mindspore.communication.management import init logger.info("init HCCL") context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) init() def before_epoch(self, epoch, logs=None): """Be called before each epoach.""" if not vega.is_torch_backend() or not self.trainer.hccl: return if self.trainer.sampler is not None: self.trainer.sampler.set_epoch(epoch) def after_train(self, logs=None): """Stop session.""" if self.trainer.hccl and vega.is_tf_backend(): self.trainer.sess.run(self.trainer.npu_shutdown) self.trainer.sess.close()
1.953125
2
sentencia for.py
slack333/Python
0
12790683
numeros = [1,2,3,4,5,6,7,8,9,10] indice = 0 while(indice < len(numeros)): print(numeros[indice]) indice += 1 for numero in numeros: print(numero) for numero in numeros: numero *= 10 numeros = [1,2,3,4,5,6,7,8,9,10] indice = 0 for numero in numeros: numeros[indice] *= 10 indice += 1 print (numeros) x = [1,2,3,4,5,6,7,8,9,10] for indice, numero in enumerate(x): x[indice] *= 10 print(x) cadena = "Hola amigos" for caracter in cadena: print(caracter) cadena2 = "" for caracter in cadena: cadena2 += caracter * 2 print (cadena2) for i in range(10): print(i)
3.96875
4
main.py
HisenZhang/WRPI-auto
1
12790684
<gh_stars>1-10 import headless import argparse import threading import sys import logging import py_cui from modules.tui import TUI from modules.util import configManager def runSchedule(station): logging.info("Scheduler started.") while station.mixer.get_init(): station.scheduleRun() def runTUI(mainWindow): logging.info("TUI starting...") mainWindow.start() logging.info("TUI exited.") def main(): parser = argparse.ArgumentParser( description='{station} Broadcast Automation System'.format(station=configManager.cfg.station.name)) parser.add_argument('--headless', action='store_true', help='run without TUI') args = parser.parse_args() if args.headless: headless.routine() else: try: frame = None mainWindow = py_cui.PyCUI(4, 3, exit_key=1) mainWindow.set_refresh_timeout(1) mainWindow.set_title( '{} Broadcast Automation System'.format(configManager.cfg.station.name)) frame = TUI(mainWindow) daemonThread = threading.Thread( name='Daemon', target=runSchedule, args=(frame.station,), daemon=True) daemonThread.start() TUIThread = threading.Thread( name='TUI', target=runTUI, args=(mainWindow,)) TUIThread.start() TUIThread.join() except KeyboardInterrupt: logging.warning("KeyboardInterrupt detected.") except Exception as e: logging.critical("TUI: "+str(e)) finally: if frame: frame.station.signOff() sys.exit(0) # TODO turn this into a package at first major released # packaging: https://uoftcoders.github.io/studyGroup/lessons/python/packages/lesson/ # with CLI: https://medium.com/nerd-for-tech/how-to-build-and-distribute-a-cli-tool-with-python-537ae41d9d78 if __name__ == "__main__": main()
2.375
2
botcmd.py
JuEeHa/oonbotti2
0
12790685
import eliza import threading import random import re import time concmd=['/q', '/lt', '/st', '/lg', '/lm', '/sm'] blacklist = [] doctor = eliza.eliza() # channel: [user1, user2, ..., userN] trusted = {} trustedlock = threading.Lock() gods = {} godslock = threading.Lock() # receiver: [(sender1, origin1, message1), (sender2, origin2, message2), ..., (senderN, origin2, messageN)] msgs = {} msgslock = threading.Lock() # (ID, nick, account) accountcheck = [] accountcheckid = 0 accountchecklock = threading.Lock() die_expr=re.compile("#[0-9]*d([0-9]+|%)([+-][0-9]+)?$") class Cron(threading.Thread): def __init__(self): self.timedjobs = [] self.timedjobslock = threading.Lock() self.cronctrl = [] self.cronctrllock = threading.Lock() threading.Thread.__init__(self) def queuejob(self, time, fn): self.timedjobslock.acquire() self.timedjobs.append((time, fn)) self.timedjobslock.release() def ctrl(self, cmd): self.cronctrllock.acquire() self.cronctrl.append(cmd) self.cronctrllock.release() def run(self): run = True while run: time.sleep(1) # Accuracy doesn't need to be high self.cronctrllock.acquire() for cmd in self.cronctrl: if cmd == 'QUIT': run = False self.cronctrl=[] self.cronctrllock.release() self.timedjobslock.acquire() self.timedjobs = map((lambda (time, fn): (time-1, fn)), self.timedjobs) torun = map((lambda (time, fn): fn), filter((lambda (time, fn): time<=0), self.timedjobs)) self.timedjobs = filter((lambda (time, fn): time>0), self.timedjobs) self.timedjobslock.release() for fn in torun: fn() def loadmessages(): global msgs, msgslock with msgslock: msgs = {} f = open('msgs.txt', 'r') for line in f: while len(line) > 0 and line[-1] == '\n': line = line[:-1] if len(line.split('\t')) == 4: receiver, sender, origin, msg = line.split('\t') if receiver not in msgs: msgs[receiver] = [] msgs[receiver].append((sender, origin, msg)) f.close() def savemessages(): global msgs, msgslock with msgslock: f=open('msgs.txt', 'w') for receiver in msgs: for sender, origin, msg in msgs[receiver]: f.write('%s\t%s\t%s\t%s\n' % (receiver, sender, origin, msg)) f.close() loadmessages() def addtrusted(chan, account): global trusted, trustedlock trustedlock.acquire() if chan not in trusted: trusted[chan] = [] if account not in trusted[chan]: trusted[chan].append(account) trustedlock.release() def rmtrusted(chan, account): global trusted, trustedlock trustedlock.acquire() if chan in trusted and account in trusted[chan]: trusted[chan].remove(account) trustedlock.release() def loadtrusted(): global trusted, trustedlock trustedlock.acquire() trusted = {} trustedlock.release() f=open('trusted.txt', 'r') for line in f: while len(line) > 0 and line[-1] == '\n': line = line[:-1] if len(line) > 0: chan, account = line.split() addtrusted(chan, account) f.close() def loadgods(): global gods, godslock godslock.acquire() gods = {} f=open('gods.txt', 'r') for line in f: while len(line) > 0 and line[-1] == '\n': line = line[:-1] if len(line) > 0: chan, account = line.split() if chan not in gods: gods[chan] = [] gods[chan].append(account) addtrusted(chan, account) f.close() godslock.release() def savetrusted(): global trusted, trustedlock trustedlock.acquire() f=open('trusted.txt', 'w') for chan in trusted: for account in trusted[chan]: f.write('%s %s\n' % (chan, account)) f.close trustedlock.release() def init(): global cron cron = Cron() cron.start() loadtrusted() loadgods() def chmode(irc, chan, nick, mode, args): set_unset = mode[0] mode = mode[1:] if isauthorized(irc, chan, nick): if args == ['']: irc.send('MODE %s %s %s' % (chan, set_unset+mode, nick)) else: nicks = [] for nick in args: nicks.append(nick) if len(nicks) == 4: irc.send('MODE %s %s %s' % (chan, set_unset+mode*4, ' '.join(nicks))) nicks = [] if nicks: irc.send('MODE %s %s %s' % (chan, set_unset+mode*len(nicks), ' '.join(nicks))) def istrusted(chan, account): trustedlock.acquire() if chan in trusted and account in trusted[chan]: trustedlock.release() return True else: trustedlock.release() return False def initaccountcheck(nick): global accountcheck, accountcheckid, accountchecklock accountchecklock.acquire() id = accountcheckid accountcheck.append((id, nick, None)) accountcheckid += 1 accountchecklock.release() return id # Warning: this does no locking, should only be used internally # The index returned cannot be guaranteed valid if lock is released between call to getindexbyaccountcheckid and use! def getindexbyaccountcheckid(id): global accountcheck for index in range(len(accountcheck)): ckid, cknick, ckaccount = accountcheck[index] if ckid == id: return index return None def setaccountcheckvalue(id, value): global accountcheck, accountchecklock accountchecklock.acquire() index = getindexbyaccountcheckid(id) if index is not None: ckid, nick, ckvalue = accountcheck[index] accountcheck[index] = (id, nick, value) accountchecklock.release() def getaccountcheckvalue(id): global accountcheck, accountchecklock accountchecklock.acquire() index = getindexbyaccountcheckid(id) if index is not None: ckid, cknick, value = accountcheck[index] accountchecklock.release() return value def removeaccountcheck(id): global accountcheck, accountchecklock accountchecklock.acquire() index = getindexbyaccountcheckid(id) if index is not None: del accountcheck[index] accountchecklock.release() def getaccountcheckidbynick(nick): global accountcheck, accountchecklock accountchecklock.acquire() getid = lambda (id, nick, account): id filterbynick = lambda (id, cknick, account): cknick == nick ids = map(getid, filter(filterbynick, accountcheck)) accountchecklock.release() return ids def getaccount(irc, nick): id = initaccountcheck(nick) irc.send('WHOIS ' + nick) cron.queuejob(5, (lambda : setaccountcheckvalue(id, ''))) account = None while account == None: account = getaccountcheckvalue(id) time.sleep(0.1) removeaccountcheck(id) if account == '': # '' Signifies failure return None else: return account def isauthorized(irc, chan, nick): account = getaccount(irc, nick) if account: return istrusted(chan, account) else: irc.msg(nick, zwsp + 'Identify with NickServ') class ArgsfmtError(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return 'Error with argument format: ' + msg ARG_STD = 0 ARG_OPT = 1 ARG_UNL = 2 def parseargsfmt(args): # parses the argument format used by matchcmd and parsecmd # e.g. parseargsfmt("foo [bar] {baz} ) -> [ARG_STD, ARG_OPT, ARG_UNL] args = args.split(' ') out = [] for arg in args: if len(arg) >= 2 and arg[0] == '[' and arg[-1] == ']': # Optional (0-1) argument: [bar] out.append(ARG_OPT) elif len(arg) >= 2 and arg[0] == '{' and arg[-1] == '}': # Unlimited (0-) number of arguments: {baz} out.append(ARG_UNL) else: # Normal argument: foo out.append(ARG_STD) return out def getargnums(argtypes): min = 0 max = 0 # max = None if number of arguments is unlimited for argtype in argtypes: if argtype == ARG_STD: min += 1 if max != None: # Don't try to increment if max is unlimited max += 1 elif argtype == ARG_OPT: if max != None: # Don't try to increment if max is unlimited max += 1 elif argtype == ARG_UNL: max = None return min, max def matchcmd(line, cmd, args=None): # matchcmd(line, cmd) matched if the command cmd is used, matchcmd(line, cmd, args) checks whether the args match too if len(line) == 0: return False if line[0] != cmd: return False if not args: return True min, max = getargnums(parseargsfmt(args)) if max and len(line)-1 >= min and len(line)-1 <= max: return True elif not max and len(line)-1 >= min: return True else: return False def parsecmd(line, args): # Returns a tuple containing the arguments. An optional argument that didn't get a value will be assigned '' argtypes = parseargsfmt(args) if len(argtypes) >= 1 and ARG_UNL in argtypes[:-1]: # Disallow non-final unlimited arguments raise ArgsfmtError('Non-final unlimited argument') if len(filter((lambda type: type == ARG_OPT or type == ARG_UNL), argtypes)) > 1: # Disallow more than one optional or unlimited argument per argument string raise ArgsfmtError('Ambiguous argument format') # Remove the command if len(line) == 0: raise ArgsfmtError('No command given') line = line[1:] min, max = getargnums(argtypes) if len(line) == min: # Only standard arguments given out = [] for type in argtypes: if type == ARG_STD: out.append(line[0]) line = line[1:] else: out.append('') elif max and len(line) == max: # Optional argument given out = [] for type in argtypes: if type == ARG_STD or type == ARG_OPT: out.append(line[0]) line = line[1:] else: out.append('') elif not max and len(line) > min: # Unlimited argument given out = [] for type in argtypes: if type == ARG_STD or type == ARG_OPT: out.append(line[0]) line = line[1:] elif type == ARG_UNL: out.append(' '.join(line)) line = [] else: raise ArgsfmtError('Number of given arguments not possible for given format string') if len(out) == 1: return out[0] else: return out def parse((line, irc)): global blacklist global msgs, msgslock global trusted, trustedlock, gods, godslock global doctor, die_expr line = line.split(' ') nick = line[0].split('!')[0][1:] chan = line[2] if line[2][0] == '#' else nick zwsp = '\xe2\x80\x8b' if nick in blacklist: return elif len(line) >= 4 and len(line[3]) >= len(zwsp)+1 and line[3][:len(zwsp)+1] == ':'+zwsp: # If line begins with ZWSP return if line[1]=='PRIVMSG' and line[3][:2] != ': ': reply = chan cmdline = [line[3][1:]] + line[4:] while '' in cmdline: cmdline.remove('') # #chan: channel override prefix # Don't allow this in private messages for more transparent bot usage if matchcmd(cmdline, '#chan') and chan != nick: if matchcmd(cmdline, '#chan', 'channel {command}'): newchan, newcmdline = parsecmd(cmdline, 'channel {command}') newcmdline = newcmdline.split(' ') if isauthorized(irc, newchan, nick): chan = newchan cmdline = newcmdline else: irc.msg(chan, zwsp + 'Usage #chan channel command') if matchcmd(cmdline, '#echo'): text = parsecmd(cmdline, '{text}') irc.msg(reply, zwsp+text) elif matchcmd(cmdline, '#op'): args = parsecmd(cmdline, '{args}') chmode(irc, chan, nick, '+o', args.split(' ')) elif matchcmd(cmdline, '#deop'): args = parsecmd(cmdline, '{args}') chmode(irc, chan, nick, '-o', args.split(' ')) elif matchcmd(cmdline, '#voice'): args = parsecmd(cmdline, '{args}') chmode(irc, chan, nick, '+v', args.split(' ')) elif matchcmd(cmdline, '#quiet'): arg = parsecmd(cmdline, 'nick') chmode(irc, chan, nick, '+q', [arg + '!*@*']) elif matchcmd(cmdline, '#dequiet'): arg = parsecmd(cmdline, 'nick') chmode(irc, chan, nick, '-q', [arg + '!*@*']) elif matchcmd(cmdline, '#devoice'): args = parsecmd(cmdline, '{args}') chmode(irc, chan, nick, '-v', args.split(' ')) elif matchcmd(cmdline, '#kick'): if matchcmd(cmdline, '#kick', 'nick {reason}'): kicknick, kickreason = parsecmd(cmdline, 'nick {reason}') if kicknick.lower() == irc.nick: irc.send('KICK %s %s :Fuck you' % (chan, nick)) else: if isauthorized(irc, chan, nick): irc.send('KICK %s %s :%s'%(chan, kicknick, kickreason)) else: irc.msg(reply, zwsp + 'Usage #kick nick reason') elif matchcmd(cmdline, '#src'): irc.msg(reply, zwsp + 'https://github.com/JuEeHa/oonbotti2') elif matchcmd(cmdline, '#prefix') and chan == '#osdev-offtopic': irc.msg(reply, zwsp + 'gopher://ayu.smar.fi:7070/0/hash-prefix') elif matchcmd(cmdline, '#msg'): if matchcmd(cmdline, '#msg', 'nick {message}'): msgnick, message = parsecmd(cmdline, 'nick {message}') if chan == nick: # In a query: origin = "[query]" else: # In a channel origin = chan with msgslock: if msgnick not in msgs: msgs[msgnick] = [] msgs[msgnick].append((nick, origin, message)) savemessages() else: irc.msg(reply, zwsp + 'Usage: #msg nick message') elif matchcmd(cmdline, '#trusted?'): if matchcmd(cmdline, '#trusted?', '[nick]'): trustnick = parsecmd(cmdline, '[nick]') if trustnick == '': trustnick = nick account = getaccount(irc, trustnick) if account: if istrusted(chan, account): irc.msg(reply, zwsp + '%s is trusted' % trustnick) else: irc.msg(reply, zwsp + '%s is not trusted' % trustnick) else: irc.msg(reply, zwsp + 'Failed to get account for %s' % trustnick) else: irc.msg(reply, zwsp + 'Usage: #trusted? [nick]') elif matchcmd(cmdline, '#trust'): if matchcmd(cmdline, '#trust', 'nick'): trustnick = parsecmd(cmdline, 'nick') if isauthorized(irc, chan, nick): account = getaccount(irc, trustnick) if account: addtrusted(chan, account) savetrusted() else: irc.msg(reply, zwsp + 'Failed to get account for %s' % trustnick) else: irc.msg(reply, zwsp + 'Usage #trust nick') elif matchcmd(cmdline, '#untrust'): if matchcmd(cmdline, '#untrust', 'nick'): untrustnick = parsecmd(cmdline, 'nick') if isauthorized(irc, chan, nick): account = getaccount(irc, untrustnick) # If account can't be found (e.g. it has been deleted, use the parameter as-is if not account: if istrusted(chan, untrustnick): account = untrustnick if account: godslock.acquire() if chan not in gods or account not in gods[chan]: rmtrusted(chan, untrustnick) godslock.release() savetrusted() else: irc.msg(reply, zwsp + 'Failed to get account for %s' % untrustnick) else: irc.msg(reply, zwsp + 'Usage #untrust nick') elif matchcmd(cmdline, '#ls-trusted'): trustedlock.acquire() if chan in trusted: lines = [] line = '' for account in trusted[chan]: if line == '': line = account elif len(line + ', ' + account) <= 255: # Playing it safe not to get truncated line += ', ' + account else: lines.append(line) line = account if line != '': lines.append(line) for line in lines: irc.msg(nick, zwsp + '%s: %s' % (chan, line)) trustedlock.release() elif matchcmd(cmdline, '#invite'): irc.msg(chan, zwsp + '%s: #invite has been removed. Use manual invite' % nick) elif matchcmd(cmdline, '#help'): if matchcmd(cmdline, '#help', '[command]'): command = parsecmd(cmdline, '[command]') helptext = help(command) if helptext: irc.msg(reply, zwsp+helptext) elif matchcmd(cmdline, '#esoteric') and chan == '#esoteric': irc.msg(reply, zwsp + 'Nothing here') elif cmdline[0] in [irc.nick, irc.nick+',', irc.nick+':']: question = parsecmd(cmdline, '{question}') if len(question) < 2 or question[:2] != ':D': # Mandated by #osdev-offtopic law irc.msg(reply, zwsp + '%s: %s' % (nick, doctor.respond(question))) elif die_expr.match(cmdline[0]): die = cmdline[0][1:].split('d') times = int(die[0]) if die[0] else 1 if '+' in die[1]: split = die[1].index('+') plus = int(die[1][split + 1:]) die[1] = die[1][:split] elif '-' in die[1]: split = die[1].index('-') plus = -int(die[1][split + 1:]) die[1] = die[1][:split] else: plus = 0 die = '%' if die[1] == '%' else int(die[1]) if die == '%': if times != 1: irc.msg(reply, zwsp + 'Not supported') else: irc.msg(reply, zwsp + '%s%s' % (random.randint(0,9), random.randint(0,9))) elif die < 1: irc.msg(reply, zwsp + 'This die is not available in your space-time region.') elif times < 1: irc.msg(reply, zwsp + 'What exactly do you want me to do?') elif times > 128: irc.msg(reply, zwsp + 'Sorry, I don\'t have that many. Can I borrow yours?') else: rolls = [random.randint(1, die) for i in xrange(times)] result = reduce((lambda x, y: x + y), rolls) if times > 1: text = '%s (%s)' % (str(result), ', '.join([str(i) for i in rolls])) else: text = str(result) if plus > 0: text = '%i (%s + %i)' % (result + plus, text, plus) elif plus < 0: text = '%i (%s - %i)' % (result + plus, text, -plus) irc.msg(reply, zwsp + text) elif line[1] == '330': # WHOIS: is logged in as whoisnick = line[3] account = line[4] for id in getaccountcheckidbynick(whoisnick): setaccountcheckvalue(id, account) elif line[1] == '318': # WHOIS: End of /WHOIS list. whoisnick = line[3] for id in getaccountcheckidbynick(whoisnick): if getaccountcheckvalue(id) == None: setaccountcheckvalue(id, '') # Mark as failed, '' is used because None is already reserved elif line[1] == 'INVITE' and line[2] == irc.nick and line[3][1:] in irc.chan.split(' '): if isauthorized(irc, line[3][1:], nick): irc.send('JOIN ' + line[3]) elif line[1] == '482': irc.msg(line[3], zwsp + 'Not op') msgs_changed = False with msgslock: if (line[1] == 'PRIVMSG' or line[1] == 'JOIN') and nick in msgs: for sender, origin, msg in msgs.pop(nick): irc.msg(nick, zwsp + '%s <%s> %s' % (origin, sender, msg)) msgs_changed = True if msgs_changed: savemessages() def execcmd(cmdline): if cmdline[0] == '/q': cron.ctrl('QUIT') elif cmdline[0] == '/lt': loadtrusted() elif cmdline[0] == '/st': savetrusted() elif cmdline[0] == '/lg': loadgods() elif cmdline[0] == '/lm': loadmessages() elif cmdline[0] == '/sm': savemessages() def usage(cmd, message = True): usage = {'#echo': 'text', '#op': '[nick]', '#deop': '[nick]', '#voice': '[nick]', '#devoice': '[nick]', '#quiet': 'nick', '#dequiet': 'nick', '#kick': 'nick [reason]', '#src': '', '#msg': 'nick message', '#trusted?': '[nick]', '#trust': 'nick', '#untrust': 'nick', '#ls-trusted': '', '#chan': 'channel command', '#help': '[command]'} if cmd in usage: if message: return 'Usage: %s %s' % (cmd, usage[cmd]) else: return usage[cmd] else: return None def help(cmd): helptext = {'#echo': '#echo text back', '#op': 'give nick or yourself op rights in case you are trusted by oonbotti2 and identified with NickServ', '#deop': 'remove your/nick\'s op rights', '#voice': 'give nick or yourself voice in case you are trusted by oonbotti2 and identified with NickServ', '#devoice': 'remove your or nick\'s voice in case you are trusted by oonbotti2 and identified with NickServ', '#quiet': 'give +q to nick!*@*', '#dequiet': 'remove +q from nick!*@*', '#kick': 'kicks nick with specified reason', '#src': 'paste a link to oonbotti2\'s git repo', '#msg': 'send a message to nick', '#trusted?': 'tell you if nick or yourself is trusted by oonbotti2', '#trust': 'add nick to trusted list', '#untrust': 'remove nick from trusted list', '#ls-trusted': 'list nicks that are trusted. use only in a query', '#chan': 'Runs the command as if it was sent on the specified channel. Requires user to be trusted', '#help': 'give short info of command or list commands'} if cmd=='': return '#echo #op #deop #voice #devoice #quiet #dequiet #kick #src #msg #trusted? #trust #untrust #ls-trusted #chan #help' elif cmd=='me': return 'I shall.' elif cmd in helptext: if helptext[cmd]: return '%s %s %s' % (cmd, usage(cmd, False), helptext[cmd]) else: return '%s %s' % (cmd, usage(cmd, False)) else: return None
2.265625
2
models.py
Geson-anko/VoiceBand
0
12790686
import torch import torch.nn as nn import torch.nn.functional as F import pytorch_lightning as pl from torchsummaryX import summary from torch.nn.utils import weight_norm, remove_weight_norm from utils import get_padding, get_conv1d_outlen, init_weights, get_padding_down, get_padding_up,walk_ratent_space from typing import Tuple from torchsummaryX import summary import numpy as np import random from torch.utils.tensorboard import SummaryWriter import matplotlib.pyplot as plt LRELU_SLOPE = 0.1 class ResBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() assert len(dilation) == 3 self.convs1 = nn.ModuleList([ weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))), weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))), weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))) ]) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class Encoder(nn.Module): def __init__(self, h): super().__init__() self.h = h rks = h.resblock_kernel_sizes rds = h.resblock_dilation_sizes drs = h.downsample_rates drks = h.downsample_kernel_sizes dci = h.downsample_initial_channel self.num_kernels = len(rks) self.num_downsamples = len(drs) self.conv_pre = weight_norm(nn.Conv1d(1, dci, 7,1,3)) # get expected input lengthes and output lengths init_len = h.n_fft self.L_ins = [init_len] self.L_outs = [] for r in drs: lo = int(init_len/r) self.L_outs.append(lo) self.L_ins.append(lo) init_len = lo self.L_outs.append(1) # get downsampling paddings self.pads = [] for i,r in enumerate(drs): pad = get_padding_down(self.L_ins[i],self.L_outs[i],drks[i],r) self.pads.append(pad) # get downsampling channels self.channels = [] for i in range(len(drs)+1): self.channels.append(dci*(2**i)) self.dns = nn.ModuleList() for i, (u, k) in enumerate(zip(drs, drks)): self.dns.append(weight_norm( nn.Conv1d(self.channels[i], self.channels[i+1],k,u,self.pads[i]) )) self.resblocks = nn.ModuleList() for i in range(len(self.dns)): ch = self.channels[i+1] for j,(k,d) in enumerate(zip(rks,rds)): self.resblocks.append(ResBlock(ch,k,d)) self.conv_post = weight_norm(nn.Conv1d(self.channels[-1],h.ratent_dim,self.L_ins[-1])) self.conv_post_var = weight_norm(nn.Conv1d(self.channels[-1],h.ratent_dim,self.L_ins[-1])) self.dns.apply(init_weights) self.conv_post.apply(init_weights) self.conv_post_var.apply(init_weights) def forward(self, x:torch.Tensor) -> torch.Tensor: x = self.conv_pre(x) for i in range(self.num_downsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.dns[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels x = F.leaky_relu(x) mean = self.conv_post(x) var = F.softplus(self.conv_post_var(x)) + 1e-8 return mean,var def dual_flow(self, x1:torch.Tensor, x2:torch.Tensor,with_random:bool=True) -> torch.Tensor: mean1,var1 = self.forward(x1) mean2,var2 = self.forward(x2) if with_random: out1 = self.random_sample(mean1,var1) out2 = self.random_sample(mean2,var2) else: out1,out2 = mean1,mean2 out = torch.cat([out1, out2], dim=1) #.tanh() # notanh return out @staticmethod def random_sample(mean:torch.Tensor, var:torch.Tensor): return mean + torch.randn_like(mean)*torch.sqrt(var) def summary(self): dummy = torch.randn(1,1,self.h.n_fft) summary(self, dummy) def remove_weight_norm(self): print("Removing weight norm...") for l in self.dns: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class Decoder(nn.Module): def __init__(self, h) -> None: super().__init__() self.h = h rks = h.resblock_kernel_sizes rds = h.resblock_dilation_sizes uik = h.upsample_initial_kernel urs = h.upsample_rates urks = h.upsample_kernel_sizes uic = h.upsample_initial_channel self.out_len = h.n_fft +h.hop_len self.num_kernels = len(rks) self.num_upsamples = len(urs) self.conv_pre = weight_norm(nn.ConvTranspose1d(h.ratent_dim*2, uic,uik)) # get expected input lengthes and output lengthes init_len = uik self.L_ins = [init_len] self.L_outs = [] for r in urs: lo = init_len * r self.L_ins.append(lo) self.L_outs.append(lo) init_len = lo # get upsampling paddings self.pads = [] for i,r in enumerate(urs): pad = get_padding_up(self.L_ins[i],self.L_outs[i],urks[i],r) self.pads.append(pad) # get upsampling channels self.channels = [uic] ch = uic for i in range(len(urs)): self.channels.append(int(ch/(2**i))) self.ups = nn.ModuleList() for i, (u,k) in enumerate(zip(urs,urks)): self.ups.append(weight_norm( nn.ConvTranspose1d(self.channels[i], self.channels[i+1],k,u,self.pads[i]) )) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = self.channels[i+1] for j,(k,d) in enumerate(zip(rks,rds)): self.resblocks.append(ResBlock(ch,k,d)) self.conv_post = weight_norm(nn.Conv1d(self.channels[-1],1,7,1,3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x:torch.Tensor) -> torch.Tensor: x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i*self.num_kernels+j](x) else: xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) l = x.size(-1) start = int((l - self.out_len)/2) x = x[:,:,start:start+self.out_len] #x = x.tanh() # grad explosion ? return x def summary(self): dummy = torch.randn(1,self.h.ratent_dim*2,1) summary(self,dummy) def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class VoiceBand(pl.LightningModule): def __init__(self, h,dtype:torch.dtype=torch.float,device:torch.device='cpu') -> None: super().__init__() self.h = h self.reset_seed() self.encoder = Encoder(h).type(dtype).to(self.device) self.decoder = Decoder(h).type(dtype).to(self.device) self.n_fft = h.n_fft self.ratent_dim = h.ratent_dim self.walking_steps = int(h.breath_len / h.hop_len) + 1 self.walking_resolution = h.walking_resolution self.out_len = self.decoder.out_len self.view_interval = 10 self.kl_lambda = h.kl_lambda # training settings self.MSE = nn.MSELoss() self.MAE = nn.L1Loss() self.actions = walk_ratent_space(self.ratent_dim, self.walking_steps,self.walking_resolution,device=device,dtype=dtype) def forward(self, x1:torch.Tensor,x2:torch.Tensor) -> torch.Tensor: """ x1: (-1, 1, n_fft) x2: (-1, 1, n_fft) """ mean1,var1 = self.encoder.forward(x1) mean2,var2 = self.encoder.forward(x2) mean,var = torch.cat([mean1,mean2],dim=1),torch.cat([var1,var2],dim=1) out = self.encoder.random_sample(mean,var)#.tanh()# notanh out = self.decoder(out) return out,mean,var def on_fit_start(self) -> None: self.logger.log_hyperparams(self.h) def training_step(self, batch:Tuple[torch.Tensor], batch_idx) -> torch.Tensor: """ batch : (-1, ch, n_fft+hop_len) """ sound, = batch sound = sound.type(self.dtype) if self.h.random_gain: sound= self.random_gain(sound) x1,x2,ans = sound[:,:,:self.h.n_fft], sound[:,:,-self.h.n_fft:], sound out_,mean,var = self.forward(x1,x2) out = out_.tanh() # atanh grad explotsion mse = self.MSE(ans, out) mae = self.MAE(ans,out) KL = 0.5*torch.sum( torch.pow(mean,2) + var - torch.log(var) -1 ).sum() / out.size(0) #marginal_likelihood = self.BCEwithLogits(torch.atanh(out),0.5*ans+1) #print(True in torch.isnan(out)) marginal_likelihood= F.binary_cross_entropy_with_logits(out,0.5*ans+1,reduction="sum") / out.size(0) loss = marginal_likelihood + KL * self.kl_lambda #loss = self.kl_lambda * KL + mse self.log("loss",loss) self.log("mse",mse) self.log("mae",mae) self.log("KL div",KL) self.log("Marginal likelihood",marginal_likelihood) return loss @torch.no_grad() def on_epoch_end(self) -> None: """ walk through the ratent space and log audio wave. """ if self.current_epoch%self.view_interval !=0: return self.actions = walk_ratent_space(self.ratent_dim, self.walking_steps,self.walking_resolution, device=self.device,dtype=self.dtype) wave = None for act in self.actions.unsqueeze(1): wave= self.predict_one_step(act,wave) wave = wave.squeeze(0).T.detach().cpu().numpy() # tensorboard logging tb:SummaryWriter = self.logger.experiment tb.add_audio("Ratent space audio",wave, self.current_epoch,self.h.frame_rate) fig = plt.figure() ax = fig.add_subplot() ax.plot(wave) tb.add_figure("Walked wave",fig, self.current_epoch) return def random_gain(self, sound:torch.Tensor) -> torch.Tensor: n,c,l = sound.shape maxes= sound.view(n,c*l).abs().max(dim=1,keepdim=True).values.unsqueeze(-1) maxes[maxes==0.0] = 1.0 gains = torch.rand_like(maxes) sound = (sound/maxes) * gains return sound def configure_optimizers(self): optim = torch.optim.AdamW(self.parameters(), self.h.lr,[self.h.adam_b1,self.h.adam_b2]) scheduler = torch.optim.lr_scheduler.ExponentialLR(optim, gamma=self.h.lr_decay) scheduler.last_epoch=self.trainer.max_epochs return [optim],[scheduler] silence = None def set_silence(self): self.silence = torch.zeros(1,self.h.sample_ch,self.n_fft,device=self.device,dtype=self.dtype) def set_view_interval(self, interval:int=None): if interval: self.view_interval= interval def predict_one_step(self, action:torch.Tensor,previous_wave:torch.Tensor=None) -> torch.Tensor: """ action : (-1, ratent_dim, 1) previous_wave : (-1,ch, l) """ if previous_wave is None: if self.silence is None: self.set_silence() previous_wave = self.silence assert len(action.shape) == 3 assert len(previous_wave.shape) == 3 if previous_wave.size(-1) < self.n_fft : pad_len = self.n_fft - previous_wave.size(-1) n,c,l = previous_wave.shape pad = torch.zeros(n,c,pad_len,dtype=previous_wave.dtype,device=previous_wave.device) previous_wave = torch.cat([pad,previous_wave],dim=-1) enc_in = previous_wave[:,:,-self.n_fft:].to(self.dtype).to(self.device) encoded = self.encoder.forward(enc_in)[0]#.tanh()# notanh dec_in = torch.cat([encoded,action],dim=1) d_out = self.decoder.forward(dec_in)[:,:,self.n_fft:].type_as(previous_wave) d_out = d_out.tanh() # grad explosion ? wave = torch.cat([previous_wave,d_out],dim=-1) return wave def reset_seed(self): seed = self.h.seed np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) def summary(self,tensorboard:bool = True): dummy = torch.randn(1,1,self.n_fft) summary(self, dummy,dummy) if tensorboard: writer = SummaryWriter() writer.add_graph(self, [dummy,dummy]) def remove_weight_norm(self): self.encoder.remove_weight_norm() self.decoder.remove_weight_norm() if __name__ == '__main__': from utils import load_config config = load_config("hparams/origin.json") model = VoiceBand(config) model.summary() model.remove_weight_norm()
2.15625
2
perceptron_pacman.py
Tskken/classification
0
12790687
"""Perceptron implementation for apprenticeship learning in pacman. Author: <NAME>, <NAME>, and <NAME> Class: CSI-480-01 Assignment: PA 5 -- Supervised Learning Due Date: Nov 30, 2018 11:59 PM Certification of Authenticity: I certify that this is entirely my own work, except where I have given fully-documented references to the work of others. I understand the definition and consequences of plagiarism and acknowledge that the assessor of this assignment may, for the purpose of assessing this assignment: - Reproduce this assignment and provide a copy to another member of academic - staff; and/or Communicate a copy of this assignment to a plagiarism checking - service (which may then retain a copy of this assignment on its database for - the purpose of future plagiarism checking) Champlain College CSI-480, Fall 2018 The following code was adapted by <NAME> (<EMAIL>) from the UC Berkeley Pacman Projects (see license and attribution below). ---------------------- Licensing Information: You are free to use or extend these projects for educational purposes provided that (1) you do not distribute or publish solutions, (2) you retain this notice, and (3) you provide clear attribution to UC Berkeley, including a link to http://ai.berkeley.edu. Attribution Information: The Pacman AI projects were developed at UC Berkeley. The core projects and autograders were primarily created by <NAME> (<EMAIL>) and <NAME> (<EMAIL>). Student side autograding was added by <NAME>, <NAME>, and <NAME> (<EMAIL>). """ import util from perceptron import PerceptronClassifier PRINT = True class PerceptronClassifierPacman(PerceptronClassifier): """A PerceptronClassifier for apprenticeeship learning in pacman.""" def __init__(self, legal_labels, max_iterations): """Initialize the perceptron. Args: legal_labels: list of legal_labels max_iterations: the max number of iterations to train for """ super().__init__(legal_labels, max_iterations) self.weights = util.Counter() def classify(self, data): """Classify the data points. Data contains a list of (datum, legal moves) Datum is a Counter representing the features of each GameState. legal_moves is a list of legal moves for that GameState. """ guesses = [] for datum, legal_moves in data: vectors = util.Counter() for l in legal_moves: vectors[l] = self.weights * datum[l] guesses.append(vectors.arg_max()) return guesses def train(self, training_data, training_labels, validation_data, validation_labels): """Train the perceptron.""" # could be useful later self.features = list(training_data[0][0]['Stop'].keys()) # DO NOT ZERO OUT YOUR WEIGHTS BEFORE STARTING TRAINING, OR # THE AUTOGRADER WILL LIKELY DEDUCT POINTS. for iteration in range(self.max_iterations): print("Starting iteration ", iteration, "...") for (datum, legal_moves), label in zip(training_data, training_labels): # *** YOUR CODE HERE *** # Gets the guess action, then updates the weights guess = self.classify([(datum, legal_moves)])[0] if guess != label: self.weights += datum[label] self.weights -= datum[guess]
2.53125
3
generated-libraries/python/netapp/storage_array/__init__.py
radekg/netapp-ontap-lib-get
2
12790688
from netapp.connection import NaConnection from storage_array_config_summary import StorageArrayConfigSummary # 8 properties from storage_array_port_stats import StorageArrayPortStats # 13 properties from storage_array_stats_info import StorageArrayStatsInfo # 6 properties from arrayfailovertype import Arrayfailovertype # 0 properties from arrayerrortype import Arrayerrortype # 0 properties from lunownershipfiltertype import Lunownershipfiltertype # 0 properties from storage_array_profile import StorageArrayProfile # 16 properties from storage_array_port_stats_info import StorageArrayPortStatsInfo # 19 properties from storage_array_port import StorageArrayPort # 9 properties from connectiontype import Connectiontype # 0 properties from storage_array_stats_error_info import StorageArrayStatsErrorInfo # 3 properties from storage_array_error_info import StorageArrayErrorInfo # 3 properties class StorageArrayConnection(NaConnection): def storage_array_modify(self, array_name, max_queue_depth=None, vendor=None, is_upgrade_pending=None, prefix=None, lun_queue_depth=None, model=None, options=None): """ Update an array profile with new or changed information. :param array_name: The name of the array profile to update. (28 chars max) :param max_queue_depth: The target port queue depth for all target ports on this array. :param vendor: The name of the array's manufacturer. (8 chars max) :param is_upgrade_pending: Used to indicate that the specified array will under go an upgrade in the near future. :param prefix: A unique user supplied 4 character code used to refer to this array and used in naming the array's LUNs. :param lun_queue_depth: The queue depth assigned to array LUNs from this array. :param model: The model of the array. (16 chars max) :param options: Array profile specific options. (comma separated list of name/value pairs) (127 chars max) """ return self.request( "storage-array-modify", { 'max_queue_depth': [ max_queue_depth, 'max-queue-depth', [ int, 'None' ], False ], 'vendor': [ vendor, 'vendor', [ basestring, 'None' ], False ], 'is_upgrade_pending': [ is_upgrade_pending, 'is-upgrade-pending', [ bool, 'None' ], False ], 'prefix': [ prefix, 'prefix', [ basestring, 'None' ], False ], 'lun_queue_depth': [ lun_queue_depth, 'lun-queue-depth', [ int, 'None' ], False ], 'model': [ model, 'model', [ basestring, 'None' ], False ], 'array_name': [ array_name, 'array-name', [ basestring, 'None' ], False ], 'options': [ options, 'options', [ basestring, 'None' ], False ], }, { } ) def storage_array_profile_change_notification(self, is_modify, array_id): """ Signal the changes made in array profile RDB to the D-Blade :param is_modify: A boolean value which indicates if it's an rdb_modify operation. True - operation is rdb_modify False - operation is rdb_create :param array_id: Primary key (system defined) for the array record. """ return self.request( "storage-array-profile-change-notification", { 'is_modify': [ is_modify, 'is-modify', [ bool, 'None' ], False ], 'array_id': [ array_id, 'array-id', [ int, 'None' ], False ], }, { } ) def storage_array_rename(self, array_name, new_name): """ Rename an array profile :param array_name: The name of the array profile to update. (28 chars max) :param new_name: The new name to assign to this array profile. (28 chars max) """ return self.request( "storage-array-rename", { 'array_name': [ array_name, 'array-name', [ basestring, 'None' ], False ], 'new_name': [ new_name, 'new-name', [ basestring, 'None' ], False ], }, { } ) def storage_array_port_modify(self, wwpn, wwnn, array_name, max_queue_depth=None): """ Update an array port with new or changed information. :param wwpn: World wide port name of array's target port (64 chars). :param wwnn: World wide node name of array's target port (64 chars). :param array_name: The name of the array profile to update. (28 chars max) :param max_queue_depth: The target port queue depth for this target port. """ return self.request( "storage-array-port-modify", { 'wwpn': [ wwpn, 'wwpn', [ basestring, 'None' ], False ], 'wwnn': [ wwnn, 'wwnn', [ basestring, 'None' ], False ], 'array_name': [ array_name, 'array-name', [ basestring, 'None' ], False ], 'max_queue_depth': [ max_queue_depth, 'max-queue-depth', [ int, 'None' ], False ], }, { } ) def storage_array_port_remove(self, wwpn, wwnn, array_id): """ Remove one port from an array profile record :param wwpn: The WWPN of the array port to remove. :param wwnn: The WWNN of the array port to remove. :param array_id: Primary key (system defined) for the array record. """ return self.request( "storage-array-port-remove", { 'wwpn': [ wwpn, 'wwpn', [ basestring, 'None' ], False ], 'wwnn': [ wwnn, 'wwnn', [ basestring, 'None' ], False ], 'array_id': [ array_id, 'array-id', [ int, 'None' ], False ], }, { } ) def storage_array_port_change_notification(self, wwpn, wwnn, is_modify, array_id): """ Signal the changes made in array port table to the D-Blade :param wwpn: The WWPN of the array port whose attributes changed :param wwnn: The WWNN of the array port whose attributes changed :param is_modify: A boolean value which indicates if it's an rdb_modify operation. True - operation is rdb_modify False - operation is rdb_create :param array_id: Primary key (system defined) for the array record. """ return self.request( "storage-array-port-change-notification", { 'wwpn': [ wwpn, 'wwpn', [ basestring, 'None' ], False ], 'wwnn': [ wwnn, 'wwnn', [ basestring, 'None' ], False ], 'is_modify': [ is_modify, 'is-modify', [ bool, 'None' ], False ], 'array_id': [ array_id, 'array-id', [ int, 'None' ], False ], }, { } ) def storage_array_stats_list_info(self): """ Used to get dynamic information about backend arrays. """ return self.request( "storage-array-stats-list-info", { }, { 'array-stat-info': [ StorageArrayStatsInfo, True ], } ) def storage_array_profile_sync(self): """ Purge a node's array profile database, thereby synchronizing it with the RDB. """ return self.request( "storage-array-profile-sync", { }, { } ) def storage_array_port_stats_list_info(self): """ return stats for array ports """ return self.request( "storage-array-port-stats-list-info", { }, { 'port-stat-info': [ StorageArrayPortStatsInfo, True ], } ) def storage_array_update(self, array_name, vendor=None, network_address=None, firmware=None, prefix=None, new_array_name=None, model=None, options=None): """ Update an array profile with new or changed information. Arguments passed in will be used to update the profile. Arguments not passed will keep their existing values. :param array_name: 28 character string, no spaces The name of the array profile to update. :param vendor: The name of the array's manufacturer. (8 chars) :param network_address: The I/O address of the array's SNMP management service in dotted-decimal format (for example, "192.168.11.12"). :param firmware: The firmware revision of the array being entered. (64 chars) :param prefix: A unique 5 character user defined code used to refer to this array. :param new_array_name: 28 character string, no spaces The new name to assign to this array profile. :param model: The model number of the array. (16 chars) :param options: Array profile specific options. (comma separated list of name/value pairs) (128 chars) """ return self.request( "storage-array-update", { 'vendor': [ vendor, 'vendor', [ basestring, 'None' ], False ], 'network_address': [ network_address, 'network-address', [ basestring, 'None' ], False ], 'firmware': [ firmware, 'firmware', [ basestring, 'None' ], False ], 'prefix': [ prefix, 'prefix', [ basestring, 'None' ], False ], 'new_array_name': [ new_array_name, 'new-array-name', [ basestring, 'None' ], False ], 'model': [ model, 'model', [ basestring, 'None' ], False ], 'array_name': [ array_name, 'array-name', [ basestring, 'None' ], False ], 'options': [ options, 'options', [ basestring, 'None' ], False ], }, { 'array-profile': [ StorageArrayProfile, False ], } ) def storage_array_get_config_summary(self, node=None, ownership_type=None): """ Generates a high level summary of array LUN pathing (connectivity) information. :param node: Obtain array LUN pathing information for a specified node. :param ownership_type: Option that allows the user to select which array LUNs are displayed. Valid values for ownership-type are 'assigned', 'unassigned' and 'all'. If ownership-type is set to 'assigned' only assigned array LUNs are displayed. If ownership-type is set to 'unassigned' only unassigned array LUNs are displayed. If ownership-type is set to 'all', all array LUNs are displayed. Default: 'all'. """ return self.request( "storage-array-get-config-summary", { 'node': [ node, 'node', [ basestring, 'None' ], False ], 'ownership_type': [ ownership_type, 'ownership-type', [ basestring, 'None' ], False ], }, { 'config-summary': [ StorageArrayConfigSummary, True ], } ) def storage_array_ports_list_info(self, array_name=None): """ generate a list of online array ports and their associated arrays :param array_name: When supplied, only port records for the named array are returned. (28 chars) """ return self.request( "storage-array-ports-list-info", { 'array_name': [ array_name, 'array-name', [ basestring, 'None' ], False ], }, { 'array-ports': [ StorageArrayPort, True ], } ) def storage_array_luns_list_info(self, array_name, ownership_type=None): """ Generate a list of array LUNs associated with the named array. :param array_name: The name of the array profile to list array LUN information for. (28 chars) :param ownership_type: Option that allows the user to select which array LUNs are displayed. Valid values for ownership-type are 'assigned', 'unassigned' and 'all'. If ownership-type is set to 'assigned' only assigned array LUNs are displayed. If ownership-type is set to 'unassigned' only unassigned array LUNs are displayed. If ownership-type is set to 'all', all array LUNs are displayed. Default: 'all'. """ return self.request( "storage-array-luns-list-info", { 'array_name': [ array_name, 'array-name', [ basestring, 'None' ], False ], 'ownership_type': [ ownership_type, 'ownership-type', [ basestring, 'None' ], False ], }, { 'array-luns': [ DiskDetailInfo, True ], } ) def storage_array_list_info(self, array_name=None): """ Retrieves a list of all array profiles known to the controller. :param array_name: When specified, only the named array profile record will be returned. (28 chars) """ return self.request( "storage-array-list-info", { 'array_name': [ array_name, 'array-name', [ basestring, 'None' ], False ], }, { 'array-profiles': [ StorageArrayProfile, True ], } )
2.015625
2
LSTM_test.py
xingshulicc/xingshulicc
10
12790689
# -*- coding: utf-8 -*- from __future__ import print_function """ Created on Tue Oct 6 16:23:04 2020 @author: Admin """ import numpy as np import pandas as pd import math import os from keras.layers import Dense from keras.layers import LSTM from keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from keras.models import Sequential import matplotlib.pyplot as plt #load data filename = 'international-airline-passengers.csv' filepath = os.path.join(os.getcwd(), filename) dataframe = pd.read_csv(filepath, usecols = [1], engine = 'python') dataset = dataframe.values #convert dataframe to numpy array dataset = dataset.astype('float32') #the shape of dataset: num_samples, features #normalise the dataset feature_range = (0, 1) scaler = MinMaxScaler(feature_range = feature_range) dataset = scaler.fit_transform(dataset) #split the dataset into training and test set i_split = 0.8 train_size = int(len(dataset) * i_split) #print(train_size) test_size = len(dataset) - train_size #print(test_size) train_set = dataset[0:train_size, :] test_set = dataset[train_size:, :] #convert an array values into a dataset matrix for LSTM def create_dataset(dataset, look_back): dataX = [] dataY = [] for i in range(len(dataset) - look_back - 1): a = dataset[i:(i+look_back), 0] b = dataset[i+look_back, 0] dataX.append(a) dataY.append(b) dataX = np.array(dataX) dataY = np.array(dataY) return dataX, dataY look_back = 1 #look_back = time_steps: the number of previous time steps trainX, trainY = create_dataset(train_set, look_back) testX, testY = create_dataset(test_set, look_back) #reshape input to be [samples, time_steps, features] time_steps = look_back features = dataset.shape[1] trainX = np.reshape(trainX, (trainX.shape[0], time_steps, features)) testX = np.reshape(testX, (testX.shape[0], time_steps, features)) #create and fit the LSTM input_shape = (time_steps, features) lstm_neurons = 4 #lstm_neurons is a hyper-parameter dense_neurons = 1 #dense_neurions is equal to the shape of trainY(= 1) batch_size = 1 epochs = 100 lr = 0.001 optimizer = Adam(lr = lr, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-8, decay = 0.0, amsgrad = True) model = Sequential() model.add(LSTM(lstm_neurons, input_shape = input_shape, return_sequences = False)) model.add(Dense(dense_neurons, activation = 'linear')) model.compile(loss = 'mean_squared_error', optimizer = optimizer) model.fit(trainX, trainY, batch_size = batch_size, epochs = epochs, verbose = 1, shuffle = True) #make predictions trainPredict = model.predict(trainX, batch_size = batch_size) testPredict = model.predict(testX, batch_size = batch_size) # invert predictions trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # calculate root mean squared error trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) print('Train Score: %.2f RMSE' % (trainScore)) testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) print('Test Score: %.2f RMSE' % (testScore)) # shift train predictions for plotting trainPredictPlot = np.empty_like(dataset) trainPredictPlot[:, :] = np.nan trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict # shift test predictions for plotting testPredictPlot = np.empty_like(dataset) testPredictPlot[:, :] = np.nan testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict # plot baseline and predictions plt.plot(scaler.inverse_transform(dataset)) plt.plot(trainPredictPlot) plt.plot(testPredictPlot) plt.show() ''' the most important hyper-parameter is look_back and batch_size researchers should try few times to determine the best values '''
3.265625
3
mmseg/models/segmentors/__init__.py
yoyoyoohh/SAR_build_extract_v2
0
12790690
''' Author: <NAME> Created Date: 2021-08-08 Last Modified: 2021-08-28 content: ''' from .base import BaseSegmentor from .cascade_encoder_decoder import CascadeEncoderDecoder from .encoder_decoder import EncoderDecoder from .semi import Semi from .semi_v2 import SemiV2 from .reco import ReCo # __all__ = ['BaseSegmentor', 'EncoderDecoder', 'CascadeEncoderDecoder']
1.1875
1
simplemooc/forum/admin.py
KelsonMaciel/simplemooc-
0
12790691
from django.contrib import admin from .models import Thread, Reply class ThreadAdmin(admin.ModelAdmin): list_display = ['title', 'author', 'created', 'modifield'] search_fields = ['title', 'author__email', 'body'] prepopulated_fields = {'slug':('title',)} class ReplyAdmin(admin.ModelAdmin): list_display = ['thread', 'author', 'created', 'modifield'] search_fields = ['thread__title', 'author__email', 'reply'] admin.site.register(Thread,ThreadAdmin) admin.site.register(Reply,ReplyAdmin)
1.914063
2
bin/points_to_features.py
digital-land/dataset
1
12790692
#!/usr/bin/env python3 import sys import json # add parent directory sys.path.append(".") from utils import get from digital_land_frontend.render import wkt_to_json_geometry sample_file = "docs/brownfield-land/organisation/local-authority-eng/HAG/sites.json" def create_feature_collection(features): return {"type": "FeatureCollection", "features": features} def create_feature(row): feature = {"type": "Feature"} feature["properties"] = row if row["point"] is not None: feature["geometry"] = wkt_to_json_geometry(row["point"]) return feature def convert_json_to_geojson(data): features = [] for row in data: features.append(create_feature(row)) return create_feature_collection(features) def test_convert(fn): # if file local with open(fn) as file: data = json.load(file) gjson = convert_json_to_geojson(data) with open( f"docs/brownfield-land/organisation/local-authority-eng/HAG/sites.geojson", "w" ) as file: file.write(json.dumps(gjson))
2.578125
3
bsbetl/alltable_calcs/_2StVols_SlowDailyVols.py
t0rus1/bsbetl
0
12790693
from bsbetl import ov_helpers import logging import math from datetime import date, datetime from numpy.core.numeric import NaN from pandas.core.indexes.base import Index import pandas as pd from bsbetl.alltable_calcs import Calculation from bsbetl.alltable_calcs.at_params import at_calc_params from bsbetl.calc_helpers import between_dates_condition, get_row_index_from_daily_df, last_trading_row_index, single_day_condition class _2StVols_SlowDailyVols(Calculation.Calculation): def __init__(self): super().__init__('SlowDailyVols') self.description = 'Modified Daily Volume calculation' self.dependents = ['DV'] # this column we assume exists self.at_computeds = ['DaysDVup', 'SDVBsl', 'SDVBm', 'SDVBf', 'SDVCsl', 'SDVCm', 'SDVCf1', 'SDVCf2', 'DVFDf', 'DVFf1', 'DVFf2', 'DVFm', 'DVFsl' ] self.ov_computeds = [] def day_calculate(self, df: pd.DataFrame, share_num: str, idx: Index, prior: Index, top_up: bool, stage: int): ''' Implementation per Gunther's 210209 Calc Daily Vol Initial Stage.odt Daily Vol 1. Make Slow Daily Vols: Calculates the 'computeds' of single (daily) row of the df ''' assert stage == 2, f'{self.name} calculation should only run at stage 2' # df is assumed daily since stage 2 is asserted # print(f'prior_idx={prior},idx={idx}') curday_ordinal = df.index.tolist().index(idx[0]) #print(f'_2StVols_SlowDailyVols:day_calculate: curday_ordinal={curday_ordinal}') # 1a) Slow Daily Vol Basic slow "SDVBsl": #print(f"{idx[0]} DV= {df.at[idx[0], 'DV']}") if (prior is None): # first row df.at[idx[0], 'DaysDVup'] = 0 # compute starting SlowVols figures by using average of 1st 5 days Volume DV_avg = df.iloc[:5]['ODV'].mean(0) df.at[idx[0],'SDVBsl'] = DV_avg df.at[idx[0],'SDVBm'] = DV_avg df.at[idx[0],'SDVBf'] = DV_avg df.at[idx[0],'SDVCsl'] = DV_avg df.at[idx[0],'SDVCm'] = DV_avg df.at[idx[0],'SDVCf1'] = DV_avg df.at[idx[0],'SDVCf2'] = DV_avg elif df.at[idx[0], 'DV'] > df.at[prior[0], 'SDVBsl']: # Case 1: DV D > SDVBsl D-1 # we're not on the very first row # "DaysDVupD" is the number of days in a row the Slow Daily Vol Basic slow "SDVBsl D" increased. up_till = between_dates_condition(df, df.index[0], prior[0]) up_tillDF = df[up_till] #print(f"up_tillDF rows={up_tillDF.shape[0]} {df.index[0]} -> {prior[0]}") if up_tillDF['SDVBsl'].is_monotonic_increasing: # been increasing till this row, write the count in DaysDVup #print(f'up_tilDF rows={up_tillDF.shape[0]}') daysDVup = min(up_tillDF.shape[0], 50) # not more than 50 daysDVup = max(1, daysDVup) # not less than 1 df.at[idx[0], 'DaysDVup'] = daysDVup else: daysDVup = 1 df.at[idx[0], 'DaysDVup'] = daysDVup # SDVB sl D = SDVBsl D-1 + YDVBsl u / DaysDVupD * ( DVD - SDVB sl D-1)eSDVBsl u df.at[idx[0], 'SDVBsl'] = df.at[prior[0], 'SDVBsl'] + (at_calc_params['atp_YDVBslu']['setting']/daysDVup) * ( df.at[idx[0], 'DV'] - df.at[prior[0], 'SDVBsl']) ** at_calc_params['atp_eSDVBslu']['setting'] elif df.at[idx[0], 'DV'] <= df.at[prior[0], 'SDVBsl']: # Case 2: DVD < SDVBsl D-1 # SDVBsl D = SDVBsl D-1 - YDVBsl d * (SDVB sl D-1 - DVD)eSDVBsl d df.at[idx[0], 'SDVBsl'] = df.at[prior[0], 'SDVBsl'] - at_calc_params['atp_YDVBsld']['setting'] * ( df.at[prior[0], 'SDVBsl']-df.at[idx[0], 'DV']) ** at_calc_params['atp_eSDVBsld']['setting'] # 1b) Slow Daily Vol Basic medium "SDVB m D": if (prior is None): # first row pass elif df.at[idx[0], 'DV'] > df.at[prior[0], 'SDVBm']: # Case 1: DVD > SDVBm D-1 # SDVBm D = SDVBm D-1 + YDVBm u * ( DVD - SDVBm D-1)eSDVBm u df.at[idx[0], 'SDVBm'] = df.at[prior[0], 'SDVBm'] + at_calc_params['atp_YDVBmu']['setting'] * ( df.at[idx[0], 'DV'] - df.at[prior[0], 'SDVBm']) ** at_calc_params['atp_eSDVBmu']['setting'] elif df.at[idx[0], 'DV'] <= df.at[prior[0], 'SDVBm']: # Case 2: DVD < SDVBm D-1 # SDVBm D = SDVBm D-1 - YDVB m d * (SDVBm D-1 - DVD)eSDVBm d df.at[idx[0], 'SDVBm'] = df.at[prior[0], 'SDVBm'] - at_calc_params['atp_YDVBmd']['setting'] * ( df.at[prior[0], 'SDVBm']-df.at[idx[0], 'DV']) ** at_calc_params['atp_eSDVBmd']['setting'] # 1c) Slow Daily Vol Basic fast "SDVB bf D": if (prior is None): # first row pass elif df.at[idx[0], 'DV'] > df.at[prior[0], 'SDVBf']: # Case 1: DVD > SDVBf D-1 # SDVBf D = SDVBf D-1 + YDVBf u * ( DVD - SDVBf D-1)eSDVBf u df.at[idx[0], 'SDVBf'] = df.at[prior[0], 'SDVBf'] + at_calc_params['atp_YDVBfu']['setting'] * ( df.at[idx[0], 'DV'] - df.at[prior[0], 'SDVBf']) ** at_calc_params['atp_eSDVBfu']['setting'] elif df.at[idx[0], 'DV'] <= df.at[prior[0], 'SDVBf']: # Case 2: DVD < SDVBf D-1 # SDVBf D = SDVBf D-1 - YDVB f d * (SDVBf D-1 - DVD)eSDVBf d df.at[idx[0], 'SDVBf'] = df.at[prior[0], 'SDVBf'] - at_calc_params['atp_YDVBfd']['setting'] * ( df.at[prior[0], 'SDVBf']-df.at[idx[0], 'DV']) ** at_calc_params['atp_eSDVBfd']['setting'] # 1d) Slow Daily Vol Compare slow "SDVCsl D": if (prior is None): # first row pass elif df.at[idx[0], 'DV'] > df.at[prior[0], 'SDVCsl']: # Case 1: DVD > SDVCsl D-1 # SDVCsl D = SDVCsl D-1 + YDVCsl u * ( DVD - SDVCsl D-1)eSDVCsl u df.at[idx[0], 'SDVCsl'] = df.at[prior[0], 'SDVCsl'] + at_calc_params['atp_YDVCslu']['setting'] * ( df.at[idx[0], 'DV'] - df.at[prior[0], 'SDVCsl']) ** at_calc_params['atp_eSDVCslu']['setting'] elif df.at[idx[0], 'DV'] <= df.at[prior[0], 'SDVCsl']: # Case 2: DVD < SDVCsl D-1 # SDVCsl D = SDVCsl D-1 - YDVC sl d * (SDVCsl D-1 - DVD)eSDVCsl d df.at[idx[0], 'SDVCsl'] = df.at[prior[0], 'SDVCsl'] - at_calc_params['atp_YDVCsld']['setting'] * ( df.at[prior[0], 'SDVCsl']-df.at[idx[0], 'DV']) ** at_calc_params['atp_eSDVCsld']['setting'] # 1e) Slow Daily Vol Compare medium "SDVCm D": if (prior is None): # first row pass elif df.at[idx[0], 'DV'] > df.at[prior[0], 'SDVCm']: # Case 1: DVD > SDVCm D-1 # SDVCm D = SDVCm D-1 + YDVCm u * ( DVD - SDVCm D-1)eSDVCm u df.at[idx[0], 'SDVCm'] = df.at[prior[0], 'SDVCm'] + at_calc_params['atp_YDVCmu']['setting'] * ( df.at[idx[0], 'DV'] - df.at[prior[0], 'SDVCm']) ** at_calc_params['atp_eSDVCmu']['setting'] elif df.at[idx[0], 'DV'] <= df.at[prior[0], 'SDVCm']: # Case 2: DVD < SDVCm D-1 # SDVCm D = SDVCm D-1 - YDVC m d * (SDVCm D-1 - DVD)eSDVCm d df.at[idx[0], 'SDVCm'] = df.at[prior[0], 'SDVCm'] - at_calc_params['atp_YDVCmd']['setting'] * ( df.at[prior[0], 'SDVCm']-df.at[idx[0], 'DV']) ** at_calc_params['atp_eSDVCmd']['setting'] # 1f) Slow Daily Vol Compare fast1 "SDVCf1 D": if (prior is None): # first row pass elif df.at[idx[0], 'DV'] > df.at[prior[0], 'SDVCf1']: # Case 1: DVD > SDVCf1 D-1 # SDVCm D = SDVCf1 D-1 + YDVCf1 u * ( DVD - SDVCf1 D-1)eSDVCf1 u df.at[idx[0], 'SDVCf1'] = df.at[prior[0], 'SDVCf1'] + at_calc_params['atp_YDVCf1u']['setting'] * ( df.at[idx[0], 'DV'] - df.at[prior[0], 'SDVCf1']) ** at_calc_params['atp_eSDVCf1u']['setting'] elif df.at[idx[0], 'DV'] <= df.at[prior[0], 'SDVCf1']: # Case 2: DVD < SDVCf1 D-1 # SDVCm D = SDVCf1 D-1 - YDVC f1 d * (SDVCf1 D-1 - DVD)eSDVCf1 d df.at[idx[0], 'SDVCf1'] = df.at[prior[0], 'SDVCf1'] - at_calc_params['atp_YDVCf1d']['setting'] * ( df.at[prior[0], 'SDVCf1']-df.at[idx[0], 'DV']) ** at_calc_params['atp_eSDVCf1d']['setting'] # 1g) Slow Daily Vol Compare fast1 "SDVCf2 D": if (prior is None): # first row pass elif df.at[idx[0], 'DV'] > df.at[prior[0], 'SDVCf2']: # Case 1: DVD > SDVCf2 D-1 # SDVCf2 D = SDVCf2 D-1 + YDVCf2 u * ( DVD - SDVCf2 D-1)eSDVCf2 u df.at[idx[0], 'SDVCf2'] = df.at[prior[0], 'SDVCf2'] + at_calc_params['atp_YDVCf2u']['setting'] * ( df.at[idx[0], 'DV'] - df.at[prior[0], 'SDVCf2']) ** at_calc_params['atp_eSDVCf2u']['setting'] elif df.at[idx[0], 'DV'] <= df.at[prior[0], 'SDVCf2']: # Case 2: DVD < SDVCf2 D-1 # SDVCf2 D = SDVCf2 D-1 - YDVC f2 d * (SDVCf2 D-1 - DVD)eSDVCf2 d df.at[idx[0], 'SDVCf2'] = df.at[prior[0], 'SDVCf2'] - at_calc_params['atp_YDVCf2d']['setting'] * ( df.at[prior[0], 'SDVCf2']-df.at[idx[0], 'DV']) ** at_calc_params['atp_eSDVCf2d']['setting'] # 1h) As in the old ShW, we need figures to show a volumes constellation, the Daily Vols Figure, "DVFxx" if not prior is None: # 'DVFDf' ??? # df.at[idx[0], 'DVFDf'] = df.at[idx[0], 'DV'] / df.at[idx[0], 'SDVBf'] # 'DVFf3' if curday_ordinal >= 1: _1_back=df.index[curday_ordinal-1] df.at[idx[0], 'DVFf3'] = df.at[idx[0], 'DV'] / df.at[_1_back, 'SDVBf'] # 'DVFf2' if curday_ordinal >= 2: _2_back=df.index[curday_ordinal-2] df.at[idx[0], 'DVFf2'] = df.at[idx[0], 'SDVCf2'] / df.at[_2_back, 'SDVBf'] # 'DVFf1' if curday_ordinal >= 3: _3_back=df.index[curday_ordinal-3] df.at[idx[0], 'DVFf1'] = df.at[idx[0], 'SDVCf1'] / df.at[_3_back, 'SDVBf'] # 'DVFm' df.at[idx[0], 'DVFm'] = df.at[idx[0], 'SDVCm'] / df.at[idx[0], 'SDVBm'] # 'DVFsl' df.at[idx[0], 'DVFsl'] = df.at[idx[0], 'SDVCsl'] / df.at[idx[0], 'SDVBsl'] ''' additional calcs performed AFTER day by day operations ''' def wrap_up(self, df, share_num, calc_dates_in_df, top_up, stage): assert stage == 2, f'{self.name} wrap_up calculation should only run at stage 2' # assign into Ov SDVBf.D-1, and SDVBf.D-2 try: ov_helpers.global_ov_update(share_num, 'SDVBf.D-1', df.loc[df.index[-2],'SDVBf']) ov_helpers.global_ov_update(share_num, 'SDVBf.D-2', df.loc[df.index[-3],'SDVBf']) except IndexError as exc: logging.error(f'_2StVols_SlowDailyVols wrap_up exception {exc}') return
2.171875
2
yeast_mrcnn/model.py
Hekstra-Lab/yeast-mrcnn
0
12790694
__all__ = [ "make_mrcnn", "mrcnn", ] import torch from torchvision.models.detection import MaskRCNN, maskrcnn_resnet50_fpn from torchvision.models.detection.backbone_utils import resnet_fpn_backbone from torchvision.models.detection.rpn import AnchorGenerator from torchvision.models.detection.transform import GeneralizedRCNNTransform def make_mrcnn(): model = maskrcnn_resnet50_fpn( num_classes=2, pretrained_backbone=True, trainable_backbone_layers=5 ) transform = GeneralizedRCNNTransform( min_size=800, max_size=1333, image_mean=[0], image_std=[1] ) model.transform = transform model.backbone.body.conv1 = torch.nn.Conv2d( 1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False ) return model def mrcnn(): # Get a resnet50 fpn backbone and change the first layer for grayscale backbone = resnet_fpn_backbone("resnet50", pretrained=True, trainable_layers=5) backbone.body.conv1 = torch.nn.Conv2d( 1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False ) # Make anchor generator with 3 sizes per feature map and 5 aspect ratios sizes = tuple(2.0 ** x for x in range(5, 12)) aspects = tuple(0.5 * x for x in range(1, 5)) n_feature_maps = 5 # true for resnet50 with FPN ag_sizes = tuple(tuple(sizes[i : i + 3]) for i in range(n_feature_maps)) ag_aspects = n_feature_maps * (aspects,) anchor_generator = AnchorGenerator(sizes=ag_sizes, aspect_ratios=ag_aspects) # Assemble into MaskRCNN mrcnn = MaskRCNN( backbone, 2, image_mean=[0], image_std=[1], rpn_anchor_generator=anchor_generator, ) return mrcnn
2.125
2
get_article.py
Astruj/Regional-English-Wiki
0
12790695
<filename>get_article.py import kdap knol = kdap.knol() knol.get_wiki_article('Citizenship (Amendment) Act, 2019','/home/akash/Desktop/pro') a=kdap.analysis.knol()
1.5
2
SQLFileManager.py
whde/Movie
1
12790696
#!/usr/bin/python # -*- coding: UTF-8 -*- import threading mu = threading.Lock() def create_sql_file(): open('sql.txt', 'w+', encoding='utf-8') def lock_test(sql): if mu.acquire(True): write_to_file(sql) mu.release() def write_to_file(sql): fp = open('sql.txt', 'a+') print('write start!') try: fp.write(sql) finally: fp.close() print('write finish!') def read_sql_file(): fp = open('sql.txt', 'r+') return fp.read()
3.109375
3
Beecrowd/Python/2152 Pepe, I Already Took the Candle!.py
nazmul629/OJ-Problem_Solution
0
12790697
for i in range(int(input())): H,M,O =map(int,input().split()) if H <10: H='0'+str(H) if M <10: M='0'+str(M) if O<1: print(f"{H}:{M} - A porta fechou!") else: print(f"{H}:{M} - A porta abriu!")
3.21875
3
pyramid_sms/outgoing.py
timgates42/pyramid_sms
6
12790698
"""Outgoing SMS API.""" import logging import pkg_resources from pyramid.renderers import render from pyramid.settings import asbool from pyramid_sms.utils import get_sms_backend try: pkg_resources.get_distribution('websauna') from websauna.system.http import Request from websauna.system.task.tasks import task from websauna.system.task.tasks import ScheduleOnCommitTask HAS_WEBSAUNA = False except pkg_resources.DistributionNotFound: from pyramid.request import Request HAS_WEBSAUNA = False from .interfaces import SMSConfigurationError from .events import SMSSent logger = logging.getLogger(__name__) def _send_sms(request, receiver, text_body, sender, log_failure): """Perform actual SMS outbound operation through a configured service.""" service = get_sms_backend(request) service.send_sms(receiver, text_body, sender, log_failure) if HAS_WEBSAUNA: # TODO: Factor this to a separate configurable module @task(base=ScheduleOnCommitTask, bind=True) def _send_sms_async(self, receiver, from_, text_body, log_failure): """Celery task to send the SMS synchronously outside HTTP request proccesing.""" request = self.request.request _send_sms(request, receiver, from_, text_body, log_failure) def send_sms(request: Request, receiver: str, text_body: str, sender: str=None, log_failure: bool=True, _async: bool=None, user_dialog: bool=False): """Send outgoing SMS message using the default configured SMS service. Example: .. code-block:: python def test_sms_view(request): '''Dummy view to simulate outgoing SMS.''' send_sms(request, "+15551231234", "Test message") :param receiver: Receiver's phone number as international format. You should normalize this number from all user input before passing in. See :py:mod:`pyramid_sms.utils` for examples. :param text_body: Outbound SMS body. Usually up to 1600 characters. :param sender: Envelope from number. Needs to be configured in the service. If none use default configured "sms.default_from". :param log_failure: If there is an exception from the SMS backend then log this using Python logging system. Otherwise raise the error as an exception. :param async: Force asynchronous operation through task subsystem. If ``None`` respect ``sms.async`` settings. If the operation is asynchronous, this function returns instantly and does not block HTTP request due to slow API calls to a third party service. :param user_dialog: This SMS is part of a dialog with a known user. Use this flag to log messages with the user in your conversation dashboard. Set ``False`` to two-factor auth tokens and such. :raise SMSConfigurationError: If configuration settings are missing """ if _async is None: _async = request.registry.settings.get("sms.async") if _async is None: raise SMSConfigurationError("sms.async setting not defined") _async = asbool(_async) if sender is None: sender = request.registry.settings.get("sms.default_sender") if not sender: raise SMSConfigurationError("sms.default_sender not configured") # https://www.twilio.com/help/faq/sms/does-twilio-support-concatenated-sms-messages-or-messages-over-160-characters if len(text_body) >= 1600: logger.warn("Too long SMS: %s", text_body) logger.info("Queuing sending SMS to: %s, body: %s", receiver, text_body) # Put the actual Twilio operation async queue if _async: if not HAS_WEBSAUNA: raise SMSConfigurationError("Async operations are only supported with Websauna framework") _send_sms_async.apply_async(args=(receiver, text_body, sender, log_failure,)) else: _send_sms(request, receiver, text_body, sender, log_failure) request.registry.notify(SMSSent(request, receiver, text_body, sender, user_dialog)) def send_templated_sms(request: Request, template: str, context: dict, receiver: str, sender: str=None, log_failure: bool=True, _async: bool=None, user_dialog: bool=False): """Send out a SMS that is constructed using a page template. Same as :py:meth:`pyramid_sms.outgoing.send_sms`, but uses templates instead of hardcoded messages. :param request: HTTP request :param template: Template name. Like ``welcome_sms.txt.jinja``. :param context: Dictionary passed to template rendering engine """ text_body = render(template, context, request=request) send_sms(request, receiver, text_body, sender, log_failure, _async, user_dialog)
2.5
2
labelprop/lightning_model.py
nathandecaux/labelprop
0
12790699
import torch from torch import nn import torch.nn.functional as F import pytorch_lightning as pl import kornia from .voxelmorph2d import VxmDense,NCC,Grad,Dice from monai.losses import BendingEnergyLoss,GlobalMutualInformationLoss,DiceLoss,LocalNormalizedCrossCorrelationLoss from kornia.filters import sobel, gaussian_blur2d,canny,spatial_gradient class LabelProp(pl.LightningModule): @property def automatic_optimization(self): return False def norm(self, x): if len(x.shape)==4: x = kornia.enhance.normalize_min_max(x) elif len(x.shape)==3: x= kornia.enhance.normalize_min_max(x[:, None, ...])[:,0, ...] else: x = kornia.enhance.normalize_min_max(x[None, None, ...])[0, 0, ...] return x def __init__(self,n_channels=1,n_classes=2,learning_rate=5e-3,weight_decay=1e-8,way='up',shape=256,selected_slices=None,losses={},by_composition=False): super().__init__() self.n_classes = n_classes self.learning_rate=learning_rate self.weight_decay=weight_decay self.selected_slices=selected_slices #Used in validation step if isinstance(shape,int):shape=[shape,shape] self.registrator= VxmDense(shape,bidir=False,int_downsize=1,int_steps=7) self.way=way #If up, learning only "forward" transitions (phi_i->j with j>i). Other choices : "down", "both". Bet you understood ;) self.by_composition=by_composition self.loss_model = MTL_loss(['sim','seg','comp','smooth']) self.losses=losses if self.by_composition: print('Using composition for training') print('Losses',losses) self.save_hyperparameters() def apply_deform(self,x,field): """Apply deformation to x from flow field Args: x (Tensor): Image or mask to deform (BxCxHxW) field (Tensor): Deformation field (Bx2xHxW) Returns: Tensor: Transformed image """ return self.registrator.transformer(x,field) def compose_list(self,flows): flows=list(flows) compo=flows[-1] for flow in reversed(flows[:-1]): compo=self.compose_deformation(flow,compo) return compo def compose_deformation(self,flow_i_k,flow_k_j): """ Returns flow_k_j(flow_i_k(.)) flow Args: flow_i_k flow_k_j Returns: [Tensor]: Flow field flow_i_j = flow_k_j(flow_i_k(.)) """ flow_i_j= flow_k_j+self.apply_deform(flow_i_k,flow_k_j) return flow_i_j def forward(self, moving,target,registration=True): """ Args: moving (Tensor): Moving image (BxCxHxW) target ([type]): Fixed image (BxCxHxW) registration (bool, optional): If False, also return non-integrated inverse flow field. Else return the integrated one. Defaults to False. Returns: moved (Tensor): Moved image field (Tensor): Deformation field from moving to target """ return self.registrator.forward(moving,target,registration=registration) # def multi_level_training(self,moving,target,level=3): # """ # Args: # moving (Tensor): Moving image (BxCxHxW) # target ([type]): Fixed image (BxCxHxW) # registration (bool, optional): If False, also return non-integrated inverse flow field. Else return the integrated one. Defaults to False. # Returns: # moved (Tensor): Moved image # field (Tensor): Deformation field from moving to target # """ # stack_moved=[] # stack_field=[] # stack_preint=[] # resampling=torch.nn.Upsample(size=self.shape,mode='bilinear',align_corners=True) # for i in range(level): # downsampling=nn.Upsample(scale_factor=1/(i+1), mode='bilinear',align_corners=True) # downsampled_moving=downsampling(moving) # downsampled_target=downsampling(target) # moved,field,preint_field=self.forward(downsampled_moving,downsampled_target) # self.compute_loss(moved,target,field=field) # stack_moved.append(moved) # stack_field.append(field) # stack_preint.append(preint_field) # return torch.stack(stack_moved,0).mean(0),torch.stack(stack_field,0).mean(0),torch.stack(stack_preint,0).mean(0) def compute_loss(self,moved=None,target=None,moved_mask=None,target_mask=None,field=None): """ Args: moved : Transformed anatomical image target : Target anatomical image moved_mask : Transformed mask target_mask : Target mask field : Velocity field (=non integrated) """ losses={} if moved!=None: # max_peak=F.conv2d(target,target).sum() # loss_ncc=-F.conv2d(moved,target).sum()/max_peak#+NCC().loss(moved,target) # loss_ncc=NCC().loss(moved,target) loss_ncc=GlobalMutualInformationLoss()(moved,target)*0.8 #MONAI # loss_ncc=LocalNormalizedCrossCorrelationLoss(spatial_dims=2, kernel_size=99)(moved,target) #MONAI # loss_ncc=nn.MSELoss()(moved,target) losses['sim']=loss_ncc if moved_mask!=None: # loss_seg= Dice().loss(moved_mask,target_mask) loss_seg=DiceLoss(include_background=False)(moved_mask,target_mask)-1 losses['seg']=loss_seg if field!=None: # loss_trans=BendingEnergyLoss()(field) #MONAI loss_trans=Grad().loss(field,field) losses['smooth']=loss_trans #Return dict of losses return losses#{'sim': loss_ncc,'seg':loss_seg,'smooth':loss_trans} def compute_contour_loss(self,img,moved_mask): #Compute contour loss mag,mask_contour=canny(moved_mask[:,1:2]) # edges,mag=canny(img) return BendingEnergyLoss()(mag) def weighting_loss(self,losses): """ Args: losses (dict): Dictionary of losses Returns: loss (Tensor): Weighted loss """ def blend(self,x,y): #For visualization x=self.norm(x) blended=torch.stack([y,x,x]) return blended def training_step(self, batch, batch_nb): X,Y=batch # X : Full scan (1x1xLxHxW) | Y : Ground truth (1xCxLxHxW) y_opt=self.optimizers() dices_prop=[] Y_multi_lab=torch.clone(Y) for lab in list(range(Y_multi_lab.shape[1]))[1:]: chunks=[] chunk=[] #Binarize ground truth according to the label Y=torch.stack([1-Y_multi_lab[:,lab],Y_multi_lab[:,lab]],dim=1) #Identifying chunks (i->j) for i in range(X.shape[2]): y=Y[:,:,i,...] if len(torch.unique(torch.argmax(y,1)))>1: chunk.append(i) if len(chunk)==2: chunks.append(chunk) chunk=[i] if self.current_epoch==0: print(lab,chunks) for chunk in chunks: y_opt.zero_grad() #Sequences of flow fields (field_up=forward, field_down=backward) fields_up=[] fields_down=[] loss_up_sim=[] loss_up_smooth=[] loss_down_sim=[] loss_down_smooth=[] loss=0 losses={'sim':None,'seg':None,'comp':None,'smooth':None} for i in range(chunk[0],chunk[1]): #Computing flow fields and loss for each hop from chunk[0] to chunk[1] x1=X[:,:,i,...] x2=X[:,:,i+1,...] if not self.way=='down': moved_x1,field_up,preint_field=self.forward(x1,x2,registration=False) cur_loss=self.compute_loss(moved_x1,x2,field=preint_field) loss_up_sim.append(cur_loss['sim']) loss_up_smooth.append(cur_loss['smooth']) # field_down=self.registrator.integrate(-preint_field) # moved_x2=self.registrator.transformer(x2,field_down) # loss_up_sim.append(self.compute_loss(moved_x2,x1)['sim']) fields_up.append(field_up) # if len(fields_up)>0: # field_up_2=self.compose_deformation(fields_up[-1],field_up) # loss_up.append(self.compute_loss(self.apply_deform(X[:,:,i-1],field_up_2),x2)) if not self.way=='up': moved_x2,field_down,preint_field=self.forward(x2,x1,registration=False)# fields_down.append(field_down) moved_x2=self.registrator.transformer(x2,field_down) cur_loss=self.compute_loss(moved_x2,x1,field=preint_field) loss_down_sim.append(cur_loss['sim']) loss_down_smooth.append(cur_loss['smooth']) # field_up=self.registrator.integrate(-preint_field) # moved_x1=self.registrator.transformer(x1,field_up) # loss_down_sim.append(self.compute_loss(moved_x1,x2)['sim']) # if len(fields_down)>0: # field_down_2=self.compose_deformation(fields_down[-1],field_down) # loss_down.append(self.compute_loss(self.apply_deform(X[:,:,i+1],field_down_2),x1)) #Better with mean if self.way=='up': loss=torch.stack(loss_up).mean() elif self.way=='down': loss=torch.stack(loss_down).mean() else: losses['sim']=torch.stack(loss_up_sim).mean()+torch.stack(loss_down_sim).mean() losses['smooth']=torch.stack(loss_up_smooth).mean()+torch.stack(loss_down_smooth).mean() # loss=(loss_up+loss_down) # Computing registration from the sequence of flow fields if not self.way=='down': prop_x_up=X[:,:,chunk[0],...] prop_y_up=Y[:,:,chunk[0],...] composed_fields_up=self.compose_list(fields_up) if self.by_composition: prop_x_up=self.apply_deform(prop_x_up,composed_fields_up) prop_y_up=self.apply_deform(prop_y_up,composed_fields_up) else: for i,field_up in enumerate(fields_up): prop_x_up=self.apply_deform(prop_x_up,field_up) prop_y_up=self.apply_deform(prop_y_up,field_up) losses['contours']=self.compute_contour_loss(X[:,:,chunk[0]+i+1],prop_y_up) if self.losses['compo-reg-up']: losses['comp']=self.compute_loss(prop_x_up,X[:,:,chunk[1],...])['sim'] if self.losses['compo-dice-up']: dice_loss=self.compute_loss(moved_mask=prop_y_up,target_mask=Y[:,:,chunk[1],...])['seg'] losses['seg']=dice_loss dices_prop.append(dice_loss) if not self.way=='up': prop_x_down=X[:,:,chunk[1],...] prop_y_down=Y[:,:,chunk[1],...] composed_fields_down=self.compose_list(fields_down[::-1]) if self.by_composition: prop_x_down=self.apply_deform(prop_x_down,composed_fields_down) prop_y_down=self.apply_deform(prop_y_down,composed_fields_down) else: i=1 for field_down in reversed(fields_down): prop_x_down=self.apply_deform(prop_x_down,field_down) prop_y_down=self.apply_deform(prop_y_down,field_down) losses['contours']+=self.compute_contour_loss(X[:,:,chunk[1]-i],prop_y_down) i+=1 if self.losses['compo-reg-down']: losses['comp']+=self.compute_loss(prop_x_down,X[:,:,chunk[0],...])['sim'] if self.losses['compo-dice-down']: dice_loss=self.compute_loss(moved_mask=prop_y_down,target_mask=Y[:,:,chunk[0],...])['seg'] losses['seg']+=dice_loss dices_prop.append(dice_loss) #Additionnal loss to ensure sequences (images and masks) generated from "positive" and "negative" flows are equal # if self.way=='both': # #This helps # if self.losses['bidir-cons-dice']: # loss+=self.compute_loss(moved_mask=prop_y_down,target_mask=prop_y_up) # #This breaks stuff # if self.losses['bidir-cons-reg']: # loss+=self.compute_loss(prop_x_up,prop_x_down) # loss+=nn.L1Loss()(self.apply_deform(X[:,:,chunk[0],...], self.compose_deformation(composed_fields_up,composed_fields_down)),X[:,:,chunk[0],...]) # loss+=nn.L1Loss()(self.apply_deform(X[:,:,chunk[1],...], self.compose_deformation(composed_fields_down,composed_fields_up)),X[:,:,chunk[1],...]) loss=losses['seg']+losses['sim']+losses['contours']#+losses['smooth']#torch.stack([v for v in losses.values()]).mean() # loss=self.loss_model(losses) self.log_dict({'loss':loss},prog_bar=True) self.manual_backward(loss) y_opt.step() # self.logger.experiment.add_image('x_true',X[0,:,chunk[0],...]) # self.logger.experiment.add_image('prop_x_down',prop_x_down[0,:,0,...]) # self.logger.experiment.add_image('x_true_f',X[0,:,chunk[1],...]) # self.logger.experiment.add_image('prop_x_up',prop_x_up[0,:,-1,...]) if len(dices_prop)>0: dices_prop=-torch.stack(dices_prop).mean() self.log('val_accuracy',dices_prop) print(dices_prop) else: self.log('val_accuracy',self.current_epoch) return loss def register_images(self,moving,target,moving_mask): moved,field=self.forward(moving,target,registration=True) return moved,self.apply_deform(moving_mask,field),field def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay,amsgrad=True) def hardmax(self,Y,dim): return torch.moveaxis(F.one_hot(torch.argmax(Y,dim),self.n_classes), -1, dim) class MTL_loss(torch.nn.Module): def __init__(self, losses): super().__init__() start=1. self.lw={} self.sigmas = nn.ParameterDict() for k in losses: self.lw[k]= start self.set_dict(self.lw) def set_dict(self, dic): self.lw = dic for k in dic.keys(): if dic[k] > 0: self.sigmas[k] = nn.Parameter(torch.ones(1) * dic[k]) def forward(self, loss_dict): loss = 0 with torch.set_grad_enabled(True): for k in loss_dict.keys(): if k in self.lw.keys(): loss +=0.5 * loss_dict[k] / (self.sigmas[k])**2 + torch.log(self.sigmas[k]) return loss
2.140625
2
MapHeightEval.py
hal-lab-u-tokyo/GenMap
0
12790700
# This file is part of GenMap and released under the MIT License, see LICENSE. # Author: <NAME> from EvalBase import EvalBase import networkx as nx import os import signal import math main_pid = os.getpid() class MapHeightEval(EvalBase): def __init__(self): pass @staticmethod def eval(CGRA, app, sim_params, individual, **info): """Return mapping height. Args: CGRA (PEArrayModel): A model of the CGRA app (Application): An application to be optimized sim_params (SimParameters): parameters for some simulations individual (Individual): An individual to be evaluated Returns: int: mapping height """ y_coords = [] SEs = [v for v in individual.routed_graph.nodes() if CGRA.isSE(v)] ALUs = [v for v in individual.routed_graph.nodes() if CGRA.isALU(v)] width, height = CGRA.getSize() for node in SEs + ALUs: for x in range(width): for y in range(height): rsc = CGRA.get_PE_resources((x, y)) if node in [v for se_set in rsc["SE"].values() for v in se_set ] or \ node == rsc["ALU"]: y_coords.append(y) break map_height = max(y_coords) + 1 if "quit_minheight" in info.keys(): if info["quit_minheight"] is True: input_count = len(set(nx.get_node_attributes(\ app.getInputSubGraph(), "input").keys())) output_count = len(set(nx.get_node_attributes(\ app.getOutputSubGraph(), "output").keys())) minh_op = math.ceil(len(app.getCompSubGraph().nodes()) \ / width) if CGRA.isIOShared(): min_maph = max(math.ceil((input_count + output_count) / 2),\ minh_op) else: min_maph = max(input_count, output_count, minh_op) if min_maph == map_height and individual.isValid(): os.kill(main_pid, signal.SIGUSR1) return map_height @staticmethod def isMinimize(): return True @staticmethod def name(): return "Mapping_Height"
2.171875
2
sdk/python/pulumi_gcp/iot/outputs.py
dimpu47/pulumi-gcp
0
12790701
<reponame>dimpu47/pulumi-gcp # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables from . import outputs __all__ = [ 'DeviceConfig', 'DeviceCredential', 'DeviceCredentialPublicKey', 'DeviceGatewayConfig', 'DeviceLastErrorStatus', 'DeviceState', 'RegistryCredential', 'RegistryCredentialPublicKeyCertificate', 'RegistryEventNotificationConfigItem', 'RegistryHttpConfig', 'RegistryMqttConfig', 'RegistryStateNotificationConfig', ] @pulumi.output_type class DeviceConfig(dict): def __init__(__self__, *, binary_data: Optional[str] = None, cloud_update_time: Optional[str] = None, device_ack_time: Optional[str] = None, version: Optional[str] = None): if binary_data is not None: pulumi.set(__self__, "binary_data", binary_data) if cloud_update_time is not None: pulumi.set(__self__, "cloud_update_time", cloud_update_time) if device_ack_time is not None: pulumi.set(__self__, "device_ack_time", device_ack_time) if version is not None: pulumi.set(__self__, "version", version) @property @pulumi.getter(name="binaryData") def binary_data(self) -> Optional[str]: return pulumi.get(self, "binary_data") @property @pulumi.getter(name="cloudUpdateTime") def cloud_update_time(self) -> Optional[str]: return pulumi.get(self, "cloud_update_time") @property @pulumi.getter(name="deviceAckTime") def device_ack_time(self) -> Optional[str]: return pulumi.get(self, "device_ack_time") @property @pulumi.getter def version(self) -> Optional[str]: return pulumi.get(self, "version") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class DeviceCredential(dict): def __init__(__self__, *, public_key: 'outputs.DeviceCredentialPublicKey', expiration_time: Optional[str] = None): """ :param 'DeviceCredentialPublicKeyArgs' public_key: A public key used to verify the signature of JSON Web Tokens (JWTs). Structure is documented below. :param str expiration_time: The time at which this credential becomes invalid. """ pulumi.set(__self__, "public_key", public_key) if expiration_time is not None: pulumi.set(__self__, "expiration_time", expiration_time) @property @pulumi.getter(name="publicKey") def public_key(self) -> 'outputs.DeviceCredentialPublicKey': """ A public key used to verify the signature of JSON Web Tokens (JWTs). Structure is documented below. """ return pulumi.get(self, "public_key") @property @pulumi.getter(name="expirationTime") def expiration_time(self) -> Optional[str]: """ The time at which this credential becomes invalid. """ return pulumi.get(self, "expiration_time") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class DeviceCredentialPublicKey(dict): def __init__(__self__, *, format: str, key: str): """ :param str format: The format of the key. Possible values are `RSA_PEM`, `RSA_X509_PEM`, `ES256_PEM`, and `ES256_X509_PEM`. :param str key: The key data. """ pulumi.set(__self__, "format", format) pulumi.set(__self__, "key", key) @property @pulumi.getter def format(self) -> str: """ The format of the key. Possible values are `RSA_PEM`, `RSA_X509_PEM`, `ES256_PEM`, and `ES256_X509_PEM`. """ return pulumi.get(self, "format") @property @pulumi.getter def key(self) -> str: """ The key data. """ return pulumi.get(self, "key") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class DeviceGatewayConfig(dict): def __init__(__self__, *, gateway_auth_method: Optional[str] = None, gateway_type: Optional[str] = None, last_accessed_gateway_id: Optional[str] = None, last_accessed_gateway_time: Optional[str] = None): """ :param str gateway_auth_method: Indicates whether the device is a gateway. Possible values are `ASSOCIATION_ONLY`, `DEVICE_AUTH_TOKEN_ONLY`, and `ASSOCIATION_AND_DEVICE_AUTH_TOKEN`. :param str gateway_type: Indicates whether the device is a gateway. Default value is `NON_GATEWAY`. Possible values are `GATEWAY` and `NON_GATEWAY`. :param str last_accessed_gateway_id: - The ID of the gateway the device accessed most recently. :param str last_accessed_gateway_time: - The most recent time at which the device accessed the gateway specified in last_accessed_gateway. """ if gateway_auth_method is not None: pulumi.set(__self__, "gateway_auth_method", gateway_auth_method) if gateway_type is not None: pulumi.set(__self__, "gateway_type", gateway_type) if last_accessed_gateway_id is not None: pulumi.set(__self__, "last_accessed_gateway_id", last_accessed_gateway_id) if last_accessed_gateway_time is not None: pulumi.set(__self__, "last_accessed_gateway_time", last_accessed_gateway_time) @property @pulumi.getter(name="gatewayAuthMethod") def gateway_auth_method(self) -> Optional[str]: """ Indicates whether the device is a gateway. Possible values are `ASSOCIATION_ONLY`, `DEVICE_AUTH_TOKEN_ONLY`, and `ASSOCIATION_AND_DEVICE_AUTH_TOKEN`. """ return pulumi.get(self, "gateway_auth_method") @property @pulumi.getter(name="gatewayType") def gateway_type(self) -> Optional[str]: """ Indicates whether the device is a gateway. Default value is `NON_GATEWAY`. Possible values are `GATEWAY` and `NON_GATEWAY`. """ return pulumi.get(self, "gateway_type") @property @pulumi.getter(name="lastAccessedGatewayId") def last_accessed_gateway_id(self) -> Optional[str]: """ - The ID of the gateway the device accessed most recently. """ return pulumi.get(self, "last_accessed_gateway_id") @property @pulumi.getter(name="lastAccessedGatewayTime") def last_accessed_gateway_time(self) -> Optional[str]: """ - The most recent time at which the device accessed the gateway specified in last_accessed_gateway. """ return pulumi.get(self, "last_accessed_gateway_time") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class DeviceLastErrorStatus(dict): def __init__(__self__, *, details: Optional[List[Mapping[str, Any]]] = None, message: Optional[str] = None, number: Optional[float] = None): if details is not None: pulumi.set(__self__, "details", details) if message is not None: pulumi.set(__self__, "message", message) if number is not None: pulumi.set(__self__, "number", number) @property @pulumi.getter def details(self) -> Optional[List[Mapping[str, Any]]]: return pulumi.get(self, "details") @property @pulumi.getter def message(self) -> Optional[str]: return pulumi.get(self, "message") @property @pulumi.getter def number(self) -> Optional[float]: return pulumi.get(self, "number") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class DeviceState(dict): def __init__(__self__, *, binary_data: Optional[str] = None, update_time: Optional[str] = None): if binary_data is not None: pulumi.set(__self__, "binary_data", binary_data) if update_time is not None: pulumi.set(__self__, "update_time", update_time) @property @pulumi.getter(name="binaryData") def binary_data(self) -> Optional[str]: return pulumi.get(self, "binary_data") @property @pulumi.getter(name="updateTime") def update_time(self) -> Optional[str]: return pulumi.get(self, "update_time") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class RegistryCredential(dict): def __init__(__self__, *, public_key_certificate: 'outputs.RegistryCredentialPublicKeyCertificate'): """ :param 'RegistryCredentialPublicKeyCertificateArgs' public_key_certificate: A public key certificate format and data. """ pulumi.set(__self__, "public_key_certificate", public_key_certificate) @property @pulumi.getter(name="publicKeyCertificate") def public_key_certificate(self) -> 'outputs.RegistryCredentialPublicKeyCertificate': """ A public key certificate format and data. """ return pulumi.get(self, "public_key_certificate") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class RegistryCredentialPublicKeyCertificate(dict): def __init__(__self__, *, certificate: str, format: str): """ :param str certificate: The certificate data. :param str format: The field allows only `X509_CERTIFICATE_PEM`. """ pulumi.set(__self__, "certificate", certificate) pulumi.set(__self__, "format", format) @property @pulumi.getter def certificate(self) -> str: """ The certificate data. """ return pulumi.get(self, "certificate") @property @pulumi.getter def format(self) -> str: """ The field allows only `X509_CERTIFICATE_PEM`. """ return pulumi.get(self, "format") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class RegistryEventNotificationConfigItem(dict): def __init__(__self__, *, pubsub_topic_name: str, subfolder_matches: Optional[str] = None): """ :param str pubsub_topic_name: PubSub topic name to publish device events. :param str subfolder_matches: If the subfolder name matches this string exactly, this configuration will be used. The string must not include the leading '/' character. If empty, all strings are matched. Empty value can only be used for the last `event_notification_configs` item. """ pulumi.set(__self__, "pubsub_topic_name", pubsub_topic_name) if subfolder_matches is not None: pulumi.set(__self__, "subfolder_matches", subfolder_matches) @property @pulumi.getter(name="pubsubTopicName") def pubsub_topic_name(self) -> str: """ PubSub topic name to publish device events. """ return pulumi.get(self, "pubsub_topic_name") @property @pulumi.getter(name="subfolderMatches") def subfolder_matches(self) -> Optional[str]: """ If the subfolder name matches this string exactly, this configuration will be used. The string must not include the leading '/' character. If empty, all strings are matched. Empty value can only be used for the last `event_notification_configs` item. """ return pulumi.get(self, "subfolder_matches") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class RegistryHttpConfig(dict): def __init__(__self__, *, http_enabled_state: str): """ :param str http_enabled_state: The field allows `HTTP_ENABLED` or `HTTP_DISABLED`. """ pulumi.set(__self__, "http_enabled_state", http_enabled_state) @property @pulumi.getter(name="httpEnabledState") def http_enabled_state(self) -> str: """ The field allows `HTTP_ENABLED` or `HTTP_DISABLED`. """ return pulumi.get(self, "http_enabled_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class RegistryMqttConfig(dict): def __init__(__self__, *, mqtt_enabled_state: str): """ :param str mqtt_enabled_state: The field allows `MQTT_ENABLED` or `MQTT_DISABLED`. """ pulumi.set(__self__, "mqtt_enabled_state", mqtt_enabled_state) @property @pulumi.getter(name="mqttEnabledState") def mqtt_enabled_state(self) -> str: """ The field allows `MQTT_ENABLED` or `MQTT_DISABLED`. """ return pulumi.get(self, "mqtt_enabled_state") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class RegistryStateNotificationConfig(dict): def __init__(__self__, *, pubsub_topic_name: str): """ :param str pubsub_topic_name: PubSub topic name to publish device events. """ pulumi.set(__self__, "pubsub_topic_name", pubsub_topic_name) @property @pulumi.getter(name="pubsubTopicName") def pubsub_topic_name(self) -> str: """ PubSub topic name to publish device events. """ return pulumi.get(self, "pubsub_topic_name") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop
1.585938
2
LeetCode/Weekly Contests/Biweekly Contest 36/Find Servers That Handled Most Number of Requests.py
UtkarshPathrabe/Competitive-Coding
13
12790702
<filename>LeetCode/Weekly Contests/Biweekly Contest 36/Find Servers That Handled Most Number of Requests.py from sortedcontainers import SortedList class Solution: def busiestServers(self, k: int, arrival: List[int], load: List[int]) -> List[int]: requestCounter, priorityQueue, serverList, maxRequestHandled = Counter(), [], SortedList(range(k)), 0 for requestNumber, (requestArrivalTime, requestLoad) in enumerate(zip(arrival, load)): while priorityQueue and priorityQueue[0][0] <= requestArrivalTime: # Free up the server if request is completed serverList.add(heappop(priorityQueue)[1]) if not serverList: # Drop the request as no server is busy continue freeServerIndex = serverList.bisect_left(requestNumber % k) if freeServerIndex >= len(serverList): freeServerIndex = 0 serverName = serverList.pop(freeServerIndex) heappush(priorityQueue, (requestArrivalTime + requestLoad, serverName)) requestCounter[serverName] += 1 maxRequestHandled = max(maxRequestHandled, requestCounter[serverName]) return [serverName for serverName, count in requestCounter.items() if count == maxRequestHandled]
3.421875
3
benchmarks/vision/cifar_10.py
tongh18/df-dn-paper
0
12790703
""" Coauthors: <NAME> <NAME> """ from toolbox import * import argparse import random from sklearn.ensemble import RandomForestClassifier import torchvision.models as models import torchvision.datasets as datasets import torchvision.transforms as transforms from sklearn.model_selection import ParameterSampler from scipy.stats.distributions import expon import json def run_naive_rf(): naive_rf_kappa = [] naive_rf_ece = [] naive_rf_train_time = [] naive_rf_test_time = [] for classes in classes_space: # cohen_kappa vs num training samples (naive_rf) for samples in samples_space: RF = RandomForestClassifier(n_estimators=100, n_jobs=-1) cohen_kappa, ece, train_time, test_time = run_rf_image_set( RF, cifar_train_images, cifar_train_labels, cifar_test_images, cifar_test_labels, samples, classes, ) naive_rf_kappa.append(cohen_kappa) naive_rf_ece.append(ece) naive_rf_train_time.append(train_time) naive_rf_test_time.append(test_time) print("naive_rf finished") write_result(prefix + "naive_rf_kappa.txt", naive_rf_kappa) write_result(prefix + "naive_rf_ece.txt", naive_rf_ece) write_result(prefix + "naive_rf_train_time.txt", naive_rf_train_time) write_result(prefix + "naive_rf_test_time.txt", naive_rf_test_time) def run_cnn32(): cnn32_kappa = [] cnn32_ece = [] cnn32_train_time = [] cnn32_test_time = [] rng = np.random.RandomState(0) param_grid = {'lr':[0.0001,0.001,0.0125,0.025], 'mo': [0.01,0.05,0.1,0.2,], 'bs': [32,64,128,256], 'wd': [0.00005,0.0001,0.0005,0.001,0.005] } param_list = list(ParameterSampler(param_grid, n_iter=20, random_state=rng)) rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) for d in param_list] outputlist=[] total_train_time=0 for samples in samples_space: totalaccuracy=[] # cohen_kappa vs num training samples (cnn32) for i in range(len(rounded_list)): average_accuracy=0 for classes in classes_space: # train data cifar_trainset = datasets.CIFAR10( root="./", train=True, download=True, transform=data_transforms ) cifar_train_labels = np.array(cifar_trainset.targets) # test data cifar_testset = datasets.CIFAR10( root="./", train=False, download=True, transform=data_transforms ) cifar_test_labels = np.array(cifar_testset.targets) cnn32 = SimpleCNN32Filter(len(classes)) total_train_time=0 maxaccuracy=0 param=rounded_list[i] lr=param['lr'] momentum=param['mo'] wd=param['wd'] batch=param['bs'] train_loader, valid_loader, test_loader = create_loaders_es( cifar_train_labels, cifar_test_labels, classes, cifar_trainset, cifar_testset, samples, batch, ) cohen_kappa, ece, train_time, test_time,accuracy = test_dn_image_es_multiple( cnn32, train_loader, valid_loader, valid_loader, lr, momentum, wd, ) total_train_time+=train_time average_accuracy+=accuracy average_accuracy=average_accuracy/len(classes_space) totalaccuracy.append(average_accuracy) yy=np.asarray(totalaccuracy) z=np.argmax(yy) classifier='CNN32' num_classes=int(n_classes) sample_size=int(samples) outputdic=rounded_list[z].copy() outputdic['classifier']=classifier outputdic['number of classes']=num_classes outputdic['sample size']=sample_size outputlist.append(outputdic) outputdic={} with open("parameters.json", "w") as outfile: for j in range(len(outputlist)): json.dump(outputlist[j], outfile) outfile.write("\n") print("cnn32 finished") write_result(prefix + "cnn32_kappa.txt", cnn32_kappa) write_result(prefix + "cnn32_ece.txt", cnn32_ece) write_result(prefix + "cnn32_train_time.txt", cnn32_train_time) write_result(prefix + "cnn32_test_time.txt", cnn32_test_time) def run_cnn32_2l(): cnn32_2l_kappa = [] cnn32_2l_ece = [] cnn32_2l_train_time = [] cnn32_2l_test_time = [] for classes in classes_space: # cohen_kappa vs num training samples (cnn32_2l) for samples in samples_space: # train data cifar_trainset = datasets.CIFAR10( root="./", train=True, download=True, transform=data_transforms ) cifar_train_labels = np.array(cifar_trainset.targets) # test data cifar_testset = datasets.CIFAR10( root="./", train=False, download=True, transform=data_transforms ) cifar_test_labels = np.array(cifar_testset.targets) cnn32_2l = SimpleCNN32Filter2Layers(len(classes)) train_loader, valid_loader, test_loader = create_loaders_es( cifar_train_labels, cifar_test_labels, classes, cifar_trainset, cifar_testset, samples, ) cohen_kappa, ece, train_time, test_time = run_dn_image_es( cnn32_2l, train_loader, valid_loader, test_loader, ) cnn32_2l_kappa.append(cohen_kappa) cnn32_2l_ece.append(ece) cnn32_2l_train_time.append(train_time) cnn32_2l_test_time.append(test_time) print("cnn32_2l finished") write_result(prefix + "cnn32_2l_kappa.txt", cnn32_2l_kappa) write_result(prefix + "cnn32_2l_ece.txt", cnn32_2l_ece) write_result(prefix + "cnn32_2l_train_time.txt", cnn32_2l_train_time) write_result(prefix + "cnn32_2l_test_time.txt", cnn32_2l_test_time) def run_cnn32_5l(): cnn32_5l_kappa = [] cnn32_5l_ece = [] cnn32_5l_train_time = [] cnn32_5l_test_time = [] for classes in classes_space: # cohen_kappa vs num training samples (cnn32_5l) for samples in samples_space: # train data cifar_trainset = datasets.CIFAR10( root="./", train=True, download=True, transform=data_transforms ) cifar_train_labels = np.array(cifar_trainset.targets) # test data cifar_testset = datasets.CIFAR10( root="./", train=False, download=True, transform=data_transforms ) cifar_test_labels = np.array(cifar_testset.targets) cnn32_5l = SimpleCNN32Filter5Layers(len(classes)) train_loader, valid_loader, test_loader = create_loaders_es( cifar_train_labels, cifar_test_labels, classes, cifar_trainset, cifar_testset, samples, ) cohen_kappa, ece, train_time, test_time = run_dn_image_es( cnn32_5l, train_loader, valid_loader, test_loader, ) cnn32_5l_kappa.append(cohen_kappa) cnn32_5l_ece.append(ece) cnn32_5l_train_time.append(train_time) cnn32_5l_test_time.append(test_time) print("cnn32_5l finished") write_result(prefix + "cnn32_5l_kappa.txt", cnn32_5l_kappa) write_result(prefix + "cnn32_5l_ece.txt", cnn32_5l_ece) write_result(prefix + "cnn32_5l_train_time.txt", cnn32_5l_train_time) write_result(prefix + "cnn32_5l_test_time.txt", cnn32_5l_test_time) def run_resnet18(): resnet18_kappa = [] resnet18_ece = [] resnet18_train_time = [] resnet18_test_time = [] for classes in classes_space: # cohen_kappa vs num training samples (resnet18) for samples in samples_space: # train data cifar_trainset = datasets.CIFAR10( root="./", train=True, download=True, transform=data_transforms ) cifar_train_labels = np.array(cifar_trainset.targets) # test data cifar_testset = datasets.CIFAR10( root="./", train=False, download=True, transform=data_transforms ) cifar_test_labels = np.array(cifar_testset.targets) res = models.resnet18(pretrained=True) num_ftrs = res.fc.in_features res.fc = nn.Linear(num_ftrs, len(classes)) train_loader, valid_loader, test_loader = create_loaders_es( cifar_train_labels, cifar_test_labels, classes, cifar_trainset, cifar_testset, samples, ) cohen_kappa, ece, train_time, test_time = run_dn_image_es( res, train_loader, valid_loader, test_loader, ) resnet18_kappa.append(cohen_kappa) resnet18_ece.append(ece) resnet18_train_time.append(train_time) resnet18_test_time.append(test_time) print("resnet18 finished") write_result(prefix + "resnet18_kappa.txt", resnet18_kappa) write_result(prefix + "resnet18_ece.txt", resnet18_ece) write_result(prefix + "resnet18_train_time.txt", resnet18_train_time) write_result(prefix + "resnet18_test_time.txt", resnet18_test_time) if __name__ == "__main__": torch.multiprocessing.freeze_support() # Example usage: python cifar_10.py -m 3 parser = argparse.ArgumentParser() parser.add_argument("-m", help="class number") args = parser.parse_args() n_classes = int(args.m) prefix = args.m + "_class/" samples_space = np.geomspace(10, 10000, num=8, dtype=int) nums = list(range(10)) random.shuffle(nums) classes_space = list(combinations_45(nums, n_classes)) # normalize scale = np.mean(np.arange(0, 256)) normalize = lambda x: (x - scale) / scale # train data cifar_trainset = datasets.CIFAR10( root="./", train=True, download=True, transform=None ) cifar_train_images = normalize(cifar_trainset.data) cifar_train_labels = np.array(cifar_trainset.targets) # test data cifar_testset = datasets.CIFAR10( root="./", train=False, download=True, transform=None ) cifar_test_images = normalize(cifar_testset.data) cifar_test_labels = np.array(cifar_testset.targets) cifar_train_images = cifar_train_images.reshape(-1, 32 * 32 * 3) cifar_test_images = cifar_test_images.reshape(-1, 32 * 32 * 3) #run_naive_rf() data_transforms = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] ) run_cnn32() run_cnn32_2l() run_cnn32_5l() data_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) run_resnet18()
2.25
2
COVID-Tracker.py
Lal-Jr/COVID-Tracker
0
12790704
<reponame>Lal-Jr/COVID-Tracker<filename>COVID-Tracker.py from covid import Covid import matplotlib.pyplot as pyplot country = input("Enter Country Name : ") covid = Covid() data = covid.get_status_by_country_name(country) cadr = { key: data[key] for key in data.keys() & {"confirmed","active","deaths","recovered"} } n = list(cadr.keys()) v = list(cadr.values()) print(cadr) pyplot.title(country) pyplot.bar(range(len(cadr)), v, tick_label=n) pyplot.show()
3.59375
4
tests/cache/test_cache.py
limber-project/limberframework
3
12790705
<filename>tests/cache/test_cache.py from datetime import datetime from unittest.mock import AsyncMock, Mock from pytest import fixture, mark, raises from limberframework.cache.cache import Cache from limberframework.cache.exceptions import CacheLockError @fixture def mock_store(): return AsyncMock() @mark.asyncio async def test_load(mock_store): data = {"data": "test", "expires_at": datetime.now()} mock_store.get.return_value = data cache = Cache(mock_store) await cache.load("test_cache") assert cache._key == "test_cache" assert cache.value == data["data"] assert cache.expires_at == data["expires_at"] @mark.parametrize( "value,expires_at,updated", [ ("test", datetime.now(), True), (None, None, False), (None, datetime.now(), False), ("test", None, False), ], ) @mark.asyncio async def test_update(value, expires_at, updated, mock_store): mock_store.put.return_value = True key = "test_key" cache = Cache(mock_store) cache._key = key cache.value = value cache.expires_at = expires_at response = await cache.update() assert response == updated @mark.asyncio async def test_lock(): key = "test" mock_locker = Mock() mock_locker.lock = AsyncMock() cache = Cache(Mock(), mock_locker) cache._key = key await cache.lock() mock_locker.lock.assert_called_once_with(key) @mark.asyncio async def test_lock_key_not_set(): cache = Cache(Mock(), Mock()) with raises(CacheLockError, match="Cannot set lock for key None."): await cache.lock() @mark.asyncio async def test_lock_locker_not_set(): cache = Cache(Mock()) with raises(CacheLockError, match="Cannot set lock with locker None."): await cache.lock() @mark.asyncio async def test_unlock(): key = "test" mock_locker = Mock() mock_locker.unlock = AsyncMock() cache = Cache(Mock(), mock_locker) cache._key = key await cache.unlock() mock_locker.unlock.assert_called_once_with(key) @mark.asyncio async def test_unlock_key_not_set(): mock_locker = Mock() mock_locker.unlock = AsyncMock() cache = Cache(Mock(), mock_locker) with raises(CacheLockError, match="Cannot unset lock for key None."): await cache.unlock() @mark.asyncio async def test_unlock_locker_not_set(): cache = Cache(Mock()) with raises(CacheLockError, match="Cannot unset lock with locker None."): await cache.unlock() @mark.asyncio async def test_secure(): mock_lock = AsyncMock() mock_unlock = AsyncMock() cache = Cache(Mock()) cache.lock = mock_lock cache.unlock = mock_unlock async with cache.secure(): pass mock_lock.assert_called_once() mock_unlock.assert_called_once()
2.40625
2
packages/watchmen-auth/src/watchmen_auth/__init__.py
Indexical-Metrics-Measure-Advisory/watchmen
0
12790706
from .auth_helper import authorize, authorize_token from .authentication import AuthenticationDetails, AuthenticationManager, AuthenticationProvider, AuthenticationScheme from .authorization import AuthFailOn401, AuthFailOn403, Authorization from .principal_service import PrincipalService
1.070313
1
vjemmie/db/__init__.py
PederHA/vjemmie
1
12790707
from typing import Dict from pathlib import Path from discord.ext import commands from ..config import MAIN_DB from .db import DatabaseConnection # Maybe this is a little clumsy? _CONNECTIONS: Dict[str, DatabaseConnection] = {} def add_db(path: str, bot: commands.Bot) -> DatabaseConnection: if path not in _CONNECTIONS: _CONNECTIONS[path] = DatabaseConnection(path, bot) return _CONNECTIONS[path] def get_db(path: str=MAIN_DB) -> DatabaseConnection: return _CONNECTIONS[MAIN_DB] def init_db(path: str, bot: commands.Bot): p = Path(MAIN_DB) # Create db if it doesn't exist if not p.exists(): # NOTE: assumes the database file resides in a subdirectory # within the project root # # TODO: Actually make this not completely explode if the db file resides in # the root directory. p.parent.mkdir(parents=True, exist_ok=True) p.touch() # Connect to DB db = add_db(path, bot) # Add tables (if not already exists) with open("db/vjemmie.db.sql", "r") as f: script = f.read() db.cursor.executescript(script)
3.046875
3
get_stats.py
kdrag0n/gci-stats
1
12790708
#!/usr/bin/env python3 import sys import graphyte import requests def get_orgs(): with requests.get("https://codein.withgoogle.com/api/program/current/organization/") as resp: if resp.status_code != 200: print(f"Received status code {resp.status_code}: {resp.text}") exit(1) return resp.json()["results"] def report_graphite(orgs): for org in orgs: name_base = f"gci.{org['program_year']}.{org['slug']}" count = org["completed_task_instance_count"] graphyte.send(f"{name_base}.tasks_completed", count) def report_console(orgs): counts = ((org["name"], org["completed_task_instance_count"]) for org in orgs) # Sort and print by descending order of tasks completed counts = sorted(counts, key=lambda x: x[1], reverse=True) for org, count in counts: print(f"{org}: {count}") def main(): orgs = get_orgs() report_console(orgs) if len(sys.argv) > 1: graphyte.init(sys.argv[1]) report_graphite(orgs) if __name__ == '__main__': main()
2.765625
3
aiomisc/iterator_wrapper.py
vasiliykovalev/aiomisc
0
12790709
<gh_stars>0 import asyncio import inspect import threading import typing as t from collections import deque from concurrent.futures import Executor from typing import Awaitable from weakref import finalize from aiomisc.counters import Statistic T = t.TypeVar("T") R = t.TypeVar("R") GenType = t.Generator[T, R, None] FuncType = t.Callable[[], GenType] class IteratorWrapperStatistic(Statistic): started: int queue_size: int queue_length: int yielded: int enqueued: int class IteratorWrapper(t.AsyncIterator): __slots__ = ( "__close_event", "__closed", "__gen_func", "__gen_task", "__queue", "__queue_maxsize", "__read_event", "__write_event", "executor", "loop", "_statistic", ) def __init__( self, gen_func: FuncType, loop: asyncio.AbstractEventLoop = None, max_size: int = 0, executor: Executor = None, statistic_name: t.Optional[str] = None, ): current_loop = loop or asyncio.get_event_loop() self.loop: asyncio.AbstractEventLoop = current_loop self.executor = executor self.__closed = threading.Event() self.__close_event = asyncio.Event() self.__queue: t.Deque[t.Any] = deque() self.__queue_maxsize = max_size self.__gen_task: t.Optional[asyncio.Task] = None self.__gen_func: t.Callable = gen_func self.__write_event = threading.Event() self.__read_event = asyncio.Event() self._statistic = IteratorWrapperStatistic(statistic_name) self._statistic.queue_size = max_size @property def closed(self) -> bool: return self.__closed.is_set() @staticmethod def __throw(_: t.Any) -> t.NoReturn: pass def _set_read_event(self) -> None: def setter() -> None: if self.__read_event.is_set(): return self.__read_event.set() self.loop.call_soon_threadsafe(setter) def _in_thread(self) -> None: self._statistic.started += 1 try: gen = iter(self.__gen_func()) throw = self.__throw if inspect.isgenerator(gen): throw = gen.throw # type: ignore while not self.closed: item = next(gen) while len(self.__queue) > self.__queue_maxsize: self.__write_event.wait(0.1) if self.closed: throw(asyncio.CancelledError()) return self.__queue.append((item, False)) del item self._statistic.enqueued += 1 self._set_read_event() if self.__write_event.is_set(): self.__write_event.clear() except StopIteration as e: if self.closed: return self.__queue.append((e, None)) self._set_read_event() except Exception as e: if self.closed: return self.__queue.append((e, True)) self.loop.call_soon_threadsafe(self.__read_event.set) finally: self._statistic.started -= 1 self._set_read_event() self.loop.call_soon_threadsafe(self.__close_event.set) async def _run(self) -> t.Any: return await self.loop.run_in_executor(self.executor, self._in_thread) async def close(self) -> None: self.__closed.set() self.__queue.clear() if self.__gen_task is None: return if not self.__gen_task.done(): self.__gen_task.cancel() await self.__close_event.wait() await asyncio.gather( self.__gen_task, loop=self.loop, return_exceptions=True, ) def __aiter__(self) -> t.AsyncIterator[t.Any]: if self.__gen_task is not None: return self self.__gen_task = self.loop.create_task(self._run()) return IteratorProxy(self, self.__finalizer) def __finalizer(self) -> None: self.__closed.set() self.loop.create_task(self.close()) async def __anext__(self) -> t.Awaitable[T]: while len(self.__queue) == 0: await self.__read_event.wait() item, is_exc = self.__queue.popleft() self.__write_event.set() if len(self.__queue) == 0: self.__read_event.clear() if is_exc is None: await self.close() raise StopAsyncIteration(*item.args) from item elif is_exc: await self.close() raise item from item self._statistic.yielded += 1 return item async def __aenter__(self) -> "IteratorWrapper": return self async def __aexit__( self, exc_type: t.Any, exc_val: t.Any, exc_tb: t.Any, ) -> None: if self.closed: return await self.close() class IteratorProxy(t.AsyncIterator): def __init__( self, iterator: t.AsyncIterator, finalizer: t.Callable[[], None], ): self.__iterator = iterator finalize(self, finalizer) def __anext__(self) -> Awaitable[t.Any]: return self.__iterator.__anext__()
2.34375
2
Chapter 11/Organizing clusters as a hierarchical tree/program1.py
fagaiera/python-machine-learning-book-3rd-edition-examples
0
12790710
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.spatial.distance import pdist, squareform from scipy.cluster.hierarchy import linkage, dendrogram from sklearn.cluster import AgglomerativeClustering # # Organizing clusters as a hierarchical tree # ## Grouping clusters in bottom-up fashion np.random.seed(123) variables = ['X', 'Y', 'Z'] labels = ['ID_0', 'ID_1', 'ID_2', 'ID_3', 'ID_4'] X = np.random.random_sample([5, 3])*10 df = pd.DataFrame(X, columns=variables, index=labels) print(df) # ## Performing hierarchical clustering on a distance matrix row_dist = pd.DataFrame(squareform(pdist(df, metric='euclidean')), columns=labels, index=labels) print(row_dist) # We can either pass a condensed distance matrix (upper triangular) from the `pdist` function, or we can pass the "original" data array and define the `metric='euclidean'` argument in `linkage`. However, we should not pass the squareform distance matrix, which would yield different distance values although the overall clustering could be the same. # 1. incorrect approach: Squareform distance matrix #row_clusters = linkage(row_dist, method='complete', metric='euclidean') #pd.DataFrame(row_clusters, # columns=['row label 1', 'row label 2', # 'distance', 'no. of items in clust.'], # index=['cluster %d' % (i + 1) # for i in range(row_clusters.shape[0])]) # 2. correct approach: Condensed distance matrix row_clusters = linkage(pdist(df, metric='euclidean'), method='complete') pd.DataFrame(row_clusters, columns=['row label 1', 'row label 2', 'distance', 'no. of items in clust.'], index=['cluster %d' % (i + 1) for i in range(row_clusters.shape[0])]) # 3. correct approach: Input matrix row_clusters = linkage(df.values, method='complete', metric='euclidean') pd.DataFrame(row_clusters, columns=['row label 1', 'row label 2', 'distance', 'no. of items in clust.'], index=['cluster %d' % (i + 1) for i in range(row_clusters.shape[0])]) # make dendrogram row_dendr = dendrogram(row_clusters, labels=labels, color_threshold=np.inf ) plt.tight_layout() plt.ylabel('Euclidean distance') plt.show() # ## Attaching dendrograms to a heat map # plot row dendrogram fig = plt.figure(figsize=(8, 8), facecolor='white') axd = fig.add_axes([0.09, 0.1, 0.2, 0.6]) # note: for matplotlib < v1.5.1, please use orientation='right' row_dendr = dendrogram(row_clusters, orientation='left') # reorder data with respect to clustering df_rowclust = df.iloc[row_dendr['leaves'][::-1]] axd.set_xticks([]) axd.set_yticks([]) # remove axes spines from dendrogram for i in axd.spines.values(): i.set_visible(False) # plot heatmap axm = fig.add_axes([0.23, 0.1, 0.6, 0.6]) # x-pos, y-pos, width, height cax = axm.matshow(df_rowclust, interpolation='nearest', cmap='hot_r') fig.colorbar(cax) axm.set_xticklabels([''] + list(df_rowclust.columns)) axm.set_yticklabels([''] + list(df_rowclust.index)) plt.show() # ## Applying agglomerative clustering via scikit-learn ac = AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage='complete') labels = ac.fit_predict(X) print('Cluster labels: %s' % labels) ac = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='complete') labels = ac.fit_predict(X) print('Cluster labels: %s' % labels)
3.328125
3
CodeChallange.py/codeone.py
jvillalp/Leetcodepractice
0
12790711
<reponame>jvillalp/Leetcodepractice<filename>CodeChallange.py/codeone.py from collections import Counter #dict subclass for counting hashable objects {(Key, value)} #It is a collection where elements are stored as dictionary keys and # their counts are stored as dictionary values. #we want to return the first time that a non repeating charactter is in the string (s) #if none, return string with underscore def first_not_repeating_character(s): counts = Counter(s) # a new counter, not empty, contains string (s) #ex: Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6}) for character in s: #iterate through string if counts[character] == 1: #if counts of each charcter is equal to 1 return character #that's the input we receive return "_" #else return None """ T 0(n) - where n is the number of unique characters Counter first goes through list o(n) + for loop also goes through each char n times = which means its an O(n) operation, S 0(n) - Storing in Counter n times where n is the number of unique character. find a o(1) situation ===== even though 0(n),we can make it go through the list once. - not possible """ """ - i knew there was a library from collections called Counter - Counter stores elements as keys and their corresponding counts as value (key,value) - Created a Counter where it kept track of the # of times each character appeared - key = character, value = # of times it appears - iterated through a given string - checked if character appeared once, and if it did, i wanted to return that first chracter - otherwise "_" if there is no instance of a non-repeating character """
3.6875
4
examples/helloworld/helloworld.py
pyrelease/PyRelease
1
12790712
<reponame>pyrelease/PyRelease from __future__ import print_function import sys __version__ = "0.1.1" # This will set the version __license__ = "MIT" # This sets the license # The package description comes from the docstring of the # first function in __all__ __all__ = ["main"] def say_hello(name): print("Hello " + name + "!") def main(): """My hello world application""" args = sys.argv if len(args) > 1: name = args[1] else: name = "world" say_hello(name)
2.328125
2
pyxrd/generic/gtk_tools/dummy_gtk.py
PyXRD/pyxrd
27
12790713
# coding=UTF-8 # ex:ts=4:sw=4:et # Copyright (c) 2013, <NAME> # All rights reserved. # Complete license can be found in the LICENSE file. from mvc.support.utils import get_new_uuid __all__ = [ "gobject", "GtkTreeIter", "GenericTreeModel" "TREE_MODEL_LIST_ONLY" ] TREE_MODEL_LIST_ONLY = 0x00 TREE_MODEL_ITERS_PERSIST = 0x00 events_pending = lambda: False class GtkTreeIter(): def __init__(self, user_data, path=None): self.user_data = user_data self.path = path pass # end of class class GenericTreeModel(object): __connected_signals__ = None def __init__(self): self.__connected_signals__ = {} def connect(self, signal_name, handler, *args): handlers = self.__connected_signals__.get(signal_name, {}) handler_id = get_new_uuid() handlers[handler_id] = (handler, args) self.__connected_signals__[signal_name] = handlers return handler_id def disconnect(self, signal_name, handler_id): try: handlers = self.__connected_signals__.get(signal_name, {}) del handlers[handler_id] except KeyError: pass return def emit(self, signal_name, args=()): handlers = self.__connected_signals__.get(signal_name, {}) for id, (handler, user_args) in handlers.items(): # @ReservedAssignment handler(self, *((args,) + user_args)) pass def set_property(self, *args, **kwargs): pass def create_tree_iter(self, user_data): return GtkTreeIter(user_data) def get_path(self, itr): return self.on_get_path(itr.user_data) def get_iter(self, path): return self.create_tree_iter(self.on_get_iter(path)) def row_inserted(self, path, itr): self.emit("row-inserted", (path, itr)) def row_deleted(self, indeces): self.emit("row-deleted", (indeces,)) def invalidate_iters(self): pass # TOD0! def iter_is_valid(self, itr): return True # TODO! def __len__(self): return len(self._model_data) pass # end of class
1.835938
2
Month 03/Week 01/Day 06/d.py
KevinKnott/Coding-Review
0
12790714
# Random Pick with Weight: https://leetcode.com/problems/random-pick-with-weight/ # You are given an array of positive integers w where w[i] describes the weight of ith index (0-indexed). # We need to call the function pickIndex() which randomly returns an integer in the range [0, w.length - 1]. pickIndex() should return the integer proportional to its weight in the w array. For example, for w = [1, 3], the probability of picking the index 0 is 1 / (1 + 3) = 0.25 (i.e 25%) while the probability of picking the index 1 is 3 / (1 + 3) = 0.75 (i.e 75%). # More formally, the probability of picking index i is w[i] / sum(w). # This problem is actually quite easy we keep a rolling total and then go across # from left to right until we are over that value and return it import random class Solution: def __init__(self, w): self.curSum = 0 self.values = [] for weight in w: self.curSum += weight self.values.append(self.curSum) def pickIndex(self) -> int: if len(self.values) <= 1: return 0 weightedPick = random() * self.curSum for i in range(len(self.values)): if self.values[i] > weightedPick: return i # Now the above runs in o(N) but we can do this in O(nlogn) as it is really easy # to binary search through sorted numbers like the weighted sum (based off of cum sum) def pickIndex(self) -> int: if len(self.values) <= 1: return 0 # Create random num for 0 .. curSum so lets use random to create a value that is from 0 .. 1 and multiply it by cursum ourPick = random() * self.curSum lo, hi = 0, len(self.values) - 1 while lo < hi: mid = lo + (hi - lo) // 2 if ourPick > self.values[mid]: lo = mid + 1 else: hi = mid return lo # Your Solution object will be instantiated and called as such: # obj = Solution(w) # param_1 = obj.pickIndex() # Score Card # Did I need hints? N # Did you finish within 30 min? 15 # Was the solution optimal? This is optimal # Were there any bugs? No # 5 5 5 5 = 5
3.921875
4
author/forms.py
vindeolal/pari
0
12790715
from django import forms from wagtail.wagtailimages.widgets import AdminImageChooser from .models import Author class AuthorAdminForm(forms.ModelForm): class Meta: model = Author # TODO: Ability to add author image exclude = ['image', 'slug', 'bio']
1.828125
2
lambda/automations/update_tag.py
hyperglance/aws-rule-automations
0
12790716
<filename>lambda/automations/update_tag.py """Tags an EC2 Resource This automation attempts to fix a tag in for an EC2 resource, identified as above or below the configured threshold by Hyperglance Rule(s) This automation will operate across accounts, where the appropriate IAM Role exists. """ import processing.automation_utils as utils def hyperglance_automation(boto_session, resource: dict, automation_params=''): """ Attempts to Tag an EC2 Resource Parameters ---------- boto_session : object The boto session to use to invoke the automation resource: dict Dict of Resource attributes touse in the automation automation_params : str Automation parameters passed from the Hyperglance UI """ new_key = automation_params.get('New Key') matched_tag_attrs = [attr for attr in resource['matchedAttributes'].items() if attr[0] in resource['tags']] if (len(matched_tag_attrs) == 0): res_id = resource['id'] raise RuntimeError(f'No tags to update on {res_id} because none of its tags matched the search criteria.') for old_key, value in matched_tag_attrs: # tag might already be 'good' if old_key == new_key: continue ## Create the new tag and retain existing value utils.add_tag(boto_session, new_key, value, resource) ## Remove the old offending tag (we make sure to do the destructive action 2nd!) utils.remove_tag(boto_session, old_key, resource) def info() -> dict: INFO = { "displayName": "Update Tag", "description": "Replaces a tags key but keeps its value", "resourceTypes": [ "Security Group", "EC2 Instance", "AMI", "Internet Gateway", "Network ACL", "Network Interface", "Placement Group", "Route Table", "EC2 Snapshot", "Subnet", "EBS Snapshot", "EBS Volume", "VPC", "SNS Topic", "SQS Queue" ], "params": [ { "name": "New Key", "type": "string", "default": "" } ], "permissions": [ "ec2:CreateTags", "sns:TagResource", "sqs:TagQueue", "ec2:DeleteTags", "sns:UntagResource", "sqs:UntagQueue" ] } return INFO
2.546875
3
dossiers/forms.py
adrienlachaize/dezede
0
12790717
from django.forms import BooleanField, ModelForm from tree.forms import TreeChoiceField from .models import DossierDEvenements class DossierDEvenementsForm(ModelForm): statique = BooleanField(required=False) class Meta(object): model = DossierDEvenements exclude = () field_classes = { 'parent': TreeChoiceField, } class Media(object): css = { 'all': ('css/custom_admin.css',), } def __init__(self, *args, **kwargs): instance = kwargs.get('instance') if instance is not None: initial = kwargs.get('initial', {}) initial['statique'] = instance.evenements.exists() kwargs['initial'] = initial super(DossierDEvenementsForm, self).__init__(*args, **kwargs) def clean(self): cleaned_data = super(DossierDEvenementsForm, self).clean() if cleaned_data['categorie'] is not None \ and cleaned_data['parent'] is not None: msg = 'Ne pas saisir de catégorie si le dossier a un parent.' self.add_error('categorie', msg) self.add_error('parent', msg) evenements = cleaned_data.get('evenements') if cleaned_data['statique']: if not evenements: cleaned_data['evenements'] = \ self.instance.get_queryset(dynamic=True) self.instance.evenements.add(*evenements) else: cleaned_data['evenements'] = [] if self.instance.pk is not None: self.instance.evenements.clear() return cleaned_data
2.125
2
sbin/db_mgmt_cwe.py
AlexFaraino/cve-search
377
12790718
<gh_stars>100-1000 #!/usr/bin/env python3 # # Import script of NIST CWE Common Weakness Enumeration. # # Until now, the import is only import Weakness description. # # The format is the following: # # { "_id" : ObjectId("52b70521b261026f36818515"), "weaknessabs" : "Variant", # "name" : "ASP.NET Misconfiguration: Missing Custom Error Page", # "description_summary" : "An ASP .NET application must enable custom error # pages in order to prevent attackers from mining information from the # framework's built-in responses.An ASP .NET application must enable custom # error pages in order to prevent attackers from mining information from the # framework's built-in responses.", "status" : "Draft", "id" : "12" } # # Software is free software released under the "Modified BSD license" # # Copyright (c) 2013-2014 <NAME> - <EMAIL> # Copyright (c) 2015-2016 <NAME> - <EMAIL> # Imports import os import sys runPath = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(runPath, "..")) from dateutil.parser import parse as parse_datetime from xml.sax import make_parser from xml.sax.handler import ContentHandler import argparse import zipfile import tempfile from lib.ProgressBar import progressbar from lib.Config import Configuration import lib.DatabaseLayer as db argparser = argparse.ArgumentParser(description='populate/update NIST CWE Common Weakness Enumeration database') argparser.add_argument('-v', action='store_true', help='verbose output') args = argparser.parse_args() class CWEHandler(ContentHandler): def __init__(self): self.cwe = [] self.description_summary_tag = False self.weakness_tag = False def startElement(self, name, attrs): if name == 'Weakness': self.weakness_tag = True self.statement = "" self.weaknessabs = attrs.get('Weakness_Abstraction') self.name = attrs.get('Name') self.idname = attrs.get('ID') self.status = attrs.get('Status') self.cwe.append({'name': self.name, 'id': self.idname, 'status': self.status, 'weaknessabs': self.weaknessabs}) elif name == 'Description_Summary' and self.weakness_tag: self.description_summary_tag = True self.description_summary = "" def characters(self, ch): if self.description_summary_tag: self.description_summary += ch.replace(" ", "") def endElement(self, name): if name == 'Description_Summary' and self.weakness_tag: self.description_summary_tag = False self.description_summary = self.description_summary + self.description_summary self.cwe[-1]['description_summary'] = self.description_summary.replace("\n", "") elif name == 'Weakness': self.weakness_tag = False # make parser parser = make_parser() ch = CWEHandler() parser.setContentHandler(ch) # check modification date try: (f, r) = Configuration.getFeedData('cwe') except Exception as e: print(e) sys.exit("Cannot open url %s. Bad URL or not connected to the internet?"%(Configuration.getFeedURL("cwe"))) lastmodified = parse_datetime(r.headers['last-modified'], ignoretz=True) i = db.getLastModified('cwe') if i is not None: if lastmodified == i: print("Not modified") sys.exit(0) # parse xml and store in database parser.parse(f) cweList=[] for cwe in progressbar(ch.cwe): cwe['description_summary']=cwe['description_summary'].replace("\t\t\t\t\t", " ") if args.v: print (cwe) cweList.append(cwe) db.bulkUpdate('cwe', cweList) #update database info after successful program-run db.setColUpdate('cwe', lastmodified)
1.84375
2
relex/modules/offset_embedders/offset_embedder.py
DFKI-NLP/RelEx
16
12790719
<reponame>DFKI-NLP/RelEx import torch from allennlp.common import Registrable class OffsetEmbedder(torch.nn.Module, Registrable): """ """ default_implementation = "relative" def get_output_dim(self) -> int: """ Returns the final output dimension that this ``OffsetEmbedder`` uses to represent each offset. This is `not` the shape of the returned tensor, but the last element of that shape. """ raise NotImplementedError def is_additive(self) -> bool: raise NotImplementedError
2.640625
3
history/admin.py
fahimfarhan/cancer-web-app
0
12790720
<gh_stars>0 from django.contrib import admin # Register your models here. from history.models import HistoryModelFile admin.site.register(HistoryModelFile)
1.289063
1
example_code/selection_problem.py
dbwebb-se/python-slides
0
12790721
import random import time n = 10000000 random_list = random.sample(range(n * 10), n) start = time.time() median = sorted(random_list, reverse=True)[n // 2] end = time.time() print(median) print(end - start)
3.296875
3
CATS/cleaning_empty_rows.py
janetvanbilsen/Twitter-Mining-Raspberry_Pi
0
12790722
#!/usr/bin/env python3 import pandas as pd dataset = pd.read_csv('Dataset.csv') dataset.to_csv('Dataset.csv', index=False)
2.390625
2
crawl_data/crawl_data/spiders/companies_spider.py
huynhnhathao/job_recommender
0
12790723
import scrapy class CompaniesSpider(scrapy.Spider): """This spider wil crawl all the company link available in itviec and save it to a json line file. """ name = "companies" start_urls = [ 'https://itviec.com/companies', ] def parse(self, response): all_companies = response.xpath("//div[@class='first-group companies']/a[@class='featured-company']/@href").getall() for company_link in all_companies: relative_link = '/'.join(company_link.split('/') [:-1]) company_name = company_link.split('/') [-2] absolute_link = response.urljoin(relative_link) yield {'company_name': company_name, 'url': absolute_link } next_page = response.xpath("//a[@class='more-jobs-link more-company']/@href").get() # next_page now has the form of '/companies?page=2' or None if next_page is not None: # makes absolute url next_page = response.urljoin(next_page) yield scrapy.Request(next_page, callback = self.parse)
3.25
3
PFM_CP/matcreate.py
DylanAgius/PFM-CP
0
12790724
# -*- coding: utf-8 -*- """ Created on Tue Nov 24 15:19:55 2020 @author: mi19356 """ import numpy as np import os import pandas as pd from xml.etree.ElementTree import Element, SubElement, Comment, ElementTree import random import math from scrape import vtk_scrap from dataconversions import data_reconstruct, reso_change, data_reconstruct_dream,sphericaldiam,printtofiletext #scrape data #orien,vtkdata,vtkdataPoints,const=vtk_scrap('PF_00189000','graindata') dream=0 if dream==1: orien,vtkdata,vtkdataPoints,const=vtk_scrap('PF_00130000','graindata',dream) grainids=data_reconstruct(vtkdata, vtkdataPoints,1,orien) else: orien,vtkdata,const=vtk_scrap('vtkupdate','graindata',dream) grainids,diameter=data_reconstruct_dream(vtkdata,orien) #construct a vtk file #vtkdatareso=reso_change(vtkdata) """ Create orientatio matrix """ def rotation_info(orien,grainids): #Defining local variables vec1=[0,0,1] vec2=[0,1,0] #modify the orientations orien=orien[1:,1:] #check to see if there are missing orientations if len(orien)<len(grainids): totaldif=len(grainids)-len(orien) for i in range(0,int(totaldif)): orien=np.append(orien,[random.uniform(0,2*math.pi),random.uniform(0,2*math.pi),random.uniform(0,2*math.pi)]) orien=orien.reshape(int(len(orien)/3),3) #contruct rotation matrix zrot=np.array([[np.cos((orien[:,0])),np.sin((orien[:,0])),np.zeros(len(orien))],[-np.sin((orien[:,0])),np.cos((orien[:,0])),np.zeros(len(orien))],[np.zeros(len(orien)),np.zeros(len(orien)),np.ones(len(orien))]]) xrot=np.array([[np.ones(len(orien)),np.zeros(len(orien)),np.zeros(len(orien))],[np.zeros(len(orien)),np.cos((orien[:,1])),np.sin((orien[:,1]))],[np.zeros(len(orien)),-np.sin((orien[:,1])),np.cos((orien[:,1]))]]) zrot2=np.array([[np.cos((orien[:,2])),np.sin((orien[:,2])),np.zeros(len(orien))],[-np.sin((orien[:,2])),np.cos((orien[:,2])),np.zeros(len(orien))],[np.zeros(len(orien)),np.zeros(len(orien)),np.ones(len(orien))]]) total_rot=[[]*len(orien)]*len(orien) samp1=[[]*len(orien)]*len(orien) samp2=[[]*len(orien)]*len(orien) for i in range(0,len(orien)): total_rot[i]=np.transpose(np.dot(np.dot(zrot2[:,:,i],xrot[:,:,i]),zrot[:,:,i])) samp1[i]=np.dot(total_rot[i],vec1) samp2[i]=np.dot(total_rot[i],vec2) return vec1, vec2, samp1, samp2, total_rot, orien """ create material file for AMITEX """ def mat_create(orien,const, diameter,statev): #rotating vectors using grain orientations vec1,vec2,samp1,samp2,total_rot, orien=rotation_info(orien,grainids) #use the diameter to create a variable parameter for \tau #diameter currnetly in microns, convert to mm #need to add 17.9 and 10 to excel const file. diameter=(2*diameter)/1000 #writing diameters to file printtofiletext(diameter,'diameters') #writing orientations to file orienprint=list(orien) printtofiletext(orienprint,'orientations') taud=220 + (17.9/((diameter)**0.5)) #check to make sure the there are no #checkgreater=np.where(taud>350)[0] #replace these values #taud[checkgreater]=340.0 Materials = Element('Materials') comment = Comment('REFERENCE MATERIAL') Materials.append(comment) child = SubElement(Materials, 'Reference_Material',Lambda0= '2.0431e+5', Mu0='0.8756e+5' ) comment = Comment('MATERIAL 1') Materials.append(comment) "orientation files required if material zone technique is used in AMITEX" fsamp1 = open('fsam1.txt', 'w') fsamp2 = open('fsam2.txt', 'w') fsamp3 = open('fsam3.txt', 'w') fsamp21 = open('fsam21.txt', 'w') fsamp22 = open('fsam22.txt', 'w') fsamp23 = open('fsam23.txt', 'w') orien1 = open('orien1.txt', 'w') orien2 = open('orien2.txt', 'w') orien3 = open('orien3.txt', 'w') tau01 = open('tau1.txt', 'w') tau02 = open('tau2.txt', 'w') for numMat in range(1,len(orien)+1): for i in range(0,(len(const))): if i==59: const[i,0]=samp1[numMat-1][0] fsamp1.write(str("{:.16f}".format(const[i,0]))+'\n') elif i==60: const[i,0]=samp1[numMat-1][1] fsamp2.write(str("{:.16f}".format(const[i,0]))+'\n') elif i==61: const[i,0]=samp1[numMat-1][2] fsamp3.write(str("{:.16f}".format(const[i,0]))+'\n') elif i==67: const[i,0]=samp2[numMat-1][0] fsamp21.write(str("{:.16f}".format(const[i,0]))+'\n') elif i==68: const[i,0]=samp2[numMat-1][1] fsamp22.write(str("{:.16f}".format(const[i,0]))+'\n') elif i==69: const[i,0]=samp2[numMat-1][2] fsamp23.write(str("{:.16f}".format(const[i,0]))+'\n') #adjust const array to include grain dependent info #grain orientations #update the value for tau0 elif i==98: const[i,0]=taud[numMat-1] tau01.write(str("{:.16f}".format(const[i,0]))+'\n') elif i==114: const[i,0]=taud[numMat-1] tau02.write(str("{:.16f}".format(const[i,0]))+'\n') elif i==168: const[i,0]=(orien[numMat-1,0]) orien1.write(str(const[i,0])+'\n') elif i==169: const[i,0]=(orien[numMat-1,1]) orien2.write(str(const[i,0])+'\n') elif i==170: const[i,0]=(orien[numMat-1,2]) orien3.write(str(const[i,0])+'\n') fsamp1.close() fsamp2.close() fsamp3.close() fsamp21.close() fsamp22.close() fsamp23.close() orien1.close() orien2.close() orien3.close() child_grain=SubElement(Materials, 'Material', numM="1",Lib='/mnt/storage/home/mi19356/amitex_fftp-v8.17.1/Grainsize/UMAT/libUmatAmitex.so', Law='UMATBCCGDGS') "This stores all the parameters required for the material" "Coeff is the element of the grain material, and the atrributes are the parameter values" "iterate across the different material constants to create subelelements for each constant2" for i in range(0,(len(const))): if i==59: const[i,0]=samp1[numMat-1][0] child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/fsam1.txt") elif i==60: const[i,0]=samp1[numMat-1][1] child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/fsam2.txt") elif i==61: const[i,0]=samp1[numMat-1][2] child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/fsam3.txt") elif i==67: const[i,0]=samp2[numMat-1][0] child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/fsam21.txt") elif i==68: const[i,0]=samp2[numMat-1][1] child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/fsam22.txt") elif i==69: const[i,0]=samp2[numMat-1][2] child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/fsam23.txt") elif i==98: const[i,0]=taud[numMat-1] child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/tau1.txt") elif i==114: const[i,0]=taud[numMat-1] child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/tau2.txt") elif i==168: const[i,0]=(orien[numMat-1,0]) child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/orien1.txt") elif i==169: const[i,0]=(orien[numMat-1,1]) child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/orien2.txt") elif i==170: const[i,0]=(orien[numMat-1,2]) child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant_Zone', File="MAT/Coeff/orien3.txt") else: child_grain_tail = SubElement(child_grain, 'Coeff',Index=str(i+1), Type='Constant',Value=str(const[i,0])) #iterate across the required number of state vairables needed for i in range(0,statev): child_grain_tail = SubElement(child_grain, 'IntVar',Index=str(i+1), Type='Constant',Value='0.') tree = ElementTree(Materials) tree.write("fatemptzone2.xml") mat_create(orien,const,diameter,900)
2.15625
2
src/PhoneBook.py
Seniru/at.py
0
12790725
<filename>src/PhoneBook.py """ MIT License Copyright (c) 2021 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from enum import Enum from .message import Message class NumberingSchemes(Enum): """Numbering schemes implemented in phonebooks """ NATIONAL = 0 INTERNATIONAL = 1 class PhoneBookEntry: """A Phonebook entry """ def __init__(self, idx: int, number: str, scheme: NumberingSchemes, contact_name: str): """Constructor not recommended to called directly Args: idx (int): Index of the entry in the phonebook number (str): The phonebook entry number scheme (NumberingSchemes): Numbering scheme used (National or International) contact_name (str): The name the entry has been saved as """ self.index = idx self.number = number self.scheme = scheme self.contact_name = contact_name def __repr__(self): """`__repr__` magicmethod to be used in repr(). Returns: str: Representation of the object. """ return str(self) def __str__(self): """`__str__` magicmethod to be used in repr(). Returns: str: A stringified version of the object. """ return f"<PhoneBookEntry<index={self.index}, number='{self.number}', scheme={self.scheme}, contactname='{self.contact_name}'>" @staticmethod def from_payload(payload: str): """Creates a phonebook entry from a payload. Args: payload (str): Raw payload that was resulted upon requesting phonebook entries Returns: PhoneBookEntry: A phonebook entry """ params = Message.from_payload(payload).parameters return PhoneBookEntry( params[0], params[1], NumberingSchemes.NATIONAL if params[2] == 129 else NumberingSchemes.INTERNATIONAL, params[3] )
2.890625
3
challenger_bot/car_controllers.py
twobackfromtheend/challenger
0
12790726
<reponame>twobackfromtheend/challenger<filename>challenger_bot/car_controllers.py from enum import Enum class CarController(Enum): AGENT = 0 DS4 = 1
1.796875
2
scripts/bulkLoadGeojson2elasticsearch.py
wkhchow/opendrr-api
0
12790727
<filename>scripts/bulkLoadGeojson2elasticsearch.py # ================================================================= # # Authors: <NAME> <<EMAIL>> # # ================================================================= import os for eqScenario in ['sim6p8_cr2022_rlz_1']: for retrofitPrefix in ['b0']: #,'r1','r2']: for view in ['casualties_agg_view', 'damage_state_agg_view', 'economic_loss_agg_view', 'full_retrofit_agg_view', 'functional_state_agg_view', 'partial_retrofit_agg_view', 'recovery_agg_view', 'scenario_hazard_agg_view', 'scenario_hazard_threat_agg_view', 'scenario_rupture_agg_view', 'social_disruption_agg_view']: print('loading: '+'dsra_{eqScenario}_{retrofitPrefix}_{view}.json'.format(**{'eqScenario':eqScenario, 'retrofitPrefix':retrofitPrefix, 'view':view})) os.system('python load_es_data.py dsra_{eqScenario}_{retrofitPrefix}_{view}.json "Sauid"'.format(**{'eqScenario':eqScenario, 'retrofitPrefix':retrofitPrefix, 'view':view}))
2.171875
2
release/src-rt-6.x.4708/router/samba3/source4/scripting/devel/speedtest.py
zaion520/ATtomato
2
12790728
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Unix SMB/CIFS implementation. # This speed test aims to show difference in execution time for bulk # creation of user objects. This will help us compare # Samba4 vs MS Active Directory performance. # Copyright (C) <NAME> <<EMAIL>> 2010 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import optparse import sys import time import base64 from decimal import Decimal sys.path.insert(0, "bin/python") import samba samba.ensure_external_module("testtools", "testtools") samba.ensure_external_module("subunit", "subunit/python") import samba.getopt as options from ldb import ( SCOPE_BASE, SCOPE_SUBTREE, LdbError, ERR_NO_SUCH_OBJECT, ERR_UNWILLING_TO_PERFORM, ERR_INSUFFICIENT_ACCESS_RIGHTS) from samba.ndr import ndr_pack, ndr_unpack from samba.dcerpc import security from samba.auth import system_session from samba import gensec, sd_utils from samba.samdb import SamDB from samba.credentials import Credentials import samba.tests from samba.tests import delete_force from subunit.run import SubunitTestRunner import unittest parser = optparse.OptionParser("speedtest.py [options] <host>") sambaopts = options.SambaOptions(parser) parser.add_option_group(sambaopts) parser.add_option_group(options.VersionOptions(parser)) # use command line creds if available credopts = options.CredentialsOptions(parser) parser.add_option_group(credopts) opts, args = parser.parse_args() if len(args) < 1: parser.print_usage() sys.exit(1) host = args[0] lp = sambaopts.get_loadparm() creds = credopts.get_credentials(lp) creds.set_gensec_features(creds.get_gensec_features() | gensec.FEATURE_SEAL) # # Tests start here # class SpeedTest(samba.tests.TestCase): def find_domain_sid(self, ldb): res = ldb.search(base=self.base_dn, expression="(objectClass=*)", scope=SCOPE_BASE) return ndr_unpack(security.dom_sid,res[0]["objectSid"][0]) def setUp(self): super(SpeedTest, self).setUp() self.ldb_admin = ldb self.base_dn = ldb.domain_dn() self.domain_sid = security.dom_sid(ldb.get_domain_sid()) self.user_pass = "<PASSWORD>@" print "baseDN: %s" % self.base_dn def create_user(self, user_dn): ldif = """ dn: """ + user_dn + """ sAMAccountName: """ + user_dn.split(",")[0][3:] + """ objectClass: user unicodePwd:: """ + base64.b64encode(("\"%s\"" % self.user_pass).encode('utf-16-le')) + """ url: www.example.com """ self.ldb_admin.add_ldif(ldif) def create_group(self, group_dn, desc=None): ldif = """ dn: """ + group_dn + """ objectClass: group sAMAccountName: """ + group_dn.split(",")[0][3:] + """ groupType: 4 url: www.example.com """ self.ldb_admin.add_ldif(ldif) def create_bundle(self, count): for i in range(count): self.create_user("cn=speedtestuser%d,cn=Users,%s" % (i+1, self.base_dn)) def remove_bundle(self, count): for i in range(count): delete_force(self.ldb_admin, "cn=speedtestuser%d,cn=Users,%s" % (i+1, self.base_dn)) def remove_test_users(self): res = ldb.search(base="cn=Users,%s" % self.base_dn, expression="(objectClass=user)", scope=SCOPE_SUBTREE) dn_list = [item.dn for item in res if "speedtestuser" in str(item.dn)] for dn in dn_list: delete_force(self.ldb_admin, dn) class SpeedTestAddDel(SpeedTest): def setUp(self): super(SpeedTestAddDel, self).setUp() def run_bundle(self, num): print "\n=== Test ADD/DEL %s user objects ===\n" % num avg_add = Decimal("0.0") avg_del = Decimal("0.0") for x in [1, 2, 3]: start = time.time() self.create_bundle(num) res_add = Decimal( str(time.time() - start) ) avg_add += res_add print " Attempt %s ADD: %.3fs" % ( x, float(res_add) ) # start = time.time() self.remove_bundle(num) res_del = Decimal( str(time.time() - start) ) avg_del += res_del print " Attempt %s DEL: %.3fs" % ( x, float(res_del) ) print "Average ADD: %.3fs" % float( Decimal(avg_add) / Decimal("3.0") ) print "Average DEL: %.3fs" % float( Decimal(avg_del) / Decimal("3.0") ) print "" def test_00000(self): """ Remove possibly undeleted test users from previous test """ self.remove_test_users() def test_00010(self): self.run_bundle(10) def test_00100(self): self.run_bundle(100) def test_01000(self): self.run_bundle(1000) def _test_10000(self): """ This test should be enabled preferably against MS Active Directory. It takes quite the time against Samba4 (1-2 days). """ self.run_bundle(10000) class AclSearchSpeedTest(SpeedTest): def setUp(self): super(AclSearchSpeedTest, self).setUp() self.ldb_admin.newuser("acltestuser", "samba123@") self.sd_utils = sd_utils.SDUtils(self.ldb_admin) self.ldb_user = self.get_ldb_connection("acltestuser", "samba123@") self.user_sid = self.sd_utils.get_object_sid(self.get_user_dn("acltestuser")) def tearDown(self): super(AclSearchSpeedTest, self).tearDown() delete_force(self.ldb_admin, self.get_user_dn("acltestuser")) def run_search_bundle(self, num, _ldb): print "\n=== Creating %s user objects ===\n" % num self.create_bundle(num) mod = "(A;;LC;;;%s)(D;;RP;;;%s)" % (str(self.user_sid), str(self.user_sid)) for i in range(num): self.sd_utils.dacl_add_ace("cn=speedtestuser%d,cn=Users,%s" % (i+1, self.base_dn), mod) print "\n=== %s user objects created ===\n" % num print "\n=== Test search on %s user objects ===\n" % num avg_search = Decimal("0.0") for x in [1, 2, 3]: start = time.time() res = _ldb.search(base=self.base_dn, expression="(objectClass=*)", scope=SCOPE_SUBTREE) res_search = Decimal( str(time.time() - start) ) avg_search += res_search print " Attempt %s SEARCH: %.3fs" % ( x, float(res_search) ) print "Average Search: %.3fs" % float( Decimal(avg_search) / Decimal("3.0") ) self.remove_bundle(num) def get_user_dn(self, name): return "CN=%s,CN=Users,%s" % (name, self.base_dn) def get_ldb_connection(self, target_username, target_password): creds_tmp = Credentials() creds_tmp.set_username(target_username) creds_tmp.set_password(<PASSWORD>) creds_tmp.set_domain(creds.get_domain()) creds_tmp.set_realm(creds.get_realm()) creds_tmp.set_workstation(creds.get_workstation()) creds_tmp.set_gensec_features(creds_tmp.get_gensec_features() | gensec.FEATURE_SEAL) ldb_target = SamDB(url=host, credentials=creds_tmp, lp=lp) return ldb_target def test_search_01000(self): self.run_search_bundle(1000, self.ldb_admin) def test_search2_01000(self): # allow the user to see objects but not attributes, all attributes will be filtered out mod = "(A;;LC;;;%s)(D;;RP;;;%s)" % (str(self.user_sid), str(self.user_sid)) self.sd_utils.dacl_add_ace("CN=Users,%s" % self.base_dn, mod) self.run_search_bundle(1000, self.ldb_user) # Important unit running information if not "://" in host: host = "ldap://%s" % host ldb_options = ["modules:paged_searches"] ldb = SamDB(host, credentials=creds, session_info=system_session(), lp=lp, options=ldb_options) runner = SubunitTestRunner() rc = 0 if not runner.run(unittest.makeSuite(SpeedTestAddDel)).wasSuccessful(): rc = 1 if not runner.run(unittest.makeSuite(AclSearchSpeedTest)).wasSuccessful(): rc = 1 sys.exit(rc)
1.921875
2
Abstract_Factory/furniture_factory.py
edgardeng/design-patterns-in-python
0
12790729
<reponame>edgardeng/design-patterns-in-python<gh_stars>0 """ 抽象工厂 代码实例 Abstract Factory Code Demo 家具工厂 """ from __future__ import annotations from abc import ABC, abstractmethod class Chair(ABC): """ product interface 1: Chair """ @abstractmethod def sit_on(self) -> str: pass class Sofa(ABC): """ product interface 2: Sofa """ @abstractmethod def lie_on(self) -> str: pass class ModernChair(Chair): """ product implement Chair: ModernChair """ def sit_on(self) -> str: return 'I sit on a Modern Chair' class ClassicChair(Chair): """ product implement Chair: ClassicChair """ def sit_on(self) -> str: return 'I sit on a Classic Chair' class ModernSofa(Sofa): """ product implement Sofa: ModernSofa """ def lie_on(self) -> str: return 'I sit on a Modern Sofa' class ClassicSofa(Sofa): """ product implement Sofa: ClassicSofa """ def lie_on(self) -> str: return 'I sit on a Classic Sofa' class FurnitureFactory(ABC): """ 一个抽象工厂接口 定义了一系列方法,用来返回不同的抽象产品 The Abstract Factory interface declares a set of methods that return different abstract products. 家具工厂生成沙发和椅子 Furniture Factory produce Chair and SOfa """ @abstractmethod def produce_chair(self) -> Chair: pass @abstractmethod def produce_sofa(self) -> Sofa: pass class ModernFurnitureFactory(FurnitureFactory): """ 一个抽象工厂的实现类 implement FurnitureFactory to produce true product """ def produce_chair(self) -> Chair: print('ModernFurnitureFactory produce chair ...') return ModernChair() def produce_sofa(self) -> Sofa: print('ModernFurnitureFactory produce sofa ...') return ModernSofa() class ClassicFurnitureFactory(FurnitureFactory): """ 一个抽象工厂的实现类 implement FurnitureFactory to produce true product """ def produce_chair(self) -> Chair: print('ClassicFurnitureFactory produce chair ...') return ClassicChair() def produce_sofa(self) -> Sofa: print('ClassicFurnitureFactory produce sofa ...') return ClassicSofa() def client_code(factory: FurnitureFactory): chair = factory.produce_chair() print(chair.sit_on()) sofa = factory.produce_sofa() print(sofa.lie_on()) if __name__ == '__main__': print('\r\n--- I want some Modern Furniture ---\r\n') client_code(ModernFurnitureFactory()) print('\r\n--- I want some Classic Furniture ---\r\n') client_code(ClassicFurnitureFactory())
4.25
4
HomeLab/homepage/views.py
amalik18/HomeLab
0
12790730
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse from django.template import loader from django.shortcuts import render from django.http import Http404 # Create your views here. def index(request): return render(request=request, template_name='homepage.html')
1.734375
2
SHS4py/setup.py
YukiMitsuta/shs4py
2
12790731
<gh_stars>1-10 #! /usr/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright 2019.12.19 <NAME> # Distributed under terms of the MIT license. from distutils.core import setup from Cython.Build import cythonize import numpy from distutils.extension import Extension from Cython.Distutils import build_ext from Cython.Compiler import Options print("numpy.get_include() = %s"%numpy.get_include()) setup( name = 'calcgau', ext_modules = cythonize('calcgau.pyx'), #include_path = [numpy.get_include()] include_dirs = [numpy.get_include()] ) setup( name = 'calcVES', ext_modules = cythonize('calcVES.pyx'), #include_path = [numpy.get_include()] include_dirs = [numpy.get_include()] ) ext_modules = [Extension("calcRCMC", ["calcRCMC.pyx"], language="c++")]#, #Extension("module2", ["module2.pyx"], language="c++")] setup(cmdclass={'build_ext': build_ext}, ext_modules=ext_modules, include_dirs = [numpy.get_include()]) #setup( #name = 'calcRCMC', #ext_modules = cythonize('calcRCMC.pyx'), ##include_path = [numpy.get_include()] #include_dirs = [numpy.get_include()] ##)
1.882813
2
tests/test_acdh_geonames_utils.py
acdh-oeaw/acdh_geonames_utils
0
12790732
#!/usr/bin/env python """Tests for `acdh_geonames_utils` package.""" import os import unittest from click.testing import CliRunner from acdh_geonames_utils import acdh_geonames_utils as gn from acdh_geonames_utils import cli good_country_code = 'YU' bad_country_code = 'BAAAD' good_ft_code = "en" bad_ft_code = "de" TEST_GN_FILE = os.path.join( "./fixtures", "AL.txt" ) class TestAcdh_geonames_utils(unittest.TestCase): """Tests for `acdh_geonames_utils` package.""" def setUp(self): """Set up test fixtures, if any.""" def tearDown(self): """Tear down test fixtures, if any.""" def test_001_download(self): """Test download of zip.""" good = gn.download_country_zip(good_country_code) bad = gn.download_country_zip(bad_country_code) self.assertTrue(good.endswith(f"{good_country_code}.zip")) self.assertEqual(bad, "") def test_002_download_and_unzip(self): """Test download and unzip.""" good = gn.download_and_unzip_country_zip(good_country_code) bad = gn.download_and_unzip_country_zip(bad_country_code) self.assertTrue(good.endswith(f"{good_country_code}.txt")) self.assertEqual(bad, "") def test_003_unzip(self): """Test unzipping of zip.""" bad = gn.unzip_country_zip("") self.assertEqual(bad, "") def test_004_file_to_df(self): """Test loading file into pandas.DataFrame""" df = gn.countries_as_df(TEST_GN_FILE) self.assertEqual(len(df), 9356) def test_005_dl_to_df(self): """Test loading download into pandas.DataFrame""" good_df = gn.download_to_df('YU') bad_df = gn.download_to_df('YUUU') self.assertEqual(len(good_df), 1) self.assertFalse(bad_df) def test_006_dl_ft(self): good = gn.dl_feature_codes(good_ft_code) bad = gn.dl_feature_codes(bad_ft_code) self.assertTrue(good != "") self.assertTrue(bad == "") def test_007_dl_ft_as_df(self): good = gn.feature_codes_df(good_ft_code) bad = gn.feature_codes_df(bad_ft_code) self.assertIsNotNone(good) self.assertIsNone(bad) def test_command_line_interface(self): """Test the CLI.""" runner = CliRunner() result = runner.invoke(cli.main) assert result.exit_code == 0 assert 'acdh_geonames_utils.cli.main' in result.output help_result = runner.invoke(cli.main, ['--help']) assert help_result.exit_code == 0 assert '--help Show this message and exit.' in help_result.output
2.703125
3
pptag.py
dsm1212/ppTag
0
12790733
<filename>pptag.py #!/usr/bin/env python ## python 3 # pip install watchdog import sys import getopt import logging import urllib import time import os import threading from datetime import datetime, date, timedelta from watchdog.observers import Observer from watchdog.events import PatternMatchingEventHandler from exif.exifread.tags import DEFAULT_STOP_TAG, FIELD_TYPES from exif.exifread import process_file, exif_log, __version__ from plexUsers import plexUsers from lightroomTags import parse_xmp_for_lightroom_tags from photoElement import PhotoElement from config import ppTagConfig logger = exif_log.get_logger() doUpdate = [] lock = None firstRun = ppTagConfig.FORCE_RUN_AT_START # plex p = None # timer t = None # last incoming event time lastTS = datetime.now() def updateMetadata(item, tags, rating): # update rating for user in p.users: data = p.fetchPlexApi("/:/rate?key=%s&identifier=com.plexapp.plugins.library&rating=%i" %(item, rating),"PUT", False, user.token) # write the metadata # prepare the tags tagQuery = "?" i = 0 for tag in tags: tagQuery = tagQuery + "tag[%s].tag.tag=%s&" %(i, urllib.parse.quote(tag.encode('utf-8'))) i = i + 1 #logging.debug(" updateMetaData: tagQuery is '%s'" % tagQuery) data = p.fetchPlexApi("/library/metadata/%s%s" %(item, tagQuery), "PUT") def getdata(filename): detailed = True stop_tag = DEFAULT_STOP_TAG debug = False strict = False color = False #exif_log.setup_logger(debug, color) try: filename = ppTagConfig.PHOTOS_LIBRARY_PATH + filename img_file = open(str(filename), 'rb') data = process_file(img_file, stop_tag=stop_tag, details=detailed, strict=strict, debug=debug) img_file.close() if not data: logging.info("No EXIF information for '%s'" % filename) return None if 'JPEGThumbnail' in data: del data['JPEGThumbnail'] if 'TIFFThumbnail' in data: del data['TIFFThumbnail'] except IOError: logging.debug("'%s' is unreadable" % filename) return None except: logging.error("Exif process_file error: '%s'" % filename) return None return data def getXMP(data): XMP = None if 'Image ApplicationNotes' in data: try: xml = data['Image ApplicationNotes'].printable XMP = parse_xmp_for_lightroom_tags(xml) except: logging.error("Unable to parse XMP") return XMP def updateTagsAndRating(key, filename): data = getdata(filename) if not data: return parsedXMP = getXMP(data) if parsedXMP: logging.info("Processing '%s'" % filename) updateMetadata(key, parsedXMP['tags'], int(parsedXMP['rating'])*2) else: logging.info("No XMP data for '%s'" % filename) def parseExifAndTags(filename): data = getdata(filename) if not data: return None parsedXMP = getXMP(data) if not parsedXMP: parsedXMP = {} parsedXMP['rating'] = 0 parsedXMP['tags'] = [] try: date = datetime.fromtimestamp(datetime.strptime(data['EXIF DateTimeOriginal'].printable+data['EXIF Tag 0x9011'].printable, '%Y:%m:%d %H:%M:%S%z').timestamp()).date() except: try: date = datetime.strptime(data['EXIF DateTimeOriginal'].printable, '%Y:%m:%d %H:%M:%S').date() except: # fallback to the modify date on the file datetimeModified = datetime.fromtimestamp(os.path.getmtime(filename)) date = datetimeModified.date() return PhotoElement(filename, date, parsedXMP['tags'], parsedXMP['rating']) def triggerProcess(): global t global lastTS lastTS = datetime.now() if t is None or not t.is_alive() : logging.info("Starting timer") t = threading.Timer(120,fetchPhotosAndProcess) t.start() def uniqify(seq): return list(dict.fromkeys(seq)) # order preserving def fetchPhotosAndProcess(): global firstRun global lastTS if firstRun: # complete update on startup requested loopThroughAllPhotos() else: # must be in the timer thread so process backlog # keep processing until there is nothing more to do so we don't have to worry about missed triggers while len(doUpdate) > 0: # wait for 120 seconds of idle time so that plex can process any creates first while datetime.now()-lastTS < timedelta(seconds=120): time.sleep(120-(datetime.now()-lastTS).total_seconds()+1) # Try to find all photos based on date if fetchAndProcessByDate(): # failed so loop through all photoa to find the rest loopThroughAllPhotos() def fetchAndProcessByDate(): global doUpdate global lock dateSearchFailed = [] while len(doUpdate) > 0: lock.acquire() doUpdateTemp = uniqify(doUpdate) doUpdate = [] lock.release() photoGroups = {} # first group all photos by date for filepath in doUpdateTemp[:] : photoElement = parseExifAndTags(filepath) if photoElement: # this has exif data date = photoElement.date() if date in photoGroups.keys(): photoGroups[date].append(photoElement) else: photoGroups[date] = [photoElement] else: # missing or not a photo doUpdateTemp.remove(filepath) for date in photoGroups.keys(): fromTimecode = int(datetime.strptime(date.isoformat(), '%Y-%m-%d').timestamp()) toTimecode = int((datetime.strptime(date.isoformat(), '%Y-%m-%d') + timedelta(days=1)).timestamp())-1 toDo = True start = 0 size = 1000 # Make a key list of all pics in the date range plexData = {} if p.photoSection: while toDo: url = "/library/sections/" + str(p.photoSection) + "/all?originallyAvailableAt%3E=" + str(fromTimecode) + "&originallyAvailableAt%3C=" + str(toTimecode) + "&X-Plex-Container-Start=%i&X-Plex-Container-Size=%i" % (start, size) #logging.info("URL: %s", url) metadata = p.fetchPlexApi(url) container = metadata["MediaContainer"] if 'Metadata' not in container: # no photos in this time range (probably wrong section) break elements = container["Metadata"] totalSize = container["totalSize"] offset = container["offset"] size = container["size"] start = start + size if totalSize-offset-size == 0: toDo = False # loop through all elements for photo in elements: mediaType = photo["type"] if mediaType != "photo": continue key = photo["ratingKey"] src = photo["Media"][0]["Part"][0]["file"].replace(ppTagConfig.PHOTOS_LIBRARY_PATH_PLEX,"", 1) #logging.info(" Map: %s -> %s", src, key) plexData[src] = key # Update the pics that changed in the date range for photo in photoGroups[date]: path = photo.path() # make sure path seperator is equal in plex and ppTag if "/" in ppTagConfig.PHOTOS_LIBRARY_PATH_PLEX: path = path.replace("\\","/") if path in plexData.keys(): logging.info("Processing by date '%s'" % path) updateMetadata(plexData[path], photo.tags(), photo.rating()*2) doUpdateTemp.remove(path) # if we failed to process something then defer those to a full scan if len(doUpdateTemp): dateSearchFailed = [*dateSearchFailed, *doUpdateTemp] # if we failed to process something then trigger a full scan if len(dateSearchFailed) > 0: logging.warning("Some updated files were not found by date range.") lock.acquire() doUpdate = [*dateSearchFailed, *doUpdate] lock.release() return True return False def loopThroughAllPhotos(): global doUpdate global firstRun doUpdateTemp = uniqify(doUpdate) doUpdate = [] toDo = True start = 0 size = 1000 #print('loop through all, started %i' % int(time.time())) if p.photoSection: while toDo: url = "/library/sections/" + str(p.photoSection) + "/all?clusterZoomLevel=1&X-Plex-Container-Start=%i&X-Plex-Container-Size=%i" % (start, size) metadata = p.fetchPlexApi(url) container = metadata["MediaContainer"] elements = container["Metadata"] totalSize = container["totalSize"] offset = container["offset"] size = container["size"] start = start + size if totalSize-offset-size == 0: toDo = False # loop through all elements for photo in elements: mediaType = photo["type"] if mediaType != "photo": continue key = photo["ratingKey"] src = photo["Media"][0]["Part"][0]["file"].replace(ppTagConfig.PHOTOS_LIBRARY_PATH_PLEX,"", 1) # make sure path seperator is equal in plex and ppTag if "\\" in ppTagConfig.PHOTOS_LIBRARY_PATH: src = src.replace("/","\\") if src in doUpdateTemp or firstRun: # update tags and rating # print(key) # print(src) updateTagsAndRating(key, src) try: doUpdateTemp.remove(src) except: pass # ok if missing, probably firstRun if not firstRun and len(doUpdateTemp) == 0: toDo = False break if not firstRun: for src in doUpdateTemp: logging.info("Skipped file not found in this section '%s'" % src) firstRun = False class PhotoHandler(PatternMatchingEventHandler): patterns=["*"] ignore_patterns=["*thumb*"] def process(self, event): """ event.event_type 'modified' | 'created' | 'moved' | 'deleted' event.is_directory True | False event.src_path path/to/observed/file """ if not event.is_directory: if (event.event_type == 'modified' or event.event_type == 'created' or event.event_type == 'moved'): # check if file belongs to monitored section for folder in p.photoLocations: if event.src_path.startswith(folder): # put file into forced update list pptag_path=event.src_path.replace(ppTagConfig.PHOTOS_LIBRARY_PATH,"", 1) if pptag_path not in doUpdate: logging.info("Queued '%s'", event.src_path) lock.acquire() doUpdate.append(pptag_path) lock.release() triggerProcess() return logging.debug("Ignored file in wrong location: '%s'" % event.src_path) else: logging.debug("Ignored event '%s' for file '%s'" % (event.event_type,event.src_path)) def on_modified(self, event): self.process(event) def on_created(self, event): self.process(event) if __name__ == '__main__': if ppTagConfig.LOG_LEVEL is None or ppTagConfig.LOG_LEVEL == '': ppTagConfig.LOG_LEVEL = 'CRITICAL' logging.basicConfig(level=getattr(logging,ppTagConfig.LOG_LEVEL), format='%(asctime)s %(levelname)s - %(message)s') if ppTagConfig.TIMEZONE is not None : os.environ['TZ'] = ppTagConfig.TIMEZONE lock = threading.Lock() # setup observer observer = Observer() observer.schedule(PhotoHandler(), path=ppTagConfig.PHOTOS_LIBRARY_PATH, recursive=True) p = plexUsers() # run at startup fetchPhotosAndProcess() # now start the observer observer.start() try: while True: time.sleep(5) except KeyboardInterrupt: observer.stop() observer.join()
2.296875
2
data/livecode/fill_ts.py
james94/driverlessai-recipes
0
12790734
"""Add any missing Group by Date records and fill with a default value - additional columns will be null for the default values""" # Column names in our dataset ts_column = "Date" group_by_columns = ["Store", "Dept"] target_column = "Weekly_Sales" default_missing_value = 0 # check the datatype of user-defined input variables if not isinstance(ts_column, str): raise ValueError("Variable: 'ts_column' should be <str>") if not isinstance(group_by_columns, list): raise ValueError("Column: 'group_by_columns' should be <list>") if not isinstance(target_column, str): raise ValueError("Column: 'target_column' should be <str>") # don't check datatype of default_missing_value because it depends on the column # check if user-defined inputs exist in the dataset features = list(X.names) if ts_column not in features: raise ValueError("Column: '" + ts_column + "' is not present in the data set") for _ in group_by_columns: if _ not in features: raise ValueError("Group by Column: '" + str(_) + "' is not present in the dataset") if target_column not in features: raise ValueError("Column: '" + target_column + "' is not present in the data set") # convert to pandas df = X.to_pandas() # order by group(s) and time df = df.sort_values(group_by_columns + [ts_column]) # cross join of dates and groups unique_dates = pd.DataFrame(df[ts_column].unique(), columns=[ts_column]) unique_dates['key'] = 0 unique_groups = df[group_by_columns].drop_duplicates() unique_groups['key'] = 0 all_vals = pd.merge(unique_dates, unique_groups, how="outer").drop("key", axis=1) # join back to the original dataset df_filled = pd.merge(df, all_vals, how="outer") # fill all nulls with default value - this is appropriate for TS experiments, even if there were existing nulls df_filled[target_column] = df_filled[target_column].fillna(0) return df_filled
3.515625
4
anondolok_library/admin_panel/migrations/0017_wish_list_is_wished.py
Horraira/anondolokLibrary
0
12790735
# Generated by Django 3.2.1 on 2021-08-08 07:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('admin_panel', '0016_wish_list'), ] operations = [ migrations.AddField( model_name='wish_list', name='is_wished', field=models.BooleanField(default=False), ), ]
1.554688
2
src/postprocessing/put_softmax_in_subject_space.py
LucasFidon/feta-inference
0
12790736
""" Use this script to post-process the predicted softmax segmentation. This script performs rigid register of the softmax prediction to the subject space. @author: <NAME> (<EMAIL>) """ import os from argparse import ArgumentParser import numpy as np import nibabel as nib parser = ArgumentParser() parser.add_argument('--softmax', required=True, help='path to the softmax prediction in the template space.') parser.add_argument('--aff', required=True, help='path to the Affine transformation that was used' 'to go from subject space to template space.') parser.add_argument('--input_img', required=True, help='Path to the SRR to preprocess') parser.add_argument('--output_folder', required=True) def invert_affine(aff_path, output_dir): if not os.path.exists(output_dir): os.mkdir(output_dir) aff_name = os.path.split(aff_path)[1].replace('.txt', '') save_inv_aff_path = os.path.join( output_dir, '%s_inv.txt' % aff_name, ) cmd = 'reg_transform -invAff %s %s' % (aff_path, save_inv_aff_path) os.system(cmd) return save_inv_aff_path def warp_softmax(softmax_path, ref_img_path, save_path, aff_path): # Warp the softmax cmd = 'reg_resample -ref %s -flo %s -trans %s -res %s -inter 1 -pad 0 -voff' % \ (ref_img_path, softmax_path, aff_path, save_path) os.system(cmd) # Fix border effects due to padding with 0 AND change order of channels softmax_nii = nib.load(save_path) softmax = softmax_nii.get_fdata().astype(np.float32) sum_proba = np.sum(softmax, axis=-1) softmax[:, :, :, 0] += 1. - sum_proba post_softmax_nii = nib.Nifti1Image(softmax, softmax_nii.affine) nib.save(post_softmax_nii, save_path) def main(args): if not os.path.exists(args.output_folder): os.mkdir(args.output_folder) # Compute the inverse affine transform print('Invert %s' % args.aff) inv_aff_path = invert_affine(aff_path=args.aff, output_dir=args.output_folder) print(inv_aff_path) # Warp the softmax save_path = os.path.join(args.output_folder, 'softmax.nii.gz') print('warp %s' % args.softmax) warp_softmax( softmax_path=args.softmax, ref_img_path=args.input_img, save_path=save_path, aff_path=inv_aff_path, ) if __name__ == '__main__': args = parser.parse_args() main(args)
2.671875
3
PiBlynk-py/oled96/__init__.py
BLavery/PyBlynk
12
12790737
<reponame>BLavery/PyBlynk<filename>PiBlynk-py/oled96/__init__.py #!/usr/bin/env python # USAGE: # from oled96 import oled # or # import oled96 # oled = oled96.OLED(0x3c) or 3d from PIL import Image, ImageDraw, ImageFont from smbus import SMBus font1 = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf', 12) font2 = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf', 19) font3 = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf', 36) #font4 = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeMonoBold.ttf', 12) font5 = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeMonoBold.ttf', 19) #font6 = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeMonoBold.ttf', 36) class OLED(): def __init__(self, address=0x3C): try: self.bus = SMBus(1) except: try: self.bus = SMBus(0) except: exit(7) self.cmd_mode = 0x00 self.data_mode = 0x40 self.addr = address self.width = 128 self.height = 64 self.pages = int(self.height / 8) self.image = Image.new('1', (self.width, self.height)) self.canvas = ImageDraw.Draw(self.image) # this is a "draw" object for preparing display contents self.jnl4=["","Jnl:","",""] self._command( const.DISPLAYOFF, const.SETDISPLAYCLOCKDIV, 0x80, const.SETMULTIPLEX, 0x3F, const.SETDISPLAYOFFSET, 0x00, const.SETSTARTLINE, const.CHARGEPUMP, 0x14, const.MEMORYMODE, 0x00, const.SEGREMAP, const.COMSCANDEC, const.SETCOMPINS, 0x12, const.SETCONTRAST, 0xCF, const.SETPRECHARGE, 0xF1, const.SETVCOMDETECT, 0x40, const.DISPLAYALLON_RESUME, const.NORMALDISPLAY, const.DISPLAYON) def _command(self, *cmd): assert(len(cmd) <= 31) self.bus.write_i2c_block_data(self.addr, self.cmd_mode, list(cmd)) def _data(self, data): # In our library, only data operation used is 128x64 long, ie whole canvas. for i in range(0, len(data), 31): self.bus.write_i2c_block_data(self.addr, self.data_mode, list(data[i:i+31])) def display(self): """ The image on the "canvas" is flushed through to the hardware display. Takes the 1-bit image and dumps it to the SSD1306 OLED display. """ self._command( const.COLUMNADDR, 0x00, self.width-1, # Column start/end address const.PAGEADDR, 0x00, self.pages-1) # Page start/end address pix = list(self.image.getdata()) step = self.width * 8 buf = [] for y in range(0, self.pages * step, step): i = y + self.width-1 while i >= y: byte = 0 for n in range(0, step, self.width): byte |= (pix[i + n] & 0x01) << 8 byte >>= 1 buf.append(byte) i -= 1 self._data(buf) # push out the whole lot def cls(self): self.blank() self.display() def blank(self): self.canvas.rectangle((0, 0, self.width-1, self.height-1), outline=0, fill=0) def onoff(self, onoff): if onoff == 0: self._command(const.DISPLAYOFF) else: self._command(const.DISPLAYON) # ABOVE are raw oled functions # BELOW are some pre-formatted layouts def msgBox(self,hdr="", str1="", str2="", str3=""): # header autocentred oled.blank() self.canvas.rectangle((0, 19, oled.width-1, oled.height-1), outline=1, fill=0) self.canvas.text((2+(11-len(hdr))/2*124/11, 2, 0), hdr, font=font5, fill=1) self.canvas.text((4,23), str1, font=font1, fill=1) self.canvas.text((4,36), str2, font=font1, fill=1) self.canvas.text((4,49), str3, font=font1, fill=1) oled.display() def yell2(self,str1="", str2=""): # 11 char max x 2 lines oled.blank() self.canvas.text((2, 10), str1, font=font2, fill=1) self.canvas.text((2,40), str2, font=font2, fill=1) oled.display() def yell(self,str1="", str2=""): # 5 char max, 1 line oled.blank() self.canvas.text((2, 20), str1, font=font3, fill=1) oled.display() def bar(self,str1,val,dispval=None): # val = 0 to 100 for graph, dispval if different from val. Autocentre. oled.blank() if dispval == None: dispval = val dispval = str(int(dispval)) #print(2+(11-len(str1))/2*124/11) self.canvas.text((2+(11-len(str1))/2*124/11, 2), str1, font=font5, fill=1) self.canvas.rectangle((0, 31, oled.width-1, 40), outline=1, fill=1) self.canvas.rectangle((int((val*126)/100), 32, oled.width-2, 39), outline=1, fill=0) self.canvas.text((2+(11-len(dispval))/2*124/11,43), dispval, font=font2, fill=1) oled.display() def jnl(self,str1): oled.blank() self.jnl4.pop(0) self.jnl4.append(str1) self.canvas.rectangle((0, 0, oled.width-1, oled.height-1), outline=1, fill=0) self.canvas.text((4, 3), self.jnl4[0], font=font1, fill=1) self.canvas.text((4,18), self.jnl4[1], font=font1, fill=1) self.canvas.text((4,33), self.jnl4[2], font=font1, fill=1) self.canvas.text((4,48), self.jnl4[3], font=font1, fill=1) oled.display() class const: CHARGEPUMP = 0x8D COLUMNADDR = 0x21 COMSCANDEC = 0xC8 COMSCANINC = 0xC0 DISPLAYALLON = 0xA5 DISPLAYALLON_RESUME = 0xA4 DISPLAYOFF = 0xAE DISPLAYON = 0xAF EXTERNALVCC = 0x1 INVERTDISPLAY = 0xA7 MEMORYMODE = 0x20 NORMALDISPLAY = 0xA6 PAGEADDR = 0x22 SEGREMAP = 0xA0 SETCOMPINS = 0xDA SETCONTRAST = 0x81 SETDISPLAYCLOCKDIV = 0xD5 SETDISPLAYOFFSET = 0xD3 SETHIGHCOLUMN = 0x10 SETLOWCOLUMN = 0x00 SETMULTIPLEX = 0xA8 SETPRECHARGE = 0xD9 SETSEGMENTREMAP = 0xA1 SETSTARTLINE = 0x40 SETVCOMDETECT = 0xDB SWITCHCAPVCC = 0x2 oled = OLED() import sys if __name__ == '__main__': print (sys.argv[0], 'is an importable module:') exit()
2.1875
2
Python/Courses/Python-Tutorials.Telusko/02.Miscellaneous/24.zip.py
shihab4t/Books-Code
0
12790738
<gh_stars>0 names = ["Navin", "Kiran", "Harsh", "Navin"] comps = ["Dell", "Apple", "MS", "Dell"] zipped = zip(names, comps) for a, b in zipped: print(a, b)
3.1875
3
LeetCode/python/211-240/225-implement-stack-using-queues/solution.py
shootsoft/practice
0
12790739
class Stack: # initialize your data structure here. def __init__(self): self.q1 = [] self.q2 =[] self.switch = 1 self.length = 0 # @param x, an integer # @return nothing def push(self, x): if self.switch == 1: self.q1.append(x) while(len(self.q2)>0): self.q1.append(self.q2.pop(0)) self.switch = 2 else: self.q2.append(x) while(len(self.q1)>0): self.q2.append(self.q1.pop(0)) self.switch = 1 self.length += 1 # @return nothing def pop(self): if self.length ==0: return None self.length -= 1 if self.switch == 1: return self.q2.pop(0) else: return self.q1.pop(0) # @return an integer def top(self): if self.length ==0: return None if self.switch == 1: return self.q2[0] else: return self.q1[0] # @return an boolean def empty(self): return self.length == 0 s = Stack() s.push(1) s.push(2) s.push(3) print s.top() print s.pop() print s.pop() print s.pop()
3.90625
4
chapter14_OOP/2019/Number.py
motazsaad/WDMM1405
4
12790740
<reponame>motazsaad/WDMM1405<filename>chapter14_OOP/2019/Number.py class Number: def __init__(self, num): self.number = num def __str__(self): return str(self.number) def __add__(self, other): self.number += other return Number(self.number) # class n = Number(10) print(n) n + 10 print(n) n += 10 print(n) print(type(n)) # primitive type x = 10 print(x) x += 10 print(x) print(type(x))
3.953125
4
pseudo/middlewares/standard_middleware.py
mifieldxu/pseudo-lang
661
12790741
from pseudo.middlewares.middleware import Middleware from pseudo.pseudo_tree import Node class StandardMiddleware(Middleware): ''' changes standard_iterable_call in return to a special type used by go ''' @classmethod def process(cls, tree): return cls().transform(tree) def transform_r(self, node, in_block=False, assignment=None): if node.value.type == 'standard_iterable_call': node.value.type = 'standard_iterable_call_return' return node.value else: return node transform_explicit_return = transform_implicit_return = transform_r
2.65625
3
sample.py
tecdan/NCE_Alias_Sampling
0
12790742
"""A minimal sample script for illustration of basic usage of NCE module""" import torch from nce import IndexLinear class_freq = [0, 2, 2, 3, 4, 5, 6] # an unigram class probability freq_count = torch.FloatTensor(class_freq) print("total counts for all tokens:", freq_count.sum()) noise = freq_count / freq_count.sum() # IndexLinear 继承了NCELoss 类 nce_linear = IndexLinear( embedding_dim=100, # input dim num_classes=300000, # output dim noise=noise, ) # 这里 input 假装是经过了 embedding之后的 input = torch.Tensor(200, 100) # [batch, emb_dim] # target中这里是ones, 但是我们的task中应该是 对应的正确的token的id target = torch.ones(200, 1).long() # [batch, 1] # training mode loss = nce_linear(target, input).mean() print(loss.item()) # evaluation mode for fast probability computation nce_linear.eval() prob = nce_linear(target, input).mean() print(prob.item())
2.875
3
aybtools/minitest.py
abc1035/aiyubin-task1
0
12790743
"""this file is aimed to generate a small datasets for test""" import json f = open("/home/ayb/UVM_Datasets/voc_test3.json", "r") line = f.readline() f.close() dic = eval(line) images = dic['images'] new_images=[] for image in images: if "ten" in image['file_name']: continue else: new_images.append(image) image_id = [] annotations = dic['annotations'] new_annotations = [] for image in new_images: # print(image) image_id.append(image['id']) for annotation in annotations: if annotation['image_id'] in image_id: new_annotations.append(annotation) dic["images"] = new_images dic["annotations"] = new_annotations f1 = open("/home/ayb/UVM_Datasets/voc_test_not_ten.json", "w") dic_json = json.dumps(dic) f1.write(str(dic_json)) f1.close()
2.8125
3
ex011.py
mateusguida/ExerciciosPython
0
12790744
<reponame>mateusguida/ExerciciosPython larg = float(input("Largura da parede: ")) alt = float(input("Altura da parede: ")) area = larg * alt print(f'SUa parede tem a dimensão de {larg:.2f}x{alt:.2f} e sua área é de {area:.3f}m².') print(f'Para pintar essa parede, você precisará de {area/2} litros de tinta')
3.8125
4
movielist_app/tests.py
rhedwan/BuildingDjangoAPI
0
12790745
<reponame>rhedwan/BuildingDjangoAPI from django.contrib.auth.models import User from django.http import response from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from rest_framework.authtoken.models import Token from movielist_app.api import serializers from movielist_app import models class StreamPlatformTestCase(APITestCase): def setUp(self): self.user = User.objects.create_user(username="example", password="<PASSWORD>") self.token = Token.objects.get(user__username = self.user) self.client.credentials(HTTP_AUTHORIZATION='Token ' + self.token.key) self.stream = models.StreamPlatform.objects.create( name = "Netflix", about = "#1 Streaming Platform", website = "https://netflix.com" ) def test_streamplatform_create(self): data = { "name" : "Netflix", "about" : "#1 Streaming Platform", "website" : "https://netflix.com" } response = self.client.post(reverse('streamplatform-list'), data) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_streamplatform_list(self): response = self.client.get(reverse('streamplatform-list')) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_streamplatform_ind(self): response = self.client.get(reverse('streamplatform-detail' ,args= (self.stream.id,))) self.assertEqual(response.status_code, status.HTTP_200_OK) class WatchListTestCase(APITestCase): def setUp(self): self.user = User.objects.create_user(username="example", password="<PASSWORD>") self.token = Token.objects.get(user__username = self.user) self.client.credentials(HTTP_AUTHORIZATION='Token ' + self.token.key) self.stream = models.StreamPlatform.objects.create( name = "Netflix", about = "#1 Streaming Platform", website = "https://netflix.com" ) self.watchlist = models.WatchList.objects.create( title = "Example Movie" , storyline = "Example Story", platform = self.stream , active = True ) def test_watchlist_create(self): data = { "title": "Example Movie" , "storyline": "Example Story", "platform" : self.stream , "active" : True } response = self.client.post(reverse('movie-list') , data) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_watchlist_list(self): response = self.client.get(reverse('movie-list')) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_watchlist_ind(self): response = self.client.get(reverse('movie-detail' ,args= (self.watchlist.id,))) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(models.WatchList.objects.count(), 1) self.assertEqual(models.WatchList.objects.get().title, 'Example Movie') class ReviewTestCase(APITestCase): def setUp(self): self.user = User.objects.create_user(username="example", password="<PASSWORD>") self.token = Token.objects.get(user__username = self.user) self.client.credentials(HTTP_AUTHORIZATION='Token ' + self.token.key) self.stream = models.StreamPlatform.objects.create( name = "Netflix", about = "#1 Streaming Platform", website = "https://netflix.com" ) self.watchlist = models.WatchList.objects.create( title = "Example Movie" , storyline = "Example Story", platform = self.stream , active = True ) self.watchlist2 = models.WatchList.objects.create( title = "Example Movie" , storyline = "Example Story", platform = self.stream , active = True ) self.review = models.Review.objects.create( review_user =self.user , rating = 5, description = "Great Movie!!!", watchlist = self.watchlist2, active = True ) def test_review_create(self): data = { "review_user": self.user , "rating " : 5, "description" : "Great Movie!!!", "watchlist" : self.watchlist, "active" : True } response = self.client.post(reverse('review-create', args=(self.watchlist.id,)), data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Added more checks to the tests. i.c(For the content and # the number of reviews that can be created on a movie) self.assertEqual(models.Review.objects.count(), 2) response = self.client.post(reverse('review-create', args=(self.watchlist.id,)), data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_review_create_unauth(self): data = { "review_user": self.user , "rating " : 5, "description" : "Great Movie!!!", "watchlist" : self.watchlist, "active" : True } self.client.force_authenticate(user=None) response = self.client.post(reverse('review-create', args=(self.watchlist.id,)), data) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_review_create_update(self): data = { "review_user": self.user , "rating " : 4, "description" : "Great Movie!!!-(Updated)", "watchlist" : self.watchlist, "active" : False } response = self.client.put(reverse('review-detail', args=(self.review.id,)), data) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_review_list(self): response = self.client.get(reverse('review-list', args=(self.watchlist.id,))) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_review_ind(self): response = self.client.get(reverse('review-detail', args=(self.review.id,))) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_review_delete(self): response = self.client.delete(reverse('review-detail', args=(self.review.id,))) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) def test_review_user(self): response = self.client.get('/watch/reviews/?username' + self.user.username) self.assertEqual(response.status_code, status.HTTP_200_OK) """ IMPORTANT: The we are using the 'user' which isn't the 'admin'. Hence it going to return "HTTP_403_FORBIDDEN" which 'ok' NOTE: Once the request is sent without the authorization. It returns "HTTP_401_UNAUTHORIZED". The "setUp" method is taking care of that. NOTE: Once the request is sent without "admin" credentials. It returns "HTTP_403_FORBIDDEN" NOTE: "self.stream" is used for creating the "streamplatorm" manually. NOTE: "test_streamplatform_ind" method is for getting the individual object using the "self.stream" <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< WatchListTestCase >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 1. we are using the "setUp" methods again to create a "StreamPlatform" for test we are currently writing. Hence, "each test classes are independent". 2. "self.watchlist" is attribute in the "setUp" for creating the "watchlist" object manually. ----------------------- Forcing authentication------------------------- LINKS: https://www.django-rest-framework.org/api-guide/testing/#forcing-authentication 3. We are "Forcing authentication" to login as anonymous 4. Created a "self.watchlist" attribute to get an id for the review to be updated. NOTE: The 2 'self.watchlist' i.e('self.watchlist & self.watchlist2') was created because we aren't allowed to send multilpe review on a watchlist. The first is used to test the "test_review_create and test_review_create_unauth" While, the second is used to for the update, "PUT" """
2.53125
3
Flask/15.py
Pendragon21/FlaskExercises
0
12790746
import os from flask import Flask, g from flask_sijax import sijax path = os.path.join('.', os.path.dirname(__file__), 'static/js/sijax/') app = Flask(__name__) app.config['SIJAX_STATIC_PATH'] = path app.config['SIJAX_JSON_URI'] = '/static/js/sijax/json2.js' flask_sijax.Sijax(app) @app.route('/') def index(): return 'Index' @flask_sijax.route(app, '/hello') def hello(): def say_hi(obj_response): obj_response.alert('Hi there!') if g.sijax.is_sijax_request: g.sijax.register_callback('say_hi', say_hi) return g.sijax.process_request() return _render_template('sijaxexample.html') if __name__ == '__main__': app.run(debug = True)
2.390625
2
wtforms_dynamic_fields/wtforms_dynamic_fields.py
Timusan/wtforms-dynamic-fields
20
12790747
import re import sys from wtforms.form import FormMeta class WTFormsDynamicFields(): """ Add dynamic (set) fields to a WTForm. Instantiating this class will merely create a configuration dictionary on which you can add fields and validators using the designated methods "add_field" and "add_validator". Calling the "process" method will take care of actually applying the build configuration to the WTForm form. This method will take a WTForm form object and attach new fields to it according to a match between what is in the POST and what is defined in the build configuration dictionary. It has the added ability to process sets of fields that are suffixed with the convention of '_X' where X is a number. For ease of configuration, these set names will be traced back to their canonical name so that each of these fields only have to be defined once in the configuration. Inside the configuration there is the ability to reference other fields within the validator arguments with the convention of surrounding it with % signs. Fields that belong to a set will be automatically suffixed with their set number (_X) when they are bound to the validator. The latter brings the power to reference set fields with their canonical name without needing to care about the set number that will be used later on when injecting them in the DOM. """ def __init__(self, flask_wtf=False): """ Class init. :param flask_wtf: Is this form a Flask WTF or a plain WTF instance? """ self._dyn_fields = {} self.flask_wtf=flask_wtf def add_field(self, name, label, field_type, *args, **kwargs): """ Add the field to the internal configuration dictionary. """ if name in self._dyn_fields: raise AttributeError('Field already added to the form.') else: self._dyn_fields[name] = {'label': label, 'type': field_type, 'args': args, 'kwargs': kwargs} def add_validator(self, name, validator, *args, **kwargs): """ Add the validator to the internal configuration dictionary. :param name: The field machine name to apply the validator on :param validator: The WTForms validator object The rest are optional arguments and keyword arguments that belong to the validator. We let them simply pass through to be checked and bound later. """ if name in self._dyn_fields: if 'validators' in self._dyn_fields[name]: self._dyn_fields[name]['validators'].append(validator) self._dyn_fields[name][validator.__name__] = {} if args: self._dyn_fields[name][validator.__name__]['args'] = args if kwargs: self._dyn_fields[name][validator.__name__]['kwargs'] = kwargs else: self._dyn_fields[name]['validators'] = [] self.add_validator(name, validator, *args, **kwargs) else: raise AttributeError('Field "{0}" does not exist. ' 'Did you forget to add it?'.format(name)) @staticmethod def iteritems(dict): """ Refusing to use a possible memory hugging Python2 .items() method. So for providing both Python2 and 3 support, setting up iteritems() as either items() in 3 or iteritems() in 2. """ if sys.version_info[0] >= 3: return dict.items() else: return dict.iteritems() def process(self, form, post): """ Process the given WTForm Form object. Itterate over the POST values and check each field against the configuration that was made. For each field that is valid, check all the validator parameters for possible %field% replacement, then bind these parameters to their validator. Finally, add the field together with their validators to the form. :param form: A valid WTForm Form object :param post: A MultiDict with the POST variables """ if not isinstance(form, FormMeta): raise TypeError('Given form is not a valid WTForm.') re_field_name = re.compile(r'\%([a-zA-Z0-9_]*)\%') class F(form): pass for field, data in post.iteritems(): if field in F(): # Skip it if the POST field is one of the standard form fields. continue else: if field in self._dyn_fields: # If we can find the field name directly, it means the field # is not a set so just set the canonical name and go on. field_cname = field # Since we are not in a set, (re)set the current set. current_set_number = None elif (field.split('_')[-1].isdigit() and field[:-(len(field.split('_')[-1]))-1] in self._dyn_fields.keys()): # If the field can be split on underscore characters, # the last part contains only digits and the # everything *but* the last part is found in the # field configuration, we are good to go. # (Cowardly refusing to use regex here). field_cname = field[:-(len(field.split('_')[-1]))-1] # Since we apparently are in a set, remember the # the set number we are at. current_set_number = str(field.split('_')[-1]) else: # The field did not match to a canonical name # from the fields dictionary or the name # was malformed, throw it out. continue # Since the field seems to be a valid one, let us # prepare the validator arguments and, if we are in a set # replace the %field_name% convention where we find it. validators = [] if 'validators' in self._dyn_fields[field_cname]: for validator in self._dyn_fields[field_cname]['validators']: args = [] kwargs = {} if 'args' in self._dyn_fields[field_cname]\ [validator.__name__]: if not current_set_number: args = self._dyn_fields[field_cname]\ [validator.__name__]['args'] else: # If we are currently in a set, append the set number # to all the words that are decorated with %'s within # the arguments. for arg in self._dyn_fields[field_cname]\ [validator.__name__]['args']: try: arg = re_field_name.sub(r'\1'+'_'+current_set_number, arg) except: # The argument does not seem to be regex-able # Probably not a string, thus we can skip it. pass args.append(arg) if 'kwargs' in self._dyn_fields[field_cname]\ [validator.__name__]: if not current_set_number: kwargs = self._dyn_fields[field_cname]\ [validator.__name__]['kwargs'] else: # If we are currently in a set, append the set number # to all the words that are decorated with %'s within # the arguments. for key, arg in self.iteritems(self._dyn_fields[field_cname]\ [validator.__name__]['kwargs']): try: arg = re_field_name.sub(r'\1'+'_'+current_set_number, arg) except: # The argument does not seem to be regex-able # Probably not a string, thus we can skip it. pass kwargs[key] = arg # Finally, bind arguments to the validator # and add it to the list validators.append(validator(*args, **kwargs)) # The field is setup, it is time to add it to the form. field_type = self._dyn_fields[field_cname]['type'] field_label = self._dyn_fields[field_cname]['label'] field_args = self._dyn_fields[field_cname]['args'] field_kwargs = self._dyn_fields[field_cname]['kwargs'] setattr(F, field, field_type(field_label, validators=validators, *field_args, **field_kwargs)) # Create an instance of the form with the newly # created fields and give it back to the caller. if self.flask_wtf: # Flask WTF overrides the form initialization # and already injects the POST variables. form = F() else: form = F(post) return form
3.0625
3
conf.py
evhub/coconut
3,624
12790748
<reponame>evhub/coconut<gh_stars>1000+ #!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------------------------------------------------- # INFO: # ----------------------------------------------------------------------------------------------------------------------- """ Author: <NAME> License: Apache 2.0 Description: Sphinx configuration file for the Coconut Programming Language. """ # ----------------------------------------------------------------------------------------------------------------------- # IMPORTS: # ----------------------------------------------------------------------------------------------------------------------- from __future__ import print_function, absolute_import, unicode_literals, division import sys import os.path sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) from coconut.root import * # NOQA from coconut.constants import ( version_str_tag, without_toc, with_toc, ) from coconut.util import univ_open import pydata_sphinx_theme # NOQA import myst_parser # NOQA # ----------------------------------------------------------------------------------------------------------------------- # README: # ----------------------------------------------------------------------------------------------------------------------- with univ_open("README.rst", "r") as readme_file: readme = readme_file.read() with univ_open("index.rst", "w") as index_file: index_file.write(readme.replace(without_toc, with_toc)) # ----------------------------------------------------------------------------------------------------------------------- # DEFINITIONS: # ----------------------------------------------------------------------------------------------------------------------- from coconut.constants import ( # NOQA project, copyright, author, highlight_language, ) version = VERSION release = version_str_tag html_theme = "pydata_sphinx_theme" html_theme_options = { } master_doc = "index" exclude_patterns = ["README.*"] source_suffix = [".rst", ".md"] default_role = "code" extensions = ["myst_parser"] myst_enable_extensions = [ "smartquotes", ] myst_heading_anchors = 4 html_sidebars = { "**": [ "localtoc.html", ], }
1.445313
1
Clase01/hipoteca.py
qagustina/python-exercises
0
12790749
# 1.7: La hipoteca de David # 1.9: Calculadora de adelantos # 1.10: Tablas # 1.7 saldo = 500000.0 tasa = 0.05 pago_mensual = 2684.11 total_pagado = 0.0 mes = 0 # 1.9 pago_extra_mes_comienzo = 61 pago_extra_mes_fin = 108 pago_extra = 1000 mes_adelantado = 0 while saldo > 0: saldo = saldo * (1+tasa/12) mes = mes + 1 if (pago_extra_mes_comienzo <= mes <= pago_extra_mes_fin): saldo = saldo - pago_mensual - pago_extra total_pagado = total_pagado + pago_mensual + pago_extra mes_adelantado = mes_adelantado + 1 else: saldo = saldo - pago_mensual total_pagado = total_pagado + pago_mensual print(mes, round(total_pagado, 2), round(saldo, 2)) # 1.10 print('Total pagado: ', round(total_pagado, ndigits=2)) print('Meses: ', mes) print ('Meses adelantados: ', mes_adelantado)
3.5625
4
Python/easy/0977_squares_of_a_sorted_array.py
CalmScout/LeetCode
0
12790750
<filename>Python/easy/0977_squares_of_a_sorted_array.py """ Given an array of integers A sorted in non-decreasing order, return an array of the squares of each number, also in sorted non-decreasing order. Example 1: Input: [-4,-1,0,3,10] Output: [0,1,9,16,100] Example 2: Input: [-7,-3,2,3,11] Output: [4,9,9,49,121] Note: 1 <= A.length <= 10000 -10000 <= A[i] <= 10000 A is sorted in non-decreasing order. """ from typing import List class Solution: def sortedSquares(self, A: List[int]) -> List[int]: return sorted([el * el for el in A]) if __name__ == "__main__": assert Solution().sortedSquares([-4,-1,0,3,10]) == [0,1,9,16,100] assert Solution().sortedSquares([-7,-3,2,3,11]) == [4,9,9,49,121]
4.21875
4