max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
backend/logger/migrations/0029_rename_httprequest_payload.py
AstroMatt/esa-subjective-time-perception
1
12791351
<gh_stars>1-10 # Generated by Django 4.0.4 on 2022-05-07 09:51 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('logger', '0028_remove_httprequest_api_version_and_more'), ] operations = [ migrations.RenameModel( old_name='HTTPRequest', new_name='Payload', ), ]
1.515625
2
nn/mnist_tf_coreml/pb_to_coreml.py
kamino410/edsdk-sample
23
12791352
<filename>nn/mnist_tf_coreml/pb_to_coreml.py import tensorflow as tf import tfcoreml import argparse parser = argparse.ArgumentParser() parser.add_argument('input_pb') parser.add_argument('output_mlmodel') args = parser.parse_args() model = tfcoreml.convert(tf_model_path=args.input_pb, mlmodel_path=args.output_mlmodel, output_feature_names=['dense_1/Softmax:0'], input_name_shape_dict={ 'flatten_input:0': [1, 28, 28, 1]}, image_input_names=['flatten_input:0']) spec = model.get_spec() print(spec.description.output)
2.765625
3
build_framework/build_clib.py
kdschlosser/wxAnimation
2
12791353
<filename>build_framework/build_clib.py # -*- coding: utf-8 -*- import distutils import distutils.errors import distutils.core import distutils.command.build_clib import distutils.log from distutils.sysconfig import customize_compiler import distutils.dir_util import os from . import spawn_process from .library.library_base import Library class build_clib(distutils.core.Command): user_options = [ ('build-clib=', 'b', "directory to build C/C++ libraries to"), ('build-temp=', 't', "directory to put temporary build by-products"), ('debug', 'g', "compile with debugging information"), ('force', 'f', "forcibly build everything (ignore file timestamps)"), ] boolean_options = ['debug', 'force'] help_options = [ ('help-compiler', None, "list available compilers", distutils.command.build_clib.show_compilers), ] def spawn(self, *args, **kwargs): spawn_process.spawn(*args, **kwargs) # we override the compilers mkpath so we can inject the verbose option. # the compilers version does not allow for setting of a verbose level # and distutils.dir_util.mkpath defaults to a verbose level of 1 which # which prints out each and every directory it makes. This congests the # output unnecessarily. def mkpath(self, name, mode=0o777): distutils.dir_util.mkpath( name, mode, dry_run=self.compiler.dry_run, verbose=0 ) def initialize_options(self): self.build_clib = None self.build_temp = None # List of libraries to build self.libraries = None # Compilation options for all libraries self.include_dirs = None self.define = None self.undef = None self.debug = None self.force = 0 self.compiler = None def finalize_options(self): # This might be confusing: both build-clib and build-temp default # to build-temp as defined by the "build" command. This is because # I think that C libraries are really just temporary build # by-products, at least from the point of view of building Python # extensions -- but I want to keep my options open. self.set_undefined_options( 'build', ('build_temp', 'build_clib'), ('build_temp', 'build_temp'), ('compiler', 'compiler'), ('debug', 'debug'), ('force', 'force') ) if not os.path.exists(self.build_clib): os.makedirs(self.build_clib) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) self.libraries = self.distribution.libraries self.check_library_list(self.libraries) if self.include_dirs is None: self.include_dirs = self.distribution.include_dirs or [] if isinstance(self.include_dirs, str): self.include_dirs = self.include_dirs.split(os.pathsep) def run(self): if not self.libraries: return # we are leaving this here so if wanted the built in compiler for distutils can be used # Instead of using a tuple and a dict to provide compiler options I decided to make a class # call Library. This class is what will hold all of the various build components needed # for a build. Now. There is a method "build" that ghets called. if this method is overridden # it is what gets used instread of the internal compiler. I created a wrapper class around the # Library which institutes a multi threaded compiling process. we no longer use the built in # compiler with distutils. I am not able to use the distutils compiler in a threaded scenario # because it was not designed to be thread safe and things get all kinds of funky. from distutils.ccompiler import new_compiler self.compiler = new_compiler( compiler=self.compiler, dry_run=self.dry_run, force=self.force ) # replace the compilers spawn and mkpath with the onces that we have written self.compiler.spawn = self.spawn self.compiler.mkpath = self.mkpath customize_compiler(self.compiler) if self.include_dirs is not None: self.compiler.set_include_dirs(self.include_dirs) if self.define is not None: # 'define' option is a list of (name,value) tuples for (name, value) in self.define: self.compiler.define_macro(name, value) if self.undef is not None: for macro in self.undef: self.compiler.undefine_macro(macro) self.build_libraries(self.libraries) def check_library_list(self, libraries): if not isinstance(libraries, (list, tuple)): raise distutils.errors.DistutilsSetupError( "'libraries' options need to be either a list or a tuple.") for lib in libraries: if not isinstance(lib, Library): raise distutils.errors.DistutilsSetupError( "contents of 'libraries' needs to be instances of 'Library' not " + str(type(lib)) ) # lib.validate() def get_library_names(self): # Assume the library list is valid -- 'check_library_list()' is # called from 'finalize_options()', so it should be! if not self.libraries: return None lib_names = [] for lib in self.libraries: lib_names.append(lib.name) return lib_names def get_source_files(self): self.check_library_list(self.libraries) filenames = [] for lib in self.libraries: filenames.extend(lib.sources) return filenames def build_libraries(self, libraries): for lib in libraries: distutils.log.info("building '%s' library", lib.name) try: lib.build(self) except NotImplementedError: # First, compile the source code to object files in the library # directory. (This should probably change to putting object # files in a temporary build directory.) include_dirs = lib.include_dirs objects = self.compiler.compile( lib.sources, output_dir=self.build_temp, macros=lib.macros, include_dirs=include_dirs, debug=self.debug ) # Now "link" the object files together into a static library. # (On Unix at least, this isn't really linking -- it just # builds an archive. Whatever.) self.compiler.create_static_lib( objects, lib.name, output_dir=self.build_clib, debug=self.debug )
2.109375
2
gradools/mconfig.py
matthew-brett/gradools
1
12791354
<filename>gradools/mconfig.py """ Tools for grading """ from os.path import exists, join as pjoin from collections import OrderedDict import pytoml as toml import pandas as pd class ConfigError(RuntimeError): pass class Config: config_fname = 'gdconfig.toml' required_fields = ('year',) default_log = 'marking_log.md' def __init__(self): self._params = None def __getitem__(self, key): return self.params[key] def __contains__(self, key): return key in self.params def get(self, key, *args, **kwargs): return self.params.get(key, *args, **kwargs) @property def params(self): if self._params is None: self._params = self._read_config() return self._params def _read_config(self): fname = self.config_fname if not exists(fname): raise ConfigError( f'Should be {fname} in current directory') with open(fname, 'rb') as fobj: config = toml.load(fobj) for field in self.required_fields: if not field in config: raise ConfigError(f'{fname} should have "{field}" field') return config @property def marking_log(self): fn = self.get('log', self.default_log) if not exists(fn): raise ConfigError(f'Log {fn} does not exist') return fn @property def year(self): return self.params['year'] @property def student_fname(self): return f'students_{self.year}.csv' @property def marks_fname(self): return f'marks_{self.year}.csv' @property def nb_template(self): template = self.get('notebooks', {}).get('template') if template is None: return None return pjoin(*template.split('/')) def get_students(self): if not exists(self.student_fname): raise ConfigError('Run gdo-mkstable here') return pd.read_csv(self.student_fname) @property def scores(self): return get_scores(self.marking_log) @property def score_lines(self): return get_score_lines(*self.scores) CONFIG = Config() def print_year(): print(CONFIG['year']) def get_scores(fileish): if hasattr(fileish, 'read'): contents = fileish.read() else: with open(fileish, 'rt') as fobj: contents = fobj.read() lines = contents.splitlines() state = 'searching' o_scores = OrderedDict() e_scores = OrderedDict() for i, line in enumerate(lines): line = line.strip() if line == '': continue if state == 'searching': if line == 'Ordinary maxima:': state = 'ordinary-scores' elif state == 'ordinary-scores': if line == 'Extra maxima:': state = 'extra-scores' continue elif line.startswith('Total'): break key, value = proc_line(line) o_scores[key] = float(value) elif state == 'extra-scores': if line.startswith('Total'): break key, value = proc_line(line) e_scores[key] = float(value) return o_scores, e_scores def proc_line(line): if not line.startswith('*'): raise ValueError('Invalid list element') return [v.strip() for v in line[1:].split(':')] def get_score_lines(o_scores, e_scores): lines = [f'* {k}: {v}' for k, v in o_scores.items()] if e_scores: lines.append('') lines += [f'* {k}: {v}' for k, v in e_scores.items()] return '\n'.join(lines) + '\n'
2.40625
2
wandb/integration/xgboost/xgboost.py
ayulockin/client
0
12791355
<gh_stars>0 # -*- coding: utf-8 -*- """ xgboost init """ import os import json import wandb import warnings import xgboost as xgb from typing import cast from pathlib import Path MINIMIZE_METRICS = [ "rmse", "rmsle", "mae", "mape", "mphe", "logloss", "error", "error@t", "merror", ] MAXIMIZE_METRICS = ["auc", "aucpr", "ndcg", "map", "ndcg@n", "map@n"] def wandb_callback(): """ Old style callback that will be deprecated in favor of WandbCallback. Please try the new logger for more features. """ warnings.warn( "wandb_callback will be deprecated in favor of WandbCallback. Please use WandbCallback for more features.", UserWarning, stacklevel=2, ) def callback(env): for k, v in env.evaluation_result_list: wandb.log({k: v}, commit=False) wandb.log({}) return callback class WandbCallback(xgb.callback.TrainingCallback): """`WandbCallback` automatically integrates XGBoost with wandb. Arguments: log_model: (boolean) if True save and upload the model to Weights & Biases Artifacts log_feature_importance: (boolean) if True log a feature importance bar plot importance_type: (str) one of {weight, gain, cover, total_gain, total_cover} for tree model. weight for linear model. define_metric: (boolean) if True (default) capture model performance at the best step, instead of the last step, of training in your `wandb.summary`. Passing `WandbCallback` to XGBoost will: - log the booster model configuration to Weights & Biases - log evaluation metrics collected by XGBoost, such as rmse, accuracy etc to Weights & Biases - log training metric collected by XGBoost (if you provide training data to eval_set) - log the best score and the best iteration - save and upload your trained model to to Weights & Biases Artifacts (when `log_model = True`) - log feature importance plot when `log_feature_importance=True` (default). - Capture the best eval metric in `wandb.summary` when `define_metric=True` (default). Example: ```python bst_params = dict( objective ='reg:squarederror', colsample_bytree = 0.3, learning_rate = 0.1, max_depth = 5, alpha = 10, n_estimators = 10, tree_method = 'hist' ) xg_reg = xgb.XGBRegressor(**bst_params) xg_reg.fit(X_train, y_train, eval_set=[(X_test, y_test)], callbacks=[WandbCallback()]) ) ``` """ def __init__( self, log_model: bool = False, log_feature_importance: bool = True, importance_type: str = "gain", define_metric: bool = True, ): if wandb.run is None: raise wandb.Error("You must call wandb.init() before WandbCallback()") self.log_model = log_model self.log_feature_importance = log_feature_importance self.importance_type = importance_type self.define_metric = define_metric def before_training(self, model): """Run before training is finished""" # Update W&B config config = model.save_config() wandb.config.update(json.loads(config)) return model def after_training(self, model): """Run after training is finished.""" # Log the booster model as artifacts if self.log_model: self._log_model_as_artifact(model) # Plot feature importance if self.log_feature_importance: self._log_feature_importance(model) # Log the best score and best iteration if model.attr("best_score") is not None: wandb.log( { "best_score": float(cast(str, model.attr("best_score"))), "best_iteration": int(cast(str, model.attr("best_iteration"))), } ) return model def after_iteration(self, model, epoch, evals_log): """Run after each iteration. Return True when training should stop.""" # Log metrics for data, metric in evals_log.items(): for metric_name, log in metric.items(): if self.define_metric: self._define_metric(data, metric_name) wandb.log({f"{data}-{metric_name}": log[-1]}, commit=False) else: wandb.log({f"{data}-{metric_name}": log[-1]}, commit=False) wandb.log({"epoch": epoch}) self.define_metric = False return False def _log_model_as_artifact(self, model): model_name = f"{wandb.run.id}_model.json" model_path = Path(wandb.run.dir) / model_name model.save_model(str(model_path)) model_artifact = wandb.Artifact(name=model_name, type="model") model_artifact.add_file(model_path) wandb.log_artifact(model_artifact) def _log_feature_importance(self, model): fi = model.get_score(importance_type=self.importance_type) fi_data = [[k, fi[k]] for k in fi] table = wandb.Table(data=fi_data, columns=["Feature", "Importance"]) wandb.log( { "Feature Importance": wandb.plot.bar( table, "Feature", "Importance", title="Feature Importance" ) } ) def _define_metric(self, data, metric_name): if "loss" in str.lower(metric_name): wandb.define_metric(f"{data}-{metric_name}", summary="min") elif str.lower(metric_name) in MINIMIZE_METRICS: wandb.define_metric(f"{data}-{metric_name}", summary="min") elif str.lower(metric_name) in MAXIMIZE_METRICS: wandb.define_metric(f"{data}-{metric_name}", summary="max") else: pass
2.53125
3
fix_timestamps.py
molguin92/EdgeDroidResults
0
12791356
""" Copyright 2019 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import os experiments = { '1 Client': '1Client_IdealBenchmark', '5 Clients': '5Clients_IdealBenchmark', '10 Clients': '10Clients_IdealBenchmark' } for exp, dir in experiments.items(): os.chdir(dir) for r in range(1, 6): os.chdir('run_{}'.format(r)) with open('server_stats.json', 'r') as f: data = json.load(f) with open('server_stats.json', 'w') as f: data['run_start'] = data['run_start'] - 7200000 data['run_end'] = data['run_end'] - 7200000 json.dump(data, f) os.chdir('..') os.chdir('..')
1.890625
2
oldp/apps/cases/migrations/0010_case_abstract.py
docsuleman/oldp
66
12791357
<reponame>docsuleman/oldp<filename>oldp/apps/cases/migrations/0010_case_abstract.py # Generated by Django 2.1.1 on 2018-09-18 08:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cases', '0009_auto_20180430_1225'), ] operations = [ migrations.AddField( model_name='case', name='abstract', field=models.TextField(blank=True, help_text='Case abstract (Leitsatz) formatted in Legal Markdown', null=True), ), ]
1.5
2
tests/connectors/mock/test_mockdata.py
gvasold/papilotte
3
12791358
"""Test creation of mock data. """ import datetime from papilotte.connectors.mock import mockdata def test_generate_person(): "Make sure generate_person() doesn not create more than 15 different persons." num_of_different_objects = 15 generator = mockdata.generate_person(num_of_different_objects) objects = {} for _ in range(num_of_different_objects * 10): obj = next(generator) buf = objects.get(obj["@id"], []) buf.append(obj) objects[obj["@id"]] = buf for pid in objects: assert len(objects[pid]) == 10 # make sure persons with same pid contain same data for pid, objlist in objects.items(): last_obj = None for obj in objlist: if last_obj is None: last_obj = obj else: assert last_obj == obj def test_generate_source(): "Make sure generate_source() does not create more than 15 different sources." num_of_different_objects = 25 generator = mockdata.generate_source(num_of_different_objects) objects = {} for _ in range(num_of_different_objects * 10): obj = next(generator) buf = objects.get(obj["@id"], []) buf.append(obj) objects[obj["@id"]] = buf for pid in objects: assert len(objects[pid]) == 10 # make sure sources with sam pid contain same data for pid, objlist in objects.items(): last_obj = None for obj in objlist: if last_obj is None: last_obj = obj else: assert last_obj == obj def test_generate_statement(): "Make sure generate_statement() works as expected." factoid = { "@id": "Factoid 1", "createdWhen": "2019-07-21", "createdBy": "User 1", "modifiedWhen": "2019-10-12", "modifiedBy": "User 2", } generator = mockdata.generate_statement(factoid, 1) for i in range(5): stmt = next(generator) assert stmt["@id"] == "F1S%d" % (i + 1) assert stmt["createdBy"] == factoid["createdBy"] assert stmt["createdWhen"] == factoid["createdWhen"] assert stmt["modifiedBy"] == factoid["modifiedBy"] assert stmt["modifiedWhen"] == factoid["modifiedWhen"] def test_generate_factoid(): """Test the factoid generator. """ generator = mockdata.generate_factoid() for i in range(100): factoid = next(generator) assert factoid["@id"] == "Factoid %03d" % (i + 1) assert "Person" in factoid["person"]["@id"] assert "Source" in factoid["source"]["@id"] assert "statement" in factoid assert factoid["statement"]["@id"] == "F%dS1" % (i + 1) def test_make_label_objects(): "Make sure simple object consisting of a label and an uri or created as expected." for counter in (1, 4): objects = mockdata.make_label_objects(3, "xxx", counter) for i, obj in enumerate(objects): assert obj["label"] == "Xxx %d_%d" % (counter, i + 1) assert obj["uri"] == "http://example.com/xxx/%d/%d" % (counter, i + 1) def test_make_date(): "Make date generates a dict consisting of a date-label and a date string." # make_date might return an empty dict assert mockdata.make_date(0) is None assert mockdata.make_date(1) == {"label": "1801", "sortdate": "1801"} assert mockdata.make_date(2) == {"label": "February 1802", "sortdate": "1802-02"} assert mockdata.make_date(3) == {"label": "3 March 1803", "sortdate": "1803-03-03"} assert mockdata.make_date(5) is None assert mockdata.make_date(6) == {"label": "1806", "sortdate": "1806"} assert mockdata.make_date(7) == {"label": "July 1807", "sortdate": "1807-07"} assert mockdata.make_date(8) == {"label": "8 August 1808", "sortdate": "1808-08-08"} assert mockdata.make_date(9) == {} def test_make_date_distribution(): "Check if dates are equally distributed in mockdata." counter = {} for i in range(1000): data = mockdata.make_date(i) if data is None: counter["None"] = counter.get("None", 0) + 1 elif data == {}: counter["empty"] = counter.get("empty", 0) + 1 elif data["sortdate"].count("-") == 0: counter["yyyy"] = counter.get("yyyy", 0) + 1 elif data["sortdate"].count("-") == 1: counter["yyyy-mm"] = counter.get("yyyy-mm", 0) + 1 elif data["sortdate"].count("-") == 2: counter["yyyy-mm-dd"] = counter.get("yyyy-mm-dd", 0) + 1 assert counter["None"] == counter["empty"] assert counter["None"] == counter["yyyy"] assert counter["None"] == counter["yyyy-mm"] assert counter["None"] == counter["yyyy-mm-dd"] def test_uris(): "Test the mockdata get_uri function." assert mockdata.get_uris(1) == [ "http://example.com/1", "http://example.com/2", "http://example.com/3", ] assert mockdata.get_uris(2) == [ "http://example.com/1", "http://example.com/2", "http://example.com/3", "http://example.com/4", "http://example.com/5", "http://example.com/6", "http://example.com/7", "http://example.com/8", ] assert mockdata.get_uris(3) == [ "http://example.com/1", "http://example.com/2", "http://example.com/3", "http://example.com/4", "http://example.com/5", "http://example.com/6", "http://example.com/7", "http://example.com/8", "http://example.com/9", "http://example.com/10", "http://example.com/11", "http://example.com/12", "http://example.com/13", "http://example.com/14", "http://example.com/15", ] def test_get_modifier_distribution(): """Check if distribution of modifier names is close to equal and if there are exactly 3 modifiers. """ counter = {} for i in range(999): modifier = mockdata.get_modifier(i) counter[modifier] = counter.get(modifier, 0) + 1 assert counter["Modifier 1"] == counter["Modifier 2"] assert counter["Modifier 1"] == counter["Modifier 3"] def test_get_modifer(): "Test creation order of get_modifier()." assert mockdata.get_modifier(1) == "Modifier 3" assert mockdata.get_modifier(2) == "Modifier 1" assert mockdata.get_modifier(3) == "Modifier 2" assert mockdata.get_modifier(4) == "Modifier 3" assert mockdata.get_modifier(5) == "Modifier 1" assert mockdata.get_modifier(6) == "Modifier 2" def test_get_creator_distribution(): """Check if distribution of creator names is close to equal and if there are exactly 3 creators. """ counter = {} for i in range(1000): modifier = mockdata.get_creator(i) counter[modifier] = counter.get(modifier, 0) + 1 assert counter["Creator 1"] == counter["Creator 2"] assert counter["Creator 1"] == counter["Creator 3"] assert counter["Creator 1"] == counter["Creator 4"] assert counter["Creator 1"] == counter["Creator 5"] def test_get_creator(): "Test creation order of get_creator()." for i in range(1, 6): assert mockdata.get_creator(i) == "Creator %d" % i def test_get_datetime(): "Test the mockdata get_date function." expected = [ "2000-01-01T00:00:00+02:00", "2000-01-02T10:17:36+02:00", "2000-01-03T20:35:12+02:00", "2000-01-05T06:52:48+02:00", "2000-01-06T17:10:24+02:00", "2000-01-08T03:28:00+02:00", "2000-01-09T13:45:36+02:00", "2000-01-11T00:03:12+02:00", "2000-01-12T10:20:48+02:00", "2000-01-13T20:38:24+02:00", ] base_date = datetime.datetime(2000, 1, 1) for i in range(10): assert mockdata.get_datetime(base_date, i) == expected[i] def test_get_datetime_with_offset(): "Test if getting a date with offset works." expected = [ "2000-01-01T00:00:00+02:00", "2000-01-03T08:30:56+02:00", "2000-01-07T13:28:32+02:00", "2000-01-13T14:52:48+02:00", "2000-01-21T12:43:44+02:00", "2000-01-08T03:28:00+02:00", "2000-01-15T03:05:36+02:00", "2000-01-23T23:09:52+02:00", "2000-02-03T15:40:48+02:00", "2000-02-16T04:38:24+02:00", "2000-01-15T06:56:00+02:00", "2000-01-26T21:40:16+02:00", "2000-02-09T08:51:12+02:00", "2000-02-24T16:28:48+02:00", "2000-03-12T20:33:04+02:00", "2000-01-22T10:24:00+02:00", "2000-02-07T16:14:56+02:00", "2000-02-25T18:32:32+02:00", "2000-03-16T17:16:48+02:00", "2000-04-07T12:27:44+02:00", ] base_date = datetime.datetime(2000, 1, 1) for i in range(20): assert mockdata.get_datetime(base_date, i, True) == expected[i] def test_mod_time_after_creation_time(): "Assert modification cannot be earlier than creation" base_date = datetime.datetime(2000, 1, 1) for i in range(1000): creation_time = mockdata.get_datetime(base_date, i) modification_time = mockdata.get_datetime(base_date, i, True) assert creation_time <= modification_time def test_idempotence(): "Generate a mock data set multiple times and make sure they are identical" def make_factoids(num): generated_factoids = [] generator = mockdata.generate_factoid() for _ in range(num): generated_factoids.append(next(generator)) return generated_factoids data_to_compare = make_factoids(250) for _ in range(10): assert data_to_compare == make_factoids(250) def test_make_factoids(): "make_factoids is a convenience function to create test data." assert len(mockdata.make_factoids(15)) == 15
2.90625
3
sdk/python/pulumi_spotinst/aws/ocean.py
346/pulumi-spotinst
1
12791359
<reponame>346/pulumi-spotinst<filename>sdk/python/pulumi_spotinst/aws/ocean.py<gh_stars>1-10 # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from .. import utilities, tables class Ocean(pulumi.CustomResource): autoscaler: pulumi.Output[dict] """ Describes the Ocean Kubernetes autoscaler. """ blacklists: pulumi.Output[list] """ Instance types not allowed in the Ocean cluster. Cannot be configured if `whitelist` is configured. """ controller_id: pulumi.Output[str] """ The ocean cluster identifier. Example: `ocean.k8s` """ desired_capacity: pulumi.Output[int] """ The number of instances to launch and maintain in the cluster. """ fallback_to_ondemand: pulumi.Output[bool] """ If not Spot instance markets are available, enable Ocean to launch On-Demand instances instead. """ iam_instance_profile: pulumi.Output[str] """ The instance profile iam role. """ image_id: pulumi.Output[str] """ ID of the image used to launch the instances. """ key_name: pulumi.Output[str] """ The key pair to attach the instances. """ max_size: pulumi.Output[int] """ The upper limit of instances the cluster can scale up to. """ min_size: pulumi.Output[int] """ The lower limit of instances the cluster can scale down to. """ name: pulumi.Output[str] """ The cluster name. """ region: pulumi.Output[str] """ The region the cluster will run in. """ security_groups: pulumi.Output[list] """ One or more security group ids. """ spot_percentage: pulumi.Output[float] """ The percentage of Spot instances the cluster should maintain. Min 0, max 100. """ subnet_ids: pulumi.Output[list] """ A comma-separated list of subnet identifiers for the Ocean cluster. Subnet IDs should be configured with auto assign public ip. """ tags: pulumi.Output[list] """ Optionally adds tags to instances launched in an Ocean cluster. """ user_data: pulumi.Output[str] """ Base64-encoded MIME user data to make available to the instances. """ utilize_reserved_instances: pulumi.Output[bool] """ If Reserved instances exist, OCean will utilize them before launching Spot instances. """ whitelists: pulumi.Output[list] """ Instance types allowed in the Ocean cluster. Cannot be configured if `blacklist` is configured. """ def __init__(__self__, resource_name, opts=None, autoscaler=None, blacklists=None, controller_id=None, desired_capacity=None, fallback_to_ondemand=None, iam_instance_profile=None, image_id=None, key_name=None, max_size=None, min_size=None, name=None, region=None, security_groups=None, spot_percentage=None, subnet_ids=None, tags=None, user_data=None, utilize_reserved_instances=None, whitelists=None, __name__=None, __opts__=None): """ Provides a Spotinst Ocean AWS resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[dict] autoscaler: Describes the Ocean Kubernetes autoscaler. :param pulumi.Input[list] blacklists: Instance types not allowed in the Ocean cluster. Cannot be configured if `whitelist` is configured. :param pulumi.Input[str] controller_id: The ocean cluster identifier. Example: `ocean.k8s` :param pulumi.Input[int] desired_capacity: The number of instances to launch and maintain in the cluster. :param pulumi.Input[bool] fallback_to_ondemand: If not Spot instance markets are available, enable Ocean to launch On-Demand instances instead. :param pulumi.Input[str] iam_instance_profile: The instance profile iam role. :param pulumi.Input[str] image_id: ID of the image used to launch the instances. :param pulumi.Input[str] key_name: The key pair to attach the instances. :param pulumi.Input[int] max_size: The upper limit of instances the cluster can scale up to. :param pulumi.Input[int] min_size: The lower limit of instances the cluster can scale down to. :param pulumi.Input[str] name: The cluster name. :param pulumi.Input[str] region: The region the cluster will run in. :param pulumi.Input[list] security_groups: One or more security group ids. :param pulumi.Input[float] spot_percentage: The percentage of Spot instances the cluster should maintain. Min 0, max 100. :param pulumi.Input[list] subnet_ids: A comma-separated list of subnet identifiers for the Ocean cluster. Subnet IDs should be configured with auto assign public ip. :param pulumi.Input[list] tags: Optionally adds tags to instances launched in an Ocean cluster. :param pulumi.Input[str] user_data: Base64-encoded MIME user data to make available to the instances. :param pulumi.Input[bool] utilize_reserved_instances: If Reserved instances exist, OCean will utilize them before launching Spot instances. :param pulumi.Input[list] whitelists: Instance types allowed in the Ocean cluster. Cannot be configured if `blacklist` is configured. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if not resource_name: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(resource_name, str): raise TypeError('Expected resource name to be a string') if opts and not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() __props__['autoscaler'] = autoscaler __props__['blacklists'] = blacklists __props__['controller_id'] = controller_id __props__['desired_capacity'] = desired_capacity __props__['fallback_to_ondemand'] = fallback_to_ondemand __props__['iam_instance_profile'] = iam_instance_profile __props__['image_id'] = image_id __props__['key_name'] = key_name __props__['max_size'] = max_size __props__['min_size'] = min_size __props__['name'] = name __props__['region'] = region if security_groups is None: raise TypeError('Missing required property security_groups') __props__['security_groups'] = security_groups __props__['spot_percentage'] = spot_percentage if subnet_ids is None: raise TypeError('Missing required property subnet_ids') __props__['subnet_ids'] = subnet_ids __props__['tags'] = tags __props__['user_data'] = user_data __props__['utilize_reserved_instances'] = utilize_reserved_instances __props__['whitelists'] = whitelists super(Ocean, __self__).__init__( 'spotinst:aws/ocean:Ocean', resource_name, __props__, opts) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
1.9375
2
init.py
yuryyu/SmartHome
0
12791360
<filename>init.py # configuration module import socket nb=1 # 0- HIT-"192.168.3.11", 1 - open HiveMQ - broker.hivemq.com brokers=[str(socket.gethostbyname('vmm1.saaintertrade.com')), str(socket.gethostbyname('broker.hivemq.com')),"18 .194.176.210"] ports=['80','1883','1883'] usernames = ['','',''] # should be modified for HIT passwords = ['','',''] # should be modified for HIT broker_ip=brokers[nb] port=ports[nb] username = usernames[nb] password = <PASSWORD>[nb] conn_time = 0 # 0 stands for endless # mzs=['matzi/',''] # sub_topics =[mzs[nb]+'#','#'] # pub_topics = [mzs[nb]+'test', 'test'] # ext_man = mzs[nb]+'system/command' # sub_topic = [mzs[nb]+'bearer/accel/status', mzs[nb]+'bearer/belt/status'] # pub_topic = mzs[nb]+'system/state' msg_system = ['normal', 'issue','No issue'] wait_time = 5 broker_ip=brokers[nb] broker_port=ports[nb] username = usernames[nb] password = <PASSWORD>[nb] # sub_topic = sub_topics[nb] # pub_topic = pub_topics[nb] # Common conn_time = 0 # 0 stands for endless loop comm_topic = 'pr/Smart/' #comm_topic = 'pr/Smart/Home/' # FFT module init data isplot = False issave = False # DSP init data percen_thr=0.05 # 5% of max energy holds Fs = 2048.0 deviation_percentage = 10 max_eucl = 0.5 # Acq init data acqtime = 60.0 # sec manag_time = 10 # sec # DB init data db_name = 'data\\homedata_05_2.db' # SQLite db_init = False #False # True if we need reinit smart home setup # Meters consuption limits" Water_max=0.02 Elec_max=1.8
2.03125
2
GetBulletChat.py
Hopejoyce/python_game
1
12791361
from bs4 import BeautifulSoup import time import pandas as pd import requests import datetime headers={ "User-Agent":"", "Connection": "keep-alive", # 这个cookie的获取方法在文档中已说明 "Cookie":"" } sets=124 # 最新一期的数字 dates=[] # 日期数组,用于填充url # 遍历日期 包括begin和end的日期 生成类似2020-05-03的格式的日期 begin = datetime.date(2020,5,3) end = datetime.date(2020,6,9) d = begin delta = datetime.timedelta(days=1) while d <= end: dates.append(str(d.strftime("%Y-%m-%d"))) d += delta Cids=[] # Cid数组,用于填充url with open('Urls/Cid.txt', 'r') as f: for line in f.readlines(): Cids.append(line.strip()) for cid in Cids: # 每次都要重置这些数据 dm_data = [] # 弹幕数据 dm_text = [] # 弹幕本体 # 弹幕的八个参数和弹幕本体 DM_time = [] DM_mode = [] DM_font = [] DM_color = [] DM_realTime = [] DM_pool = [] DM_userID = [] DM_id = [] DM_text = [] print("正在爬取第" + str(sets) + "期的《睡前消息》弹幕...") for date in dates: url="https://api.bilibili.com/x/v2/dm/history?type=1&oid="+cid+"&date="+date html=requests.get(url=url,headers=headers) #返回文本信息 html.encoding='utf8' soup=BeautifulSoup(html.text,'lxml') #建立soup对象 all=soup.find_all("d") for d in all: # 弹幕数据 dm_data.append(str(d.get("p")).split(",")) # 弹幕本体 dm_text.append(d.get_text()) # 分别把数据存进这几个数组 for i in dm_data: DM_time.append(i[0]) DM_mode.append(i[1]) DM_font.append(i[2]) DM_color.append(i[3]) DM_realTime.append(i[4]) DM_pool.append(i[5]) DM_userID.append(i[6]) DM_id.append(i[7]) for i in dm_text: DM_text.append(i) dt={"DM_time":DM_time,"DM_mode":DM_mode,"DM_font":DM_font,"DM_color":DM_color, "DM_realTime":DM_realTime,"DM_pool":DM_pool,"DM_userID":DM_userID,"DM_id":DM_id,"DM_text":DM_text} d=pd.DataFrame(dt) d.to_csv('./Danmu/Danmu-'+str(sets)+'.csv',encoding='utf-8-sig') #存储弹幕信息 print("已将弹幕放入到Danmu-"+str(sets)+".csv文件中") sets-=1 # 每抓完一个网页休眠7秒 print("缓冲中...") time.sleep(7) print("已将《睡前消息》第110-124期的弹幕爬取完毕")
2.90625
3
run_ogs5py_scripts.py
GeoStat-Framework/ogs5py_benchmarks
3
12791362
# -*- coding: utf-8 -*- """ run all ogs5py benchmarks """ import sys import os import fnmatch import time from pexpect.popen_spawn import PopenSpawn import pexpect from ogs5py.tools.tools import Output # pexpect.spawn just runs on unix-like systems if sys.platform == "win32": CmdRun = PopenSpawn else: CmdRun = pexpect.spawn def call_script(script, output, timeout=3): cwd, script_file = os.path.split(script) args = [sys.executable, "-u", script_file] try: child = CmdRun( " ".join(args), timeout=timeout, logfile=output, cwd=cwd ) # wait for ogs to finish child.expect(pexpect.EOF) except pexpect.TIMEOUT: output.write("...timeout\n".encode()) def find(pattern, path): result = [] for root, dirs, files in os.walk(path): for name in files: if fnmatch.fnmatch(name, pattern): result.append(os.path.join(root, name)) return result if __name__ == "__main__": timeout = 3 # None for no timeout out_dir = os.path.join(os.getcwd(), "benchmarks") # out_dir = os.path.join(os.getcwd(), "benchmarks_FEM_active") scripts = find("*.py", out_dir) log_name = os.path.join( out_dir, "run_log_" + time.strftime("%Y-%m-%d_%H-%M-%S") + ".txt" ) output = Output(log_name, print_log=True) for script in scripts: print(script) call_script(script, output, timeout=timeout) output.close()
2.1875
2
src/libspec/arm/scripts/ast/nodes.py
agustingianni/retools
80
12791363
<filename>src/libspec/arm/scripts/ast/nodes.py<gh_stars>10-100 class BaseNode(object): def accept(self, visitor): return visitor.accept(self) class BooleanValue(BaseNode): def __init__(self, value): self.value = value def __str__(self): return str("true" if self.value else "false") class Identifier(BaseNode): def __init__(self, name): self.name = name def __str__(self): return str(self.name) class NumberValue(BaseNode): def __init__(self, value, bit_size=32): self.value = value self.bit_size = bit_size def __len__(self): """ Return the bitsize of the number. Important for things like the concatenation operator. """ return self.bit_size def __str__(self): return str(self.value) class List(BaseNode): def __init__(self, values): self.values = values def __len__(self): return len(self.values) def __str__(self): return "(%s)" % ", ".join(map(str, self.values)) class Enumeration(BaseNode): def __init__(self, values): self.values = values def __len__(self): return len(self.values) def __str__(self): return "{%s}" % ", ".join(map(str, self.values)) class UnaryExpression(BaseNode): def __init__(self, type_, expr): self.type = type_ self.expr = expr def __str__(self): return "%s%s" % (str(self.type), str(self.expr)) class BinaryExpression(BaseNode): def __init__(self, type_, left_expr, right_expr): self.type = type_ self.left_expr = left_expr self.right_expr = right_expr def __str__(self): return "%s %s %s" % (str(self.type), str(self.left_expr), str(self.right_expr)) class ProcedureCall(BaseNode): def __init__(self, name_, arguments): self.name = name_ self.arguments = arguments def __str__(self): return "%s(%s)" % (str(self.name), ", ".join(map(str, self.arguments))) class RepeatUntil(BaseNode): def __init__(self, statements, condition): self.statements = statements self.condition = condition def __str__(self): return "RepeatUntil: %s %s" % (str(self.statements), str(self.condition)) class While(BaseNode): def __init__(self, condition, statements): self.condition = condition self.statements = statements def __str__(self): return "While: %s %s" % (str(self.condition), str(self.statements)) class For(BaseNode): def __init__(self, from_, to, statements): self.from_ = from_ self.to = to self.statements = statements def __str__(self): return "For: %s %s %s" % (str(self.from_), str(self.to), str(self.statements)) class If(BaseNode): def __init__(self, condition, if_statements, else_statements): self.condition = condition self.if_statements = if_statements self.else_statements = else_statements def __str__(self): return "If: %s %s %s" % (str(self.condition), map(str, self.if_statements), map(str, self.else_statements)) class BitExtraction(BaseNode): def __init__(self, identifier_, range_): self.identifier = identifier_ self.range = range_ def __str__(self): return "BitExtraction: %s %s" % (str(self.identifier), str(self.range)) class ArrayAccess(BaseNode): def __init__(self, name, expr1, expr2, expr3): self.name = name self.expr1 = expr1 self.expr2 = expr2 self.expr3 = expr3 def __str__(self): args = [str(self.expr1)] if self.expr2: args.append(str(self.expr2)) if self.expr3: args.append(str(self.expr3)) return "ArrayAccess: %s[%s]" % (str(self.name), " ".join(args)) class MaskedBinary(BaseNode): def __init__(self, value): self.value = value def __str__(self): return "MaskedBinary: %s" % (str(self.value)) class Ignore(BaseNode): def __str__(self): return "Ignore" class IfExpression(BaseNode): def __init__(self, condition, trueValue, falseValue): self.condition = condition self.trueValue = trueValue self.falseValue = falseValue def __str__(self): return "IfExpression: %s %s %s" % (str(self.condition), str(self.trueValue), str(self.falseValue)) class CaseElement(BaseNode): def __init__(self, value, statements): self.value = value self.statements = statements def __str__(self): return "CaseElement: %s %s" % (str(self.value), str(self.statements)) class Case(BaseNode): def __init__(self, expr, cases): self.expr = expr self.cases = cases def __str__(self): return "Case: %s %s" % (str(self.expr), str(self.cases)) class Undefined(BaseNode): def __init__(self): self.reason = "" def __str__(self): return "Undefined" class Unpredictable(BaseNode): def __init__(self): self.reason = "" def __str__(self): return "Unpredictable" class See(BaseNode): def __init__(self, msg): self.msg = msg.strip('"') def __str__(self): return "See: %s" % (str(self.msg)) class ImplementationDefined(BaseNode): def __str__(self): return "ImplementationDefined" class SubArchitectureDefined(BaseNode): def __str__(self): return "SubArchitectureDefined" class Return(BaseNode): def __init__(self, value): self.value = value def __str__(self): return "Return: %s" % (str(self.value))
2.859375
3
image_styles/views.py
fotorius/django-image-styles
0
12791364
from django.shortcuts import render, HttpResponse, get_object_or_404 from django.http import Http404 from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required from django.contrib.admin.views.decorators import staff_member_required from django.urls import reverse,reverse_lazy from django.utils.translation import ugettext_lazy as _ from django.views import View from django.views.generic import TemplateView from django.views.generic.edit import FormView import mimetypes from .models import Style from .forms import EffectForm,StyleForm from .utils import get_effect_form_class,render_image class RenderImageView(View): def get(self,request,style_name,path): image = render_image(style_name,path) content_type = mimetypes.guess_type(image.image.path) f = open(image.image.path,'rb') r = HttpResponse(f,content_type=content_type[0]) f.close() return r class ModalForm(FormView): template_name = 'image_styles/modal_form.html' submit_button = _('Save') delete_button = '' title = _('Create') action = '.' def get_action(self): return self.action def get_submit_button(self): return self.submit_button def get_delete_button(self): return self.delete_button def get_title(self): return self.title def get_context_data(self,**kwargs): context = super().get_context_data(**kwargs) context['action'] = self.get_action() context['submit_button'] = self.get_submit_button() context['delete_button'] = self.get_delete_button() context['title'] = self.get_title() return context class EffectFormMixin: effect = None style = None title = _('Create Effect') submit_button = _('Create') def dispatch(self,request,*args,**kwargs): self.effect_name = self.kwargs.get('effect_name') style_id = self.kwargs.get('style_id') if style_id: self.style = get_object_or_404(Style,id=style_id) effect_id = self.kwargs.get('effect_id') if effect_id and self.effect_name: from image_styles import models self.effect = get_object_or_404(getattr(models,self.effect_name),id=effect_id) return super().dispatch(request,*args,**kwargs) def get_form_class(self): form_class = get_effect_form_class(self.effect_name) if form_class: return form_class raise Http404("Not Found") def get_form_kwargs(self,*args,**kwargs): data = super().get_form_kwargs(*args,**kwargs) if self.effect: data['instance'] = self.effect return data def get_submit_button(self): if self.effect: return _('Update') return super().get_submit_button() def get_title(self): if self.effect: return _('Update Effect') return super().get_title() def get_action(self): if self.style: return reverse( 'image_styles:effect_create', kwargs={'style_id':self.style.id,'effect_name':self.effect_name} ) return reverse( 'image_styles:effect_update', kwargs={'effect':self.effect.id,'effect_name':self.effect_name} ) def form_valid(self,form): form.save() return HttpResponse(_('Effect Created!')) def delete(self,*args,**kwargs): if self.effect: self.effect.delete() return HttpResponse(_('Effect Removed!')) return HttpResponse(_('Delete failed!')) class StyleFormMixin: style = None form_class = StyleForm def dispatch(self,request,*args,**kwargs): style_id = self.kwargs.get('style_id') if style_id: self.style = get_object_or_404(Style,id=style_id) self.delete_button = _('Delete') return super().dispatch(request,*args,**kwargs) def get_form_kwargs(self,*args,**kwargs): data = super().get_form_kwargs(*args,**kwargs) if self.style: data['instance'] = self.style return data def get_action(self): if self.style: return reverse( 'image_styles:style_update', kwargs={'style_id':self.style.id} ) return reverse('image_styles:style_create') def get_submit_button(self): if self.style: return _('Update') return super().get_submit_button() def get_title(self): if self.style: return _('Update Style') return super().get_title() def form_valid(self,form): form.save() return HttpResponse(_('Style Created!')) def delete(self,*args,**kwargs): if self.style: self.style.delete() return HttpResponse(_('Style Removed!')) return HttpResponse(_('Delete failed!')) @method_decorator(staff_member_required(),name='dispatch') class ManageImageStylesView(TemplateView): template_name = 'image_styles/home.html' def get_image_styles(self): ims = [] for s in Style.objects.all(): effects = s.get_effects() for i in range(len(effects)): form = get_effect_form_class(effect_model=effects[i]['object']) if form: effects[i]['form'] = form(instance=effects[i]['object']) effects[i]['action'] = reverse( 'image_styles:effect_update', kwargs = { 'effect_id':effects[i]['object'].id, 'effect_name':effects[i]['object'].get_name() } ) ims.append({ 'style':s, 'effects':effects, }) return ims def get_context_data(self,**kwargs): context = super().get_context_data(**kwargs) context['styles'] = self.get_image_styles() return context @method_decorator(staff_member_required(),name='dispatch') class EffectCreateInitView(ModalForm): form_class = EffectForm submit_button = _('Next') title = _('Select Effect') def dispatch(self,request,*args,**kwargs): self.style = get_object_or_404(Style,id=self.kwargs.get('style_id')) return super().dispatch(request,*args,**kwargs) def get_form(self,**kwargs): form = super().get_form(**kwargs) form.initial['style'] = self.style return form def get_submit_button(self): if self.form_class != EffectForm: return _('Create') return super().get_submit_button() def get_title(self): if self.form_class != EffectForm: return _('Create Effect') return super().get_title() def get_action(self): if self.action == '.': return reverse('image_styles:effect_create_init',kwargs={'style_id':self.style.id}) return self.action def form_valid(self,form): effect_name = form.cleaned_data.get('effect') self.form_class = get_effect_form_class(effect_name=effect_name) self.action = reverse( 'image_styles:effect_create', kwargs={'style_id':self.style.id,'effect_name':effect_name} ) self.request.method = 'GET' return super().get(self.request,style_id=self.style.id) @method_decorator(staff_member_required(),name='dispatch') class EffectCreateView(EffectFormMixin,ModalForm): title = _('Create Effect') submit_button = _('Create') def get_form(self,**kwargs): form = super().get_form(**kwargs) form.initial['style'] = self.style return form @method_decorator(staff_member_required(),name='dispatch') class EffectUpdateView(EffectFormMixin,ModalForm): pass @method_decorator(staff_member_required(),name='dispatch') class StyleView(StyleFormMixin,ModalForm): pass
1.9375
2
python/pynamics_examples/parallel_five_bar_jumper_foot.py
zmpatel19/Foldable-Robotics
2
12791365
<filename>python/pynamics_examples/parallel_five_bar_jumper_foot.py # -*- coding: utf-8 -*- """ Written by <NAME> Email: danaukes<at>gmail.com Please see LICENSE for full license. """ import pynamics from pynamics.frame import Frame from pynamics.variable_types import Differentiable,Constant from pynamics.system import System from pynamics.body import Body from pynamics.dyadic import Dyadic from pynamics.output import Output,PointsOutput from pynamics.particle import Particle import pynamics.integration from pynamics.constraint import KinematicConstraint,AccelerationConstraint import sympy import numpy import matplotlib.pyplot as plt plt.ion() from math import pi system = System() pynamics.set_system(__name__,system) tol=1e-5 lO = Constant(.5,'lO',system) lA = Constant(.75,'lA',system) lB = Constant(1,'lB',system) lC = Constant(.75,'lC',system) lD = Constant(1,'lD',system) lE = Constant(1,'lE',system) mO = Constant(2,'mO',system) mA = Constant(.1,'mA',system) mB = Constant(.1,'mB',system) mC = Constant(.1,'mC',system) mD = Constant(.1,'mD',system) mE = Constant(.1,'mE',system) I_main = Constant(1,'I_main',system) I_leg = Constant(.1,'I_leg',system) g = Constant(9.81,'g',system) b = Constant(1e0,'b',system) k = Constant(1e2,'k',system) k_ankle = Constant(1e3,'k_ankle',system) b_ankle = Constant(1e1,'b_ankle',system) stall_torque = Constant(2e2,'stall_torque',system) k_constraint = Constant(1e4,'k_constraint',system) b_constraint = Constant(1e2,'b_constraint',system) tinitial = 0 tfinal = 10 tstep = 1/30 t = numpy.r_[tinitial:tfinal:tstep] preload1 = Constant(0*pi/180,'preload1',system) preload2 = Constant(0*pi/180,'preload2',system) preload3 = Constant(-180*pi/180,'preload3',system) preload4 = Constant(0*pi/180,'preload4',system) preload5 = Constant(180*pi/180,'preload5',system) preload6 = Constant(0*pi/180,'preload6',system) x,x_d,x_dd = Differentiable('x',system) y,y_d,y_dd = Differentiable('y',system) qO,qO_d,qO_dd = Differentiable('qO',system) qA,qA_d,qA_dd = Differentiable('qA',system) qB,qB_d,qB_dd = Differentiable('qB',system) qC,qC_d,qC_dd = Differentiable('qC',system) qD,qD_d,qD_dd = Differentiable('qD',system) qE,qE_d,qE_dd = Differentiable('qE',system) initialvalues={ x: 0, x_d: .5, y: 2, y_d: 0, qO: 5*pi/180, qO_d: 0, qA: -0.89, qA_d: 0, qB: -2.64, qB_d: 0, qC: -pi+0.89, qC_d: 0, qD: -pi+2.64, qD_d: 0, qE: 0, qE_d: 0, } statevariables = system.get_state_variables() ini0 = [initialvalues[item] for item in statevariables] N = Frame('N',system) O = Frame('O',system) A = Frame('A',system) B = Frame('B',system) C = Frame('C',system) D = Frame('D',system) E = Frame('E',system) system.set_newtonian(N) O.rotate_fixed_axis(N,[0,0,1],qO,system) A.rotate_fixed_axis(N,[0,0,1],qA,system) B.rotate_fixed_axis(N,[0,0,1],qB,system) C.rotate_fixed_axis(N,[0,0,1],qC,system) D.rotate_fixed_axis(N,[0,0,1],qD,system) E.rotate_fixed_axis(N,[0,0,1],qE,system) pOrigin = 0*N.x+0*N.y pOcm=x*N.x+y*N.y pOA = pOcm+lO/2*O.x pOC = pOcm-lO/2*O.x pAB = pOA+lA*A.x pBtip = pAB + lB*B.x #vBtip = pBtip.time_derivative(N,system) pCD = pOC + lC*C.x pDtip = pCD + lD*D.x points = [pDtip,pCD,pOC,pOA,pAB,pBtip] eqs = [] eqs.append((pBtip-pDtip).dot(N.x)) eqs.append((pBtip-pDtip).dot(N.y)) constraint_system=KinematicConstraint(eqs) variables = [qO, qA, qB, qC, qD] guess = [initialvalues[item] for item in variables] result = constraint_system.solve_numeric(variables,guess,system.constant_values) ini = [] for item in system.get_state_variables(): if item in variables: ini.append(result[item]) else: ini.append(initialvalues[item]) points = PointsOutput(points, constant_values=system.constant_values) points.calc(numpy.array([ini0,ini]),[0,1]) points.plot_time() pAcm=pOA+lA/2*A.x pBcm=pAB+lB/2*B.x pCcm=pOC+lC/2*C.x pDcm=pCD+lD/2*D.x pEcm=pBtip -.1*E.y pE1 = pEcm+lE/2*E.x vE1 = pE1.time_derivative(N,system) pE2 = pEcm-lE/2*E.x vE2 = pE2.time_derivative(N,system) wOA = O.get_w_to(A) wAB = A.get_w_to(B) wOC = O.get_w_to(C) wCD = C.get_w_to(D) wBD = B.get_w_to(D) wOE = O.get_w_to(E) BodyO = Body('BodyO',O,pOcm,mO,Dyadic.build(O,I_main,I_main,I_main),system) #BodyA = Body('BodyA',A,pAcm,mA,Dyadic.build(A,I_leg,I_leg,I_leg),system) #BodyB = Body('BodyB',B,pBcm,mB,Dyadic.build(B,I_leg,I_leg,I_leg),system) #BodyC = Body('BodyC',C,pCcm,mC,Dyadic.build(C,I_leg,I_leg,I_leg),system) #BodyD = Body('BodyD',D,pDcm,mD,Dyadic.build(D,I_leg,I_leg,I_leg),system) BodyE = Body('BodyE',E,pEcm,mE,Dyadic.build(D,I_leg,I_leg,I_leg),system) ParticleA = Particle(pAcm,mA,'ParticleA') ParticleB = Particle(pBcm,mB,'ParticleB') ParticleC = Particle(pCcm,mC,'ParticleC') ParticleD = Particle(pDcm,mD,'ParticleD') #ParticleE = Particle(pEcm,mE,'ParticleE') system.addforce(-b*wOA,wOA) system.addforce(-b*wAB,wAB) system.addforce(-b*wOC,wOC) system.addforce(-b*wCD,wCD) system.addforce(-b_ankle*wOE,wOE) # stretch1 = -pE1.dot(N.y) stretch1_s = (stretch1+abs(stretch1)) on = stretch1_s/(2*stretch1+1e-10) system.add_spring_force1(k_constraint,-stretch1_s*N.y,vE1) system.addforce(-b_constraint*vE1*on,vE1) toeforce = k_constraint*-stretch1_s stretch2 = -pE2.dot(N.y) stretch2_s = (stretch2+abs(stretch2)) on = stretch2_s/(2*stretch2+1e-10) system.add_spring_force1(k_constraint,-stretch2_s*N.y,vE2) system.addforce(-b_constraint*vE2*on,vE2) heelforce = k_constraint*-stretch2_s system.add_spring_force1(k,(qA-qO-preload1)*N.z,wOA) system.add_spring_force1(k,(qB-qA-preload2)*N.z,wAB) system.add_spring_force1(k,(qC-qO-preload3)*N.z,wOC) system.add_spring_force1(k,(qD-qC-preload4)*N.z,wCD) system.add_spring_force1(k,(qD-qB-preload5)*N.z,wBD) system.add_spring_force1(k_ankle,(qE-qO-preload6)*N.z,wOE) system.addforcegravity(-g*N.y) import pynamics.time_series x = [0,5,5,7,7,9,9,10] y = [0,0,1,1,-1,-1,0,0] my_signal, ft2 = pynamics.time_series.build_smoothed_time_signal(x,y,t,'my_signal',window_time_width = .1) torque = my_signal*stall_torque system.addforce(torque*O.z,wOA) system.addforce(-torque*O.z,wOC) # eq = [] eq.append(pBtip-pDtip) eq_d= [item.time_derivative() for item in eq] eq_dd= [item.time_derivative() for item in eq_d] eq_dd_scalar = [] eq_dd_scalar.append(eq_dd[0].dot(N.x)) eq_dd_scalar.append(eq_dd[0].dot(N.y)) c = AccelerationConstraint(eq_dd_scalar) # c.linearize(0) system.add_constraint(c) # f,ma = system.getdynamics() func1 = system.state_space_post_invert(f,ma,constants = system.constant_values,variable_functions = {my_signal:ft2}) states=pynamics.integration.integrate_odeint(func1,ini,t,rtol=tol,atol=tol) KE = system.get_KE() PE = system.getPEGravity(0*N.x) - system.getPESprings() energy = Output([KE-PE,toeforce,heelforce]) energy.calc(states,t) energy.plot_time() #torque_plot = Output([torque]) #torque_plot.calc(states,t) #torque_plot.plot_time() points = [pDtip,pCD,pOC,pOA,pAB,pBtip,pE1,pE2,pBtip] points = PointsOutput(points) y = points.calc(states,t) y = y.reshape((-1,9,2)) plt.figure() for item in y[::30]: plt.plot(*(item.T)) #points.animate(fps = 30, movie_name='parallel_five_bar_jumper_foot.mp4',lw=2)
2.671875
3
Comparison_fun_2.py
MarianaCandamil/Kocolatl
0
12791366
<filename>Comparison_fun_2.py #====Librerias usadas========================================================== # Manejo de datos #import pandas as pd #multiples data frames #from pathlib import Path #libreria para manejar opciones del sistema import os #==Funciones auxiliares======================================================== def match_name(file,loc_result,energy=False): if os.path.exists(loc_result)==False: os.mkdir(loc_result) if type(file)==str: loc_origen=loc_result+file.split('/')[1] else: loc_origen=loc_result+file[0].split('/')[1] if os.path.exists(loc_origen)==False: os.mkdir(loc_origen) if energy==2: type_energy=['H','M','L'] n_folder=[] for j in range(3): Loc_final=loc_origen+'/'+type_energy[j] if os.path.exists(Loc_final)==False: os.mkdir(Loc_final) if type(file)==str: Folder=Loc_final+'/match_'+file.split('/')[2].replace('.csv','') names=file.split('/')[2].replace('.csv','') n_folder.append(Folder) else: Folder,names=list_file(file,Loc_final+'/') n_folder=n_folder+Folder else: if type(file)==str: n_folder=loc_origen+'/match_'+file.split('/')[2].replace('.csv','') names=file.split('/')[2].replace('.csv','') else: n_folder,names=list_file(file,loc_origen+'/') return n_folder def list_file(file,loc_result): n_folder=[];names=[] for i in range(len(file)): list_file=file[i].split('/')[2] list_file=list_file.replace('.csv','') names.append(list_file) list_file=('match_'+list_file) n_folder.append(loc_result+list_file) return n_folder,names def select_match(file_exp,file_theo): list_match=[] for i in range(len(file_exp)): name=file_exp[i].split('/')[1] origen=name.split('_')[1] origen=origen.replace('.csv','') for k in range(len(file_theo)): if origen in file_theo[k]: list_match.append([file_theo[k],file_exp[i],name.replace('.csv',''),origen]) break return list_match def file(file_exp,file_theo): list_match=[] for i in range(len(file_exp)): name=file_exp[i].split('/')[1] origen=name.split('_')[1] origen=origen.replace('.csv','') for k in range(len(file_theo)): if origen in file_theo[k]: list_match.append([file_theo[k],file_exp[i],name.replace('.csv',''),origen]) break return list_match
2.953125
3
examples/copernicus_downloader.py
freol35241/voyapt
3
12791367
from pathlib import Path import cdsapi YEARS = [2019] MONTHS = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] ROOT = Path("wind_data") ROOT.mkdir(exist_ok=True) c = cdsapi.Client(key="YOUR_API_KEY") for year in YEARS: for month in MONTHS: month = str(month).zfill(2) c.retrieve( "reanalysis-era5-single-levels", { "product_type": "reanalysis", "format": "netcdf", "variable": [ "10m_u_component_of_wind", "10m_v_component_of_wind", ], "year": str(year), "month": month, "day": [ "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", ], "time": [ "00:00", "06:00", "12:00", "18:00", ], }, str(ROOT / f"CDS_wind_{year}_{month}.nc"), )
2.34375
2
resources/user.py
jacoboviii/flask-rest-api
0
12791368
<reponame>jacoboviii/flask-rest-api from typing import Dict, Tuple from flask_restful import Resource, reqparse from models.user import UserModel class UserRegister(Resource): parser = reqparse.RequestParser() parser.add_argument( "username", type=str, required=True, help="This field cannot be left blank!" ) parser.add_argument( "password", type=str, required=True, help="This field cannot be left blank!" ) def post(self) -> Tuple[Dict[str, str], int]: data = UserRegister.parser.parse_args() if UserModel.find_by_username(data["username"]): return {"message": "A user with that username already exists."}, 400 user = UserModel(**data) try: user.save_to_db() except Exception as e: return {"message", "An error ocurred creating the user."}, 500 return {"message": "User created successfully"}, 201
2.96875
3
Test/FunctionalTests/LegacyTests/FsmEditorLegacyTestScripts/TestGetBounds.py
migueldeicaza/ATF
1
12791369
<reponame>migueldeicaza/ATF #Copyright (c) 2014 Sony Computer Entertainment America LLC. See License.txt. import System.Xml import Scea.Dom import Test #create new document print editor fsmDocument = atfFile.OpenNewDocument(editor) fsmDocument.CircuitControl.Style.SnapToGrid = False #create 2 states namespace = r'http://www.scea.com/FSM/1_0' stateTypeName= System.Xml.XmlQualifiedName( 'stateType', namespace) stateType = DomSchemaRegistry.GetComplexType(stateTypeName) state1 = DomObject(stateType) state2 = DomObject(stateType) list = List[DomObject]() list.AddRange([state1, state2]) editor.Insert(list) Test.Equal(2, fsmDocument.Circuit.Elements.Count, "verify 2 elements inserted") #place two elements apart from each other, note Element.Position only acccepts integers fsmDocument.Circuit.Elements[0].Position = Point(96, 128) fsmDocument.Circuit.Elements[1].Position = Point(192, 228) bounds = fsmDocument.CircuitControl.GetBoundsF(fsmDocument.Circuit.Elements) bound1 = fsmDocument.CircuitControl.GetBoundsF(fsmDocument.Circuit.Elements[0]) bound2 = fsmDocument.CircuitControl.GetBoundsF(fsmDocument.Circuit.Elements[1]) # varify bounds Test.True(bounds.Contains(bound1), "varify bounds enclose individual elements") Test.True(bounds.Contains(bound2), "varify bounds enclose individual elements") print Test.SUCCESS
2.390625
2
gramex/apps/guide/websockethandler/websocketchat.py
joshuamosesb/gramex
2
12791370
import time from random import choice from tornado.ioloop import PeriodicCallback from nltk.chat.util import Chat, reflections from nltk.chat.eliza import pairs chat_info = {} idle_phrases = [ "Are you still there?", "Would you like to say something?", "If you're busy, we can talk later.", "What are you thinking?", "Got distracted, did you?", "Let's change the topic. What makes you happy?", "Let's talk about something else. When did you last travel?", "Let's meditate for a few minutes.", "I'll take a short break. Ping me when you're back.", ] def open(handler): # Send an introductory message handler.write_message('Hello. How are you feeling today?') # Set up chat configuration in the session chat = chat_info[handler.session['id']] = { # This is the Eliza bot that will converse with the user 'bot': Chat(pairs, reflections), # The time at which the user last sent a message. Used for idle messages 'time': time.time(), # Schedule a periodic check 'callback': PeriodicCallback(idler(handler), callback_time=5000), # Send the next idle message after this many seconds. # This is doubled after every idle message, and reset when the user responds 'delay': 10, } chat['callback'].start() def on_message(handler, message): # When we receive a message, respond with the chatbot response chat = chat_info[handler.session['id']] handler.write_message(chat['bot'].respond(message)) # Note the time of the last message. Reset the idle delay time chat.update(time=time.time(), delay=10) def on_close(handler): # Stop periodic callback on session = handler.session['id'] chat_info[session]['callback'].stop() chat_info.pop(session) def idler(handler): # Return a method that can be called periodically to send idle messages. # The handler parameter we get here is stored to send future messages. def method(): ''' If delay seconds have elapsed since last message, send an idle message. Then double the delay so that we don't keep sending idle messages. ''' now = time.time() chat = chat_info[handler.session['id']] if chat['time'] < now - chat['delay']: handler.write_message(choice(idle_phrases)) chat['time'] = now chat['delay'] = chat['delay'] * 2 return method
3.0625
3
mantisshrimp/hub/detr/detr_pretrained_checkpoint_base.py
ramaneswaran/mantisshrimp
0
12791371
<reponame>ramaneswaran/mantisshrimp __all__ = ["detr_pretrained_checkpoint_base"] from mantisshrimp.imports import * def detr_pretrained_checkpoint_base(): # load checkpoint and delete head url = "https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth" checkpoint = torch.hub.load_state_dict_from_url( url, progress=False, map_location="cpu" ) del checkpoint["model"]["class_embed.weight"] del checkpoint["model"]["class_embed.bias"] save_path = os.path.join(torch.hub._get_torch_home(), "detr-r50_no-class-head.pth") torch.save(checkpoint, save_path) return save_path
1.734375
2
devices/fan.py
tmkasun/jetson-gpio-device-controller
0
12791372
#!/usr/bin/env python3 import logging import os import signal import sys from .device import Device class Fan(Device): @staticmethod def logTemperature(): process = os.popen( "cat /sys/devices/virtual/thermal/thermal_zone*/temp") stdout = process.read() zones = [ "AO-therm", "CPU-therm", "GPU-therm", "PLL-therm", "PMIC-Die (Not real)", "thermal-fan-est" ] temperatures = stdout.split("\n") for temperature_index in range(len(temperatures)): c_temp = temperatures[temperature_index] if c_temp is not '': logging.info( "{} ----> {} C".format(zones[temperature_index], int(c_temp)/1000)) logging.basicConfig( level=logging.DEBUG, format='%(levelname)s: %(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', handlers=[ logging.FileHandler("test.log"), logging.StreamHandler() ]) PID_FILE = "pro.pid" def refreshPID(killOnly=False): current_pid = os.getpid() with open(PID_FILE, 'w+') as pid: previous_pid = pid.readline() if not len(previous_pid) is 0: os.kill(int(previous_pid), signal.SIGTERM) if not killOnly: logging.info( "Starting A/C controller in PID {}".format(current_pid)) pid.write(str(current_pid)) def cleanup(device): device.shutdown() logging.shutdown() os.remove(PID_FILE) def main(argv): fan = Fan("Normal Fan", 11) if len(argv) is 1 and argv[0] == "stop": refreshPID(True) cleanup(fan) logging.warning( "Killed existing stale process and stopping the device !!") return onTime = 2 offTime = 2 if len(argv) is 2: onTime = float(argv[0]) offTime = float(argv[1]) refreshPID() try: while True: Fan.logTemperature() fan.turnOn(onTime) Fan.logTemperature() fan.turnOff(offTime) except KeyboardInterrupt as identifier: logging.error("Keyboard interrupt occurred, Gracefully closing . . .") finally: cleanup(fan) if __name__ == "__main__": main(sys.argv[1:])
2.59375
3
Flash.py
Gu-Youngfeng/Config-Optimization
2
12791373
#!\usr\bin\python # coding=utf-8 # Author: youngfeng # Update: 07/16/2018 """ Flash, proposed by Nair et al. (arXiv '18), which aims to find the (near) optimal configuration in unevaluated set. STEP 1: select 80%% of original data as dataset STEP 2: split the dataset into training set (30 configs) and unevaluated set (remaining configs) STEP 3: predict the optimal configuration in unevaluated set, then remove it from unevaluated set to training set. STEP 4: repeat the STEP 4 until the budget (50 configs) is loss out. The details of Progressive are introduced in paper "Finding Faster Configurations using FLASH". """ import pandas as pd import random as rd import numpy as np from sklearn.tree import DecisionTreeRegressor class config_node: """ for each configuration, we create a config_node object to save its informations index : actual rank features : feature list perfs : actual performance """ def __init__(self, index, features, perfs, predicted): self.index = index self.features = features self.perfs = perfs self.predicted = predicted def remove_by_index(config_pool, index): """ remove the selected configuration """ for config in config_pool: if config.index == index: config_pool.remove(config) break return config_pool def find_lowest_rank(train_set, test_set): """ return the lowest rank in top 10 """ sorted_test = sorted(test_set, key=lambda x: x.perfs[-1]) # train data train_features = [t.features for t in train_set] train_perfs = [t.perfs[-1] for t in train_set] # test data test_perfs = [t.features for t in sorted_test] cart_model = DecisionTreeRegressor() cart_model.fit(train_features, train_perfs) predicted = cart_model.predict(test_perfs) predicted_id = [[i, p] for i, p in enumerate(predicted)] # i-> actual rank, p -> predicted value predicted_sorted = sorted(predicted_id, key=lambda x: x[-1]) # print(predicted_sorted) # assigning predicted ranks predicted_rank_sorted = [[p[0], p[-1], i] for i,p in enumerate(predicted_sorted)] # p[0] -> actual rank, p[-1] -> perdicted value, i -> predicted rank select_few = predicted_rank_sorted[:10] # print the predcited top-10 configuration # for sf in select_few: # print("actual rank:", sf[0], " actual value:", sorted_test[sf[0]].perfs[-1], " predicted value:", sf[1], " predicted rank:", sf[2]) # print("-------------") return np.min([sf[0] for sf in select_few]) def predict_by_cart(train_set, test_set): """ return the predicted optimal condiguration """ train_features = [config.features for config in train_set] train_perfs = [config.perfs[-1] for config in train_set] test_features = [config.features for config in test_set] cart_model = DecisionTreeRegressor() cart_model.fit(train_features, train_perfs) predicted = cart_model.predict(test_features) predicted_id = [[i,p] for i,p in enumerate(predicted)] predicted_sorted = sorted(predicted_id, key=lambda x: x[-1]) # sort test_set by predicted performance return test_set[predicted_sorted[0][0]] # the optimal configuration def split_data_by_fraction(csv_file, fraction): """ split data set and return the 80% data """ # step1: read from csv file pdcontent = pd.read_csv(csv_file) attr_list = pdcontent.columns # all feature list # step2: split attribute - method 1 features = [i for i in attr_list if "$<" not in i] perfs = [i for i in attr_list if "$<" in i] sortedcontent = pdcontent.sort_values(perfs[-1]) # from small to big # print(len(sortedcontent)) # step3: collect configuration configs = list() for c in range(len(pdcontent)): configs.append(config_node(c, # actual rank sortedcontent.iloc[c][features].tolist(), # feature list sortedcontent.iloc[c][perfs].tolist(), # performance list sortedcontent.iloc[c][perfs].tolist(), # predicted performance list )) # for config in configs: # print(config.index, "-", config.perfs, "-", config.predicted, "-", config.rank) # step4: data split # fraction = 0.4 # split fraction # rd.seed(seed) # random seed rd.shuffle(configs) # shuffle the configs indexes = range(len(configs)) train_index = indexes[:int(fraction*len(configs))] dataset = [configs[i] for i in train_index] # print(len(dataset)) return dataset def predict_by_flash(dataset, size=30, budget=50): """ use the budget in dataset to train a best model, return the train_set and unevaluated_set """ #initilize the train set with 30 configurations rd.shuffle(dataset) train_set = dataset[:size] unevaluated_set = dataset for config in train_set: unevaluated_set = remove_by_index(unevaluated_set, config.index) # remove train_set while budget >= 0: # budget equals to 50 optimal_config = predict_by_cart(train_set, unevaluated_set) # print("[add]:", optimal_config.index) unevaluated_set = remove_by_index(unevaluated_set, optimal_config.index) train_set.append(optimal_config) budget = budget - 1 return [train_set, unevaluated_set] if __name__ == "__main__": ####################################################################################### # select 80% data dataset = split_data_by_fraction("data/Apache_AllMeasurements.csv", 0.8) print("### initialzation") for i in dataset: print(str(i.index), ",", end="") print("\n-------------") data = predict_by_flash(dataset) print("### finally split") train_set = data[0] uneval_set = data[1] for i in train_set: print(str(i.index), ",", end="") print("\n-------------") for i in uneval_set: print(str(i.index), ",", end="") print("\n-------------") ####################################################################################### lowest_rank = find_lowest_rank(train_set, uneval_set) print(lowest_rank)
3.125
3
debugging/check_athena.py
094459/devday-elt-automation
2
12791374
<filename>debugging/check_athena.py import os import boto3 import sys ath = boto3.client('athena') try: response = ath.get_database( CatalogName='AwsDataCatalog', DatabaseName='scifimovies' ) print("Database found") except: print("No Database Found") try: response = ath.get_table_metadata( CatalogName='AwsDataCatalog', DatabaseName='scifimovies', TableName='scifix' ) print("Table Exists") except: print("No Table Found")
2.671875
3
external/opengl-registry/extensions/registry.py
FTD2012/CrossWindow
6
12791375
registry = { 'GL_3DFX_multisample' : { 'number' : 207, 'flags' : { 'public' }, 'supporters' : { '3DFX' }, 'url' : 'extensions/3DFX/3DFX_multisample.txt', }, 'GL_3DFX_tbuffer' : { 'number' : 208, 'flags' : { 'public' }, 'supporters' : { '3DFX' }, 'url' : 'extensions/3DFX/3DFX_tbuffer.txt', }, 'GL_3DFX_texture_compression_FXT1' : { 'number' : 206, 'flags' : { 'public' }, 'supporters' : { '3DFX' }, 'url' : 'extensions/3DFX/3DFX_texture_compression_FXT1.txt', }, 'GL_AMD_blend_minmax_factor' : { 'number' : 404, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_blend_minmax_factor.txt', }, 'GL_AMD_compressed_3DC_texture' : { 'esnumber' : 39, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_compressed_3DC_texture.txt', }, 'GL_AMD_compressed_ATC_texture' : { 'esnumber' : 40, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_compressed_ATC_texture.txt', }, 'GL_AMD_conservative_depth' : { 'number' : 385, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_conservative_depth.txt', }, 'GL_AMD_debug_output' : { 'number' : 395, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/AMD/AMD_debug_output.txt', }, 'GL_AMD_depth_clamp_separate' : { 'number' : 401, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/AMD/AMD_depth_clamp_separate.txt', }, 'GL_AMD_draw_buffers_blend' : { 'number' : 366, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA', 'TransGaming' }, 'url' : 'extensions/AMD/AMD_draw_buffers_blend.txt', }, 'GL_AMD_framebuffer_sample_positions' : { 'number' : 454, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_framebuffer_sample_positions.txt', }, 'GL_AMD_gcn_shader' : { 'number' : 453, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_gcn_shader.txt', }, 'GLX_AMD_gpu_association' : { 'number' : 398, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/GLX_AMD_gpu_association.txt', }, 'GL_AMD_gpu_shader_half_float' : { 'number' : 496, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/AMD/AMD_gpu_shader_half_float.txt', }, 'GL_AMD_gpu_shader_half_float_fetch' : { 'number' : 519, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_gpu_shader_half_float_fetch.txt', }, 'GL_AMD_gpu_shader_int16' : { 'number' : 507, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_gpu_shader_int16.txt', }, 'GL_AMD_gpu_shader_int64' : { 'number' : 451, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_gpu_shader_int64.txt', }, 'GL_AMD_interleaved_elements' : { 'number' : 431, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_interleaved_elements.txt', }, 'GL_AMD_multi_draw_indirect' : { 'number' : 408, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_multi_draw_indirect.txt', }, 'GL_AMD_name_gen_delete' : { 'number' : 394, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/AMD/AMD_name_gen_delete.txt', }, 'GL_AMD_occlusion_query_event' : { 'number' : 442, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_occlusion_query_event.txt', }, 'GL_AMD_performance_monitor' : { 'number' : 360, 'esnumber' : 50, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_performance_monitor.txt', }, 'GL_AMD_pinned_memory' : { 'number' : 411, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_pinned_memory.txt', }, 'GL_AMD_program_binary_Z400' : { 'esnumber' : 48, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_program_binary_Z400.txt', }, 'GL_AMD_query_buffer_object' : { 'number' : 420, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_query_buffer_object.txt', }, 'GL_AMD_sample_positions' : { 'number' : 405, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_sample_positions.txt', }, 'GL_AMD_seamless_cubemap_per_texture' : { 'number' : 383, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_seamless_cubemap_per_texture.txt', }, 'GL_AMD_shader_atomic_counter_ops' : { 'number' : 435, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_shader_atomic_counter_ops.txt', }, 'GL_AMD_shader_ballot' : { 'number' : 497, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/AMD/AMD_shader_ballot.txt', }, 'GL_AMD_shader_explicit_vertex_parameter' : { 'number' : 485, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_shader_explicit_vertex_parameter.txt', }, 'GL_AMD_shader_image_load_store_lod' : { 'number' : 513, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_shader_image_load_store_lod.txt', }, 'GL_AMD_shader_stencil_export' : { 'number' : 382, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_shader_stencil_export.txt', }, 'GL_AMD_shader_stencil_value_export' : { 'number' : 444, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_shader_stencil_value_export.txt', }, 'GL_AMD_shader_trinary_minmax' : { 'number' : 428, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_shader_trinary_minmax.txt', }, 'GL_AMD_sparse_texture' : { 'number' : 426, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_sparse_texture.txt', }, 'GL_AMD_stencil_operation_extended' : { 'number' : 413, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_stencil_operation_extended.txt', }, 'GL_AMD_texture_gather_bias_lod' : { 'number' : 502, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_texture_gather_bias_lod.txt', }, 'GL_AMD_texture_texture4' : { 'number' : 362, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_texture_texture4.txt', }, 'GL_AMD_transform_feedback3_lines_triangles' : { 'number' : 397, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_transform_feedback3_lines_triangles.txt', }, 'GL_AMD_transform_feedback4' : { 'number' : 450, 'flags' : { 'public' }, 'url' : 'extensions/AMD/AMD_transform_feedback4.txt', }, 'GL_AMD_vertex_shader_layer' : { 'number' : 417, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_vertex_shader_layer.txt', }, 'GL_AMD_vertex_shader_tessellator' : { 'number' : 363, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_vertex_shader_tessellator.txt', }, 'GL_AMD_vertex_shader_viewport_index' : { 'number' : 416, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/AMD_vertex_shader_viewport_index.txt', }, 'GL_ANDROID_extension_pack_es31a' : { 'esnumber' : 187, 'flags' : { 'public' }, 'url' : 'extensions/ANDROID/ANDROID_extension_pack_es31a.txt', }, 'GL_ANGLE_depth_texture' : { 'esnumber' : 138, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_depth_texture.txt', }, 'GL_ANGLE_framebuffer_blit' : { 'esnumber' : 83, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_framebuffer_blit.txt', }, 'GL_ANGLE_framebuffer_multisample' : { 'esnumber' : 84, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_framebuffer_multisample.txt', }, 'GL_ANGLE_instanced_arrays' : { 'esnumber' : 109, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_instanced_arrays.txt', }, 'GL_ANGLE_pack_reverse_row_order' : { 'esnumber' : 110, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_pack_reverse_row_order.txt', }, 'GL_ANGLE_program_binary' : { 'esnumber' : 139, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_program_binary.txt', }, 'GL_ANGLE_texture_compression_dxt3' : { 'esnumber' : 111, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_texture_compression_dxt.txt', 'alias' : { 'GL_ANGLE_texture_compression_dxt1', 'GL_ANGLE_texture_compression_dxt5' }, }, 'GL_ANGLE_texture_usage' : { 'esnumber' : 112, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_texture_usage.txt', }, 'GL_ANGLE_translated_shader_source' : { 'esnumber' : 113, 'flags' : { 'public' }, 'url' : 'extensions/ANGLE/ANGLE_translated_shader_source.txt', }, 'GL_APPLE_aux_depth_stencil' : { 'number' : 370, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_aux_depth_stencil.txt', }, 'GL_APPLE_client_storage' : { 'number' : 270, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_client_storage.txt', }, 'GL_APPLE_clip_distance' : { 'esnumber' : 193, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_clip_distance.txt', }, 'GL_APPLE_color_buffer_packed_float' : { 'esnumber' : 194, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_color_buffer_packed_float.txt', }, 'GL_APPLE_copy_texture_levels' : { 'esnumber' : 123, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_copy_texture_levels.txt', }, 'GL_APPLE_element_array' : { 'number' : 271, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_element_array.txt', }, 'GL_APPLE_fence' : { 'number' : 272, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_fence.txt', }, 'GL_APPLE_float_pixels' : { 'number' : 368, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_float_pixels.txt', }, 'GL_APPLE_flush_buffer_range' : { 'number' : 321, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_flush_buffer_range.txt', }, 'GL_APPLE_framebuffer_multisample' : { 'esnumber' : 78, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_framebuffer_multisample.txt', }, 'GL_APPLE_object_purgeable' : { 'number' : 371, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_object_purgeable.txt', }, 'GL_APPLE_rgb_422' : { 'number' : 373, 'esnumber' : 76, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_rgb_422.txt', }, 'GL_APPLE_row_bytes' : { 'number' : 372, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_row_bytes.txt', }, 'GL_APPLE_specular_vector' : { 'number' : 159, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_specular_vector.txt', }, 'GL_APPLE_sync' : { 'esnumber' : 124, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_sync.txt', }, 'GL_APPLE_texture_2D_limited_npot' : { 'esnumber' : 59, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_texture_2D_limited_npot.txt', }, 'GL_APPLE_texture_format_BGRA8888' : { 'esnumber' : 79, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_texture_format_BGRA8888.txt', }, 'GL_APPLE_texture_max_level' : { 'esnumber' : 80, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_texture_max_level.txt', }, 'GL_APPLE_texture_packed_float' : { 'esnumber' : 195, 'flags' : { 'public' }, 'url' : 'extensions/APPLE/APPLE_texture_packed_float.txt', }, 'GL_APPLE_texture_range' : { 'number' : 367, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_texture_range.txt', }, 'GL_APPLE_transform_hint' : { 'number' : 160, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_transform_hint.txt', }, 'GL_APPLE_vertex_array_object' : { 'number' : 273, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_vertex_array_object.txt', }, 'GL_APPLE_vertex_array_range' : { 'number' : 274, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_vertex_array_range.txt', }, 'GL_APPLE_vertex_program_evaluators' : { 'number' : 369, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_vertex_program_evaluators.txt', }, 'GL_APPLE_ycbcr_422' : { 'number' : 275, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/APPLE/APPLE_ycbcr_422.txt', }, 'GL_ARB_ES2_compatibility' : { 'arbnumber' : 95, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_ES2_compatibility.txt', }, 'GL_ARB_ES3_1_compatibility' : { 'arbnumber' : 159, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_ES3_1_compatibility.txt', }, 'GL_ARB_ES3_2_compatibility' : { 'arbnumber' : 176, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_ES3_2_compatibility.txt', }, 'GL_ARB_ES3_compatibility' : { 'arbnumber' : 127, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_ES3_compatibility.txt', }, 'GL_ARB_arrays_of_arrays' : { 'arbnumber' : 120, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_arrays_of_arrays.txt', }, 'GL_ARB_base_instance' : { 'arbnumber' : 107, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_base_instance.txt', }, 'GL_ARB_bindless_texture' : { 'arbnumber' : 152, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_bindless_texture.txt', }, 'GL_ARB_blend_func_extended' : { 'arbnumber' : 78, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_blend_func_extended.txt', }, 'GL_ARB_buffer_storage' : { 'arbnumber' : 144, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_buffer_storage.txt', }, 'GL_ARB_cl_event' : { 'arbnumber' : 103, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_cl_event.txt', }, 'GL_ARB_clear_buffer_object' : { 'arbnumber' : 121, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_clear_buffer_object.txt', }, 'GL_ARB_clear_texture' : { 'arbnumber' : 145, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_clear_texture.txt', }, 'GL_ARB_clip_control' : { 'arbnumber' : 160, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_clip_control.txt', }, 'GL_ARB_color_buffer_float' : { 'arbnumber' : 39, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_color_buffer_float.txt', 'alias' : { 'GLX_ARB_fbconfig_float', 'WGL_ARB_pixel_format_float' }, }, 'GL_ARB_compatibility' : { 'arbnumber' : 58, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_compatibility.txt', }, 'GL_ARB_compressed_texture_pixel_storage' : { 'arbnumber' : 110, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_compressed_texture_pixel_storage.txt', }, 'GL_ARB_compute_shader' : { 'arbnumber' : 122, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_compute_shader.txt', }, 'GL_ARB_compute_variable_group_size' : { 'arbnumber' : 153, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_compute_variable_group_size.txt', }, 'GL_ARB_conditional_render_inverted' : { 'arbnumber' : 161, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_conditional_render_inverted.txt', }, 'GL_ARB_conservative_depth' : { 'arbnumber' : 111, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_conservative_depth.txt', }, 'GL_ARB_copy_buffer' : { 'arbnumber' : 59, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_copy_buffer.txt', }, 'GL_ARB_copy_image' : { 'arbnumber' : 123, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_copy_image.txt', }, 'GLX_ARB_create_context' : { 'arbnumber' : 56, 'flags' : { 'public' }, 'url' : 'extensions/ARB/GLX_ARB_create_context.txt', 'comments' : 'Alias to GLX_ARB_create_context_profile not needed - see arbnumber 75.', }, 'GLX_ARB_create_context_no_error' : { 'arbnumber' : 191, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_create_context_no_error.txt', 'comments' : 'Shares extension spec with WGL_ARB_create_context_no_error.', 'alias' : { 'WGL_ARB_create_context_no_error' }, }, 'GLX_ARB_create_context_profile' : { 'arbnumber' : 75, 'flags' : { 'public' }, 'url' : 'extensions/ARB/GLX_ARB_create_context.txt', 'comments' : 'Included with arbnumber 56, GLX_ARB_create_context.', }, 'GLX_ARB_create_context_robustness' : { 'arbnumber' : 101, 'flags' : { 'public' }, 'url' : 'extensions/ARB/GLX_ARB_create_context_robustness.txt', }, 'GL_ARB_cull_distance' : { 'arbnumber' : 162, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_cull_distance.txt', }, 'GL_ARB_debug_output' : { 'arbnumber' : 104, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_debug_output.txt', }, 'GL_ARB_depth_buffer_float' : { 'arbnumber' : 43, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_depth_buffer_float.txt', }, 'GL_ARB_depth_clamp' : { 'arbnumber' : 61, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_depth_clamp.txt', }, 'GL_ARB_depth_texture' : { 'arbnumber' : 22, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_depth_texture.txt', }, 'GL_ARB_derivative_control' : { 'arbnumber' : 163, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_derivative_control.txt', }, 'GL_ARB_direct_state_access' : { 'arbnumber' : 164, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_direct_state_access.txt', }, 'GL_ARB_draw_buffers' : { 'arbnumber' : 37, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_draw_buffers.txt', }, 'GL_ARB_draw_buffers_blend' : { 'arbnumber' : 69, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_draw_buffers_blend.txt', }, 'GL_ARB_draw_elements_base_vertex' : { 'arbnumber' : 62, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_draw_elements_base_vertex.txt', }, 'GL_ARB_draw_indirect' : { 'arbnumber' : 87, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_draw_indirect.txt', }, 'GL_ARB_draw_instanced' : { 'arbnumber' : 44, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_draw_instanced.txt', }, 'GL_ARB_enhanced_layouts' : { 'arbnumber' : 146, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_enhanced_layouts.txt', }, 'GL_ARB_explicit_attrib_location' : { 'arbnumber' : 79, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_explicit_attrib_location.txt', }, 'GL_ARB_explicit_uniform_location' : { 'arbnumber' : 128, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_explicit_uniform_location.txt', }, 'GL_ARB_fragment_coord_conventions' : { 'arbnumber' : 63, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_fragment_coord_conventions.txt', }, 'GL_ARB_fragment_layer_viewport' : { 'arbnumber' : 129, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_fragment_layer_viewport.txt', }, 'GL_ARB_fragment_program' : { 'arbnumber' : 27, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_fragment_program.txt', }, 'GL_ARB_fragment_program_shadow' : { 'arbnumber' : 36, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_fragment_program_shadow.txt', }, 'GL_ARB_fragment_shader' : { 'arbnumber' : 32, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_fragment_shader.txt', }, 'GL_ARB_fragment_shader_interlock' : { 'arbnumber' : 177, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_fragment_shader_interlock.txt', }, 'GL_ARB_framebuffer_no_attachments' : { 'arbnumber' : 130, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_framebuffer_no_attachments.txt', }, 'GL_ARB_framebuffer_object' : { 'arbnumber' : 45, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_framebuffer_object.txt', }, 'GL_ARB_framebuffer_sRGB' : { 'arbnumber' : 46, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_framebuffer_sRGB.txt', 'alias' : { 'GLX_ARB_framebuffer_sRGB', 'WGL_ARB_framebuffer_sRGB' }, }, 'GL_ARB_geometry_shader4' : { 'arbnumber' : 47, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_geometry_shader4.txt', }, 'GLX_ARB_get_proc_address' : { 'arbnumber' : 2, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/GLX_ARB_get_proc_address.txt', }, 'GL_ARB_get_program_binary' : { 'arbnumber' : 96, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_get_program_binary.txt', }, 'GL_ARB_get_texture_sub_image' : { 'arbnumber' : 165, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_get_texture_sub_image.txt', }, 'GL_ARB_gl_spirv' : { 'arbnumber' : 190, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_gl_spirv.txt', }, 'GL_ARB_gpu_shader5' : { 'arbnumber' : 88, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_gpu_shader5.txt', }, 'GL_ARB_gpu_shader_fp64' : { 'arbnumber' : 89, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_gpu_shader_fp64.txt', }, 'GL_ARB_gpu_shader_int64' : { 'arbnumber' : 178, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_gpu_shader_int64.txt', }, 'GL_ARB_half_float_pixel' : { 'arbnumber' : 40, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_half_float_pixel.txt', }, 'GL_ARB_half_float_vertex' : { 'arbnumber' : 48, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_half_float_vertex.txt', }, 'GL_ARB_indirect_parameters' : { 'arbnumber' : 154, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_indirect_parameters.txt', }, 'GL_ARB_instanced_arrays' : { 'arbnumber' : 49, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_instanced_arrays.txt', }, 'GL_ARB_internalformat_query' : { 'arbnumber' : 112, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_internalformat_query.txt', }, 'GL_ARB_internalformat_query2' : { 'arbnumber' : 131, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_internalformat_query2.txt', }, 'GL_ARB_invalidate_subdata' : { 'arbnumber' : 132, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_invalidate_subdata.txt', }, 'GL_ARB_map_buffer_alignment' : { 'arbnumber' : 113, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_map_buffer_alignment.txt', }, 'GL_ARB_map_buffer_range' : { 'arbnumber' : 50, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_map_buffer_range.txt', }, 'GL_ARB_matrix_palette' : { 'arbnumber' : 16, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_matrix_palette.txt', }, 'GL_ARB_multi_bind' : { 'arbnumber' : 147, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_multi_bind.txt', }, 'GL_ARB_multi_draw_indirect' : { 'arbnumber' : 133, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_multi_draw_indirect.txt', }, 'GL_ARB_multisample' : { 'arbnumber' : 5, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_multisample.txt', 'alias' : { 'GLX_ARB_multisample', 'WGL_ARB_multisample' }, }, 'GL_ARB_multitexture' : { 'arbnumber' : 1, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_multitexture.txt', }, 'GL_ARB_occlusion_query' : { 'arbnumber' : 29, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_occlusion_query.txt', }, 'GL_ARB_occlusion_query2' : { 'arbnumber' : 80, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_occlusion_query2.txt', }, 'GL_ARB_parallel_shader_compile' : { 'arbnumber' : 179, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_parallel_shader_compile.txt', }, 'GL_ARB_pipeline_statistics_query' : { 'arbnumber' : 171, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_pipeline_statistics_query.txt', }, 'GL_ARB_pixel_buffer_object' : { 'arbnumber' : 42, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_pixel_buffer_object.txt', }, 'GL_ARB_point_parameters' : { 'arbnumber' : 14, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_point_parameters.txt', }, 'GL_ARB_point_sprite' : { 'arbnumber' : 35, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_point_sprite.txt', }, 'GL_ARB_polygon_offset_clamp' : { 'arbnumber' : 193, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_polygon_offset_clamp.txt', }, 'GL_ARB_post_depth_coverage' : { 'arbnumber' : 180, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_post_depth_coverage.txt', }, 'GL_ARB_program_interface_query' : { 'arbnumber' : 134, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_program_interface_query.txt', }, 'GL_ARB_provoking_vertex' : { 'arbnumber' : 64, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_provoking_vertex.txt', }, 'GL_ARB_query_buffer_object' : { 'arbnumber' : 148, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_query_buffer_object.txt', }, 'GL_ARB_robust_buffer_access_behavior' : { 'arbnumber' : 135, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_robust_buffer_access_behavior.txt', }, 'GL_ARB_robustness' : { 'arbnumber' : 105, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_robustness.txt', }, 'GLX_ARB_robustness_application_isolation' : { 'arbnumber' : 142, 'flags' : { 'public' }, 'url' : 'extensions/ARB/GLX_ARB_robustness_application_isolation.txt', 'alias' : { 'GLX_ARB_robustness_share_group_isolation' }, }, 'GL_ARB_robustness_isolation' : { 'arbnumber' : 126, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_robustness_application_isolation.txt', 'alias' : { 'GL_ARB_robustness_share_group_isolation' }, }, 'GL_ARB_sample_locations' : { 'arbnumber' : 181, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_sample_locations.txt', }, 'GL_ARB_sample_shading' : { 'arbnumber' : 70, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_sample_shading.txt', }, 'GL_ARB_sampler_objects' : { 'arbnumber' : 81, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_sampler_objects.txt', }, 'GL_ARB_seamless_cube_map' : { 'arbnumber' : 65, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_seamless_cube_map.txt', }, 'GL_ARB_seamless_cubemap_per_texture' : { 'arbnumber' : 155, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_seamless_cubemap_per_texture.txt', }, 'GL_ARB_separate_shader_objects' : { 'arbnumber' : 97, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_separate_shader_objects.txt', }, 'GL_ARB_shader_atomic_counter_ops' : { 'arbnumber' : 182, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_atomic_counter_ops.txt', }, 'GL_ARB_shader_atomic_counters' : { 'arbnumber' : 114, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_atomic_counters.txt', }, 'GL_ARB_shader_ballot' : { 'arbnumber' : 183, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_ballot.txt', }, 'GL_ARB_shader_bit_encoding' : { 'arbnumber' : 82, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_bit_encoding.txt', }, 'GL_ARB_shader_clock' : { 'arbnumber' : 184, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_clock.txt', }, 'GL_ARB_shader_draw_parameters' : { 'arbnumber' : 156, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_draw_parameters.txt', }, 'GL_ARB_shader_group_vote' : { 'arbnumber' : 157, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_group_vote.txt', }, 'GL_ARB_shader_image_load_store' : { 'arbnumber' : 115, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_image_load_store.txt', }, 'GL_ARB_shader_image_size' : { 'arbnumber' : 136, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_image_size.txt', }, 'GL_ARB_shader_objects' : { 'arbnumber' : 30, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_shader_objects.txt', }, 'GL_ARB_shader_precision' : { 'arbnumber' : 98, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_precision.txt', }, 'GL_ARB_shader_stencil_export' : { 'arbnumber' : 106, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_stencil_export.txt', }, 'GL_ARB_shader_storage_buffer_object' : { 'arbnumber' : 137, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_storage_buffer_object.txt', }, 'GL_ARB_shader_subroutine' : { 'arbnumber' : 90, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_subroutine.txt', }, 'GL_ARB_shader_texture_image_samples' : { 'arbnumber' : 166, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_texture_image_samples.txt', }, 'GL_ARB_shader_texture_lod' : { 'arbnumber' : 60, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_texture_lod.txt', }, 'GL_ARB_shader_viewport_layer_array' : { 'arbnumber' : 185, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shader_viewport_layer_array.txt', }, 'GL_ARB_shading_language_100' : { 'arbnumber' : 33, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_shading_language_100.txt', }, 'GL_ARB_shading_language_420pack' : { 'arbnumber' : 108, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shading_language_420pack.txt', }, 'GL_ARB_shading_language_include' : { 'arbnumber' : 76, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shading_language_include.txt', }, 'GL_ARB_shading_language_packing' : { 'arbnumber' : 116, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_shading_language_packing.txt', }, 'GL_ARB_shadow' : { 'arbnumber' : 23, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_shadow.txt', }, 'GL_ARB_shadow_ambient' : { 'arbnumber' : 24, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_shadow_ambient.txt', }, 'GL_ARB_sparse_buffer' : { 'arbnumber' : 172, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_sparse_buffer.txt', }, 'GL_ARB_sparse_texture' : { 'arbnumber' : 158, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_sparse_texture.txt', }, 'GL_ARB_sparse_texture2' : { 'arbnumber' : 186, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_sparse_texture2.txt', }, 'GL_ARB_sparse_texture_clamp' : { 'arbnumber' : 187, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_sparse_texture_clamp.txt', }, 'GL_ARB_spirv_extensions' : { 'arbnumber' : 194, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_spirv_extensions.txt', }, 'GL_ARB_stencil_texturing' : { 'arbnumber' : 138, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_stencil_texturing.txt', }, 'GL_ARB_sync' : { 'arbnumber' : 66, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_sync.txt', }, 'GL_ARB_tessellation_shader' : { 'arbnumber' : 91, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_tessellation_shader.txt', }, 'GL_ARB_texture_barrier' : { 'arbnumber' : 167, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_barrier.txt', }, 'GL_ARB_texture_border_clamp' : { 'arbnumber' : 13, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_border_clamp.txt', }, 'GL_ARB_texture_buffer_object' : { 'arbnumber' : 51, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_buffer_object.txt', }, 'GL_ARB_texture_buffer_object_rgb32' : { 'arbnumber' : 92, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_buffer_object_rgb32.txt', }, 'GL_ARB_texture_buffer_range' : { 'arbnumber' : 139, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_buffer_range.txt', }, 'GL_ARB_texture_compression' : { 'arbnumber' : 12, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_compression.txt', }, 'GL_ARB_texture_compression_bptc' : { 'arbnumber' : 77, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_compression_bptc.txt', }, 'GL_ARB_texture_compression_rgtc' : { 'arbnumber' : 52, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_compression_rgtc.txt', }, 'GL_ARB_texture_cube_map' : { 'arbnumber' : 7, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_cube_map.txt', }, 'GL_ARB_texture_cube_map_array' : { 'arbnumber' : 71, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_cube_map_array.txt', }, 'GL_ARB_texture_env_add' : { 'arbnumber' : 6, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_env_add.txt', }, 'GL_ARB_texture_env_combine' : { 'arbnumber' : 17, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_env_combine.txt', }, 'GL_ARB_texture_env_crossbar' : { 'arbnumber' : 18, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_env_crossbar.txt', }, 'GL_ARB_texture_env_dot3' : { 'arbnumber' : 19, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_env_dot3.txt', }, 'GL_ARB_texture_filter_anisotropic' : { 'arbnumber' : 195, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_filter_anisotropic.txt', }, 'GL_ARB_texture_filter_minmax' : { 'arbnumber' : 188, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_filter_minmax.txt', }, 'GL_ARB_texture_float' : { 'arbnumber' : 41, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_float.txt', }, 'GL_ARB_texture_gather' : { 'arbnumber' : 72, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_gather.txt', }, 'GL_ARB_texture_mirror_clamp_to_edge' : { 'arbnumber' : 149, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_mirror_clamp_to_edge.txt', }, 'GL_ARB_texture_mirrored_repeat' : { 'arbnumber' : 21, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_mirrored_repeat.txt', }, 'GL_ARB_texture_multisample' : { 'arbnumber' : 67, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_multisample.txt', }, 'GL_ARB_texture_non_power_of_two' : { 'arbnumber' : 34, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_non_power_of_two.txt', }, 'GL_ARB_texture_query_levels' : { 'arbnumber' : 140, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_query_levels.txt', }, 'GL_ARB_texture_query_lod' : { 'arbnumber' : 73, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_query_lod.txt', }, 'GL_ARB_texture_rectangle' : { 'arbnumber' : 38, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_rectangle.txt', }, 'GL_ARB_texture_rg' : { 'arbnumber' : 53, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_texture_rg.txt', }, 'GL_ARB_texture_rgb10_a2ui' : { 'arbnumber' : 83, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_rgb10_a2ui.txt', }, 'GL_ARB_texture_stencil8' : { 'arbnumber' : 150, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_stencil8.txt', }, 'GL_ARB_texture_storage' : { 'arbnumber' : 117, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_storage.txt', }, 'GL_ARB_texture_storage_multisample' : { 'arbnumber' : 141, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_storage_multisample.txt', }, 'GL_ARB_texture_swizzle' : { 'arbnumber' : 84, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_swizzle.txt', }, 'GL_ARB_texture_view' : { 'arbnumber' : 124, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_texture_view.txt', }, 'GL_ARB_timer_query' : { 'arbnumber' : 85, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_timer_query.txt', }, 'GL_ARB_transform_feedback2' : { 'arbnumber' : 93, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_transform_feedback2.txt', }, 'GL_ARB_transform_feedback3' : { 'arbnumber' : 94, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_transform_feedback3.txt', }, 'GL_ARB_transform_feedback_instanced' : { 'arbnumber' : 109, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_transform_feedback_instanced.txt', }, 'GL_ARB_transform_feedback_overflow_query' : { 'arbnumber' : 173, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_transform_feedback_overflow_query.txt', }, 'GL_ARB_transpose_matrix' : { 'arbnumber' : 3, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_transpose_matrix.txt', }, 'GL_ARB_uniform_buffer_object' : { 'arbnumber' : 57, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_uniform_buffer_object.txt', }, 'GL_ARB_vertex_array_bgra' : { 'arbnumber' : 68, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_vertex_array_bgra.txt', }, 'GL_ARB_vertex_array_object' : { 'arbnumber' : 54, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_vertex_array_object.txt', }, 'GL_ARB_vertex_attrib_64bit' : { 'arbnumber' : 99, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_vertex_attrib_64bit.txt', }, 'GL_ARB_vertex_attrib_binding' : { 'arbnumber' : 125, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_vertex_attrib_binding.txt', }, 'GL_ARB_vertex_blend' : { 'arbnumber' : 15, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_vertex_blend.txt', }, 'GL_ARB_vertex_buffer_object' : { 'arbnumber' : 28, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_vertex_buffer_object.txt', 'alias' : { 'GLX_ARB_vertex_buffer_object' }, }, 'GL_ARB_vertex_program' : { 'arbnumber' : 26, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_vertex_program.txt', }, 'GL_ARB_vertex_shader' : { 'arbnumber' : 31, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_vertex_shader.txt', }, 'GL_ARB_vertex_type_10f_11f_11f_rev' : { 'arbnumber' : 151, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_vertex_type_10f_11f_11f_rev.txt', }, 'GL_ARB_vertex_type_2_10_10_10_rev' : { 'arbnumber' : 86, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_vertex_type_2_10_10_10_rev.txt', }, 'GL_ARB_viewport_array' : { 'arbnumber' : 100, 'flags' : { 'public' }, 'url' : 'extensions/ARB/ARB_viewport_array.txt', }, 'GL_ARB_window_pos' : { 'arbnumber' : 25, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/ARB_window_pos.txt', }, 'GL_ARM_mali_program_binary' : { 'esnumber' : 120, 'flags' : { 'public' }, 'url' : 'extensions/ARM/ARM_mali_program_binary.txt', }, 'GL_ARM_mali_shader_binary' : { 'esnumber' : 81, 'flags' : { 'public' }, 'url' : 'extensions/ARM/ARM_mali_shader_binary.txt', }, 'GL_ARM_rgba8' : { 'esnumber' : 82, 'flags' : { 'public' }, 'url' : 'extensions/ARM/ARM_rgba8.txt', }, 'GL_ARM_shader_framebuffer_fetch' : { 'esnumber' : 165, 'flags' : { 'public' }, 'url' : 'extensions/ARM/ARM_shader_framebuffer_fetch.txt', }, 'GL_ARM_shader_framebuffer_fetch_depth_stencil' : { 'esnumber' : 166, 'flags' : { 'public' }, 'url' : 'extensions/ARM/ARM_shader_framebuffer_fetch_depth_stencil.txt', }, 'GL_ATI_draw_buffers' : { 'number' : 277, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_draw_buffers.txt', }, 'GL_ATI_element_array' : { 'number' : 256, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_element_array.txt', }, 'GL_ATI_envmap_bumpmap' : { 'number' : 244, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_envmap_bumpmap.txt', }, 'GL_ATI_fragment_shader' : { 'number' : 245, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_fragment_shader.txt', }, 'GL_ATI_map_object_buffer' : { 'number' : 288, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_map_object_buffer.txt', }, 'GL_ATI_meminfo' : { 'number' : 359, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/ATI/ATI_meminfo.txt', }, 'GL_ATI_pn_triangles' : { 'number' : 246, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_pn_triangles.txt', }, 'GL_ATI_separate_stencil' : { 'number' : 289, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_separate_stencil.txt', }, 'GL_ATI_text_fragment_shader' : { 'number' : 269, 'flags' : { 'public' }, 'supporters' : { 'APPLE', 'NVIDIA' }, 'url' : 'extensions/ATI/ATI_text_fragment_shader.txt', }, 'GL_ATI_texture_env_combine3' : { 'number' : 279, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_texture_env_combine3.txt', }, 'GL_ATI_texture_float' : { 'number' : 280, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_texture_float.txt', }, 'GL_ATI_texture_mirror_once' : { 'number' : 221, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_texture_mirror_once.txt', }, 'GL_ATI_vertex_array_object' : { 'number' : 247, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_vertex_array_object.txt', }, 'GL_ATI_vertex_attrib_array_object' : { 'number' : 290, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_vertex_attrib_array_object.txt', }, 'GL_ATI_vertex_streams' : { 'number' : 249, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/ATI_vertex_streams.txt', }, 'GL_DMP_program_binary' : { 'esnumber' : 192, 'flags' : { 'public' }, 'url' : 'extensions/DMP/DMP_program_binary.txt', }, 'GL_DMP_shader_binary' : { 'esnumber' : 88, 'flags' : { 'public' }, 'url' : 'extensions/DMP/DMP_shader_binary.txt', }, 'GL_EXT_422_pixels' : { 'number' : 178, 'flags' : { 'public' }, 'supporters' : { 'INGR' }, 'url' : 'extensions/EXT/EXT_422_pixels.txt', }, 'GL_EXT_YUV_target' : { 'esnumber' : 222, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_YUV_target.txt', }, 'GL_EXT_abgr' : { 'number' : 1, 'flags' : { 'public' }, 'supporters' : { 'IBM', 'KGC', 'SGI', 'SUN' }, 'url' : 'extensions/EXT/EXT_abgr.txt', }, 'GL_EXT_base_instance' : { 'esnumber' : 203, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_base_instance.txt', }, 'GL_EXT_bgra' : { 'number' : 129, 'flags' : { 'public' }, 'supporters' : { 'MS' }, 'url' : 'extensions/EXT/EXT_bgra.txt', }, 'GL_EXT_bindable_uniform' : { 'number' : 342, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_bindable_uniform.txt', }, 'GL_EXT_blend_color' : { 'number' : 2, 'flags' : { 'public' }, 'supporters' : { 'HP', 'INGR', 'KGC', 'SGI', 'SUN' }, 'url' : 'extensions/EXT/EXT_blend_color.txt', }, 'GL_EXT_blend_equation_separate' : { 'number' : 299, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_blend_equation_separate.txt', }, 'GL_EXT_blend_func_extended' : { 'esnumber' : 247, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_blend_func_extended.txt', }, 'GL_EXT_blend_func_separate' : { 'number' : 173, 'flags' : { 'public' }, 'supporters' : { 'IBM', 'INGR' }, 'url' : 'extensions/EXT/EXT_blend_func_separate.txt', }, 'GL_EXT_blend_logic_op' : { 'number' : 39, 'flags' : { 'public' }, 'supporters' : { 'HP', 'IBM', 'INGR', 'KGC', 'SGI' }, 'url' : 'extensions/EXT/EXT_blend_logic_op.txt', }, 'GL_EXT_blend_minmax' : { 'number' : 37, 'esnumber' : 65, 'flags' : { 'public' }, 'supporters' : { 'HP', 'IBM', 'INGR', 'KGC', 'SGI', 'SUN' }, 'url' : 'extensions/EXT/EXT_blend_minmax.txt', }, 'GL_EXT_blend_subtract' : { 'number' : 38, 'flags' : { 'public' }, 'supporters' : { 'HP', 'IBM', 'INGR', 'KGC', 'SGI', 'SUN' }, 'url' : 'extensions/EXT/EXT_blend_subtract.txt', }, 'GLX_EXT_buffer_age' : { 'number' : 427, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'NVIDIA' }, 'url' : 'extensions/EXT/GLX_EXT_buffer_age.txt', }, 'GL_EXT_buffer_storage' : { 'esnumber' : 239, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_buffer_storage.txt', }, 'GL_EXT_clear_texture' : { 'esnumber' : 269, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_clear_texture.txt', }, 'GL_EXT_clip_cull_distance' : { 'esnumber' : 257, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_clip_cull_distance.txt', }, 'GL_EXT_clip_volume_hint' : { 'number' : 79, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_clip_volume_hint.txt', }, 'GL_EXT_cmyka' : { 'number' : 18, 'flags' : { 'public' }, 'supporters' : { 'ES', 'SGI' }, 'url' : 'extensions/EXT/EXT_cmyka.txt', }, 'GL_EXT_color_buffer_float' : { 'esnumber' : 137, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_color_buffer_float.txt', }, 'GL_EXT_color_buffer_half_float' : { 'esnumber' : 97, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_color_buffer_half_float.txt', }, 'GL_EXT_color_subtable' : { 'number' : 74, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_color_subtable.txt', }, 'GL_EXT_compiled_vertex_array' : { 'number' : 97, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'SGI' }, 'url' : 'extensions/EXT/EXT_compiled_vertex_array.txt', }, 'GL_EXT_compressed_ETC1_RGB8_sub_texture' : { 'esnumber' : 188, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_compressed_ETC1_RGB8_sub_texture.txt', }, 'GL_EXT_conservative_depth' : { 'esnumber' : 268, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_conservative_depth.txt', }, 'GL_EXT_convolution' : { 'number' : 12, 'flags' : { 'public' }, 'supporters' : { 'HP', 'KGC', 'SGI', 'SUN' }, 'url' : 'extensions/EXT/EXT_convolution.txt', }, 'GL_EXT_coordinate_frame' : { 'number' : 156, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_coordinate_frame.txt', }, 'GL_EXT_copy_image' : { 'esnumber' : 175, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_copy_image.txt', }, 'GL_EXT_copy_texture' : { 'number' : 10, 'flags' : { 'public' }, 'supporters' : { 'ES', 'HP', 'SGI' }, 'url' : 'extensions/EXT/EXT_copy_texture.txt', }, 'GLX_EXT_create_context_es2_profile' : { 'number' : 399, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/GLX_EXT_create_context_es2_profile.txt', 'alias' : { 'GLX_EXT_create_context_es_profile' }, }, 'GL_EXT_cull_vertex' : { 'number' : 98, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'SGI' }, 'url' : 'extensions/EXT/EXT_cull_vertex.txt', }, 'GL_EXT_debug_label' : { 'number' : 439, 'esnumber' : 98, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/EXT/EXT_debug_label.txt', }, 'GL_EXT_debug_marker' : { 'number' : 440, 'esnumber' : 99, 'flags' : { 'public' }, 'supporters' : { 'APPLE' }, 'url' : 'extensions/EXT/EXT_debug_marker.txt', }, 'GL_EXT_depth_bounds_test' : { 'number' : 297, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_depth_bounds_test.txt', }, 'GL_EXT_direct_state_access' : { 'number' : 353, 'flags' : { 'public' }, 'supporters' : { 'Blizzard', 'NVIDIA', 'S3', 'TransGaming' }, 'url' : 'extensions/EXT/EXT_direct_state_access.txt', }, 'GL_EXT_discard_framebuffer' : { 'esnumber' : 64, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_discard_framebuffer.txt', }, 'GL_EXT_disjoint_timer_query' : { 'esnumber' : 150, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_disjoint_timer_query.txt', }, 'GL_EXT_draw_buffers' : { 'esnumber' : 151, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_draw_buffers.txt', }, 'GL_EXT_draw_buffers2' : { 'number' : 340, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_draw_buffers2.txt', }, 'GL_EXT_draw_buffers_indexed' : { 'esnumber' : 176, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_draw_buffers_indexed.txt', }, 'GL_EXT_draw_elements_base_vertex' : { 'esnumber' : 204, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_draw_elements_base_vertex.txt', }, 'GL_EXT_draw_instanced' : { 'number' : 327, 'esnumber' : 157, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_draw_instanced.txt', }, 'GL_EXT_draw_range_elements' : { 'number' : 112, 'flags' : { 'public' }, 'supporters' : { 'MS' }, 'url' : 'extensions/EXT/EXT_draw_range_elements.txt', }, 'GL_EXT_draw_transform_feedback' : { 'esnumber' : 272, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_draw_transform_feedback.txt', }, 'GL_EXT_external_buffer' : { 'number' : 508, 'esnumber' : 284, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_external_buffer.txt', }, 'GL_EXT_EGL_image_array' : { 'esnumber' : 278, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_EGL_image_array.txt', }, 'GL_EXT_EGL_image_external_wrap_modes' : { 'esnumber' : 298, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_EGL_image_external_wrap_modes.txt', }, 'GL_EXT_EGL_image_storage' : { 'number' : 522, 'esnumber' : 301, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_EGL_image_storage.txt', }, 'GL_EXT_memory_object' : { 'number' : 503, 'esnumber' : 280, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_external_objects.txt', 'alias' : { 'GL_EXT_semaphore' }, }, 'GL_EXT_memory_object_fd' : { 'number' : 504, 'esnumber' : 281, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_external_objects_fd.txt', 'alias' : { 'GL_EXT_semaphore_fd' }, }, 'GL_EXT_memory_object_win32' : { 'number' : 505, 'esnumber' : 282, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_external_objects_win32.txt', 'alias' : { 'GL_EXT_semaphore_win32' }, }, 'GL_EXT_float_blend' : { 'esnumber' : 224, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_float_blend.txt', }, 'GL_EXT_fog_coord' : { 'number' : 149, 'flags' : { 'public' }, 'supporters' : { '3DFX', 'NVIDIA', 'REND' }, 'url' : 'extensions/EXT/EXT_fog_coord.txt', }, 'GL_EXT_frag_depth' : { 'esnumber' : 86, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_frag_depth.txt', }, 'GL_EXT_fragment_lighting' : { 'number' : 102, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/EXT/EXT_fragment_lighting.txt', }, 'GL_EXT_framebuffer_blit' : { 'number' : 316, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_framebuffer_blit.txt', }, 'GL_EXT_framebuffer_multisample' : { 'number' : 317, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_framebuffer_multisample.txt', }, 'GL_EXT_framebuffer_multisample_blit_scaled' : { 'number' : 409, 'flags' : { 'public' }, 'supporters' : { 'APPLE', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_framebuffer_multisample_blit_scaled.txt', }, 'GL_EXT_framebuffer_object' : { 'number' : 310, 'flags' : { 'public' }, 'supporters' : { '3DL', 'ATI', 'INTEL', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_framebuffer_object.txt', }, 'GL_EXT_framebuffer_sRGB' : { 'number' : 337, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_framebuffer_sRGB.txt', 'alias' : { 'GLX_EXT_framebuffer_sRGB', 'WGL_EXT_framebuffer_sRGB' }, }, 'GL_EXT_geometry_shader' : { 'esnumber' : 177, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_geometry_shader.txt', 'alias' : { 'GL_EXT_geometry_point_size' }, }, 'GL_EXT_geometry_shader4' : { 'number' : 324, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_geometry_shader4.txt', }, 'GLX_EXT_stereo_tree' : { 'number' : 452, 'flags' : { 'public' }, 'url' : 'extensions/EXT/GLX_EXT_stereo_tree.txt', }, 'GL_EXT_gpu_program_parameters' : { 'number' : 320, 'flags' : { 'public' }, 'supporters' : { 'APPLE', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_gpu_program_parameters.txt', }, 'GL_EXT_gpu_shader4' : { 'number' : 326, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_gpu_shader4.txt', }, 'GL_EXT_gpu_shader5' : { 'esnumber' : 178, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_gpu_shader5.txt', }, 'GL_EXT_histogram' : { 'number' : 11, 'flags' : { 'public' }, 'supporters' : { 'INGR', 'KGC', 'SGI', 'SUN' }, 'url' : 'extensions/EXT/EXT_histogram.txt', }, 'GLX_EXT_import_context' : { 'number' : 47, 'flags' : { 'public' }, 'supporters' : { 'IBM', 'SGI' }, 'url' : 'extensions/EXT/GLX_EXT_import_context.txt', }, 'GL_EXT_index_array_formats' : { 'number' : 96, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'SGI' }, 'url' : 'extensions/EXT/EXT_index_array_formats.txt', }, 'GL_EXT_index_func' : { 'number' : 95, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'SGI' }, 'url' : 'extensions/EXT/EXT_index_func.txt', }, 'GL_EXT_index_material' : { 'number' : 94, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'SGI' }, 'url' : 'extensions/EXT/EXT_index_material.txt', }, 'GL_EXT_index_texture' : { 'number' : 93, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'SGI' }, 'url' : 'extensions/EXT/EXT_index_texture.txt', }, 'GL_EXT_instanced_arrays' : { 'esnumber' : 156, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_instanced_arrays.txt', }, 'GLX_EXT_libglvnd' : { 'number' : 482, 'flags' : { 'public' }, 'url' : 'extensions/EXT/GLX_EXT_libglvnd.txt', }, 'GL_EXT_light_texture' : { 'number' : 117, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/EXT/EXT_light_texture.txt', }, 'GL_EXT_map_buffer_range' : { 'esnumber' : 121, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_map_buffer_range.txt', }, 'GL_EXT_misc_attribute' : { 'number' : 31, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_misc_attribute.txt', }, 'GL_EXT_multi_draw_arrays' : { 'number' : 148, 'esnumber' : 69, 'flags' : { 'public' }, 'supporters' : { 'IBM', 'IMG', 'SUN' }, 'url' : 'extensions/EXT/EXT_multi_draw_arrays.txt', 'alias' : { 'GL_SUN_multi_draw_arrays' }, }, 'GL_EXT_multi_draw_indirect' : { 'esnumber' : 205, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_multi_draw_indirect.txt', }, 'GL_EXT_multiple_textures' : { 'flags' : { 'obsolete' }, 'url' : 'extensions/EXT/EXT_multiple_textures.txt', }, 'GL_EXT_multisample_compatibility' : { 'esnumber' : 248, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_multisample_compatibility.txt', }, 'GL_EXT_multisampled_render_to_texture' : { 'esnumber' : 106, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_multisampled_render_to_texture.txt', }, 'GL_EXT_multisampled_render_to_texture2' : { 'esnumber' : 275, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_multisampled_render_to_texture2.txt', }, 'GL_EXT_multiview_draw_buffers' : { 'esnumber' : 125, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_multiview_draw_buffers.txt', }, 'GLU_EXT_nurbs_tessellator' : { 'number' : 100, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/EXT/GLU_EXT_nurbs_tessellator.txt', }, 'GLU_EXT_object_space_tess' : { 'number' : 75, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/EXT/GLU_EXT_object_space_tess.txt', }, 'GL_EXT_occlusion_query_boolean' : { 'esnumber' : 100, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_occlusion_query_boolean.txt', }, 'GL_EXT_packed_depth_stencil' : { 'number' : 312, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_packed_depth_stencil.txt', }, 'GL_EXT_packed_float' : { 'number' : 328, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_packed_float.txt', 'alias' : { 'GLX_EXT_fbconfig_packed_float', 'WGL_EXT_pixel_format_packed_float' }, }, 'GL_EXT_packed_pixels' : { 'number' : 23, 'flags' : { 'public' }, 'supporters' : { 'ES', 'INGR', 'SGI' }, 'url' : 'extensions/EXT/EXT_packed_pixels.txt', }, 'GL_EXT_paletted_texture' : { 'number' : 78, 'flags' : { 'public' }, 'supporters' : { 'MS', 'SGI' }, 'url' : 'extensions/EXT/EXT_paletted_texture.txt', }, 'GL_EXT_pixel_buffer_object' : { 'number' : 302, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_pixel_buffer_object.txt', }, 'GL_EXT_pixel_transform' : { 'number' : 138, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SUN' }, 'url' : 'extensions/EXT/EXT_pixel_transform.txt', }, 'GL_EXT_pixel_transform_color_table' : { 'number' : 139, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SUN' }, 'url' : 'extensions/EXT/EXT_pixel_transform_color_table.txt', }, 'GL_EXT_point_parameters' : { 'number' : 54, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/EXT/EXT_point_parameters.txt', }, 'GL_EXT_polygon_offset' : { 'number' : 3, 'flags' : { 'public' }, 'supporters' : { 'HP', 'IBM', 'INGR', 'KGC', 'SGI' }, 'url' : 'extensions/EXT/EXT_polygon_offset.txt', }, 'GL_EXT_polygon_offset_clamp' : { 'number' : 460, 'esnumber' : 252, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_polygon_offset_clamp.txt', }, 'GL_EXT_post_depth_coverage' : { 'number' : 461, 'esnumber' : 225, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_post_depth_coverage.txt', }, 'GL_EXT_primitive_bounding_box' : { 'esnumber' : 186, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_primitive_bounding_box.txt', }, 'GL_EXT_protected_textures' : { 'esnumber' : 256, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_protected_textures.txt', }, 'GL_EXT_provoking_vertex' : { 'number' : 364, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA', 'TransGaming' }, 'url' : 'extensions/EXT/EXT_provoking_vertex.txt', }, 'GL_EXT_pvrtc_sRGB' : { 'esnumber' : 155, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_pvrtc_sRGB.txt', }, 'GL_EXT_raster_multisample' : { 'number' : 462, 'esnumber' : 226, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_raster_multisample.txt', }, 'GL_EXT_read_format_bgra' : { 'esnumber' : 66, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_read_format_bgra.txt', }, 'GL_EXT_render_snorm' : { 'esnumber' : 206, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_render_snorm.txt', }, 'GL_EXT_rescale_normal' : { 'number' : 27, 'flags' : { 'public' }, 'supporters' : { 'IBM', 'SUN' }, 'url' : 'extensions/EXT/EXT_rescale_normal.txt', }, 'GL_EXT_robustness' : { 'esnumber' : 107, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_robustness.txt', }, 'GL_EXT_sRGB' : { 'esnumber' : 105, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_sRGB.txt', }, 'GL_EXT_sRGB_write_control' : { 'esnumber' : 153, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_sRGB_write_control.txt', }, 'GL_EXT_scene_marker' : { 'number' : 120, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_scene_marker.txt', 'alias' : { 'GLX_EXT_scene_marker' }, }, 'GL_EXT_secondary_color' : { 'number' : 145, 'flags' : { 'public' }, 'supporters' : { '3DFX', 'NVIDIA', 'REND' }, 'url' : 'extensions/EXT/EXT_secondary_color.txt', }, 'GL_EXT_separate_shader_objects' : { 'number' : 377, 'esnumber' : 101, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA', 'TransGaming' }, 'url' : 'extensions/EXT/EXT_separate_shader_objects.gl.txt', 'esurl' : 'extensions/EXT/EXT_separate_shader_objects.gles.txt', 'comments' : 'Different that the OpenGL extension with the same name string.', }, 'GL_EXT_separate_specular_color' : { 'number' : 144, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_separate_specular_color.txt', }, 'GL_EXT_shader_framebuffer_fetch' : { 'number' : 520, 'esnumber' : 122, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_framebuffer_fetch.txt', 'alias' : { 'GL_EXT_shader_framebuffer_fetch_non_coherent' }, }, 'GL_EXT_shader_group_vote' : { 'esnumber' : 254, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_group_vote.txt', }, 'GL_EXT_shader_image_load_formatted' : { 'number' : 449, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_image_load_formatted.txt', }, 'GL_EXT_shader_image_load_store' : { 'number' : 386, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_shader_image_load_store.txt', }, 'GL_EXT_shader_implicit_conversions' : { 'esnumber' : 179, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_implicit_conversions.txt', }, 'GL_EXT_shader_integer_mix' : { 'number' : 437, 'esnumber' : 161, 'flags' : { 'public' }, 'supporters' : { 'INTEL' }, 'url' : 'extensions/EXT/EXT_shader_integer_mix.txt', }, 'GL_EXT_shader_io_blocks' : { 'esnumber' : 180, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_io_blocks.txt', }, 'GL_EXT_shader_non_constant_global_initializers' : { 'esnumber' : 264, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_non_constant_global_initializers.txt', }, 'GL_EXT_shader_pixel_local_storage' : { 'esnumber' : 167, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_pixel_local_storage.txt', }, 'GL_EXT_shader_pixel_local_storage2' : { 'esnumber' : 253, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_pixel_local_storage2.txt', }, 'GL_EXT_shader_texture_lod' : { 'esnumber' : 77, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shader_texture_lod.txt', }, 'GL_EXT_shadow_funcs' : { 'number' : 267, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_shadow_funcs.txt', }, 'GL_EXT_shadow_samplers' : { 'esnumber' : 102, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_shadow_samplers.txt', }, 'GL_EXT_shared_texture_palette' : { 'number' : 141, 'flags' : { 'public' }, 'supporters' : { '3DFX', '3DL', 'SGI' }, 'url' : 'extensions/EXT/EXT_shared_texture_palette.txt', }, 'GL_EXT_sparse_texture' : { 'esnumber' : 240, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_sparse_texture.txt', }, 'GL_EXT_sparse_texture2' : { 'number' : 463, 'esnumber' : 259, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_sparse_texture2.txt', }, 'GL_EXT_static_vertex_array' : { 'flags' : { 'public' }, 'supporters' : { 'IBM' }, 'url' : 'extensions/EXT/EXT_static_vertex_array.txt', }, 'GL_EXT_stencil_clear_tag' : { 'number' : 314, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_stencil_clear_tag.txt', }, 'GL_EXT_stencil_two_side' : { 'number' : 268, 'flags' : { 'public' }, 'supporters' : { 'APPLE', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_stencil_two_side.txt', }, 'GL_EXT_stencil_wrap' : { 'number' : 176, 'flags' : { 'public' }, 'supporters' : { 'INGR', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_stencil_wrap.txt', }, 'GL_EXT_subtexture' : { 'number' : 9, 'flags' : { 'public' }, 'supporters' : { 'HP', 'IBM', 'INGR', 'KGC', 'SGI' }, 'url' : 'extensions/EXT/EXT_subtexture.txt', }, 'GL_EXT_swap_control' : { 'number' : 375, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_swap_control.txt', }, 'GLX_EXT_swap_control_tear' : { 'number' : 414, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/GLX_EXT_swap_control_tear.txt', }, 'GL_EXT_tessellation_shader' : { 'esnumber' : 181, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_tessellation_shader.txt', 'alias' : { 'GL_EXT_tessellation_point_size' }, }, 'GL_EXT_texenv_op' : { 'flags' : { 'obsolete' }, 'url' : 'extensions/EXT/EXT_texenv_op.txt', 'comments' : 'Evolved into EXT_texture_env_combine.', }, 'GL_EXT_texture' : { 'number' : 4, 'flags' : { 'public' }, 'supporters' : { 'HP', 'INGR', 'KGC', 'SGI' }, 'url' : 'extensions/EXT/EXT_texture.txt', }, 'GL_EXT_texture3D' : { 'number' : 6, 'flags' : { 'public' }, 'supporters' : { 'ES', 'HP', 'IBM', 'SGI', 'SUN' }, 'url' : 'extensions/EXT/EXT_texture3D.txt', }, 'GL_EXT_texture_array' : { 'number' : 329, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_array.txt', }, 'GL_EXT_texture_border_clamp' : { 'esnumber' : 182, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_border_clamp.txt', }, 'GL_EXT_texture_buffer' : { 'esnumber' : 183, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_buffer.txt', }, 'GL_EXT_texture_buffer_object' : { 'number' : 330, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_buffer_object.txt', }, 'GL_EXT_texture_compression_astc_decode_mode' : { 'esnumber' : 276, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_compression_astc_decode_mode.txt', 'alias' : { 'GL_EXT_texture_compression_astc_decode_mode_rgb9e5' }, }, 'GL_EXT_texture_compression_bptc' : { 'esnumber' : 287, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_compression_bptc.txt', }, 'GL_EXT_texture_compression_dxt1' : { 'number' : 309, 'esnumber' : 49, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_compression_dxt1.txt', }, 'GL_EXT_texture_compression_latc' : { 'number' : 331, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_compression_latc.txt', }, 'GL_EXT_texture_compression_rgtc' : { 'number' : 332, 'esnumber' : 286, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_compression_rgtc.txt', }, 'GL_EXT_texture_compression_s3tc' : { 'number' : 198, 'esnumber' : 154, 'flags' : { 'public' }, 'supporters' : { 'INTEL', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_compression_s3tc.txt', }, 'GL_EXT_texture_compression_s3tc_srgb' : { 'esnumber' : 289, 'flags' : { 'public' }, 'supporters' : { 'ANGLE' }, 'url' : 'extensions/EXT/EXT_texture_compression_s3tc_srgb.txt', }, 'GL_EXT_texture_cube_map' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/EXT/EXT_texture_cube_map.txt', 'comments' : 'Extension shipped but was not fully specified. Similar to ARB_texture_cube_map.', }, 'GL_EXT_texture_cube_map_array' : { 'esnumber' : 184, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_cube_map_array.txt', }, 'GL_EXT_texture_env' : { 'number' : 146, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_env.txt', }, 'GL_EXT_texture_env_add' : { 'number' : 185, 'flags' : { 'public' }, 'supporters' : { 'ATI', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_env_add.txt', }, 'GL_EXT_texture_env_combine' : { 'number' : 158, 'flags' : { 'public' }, 'supporters' : { 'ATI', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_env_combine.txt', }, 'GL_EXT_texture_env_dot3' : { 'number' : 220, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/EXT/EXT_texture_env_dot3.txt', }, 'GL_EXT_texture_filter_anisotropic' : { 'number' : 187, 'esnumber' : 41, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_filter_anisotropic.txt', }, 'GL_EXT_texture_filter_minmax' : { 'number' : 464, 'esnumber' : 227, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_filter_minmax.txt', }, 'GL_EXT_texture_format_BGRA8888' : { 'esnumber' : 51, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_format_BGRA8888.txt', }, 'GL_EXT_texture_format_sRGB_override' : { 'esnumber' : 299, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_format_sRGB_override.txt', }, 'GLX_EXT_texture_from_pixmap' : { 'number' : 344, 'flags' : { 'public' }, 'supporters' : { 'MESA', 'NVIDIA' }, 'url' : 'extensions/EXT/GLX_EXT_texture_from_pixmap.txt', }, 'GL_EXT_texture_integer' : { 'number' : 343, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_integer.txt', }, 'GL_EXT_texture_lod_bias' : { 'number' : 186, 'esnumber' : 60, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_lod_bias.txt', }, 'GL_EXT_texture_mirror_clamp' : { 'number' : 298, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_mirror_clamp.txt', }, 'GL_EXT_texture_mirror_clamp_to_edge' : { 'esnumber' : 291, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_mirror_clamp_to_edge.txt', }, 'GL_EXT_texture_norm16' : { 'esnumber' : 207, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_norm16.txt', }, 'GL_EXT_texture_object' : { 'number' : 20, 'flags' : { 'public' }, 'supporters' : { 'IBM', 'INGR', 'KGC', 'SGI' }, 'url' : 'extensions/EXT/EXT_texture_object.txt', }, 'GL_EXT_texture_perturb_normal' : { 'number' : 147, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_perturb_normal.txt', }, 'GL_EXT_texture_rg' : { 'esnumber' : 103, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_rg.txt', }, 'GL_EXT_texture_sRGB' : { 'number' : 315, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_sRGB.txt', }, 'GL_EXT_texture_sRGB_R8' : { 'esnumber' : 221, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_sRGB_R8.txt', }, 'GL_EXT_texture_sRGB_RG8' : { 'esnumber' : 223, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_sRGB_RG8.txt', }, 'GL_EXT_texture_sRGB_decode' : { 'number' : 402, 'esnumber' : 152, 'flags' : { 'public' }, 'supporters' : { 'APPLE', 'CodeWeavers', 'NVIDIA', 'TransGaming' }, 'url' : 'extensions/EXT/EXT_texture_sRGB_decode.txt', }, 'GL_EXT_texture_shared_exponent' : { 'number' : 333, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_shared_exponent.txt', }, 'GL_EXT_texture_snorm' : { 'number' : 365, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA', 'TransGaming' }, 'url' : 'extensions/EXT/EXT_texture_snorm.txt', }, 'GL_EXT_texture_storage' : { 'esnumber' : 108, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_storage.txt', }, 'GL_EXT_texture_swizzle' : { 'number' : 356, 'flags' : { 'public' }, 'supporters' : { 'IdSoftware', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_texture_swizzle.txt', }, 'GL_EXT_texture_type_2_10_10_10_REV' : { 'esnumber' : 42, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_type_2_10_10_10_REV.txt', }, 'GL_EXT_texture_view' : { 'esnumber' : 185, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_texture_view.txt', }, 'GL_EXT_timer_query' : { 'number' : 319, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_timer_query.txt', }, 'GL_EXT_transform_feedback' : { 'number' : 352, 'flags' : { 'public' }, 'supporters' : { 'APPLE', 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_transform_feedback.txt', }, 'GL_EXT_transform_feedback2' : { 'flags' : { 'incomplete', 'obsolete' }, 'url' : 'extensions/EXT/EXT_transform_feedback2.txt', 'comments' : 'Draft extension which is referred to by some other vendor extensions, but shipped as ARB_transform_feedback2.', }, 'GL_EXT_unpack_subimage' : { 'esnumber' : 90, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_unpack_subimage.txt', }, 'GL_EXT_vertex_array' : { 'number' : 30, 'flags' : { 'public' }, 'supporters' : { 'DEC', 'HP', 'IBM', 'INGR', 'KGC', 'SGI' }, 'url' : 'extensions/EXT/EXT_vertex_array.txt', }, 'GL_EXT_vertex_array_bgra' : { 'number' : 354, 'flags' : { 'public' }, 'supporters' : { 'Blizzard', 'NVIDIA', 'S3', 'TransGaming' }, 'url' : 'extensions/EXT/EXT_vertex_array_bgra.txt', }, 'GL_EXT_vertex_array_set' : { 'flags' : { 'public' }, 'supporters' : { 'IBM' }, 'url' : 'extensions/EXT/EXT_vertex_array_set.txt', }, 'GL_EXT_vertex_array_setXXX' : { 'flags' : { 'public' }, 'supporters' : { 'IBM' }, 'url' : 'extensions/EXT/EXT_vertex_array_setXXX.txt', }, 'GL_EXT_vertex_attrib_64bit' : { 'number' : 387, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_vertex_attrib_64bit.txt', }, 'GL_EXT_vertex_shader' : { 'number' : 248, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_vertex_shader.txt', }, 'GL_EXT_vertex_weighting' : { 'number' : 188, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_vertex_weighting.txt', }, 'GLX_EXT_visual_info' : { 'number' : 28, 'flags' : { 'public' }, 'supporters' : { 'IBM', 'KGC', 'SGI' }, 'url' : 'extensions/EXT/GLX_EXT_visual_info.txt', }, 'GLX_EXT_visual_rating' : { 'number' : 44, 'flags' : { 'public' }, 'supporters' : { 'HP', 'IBM', 'SGI' }, 'url' : 'extensions/EXT/GLX_EXT_visual_rating.txt', }, 'GL_EXT_win32_keyed_mutex' : { 'number' : 506, 'esnumber' : 283, 'flags' : { 'public' }, 'url' : 'extensions/EXT/EXT_win32_keyed_mutex.txt', }, 'GL_EXT_window_rectangles' : { 'number' : 490, 'esnumber' : 263, 'flags' : { 'public' }, 'supporters' : { 'GOOGLE', 'NVIDIA', 'VMware' }, 'url' : 'extensions/EXT/EXT_window_rectangles.txt', }, 'GL_EXT_x11_sync_object' : { 'number' : 406, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/EXT_x11_sync_object.txt', }, 'GL_FJ_shader_binary_GCCSO' : { 'esnumber' : 114, 'flags' : { 'public' }, 'url' : 'extensions/FJ/FJ_shader_binary_GCCSO.txt', }, 'GL_GREMEDY_frame_terminator' : { 'number' : 345, 'flags' : { 'public' }, 'supporters' : { 'GREMEDY' }, 'url' : 'extensions/GREMEDY/GREMEDY_frame_terminator.txt', }, 'GL_GREMEDY_string_marker' : { 'number' : 311, 'flags' : { 'public' }, 'supporters' : { 'GREMEDY' }, 'url' : 'extensions/GREMEDY/GREMEDY_string_marker.txt', }, 'GL_HP_convolution_border_modes' : { 'number' : 67, 'flags' : { 'public' }, 'supporters' : { 'HP' }, 'url' : 'extensions/HP/HP_convolution_border_modes.txt', }, 'GL_HP_image_transform' : { 'number' : 66, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SUN' }, 'url' : 'extensions/HP/HP_image_transform.txt', }, 'GL_HP_occlusion_test' : { 'number' : 137, 'flags' : { 'public' }, 'supporters' : { 'HP' }, 'url' : 'extensions/HP/HP_occlusion_test.txt', }, 'GL_HP_texture_lighting' : { 'number' : 111, 'flags' : { 'public' }, 'supporters' : { 'HP' }, 'url' : 'extensions/HP/HP_texture_lighting.txt', }, 'GL_IBM_cull_vertex' : { 'number' : 199, 'flags' : { 'public' }, 'supporters' : { 'IBM' }, 'url' : 'extensions/IBM/IBM_cull_vertex.txt', }, 'GL_IBM_multimode_draw_arrays' : { 'number' : 200, 'flags' : { 'public' }, 'supporters' : { 'IBM' }, 'url' : 'extensions/IBM/IBM_multimode_draw_arrays.txt', }, 'GL_IBM_rasterpos_clip' : { 'number' : 110, 'flags' : { 'public' }, 'supporters' : { 'IBM' }, 'url' : 'extensions/IBM/IBM_rasterpos_clip.txt', }, 'GL_IBM_static_data' : { 'number' : 223, 'flags' : { 'public' }, 'url' : 'extensions/IBM/IBM_static_data.txt', }, 'GL_IBM_texture_mirrored_repeat' : { 'number' : 224, 'flags' : { 'public' }, 'url' : 'extensions/IBM/IBM_texture_mirrored_repeat.txt', }, 'GL_IBM_vertex_array_lists' : { 'number' : 201, 'flags' : { 'public' }, 'supporters' : { 'IBM' }, 'url' : 'extensions/IBM/IBM_vertex_array_lists.txt', }, 'GL_IGLOO_swap_triangle_strip_vertex_pointerXXX' : { 'flags' : { 'incomplete', 'obsolete' }, 'url' : 'extensions/IGLOO/IGLOO_swap_triangle_strip_vertex_pointerXXX.txt', }, 'GL_IGLOO_toggle_color_and_lightXXX' : { 'flags' : { 'incomplete', 'obsolete' }, 'url' : 'extensions/IGLOO/IGLOO_toggle_color_and_lightXXX.txt', }, 'GL_IGLOO_viewport_offsetXXX' : { 'flags' : { 'incomplete', 'obsolete' }, 'url' : 'extensions/IGLOO/IGLOO_viewport_offsetXXX.txt', }, 'GL_IMG_bindless_texture' : { 'esnumber' : 270, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_bindless_texture.txt', }, 'GL_IMG_framebuffer_downsample' : { 'esnumber' : 255, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_framebuffer_downsample.txt', }, 'GL_IMG_multisampled_render_to_texture' : { 'esnumber' : 74, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_multisampled_render_to_texture.txt', }, 'GL_IMG_program_binary' : { 'esnumber' : 67, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_program_binary.txt', }, 'GL_IMG_read_format' : { 'esnumber' : 53, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_read_format.txt', }, 'GL_IMG_shader_binary' : { 'esnumber' : 68, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_shader_binary.txt', }, 'GL_IMG_texture_compression_pvrtc' : { 'esnumber' : 54, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_texture_compression_pvrtc.txt', }, 'GL_IMG_texture_compression_pvrtc2' : { 'esnumber' : 140, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_texture_compression_pvrtc2.txt', }, 'GL_IMG_texture_env_enhanced_fixed_function' : { 'esnumber' : 58, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_texture_env_enhanced_fixed_function.txt', }, 'GL_IMG_texture_filter_cubic' : { 'esnumber' : 251, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_texture_filter_cubic.txt', }, 'GL_IMG_user_clip_plane' : { 'esnumber' : 57, 'flags' : { 'public' }, 'url' : 'extensions/IMG/IMG_user_clip_plane.txt', }, 'GL_INGR_color_clamp' : { 'number' : 174, 'flags' : { 'public' }, 'supporters' : { 'INGR' }, 'url' : 'extensions/INGR/INGR_color_clamp.txt', }, 'GL_INGR_interlace_read' : { 'number' : 175, 'flags' : { 'public' }, 'supporters' : { 'INGR' }, 'url' : 'extensions/INGR/INGR_interlace_read.txt', }, 'GL_INTEL_conservative_rasterization' : { 'number' : 491, 'esnumber' : 265, 'flags' : { 'public' }, 'supporters' : { 'INTEL' }, 'url' : 'extensions/INTEL/INTEL_conservative_rasterization.txt', }, 'GL_INTEL_fragment_shader_ordering' : { 'number' : 441, 'flags' : { 'public' }, 'supporters' : { 'INTEL' }, 'url' : 'extensions/INTEL/INTEL_fragment_shader_ordering.txt', }, 'GL_INTEL_framebuffer_CMAA' : { 'number' : 481, 'esnumber' : 246, 'flags' : { 'public' }, 'url' : 'extensions/INTEL/INTEL_framebuffer_CMAA.txt', }, 'GL_INTEL_map_texture' : { 'number' : 429, 'flags' : { 'public' }, 'supporters' : { 'INTEL' }, 'url' : 'extensions/INTEL/INTEL_map_texture.txt', }, 'GL_INTEL_blackhole_render' : { 'number' : 521, 'esnumber' : 300, 'flags' : { 'public' }, 'supporters' : { 'INTEL' }, 'url' : 'extensions/INTEL/INTEL_blackhole_render.txt', }, 'GL_INTEL_parallel_arrays' : { 'number' : 136, 'flags' : { 'public' }, 'supporters' : { 'INTEL' }, 'url' : 'extensions/INTEL/INTEL_parallel_arrays.txt', }, 'GL_INTEL_performance_query' : { 'number' : 443, 'esnumber' : 164, 'flags' : { 'public' }, 'url' : 'extensions/INTEL/INTEL_performance_query.txt', }, 'GLX_INTEL_swap_event' : { 'number' : 384, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/INTEL/GLX_INTEL_swap_event.txt', }, 'GL_INTEL_texture_scissor' : { 'number' : 135, 'flags' : { 'public' }, 'supporters' : { 'INTEL' }, 'url' : 'extensions/INTEL/INTEL_texture_scissor.txt', }, 'GL_KHR_blend_equation_advanced' : { 'arbnumber' : 174, 'esnumber' : 168, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_blend_equation_advanced.txt', 'alias' : { 'GL_KHR_blend_equation_advanced_coherent' }, }, 'GL_KHR_context_flush_control' : { 'arbnumber' : 168, 'esnumber' : 191, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_context_flush_control.txt', 'alias' : { 'GLX_ARB_context_flush_control', 'WGL_ARB_context_flush_control' }, }, 'GL_KHR_debug' : { 'arbnumber' : 119, 'esnumber' : 118, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_debug.txt', }, 'GL_KHR_no_error' : { 'arbnumber' : 175, 'esnumber' : 243, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_no_error.txt', }, 'GL_KHR_parallel_shader_compile' : { 'arbnumber' : 192, 'esnumber' : 288, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_parallel_shader_compile.txt', }, 'GL_KHR_robust_buffer_access_behavior' : { 'arbnumber' : 169, 'esnumber' : 189, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_robust_buffer_access_behavior.txt', }, 'GL_KHR_robustness' : { 'arbnumber' : 170, 'esnumber' : 190, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_robustness.txt', }, 'GL_KHR_texture_compression_astc_hdr' : { 'arbnumber' : 118, 'esnumber' : 117, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_texture_compression_astc_hdr.txt', 'alias' : { 'GL_KHR_texture_compression_astc_ldr' }, }, 'GL_KHR_texture_compression_astc_sliced_3d' : { 'arbnumber' : 189, 'esnumber' : 249, 'flags' : { 'public' }, 'url' : 'extensions/KHR/KHR_texture_compression_astc_sliced_3d.txt', }, 'GL_MESAX_texture_stack' : { 'number' : 318, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESAX/MESAX_texture_stack.txt', }, 'GLX_MESA_agp_offset' : { 'number' : 308, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/GLX_MESA_agp_offset.txt', }, 'GLX_MESA_copy_sub_buffer' : { 'number' : 215, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/GLX_MESA_copy_sub_buffer.txt', }, 'GL_MESA_pack_invert' : { 'number' : 300, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/MESA_pack_invert.txt', }, 'GLX_MESA_pixmap_colormap' : { 'number' : 216, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/GLX_MESA_pixmap_colormap.txt', }, 'GL_MESA_program_binary_formats' : { 'number' : 516, 'esnumber' : 294, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/MESA_program_binary_formats.txt', }, 'GLX_MESA_query_renderer' : { 'number' : 446, 'flags' : { 'public' }, 'url' : 'extensions/MESA/GLX_MESA_query_renderer.txt', }, 'GLX_MESA_release_buffers' : { 'number' : 217, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/GLX_MESA_release_buffers.txt', }, 'GL_MESA_resize_buffers' : { 'number' : 196, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/MESA_resize_buffers.txt', }, 'GLX_MESA_set_3dfx_mode' : { 'number' : 218, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/GLX_MESA_set_3dfx_mode.txt', }, 'GL_MESA_shader_integer_functions' : { 'number' : 495, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/MESA_shader_integer_functions.txt', }, 'GLX_MESA_swap_control' : { 'number' : 514, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/GLX_MESA_swap_control.txt', }, 'GL_MESA_tile_raster_order' : { 'number' : 515, 'esnumber' : 292, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/MESA_tile_raster_order.txt', }, 'GL_MESA_window_pos' : { 'number' : 197, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/MESA_window_pos.txt', }, 'GL_MESA_ycbcr_texture' : { 'number' : 301, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/MESA/MESA_ycbcr_texture.txt', }, 'GL_MTK_program_binary' : { 'esnumber' : 245, 'flags' : { 'incomplete', 'private' }, 'url' : 'drafts/MTK/MTK_program_binary.txt', }, 'GL_MTK_shader_binary' : { 'esnumber' : 244, 'flags' : { 'incomplete', 'private' }, 'url' : 'drafts/MTK/MTK_shader_binary.txt', }, 'GL_NVX_blend_equation_advanced_multi_draw_buffers' : { 'number' : 492, 'esnumber' : 266, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NVX/NVX_blend_equation_advanced_multi_draw_buffers.txt', }, 'GL_NVX_conditional_render' : { 'number' : 425, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NVX/NVX_conditional_render.txt', }, 'GL_NVX_gpu_memory_info' : { 'number' : 438, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NVX/NVX_gpu_memory_info.txt', }, 'GL_NVX_linked_gpu_multicast' : { 'number' : 493, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NVX/NVX_linked_gpu_multicast.txt', }, 'GL_NV_3dvision_settings' : { 'esnumber' : 129, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_3dvision_settings.txt', }, 'GL_NV_EGL_stream_consumer_external' : { 'esnumber' : 104, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_EGL_stream_consumer_external.txt', }, 'GL_NV_alpha_to_coverage_dither_control' : { 'number' : 500, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_alpha_to_coverage_dither_control.txt', }, 'GL_NV_bgr' : { 'esnumber' : 135, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_bgr.txt', }, 'GL_NV_bindless_multi_draw_indirect' : { 'number' : 432, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_bindless_multi_draw_indirect.txt', }, 'GL_NV_bindless_multi_draw_indirect_count' : { 'number' : 456, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_bindless_multi_draw_indirect_count.txt', }, 'GL_NV_bindless_texture' : { 'number' : 418, 'esnumber' : 197, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_bindless_texture.txt', }, 'GL_NV_blend_equation_advanced' : { 'number' : 433, 'esnumber' : 163, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_blend_equation_advanced.txt', 'alias' : { 'GL_NV_blend_equation_advanced_coherent' }, }, 'GL_NV_blend_minmax_factor' : { 'number' : 510, 'esnumber' : 285, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_blend_minmax_factor.txt', }, 'GL_NV_blend_square' : { 'number' : 194, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_blend_square.txt', }, 'GL_NV_clip_space_w_scaling' : { 'number' : 486, 'esnumber' : 295, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_clip_space_w_scaling.txt', }, 'GL_NV_command_list' : { 'number' : 477, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_command_list.txt', }, 'GL_NV_compute_program5' : { 'number' : 421, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_compute_program5.txt', }, 'GL_NV_conditional_render' : { 'number' : 346, 'esnumber' : 198, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_conditional_render.txt', }, 'GL_NV_conservative_raster' : { 'number' : 465, 'esnumber' : 228, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_conservative_raster.txt', }, 'GL_NV_conservative_raster_dilate' : { 'number' : 480, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_conservative_raster_dilate.txt', }, 'GL_NV_conservative_raster_pre_snap' : { 'number' : 517, 'esnumber' : 297, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_conservative_raster_pre_snap.txt', }, 'GL_NV_conservative_raster_pre_snap_triangles' : { 'number' : 487, 'esnumber' : 262, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_conservative_raster_pre_snap_triangles.txt', }, 'GL_NV_conservative_raster_underestimation' : { 'number' : 518, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_conservative_raster_underestimation.txt', }, 'GLX_NV_copy_buffer' : { 'number' : 457, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/GLX_NV_copy_buffer.txt', }, 'GL_NV_copy_buffer' : { 'esnumber' : 158, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_copy_buffer.txt', }, 'GL_NV_copy_depth_to_color' : { 'number' : 243, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_copy_depth_to_color.txt', }, 'GL_NV_copy_image' : { 'number' : 376, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_copy_image.txt', 'alias' : { 'GLX_NV_copy_image', 'WGL_NV_copy_image' }, }, 'GL_NV_coverage_sample' : { 'esnumber' : 72, 'flags' : { 'public' }, 'url' : '../EGL/extensions/NV/EGL_NV_coverage_sample.txt', }, 'GL_NV_deep_texture3D' : { 'number' : 424, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_deep_texture3D.txt', }, 'GLX_NV_delay_before_swap' : { 'number' : 445, 'flags' : { 'public' }, 'url' : 'extensions/NV/GLX_NV_delay_before_swap.txt', }, 'GL_NV_depth_buffer_float' : { 'number' : 334, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_depth_buffer_float.txt', }, 'GL_NV_depth_clamp' : { 'number' : 260, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_depth_clamp.txt', }, 'GL_NV_depth_nonlinear' : { 'esnumber' : 73, 'flags' : { 'public' }, 'url' : '../EGL/extensions/NV/EGL_NV_depth_nonlinear.txt', }, 'GL_NV_draw_buffers' : { 'esnumber' : 91, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_draw_buffers.txt', }, 'GL_NV_draw_instanced' : { 'esnumber' : 141, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_draw_instanced.txt', }, 'GL_NV_draw_texture' : { 'number' : 430, 'esnumber' : 126, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_draw_texture.txt', }, 'GL_NV_draw_vulkan_image' : { 'number' : 501, 'esnumber' : 274, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_draw_vulkan_image.txt', }, 'GL_NV_evaluators' : { 'number' : 225, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_evaluators.txt', }, 'GL_NV_explicit_attrib_location' : { 'esnumber' : 159, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_explicit_attrib_location.txt', }, 'GL_NV_explicit_multisample' : { 'number' : 357, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_explicit_multisample.txt', }, 'GL_NV_fbo_color_attachments' : { 'esnumber' : 92, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_fbo_color_attachments.txt', }, 'GL_NV_fence' : { 'number' : 222, 'esnumber' : 52, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_fence.txt', }, 'GL_NV_fill_rectangle' : { 'number' : 466, 'esnumber' : 232, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_fill_rectangle.txt', }, 'GL_NV_float_buffer' : { 'number' : 281, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_float_buffer.txt', 'alias' : { 'WGL_NV_float_buffer' }, }, 'GL_NV_fog_distance' : { 'number' : 192, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_fog_distance.txt', }, 'GL_NV_fragment_coverage_to_color' : { 'number' : 467, 'esnumber' : 229, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_fragment_coverage_to_color.txt', }, 'GL_NV_fragment_program' : { 'number' : 282, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_fragment_program.txt', }, 'GL_NV_fragment_program2' : { 'number' : 304, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_fragment_program2.txt', }, 'GL_NV_fragment_program4' : { 'number' : 335, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_fragment_program4.txt', }, 'GL_NV_fragment_program_option' : { 'number' : 303, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_fragment_program_option.txt', }, 'GL_NV_fragment_shader_interlock' : { 'number' : 468, 'esnumber' : 230, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_fragment_shader_interlock.txt', }, 'GL_NV_framebuffer_blit' : { 'esnumber' : 142, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_framebuffer_blit.txt', }, 'GL_NV_framebuffer_mixed_samples' : { 'number' : 469, 'esnumber' : 231, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_framebuffer_mixed_samples.txt', }, 'GL_NV_framebuffer_multisample' : { 'esnumber' : 143, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_framebuffer_multisample.txt', }, 'GL_NV_framebuffer_multisample_coverage' : { 'number' : 336, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_framebuffer_multisample_coverage.txt', }, 'GL_NV_generate_mipmap_sRGB' : { 'esnumber' : 144, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_generate_mipmap_sRGB.txt', }, 'GL_NV_geometry_program4' : { 'number' : 323, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_geometry_program4.txt', }, 'GL_NV_geometry_shader4' : { 'number' : 338, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_geometry_shader4.txt', }, 'GL_NV_geometry_shader_passthrough' : { 'number' : 470, 'esnumber' : 233, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_geometry_shader_passthrough.txt', }, 'GL_NV_gpu_multicast' : { 'number' : 494, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_gpu_multicast.txt', }, 'GL_NV_gpu_program4' : { 'number' : 322, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_gpu_program4.txt', }, 'GL_NV_gpu_program5' : { 'number' : 388, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_gpu_program5.txt', }, 'GL_NV_gpu_program5_mem_extended' : { 'number' : 434, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_gpu_program5_mem_extended.txt', }, 'GL_NV_gpu_shader5' : { 'number' : 389, 'esnumber' : 260, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_gpu_shader5.txt', }, 'GL_NV_half_float' : { 'number' : 283, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_half_float.txt', }, 'GL_NV_image_formats' : { 'esnumber' : 200, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_image_formats.txt', }, 'GL_NV_instanced_arrays' : { 'esnumber' : 145, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_instanced_arrays.txt', }, 'GL_NV_internalformat_sample_query' : { 'number' : 475, 'esnumber' : 196, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_internalformat_sample_query.txt', }, 'GL_NV_light_max_exponent' : { 'number' : 189, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_light_max_exponent.txt', }, 'GL_NV_multisample_coverage' : { 'number' : 393, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_multisample_coverage.txt', }, 'GL_NV_multisample_filter_hint' : { 'number' : 259, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_multisample_filter_hint.txt', }, 'GL_NV_non_square_matrices' : { 'esnumber' : 160, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_non_square_matrices.txt', }, 'GL_NV_occlusion_query' : { 'number' : 261, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_occlusion_query.txt', }, 'GL_NV_pack_subimage' : { 'esnumber' : 132, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_pack_subimage.txt', }, 'GL_NV_packed_depth_stencil' : { 'number' : 226, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_packed_depth_stencil.txt', }, 'GL_NV_packed_float' : { 'esnumber' : 127, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_packed_float.txt', }, 'GL_NV_parameter_buffer_object' : { 'number' : 339, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_parameter_buffer_object.txt', }, 'GL_NV_parameter_buffer_object2' : { 'number' : 378, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_parameter_buffer_object2.txt', }, 'GL_NV_path_rendering' : { 'number' : 410, 'esnumber' : 199, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_path_rendering.txt', }, 'GL_NV_path_rendering_shared_edge' : { 'number' : 471, 'esnumber' : 234, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_path_rendering_shared_edge.txt', }, 'GL_NV_pixel_buffer_object' : { 'esnumber' : 134, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_pixel_buffer_object.txt', }, 'GL_NV_pixel_data_range' : { 'number' : 284, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_pixel_data_range.txt', }, 'GL_NV_platform_binary' : { 'esnumber' : 131, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_platform_binary.txt', }, 'GL_NV_point_sprite' : { 'number' : 262, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_point_sprite.txt', }, 'GL_NV_polygon_mode' : { 'esnumber' : 238, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_polygon_mode.txt', }, 'GL_NV_present_video' : { 'number' : 347, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_present_video.txt', 'alias' : { 'GLX_NV_present_video', 'WGL_NV_present_video' }, }, 'GL_NV_primitive_restart' : { 'number' : 285, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_primitive_restart.txt', }, 'GL_NV_query_resource' : { 'number' : 511, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_query_resource.txt', }, 'GL_NV_query_resource_tag' : { 'number' : 512, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_query_resource_tag.txt', }, 'GL_NV_read_buffer' : { 'esnumber' : 93, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_read_buffer.txt', }, 'GL_NV_read_depth_stencil' : { 'esnumber' : 94, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_read_depth_stencil.txt', }, 'GL_NV_register_combiners' : { 'number' : 191, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_register_combiners.txt', }, 'GL_NV_register_combiners2' : { 'number' : 227, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_register_combiners2.txt', }, 'GL_NV_robustness_video_memory_purge' : { 'number' : 484, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_robustness_video_memory_purge.txt', }, 'GL_NV_sRGB_formats' : { 'esnumber' : 148, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_sRGB_formats.txt', }, 'GL_NV_sample_locations' : { 'number' : 472, 'esnumber' : 235, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_sample_locations.txt', }, 'GL_NV_sample_mask_override_coverage' : { 'number' : 473, 'esnumber' : 236, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_sample_mask_override_coverage.txt', }, 'GL_NV_shader_atomic_counters' : { 'number' : 423, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_shader_atomic_counters.txt', }, 'GL_NV_shader_atomic_float' : { 'number' : 419, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_shader_atomic_float.txt', }, 'GL_NV_shader_atomic_float64' : { 'number' : 488, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_shader_atomic_float64.txt', }, 'GL_NV_shader_atomic_fp16_vector' : { 'number' : 474, 'esnumber' : 261, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_shader_atomic_fp16_vector.txt', }, 'GL_NV_shader_atomic_int64' : { 'number' : 455, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_shader_atomic_int64.txt', }, 'GL_NV_shader_buffer_load' : { 'number' : 379, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_shader_buffer_load.txt', }, 'GL_NV_shader_buffer_store' : { 'number' : 390, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_shader_buffer_store.txt', }, 'GL_NV_shader_noperspective_interpolation' : { 'esnumber' : 201, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_shader_noperspective_interpolation.txt', }, 'GL_NV_shader_storage_buffer_object' : { 'number' : 422, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_shader_storage_buffer_object.txt', }, 'GL_NV_shader_thread_group' : { 'number' : 447, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_shader_thread_group.txt', }, 'GL_NV_shader_thread_shuffle' : { 'number' : 448, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_shader_thread_shuffle.txt', }, 'GL_NV_shadow_samplers_array' : { 'esnumber' : 146, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_shadow_samplers_array.txt', }, 'GL_NV_shadow_samplers_cube' : { 'esnumber' : 147, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_shadow_samplers_cube.txt', }, 'GL_NV_stereo_view_rendering' : { 'number' : 489, 'esnumber' : 296, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_stereo_view_rendering.txt', }, 'GLX_NV_swap_group' : { 'number' : 350, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/GLX_NV_swap_group.txt', }, 'GL_NV_tessellation_program5' : { 'number' : 391, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_tessellation_program5.txt', }, 'GL_NV_texgen_emboss' : { 'number' : 193, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texgen_emboss.txt', }, 'GL_NV_texgen_reflection' : { 'number' : 179, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texgen_reflection.txt', }, 'GL_NV_texture_array' : { 'esnumber' : 133, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_texture_array.txt', }, 'GL_NV_texture_barrier' : { 'number' : 381, 'esnumber' : 271, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_barrier.txt', }, 'GL_NV_texture_border_clamp' : { 'esnumber' : 149, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_texture_border_clamp.txt', }, 'GL_NV_texture_compression_latc' : { 'esnumber' : 130, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_texture_compression_latc.txt', }, 'GL_NV_texture_compression_s3tc' : { 'esnumber' : 128, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_texture_compression_s3tc.txt', }, 'GL_NV_texture_compression_s3tc_update' : { 'esnumber' : 95, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_texture_compression_s3tc_update.txt', }, 'GL_NV_texture_compression_vtc' : { 'number' : 228, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_compression_vtc.txt', }, 'GL_NV_texture_env_combine4' : { 'number' : 195, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_env_combine4.txt', }, 'GL_NV_texture_expand_normal' : { 'number' : 286, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_expand_normal.txt', }, 'GL_NV_texture_multisample' : { 'number' : 403, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_multisample.txt', }, 'GL_NV_texture_npot_2D_mipmap' : { 'esnumber' : 96, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_texture_npot_2D_mipmap.txt', }, 'GL_NV_texture_rectangle' : { 'number' : 229, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_rectangle.txt', }, 'GL_NV_texture_rectangle_compressed' : { 'number' : 509, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_rectangle_compressed.txt', }, 'GL_NV_texture_shader' : { 'number' : 230, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_shader.txt', }, 'GL_NV_texture_shader2' : { 'number' : 231, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_shader2.txt', }, 'GL_NV_texture_shader3' : { 'number' : 265, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_texture_shader3.txt', }, 'GL_NV_transform_feedback' : { 'number' : 341, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_transform_feedback.txt', }, 'GL_NV_transform_feedback2' : { 'number' : 358, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_transform_feedback2.txt', }, 'GL_NV_uniform_buffer_unified_memory' : { 'number' : 459, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_uniform_buffer_unified_memory.txt', }, 'GL_NV_vdpau_interop' : { 'number' : 396, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vdpau_interop.txt', }, 'GL_NV_vertex_array_range' : { 'number' : 190, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_array_range.txt', }, 'GL_NV_vertex_array_range2' : { 'number' : 232, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_array_range2.txt', }, 'GL_NV_vertex_attrib_integer_64bit' : { 'number' : 392, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_attrib_integer_64bit.txt', }, 'GL_NV_vertex_buffer_unified_memory' : { 'number' : 380, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_buffer_unified_memory.txt', }, 'GL_NV_vertex_program' : { 'number' : 233, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_program.txt', }, 'GL_NV_vertex_program1_1' : { 'number' : 266, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_program1_1.txt', }, 'GL_NV_vertex_program2' : { 'number' : 287, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_program2.txt', }, 'GL_NV_vertex_program2_option' : { 'number' : 305, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_program2_option.txt', }, 'GL_NV_vertex_program3' : { 'number' : 306, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_program3.txt', }, 'GL_NV_vertex_program4' : { 'number' : 325, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_vertex_program4.txt', }, 'GL_NV_video_capture' : { 'number' : 374, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/NV_video_capture.txt', 'alias' : { 'GLX_NV_video_capture', 'WGL_NV_video_capture' }, }, 'GLX_NV_video_out' : { 'number' : 348, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/GLX_NV_video_out.txt', }, 'GL_NV_viewport_array' : { 'esnumber' : 202, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_viewport_array.txt', }, 'GL_NV_viewport_array2' : { 'number' : 476, 'esnumber' : 237, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_viewport_array2.txt', }, 'GL_NV_viewport_swizzle' : { 'number' : 483, 'esnumber' : 258, 'flags' : { 'public' }, 'url' : 'extensions/NV/NV_viewport_swizzle.txt', }, 'GL_OES_EGL_image' : { 'esnumber' : 23, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_EGL_image.txt', }, 'GL_OES_EGL_image_external' : { 'esnumber' : 87, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_EGL_image_external.txt', }, 'GL_OES_EGL_image_external_essl3' : { 'esnumber' : 220, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_EGL_image_external_essl3.txt', }, 'GL_OES_EGL_sync' : { 'esnumber' : 75, 'flags' : { 'public' }, 'url' : '../EGL/extensions/KHR/EGL_KHR_fence_sync.txt', }, 'GL_OES_blend_equation_separate' : { 'esnumber' : 1, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_blend_equation_separate.txt', }, 'GL_OES_blend_func_separate' : { 'esnumber' : 2, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_blend_func_separate.txt', }, 'GL_OES_blend_subtract' : { 'esnumber' : 3, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_blend_subtract.txt', }, 'GL_OES_byte_coordinates' : { 'number' : 291, 'esnumber' : 4, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OES/OES_byte_coordinates.txt', }, 'GL_OES_compressed_ETC1_RGB8_texture' : { 'esnumber' : 5, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_compressed_ETC1_RGB8_texture.txt', }, 'GL_OES_compressed_paletted_texture' : { 'number' : 294, 'esnumber' : 6, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OES/OES_compressed_paletted_texture.txt', }, 'GL_OES_copy_image' : { 'esnumber' : 208, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_copy_image.txt', }, 'GL_OES_depth24' : { 'esnumber' : 24, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_depth24.txt', }, 'GL_OES_depth32' : { 'esnumber' : 25, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_depth32.txt', }, 'GL_OES_depth_texture' : { 'esnumber' : 43, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_depth_texture.txt', }, 'GL_OES_depth_texture_cube_map' : { 'esnumber' : 136, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_depth_texture_cube_map.txt', }, 'GL_OES_draw_buffers_indexed' : { 'esnumber' : 209, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_draw_buffers_indexed.txt', }, 'GL_OES_draw_elements_base_vertex' : { 'esnumber' : 219, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_draw_elements_base_vertex.txt', }, 'GL_OES_draw_texture' : { 'esnumber' : 7, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_draw_texture.txt', }, 'GL_OES_element_index_uint' : { 'esnumber' : 26, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_element_index_uint.txt', }, 'GL_OES_extended_matrix_palette' : { 'esnumber' : 8, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_extended_matrix_palette.txt', }, 'GL_OES_fbo_render_mipmap' : { 'esnumber' : 27, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_fbo_render_mipmap.txt', }, 'GL_OES_fixed_point' : { 'number' : 292, 'esnumber' : 9, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OES/OES_fixed_point.txt', }, 'GL_OES_fragment_precision_high' : { 'esnumber' : 28, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_fragment_precision_high.txt', }, 'GL_OES_framebuffer_object' : { 'esnumber' : 10, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_framebuffer_object.txt', }, 'GL_OES_geometry_shader' : { 'esnumber' : 210, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_geometry_shader.txt', }, 'GL_OES_get_program_binary' : { 'esnumber' : 47, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_get_program_binary.txt', }, 'GL_OES_gpu_shader5' : { 'esnumber' : 211, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_gpu_shader5.txt', }, 'GL_OES_mapbuffer' : { 'esnumber' : 29, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_mapbuffer.txt', }, 'GL_OES_matrix_get' : { 'esnumber' : 11, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_matrix_get.txt', }, 'GL_OES_matrix_palette' : { 'esnumber' : 12, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_matrix_palette.txt', }, 'GL_OES_packed_depth_stencil' : { 'esnumber' : 44, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_packed_depth_stencil.txt', }, 'GL_OES_paletted_texture' : { 'esnumber' : 13, 'flags' : { 'incomplete', 'private' }, 'comments' : 'Draft spec location unknown.', }, 'GL_OES_point_size_array' : { 'esnumber' : 14, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_point_size_array.txt', }, 'GL_OES_point_sprite' : { 'esnumber' : 15, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_point_sprite.txt', }, 'GL_OES_primitive_bounding_box' : { 'esnumber' : 212, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_primitive_bounding_box.txt', }, 'GL_OES_query_matrix' : { 'number' : 296, 'esnumber' : 16, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OES/OES_query_matrix.txt', }, 'GL_OES_read_format' : { 'number' : 295, 'esnumber' : 17, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OES/OES_read_format.txt', }, 'GL_OES_required_internalformat' : { 'esnumber' : 115, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_required_internalformat.txt', }, 'GL_OES_rgb8_rgba8' : { 'esnumber' : 30, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_rgb8_rgba8.txt', }, 'GL_OES_sample_shading' : { 'esnumber' : 169, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_sample_shading.txt', }, 'GL_OES_sample_variables' : { 'esnumber' : 170, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_sample_variables.txt', }, 'GL_OES_shader_image_atomic' : { 'esnumber' : 171, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_shader_image_atomic.txt', }, 'GL_OES_shader_io_blocks' : { 'esnumber' : 213, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_shader_io_blocks.txt', }, 'GL_OES_shader_multisample_interpolation' : { 'esnumber' : 172, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_shader_multisample_interpolation.txt', }, 'GL_OES_single_precision' : { 'number' : 293, 'esnumber' : 18, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OES/OES_single_precision.txt', }, 'GL_OES_standard_derivatives' : { 'esnumber' : 45, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_standard_derivatives.txt', }, 'GL_OES_stencil1' : { 'esnumber' : 31, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_stencil1.txt', }, 'GL_OES_stencil4' : { 'esnumber' : 32, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_stencil4.txt', }, 'GL_OES_stencil8' : { 'esnumber' : 33, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_stencil8.txt', }, 'GL_OES_stencil_wrap' : { 'esnumber' : 19, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_stencil_wrap.txt', }, 'GL_OES_surfaceless_context' : { 'esnumber' : 116, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_surfaceless_context.txt', }, 'GL_OES_tessellation_shader' : { 'esnumber' : 214, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_tessellation_shader.txt', }, 'GL_OES_texture_3D' : { 'esnumber' : 34, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_3D.txt', }, 'GL_OES_texture_border_clamp' : { 'esnumber' : 215, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_border_clamp.txt', }, 'GL_OES_texture_buffer' : { 'esnumber' : 216, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_buffer.txt', }, 'GL_OES_texture_compression_astc' : { 'esnumber' : 162, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_compression_astc.txt', }, 'GL_OES_texture_cube_map' : { 'esnumber' : 20, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_cube_map.txt', }, 'GL_OES_texture_cube_map_array' : { 'esnumber' : 217, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_cube_map_array.txt', }, 'GL_OES_texture_env_crossbar' : { 'esnumber' : 21, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_env_crossbar.txt', }, 'GL_OES_texture_float' : { 'esnumber' : 36, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_float.txt', 'alias' : { 'GL_OES_texture_half_float' }, }, 'GL_OES_texture_float_linear' : { 'esnumber' : 35, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_float_linear.txt', 'alias' : { 'GL_OES_texture_half_float_linear' }, }, 'GL_OES_texture_mirrored_repeat' : { 'esnumber' : 22, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_mirrored_repeat.txt', }, 'GL_OES_texture_npot' : { 'esnumber' : 37, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_npot.txt', }, 'GL_OES_texture_stencil8' : { 'esnumber' : 173, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_stencil8.txt', }, 'GL_OES_texture_storage_multisample_2d_array' : { 'esnumber' : 174, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_storage_multisample_2d_array.txt', }, 'GL_OES_texture_view' : { 'esnumber' : 218, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_texture_view.txt', }, 'GL_OES_vertex_array_object' : { 'esnumber' : 71, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_vertex_array_object.txt', }, 'GL_OES_vertex_half_float' : { 'esnumber' : 38, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_vertex_half_float.txt', }, 'GL_OES_vertex_type_10_10_10_2' : { 'esnumber' : 46, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_vertex_type_10_10_10_2.txt', }, 'GL_OES_viewport_array' : { 'esnumber' : 267, 'flags' : { 'public' }, 'url' : 'extensions/OES/OES_viewport_array.txt', }, 'GL_OML_interlace' : { 'number' : 239, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OML/OML_interlace.txt', }, 'GL_OML_resample' : { 'number' : 241, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OML/OML_resample.txt', }, 'GL_OML_subsample' : { 'number' : 240, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OML/OML_subsample.txt', }, 'GLX_OML_swap_method' : { 'number' : 237, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OML/GLX_OML_swap_method.txt', }, 'GLX_OML_sync_control' : { 'number' : 238, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OML/GLX_OML_sync_control.txt', }, 'GL_OVR_multiview' : { 'number' : 478, 'esnumber' : 241, 'flags' : { 'public' }, 'url' : 'extensions/OVR/OVR_multiview.txt', }, 'GL_OVR_multiview2' : { 'number' : 479, 'esnumber' : 242, 'flags' : { 'public' }, 'url' : 'extensions/OVR/OVR_multiview2.txt', }, 'GL_OVR_multiview_multisampled_render_to_texture' : { 'esnumber' : 250, 'flags' : { 'public' }, 'url' : 'extensions/OVR/OVR_multiview_multisampled_render_to_texture.txt', }, 'GL_PGI_misc_hints' : { 'number' : 77, 'flags' : { 'public' }, 'supporters' : { 'TGS' }, 'url' : 'extensions/PGI/PGI_misc_hints.txt', }, 'GL_PGI_vertex_hints' : { 'number' : 76, 'flags' : { 'public' }, 'supporters' : { 'TGS' }, 'url' : 'extensions/PGI/PGI_vertex_hints.txt', }, 'GL_QCOM_alpha_test' : { 'esnumber' : 89, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_alpha_test.txt', }, 'GL_QCOM_binning_control' : { 'esnumber' : 119, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_binning_control.txt', }, 'GL_QCOM_driver_control' : { 'esnumber' : 55, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_driver_control.txt', }, 'GL_QCOM_extended_get' : { 'esnumber' : 62, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_extended_get.txt', }, 'GL_QCOM_extended_get2' : { 'esnumber' : 63, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_extended_get2.txt', }, 'GL_QCOM_performance_monitor_global_mode' : { 'esnumber' : 56, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_performance_monitor_global_mode.txt', }, 'GL_QCOM_tiled_rendering' : { 'esnumber' : 70, 'flags' : { 'public' }, 'supporters' : { 'QCOM' }, 'url' : 'extensions/QCOM/QCOM_tiled_rendering.txt', }, 'GL_QCOM_writeonly_rendering' : { 'esnumber' : 61, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_writeonly_rendering.txt', }, 'GL_QCOM_framebuffer_foveated' : { 'esnumber' : 273, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_framebuffer_foveated.txt', }, 'GL_QCOM_texture_foveated' : { 'esnumber' : 293, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_texture_foveated.txt', }, 'GL_QCOM_shader_framebuffer_fetch_noncoherent' : { 'esnumber' : 277, 'flags' : { 'public' }, 'url' : 'extensions/QCOM/QCOM_shader_framebuffer_fetch_noncoherent.txt', }, 'GL_REND_screen_coordinates' : { 'number' : 155, 'flags' : { 'public' }, 'supporters' : { 'REND' }, 'url' : 'extensions/REND/REND_screen_coordinates.txt', }, 'GL_S3_s3tc' : { 'number' : 276, 'flags' : { 'public' }, 'supporters' : { 'ATI', 'NVIDIA' }, 'url' : 'extensions/S3/S3_s3tc.txt', }, 'GLX_SGIS_blended_overlay' : { 'number' : 142, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/GLX_SGIS_blended_overlay.txt', }, 'GL_SGIS_clip_band_hint' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIS/SGIS_clip_band_hint.txt', }, 'GLX_SGIS_color_range' : { 'number' : 115, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/GLX_SGIS_color_range.txt', 'alias' : { 'GL_SGIS_color_range' }, }, 'GL_SGIS_detail_texture' : { 'number' : 21, 'flags' : { 'public' }, 'supporters' : { 'KGC', 'SGI' }, 'url' : 'extensions/SGIS/SGIS_detail_texture.txt', }, 'GL_SGIS_fog_function' : { 'number' : 64, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_fog_function.txt', }, 'GL_SGIS_generate_mipmap' : { 'number' : 32, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SGI' }, 'url' : 'extensions/SGIS/SGIS_generate_mipmap.txt', }, 'GL_SGIS_line_texgen' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIS/SGIS_line_texgen.txt', }, 'GL_SGIS_multisample' : { 'number' : 25, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_multisample.txt', 'alias' : { 'GLX_SGIS_multisample' }, }, 'GL_SGIS_multitexture' : { 'number' : 116, 'flags' : { 'obsolete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_multitexture.txt', }, 'GL_SGIS_pixel_texture' : { 'number' : 15, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_pixel_texture.txt', }, 'GL_SGIS_point_line_texgen' : { 'number' : 213, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_point_line_texgen.txt', }, 'GL_SGIS_shared_multisample' : { 'number' : 143, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_shared_multisample.txt', 'alias' : { 'GLX_SGIS_shared_multisample' }, }, 'GL_SGIS_sharpen_texture' : { 'number' : 22, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_sharpen_texture.txt', }, 'GL_SGIS_texture4D' : { 'number' : 16, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_texture4D.txt', }, 'GL_SGIS_texture_border_clamp' : { 'number' : 36, 'flags' : { 'public' }, 'supporters' : { 'HP', 'INGR', 'SGI' }, 'url' : 'extensions/SGIS/SGIS_texture_border_clamp.txt', }, 'GL_SGIS_texture_color_mask' : { 'number' : 214, 'flags' : { 'incomplete', 'public' }, 'url' : 'extensions/SGIS/SGIS_texture_color_mask.txt', }, 'GL_SGIS_texture_edge_clamp' : { 'number' : 35, 'flags' : { 'public' }, 'supporters' : { 'HP', 'INGR', 'SGI' }, 'url' : 'extensions/SGIS/SGIS_texture_edge_clamp.txt', }, 'GL_SGIS_texture_filter4' : { 'number' : 7, 'flags' : { 'public' }, 'supporters' : { 'KGC', 'SGI' }, 'url' : 'extensions/SGIS/SGIS_texture_filter4.txt', }, 'GL_SGIS_texture_lod' : { 'number' : 24, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_texture_lod.txt', }, 'GL_SGIS_texture_select' : { 'number' : 51, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIS/SGIS_texture_select.txt', }, 'GL_SGIX_async' : { 'number' : 132, 'flags' : { 'incomplete', 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_async.txt', }, 'GL_SGIX_async_histogram' : { 'number' : 134, 'flags' : { 'incomplete', 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_async_histogram.txt', }, 'GL_SGIX_async_pixel' : { 'number' : 133, 'flags' : { 'incomplete', 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_async_pixel.txt', }, 'GL_SGIX_bali_g_instruments' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_bali_g_instruments.txt', }, 'GL_SGIX_bali_r_instruments' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_bali_r_instruments.txt', }, 'GL_SGIX_bali_timer_instruments' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_bali_timer_instruments.txt', }, 'GL_SGIX_blend_alpha_minmax' : { 'number' : 119, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_blend_alpha_minmax.txt', }, 'GL_SGIX_blend_cadd' : { 'number' : 150, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_blend_cadd.txt', }, 'GL_SGIX_blend_cmultiply' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_blend_cmultiply.txt', }, 'GL_SGIX_calligraphic_fragment' : { 'number' : 82, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_calligraphic_fragment.txt', }, 'GL_SGIX_clipmap' : { 'number' : 33, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_clipmap.txt', }, 'GL_SGIX_color_matrix_accuracy' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_color_matrix_accuracy.txt', }, 'GL_SGIX_color_table_index_mode' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_color_table_index_mode.txt', }, 'GLX_SGIX_color_type' : { 'number' : 89, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_color_type.txt', 'alias' : { 'GL_SGIX_color_type' }, }, 'GLX_SGIX_color_typeXXX' : { 'number' : 72, 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/GLX_SGIX_color_typeXXX.txt', }, 'GL_SGIX_complex_polar' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_complex_polar.txt', }, 'GL_SGIX_convolution_accuracy' : { 'number' : 211, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_convolution_accuracy.txt', }, 'GL_SGIX_cube_map' : { 'number' : 130, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_cube_map.txt', }, 'GL_SGIX_cylinder_texgen' : { 'number' : 140, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_cylinder_texgen.txt', }, 'GL_SGIX_datapipe' : { 'number' : 152, 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_datapipe.txt', }, 'GL_SGIX_decimation' : { 'number' : 125, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_decimation.txt', }, 'GL_SGIX_depth_pass_instrument' : { 'number' : 205, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_depth_pass_instrument.txt', }, 'GL_SGIX_depth_texture' : { 'number' : 63, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SGI' }, 'url' : 'extensions/SGIX/SGIX_depth_texture.txt', }, 'GLX_SGIX_dm_buffer' : { 'number' : 86, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_dm_buffer.txt', }, 'GL_SGIX_dvc' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_dvc.txt', }, 'GLX_SGIX_fbconfig' : { 'number' : 49, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_fbconfig.txt', }, 'GLX_SGIX_fbconfig_float' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/GLX_SGIX_fbconfig_float.txt', }, 'GL_SGIX_flush_raster' : { 'number' : 61, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_flush_raster.txt', }, 'GL_SGIX_fog_blend' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_fog_blend.txt', }, 'GL_SGIX_fog_factor_to_alpha' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_fog_factor_to_alpha.txt', }, 'GL_SGIX_fog_layers' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_fog_layers.txt', }, 'GL_SGIX_fog_offset' : { 'number' : 65, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_fog_offset.txt', }, 'GL_SGIX_fog_patchy' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_fog_patchy.txt', }, 'GL_SGIX_fog_scale' : { 'number' : 161, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_fog_scale.txt', }, 'GL_SGIX_fog_texture' : { 'flags' : { 'public' }, 'url' : 'extensions/SGIX/SGIX_fog_texture.txt', }, 'GL_SGIX_fragment_lighting_space' : { 'number' : 118, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_fragment_lighting_space.txt', }, 'GL_SGIX_fragment_specular_lighting' : { 'flags' : { 'incomplete', 'public' }, 'url' : 'extensions/SGIX/SGIX_fragment_specular_lighting.txt', }, 'GL_SGIX_fragments_instrument' : { 'number' : 180, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_fragments_instrument.txt', }, 'GL_SGIX_framezoom' : { 'number' : 57, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_framezoom.txt', }, 'GLX_SGIX_hyperpipe' : { 'number' : 307, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_hyperpipe.txt', }, 'GLU_SGIX_icc_compress' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/GLU_SGIX_icc_compress.txt', }, 'GL_SGIX_icc_texture' : { 'number' : 154, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_icc_texture.txt', }, 'GL_SGIX_igloo_interface' : { 'number' : 219, 'flags' : { 'incomplete' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/SGIX/SGIX_igloo_interface.txt', }, 'GL_SGIX_image_compression' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_image_compression.txt', }, 'GL_SGIX_impact_pixel_texture' : { 'number' : 126, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_impact_pixel_texture.txt', }, 'GL_SGIX_instrument_error' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_instrument_error.txt', }, 'GL_SGIX_instruments' : { 'number' : 55, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_instruments.txt', }, 'GL_SGIX_interlace' : { 'number' : 45, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_interlace.txt', }, 'GL_SGIX_ir_instrument1' : { 'number' : 81, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_ir_instrument1.txt', }, 'GL_SGIX_line_quality_hint' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_line_quality_hint.txt', }, 'GL_SGIX_list_priority' : { 'number' : 80, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_list_priority.txt', }, 'GL_SGIX_mpeg1' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_mpeg1.txt', }, 'GL_SGIX_mpeg2' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_mpeg2.txt', }, 'GL_SGIX_nonlinear_lighting_pervertex' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_nonlinear_lighting_pervertex.txt', }, 'GL_SGIX_nurbs_eval' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_nurbs_eval.txt', }, 'GL_SGIX_occlusion_instrument' : { 'number' : 151, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_occlusion_instrument.txt', }, 'GL_SGIX_packed_6bytes' : { 'number' : 162, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_packed_6bytes.txt', }, 'GLX_SGIX_pbuffer' : { 'number' : 50, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_pbuffer.txt', }, 'GL_SGIX_pixel_texture' : { 'number' : 499, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_pixel_texture.txt', 'comments' : 'Previously shared extension number 15 with SGIS_pixel_texture.', }, 'GL_SGIX_pixel_texture_bits' : { 'number' : 127, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_pixel_texture_bits.txt', }, 'GL_SGIX_pixel_texture_lod' : { 'number' : 128, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_pixel_texture_lod.txt', }, 'GL_SGIX_pixel_tiles' : { 'number' : 46, 'flags' : { 'obsolete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_pixel_tiles.txt', }, 'GL_SGIX_polynomial_ffd' : { 'number' : 59, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_polynomial_ffd.txt', }, 'GL_SGIX_quad_mesh' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_quad_mesh.txt', }, 'GL_SGIX_reference_plane' : { 'number' : 60, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_reference_plane.txt', }, 'GL_SGIX_resample' : { 'number' : 212, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_resample.txt', }, 'GL_SGIX_scalebias_hint' : { 'number' : 236, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_scalebias_hint.txt', }, 'GL_SGIX_shadow' : { 'number' : 34, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SGI' }, 'url' : 'extensions/SGIX/SGIX_shadow.txt', }, 'GL_SGIX_shadow_ambient' : { 'number' : 90, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SGI' }, 'url' : 'extensions/SGIX/SGIX_shadow_ambient.txt', }, 'GL_SGIX_slim' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_slim.txt', }, 'GL_SGIX_spotlight_cutoff' : { 'number' : 131, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_spotlight_cutoff.txt', }, 'GL_SGIX_sprite' : { 'number' : 52, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_sprite.txt', }, 'GL_SGIX_subdiv_patch' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_subdiv_patch.txt', }, 'GL_SGIX_subsample' : { 'number' : 202, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_subsample.txt', }, 'GLX_SGIX_swap_barrier' : { 'number' : 92, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_swap_barrier.txt', }, 'GLX_SGIX_swap_group' : { 'number' : 91, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_swap_group.txt', }, 'GL_SGIX_tag_sample_buffer' : { 'number' : 58, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_tag_sample_buffer.txt', }, 'GL_SGIX_texture_add_env' : { 'number' : 69, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_texture_add_env.txt', }, 'GL_SGIX_texture_coordinate_clamp' : { 'number' : 235, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_texture_coordinate_clamp.txt', }, 'GL_SGIX_texture_lod_bias' : { 'number' : 84, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_texture_lod_bias.txt', }, 'GL_SGIX_texture_mipmap_anisotropic' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_texture_mipmap_anisotropic.txt', }, 'GL_SGIX_texture_multi_buffer' : { 'number' : 53, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_texture_multi_buffer.txt', }, 'GL_SGIX_texture_phase' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_texture_phase.txt', }, 'GL_SGIX_texture_range' : { 'number' : 181, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_texture_range.txt', }, 'GL_SGIX_texture_scale_bias' : { 'number' : 56, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SGI' }, 'url' : 'extensions/SGIX/SGIX_texture_scale_bias.txt', }, 'GL_SGIX_texture_supersample' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_texture_supersample.txt', }, 'GL_SGIX_vector_ops' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/SGIX_vector_ops.txt', }, 'GL_SGIX_vertex_array_object' : { 'flags' : { 'obsolete' }, 'url' : 'extensions/SGIX/SGIX_vertex_array_object.txt', }, 'GL_SGIX_vertex_preclip' : { 'number' : 210, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_vertex_preclip.txt', 'alias' : { 'GL_SGIX_vertex_preclip_hint' }, }, 'GLX_SGIX_video_resize' : { 'number' : 83, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_video_resize.txt', }, 'GLX_SGIX_video_resize_float' : { 'number' : 184, 'flags' : { 'incomplete', 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_video_resize_float.txt', }, 'GLX_SGIX_video_source' : { 'number' : 43, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_video_source.txt', }, 'GLX_SGIX_visual_select_group' : { 'number' : 234, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/GLX_SGIX_visual_select_group.txt', }, 'GLX_SGIX_wait_group' : { 'flags' : { 'incomplete' }, 'url' : 'extensions/SGIX/GLX_SGIX_wait_group.txt', }, 'GL_SGIX_ycrcb' : { 'number' : 101, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_ycrcb.txt', }, 'GL_SGIX_ycrcb_subsample' : { 'number' : 204, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_ycrcb_subsample.txt', 'comments' : 'Supported on Visual Workstation 320 / 540 only.', }, 'GL_SGIX_ycrcba' : { 'number' : 203, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGIX/SGIX_ycrcba.txt', }, 'GL_SGI_color_matrix' : { 'number' : 13, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/SGI_color_matrix.txt', }, 'GL_SGI_color_table' : { 'number' : 14, 'flags' : { 'public' }, 'supporters' : { 'HP', 'SGI', 'SUN' }, 'url' : 'extensions/SGI/SGI_color_table.txt', 'comments' : 'Partial HP support.', }, 'GL_SGI_complex' : { 'number' : 87, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/SGI_complex.txt', }, 'GL_SGI_complex_type' : { 'number' : 88, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/SGI_complex_type.txt', }, 'GLX_SGI_cushion' : { 'number' : 62, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/GLX_SGI_cushion.txt', }, 'GL_SGI_fft' : { 'number' : 99, 'flags' : { 'incomplete' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/SGI_fft.txt', }, 'GLU_SGI_filter4_parameters' : { 'number' : 85, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/GLU_SGI_filter4_parameters.txt', }, 'GLX_SGI_make_current_read' : { 'number' : 42, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/GLX_SGI_make_current_read.txt', }, 'GLX_SGI_swap_control' : { 'number' : 40, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/GLX_SGI_swap_control.txt', }, 'GL_SGI_texture_color_table' : { 'number' : 17, 'flags' : { 'public' }, 'supporters' : { 'ES', 'HP', 'SGI', 'SUN' }, 'url' : 'extensions/SGI/SGI_texture_color_table.txt', }, 'GLX_SGI_transparent_pixel' : { 'number' : 153, 'flags' : { 'obsolete' }, 'url' : 'extensions/SGI/GLX_SGI_transparent_pixel.txt', }, 'GLX_SGI_video_sync' : { 'number' : 41, 'flags' : { 'public' }, 'supporters' : { 'SGI' }, 'url' : 'extensions/SGI/GLX_SGI_video_sync.txt', }, 'GL_SUNX_constant_data' : { 'number' : 163, 'flags' : { 'public' }, 'supporters' : { 'SUN' }, 'url' : 'extensions/SUNX/SUNX_constant_data.txt', }, 'GL_SUN_convolution_border_modes' : { 'number' : 182, 'flags' : { 'public' }, 'supporters' : { 'SUN' }, 'url' : 'extensions/SUN/SUN_convolution_border_modes.txt', }, 'GLX_SUN_get_transparent_index' : { 'number' : 183, 'flags' : { 'public' }, 'supporters' : { 'SUN' }, 'url' : 'extensions/SUN/GLX_SUN_get_transparent_index.txt', }, 'GL_SUN_global_alpha' : { 'number' : 164, 'flags' : { 'public' }, 'supporters' : { 'SUN' }, 'url' : 'extensions/SUN/SUN_global_alpha.txt', }, 'GL_SUN_mesh_array' : { 'number' : 257, 'flags' : { 'public' }, 'supporters' : { 'SUN' }, 'url' : 'extensions/SUN/SUN_mesh_array.txt', }, 'GL_SUN_slice_accum' : { 'number' : 258, 'flags' : { 'public' }, 'supporters' : { 'SUN' }, 'url' : 'extensions/SUN/SUN_slice_accum.txt', }, 'GL_SUN_triangle_list' : { 'number' : 165, 'flags' : { 'public' }, 'supporters' : { 'SUN' }, 'url' : 'extensions/SUN/SUN_triangle_list.txt', }, 'GL_SUN_vertex' : { 'number' : 166, 'flags' : { 'public' }, 'supporters' : { 'SUN' }, 'url' : 'extensions/SUN/SUN_vertex.txt', }, 'GL_VIV_shader_binary' : { 'esnumber' : 85, 'flags' : { 'public' }, 'url' : 'extensions/VIV/VIV_shader_binary.txt', }, 'WGL_3DL_stereo_control' : { 'number' : 313, 'flags' : { 'public' }, 'supporters' : { '3DL' }, 'url' : 'extensions/3DL/WGL_3DL_stereo_control.txt', }, 'WGL_AMD_gpu_association' : { 'number' : 361, 'flags' : { 'public' }, 'supporters' : { 'AMD' }, 'url' : 'extensions/AMD/WGL_AMD_gpu_association.txt', }, 'WGL_ARB_buffer_region' : { 'arbnumber' : 4, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/WGL_ARB_buffer_region.txt', }, 'WGL_ARB_create_context' : { 'arbnumber' : 55, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/WGL_ARB_create_context.txt', 'comments' : 'Alias to WGL_ARB_create_context_profile not needed - see arbnumber 74.', }, 'WGL_ARB_create_context_profile' : { 'arbnumber' : 74, 'flags' : { 'public' }, 'url' : 'extensions/ARB/WGL_ARB_create_context.txt', 'comments' : 'Included with arbnumber 55, WGL_ARB_create_context.', }, 'WGL_ARB_create_context_robustness' : { 'arbnumber' : 102, 'flags' : { 'public' }, 'url' : 'extensions/ARB/WGL_ARB_create_context_robustness.txt', }, 'WGL_ARB_extensions_string' : { 'arbnumber' : 8, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/WGL_ARB_extensions_string.txt', }, 'WGL_ARB_make_current_read' : { 'arbnumber' : 10, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/WGL_ARB_make_current_read.txt', }, 'WGL_ARB_pbuffer' : { 'arbnumber' : 11, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/WGL_ARB_pbuffer.txt', }, 'WGL_ARB_pixel_format' : { 'arbnumber' : 9, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/WGL_ARB_pixel_format.txt', }, 'WGL_ARB_render_texture' : { 'arbnumber' : 20, 'flags' : { 'public' }, 'supporters' : { 'ARB' }, 'url' : 'extensions/ARB/WGL_ARB_render_texture.txt', }, 'WGL_ARB_robustness_application_isolation' : { 'arbnumber' : 143, 'flags' : { 'public' }, 'url' : 'extensions/ARB/WGL_ARB_robustness_application_isolation.txt', 'alias' : { 'WGL_ARB_robustness_share_group_isolation' }, }, 'WGL_ATI_pixel_format_float' : { 'number' : 278, 'flags' : { 'public' }, 'supporters' : { 'ATI' }, 'url' : 'extensions/ATI/WGL_ATI_pixel_format_float.txt', }, 'WGL_EXT_colorspace' : { 'number' : 498, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/WGL_EXT_colorspace.txt', }, 'WGL_EXT_create_context_es2_profile' : { 'number' : 400, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/WGL_EXT_create_context_es2_profile.txt', 'alias' : { 'WGL_EXT_create_context_es_profile' }, }, 'WGL_EXT_depth_float' : { 'number' : 177, 'flags' : { 'public' }, 'supporters' : { 'INGR' }, 'url' : 'extensions/EXT/WGL_EXT_depth_float.txt', }, 'WGL_EXT_display_color_table' : { 'number' : 167, 'flags' : { 'public' }, 'url' : 'extensions/EXT/WGL_EXT_display_color_table.txt', }, 'WGL_EXT_extensions_string' : { 'number' : 168, 'flags' : { 'public' }, 'supporters' : { 'INGR', 'SGI' }, 'url' : 'extensions/EXT/WGL_EXT_extensions_string.txt', }, 'WGL_EXT_make_current_read' : { 'number' : 169, 'flags' : { 'public' }, 'supporters' : { 'INGR', 'SGI' }, 'url' : 'extensions/EXT/WGL_EXT_make_current_read.txt', }, 'WGL_EXT_multisample' : { 'number' : 209, 'flags' : { 'public' }, 'url' : 'extensions/EXT/WGL_EXT_multisample.txt', 'alias' : { 'GL_EXT_multisample' }, }, 'WGL_EXT_pbuffer' : { 'number' : 171, 'flags' : { 'public' }, 'supporters' : { 'INGR', 'SGI' }, 'url' : 'extensions/EXT/WGL_EXT_pbuffer.txt', }, 'WGL_EXT_pixel_format' : { 'number' : 170, 'flags' : { 'public' }, 'supporters' : { 'INGR', 'SGI' }, 'url' : 'extensions/EXT/WGL_EXT_pixel_format.txt', }, 'WGL_EXT_swap_control' : { 'number' : 172, 'flags' : { 'public' }, 'supporters' : { 'INGR', 'SGI' }, 'url' : 'extensions/EXT/WGL_EXT_swap_control.txt', }, 'WGL_EXT_swap_control_tear' : { 'number' : 415, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/EXT/WGL_EXT_swap_control_tear.txt', }, 'GL_EXT_clip_control' : { 'esnumber' : 290, 'flags' : { 'public' }, 'supporters' : { 'MESA' }, 'url' : 'extensions/EXT/EXT_clip_control.txt', }, 'WGL_I3D_digital_video_control' : { 'number' : 250, 'flags' : { 'public' }, 'supporters' : { 'I3D' }, 'url' : 'extensions/I3D/WGL_I3D_digital_video_control.txt', }, 'WGL_I3D_gamma' : { 'number' : 251, 'flags' : { 'public' }, 'supporters' : { 'I3D' }, 'url' : 'extensions/I3D/WGL_I3D_gamma.txt', }, 'WGL_I3D_genlock' : { 'number' : 252, 'flags' : { 'public' }, 'supporters' : { 'I3D' }, 'url' : 'extensions/I3D/WGL_I3D_genlock.txt', }, 'WGL_I3D_image_buffer' : { 'number' : 253, 'flags' : { 'public' }, 'supporters' : { 'I3D' }, 'url' : 'extensions/I3D/WGL_I3D_image_buffer.txt', }, 'WGL_I3D_swap_frame_lock' : { 'number' : 254, 'flags' : { 'public' }, 'supporters' : { 'I3D' }, 'url' : 'extensions/I3D/WGL_I3D_swap_frame_lock.txt', }, 'WGL_I3D_swap_frame_usage' : { 'number' : 255, 'flags' : { 'public' }, 'supporters' : { 'I3D' }, 'url' : 'extensions/I3D/WGL_I3D_swap_frame_usage.txt', }, 'GL_WIN_phong_shading' : { 'number' : 113, 'flags' : { 'public' }, 'supporters' : { 'MS' }, 'url' : 'extensions/WIN/WIN_phong_shading.txt', }, 'GL_WIN_scene_markerXXX' : { 'flags' : { 'obsolete' }, 'url' : 'extensions/WIN/WIN_scene_markerXXX.txt', }, 'GL_WIN_specular_fog' : { 'number' : 114, 'flags' : { 'public' }, 'supporters' : { 'MS' }, 'url' : 'extensions/WIN/WIN_specular_fog.txt', }, 'WGL_NV_DX_interop' : { 'number' : 407, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/WGL_NV_DX_interop.txt', }, 'WGL_NV_DX_interop2' : { 'number' : 412, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/WGL_NV_DX_interop2.txt', }, 'WGL_NV_delay_before_swap' : { 'number' : 436, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/WGL_NV_delay_before_swap.txt', }, 'WGL_NV_gpu_affinity' : { 'number' : 355, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/WGL_NV_gpu_affinity.txt', }, 'WGL_NV_render_depth_texture' : { 'number' : 263, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/WGL_NV_render_depth_texture.txt', }, 'WGL_NV_render_texture_rectangle' : { 'number' : 264, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/WGL_NV_render_texture_rectangle.txt', }, 'WGL_NV_swap_group' : { 'number' : 351, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/WGL_NV_swap_group.txt', }, 'WGL_NV_video_output' : { 'number' : 349, 'flags' : { 'public' }, 'supporters' : { 'NVIDIA' }, 'url' : 'extensions/NV/WGL_NV_video_output.txt', }, 'WGL_OML_sync_control' : { 'number' : 242, 'flags' : { 'public' }, 'supporters' : { 'KHR' }, 'url' : 'extensions/OML/WGL_OML_sync_control.txt', }, }
1.21875
1
uncertainty_toolbox/data.py
rebeccadavidsson/uncertainty-toolbox
1
12791376
<filename>uncertainty_toolbox/data.py """ Code for importing and generating data. """ import numpy as np def synthetic_arange_random(num_points=10): """ Simple dataset of evenly spaced points and identity function (with some randomization) """ y_true = np.arange(num_points) y_pred = np.arange(num_points) + np.random.random((num_points,)) y_std = np.abs(y_true - y_pred) + 0.1 * np.random.random((num_points,)) return (y_pred, y_std, y_true) def synthetic_sine_heteroscedastic(n_points=10): """ Return samples from "synthetic sine" heteroscedastic noisy function. """ bounds = [0, 15] # x = np.random.uniform(bounds[0], bounds[1], n_points) x = np.linspace(bounds[0], bounds[1], n_points) f = np.sin(x) std = 0.01 + np.abs(x - 5.0) / 10.0 noise = np.random.normal(scale=std) y = f + noise return f, std, y, x def curvy_cosine(x): """ Curvy cosine function. Parameters ---------- x : ndarray 2d numpy ndarray. """ flat_neg_cos = np.sum(-1 * np.cos(x), 1) / x.shape[1] curvy_cos = flat_neg_cos + 0.2 * np.linalg.norm(x, axis=1) curvy_cos = curvy_cos.reshape(-1, 1) return curvy_cos
3.125
3
python/frame.py
ramity/apexcv
13
12791377
<reponame>ramity/apexcv import os import numpy as np class Frame: path = "" frameNumber = 1 image cols = 0 rows = 0 # default configured opencv settings simpleBlurAmount = 25 thresholdType = cv2.THRESH_BINARY bilateralKernelSize = 9 bilateralSigmaSpace = 9 countourRetrivalMode = cv2.RETR_LIST contourApproximationMethod = cv2.CHAIN_APPROX_SIMPLE contourLayers = -1 contourColor = (0, 0, 255) contourBorderSize = 1 def __init__(self, frameNumber, path, image): self.frameNumber = frameNumber self.path = path self.image = image self.cols = image.shape[0] self.rows = image.shape[1] def getSubRegion(self, x, y, w, h): x1 = x x2 = x + w y1 = y y2 = y + h return self.image[y1:y2, x1:x2] def getGrayscale(self): return cv2.cvtColor(self.image, cv2.COLOR_RGB2GRAY) def getGrayscaleSubRegion(self, x, y, w, h): x1 = x x2 = x + w y1 = y y2 = y + h image = self.image[y1:y2, x1:x2] return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) def getSimpleBlur(self): kernel = np.ones((5, 5), np.float32) / self.simpleBlurAmount return cv2.filter2D(self.image, -1, kernel) def getSimpleBlurSubRegion(self, x, y, w, h): x1 = x x2 = x + w y1 = y y2 = y + h image = self.image[y1:y2, x1:x2] kernel = np.ones((5, 5), np.float32) / self.simpleBlurAmount return cv2.filter2D(image, -1, kernel) def getThreshold(self, low, high): return cv2.threshold(self.image, low, high, self.thresholdType) def getThresholdSubRegion(self, low, high, x, y, w, h): x1 = x x2 = x + w y1 = y y2 = y + h image = self.image[y1:y2, x1:x2] return cv2.GaussianBlur(image, (5,5), 0) def getBilateral(self): return cv2.adaptiveBilateralFilter(self.image, self.bilateralKernelSize, self.bilateralSigmaSpace) def getBilateralSubRegion(self, x, y, w, h): x1 = x x2 = x + w y1 = y y2 = y + h image = self.image[y1:y2, x1:x2] return cv2.adaptiveBilateralFilter(image, self.bilateralKernelSize, self.bilateralSigmaSpace) def getContours(self): gray = self.getGrayscale() return cv2.findContours(gray, self.countourRetrivalMode, self.contourApproximationMethod) def getContoursOverlayImage(self): contours = self.getContours() if(contours == None): return self.image else: return cv2.drawContours(self.image, contours, self.contourLayers, self.contourColor, self.contourBorderSize) def getContoursSubRegion(self, x, y, w, h): gray = self.getGrayscaleSubRegion(x, y, w, h) return cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) def getContoursOverlayImage(self, x, y, w, h): contours = self.getContoursSubRegion(x, y, w, h) if(contours == None): return self.getSubRegion(x, y, w, h) else: return cv2.drawContours(self.getSubRegion(x, y, w, h), contours, self.contourLayers, self.contourColor, self.contourBorderSize)
2.484375
2
external_tools/src/main/python/images/CopyOnlyFilesSpecifiedInSolr.py
amccoy95/PhenotypeData
1
12791378
<filename>external_tools/src/main/python/images/CopyOnlyFilesSpecifiedInSolr.py #!/usr/bin/python """this program gets the download_file_paths (http mousephenotype uris) from the experiment core and then downloads the images""" import os import requests import json import sys import os.path import sys import argparse import mysql.connector import shutil from common import splitString from database import getDbConnection from OmeroPropertiesParser import OmeroPropertiesParser responseFailed=0 numberOfImageDownloadAttemps=0 totalNumberOfImagesWeHave=0 numFoundInSolr=0 uniqueUris=set() def main(argv): parser = argparse.ArgumentParser( description='Get the download_file_paths (http mousephenotype uris) from the experiment core and then downloads the images' ) parser.add_argument('-d', '--rootDestinationDir', dest='rootDestinationDir', help='Directory for root of destination to store images' ) parser.add_argument('-s', '--rootSolrUrl', dest='rootSolrUrl', help='URL to root of solr index' ) parser.add_argument('-H', '--host', dest='komp2Host', help='Hostname for server hosting komp2 db' ) parser.add_argument('-p', '--port', dest='komp2Port', help='Port by which to connect to komp2 db' ) parser.add_argument('-u', '--user', dest='komp2User', help='Username for connecting to komp2 db' ) parser.add_argument('-db', '--database', dest='komp2Db', help='Database to connect to for komp2db' ) parser.add_argument('--pass', dest='komp2Pass', help='Password for <PASSWORD>' ) parser.add_argument('--profile', dest='profile', default='dev', help='profile from which to read config: dev, prod, live, ...') args = parser.parse_args() # Get values from property file and use as defaults that can be overridden # by command line parameters try: pp = OmeroPropertiesParser(args.profile) omeroProps = pp.getOmeroProps() except: omeroProps = {} rootSolrUrl = args.rootSolrUrl if args.rootSolrUrl <> None else omeroProps['solrurl'] komp2Host = args.komp2Host if args.komp2Host<>None else omeroProps['komp2host'] komp2Port = args.komp2Port if args.komp2Port<>None else omeroProps['komp2port'] komp2db = args.komp2Db if args.komp2Db<>None else omeroProps['komp2db'] komp2User = args.komp2User if args.komp2User<>None else omeroProps['komp2user'] komp2Pass = args.komp2Pass if args.komp2Pass<>None else omeroProps['komp2pass'] rootDestinationDir = args.rootDestinationDir if args.rootDestinationDir<>None else omeroProps['rootdestinationdir'] #note cant split this url over a few lines as puts in newlines into url which doesn't work #solrQuery="""experiment/select?q=observation_type:image_record&fq=download_file_path:(download_file_path:*bhjlk01.jax.org/images/IMPC_ALZ_001/*%20AND%20!download_file_path:*.mov)&fl=id,download_file_path,phenotyping_center,pipeline_stable_id,procedure_stable_id,datasource_name,parameter_stable_id&wt=json&indent=on&rows=10000000""" solrQuery="""experiment/select?q=observation_type:image_record&fq=(download_file_path:*mousephenotype.org*%20AND%20!download_file_path:*.mov)&fl=id,download_file_path,phenotyping_center,pipeline_stable_id,procedure_stable_id,datasource_name,parameter_stable_id&wt=json&indent=on&rows=10000000""" print("running python image copy script for impc images") print 'rootDestinationDir is "', rootDestinationDir solrUrl=rootSolrUrl+solrQuery; print 'solrUrl', solrUrl cnx=getDbConnection(komp2Host, komp2Port, komp2db, komp2User, komp2Pass) runWithSolrAsDataSource(solrUrl, cnx, rootDestinationDir) def runWithSolrAsDataSource(solrUrl,cnx, rootDestinationDir): """ need to get these passed in as arguments - the host and db name etc for jenkins to run first get the list of download urls and the data source, experiment, procdure and parameter and observation id for the images """ v = json.loads(requests.get(solrUrl).text) docs=v['response']['docs'] numFoundInSolr=v['response']['numFound'] for doc in docs: download_file_path=doc['download_file_path'] datasource_id=doc['datasource_name'] phenotyping_center=doc['phenotyping_center'] #experiment=doc['experiment'] pipeline_stable_id=doc['pipeline_stable_id'] observation_id=doc['id'] procedure_stable_id=doc['procedure_stable_id'] parameter_stable_id=doc['parameter_stable_id'] processFile(cnx, observation_id, rootDestinationDir,phenotyping_center,pipeline_stable_id, procedure_stable_id, parameter_stable_id, download_file_path) print 'number found in solr='+str(numFoundInSolr)+' number of failed responses='+str(responseFailed)+' number of requests='+str(numberOfImageDownloadAttemps)+' total totalNumberOfImagesWeHave='+str(totalNumberOfImagesWeHave) cnx.commit() cnx.close() def createDestinationFilePath(rootDestinationDir, phenotyping_center, pipeline_stable_id, procedure, parameter, download_file_path): directory="/".join([rootDestinationDir,phenotyping_center, pipeline_stable_id,procedure,parameter]) return directory def processFile(cnx, observation_id, rootDestinationDir, phenotyping_center,pipeline_stable_id, procedure, parameter, downloadFilePath): global totalNumberOfImagesWeHave global responseFailed global numberOfImageDownloadAttemps directory = createDestinationFilePath(rootDestinationDir, phenotyping_center, pipeline_stable_id, procedure,parameter, downloadFilePath) #print "directory "+str(directory) dstfilename=directory+"/"+str(downloadFilePath.split('/')[-1]) #print "dstfilename="+str(dstfilename) destPath=dstfilename.replace("/nfs/komp2/web/images/impc/","/nfs/komp2/web/images/clean/impc/") #print "replaced="+destPath #/nfs/komp2/web/images/impc/MRC Harwell/HRWL_001/IMPC_XRY_001/IMPC_XRY_034_001/114182.dcm # new file paths are /nfs/public/ro/pheno-archive-images/images/impc if dstfilename in uniqueUris: print '---------------------!!!!!!!!!!error the filePath is not unique and has been specified before:'+dstfilename uniqueUris.add(dstfilename) destDirectory=os.path.dirname(destPath) #print "destination directory for copy is "+destDirectory if not os.path.exists(destDirectory): os.makedirs(destDirectory) #print 'saving file to '+destPath if not os.path.isfile(destPath): try: shutil.copyfile(dstfilename,destPath) except IOError: print "file does not exist "+str(dstfilename)+" continuing" totalNumberOfImagesWeHave=totalNumberOfImagesWeHave+1 if totalNumberOfImagesWeHave%1000==0 : print "totalNumber of images we have="+str(totalNumberOfImagesWeHave) if __name__ == "__main__": main(sys.argv[1:])
2.609375
3
tests/test_PerCarRaceStatusData.py
jdamiani27/PyRaceView
4
12791379
<filename>tests/test_PerCarRaceStatusData.py import pytest from pyraceview.messages import MsgRaceStatus raw = ( b"\xab\xcd*T\x02Cs\x04\x90\x90[3\x10\xcc\x89\xb8V\x00\x00" b"\x00\x05q\xe0\x03 \x00y\x86\xb9\x00\x00$\x00\x10\x10\x06" b"\x0e\xe8\x00\x06\x0f\x91k\xe5\x00\x00&\x00\x15\xce\x05\xb9x" b"\x00\x07\t\x8d^\x8d\x00\x00\x16\x00\x1c\xc2\x05\xcb\xa1\x90" b"\x05\xdd\x91L\xb3\x00\x00\x04\x00!\xece\xb1\xf9\x90\x07\x9f" b"\x91@\xe5\x00\x00(\x00%R\x05P\xc8\x00\x05G\x8d2a\x00\x00\x0c" b"\x00'\xe8\x05d\x01\x90\x07;\x911i\x00\x00\x08\x00+z\x05'!" b"\x90\x07m\x91&S\x00\x00\x12\x005\x08\x05\x1ba\x90\x07m\x91" b"\x00\xb5\x00\x00T\x006\xaa\x05\x00\xa8\x00\x07\xd1\x90\xfaC" b"\x00\x00`\x00<\x1c\x05\xa9q\x90\t/\x8c\xe8g\x00\x00\x1c\x00=>" b'\x053\xf1\x90\x08\x99\x90\xe2\xd3\x00\x00"\x00?(\x05jh\x00\ta' b"\x8c\xdb\xcf\x00\x00\x18\x00@\xa6\xe0\x00\x01\x90\x08g\x90\xd6" b"\xe7\x00\x00\x02\x00A\xec\xe0\x00\x00\x00\x08\x03\x8c\xd3\xc9" b"\x00\x00R\x00E\xde\x00\x00\x01\x90\ta\x90\xc3\xa3\x00\x00\xbe" b"\x00If\x00\x00\x00\x00\x08\x99\x8c\xb9\x9f\x00\x00\x14\x00p$" b"\x00\x00\x01\x90\x08\x99\x8c\x16\xdb\x00\x00D\x00\xbeD\x05\x95!" b"\x90\x07\x9e~\x04Q\x00\x00,\x00\xc1\xde\x05\xaf\xd9\x90\x084}" b"\xf7\xd9\x00\x00L\x00\xdc\x88\x04\x8e`\x00\x06@i\x97\x9b\x00" b"\x000\x10\x00\x02\x05\x8d\xa8\x00\x08\x98~\x15\x0b\x00\x00\xb0" b"\x10\x00\x02\x05\xda\x91\x90\x08\x98}\xf1\xc7\x00\x00\x06\x10" b"\x00\x02\x05\xc3\x10\x00\x05\xaa}\xeb\x9b\x00\x00\x1a\x10\x00" b"\x02\x85\xb4!\x90\t\xc4}\xe0\xa1\x00\x00H\x10\x00\x02\x05\xb9y" b"\x90\n(}\xd9\xa3\x00\x00@\x10\x00\x02\x05\xb0\xe9\x90\x08\x02m" b"\xca\xe7\x00\x00*\x10\x00\x02\x06\x1b\xb9\x90\t\x92}\xc0\xc7\x00" b"\x00\x10\x10\x00\x02\x04\x8b1\x90\x07:}\xaaE\x00\x00\x01\x10\x00" b"\x02\x04\xa5\xe0\x00\x06@m\x9es\x00\x00^\x10\x00\x04\x06\x02\x18" b"\x00\t`n\x0e{\x00\x00J\x10\x00\x04\x05\xb8a\x90\t.q\xc6\x9f\x00" b"\x00f\x10\x00\x06\x04\xfbY\x90\x07:}\xb2\xc3\x00\x00h\x10\x00\x08" b"\x04\xaeq\x93&\xa4q\xa9\xb9\x00\x00j\x10\x00\n\x05\xb9x\x00\x07" b"\xd0u\xfcm\x00\x006\x10\x00\x0c\x05\x7f\xc8\x00\t\xc4u\xd0\xb7" b"\x00\x00\x9a\x10\x00\x0c\x04\x98\x00\x00\x06@u\x8b\xdd\x00\x00" b"\x1e\x10\x00J\x04\xa5\xe0\x00\x04~\xc5\x92\x1d\x00\x00" ) @pytest.fixture def status(): return MsgRaceStatus(raw).car_data[-1] def test_car_id(status): assert status.car_id == 30 def test_status(status): assert status.status == 0 def test_tol_type(status): assert status.tol_type == 1 def test_time_off_leader(status): assert status.time_off_leader == 37.0 def test_event(status): assert status.event == 0 def test_speed(status): assert status.speed == 38.076 def test_throttle(status): assert status.throttle == 0 def test_brake(status): assert status.brake == 0 def test_rpm(status): assert status.rpm == 2300 def test_fuel(status): assert status.fuel == 49 def test_steer_angle(status): assert status.steer_angle == 0 def test_lap_fraction(status): assert status.lap_fraction == 0.5147
1.976563
2
python_helper/api/src/service/LogHelper.py
SamuelJansen/python_helper
0
12791380
import colorama, traceback from python_helper.api.src.domain import Constant as c from python_helper.api.src.service import SettingHelper, StringHelper, EnvironmentHelper, ObjectHelper, ReflectionHelper LOG = 'LOG' INFO = 'INFO' SUCCESS = 'SUCCESS' SETTING = 'SETTING' DEBUG = 'DEBUG' WARNING = 'WARNING' WRAPPER = 'WRAPPER' FAILURE = 'FAILURE' ERROR = 'ERROR' TEST = 'TEST' RESET_ALL_COLORS = colorama.Style.RESET_ALL from python_helper.api.src.helper import LogHelperHelper global LOG_HELPER_SETTINGS # import asyncio # global OUTPUT_PRINT_LIST # PRINTING = 'PRINTING' # def loadLogger() : # global OUTPUT_PRINT_LIST # try : # if ObjectHelper.isNone(OUTPUT_PRINT_LIST) : # OUTPUT_PRINT_LIST = [] # except Exception as exception : # OUTPUT_PRINT_LIST = [] # # async def asyncAsyncPrintIt(itArgsAndKwargs) : # global LOG_HELPER_SETTINGS # while LOG_HELPER_SETTINGS[PRINTING] : # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('------------------------------------------------------------------------ awaiting ------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # print('----------------------------------------------------------------------------------------------------------------------------------------------------------') # LOG_HELPER_SETTINGS[PRINTING] = True # print(itArgsAndKwargs[0], **itArgsAndKwargs[1]) # # async def asyncPrintIt(itArgsAndKwargs) : # global LOG_HELPER_SETTINGS # await asyncAsyncPrintIt(itArgsAndKwargs) # LOG_HELPER_SETTINGS[PRINTING] = False # # async def printOutput() : # global OUTPUT_PRINT_LIST # while 0 < len(OUTPUT_PRINT_LIST) : # asyncio.run(asyncPrintIt(OUTPUT_PRINT_LIST.pop(0))) # # def logIt(it, **kwargs) : # global OUTPUT_PRINT_LIST # shouldPrint = True if 0 == len(OUTPUT_PRINT_LIST) else False # OUTPUT_PRINT_LIST.append([it, kwargs]) # if shouldPrint : # printOutput() # import logging # LOGGER_INSTANCE = None # def loadLogger(logger) : # return logger if ObjectHelper.isNotNone(logger) else logging.getLogger(__name__) def logIt(it, **kwargs) : # logging.error(it, **kwargs) # logging.log(msg=args[0], level=9) # logger = loadLogger(LOGGER_INSTANCE) # logger.setLevel(logging.DEBUG) # logger.info(it) print(it, **kwargs) def loadSettings() : global LOG_HELPER_SETTINGS # logger = loadLogger(LOGGER_INSTANCE) # logger.setLevel(logging.DEBUG) ###- logging.basicConfig(filename='example.log', encoding='utf-8', level=logging.DEBUG) colorama.deinit() settings = {} settings[SettingHelper.ACTIVE_ENVIRONMENT] = SettingHelper.getActiveEnvironment() for level in LogHelperHelper.LEVEL_DICTIONARY : status = EnvironmentHelper.get(level) settings[level] = status if not status is None else c.TRUE LOG_HELPER_SETTINGS = settings # if PRINTING not in LOG_HELPER_SETTINGS : # LOG_HELPER_SETTINGS[PRINTING] = False if SettingHelper.activeEnvironmentIsLocal() : colorama.init() # logging.basicConfig(level=logging.DEBUG) logIt(RESET_ALL_COLORS, end=c.NOTHING) loadSettings() def log(origin, message, level=LOG, exception=None, muteStackTrace=False, newLine=False) : LogHelperHelper.softLog(origin, message, LOG, muteStackTrace=muteStackTrace, newLine=newLine, exception=exception) def info(origin, message, level=INFO, exception=None, muteStackTrace=False, newLine=False) : LogHelperHelper.softLog(origin, message, INFO, muteStackTrace=muteStackTrace, newLine=newLine, exception=exception) def success(origin, message, muteStackTrace=False, newLine=False) : LogHelperHelper.softLog(origin, message, SUCCESS, muteStackTrace=muteStackTrace, newLine=newLine) def setting(origin, message, muteStackTrace=False, newLine=False) : LogHelperHelper.softLog(origin, message, SETTING, muteStackTrace=muteStackTrace, newLine=newLine) def debug(origin, message, exception=None, muteStackTrace=False, newLine=False) : LogHelperHelper.softLog(origin, message, DEBUG, muteStackTrace=muteStackTrace, newLine=newLine, exception=exception) def warning(origin, message, exception=None, muteStackTrace=False, newLine=False) : LogHelperHelper.softLog(origin, message, WARNING, muteStackTrace=muteStackTrace, newLine=newLine, exception=exception) def wraper(origin, message, exception, muteStackTrace=False, newLine=False) : LogHelperHelper.hardLog(origin, message, exception, WRAPPER, muteStackTrace=muteStackTrace, newLine=newLine) def failure(origin, message, exception, muteStackTrace=False, newLine=False) : LogHelperHelper.hardLog(origin, message, exception, FAILURE, muteStackTrace=muteStackTrace, newLine=newLine) def error(origin, message, exception, muteStackTrace=False, newLine=False) : LogHelperHelper.hardLog(origin, message, exception, ERROR, muteStackTrace=muteStackTrace, newLine=newLine) def test(origin, message, exception=None, muteStackTrace=False, newLine=False) : LogHelperHelper.softLog(origin, message, TEST, muteStackTrace=muteStackTrace, newLine=newLine, exception=exception) def printLog(message, condition=False, muteStackTrace=False, newLine=True, margin=True, exception=None) : LogHelperHelper.printMessageLog(LOG, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin, exception=exception) def printInfo(message, condition=False, muteStackTrace=False, newLine=True, margin=True, exception=None) : LogHelperHelper.printMessageLog(INFO, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin, exception=exception) def printSuccess(message, condition=False, muteStackTrace=False, newLine=True, margin=True) : LogHelperHelper.printMessageLog(SUCCESS, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin) def printSetting(message, condition=False, muteStackTrace=False, newLine=True, margin=True) : LogHelperHelper.printMessageLog(SETTING, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin) def printDebug(message, condition=False, muteStackTrace=False, newLine=True, margin=True, exception=None) : LogHelperHelper.printMessageLog(DEBUG, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin, exception=exception) def printWarning(message, condition=False, muteStackTrace=False, newLine=True, margin=True, exception=None) : LogHelperHelper.printMessageLog(WARNING, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin, exception=exception) def printWarper(message, condition=False, muteStackTrace=False, newLine=True, margin=True, exception=None) : LogHelperHelper.printMessageLog(WRAPPER, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin, exception=exception) def printFailure(message, condition=False, muteStackTrace=False, newLine=True, margin=True, exception=None) : LogHelperHelper.printMessageLog(FAILURE, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin, exception=exception) def printError(message, condition=False, muteStackTrace=False, newLine=True, margin=True, exception=None) : LogHelperHelper.printMessageLog(ERROR, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin, exception=exception) def printTest(message, condition=False, muteStackTrace=False, newLine=True, margin=True, exception=None) : LogHelperHelper.printMessageLog(TEST, message, condition=condition, muteStackTrace=muteStackTrace, newLine=newLine, margin=margin, exception=exception) def prettyPython( origin, message, dictionaryInstance, quote = c.SINGLE_QUOTE, tabCount = 0, nullValue = c.NONE, trueValue = c.TRUE, falseValue = c.FALSE, logLevel = LOG, condition = True ) : if condition : stdout, stderr = EnvironmentHelper.getCurrentSoutStatus() prettyPythonValue = StringHelper.prettyPython( dictionaryInstance, quote = quote, tabCount = tabCount, nullValue = nullValue, trueValue = trueValue, falseValue = falseValue, withColors = SettingHelper.activeEnvironmentIsLocal(), joinAtReturn = False ) LogHelperHelper.softLog(origin, StringHelper.join([message, c.COLON_SPACE, *prettyPythonValue]), logLevel) EnvironmentHelper.overrideSoutStatus(stdout, stderr) def prettyJson( origin, message, dictionaryInstance, quote = c.DOUBLE_QUOTE, tabCount = 0, nullValue = c.NULL_VALUE, trueValue = c.TRUE_VALUE, falseValue = c.FALSE_VALUE, logLevel = LOG, condition = True ) : if condition : stdout, stderr = EnvironmentHelper.getCurrentSoutStatus() prettyJsonValue = StringHelper.prettyJson( dictionaryInstance, quote = quote, tabCount = tabCount, nullValue = nullValue, trueValue = trueValue, falseValue = falseValue, withColors = SettingHelper.activeEnvironmentIsLocal(), joinAtReturn = False ) LogHelperHelper.softLog(origin, StringHelper.join([message, c.COLON_SPACE, *prettyJsonValue]), logLevel) EnvironmentHelper.overrideSoutStatus(stdout, stderr) def getExceptionMessage(exception) : if ObjectHelper.isEmpty(exception) : return c.UNKNOWN exceptionAsString = str(exception) if c.NOTHING == exceptionAsString : return ReflectionHelper.getName(exception.__class__) else : return exceptionAsString def getTracebackMessage(muteStackTrace) : tracebackMessage = c.BLANK try : tracebackMessage = traceback.format_exc() except : tracebackMessage = f'{c.NEW_LINE}' if muteStackTrace : return StringHelper.join(tracebackMessage.split(c.NEW_LINE)[-2:], character=c.NEW_LINE) return LogHelperHelper.NO_TRACEBACK_PRESENT_MESSAGE if LogHelperHelper.NO_TRACEBACK_PRESENT == str(tracebackMessage) else tracebackMessage
1.875
2
EDX_main.py
tkcroat/EDX
0
12791381
# -*- coding: utf-8 -*- """ Spyder Editor SEM_batch_conversion script Extracts important header info into parameter log, designed to read out pertinent header information from all emsa files within a folder. No need to convert psmsa into csv ... just always strip header when opening Output into single log file for import into Excel or elsewhere """ #%% Load modules import glob, sys, os # already run with functions import pandas as pd import numpy as np if 'C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX' not in sys.path: sys.path.append('C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX') import EDX_import_functions as EDXimport import EDX_quant_functions as EDXquant import EDX_plot_functions as EDXplot import EDX_refit_tk_gui as EDXrf import EDX_quantplotter_tk_gui as EDXqpl #%% # datapath = filedialog.askdirectorypwd # initialdir="H:\\Research_data", title = "choose data directory") filelist=glob.glob('*.psmsa')+glob.glob('*.emsa') # psmsa option #%% Main file processing loop for emsa or psmsa parameter extraction # Create parameters log for all SEM-EDX files (autosaved with prior backup) using parameter template # Checks for existing EDXlogbook correlating filenames w/ sample EDXlog= EDXimport.getparams(filelist) EDXlog= EDXimport.getparams(filelist, reprocess=True) # alt version that reacquires params from existing files EDXlog.to_csv('EDXparamlog.csv',index=False) # Creation of jpg images with points/areas superimposed (from .psref and .p_s files).. jpgs directly saved # returns df with spatial areas (automatically saved w/ backup) SpatialAreasLog=EDXimport.processpointshoot() #%% # Combine files with same basename/point name (autosaves altered EDXlog with backup) EDXlog=EDXimport.combineEDX(EDXlog) #%% Automated background fitting of SEM-EDX spectra # can drop or exclude files here if desired (filter of EDXlog) # Various ways of slicing up above full parameters log list EDXfiles=EDXlog EDXfiles=EDXfiles[0:10][:] # grab first ten rows EDXfiles=EDXfiles.iloc[[0]] # select single row EDXfiles=EDXfiles[EDXfiles['Filenumber'].str.contains("\+",na=False)] # choose only summed files EDXfiles=EDXfiles[~EDXfiles['Comments'].str.contains("exclude",na=False, case=False)] # choose only summed files EDXfiles=EDXfiles[EDXfiles['Timeconst']>12500] # backfits fail with small timeconst #%% Reload of existing files (if reprocessing data) from working directory EDXlog, Backfitlog, Integlog, Peakfitlog, EDXquantparams, Interferences=EDXimport.loadprocessfiles() #%% Elements=EDXimport.pickelemsGUI(EDXquantparams) # interactive element selection Elements=['S','C','Ca','O','Cr', 'FeL','Fe','Mg','Al','Si'] # meteorites Elements=['S','C','Ca','O','Cr', 'FeL','Fe','Mg','Al','Si'] # pristine SiC Elements=['S','C','Ca','O','Cr', 'FeL','Fe','Mg','Al','Si','PtM','PtL','PtL2','Ga','GaL'] # meteorites +FIB artifact Elements=['N','C','O','FeL','Fe','S','Ca','Mg','Al','Si','Ti'] # refractory analogs Elements=np.ndarray.tolist(Integlog.Element.unique())# gets prior used element set Elements.append('PtL2') Elements.extend(['GaL','PtM', 'Ga','PtL','PtL2']) # Load energy ranges without peaks for background fitting (various options and can also create custom version) Fitregionsdf=pd.read_csv('C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX\\SEM_backfit_regions.csv', encoding='utf-8') Fitregionsdf=pd.read_csv('C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX\\SEM_backfit_regions_alt.csv', encoding='utf-8') # Version for pristine grains on graphene Fitregionsdf=pd.read_csv('C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX\\SEM_backfit_regions_pristine.csv', encoding='utf-8') # TEM version Fitregionsdf=pd.read_csv('C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX\\TEM_backfit_regions.csv', encoding='utf-8') Fitregionsdf=pd.read_csv('SEM_backfit_regions_alt.csv', encoding='utf-8') # local version # If any modifications were made during quant of this data, load local version stored with data EDXquantparams=pd.read_csv('C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX\\SEMquantparams.csv', encoding='utf-8') EDXquantparams=pd.read_csv('C:\\Users\\tkc\\Documents\\Python_Scripts\\EDX\\TEMquantparams.csv', encoding='utf-8') #%% # Run main quant loop (not autosaved so use to_csv save below after checks) kwargs={} Backfitlog, Peakfitlog, Integlog= EDXimport.batchEDXquant(EDXlog, Fitregionsdf, EDXquantparams, Elements, Backfitlog, Integlog, Peakfitlog, **kwargs) # optional kwargs for above command kwargs.update({'redo_backfit':True}) # default false for redo, redo of integration but not of background fits; no effect on new spectra kwargs.update({'redo_integration':False}) # defaults true (false allows skip of existing integrations and gauss peak fits # if quant rerun w/o changing backfits (i.e. after custom mods) skip clear of backfits kwargs.update({'clear_old_backfits':True}) # default false option to not overwrite all backgrounds in csv files (defaults True) kwargs.update({'savegauss':False}) # optional save of gaussian fit column into spectrum's csv file; default true # Find/ Replace subset of files (processed in alternate manner) from above log files.. refit of failed fits Backfitlog.to_csv('Backfitparamslog.csv', index=False) Peakfitlog.to_csv('Peakfitlog.csv', index=False) Integlog.to_csv('Integquantlog.csv', index=False) # After successful refit of subset of files, find/replace entries in original logbooks (saves after finishing) Backfitlog, Peakfitlog, Integlog = EDXimport.replacelogentries(EDXlog, Backfitlog, Peakfitlog, Integlog) #%% Run interactive EDXrefitter (if any plots, backfit points, etc. are bad) EDXrf.launch_refitter() EDXqpl.launch_plotter(os.getcwd()) # Redo integlog, peakfits if any backfits were changed (first reload saved changes from file) EDXlog, Backfitlog, Integlog, Peakfitlog, EDXquantparams, Interferences=EDXimport.loadprocessfiles() kwargs={'newback':False,'overwrite':False} # do not refit or overwrite backgrounds... use ones made with interactive refitter Backfitlog, Peakfitlog, Integlog= EDXimport.batchEDXquant(EDXlog, Fitregionsdf, EDXquantparams, Elements, **kwargs) # Manual save of peakfitlog and integlog are needed Peakfitlog.to_csv('Peakfitlog.csv', index=False) Integlog.to_csv('Integquantlog.csv', index=False) #%% PLOTTING to check quality of background fits, peaks, etc. EDXfiles=EDXlog[0:5] # Selecting subsets of all SEM files # Plot counts and background over specified energy range pkwargs={} pkwargs.update({'xrange':'0.3-10'}) # optional x range for plot (default is 0-10? ) pkwargs.update({'backfitdf':Backfitlog}) # optional plotting of points used to create background fit pkwargs.update({'backfitpts':False}) # skip background pts but include fits pkwargs.update({'yrange':[-500,3000]}) # optional y range for plot.. defaults to data range pkwargs.update({'plotelems':['O','Mg','S','Si', 'Ca', 'Fe', 'FeL']}) # list of elements to label on plots pkwargs.update({'plotelems':['O','Mg','Si', 'Fe']}) pkwargs.update({'PDFname':'counts_report_9Jan18.pdf'}) # alt save name (defaults to countsback_report.pdf) pkwargs.update({'savgol':True}) # include savgol differentiated plot (default False) EDXplot.reportcounts(EDXfiles, EDXquantparams, **pkwargs) EDXplot.reportcounts(EDXlog, EDXquantparams, **pkwargs) # plot report with subtracted counts and optionally gaussian peak fits (if they exist) EDXplot.reportSEMpeaks(EDXfiles, plotelems, SEMquantparams, addgauss=True, PDFname='peak_report.pdf') # TODO Place center of integration on plot for significant peaks # plot subtracted data around major elements including corrected counts EDXplot.reportsubdatamajor(EDXfiles, Integquantlog, PDFname='Subcounts_major_report.pdf') reportcountspeakfits(EDXfiles, Fitregionsdf, plotrange, plotelems, SEMquantparams) # Now proceed to EDX_quant_main for interference adjustments, \\osition calcs, etc. # Renaming of troublesome p_s and psmsa files (i.e. containing blanks) psfiles=glob.glob('*.p_s') badpsfiles=[i for i in psfiles if '\xa0' in i] for i, psfile in enumerate(badpsfiles): EDXimport.renamePSset(psfile, '\xa0', '_') train=pd.read_csv('Backfit_training.csv')
2.34375
2
Code/AnalyseFittedData_Field_at_He.py
nancy-aggarwal/Characterization-of-ARIADNE-source-mass-rotor_Github
0
12791382
<gh_stars>0 # %% from scipy.io import loadmat import numpy as np # from scipy.optimize import minimize from datetime import datetime now = datetime.now import matplotlib.pyplot as plt import matplotlib as mpl import time import os import pickle import json from scipy import fft from scipy.signal.windows import hann from copy import deepcopy from scipy.stats import chi2 # %% SaveFitFigs = True # SaveFitData = True dpiN = 1000 dark_plots = True n_sig = 8 n_print_sigfigs = 3 if dark_plots: dark='darkbg/' q = mpl.rc_params_from_file('matplotlibrc_dark') else: dark = 'whitebg/' mpl.rcParams.update(mpl.rcParamsDefault) SavePlotDir_Exp2 = '../Results/2021-12-21_threesigfigs/Exp2/'+dark+'FittingFigs/' # SaveDataDir_Exp2 = '../Results/2021-11-16/Exp2/'+'Pickles/' LoadDataDir_Exp2 = '../Results/2021-12-20/Exp2/Pickles/'#SaveDataDir_Exp2 # The other notebook stored the pickle in the same folder if SaveFitFigs: if not os.path.exists(SavePlotDir_Exp2): os.makedirs(SavePlotDir_Exp2) # if SaveFitData: # if not os.path.exists(SaveDataDir_Exp2): # os.makedirs(SaveDataDir_Exp2) # %% if dark_plots: mpl.rcParams.update(q) # %matplotlib inline mpl.rcParams.update({ #'legend.borderpad': 0.3, #'legend.borderaxespad': 0.25, # 'legend.columnspacing': 0.6, # 'legend.handlelength': 0.7, #'legend.handleheight': 0.4, #'legend.handletextpad': 0.2, # 'legend.labelspacing': 0.45, # 'text.usetex': True, 'font.size':13, }) else: # %matplotlib inline # mpl.rcParams.update(mpl.rcParamsDefault) font = { # 'weight' : 'normal', 'size' : 15, 'family': 'Times New Roman'} plt.rc('font', **font) # mpl.rcParams.update({'font.family':'serif'}) # %% # %load_ext autoreload # %% from B_calc_script import FieldAtAnyLocation from B_calc_script import signif # %% # %autoreload 2 # %% # %% [markdown] # # Load data # %% Exp2_data_filename = LoadDataDir_Exp2+'Exp2_cut_averaged_data.pk' # %% with open(Exp2_data_filename,'rb') as file_obj: Exp2_data_cut = pickle.load(file_obj) # %% [markdown] # ## Load parameters ## # %% nu = 5 # %% with open('../Params/Exp2_dimensions_and_locations.json', 'r') as fp: params_dims_locs = json.load(fp) # %% params_dims_locs # %% rtr_dims = params_dims_locs['rotor_dims'] for key in rtr_dims: rtr_dims[key] = signif(rtr_dims[key],n_sig) # %% He_sample_locations =deepcopy(params_dims_locs['3He locations']) for Hekey in He_sample_locations.keys(): string_to_parse = params_dims_locs['3He locations'][Hekey]['location'] He_sample_locations[Hekey]['location']=eval(string_to_parse.replace('rotor_dims','rtr_dims').replace('D_wheel_sample','params_dims_locs[\'D_wheel_sample\']')) # %% # with open('../Params/'+'FittedDipoles_{}Hz_'.format(nu)+'3sources.pk','rb') as filehandle: # Exp2_Opt_Params_3_sources = pickle.load(filehandle) # Exp2_Opt_Params_3_sources=Exp2_Opt_Params_3_sources.tolist() with open('../Params/'+'FittedDipoles_{}Hz_'.format(nu)+'3sources.json','r',encoding = 'utf-8') as filehandle: Exp2_Opt_Params_3_sources = json.loads(filehandle.read()) # %% Exp2_Opt_Params_3_sources # %% Exp2_Opt_Params_3_sources_noDC_noBar = Exp2_Opt_Params_3_sources[:-5] Exp2_Opt_Params_3_sources_zeroDC = Exp2_Opt_Params_3_sources_noDC_noBar+ [0,0,0] + [Exp2_Opt_Params_3_sources[-1]] # %% # with open('../Params/Params_4sources.pk','rb') as filehandle: # Exp2_Opt_Params_4_sources = pickle.load(filehandle) # %% [markdown] # # Calculate field at sample location # # %% Sample_settings = { 'rotor dimensions':rtr_dims, 'sensor locations':He_sample_locations, # 'bar location':0, # 'DC shifts':[DC_shift_AVx,DC_shift_AVy,DC_shift_AWy,DC_shift_AWz] # 'deltaB':1 #picoTesla } # %% Data_At_Sample = { 'theta':np.concatenate([Exp2_data_cut['theta avg'][nu] # ,360+Exp2_data_cut['theta avg'][nu] ]), #theta positive for ac, negative for clockwise 'B':{ '3He 1':{ 'Z':np.array([]), 'Y':np.array([]), 'X':np.array([]) }, } } # %% # nowtext = now().strftime("%Y%m%d%H%M") nowtext = '_15font' fitplotfilename = SavePlotDir_Exp2+'FittedData_at_sample_{}Hz'.format(nu)+nowtext+'.png' # fitdatafilename = SaveDataDir_Exp2+'FittedData_at_sample_{}Hz'.format(nu)+nowtext+'.pk' Exp2_optimization_settings = { 'print':True, 'number of sources':3, 'location dimensions':3, 'moment dimensions':3, 'location coordinate system':'polar', 'moment coordinate system':'polar', # 'chi tolerance':10, 'optimize DC shifts':True, 'optimize bar location':True, 'significant figures':n_sig } Exp2_plot_settings = { 'plot':True, # 'memo':'{} Hz (AV X&Y inverted)'.format(nu), # 'memo':'{} Hz'.format(nu), 'doubleplot':False, 'saveplot':SaveFitFigs, 'dpi':dpiN, 'figname':fitplotfilename, 'print sigfigs':n_print_sigfigs } Exp2_save_settings ={ 'save fit data':False, # 'fit data filename':fitdatafilename } Exp2_all_settings = { 'experiment settings':Sample_settings, 'data':Data_At_Sample, 'optimization settings':Exp2_optimization_settings, 'plot settings':Exp2_plot_settings, 'save settings':Exp2_save_settings } Exp2_Opt_Params = Exp2_Opt_Params_3_sources_zeroDC field_at_sample = FieldAtAnyLocation(Exp2_Opt_Params,Exp2_all_settings) # %% [markdown] # # FFT Field at Sample Location # %% n_reps = 50 # %% Field_At_He_location_for_FFT = {} Field_At_He_location_for_FFT['time'] = Data_At_Sample['theta']/360/nu Field_At_He_location_for_FFT['B time domain'] = {} Field_At_He_location_for_FFT['B freq domain'] = {} numsamples = n_reps*Field_At_He_location_for_FFT['time'].size binsize = Field_At_He_location_for_FFT['time'][2] - Field_At_He_location_for_FFT['time'][1] Field_At_He_location_for_FFT['freq']= fft.rfftfreq(n = numsamples,d=binsize) # %% for Hekey in field_at_sample.keys(): Field_At_He_location_for_FFT['B time domain'][Hekey] = {} Field_At_He_location_for_FFT['B freq domain'][Hekey] = {} for axiskey in field_at_sample[Hekey].keys(): Field_At_He_location_for_FFT['B time domain'][Hekey][axiskey] = np.tile(field_at_sample[Hekey][axiskey],n_reps) Field_At_He_location_for_FFT['B freq domain'][Hekey][axiskey] = 4*fft.rfft(Field_At_He_location_for_FFT['B time domain'][Hekey][axiskey]*hann(numsamples),norm = "forward") # %% indnu = (np.abs(Field_At_He_location_for_FFT['freq']-nu)<0.5*nu) ind11nu = (np.abs(Field_At_He_location_for_FFT['freq']-11*nu)<0.5*nu) FFT_amp_table = {} # FFT_amp_table['frequency'] .append(nu) FFT_amp_table[nu] = {} FFT_amp_table[11*nu] = {} B_max_table = {} for Hekey in Field_At_He_location_for_FFT['B freq domain'].keys(): FFT_amp_table[nu][Hekey] = {} FFT_amp_table[11*nu][Hekey] = {} B_max_table[Hekey] = {} for axiskey in Field_At_He_location_for_FFT['B freq domain'][Hekey].keys(): FFT_amp_table[nu][Hekey][axiskey] = np.abs(Field_At_He_location_for_FFT['B freq domain'][Hekey][axiskey][indnu]).max() FFT_amp_table[11*nu][Hekey][axiskey] = np.abs(Field_At_He_location_for_FFT['B freq domain'][Hekey][axiskey][ind11nu]).max() B_max_table[Hekey][axiskey] = np.abs(Field_At_He_location_for_FFT['B freq domain'][Hekey][axiskey]).max() # %% print("FFT Amplitudes calculated at locations inside He spheroid") for freq in FFT_amp_table.keys(): print('{} Hz'.format(freq), end = "\n") print("-------------------") print("Axis |", end = " ") for Hekey in FFT_amp_table[freq].keys(): print('Sensor {} |'.format(Hekey), end = " ") print("\n") for axiskey in FFT_amp_table[freq][Hekey].keys(): print(" "+axiskey+" |",end="") for Hekey in FFT_amp_table[freq].keys(): print(" {:0.1f} |".format(FFT_amp_table[freq][Hekey][axiskey]),end="") print("\n") print("-------------------") # %% for Hekey in Field_At_He_location_for_FFT['B freq domain'].keys(): plt.figure() i_num = 0 B_max = 0 max_at_nu = 0 max_at_11nu = 0 for axiskey in Field_At_He_location_for_FFT['B freq domain'][Hekey].keys(): plt.semilogx(Field_At_He_location_for_FFT['freq'] ,np.abs(Field_At_He_location_for_FFT['B freq domain'][Hekey][axiskey]) ,label = axiskey ,alpha = 1-i_num/3) i_num +=1 B_max = max(B_max, B_max_table[Hekey][axiskey]) max_at_nu = max(max_at_nu, FFT_amp_table[nu][Hekey][axiskey]) max_at_11nu = max(max_at_11nu, FFT_amp_table[11*nu][Hekey][axiskey]) plt.annotate('$f_\mathrm{rot}$',xy = (nu,max_at_nu),xytext=(nu,B_max*1.4),\ arrowprops=dict(color='red',alpha=0.5,width = 1.5,headwidth=6, shrink=0.),\ horizontalalignment='center') plt.annotate('$11f_\mathrm{rot}$',xy = (11*nu,max_at_11nu),xytext=(11*nu,B_max*1.4),\ arrowprops=dict(color='fuchsia',alpha=0.5,width = 1.5,headwidth=6,shrink=0.),\ horizontalalignment='center') plt.ylim(0,B_max*1.5) plt.xlabel('Frequency (Hz)') plt.title('Contribution of impurities to field at $^3$He location {}\n ({:0.1f} s measurement duration)'.format(Hekey,n_reps*Field_At_He_location_for_FFT['time'][-1])) plt.ylabel('Magnetic field (pT)') plt.grid() plt.legend(loc = 'upper left') if SaveFitFigs: plt.savefig(SavePlotDir_Exp2+'BFFT_at_sample_{}.png'.format(Hekey),bbox_inches = 'tight',dpi = dpiN) # %% for axiskey in Field_At_He_location_for_FFT['B freq domain']['1'].keys(): plt.figure() i_num = 0 B_max = 0 max_at_nu = 0 max_at_11nu = 0 for Hekey in Field_At_He_location_for_FFT['B freq domain'].keys(): plt.semilogx(Field_At_He_location_for_FFT['freq'] ,np.abs(Field_At_He_location_for_FFT['B freq domain'][Hekey][axiskey]) ,label = Hekey ,alpha = 1-i_num/4) i_num +=1 B_max = max(B_max, B_max_table[Hekey][axiskey]) max_at_nu = max(max_at_nu, FFT_amp_table[nu][Hekey][axiskey]) max_at_11nu = max(max_at_11nu, FFT_amp_table[11*nu][Hekey][axiskey]) plt.annotate('$f_\mathrm{rot}$',xy = (nu,max_at_nu),xytext=(nu,B_max*1.4),\ arrowprops=dict(color='red',alpha=0.5,width = 1.5,headwidth=6, shrink=0.),\ horizontalalignment='center') plt.annotate('$11f_\mathrm{rot}$',xy = (11*nu,max_at_11nu),xytext=(11*nu,B_max*1.4),\ arrowprops=dict(color='fuchsia',alpha=0.5,width = 1.5,headwidth=6,shrink=0.),\ horizontalalignment='center') plt.ylim(0,B_max*1.5) plt.xlabel('Frequency (Hz)') plt.title('Contribution of impurities to field at $^3$He location \n ({:0.1f} s measurement duration)'.format(n_reps*Field_At_He_location_for_FFT['time'][-1])) plt.ylabel('Magnetic field, {} component (pT)'.format(axiskey)) plt.grid() plt.legend(loc = 'upper left') if SaveFitFigs: plt.savefig(SavePlotDir_Exp2+'BFFT_at_sample_{}_component.png'.format(axiskey),bbox_inches = 'tight',dpi = dpiN) # %% # %%
1.90625
2
specification/tools/VMHprocessMappings1.py
iptc/video-metadata-hub
1
12791383
#!/usr/bin/env python3 """ Python script for retrieving IPTC Video Metadata Hub mapping data from a Google sheet The retrieved data are transformed in HTML as saved as HTML page. For IPTC-internal use Creator: <NAME> History: 2016-11-25 mws: project started, download and HTML output ok 2020-06-15 BQ: Updated and checked into GitHub """ from __future__ import print_function import pickle import os import sys from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from lxml import etree as ET SCOPES = 'https://www.googleapis.com/auth/spreadsheets.readonly' CLIENT_SECRET_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'client_secret.json') APPLICATION_NAME = 'Video Metadata Hub Documentation Generator' # Constant values StdVersion = "1.3" HeaderAppendix = "" # could be " - D-R-A-F-T - " IPTCApprovalDate = "13 May 2020" IPTCRevisionDate = "13 May 2020" CopyrightYear = "2020" def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.pickle'): with open('token.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( CLIENT_SECRET_FILE, SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.pickle', 'wb') as token: pickle.dump(creds, token) return creds def createSpecificMapping(valuesProp, headingtext1, headingtext2, findmoreaturl, mapIdx, filename): # create the HTML document xroot = ET.Element('html') head = ET.SubElement(xroot, 'head') title = ET.SubElement(head, 'title') title.text = 'Video Metadata Hub Mapping' metachset = ET.SubElement(head, 'meta', {'http-equiv': "Content-Type", 'content': "text/html; charset=utf-8"}) csslink1 = ET.SubElement(head, 'link', {'type': 'text/css', 'rel': 'stylesheet', 'href': 'iptcspecs1.css'}) body = ET.SubElement(xroot, 'body') pageheader = ET.SubElement(body, 'h1', {'class':'pageheader'}) iptcanc = ET.SubElement(pageheader, 'a', {'href':'https://iptc.org'}) iptcimg = ET.SubElement(iptcanc, 'img', {'src':'https://iptc.org/download/resources/logos/iptc-gr_70x70.jpg', 'align':'left', 'border':'0'}) pageheader.text = headingtext1 seeotherdoc1 = ET.SubElement(body, 'p', {'class':'note1'}) seeotherdoc1.text = 'Return to ' seeotherdoc1link1 = ET.SubElement(seeotherdoc1, 'a', {'href':'IPTC-VideoMetadataHub-mapping-Rec_'+StdVersion+'.html'}) seeotherdoc1link1.text = 'all recommended mappings of the Video Metadata Hub.' seeotherdoc2 = ET.SubElement(body, 'p', {'class':'note1'}) seeotherdoc2.text = 'See the ' seeotherdoc1link2 = ET.SubElement(seeotherdoc2, 'a', {'href':'IPTC-VideoMetadataHub-props-Rec_'+StdVersion+'.html'}) seeotherdoc1link2.text = 'specification of Video Metadata Hub properties' docdate = ET.SubElement(body, 'p', {'class':'note1'}) docdate.text = 'Mapping recommended on ' + IPTCApprovalDate + '. Document revision as of ' + IPTCRevisionDate + '.' copyrightnotice = ET.fromstring('<p class="smallnote1">Copyright © ' + CopyrightYear + ', <a href="https://iptc.org">IPTC</a> - all rights reserved. Published under the Creative Commons Attribution 4.0 license <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a></p>') body.append(copyrightnotice) mappedstdnote = ET.SubElement(body, 'p', {'class':'note1'}) mappedstdnote.text = 'In this table the columns with a blue header are defined by the Video Metadata Hub, the column with the green header is defined by ' + headingtext2 propnote1 = ET.fromstring('<p class="note1">Note on the column headers:<br />EBUcore: based on the EBU Core Metadata Standard.<br />XMP: based on the ISO XMP standard.<br />PVMD: a specification of JSON properties for Photo and Video MetaData by IPTC (aka phovidmd).</p>') body.append(propnote1) if not valuesProp: print('No Property data found.') else: table = ET.SubElement(body, 'table', {'class':'spec1 vmhmapping'}) thead = ET.SubElement(table, 'thead') throw = ET.SubElement(thead, 'tr') thcol1 = ET.SubElement(throw, 'th', {'class':'hdrcol1'}) thcol1.text = 'Property Group' thcol2 = ET.SubElement(throw, 'th', {'class':'hdrcol2'}) thcol2.text = 'Property Name' thcol3 = ET.SubElement(throw, 'th', {'class':'hdrcol3'}) thcol3.text = 'Definition / Semantics' """ thcol4 = ET.SubElement(throw, 'th', {'class':'hdrcol4'}) thcol4.text = 'Basic Type/Cardinality' """ thcol5 = ET.SubElement(throw, 'th', {'class':'hdrcol5'}) thcol5.text = 'EBUcore' thcol6 = ET.SubElement(throw, 'th', {'class':'hdrcol6'}) thcol6.text = 'XMP' thcol7 = ET.SubElement(throw, 'th', {'class':'hdrcol7'}) thcol7.text = 'PVMD JSON' thcol8 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc'}) thcol8.text = headingtext2 # second row with "find more at ..." links throw = ET.SubElement(thead, 'tr') thcol1 = ET.SubElement(throw, 'td', {'class':'hdrcol1'}) thcol1.text = ' ' thcol2 = ET.SubElement(throw, 'td', {'class':'hdrcol2'}) thcol2.text = ' ' thcol3 = ET.SubElement(throw, 'td', {'class':'hdrcol3'}) thcol3.text = ' ' """ thcol4 = ET.SubElement(throw, 'td', {'class':'hdrcol4'}) thcol4.text = '' """ moreatlink = valuesProp[0][4] colcode = ET.fromstring( '<td class="hdrcolIptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) moreatlink = valuesProp[0][5] colcode = ET.fromstring( '<td class="hdrcolIptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) moreatlink = valuesProp[0][6] colcode = ET.fromstring( '<td class="hdrcolIptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) moreatlink = valuesProp[0][mapIdx] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc"> </td>') throw.append(colcode) tbody = ET.SubElement(table, 'tbody') for rowcounter in range(2, 186): xrow = ET.SubElement(tbody, 'tr') teststr = valuesProp[rowcounter][0] if teststr == 'Property Structures (PS)': xrow.set('style', 'background-color: #009999;') if teststr.find('PS', 0) == 0: xrow.set('style', 'background-color: #00cccc;') xcell1 = ET.SubElement(xrow, 'td', { 'class': 'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][0] except: valstr = ' ' xcell1.text = valstr xcell2 = ET.SubElement(xrow, 'td', { 'class': 'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][1] except: valstr = ' ' xcell2.text = valstr xcell3 = ET.SubElement(xrow, 'td', { 'class': 'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][2] except: valstr = ' ' xcell3.text = valstr """ xcell4 = ET.SubElement(xrow, 'td', { 'class': 'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][3] except: valstr = ' ' xcell4.text = valstr """ xcell5 = ET.SubElement(xrow, 'td', { 'class': 'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][4] except: valstr = ' ' xcell5.text = valstr xcell6 = ET.SubElement(xrow, 'td', { 'class': 'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][5] except: valstr = ' ' xcell6.text = valstr xcell7 = ET.SubElement(xrow, 'td', { 'class': 'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][6] except: valstr = ' ' xcell7.text = valstr xcell8 = ET.SubElement(xrow, 'td', { 'class': 'bgdcolNoniptc'}) try: valstr = valuesProp[rowcounter][mapIdx] except: valstr = ' ' xcell8.text = valstr with open(filename, 'w') as file: file.write(ET.tostring(xroot, pretty_print=True).decode()) def main(): credentials = get_credentials() service = build('sheets', 'v4', credentials=credentials) spreadsheetId = '1TgfvHcsbGvJqmF0iUUnaL-RAdd1lbentmb2LhcM8SDk' rangeName = 'MappingRec 1.3.1!A4:R' result1 = service.spreadsheets().values().get( spreadsheetId=spreadsheetId, range=rangeName).execute() valuesProp = result1.get('values', []) # create the HTML document xroot = ET.Element('html') head = ET.SubElement(xroot, 'head') title = ET.SubElement(head, 'title') title.text = 'Video Metadata Hub Mapping' metachset = ET.SubElement(head, 'meta', {'http-equiv': "Content-Type", 'content': "text/html; charset=utf-8"}) csslink1 = ET.SubElement(head, 'link', {'type': 'text/css', 'rel': 'stylesheet', 'href': 'iptcspecs1.css'}) body = ET.SubElement(xroot, 'body') pageheader = ET.SubElement(body, 'h1', {'class':'pageheader'}) iptcanc = ET.SubElement(pageheader, 'a', {'href':'https://iptc.org'}) iptcimg = ET.SubElement(iptcanc, 'img', {'src':'https://iptc.org/download/resources/logos/iptc-gr_70x70.jpg', 'align':'left', 'border':'0'}) pageheader.text = 'IPTC Video Metadata Hub - Recommendation '+ StdVersion +' / all Mappings' + HeaderAppendix seeotherdoc1 = ET.SubElement(body, 'p', {'class':'note1'}) seeotherdoc1.text = 'See the ' seeotherdoc1link1 = ET.SubElement(seeotherdoc1, 'a', {'href':'IPTC-VideoMetadataHub-props-Rec_'+StdVersion+'.html'}) seeotherdoc1link1.text = 'specification of Video Metadata Hub properties' docdate = ET.SubElement(body, 'p', {'class':'note1'}) docdate.text = 'Mapping recommended on ' + IPTCApprovalDate + '. Document revision as of ' + IPTCRevisionDate + '.' copyrightnotice = ET.fromstring('<p class="smallnote1">Copyright © '+ CopyrightYear + ', <a href="https://iptc.org">IPTC</a> - all rights reserved. Published under the Creative Commons Attribution 4.0 license <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a></p>') body.append(copyrightnotice) mappedstdnote = ET.SubElement(body, 'p', {'class':'note1'}) mappedstdnote.text = 'In this table the columns with a blue header are defined by the Video Metadata Hub, the columns with the green or amber headers are defined by other standards or tools.' propnote1 = ET.fromstring('<p class="note1">Note on the column headers:<br />EBUcore: based on the EBU Core Metadata Standard.<br />XMP: based on the ISO XMP standard.<br />PVMD: a specification of JSON properties for Photo and Video MetaData by IPTC (aka phovidmd).</p>') body.append(propnote1) docnote1 = ET.SubElement(body, 'p', {'class':'smallnote1'}) docnote1.text = 'The header of mappings to other standards provides a link to a table including only this mapping (better for printing)' if not valuesProp: print('No Property data found.') else: table = ET.SubElement(body, 'table', {'class':'spec1 vmhmapping'}) thead = ET.SubElement(table, 'thead') throw = ET.SubElement(thead, 'tr') thcol1 = ET.SubElement(throw, 'th', {'class':'hdrcol1'}) thcol1.text = 'Property Group' thcol2 = ET.SubElement(throw, 'th', {'class':'hdrcol2'}) thcol2.text = 'Property Name' thcol3 = ET.SubElement(throw, 'th', {'class':'hdrcol3'}) thcol3.text = 'Definition / Semantics' """ thcol4 = ET.SubElement(throw, 'th', {'class':'hdrcol4'}) thcol4.text = 'Basic Type/Cardinality' """ thcol5 = ET.SubElement(throw, 'th', {'class':'hdrcol5'}) thcol5.text = 'EBUcore' thcol6 = ET.SubElement(throw, 'th', {'class':'hdrcol6'}) thcol6.text = 'XMP' thcol7 = ET.SubElement(throw, 'th', {'class':'hdrcol7'}) thcol7.text = 'IPTC PVMD JSON' thcol8 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc'}) thcol8link = ET.SubElement(thcol8,'a', {'href':'IPTC-VideoMetadataHub-mapping-AppleQT-Rec_'+StdVersion+'.html'}) thcol8link.text = 'Apple Quicktime' thcol9 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc2'}) thcol9link = ET.SubElement(thcol9,'a', {'href':'IPTC-VideoMetadataHub-mapping-MPEG7-Rec_'+StdVersion+'.html'}) thcol9link.text = 'MPEG 7' thcol10 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc'}) thcol10link = ET.SubElement(thcol10,'a', {'href':'IPTC-VideoMetadataHub-mapping-NewsMLG2-Rec_'+StdVersion+'.html'}) thcol10link.text = 'NewsML-G2' thcol11 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc2'}) thcol11link = ET.SubElement(thcol11,'a', {'href':'IPTC-VideoMetadataHub-mapping-PBCore21-Rec_'+StdVersion+'.html'}) thcol11link.text = 'PB Core 2.1' thcol12 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc'}) thcol12link = ET.SubElement(thcol12,'a', {'href':'IPTC-VideoMetadataHub-mapping-SchemaOrg-Rec_'+StdVersion+'.html'}) thcol12link.text = 'Schema.org' # new in 2018-03 thcol13 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc2'}) thcol13link = ET.SubElement(thcol13,'a', {'href':'IPTC-VideoMetadataHub-mapping-SonyXDCAM-Rec_'+StdVersion+'.html'}) thcol13link.text = 'Sony XDCAM & Planning' thcol14 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc'}) thcol14link = ET.SubElement(thcol14,'a', {'href':'IPTC-VideoMetadataHub-mapping-Panasonic-SMPTEP2-Rec_'+StdVersion+'.html'}) thcol14link.text = 'Panasonic/SMPTE P2' thcol15 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc2'}) thcol15link = ET.SubElement(thcol15,'a', {'href':'IPTC-VideoMetadataHub-mapping-CanonVClip-Rec_'+StdVersion+'.html'}) thcol15link.text = 'Canon VideoClip XML' thcol16 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc'}) thcol16link = ET.SubElement(thcol16,'a', {'href':'IPTC-VideoMetadataHub-mapping-exiftool-Rec_'+StdVersion+'.html'}) thcol16link.text = 'exiftool field ids' thcol17 = ET.SubElement(throw, 'th', {'class':'hdrcolNoniptc2'}) thcol17link = ET.SubElement(thcol17,'a', {'href':'IPTC-VideoMetadataHub-mapping-EIDR-Rec_'+StdVersion+'.html'}) thcol17link.text = 'EIDR Data Fields 2.0' # second row with "find more at ..." links throw = ET.SubElement(thead, 'tr') thcol1 = ET.SubElement(throw, 'td', {'class':'hdrcol1'}) thcol1.text = ' ' thcol2 = ET.SubElement(throw, 'td', {'class':'hdrcol2'}) thcol2.text = ' ' thcol3 = ET.SubElement(throw, 'td', {'class':'hdrcol3'}) thcol3.text = ' ' """ thcol4 = ET.SubElement(throw, 'td', {'class':'hdrcol4'}) thcol4.text = '' """ moreatlink = valuesProp[0][4] colcode = ET.fromstring( '<td class="hdrcolIptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) moreatlink = valuesProp[0][5] colcode = ET.fromstring( '<td class="hdrcolIptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) moreatlink = valuesProp[0][6] colcode = ET.fromstring( '<td class="hdrcolIptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) moreatlink = valuesProp[0][7] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc"> </td>') throw.append(colcode) moreatlink = valuesProp[0][9] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc2"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc2"> </td>') throw.append(colcode) moreatlink = valuesProp[0][10] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc"> </td>') throw.append(colcode) moreatlink = valuesProp[0][11] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc2"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc2"> </td>') throw.append(colcode) moreatlink = valuesProp[0][12] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc"> </td>') throw.append(colcode) moreatlink = valuesProp[0][13] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc2"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc2"> </td>') throw.append(colcode) moreatlink = valuesProp[0][14] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc"> </td>') throw.append(colcode) moreatlink = valuesProp[0][15] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc2"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc2"> </td>') throw.append(colcode) moreatlink = valuesProp[0][16] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc"> </td>') throw.append(colcode) moreatlink = valuesProp[0][17] if moreatlink != '': colcode = ET.fromstring( '<td class="hdrcolNoniptc2"><a href="' + moreatlink + '" target="_blank">Find more about it at ...</a></td>') throw.append(colcode) else: colcode = ET.fromstring( '<td class="hdrcolNoniptc2"> </td>') throw.append(colcode) tbody = ET.SubElement(table, 'tbody') for rowcounter in range(2, 186): xrow = ET.SubElement(tbody, 'tr') teststr = valuesProp[rowcounter][0] if teststr == 'Property Structures (PS)': xrow.set('style', 'background-color: #009999;') if teststr.find('PS', 0) == 0: xrow.set('style', 'background-color: #00cccc;') xcell1 = ET.SubElement(xrow, 'td', {'class':'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][0] except: valstr = ' ' xcell1.text = valstr xcell2 = ET.SubElement(xrow, 'td', {'class':'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][1] except: valstr = ' ' xcell2.text = valstr xcell3 = ET.SubElement(xrow, 'td', {'class':'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][2] except: valstr = ' ' xcell3.text = valstr """ xcell4 = ET.SubElement(xrow, 'td', {'class':'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][3] except: valstr = ' ' xcell4.text = valstr """ xcell5 = ET.SubElement(xrow, 'td', {'class':'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][4] except: valstr = ' ' xcell5.text = valstr xcell6 = ET.SubElement(xrow, 'td', {'class':'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][5] except: valstr = ' ' xcell6.text = valstr xcell7 = ET.SubElement(xrow, 'td', {'class':'bgdcolIptc'}) try: valstr = valuesProp[rowcounter][6] except: valstr = ' ' xcell7.text = valstr xcell8 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc'}) try: valstr = valuesProp[rowcounter][7] except: valstr = ' ' xcell8.text = valstr xcell9 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc2'}) try: valstr = valuesProp[rowcounter][9] except: valstr = ' ' xcell9.text = valstr xcell10 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc'}) try: valstr = valuesProp[rowcounter][10] except: valstr = ' ' xcell10.text = valstr xcell11 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc2'}) try: valstr = valuesProp[rowcounter][11] except: valstr = ' ' xcell11.text = valstr xcell12 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc'}) try: valstr = valuesProp[rowcounter][12] except: valstr = ' ' xcell12.text = valstr xcell13 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc2'}) try: valstr = valuesProp[rowcounter][13] except: valstr = ' ' xcell13.text = valstr xcell14 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc'}) try: valstr = valuesProp[rowcounter][14] except: valstr = ' ' xcell14.text = valstr xcell15 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc2'}) try: valstr = valuesProp[rowcounter][15] except: valstr = ' ' xcell15.text = valstr xcell16 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc'}) try: valstr = valuesProp[rowcounter][16] except: valstr = ' ' xcell16.text = valstr xcell17 = ET.SubElement(xrow, 'td', {'class':'bgdcolNoniptc2'}) try: valstr = valuesProp[rowcounter][17] except: valstr = ' ' xcell17.text = valstr filename = "IPTC-VideoMetadataHub-mapping-Rec_"+StdVersion+".html" with open(filename, 'w') as file: file.write(ET.tostring(xroot, pretty_print=True).decode()) moreatlink = valuesProp[0][7] createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - Apple Quicktime', 'Apple Quicktime', moreatlink, 7, 'IPTC-VideoMetadataHub-mapping-AppleQT-Rec_'+StdVersion+'.html') createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - MPEG 7', 'MPEG 7', moreatlink, 9,'IPTC-VideoMetadataHub-mapping-MPEG7-Rec_'+StdVersion+'.html') createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - NewsML-G2', 'NewsML-G2', moreatlink, 10,'IPTC-VideoMetadataHub-mapping-NewsMLG2-Rec_'+StdVersion+'.html') createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - PB Core 2.1', 'PB Core 2.1', moreatlink, 11,'IPTC-VideoMetadataHub-mapping-PBCore21-Rec_'+StdVersion+'.html') createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - Schema.org', 'Schema.org', moreatlink, 12,'IPTC-VideoMetadataHub-mapping-SchemaOrg-Rec_'+StdVersion+'.html') # new in 2018-03 createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - Sony Cameras ', 'Sony XDCAM & Planning', moreatlink, 13,'IPTC-VideoMetadataHub-mapping-SonyXDCAM-Rec_'+StdVersion+'.html') createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - Panasonic Cameras', 'Panasonic/SMPTE P2', moreatlink, 14,'IPTC-VideoMetadataHub-mapping-Panasonic-SMPTEP2-Rec_'+StdVersion+'.html') createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - Canon Cameras', 'Canon VideoClip XML', moreatlink, 15,'IPTC-VideoMetadataHub-mapping-CanonVClip-Rec_'+StdVersion+'.html') createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - exiftool', 'exiftool field id', moreatlink, 16,'IPTC-VideoMetadataHub-mapping-exiftool-Rec_'+StdVersion+'.html') createSpecificMapping(valuesProp, 'IPTC Video Metadata Hub - Recommendation ' + StdVersion + HeaderAppendix + '/ Mapping VMHub - EIDR Data Fields 2.0', 'EIDR Data Fields 2.0', moreatlink, 17,'IPTC-VideoMetadataHub-mapping-EIDR-Rec_'+StdVersion+'.html') if __name__ == '__main__': main()
2.9375
3
imgtopdf/__init__.py
AVIPAGHADAR1729/imgtopdf
0
12791384
<filename>imgtopdf/__init__.py from .imgtopdf import get_images_and_convert # https://towardsdatascience.com/how-to-build-your-first-python-package-6a00b02635c9
1.578125
2
scratch.py
satyarth934/DCASE2020_task1
0
12791385
import glob import numpy as np from pprint import pprint as pp g = glob.glob("data/*/*/audio/*.wav") wavpath = g[:10] pp(wavpath) res = [("/".join(wp.split("/")[:-2]), "/".join(wp.split("/")[-2:])) for wp in wavpath] pp(res)
2.71875
3
database.py
jhuiry8/fdfsdsdf
16
12791386
from __future__ import annotations from datetime import datetime from typing import List, Dict, Union, Optional, TYPE_CHECKING import pymongo from pymongo import MongoClient from pytz import timezone import config if TYPE_CHECKING: import discord JsonData = Dict[str, Union[str, int]] cluster = MongoClient(config.mongo_client) db: MongoClient = cluster[config.cluster_name] collection: MongoClient = db[config.collection_name] def daily_leaderboard() -> List[JsonData]: print( list(collection.find({}).sort( "dailyTime", pymongo.DESCENDING) )[:10] ) return list(collection.find({}).sort( "dailyTime", pymongo.DESCENDING) )[:10] def weekly_leaderboard() -> List[JsonData]: return list(collection.find({}).sort( "weeklyTime", pymongo.DESCENDING) )[:10] def monthly_leaderboard() -> List[JsonData]: return list(collection.find({}).sort( "monthlyTime", pymongo.DESCENDING) )[:10] def member_leaderboard() -> List[JsonData]: return list(collection.find({}).sort( "memberTime", pymongo.DESCENDING) )[:10] def member_details(member_id) -> Optional[JsonData]: member = collection.find_one({"_id": member_id}) return member if str(member) != "none" else None def resetDaily(): """ Resets daily time of all members """ collection.update_many({}, {"$set": {"dailyTime": 0}}) def resetWeekly(): """ Resets weekly time of all members """ collection.update_many({}, {"$set": {"weeklyTime": 0}}) def resetMonthly(): """ Resets monthly time of all members. """ collection.update_many({}, {"$set": {"monthlyTime": 0}}) def end(member: discord.Member): """ Updates total Study time for members when they leave. :param member: The member that left the voice channel. """ now: datetime = datetime.now(timezone('Asia/Kolkata')) now_str: str = now.strftime("%H:%M") user = collection.find_one({"_id": str(member.id)}) join_time = str(user["startTime"]) join_hour, join_minutes = join_time.split(':') join_minutes = int(join_hour) * 60 + int(join_minutes) current_hour, current_minutes = now_str.split(':') current_minutes = int(current_hour) * 60 + int(current_minutes) if current_minutes < join_minutes: daily_time = current_minutes difference = (1440 - join_minutes) + current_minutes weekly_time = current_minutes if int(now.weekday()) == 0 else difference monthly_time = current_minutes if int(now.day) == 1 else difference else: difference = current_minutes - join_minutes daily_time = difference weekly_time = difference monthly_time = difference collection.update_one( {"_id": str(member.id)}, { "$inc": { "memberTime": int(difference), "monthlyTime": int(monthly_time), "weeklyTime": int(weekly_time), "dailyTime": int(daily_time) } } ) collection.update_one( {"_id": str(member.id)}, {"$set": {"startTime": 0}} ) def update_join(member: discord.Member, _before_flag, _after_flag): """ Updates join data for existing members :param member: The member who joined the study channel :param _before_flag: The flag before the member joined the study channel :param _after_flag: The flag after the member joined the study channel """ now: str = datetime.now(timezone('Asia/Kolkata')).strftime("%H:%M") collection.update_one( {"_id": str(member.id)}, { "$set": { "startTime": now, "name#": str(member.name + "#" + member.discriminator) } } ) def add(member: discord.Member, _before_flag, _after_flag): """ Adds new entry in database for new members. :param member: The member who joined the study channel :param _before_flag: The flag before the member joined the study channel :param _after_flag: The flag after the member joined the study channel """ now: str = datetime.now(timezone('Asia/Kolkata')).strftime("%H:%M") post = { "_id": str(member.id), "memberTime": 0, "monthlyTime": 0, "weeklyTime": 0, "dailyTime": 0, "startTime": now, "name#": str(member.name + "#" + member.discriminator) } collection.insert_one(post) def join(member: discord.Member, before_flag, after_flag): """ Called once member joins study channel. :param member: The member who joined the study channel :param before_flag: The flag before the member joined the study channel :param after_flag: The flag after the member joined the study channel """ if before_flag == after_flag: return user_exist = str(collection.find_one({"_id": str(member.id)})) if user_exist == "None": add(member, before_flag, after_flag) else: update_join(member, before_flag, after_flag)
2.5625
3
datasets/ChEMBL_STRING/step_02.py
chao1224/SGNN-EBM
0
12791387
<filename>datasets/ChEMBL_STRING/step_02.py<gh_stars>0 import pandas as pd import requests import urllib import argparse import urllib.request import xml.etree.ElementTree as ET from multiprocessing import Pool from tqdm import tqdm from time import sleep from requests.models import HTTPError ''' http://www.uniprot.org/uniprot/O75713 http://www.uniprot.org/uniprot/D3DTF2 https://string-db.org/api/tsv/get_string_ids?identifiers=D3DTF2 https://string-db.org/api/json/network?identifiers=[your_identifiers]&[optional_parameters] check this: https://string-db.org/cgi/access ''' parser = argparse.ArgumentParser() parser.add_argument('--n-proc', type=int, default=12, help='number of processes to run when downloading assay & target information') args = parser.parse_args() def mapping_to_string_API(valid_string_set): string_api_url = "https://version-11-0.string-db.org/api" output_format = "tsv-no-header" method = "network" request_url = "/".join([string_api_url, output_format, method]) print('request_url\t', request_url) valid_string_set = list(valid_string_set) params = { "identifiers": "%0d".join(valid_string_set), # your protein "species": 9606, # species NCBI identifier } print('len of genes\t', len(valid_string_set)) response = requests.post(request_url, data=params) print(response) with open('string_ppi_score.tsv', 'w') as string_ppi_file: pair_count, pos_pair_count = 0, 0 for line in response.text.strip().split("\n"): l = line.strip().split("\t") p1, p2 = '{}'.format(l[0]), '{}'.format(l[1]) experimental_score = float(l[10]) # print("\t".join([p1, p2, "experimentally confirmed (prob. %.3f)" % experimental_score])) print('{}\t{}\t{}'.format(p1, p2, experimental_score), file=string_ppi_file) pair_count += 1 if experimental_score > 0.2: pos_pair_count += 1 print(pair_count, '\t', pos_pair_count) print() def query_stringid(uniprot): website = 'https://version-11-0.string-db.org/api/xml/get_string_ids?identifiers={}'.format(uniprot) try: with urllib.request.urlopen(website) as conn: data = conn.read().decode("utf-8") except HTTPError: data = '' if data: root = ET.fromstring(data) string_id_result = root.find('record/stringId') if string_id_result is not None: return string_id_result.text print('error on {}: {}'.format(uniprot, data)) return '' def store_mapping_from_uniprot_to_string_id(uniprot_set): print('Storing mapping from uniprot to string to uniprot2string.tsv...') with Pool(args.n_proc) as p: string_id_set = p.map(query_stringid, tqdm(uniprot_set)) num_errors = 0 with open('uniprot_without_strid.txt', 'w') as r, open('uniprot2string.tsv', 'w') as g: for uniprot, string_id in zip(uniprot_set, string_id_set): if string_id: g.write('{}\t{}\n'.format(uniprot, string_id)) else: r.write(uniprot + '\n') num_errors += 1 print('Done storing. Number of errors: {}. Mapped uniprots: {}'.format(num_errors, len(uniprot_set) - num_errors)) if __name__ == '__main__': ''' Assay ID\tTarget ID\tTarget Name\tOrganism\t{UniProt list} ''' assay2target_fname = 'assay2target.tsv' uniprot_set = set() with open(assay2target_fname, 'r') as assay2target_file: assay2target_file.readline() for line in assay2target_file: line = line.strip().split('\t') uniprot_list = line[-1].strip().split(',') # print(uniprot_list) for uniprot in uniprot_list: if len(uniprot) != 6: continue uniprot_set.add(uniprot) store_mapping_from_uniprot_to_string_id(uniprot_set) with open('uniprot2string.tsv', 'r') as uniprot2string_file: valid_string_set = set() for line in uniprot2string_file: line = line.strip().split('\t') uniprot = line[0] string_id = line[1] valid_string_set.add(string_id) mapping_to_string_API(valid_string_set)
2.84375
3
union-find-by-rank.py
zLianK/algorithms
0
12791388
<gh_stars>0 from collections import defaultdict # The structure to represent the graph class Graph: def __init__(self, vertices): self.V = vertices self.edges = defaultdict(list) def add_edge(self, u, v): self.edges[u].append(v) # The structure to represent a subset class Subset: def __init__(self, parent, rank): self.parent = parent self.rank = rank # This function unite sets # The bigger rank becomes the parent of the smaller one # If both ranks are the same then make one as parent of the other # and increment its rank by one def union(subsets, u, v): if subsets[u].rank > subsets[v].rank: subsets[v].parent = u elif subsets[v].rank > subsets[u].rank: subsets[u].parent = v else: subsets[v].parent = u subsets[u].rank += 1 # Find the set's parent and make the path compression if needed def find(subsets, node): if subsets[node].parent != node: subsets[node].parent = find(subsets, subsets[node].parent) return subsets[node].parent # Check if there is an cycle in the graph def is_cycle(graph): subsets = [] for u in range(graph.V): subsets.append(Subset(u, 0)) # Iterate over all edges of the graph # If the parents of both vertices are the same # Then there is a cycle for i in graph.edges: x = find(subsets, i) for j in graph.edges[i]: y = find(subsets, j) if x == y: return True union(subsets, x, y) def main(): g = Graph(6) g.add_edge(0, 1) g.add_edge(0, 4) g.add_edge(1, 2) g.add_edge(1, 4) g.add_edge(2, 3) g.add_edge(3, 4) g.add_edge(3, 5) if is_cycle(g): print('Cycle') else: print('Not Cycle') if __name__ == '__main__': main()
3.390625
3
code/decoder.py
JacksonFrank/GEMSECDataPipelining
0
12791389
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 1 11:41:59 2019 @author: gemsec-user """ import numpy as np import prody as pd import PeptideBuilder as pb import os import Bio import cleaning from decimal import Decimal from symbols import * #from pdbtools import pdbtools as pdb d = os.getcwd() parsed_aa = {} # parses peptides and creates file structures to store these peptides # stores a dictionary with peptide keys that map to the atoms that make it up def parse_aa(): if not os.path.exists(d + '/amino_acids'): os.mkdir(d + '/amino_acids') global parsed_aa for amino in AA: # out writes information to files out = Bio.PDB.PDBIO() # i is a peptide structure from amino acid i = pb.make_structure(amino, [180]*len(amino),[180]*len(amino)) out.set_structure(i) out.save(d + '/amino_acids/' + amino + '.pdb') cleaning.cleanATOM(d + '/amino_acids/' + amino + '.pdb', out_file= d + '/amino_acids/' + amino + '.pdb', ext = '.pdb') temp = pd.parsePDB(d + '/amino_acids/' + amino + ".pdb") # maps amino acids to their atoms parsed_aa[amino] = [] for atom in temp.iterAtoms(): parsed_aa[amino].append(str(atom.getName())) # what are nodes? (2d array) # returns the atoms from the given nodes def remove_padding(nodes): atoms = [] current = 0 # gets the currrent column of the first 5 rows col = nodes[0:5, current] while sum(col) != 0: # adds the element index of the current node column atoms.append(ELEMENT_INDEX[col.tolist().index(1.0)]) current += 1 col = nodes[0:5, current] return atoms # checks the rate of correctness in heuristic efficiency def heuristic(index, node, amino_acid): correct = 0 total = 0 for atom in parsed_aa[amino_acid]: if (index+total) < len(node) and ELEMENT_SYMBOLS[int(node[index+total][0]) - 1] == atom[0]: correct += 1 total += 1 return float(correct/total) # finds all possible sequences of amino acid sequences keyed to heuristic efficiency values def find_sequence_recurs(nodes, length, current_ind, current_sequence, current_value): if len(parsed_aa.keys()) == 0: parse_aa() # adds the given value and sequence to the possible sequences dictionary if len(current_sequence) == length: global POSSIBLE_SEQUENCES if current_value in POSSIBLE_SEQUENCES: POSSIBLE_SEQUENCES[current_value].append(current_sequence) else: POSSIBLE_SEQUENCES[current_value] = [current_sequence] values = [] for a in AA: values.append(heuristic(current_ind,nodes, a)) max_value = max(values) if max_value > 0.8: for i in range(len(values)): if max_value == values[i]: amino = AA[i] find_sequence_recurs(nodes, length, current_ind + len(parsed_aa[amino]), current_sequence + amino, current_value + max_value) # returns a string of whitespace specified def find_white_space(total_space, text): return ' '*(total_space - len(text)) POSSIBLE_SEQUENCES = None # what are nodes? # decodes information into a pdb file # what does encoding look like? def decode(encoding, save_loc = d, save_name = '', find_coord = False, use_coord = False): if len(parsed_aa.keys()) == 0: parse_aa() if save_name == '': save_name = encoding['sequence'] + '.pdb' placed = [] new_nodes = remove_padding(encoding['index']) if not use_coord: D = encoding['secondary'] placed.append([new_nodes[0], (0,0,0)]) placed.append([new_nodes[1], (D[0,1],0,0)]) x = (D[1,2]**2 - D[0,2]**2 - D[0,1]**2)/(-2 * D[0,1]) y = (abs(D[0,2]**2 - x**2))**(0.5) placed.append([new_nodes[2], (x,y,0)]) P = placed[2][1][0]**2 + placed[2][1][1]**2 for i in range(3,len(new_nodes)): x = (D[1,i]**2 - D[0,i]**2 - D[0,1]**2)/(-2*D[0,1]) y = (D[2,i]**2 - D[0,i]**2 - P + (2*x*placed[2][1][0]))/(-2*placed[2][1][1]) z = (abs(D[0,i]**2 - x**2 - y**2))**(0.5) placed.append([new_nodes[i], (x,y,z)]) if find_coord: final = np.zeros((len(encoding['secondary'][0]),3)) for i in range(len(placed)): final[i, 0] = placed[i][1][0] final[i, 1] = placed[i][1][1] final[i, 2] = placed[i][1][2] return final else: for i in range(3,len(new_nodes)): placed.append([new_nodes[i], (encoding['coordinates'][i][0],encoding['coordinates'][i][1],encoding['coordinates'][i][2])]) with open(save_loc + '/' + save_name, 'w+') as g: counter = 0 amino_num = 0 for i in range(len(placed)): if counter == 0: counter = len(parsed_aa[encoding['ele_to_amino'][i][1]]) amino_num += 1 string = 'ATOM' #+ str(i + 1) + ' '+ encoding['seq_to_atoms'][i][0] string += find_white_space(7, str(i + 1)) + str(i+1) + ' ' string += encoding['ele_to_amino'][i][0] + find_white_space(4, encoding['ele_to_amino'][i][0]) string += AA3[AA.index(encoding['ele_to_amino'][i][1])] + ' A' string += find_white_space(4, str(amino_num)) + str(amino_num) string += find_white_space(12, str(round(Decimal(placed[i][1][0]), 3))) + str(round(Decimal(placed[i][1][0]), 3)) string += find_white_space(8, str(round(Decimal(placed[i][1][1]), 3))) + str(round(Decimal(placed[i][1][1]), 3)) string += find_white_space(8, str(round(Decimal(placed[i][1][2]), 3))) + str(round(Decimal(placed[i][1][2]), 3)) string += ' 1.00 0.00' string += find_white_space(11, placed[i][0]) + placed[i][0] g.write(string + '\n') counter -= 1 return save_loc + '/' + save_name
2.78125
3
webservice/server/server/summ_eval/server/cli/__init__.py
mymusise/emnlp19-moverscore
141
12791390
def main(): from summ_eval.server import EvalServer from summ_eval.server.helper import get_run_args args = get_run_args() server = EvalServer(args) server.start() server.join()
1.484375
1
tests/test_target.py
projectsyn/commodore
39
12791391
""" Unit-tests for target generation """ import os import click import pytest from pathlib import Path as P from textwrap import dedent from commodore import cluster from commodore.inventory import Inventory from commodore.config import Config @pytest.fixture def data(): """ Setup test data """ tenant = { "id": "mytenant", "displayName": "My Test Tenant", } cluster = { "id": "mycluster", "displayName": "My Test Cluster", "tenant": tenant["id"], "facts": { "distribution": "rancher", "cloud": "cloudscale", }, "dynamicFacts": { "kubernetes_version": { "major": "1", "minor": "21", "gitVersion": "v1.21.3", } }, "gitRepo": { "url": "ssh://[email protected]/cluster-catalogs/mycluster", }, } return { "cluster": cluster, "tenant": tenant, } def cluster_from_data(data) -> cluster.Cluster: return cluster.Cluster(data["cluster"], data["tenant"]) def _setup_working_dir(inv: Inventory, components): for cls in components: defaults = inv.defaults_file(cls) os.makedirs(defaults.parent, exist_ok=True) defaults.touch() component = inv.component_file(cls) os.makedirs(component.parent, exist_ok=True) component.touch() def test_render_bootstrap_target(tmp_path: P): components = ["foo", "bar"] inv = Inventory(work_dir=tmp_path) _setup_working_dir(inv, components) target = cluster.render_target(inv, "cluster", ["foo", "bar", "baz"]) classes = [ "params.cluster", "defaults.foo", "defaults.bar", "global.commodore", ] assert target != "" print(target) assert len(target["classes"]) == len( classes ), "rendered target includes different amount of classes" for i in range(len(classes)): assert target["classes"][i] == classes[i] assert target["parameters"]["_instance"] == "cluster" def test_render_target(tmp_path: P): components = ["foo", "bar"] inv = Inventory(work_dir=tmp_path) _setup_working_dir(inv, components) target = cluster.render_target(inv, "foo", ["foo", "bar", "baz"]) classes = [ "params.cluster", "defaults.foo", "defaults.bar", "global.commodore", "components.foo", ] assert target != "" print(target) assert len(target["classes"]) == len( classes ), "rendered target includes different amount of classes" for i in range(len(classes)): assert target["classes"][i] == classes[i] assert target["parameters"]["kapitan"]["vars"]["target"] == "foo" assert target["parameters"]["_instance"] == "foo" def test_render_aliased_target(tmp_path: P): components = ["foo", "bar"] inv = Inventory(work_dir=tmp_path) _setup_working_dir(inv, components) target = cluster.render_target(inv, "fooer", ["foo", "bar", "baz"], component="foo") classes = [ "params.cluster", "defaults.foo", "defaults.bar", "global.commodore", "components.foo", ] assert target != "" print(target) assert len(target["classes"]) == len( classes ), "rendered target includes different amount of classes" for i in range(len(classes)): assert target["classes"][i] == classes[i] assert target["parameters"]["kapitan"]["vars"]["target"] == "fooer" assert target["parameters"]["foo"] == "${fooer}" assert target["parameters"]["_instance"] == "fooer" def test_render_aliased_target_with_dash(tmp_path: P): components = ["foo-comp", "bar"] inv = Inventory(work_dir=tmp_path) _setup_working_dir(inv, components) target = cluster.render_target( inv, "foo-1", ["foo-comp", "bar", "baz"], component="foo-comp" ) classes = [ "params.cluster", "defaults.foo-comp", "defaults.bar", "global.commodore", "components.foo-comp", ] assert target != "" print(target) assert len(target["classes"]) == len( classes ), "rendered target includes different amount of classes" for i in range(len(classes)): assert target["classes"][i] == classes[i] assert target["parameters"]["kapitan"]["vars"]["target"] == "foo-1" assert target["parameters"]["foo_comp"] == "${foo_1}" assert target["parameters"]["_instance"] == "foo-1" def test_render_params(data, tmp_path: P): cfg = Config(work_dir=tmp_path) target = cfg.inventory.bootstrap_target params = cluster.render_params(cfg.inventory, cluster_from_data(data)) assert "parameters" in params params = params["parameters"] assert "cluster" in params assert "name" in params["cluster"] assert params["cluster"]["name"] == "mycluster" assert target in params target_params = params[target] assert "name" in target_params assert target_params["name"] == "mycluster" assert "display_name" in target_params assert target_params["display_name"] == "My Test Cluster" assert "catalog_url" in target_params assert ( target_params["catalog_url"] == "ssh://[email protected]/cluster-catalogs/mycluster" ) assert "tenant" in target_params assert target_params["tenant"] == "mytenant" assert "tenant_display_name" in target_params assert target_params["tenant_display_name"] == "My Test Tenant" assert "dist" in target_params assert target_params["dist"] == "rancher" assert "facts" in params assert params["facts"] == data["cluster"]["facts"] assert "dynamic_facts" in params dyn_facts = params["dynamic_facts"] assert "kubernetes_version" in dyn_facts k8s_ver = dyn_facts["kubernetes_version"] assert "major" in k8s_ver assert "minor" in k8s_ver assert "gitVersion" in k8s_ver assert "1" == k8s_ver["major"] assert "21" == k8s_ver["minor"] assert "v1.21.3" == k8s_ver["gitVersion"] assert "cloud" in params assert "provider" in params["cloud"] assert params["cloud"]["provider"] == "cloudscale" assert "customer" in params assert "name" in params["customer"] assert params["customer"]["name"] == "mytenant" def test_missing_facts(data, tmp_path: P): data["cluster"]["facts"].pop("cloud") cfg = Config(work_dir=tmp_path) with pytest.raises(click.ClickException): cluster.render_params(cfg.inventory, cluster_from_data(data)) def test_empty_facts(data, tmp_path: P): data["cluster"]["facts"]["cloud"] = "" cfg = Config(work_dir=tmp_path) with pytest.raises(click.ClickException): cluster.render_params(cfg.inventory, cluster_from_data(data)) def test_read_cluster_and_tenant(tmp_path): cfg = Config(work_dir=tmp_path) file = cfg.inventory.params_file os.makedirs(file.parent, exist_ok=True) with open(file, "w") as f: f.write( dedent( """ parameters: cluster: name: c-twilight-water-9032 tenant: t-delicate-pine-3938""" ) ) cluster_id, tenant_id = cluster.read_cluster_and_tenant(cfg.inventory) assert cluster_id == "c-twilight-water-9032" assert tenant_id == "t-delicate-pine-3938" def test_read_cluster_and_tenant_missing_fact(tmp_path): inv = Inventory(work_dir=tmp_path) file = inv.params_file os.makedirs(file.parent, exist_ok=True) with open(file, "w") as f: f.write( dedent( """ classes: [] parameters: {}""" ) ) with pytest.raises(KeyError): cluster.read_cluster_and_tenant(inv)
2.3125
2
raster_info_car.py
leandromet/Geoprocessamento---Geoprocessing
2
12791392
<filename>raster_info_car.py #------------------------------------------------------------------------------- # Name: Raster information from vector relations # Purpose: Classify features of interest based on a raster with pixels that have classification values. # Having a catalog in a vector layer with adresses of images related to each polygon, count # the pixels with given values that are inside any given polygon. The raster files have a # land usage classification that was automaticaly generated, this classification covers the # whole country. We have rural properties boundaries and other poligons that we want to verify # how much area was classified as being one of 13 distinct classes. This aproach gets each # image boundary polygon intersection with each feature of interest and builds a raster mask. # The mask has the same resolution as the original image (RapidEye, 5 meters) with binary values, # being 1 if the pixel is part of the intersection and 0 if it is not. This mask is then multiplied # as a matrix by the matrix of pixel values from the image (in this case 14 possible values). # Finally a histogram is made with bins that separate the intended classes and the count of # each bin is added to the vector layer with features of interest. # # Author: leandro.biondo # # Created: 05/10/2016 # Copyright: (c) leandro.biondo 2016 # Licence: GNU GLP #------------------------------------------------------------------------------- #!/usr/bin/env python # import modules import gdal import numpy as np from osgeo import ogr, osr import glob import os gdal.UseExceptions() # #shapefilebr = "C:/biondo/buff_nasc.shp" #driver = ogr.GetDriverByName("ESRI Shapefile") #dataSourcebr = driver.Open(shapefilebr, True) #layerbr = dataSourcebr.GetLayer() #Here should be given the vector layer with the catalog, This catalog can be built with the Qgis plugin #"Image Footprint", it is necessary to select image boudary option. The path (caminho) field will be used to open #the images with classified pixels, you can use a * as mask if there are more then 1 catalog for infile in glob.glob(r'/home/gecad/CAR/Demandas/Nascentes/aaa_nascentes_catalogo.shp'): print infile rapideye = infile driver = ogr.GetDriverByName("ESRI Shapefile") dataSource_rd = driver.Open(rapideye, True) layer_rd = dataSource_rd.GetLayer() shapefile = ('/home/gecad/CAR/Demandas/Nascentes/aaa_nascentes_catalogo.shp') dataSource = driver.Open(shapefile, True) layer = dataSource.GetLayer() layer.CreateField(ogr.FieldDefn("indef", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("uso_cons", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("rvegnat", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("vereda", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("mangue", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("salgado", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("apicum", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("restinga", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("agua", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("vegremo", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("regene", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("areaurb", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("nuvens", ogr.OFTInteger),False) layer.CreateField(ogr.FieldDefn("foraLi", ogr.OFTInteger),False) pixel_size = 5 NoData_value = 255 contard =0 c5=0 for feat_rd in layer_rd: caminho_img = feat_rd.GetField("caminho") print caminho_img try: src_ds = gdal.Open( caminho_img) except RuntimeError, e: print 'Unable to open INPUT' print e #break continue try: srcband = src_ds.GetRasterBand(1) print srcband except RuntimeError, e: # for example, try GetRasterBand(10) print 'Band ( %i ) not found' % band_num print e #sys.exit(1) continue banda_class = srcband.ReadAsArray().astype(np.float) if banda_class.size==(5000*5000): classes = banda_class geom=feat_rd.GetGeometryRef() #print 'spat ', layer_rd.GetSpatialRef() # print 'proj ', src_ds.GetProjection() contorno=geom.GetEnvelope() x_min = contorno[0] y_max = contorno[3] x_res = 5000 y_res = 5000 # target_ds = gdal.GetDriverByName('MEM').Create('', x_res, y_res, gdal.GDT_Byte) # target_ds.SetGeoTransform(src_ds.GetGeoTransform()) # target_ds.SetProjection(src_ds.GetProjection()) # band = target_ds.GetRasterBand(1) # band.SetNoDataValue(NoData_value) # contard=contard+1 conta=0 cont_loop=0 for feature in layer: geom2=feature.GetGeometryRef() verifica_f=feature.GetField("foraLi") #print 'feat' , caminho_feat #print verifica_f cont_loop+=1 if geom2.Intersects(geom) : c5+=1 if (verifica_f is None): intersect = geom.Intersection(geom2) print intersect.GetArea() print (intersect.GetArea()/geom2.GetArea()) if (intersect.GetArea()/geom2.GetArea())<0.5: continue conta+=1 SpatialRef = osr.SpatialReference() SpatialRef.SetWellKnownGeogCS( "EPSG:4674" ) memoutdriver=ogr.GetDriverByName('MEMORY') memsource=memoutdriver.CreateDataSource('memData') tmp=memoutdriver.Open('memData', 1) dstlayer = memsource.CreateLayer('teste', SpatialRef) target_ds = gdal.GetDriverByName('MEM').Create('', x_res, y_res, gdal.GDT_Byte) target_ds.SetGeoTransform(src_ds.GetGeoTransform()) target_ds.SetProjection(src_ds.GetProjection()) band = target_ds.GetRasterBand(1) band.SetNoDataValue(NoData_value) dstfeature = ogr.Feature(dstlayer.GetLayerDefn()) dstfeature.SetGeometry(intersect) dstlayer.CreateFeature(dstfeature) # print 'resultado', dstfeature.GetGeometryRef().GetEnvelope() # Rasterize gdal.RasterizeLayer(target_ds, [1], dstlayer, burn_values=[1]) array = band.ReadAsArray() #print np.histogram(array, bins=[0,1,250,300]) # Read as array dstlayer=None memsource.Destroy() #tabela = srcband.ReadAsArray() #print tabela resposta1 = np.histogram(classes, bins=[0,1,20]) classes2 = classes*array resposta = np.histogram(classes2, bins=[0,1,2,3,4,5,6,7,8,9,10,11,12,20]) feature.SetField("indef", int(resposta1[0][0]*25)) feature.SetField("uso_cons", int(resposta[0][1]*25)) feature.SetField("rvegnat", int(resposta[0][2]*25)) feature.SetField("vereda", int(resposta[0][3]*25)) feature.SetField("mangue", int(resposta[0][4]*25)) feature.SetField("salgado", int(resposta[0][5]*25)) feature.SetField("apicum", int(resposta[0][6]*25)) feature.SetField("restinga", int(resposta[0][7]*25)) feature.SetField("agua", int(resposta[0][8]*25)) feature.SetField("vegremo", int(resposta[0][9]*25)) feature.SetField("regene", int(resposta[0][10]*25)) feature.SetField("areaurb", int(resposta[0][11]*25)) feature.SetField("nuvens", int(resposta[0][12]*25)) feature.SetField("foraLi", int((resposta[0][0]-resposta1[0][0])*25)) layer.SetFeature(feature) feature.Destroy() print "ImagemImovel: %d | %d | %d | %d" % (c5,contard,conta,cont_loop) c5+=1 #create an image file and put the results in 3 band for testing purposes # # saida = "/home/gecad/CAR/Demandas/Nascentes/img_testes/img%d%d.tif" % (contard,c5) # format = "GTiff" # driver2 = gdal.GetDriverByName( format ) # metadata = driver2.GetMetadata() # if metadata.has_key(gdal.DCAP_CREATE) \ # and metadata[gdal.DCAP_CREATE] == 'YES': # print 'Driver %s supports Create() method.' % format # if metadata.has_key(gdal.DCAP_CREATECOPY) \ # and metadata[gdal.DCAP_CREATECOPY] == 'YES': # print 'Driver %s supports CreateCopy() method.' % format # # dst_ds = driver2.Create( saida, 5000, 5000, 3, gdal.GDT_Float32, ['COMPRESS=LZW'] ) # srs = osr.SpatialReference() # dst_ds.SetProjection(src_ds.GetProjection()) # dst_ds.SetGeoTransform(src_ds.GetGeoTransform()) # # dst_ds.GetRasterBand(1).WriteArray(classes) # dst_ds.GetRasterBand(2).WriteArray(array) # dst_ds.GetRasterBand(3).WriteArray(classes2) # dst_ds=None # # # if c5==10: # layer=None # dataSource=None # layerbr=None # dataSourcebr=None # layer_rd=None # dataSource_rd=None # target_ds= None # print 'fim forcado' # break # target_ds= None #break layer.ResetReading() layer=None dataSource=None layerbr=None dataSourcebr=None layer_rd=None dataSource_rd=None print 'fim'
3.390625
3
media.py
PatrickO10/movie_trailers
0
12791393
import webbrowser class Movie(): '''This is a class for storing information about movies.''' def __init__(self, movie_title, movie_year, poster_image, trailer_youtube, movie_rating): self.title = movie_title self.year = movie_year self.poster_image_url = poster_image self.trailer_youtube_url = trailer_youtube self.rating = movie_rating def show_trailer(self): '''This method opens a youtube url.''' webbrowser.open(self.trailer_youtube_url)
3.59375
4
msf_2022/io/read.py
molssi-workshops/msf_sample_2022
0
12791394
<gh_stars>0 """ Functions for reading molecular files """ import numpy as np import matplotlib.pyplot as plt def read_pdb(f_loc: str)->tuple[list[str], np.ndarray]: # This function reads in a pdb file and returns the atom names and coordinates. with open(f_loc) as f: data = f.readlines() c = [] sym = [] for l in data: if "ATOM" in l[0:6] or "HETATM" in l[0:6]: sym.append(l[76:79].strip()) c2 = [float(x) for x in l[30:55].split()] c.append(c2) coords = np.array(c) return sym, coords def read_xyz(file_location): #Open an xyz file and return symbols and coordinates xyz_file = np.genfromtxt(fname=file_location, skip_header=2, dtype="unicode") symbols = xyz_file[:, 0] coords = xyz_file[:, 1:] coords = coords.astype(np.float) return symbols, coords
2.921875
3
stats/constants.py
mpope9/nba-sql
113
12791395
<gh_stars>100-1000 """ Constants used in the application. """ """ List of seasons. """ season_list = [ '1996-97', '1997-98', '1998-99', '1999-00', '2000-01', '2001-02', '2002-03', '2003-04', '2004-05', '2005-06', '2006-07', '2007-08', '2008-09', '2009-10', '2010-11', '2011-12', '2012-13', '2013-14', '2014-15', '2015-16', '2016-17', '2017-18', '2018-19', '2019-20', '2020-21', '2021-22' ] """ Headers. """ headers = { 'Connection': 'keep-alive', 'Accept': 'application/json, text/plain, */*', 'x-nba-stats-token': 'true', 'User-Agent': ( #'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) ' #'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130' #'Safari/537.36' 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36' ), 'x-nba-stats-origin': 'stats', 'Sec-Fetch-Site': 'same-origin', 'Sec-Fetch-Mode': 'cors', 'Referer': 'https://stats.nba.com/', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.9', } """ Team IDs. (Thank you nba-api). """ team_ids = [ 1610612737, # 'ATL' 1610612738, # 'BOS' 1610612739, # 'CLE' 1610612740, # 'NOP' 1610612741, # 'CHI' 1610612742, # 'DAL' 1610612743, # 'DEN' 1610612744, # 'GSW' 1610612745, # 'HOU' 1610612746, # 'LAC' 1610612747, # 'LAL' 1610612748, # 'MIA' 1610612749, # 'MIL' 1610612750, # 'MIN' 1610612751, # 'BKN' 1610612752, # 'NYK' 1610612753, # 'ORL' 1610612754, # 'IND' 1610612755, # 'PHI' 1610612756, # 'PHX' 1610612757, # 'POR' 1610612758, # 'SAC' 1610612759, # 'SAS' 1610612760, # 'OKC' 1610612761, # 'TOR' 1610612762, # 'UTA' 1610612763, # 'MEM' 1610612764, # 'WAS' 1610612765, # 'DET' 1610612766, # 'CHA' ] """ Mapping from team abbrev to id. """ team_abbrev_mapping = { 'ATL': 1610612737, 'BOS': 1610612738, 'CLE': 1610612739, 'NOP': 1610612740, 'NOK': 1610612740, # Old name. 'NOH': 1610612740, # Old name. 'CHI': 1610612741, 'DAL': 1610612742, 'DEN': 1610612743, 'GSW': 1610612744, 'HOU': 1610612745, 'LAC': 1610612746, 'LAL': 1610612747, 'MIA': 1610612748, 'MIL': 1610612749, 'MIN': 1610612750, 'BKN': 1610612751, 'NJN': 1610612751, # Old name. 'NYK': 1610612752, 'ORL': 1610612753, 'IND': 1610612754, 'PHI': 1610612755, 'PHX': 1610612756, 'POR': 1610612757, 'SAC': 1610612758, 'SAS': 1610612759, 'OKC': 1610612760, 'SEA': 1610612760, 'TOR': 1610612761, 'UTA': 1610612762, 'VAN': 1610612763, # Old name. 'MEM': 1610612763, 'WAS': 1610612764, 'DET': 1610612765, 'CHA': 1610612766, 'CHH': 1610612766, # Old name. } """ Play-by-play data has an EventMsgType field. This is an enum. There is also the EventMsgActionField, which is a complex enum of (EventMsgType, SubType). We're going to make a lookup table of enum to value, then a lookup table for the (EventMsgType, EventMsgActionType) pair. """ event_message_types = [ {'id': 1, 'string': 'FIELD_GOAL_MADE'}, {'id': 2, 'string': 'FIELD_GOAL_MISSED'}, {'id': 3, 'string': 'FREE_THROW'}, {'id': 4, 'string': 'REBOUND'}, {'id': 5, 'string': 'TURNOVER'}, {'id': 6, 'string': 'FOUL'}, {'id': 7, 'string': 'VIOLATION'}, {'id': 8, 'string': 'SUBSTITUTION'}, {'id': 9, 'string': 'TIMEOUT'}, {'id': 10, 'string': 'JUMP_BALL'}, {'id': 11, 'string': 'EJECTION'}, {'id': 12, 'string': 'PERIOD_BEGIN'}, {'id': 13, 'string': 'PERIOD_END'}, {'id': 18, 'string': 'UNKNOWN'} ]
1.773438
2
kokoropy/scaffolding/scaffold_cms/controllers/page.py
goFrendiAsgard/kokoropy
5
12791396
from kokoropy.controller import Crud_Controller from ..models._all import Page class Page_Controller(Crud_Controller): __model__ = Page Page_Controller.publish_route()
1.601563
2
Leetcode/Solutions/Find_First_and_Last_Position_of_Element_in_Sorted_Array.py
fakecoinbase/sweetpandslashAlgorithms
3
12791397
<reponame>fakecoinbase/sweetpandslashAlgorithms # Question: Given a sorted array, find the first and last indices of a target number # Solution: Run two (lower bounded) binary searches, one for the target number and one # for the successor of the target (the next natural number after the targer number) # Difficulty: Medium def searchRange(nums: List[int], target: int) -> List[int]: def lowerBin(nums, target): l, r = 0, len(nums) - 1 # Note: setting this while statement to be <= and not just != means it can also # catch cases when the input is an empty array, as l = 0 and r = -1 in that case while l <= r: # In each iteration set the midpoint to half the difference of the left # and right pointers offset by the left pointer mid = (r - l) // 2 + l # This binary search always returns the lower bound on a number because # if the current number is less than target it shifts left to the next number to the right of mid, # and if the number is greater than or equal to the target it shifts right to the number to the left of mid # this ensures that if numbers are duplicated the search will always narrow into the leftmost number if nums[mid] < target: l = mid + 1 else: r = mid - 1 return l # This simply finds the index of the lowest target lowerIndex = lower(nums, target) # This finds the index of the first number larger than the target, and then subtracts # one from the index it finds which is going to be the rightmost target upperIndex = lower(nums, target + 1) - 1 # If we didn't go out of bounds in our search and if the number at the lowerIndex actually equals our # target (because our binary search will return the next largest number if it didn't exist) we can return the indices if lowerIndex < len(nums) and nums[lowerIndex] == target: return [lowerIndex, upperIndex] else: return [-1, -1]
3.78125
4
example/kd_loss.py
chris4540/DT2119-Final-Project
1
12791398
<gh_stars>1-10 import torch # from torch.autograd import Variable import torch.nn as nn # import torch.nn.functional as F import numpy as np from torch.nn.utils.rnn import pad_sequence from torch.nn.functional import softmax from torch.nn.functional import log_softmax if __name__=='__main__': logits1 = -np.random.rand(7,3) logits2 = -np.random.rand(5,3) logits3 = -np.random.rand(7,3) logits4 = -np.random.rand(5,3) # logits1 = torch.Tensor(logits1) logits2 = torch.Tensor(logits2) logits3 = torch.Tensor(logits3) logits4 = torch.Tensor(logits4) teacher_logits = pad_sequence([logits1, logits2]) student_logits = pad_sequence([logits3, logits2]) kd_loss = nn.KLDivLoss(reduce=False, reduction='none')( log_softmax(student_logits, dim=-1), softmax(teacher_logits, dim=-1)) print(kd_loss) # kd_loss = nn.KLDivLoss(reduction='batchmean')( # log_softmax(student_logits, dim=-1), # softmax(teacher_logits, dim=-1)) # print(kd_loss) # kd_loss = nn.KLDivLoss(reduction='sum')( # log_softmax(student_logits, dim=-1), # softmax(teacher_logits, dim=-1)) # print(kd_loss)
2.34375
2
tests/terraform/checks/resource/aws/test_LBDeletionProtection.py
kylelaker/checkov
3
12791399
<gh_stars>1-10 import unittest import hcl2 from checkov.terraform.checks.resource.aws.LBDeletionProtection import check from checkov.common.models.enums import CheckResult class TestLBDeletionProtection(unittest.TestCase): def test_failure(self): hcl_res = hcl2.loads(""" resource "aws_lb" "test_failed" { name = "test-lb-tf" internal = false load_balancer_type = "network" subnets = aws_subnet.public.*.id enable_deletion_protection = false } """) resource_conf = hcl_res['resource'][0]['aws_lb']['test_failed'] scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.FAILED, scan_result) def test_failure_missing_attribute(self): hcl_res = hcl2.loads(""" resource "aws_lb" "test_failed" { name = "test-lb-tf" internal = false load_balancer_type = "network" subnets = aws_subnet.public.*.id } """) resource_conf = hcl_res['resource'][0]['aws_lb']['test_failed'] scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.FAILED, scan_result) def test_success(self): hcl_res = hcl2.loads(""" resource "aws_lb" "test_success" { name = "test-lb-tf" internal = false load_balancer_type = "network" subnets = aws_subnet.public.*.id enable_deletion_protection = true } """) resource_conf = hcl_res['resource'][0]['aws_lb']['test_success'] scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.PASSED, scan_result) if __name__ == '__main__': unittest.main()
2.234375
2
filmfestival/migrations/0031_film_stills.py
mykonosbiennale/mykonosbiennale.github.io
1
12791400
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('material', '0002_auto_20170327_0215'), ('filmfestival', '0030_reward'), ] operations = [ migrations.AddField( model_name='film', name='stills', field=models.ForeignKey(blank=True, to='material.Album', null=True), ), ]
1.523438
2
lib/googlecloudsdk/sql/tools/ssl_certs/__init__.py
IsaacHuang/google-cloud-sdk
0
12791401
# Copyright 2013 Google Inc. All Rights Reserved. """Provide commands for managing SSL certificates of Cloud SQL instances.""" from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions class SslCerts(base.Group): """Provide commands for managing SSL certificates of Cloud SQL instances. Provide commands for managing SSL certificates of Cloud SQL instances, including creating, deleting, listing, and getting information about certificates. """ @staticmethod def Args(parser): parser.add_argument( '--instance', '-i', help='Cloud SQL instance ID.') def Filter(self, tool_context, args): if not args.instance: raise exceptions.ToolException('argument --instance/-i is required')
2.25
2
layersclick/efs.py
hdknr/py-layers
0
12791402
<reponame>hdknr/py-layers import click from layerslib import efs as EFS from .utils import J, setup @click.group() @click.option("--profile_name", "-p", default=None) @click.pass_context def efs(ctx, profile_name): setup(ctx, profile_name) @efs.command() @click.pass_context def efs_list(ctx): data = EFS.get_filesystem() click.echo(J(data))
1.921875
2
tests/unit/test_get_data.py
shivaq/set_aws_mfa
0
12791403
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from random import randint from set_aws_mfa.data.data_manager import ProfileTuple from set_aws_mfa.helper import helper from set_aws_mfa import validate from set_aws_mfa.data import data_manager from set_aws_mfa.helper.helper import IntObject from set_aws_mfa import prompts from tests.conftest import BUILTIN_INPUTS ######################## # Get profiles ######################## # 1. config, credentials 両方にいる profile に、credentials の値を合体させたリストを取得する def test_get_perfect_profile_list(profile_obj_list, credentials_lists, perfect_profile_list): """テスト: 取得したリストは、Credential にも Config にも存在する プロファイルのリストかどうか""" # GIVEN: Profile に Credentials の値も合わせた ProfileTuple のリストを取得する profile_name_list = [] credentials_name_list = [] for i in profile_obj_list: # Given: ProfileTuple の name だけを抽出する profile_name_list.append(i.name) for k in credentials_lists: # GIVEN: CredentialsTuple の name だけを抽出する credentials_name_list.append(k.name) for in_both in perfect_profile_list: assert isinstance(in_both, ProfileTuple) # WHEN: ProfileTuple に aws_secret_access_key がセットされているならば if in_both.aws_secret_access_key is not None: # THEN: credentials にも config にも、その profile が存在している assert in_both.name in credentials_name_list assert in_both.name in profile_name_list def test_prompt_displays_profile_name(capsys, perfect_profile_list): """テスト:プロファイルの選択肢が表示されるかどうか""" # GIVEN: get perfect_profile_list # WHEN: execute prompt_user_selection() prompts.prompt_user_selection(perfect_profile_list) out, err = capsys.readouterr() # THEN: prompt usable profile name for p in perfect_profile_list: if p.aws_secret_access_key is not None: # ") profile_name" is included in stdout assert ") " + p.name in out.strip() def test_get_selected_profile(perfect_profile_list, monkeypatch): # GIVEN: perfect profile list # GIVEN: Mock user input user_input = 2 monkeypatch.setattr(BUILTIN_INPUTS, lambda _: user_input) # WHEN: this function is called profile = data_manager.get_selected_profile() assert profile == perfect_profile_list[user_input - 1] ######################## # Get aws account info ######################## # テスト ~/.aws_accounts_for_set_aws_mfa が存在しない場合、False を返す def test_no_aws_accounts_for_set_aws_mfa_returns_false(set_fake_aws_account_files): # GIVEN: the path of AWS_ACCOUNT_FOR_SET_AWS_MFA replaced with fake path # WHEN: Check the existence of AWS_ACCOUNT_FOR_SET_AWS_MFA is_the_file_exists = validate.check_aws_accounts_for_set_aws_mfa_existence() # THEN: The file is not exist assert not is_the_file_exists # テスト ~/.aws_accounts_for_set_aws_mfa が存在しない場合、作成する def test_create_aws_accounts_for_set_aws_mfa(set_fake_aws_account_files, delete_fake_aws_account_files): # GIVEN: the path of AWS_ACCOUNT_FOR_SET_AWS_MFA replaced with fake path # GIVEN: the path of AWS_ACCOUNT_FOR_SET_AWS_MFA is not exist # WHEN: Try to prepare AWS_ACCOUNT_FOR_SET_AWS_MFA and it is created data_manager.prepare_aws_account_id_file() # WHEN: Check the existence of AWS_ACCOUNT_FOR_SET_AWS_MFA is_the_file_exists = validate.check_aws_accounts_for_set_aws_mfa_existence() # THEN: The file is exist assert is_the_file_exists # テスト ~/.aws_accounts_for_set_aws_mfa 作成後、ユーザーに 該当ProfileのAWSアカウントID の入力を求める def test_when_no_aws_account_file_asks_for_user_input(set_fake_aws_account_files, delete_fake_aws_account_files, perfect_profile_list, capsys): # GIVEN a Profile profile = perfect_profile_list[0] # WHEN create a new aws account file if not validate.check_aws_accounts_for_set_aws_mfa_existence(): data_manager.create_aws_account_id_file() else: # そのファイルが既に存在していた場合、書き込みをせずに raise raise # THEN: ask to input aws account id for the profile prompts.prompt_for_asking_aws_account_id(profile) out, err = capsys.readouterr() assert profile.name in out.rstrip() assert prompts.PROMPT_ASK_AWS_ACCOUNT_ID_FOR_PROFILE_BEFORE in out.rstrip() assert prompts.PROMPT_ASK_AWS_ACCOUNT_ID_FOR_PROFILE_AFTER in out.rstrip() # ~/.aws_accounts_for_set_aws_mfa から該当ProfileのAWSアカウントIDを取得する def test_get_aws_account_id_for_the_profile(perfect_profile_list): """注意: ~/.aws_accounts_for_set_aws_mfa がローカルにない場合、 テスト対象のツール使用時には該当ファイルがない場合は生成、入力がなされるが、 上記生成を行う前にこのテストは実施した際はテストに失敗する """ # GIVEN: a ProfileTuple profile = perfect_profile_list[0] # WHEN: call the function aws_account_id = data_manager.get_aws_account_id(profile) # THEN: assert type(aws_account_id) == int # テスト ユーザー入力の AWSアカウントID が int じゃない場合、False が返される def test_user_input_is_not_int(monkeypatch): # GIVEN: ユーザーインプットが integer ではない場合、を Mock user_input_not_int = "hogehoge" # GIVEN: Mock user input string monkeypatch.setattr(BUILTIN_INPUTS, lambda _: user_input_not_int) # WHEN: Validate the input is_int = helper.is_input_int_loop(IntObject(), data_manager.ASKING_AWS_ACCOUNT_ID_INPUT_MESSAGE) # THEN: It's not an int assert not is_int # テスト ユーザー入力の AWSアカウントID が int の場合、True が返される def test_user_input_is_int(monkeypatch): # GIVEN: ユーザーインプットが integer ではない場合、を Mock user_input_not_int = "12345" # GIVEN: Mock user input string monkeypatch.setattr(BUILTIN_INPUTS, lambda _: user_input_not_int) # WHEN: Validate the input is_int = helper.is_input_int_loop(IntObject(), data_manager.ASKING_AWS_ACCOUNT_ID_INPUT_MESSAGE) # THEN: It's not an int assert is_int # ~/.aws_accounts_for_set_aws_mfa に ユーザー入力の AWSアカウントIDを 記入する def test_writing_aws_account_to_the_file(set_fake_aws_account_files, delete_fake_aws_account_files, perfect_profile_list): # GIVEN: AWS_ACCOUNT_FOR_SET_AWS_MFA is changed to fake path # GIVEN: Create fake AWS_ACCOUNT_FOR_SET_AWS_MFA data_manager.create_aws_account_id_file() # GIVEN: 対象 profile を指定する profile = perfect_profile_list[0] # GIVEN: 下記aws account id を取得したとする aws_account_id = 12345 data_manager.create_aws_account_id_file() # WHEN: check the existence of info for the given profile data_manager.writing_aws_account_to_the_file(profile, aws_account_id) # WHEN: AWS_ACCOUNT_FOR_SET_AWS_MFA から該当 profile の aws account id を検索した場合 retrieved_aws_account_id = data_manager.get_aws_account_id(profile) # THEN: int の aws account id が取得できている assert type(retrieved_aws_account_id) is int # テスト ~/.aws_accounts_for_data_manager はするが、該当ProfileのAWSアカウントIDが存在しない場合にユーザーに入力を求める def test_no_aws_account_id_for_given_profile_prompts_msg(set_fake_aws_account_files, perfect_profile_list, create_fake_aws_account_files, delete_fake_aws_account_files, capsys, monkeypatch): # GIVEN: Create fake AWS_ACCOUNT_FOR_data_manager # GIVEN: No info for profile exists in fake AWS_ACCOUNT_FOR_SET_AWS_MFA # GIVEN: 対象 profile を指定する profile = perfect_profile_list[0] # GIVEN: ユーザーインプットが integer ではない場合、を Mock aws_account_id_int = "12345" # GIVEN: Mock user input string monkeypatch.setattr(BUILTIN_INPUTS, lambda _: aws_account_id_int) # WHEN: check the existence of info for the given profile data_manager.get_aws_account_id(profile) # THEN: Prompt message to ask for input aws account id for the profile out, err = capsys.readouterr() print(out.rstrip()) assert profile.name in out.rstrip() assert prompts.PROMPT_ASK_AWS_ACCOUNT_ID_FOR_PROFILE_BEFORE in out.rstrip() assert prompts.PROMPT_ASK_AWS_ACCOUNT_ID_FOR_PROFILE_AFTER in out.rstrip() # テスト該当プロファイルのMFA ARN を取得する def test_get_mfa_arn(perfect_profile_list): # GIVEN: a ProfileTuple profile = perfect_profile_list[0] # WHEN: call the function mfa_arn = data_manager.get_mfa_arn(profile) # THEN: assert data_manager.AWS_IAM_ARN_HEAD_PART assert data_manager.AWS_IAM_ARN_MFA_PART assert profile.name in mfa_arn def test_get_role_for_a_base_profile(profile_which_has_role, profile_obj_list): """該当プロフィールと紐づくロールを返す""" # GIVEN: a valid profile which can switch role # WHEN: Check a role related to a given profile role_for_the_profile_list = data_manager.get_role_list_for_a_profile(profile_which_has_role, profile_obj_list) # THEN: there is some roles related to the profile if len(role_for_the_profile_list) != 0: assert role_for_the_profile_list[0].source_profile == profile_which_has_role.name def test_get_profile_instance_for_user_input(perfect_profile_list): # GIVEN: validated input num validated_input = randint(1, len(perfect_profile_list)) # WHEN: get profile instance for the input number profile_instance = data_manager.get_specified_profile( perfect_profile_list, validated_input) # THEN: assert isinstance(profile_instance, ProfileTuple)
2.453125
2
src/userlogs/admin.py
cbsBiram/xarala__ssr
0
12791404
from django.contrib import admin from .models import UserLog admin.site.register(UserLog)
1.226563
1
dl4nlp_pos_tagging/models/modules/seq2seq_encoders/bi_feedforward_encoder.py
michaeljneely/model-uncertainty-pos-tagging
1
12791405
<reponame>michaeljneely/model-uncertainty-pos-tagging<filename>dl4nlp_pos_tagging/models/modules/seq2seq_encoders/bi_feedforward_encoder.py from overrides import overrides from allennlp.modules.seq2seq_encoders.feedforward_encoder import FeedForwardEncoder from allennlp.modules.seq2seq_encoders.seq2seq_encoder import Seq2SeqEncoder @Seq2SeqEncoder.register("bi-feedforward") class BiFeedForwardEncoder(FeedForwardEncoder): @overrides def is_bidirectional(self) -> bool: return True
2.03125
2
proc_1040.py
ketancmaheshwari/Tributum
0
12791406
<gh_stars>0 #!/usr/bin/env python3 """ Programs for processing form 1040 """ import toml def deps(dict_1040): """ A function to calculate no. of dependents. This currently goes up to 4 dependents. """ dep_count = 0 #while counter = 1 while counter <= 4 and dict_1040["Dep" + str(counter)]["FN_LN"] != "": counter += 1 dep_count += 1 return dep_count def proc_sched_B(dict_sched_B): print(dict_sched_B["Part3_Foreign_Accounts_Trusts"]["i7a"]) def start(): """ This is the main function. """ d_1040 = toml.load("f1040.case1.toml") #print(d_1040) #print(d_1040["Dependents"]["Dep1"]) #print(d_1040["Dep1"]["FN_LN"]) #print(d_1040["Address"]["Street"]) print(deps(d_1040)) if d_1040["Main"]["i2a"] > 0 or d_1040["Main"]["i3a"] > 0: d_sched_B = toml.load("sched_B.case1.toml") proc_sched_B(d_sched_B) if __name__ == "__main__": start()
2.984375
3
descarteslabs/common/graft/interpreter/__init__.py
descarteslabs/descarteslabs-python
167
12791407
<gh_stars>100-1000 from .interpreter import interpret from . import exceptions from .scopedchainmap import ScopedChainMap __all__ = ["interpret", "exceptions", "ScopedChainMap"]
1.179688
1
skyline/functions/database/queries/related_to_metric_groups.py
datastreaming/skyline-1
396
12791408
<reponame>datastreaming/skyline-1 """ Get anomalies for a metric id """ import logging import traceback from ast import literal_eval from sqlalchemy.sql import select from database import get_engine, engine_disposal, metric_group_table_meta from functions.metrics.get_base_name_from_metric_id import get_base_name_from_metric_id def related_to_metric_groups(current_skyline_app, base_name, metric_id): """ Returns a dict of all the metric_groups that a metric is part of. """ current_skyline_app_logger = current_skyline_app + 'Log' current_logger = logging.getLogger(current_skyline_app_logger) related_to_metric_groups_dict = {} related_to_metric_groups_dict['metric'] = base_name related_to_metric_groups_dict['metric_id'] = metric_id related_to_metric_groups_dict['related_to_metrics'] = {} try: engine, fail_msg, trace = get_engine(current_skyline_app) if fail_msg != 'got MySQL engine': current_logger.error('error :: related_to_metric_groups :: could not get a MySQL engine fail_msg - %s' % str(fail_msg)) if trace != 'none': current_logger.error('error :: related_to_metric_groups :: could not get a MySQL engine trace - %s' % str(trace)) except Exception as err: current_logger.error(traceback.format_exc()) current_logger.error('error :: related_to_metric_groups :: could not get a MySQL engine - %s' % str(err)) if engine: try: metric_group_table, fail_msg, trace = metric_group_table_meta(current_skyline_app, engine) if fail_msg != 'metric_group meta reflected OK': current_logger.error('error :: related_to_metric_groups :: could not get metric_group_table_meta fail_msg - %s' % str(fail_msg)) if trace != 'none': current_logger.error('error :: related_to_metric_groups :: could not get metric_group_table_meta trace - %s' % str(trace)) except Exception as err: current_logger.error(traceback.format_exc()) current_logger.error('error :: related_to_metric_groups :: metric_group_table_meta - %s' % str(err)) try: connection = engine.connect() if metric_id: stmt = select([metric_group_table]).where(metric_group_table.c.related_metric_id == metric_id).order_by(metric_group_table.c.avg_coefficient.desc()) else: stmt = select([metric_group_table]) results = connection.execute(stmt) for row in results: group_metric_id = row['metric_id'] group_base_name = None try: group_base_name = get_base_name_from_metric_id(current_skyline_app, group_metric_id) except Exception as err: current_logger.error('error :: related_to_metric_groups :: base_name_from_metric_id failed to determine base_name from metric_id: %s - %s' % ( str(group_metric_id), str(err))) if group_base_name: related_to_metric_groups_dict['related_to_metrics'][group_base_name] = dict(row) connection.close() except Exception as err: current_logger.error(traceback.format_exc()) current_logger.error('error :: related_to_metric_groups :: failed to build metric_groups dict - %s' % str(err)) if engine: engine_disposal(current_skyline_app, engine) for related_metric in list(related_to_metric_groups_dict['related_to_metrics'].keys()): for key in list(related_to_metric_groups_dict['related_to_metrics'][related_metric].keys()): if 'decimal.Decimal' in str(type(related_to_metric_groups_dict['related_to_metrics'][related_metric][key])): related_to_metric_groups_dict['related_to_metrics'][related_metric][key] = float(related_to_metric_groups_dict['related_to_metrics'][related_metric][key]) if 'datetime.datetime' in str(type(related_to_metric_groups_dict['related_to_metrics'][related_metric][key])): related_to_metric_groups_dict['related_to_metrics'][related_metric][key] = str(related_to_metric_groups_dict['related_to_metrics'][related_metric][key]) if key == 'shifted_counts': try: shifted_counts_str = related_to_metric_groups_dict['related_to_metrics'][related_metric][key].decode('utf-8') shifted_counts = literal_eval(shifted_counts_str) except AttributeError: shifted_counts = related_to_metric_groups_dict['related_to_metrics'][related_metric][key] related_to_metric_groups_dict['related_to_metrics'][related_metric][key] = shifted_counts # Remap the metric_id and related_metric_id for clarity related_to_metric_groups_dict['related_to_metrics'][related_metric]['related_to_metric_id'] = related_to_metric_groups_dict['related_to_metrics'][related_metric]['metric_id'] related_to_metric_groups_dict['related_to_metrics'][related_metric]['metric_id'] = metric_id del related_to_metric_groups_dict['related_to_metrics'][related_metric]['related_metric_id'] return related_to_metric_groups_dict
2.359375
2
mwbase/admin.py
uw-ictd/mwbase
1
12791409
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User from django.http.response import HttpResponse from django.http import JsonResponse from django.template.response import SimpleTemplateResponse, TemplateResponse from django.urls import path, reverse from django.utils import html from openpyxl.writer.excel import save_virtual_workbook import utils.admin as utils # Local Imports from mwbase import models as mwbase from mwbase.forms import ImportXLSXForm from mwbase.utils import sms_bank import swapper AutomatedMessage = swapper.load_model("mwbase", "AutomatedMessage") Participant = swapper.load_model("mwbase", "Participant") StatusChange = swapper.load_model("mwbase", "StatusChange") class ConnectionInline(admin.TabularInline): model = mwbase.Connection extra = 0 class NoteInline(admin.TabularInline): model = mwbase.Note extra = 1 def mark_quit(modeladmin, request, queryset): ''' mark all mwbase in queryset as quit and save ''' for c in queryset: c.set_status('quit', comment='Status set from bulk quit action') mark_quit.short_description = 'Mark participant as quit' def revert_status(modeladmin, request, queryset): ''' set the status for each participant in queryset to their previous status ''' for c in queryset: old_status = c.statuschange_set.last().old c.set_status(old_status, comment='Status reverted from bulk action') revert_status.short_description = 'Revert to last status' @admin.register(Participant) class ParticipantAdmin(admin.ModelAdmin): list_display = ('study_id', 'display_name', 'preg_status', 'sms_status', 'description', 'facility', 'phone_number', 'due_date', 'language', 'send_day', 'is_validated', 'created') list_display_links = ('study_id', 'display_name') list_filter = ('facility', 'study_group', ('created', admin.DateFieldListFilter), 'preg_status', 'is_validated', 'language', 'send_day') ordering = ('study_id',) search_fields = ('study_id', 'display_name', 'connection__identity', 'anc_num') readonly_fields = ('last_msg_client', 'last_msg_system', 'created', 'modified') inlines = (ConnectionInline, NoteInline) actions = (mark_quit, revert_status,) class ParticipantAdminMixin(object): participant_field = 'participant' def participant_name(self, obj): participant = getattr(obj, self.participant_field) if participant is not None: return html.format_html( "<a href='../participant/{0.pk}'>({0.study_id}) {0.display_name}</a>".format(participant)) participant_name.short_description = 'SMS Name' participant_name.admin_order_field = '{}__study_id'.format(participant_field) def facility(self, obj): participant = getattr(obj, self.participant_field) if participant is not None: return participant.facility.capitalize() facility.admin_order_field = '{}__facility'.format(participant_field) def study_id(self, obj): return getattr(obj, self.participant_field).study_id study_id.short_description = 'Study ID' study_id.admin_order_field = '{}__study_id'.format(participant_field) def phone_number(self, obj): connection = getattr(obj, self.participant_field).connection() if connection is not None: return html.format_html("<a href='../connection/{0.pk}'>{0.identity}</a>".format(connection)) phone_number.short_description = 'Number' phone_number.admin_order_field = '{}__connection__identity'.format(participant_field) @admin.register(mwbase.Message) class MessageAdmin(admin.ModelAdmin, ParticipantAdminMixin): list_display = ('text', 'participant_name', 'identity', 'is_system', 'is_outgoing', 'is_reply', 'external_status', 'translation_status', 'created') list_filter = ('is_system', 'is_outgoing', 'external_status', ('participant', utils.NullFieldListFilter), ('created', admin.DateFieldListFilter), 'connection__participant__facility', 'translation_status', 'is_related', 'external_success') date_hierarchy = 'created' search_fields = ('participant__study_id', 'participant__display_name', 'connection__identity') readonly_fields = ('created', 'modified') def identity(self, obj): return html.format_html("<a href='./?q={0.identity}'>{0.identity}</a>".format(obj.connection)) identity.short_description = 'Number' identity.admin_order_field = 'connection__identity' @admin.register(mwbase.PhoneCall) class PhoneCallAdmin(admin.ModelAdmin, ParticipantAdminMixin): list_display = ('comment', 'participant_name', 'phone_number', 'outcome', 'is_outgoing', 'created') date_hierarchy = 'created' list_filter = ('outcome', 'is_outgoing') readonly_fields = ('created', 'modified') search_fields = ('participant__study_id', 'participant__display_name') @admin.register(mwbase.Note) class NoteAdmin(admin.ModelAdmin, ParticipantAdminMixin): list_display = ('participant_name', 'comment', 'created') date_hierarchy = 'created' @admin.register(mwbase.Connection) class ConnectionAdmin(admin.ModelAdmin, ParticipantAdminMixin): list_display = ('identity', 'participant_name', 'facility', 'is_primary') search_fields = ('participant__study_id', 'participant__display_name', 'identity') @admin.register(mwbase.Visit) class VisitAdmin(admin.ModelAdmin, ParticipantAdminMixin): list_display = ('study_id', 'participant_name', 'visit_type', 'scheduled', 'notification_last_seen', 'notify_count', 'arrived', 'status') date_hierarchy = 'scheduled' list_filter = ('status', 'visit_type', 'arrived', 'scheduled') search_fields = ('participant__study_id', 'participant__display_name') @admin.register(mwbase.ScheduledPhoneCall) class ScheduledPhoneCall(admin.ModelAdmin, ParticipantAdminMixin): list_display = ('study_id', 'participant_name', 'call_type', 'scheduled', 'notification_last_seen', 'notify_count', 'arrived', 'status') date_hierarchy = 'scheduled' list_filter = ('status', 'call_type', 'arrived', 'scheduled') search_fields = ('participant__study_id', 'participant__display_name') @admin.register(mwbase.Practitioner) class PractitionerAdmin(admin.ModelAdmin): list_display = ('facility', 'username', 'password_changed') @admin.register(StatusChange) class StatusChangeAdmin(admin.ModelAdmin, ParticipantAdminMixin): list_display = ('comment', 'participant_name', 'old', 'new', 'type', 'created') search_fields = ('participant__study_id', 'participant__display_name') @admin.register(mwbase.EventLog) class EventLogAdmin(admin.ModelAdmin): list_display = ('user', 'event', 'created') class PractitionerInline(admin.TabularInline): model = mwbase.Practitioner class UserAdmin(UserAdmin): inlines = (PractitionerInline,) # Re-register UserAdmin admin.site.unregister(User) admin.site.register(User, UserAdmin) @admin.register(AutomatedMessage) class AutomatedMessageAdmin(admin.ModelAdmin): list_display = ('description', 'english') list_filter = ('send_base', 'condition', 'group') change_list_template = "admin/mwbase/automatedmessage/change_list.html" smsbank_check_template = "admin/mwbase/automatedmessage/sms_bank_check.html" smsbank_import_template = "admin/mwbase/automatedmessage/sms_bank_import.html" def changelist_view(self, request, extra_context=None): extra_context = extra_context or {} extra_context['form'] = ImportXLSXForm return super(AutomatedMessageAdmin, self).changelist_view(request, extra_context=extra_context) def get_urls(self): urls = super().get_urls() my_urls = [ path(r'smsbank_check_view/', self.admin_site.admin_view(self.smsbank_check_view), name='smsbank_check_view'), path(r'smsbank_import_view/', self.admin_site.admin_view(self.smsbank_import_view), name='smsbank_import_view'), path(r'smsbank_create_xlsx/', self.admin_site.admin_view(self.smsbank_create_xlsx), name='smsbank_create_xlsx') ] urls = my_urls + urls return urls def smsbank_create_xlsx(self, request, extra_context=None): wb = sms_bank.create_xlsx() response = HttpResponse(save_virtual_workbook(wb), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename="smsbank.xlsx"' return response def smsbank_import_view(self, request, extra_context=None): opts = self.model._meta app_label = opts.app_label form = ImportXLSXForm(request.POST or None, request.FILES or None) counts, existing, diff= [], [], [] error = "" if request.method == 'POST': if form.is_valid(): file = form.cleaned_data.get("file") # try: counts, existing, diff= sms_bank.import_messages(file) # except Exception as e: # print(e) # error = "There was an error importing the given file. Please try again." context = { **self.admin_site.each_context(request), 'module_name': str(opts.verbose_name_plural), 'opts': opts, 'counts': counts, 'existing': existing, 'diff': diff, 'error': error, **(extra_context or {}), } return TemplateResponse(request, self.smsbank_import_template or [ 'admin/%s/%s/sms_bank_import.html' % (app_label, opts.model_name), 'admin/%s/sms_bank_import.html' % app_label, 'admin/sms_bank_import.html' ], context) def smsbank_check_view(self, request, extra_context=None): opts = self.model._meta app_label = opts.app_label items = duplicates = descriptions = total = None form = ImportXLSXForm(request.POST or None, request.FILES or None) if request.method == 'POST': if form.is_valid(): file = form.cleaned_data.get("file") (items, duplicates, descriptions, total, errors ) = sms_bank.check_messages(file) url = reverse('admin:smsbank_import_view') response = JsonResponse({ 'url': url, 'duplicates': duplicates, 'errors': errors, 'total': total, 'success': True, }) return response else: return JsonResponse({'success': False, 'message': 'Form Invalid',}) else: return JsonResponse({'success': False, 'message': 'Invalid method',})
1.992188
2
scripts/iemre/db_to_netcdf.py
jamayfieldjr/iem
1
12791410
<gh_stars>1-10 """Copy database grids to netcdf. Example: python db_to_netcdf.py <year> <month> <day> <utchour> If hour and minute are omitted, this is a daily copy, otherwise hourly. see: akrherz/iem#199 """ import sys import datetime import numpy as np from pyiem.util import utc, ncopen, logger from pyiem import iemre def main(argv): """Go Main Go.""" log = logger() if len(argv) == 6: valid = utc( int(argv[1]), int(argv[2]), int(argv[3]), int(argv[4])) ncfn = iemre.get_hourly_ncname(valid.year) idx = iemre.hourly_offset(valid) else: valid = datetime.date(int(argv[1]), int(argv[2]), int(argv[3])) ncfn = iemre.get_daily_ncname(valid.year) idx = iemre.daily_offset(valid) ds = iemre.get_grids(valid) with ncopen(ncfn, 'a', timeout=600) as nc: for vname in ds: if vname not in nc.variables: continue log.debug("copying database var %s to netcdf", vname) # Careful here, ds could contain NaN values nc.variables[vname][idx, :, :] = np.ma.array( ds[vname].values, mask=np.isnan(ds[vname].values) ) if __name__ == '__main__': main(sys.argv)
2.90625
3
meshes/read_brain_mesh_3D.py
AasmundResell/FEniCS-Brain-Flow
0
12791411
from fenics import * from matplotlib.pyplot import show def read_brain_mesh_3D(): path = "/home/asmund/dev/FEniCS-Brain-Flow/meshes/parenchyma16_with_DTI.h5" mesh = Mesh() #hdf = HDF5File(mesh.mpi_comm(),path , "r") #hdf.read(mesh, "/mesh", False) SD = MeshFunction("size_t", mesh,mesh.topology().dim()) #hdf.read(SD, "/subdomains") bnd = MeshFunction("size_t", mesh,mesh.topology().dim()-1) #hdf.read(bnd, "/boundaries") #lookup_table = MeshFunction("size_t", mesh, mesh.topology().dim()) #hdf.read(lookup_table, '/lookup_table') #TensorSpace = TensorFunctionSpace(mesh, 'DG', 0) #MDSpace = FunctionSpace(mesh, 'DG', 0) #MD = Function(MDSpace) #Kt = Function(TensorSpace) #hdf.read(MD, '/MD') #hdf.read(Kt, '/DTI') #File('subdomains.pvd')<<SD #File('bnd.pvd')<<bnd return mesh,SD,bnd def read_brain_scale(mesh): dx = Measure("dx", domain=mesh) tot_parenchyma_vol = assemble(1*dx) vol_scale = 1.0/tot_parenchyma_vol print("Volume of parenchyma in mm³: ",tot_parenchyma_vol) return vol_scale if __name__ == "__main__": mesh = read_brain_mesh_3D() scale = read_brain_scale(mesh)
2.34375
2
djangosheet/migrations/0004_lineupentry_ordering.py
seandw/djangosheet
2
12791412
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('djangosheet', '0003_lineup_1to1'), ] operations = [ migrations.AlterModelOptions( name='lineupentry', options={'verbose_name_plural': 'lineup entries', 'ordering': ['batting_position']}, ), ]
1.554688
2
lib/bnet/cache.py
theonewolf/siegvswolf
0
12791413
import logging from .util import raw_get from google.appengine.api.taskqueue import TaskAlreadyExistsError from google.appengine.api.taskqueue import TombstonedTaskError from google.appengine.ext import ndb from google.appengine.ext import deferred from datetime import datetime from time import time CACHE_TIMEOUT = 30 def update_cache(self, endpoint, **kwargs): data = raw_get(self, endpoint, **kwargs) key = ndb.Key(CachedResponse, endpoint) cr = key.get() cr.data = data cr.put() def cached(timeout=CACHE_TIMEOUT): def func_wrapper(func): def cached_check(self, endpoint, **kwargs): key = ndb.Key(CachedResponse, endpoint) cr = key.get() if not cr: data = func(self, endpoint, **kwargs) cr = CachedResponse(key=key, endpoint=endpoint, data=data) cr.put() else: oldtime = cr.timestamp ts = time() currtime = datetime.utcfromtimestamp(ts) td = currtime - oldtime if td.seconds > timeout: try: task_name = endpoint.replace('/', '-') + \ '-%d' % (int(ts)) deferred.defer(update_cache, self, endpoint, _name=task_name, **kwargs) except TaskAlreadyExistsError: logging.critical('Task <%s> already exists.' % task_name) logging.critical('Could not update cache.') except TombstonedTaskError: logging.critical('Tombstoned task <%s> encountered.' % task_name) logging.critical('Attempting to serve old cache data.') logging.critical('Stored timestamp was: %s' % str(cr.timestamp)) logging.critical('Current time is: %s' % str(currtime)) return cr.data return cached_check return func_wrapper class CachedResponse(ndb.Model): endpoint = ndb.StringProperty('e', required=True, indexed=True) data = ndb.JsonProperty('d', required=True) timestamp = ndb.DateTimeProperty('t', auto_now=True)
2.09375
2
ex08-BibliotecaMath.py
vnnstar/Python-Mundo1-CursoEmVideo
0
12791414
<reponame>vnnstar/Python-Mundo1-CursoEmVideo<filename>ex08-BibliotecaMath.py import math n = int(input('Informe um valor inteiro: ')) print('Esté é o número digitado {}, este é seu antecessor {}, este é seu' ' sucessor {}.'.format(n, n - 1, n + 1)) n1 = int(input('Informe um valor inteiro: ')) raiz = math.sqrt(n1) # também pode ser feito como raiz = n1 ** (1/2) print('O dobro é {}, o triplo é {}, a raiz quadrada é {}.' .format(n1 * 2, n1 * 3, raiz)) n2 = float(input('Informe uma nota de 0 a 10: ')) n3 = float(input('Informe uma segunda nota de 0 a 10: ')) media = ((n2 + n3) / 2) print('A sua média é {:.2f}'.format(media)) metro = float(input('Digite um valor em metros para ser convertido: ')) centimetro = metro * 100 milimetro = metro * 1000 print('Este valor de {} metros, é igual a {:.0f} centimetros e {:.0f}' 'milimetros.'.format(metro, centimetro, milimetro)) tabuada = int(input('Informe um número para apresentar sua tabuada')) contador = 0 for count in range(1, 10 + 1): print('{} x {} = {}'. format(tabuada, count, (tabuada * count))) # OUTRA FORMA DE FAZER A TABUADA, count é a mesma coisa que X ou a mesma # coisa que um contador no WHILE
3.5625
4
vindauga/widgets/color_item_list.py
gabbpuy/vindauga
5
12791415
<reponame>gabbpuy/vindauga<gh_stars>1-10 # -*- coding: utf-8 -*- import logging from vindauga.constants.colors import cmSaveColorIndex, cmNewColorIndex, cmNewColorItem from vindauga.constants.event_codes import evBroadcast from vindauga.misc.message import message from .list_viewer import ListViewer logger = logging.getLogger(__name__) class ColorItemList(ListViewer): """ The interrelated classes `ColorItem`, `ColorGroup`, `ColorSelector`, `MonoSelector`, `ColorDisplay`, `ColorGroupList`, `ColorItemList` and `ColorDialog` provide viewers and dialog boxes from which the user can select and change the color assignments from available palettes with immediate effect on the screen. `ColorItemList` is a simpler variant of `ColorGroupList` for viewing and selecting single color items rather than groups of colors. Like `ColorGroupList`, `ColorItemList` is specialized derivative of `ListViewer`. Color items can be selected in any of the usual ways (by mouse or keyboard). Unlike `ColorGroupList`, `ColorItemList` overrides the `ListViewer` event handler. """ name = 'ColorItemList' def __init__(self, bounds, scrollBar, items): super().__init__(bounds, 1, 0, scrollBar) self._items = items self.eventMask |= evBroadcast self.setRange(len(items)) def focusItem(self, item): """ Selects the given item by calling `super().focusItem(item)`, then broadcasts a `cmNewColorIndex` event. :param item: Item number to focus """ super().focusItem(item) message(self.owner, evBroadcast, cmSaveColorIndex, item) curItem = self._items[item] message(self.owner, evBroadcast, cmNewColorIndex, curItem.index) def getText(self, item, maxChars): curItem = self._items[item] return curItem.name[:maxChars] def handleEvent(self, event): super().handleEvent(event) if event.what == evBroadcast: g = event.message.infoPtr command = event.message.command if command == cmNewColorItem: self._items = g.items self.setRange(len(g.items)) self.focusItem(g.index) self.drawView()
2.640625
3
geophys_utils/dataset_metadata_cache/__init__.py
GeoscienceAustralia/geophys_utils
18
12791416
''' Created on 20 Jul. 2018 @author: Alex ''' from ._dataset_metadata_cache import settings, DatasetMetadataCache, Dataset, Distribution from ._postgres_dataset_metadata_cache import PostgresDatasetMetadataCache from ._sqlite_dataset_metadata_cache import SQLiteDatasetMetadataCache def get_dataset_metadata_cache(db_engine='SQLite', *args, **kwargs): ''' Class factory function to return subclass of DatasetMetadataCache for specified db_engine ''' if db_engine == 'SQLite': return SQLiteDatasetMetadataCache(*args, **kwargs) elif db_engine == 'Postgres': return PostgresDatasetMetadataCache(*args, **kwargs) else: raise BaseException('Unhandled db_engine "{}"'.format(db_engine))
2.109375
2
mutJacobMethod.py
vicentepese/PSM-Narcolepsy
1
12791417
import numpy as np import sys import os import json import csv import re import random import subprocess from markdown2 import Markdown from Bio import Entrez from Bio import SeqIO from collections import defaultdict, OrderedDict from scipy import stats from utils import getBindingCore, importBindData,\ importData, reference_retreive, div0, getBindingCore, getRandomColor def statisticalTest(options, seqMut, vaccSample, refProt): # Initialize MUT_stats = defaultdict(lambda: defaultdict(lambda : defaultdict(lambda: defaultdict(int)))) # For each position for pos in range(options['pos_range'][0], options['pos_range'][1]+1): if pos in list(seqMut.keys()): for ptm in list(seqMut[pos].keys()): if 'PAN' and 'ARP' in list(seqMut[pos][ptm].keys()): # Create array ptm_positive = [seqMut[pos][ptm]['ARP'], seqMut[pos][ptm]['PAN']] ptm_negative = [vaccSample[pos]['ARP'] - seqMut[pos][ptm]['ARP'], \ vaccSample[pos]['PAN'] - seqMut[pos][ptm]['PAN']] # Fisher test and append to output oddsratio, pvalue = stats.fisher_exact([ptm_positive, ptm_negative]) MUT_stats[pos][ptm]['ARP']['pvalue'] = pvalue MUT_stats[pos][ptm]['ARP']['oddsratio'] = oddsratio if 'PAN' and 'FOC' in list(seqMut[pos][ptm].keys()): # Create array ptm_positive = [seqMut[pos][ptm]['FOC'], seqMut[pos][ptm]['PAN']] ptm_negative = [vaccSample[pos]['FOC'] - seqMut[pos][ptm]['FOC'], \ vaccSample[pos]['PAN'] - seqMut[pos][ptm]['PAN']] # Fisher test and append to output oddsratio, pvalue = stats.fisher_exact([ptm_positive, ptm_negative]) MUT_stats[pos][ptm]['FOC']['pvalue'] = pvalue MUT_stats[pos][ptm]['FOC']['oddsratio'] = oddsratio return MUT_stats def mapMutations(data, refProt, options): # Initialize outputs seqMUT = defaultdict(lambda: defaultdict(lambda : defaultdict(int))) vaccSample = defaultdict(lambda: defaultdict((int))) # For each sequence for seq in data: # Initialize: sequence with and without PTM, initial position AAseq = seq[1][2:-2] AAnonPTM = re.sub('\[.+?\]', '', AAseq) init_pos = int(seq[2]) # Check for mutations for AA, pos in zip(AAnonPTM, range(init_pos, init_pos + len(AAnonPTM))): # Count instances vaccSample[pos][seq[3]] += 1 # If there is a mutation append if AA is not refProt[pos]: seqMUT[pos][AA][seq[3]] += 1 # Filter positions where there is no samples from any of the # vaccines for pos in list(seqMUT.keys()): for ptm in list(seqMUT[pos].keys()): if not(seqMUT[pos][ptm]['ARP'] and seqMUT[pos][ptm]['PAN']) \ and not(seqMUT[pos][ptm]['FOC'] and seqMUT[pos][ptm]['PAN']): del seqMUT[pos][ptm] if len(seqMUT[pos]) < 1: del seqMUT[pos] return seqMUT, vaccSample def map2HTML(options, coreIdxs, coreClass, refProt, MUT_stats, seqMut, vaccSample): # Initialize PTM_HTML = list() markdowner = Markdown() color = getRandomColor(options) refProt = ''.join([refProt[pos] for pos in refProt]) # In blocks of 70, while smaller than the length of the protein of reference i = 0 while i < len(refProt): # Create string of reference protein (taking 70 AA) refProtStr = refProt[i:i+70] count = 0 # For each binding core and class for core, coreCl in zip(coreIdxs, coreClass): # If initial position of the core overlaps with that fragment if core[0] in range(i, i + 70): # If no previous hightlight if count == 0: # Update core idxes, and highlight based on class core = [idx -i for idx in core] if coreCl == 'strong': refProtStr = refProtStr[0:core[0]] + color['strongBinder'][0] + refProtStr[core[0]:core[1]] + \ color['strongBinder'][1] + refProtStr[core[1]:] count += 1 else: refProtStr = refProtStr[0:core[0]] + color['weakBinder'][0] + refProtStr[core[0]:core[1]] + \ color['weakBinder'][1] + refProtStr[core[1]:] count += 1 # If previous binding core in segment, update idx and highlight based on class else: if coreCl == 'strong': core = [idx - i + count*(len(color['strongBinder'][0]) + len(color['strongBinder'][1])) for idx in core] refProtStr = refProtStr[0:core[0]] + color['strongBinder'][0] + refProtStr[core[0]:core[1]] + \ color['strongBinder'][1] + refProtStr[core[1]:] count += 1 else: core = [idx - i + count*(len(color['strongBinder'][0]) + len(color['strongBinder'][1])) for idx in core] refProtStr = refProtStr[0:core[0]] + color['weakBinder'][0] + refProtStr[core[0]:core[1]] + \ color['weakBinder'][1] + refProtStr[core[1]:] count += 1 # If ending position of the core overlaps with the fragment: same elif core[1] in range(i, i + 70): core = [idx -i for idx in core] core = [0 if idx < 0 else idx for idx in core] if coreCl == 'strong': refProtStr = color['strongBinder'][0] + refProtStr[core[0]:core[1]] + \ color['strongBinder'][1] + refProtStr[core[1]:] count += 1 else: refProtStr = color['weakBinder'][0] + refProtStr[core[0]:core[1]] + \ color['weakBinder'][1] + refProtStr[core[1]:] count += 1 # Append to HTML output refProtStr = str(i+1) + '.' + '&nbsp;'*(6 -len(str(i))-1) + refProtStr + '\n' PTM_HTML.append(markdowner.convert(refProtStr)) # Create PAN string: same as ARP string PAN_str = color['PAN'][0] + 'PAN:&nbsp;&nbsp;' + color['PAN'][1] last_pos = 0 for pos in range(i,i+70): if pos in list(seqMut.keys()): if any(seqMut[pos][mut]['PAN'] for mut in seqMut[pos]): PAN_str = PAN_str + color['PAN'][0] + '&mdash;'*(pos - last_pos -1 - i) + color['PAN'][1] + refProt[pos-1] last_pos = pos - i PAN_str = PAN_str + color['PAN'][0] + '&mdash;'*(70 - last_pos) + color['PAN'][1] PTM_HTML.append(markdowner.convert(PAN_str)) # Create ARP string, highlighting positions of PTMs, and append ARP_str = color['ARP'][0] + 'ARP:&nbsp;&nbsp;' + color['ARP'][1] mut_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(int))) last_pos = 0 for pos in range(i,i+70): if pos in list(seqMut.keys()): if any(seqMut[pos][mut]['ARP'] for mut in seqMut[pos]): ARP_str = ARP_str + color['ARP'][0] + '&mdash;'*(pos - last_pos -1 - i) + color['ARP'][1] + refProt[pos-1] for mut in seqMut[pos]: mut_dict[pos][mut]['ARP'] = seqMut[pos][mut]['ARP'] last_pos = pos - i ARP_str = ARP_str + color['ARP'][0] + '&mdash;'*(70 - last_pos) + color['ARP'][1] PTM_HTML.append(markdowner.convert(ARP_str)) # Create FOC string, highlighting positions of PTMs, and append FOC_str = color['FOC'][0] + 'FOC:&nbsp;&nbsp;' + color['FOC'][1] last_pos = 0 for pos in range(i,i+70): if pos in list(seqMut.keys()): if any(seqMut[pos][mut]['FOC'] for mut in seqMut[pos]): FOC_str = FOC_str + color['FOC'][0] + '&mdash;'*(pos - last_pos -1 - i) + color['FOC'][1] + refProt[pos-1] for mut in seqMut[pos]: mut_dict[pos][mut]['FOC'] = seqMut[pos][mut]['FOC'] last_pos = pos - i FOC_str = FOC_str + color['FOC'][0] + '&mdash;'*(70 - last_pos) + color['FOC'][1] PTM_HTML.append(markdowner.convert(FOC_str)) # Create strings for each PTM positon and type for pos in list(mut_dict.keys()): for mut in list(mut_dict[pos].keys()): for vacc in list(mut_dict[pos][mut].keys()): if mut_dict[pos][mut][vacc] > 0: vacc_prop = seqMut[pos][mut][vacc]/vaccSample[pos][vacc] vacc_samp = vaccSample[pos][vacc] PAN_prop = seqMut[pos][mut]['PAN']/vaccSample[pos]['PAN'] PAN_samp = vaccSample[pos]['PAN'] PAN_mut_str = '&nbsp;'*(pos -i -3+ 6) + \ color['mut'][0] + mut + color['mut'][1] + \ '(' + vacc + ':{:.2%}({}),PAN:{:.2%}({}),'.format(vacc_prop, vacc_samp, PAN_prop, PAN_samp) if pos in list(MUT_stats.keys()) and vacc in list(MUT_stats[pos][mut].keys()) \ and MUT_stats[pos][mut][vacc]['pvalue'] < 0.05: PAN_mut_str = PAN_mut_str + color['red'][0] + 'p={:.2}'.format(MUT_stats[pos][mut][vacc]['pvalue']) + '\n' elif pos in list(MUT_stats.keys()) and vacc in list(MUT_stats[pos][mut].keys()): PAN_mut_str = PAN_mut_str + 'p={:.2})'.format(MUT_stats[pos][mut][vacc]['pvalue']) + '\n' PTM_HTML.append(markdowner.convert(PAN_mut_str)) # Separate PTM_HTML.append(markdowner.convert('&nbsp;\n')) # Update index i += 70 # Print and save with open(options['html']["scroll-template"], 'r') as inFile: with open(options['files']['mutMapJacob.html'], 'w') as outFile: for line in inFile: outFile.write(line) outFile.writelines(PTM_HTML) def main(): # Read options with open('options.json','r') as inFile: options = json.load(inFile) # Import data data = importData(options) # Import protein of reference refProt = reference_retreive(options['refProt']) # Get binding cores and binding core positions coreIdxs, coreClass = getBindingCore(options, refProt) # Map mutations seqMut, vaccSample = mapMutations(data, refProt, options) # Compute Fisher exact test MUT_stats = statisticalTest(options, seqMut, vaccSample, refProt) # Create HTML output map2HTML(options, coreIdxs, coreClass, refProt, MUT_stats, seqMut, vaccSample) if __name__ == "__main__": main()
2.125
2
orchestration/integration/custom_scripts/script_execution.py
dave-read/vdc
1
12791418
<reponame>dave-read/vdc from orchestration.models.script_type import ScriptType from orchestration.common import helper class CustomScriptExecution(object): def execute( self, script_type: ScriptType, command: str, output_file_path: str = None, property_path: str = None, file_path_to_update: str = None) -> dict: if script_type == ScriptType.POWERSHELL: from orchestration.integration.custom_scripts.powershell_execution import PowershellScriptExecution pwsh = PowershellScriptExecution() result = pwsh.execute(command) elif script_type == ScriptType.BASH: from orchestration.integration.custom_scripts.bash_execution import BashScriptExecution bash = BashScriptExecution() result = bash.execute(command) else: return ValueError('Invalid type received') if output_file_path is not None and\ len(output_file_path) > 0: self.save_json_file( result, output_file_path) if property_path is not None and\ len(property_path) > 0 and\ file_path_to_update is not None and\ len(file_path_to_update) > 0: self.modify_json_file( result= result, property_path= property_path, file_path_to_update= file_path_to_update) return result['output'] def save_json_file( self, result: dict, output_file_path: str): helper.save_json_file( result['output'], output_file_path) def modify_json_file( self, result: dict, property_path: str, file_path_to_update: str): helper.modify_json_file( prop_value= result['output'], prop_key= property_path, path= file_path_to_update)
2.234375
2
Ver.1/Main.py
AbdAlazezAhmed/TilesPy
0
12791419
import numpy as np from grabscreen import grab_screen from directkeys import Up , Down , PressKey , ReleaseKey , Move1 , Move2 import time from getkeys import key_check import cv2 def main () : while(True) : #Resize the game window to about less than quarter of the screen at 1920*1080 resolution screen = cv2.cvtColor(grab_screen(region=(0,0,800,800)),cv2.COLOR_RGB2GRAY) keys = key_check() while screen[778,250] < 130 or screen[778,250] > 200 : if screen[765,250] < 130 or screen[765,250] > 200 : Move1(307,778) screen = cv2.cvtColor(grab_screen(region=(0,0,800,800)),cv2.COLOR_RGB2GRAY) print(screen[778 , 250] ) keys = key_check() ## time.sleep(0.1) if 'X' in keys: break Move2(0,0) while screen[778 , 360]<130 or screen[778 , 360]>200 : if screen[765 , 360]<130 or screen[765 , 360]>200 : Move1(420 , 778) screen = cv2.cvtColor(grab_screen(region=(0,0,800,800)),cv2.COLOR_RGB2GRAY) print(screen[778 , 360] ) ## time.sleep(0.1) keys = key_check() if 'X' in keys: break Move2(0,0) while screen [778 , 480]<130 or screen [778 , 480]>200 : if screen [765 , 480]<130 or screen [765 , 480]>200 : Move1(525 , 778) ## time.sleep(0.1) screen = cv2.cvtColor(grab_screen(region=(0,0,800,800)),cv2.COLOR_RGB2GRAY) print(screen[778 , 480] ) keys = key_check() if 'X' in keys: break Move2(0,0) while screen[778 , 590]<130 or screen[778 , 590]>200: if screen[765 , 590]<130 or screen[765 , 590]>200: Move1(620 , 778) ## time.sleep(0.1) screen = cv2.cvtColor(grab_screen(region=(0,0,800,800)),cv2.COLOR_RGB2GRAY) print(screen[778 , 600] ) keys = key_check() if 'X' in keys: break Move2(0,0) if 'X' in keys: break main()
2.734375
3
src/backend/graph/api/urls.py
pawlaczyk/KTZgraph
0
12791420
<filename>src/backend/graph/api/urls.py<gh_stars>0 from django.urls import path from graph.api import views urlpatterns = [ path('', views.GraphList.as_view(), name='graph-list'), path('<int:pk>', views.GraphDetail.as_view(), name='graph-list'), path('create/', views.GraphCreate.as_view(), name='graph-list'), path('get_graphs/', views.get_graphs, name='get_graphs'), ]
1.851563
2
html_parsing/get_game_genres/parsers/squarefaction_ru.py
DazEB2/SimplePyScripts
117
12791421
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from typing import List from bs4 import BeautifulSoup from base_parser import BaseParser class SquarefactionRu_Parser(BaseParser): def _parse(self) -> List[str]: url = f'http://squarefaction.ru/main/search/games?q={self.game_name}' rs = self.send_get(url) root = BeautifulSoup(rs.content, 'html.parser') # http://squarefaction.ru/main/search/games?q=dead+space if '/main/search/games' in rs.url: self.log_info(f'Parsing of game list') for game_block in root.select('#games > .entry'): title = self.get_norm_text(game_block.select_one('.name')) if not self.is_found_game(title): continue # <div class="infos">TPS,Survival Horror,Action</div> genres = self.get_norm_text(game_block.select_one('.infos')).split(',') # Сойдет первый, совпадающий по имени, вариант return genres # http://squarefaction.ru/game/dead-space else: self.log_info(f'Parsing of game page') game_block = root.select_one('#page-info') if game_block: title = self.get_norm_text(game_block.select_one('#title')) if not self.is_found_game(title): self.log_warn(f'Not match game title {title!r}') # <td class="nowraps-links"> # <a href="/games?genre=tps">TPS</a>, # <a href="/games?genre=survival-horror">Survival Horror</a>, # <a href="/games?genre=action">Action</a> # </td> genres = [ self.get_norm_text(a) for a in game_block.select('a') if '?genre=' in a['href'] ] # Сойдет первый, совпадающий по имени, вариант return genres self.log_info(f'Not found game {self.game_name!r}') return [] def get_game_genres(game_name: str, *args, **kwargs) -> List[str]: return SquarefactionRu_Parser(*args, **kwargs).get_game_genres(game_name) if __name__ == '__main__': from common import _common_test _common_test(get_game_genres) # Search 'Hellgate: London'... # Genres: ['Action RPG'] # # Search 'The Incredible Adventures of Van Helsing'... # Genres: ['Action RPG'] # # Search 'Dark Souls: Prepare to Die Edition'... # Genres: [] # # Search 'Twin Sector'... # Genres: [] # # Search 'Call of Cthulhu: Dark Corners of the Earth'... # Genres: ['Survival Horror']
2.9375
3
setup.py
movermeyer/envtool
3
12791422
<gh_stars>1-10 # -*- encoding: utf-8 -*- import glob import io import re from os.path import basename from os.path import dirname from os.path import join from os.path import splitext import sys from setuptools import setup from setuptools.command.test import test as TestCommand class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass to py.test")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = [] def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.pytest_args) sys.exit(errno) def read(*names, **kwargs): return io.open( join(dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8") ).read() setup( name="envtool", version="0.1.0", license="BSD", description="A tool for managing envdirs and env files.", long_description="%s\n%s" % (read("README.rst"), re.sub(":obj:`~?(.*?)`", r"``\1``", read("CHANGELOG.rst"))), author="<NAME>", author_email="<EMAIL>", url="https://github.com/judy2k/envtool", py_modules=[splitext(basename(i))[0] for i in glob.glob("*.py")], include_package_data=True, zip_safe=False, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers "Development Status :: 2 - Pre-Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: Unix", "Operating System :: POSIX", # "Operating System :: Microsoft :: Windows", "Environment :: Console", # "Intended Audience :: System Administrator", "Programming Language :: Python", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: Implementation :: CPython", # "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Utilities", ], keywords=[ "environment", "envdir", "honcho", "foreman", "env", ], install_requires=[ "future>=0.15.0", "click>=4.0.0", ], extras_require={ # eg: 'rst': ["docutils>=0.11"], }, entry_points={ "console_scripts": [ "envtool=envtool:main", ] }, cmdclass={'test': PyTest}, tests_require=[ "pytest>=2.7.2", ] )
2
2
tests/test_rigraph.py
tipech/OverlapGraph
0
12791423
#!/usr/bin/env python """ Unit tests for Regional Intersection Graph -- NetworkX - test_nxgraph_create - test_nxgraph_sweepctor - test_nxgraph_mdsweepctor - test_nxgraph_sweepctor_graph - test_nxgraph_sweepctor_random """ from io import StringIO from typing import List, Tuple from unittest import TestCase from pprint import pprint from networkx import networkx as nx from slig.datastructs.rigraph import RIGraph from slig.datastructs.region import Region class TestRIGraph(TestCase): test_regions: List[Region] def setUp(self): self.test_regions = [] self.test_regions.append(Region([0, 0], [5, 5])) self.test_regions.append(Region([2, 2], [5, 10])) self.test_regions.append(Region([1, 5], [3, 7])) self.test_regions.append(Region([-5, 5], [1, 7])) self.test_regions.append(Region([-5, 5], [2, 7])) def test_nxgraph_create(self): graph = RIGraph(dimension=1) self.assertTrue(graph.G is not None) self.assertTrue(isinstance(graph.G, nx.Graph)) def test_nxgraph_contains(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) for region in self.test_regions[0:3]: graph.put_region(region) self.assertTrue(self.test_regions[0].id in graph) def test_nxgraph_put_region(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) for region in self.test_regions: graph.put_region(region) self.assertEqual(self.test_regions, list(graph.regions)) def test_nxgraph_put_intersect(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) graph.put_region(self.test_regions[0]) graph.put_region(self.test_regions[1]) graph.put_intersection(self.test_regions[0], self.test_regions[1]) intersection = self.test_regions[0].get_intersection(self.test_regions[1]) self.assertEqual(intersection, list(graph.intersections)[0]) def test_nxgraph_to_dict(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) graph.put_region(self.test_regions[0]) graph.put_region(self.test_regions[1]) graph.put_intersection(self.test_regions[0], self.test_regions[1]) intersection = self.test_regions[0].get_intersection(self.test_regions[1]) graphdict = {'id':graph.id,'dimension':dimension,'json_graph':'node_link', 'graph':{ 'directed': False, 'multigraph': False, 'graph':{}, 'nodes':[{'id':r.id, 'region':r} for r in graph.regions], 'links':[{'source': self.test_regions[0].id, 'target': self.test_regions[1].id, 'region': intersection}] }} self.assertEqual(graphdict, graph.to_dict()) def test_nxgraph_from_dict(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) graph.put_region(self.test_regions[0]) graph.put_region(self.test_regions[1]) graph.put_intersection(self.test_regions[0], self.test_regions[1]) self.assertEqual(graph.to_dict(), RIGraph.from_dict(graph.to_dict()).to_dict())
2.421875
2
wbia_orientation/test.py
WildMeOrg/wbia-plugin-orientation
1
12791424
# -*- coding: utf-8 -*- # Written by <NAME> (<EMAIL>) import os import pprint import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms from wbia_orientation.config.default import _C as cfg # NOQA from wbia_orientation.config.default import update_config from wbia_orientation.core.function import validate from wbia_orientation.dataset import custom_transforms from wbia_orientation.dataset.animal import AnimalDataset from wbia_orientation.train import parse_args, _make_model, _model_to_gpu, _make_loss from wbia_orientation.utils.utils import create_logger def _make_test_data(cfg, logger): """Initialise train and validation loaders as per config parameters Input: cfg: config object logger: logging object Returns: test_loader: Data Loader over test dataset test_dataset: test dataset object """ test_transform = transforms.Compose( [ custom_transforms.CropObjectAlignedArea(noise=0.0), custom_transforms.Resize(cfg.MODEL.IMSIZE), custom_transforms.ToTensor(), custom_transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], input_size=cfg.MODEL.IMSIZE[0], ), ] ) test_dataset = AnimalDataset(cfg, cfg.DATASET.TEST_SET, test_transform) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=cfg.TEST.BS * len(cfg.GPUS), shuffle=False, num_workers=cfg.WORKERS, pin_memory=cfg.PIN_MEMORY, ) return test_loader, test_dataset def main(): args = parse_args() update_config(cfg, args) logger, final_output_dir = create_logger(cfg, args.cfg, 'test', False) logger.info(pprint.pformat(args)) logger.info(cfg) # cudnn related setting cudnn.benchmark = cfg.CUDNN.BENCHMARK torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED # Initialise models model = _make_model(cfg, is_train=False) # Load model weights if cfg.TEST.MODEL_FILE: model_state_file = cfg.TEST.MODEL_FILE else: model_state_file = os.path.join(final_output_dir, 'best.pth') logger.info('=> loading model from {}'.format(model_state_file)) if cfg.USE_GPU: model.load_state_dict(torch.load(model_state_file)) else: model.load_state_dict( torch.load(model_state_file, map_location=torch.device('cpu')) ) model = _model_to_gpu(model, cfg) # Initialise losses loss_func = _make_loss(cfg) # Initialise data loaders test_loader, test_dataset = _make_test_data(cfg, logger) # Evaluate on validation set perf_indicator = validate( cfg, test_loader, test_dataset, model, loss_func, cfg.DATASET.TEST_SET, final_output_dir, ) logger.info( 'Final results. Accuracy@{} on {} {} is {:.2%}'.format( cfg.TEST.THETA_THR, cfg.DATASET.NAME, cfg.DATASET.TEST_SET, perf_indicator ) ) if __name__ == '__main__': main()
1.921875
2
chess/piece/pawn.py
foxfluff/chess-py
0
12791425
<gh_stars>0 from ._piece import chess_piece class pawn(chess_piece): def avaliable_moves(self): raise NotImplementedError @staticmethod def legal_moves(): return [[x, 1] for x in range(-1, 2)] + [[0, 2]]
3.015625
3
TWLight/users/migrations/0060_auto_20200804_1634.py
saloniig/TWLight
0
12791426
# Generated by Django 3.0.9 on 2020-08-04 16:34 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ("resources", "0083_auto_20200804_1634"), ("users", "0059_auto_20200706_1659"), ] operations = [ migrations.AlterField( model_name="authorization", name="partners", field=models.ManyToManyField( blank=True, help_text="The partner(s) for which the editor is authorized.", limit_choices_to=models.Q(status__in=[0, 2]), to="resources.Partner", ), ), migrations.AlterField( model_name="authorization", name="stream", field=models.ForeignKey( blank=True, help_text="The stream for which the editor is authorized.", limit_choices_to=models.Q(partner__status__in=[0, 2]), null=True, on_delete=django.db.models.deletion.SET_NULL, to="resources.Stream", ), ), ]
1.632813
2
test/test_algos/test_opt_algorithm/test_racos/test_racos.py
IcarusWizard/ZOOpt
403
12791427
<filename>test/test_algos/test_opt_algorithm/test_racos/test_racos.py from zoopt.algos.opt_algorithms.racos.racos_common import RacosCommon from zoopt.algos.opt_algorithms.racos.sracos import SRacos from zoopt import Solution, Objective, Dimension, Parameter, Opt, ExpOpt, ValueType, Dimension2 import numpy as np def ackley(solution): """ Ackley function for continuous optimization """ x = solution.get_x() bias = 0.2 ave_seq = sum([(i - bias) * (i - bias) for i in x]) / len(x) ave_cos = sum([np.cos(2.0 * np.pi * (i - bias)) for i in x]) / len(x) value = -20 * np.exp(-0.2 * np.sqrt(ave_seq)) - np.exp(ave_cos) + 20.0 + np.e return value def sphere_discrete_order(solution): """ Sphere function for integer continuous optimization """ x = solution.get_x() value = sum([(i-2)*(i-2) for i in x]) return value class SetCover: """ set cover problem for discrete optimization this problem has some extra initialization tasks, thus we define this problem as a class """ def __init__(self): self.__weight = [0.8356, 0.5495, 0.4444, 0.7269, 0.9960, 0.6633, 0.5062, 0.8429, 0.1293, 0.7355, 0.7979, 0.2814, 0.7962, 0.1754, 0.0267, 0.9862, 0.1786, 0.5884, 0.6289, 0.3008] self.__subset = [] self.__subset.append([0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0]) self.__subset.append([0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0]) self.__subset.append([1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]) self.__subset.append([0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]) self.__subset.append([1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1]) self.__subset.append([0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]) self.__subset.append([0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0]) self.__subset.append([0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0]) self.__subset.append([0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0]) self.__subset.append([0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1]) self.__subset.append([0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0]) self.__subset.append([0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1]) self.__subset.append([1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1]) self.__subset.append([1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1]) self.__subset.append([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]) self.__subset.append([1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0]) self.__subset.append([1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1]) self.__subset.append([0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1]) self.__subset.append([0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0]) self.__subset.append([0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1]) def fx(self, solution): """ Objective function. :param solution: a Solution object :return: the value of f(x) """ x = solution.get_x() allweight = 0 countw = 0 for i in range(len(self.__weight)): allweight += self.__weight[i] dims = [] for i in range(len(self.__subset[0])): dims.append(False) for i in range(len(self.__subset)): if x[i] == 1: countw += self.__weight[i] for j in range(len(self.__subset[i])): if self.__subset[i][j] == 1: dims[j] = True full = True for i in range(len(dims)): if dims[i] is False: full = False if full is False: countw += allweight return countw @property def dim(self): """ Dimension of set cover problem. :return: Dimension instance """ dim_size = 20 dim_regs = [[0, 1]] * dim_size dim_tys = [False] * dim_size return Dimension(dim_size, dim_regs, dim_tys) class TestRacos(object): def test_racos_common_extend(self): a = [1, 2, 3] b = [2, 3, 4] assert RacosCommon.extend(a, b) == [1, 2, 3, 2, 3, 4] def test_racos_common_is_distinct(self): a = Solution(x=[1, 2, 3]) b = Solution(x=[2, 3, 4]) c = Solution(x=[3, 4, 5]) seti = [a, b] assert RacosCommon.is_distinct(seti, a) is False and RacosCommon.is_distinct(seti, c) is True def test_sracos_distance(self): a = [2, 4] b = [5, 8] assert SRacos.distance(a, b) == 5 def test_sracos_binary_search(self): s0 = Solution(value=0) s1 = Solution(value=1) s2 = Solution(value=2) s3 = Solution(value=3) s4 = Solution(value=4) # 1 3 0 2 4 test_s1 = Solution(value=2.1) test_s2 = Solution(value=4.5) test_s3 = Solution(value=-1) test_s4 = Solution(value=2) set = [s0, s1, s2, s3, s4] sracos = SRacos() assert sracos.binary_search(set, test_s1, 0, 4) == 3 assert sracos.binary_search(set, test_s1, 0, 2) == 3 assert sracos.binary_search(set, test_s2, 0, 4) == 5 assert sracos.binary_search(set, test_s3, 0, 4) == 0 assert sracos.binary_search(set, test_s4, 0, 4) == 3 def test_sracos_strategy_wr(self): s0 = Solution(value=0) s1 = Solution(value=1) s2 = Solution(value=2) s3 = Solution(value=3) s4 = Solution(value=4) iset = [s0, s1, s2, s3, s4] sracos = SRacos() test_s1 = Solution(value=2.1) sracos.strategy_wr(iset, test_s1, 'pos') assert len(iset) == 5 and iset[0].get_value() == 0 and iset[1].get_value() == 1 and iset[2].get_value() == 2 \ and iset[3].get_value() == 2.1 and iset[4].get_value() == 3 iset2 = [s1, s3, s0, s2, s4] sracos.strategy_wr(iset2, test_s1, 'neg') assert len(iset2) == 5 and iset2[4].get_value() == 2.1 def test_sracos_strategy_rr(self): s0 = Solution(value=0) s1 = Solution(value=1) s2 = Solution(value=2) iset = [s0, s1, s2] sracos = SRacos() test_s1 = Solution(value=2.1) sracos.strategy_rr(iset, test_s1) assert len(iset) == 3 and (iset[0].get_value() == 2.1 or iset[1].get_value() == 2.1 or iset[2].get_value() == 2.1) def test_sracos_strategy_lm(self): s0 = Solution(x=[1, 1, 1], value=0) s1 = Solution(x=[2.2, 2.2, 2.2], value=1) s2 = Solution(x=[3, 3, 3], value=2) iset = [s0, s1, s2] sracos = SRacos() test_s1 = Solution(x=[2.1, 2.1, 2.1], value=2.1) sracos.strategy_lm(iset, s0, test_s1) assert iset[2].get_value() == 2.1 def test_sracos_replace(self): s0 = Solution(x=[0, 0, 0], value=0.5) s1 = Solution(x=[1, 1, 1], value=1) s2 = Solution(x=[2, 2, 2], value=2) s3 = Solution(x=[3, 3, 3], value=3) s4 = Solution(x=[4, 4, 4], value=4) pos_set = [s0, s1, s2, s3, s4] neg_set = [s2, s3, s1, s4, s0] x = Solution(x=[2.1, 2.1, 2.1], value=0.1) sracos = SRacos() sracos.replace(pos_set, x, 'pos', 'WR') assert pos_set[4].get_value() == 3 and pos_set[0].get_value() == 0.1 sracos.replace(neg_set, x, 'neg', 'LM') assert neg_set[3].get_value() == 0.1 def test_racos_performance(self): # continuous dim = 100 # dimension objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=100 * dim, sequential=False, seed=1) solution = ExpOpt.min(objective, parameter)[0] assert solution.get_value() < 0.2 dim = 500 objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=10000, sequential=False, seed=1) sol = Opt.min(objective, parameter) sol.print_solution() assert solution.get_value() < 2 # discrete # setcover problem = SetCover() dim = problem.dim # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, sequential=False, seed=777) sol = Opt.min(objective, parameter) sol.print_solution() assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions dim_regs = [[-10, 10]] * dim_size # dimension range dim_tys = [False] * dim_size # dimension type : integer dim_order = [True] * dim_size dim = Dimension(dim_size, dim_regs, dim_tys, order=dim_order) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000, sequential=False, seed=77) sol = Opt.min(objective, parameter) sol.print_solution() assert sol.get_value() < 200 def test_racos_performance2(self): # continuous dim = 100 # dimension one_dim = (ValueType.CONTINUOUS, [-1, 1], 1e-6) dim_list = [(one_dim)] * dim objective = Objective(ackley, Dimension2(dim_list)) # setup objective parameter = Parameter(budget=100 * dim, sequential=False, seed=1) solution = ExpOpt.min(objective, parameter)[0] assert solution.get_value() < 0.2 dim = 500 dim_list = [(one_dim)] * dim objective = Objective(ackley, Dimension2(dim_list)) # setup objective parameter = Parameter(budget=10000, sequential=False, seed=1) sol = Opt.min(objective, parameter) sol.print_solution() assert solution.get_value() < 2 # discrete # setcover problem = SetCover() dim_size = 20 one_dim = (ValueType.DISCRETE, [0, 1], False) dim_list = [(one_dim)] * dim_size dim = Dimension2(dim_list) # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, sequential=False, seed=777) sol = Opt.min(objective, parameter) sol.print_solution() assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions one_dim = (ValueType.DISCRETE, [-10, 10], True) dim_list = [(one_dim)] * dim_size dim = Dimension2(dim_list) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000, sequential=False, seed=77) sol = Opt.min(objective, parameter) sol.print_solution() assert sol.get_value() < 200 def test_sracos_performance(self): # continuous dim = 100 # dimension objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=100 * dim, seed=77) solution = Opt.min(objective, parameter) assert solution.get_value() < 0.2 dim = 500 objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=10000, seed=777) solution = Opt.min(objective, parameter) assert solution.get_value() < 1.5 # discrete # setcover problem = SetCover() dim = problem.dim # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, seed=777) sol = Opt.min(objective, parameter) assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions dim_regs = [[-10, 10]] * dim_size # dimension range dim_tys = [False] * dim_size # dimension type : integer dim_order = [True] * dim_size dim = Dimension(dim_size, dim_regs, dim_tys, order=dim_order) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000) sol = Opt.min(objective, parameter) assert sol.get_value() < 200 def test_sracos_performance2(self): # continuous dim = 100 # dimension one_dim = (ValueType.CONTINUOUS, [-1, 1], 1e-6) dim_list = [(one_dim)] * dim objective = Objective(ackley, Dimension2(dim_list)) parameter = Parameter(budget=100 * dim, seed=77) solution = Opt.min(objective, parameter) assert solution.get_value() < 0.2 dim = 500 one_dim = (ValueType.CONTINUOUS, [-1, 1], 1e-6) dim_list = [(one_dim)] * dim objective = Objective(ackley, Dimension2(dim_list)) # setup objective parameter = Parameter(budget=10000, seed=777) solution = Opt.min(objective, parameter) assert solution.get_value() < 1.5 # discrete # setcover problem = SetCover() dim_size = 20 one_dim = (ValueType.DISCRETE, [0, 1], False) dim_list = [(one_dim)] * dim_size dim = Dimension2(dim_list) # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, seed=777) sol = Opt.min(objective, parameter) assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions one_dim = (ValueType.DISCRETE, [-10, 10], True) dim_list = [(one_dim)] * dim_size dim = Dimension2(dim_list) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000) sol = Opt.min(objective, parameter) assert sol.get_value() < 200 def test_asracos_performance(self): # continuous dim = 100 # dimension objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=100 * dim, parallel=True, server_num=2, seed=2) # parameter = Parameter(budget=100 * dim, init_samples=[Solution([0] * 100)]) # init with init_samples solution_list = ExpOpt.min(objective, parameter, repeat=1) for solution in solution_list: value = solution.get_value() assert value < 0.2 # discrete # setcover problem = SetCover() dim = problem.dim # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, parallel=True, server_num=2, seed=777) sol = ExpOpt.min(objective, parameter, repeat=1)[0] assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions dim_regs = [[-10, 10]] * dim_size # dimension range dim_tys = [False] * dim_size # dimension type : integer dim_order = [True] * dim_size dim = Dimension(dim_size, dim_regs, dim_tys, order=dim_order) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000, parallel=True, server_num=2, uncertain_bits=1, seed=1) sol = ExpOpt.min(objective, parameter)[0] assert sol.get_value() < 10
2.46875
2
cogs/rolemanager.py
yaansz/RoleManager
1
12791428
import discord from discord.ext import commands, tasks from discord.ext.commands import has_permissions, CheckFailure from utils.converters import CtxRoleConverter from utils.utils import str2bool from functools import reduce import random import json import utils.embed as embed from utils.colors import * import os #DB from pymongo import MongoClient import logging # ENV from dotenv import dotenv_values ENV = dotenv_values(os.path.dirname(os.path.abspath(__file__)) + "/../.env") class RoleManager(commands.Cog): """ Manager is useful to create and delete roles. You can link a role to a chat or just create a role with a name that you like! """ def __init__(self, client): self.client = client # Some good paramters like timer and other shits with open(os.path.dirname(os.path.abspath(__file__)) + '/../database/utils.json', 'r') as f: info = json.load(f) # Just to log everything :D self.log = logging.getLogger(__name__) # TODO: Loading things :P (I want to put it in a parent class, but i'm not sure at this moment) self.delete_user_message = info['utils']['delete_user_message'] self.delete_system_message = info['utils']['delete_system_message'] self.db_client = MongoClient(ENV['MONGODB']) self.guild_preferences_db = self.db_client[info['mongo']['database']][info['mongo']['collection']] self.channel_permissions = [ "add_reactions", "administrator", "attach_files", "ban_members", "change_nickname", "connect", "create_instant_invite", "deafen_members", "embed_links", "external_emojis", "kick_members", "manage_channels", "manage_emojis", "manage_guild", "manage_messages", "manage_nicknames", "manage_permissions", "manage_roles", "manage_webhooks", "mention_everyone", "move_members", "mute_members", "priority_speaker", "read_message_history", "read_messages", "request_to_speak", "send_messages", "send_tts_messages", "speak", "stream", "use_external_emojis", "use_slash_commands", "use_voice_activation", "value", "view_audit_log", "view_channel", "view_guild_insights" ] @commands.Cog.listener() async def on_guild_channel_update(self, before, after): ''' Function to monitor guild channels and delete a role linked to a channel if the channel was moved to trash ''' # Mudou de categoria if after.category == None: return elif (before.category == None and after.category != None) or (before.category.id != after.category.id): guild = after.guild info = self.guild_preferences_db.find_one({"_id": guild.id}) # Nome criado sempre que um chat é linkado a uma categoria! if before.category != None: role_name = before.category.name + " - " + before.name else: role_name = before.name # Categoria que devo deletar o cargo if after.category.id == info['archives']: for r in guild.roles: if r.name == role_name: await r.delete() embedmsg = embed.createEmbed(title="Cargo associado excluído!", description= f"O cargo '{role_name}' associado ao canal foi excluído devido a movimentação do mesmo para os arquivos.", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ ], img="https://cdn.discordapp.com/emojis/753575574546415656.png?v=1") # Send that shit await after.send(embed=embedmsg) self.log.debug(f"Role {role_name} deleted (Channel moved to archives)!") return @commands.Cog.listener() async def on_guild_channel_delete(self, channel): target_type_channels = ["text", "category"] if channel.type.name.lower() not in target_type_channels: return elif channel.type.name.lower() == "text" and channel.category != None: option = channel.category.name + " - " + channel.name # I don't know why i did that shit, but i won't change elif channel.type.name.lower() == "text": option = channel.name else: option = channel.name for r in channel.guild.roles: if r.name == option: role = r await role.delete() self.log.debug(f"Role '{option}' deleted because linked channel was deleted") break return @commands.command(aliases=['criar'], pass_context=True) @has_permissions(manage_roles = True) async def create(self, ctx, *, args: str = "channel"): """Create a new role with the given name """ await ctx.message.delete(delay = self.delete_user_message) linked_keys = ["channel", "category"] role_name = self.linked_role(ctx, args) if args in linked_keys else args # Defining useful variables guild = ctx.guild author = ctx.author msg = ctx.message role_exists, role = await self.role_exists(ctx, role_name) if role_exists: embedmsg = embed.createEmbed(title="CARGO JÁ EXISTE!", description= f"O cargo <@&{role.id}> já está no servidor, não precisa criar de novo!🍻", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ ("Como pegar?", f"Apenas digite '.get' e ele será adicionado na sua conta", False) ], img="https://cdn.discordapp.com/emojis/814010519022600192.png?v=1") await msg.channel.send(embed=embedmsg, delete_after= self.delete_system_message) else: # New Role Created! new_role = await guild.create_role(name=role_name, mentionable=True) self.log.info( (f"New role '{new_role.name}' created in guild {guild.name} : {guild.id}").encode('ascii', 'ignore').decode('ascii') ) # TODO: Especificar a mensagem de acordo com o cargo que foi criado! embedmsg = embed.createEmbed(title="Novo Cargo!", description= f"O cargo <@&{new_role.id}> foi criado por <@{author.id}>", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ ("Como pegar?", f"Apenas digite .get no chat do cargo ou .get {new_role.name} e ele será adicionado na sua conta", False) ], img="https://cdn.discordapp.com/emojis/859150737509580800.gif?v=1") await msg.channel.send(embed=embedmsg) return @create.error async def create_error(self, ctx, error): await ctx.message.delete(delay = self.delete_user_message) if isinstance(error, CheckFailure): await ctx.send("**Erro:** Você não pode criar um cargo!", delete_after = self.delete_system_message) else: self.log.error(f"{error} - creation of a new role failed") await ctx.send(error, delete_after = self.delete_system_message) # TODO: Parent class too async def role_exists(self, ctx, role_name): """ Method to check if a role exists in the current context, return a status and the role, if it exists. """ conv = commands.RoleConverter() # If found it # The role already exists try: r = await conv.convert(ctx, role_name) return True, r except commands.RoleNotFound: return False, None # TODO: Put it in a parent class def linked_role(self, ctx, type: str): """ This function is used to return a name to a role linked to a channel or category """ guild = ctx.guild author = ctx.author msg = ctx.message if type.lower() == "channel" and msg.channel.category != None: option = msg.channel.category.name + " - " + msg.channel.name elif type.lower() == "channel": option = msg.channel.name elif type.lower() == "category": option = msg.channel.category.name else: raise ValueError("") return option; @commands.command(aliases=['deletar'], pass_context=True) @has_permissions(manage_roles = True) async def delete(self, ctx, *, role: commands.RoleConverter): await ctx.message.delete(delay= self.delete_user_message) await role.delete() await ctx.send(f"**AVISO:** Cargo '{role.name}' apagado do servidor por <@{ctx.author.id}>!") @delete.error async def delete_error(self, ctx, error): await ctx.message.delete(delay = self.delete_user_message) if isinstance(error, CheckFailure): await ctx.send("**Erro:** Você não pode deletar um cargo!", delete_after = self.delete_system_message) else: self.log.error(f"{error} - delete role failed") await ctx.send(error, delete_after = self.delete_system_message) async def _permission(self, ctx, role: CtxRoleConverter, mode: str, perm: str, can: bool): guild = ctx.guild author = ctx.author msg = ctx.message overwrite = discord.PermissionOverwrite() # Fundamental # x.attr_name = s # setattr(x, 'attr_name', s) if perm not in channel_permissions: self.log.debug( f"[.permission] Permission {perm} not found!") return setattr(overwrite, perm, can) if mode == 'category': category = ctx.channel.category await category.set_permissions(role, overwrite = overwrite) elif mode == 'channel': channel = ctx.channel await channel.set_permissions(role, overwrite = overwrite) else: # TODO: N ta funcionando await role.edit(permission = overwrite) self.log.debug( (f'Permission {perm} was changed to {can} in role {role.name} in current category').encode('ascii', 'ignore').decode('ascii') ) fb = 'Permitido' if can else 'Proibido' embedmsg = embed.createEmbed(title="Permissão alterada!", description= f"O cargo <@&{role.id}> foi atualizado por <@{author.id}>", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ (f"Permissão '{perm}'", f"Atualizada para {fb}", False) ], img="https://cdn.discordapp.com/emojis/765969524897218594.png?v=1") await msg.channel.send(embed=embedmsg) return @commands.command(pass_context=True) @has_permissions(manage_roles = True, manage_channels = True) async def permission(self, ctx, *, args: str = ""): """ Arg List: ctx -> Discord Context role -> CtxRoleConverter mode -> channel, category or role perm -> permission to change bool -> bool """ await ctx.message.delete(delay = self.delete_user_message) splitted_args = args.split(' ') if len(splitted_args) < 4 or args == "": # Just for now self.log.debug("[.permission] Missing args") await self.permission_tutorial(ctx) return; can = str2bool(splitted_args[-1]) perm = splitted_args[-2] mode = splitted_args[-3] role_name = ' '.join(splitted_args[:-3]) status, role = await self.role_exists(ctx, role_name) await self._permission(ctx, role, mode, perm, can) async def permission_tutorial(self, ctx): embedmsg = embed.createEmbed(title="Configurações de Permissões!", description= f"Verifique a lista de argumentos e permissões", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ (f"Argumentos", f"""role -> Role mode -> channel, category or role perm -> permission to change bool -> bool""", False), (f"Permissões", "\n".join([item for item in self.channel_permissions]), False) ], img="https://cdn.discordapp.com/emojis/767241157003837460.png?v=1") await ctx.send(embed=embedmsg) # Setup def setup(client): client.add_cog(RoleManager(client))
2.546875
3
app/models/__init__.py
woodybriggs/attribute-store
0
12791429
from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float from ..db import Base class Attribute(Base): __tablename__ = "attribute" id = Column(Integer, autoincrement=True, primary_key=True, unique=True, nullable=False) type = Column(String(length=256), nullable=False) remote_reference = Column(String(256), nullable=False) key = Column(String(length=256), unique=True) __mapper_args__ = { 'polymorphic_identity': 'attribute', 'polymorphic_on': type } class BooleanAttribute(Attribute): __tablename__ = "boolean_attribute" id = Column(Integer, ForeignKey('attribute.id'), primary_key=True) value = Column(Boolean) __mapper_args__ = { 'polymorphic_identity': bool.__name__ } class IntegerAttribute(Attribute): __tablename__ = "integer_attribute" id = Column(Integer, ForeignKey('attribute.id'), primary_key=True) value = Column(Integer) __mapper_args__ = { 'polymorphic_identity': int.__name__ } class FloatAttribute(Attribute): __tablename__ = "float_attribute" id = Column(Integer, ForeignKey('attribute.id'), primary_key=True) value = Column(Float) __mapper_args__ = { 'polymorphic_identity': float.__name__ } class StringAttribute(Attribute): __tablename__ = "string_attribute" id = Column(Integer, ForeignKey('attribute.id'), primary_key=True) value = Column(String(length=4096)) __mapper_args__ = { 'polymorphic_identity': str.__name__ }
2.625
3
scihub/scihub.py
lkirk/scihub-client
0
12791430
# -*- coding: utf-8 -*- """ SciHub client """ import logging import os import random import urllib import requests from bs4 import BeautifulSoup LOG = logging.getLogger(__name__) LOG.addHandler(logging.NullHandler()) class SciHubClient: """ Client for accessing SciHub """ DEFAULT_HEADERS = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:77.0) Gecko/20100101 Firefox/77.0", } SCIHUB_NOW_URL = "https://sci-hub.now.sh" FALLBACK_BASE_URL = "https://sci-hub.tw" def __init__(self, proxy=None, fallback_base_url=FALLBACK_BASE_URL): self._sess = requests.Session() self._sess.headers.update(self.DEFAULT_HEADERS) self._fallback_base_url = fallback_base_url self._available_base_url_list = self._get_available_scihub_urls() self._set_base_url() if proxy is not None: self._set_proxy(proxy) def _get(self, url, raise_for_status=True, **kwargs): response = self._sess.get(url, **kwargs) if raise_for_status is True: response.raise_for_status() return response def _post(self, url, raise_for_status=True, **kwargs): response = self._sess.post(url, **kwargs) if raise_for_status is True: response.raise_for_status() return response def _get_available_scihub_urls(self): response = self._get(self.SCIHUB_NOW_URL, raise_for_status=False) try: response.raise_for_status() except requests.exceptions.HTTPError: LOG.debug("falling back to %s", self._fallback_base_url) return [self._fallback_base_url] parsed_content = BeautifulSoup(response.content, "html.parser") urls = [] for a_tag in parsed_content.find_all("a", href=True): link = a_tag["href"] if ( "sci-hub" in link # pylint: disable=C0330 and link.startswith("https") # pylint: disable=C0330 and link != self.SCIHUB_NOW_URL # pylint: disable=C0330 ): urls.append(a_tag["href"]) return urls def _set_proxy(self, proxy): self._sess.proxies = { "http": proxy, "https": proxy, } def _set_base_url(self): """ Pick a random url from the available scihub urls set the current base url to the new url """ if not self._available_base_url_list: raise ValueError("Ran out of valid sci-hub urls") (base_url,) = random.sample(self._get_available_scihub_urls(), 1) self._base_url = base_url LOG.debug("url changing to %s", self._base_url) @staticmethod def _get_doi(parsed_response): ((doi,),) = [ [ line.strip().split("'")[1] for line in script.string.split("\n") if "var doi" in line ] for script in parsed_response.find_all("script") if script.string and "var doi" in script.string ] return doi def query(self, query): """ Query for a paper hosted by sci-hub """ response = self._post( self._base_url, data={"request": query}, headers={"Content-Type": "application/x-www-form-urlencoded"}, ) parsed_response = BeautifulSoup(response.content, "html.parser") if parsed_response.find("div").text.endswith("article not found"): raise ValueError(f"Article not found: {query}") cleaned_url = urllib.parse.urlparse( urllib.parse.urldefrag(parsed_response.find("iframe").get("src")).url, scheme="https", ).geturl() return { "doi": self._get_doi(parsed_response), "pdf_url": cleaned_url, } def _download_pdf(self, url): result = self._get(url) if result.headers["Content-Type"] != "application/pdf": raise ValueError("File is not a pdf") return result.content def _get_paper_meta(self, doi): return self._get( urllib.parse.urljoin("https://doi.org", doi), headers={"Accept": "application/vnd.citationstyles.csl+json"}, ).json() def _generate_file_name(self, doi): paper_meta = self._get_paper_meta(doi) # date = "-".join(map(str, paper_meta["indexed"]["date-parts"][0])) ((year, _, _),) = paper_meta["published-print"]["date-parts"] title = paper_meta["title"] # return f"({date}) {title}.pdf" return f"({year}) {title}.pdf" def download(self, query, destination="", filename=None): """ Download paper from sci-hub """ query_result = self.query(query) pdf_string = self._download_pdf(query_result["pdf_url"]) filename = ( self._generate_file_name(query_result["doi"]) if filename is None else filename ) out_path = os.path.join(destination, filename) with open(out_path, "wb") as out_fp: out_fp.write(pdf_string) return {"out_path": out_path, **query_result}
2.515625
3
jobbing/models_remote/media.py
davidall-amdocs/jobbing
0
12791431
<gh_stars>0 # coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from jobbing.models.base_model_ import Model from jobbing import util class Media(Model): def __init__(self, media_id:int = None, media_status_id:int = None, media_data:str = None, media_link:str = None, media_title:str = None, media_description:str = None, media_size:float = None, media_content_upload_date:str = None, media_content_updated_date:str = None): # noqa: E501 self.swagger_types = { 'media_id': int, 'media_status_id': int, 'media_data': str, 'media_link': str, 'media_title': str, 'media_description': str, 'media_size': float, 'media_content_upload_date': str, 'media_content_updated_date': str } self.attribute_map = { 'media_id': 'media_id', 'media_status_id': 'media_status_id', 'media_data': 'media_data', 'media_link': 'media_link', 'media_title': 'media_title', 'media_description': 'media_description', 'media_size': 'media_size', 'media_content_upload_date': 'media_content_upload_date', 'media_content_updated_date': 'media_content_updated_date' } self._media_id = media_id self._media_status_id = media_status_id self._media_data = media_data self._media_link = media_link self._media_title = media_title self._media_description = media_description self._media_size = media_size self._media_content_upload_date = media_content_upload_date self._media_content_updated_date = media_content_updated_date @classmethod def from_dict(cls, dikt) -> 'Media': return util.deserialize_model(dikt, cls) @property def media_id(self) -> int: return self._media_id @media_id.setter def media_id(self, param): if param is None: raise ValueError("Invalid value for `media_id`, must not be `None`") # noqa: E501 self._media_id = param @property def media_status_id(self) -> int: return self._media_status_id @media_status_id.setter def media_status_id(self, param): if param is None: raise ValueError("Invalid value for `media_status_id`, must not be `None`") # noqa: E501 self._media_status_id = param @property def media_data(self) -> str: return self._media_data @media_data.setter def media_data(self, param): if param is None: raise ValueError("Invalid value for `media_data`, must not be `None`") # noqa: E501 self._media_data = param @property def media_link(self) -> str: return self._media_link @media_link.setter def media_link(self, param): if param is None: raise ValueError("Invalid value for `media_link`, must not be `None`") # noqa: E501 self._media_link = param @property def media_title(self) -> str: return self._media_title @media_title.setter def media_title(self, param): if param is None: raise ValueError("Invalid value for `media_title`, must not be `None`") # noqa: E501 self._media_title = param @property def media_description(self) -> str: return self._media_description @media_description.setter def media_description(self, param): if param is None: raise ValueError("Invalid value for `media_description`, must not be `None`") # noqa: E501 self._media_description = param @property def media_size(self) -> float: return self._media_size @media_size.setter def media_size(self, param): if param is None: raise ValueError("Invalid value for `media_size`, must not be `None`") # noqa: E501 self._media_size = param @property def media_content_upload_date(self) -> str: return self._media_content_upload_date @media_content_upload_date.setter def media_content_upload_date(self, param): if param is None: raise ValueError("Invalid value for `media_content_upload_date`, must not be `None`") # noqa: E501 self._media_content_upload_date = param @property def media_content_updated_date(self) -> str: return self._media_content_updated_date @media_content_updated_date.setter def media_content_updated_date(self, param): if param is None: raise ValueError("Invalid value for `media_content_updated_date`, must not be `None`") # noqa: E501 self._media_content_updated_date = param
1.867188
2
qctool/src/mode.py
meghasin/icees-api-config
0
12791432
<gh_stars>0 from typing import Dict, List, Optional from dataclasses import dataclass, field from file import YAMLFile @dataclass class CacheTables: tables: Dict[str, list] = field(default_factory=dict) table_names: List[str] = field(default_factory=list) current_table: Optional[int] = 0 def update_tables(self, config, tables): self.tables = tables if self.current_table >= len(config.table_names): self.current_table = len(config.table_names) - 1 if self.current_table < 0: self.current_table = 0 @dataclass class CacheFile: filename: str typ: str update : Optional[str] = None fil: Optional[YAMLFile] = None old_key : Optional[str] = None def update_file(self, fil): self.fil = fil self.old_key = None @dataclass class DiffMode: a_cache_file : CacheFile b_cache_file : CacheFile cache_tables : CacheTables = field(default_factory=CacheTables) def update_files(self, config, a_file, b_file, tables): self.a_cache_file.update_file(a_file) self.b_cache_file.update_file(b_file) self.cache_tables.update_tables(config, tables) @dataclass class FocusedMode: a_focused: bool cache_file: CacheFile cache_tables: CacheTables = field(default_factory=CacheTables) def update_file(self, config, fil, tables): self.cache_file.update_file(fil) self.cache_tables.update_tables(config, tables) @dataclass class Config: a_filename: str b_filename: str a_type: str b_type: str a_only: bool b_only: bool table_names: List[str] similarity_threshold: float max_entries: int ignore_suffix: List[str] a_updated: bool b_updated: bool a_update: Optional[str] b_update: Optional[str]
2.390625
2
Testing/test_2D_frames.py
geosharma/PyNite
199
12791433
<filename>Testing/test_2D_frames.py # -*- coding: utf-8 -*- """ MIT License Copyright (c) 2020 <NAME>, SE; tamalone1 """ import unittest from PyNite import FEModel3D import math import sys from io import StringIO class Test_2D_Frame(unittest.TestCase): ''' Tests of analyzing 2D frames. ''' def setUp(self): # Suppress printed output temporarily sys.stdout = StringIO() def tearDown(self): # Reset the print function to normal sys.stdout = sys.__stdout__ def test_XY_gravity_load(self): # A First Course in the Finite Element Method, 4th Edition # <NAME> # Problem 5.30 # Units for this model are kips and inches frame = FEModel3D() # Define the nodes frame.add_node('N1', 0, 0, 0) frame.add_node('N2', 0, 30*12, 0) frame.add_node('N3', 15*12, 40*12, 0) frame.add_node('N4', 35*12, 40*12, 0) frame.add_node('N5', 50*12, 30*12, 0) frame.add_node('N6', 50*12, 0, 0) # Define the supports frame.def_support('N1', True, True, True, True, True, True) frame.def_support('N6', True, True, True, True, True, True) # Create members (all members will have the same properties in this example) J = 250 Iy = 250 Iz = 200 E = 30000 G = 250 A = 12 frame.add_member('M1', 'N1', 'N2', E, G, Iy, Iz, J, A) frame.add_member('M2', 'N2', 'N3', E, G, Iy, Iz, J, A) frame.add_member('M3', 'N3', 'N4', E, G, Iy, Iz, J, A) frame.add_member('M4', 'N4', 'N5', E, G, Iy, Iz, J, A) frame.add_member('M5', 'N5', 'N6', E, G, Iy, Iz, J, A) # Add nodal loads frame.add_node_load('N3', 'FY', -30) frame.add_node_load('N4', 'FY', -30) # Analyze the model frame.analyze() # subTest context manager prints which portion fails, if any correct_values = [('N1', {'RxnFX': 11.6877, 'RxnFY': 30, 'RxnMZ': -1810.0745}), ('N6', {'RxnFX': -11.6877, 'RxnFY': 30, 'RxnMZ': 1810.0745})] for name, values in correct_values: with self.subTest(node=name): node = frame.Nodes[name] # Two decimal place accuracy requires +/-0.5% accuracy # one decimal place requires +/-5% self.assertAlmostEqual(node.RxnFX['Combo 1']/values['RxnFX'], 1.0, 2) self.assertAlmostEqual(node.RxnFY['Combo 1']/values['RxnFY'], 1.0, 2) self.assertAlmostEqual(node.RxnMZ['Combo 1']/values['RxnMZ'], 1.0, 2) def test_XY_member_ptload(self): frame = FEModel3D() # Add nodes frame.add_node('N1', 0, 0, 0) # ft frame.add_node('N2', 0, 7.667, 0) # ft frame.add_node('N3', 7.75, 7.667, 0) # ft frame.add_node('N4', 7.75, 0, 0) # ft # Add supports frame.def_support('N1', True, True, True, True, True, False) frame.def_support('N4', True, True, True, True, True, False) # Define material and section properties for a W8x24 E = 29000*12**2 # ksf G = 1111200*12**2 # ksf Iy = 18.3/12**4 # ft^4 Iz = 82.7/12**4 # ft^4 J = 0.346/12**4 # ft^4 A = 5.26/12**2 # in^2 # Define members frame.add_member('M1', 'N1', 'N2', E, G, Iy, Iz, J, A) frame.add_member('M2', 'N2', 'N3', E, G, Iy, Iz, J, A) frame.add_member('M3', 'N4', 'N3', E, G, Iy, Iz, J, A) # Add loads to the frame frame.add_member_pt_load('M2', 'Fy', -5, 7.75/2) # 5 kips @ midspan frame.add_member_dist_load('M2', 'Fy', -0.024, -0.024) # W8x24 self-weight # Analyze the frame frame.analyze() calculated_RZ = frame.Nodes['N1'].RZ['Combo 1'] # Update the expected value to an appropriate precision expected_RZ = 0.00022794540510395617 self.assertAlmostEqual(calculated_RZ/expected_RZ, 1.0, 2) def test_YZ_gravity_load(self): # A First Course in the Finite Element Method, 4th Edition # Daryl <NAME> # Problem 5.30 # Units for this model are kips and inches frame = FEModel3D() # Define the nodes frame.add_node('N1', 0, 0, 0) frame.add_node('N2', 0, 30*12, 0) frame.add_node('N3', 0, 40*12, 15*12) frame.add_node('N4', 0, 40*12, 35*12) frame.add_node('N5', 0, 30*12, 50*12) frame.add_node('N6', 0, 0, 50*12) # Define the supports frame.def_support('N1', True, True, True, True, True, True) frame.def_support('N6', True, True, True, True, True, True) # Create members (all members will have the same properties in this example) J = 250 Iy = 250 Iz = 200 E = 30000 G = 250 A = 12 frame.add_member('M1', 'N1', 'N2', E, G, Iz, Iy, J, A) frame.add_member('M2', 'N2', 'N3', E, G, Iy, Iz, J, A) frame.add_member('M3', 'N3', 'N4', E, G, Iy, Iz, J, A) frame.add_member('M4', 'N4', 'N5', E, G, Iy, Iz, J, A) frame.add_member('M5', 'N5', 'N6', E, G, Iz, Iy, J, A) # Add nodal loads frame.add_node_load('N3', 'FY', -30) frame.add_node_load('N4', 'FY', -30) # Analyze the model frame.analyze() # subTest context manager prints which portion fails, if any # Check reactions at N1 and N6 correct_reactions = [('N1', {'RxnFZ': 11.6877, 'RxnFY': 30, 'RxnMX': 1810.0745}), ('N6', {'RxnFZ': -11.6877, 'RxnFY': 30, 'RxnMX': -1810.0745})] for name, values in correct_reactions: with self.subTest(node=name): node = frame.Nodes[name] # Two decimal place accuracy requires +/-0.5% accuracy # one decimal place requires +/-5% self.assertAlmostEqual(node.RxnFZ['Combo 1']/values['RxnFZ'], 1.0, 2) self.assertAlmostEqual(node.RxnFY['Combo 1']/values['RxnFY'], 1.0, 2) self.assertAlmostEqual(node.RxnMX['Combo 1']/values['RxnMX'], 1.0, 2) # Check displacements at N3 and N4 correct_displacements = [('N3', {'DY': -6.666757, 'RX': 0.032}), ('N4', {'DY': -6.666757, 'RX': -0.032})] for name, values in correct_displacements: with self.subTest(node=name): node = frame.Nodes[name] # Two decimal place accuracy requires +/-0.5% accuracy # one decimal place requires +/-5% self.assertAlmostEqual(node.DY['Combo 1']/values['DY'], 1.0, 2) self.assertAlmostEqual(node.RX['Combo 1']/values['RX'], 1.0, 2) def test_XZ_ptload(self): # A simply supported beam with a point load. # Units used in this example are inches, and kips SimpleBeam = FEModel3D() # Add nodes (14 ft = 168 in apart) SimpleBeam.add_node("N1", 0, 0, 0) SimpleBeam.add_node("N2", 0, 0, 168) # Add a beam with the following properties: A = 20 E = 29000 G = 11400 Iy = 100 Iz = 150 J = 250 SimpleBeam.add_member("M1", "N1", "N2", E, G, Iy, Iz, J, A) # Provide simple supports SimpleBeam.def_support("N1", True, True, True, False, False, True) SimpleBeam.def_support("N2", True, True, True, False, False, False) # Add a point load of 5 kips at the midspan of the beam SimpleBeam.add_member_pt_load("M1", "Fy", 5, 7 * 12) # Analyze the beam SimpleBeam.analyze(False) # Print reactions at each end of the beam correct_reactions = [('N1', -2.5), ('N2', -2.5)] for node_name, rxn in correct_reactions: with self.subTest(node=node_name): calculated_reaction = SimpleBeam.Nodes[node_name].RxnFY['Combo 1'] # Two decimal place accuracy requires +/-0.5% accuracy # one decimal place requires +/-5% self.assertAlmostEqual(calculated_reaction/rxn, 1.0, 2) def test_Kassimali_3_35(self): """ Tests against Kassimali example 3.35. This example was selected because it allows us to check the following features: 1. Member loads aligned in global directions. 2. A member internal hinge. 3. A point load at the end of a member. The example will be run in the XZ plane to change things up a bit. """ frame = FEModel3D() frame.add_node('A', 0, 0, 0) frame.add_node('B', 0, 0, 24) frame.add_node('C', 12, 0, 0) frame.add_node('D', 12, 0, 24) frame.add_node('E', 24, 0, 12) E = 29000*12**2 G = 11200*12**2 Iy = 17.3/12**4 Iz = 204/12**4 J = 0.3/12**4 A = 7.65/12**2 frame.add_member('AC', 'A', 'C', E, G, Iy, Iz, J, A) frame.add_member('BD', 'B', 'D', E, G, Iy, Iz, J, A) frame.add_member('CE', 'C', 'E', E, G, Iy, Iz, J, A) frame.add_member('ED', 'E', 'D', E, G, Iy, Iz, J, A) frame.def_support('A', support_DX=True, support_DY=True, support_DZ=True) frame.def_support('B', support_DX=True, support_DY=True, support_DZ=True) frame.def_support('E', support_DY=True) frame.def_releases('CE', Rzj=True) frame.add_member_pt_load('AC', 'FZ', 20, 12) frame.add_member_dist_load('CE', 'FX', -1.5, -1.5) frame.add_member_dist_load('ED', 'FX', -1.5, -1.5) # from PyNite.Visualization import render_model # render_model(frame, text_height=0.5, case='Case 1') frame.analyze() AZ = -8.63 AX = 15.46 BZ = -11.37 BX = 35.45 # The reactions were compared manually to Kassimali's solution and the shears were within # 10% and 7% respectively. That seems like it's a little big to be a rounding error alone. # Likely the finite element method is a little more accurate than the simplified method # Kassimali uses. self.assertLess(abs(frame.Nodes['A'].RxnFZ['Combo 1']/AZ - 1), 0.1) self.assertLess(abs(frame.Nodes['A'].RxnFX['Combo 1']/AX - 1), 0.05) self.assertLess(abs(frame.Nodes['B'].RxnFZ['Combo 1']/BZ - 1), 0.7) self.assertLess(abs(frame.Nodes['B'].RxnFX['Combo 1']/BX - 1), 0.05)
2.765625
3
src/__init__.py
iki-taichi/tf-keras-transformer
5
12791434
# coding:utf-8 #from .custom_callbacks import *
1.09375
1
cycada/data/surreal.py
AdityaAS/cycada
1
12791435
<reponame>AdityaAS/cycada<filename>cycada/data/surreal.py import numpy as np import scipy.io import torch import os from torch.utils.data import Dataset from glob import glob from os.path import join, exists import json from cycada.data.data_loader import register_data_params, register_dataset_obj from cycada.data.data_loader import DatasetParams import cv2 from cycada.data.util import convert_image_by_pixformat_normalize import multiprocessing as mp from joblib import Parallel, delayed @register_data_params('surreal') class SurrealParams(DatasetParams): num_channels = 3 image_size = 256 mean = 0.5 num_cls = 2 fraction = 1.0 target_transform = None black = False def __init__(self, name): config = None print("PARAM: {}".format(os.getcwd())) with open(join("dataset_configs", name+".json"), 'r') as f: config = json.load(f) self.num_channels = config["num_channels"] self.image_size = config["image_size"] self.mean = config["mean"] self.num_cls = config["num_cls"] self.fraction = config["fraction"] self.target_transform = config["target_transform"] self.black = config["black"] @register_dataset_obj('surreal') class SurrealLoader(Dataset): # root must be /scratch/users/aditya/adult/SURREAL/surreal/download/SURREAL/data/cmu def __init__(self, name, root, params, num_cls=2, split='train', remap_labels=True, transform=None, target_transform=None): self.root = root self.split = split self.remap_labels = remap_labels self.name = name self.runs = ['run0'] self.transform = transform self.images = [] self.segmasks = [] self.target_transform = target_transform self.data_path = join(self.root, self.split) self.num_cls = num_cls self.size = (params.image_size, params.image_size) self.bw_flag = params.black self.seed = 255 self.fraction = params.fraction if (self.split == 'train') else 1.0 self.collect_ids() def get_subject_data(self, subjectpath): imagepath = join(subjectpath, 'images') imagesubjects = glob(join(imagepath, '*')) images = [] segmasks = [] for imagesubject in imagesubjects: images = images + sorted(glob(join(imagesubject, '*'))) segmasks = segmasks + sorted(glob(join(imagesubject.replace('images', 'segmasks'), '*'))) return [images, segmasks] def collect_ids(self): from timeit import default_timer as timer from datetime import timedelta # Parallelize the for loop for run in self.runs: runpath = join(self.data_path, run) subjects = sorted(glob(join(runpath, '*'))) start = timer() results = Parallel(n_jobs=mp.cpu_count())(delayed(self.get_subject_data)(subject) for subject in subjects) end = timer() print(timedelta(seconds=end-start)) for result in results: self.images = self.images + result[0] self.segmasks = self.segmasks + result[1] def img_path(self, index): return self.images[index] def label_path(self, index): return self.segmasks[index] def __iter__(self): return self ''' Input: Index of image to return Output: Image in the format NCHW - normalized Segmask in the format NHW (channels = 1 is understood) - not normalized because they are class labels ''' def __getitem__(self, index): img_path = self.img_path(index) label_path = self.label_path(index) img = None if self.bw_flag: img = cv2.imread(img_path, 0) img_temp = np.expand_dims(img, axis = 2) img = np.concatenate((img_temp, img_temp, img_temp), axis=2) else: img = cv2.imread(img_path) target = cv2.imread(label_path) img = cv2.resize(img, self.size) target = cv2.resize(target, self.size) # Convert to NCHW format and normalize to -1 to 1 # WARNING: Original code did mean normalization, we did min max normalization. Change if necessary to old one. img = torch.Tensor(convert_image_by_pixformat_normalize(img)) #WARNING: target must be made up of 0s and 1s only! target = torch.Tensor(target.transpose(2, 0, 1)).mean(dim=0) return img, target def __len__(self): return len(self.images)
2.265625
2
bus_arrival.py
luaneyed/bus
1
12791436
from BusArrivalItem import BusArrivalItem from api import call # bus_arrival_item = BusArrivalItem(xml_root.find('msgBody').find('busArrivalItem')) # print(bus_arrival_item) def fetch(station_id: str, route_id: str): response = call( 'busarrivalservice', { 'stationId': station_id, 'routeId': route_id } ) if response is None: return None return ''.join( map( lambda list_element: str(BusArrivalItem(list_element)), response ) ) if __name__ == '__main__': print(fetch('218000952', '241449005'))
2.859375
3
build/lib/SOMsHelpers.py
msc-acse/acse-9-independent-research-project-wafflescore
2
12791437
""" Author: <NAME> GitHub: wafflescore """ from minisom import MiniSom, asymptotic_decay import numpy as np import matplotlib.pyplot as plt import itertools from skimage import measure from skimage.segmentation import random_walker from skimage import filters from scipy.spatial import distance from collections import Counter from timeit import default_timer as timer import random from acse_9_irp_wafflescore import MiscHelpers as mh import logging import sys logging.basicConfig(format='%(asctime)s | %(levelname)s : %(message)s', level=logging.INFO, stream=sys.stdout) def compute_dim(num_sample): """ Compute a default dimension of the SOMs. This function returns the dimension size of the SOMs. The size returned is sqrt(5 * sqrt(num_sample)), with the exception that the minimum dimension size = 10 Parameters ---------- num_sample : int Total number of data points that will populate the SOMs Returns ------- int Ideal dimension. """ dim = 5 * np.sqrt(num_sample) dim = np.int(np.sqrt(dim)) if dim < 10: return 10 else: return dim def som_assemble(in_data, seed, dim, lr=0.5, sigma=2.5): """Initialize the SOMs model for training Parameters ---------- in_data : np.array or list data matrix seed : integer random seed for reproducibility dim : int dimension of the SOMs distance matrix lr : float, optional learning rate, by default 0.5 sigma : float, optional spread of the neighborhood function, by default 2.5 Returns ------- MiniSom an object of Minisom class, see minisom.py for further details """ # Initialization som and weights num_features = np.shape(in_data)[1] som = MiniSom(dim, dim, num_features, sigma=sigma, learning_rate=lr, neighborhood_function='gaussian', random_seed=seed) som.pca_weights_init(in_data) return som def plot_som(som, in_data, label, save=False, save_name='temp'): """plots the distance map / u-matrix of the SOMs along with the label Parameters ---------- som : MiniSom trained Minisom object in_data : np.array or list data matrix label : np.array or list the true label of each data point save : bool, optional flag, by default False save_name : str, optional the name which will be used to save the plot as png file, by default 'temp' """ plt.figure(figsize=(9, 7)) # Plotting the response for each litho-class plt.pcolor(som.distance_map().T, cmap='bone_r') # plotting the distance map as background plt.colorbar() for t, xx in zip(label, in_data): w = som.winner(xx) # getting the winner # palce a marker on the winning position for the sample xx plt.text(w[0]+.5, w[1]+.5, str(t), color=plt.cm.rainbow(t/10.)) plt.axis([0, som.get_weights().shape[0], 0, som.get_weights().shape[1]]) if(save): save_dir = 'SOMs_results/' + save_name + '_plot.png' plt.savefig(save_dir) print('Plot saved at:', save_dir) plt.show() def save_som_report(som, save_name, it, et, report=None): param_vals = str(save_name) + '\n---' + \ '\niterations,' + str(it) + \ '\nelapsed time,' + str(et) + '\n\n' # save report to file fdir = save_name + '_report.csv' print('Report saved at', fdir) mode = 'w' f1 = open(fdir, mode) f1.write(param_vals) if(report): f1.write(str(report)) f1.write('\n\n--------------------\n\n') f1.close() print('Report saved at:', fdir) def histedges_equalN(in_data, nbin=10): """generates a histogram where each bin will contain the same number of data points Parameters ---------- in_data : np.array or list data array nbin : int number of bins to populate, by default 10 Returns ------- np.array numpy array of all the histogram bins """ ttl_dtp = len(in_data) return np.interp(np.linspace(0, ttl_dtp, nbin + 1), np.arange(ttl_dtp), np.sort(in_data)) def plot_u_matrix(som_u_mat): """Plots the distance map / u-matrix of the SOMs Parameters ---------- som : MiniSom trained Minisom object Returns ------- np.array numpy array of all the histogram bins """ f_image = som_u_mat.flatten() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) fig.show() ax1.pcolor(som_u_mat, cmap='bone_r') hist = plt.hist(f_image, histedges_equalN(f_image, 10), density=True) return hist[1] def gen_e_model(n_map, som_label): """generates the Earth model from neuron map""" som_class = [] for i in range(len(n_map)): som_class.append(som_label[n_map[i][0]][n_map[i][1]]) return np.array(som_class) def closest_n(value): """Assign cluster number to the mask's border indexes by using the closest neighbor's value Parameters ---------- value : np.array numpy array of the cluster number, noted that the borders are marked with 0 Returns ------- np.array new label with all the border index populated """ borders = np.array(np.where(value == 0)).T new_label = np.array(value) vals = np.where(value != 0) vals = np.array(vals).T for b in borders: # find index of the closest value c_idx = distance.cdist([b], vals).argmin() new_label[b[0], b[1]] = value[vals[c_idx, 0]][vals[c_idx, 1]] return new_label def KNN(value, k=5, border_val=0): """Assign cluster number to the mask's border indexes by using the K-nearest neighbor method Parameters ---------- value : np.array numpy array of the cluster number, noted that the borders are marked with 0 k : int, optional number of neighbor to consider, by default 5 Returns ------- np.array new label with all the border index populated """ borders = np.array(np.where(value == border_val)).T new_label = np.array(value) vals = np.where(value != 0) if(len(vals[0]) < 5): logging.info("Not enough labeled neighbor to perform KNN.\n\ Will return the original inputted value.") return value vals = np.array(vals).T for b in borders: # find index of the closest k neighbors dist = distance.cdist([b], vals) c_idx = np.argpartition(dist, k) c_idx = c_idx[0, :k] mins_idx = np.array(list(zip(vals[c_idx, 0], vals[c_idx, 1]))) class_counter = Counter() for idx in mins_idx: class_counter[value[idx[0], idx[1]]] += 1 cl = class_counter.most_common(1)[0][0] new_label[b[0], b[1]] = cl return new_label def watershed_level(image, bins, border_width=0.1, plot=False, conn=None): num_bins = len(bins) """Computes and classify the SOM's u-matrix or total gradient using watershed classification method Parameters ---------- image : np.array u-matrix or total gradient of the SOMs bins : np.array numpy array of all the histogram bins plot : bool, optional flag whether to plot the watershed level or not, by default False conn : int, optional connectivity flag for measure.label, by default None Returns ------- np.array numpy array of predicted cluster labels from each watershed level """ ncols = 6 if(plot): fig, axes = plt.subplots(ncols=ncols, nrows=num_bins, figsize=(12, num_bins*3), sharex=True, sharey=True) ax = axes.ravel() ws_labels = np.zeros((num_bins * ncols, image.shape[0], image.shape[1])) for i in range(num_bins): val = filters.threshold_local(image, block_size=3 + 2*i) block_mask = (image < val) markers = measure.label(block_mask, connectivity=conn) ws_labels[i*ncols] = closest_n(markers) - 1 ws_labels[i*ncols + 1] = KNN(markers) - 1 ws_labels[i*ncols + 2] = random_walker(image, markers) if(plot): ax[i*ncols].imshow(ws_labels[i*ncols + 0], origin='lower') ax[i*ncols].title.set_text('b_cn: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 0])))) ax[i*ncols + 1].imshow(ws_labels[i*ncols + 1], origin='lower') ax[i*ncols + 1].title.set_text('b_knn: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 1])))) ax[i*ncols + 2].imshow(ws_labels[i*ncols + 2], origin='lower') ax[i*ncols + 2].title.set_text('b_rw: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 2])))) thres_mask = (image <= bins[i]) markers = measure.label(thres_mask, connectivity=conn) ws_labels[i*ncols + 3] = closest_n(markers) - 1 ws_labels[i*ncols + 4] = KNN(markers) - 1 ws_labels[i*ncols + 5] = random_walker(image, markers) if(plot): ax[i*ncols + 3].imshow(ws_labels[i*ncols + 3], origin='lower') ax[i*ncols + 3].title.set_text('b_cn: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 3])))) ax[i*ncols + 4].imshow(ws_labels[i*ncols + 4], origin='lower') ax[i*ncols + 4].title.set_text('b_knn: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 4])))) ax[i*ncols + 5].imshow(ws_labels[i*ncols + 5], origin='lower') ax[i*ncols + 5].title.set_text('b_rw: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 5])))) return ws_labels def eval_ws(in_data, ws_labels, n_map, label=None, re_all=False): """Evaluate and return the best watershed prediction result Parameters ---------- in_data : np.array or list data matrix ws_labels : np.array predicted cluster labels from watershed segmentation n_map : np.array array of the winner neuron label : np.array or list, optional the true label of each data point Returns ------- np.array list of best watershed labels, may contain more than one set """ len_watershed = ws_labels.shape[0] cluster_labels = np.zeros((len_watershed, len(in_data))) avg_sils = np.full(len_watershed, np.nan) ch_scs = np.full(len_watershed, np.nan) if(label is not None): avg_ents = np.full(len_watershed, np.nan) avg_purs = np.full(len_watershed, np.nan) for i in range(len_watershed): param = {'watershed idx': i} if(len(np.unique(ws_labels[i])) > 1): cluster_labels[i] = gen_e_model(n_map, ws_labels[i]) avg_sils[i] = mh.int_eval_silhouette(in_data, cluster_labels[i], method='som_watershed', param=param) try: ch_scs[i] = mh.cal_har_sc(in_data, cluster_labels[i]) except: ch_scs[i] = -1 if(label is not None): avg_ents[i], avg_purs[i] = mh.ext_eval_entropy(label, cluster_labels[i]) best_idx = [] best_idx.append(np.nanargmax(np.array(avg_sils))) # closest to 1 best_idx.append(np.nanargmax(ch_scs)) # higher = better if(label is not None): best_idx.append(np.nanargmin(np.array(avg_ents))) # closest to 0 best_idx.append(np.nanargmax(np.array(avg_purs))) # closest to 1 best_idx = np.unique(best_idx) if(re_all): return (cluster_labels, avg_sils, ch_scs, best_idx) else: return (cluster_labels[best_idx], avg_sils[best_idx], ch_scs[best_idx]) def run_SOMs(in_data, dim, iter_cnt, lr, sigma, seed=10): """Method to fully run SOMs Parameters ---------- in_data : np.array or list data matrix dim : int dimension of the SOMs distance matrix iter_cnt : integer number of iterations for SOMs to perform lr : float learning rate sigma : float spread of the neighborhood function, by default 2.5dim : int seed : integer, optional random seed for reproducibility, by default 10 Returns ------- minisom minisom object np.array cluster label """ som = som_assemble(in_data, seed, dim, lr, sigma) som.train_random(in_data, iter_cnt, verbose=False) u_matrix = som.distance_map().T watershed_bins = histedges_equalN(u_matrix.flatten()) ws_labels = watershed_level(u_matrix, watershed_bins) n_map = som.neuron_map(in_data) cluster_labels, _, _ = eval_ws(in_data, ws_labels, n_map) return som, cluster_labels def gen_param_grid(init_guess): g_dim, g_it, g_lr, g_sigma = init_guess min_dim = g_dim - 10 if g_dim - 5 > 10 else 10 max_dim = g_dim + 10 if g_dim + 10 > 10 else 20 param_grid = { 'dim': list(range(min_dim, max_dim+1)), 'iter_cnt': list(range(g_it - 500, g_it + 500, 200)), 'learning_rate': list(np.logspace(np.log10(0.25), np.log10(0.75), base=10, num=100)), 'sigma': list(np.linspace(g_sigma-1, g_sigma+1, num=30)), } return param_grid def random_search_som(in_data, init_guess, max_eval=20, label=None, seed=10, re_all=False): """perform random search for SOMs best parameters. Parameters ---------- in_data : np.array or list data matrix init_guess : tuple list of initial guess of the parameters, in order of dimension, number of iterations, learning rate, and sigma max_eval : int, optional number of max iterartion to perform the search, by default 20 label : np.array or list, optional the true label of each data point, by default None seed : integer, optional random seed for reproducibility, by default 10 Returns ------- All cluster label and its counterpart parameters. """ random.seed(seed) param_grid = gen_param_grid(init_guess) dims = np.zeros(max_eval) iters = np.zeros(max_eval) lrs = np.zeros(max_eval) sigmas = np.zeros(max_eval) avg_sils = np.full(max_eval, np.nan) ch_scs = np.full(max_eval, np.nan) cluster_labels = np.zeros((max_eval, len(in_data))) if(label is not None): avg_ents = np.full(max_eval, np.nan) avg_purs = np.full(max_eval, np.nan) i = 0 while i < max_eval: random_params = {k: random.sample(v, 1)[0] for k, v in param_grid.items()} dims[i], iters[i], lrs[i], sigmas[i] = list(random_params.values()) som = som_assemble(in_data, seed, int(dims[i]), lr=lrs[i], sigma=sigmas[i]) som.train_random(in_data, int(iters[i]), verbose=False) u_matrix = som.distance_map().T watershed_bins = histedges_equalN(u_matrix.flatten()) ws_labels = watershed_level(u_matrix, watershed_bins) n_map = som.neuron_map(in_data) _c, _as, _ch = eval_ws(in_data, ws_labels, n_map) cluster_labels[i], avg_sils[i], ch_scs[i] = _c[0], _as[0], _ch[0] n_clusters = len(np.unique(cluster_labels[i])) if(n_clusters < 5 or n_clusters > 30): logging.info("Random search using dim=%d, iter=%d, lr=%.6f, sigma=%.6f\ result to very small / large number of clusters (n_clusters = %d)\ " % (dims[i], iters[i], lrs[i], sigmas[i], n_clusters)) continue logging.info("dim=%d, iter=%d, lr=%.6f, sigma=%.6f, sil=%.6f, ch=%.6f" % (dims[i], iters[i], lrs[i], sigmas[i], avg_sils[i], ch_scs[i])) if(label is not None): avg_ents[i], avg_purs[i] = mh.ext_eval_entropy(label, cluster_labels[i], init_clus=-1) logging.info("ent=%.6f, pur=%.6f" % (avg_ents[i], avg_purs[i])) i += 1 best_idx = [] best_idx.append(np.nanargmax(np.array(avg_sils))) # closest to 1 best_idx.append(np.nanargmax(ch_scs)) # higher = better if(label is not None): best_idx.append(np.nanargmin(np.array(avg_ents))) # closest to 0 best_idx.append(np.nanargmax(np.array(avg_purs))) # closest to 1 best_idx = np.unique(best_idx) if(re_all): return (cluster_labels, avg_sils, ch_scs, dims, iters, lrs, sigmas, best_idx) else: return (cluster_labels[best_idx], avg_sils[best_idx], ch_scs[best_idx], dims[best_idx], iters[best_idx], lrs[best_idx], sigmas[best_idx])
2.71875
3
wapkg/remote.py
chickentuna/wapkg
2
12791438
import json from urllib.request import urlopen from urllib.error import URLError from urllib.parse import urljoin VERSION_REQUIRED = 3 EXTERNAL_LIST = 'https://pastebin.com/raw/aKjmATab' # Returns repo index dictionary object, or None in case of failure def fetch_index(repo_url): try: with urlopen(urljoin(repo_url, 'index.json')) as index_req: index = json.loads(index_req.read().decode('utf-8')) except URLError: return None if 'repo' not in index or not index['repo'] == 'wapkg': return None if not index['version'] == VERSION_REQUIRED: if index['version'] > VERSION_REQUIRED: print("! Source '" + repo_url + "' requires newer version of wapkg, " + 'consider upgrading your software in order to use this repo.') return None return index def fetch_external_sources(): sources = [] try: with urlopen(EXTERNAL_LIST) as lst_req: for src in lst_req.read().decode('utf-8').split('\n'): src_ = src.strip() if len(src_) and not src_.startswith('#'): sources.append(src_) except URLError: pass return sources # Unwraps the 'switch' content def select_pkg(pkg, vs): if not pkg: return None if 'switch' in pkg: if not vs: return None switch = pkg['switch'] for v in switch: if vs in v.split(','): return switch[v] if '*' in switch: return switch['*'] return None return pkg # Returns True if package and all it's dependencies can be successfully installed def trace_pkg_deps(pkgs_bundle, vs, name): pkg = None for pkgs in pkgs_bundle: if name in pkgs: pkg = pkgs[name] break pkg = select_pkg(pkg, vs) if not pkg: return False if 'requirements' in pkg: for req in pkg['requirements']: if not trace_pkg_deps(pkgs_bundle, vs, req): return False return True
3.171875
3
min_win_substr.py
skokal01/Interview-Practice
0
12791439
<filename>min_win_substr.py # https://discuss.leetcode.com/topic/30941/here-is-a-10-line-template-that-can-solve-most-substring-problems/12 #1. Use two pointers: start and end to represent a window. #2. Move end to find a valid window. #3. When a valid window is found, move start to find a smaller window. from collections import defaultdict from sys import maxint def findSubString(str, pat): import pdb pdb.set_trace() MAX_INT = maxint start = end = 0 char_need = defaultdict(int) # the count of char needed by current window, negative means current window has it but not needs it count_need = len(pat) # count of chars not in current window but in t min_length = MAX_INT min_start = 0 for i in pat: # current window needs all char in t char_need[i] += 1 while end < len(str): if char_need[str[end]] > 0: count_need -= 1 # current window contains s[end] now, so does not need it any more char_need[str[end]] -= 1 end += 1 while count_need == 0: if min_length > end - start: min_length = end - start min_start = start # current window does not contain s[start] any more char_need[str[start]] += 1 # when some count in char_need is positive, it means # there is char in t but not current window if char_need[str[start]] > 0: count_need += 1 start += 1 return "" if min_length == MAX_INT else str[min_start:min_start + min_length] print findSubString("ADOBECODEBANC", "ABC")
3.6875
4
translator/tasks.py
gsi-upm/eurosentiment-translator
1
12791440
<gh_stars>1-10 # -*- coding: utf-8 -*- import time import traceback from factory import create_celery_app from .models import * from .utils import translate_document from datetime import timedelta, datetime from StringIO import StringIO celery = create_celery_app().celery logger = celery.logger @celery.task() def process_request(tid): logger.warning("TR id: {}".format(tid)) tr = TranslationRequest.objects.get(id=tid) try: tr.start() if tr.infile: infile = tr.infile else: infile = StringIO(tr.input) template = tr.template.text out = translate_document(infile=infile.get(), template=template, template_data=tr.to_mongo()) tr.outfile.delete() tr.outfile.new_file(encoding="utf-8") for chunk in out: tr.outfile.write(chunk) tr.outfile.close() tr.save() tr.status = TranslationRequest.SUCCESS tr.finish() logger.warning("Processed") return tr except Exception as ex: raise tr.status = TranslationRequest.ERROR tr.message = str("{} -- {}".format(ex, traceback.format_exc())) tr.finish() @celery.task() def clean_files(): logger.warning("Cleaning files") olds = TranslationRequest.objects(infile__ne=None, finished__lte=(datetime.now()-timedelta(days=1))) logger.warning("Old files: {}".format(olds)) for req in olds: req.clean_files() logger.warning("Cleaned")
2.171875
2
celery_app/ipviews.py
tiaotiaolong/piu
2
12791441
from flask import Blueprint,request from app import pa_domain,pa_ip from .tasks import scan_ip_task from celery_app.utils.utils import get_current_time,insert_taskid_db ipscan_blueprint = Blueprint("ipscan", __name__, url_prefix='/ipscan') #通过传入一个一级域名,对这个域名下的所有ip进行scan @ipscan_blueprint.route('/scan') def scan_ip(): domain = request.args.get("domain") #在数据库搜索该domain的索引 domain_index=pa_domain.find_one({"domain":domain}) if domain_index: # 声明ip_list ip_list = [] #获取整个domain所对应的ip for item in domain_index['subdomain']: for ip_s in item['ip']: ip_list.append(ip_s) #对ip_list去重 ip_list=list(set(ip_list)) #调用scan_ip 任务 传入主域名和对应的ip列表 r=scan_ip_task.delay(domain,ip_list) # taskid入库 insert_taskid_db({"task_id":r.task_id,"add_time":get_current_time(),"task_type":"ip_scan","ip_list":ip_list,"task_info":"对{0}域名下的{1}等{2}个ip进行端口扫描".format(domain,ip_list[0],len(ip_list))}) return {"code":200,"msg":"添加扫描任务成功"} return {"code":201,"msg":"未找到该域名所对应ip"} #获取ip总数 @ipscan_blueprint.route('/getipnum') def get_ip_num(): return {"ip_num":pa_ip.find({}).count()} #获取ip列表,index为起始索引 offset为数量 @ipscan_blueprint.route('/getiplist') def get_ip_list(): result = [] tmp = {} domain_index = int(request.args.get("index")) domain_offset = int(request.args.get("offset")) cursor = pa_ip.find().sort([('_id', -1)]).skip(domain_index).limit(domain_offset) for document in cursor: tmp['ip'] = document['ip'] tmp['add_time'] = document['add_time'] tmp['port'] = document['port'] result.append(tmp) tmp = {} return {"ip_list": result}
2.484375
2
zhuangzhuangml/api/state.py
Alpaca-Hub/zhuangzhuangml
2
12791442
from notebook.utils import url_path_join as ujoin from notebook.base.handlers import IPythonHandler import os, json, git, urllib, requests from git import Repo, GitCommandError from subprocess import check_output import subprocess repo = None htable = [] config = { "GIT_USER": "alpaca", "GIT_PARENT_DIR": os.path.expanduser("~/Desktop/jupyter_versioning"), "GIT_BRANCH_NAME": "main", # "GIT_REMOTE_URL" : "alpaca", # "GIT_REMOTE_UPSTREAM": "alpaca", # "GITHUB_ACCESS_TOKEN": "<PASSWORD>" } # def delete_cell(): # if cell in htable: # del htable[cell] # return True # return False # def register_cell(cell, content): # filename = str(config['GIT_PARENT_DIR'] + "/" + os.environ.get('GIT_REPO_NAME') + str(cell) + filename.replace('ipynb', 'txt')) # subprocess.run(['cat', content, '>', filename]) # print(repo.git.add(filename)) # print(repo.git.commit( a=False, m="\nUpdated {}".format(filename) ))
2.125
2
rolz_bot/database.py
Reriiru/rolz_org_to_discord
1
12791443
from pymongo import MongoClient from settings import MONGO_URL client = MongoClient(MONGO_URL) db = client.rolz_database
1.609375
2
naturalnum.py
gusenov/code-stepik-org-entrance-exam
1
12791444
<reponame>gusenov/code-stepik-org-entrance-exam<gh_stars>1-10 import sys def expr(x): a = x / (x - 2018) b = (x - 500) / (x - 2500) c = a - b return c < 0 cnt = 0 for n in range(1, sys.maxsize): # print("n = %d" % n) if (n == 2018) or (n == 2500): continue if expr(n): cnt += 1 print("cnt = %d" % cnt)
3.234375
3
src/covid_model_seiir_pipeline/pipeline/regression/model/containers.py
yukgu/covid-model-seiir-pipeline
0
12791445
<gh_stars>0 """Containers for regression data.""" from dataclasses import dataclass from typing import Dict, List, Iterator, Tuple, Union import pandas as pd from covid_model_seiir_pipeline.lib import ( utilities, ) @dataclass class RatioData: infection_to_death: int infection_to_admission: int infection_to_case: int ifr: pd.Series ifr_hr: pd.Series ifr_lr: pd.Series ihr: pd.Series idr: pd.Series def to_dict(self) -> Dict[str, Union[int, pd.Series]]: return utilities.asdict(self) @dataclass class HospitalCensusData: hospital_census: pd.Series icu_census: pd.Series def to_dict(self) -> Dict[str, pd.Series]: return utilities.asdict(self) def to_df(self): return pd.concat([v.rename(k) for k, v in self.to_dict().items()], axis=1) @dataclass class HospitalMetrics: hospital_admissions: pd.Series hospital_census: pd.Series icu_admissions: pd.Series icu_census: pd.Series def to_dict(self) -> Dict[str, pd.Series]: return utilities.asdict(self) def to_df(self): return pd.concat([v.rename(k) for k, v in self.to_dict().items()], axis=1) @dataclass class HospitalCorrectionFactors: hospital_census: pd.Series icu_census: pd.Series def to_dict(self) -> Dict[str, pd.Series]: return utilities.asdict(self) def to_df(self): return pd.concat([v.rename(k) for k, v in self.to_dict().items()], axis=1)
2.703125
3
tests/samples.py
ewerybody/svg.charts
26
12791446
""" Samples of the various charts. Run this script to generate the reference samples. """ import os from svg.charts.plot import Plot from svg.charts import bar from svg.charts import time_series from svg.charts import pie from svg.charts import schedule from svg.charts import line def sample_Plot(): g = Plot( { 'min_x_value': 0, 'min_y_value': 0, 'area_fill': True, 'stagger_x_labels': True, 'stagger_y_labels': True, 'show_x_guidelines': True, } ) g.add_data({'data': [[1, 25], [2, 30], [3, 45]], 'title': 'series 1'}) g.add_data({'data': [[1, 30], [2, 31], [3, 40]], 'title': 'series 2'}) g.add_data({'data': [[0.5, 35], [1, 20], [3, 10.5]], 'title': 'series 3'}) return g def sample_PlotTextLabels(): g = Plot( { 'draw_lines_between_points': False, 'min_x_value': 0, 'min_y_value': 0, 'show_x_guidelines': True, } ) # Processed Apple production 2015 # Any object with a .text attribute will do; # we like namedtuple(). from collections import namedtuple Datum = namedtuple("Datum", "x y text") g.add_data( { 'data': [ Datum(8.24, 80.85, 'ES'), Datum(0.17, 6.73, 'IE'), Datum(0, 0, 'IS'), ], 'title': 'Processed Apple', } ) return g def sample_TimeSeries(): g = time_series.Plot({}) g.timescale_divisions = '4 hours' g.stagger_x_labels = True g.x_label_format = '%d-%b %H:%M' # g.max_y_value = 200 g.add_data( { 'data': ['2005-12-21T00:00:00', 20, '2005-12-22T00:00:00', 21], 'title': 'series 1', } ) return g def generate_samples(): yield 'Plot', sample_Plot() yield 'PlotTextLabels', sample_PlotTextLabels() yield 'TimeSeries', sample_TimeSeries() yield 'VerticalBar', SampleBar.vertical() yield 'HorizontalBar', SampleBar.horizontal() yield 'VerticalBarLarge', SampleBar.vertical_large() yield 'VerticalBarStackTop', SampleBar.vertical_top() yield 'Pie', sample_Pie() yield 'Schedule', sample_Schedule() yield 'Line', sample_Line() class SampleBar: fields = ['Internet', 'TV', 'Newspaper', 'Magazine', 'Radio'] @classmethod def vertical(cls): g = bar.VerticalBar(cls.fields) g.stack = 'side' g.scale_integers = True g.width, g.height = 640, 480 g.graph_title = 'Question 7' g.show_graph_title = True g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g @classmethod def horizontal(cls): g = bar.HorizontalBar(cls.fields) g.stack = 'side' g.scale_integers = True g.width, g.height = 640, 480 g.graph_title = 'Question 7' g.show_graph_title = True g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g @classmethod def vertical_large(cls): g = bar.VerticalBar(cls.fields) options = dict( scale_integers=True, stack='side', width=640, height=480, graph_title='Question 8', show_graph_title=True, no_css=False, ) g.__dict__.update(options) g.add_data(dict(data=[2, 22, 98, 143, 82], title='intermediate')) g.add_data(dict(data=[2, 26, 106, 193, 105], title='old')) return g @classmethod def vertical_top(cls): g = bar.VerticalBar(cls.fields, dict(stack='top')) assert g.stack == 'top' g.scale_integers = True g.width, g.height = 640, 480 g.graph_title = 'Question 7' g.show_graph_title = True g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g def sample_Line(): g = line.Line() options = dict( scale_integers=True, area_fill=True, width=640, height=480, fields=SampleBar.fields, graph_title='Question 7', show_graph_title=True, no_css=False, ) g.__dict__.update(options) g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g def sample_Pie(): g = pie.Pie({}) options = dict( width=640, height=480, fields=SampleBar.fields, graph_title='Question 7', expand_greatest=True, show_data_labels=True, ) g.__dict__.update(options) g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g def sample_Schedule(): title = "Billy's Schedule" data1 = [ "History 107", "5/19/04", "6/30/04", "Algebra 011", "6/2/04", "8/11/04", "Psychology 101", "6/28/04", "8/9/04", "Acting 105", "7/7/04", "8/16/04", ] g = schedule.Schedule( dict( width=640, height=480, graph_title=title, show_graph_title=True, key=False, scale_x_integers=True, scale_y_integers=True, show_data_labels=True, show_y_guidelines=False, show_x_guidelines=True, # show_x_title=True, # not yet implemented x_title="Time", show_y_title=False, rotate_x_labels=True, rotate_y_labels=False, x_label_format="%m/%d", timescale_divisions="1 week", popup_format="%m/%d/%y", area_fill=True, min_y_value=0, ) ) g.add_data(dict(data=data1, title="Data")) return g def save_samples(): root = os.path.dirname(__file__) for sample_name, sample in generate_samples(): res = sample.burn() with open(os.path.join(root, sample_name + '.py.svg'), 'w') as f: f.write(res) if __name__ == '__main__': save_samples()
2.8125
3
SUL1/sample/data_reader_example/reader_sample.py
ddddwee1/SULT
18
12791447
import data_reader import time import tensorflow as tf def worker(num): time.sleep(0.5) print(num) return num if __name__=='__main__': data = list(range(100)) bsize = 10 reader = data_reader.data_reader(data, worker, bsize) for i in range(10): a = reader.get_next_batch() print(a)
3
3
ariadna/__init__.py
dacabdi/ariadna
0
12791448
from .PathSplitter import PathSplitter from .PathSplitter import RegexSplitter __DEFAULT_PATH_SPLITTER__ = RegexSplitter __cajas__ = [ 'Caja', 'CajaMapping', 'CajaMutableMapping', 'CajaMutableSequence', 'CajaMutableSet', 'CajaSequence', 'CajaSet' ] from .Caja import Caja from .CajaMapping import CajaMapping from .CajaMutableMapping import CajaMutableMapping from .CajaMutableSequence import CajaMutableSequence from .CajaMutableSet import CajaMutableSet from .CajaSequence import CajaSequence from .CajaSet import CajaSet __DEFAULT_NONE_CAJA__ = CajaMutableMapping __all__ = __cajas__ + ['PathSplitter', 'RegexSplitter']
1.414063
1
cpdb/config/storages.py
invinst/CPDBv2_backend
25
12791449
import mimetypes from django.core.files.base import ContentFile from django.core.files.storage import Storage from django.utils.deconstruct import deconstructible from django.conf import settings from azure.storage.blob.models import ContentSettings from azure.storage.blob.baseblobservice import BaseBlobService from azure.storage.blob.blockblobservice import BlockBlobService from azure.common import AzureMissingResourceHttpError @deconstructible class AzureStorage(Storage): def __init__(self, azure_container=settings.AZURE_STATICFILES_CONTAINER, *args, **kwargs): super(AzureStorage, self).__init__(*args, **kwargs) self.account_name = settings.AZURE_STORAGE_ACCOUNT_NAME self.account_key = settings.AZURE_STORAGE_ACCOUNT_KEY self.azure_container = azure_container self.azure_ssl = settings.AZURE_STATICFILES_SSL self._base_blob_service = None self._block_blob_service = None @property def base_blob_service(self): if self._base_blob_service is None: self._base_blob_service = BaseBlobService( self.account_name, self.account_key) return self._base_blob_service @property def block_blob_service(self): if self._block_blob_service is None: self._block_blob_service = BlockBlobService( self.account_name, self.account_key) return self._block_blob_service @property def azure_protocol(self): if self.azure_ssl: return 'https' return 'http' if self.azure_ssl is not None else None def _open(self, name, mode="rb"): blob = self.base_blob_service.get_blob_to_bytes(self.azure_container, name) return ContentFile(blob.content) def exists(self, name): return self.base_blob_service.exists(self.azure_container, name) def delete(self, name): try: self.base_blob_service.delete_blob(self.azure_container, name) except AzureMissingResourceHttpError: # pragma: no cover pass def size(self, name): blob = self.base_blob_service.get_blob_properties(self.azure_container, name) return blob.properties.content_length def _save(self, name, content): if hasattr(content.file, 'content_type'): content_type = content.file.content_type else: content_type = mimetypes.guess_type(name)[0] if hasattr(content, 'chunks'): content_data = b''.join(chunk for chunk in content.chunks()) else: content_data = content.read() self.block_blob_service.create_blob_from_bytes( self.azure_container, name, content_data, content_settings=ContentSettings(content_type=content_type)) return name def url(self, name): return self.base_blob_service.make_blob_url( container_name=self.azure_container, blob_name=name, protocol=self.azure_protocol, ) def get_modified_time(self, name): blob = self.base_blob_service.get_blob_properties( self.azure_container, name ) return blob.properties.last_modified
1.960938
2
test/SentimentAnalyzerTest.py
fractalbass/bayesian_trump
0
12791450
#-------------------------------------------------------------- # By <NAME> # Painted Harmony Group, Inc # June 26, 2017 # Please See LICENSE.txt #-------------------------------------------------------------- import unittest import SentimentAnalyzer as analyzer class SentimentAnalyzerTest(unittest.TestCase): def test_analyze_sentiment(self): sa = analyzer.SentimentAnalyzer() self.assertTrue(sa.analyze_sentiment("This is a happy tweet. Have a nice day.")=="pos") self.assertTrue(sa.analyze_sentiment("I am angry. He is very disonest. Sad.")=="neg")
2.78125
3