max_stars_repo_path
stringlengths 3
269
| max_stars_repo_name
stringlengths 4
119
| max_stars_count
int64 0
191k
| id
stringlengths 1
7
| content
stringlengths 6
1.05M
| score
float64 0.23
5.13
| int_score
int64 0
5
|
---|---|---|---|---|---|---|
python/ABC/167/b.py | KATO-Hiro/atcoder-1 | 0 | 12791951 | <filename>python/ABC/167/b.py
import sys
input = sys.stdin.readline
def main():
A, B, C, K = map(int, input().split())
if K <= A:
ans = K
elif K <= A + B:
ans = A
else:
ans = A - (K - (A + B))
print(ans)
if __name__ == "__main__":
main()
| 3.09375 | 3 |
tuttle/process.py | lexman/tuttle | 26 | 12791952 | <reponame>lexman/tuttle
# -*- coding: utf8 -*-
from time import time
class Process:
""" Class wrapping a process. A process has some input resources, some output resources,
some code that produces outputs from inputs, a processor that handle the language specificities
"""
def __init__(self, processor, filename, line_num):
self._start = None
self._end = None
self._processor = processor
self._filename = filename
self._line_num = line_num
self._inputs = []
self._outputs = []
self._code = ""
self.log_stdout = None
self.log_stderr = None
self._reserved_path = None
self._success = None
self._error_message = None
self._id = "{}_{}".format(self._filename, self._line_num)
@property
def start(self):
return self._start
@property
def end(self):
return self._end
@property
def id(self):
return self._id
@property
def code(self):
return self._code
# TODO Use a setter ?
def set_code(self, code):
self._code = code
@property
def success(self):
return self._success
@property
def error_message(self):
return self._error_message
@property
def processor(self):
return self._processor
def add_input(self, input_res):
self._inputs.append(input_res)
def add_output(self, output):
self._outputs.append(output)
def iter_inputs(self):
for res in self._inputs:
yield res
def iter_outputs(self):
for res in self._outputs:
yield res
def has_outputs(self):
return len(self._outputs) > 0
def has_input(self, resource):
return resource in self._inputs
def input_urls(self):
return {resource.url for resource in self._inputs}
def output_urls(self):
return {resource.url for resource in self._outputs}
def sorted_inputs_string(self):
sorted_inputs_urls = sorted([resource.url for resource in self.iter_inputs()])
return ",".join(sorted_inputs_urls)
def depends_on_process(self, process):
""" Returns True if self deprends on a resource created by process"""
for output_resource in process.iter_outputs():
if self.has_input(output_resource):
return True
return False
def pick_an_output(self):
if not self.has_outputs():
return None
return self._outputs[0]
def retrieve_execution_info(self, process):
""" Copy the execution info (all the properties set by function run()) from another process
:param process:
:return:
"""
self._start = process.start
self._end = process.end
self._success = process.success
self.log_stdout = process.log_stdout
self.log_stderr = process.log_stderr
self._reserved_path = process._reserved_path
def reset_execution_info(self):
""" Reset the execution info (all the properties set by function run()) because the resources produced
by this process have been invalidated
:return:
"""
self._start = None
self._end = None
self.log_stdout = None
self.log_stderr = None
self._success = None
def static_check(self):
"""
Runs a verification that the process won't obviously fail. This is used for static analysis before any process
is run
"""
self._processor.static_check(self)
def assign_paths(self, reserved_path, log_stdout, log_stderr):
assert reserved_path is not None
self._reserved_path = reserved_path
self.log_stdout = log_stdout
self.log_stderr = log_stderr
def set_start(self):
self._start = time()
def set_end(self, success, error_msg):
self._end = time()
self._success = success
self._error_message = error_msg
def missing_outputs(self):
"""
:return: True if all input resources for this process exist, False otherwise
"""
result = []
for resource in self.iter_outputs():
if not resource.exists():
result.append(resource)
return result | 2.96875 | 3 |
data/scrape/link_extractors/__init__.py | jamesrharwood/journal-guidelines | 0 | 12791953 | from .extractors import extract_links, extract_links_by_strategy
| 1.09375 | 1 |
monitor_and_notify.py | System-Exit/IoT-Climate | 0 | 12791954 | #!/usr/bin/env python3
import requests
import json
import sqlite3
import sense_hat
import time
from pushbullet_api import PushbulletAPI
from climate_util import ClimateUtil
# Monitor and notification class
class MonitorNotifier:
def __init__(self, databaseName):
# Get sense hat access
self.__sense = sense_hat.SenseHat()
# Load JSON config variables
with open("config.json", "r") as jsonFile:
config = json.load(jsonFile)
self.__minTemp = float(config["min_temperature"])
self.__maxTemp = float(config["max_temperature"])
self.__minHumid = float(config["min_humidity"])
self.__maxHumid = float(config["max_humidity"])
# Load Pushbullet API access
self.__pushbulletAPI = PushbulletAPI()
# Connect to database for logging climate data
self.__connectToDatabase(databaseName)
# Connects to climate database if it exists, otherwise creating one
def __connectToDatabase(self, databaseName):
# Connect to database file
self.__database = sqlite3.connect(databaseName)
with self.__database:
# Get cursor for database
cursor = self.__database.cursor()
# Create climate data table if it doesn't exist
cursor.execute("CREATE TABLE IF NOT EXISTS ClimateData \
(time DATETIME, temperature NUMERIC, humidity NUMERIC)")
# Create notification table if it doesn't exist
cursor.execute("CREATE TABLE IF NOT EXISTS Notifications \
(timesent DATETIME)")
# Commit creating of table
self.__database.commit()
# Record the current temp data into database
def recordClimate(self):
# Get and validate current climate information
try:
temperature = float(ClimateUtil.getCalibratedTemp(self.__sense))
humidity = float(self.__sense.get_humidity())
except ValueError:
print("Warning: Invalid climate data recorded,\
stopping climate monitor")
SystemExit()
# Record climate information in database and send notification
with self.__database:
cursor = self.__database.cursor()
cursor.execute("INSERT INTO ClimateData (time, temperature, humidity) \
VALUES (DATETIME('now', 'localtime'), ?, ?)",
(temperature, humidity))
self.__database.commit()
# Check if notification sould be sent
self.__checkAndNotify(temperature, humidity)
# Sends a pushbullet notification if temperature is out of range
# and a notification has not already been sent today
def __checkAndNotify(self, temperature, humidity):
# If outside of config range, check database if notification
# has already been sent today
if temperature < self.__minTemp or temperature > self.__maxTemp or\
humidity < self.__minHumid or humidity > self.__maxHumid:
# Check if notification has already been sent today
with self.__database:
cursor = self.__database.cursor()
cursor.execute(
"SELECT COUNT(*) \
FROM Notifications \
WHERE strftime('%d-%m-%Y', timesent) \
= strftime('%d-%m-%Y', DATETIME('now', 'localtime'))")
recordCount = cursor.fetchone()[0]
# If a notification has already been sent, return immediately
if recordCount >= 1:
return
# Construct pushbullet message strings
title = "Raspberry Pi climate alert"
message = "Warning,"
if temperature < self.__minTemp:
message += " temperature is too low,"
if temperature > self.__maxTemp:
message += " temperature is too high,"
if humidity < self.__minHumid:
message += " humidity is too low,"
if humidity > self.__maxHumid:
message += " humidity is too high,"
message = message.rstrip(',') + "."
# Wait until program is able to connect to internet
while not ClimateUtil.checkConnection():
time.sleep(1)
# Send pushbullet message
self.__pushbulletAPI.sendNotification(title, message)
# Record sending of notification
with self.__database:
cursor = self.__database.cursor()
cursor.execute("INSERT INTO Notifications (timesent) \
VALUES (DATETIME('now', 'localtime'))")
self.__database.commit()
# Main method
if __name__ == "__main__":
# Database name variable
databaseName = "climate_data.db"
# Initialize monitor class
monitor = MonitorNotifier(databaseName)
# Check and record climate conditions every minute
while True:
monitor.recordClimate()
time.sleep(60)
| 2.9375 | 3 |
core/models/ipagnn.py | google-research/runtime-error-prediction | 10 | 12791955 | <reponame>google-research/runtime-error-prediction
# Copyright (C) 2021 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""IPA-GNN models."""
from typing import Any
from flax import linen as nn
import jax
import jax.numpy as jnp
from core.data import error_kinds
from core.modules.ipagnn import compressive_ipagnn
from core.modules.ipagnn import encoder
from core.modules.ipagnn import ipagnn
from core.modules.ipagnn import logit_math
from core.modules.ipagnn import spans
from core.modules.ipagnn import raise_contributions as raise_contributions_lib
from third_party.flax_examples import transformer_modules
class IPAGNN(nn.Module):
config: Any
info: Any
transformer_config: transformer_modules.TransformerConfig
docstring_transformer_config: transformer_modules.TransformerConfig
def setup(self):
config = self.config
vocab_size = self.info.vocab_size
max_tokens = config.max_tokens
max_num_nodes = config.max_num_nodes
max_num_edges = config.max_num_edges
max_steps = config.max_steps
self.node_span_encoder = spans.NodeSpanEncoder(
info=self.info,
config=config,
transformer_config=self.transformer_config,
max_tokens=max_tokens,
max_num_nodes=max_num_nodes,
use_span_index_encoder=False,
use_span_start_indicators=False,
)
if config.use_film or config.use_cross_attention:
self.docstring_token_encoder = encoder.TokenEncoder(
transformer_config=self.docstring_transformer_config,
num_embeddings=vocab_size,
features=config.hidden_size,
)
self.docstring_encoder = encoder.TransformerEncoder(
config=self.docstring_transformer_config)
if config.use_compressive_ipagnn:
self.ipagnn = compressive_ipagnn.SkipIPAGNN(
config=config,
info=self.info,
max_steps=max_steps,
)
else:
self.ipagnn = ipagnn.IPAGNNModule(
info=self.info,
config=config,
max_steps=max_steps,
)
@nn.compact
def __call__(self, x):
config = self.config
info = self.info
tokens = x['tokens']
docstring_tokens = x['docstring_tokens']
# tokens.shape: batch_size, max_tokens
batch_size = tokens.shape[0]
encoded_inputs = self.node_span_encoder(
tokens, x['node_token_span_starts'], x['node_token_span_ends'],
x['num_nodes'])
# encoded_inputs.shape: batch_size, max_num_nodes, hidden_size
if config.use_film or config.use_cross_attention:
docstring_token_embeddings = self.docstring_token_encoder(
docstring_tokens)
docstring_mask = docstring_tokens > 0
docstring_encoder_mask = nn.make_attention_mask(
docstring_mask, docstring_mask, dtype=jnp.float32)
# docstring_token_embeddings.shape: batch_size, max_tokens, hidden_size
docstring_embeddings = self.docstring_encoder(
docstring_token_embeddings,
encoder_mask=docstring_encoder_mask)
else:
docstring_embeddings = None
docstring_mask = None
ipagnn_output = self.ipagnn(
node_embeddings=encoded_inputs,
docstring_embeddings=docstring_embeddings,
docstring_mask=docstring_mask,
edge_sources=x['edge_sources'],
edge_dests=x['edge_dests'],
edge_types=x['edge_types'],
true_indexes=x['true_branch_nodes'],
false_indexes=x['false_branch_nodes'],
raise_indexes=x['raise_nodes'],
start_node_indexes=x['start_index'],
exit_node_indexes=x['exit_index'],
post_domination_matrix=x['post_domination_matrix'],
step_limits=x['step_limit'],
)
# ipagnn_output['exit_node_embeddings'].shape: batch_size, hidden_size
# ipagnn_output['raise_node_embeddings'].shape: batch_size, hidden_size
# ipagnn_output['exit_node_instruction_pointer'].shape: batch_size
# ipagnn_output['raise_node_instruction_pointer'].shape: batch_size
exit_node_embeddings = ipagnn_output['exit_node_embeddings']
# exit_node_embeddings.shape: batch_size, hidden_size
exit_node_instruction_pointer = ipagnn_output['exit_node_instruction_pointer']
# exit_node_instruction_pointer.shape: batch_size
num_classes = info.num_classes
if config.raise_in_ipagnn:
raise_node_embeddings = ipagnn_output['raise_node_embeddings']
# raise_node_embeddings.shape: batch_size, hidden_size
raise_node_instruction_pointer = ipagnn_output['raise_node_instruction_pointer']
# raise_node_instruction_pointer.shape: batch_size
if len(info.no_error_ids) == 1:
# Multiple error classes; only one No-Error class.
no_error_id = info.no_error_ids[0]
logits = nn.Dense(
features=num_classes, name='output'
)(raise_node_embeddings) # P(e | yes exception)
# logits.shape: batch_size, num_classes
logits = logits.at[:, no_error_id].set(-jnp.inf)
no_error_logits = jax.vmap(logit_math.get_additional_logit)(
exit_node_instruction_pointer + 1e-9,
raise_node_instruction_pointer + 1e-9,
logits)
# no_error_logits.shape: batch_size
logits = logits.at[:, no_error_id].set(no_error_logits)
elif len(info.no_error_ids) > 1:
# Multiple No-Error classes; only one error class.
if len(info.error_ids) > 1:
raise NotImplementedError('Multiple error classes and multiple no-error classes.')
assert len(info.error_ids) == 1
error_id = info.error_ids[0]
logits = nn.Dense(
features=num_classes, name='output'
)(exit_node_embeddings) # P(e | no exception)
# logits.shape: batch_size, num_classes
logits = logits.at[:, error_id].set(-jnp.inf)
error_logits = jax.vmap(logit_math.get_additional_logit)(
raise_node_instruction_pointer + 1e-9,
exit_node_instruction_pointer + 1e-9,
logits)
# error_logits.shape: batch_size
logits = logits.at[:, error_id].set(error_logits)
else:
raise ValueError('Tried using Exception IPA-GNN on data with no errors.')
else:
logits = nn.Dense(
features=num_classes, name='output'
)(exit_node_embeddings)
# logits.shape: batch_size, num_classes
return logits, ipagnn_output
| 1.570313 | 2 |
rock/text.py | rockstack/rock | 1 | 12791956 | from __future__ import unicode_literals
def _(text):
return text.strip('\n')
USAGE = _("""
Usage: rock [--help] [--env=ENV] [--path=PATH] [--runtime=RUNTIME] command
""")
HELP = _("""
--help show help message
--verbose show script while running
--dry-run show script without running
--version show version
project:
--env=ENV set env
--path=PATH set path
--runtime=RUNTIME set runtime
commands:
build run build
test run tests
run run in environment
clean clean project files
other commands:
config show project configuration
env show evaluable environment variables
init generates project skeleton
runtime show installed runtimes
""")
CONFIG_USAGE = _("""
Usage: rock config [--format=FORMAT]
""")
CONFIG_HELP = _("""
--help show help message
--format set output format (json, yaml)
""")
ENV_USAGE = _("""
Usage: rock env
""")
ENV_HELP = _("""
--help show help message
""")
RUNTIME_USAGE = _("""
Usage: rock runtime
""")
RUNTIME_HELP = _("""
--help show help message
""")
| 2.515625 | 3 |
modules/2.79/bpy/types/TextureNodeCurveRGB.py | cmbasnett/fake-bpy-module | 0 | 12791957 | <reponame>cmbasnett/fake-bpy-module
TextureNodeCurveRGB.mapping = None
| 0.949219 | 1 |
gui/status_bar.py | myrmarachne/minesweeper | 0 | 12791958 | import Tkinter as tk
class StatusBar:
def __init__(self, root, label):
self.label = tk.StringVar()
self.label.set(label)
self.root = root
self.initialize()
def initialize(self):
frame = tk.Frame(self.root, relief=tk.SUNKEN)
label = tk.Label(frame, font=('arial', 12, 'normal'), textvariable=self.label, padx=10, pady=10)
label.pack(fill=tk.X)
frame.pack(side=tk.BOTTOM)
def update(self, label):
percent = int(float(label)*100)
self.label.set("No mine probability: " + str(percent) + "%")
def clear(self):
self.label.set("")
| 3.359375 | 3 |
variant-calling/gatk/gatk.py | gis-rpd/pipelines | 25 | 12791959 | #!/usr/bin/env python3
"""{PIPELINE_NAME} pipeline (version: {PIPELINE_VERSION}): creates
pipeline-specific config files to given output directory and runs the
pipeline (unless otherwise requested).
"""
# generic usage {PIPELINE_NAME} and {PIPELINE_VERSION} replaced while
# printing usage
#--- standard library imports
#
import sys
import os
import logging
#--- third-party imports
#
import yaml
#--- project specific imports
#
# add lib dir for this pipeline installation to PYTHONPATH
LIB_PATH = os.path.abspath(
os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "..", "lib"))
if LIB_PATH not in sys.path:
sys.path.insert(0, LIB_PATH)
from readunits import get_samples_and_readunits_from_cfgfile
from readunits import get_readunits_from_args
from pipelines import get_pipeline_version
from pipelines import PipelineHandler
from pipelines import logger as aux_logger
from pipelines import get_cluster_cfgfile
from pipelines import default_argparser
import configargparse
__author__ = "<NAME>"
__email__ = "<EMAIL>"
__copyright__ = "2016 Genome Institute of Singapore"
__license__ = "The MIT License (MIT)"
# only dump() and following do not automatically create aliases
yaml.Dumper.ignore_aliases = lambda *args: True
PIPELINE_BASEDIR = os.path.dirname(sys.argv[0])
CFG_DIR = os.path.join(PIPELINE_BASEDIR, "cfg")
# same as folder name. also used for cluster job names
PIPELINE_NAME = "gatk"
MARK_DUPS = True
# global logger
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(
'[{asctime}] {levelname:8s} {filename} {message}', style='{'))
logger.addHandler(handler)
def main():
"""main function
"""
default_parser = default_argparser(CFG_DIR, with_readunits=True)
parser = configargparse.ArgumentParser(description=__doc__.format(
PIPELINE_NAME=PIPELINE_NAME, PIPELINE_VERSION=get_pipeline_version()),
parents=[default_parser])
parser._optionals.title = "Arguments"
# pipeline specific args
parser.add_argument('-t', "--seqtype", required=True,
choices=['WGS', 'WES', 'targeted'],
help="Sequencing type")
parser.add_argument('-l', "--bed",
help="Bed file listing regions of interest."
" Required for WES and targeted sequencing.")
default = 4
parser.add_argument("-c", "--hc-nct", default=default, type=int,
help="Number of Haplotype Caller threads (per region cluster)."
" Values>1 reported to make Haplotype Caller unstable (default={})".format(default))
default = 100
parser.add_argument('-i', "--interval-padding", default=default,
help="Interval padding (for non-WGS only; default = {})".format(default))
parser.add_argument('-j', "--joint-calls", action='store_true',
help="Perform joint/cohort calling (requires multisample input)")
parser.add_argument('--raw-bam',
help="Advanced: Injects raw (pre-dedup, pre-BQSR etc.) BAM (overwrites fq options)."
" WARNING: reference needs to match pipeline requirements")
parser.add_argument('--proc-bam',
help="Advanced: Injects processed (post-dedup, post-BQSR etc.) BAM (overwrites fq options)."
" WARNING: reference and pre-processing need to match pipeline requirements")
# FIXME can be achieved with --until rule as well
parser.add_argument('--bam-only', action='store_true',
help="Only process up until BAM file")
parser.add_argument('--gvcf-only', action='store_true',
help="Only process up until GVCF file")
args = parser.parse_args()
# Repeateable -v and -q for setting logging level.
# See https://www.reddit.com/r/Python/comments/3nctlm/what_python_tools_should_i_be_using_on_every/
# and https://gist.github.com/andreas-wilm/b6031a84a33e652680d4
# script -vv -> DEBUG
# script -v -> INFO
# script -> WARNING
# script -q -> ERROR
# script -qq -> CRITICAL
# script -qqq -> no logging at all
logger.setLevel(logging.WARN + 10*args.quiet - 10*args.verbose)
aux_logger.setLevel(logging.WARN + 10*args.quiet - 10*args.verbose)
if os.path.exists(args.outdir):
logger.fatal("Output directory %s already exists", args.outdir)
sys.exit(1)
# samples is a dictionary with sample names as key (mostly just
# one) and readunit keys as value. readunits is a dict with
# readunits (think: fastq pairs with attributes) as value
if args.sample_cfg:
if any([args.fq1, args.fq2, args.sample, args.raw_bam, args.proc_bam]):
logger.fatal("Config file overrides fastq, sample and BAM arguments."
" Use one or the other")
sys.exit(1)
if not os.path.exists(args.sample_cfg):
logger.fatal("Config file %s does not exist", args.sample_cfg)
sys.exit(1)
samples, readunits = get_samples_and_readunits_from_cfgfile(args.sample_cfg)
else:# no sample config, so input is either fastq or existing bam
samples = dict()
if not args.sample:
logger.fatal("Need sample name if not using config file")
sys.exit(1)
if args.raw_bam or args.proc_bam:
assert not args.fq1, ("BAM injection overwrites fastq arguments")
if args.raw_bam:
assert os.path.exists(args.raw_bam)
assert not args.proc_bam, ("Cannot inject raw and processed BAM")
if args.proc_bam:
assert os.path.exists(args.proc_bam)
assert not args.raw_bam, ("Cannot inject raw and processed BAM")
readunits = dict()
samples[args.sample] = []
elif args.fq1:
readunits = get_readunits_from_args(args.fq1, args.fq2)
# all readunits go into this one sample specified on the command-line
samples[args.sample] = list(readunits.keys())
else:
logger.fatal("Need at least one fastq files as argument if not using config file")
sys.exit(1)
if args.seqtype in ['WES', 'targeted']:
if not args.bed:
logger.fatal("Analysis of exome and targeted sequence runs requires a bed file")
sys.exit(1)
else:
if not os.path.exists(args.bed):
logger.fatal("Bed file %s does not exist", args.sample_cfg)
sys.exit(1)
if args.joint_calls:
if len(samples)<2:
logger.fatal("Need at least two samples for joint calling")
sys.exit(1)
# turn arguments into cfg_dict (gets merged with other configs late)
#
cfg_dict = dict()
cfg_dict['readunits'] = readunits
cfg_dict['samples'] = samples
cfg_dict['seqtype'] = args.seqtype
cfg_dict['intervals'] = os.path.abspath(args.bed) if args.bed else None# always safe, might be used for WGS as well
cfg_dict['mark_dups'] = MARK_DUPS
cfg_dict['bam_only'] = args.bam_only
cfg_dict['gvcf_only'] = args.gvcf_only
cfg_dict['hc_nct'] = args.hc_nct
cfg_dict['joint_calls'] = args.joint_calls
cfg_dict['interval_padding'] = args.interval_padding
pipeline_handler = PipelineHandler(
PIPELINE_NAME, PIPELINE_BASEDIR,
args, cfg_dict,
cluster_cfgfile=get_cluster_cfgfile(CFG_DIR))
pipeline_handler.setup_env()
# Inject existing BAM by symlinking (everything upstream is temporary anyway)
# WARNING: filename has to match definition in Snakefile!
if args.raw_bam:
target = os.path.join(args.outdir, "out", args.sample,
"{}.bwamem.bam".format(args.sample))
os.makedirs(os.path.dirname(target))
os.symlink(os.path.abspath(args.raw_bam), target)
src_bai = os.path.abspath(args.raw_bam) + ".bai"
if os.path.exists(src_bai):
os.symlink(src_bai, target + ".bai")
elif args.proc_bam:
target = os.path.join(args.outdir, "out", args.sample,
"{}.bwamem".format(args.sample))
if cfg_dict['mark_dups']:
target += ".dedup"
if cfg_dict['seqtype'] != 'targeted':
target += ".bqsr"
target += ".bam"
os.makedirs(os.path.dirname(target))
os.symlink(os.path.abspath(args.proc_bam), target)
if os.path.exists(os.path.abspath(args.proc_bam) + ".bai"):
os.symlink(os.path.abspath(args.proc_bam) + ".bai", target + ".bai")
pipeline_handler.submit(args.no_run)
if __name__ == "__main__":
main()
| 1.953125 | 2 |
backend/app/seeds/palettes.py | saadjs/Color.ly | 3 | 12791960 | <filename>backend/app/seeds/palettes.py
from app.models import db, User, Palette
def seed_palettes():
canadian = Palette(title='Metalics',
colors=[
{"name": "Jigglypuff", "color": "#ff9ff3"},
{"name": "Casandora Yellow", "color": "#feca57"},
{"name": "Pastel Red", "color": "#ff6b6b"},
{"name": "Megaman", "color": "#48dbfb"},
{"name": "Wild Caribbean Green", "color": "#1dd1a1"},
],
user_id=User.query.filter_by(username='monkey').first().id
)
chinese = Palette(title='Chromium',
colors=[
{ "name": "Red", "color": "#F44336" },
{ "name": "Pink", "color": "#E91E63" },
{ "name": "Purple", "color": "#9C27B0" },
{ "name": "Deep Purple", "color": "#673AB7" },
{ "name": "indigo", "color": "#3F51B5" },
],
user_id=User.query.filter_by(username='Demo').first().id
)
french = Palette(title='Rainbow',
colors=[
{ "name": "Flat Flesh", "color": "#fad390" },
{ "name": "<NAME>", "color": "#f8c291" },
{ "name": "Livid", "color": "#6a89cc" },
{ "name": "Spray", "color": "#82ccdd" },
{ "name": "Paradise Green", "color": "#b8e994" },
],
user_id=User.query.filter_by(username='Demo').first().id
)
indian = Palette(title='Tropical',
colors=[
{ "name": "Orchid Orange", "color": "#FEA47F" },
{ "name": "Spiro Disco Ball", "color": "#25CCF7" },
{ "name": "Honey Glow", "color": "#EAB543" },
{ "name": "Sweet Garden", "color": "#55E6C1" },
{ "name": "Falling Star", "color": "#CAD3C8" },
],
user_id=User.query.filter_by(username='saad').first().id
)
spanish = Palette(title='Floral',
colors=[
{ "name": "Jacksons Purple", "color": "#40407a" },
{ "name": "C64 Purple", "color": "#706fd3" },
{ "name": "Swan White", "color": "#f7f1e3" },
{ "name": "Summer Sky", "color": "#34ace0" },
{ "name": "Celestial Green", "color": "#33d9b2" },
],
user_id=User.query.filter_by(username='bob').first().id
)
british = Palette(title='Pastels',
colors=[
{ "name": "<NAME>", "color": "#00a8ff" },
{ "name": "Periwinkle", "color": "#9c88ff" },
{ "name": "Rise-N-Shine", "color": "#fbc531" },
{ "name": "Download Progress", "color": "#4cd137" },
{ "name": "Seabrook", "color": "#487eb0" },
],
user_id=User.query.filter_by(username='cow').first().id
)
aussie = Palette(title='Jungle',
colors=[
{ "name": "Beekeeper", "color": "#f6e58d" },
{ "name": "Spiced Nectarine", "color": "#ffbe76" },
{ "name": "Pink Glamour", "color": "#ff7979" },
{ "name": "June Bud", "color": "#badc58" },
{ "name": "Coastal Breeze", "color": "#dff9fb" },
],
user_id=User.query.filter_by(username='monkey').first().id
)
american = Palette(title='City Lights',
colors=[
{ "name": "Light Greenish Blue", "color": "#55efc4" },
{ "name": "Faded Poster", "color": "#81ecec" },
{ "name": "Green Darner Tail", "color": "#74b9ff" },
{ "name": "Shy Moment", "color": "#a29bfe" },
{ "name": "City Lights", "color": "#dfe6e9" },
],
user_id=User.query.filter_by(username='Demo').first().id
)
dutch = Palette(title='Primrose',
colors=[
{ "name": "Sunflower", "color": "#FFC312" },
{ "name": "Energos", "color": "#C4E538" },
{ "name": "Blue Martina", "color": "#12CBC4" },
{ "name": "Lavender Rose", "color": "#FDA7DF" },
{ "name": "Bara Rose", "color": "#ED4C67" },
],
user_id=User.query.filter_by(username='saad').first().id
)
russian = Palette(title='Fruit Punch',
colors=[
{"name": "Creamy Peach", "color": "#f3a683"},
{"name": "Rosy Highlight", "color": "#f7d794"},
{"name": "Soft Blue", "color": "#778beb"},
{"name": "Brewed Mustard", "color": "#e77f67"},
{"name": "Old Geranium", "color": "#cf6a87"},
],
user_id=User.query.filter_by(username='Demo').first().id
)
german = Palette(title='Bora Bora',
colors=[
{"name": "Fusion Red", "color": "#fc5c65"},
{"name": "Orange Hibiscus", "color": "#fd9644"},
{"name": "Flirtatious", "color": "#fed330"},
{"name": "Reptile Green", "color": "#26de81"},
{"name": "Maximum Blue Green", "color": "#2bcbba"},
],
user_id=User.query.filter_by(username='Demo').first().id
)
turkish = Palette(title='Desert',
colors=[
{"name": "Bright Lilac", "color": "#cd84f1"},
{"name": "Pretty Please", "color": "#ffcccc"},
{"name": "Light Red", "color": "#ff4d4d"},
{"name": "<NAME>", "color": "#ffaf40"},
{"name": "Unmellow Yellow", "color": "#fffa65"},
],
user_id=User.query.filter_by(username='saad').first().id
)
swedish = Palette(title='Ikea',
colors=[
{"name": "Highlighter Pink", "color": "#ef5777"},
{"name": "Dark Periwinkle", "color": "#575fcf"},
{"name": "Megaman", "color": "#4bcffa"},
{"name": "Fresh Turquoise", "color": "#34e7e4"},
{"name": "Minty Green", "color": "#0be881"},
],
user_id=User.query.filter_by(username='bob').first().id
)
db.session.add(canadian)
db.session.add(chinese)
db.session.add(french)
db.session.add(indian)
db.session.add(spanish)
db.session.add(british)
db.session.add(aussie)
db.session.add(american)
db.session.add(dutch)
db.session.add(russian)
db.session.add(german)
db.session.add(turkish)
db.session.add(swedish)
db.session.commit()
def undo_palettes():
db.session.execute('TRUNCATE palettes;')
db.session.commit() | 2.3125 | 2 |
Station.py | kriete/AutomaticSocibQcRecheck | 0 | 12791961 | <filename>Station.py
from utils import *
from netCDF4 import Dataset
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
formatter = logging.Formatter('[%(asctime)s] p%(process)s %(lineno)d - %(name)s - %(levelname)s - %(message)s', '%m-%d %H:%M:%S')
handler.setFormatter(formatter)
handler = logging.FileHandler('station.log')
handler.setLevel(logging.INFO)
logger.addHandler(handler)
class StationManager:
def __init__(self, qc_definitions, year=None, month=None, station_names=None):
if (year is None) or (month is None):
year, month = read_year_month_config()
if station_names is None:
single_stations = read_single_stations_config()
self.station_links = get_mooring_stations('http://thredds.socib.es/thredds/catalog/mooring/weather_station/catalog.html', year, month, only_single_stations=single_stations)
self.year = year
self.month = month
self.qc_definitions = qc_definitions
self.station_container = []
self.create_stations()
self.assign_qc_processes()
self.process_stations()
self.print_station_information()
def print_station_information(self):
for station in self.station_container:
station.log_station_information()
def create_stations(self):
for link in self.station_links:
if check_link_availability(link):
name = get_station_name_from_link('weather_station/', '/L1/', link)
logger.info('Found data for station ' + name)
self.station_container.append(Station(link, name, self.year, self.month))
else:
logger.info(link + ' does not exist. Will not use this station.')
def assign_qc_processes(self):
# TODO: also get dat stuff from database goddamn it
# TODO: outsource dat here, should not be necessarily be here.... !
# Btw, the philosophy of these definitions also suck (ye ye ye ye I am completely aware that they are hardcoded
# and I should have really avoided that)
axys_watchMate_meteo = ['buoy_canaldeibiza-scb_met010', 'buoy_bahiadepalma-scb_met008']
meteoStation_aanderaa = ['station_salines-ime_met002']
meteoStation_vaisala = ['mobims_calamillor-scb_met001']
meteoStation_vaisala_airp_mbar = ['mobims_playadepalma-scb_met012', 'station_parcbit-scb_met004',
'station_galfi-scb_met005', 'station_esporles-scb_met003',
'mobims_sonbou-scb_met011']
for station in self.station_container:
cur_name = station.name
if cur_name in axys_watchMate_meteo:
cur_process_name = 'Axys_WatchMate_Meteo'
station.process_name = cur_process_name
station.process_definitions = self.qc_definitions.processes[cur_process_name]
elif cur_name in meteoStation_aanderaa:
cur_process_name = 'MeteoStation_Aanderaa'
station.process_name = cur_process_name
station.process_definitions = self.qc_definitions.processes[cur_process_name]
elif cur_name in meteoStation_vaisala:
cur_process_name = 'MeteoStation_Vaisala'
station.process_name = cur_process_name
station.process_definitions = self.qc_definitions.processes[cur_process_name]
elif cur_name in meteoStation_vaisala_airp_mbar:
cur_process_name = 'MeteoStation_Vaisala_Airp_Mbar'
station.process_name = cur_process_name
station.process_definitions = self.qc_definitions.processes[cur_process_name]
else:
logger.warning('No Process defined for this station: ' + cur_name + '. Will use default now.')
cur_process_name = 'MeteoStation_Vaisala_Airp_Mbar'
station.process_name = cur_process_name
station.process_definitions = self.qc_definitions.processes[cur_process_name]
station.get_defined_variables_of_interest()
def process_stations(self):
for station in self.station_container:
logger.info('Processing station ' + station.name + '...')
station.perform_qc()
logger.info('Plotting and saving station ' + station.name + '...')
station.run_through_variables_of_interest()
logger.info('Processing station ' + station.name + ' finished.')
class Station:
def __init__(self, link, name, year, month):
# TODO: fix converted_time1 plz
self.year = year
self.month = month
self.link = link
self.name = name
self.root = Dataset(link)
self.time = get_data_array(self.root['time'])
self.converted_time = get_md_datenum(self.time)
date_converted = [datetime.fromtimestamp(ts) for ts in self.time]
self.converted_time1 = get_pandas_timestamp_series(date_converted)
translate_time = self.converted_time1.apply(lambda x: x.to_pydatetime())
self.converted_time_backward = map(totimestamp, translate_time)
self.process_name = ''
self.process_definitions = None
self.variables_of_interest = []
self.qc_variables_of_interest = []
self.definitions_of_interest = dict()
self.qc_output = dict()
def get_defined_variables_of_interest(self):
for method_name, method_definition in self.process_definitions.method_container.items():
var_name = method_definition.title
if not self.check_variable_existence(var_name):
continue
self.variables_of_interest.append(var_name)
self.definitions_of_interest[method_definition.title] = method_definition
qc_variable_name = self.root[var_name].ancillary_variables
self.qc_variables_of_interest.append(qc_variable_name)
def log_station_information(self):
logger.info('---')
logger.info('Station ' + self.name)
logger.info('Provided by source link ' + self.link)
logger.info('Has been assigned to the process ' + self.process_name)
logger.info('Has processes defined for the variables ' + str(self.process_definitions.method_container.keys()))
logger.info('The definitions were connected with the variables ' + str(self.variables_of_interest))
def check_variable_existence(self, variable_name):
try:
self.root[variable_name]
except IndexError:
logger.warning('Variable of interest ' + variable_name + ' not found. Will pop it out.')
return False
return True
def run_through_variables_of_interest(self):
variable_counter = 0
tab_holder = []
for variable_name in self.variables_of_interest:
variable = self.root[variable_name]
qc_variable = self.root[self.qc_variables_of_interest[variable_counter]]
variable_data = get_data_array(variable)
qc_variable_data = get_data_array(qc_variable)
# new_qc_variable_data = np.asarray(np.ones((1, len(qc_variable_data)))[0])
new_qc_variable_data = self.qc_output[variable_name]
difference_highlights_idx = np.where(qc_variable_data != new_qc_variable_data)[0]
tab_holder.append(get_bokeh_tab(self.converted_time1, variable_data, variable,
self.converted_time_backward, qc_data=qc_variable_data,
new_qc_data=new_qc_variable_data, diff_idx=difference_highlights_idx))
variable_counter += 1
plot_bokeh(tab_holder, self.name, self.year, self.month)
def perform_qc(self):
for variable_name in self.variables_of_interest:
logger.info('Processing ' + variable_name)
variable = self.root[variable_name]
variable_data = get_data_array(variable)
self.qc_output[variable_name] = np.ones((1, len(variable_data)))[0]
nan_idx = np.isnan(variable_data)
self.qc_output[variable_name][nan_idx] = 9
method_definitions = self.definitions_of_interest[variable_name].get_method_arrays()
cur_qc_methods = method_definitions[0]
cur_qc_input_parameters = method_definitions[1]
cur_qc_lookup = method_definitions[2]
if len(cur_qc_methods) != len(cur_qc_lookup):
logger.error("Incorrect amount of flags with respect to the QC methods set.")
return
qc_counter = 0
for qc_method in cur_qc_methods:
input_parameters = cur_qc_input_parameters[qc_counter]
if qc_method == 'range':
if len(input_parameters) != 2:
logger.error('Not enough input parameters.')
continue
self.qc_output[variable_name] = compute_valid_range(variable_data, input_parameters[0], input_parameters[1], cur_qc_lookup[qc_counter], self.qc_output[variable_name])
elif qc_method == 'spike':
if len(input_parameters) != 1:
logger.error('Not enough input parameters.')
continue
self.qc_output[variable_name] = compute_spike(variable_data, input_parameters[0], cur_qc_lookup[qc_counter], self.qc_output[variable_name])
elif qc_method == 'gradient':
if len(input_parameters) != 2:
logger.error('Not enough input parameters.')
continue
# self.qc_output[variable_name] = compute_simple_gradient(variable_data, input_parameters[1], cur_qc_lookup[qc_counter], self.qc_output[variable_name])
self.qc_output[variable_name] = compute_extended_gradient(variable_data, self.time, input_parameters[1], input_parameters[0], cur_qc_lookup[qc_counter], self.qc_output[variable_name])
elif qc_method == 'stationary':
if len(input_parameters) != 2:
logger.error('Not enough input parameters.')
continue
self.qc_output[variable_name] = compute_stationary(variable_data, self.time, input_parameters[0], input_parameters[1], cur_qc_lookup[qc_counter], self.qc_output[variable_name])
qc_counter += 1
| 2.453125 | 2 |
packages/functional/extract_vol.py | justi/m2g | 12 | 12791962 | #!/usr/bin/env python
# Copyright 2015 Open Connectome Project (http://openconnecto.me)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# extract_b0.py
# Created by <NAME> on 2015-02-21.
# Email: <EMAIL>
# Copyright (c) 2015. All rights reserved.
from argparse import ArgumentParser
from nibabel import load, save, Nifti1Image
from numpy import where, loadtxt
def extract_vol(dti_img, bvals, b0_vol):
print "Loading dti data..."
d_img = load(dti_img)
b0_data = d_img.get_data()
b0_head = d_img.get_header()
print "Loading bvals file..."
b = loadtxt(bvals)
print "Extracting B0 volume..."
b0_data=b0_data[:,:,:,int(where(b==0)[0])]
print "Updating image header..."
b0_head.set_data_shape(b0_head.get_data_shape()[0:3])
print "Saving..."
out = Nifti1Image( data=b0_data, affine=d_img.get_affine(), header=b0_head )
save(out, b0_vol)
print "Complete!"
def main():
parser = ArgumentParser(description="")
parser.add_argument("dti", action="store", help="The DTI image we want to extract B0 from (.nii, .nii.gz)")
parser.add_argument("bvals", action="store", help="The b-value file corresponding to the DTI image (.b)")
parser.add_argument("b0", action="store", help="The output file location of the B0 scan (.nii, .nii.gz)")
result = parser.parse_args()
extract_vol(result.dti, result.bvals, result.b0)
if __name__ == "__main__":
main()
| 2.4375 | 2 |
galileo/WildSnakePy/WildSnake.py | garoa/dojo-shield | 8 | 12791963 | <filename>galileo/WildSnakePy/WildSnake.py
"""
WildSnakePy - WildSnakeUNO ported to Galileo (mraa native API)
A two-segment snake slithers aimlessly over the display. On intersections,
the next step is chosen at random.
Most of the logic is encoded in the `moves` array which lists possible next
steps for each current position and direction. Snake head position and
direction is coded like pictured below, i.e. when the snake head is at the
middle segment going right, the code is 6, going left in the same place is
code 13.
>:0
<:7
-----
^:5 | | v:1
v:12 | >:6 | ^:8
-----
^:4 | <:13| v:2
v:11 | | ^:9
-----
<:3
>:10
To understand this diagram, read:
> as a right arrow
< as a left arrow
v as a down arrow
^ as an up arrow
"""
# TODO: works, but needs cleanup
from mraa import *
import time, random
# {first_choice, second_choice*}
# * -1 means there is no second_choice
moves = [
[1, -1], # 0
[13, 2], # 1
[3, -1], # 2
[4, -1], # 3
[6, 5], # 4
[0, -1], # 5
[2, 8], # 6
[12, -1], # 7
[7, -1], # 8
[13, 8], # 9
[9, -1], # 10
[10, -1], # 11
[6, 11], # 12
[5, 11] # 13
]
print moves
""" A
-----
F | | B
| G |
-----
E | | C
| D |
-----
"""
# A B C D E F G
#int display[] = {11, 10, 8, 7, 6, 12, 13}; # DojoXXG
# A B G E D C G F
#int display[] = {8, 9, 7, 12, 11, 10, 7, 13};
# A B C D E F G
SEGMENTS = 7
pins = [8, 9, 10, 11, 12, 13, 7]
display = [Gpio(i) for i in pins]
print repr(display)
head = 8 # segment B
tail = 9 # segment A
pot = Aio(0)
def setup():
for i in range(SEGMENTS):
display[i].dir(DIR_OUT) #MRAA
print repr(display[i])
display[i].write(1)
print 'pin %d on' %pins[i]
time.sleep(2)
display[i].write(0)
print 'tested i %d' %pins[i]
display[tail % 7].write(1) #MRAA
def loop():
global head
global tail
print ' head ' + str(head%7)
print ' tail ' + str(tail%7)
display[head % 7].write(1) #MRAA
delay = pot.read()
print 'delay %s' % str(delay)
time.sleep(delay/1000.0)
display[tail % 7].write(0) #MRAA
tail = head
choices = moves[head]
if (choices[1] == -1) :
head = choices[0] # no second choice
else:
choice = random.choice([0,1])
print ' choice ' + str(choice)
head = choices[choice]
print 'setup()'
setup()
print 'loop()'
while True:
loop()
| 3.4375 | 3 |
test/testGraphGrid.py | KodeWorker/CircuitRouter | 0 | 12791964 | # -*- coding: utf-8 -*-
""" Unit Test On Grid
description:
This is the unit test for basic grid.
content:
- TestGrid
- TestGrid8D
author: Shin-Fu (<NAME>
latest update:
- 2019/05/10
- 2019/05/14 add TestGridDB
- 2019/05/15 add test_case for DynamicBoundGridWithShortcuts
"""
import os
import sys
import unittest
root = os.path.join(os.path.dirname(__file__), '..')
sys.path.append(root)
from graph.grid import GridWithWeights
from graph.grid8d import EightDirectionGrid
from graph.gridDB import DynamicBoundGrid, DynamicBoundGridWithShortcuts
from graph.duality_graph import DualityGraph
class TestGrid(unittest.TestCase):
def __init__(self, methodName='runTest'):
super(TestGrid, self).__init__(methodName)
self.g = GridWithWeights(4, 4)
def test_case1(self):
self.assertSetEqual(set(self.g.neighbors((1,1))), set([(0, 1), (2, 1), (1, 0), (1, 2)]))
self.assertSetEqual(set(self.g.neighbors((1,0))), set([(0, 0), (1, 1), (2, 0)]))
self.assertSetEqual(set(self.g.neighbors((3,3))), set([(3, 2), (2, 3)]))
class TestGrid8D(unittest.TestCase):
def __init__(self, methodName='runTest'):
super(TestGrid8D, self).__init__(methodName)
self.g = EightDirectionGrid(4, 4)
def test_case1(self):
self.assertSetEqual(set(self.g.neighbors((1,1))), set([(2, 0), (1, 0), (0, 0), (2, 1), (0, 1), (2, 2), (1, 2), (0, 2)]))
class TestGridDB(unittest.TestCase):
def __init__(self, methodName='runTest'):
super(TestGridDB, self).__init__(methodName)
self.g1 = DynamicBoundGrid(4, 4)
self.g1.set_search((0, 0), (3, 3))
self.g2 = DynamicBoundGridWithShortcuts(4, 4)
self.g2.set_search((0, 0), (3, 3))
def test_case1(self):
self.assertSetEqual(set(self.g1.neighbors((0,0))), set([(1, 0), (0, 1), (1, 1)]))
def test_case2(self):
self.assertSetEqual(set(self.g2.neighbors((0,0))), set([(1, 0), (0, 1), (1, 1)]))
class TestDualityGraph(unittest.TestCase):
def __init__(self, methodName='runTest'):
super(TestDualityGraph, self).__init__(methodName)
self.g1 = DualityGraph(4, 4)
self.g1.set_search((0, 0), (3, 3))
def test_case1(self):
self.assertSetEqual(set(self.g1.neighbors((0,0))), set([(3, 0), (0, 3), (3, 3)]))
if __name__ == '__main__':
unittest.main(verbosity=1) | 3.109375 | 3 |
check_hbase_regionservers_requests_balance.py | adolci/nagios-plugins | 0 | 12791965 | #!/usr/bin/env python
# vim:ts=4:sts=4:sw=4:et
#
# Author: <NAME>
# Date: 2018-07-13 22:46:34 +0100 (Fri, 13 Jul 2018)
#
# https://github.com/harisekhon/nagios-plugins
#
# License: see accompanying Hari Sekhon LICENSE file
#
# If you're using my code you're welcome to connect with me on LinkedIn
# and optionally send me feedback to help steer this or other code I publish
#
# https://www.linkedin.com/in/harisekhon
#
"""
Nagios Plugin to check HBase RegionServer requests imbalance via the HMaster UI
Tested on Apache HBase 0.95, 0.96, 0.98, 1.0, 1.1, 1.2, 1.3, 1.4, 2.0, 2.1
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
#import logging
#import json
import os
import sys
import traceback
try:
from bs4 import BeautifulSoup
except ImportError:
print(traceback.format_exc(), end='')
sys.exit(4)
srcdir = os.path.abspath(os.path.dirname(__file__))
libdir = os.path.join(srcdir, 'pylib')
sys.path.append(libdir)
try:
# pylint: disable=wrong-import-position
from harisekhon.utils import isInt, support_msg, UnknownError, plural
from harisekhon import RestNagiosPlugin
except ImportError as _:
print(traceback.format_exc(), end='')
sys.exit(4)
__author__ = '<NAME>'
__version__ = '0.3.0'
class CheckHBaseRegionServerBalance(RestNagiosPlugin):
def __init__(self):
# Python 2.x
super(CheckHBaseRegionServerBalance, self).__init__()
# Python 3.x
# super().__init__()
self.name = ['HBase Master', 'HBase']
self.default_port = 16010
self.path = '/master-status'
self.auth = False
self.json = False
self.msg = 'HBase msg not defined'
def add_options(self):
super(CheckHBaseRegionServerBalance, self).add_options()
self.add_thresholds(default_warning=50)
def process_options(self):
super(CheckHBaseRegionServerBalance, self).process_options()
self.validate_thresholds(percent=True, optional=True)
def parse(self, req):
soup = BeautifulSoup(req.content, 'html.parser')
#if log.isEnabledFor(logging.DEBUG):
# log.debug("BeautifulSoup prettified:\n%s\n%s", soup.prettify(), '='*80)
# this masks underlying exception
#try:
tab = soup.find('div', {'id':'tab_baseStats'})
table = tab.find_next('table')
rows = table.findChildren('tr')
if len(rows) < 2:
raise UnknownError('no regionserver rows found in base stats table! {}'.format(support_msg()))
# HBase 1.1 in HDP 2.3: ServerName | Start time | Requests Per Second | Num. Regions
# HBase 1.2 (Apache): ServerName | Start time | Version | Requests per Second | Num. Regions
# HBase 1.4 (Apache): ServerName | Start time | Last Contact | Version | Requests Per Second | Num. Regions
th_list = rows[0].findChildren('th')
if len(th_list) < 4:
raise UnknownError('no table header for base stats table!')
expected_header = 'Requests Per Second'
col_index = len(th_list) - 2
found_header = th_list[col_index].text
if found_header != expected_header:
raise UnknownError("wrong table header found for column 4! Expected '{}' but got '{}'. {}"\
.format(expected_header, found_header, support_msg()))
stats = {}
for row in rows[1:]:
cols = row.findChildren('td')
if len(cols) < 4:
raise UnknownError('4th column in table not found! {}'.format(support_msg()))
regionserver = cols[0].text.strip().split(',')[0]
if 'Total:' in regionserver:
break
reqs_per_sec = cols[col_index].text.strip()
if not isInt(reqs_per_sec):
raise UnknownError("non-integer found in Requests Per Second column for regionserver '{}'. {}"\
.format(regionserver, support_msg()))
# fix for this is to cast string '1.0' to float and then cast to int
# ValueError: invalid literal for int() with base 10: '1.0'
stats[regionserver] = int(float(reqs_per_sec))
self.process_stats(stats)
#except (AttributeError, TypeError):
# raise UnknownError('failed to parse HBase Master UI status page. {}'.format(support_msg()))
def process_stats(self, stats):
lowest_requests = None
highest_requests = None
lowest_regionserver = None
highest_regionserver = None
for regionserver in stats:
if lowest_requests is None:
lowest_requests = stats[regionserver]
lowest_regionserver = regionserver
if highest_requests is None:
highest_requests = stats[regionserver]
highest_regionserver = regionserver
if stats[regionserver] > highest_requests:
highest_requests = stats[regionserver]
highest_regionserver = regionserver
if stats[regionserver] < lowest_requests:
lowest_requests = stats[regionserver]
lowest_regionserver = regionserver
# simple algo - let me know if you think can be a better calculation
imbalance = (highest_requests - lowest_requests) / max(highest_requests, 1) * 100
num_regionservers = len(stats)
self.msg = 'HBase RegionServers reqs/sec imbalance = {:.0f}% across {} RegionServer{}'\
.format(imbalance, num_regionservers, plural(num_regionservers))
self.check_thresholds(imbalance)
if self.verbose or not self.is_ok():
self.msg += ' [min reqs/sec={} on {} / max reqs/sec={} on {}]'\
.format(lowest_requests, lowest_regionserver, highest_requests, highest_regionserver)
self.msg += ' | reqs_per_sec_balance={:.2f}%{} lowest_requests_per_sec={} highest_requests_per_sec={}'\
.format(imbalance, self.get_perf_thresholds(), lowest_requests, highest_requests)
if __name__ == '__main__':
CheckHBaseRegionServerBalance().main()
| 1.640625 | 2 |
main.py | standbit/Comics-publisher | 0 | 12791966 | import os
import random
from os.path import splitext
from urllib.parse import urlparse
import requests
from dotenv import load_dotenv
def get_file_extension(link):
link_path = urlparse(link).path
extension = splitext(link_path)[-1]
return extension
def get_last_comic_num():
url = "https://xkcd.com/info.0.json"
response = requests.get(url)
response.raise_for_status()
last_comic_num = response.json()["num"]
return last_comic_num
def download_comic(url, filename):
response = requests.get(url)
response.raise_for_status()
with open(filename, "wb") as file:
file.write(response.content)
def fetch_random_comic():
first_comic_num = 1
last_comic_num = int(get_last_comic_num())
comic_num = random.randint(first_comic_num, last_comic_num)
url = f"https://xkcd.com/{comic_num}/info.0.json"
response = requests.get(url)
response.raise_for_status()
converted_response = response.json()
comments = converted_response["alt"]
comic_link = converted_response["img"]
extension = get_file_extension(comic_link)
comic_name = converted_response["safe_title"]
filename = f"{comic_name}{extension}"
download_comic(comic_link, filename)
return filename, comments
def check_api_response(api_response):
if "error" in api_response:
raise requests.HTTPError(
"Ошибка с VK API",
api_response["error"]["error_msg"]
)
def get_server_link(token):
url = "https://api.vk.com/method/photos.getWallUploadServer"
payload = {
"access_token": token,
"group_id": 212094963,
"v": 5.131,
}
response = requests.get(url, params=payload)
response.raise_for_status()
converted_response = response.json()
check_api_response(converted_response)
server_link = converted_response["response"]["upload_url"]
return server_link
def upload_img_to_server(filename, upload_url):
with open(filename, "rb") as file:
files = {
"photo": file,
}
response = requests.post(upload_url, files=files)
response.raise_for_status()
server_response = response.json()
check_api_response(server_response)
return server_response
def upload_img_to_group(token, photo, server, hash_parameter):
url = "https://api.vk.com/method/photos.saveWallPhoto"
payload = {
"access_token": token,
"group_id": 212094963,
"v": 5.131,
"photo": photo,
"server": server,
"hash": hash_parameter,
}
response = requests.post(
url,
params=payload)
response.raise_for_status()
vk_response = response.json()
check_api_response(vk_response)
return vk_response
def publish_comic(token, comments, owner_id, media_id):
url = "https://api.vk.com/method/wall.post"
payload = {
"owner_id": -212094963,
"from_group": 1,
"message": comments,
"access_token": token,
"v": 5.131,
"attachments": f"photo{owner_id}_{media_id}"
}
response = requests.post(url, params=payload)
response.raise_for_status()
check_api_response(response.json())
def main():
load_dotenv()
vk_token = os.getenv("VK_ACCESS_TOKEN")
try:
filename, comments = fetch_random_comic()
server_link = get_server_link(vk_token)
server_response = upload_img_to_server(filename, server_link)
uploaded_img = server_response["photo"]
server_num = server_response["server"]
server_hash = server_response["hash"]
vk_response = upload_img_to_group(
vk_token,
uploaded_img,
server_num,
server_hash)
group_owner_id = vk_response["response"][0]["owner_id"]
media_id = vk_response["response"][0]["id"]
publish_comic(
vk_token,
comments,
group_owner_id,
media_id)
except requests.HTTPError as err:
print(err)
except requests.ConnectionError as err:
print("Connection Error. Check Internet connection.\n", str(err))
except OSError as err:
print("Error: %s - %s." % (err.filename, err.strerror))
finally:
os.remove(f"./{filename}")
if __name__ == "__main__":
main()
| 3.09375 | 3 |
fitbox/consultas/admin.py | ravellys/fitbox | 0 | 12791967 | # Register your models here.
from django.contrib.admin import register, ModelAdmin
from fitbox.consultas.models import Consulta
@register(Consulta)
class ConsultaAdmin(ModelAdmin):
list_filter = ('paciente',)
prepopulated_fields = {'slug': ('descricao', )}
| 1.765625 | 2 |
naughty_string_validator/__init__.py | sachinpali146/naughty_string_validator_python | 0 | 12791968 | __author__ = '<NAME>'
__email__ = '<EMAIL>'
__version__ = '0.1.0'
from .naughty_string_validator import NaughtyStringValidator, SRC_DIRECTORY
| 1.210938 | 1 |
src/model/config.py | aphostrophy/simplexity-AI | 0 | 12791969 | <filename>src/model/config.py<gh_stars>0
from src.constant import ShapeConstant
class Config:
"""
Class representation for configuration needed in game
[ATTRIBUTES]
row: int -> boards configuration row shape
col: int -> boards configuration column shape
game_type: int (Look at GameConstant for available type) -> game configuration for game type,
could be bot vs bot, player vs bot, and player vs player
player_choice: int -> Could be 0 or 1 (only needed for player vs bot)
thinking_time: float -> Maximal time for bot to think (only needed for player vs bot or bot vs bot)
is_dump: bool -> is model loaded from bin file
"""
def __init__(
self,
row: int,
col: int,
game_type: int,
player_choice: int,
is_dump: bool,
thinking_time: float,
):
self.row = row
self.col = col
self.is_dump = is_dump
n_quota = row * col / 2
self.quota = [
{
ShapeConstant.CROSS: n_quota // 2,
ShapeConstant.CIRCLE: n_quota - (n_quota // 2),
},
{
ShapeConstant.CROSS: n_quota - (n_quota // 2),
ShapeConstant.CIRCLE: n_quota // 2,
},
]
self.game_type = game_type
self.player_choice = player_choice # 0 or 1
if self.player_choice == None:
self.player_choice = -1
self.thinking_time = thinking_time
def __str__(self):
ret = '[Configuration]\n'
ret += f'cow: {self.row}\n'
ret += f'rol: {self.col}\n'
ret += f'is_dump: {self.is_dump}\n'
ret += f'game_type: {self.game_type}\n'
ret += f'player_choice: {self.player_choice}\n'
ret += f'thinking_time: {self.thinking_time}\n'
return ret | 2.921875 | 3 |
api/listings.py | derKiez/kiezBackend | 0 | 12791970 | <filename>api/listings.py
import datetime
from bson import ObjectId
from flask import Response, request
from utils import json_encode
from flask.views import MethodView
from models.listings import Listing, ListingComment
from auth import authorize
class ListingsView(MethodView):
@authorize
def get(self):
zipcode = request.user.zipcode
limit = request.args.get("limit", 20)
offset = request.args.get("offset", 0)
if not zipcode:
return Response(status=400)
listings = Listing.q.filter({"zipcode": zipcode})\
.skip(offset)\
.limit(limit)\
.sort("created_at", -1).all()
listings = list(listings)
has_more = len(listings) >= 20
offset = None
if listings:
offset = listings[-1]._id
meta = {"next_offset": offset, "has_more": has_more}
response_body = {"listings": [i.serialize() for i in listings],
"meta": meta}
return Response(json_encode(response_body))
@authorize
def post(self):
user = request.user
data = request.json
text = data.get("text")
owner = request.user.serialize()
zipcode = user.zipcode
listing = Listing(text=text,
owner=owner,
zipcode=zipcode)
listing.save()
return Response(status=201)
class *CommentListView(MethodView):
@authorize
def get(self, listing_id):
listing = Listing.q.get(_id=ObjectId(listing_id))
limit = request.args.get("limit", 20)
offset = request.args.get("offset", 0)
if not listing:
return Response(status=404)
listing_comments = ListingComment.q.filter(
{"listing.id": ObjectId(listing_id)})\
.skip(offset)\
.sort("-created_at")\
.limit(limit)\
.all()
comments = list(listing_comments)
has_more = len(comments) >= 20
offset = None
if comments:
offset = comments[-1]._id
meta = {"next_offset": offset, "has_more": has_more}
response_body = {"comments": [i.serialize() for i in comments],
"meta": meta}
return Response(json_encode(response_body))
@authorize
def post(self, listing_id):
listing = Listing.q.get(_id=ObjectId(listing_id))
if not listing:
return Response(status=404)
data = request.json
text = data.get("text")
is_private = data.get("is_private")
parent = data.get("parent")
owner = request.user.serialize()
comment = ListingComment(text=text,
parent=parent,
listing=listing.serialize(),
owner=owner)
comment.save()
return Response(status=201) | 2.53125 | 3 |
leetcode/e_374.py | mmore21/competitive | 0 | 12791971 | <reponame>mmore21/competitive<filename>leetcode/e_374.py
"""
Problem: 374 - Guess Number Higher or Lower
Difficulty: Easy
URL: https://leetcode.com/problems/guess-number-higher-or-lower/
"""
class Solution:
def guessNumber(self, n: int) -> int:
lo = 0
hi = n
while lo <= hi:
mid = (hi + lo) // 2
res = guess(mid)
if res == 0:
return mid
elif res > 0:
lo = mid + 1
else:
hi = mid - 1
return -1 | 3.28125 | 3 |
lexer.py | billyeatcookies/Avocado | 1 | 12791972 | from tokens import Token, TokenType
whitespace = " \n\t"
digits = "0123456789"
class Lexer:
def __init__(self, code):
self.source = code + '\n'
self.cur_char = None
self.cur_pos = -1
self.advance()
def advance(self, pos=1):
self.cur_pos += pos
try:
self.cur_char = self.source[self.cur_pos]
except:
self.cur_char = None
def peek(self):
try:
return self.source[self.cur_pos + 1]
except:
return None
# def advance(self):
# try:
# self.cur_char = next(self.text)
# except StopIteration:
# self.cur_char = None
def generate_tokens(self):
while self.cur_char is not None:
if self.cur_char in whitespace:
self.advance()
elif self.cur_char == "." or self.cur_char.isdigit():
yield self.generate_number()
elif self.cur_char == "+":
self.advance()
yield Token(TokenType.plus_token)
elif self.cur_char == "-":
self.advance()
yield Token(TokenType.minus_token)
elif self.cur_char == "%":
self.advance()
yield Token(TokenType.percent_token)
elif self.cur_char == "*":
if self.peek() == "*":
self.advance(2)
yield Token(TokenType.star_star_token)
else:
self.advance()
yield Token(TokenType.star_token)
elif self.cur_char == "/":
if self.peek() == "/":
self.advance(2)
yield Token(TokenType.slash_slash_token)
else:
self.advance()
yield Token(TokenType.slash_token)
elif self.cur_char == "(":
self.advance()
yield Token(TokenType.left_parentheses_token)
elif self.cur_char == ")":
self.advance()
yield Token(TokenType.right_parentheses_token)
elif self.cur_char == "%":
self.advance()
yield Token(TokenType.percent_token)
else:
raise Exception(f"Illegal character '{self.cur_char}'")
def generate_number(self):
decimal_point_count = 0
number_str = self.cur_char
self.advance()
while self.cur_char is not None and (self.cur_char == "." or self.cur_char.isdigit()):
if self.cur_char == ".":
decimal_point_count += 1
if decimal_point_count > 1:
break
number_str += self.cur_char
self.advance()
if number_str.startswith("."):
number_str = '0' + number_str
if number_str.endswith("."):
number_str += '0'
return Token(TokenType.number_token, float(number_str))
# 1 + 2 * 3
#
# +
# / \
# a *
# / \
# b c
# (1 + 2) * 3
#
# *
# / \
# + c
# / \
# a b
| 3.5 | 4 |
clear.py | tanaka-yoshi10/desk-calendar | 0 | 12791973 | #!/usr/bin/python3
import sys
import os
libdir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'epd')
if os.path.exists(libdir):
sys.path.append(libdir)
import epd7in5_V2
epd = epd7in5_V2.EPD()
epd.init()
epd.Clear()
epd.sleep()
print("e-Paper clear & sleep done.") | 1.953125 | 2 |
modules/SIGA/formats/compressed/fm_gzip.py | naaya17/carpe | 56 | 12791974 | <reponame>naaya17/carpe
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild
from pkg_resources import parse_version
from modules.SIGA.kaitaistruct import __version__ as ks_version, KaitaiStruct, KaitaiStream, BytesIO
from enum import Enum
if parse_version(ks_version) < parse_version('0.7'):
raise Exception("Incompatible Kaitai Struct Python API: 0.7 or later is required, but you have %s" % (ks_version))
class fm_GZip(KaitaiStruct):
class EnumCompression(Enum):
stored = 0
compressed = 1
packed = 2
lzhed = 3
reserved_4 = 4
reserved_5 = 5
reserved_6 = 6
reserved_7 = 7
deflate = 8
class EnumOs(Enum):
fat_filesystem = 0
amiga = 1
vms = 2
unix = 3
vm_cms = 4
atari_tos = 5
hpfs_filesystem = 6
macintosh = 7
z_system = 8
cpm = 9
tops_20 = 10
ntfs_filesystem = 11
qdos = 12
acorn_riscos = 13
unknown = 255
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.header = self._root.GzipHeader(self._io, self, self._root)
self.compressed = self._io.read_bytes(((self._io.size() - self._io.pos()) - 8))
self.crc32 = self._io.read_u4le()
self.uncompressed_sized = self._io.read_u4le()
class GzipHeader(KaitaiStruct):
def __init__(self, _io, _parent=None, _root=None):
self._io = _io
self._parent = _parent
self._root = _root if _root else self
self._read()
def _read(self):
self.magic = self._io.read_bytes(2)
self.compression_method = self._root.EnumCompression(self._io.read_u1())
self.flag_reserved_2bits = self._io.read_bits_int(2)
self.flag_encrypted = self._io.read_bits_int(1) != 0
self.flag_comment = self._io.read_bits_int(1) != 0
self.flag_name = self._io.read_bits_int(1) != 0
self.flag_extra = self._io.read_bits_int(1) != 0
self.flag_continuation = self._io.read_bits_int(1) != 0
self.flag_ascii_text = self._io.read_bits_int(1) != 0
self._io.align_to_byte()
self.modification_time = self._io.read_u4le()
self.extra_flags = self._io.read_u1()
self.operating_system = self._root.EnumOs(self._io.read_u1())
if self.flag_continuation == True:
self.part_number = self._io.read_u2le()
if self.flag_extra == True:
self.extra_len = self._io.read_u2le()
if self.flag_extra == True:
self.extra_bytes = self._io.read_bytes(self.extra_len)
if self.flag_name == True:
self.original_file_name = (self._io.read_bytes_term(0, False, True, True)).decode(u"EUC-KR")
if self.flag_encrypted == True:
self.encryption_header = self._io.read_bytes(12)
| 1.992188 | 2 |
src/CIL.py | Tigre-Buti/cool-compiler-2020 | 0 | 12791975 | class CILObject:
pass
class CILInstructionNode:
def __init__(self,destination=None, params=[]):
self.destination=destination
self.params=params
def instructionPrint(self):
print(str(type(self))+" "+str(self.destination)+"<-"+str(self.params))
class CILTypeCheck(CILInstructionNode): #Devuelve True si el tipo es correcto, se le pasa una variable y una variable con string
pass
class CILBinaryOperator(CILInstructionNode):
pass
class CILAritmetic(CILBinaryOperator):
pass
class CILComparison(CILBinaryOperator):
pass
class CILPlus(CILAritmetic):
pass
class CILMinus(CILAritmetic):
pass
class CILMult(CILAritmetic):
pass
class CILDiv(CILAritmetic):
pass
class CILLesser(CILComparison):
pass
class CILLesserEqual(CILComparison):
pass
class CILEqual(CILComparison):
pass
class CILDifferent(CILComparison):
pass
class CILLabel(CILInstructionNode):
pass
class CILConditionalJump(CILInstructionNode):
pass
class CILJump(CILInstructionNode):
pass
class CILUnaryOperator(CILInstructionNode):
pass
class CILNot(CILUnaryOperator):
pass
class CILIntComplement(CILUnaryOperator):
pass
class CILComplement(CILUnaryOperator):
pass
class CILIsVoid(CILUnaryOperator):
pass
class CILAssign(CILUnaryOperator):
pass
class CILMemory(CILInstructionNode):
pass
class CILAllocate(CILMemory):
pass
class CILMethodInstruction(CILInstructionNode):
pass
class CILCall(CILMethodInstruction):
pass
class CILVirtualCall(CILMethodInstruction):
pass
class CILArgument(CILMethodInstruction):
pass
class CILReturn(CILMethodInstruction):
pass
class CILStringInstruction(CILInstructionNode):
pass
class CILStringLoad(CILStringInstruction):
pass
class CILStringLenght(CILStringInstruction):
pass
class CILStringConcat(CILStringInstruction):
pass
class CILStringSubstring(CILStringInstruction):
pass
class CILStringEqual(CILStringInstruction):
pass
class CILIOInstruction(CILInstructionNode):
pass
class CILOutString(CILIOInstruction):
pass
class CILOutInt(CILIOInstruction):
pass
class CILInString(CILIOInstruction):
pass
class CILInInt(CILIOInstruction):
pass
class CILAbort(CILInstructionNode):
pass
class CILCopy(CILInstructionNode):
pass
class CILClassMethod:
def __init__(self,localname,globalname):
self.localname=localname
self.globalname=globalname
class CILAttribute:
def __init__(self,name, attributeType="Object"):
self.name=name
self.attributeType=attributeType
class CILClass:
def __init__(self,name,listaAtributos=[], listaMetodos=[],parent=None):
self.name=name
self.parent=parent
self.listaAtributos=listaAtributos
self.listaMetodos=listaMetodos
class CILDataDeclaration:
def __init__(self,nombre:str, valorString:str):
self.nombre=nombre
self.valorString=valorString
class CILGlobalMethod:
def __init__(self,nombre, params=[], locals=[], intrucciones=[], originclass="Object",comments="None"):
self.nombre=nombre
self.params=params
self.locals=locals
self.intrucciones=intrucciones
self.originclass=originclass
self.comments=comments
class CILProgram:
def __init__(self,Types=[],Data=[],Methods=[]):
self.Types=Types
self.Data=Data
self.Methods=Methods | 2.6875 | 3 |
input.py | aidan-clyens/Simple_Digit_Recognition | 0 | 12791976 | from trainer import Trainer
import os
import sys
if __name__ == '__main__':
# Create a Trainer object
contour_area_threshhold = 60
crop_width = 50
crop_height = 50
crop_margin = 5
trainer = Trainer(contour_area_threshhold, crop_width, crop_height, crop_margin)
# User must enter at least one argument, if not then exit
if len(sys.argv) < 2:
print "Enter file name: python", sys.argv[0], "filename"
print "Enter python input.py --help for more commands"
exit()
# User enters the 'help' argument
if sys.argv[1] == "--help":
print "Usage: python input.py --command OR python input.py filename"
print "Commands:"
print "--g : generate new training data files"
exit()
# User enters the 'generate' argument
if sys.argv[1] == "--g":
print "Creating new training data files."
trainer.create_training_data()
exit()
# User enters a file name as an argument
input_file = sys.argv[1]
if not os.path.exists(input_file):
print input_file, "is not a valid file name."
exit()
# Create training data files if they have not been already created
if not os.path.exists(trainer.train_data_file) or not os.path.exists(trainer.train_labels_file):
print "Creating new training data files."
trainer.create_training_data()
# Load training data files into Numpy arrays
train_data, train_labels = trainer.load_training_data()
# Load a test image and convert it into a Numpy array
test_data = trainer.create_test_image(input_file)
# Use the training data and test image to train the algorithm and predict the drawn digits
results = trainer.knn_train(train_data, train_labels, test_data)
# Show the resulting test image with the results printed on top
trainer.show_result_image(results)
| 3.40625 | 3 |
ioc_scanner_test.py | BlackSquirrelz/ioc_detektor | 0 | 12791977 | <reponame>BlackSquirrelz/ioc_detektor
#!/usr/bin/venv python3
# -*- coding: utf-8 -*-
# ioc_scanner_test.py
# Author: BlackSquirrelz
# Date: 2021-03-10
# Description: Script to get IP Addresses from Files, and compares them to known IOCs.
# Unit Testing for IOC Scanner.
# Import Statements
from unittest import TestCase, main
import ioc_scanner as iocs
from os import path
class IOCSTest(TestCase):
"""
IOC Processor Tests
"""
def test_get_ip_function(self):
test_file = 'test_directory/test_2/ABC.log'
result = iocs.get_ip(test_file)
self.assertIsInstance(result, dict, "Dictionary requirement not met.")
def test_default_ioc_directory(self):
self.assertTrue(path.exists('iocs/ioc_hashes.txt'), "Default Hash IOC is empty.")
self.assertTrue(path.exists('iocs/ioc_ip.txt'), "Default IP IOC is empty.")
self.assertTrue(path.exists('iocs/ioc_regex.txt'), "Default REGEX IOC is empty.")
self.assertTrue(path.exists('iocs/ioc_shells.txt'), "Default SHELLS IOC is empty.")
def test_generic_regex_function(self):
test_file ='test_directory/test_2/ABC.log'
default_regex_file = 'iocs/ioc_regex.txt'
result = iocs.generic_regex(default_regex_file, test_file)
self.assertIsInstance(result, dict, "Dictionary requirement not met.")
| 2.796875 | 3 |
loginpass/azure.py | kairichard/loginpass | 0 | 12791978 | <filename>loginpass/azure.py<gh_stars>0
"""
loginpass.azure
~~~~~~~~~~~~~~~
Loginpass Backend of Azure AD.
:copyright: (c) 2018 by <NAME>
:license: BSD, see LICENSE for more details.
"""
from ._core import UserInfo, OAuthBackend, parse_id_token
_BASE_URL = 'https://login.microsoftonline.com/'
def create_azure_backend(name, tenant, version=1, claims_options=None):
if version == 1:
authorize_url = '{}{}/oauth2/authorize'.format(_BASE_URL, tenant)
token_url = '{}{}/oauth2/token'.format(_BASE_URL, tenant)
issuer_url = 'https://sts.windows.net/{}/'.format(tenant)
if claims_options is None:
claims_options = {
'iss': {
'values': [issuer_url]
}
}
elif version == 2:
authorize_url = '{}{}/oauth2/v2.0/authorize'.format(_BASE_URL, tenant)
token_url = '{}{}/oauth2/v2.0/token'.format(_BASE_URL, tenant)
issuer_url = '{}{}/v2.0'.format(_BASE_URL, tenant)
if claims_options is None:
def validate_iss(claims, value):
iss = 'https://login.microsoftonline.com/{}/v2.0'.format(claims['tid'])
return iss == value
claims_options = {
'iss': {
'essential': True,
'validate': validate_iss,
}
}
else:
raise ValueError('Invalid version')
class AzureAD(OAuthBackend):
OAUTH_TYPE = '2.0,oidc'
OAUTH_NAME = name
OAUTH_CONFIG = {
'api_base_url': 'graph.microsoft.com',
'access_token_url': token_url,
'authorize_url': authorize_url,
'client_kwargs': {'scope': 'openid email profile'},
}
JWK_SET_URL = '{}{}/discovery/keys'.format(_BASE_URL, tenant)
def profile(self, **kwargs):
url = '{}{}/openid/userinfo'.format(_BASE_URL, tenant)
resp = self.get(url, **kwargs)
resp.raise_for_status()
return UserInfo(**resp.json())
def parse_openid(self, token, nonce=None):
return parse_id_token(
self, token['id_token'], claims_options,
token.get('access_token'), nonce
)
class AzureADv2(AzureAD):
JWK_SET_URL = '{}{}/discovery/v2.0/keys'.format(_BASE_URL, tenant)
def profile(self, **kwargs):
return self.parse_openid(**kwargs)
if version == 2:
return AzureADv2
else:
return AzureAD
Azure = create_azure_backend('azure', 'common')
| 2.015625 | 2 |
pythonfile/theoretic_graphs.py | penguinoneshaw/MPhysProject | 0 | 12791979 | <gh_stars>0
#!/usr/bin/env python3
from ctypes import cdll, c_double, CFUNCTYPE
import numpy as np
import seaborn
from pathlib import Path
import matplotlib
matplotlib.use("pgf")
pgf_with_pdflatex = {
"pgf.texsystem": "pdflatex",
"font.family": "serif", # use serif/main font for text elements
"text.usetex": True,
"errorbar.capsize": 0.5,
"pgf.preamble": [
r"\usepackage[utf8]{inputenc}",
r"\usepackage[T1]{fontenc}",
r"\usepackage{mathpazo}",
r"\usepackage[version-1-compatibility]{siunitx}"
]
}
matplotlib.rcParams.update(pgf_with_pdflatex)
from matplotlib import pyplot as plt
# import netCDF4
try:
lib = cdll.LoadLibrary("pythonfile/libProjectPython.dylib")
except OSError as e:
lib = cdll.LoadLibrary("pythonfile/libProjectPython.so")
lib.unesco_depth.argtypes = [c_double,c_double,c_double]
lib.unesco_depth.restype = c_double
lib.unesco_pressure.argtypes = [c_double,c_double,c_double]
lib.unesco_pressure.restype = c_double
lib.leroy_et_al.argtypes = [c_double,c_double,c_double]
lib.leroy_et_al.restype = c_double
lib.ideal_sound_channel.argtypes = [c_double,c_double,c_double,c_double,c_double]
lib.ideal_sound_channel.restype = c_double
depths = np.linspace(0,2000,5000,dtype=np.double)
pressures = np.linspace(0,1000,5000,dtype=np.double)
temps = np.linspace(0, 40, 100, dtype=np.double)
salinities = np.linspace(0, 40, 100, dtype=np.double)
ufunc_unesco = np.frompyfunc(lib.unesco_depth, 3, 1)
ufunc_leroy = np.frompyfunc(lib.leroy_et_al, 3, 1)
ufunc_ideal = np.frompyfunc(lib.ideal_sound_channel, 5, 1)
def plot_contours(ufunc, title, filename):
fig, plots = plt.subplots(2, 2, 'col', 'row', True, gridspec_kw={
'hspace': 0.3, 'bottom': 0.08, 'top': 0.92}, figsize=(5,5))
t, d = np.meshgrid(temps, depths)
cp = plots[0][0].contour(t, d, ufunc(d,t, 35))
plt.clabel(cp, fmt="%d", rightside_up=False)
plots[0][0].set_ylim(2000, 0)
plots[0][0].set_ylabel("Depth (m)")
plots[0][0].set_xlabel(r"Temperature (\si{\degreeCelsius})")
s, d = np.meshgrid(salinities, depths)
cp = plots[0][1].contour(s, d, ufunc(d, 10, s))
plt.clabel(cp, fmt="%d", rightside_up=False)
plots[0][1].set_ylim(2000, 0)
plots[0][1].set_ylabel("Depth (m)")
plots[0][1].set_xlabel("Salinity (ppt)")
t,s = np.meshgrid(temps, salinities)
cp = plots[1][0].contour(t,s, ufunc(1000, t, s))
plt.clabel(cp, fmt="%d")
plots[1][0].set_xlabel(r"Temperature (\si{\degreeCelsius})")
plots[1][0].set_ylabel("Salinity (ppt)")
fig.suptitle(title)
plots[0][0].grid()
plots[0][1].grid()
plots[1][0].grid()
fig.delaxes(plots[1][1])
fig.savefig(filename)
plot_contours(ufunc_unesco, "UNESCO Equation (Chen and Millero 1995)", Path("final_output/figures/unesco.pdf"))
plot_contours(ufunc_leroy, "Leroy et al. 2008", Path("final_output/figures/leroy.pdf"))
plt.figure()
plt.plot(1000*ufunc_ideal(depths, 1160, 1.3, 1.45, 1.14e-3), depths)
plt.ylim(2000, 0)
plt.xlabel(r"Speed of Sound (\si{\meter\per\second})")
plt.ylabel(r"Depth (\si{\meter})")
plt.savefig(Path("final_output/figures/ideal.pdf")) | 1.992188 | 2 |
helpers/alphanumeric.py | danielhenrymantilla/shellcode-factory | 34 | 12791980 | <filename>helpers/alphanumeric.py<gh_stars>10-100
from assembly import Assembly
# String of forbidden chars
forbidden_chars = ""
class Utils:
verbose = False # Is debug printing activated?
@staticmethod
def none(*args): return None
@staticmethod
def debug(*ss):
if Utils.verbose:
for s in ss: print s
@staticmethod
def offset_split_as_valids(offset):
"""
Returns x, y, z verifying that y and z are valid bytes and that
2 * (x * 0x100 + y) + z = offset + x + (x ? 4 : 0)
"""
hundreds = 0
# 4 = Assembly()("inc %esp; pop %ecx; push %ecx; dec %esp").len
incpoppushdec = 4
for hundreds in range(0x100):
if hundreds == 1: offset += incpoppushdec
for once in Xor.valid_bytes:
for twice in Xor.valid_bytes:
if offset == \
2*(hundreds * 0x100 + twice) + once:
return once, twice, hundreds
offset += 1
assert(False)
@staticmethod
def to_hex_wordff(bytes, arch = 32):
"""
Converts a series of bytes into its integer representation,
but replacing the byte 0xff by a valid one
"""
assert(len(bytes) <= arch / 8)
rev_chars = \
((chr(i) if i != 0xff else Xor.zero) for i in bytes[::-1])
return "$0x" + "".join(c.encode("hex") for c in rev_chars)
class Xor:
@staticmethod
def of(*args):
""" xor operator with arbitrary arity """
acc = 0
for arg in args: acc ^= arg
return acc
# from functools import reduce; from operator import xor; \
# of = lambda *args: reduce(xor, args, 0)
# String of valid chars
import string;\
valid_chars = \
(string.digits + string.ascii_letters).translate(None, forbidden_chars)
# One valid char will represent 0xff
zero = valid_chars[0]
# List of valid bytes
valid_bytes = [ord(c) for c in valid_chars]
# List of validff bytes (byte 0xff added for xor completude)
valid_bytesff = [ord(c) for c in valid_chars.replace(zero, "\xff")]
# Dictionary of: valid bytes split as tuples of valid bytes
dups = {}
for x in valid_bytes:
for y in valid_bytes:
if (x ^ y in valid_bytes):
dups[x ^ y] = [x, y]
# Dictionary of: bytes split as tuples of a validff byte and valid bytes
splits = {}
splits[0xff] = [0xff, valid_bytesff[1], valid_bytesff[1]]
for z in valid_bytes: splits[z] = [z]
splits[ord(zero)] = [valid_bytesff[1], valid_bytesff[1], ord(zero)]
for x in valid_bytesff:
for z in valid_bytes:
if not (x ^ z in splits): splits[x ^ z] = [x, z]
for x in valid_bytesff:
for y in valid_bytes:
for z in valid_bytes:
if not (x ^ y ^ z in splits):
splits[x ^ y ^ z] = [x, y, z]
@staticmethod
def display():
for i in range(len(Xor.splits)):
print hex(i) + " = " + \
" ^ ".join(hex(x) for x in Xor.splits[i])
@staticmethod
def split(word):
"""
Input = word : byte array
Output = words : (byte array) array, verifying that
for j in range(len(word)):
word[j] == Xor.of(words[i][j] for i in range(words_nb))
"""
Utils.debug("Debug(split)", "got " + \
Utils.to_hex_wordff(word), word)
words_nb = max(len(Xor.splits[x]) for x in word)
words = [[] for i in range(words_nb)]
for byte in word:
i = 0
for x in Xor.splits[byte]:
words[i].append(x)
i += 1
while (i < words_nb):
x1, x2 = Xor.dups[words[i - 1][-1]]
words[i - 1][-1] = x1
words[i].append(x2)
i += 1
Utils.debug("Debug(split)", "returning", words)
return words
class Alphanumeric(Assembly):
eax, ecx, edx, ebx, esp, ebp, esi, edi = "", "", "", "", "", "", "", ""
word_size = 2
dword_size = 4
qword_size = 8
int_size = 0
def prologue(self):
self.macro \
("pmov")(lambda src, dst: \
Utils.none(self.push(src), \
self.popl(dst) ))
@self.macro()
def zero_eax():
word = "$0x" + Xor.zero.encode("hex") * 4
self.pmov(word, "%eax")
self.xorl(word, "%eax")
@self.macro()
def set_regs(eax="%eax", ecx="%ecx", edx="%edx", ebx="%ebx",\
ebp="%ebp", esi="%esi", edi="%edi", buried="%eax"):
self.push(eax)
self.push(ecx)
self.push(edx)
self.push(ebx)
self.push(buried)
self.push(ebp)
self.push(esi)
self.push(edi)
self.popa()
@self.macro()
def rep_add(n, reg):
for i in range(abs(n)):
self("inc" if n >= 0 else "dec", reg)
@self.macro()
def pop_eip(reg):
self.rep_add(-4, "%esp")
self.popl(reg)
@self.macro()
def init_regs():
self.pop_eip("%ecx")
self.zero_eax()
self.decl("%eax")
self.pmov("%eax", "%edx")
self.xorb("$0x33", "%al")
self.set_regs( eax = "%edx", ebx = "%edx", \
ecx = "%edx", edx = "%eax", \
esi = "%eax", edi = "%eax", \
ebp = "%ecx" )
self.incl("%ebx")
self.rep_add(3, "%edx")
@self.macro()
def popl_esp (aux_reg = "%eax"):
self.pmov("%esp", aux_reg)
self.xorl("0x34(%esp, %esi)", aux_reg)
self.pmov(aux_reg, aux_reg)
self.xorl("0x30(%esp, %esi)", "%esp")
self.init_regs()
self.pushl("%esp")
self.incl("%esp")
self.popl("%ecx")
self.rep_add(2, "%ecx")
self.pushl("%ecx")
self.decl("%esp")
self.popl_esp(aux_reg = "%ecx")
self.pmov("%eax", "%ecx")
def push_sc(self, sc):
@self.macro()
def pushff(word):
"""
Pushes the 4-bytes word using alphanumeric opcodes only
(Requires %esi = -0x34, %dl = 0x30 ^ 0xff = 0xcf
and %ecx = 0xffffffff)
"""
assert(len(word) == self.dword_size)
is_validff = True
for i in word:
is_validff = is_validff and \
(i in Xor.valid_bytesff)
assert(is_validff)
ff_nb = sum(int(i == 0xff) for i in word)
if ff_nb == 4:
self.pushl("%ecx")
return
if word[2:4] == [0xff, 0xff]:
self.pushw("%cx")
self.pushw("$0x" + Utils.to_hex_wordff(word)[7:])
for i in range(2):
if word[i] == 0xff:
self.xorb("%dl", \
"0x" + str(34 + i) + \
"(%esp, %esi)")
return
self.pushl(Utils.to_hex_wordff(word))
for i in range(4):
if word[i] == 0xff:
self.xorb("%dl", \
"0x" + str(34 + i) + "(%esp, %esi)")
return
sc += (-len(sc) % 4) * "G" # "G" -> "inc %edi"
Utils.debug(sc + " : " + str(len(sc)) + " bytes.")
all_words = []
for k in range(len(sc) / 4):
all_words.append( \
Xor.split([ord(c) for c in sc[4 * k:4 * (k + 1)]]))
Utils.debug(all_words)
for words in all_words[::-1]:
Utils.debug([Utils.to_hex_wordff(word) \
for word in words])
self.pushff(words[0])
self.popl("%eax")
for i in range(1, len(words)):
self.xorl(Utils.to_hex_wordff(words[i]), "%eax")
self.pushl("%eax")
def epilogue (self, offset=ord(Xor.zero), edx=ord(Xor.zero), hundreds=0):
@self.macro()
def set_edx (edx, hundreds):
self.push("$" + hex(edx))
if hundreds:
self.incl("%esp")
self.popl("%edx")
self.rep_add(hundreds, "%edx")
self.pushl("%edx")
self.decl("%esp")
self.popl("%edx")
self.push("%esp")
self.set_edx(edx, hundreds)
self.pmov("%ecx", "%eax")
self.xorb("$0x64", "%al")
self.xorb("%al", hex(offset) + "(%ebp, %edx, 2)")
self(".byte", "0x58")
def __init__(self, sc, arch):
self.autoassemble = False
if arch == 64:
self.eax, self.ecx, self.edx, self.ebx, \
self.esp, self.ebp, self.esi, self.edi = \
"%rax", "%rbx", "%rcx", "%rdx",\
"%rsp", "%rbp", "%rsi", "%rdi"
self.int_size = 8
print "'" + argv[0] + \
"' error: 64 bits support not implemented yet"
exit(1)
else:
self.eax, self.ecx, self.edx, self.ebx, \
self.esp, self.ebp, self.esi, self.edi = \
"%eax", "%ebx", "%ecx", "%edx",\
"%esp", "%ebp", "%esi", "%edi"
self.int_size = 4
self.prologue()
self.push_sc(sc)
base_code = self.code
self.epilogue()
self._assemble()
code_offset = self.len - 1
if Utils.verbose: print self
self.code = base_code
self.epilogue(*Utils.offset_split_as_valids(code_offset))
self._assemble()
if __name__ == "__main__":
if Utils.verbose: Xor.display()
from sys import argv
if len(argv) < 2 or len(argv) > 3:
print "Usage:\n\tpython", argv[0], "shellcode", "[arch]"
exit(1)
sc = "".join(c if c != "\\" and c != "x" else "" \
for c in argv[1]).decode("hex")
arch = int(argv[2]) if len(argv) == 3 else 32
code = Alphanumeric(sc, arch)
if Utils.verbose: print code
print "alphanumeric_shellcode ="
print code.ascii
print "Total: " + str(code.len) + " bytes."
| 2.8125 | 3 |
home/migrations/0012_auto_20220329_0825.py | SeanCodeMedia/codeMedia-django | 0 | 12791981 | <filename>home/migrations/0012_auto_20220329_0825.py
# Generated by Django 3.1.2 on 2022-03-29 12:25
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('home', '0011_home_degree_3_description'),
]
operations = [
migrations.AddField(
model_name='home',
name='role1',
field=models.CharField(default='Web Developer', max_length=100),
),
migrations.AddField(
model_name='home',
name='role2',
field=models.CharField(default='Application Engineer', max_length=100),
),
]
| 1.515625 | 2 |
app/article/views.py | mapan1984/blog | 0 | 12791982 | <gh_stars>0
from flask import flash, render_template, redirect, url_for, request, abort
from flask_login import current_user, login_required
from app import db, redis
from app.models import Article, Comment, Permission, Rating
from app.decorators import permission_required, author_required
from app.article import article as article_blueprint
from app.article.forms import EditArticleForm, ModifyArticleForm
from app.tasks import build_index, rebuild_index
@article_blueprint.route('/<title>', methods=['GET'])
def article(title):
""" 显示单篇文章 """
article = Article.query.filter_by(title=title).first_or_404()
# 相似文章
sim_articles = redis.zrevrange(article.title, 0, 4, withscores=True)
# 获取评分情况
ratings = article.ratings.all()
num_rating = len(ratings)
try:
avg_rating = sum(map(lambda rating: rating.value, ratings)) / num_rating
except ZeroDivisionError:
avg_rating = None
try:
current_user_rating = article.ratings.filter_by(user=current_user).first().value
except AttributeError:
current_user_rating = None
try:
current_user_id = current_user.id
except AttributeError:
current_user_id = None
return render_template('article/article.html', article=article,
sim_articles=sim_articles,
num_rating=num_rating, avg_rating=avg_rating,
current_user_rating=current_user_rating,
article_id=article.id, user_id=current_user_id)
@article_blueprint.route('/edit', methods=['GET', 'POST'])
@author_required
def edit():
form = EditArticleForm()
if form.validate_on_submit():
article = Article(
title=form.title.data,
# TODO: delete
name=form.title.data,
body=form.body.data,
author=current_user._get_current_object()
)
article.set_category(form.category.data)
article.add_tags(form.tags.data.strip().split(' '))
db.session.add(article)
db.session.commit()
build_index.delay(article.id)
return redirect(url_for('article.article', title=article.title))
return render_template('article/edit.html', form=form)
@article_blueprint.route('/delete/<title>')
@author_required
def delete(title):
article = Article.query.filter_by(title=title).first_or_404()
if current_user != article.author \
and not current_user.can(Permission.ADMINISTER):
abort(403)
else:
flash(article.delete())
return (redirect(request.args.get('next')
or url_for('user.user', username=current_user.username)))
@article_blueprint.route('/modify/<title>', methods=['GET', 'POST'])
@author_required
def modify(title):
article = Article.query.filter_by(title=title).first_or_404()
form = ModifyArticleForm(article=article)
if current_user != article.author \
and not current_user.can(Permission.ADMINISTER):
abort(403)
if form.validate_on_submit():
article.title = form.title.data
# TODO: delete
if article.name is None:
article.name = form.title.data
article.body = form.body.data
article.set_category(form.category.data)
article.delete_tags()
article.add_tags(form.tags.data.split(' '))
db.session.add(article)
db.session.commit()
rebuild_index.delay(article.id)
flash('您的文章已经成功修改')
return redirect(url_for('article.article', title=article.title))
form.title.data = article.title
form.category.data = article.category.id
form.tags.data = " ".join(tag.name for tag in article.tags)
form.body.data = article.body
return render_template('article/edit.html', form=form)
@article_blueprint.route('/rating', methods=['POST'])
@login_required
def rating():
user_id = request.json['user_id']
rating_value = request.json['rating_value']
article_id = request.json['article_id']
rating = Rating.query.filter_by(user_id=user_id, article_id=article_id).first()
if rating is None: # 新建
rating = Rating(value=rating_value, user_id=user_id, article_id=article_id)
else: # 更改
rating.value = rating_value
db.session.add(rating)
return "Rating done."
@article_blueprint.route('/comment', methods=['POST'])
@login_required
def comment():
user_id = request.form['user_id']
article_id = request.form['article_id']
comment_body = request.form['comment_body']
comment = Comment(body=comment_body, article_id=article_id, author_id=user_id)
db.session.add(comment)
flash("你的评论已提交")
return redirect(request.args.get('next') or url_for('main.index'))
@article_blueprint.route('/moderate/<comment_id>')
@login_required
@permission_required(Permission.MODERATE_COMMENTS)
def moderate(comment_id):
comment = Comment.query.get_or_404(comment_id)
if comment.article.author == current_user\
or comment.author == current_user\
or current_user.is_administrator:
db.session.delete(comment)
flash('评论已经删除')
return redirect(url_for('article.article', title=comment.article.title))
| 2.203125 | 2 |
catstuff/core_plugins/tasks/filelist/main.py | modora/catstuff | 0 | 12791983 | from catstuff import core, tools
from .config import mod_name, build
class Filelist(core.plugins.CSTask):
def __init__(self):
super().__init__(mod_name, build)
def main(self, path, max_depth=0, followlinks=False,
include=None, exclude=None, mode='whitelist',
safe_walk=True, **kwargs):
return tools.path.import_file_list(
path, max_depth=max_depth, followlinks=followlinks,
include=include, exclude=exclude, mode=mode,
safe_walk=safe_walk)
| 1.835938 | 2 |
yesno.py | wdymm/pymysql | 0 | 12791984 | <filename>yesno.py
print('yesno') | 1.03125 | 1 |
notebooks/_solutions/visualization_02_seaborn3.py | jonasvdd/DS-python-data-analysis | 65 | 12791985 | # Axes based
sns.violinplot(data=titanic, x="Pclass", y="Age",
hue="Sex", split=True,
palette="Set2")
sns.despine(left=True) | 2.234375 | 2 |
anthill/exec/model/api.py | anthill-services/anthill-exec | 0 | 12791986 |
import tornado.gen
from tornado.gen import sleep, Future
from tornado.httpclient import HTTPRequest, HTTPError
from tornado.simple_httpclient import SimpleAsyncHTTPClient
from .. import options as _opts
from anthill.common.internal import Internal, InternalError
from anthill.common.validate import validate_value
from anthill.common.server import Server
from . util import promise, PromiseContext, APIError
API_TIMEOUT = 5
# noinspection PyUnusedLocal
@promise
async def sleep(delay, handler=None):
await tornado.gen.sleep(delay)
# noinspection PyUnusedLocal
@promise
async def moment(handler=None):
await tornado.gen.moment
def log(message):
handler = PromiseContext.current
if handler:
handler.log(message)
class AdminAPI(object):
@promise
async def delete_accounts(self, accounts, gamespace_only=True, handler=None, *args, **kwargs):
application = Server.instance()
publisher = await application.acquire_publisher()
await publisher.publish("DEL", {
"gamespace": handler.env["gamespace"],
"accounts": accounts,
"gamespace_only": gamespace_only
})
# noinspection PyUnusedLocal
class WebAPI(object):
def __init__(self):
self.http_client = SimpleAsyncHTTPClient()
self.rc_cache = {}
@promise
async def get(self, url, headers=None, *args, **kwargs):
request = HTTPRequest(url=url, use_gzip=True, headers=headers)
existing_futures = self.rc_cache.get(url, None)
if existing_futures is not None:
future = Future()
existing_futures.append(future)
result = await future
return result
new_futures = []
self.rc_cache[url] = new_futures
try:
response = await self.http_client.fetch(request)
except HTTPError as e:
e = APIError(e.code, e.message)
for future in new_futures:
future.set_exception(e)
del self.rc_cache[url]
raise e
else:
body = response.body
for future in new_futures:
future.set_result(body)
del self.rc_cache[url]
return body
# noinspection PyUnusedLocal
class ConfigAPI(object):
@promise
async def get(self, handler=None, *ignored):
app_name = handler.env["application_name"]
app_version = handler.env["application_version"]
key = "config:" + str(app_name) + ":" + str(app_version)
cached = handler.get_cache(key)
if cached:
return cached
internal = Internal()
try:
info = await internal.request(
"config", "get_configuration",
timeout=API_TIMEOUT,
app_name=app_name,
app_version=app_version,
gamespace=handler.env["gamespace"])
except InternalError as e:
raise APIError(e.code, e.body)
handler.set_cache(key, info)
return info
# noinspection PyUnusedLocal
class StoreAPI(object):
@promise
async def get(self, name, handler=None, *ignored):
if not isinstance(name, str):
raise APIError(400, "name should be a string")
key = "store:" + str(name)
cached = handler.get_cache(key)
if cached:
return cached
internal = Internal()
try:
config = await internal.request(
"store", "get_store",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
name=name)
except InternalError as e:
raise APIError(e.code, e.body)
handler.set_cache(key, config)
return config
@promise
async def new_order(self, store, item, currency, amount, component, env=None, handler=None, *ignored):
internal = Internal()
try:
result = await internal.request(
"store", "new_order",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
account=handler.env["account"],
store=store,
item=item,
currency=currency,
amount=amount,
component=component,
env=env)
except InternalError as e:
raise APIError(e.code, e.body)
return result
@promise
async def update_order(self, order_id, handler=None, *ignored):
internal = Internal()
try:
result = await internal.request(
"store", "update_order",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
account=handler.env["account"],
order_id=order_id)
except InternalError as e:
raise APIError(e.code, e.body)
return result
@promise
async def update_orders(self, handler=None, *ignored):
internal = Internal()
try:
result = await internal.request(
"store", "update_orders",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
account=handler.env["account"])
except InternalError as e:
raise APIError(e.code, e.body)
return result
# noinspection PyUnusedLocal
class ProfileAPI(object):
@promise
async def get(self, path="", handler=None, *ignored):
if not isinstance(path, str):
raise APIError(400, "Path should be a string")
internal = Internal()
try:
profile = await internal.request(
"profile", "get_my_profile",
timeout=API_TIMEOUT,
gamespace_id=handler.env["gamespace"],
account_id=handler.env["account"],
path=path)
except InternalError as e:
raise APIError(e.code, e.body)
return profile
@promise
async def update(self, profile=None, path="", merge=True, handler=None, *ignored):
if not isinstance(path, str):
raise APIError(400, "Path should be a string")
key = "profile:" + str(path)
if not profile:
profile = {}
internal = Internal()
try:
profile = await internal.request(
"profile", "update_profile",
timeout=API_TIMEOUT,
gamespace_id=handler.env["gamespace"],
account_id=handler.env["account"],
fields=profile,
path=path,
merge=merge)
except InternalError as e:
raise APIError(e.code, e.body)
handler.set_cache(key, profile)
return profile
@promise
async def query(self, query, limit=1000, handler=None, *ignored):
if not validate_value(query, "json_dict"):
raise APIError(400, "Query should be a JSON object")
internal = Internal()
try:
results = await internal.request(
"profile", "query_profiles",
timeout=API_TIMEOUT,
gamespace_id=handler.env["gamespace"],
query=query,
limit=limit)
except InternalError as e:
raise APIError(e.code, e.body)
return results
# noinspection PyUnusedLocal
class SocialAPI(object):
@promise
async def acquire_name(self, kind, name, handler=None, *ignored):
internal = Internal()
try:
profile = await internal.request(
"social", "acquire_name",
gamespace=handler.env["gamespace"],
account=handler.env["account"],
kind=kind,
name=name)
except InternalError as e:
raise APIError(e.code, e.body)
return profile
@promise
async def check_name(self, kind, name, handler=None, *ignored):
internal = Internal()
try:
account_id = await internal.request(
"social", "check_name",
gamespace=handler.env["gamespace"],
kind=kind,
name=name)
except InternalError as e:
raise APIError(e.code, e.body)
return account_id
@promise
async def release_name(self, kind, handler=None, *ignored):
internal = Internal()
try:
released = await internal.request(
"social", "release_name",
gamespace=handler.env["gamespace"],
account=handler.env["account"],
kind=kind)
except InternalError as e:
raise APIError(e.code, e.body)
return released
@promise
async def update_profile(self, group_id, profile=None, path=None, merge=True, handler=None, *ignored):
if path and not isinstance(path, (list, tuple)):
raise APIError(400, "Path should be a list/tuple")
internal = Internal()
try:
profile = await internal.request(
"social", "update_group_profile",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
group_id=group_id,
profile=profile,
path=path,
merge=merge)
except InternalError as e:
raise APIError(e.code, e.body)
return profile
@promise
async def update_group_profiles(self, group_profiles, path=None, merge=True, synced=False, handler=None, *ignored):
if not isinstance(group_profiles, dict):
raise APIError(400, "Group profiles should be a dict")
if path and not isinstance(path, (list, tuple)):
raise APIError(400, "Path should be a list/tuple")
internal = Internal()
try:
profile = await internal.request(
"social", "update_group_profiles",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
group_profiles=group_profiles,
path=path or [],
merge=merge,
synced=synced)
except InternalError as e:
raise APIError(e.code, e.body)
return profile
# noinspection PyUnusedLocal
class MessageAPI(object):
@promise
async def send_batch(self, sender, messages, authoritative=True, handler=None, *ignored):
internal = Internal()
try:
await internal.request(
"message", "send_batch",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
sender=sender,
messages=messages,
authoritative=authoritative)
except InternalError as e:
raise APIError(e.code, e.body)
return "OK"
# noinspection PyUnusedLocal
class PromoAPI(object):
@promise
async def use_code(self, key, handler=None, *ignored):
internal = Internal()
try:
result = await internal.request(
"promo", "use_code",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
account=handler.env["account"],
key=key)
except InternalError as e:
raise APIError(e.code, e.body)
try:
result = result["result"]
except KeyError:
raise APIError(500, "Response had no 'result' field.")
return result
class EventAPI(object):
@promise
async def update_event_profile(self, event_id, profile, path=None, merge=True, handler=None):
internal = Internal()
try:
events = await internal.request(
"event", "update_event_profile",
event_id=event_id,
profile=profile,
path=path,
merge=merge,
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
account=handler.env["account"])
except InternalError as e:
raise APIError(e.code, e.body)
return events
@promise
async def list(self, extra_start_time=0, extra_end_time=0, handler=None):
internal = Internal()
try:
events = await internal.request(
"event", "get_list",
timeout=API_TIMEOUT,
gamespace=handler.env["gamespace"],
account=handler.env["account"],
extra_start_time=extra_start_time,
extra_end_time=extra_end_time)
except InternalError as e:
raise APIError(e.code, e.body)
return events
class APIS(object):
config = ConfigAPI()
store = StoreAPI()
profile = ProfileAPI()
social = SocialAPI()
message = MessageAPI()
promo = PromoAPI()
web = WebAPI()
event = EventAPI()
admin = AdminAPI()
def expose(context, is_server=False):
expose_objects = {
"log": log,
"sleep": sleep,
"moment": moment,
"web": APIS.web,
"config": APIS.config,
"store": APIS.store,
"profile": APIS.profile,
"social": APIS.social,
"message": APIS.message,
"promo": APIS.promo,
"event": APIS.event
}
if is_server:
expose_objects.update({
"admin": APIS.admin
})
# define them as readonly
for name, callback in expose_objects.items():
context.Object.defineProperty(
context.glob, name, {'value': callback, 'writable': False})
| 2.203125 | 2 |
extract.py | lpmi-13/python-code-corpus | 0 | 12791987 | <gh_stars>0
from pymongo import MongoClient
import json
import sys
try:
client = MongoClient(host= ['localhost:27017'], serverSelectionTimeoutMS = 2000)
client.server_info()
db = client.ast
except:
print('mongo isn\'t currently running...please start it first')
sys.exit()
result_dict = {
"fors": [],
"ifs": [],
"lists": [],
"listcomps": [],
"dicts": [],
"dictcomps": [],
"functions": [],
}
def output_json(handle):
results = handle.find(
{}, {'_id': False }
).limit(25)
for result in results:
result_dict[result['type']].append(json.dumps(result))
output_json(db.fors)
output_json(db.ifs)
output_json(db.lists)
output_json(db.listcomps)
output_json(db.dicts)
output_json(db.dictcomps)
output_json(db.functions)
with open('results.json', 'a') as output_file:
output_file.write(json.dumps(result_dict))
| 2.5 | 2 |
SwitchTracer/cores/contrib/couriermiddlewares/status.py | IzayoiRin/VirtualVeyonST | 0 | 12791988 | <filename>SwitchTracer/cores/contrib/couriermiddlewares/status.py<gh_stars>0
# pack is on the passing way
ON_WAY = -1
# pack is passed successfully
SUCCEEDED = 0
# pack is going to start
PREPARED = 1
# pack passing timeout
TIMEOUT = 2
# pack passing refused
REFUSED = 3
# pack is destroyed
DESTROYED = 4
# unknown error with pack
UNKNOWN = 9
# info-level
INFO = 100
| 1.226563 | 1 |
move_xmls_p33.py | mcjczapiewski/work | 0 | 12791989 | <filename>move_xmls_p33.py<gh_stars>0
# -*- coding: utf-8 -*-
# import bibliotek
import os
import datetime
import shutil
from natsort import natsorted
from natsort import natsort_keygen
nkey = natsort_keygen()
byly = set()
stare_xml = set()
nowe_xml = set()
count = 1
# aktualna data i godzina
czasstart = datetime.datetime.now()
print("~~~~~~START~~~~~~\t" + str(czasstart).split(".")[0])
print(
"""\n\nUWAGA! W folderze z xmlami mogą pojawić się 4 pliki tekstowe:
- bledy
- podmienione
- brak_odpowiednika_dla_xmla
- brak_nowego_xmla_dla_operatu\n\n"""
)
tusaxml = input("Podaj ścieżkę do folderu z plikami xml: ")
tusaoperaty = input("Podaj ścieżkę do folderu z operatami: ")
for subdir, dirs, _ in os.walk(tusaoperaty):
dirs.sort(key=nkey)
operat = subdir
stare_xml.add(operat)
for subdir, dirs, files in os.walk(tusaxml):
dirs.sort(key=nkey)
for file in natsorted(files):
if file.endswith((".xml", ".XML")):
if os.path.splitext(file)[0] == os.path.basename(operat):
print(count)
count += 1
if not os.path.exists(os.path.join(operat, file)):
try:
shutil.copy(
os.path.join(subdir, file),
os.path.join(operat, file),
)
except:
with open(
os.path.join(tusaxml, "bledy.txt"), "a"
) as bledy:
bledy.write(
os.path.join(subdir, file)
+ "\tNie udało się skopiować.\n"
)
else:
try:
shutil.copy(
os.path.join(subdir, file),
os.path.join(operat, file),
)
with open(
os.path.join(tusaxml, "podmienione.txt"), "a"
) as bledy:
bledy.write(os.path.join(operat, file) + "\n")
except:
with open(
os.path.join(tusaxml, "bledy.txt"), "a"
) as bledy:
bledy.write(
os.path.join(subdir, file)
+ "\tNie udało się skopiować.\n"
)
byly.add(os.path.join(subdir, file))
nowe_xml.add(operat)
for subdir, dirs, files in os.walk(tusaxml):
dirs.sort(key=nkey)
for file in natsorted(files):
if file.upper().endswith(".XML"):
if os.path.join(subdir, file) not in byly:
with open(
os.path.join(tusaxml, "brak_odpowiednika_dla_xmla.txt"),
"a",
) as bledy:
bledy.write(os.path.join(subdir, file) + "\n")
for i in natsorted(stare_xml):
if i not in nowe_xml:
with open(
os.path.join(tusaxml, "brak_nowego_xmla_dla_operatu.txt"), "a"
) as bledy:
bledy.write(os.path.join(i) + "\n")
# czas trwania calego skryptu
czaskoniec = datetime.datetime.now()
roznicaczas = czaskoniec - czasstart
czastrwania = roznicaczas.total_seconds() / 60
print("\nCałość zajęła (minuty):")
print("%.2f" % czastrwania)
print("\n~~~~~~KONIEC~~~~~~\t" + str(czaskoniec).split(".")[0])
input("Wciśnij ENTER aby wyjść...")
| 2.546875 | 3 |
src/simcore_service_deployment_agent/app_state.py | mrnicegyu11/osparc-deployment-agent | 1 | 12791990 | from enum import IntEnum
class State(IntEnum):
STARTING = 0
RUNNING = 1
FAILED = 2
STOPPED = 3
PAUSED = 4
| 2.59375 | 3 |
users/urls.py | LeonardoCruzx/Projeto_rede_social | 0 | 12791991 | <filename>users/urls.py<gh_stars>0
from django.urls import path
from .views import *
app_name = 'users'
urlpatterns = [
path('pagina-inicial',pagina_inicial_usuario,name='pagina-inicial-usuario')
] | 1.671875 | 2 |
CodingBat/Warmup-1/makes10.py | arthxvr/coding--python | 0 | 12791992 | <reponame>arthxvr/coding--python
def makes10(a, b):
return (a == 10 or b == 10 or a + b == 10)
| 3.78125 | 4 |
sl_cutscenes/scenarios/scenario.py | AIS-Bonn/sl-cutscenes | 2 | 12791993 | """
Abstract class for defining scenarios
"""
import random
from typing import Tuple
import numpy as np
from copy import deepcopy
import torch
import stillleben as sl
import nimblephysics as nimble
from sl_cutscenes.room_models import RoomAssembler
from sl_cutscenes.objects.mesh_loader import MeshLoader
from sl_cutscenes.objects.object_loader import ObjectLoader
from sl_cutscenes.objects.decorator_loader import DecoratorLoader
from sl_cutscenes.lighting import get_lightmap
from sl_cutscenes.camera import Camera
import sl_cutscenes.utils.utils as utils
import sl_cutscenes.constants as CONSTANTS
from sl_cutscenes import object_info
class Scenario(object):
""" Abstract class for defining scenarios """
config = dict()
name = 'scenario'
def __init__(self, cfg, scene: sl.Scene, randomize=True):
self.device = cfg.device
self.viewer_mode = cfg.viewer
self.scene = scene
if randomize:
utils.randomize()
self.mesh_loader = MeshLoader()
self.object_loader = ObjectLoader(scenario_reset=True)
self.room_assembler = RoomAssembler(scene=self.scene)
self.decorator_loader = DecoratorLoader(scene=self.scene)
self.meshes_loaded, self.objects_loaded = False, False
self.z_offset = 0.
self.lights = cfg.lights
self.lightmap = cfg.lightmap if self.lights == 0 else None
if getattr(self, "allow_multiple_cameras", True):
self.n_cameras = cfg.cameras
else:
print(f"scenario '{self.name}' supports only 1 camera -> ignoring n_cameras...")
self.n_cameras = 1
self.coplanar_stereo = cfg.coplanar_stereo
self.coplanar_stereo_dist = cfg.coplanar_stereo_dist
self.cam_movement_complexity = cfg.cam_movement_complexity
self.sim_dt = cfg.sim_dt
self.cam_dt = cfg.cam_dt
self.physics_engine = cfg.physics_engine
self.nimble_debug = cfg.nimble_debug
self.reset_sim()
return
def reset_sim(self):
self.meshes_loaded, self.objects_loaded, self.cameras_loaded = False, False, False
if self.physics_engine == "nimble":
self.nimble_loaded = False
self.sim_t = 0
self.setup_scene()
self.setup_lighting()
self.setup_objects()
self.setup_cameras()
self.decorate_scene()
self.finalize_scene()
@property
def all_objects(self):
return self.object_loader.all_objects
@property
def static_objects(self):
return self.object_loader.static_objects
@property
def dynamic_objects(self):
return self.object_loader.dynamic_objects
def set_camera_look_at(self, pos, lookat):
self.scene.set_camera_look_at(position=pos, look_at=lookat)
def can_render(self):
raise NotImplementedError
def decorate_scene(self):
self.room_assembler.add_wall_furniture()
self.decorator_loader.decorate_scene(object_loader=self.object_loader)
return
def finalize_scene(self):
""" Scene setup stuff that has to be done after everything else """
for obj in self.static_objects:
obj.casts_shadows = False
def setup_scene(self):
""" Default setup_scene. Can be overriden from specific scenes """
_ = self.room_assembler.make_room()
def setup_lighting(self):
""" Default setup lighting. """
self.scene.ambient_light = torch.tensor([0.2, 0.2, 0.2])
if self.lightmap is not None:
self.scene.light_map = get_lightmap(self.lightmap)
self.scene.light_directions *= 0. # disable point lights
self.scene.manual_exposure = 5.0
else:
for i in range(self.lights):
# self.scene.choose_random_light_direction()
ori_angle = np.random.uniform(0, 360)
elev_angle = np.random.uniform(30, 90)
light_x = np.cos(ori_angle * np.pi / 180.) * np.cos(elev_angle * np.pi / 180.)
light_y = np.sin(ori_angle * np.pi / 180.) * np.cos(elev_angle * np.pi / 180.)
light_z = np.sin(elev_angle * np.pi / 180.)
light_direction = torch.tensor([-light_x, -light_y, -light_z])
self.scene.light_directions[i] = light_direction
light_color = torch.tensor([4.0, 4.0, 4.0]) + torch.rand(3)
light_color_normalized = 5. * light_color / torch.linalg.norm(light_color)
self.scene.light_colors[i] = light_color_normalized
self.scene.manual_exposure = 3.0
def get_separations(self):
# assert len(self.dynamic_objects) > 0, "Objects must be added to dynamic_objects before computing collisions"
self.scene.check_collisions()
separations = [obj.separation for obj in self.dynamic_objects if hasattr(obj, "separation")]
return separations
def is_there_collision(self):
separations = self.get_separations()
collision = True if np.sum(separations) < 0 else False
return collision
def load_meshes(self):
""" """
if self.meshes_loaded:
return
print("mesh setup...")
self.load_meshes_()
self.meshes_loaded = True
def load_meshes_(self):
"""
Scenario-specific logic
"""
raise NotImplementedError
def setup_objects(self):
""" """
if self.objects_loaded:
return
print("object setup...")
if not self.meshes_loaded:
self.load_meshes() # if objects have not been loaded yet, load them
self.setup_objects_()
self.objects_loaded = True
return
def setup_objects_(self):
"""
Scenario-specific logic
"""
raise NotImplementedError
def setup_cameras(self):
if self.cameras_loaded:
return
print("camera setup...")
self.cameras = []
self.camera_objs = []
cam_config = self.config["camera"]
base_lookat = cam_config["base_lookat"]
# pick default ori. angle and (n_cameras-1) other angles from a linspace of angles that are 5 degrees apart
default_ori_angle = cam_config["orientation_angle_default"]
cam_ori_angles = [0] + random.sample(np.linspace(0, 360, 72+1).tolist()[1:-1], k=self.n_cameras-1)
cam_ori_angles = [(angle + default_ori_angle) % 360 for angle in cam_ori_angles]
# TODO parameters 'orientation_angle_min/max' are not yet used!
for i, cam_ori_angle in enumerate(cam_ori_angles):
cam_elev_angle = random.uniform(cam_config["elevation_angle_min"], cam_config["elevation_angle_max"])
cam_dist = random.uniform(cam_config["distance_min"], cam_config["distance_max"])
cam_lookat = deepcopy(base_lookat)
cam_name = f"cam_{str(i).zfill(2)}"
cam_stereo_positions = ["left", "right"] if self.coplanar_stereo else ["mono"]
self.cameras.append(Camera(cam_name, self.cam_dt, cam_elev_angle, cam_ori_angle, cam_dist, cam_lookat,
self.coplanar_stereo_dist, cam_stereo_positions, self.cam_movement_complexity))
self.setup_cameras_() # e.g. scenario-specific height adjustment
self.setup_camera_objs()
self.cameras_loaded = True
def setup_camera_objs(self):
"""
Setting an object for each of the cameras.
- Viewer mode: A full mesh is displayed at the position and with the pose of the camera
- Normal mode: A tiny-dummy obj is place on the location of the camera to fill the occ-matrix cell
"""
camera_mesh = CONSTANTS.CAMERA_OBJ if self.viewer_mode else CONSTANTS.DUMMY_CAMERA_OBJ
for camera_id, camera in enumerate(self.cameras):
self.mesh_loader.load_meshes(camera_mesh)
camera_pos = camera.get_pos()
camera_info_mesh = self.mesh_loader.get_meshes()[-1]
self.camera_objs.append(self.add_object_to_scene(camera_info_mesh, is_static=True))
pose = torch.eye(4)
pose[:2, -1] = camera_pos[:2]
pose[2, -1] = camera_pos[-1] + self.camera_objs[-1].mesh.bbox.min[-1]
pose[:3, :3] = utils.get_rot_matrix(
yaw=torch.tensor(camera.ori_angle * np.pi / 180),
pitch=torch.tensor(-1 * camera.elev_angle * np.pi / 180),
roll=torch.tensor(0.)
)
self.camera_objs[-1].set_pose(pose)
self.scene.add_object(self.camera_objs[-1])
return
def setup_cameras_(self):
"""
Scenario-specific logic, e.g. height adjustment
"""
raise NotImplementedError
def simulate(self):
'''
Can be overwritten by scenario-specific logic
'''
self.sim_t += self.sim_dt
self.sim_step_()
def sim_step_(self):
'''
Just calls the appropriate simulator; assumes that all other things have been taken care of.
'''
if self.physics_engine == "physx":
self.scene.simulate(self.sim_dt)
elif self.physics_engine == "physx_manipulation_sim":
raise NotImplementedError # TODO implement for gripper sim
elif self.physics_engine == "nimble":
if not self.nimble_loaded:
self.setup_nimble_()
self.simulate_nimble_()
else:
raise ValueError(f"invalid physics_engine parameter: {self.physics_engine}")
def setup_nimble_(self):
'''
Creates a clone of the current stillleben scene for nimblephysics, enabling physics simulation there.
'''
print("initializing nimble scene from sl...")
# utils.dump_sl_scene_to_urdf(self.scene, "scene.urdf")
self.nimble_world = nimble.simulation.World()
self.nimble_world.setTimeStep(self.sim_dt)
positions, velocities = [], []
for obj in self.scene.objects:
obj_info = object_info.get_object_by_class_id(obj.mesh.class_index)
skel, pos, vel = utils.sl_object_to_nimble(obj, obj_info, debug_mode=self.nimble_debug)
self.nimble_world.addSkeleton(skel)
positions.extend(pos)
velocities.extend(vel)
self.nimble_states = [torch.cat(positions + velocities)]
self.nimble_loaded = True
def simulate_nimble_(self, action=None):
'''
Simulates a timestep in nimblephysics.
'''
# simulate timestep in nimble
if action is None:
action = torch.zeros(self.nimble_world.getNumDofs())
new_state = nimble.timestep(self.nimble_world, self.nimble_states[-1], action)
self.nimble_states.append(new_state)
self.nimble_world.setState(new_state)
# transfer object state back into the stillleben context
obj_pos, obj_vel = torch.chunk(new_state.clone(), 2)
obj_pos = torch.chunk(obj_pos, obj_pos.shape[0] // 6)
obj_vel = torch.chunk(obj_vel, obj_vel.shape[0] // 6)
for obj, pos, vel in zip(self.scene.objects, obj_pos, obj_vel):
obj_pose = obj.pose()
obj_rpy, obj_t = pos.split([3, 3])
obj_pose[:3, :3] = utils.get_mat_from_rpy(obj_rpy)
obj_pose[:3, 3] = obj_t
obj.set_pose(obj_pose)
angular_velocity, obj.linear_velocity = vel.split([3, 3])
obj.angular_velocity = angular_velocity.flip(0) # flip back from ZYX convention
def add_object_to_scene(self, obj_info_mesh: Tuple[object_info.ObjectInfo, sl.Mesh], is_static: bool, **obj_mod):
obj_info, obj_mesh = obj_info_mesh
obj = self.object_loader.create_object(obj_info, obj_mesh, is_static, **obj_mod)
self.scene.add_object(obj)
return obj
def remove_obj_from_scene(self, obj: sl.Object, decrement_ins_idx: bool=True):
self.scene.remove_object(obj)
self.object_loader.remove_object(obj.instance_index, decrement_ins_idx=decrement_ins_idx)
def update_object_height(self, cur_obj, objs=None, scales=None):
""" Updating an object z-position given a list of supporting objects"""
if objs is None:
objs = []
scales = [1.0] * len(objs) if scales is None else scales
assert len(objs) == len(scales), "provided non-matching scales for update_camera_height"
cur_obj_pose = cur_obj.pose()
z_pose = self.get_obj_z_offset(cur_obj)
for obj, scale in zip(objs, scales):
z_pose += self.get_obj_z_offset(obj) * scale
cur_obj_pose[2, -1] = z_pose
cur_obj.set_pose(cur_obj_pose)
return cur_obj
def update_camera_height(self, camera, objs=None, scales=None):
""" Updating the camera position, camera-object position and the look-at parameter"""
if objs is None:
objs = []
scales = [1.0] * len(objs) if scales is None else scales
assert len(objs) == len(scales), "provided non-matching scales for update_camera_height"
z_lookat = deepcopy(camera.start_base_lookat[-1])
for obj, scale in zip(objs, scales):
z_lookat += self.get_obj_z_offset(obj) * scale
camera.start_base_lookat[-1] = z_lookat
return camera
def get_obj_z_offset(self, obj):
""" Obtaining the z_offset (z-pos + height) for a given object"""
obj_pose = obj.pose()
z_offset = obj_pose[2, -1] + (obj.mesh.bbox.max[-1] - obj.mesh.bbox.min[-1]) / 2
return z_offset
def get_obj_offset(self, obj):
""" Obtaining the bbox boundaries (pos + size for x,y,z) for a given object"""
obj_pose = obj.pose()
offset_x, offset_y, offset_z = obj_pose[:3, -1] + obj.mesh.bbox.max
offset = torch.Tensor([-offset_x, -offset_y, offset_z])
return offset
| 2.265625 | 2 |
asgard/users/test/userstest.py | nicolas-van/asgard | 0 | 12791994 | <gh_stars>0
# -*- coding: utf-8 -*-
# Copyright (c) 2014, <NAME>
#
# Released under the MIT license
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
# Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
# AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from __future__ import unicode_literals, print_function, absolute_import
import unittest
import asgard.application as application
import asgard.users as users
import sqlalchemy as sa
app = application.Asgard(__name__)
app_users = app.register_plugin(users.UsersPlugin)
class DbTest(unittest.TestCase):
"""Class to extend to easily test code using the database."""
def setUp(self):
app_users.config["preferred_encryption"] = "werkzeug"
self.tmp_engine = app.engine
app.engine = sa.create_engine('sqlite:///:memory:')
app.metadata.create_all(app.engine)
app.__enter__()
self.trans = app.transaction()
self.trans.__enter__()
def tearDown(self):
self.trans.__exit__(None, None, None)
app.engine.dispose()
app.engine = self.tmp_engine
app.__exit__(None, None, None)
class UsersTest(DbTest):
def test_base(self):
app_users.UsersManager.i.create_user("<EMAIL>", "abc")
self.assertTrue(app_users.UsersManager.i.test_user("<EMAIL>", "abc"))
self.assertFalse(app_users.UsersManager.i.test_user("<EMAIL>", "xyz"))
def test_change_password(self):
id = app_users.UsersManager.i.create_user("<EMAIL>", "abc")
self.assertTrue(app_users.UsersManager.i.test_user("<EMAIL>", "abc"))
app_users.UsersManager.i.set_password(id, "xyz")
self.assertTrue(app_users.UsersManager.i.test_user("<EMAIL>", "xyz"))
self.assertFalse(app_users.UsersManager.i.test_user("<EMAIL>", "abc"))
def test_bcrypt_compatibility(self):
app_users.config["preferred_encryption"] = "bcrypt"
id = app_users.UsersManager.i.create_user("<EMAIL>", "abc")
hash_ = app_users.UsersManager.i.read_by_id(id, ["password_hash"])["password_hash"]
self.assertTrue(hash_.startswith("bcrypt"))
app_users.config["preferred_encryption"] = "werkzeug"
self.assertTrue(app_users.UsersManager.i.test_user("<EMAIL>", "abc"))
self.assertFalse(app_users.UsersManager.i.test_user("<EMAIL>", "xyz"))
app_users.UsersManager.i.set_password(id, "abc")
hash_ = app_users.UsersManager.i.read_by_id(id, ["password_hash"])["password_hash"]
self.assertTrue(hash_.startswith("werkzeug"))
self.assertTrue(app_users.UsersManager.i.test_user("<EMAIL>", "abc"))
self.assertFalse(app_users.UsersManager.i.test_user("<EMAIL>", "xyz"))
def test_unicode(self):
app_users.UsersManager.i.create_user("<EMAIL>", "abcéèçÔ")
self.assertTrue(app_users.UsersManager.i.test_user("<EMAIL>", "abcéèçÔ"))
self.assertFalse(app_users.UsersManager.i.test_user("<EMAIL>", "abcéèçÔx"))
def test_unicode_bcrypt(self):
app_users.config["preferred_encryption"] = "bcrypt"
app_users.UsersManager.i.create_user("<EMAIL>", "abcéèçÔ")
self.assertTrue(app_users.UsersManager.i.test_user("<EMAIL>", "abcéèçÔ"))
self.assertFalse(app_users.UsersManager.i.test_user("<EMAIL>", "abcéèçÔx"))
"""
# not run consistently, just used to tune the turns for pbkdf2
def test_time(self):
hash_ = app_users.UsersManager.i._encode_password("<PASSWORD>")
import time
start = time.time()
app_users.UsersManager.i._check_password("test", hash_)
end = time.time()
print(end - start)
"""
| 1.867188 | 2 |
examples/job-examples/TwitterSampledStreamerToKafka/TwitterSampledStreamerToKafka.py | prernaagarwal/cs6235Project | 3 | 12791995 | from edna.ingest.streaming import TwitterStreamingIngest
from edna.process import BaseProcess
from edna.emit import KafkaEmit
from edna.serializers.EmptySerializer import EmptyStringSerializer
from edna.core.execution.context import SimpleStreamingContext
def main():
context = SimpleStreamingContext()
ingest_serializer = EmptyStringSerializer()
emit_serializer = EmptyStringSerializer() # twitter already provides byte encoded message
ingest = TwitterStreamingIngest(serializer=ingest_serializer, bearer_token=context.getVariable("bearer_token"),
tweet_fields=context.getVariable("tweet_fields"),
user_fields=context.getVariable("user_fields"),
place_fields=context.getVariable("place_fields"),
media_fields=context.getVariable("media_fields"))
process = BaseProcess()
emit = KafkaEmit(serializer=emit_serializer,
kafka_topic=context.getVariable("kafka_topic"),
bootstrap_server=context.getVariable("bootstrap_server"),
bootstrap_port=context.getVariable("bootstrap_port"))
context.addIngest(ingest)
context.addProcess(process)
context.addEmit(emit)
context.execute()
if __name__=="__main__":
main() | 2.40625 | 2 |
WebMirror/management/rss_parser_funcs/feed_parse_extractKendalblackBlogspotCom.py | fake-name/ReadableWebProxy | 193 | 12791996 | def extractKendalblackBlogspotCom(item):
'''
DISABLED
Parser for 'kendalblack.blogspot.com'
'''
return None | 1.46875 | 1 |
src/pyobo/sources/mirbase_constants.py | ddomingof/pyobo | 0 | 12791997 | <filename>src/pyobo/sources/mirbase_constants.py
# -*- coding: utf-8 -*-
"""Constants for miRBase."""
import pandas as pd
from ..path_utils import ensure_df
PREFIX = 'mirbase'
VERSION = '22.1'
PREFAM_URL = f'ftp://mirbase.org/pub/mirbase/{VERSION}/database_files/mirna_prefam.txt.gz'
PREMATURE_TO_PREFAMILY_URL = f'ftp://mirbase.org/pub/mirbase/{VERSION}/database_files/mirna_2_prefam.txt.gz'
PREMATURE_URL = f'ftp://mirbase.org/pub/mirbase/{VERSION}/database_files/mirna.txt.gz'
MATURE_URL = f'ftp://mirbase.org/pub/mirbase/{VERSION}/database_files/mirna_mature.txt.gz'
PREMATURE_TO_MATURE = f'ftp://mirbase.org/pub/mirbase/{VERSION}/database_files/mirna_pre_mature.txt.gz'
def get_premature_family_df() -> pd.DataFrame:
"""Get premature family dataframe."""
return ensure_df(
PREFIX, PREFAM_URL, version=VERSION,
names=['prefamily_key', 'family_id', 'family_name'],
usecols=[0, 1, 2],
index_col=0,
dtype=str,
)
def get_premature_to_prefamily_df() -> pd.DataFrame:
"""Get premature miRNA to premature family dataframe."""
return ensure_df(
PREFIX, PREMATURE_TO_PREFAMILY_URL, version=VERSION,
names=['premature_key', 'prefamily_key'],
dtype=str,
)
def get_premature_df() -> pd.DataFrame:
"""Get premature miRNA dataframe."""
return ensure_df(
PREFIX, PREMATURE_URL, version=VERSION,
names=['premature_key', 'mirbase_id', 'mirna_name'],
usecols=[0, 1, 2],
index_col=0,
dtype=str,
)
def get_mature_df() -> pd.DataFrame:
"""Get mature miRNA dataframe."""
return ensure_df(
PREFIX, MATURE_URL, version=VERSION,
names=[
'mature_key',
'name',
'previous',
'mirbase.mature_id',
],
usecols=[0, 1, 2, 3],
index_col=0,
dtype=str,
)
| 2.46875 | 2 |
cursoemvideo/python3_mundo2/aula_15/ex069.py | Tiago-Baptista/CursoEmVideo_Python3 | 0 | 12791998 | sexo = ''
maior = macho = menor = 0
while True:
idade = int(input('Qual a sua idade? '))
sexo = str(input('Qual o seu sexo [M/F]? ')).strip().lower()[0]
if idade >= 18:
maior += 1
if sexo == 'm':
macho += 1
if sexo == 'f' and idade < 20:
menor += 1
while sexo not in 'mf':
sexo = str(input('Qual o seu sexo [M/F]? ')).strip().lower()[0]
print('\033[31mResisto inserido com sucesso!\033[m')
cont = str(input('Quer continuar a resistar [S/N]? ')).strip().lower()[0]
while cont not in 'sn':
cont = str(input('Quer continuar a resistar [S/N]? ')).strip().lower()[0]
if cont == 'n':
break
print('=' * 50)
print(f'Foram resistadas {maior} pessoas maiores de 18 anos.')
print(f'Foram resistados {macho} homens.')
print(f'Foram resistadas {menor} mulheres com menos de 20 anos.')
| 3.765625 | 4 |
time/baseProgram.py | hy57in/git-auto-commit | 0 | 12791999 | import schedule
import threading
import datetime as dt
import subprocess
import time
import os
# auto commit 실행
def auto_commit():
print("auto commit을 시행합니다")
subprocess.call(['sh', './continue.sh'])
subprocess.call(['sh', './TimeAutoCommitProcess.sh'])
# n분마다 auto_commit 실행
def time_based_autocommit(num):
schedule.every(num).minutes.do(auto_commit)
while 1:
schedule.run_pending()
# 파일생성시간을 계산
def createtime(file):
if os.path.isfile(file):
ctime = os.path.getctime(file) # create time 생성
ymd_ctime = dt.datetime.fromtimestamp(ctime) # 출력 형태를 ymd의 format으로 변경
return ymd_ctime
# 파일생성시간을 timestamp를 이용해 float형 숫자로 바꾼 후, float형을 int형으로 변환
def start(filename):
start_time = createtime(filename)
start_time_timestamp = int(start_time.timestamp())
return start_time_timestamp
# 현재시간을 timestamp를 이용해 float형 숫자로 바꾼 후, float형을 int형으로 변환
def stop():
stop_time = dt.datetime.now()
stop_time_timestamp = int(stop_time.timestamp())
return stop_time_timestamp
# (현재 시간 - 파일 생성 시간) % 60n을 통해서 나머지 계산
def remainder(filename, start, stop, n):
time_remainder = (stop - start(filename)) % (60 * n)
return time_remainder
# 나머지가 0이 되면 autocommit 실행
def ctime_based_autocommit(filename, start, stop, n):
print("시도 중") # 함수가 실행될 때마다 '시도 중'을 출력
print(remainder(filename, start, stop, n)) # 나머지 출력
if remainder(filename, start, stop, n) == 0:
# auto commit 실행 - subprocess에서 에러가 계속 나서 주석처리해놓음
subprocess.call(['sh', './addFile.sh', filename])
subprocess.call(['sh', './TimeAutoCommitProcess.sh'])
print("백업되었습니다.")
choice = 0
while choice != 8:
print("Menu")
print("1. New")
print("2. Continue")
print("3. Time backup mode")
print("4. Create time backup mode")
print("5. Error Backup mode")
print("6. Git add file")
print("7. Git push to branch")
print("8. Exit")
choice = int(input(">> "))
if choice == 1:
subprocess.call(['sh', './setting.sh'])
subprocess.call(['sh', './autoCommitProcess.sh'])
elif choice == 2:
subprocess.call(['sh', './continue.sh'])
subprocess.call(['sh', './autoCommitProcess.sh'])
elif choice == 3:
subprocess.call(['bash', './killProcess.sh'])
subprocess.call(['sh', './setting.sh'])
filename = str(input("Enter your file name : "))
num = int(input('Enter the minutes you want to set up : ')) # GUI에서 사용자가 분을 세팅했다고 가정
try:
print("시도")
time_based_autocommit(num)
except Exception as ex: # GUI에서 체크버튼 해제되었다고 가정
print(ex)
elif choice == 4:
subprocess.call(['bash', './killProcess.sh'])
subprocess.call(['sh', './setting.sh'])
filename = str(input('Enter your file name : ')) # GUI에서 사용자가 특정 파일 선택했다고 가정
n = int(input('Enter the minutes you want to set up : ')) # GUI에서 사용자가 분을 n으로 세팅했다고 가정
while True:
try:
print("시도")
ctime_based_autocommit(filename, start, stop(), n) # 파일 생성 시간을 기준으로 n분마다 auto commit하는 걸 백그라운드에서 실행
except Exception as ex: # GUI에서 체크버튼 해제되었다고 가정
print(ex)
#if : # GUI에서 체크버튼 해제되었다고 가정
#print("버튼 해제2")
#break
elif choice == 5:
path = "./code/"
file_list = os.listdir(path)
py_list = [file for file in file_list if file.endswith(".py")]
# c_list = [file for file in file_list if file.endswith(".c")]
# java_list = [file for file in file_list if file.endswith(".java")]
for i in range(len(py_list)):
try:
subprocess.check_output(['python', path + py_list[0]], universal_newlines=True)
except Exception as ex:
branch = str("error")
msg = str(ex)
subprocess.call(['sh', './continue.sh'])
subprocess.call(['sh', './autoCommitProcess.sh'])
elif choice == 6:
subprocess.call(['bash', './killProcess.sh'])
filename = str(input("What file to add?(file_name) "))
subprocess.call(['sh', './addFile.sh', filename])
subprocess.call(['sh', './continue.sh'])
subprocess.call(['sh', './autoCommitProcess.sh'])
elif choice == 7:
subprocess.call(['bash', './killProcess.sh'])
branch = str(input("Where to push?(branch_name) "))
msg = str(input("Write commit message: "))
subprocess.call(['sh', './userCommit.sh', branch, msg])
subprocess.call(['sh', './continue.sh'])
subprocess.call(['sh', './autoCommitProcess.sh'])
elif choice == 8:
subprocess.call(['bash', './killProcess.sh'])
else:
print("Wrong Input! Please input again") | 2.703125 | 3 |
ScrapedData/CosineScore.py | Robo-Sapien/Search-Engine-for-arXiv.org | 0 | 12792000 | <reponame>Robo-Sapien/Search-Engine-for-arXiv.org
from scipy import spatial
import numpy
class CosineScore:
"""Calculate cosine similarity score for each document and rank them
:param query: query vector
:param matrix: tf-idf numpy matrix
"""
rank = None
docIndex = None
score = None
def __init__(self, query, matrix):
self.rank = []
self.docIndex = []
self.score = []
"""Constructor which calculates cosine similarity score for each document"""
for j in range(matrix.shape[1]):
column = matrix[:,j]
self.docIndex.append(j)
self.score.append(1 - spatial.distance.cosine(column, query))
self.rank = list(reversed([x for _, x in sorted(zip(self.score, self.docIndex))]))
def getPages(self, number):
"""To get the indices of the douments between the given ranks
:param start: starting *rank*.
:param end: rank after the last rank.
:return: list of document indices for ranks from start to end-1.
"""
rankList = []
if number > len(self.rank):
min = len(self.rank)
else:
min = number
for index in range(min):
if self.score[self.rank[index]] > 0:
rankList.append(self.rank[index])
return rankList
# def main():
# query = [0, 1, 0]
# matrix = numpy.array([[2, 1, 3], [4, 3, 5], [6, 5, 7]])
# obj = CosineScore(query, matrix)
# print(obj.getPages(10))
#
# if __name__ == '__main__':
# main()
| 2.671875 | 3 |
script/get_weather.py | alaurie/Python-for-PowerShell-Users-Talk | 0 | 12792001 | #! /usr/bin/env python
import argparse
import requests
arg_parser = argparse.ArgumentParser(
prog="get-weather", description="Get weather for entered city."
)
arg_parser.add_argument(
"city", metavar="my_city", type=str, help="City for which you want to get weather."
)
def get_city_weather(search_city):
api_key = "2fe992c00735713d86f2d6577ff41a3d"
url = f"http://api.openweathermap.org/data/2.5/weather?appid={api_key}&q="
response = requests.get(url + search_city)
return response.json()
if __name__ == "__main__":
args = arg_parser.parse_args()
try:
weather = get_city_weather(args.city)
print(f"The weather in {args.city}: {weather['weather'][0]['description']}")
except KeyError:
print("City no found.")
| 3.8125 | 4 |
main/migrations/0004_auto_20200614_1547.py | pcp11/link-lizard | 0 | 12792002 | # Generated by Django 3.0.7 on 2020-06-14 15:47
import django.core.validators
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('main', '0003_auto_20200614_1506'),
]
operations = [
migrations.AlterField(
model_name='urlmapping',
name='original_url',
field=models.TextField(validators=[django.core.validators.URLValidator]),
),
]
| 1.648438 | 2 |
dqn/environment.py | Alexanderli0816/DQN | 1 | 12792003 | <filename>dqn/environment.py<gh_stars>1-10
import gym
from .utils import rgb2gray, imresize
class Environment(object):
def __init__(self, config):
self.env = gym.make(config.env_name)
screen_width, screen_height = config.screen_width, config.screen_height
self.display = config.display
self.dims = (screen_width, screen_height)
self._screen = self.env.reset()
self.reward = 0
self.terminal = True
def new_game(self):
self._screen = self.env.reset()
self.render()
return self.screen, 0, 0, self.terminal
def step(self, action):
self._screen, self.reward, self.terminal, _ = self.env.step(action)
def random_step(self):
action = self.env.action_space.sample()
self.step(action)
@property
def screen(self):
return imresize(rgb2gray(self._screen) / 255., self.dims)
# return cv2.resize(cv2.cvtColor(self._screen, cv2.COLOR_BGR2YCR_CB)/255., self.dims)[:,:,0]
@property
def action_size(self):
return self.env.action_space.n
@property
def lives(self):
return self.env.ale.lives()
@property
def state(self):
return self.screen, self.reward, self.terminal
def render(self):
if self.display:
self.env.render()
class GymEnvironment(Environment):
def __init__(self, config):
super(GymEnvironment, self).__init__(config)
self.config = config
def act(self, action):
accumulated_reward = 0
start_lives = self.lives
self.step(action)
if start_lives > self.lives and self.terminal:
accumulated_reward -= self.config.max_punishment
self.render()
return self.state
| 2.765625 | 3 |
generate_secretkey.py | Saknowman/django_setting_sample_project | 0 | 12792004 | from django.core.management.utils import get_random_secret_key
secret_key = get_random_secret_key()
text = 'SECRET_KEY = \'{0}\''.format(secret_key)
print(text) | 2 | 2 |
strongr/core/exception/__init__.py | bigr-erasmusmc/StrongR | 0 | 12792005 | <reponame>bigr-erasmusmc/StrongR
from .isnotcallableexception import IsNotCallableException
from .invalidparameterexception import InvalidParameterException
| 1.078125 | 1 |
nlp/nlp.py | stevencdang/data_proc_lib | 0 | 12792006 | <reponame>stevencdang/data_proc_lib<filename>nlp/nlp.py
#!/usr/bin/env python
# Author: <NAME> <EMAIL>
import nltk
from nltk.corpus import wordnet as wn
import numpy as np
from file_manager import read_data
def cosine(doc1, doc2, doc_topic_weights):
weights1 = doc_topic_weights[doc1]
weights2 = doc_topic_weights[doc2]
dotProduct = np.dot(weights1, weights2)
mag1 = np.sqrt(sum([np.square(weight) for weight in weights1]))
mag2 = np.sqrt(sum([np.square(weight) for weight in weights2]))
if mag1 and mag2:
return dotProduct / (mag1 * mag2)
else:
return 0.0
def get_wordnet_pos(treebank_tag):
"""
helper method to convert treebank tags
into wordnet pos tags for query expansion
"""
if treebank_tag.startswith('J'):
return wn.ADJ
elif treebank_tag.startswith('V'):
return wn.VERB
elif treebank_tag.startswith('N'):
return wn.NOUN
elif treebank_tag.startswith('R'):
return wn.ADV
else:
return ''
def expand_text(pos_tokens):
"""
interface with wordnet to recursively add
all synonyms and hypernyms for each token in input list of token-posTag tuples
return expanded list of tokens that includes synonyms and hypernyms
"""
# first expand with synonyms
synonyms = set()
for item in pos_tokens:
synsets = wn.synsets(item[0], get_wordnet_pos(item[1]))
for synset in synsets:
synonyms.add(synset)
# start making the list of tokens to be output
# initialize with lemmas of the synonyms
bowTokens = set([t[0] for t in pos_tokens])
for synonym in synonyms:
for lemma in synonym.lemmas():
bowTokens.add(lemma.name())
# now recursively add hypernyms
nextStack = set(synonyms) # initialize stack
while(len(nextStack)):
currentStack = set(nextStack)
nextStack.clear()
# get all hypernyms, put in nextStack
for s in currentStack:
for hypernym in s.hypernyms():
nextStack.add(hypernym)
# add lemmas from the current level of hypernyms to the master bag of tokens
for hypernym in nextStack:
for lemma in hypernym.lemmas():
bowTokens.add(lemma.name())
return sorted(list(bowTokens))
def get_stopwords():
"""
Returns a list of stop words. Currently uses a list of words in
a text file
"""
return read_data("englishstopwords-jc.txt")
def bag_of_words(ideas, stopwords):
"""
Initial processing of ideas for Mike Terri's Ideaforest algorithm
"""
expandedText = []
data = []
for idea in ideas:
# read the text
text = idea['content'].encode('utf-8', 'ignore')
# split into sentences (PunktSentenceTokenizer)
sentences = nltk.sent_tokenize(text)
# tokenize and pos tag words (TreeBank)
pos_tokens = []
for sentence in sentences:
tokens = [token.lower() for token in nltk.word_tokenize(sentence)] # tokenize
pos_tokens += nltk.pos_tag(tokens) # pos tag
# remove stopwords
pos_tokens = [t for t in pos_tokens if t[0] not in stopwords]
# remove "words" with no letters in them!
pos_tokens = [t for t in pos_tokens if any(c.isalpha() for c in t[0])]
# query expansion
expandedTokens = expand_text(pos_tokens)
# add the enriched bag of words as value to current d
expandedText.append(expandedTokens)
data.append(idea)
return data, expandedText
| 2.765625 | 3 |
vnpy/app/algo_trading/__init__.py | Billy-Meng/vnpy_origin | 1 | 12792007 | <filename>vnpy/app/algo_trading/__init__.py
# -*- coding:utf-8 -*-
import sys
import vnpy_algotrading
sys.modules[__name__] = vnpy_algotrading
| 1.351563 | 1 |
language/python/python/inner_functions/print_demo.py | bigfoolliu/liu_aistuff | 1 | 12792008 | #!/usr/bin/env python3
# -*- coding:utf-8 -*-
# author: bigfoolliu
"""
print函数展示
"""
import time
def end_demo():
"""print结尾控制,加flush强制刷新"""
for _ in range(100):
print("#", end="", flush=True)
time.sleep(0.01)
print()
def progress_demo():
"""使用\r展示进度"""
days = 365
for i in range(days):
print("\r", "progress:{}%".format(round((i + 1) * 100 / days)), end="", flush=True)
time.sleep(0.01)
print()
def sep_demo():
"""使用sep参数将结果使用指定分隔符分割"""
print("name", "age", "score", sep=" | ")
def sysout_demo():
"""将print的默认输出改到指定文件,而不是默认的屏幕"""
f = open("print_demo.log", "w")
print("hello, this is print demo.", file=f)
print("hello, this is print demo again.", file=f)
f.close()
if __name__ == "__main__":
# end_demo()
# progress_demo()
sep_demo()
sysout_demo()
| 3.234375 | 3 |
dj_prosftpd/views.py | devopsmakers/dj-prosftpd | 0 | 12792009 | <gh_stars>0
# -*- coding: utf-8 -*-
from django.views.generic import (
CreateView,
DeleteView,
DetailView,
UpdateView,
ListView
)
from .models import (
SFTPUser,
SFTPUserKey,
FileHistory,
FileValidator,
)
class SFTPUserCreateView(CreateView):
model = SFTPUser
class SFTPUserDeleteView(DeleteView):
model = SFTPUser
class SFTPUserDetailView(DetailView):
model = SFTPUser
class SFTPUserUpdateView(UpdateView):
model = SFTPUser
class SFTPUserListView(ListView):
model = SFTPUser
class SFTPUserKeyCreateView(CreateView):
model = SFTPUserKey
class SFTPUserKeyDeleteView(DeleteView):
model = SFTPUserKey
class SFTPUserKeyDetailView(DetailView):
model = SFTPUserKey
class SFTPUserKeyUpdateView(UpdateView):
model = SFTPUserKey
class SFTPUserKeyListView(ListView):
model = SFTPUserKey
class FileHistoryCreateView(CreateView):
model = FileHistory
class FileHistoryDeleteView(DeleteView):
model = FileHistory
class FileHistoryDetailView(DetailView):
model = FileHistory
class FileHistoryUpdateView(UpdateView):
model = FileHistory
class FileHistoryListView(ListView):
model = FileHistory
class FileValidatorCreateView(CreateView):
model = FileValidator
class FileValidatorDeleteView(DeleteView):
model = FileValidator
class FileValidatorDetailView(DetailView):
model = FileValidator
class FileValidatorUpdateView(UpdateView):
model = FileValidator
class FileValidatorListView(ListView):
model = FileValidator
| 2.0625 | 2 |
sympycore/heads/term_coeff_dict.py | radovankavicky/pymaclab | 96 | 12792010 | <filename>sympycore/heads/term_coeff_dict.py<gh_stars>10-100
__all__ = ['TERM_COEFF_DICT']
from .base import heads, heads_precedence, ArithmeticHead, Pair
from ..core import init_module, Expr
init_module.import_heads()
init_module.import_numbers()
init_module.import_lowlevel_operations()
@init_module
def _init(module):
from ..arithmetic.number_theory import multinomial_coefficients
module.multinomial_coefficients = multinomial_coefficients
class TermCoeffDictHead(ArithmeticHead):
def is_data_ok(self, cls, data):
if type(data) is dict:
n = len(data)
#if n<=1:
# return 'data dictonary should have more than 1 item'
for item in data.iteritems():
msg = TERM_COEFF.is_data_ok(cls, item, allow_number_term=True)
if msg:
return 'TERM_COEFF data=%s: %s' % (item, msg) #pragma: no cover
else:
return 'data must be dict instance but got %s' % (type(data)) #pragma: no cover
return
def __repr__(self): return 'TERM_COEFF_DICT'
def data_to_str_and_precedence(self, cls, term_coeff_dict):
r = [cls(TERM_COEFF, tc) for tc in term_coeff_dict.items()]
return ADD.data_to_str_and_precedence(cls, r)
def new(self, cls, data, evaluate=True):
return term_coeff_dict_new(cls, data)
def reevaluate(self, cls, data):
r = cls(NUMBER, 0)
for term, coeff in data.iteritems():
r += term * coeff
return r
def to_ADD(self, Algebra, data, expr):
return add_new(Algebra, [term_coeff_new(Algebra, term_coeff) for term_coeff in data.iteritems()])
def to_EXP_COEFF_DICT(self, cls, data, expr, variables=None):
if variables is None:
r = cls(EXP_COEFF_DICT, Pair((), {}))
else:
r = cls(EXP_COEFF_DICT, Pair(variables, {}))
for term, coeff in data.iteritems():
r += term * coeff
return r
def term_coeff(self, cls, expr):
term_coeff_dict = expr.data
if len(term_coeff_dict)==1:
return dict_get_item(term_coeff_dict)
return expr, 1
def inplace_add(self, cls, lhs, rhs):
if lhs.is_writable:
data = lhs.data
else:
data = lhs.data.copy()
self.add(cls, data, rhs, inplace=True)
return term_coeff_dict_new(cls, data)
def add(self, cls, lhs, rhs, inplace=False):
if inplace:
data = lhs
else:
data = lhs.data.copy()
h2, d2 = rhs.pair
if h2 is NUMBER:
if d2 != 0:
dict_add_item(cls, data, cls(NUMBER, 1), d2)
elif h2 is SYMBOL:
dict_add_item(cls, data, rhs, 1)
elif h2 is TERM_COEFF:
term, coeff = d2
dict_add_item(cls, data, term, coeff)
elif h2 is TERM_COEFF_DICT:
dict_add_dict(cls, data, d2)
elif h2 is ADD:
for op in d2:
term, coeff = op.term_coeff()
dict_add_item(cls, data, term, coeff)
elif h2 is SUB or h2 is NEG or h2 is POS:
raise NotImplementedError(`self, rhs.pair`)
elif h2 is BASE_EXP_DICT:
c = base_exp_dict_get_coefficient(cls, d2)
if c is not None:
d = d2.copy()
del d[c]
t = BASE_EXP_DICT.new(cls, d)
if t.head is BASE_EXP_DICT:
dict_add_item(cls, data, t, c)
else:
self.add(cls, data, t * c, inplace=True)
else:
dict_add_item(cls, data, rhs, 1)
else:
dict_add_item(cls, data, rhs, 1)
if inplace:
return lhs
return term_coeff_dict_new(cls, data)
def add_number(self, cls, lhs, rhs):
if rhs==0:
return lhs
data = lhs.data.copy()
term_coeff_dict_add_item(cls, data, cls(NUMBER, 1), rhs)
return term_coeff_dict_new(cls, data)
def sub_number(self, cls, lhs, rhs):
if rhs==0:
return lhs
data = lhs.data.copy()
term_coeff_dict_add_item(cls, data, cls(NUMBER, 1), -rhs)
return term_coeff_dict_new(cls, data)
def sub(self, cls, lhs, rhs):
d = lhs.data.copy()
self.add(cls, d, -rhs, inplace=True)
return term_coeff_dict_new(cls, d)
def commutative_mul(self, cls, lhs, rhs):
rhead, rdata = rhs.pair
if rhead is NUMBER:
if rdata==0:
return rhs
data = lhs.data.copy()
dict_mul_value(cls, data, rdata)
return term_coeff_dict_new(cls, data)
if rhead is TERM_COEFF:
term, coeff = rdata
return (lhs * term) * coeff
if rhead is POW:
base, exp = rdata
if lhs==base:
return POW.new(cls, (lhs, exp + 1))
return cls(BASE_EXP_DICT, {lhs:1, base:exp})
if rhead is SYMBOL or rhead is APPLY:
return cls(BASE_EXP_DICT, {lhs:1, rhs:1})
if rhead is TERM_COEFF_DICT:
if rdata==lhs.data:
return cls(POW, (lhs, 2))
return cls(BASE_EXP_DICT, {lhs:1, rhs:1})
if rhead is BASE_EXP_DICT:
data = rdata.copy()
dict_add_item(cls, data, lhs, 1)
return BASE_EXP_DICT.new(cls, data)
if rhead is ADD:
return cls(BASE_EXP_DICT, {lhs:1, rhs:1})
return ArithmeticHead.commutative_mul(self, cls, lhs, rhs)
def commutative_mul_number(self, cls, lhs, rhs):
if rhs==0:
return cls(NUMBER, 0)
data = lhs.data.copy()
dict_mul_value(cls, data, rhs)
return cls(self, data)
non_commutative_mul_number = commutative_mul_number
def commutative_rdiv_number(self, cls, lhs, rhs):
return term_coeff_new(cls, (cls(POW, (lhs, -1)), rhs))
def commutative_div(self, cls, lhs, rhs):
rhead, rdata = rhs.pair
if rhead is NUMBER:
return self.commutative_div_number(cls, lhs, rdata)
if rhead is TERM_COEFF_DICT:
if lhs.data == rdata:
return cls(NUMBER, 1)
return cls(BASE_EXP_DICT, {lhs:1, rhs:-1})
if rhead is SYMBOL or rhead is APPLY:
return cls(BASE_EXP_DICT, {lhs:1, rhs:-1})
if rhead is TERM_COEFF:
term, coeff = rdata
return number_div(cls, 1, coeff) * (lhs / term)
if rhead is POW:
base, exp = rdata
if lhs==base:
return pow_new(cls, (lhs, 1-exp))
return cls(BASE_EXP_DICT, {lhs:1, base:-exp})
if rhead is BASE_EXP_DICT:
data = {lhs:1}
for base, exp in rdata.iteritems():
base_exp_dict_add_item(cls, data, base, -exp)
return base_exp_dict_new(cls, data)
return ArithmeticHead.commutative_div(self, cls, lhs, rhs)
def pow(self, cls, base, exp):
if exp==0: return cls(NUMBER, 1)
if exp==1: return base
d = base.data
if len(d)==1:
t,c = dict_get_item(d)
t,c = t**exp, c**exp
if t==1: return cls(NUMBER, c)
if c==1: return t
return cls(TERM_COEFF, (t, c))
return POW.new(cls, (base, exp))
pow_number = pow
def neg(self, cls, expr):
d = expr.data.copy()
for key in d:
d[key] = -d[key]
return cls(TERM_COEFF_DICT, d)
def expand(self, cls, expr):
d = {}
for t, c in expr.data.items():
self.add(cls, d, t.expand() * c, inplace=True)
return term_coeff_dict_new(cls, d)
def expand_intpow(self, cls, expr, intexp):
if intexp<0:
return cls(POW, (expr, intexp))
if intexp==0:
return cls(NUMBER, 1)
if intexp==1:
return expr
term_coeff_list = [(term.base_exp(), coeff) for term, coeff in expr.data.items()]
mdata = multinomial_coefficients(len(term_coeff_list), intexp)
d = {}
for e,c in mdata.iteritems():
new_coeff = c
df = {}
for e_i, ((base, exp), coeff) in zip(e, term_coeff_list):
if e_i:
if e_i==1:
base_exp_dict_add_item(cls, df, base, exp)
if coeff is not 1:
new_coeff *= coeff
else:
base_exp_dict_add_item(cls, df, base, exp*e_i)
if coeff is not 1:
new_coeff *= coeff ** e_i
new_term = base_exp_dict_new(cls, df)
term_coeff_dict_add_item(cls, d, new_term, new_coeff)
return term_coeff_dict_new(cls, d)
def walk(self, func, cls, data, target):
d = {}
flag = False
add = self.add
for t, c in data.iteritems():
t1 = t.head.walk(func, cls, t.data, t)
if isinstance(c, Expr):
c1 = c.head.walk(func, cls, c.data, c)
else:
c1 = NUMBER.walk(func, cls, c, c)
if t1 is not t or c1 is not c:
flag = True
add(cls, d, t1 * c1, inplace=True)
if flag:
r = term_coeff_dict_new(cls, d)
return func(cls, r.head, r.data, r)
return func(cls, self, data, target)
def scan(self, proc, cls, data, target):
for t, c in data.iteritems():
t.head.scan(proc, cls, t.data, target)
if isinstance(c, Expr):
c.head.scan(proc, cls, c.data, target)
else:
NUMBER.scan(proc, cls, c, target)
proc(cls, self, data, target)
def diff(self, cls, data, expr, symbol, order, cache={}):
key = (expr, symbol, order)
result = cache.get(key)
if result is not None:
return result
if result is None:
d = {}
result = cls(NUMBER, 0)
for term, coeff in data.iteritems():
result += term.head.diff(cls, term.data, term, symbol, order, cache=cache) * coeff
key1 = (expr, symbol, 1)
cache[key] = result
return result
def apply(self, cls, data, func, args):
result = cls(NUMBER, 0)
for term, coeff in data.iteritems():
result += term.head.apply(cls, term.data, term, args) * coeff
return result
def integrate_indefinite(self, cls, data, expr, x):
result = cls(NUMBER, 0)
for term, coeff in data.iteritems():
result += term.head.integrate_indefinite(cls, term.data, term, x) * coeff
return result
def integrate_definite(self, cls, data, expr, x, a, b):
result = cls(NUMBER, 0)
for term, coeff in data.iteritems():
result += term.head.integrate_definite(cls, term.data, term, x, a, b) * coeff
return result
def algebra_pos(self, Algebra, expr):
return expr
def algebra_neg(self, Algebra, expr):
if Algebra.algebra_options.get('evaluate_addition'):
d = expr.data.copy()
for key in d:
d[key] = -d[key]
return Algebra(TERM_COEFF_DICT, d)
return Algebra(NEG, expr)
def algebra_add_number(self, Algebra, lhs, rhs, inplace):
if not rhs:
return lhs
if inplace:
term_coeff_dict_add_item(Algebra, lhs.data, Algebra(NUMBER, 1), rhs)
return term_coeff_dict(Algebra, lhs)
d = lhs.data.copy()
term_coeff_dict_add_item(Algebra, d, Algebra(NUMBER, 1), rhs)
return term_coeff_dict_new(Algebra, d)
def algebra_add(self, Algebra, lhs, rhs, inplace):
rhead, rdata = rhs.pair
if Algebra.algebra_options.get('evaluate_addition'):
ldata = lhs.data
if rhead is ADD or rhead is EXP_COEFF_DICT or rhead is MUL or rhead is NEG:
rhs = rhead.to_TERM_COEFF_DICT(Algebra, rdata, rhs)
rhead, rdata = rhs.pair
if rhead is NUMBER:
if not rdata:
return lhs
rterm, rcoeff = Algebra(NUMBER, 1), rdata
elif rhead is SYMBOL:
rterm, rcoeff = rhs, 1
elif rhead is TERM_COEFF:
rterm, rcoeff = rdata
elif rhead is TERM_COEFF_DICT:
if inplace:
term_coeff_dict_add_dict(Algebra, ldata, rdata)
return term_coeff_dict(Algebra, lhs)
d = ldata.copy()
term_coeff_dict_add_dict(Algebra, d, rdata)
return term_coeff_dict_new(Algebra, d)
else:
return super(type(self), self).algebra_add(Algebra, lhs, rhs, inplace)
if inplace:
term_coeff_dict_add_item(Algebra, ldata, rterm, rcoeff)
return term_coeff_dict(Algebra, lhs)
d = ldata.copy()
term_coeff_dict_add_item(Algebra, d, rterm, rcoeff)
return term_coeff_dict_new(Algebra, d)
else:
return TERM_COEFF_DICT.to_ADD(Algebra, lhs.data, lhs) + rhs
return super(type(self), self).algebra_add(Algebra, lhs, rhs, inplace)
def algebra_mul_number(self, Algebra, lhs, rhs, inplace):
if Algebra.algebra_options.get('evaluate_addition'):
if not rhs:
return Algebra(NUMBER, 0)
if rhs==1:
return lhs
if inplace:
term_coeff_dict_mul_value(Algebra, lhs.data, rhs)
return lhs
d = lhs.data.copy()
term_coeff_dict_mul_value(Algebra, d, rhs)
return Algebra(TERM_COEFF_DICT, d)
return Algebra(MUL, [lhs, Algebra(NUMBER, rhs)])
def algebra_mul(self, Algebra, lhs, rhs, inplace):
rhead, rdata = rhs.pair
if rhead is NUMBER:
return self.algebra_mul_number(Algebra, lhs, rdata, inplace)
return super(type(self), self).algebra_mul(Algebra, lhs, rhs, inplace)
def algebra_div_number(self, Algebra, lhs, rhs, inplace):
if Algebra.algebra_options.get('evaluate_addition'):
if rhs==1:
return lhs
d1 = gcd(*lhs.data.values())
d2 = gcd(d1, rhs)
d3 = rhs / d2
d = {}
rd = 0
for t,c in lhs.data.items():
c /= d2
q, c = divmod(c, d3)
if c:
d[t] = c
rd += q
s = term_coeff_dict_new(Algebra, d)
if rhs==d2:
assert rd==0,`lsh, rhs, s,rd`
return s
return Algebra(DIV, [s, Algebra(NUMBER, d3)]) + rd
return Algebra(DIV, [lhs, Algebra(NUMBER, rhs)])
def algebra_div(self, Algebra, lhs, rhs, inplace):
rhead, rdata = rhs.pair
if rhead is NUMBER:
return self.algebra_div_number(Algebra, lhs, rdata, inplace)
return super(type(self), self).algebra_div(Algebra, lhs, rhs, inplace)
TERM_COEFF_DICT = TermCoeffDictHead()
| 2.328125 | 2 |
API/utils/more_utils/fortnite_utils.py | OreoDivision/Stat-Tracker | 1 | 12792011 | <gh_stars>1-10
import requests
from cache import AsyncTTL
'''
----- Get fortnite players stats -----
name: the name of the user
platform: the platform they are on (epic / psn / xbl)
'''
@AsyncTTL(time_to_live=120, maxsize=1024)
async def get_player_stats(name, platform):
# Sends a request for the data
data = requests.get(f"https://fortnite-api.com/v1/stats/br/v2?name={name}&accountType={platform}&image=all").json()
# Retuns it
return data
| 2.46875 | 2 |
sgh_PiGlow.py | davidramirezm30/scratch-orangepi | 0 | 12792012 | <reponame>davidramirezm30/scratch-orangepi
#!/usr/bin/env python
# sgh_PiGlow - control PiGlow LEDS via ScratchGPIO.
#Copyright (C) 2013 by <NAME> based on code from Pimoroni
#This program is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public License
#as published by the Free Software Foundation; either version 2
#of the License, or (at your option) any later version.
#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#You should have received a copy of the GNU General Public License
#along with this program; if not, write to the Free Software
#Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
Version = '0.0.3' # 1Jan13
#try and inport smbus but don't worry if not installed
import subprocess
try:
import smbus
except:
pass
CMD_ENABLE_OUTPUT = 0x00
CMD_ENABLE_LEDS = 0x13
CMD_SET_PWM_VALUES = 0x01
CMD_UPDATE = 0x16
class PiGlow:
i2c_addr = 0x54 # fixed i2c address of SN3218 ic
bus = None
def __init__(self, i2c_bus=1):
print "PiGlow init"
self.i2c_bus = i2c_bus
print "i2cbus:",self.i2c_bus
#self.bus = smbus.SMBus(i2c_bus)
self.bus = smbus.SMBus(i2c_bus)
print "self.bus:", self.bus
self.enable_output()
print "enabled output"
self.enable_leds()
print "enabled leds "
print "complete"
def enable_output(self):
self.write_i2c(CMD_ENABLE_OUTPUT, 0x01)
def enable_leds(self):
self.write_i2c(CMD_ENABLE_LEDS, [0xFF, 0xFF, 0xFF])
def update_pwm_values(self, values=[0] * 18):
self.write_i2c(CMD_SET_PWM_VALUES, values)
self.write_i2c(CMD_UPDATE, 0xFF)
#print "update piglow pwm done"
def write_i2c(self, reg_addr, value):
if not isinstance(value, list):
value = [value];
try:
self.bus.write_i2c_block_data(self.i2c_addr, reg_addr, value)
except IOError:
subprocess.call(['i2cdetect', '-y', '0'])
self.bus.write_i2c_block_data(self.i2c_addr, reg_addr, value)
#### end PiGlow ###############################################################
| 2.8125 | 3 |
web/src/auth.py | computer-geek64/guardian | 0 | 12792013 | <filename>web/src/auth.py
# auth.py
import os
import json
import hashlib
authentication_credentials = json.loads(os.environ['AUTHENTICATION_CREDENTIALS'])
def authenticate(username, password):
if username is None or password is None:
return False
password_hash = hashlib.sha512(password.encode()).hexdigest()
return username in authentication_credentials and password_hash == authentication_credentials[username]
| 2.84375 | 3 |
src/Node.py | stevenwalton/Retro-Learner | 0 | 12792014 | import numpy as np
class Node:
def __init__(self, value=-np.inf, children=None):
self.value = value
self.visits = 0
self.children = {} if children is None else children
def __repr__(self):
return "<Node value=%f visits=%d len(children)=%d>" % (
self.value,
self.visits,
len(self.children),
)
| 2.90625 | 3 |
tests/test_meme.py | Sung-Huan/ANNOgesic | 26 | 12792015 | <filename>tests/test_meme.py
import sys
import os
import unittest
import shutil
from io import StringIO
sys.path.append(".")
import annogesiclib.meme as me
from mock_helper import gen_file
from mock_args_container import MockClass
from annogesiclib.meme import MEME
class Mock_func(object):
def mock_del_repeat_fasta(self, tmp_fasta, all_no_orph):
with open("tmp/all_type.fa", "w") as fh:
fh.write("all")
with open("tmp/without_orphan.fa", "w") as fh:
fh.write("without_orphan")
class TestMEME(unittest.TestCase):
def setUp(self):
self.mock_args = MockClass()
self.test_folder = "test_folder"
self.out_folder = "test_folder/output"
if (not os.path.exists(self.test_folder)):
os.mkdir(self.test_folder)
os.mkdir(self.out_folder)
os.mkdir(os.path.join(self.out_folder, "fasta_output"))
self.tss_folder = os.path.join(self.test_folder, "tss_folder")
if (not os.path.exists(self.tss_folder)):
os.mkdir(self.tss_folder)
self.gff_folder = os.path.join(self.test_folder, "gff_folder")
if (not os.path.exists(self.gff_folder)):
os.mkdir(self.gff_folder)
self.fa_folder = os.path.join(self.test_folder, "fa_folder")
if (not os.path.exists(self.fa_folder)):
os.mkdir(self.fa_folder)
args = self.mock_args.mock()
args.tsss = self.tss_folder
args.fastas = self.fa_folder
args.gffs = self.gff_folder
args.output_folder = self.out_folder
self.meme = MEME(args)
def tearDown(self):
if os.path.exists(self.test_folder):
shutil.rmtree(self.test_folder)
def test_move_and_merge_fasta(self):
me.del_repeat_fasta = Mock_func().mock_del_repeat_fasta
if (not os.path.exists("tmp")):
os.mkdir("tmp")
gen_file("tmp/primary.fa", "primary")
gen_file("tmp/secondary.fa", "secondary")
gen_file("tmp/internal.fa", "internal")
gen_file("tmp/antisense.fa", "antisense")
gen_file("tmp/orphan.fa", "orphan")
self.meme._move_and_merge_fasta(self.test_folder, "test")
self.assertTrue(os.path.exists(os.path.join(
self.test_folder, "test_allgenome_all_types.fa")))
self.assertTrue(os.path.exists(os.path.join(
self.test_folder, "test_allgenome_primary.fa")))
self.assertTrue(os.path.exists(os.path.join(
self.test_folder, "test_allgenome_secondary.fa")))
self.assertTrue(os.path.exists(os.path.join(
self.test_folder, "test_allgenome_internal.fa")))
self.assertTrue(os.path.exists(os.path.join(
self.test_folder, "test_allgenome_antisense.fa")))
self.assertTrue(os.path.exists(os.path.join(
self.test_folder, "test_allgenome_orphan.fa")))
self.assertTrue(os.path.exists(os.path.join(
self.test_folder, "test_allgenome_without_orphan.fa")))
def test_split_fasta_by_strain(self):
with open(os.path.join(self.fa_folder, "allgenome.fa"), "w") as fh:
fh.write(""">aaa_aaa_aaa
ATTATATATA
>bbb_bbb_bbb
AATTAATTAA""")
self.meme._split_fasta_by_strain(self.fa_folder)
self.assertTrue(os.path.join(self.fa_folder, "aaa.fa"))
self.assertTrue(os.path.join(self.fa_folder, "bbb.fa"))
if __name__ == "__main__":
unittest.main()
| 2.515625 | 3 |
dispatcher/models.py | stakewise/bls-horcrux | 16 | 12792016 | <reponame>stakewise/bls-horcrux<filename>dispatcher/models.py
from sqlalchemy import Column, Integer, String
from .database import Base
class Share(Base):
__tablename__ = "shares"
id = Column(Integer, primary_key=True, index=True)
recipient_rsa_public_key = Column(String)
sender_rsa_public_key = Column(String)
enc_session_key = Column(String)
ciphertext = Column(String)
tag = Column(String)
nonce = Column(String)
signature = Column(String)
| 2.125 | 2 |
src/state/board_state.py | PKU-GeekGame/gs-backend | 7 | 12792017 | from __future__ import annotations
import time
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Optional, List, Tuple, Dict, Any
if TYPE_CHECKING:
from . import *
ScoreBoardItemType = Tuple[User, int]
from . import WithGameLifecycle
def minmax(x: int, a: int, b: int) -> int:
if x<a: return a
elif x>b: return b
return x
class Board(WithGameLifecycle, ABC):
def __init__(self, board_type: str, name: str):
self.board_type = board_type
self.name = name
@property
@abstractmethod
def summarized(self) -> Dict[str, Any]:
raise NotImplementedError()
class ScoreBoard(Board):
MAX_DISPLAY_USERS = 100
MAX_TOPSTAR_USERS = 10
def __init__(self, name: str, game: Game, group: Optional[List[str]], show_group: bool):
super().__init__('score', name)
self._game = game
self.show_group: bool = show_group
self.group: Optional[List[str]] = group
self.board: List[ScoreBoardItemType] = []
self.uid_to_rank: Dict[int, int] = {}
self._summarized: Dict[str, Any] = self._summarize()
@property
def summarized(self) -> Dict[str, Any]:
return self._summarized
def _update_board(self) -> None:
def is_valid(x: ScoreBoardItemType) -> bool:
user, score = x
return (
((user._store.group in self.group) if self.group is not None else True)
and score>0
)
def sorter(x: ScoreBoardItemType) -> Tuple[Any, ...]:
user, score = x
return (
-score,
-1 if user.last_succ_submission is None else user.last_succ_submission._store.id,
)
b = [(u, u.tot_score) for u in self._game.users.list]
self.board = sorted([x for x in b if is_valid(x)], key=sorter)
self.uid_to_rank = {user._store.id: idx+1 for idx, (user, _score) in enumerate(self.board)}
def _summarize(self) -> Dict[str, Any]:
return {
'challenges': [{
'id': ch._store.id,
'title': ch._store.title,
'category': ch._store.category,
'flags': [f.name for f in ch.flags],
} for ch in self._game.challenges.list],
'list': [{
'rank': idx+1,
'nickname': u._store.profile.nickname_or_null or '--',
'group_disp': u._store.group_disp() if self.show_group else None,
'score': score,
'last_succ_submission_ts': int(u.last_succ_submission._store.timestamp_ms/1000) if u.last_succ_submission else None,
'challenge_status': {
ch._store.id: ch.user_status(u)
for ch in self._game.challenges.list
},
'flag_pass_ts': {
f'{f.challenge._store.id}_{f.idx0}': int(sub._store.timestamp_ms/1000)
for f, sub in u.passed_flags.items()
},
} for idx, (u, score) in enumerate(self.board[:self.MAX_DISPLAY_USERS])],
'topstars': [{
'nickname': u._store.profile.nickname_or_null or '--',
'submissions': [{
'timestamp_ms': sub._store.timestamp_ms,
'gained_score': sub.gained_score(),
} for sub in u.succ_submissions]
} for u, _score in self.board[:self.MAX_TOPSTAR_USERS]],
'time_range': [
self._game.trigger.board_begin_ts,
minmax(int(time.time())+1, self._game.trigger.board_begin_ts+1, self._game.trigger.board_end_ts),
],
}
def on_scoreboard_reset(self) -> None:
self.board = []
self._summarized = self._summarize()
def on_scoreboard_update(self, submission: Submission, in_batch: bool) -> None:
if not in_batch and submission.matched_flag is not None:
if self.group is None or submission.user._store.group in self.group:
self._update_board()
self._summarized = self._summarize()
def on_scoreboard_batch_update_done(self) -> None:
self._update_board()
self._summarized = self._summarize()
class FirstBloodBoard(Board):
def __init__(self, name: str, game: Game, group: Optional[List[str]], show_group: bool):
super().__init__('firstblood', name)
self._game = game
self.show_group: bool = show_group
self.group: Optional[List[str]] = group
self.chall_board: Dict[Challenge, Submission] = {}
self.flag_board: Dict[Flag, Submission] = {}
self._summarized: Dict[str, Any] = self._summarize()
@property
def summarized(self) -> Dict[str, Any]:
return self._summarized
def _summarize(self) -> Dict[str, Any]:
return {
'list': [{
'title': ch._store.title,
'id': ch._store.id,
'flags': [{
'flag_name': None,
'nickname': ch_sub.user._store.profile.nickname_or_null if ch_sub is not None else None,
'group_disp': ch_sub.user._store.group_disp() if (ch_sub is not None and self.show_group) else None,
'timestamp': int(ch_sub._store.timestamp_ms/1000) if ch_sub is not None else None,
}] + ([] if len(ch.flags)<=1 else [{
'flag_name': f.name,
'nickname': f_sub.user._store.profile.nickname_or_null if f_sub is not None else None,
'group_disp': f_sub.user._store.group_disp() if (f_sub is not None and self.show_group) else None,
'timestamp': int(f_sub._store.timestamp_ms/1000) if f_sub is not None else None,
} for f in ch.flags for f_sub in [self.flag_board.get(f, None)]]),
} for ch in self._game.challenges.list for ch_sub in [self.chall_board.get(ch, None)]],
}
def on_scoreboard_reset(self) -> None:
self.chall_board = {}
self.flag_board = {}
self._summarized = self._summarize()
def on_scoreboard_update(self, submission: Submission, in_batch: bool) -> None:
if submission.matched_flag is not None:
assert submission.challenge is not None, 'submission matched flag to no challenge'
if self.group is None or submission.user._store.group in self.group:
passed_all_flags = submission.challenge in submission.user.passed_challs
if submission.matched_flag not in self.flag_board:
self.flag_board[submission.matched_flag] = submission
if not in_batch and not passed_all_flags:
self._game.worker.emit_local_message({
'type': 'flag_first_blood',
'board_name': self.name,
'nickname': submission.user._store.profile.nickname_or_null,
'challenge': submission.challenge._store.title,
'flag': submission.matched_flag.name,
}, self.group)
if submission.challenge not in self.chall_board and passed_all_flags:
self.chall_board[submission.challenge] = submission
if not in_batch:
self._game.worker.emit_local_message({
'type': 'challenge_first_blood',
'board_name': self.name,
'nickname': submission.user._store.profile.nickname_or_null,
'challenge': submission.challenge._store.title,
}, self.group)
self._summarized = self._summarize() | 3.015625 | 3 |
python/dblock.py | cpausmit/FiBS | 0 | 12792018 | <gh_stars>0
# dblock.py
import os
import socket
import MySQLdb
MY_CNF = "%s/.mysql/my.cnf"%(os.getenv('HOME'))
if not os.path.exists(MY_CNF):
MY_CNF = "/etc//my.cnf"
print(" OPEN DB.")
Db = MySQLdb.connect(read_default_file="%s"%(MY_CNF),read_default_group="mysql",db="Fibs")
Cursor = Db.cursor()
class dblock(object):
'''Class to handle creating and removing database based locks'''
# custom exceptions
class DatabaseLockAcquisitionError(Exception):
pass
class DatabaseLockReleaseError(Exception):
pass
# convenience callables for formatting
addr = lambda self: '%d@%s' % (self.pid, self.host)
fddr = lambda self: '<%s %s>' % (self.path, self.addr())
pddr = lambda self, lock: '<%s %s@%s>' %\
(self.path, lock['pid'], lock['host'])
def __init__(self,path,debug=None):
self.pid = os.getpid()
self.host = socket.gethostname()
self.path = path
self.debug = debug # set this to get status messages
self.acquireSql = "insert into Locks(LockPath,LockHost,LockPid) " \
+ " values('%s','%s',%d);"%(self.path,self.host,self.pid)
self.releaseSql = "delete from Locks where LockPath='%s'"%(self.path)
self.listSql = "select * from Locks where LockPath='%s';"%(self.path)
def acquire(self):
'''Acquire a lock, returning self if successful, False otherwise'''
try:
# Execute the SQL command
Cursor.execute(self.acquireSql)
if self.debug:
print('Acquired lock: %s' % self.fddr())
except:
if self.debug:
lock = self._readlock()
print('Existing lock detected: %s' % self.pddr(lock))
return False
return self
def release(self):
'''Release lock, returning self'''
if self.ownlock():
try:
# Execute the SQL command
Cursor.execute(self.releaseSql)
if self.debug:
print('Released lock: %s' % self.fddr())
except:
print(" Error (%s): unable to release lock."%(self.releaseSql))
raise (self.DatabaseLockReleaseError,
'Error releasing lock: %s' % self.fddr())
return self
def _readlock(self):
'''Internal method to read lock info'''
lock = {}
try:
Cursor.execute(self.listSql)
results = Cursor.fetchall()
if len(results) == 0:
lock['path'], lock['host'], lock['pid'] = [ self.path, '', 0 ]
elif len(results) > 1:
print(' WARNING -- did not find unique result! (n=%d)'%(len(results)))
lock['path'], lock['host'], lock['pid'] = [ self.path, '', 0 ]
else:
for row in results:
lock['path'], lock['host'], lock['pid'] = row
except:
print(" Error (%s): unable to list locks."%(self.listSql))
lock['path'], lock['host'], lock['pid'] = [ self.path, '', 0 ]
return lock
def ownlock(self):
'''Check if we own the lock'''
lock = self._readlock()
return (self.fddr() == self.pddr(lock))
def __del__(self):
'''Magic method to clean up lock when program exits'''
self.release()
| 2.34375 | 2 |
__init__.py | rowanc1/Seismogram | 3 | 12792019 | import Layers
import Wavelets
| 0.964844 | 1 |
plugins/filter/version_filters.py | nrser/qb | 1 | 12792020 | from __future__ import (absolute_import, division, print_function)
__metaclass__ = type
import subprocess
import os
import json
import sys
from ansible.errors import AnsibleError
import qb
from qb.ipc.rpc import client as rpc_client
def get_semver_path():
bin_path = os.path.join(qb.ROOT, 'node_modules', 'semver', 'bin', 'semver')
if not os.path.isfile(bin_path):
raise Exception("can't find semver at %s" % bin_path)
return bin_path
# get_semver_path()
def semver_inc(version, level = None, preid = None):
'''increment the version at level, with optional preid for pre- levels.
runs
semver --increment <level> [--preid <preid>] <version>
This does **not** do what you probably want... `preid` is ignored:
>>> semver_inc('1.0.0', 'patch', preid = 'dev')
'1.0.1'
>>> semver_inc('1.0.0', 'minor', preid = 'dev')
'1.1.0'
The only way to get the `preid` appended is to increment the prerelease:
>>> semver_inc('1.0.0', 'prerelease', preid = 'dev')
'1.0.1-dev.0'
'''
cmd = [
get_semver_path(),
'--increment',
]
if not (level is None):
cmd.append(level)
if not (preid is None):
cmd.append('--preid')
cmd.append(preid)
cmd.append(version)
out = subprocess.check_output(cmd)
return out.rstrip()
# semver_inc()
def semver_parse(version):
'''parse semver.
'''
stmt = (
'''console.log(JSON.stringify(require('semver')(%s), null, 2))''' %
json.dumps(version)
)
cmd = ['node', '--eval', stmt]
out = subprocess.check_output(
cmd,
cwd = qb.ROOT
)
version = json.loads(out)
version['is_release'] = len(version['prerelease']) == 0
version['is_dev'] = (
len(version['prerelease']) > 0 and
version['prerelease'][0] == 'dev'
)
version['is_rc'] = (
len(version['prerelease']) > 0 and
version['prerelease'][0] == 'rc'
)
if version['is_release']:
version['level'] = 'release'
else:
version['level'] = version['prerelease'][0]
# depreciated name for level
version['type'] = version['level']
version['release'] = "%(major)s.%(minor)s.%(patch)s" % version
return version
# semver_parse()
def qb_version_parse(version_string):
'''Parse version into QB::Package::Version
'''
return rpc_client.send('QB::Package::Version', 'from', version_string)
def qb_read_version(file_path):
'''Read a QB::Package::Version from a file.
'''
with open(file_path, 'r') as file:
return qb_version_parse(file.read())
class FilterModule(object):
''' version manipulation filters '''
def filters(self):
return {
'semver_inc': semver_inc,
'semver_parse': semver_parse,
'qb_version_parse': qb_version_parse,
'qb_read_version': qb_read_version,
}
# filters()
# FilterModule
# testing - call camel_case on first cli arg and print result
if __name__ == '__main__':
import doctest
doctest.testmod()
| 1.96875 | 2 |
test/files/crawl_settings.py | mawentao007/reading_grab | 0 | 12792021 | GRAB_SPIDER_CONFIG = {
'global': {
'spider_modules': ['test.script_crawl'],
},
}
| 1.179688 | 1 |
ContractorApp/migrations/0011_remove_profile_is_a_company.py | Paul-W-0/FindContractors | 0 | 12792022 | <reponame>Paul-W-0/FindContractors
# Generated by Django 3.2.9 on 2021-12-01 22:00
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('ContractorApp', '0010_rename_user_type_profile_is_a_company'),
]
operations = [
migrations.RemoveField(
model_name='profile',
name='is_a_company',
),
]
| 1.578125 | 2 |
sim/__main__.py | Tjorriemorrie/ufc | 1 | 12792023 | from datetime import datetime
from collections import Counter, defaultdict, OrderedDict
from itertools import chain
from random import random
import numpy as np
from cma import CMAEvolutionStrategy, CMAOptions
from loguru import logger
from math import sqrt
from sklearn.preprocessing import MinMaxScaler
from sortedcontainers import SortedDict
from trueskill import BETA, global_env, rate_1vs1, Rating
from xgboost import XGBRegressor
from .data import DATA
from .data_2016 import DATA_2016
from .data_2017 import DATA_2017
from .data_2018 import DATA_2018
def win_probability(team1, team2):
delta_mu = sum(r.mu for r in team1) - sum(r.mu for r in team2)
sum_sigma = sum(r.sigma ** 2 for r in chain(team1, team2))
size = len(team1) + len(team2)
denom = sqrt(size * (BETA * BETA) + sum_sigma)
ts = global_env()
return ts.cdf(delta_mu / denom)
def to_decimal_odds(us_odds):
if us_odds > 0:
return us_odds / 100 + 1
else:
return 100 / us_odds + 1
def to_implied_odds(us_odds: float) -> float:
decimal_odds = to_decimal_odds(us_odds)
try:
return 1 / decimal_odds
except ZeroDivisionError:
return 1
def get_regressor(X_train, y_train, X_test=None, y_test=None, **reg_params):
"""get regressor"""
logger.info('')
logger.info('Training model...')
eval_set = [(np.array(X_train), y_train)]
if X_test and y_test:
eval_set.append((np.array(X_test), y_test))
reg = XGBRegressor(objective='reg:squarederror', n_jobs=4, **reg_params)
reg = reg.fit(X_train, y_train, eval_set=eval_set, eval_metric='auc', verbose=0)
return reg
def main(hyper_params, train=0):
logger.info('Starting main training')
all_data = DATA_2016 + DATA_2017 + DATA_2018 + DATA
# estimators, learning_rate = hyper_params
# gamma, max_depth, min_child_weight = hyper_params
# max_delta_step, subsample, scale_pos_weight = hyper_params
reg_params = {
'n_estimators': 100 if train else 1000,
# 'learning_rate': 0.09426181829690375, # 0.24678854038938264
# 'gamma': 0.1860088097748791, # 0.0012826703538762253,
# 'max_depth': int(round(2.1956102758009424)), # 2.5506573766936533)),
# 'min_child_weight': 3.5802932556001426,
# 'max_delta_step': 0.10779250505931337,
# 'subsample': 0.9859889452465481,
# 'scale_pos_weight': 1.2283288967549404,
}
# bet_pred_a, bet_pred_b, bet_odds_a, bet_odds_b, bet_wnl_a, bet_wnl_b = hyper_params
bet_pred_a = 1.713980438805089 # -3.55
bet_pred_b = -4.065137791049565 # -17.93
bet_odds_a = 3.122323263774503 # -12.44
bet_odds_b = 0.0837110561236318 # -16.17
bet_wnl_a = 15.100288654913749 # -3.52 # -8.01
bet_wnl_b = -10.111913271763338 # -4.96 # 2.50
# bet_ts_a, bet_ts_b, bet_tmi_a, bet_tmi_b, bet_tma_a, bet_tma_b = hyper_params
bet_ts_a = -50.59979897765422 # -26.88 # -3.52 # -8.01
bet_ts_b = -69.5794588139756 # -72.60 # -3.52 # -8.01
bet_tmi_a = -45.94904856923797
bet_tmi_b = -1.128236337281963
bet_tma_a = -28.62283185173976
bet_tma_b = -26.933801584409544
# init
reg = None
scaler = MinMaxScaler()
cutoff = int(len(all_data) * 0.6)
start_date = None
ratings = defaultdict(lambda: Rating())
wins_losses = defaultdict(lambda: [])
early_fights = defaultdict(lambda: 0.5)
last_fights = defaultdict(lambda: 0.5)
X_train = []
y_train = []
X_test = []
y_test = []
payouts = []
bet_amts = []
accuracy = (0, 0)
tab = []
tab_amts = []
actual = (0, 0)
actual_debug = []
bet_multis = []
bet_multis_cat = []
preds_flipped = []
odds_outcomes = []
# loop through scenes
for i, scene in enumerate(all_data):
is_training = i < cutoff
if not is_training:
if not reg:
start_date = datetime.strptime(scene['date'], '%Y-%m-%d')
# scale
scaler.partial_fit(X_train)
X_train = scaler.transform(X_train)
reg = get_regressor(X_train, y_train, **reg_params)
logger.info('')
logger.info(f'{scene["date"]} {scene["name"]}')
for fight in scene['fights']:
bet_size = 1
# skip if no odds:
if 'odds' not in fight:
continue
f1 = fight['fighters'][0]['name']
f2 = fight['fighters'][1]['name']
# trueskill data
f1_ts = ratings[f1].mu
f1_sigma = ratings[f1].sigma
f2_ts = ratings[f2].mu
f2_sigma = ratings[f2].sigma
f1_ts_min = f1_ts - f1_sigma * 2
f2_ts_min = f2_ts - f2_sigma * 2
f1_ts_max = f1_ts + f1_sigma * 2
f2_ts_max = f2_ts + f2_sigma * 2
# odds data
f1_odds = fight['odds'][f1]
f2_odds = fight['odds'][f2]
if not -50 < f1_odds < 50 or not -50 < f2_odds < 50:
raise ValueError(f'surely these odds are wrong? {f1_odds} {f2_odds}')
win1_prob = win_probability([ratings[f1]], [ratings[f2]])
win2_prob = win_probability([ratings[f2]], [ratings[f1]])
# wins losses data
f1_wins_losses = Counter(wins_losses[f1])
f1_wnl_winrate = f1_wins_losses[1] / max(1, len(wins_losses[f1]))
f2_wins_losses = Counter(wins_losses[f2])
f2_wnl_winrate = f2_wins_losses[1] / max(1, len(wins_losses[f2]))
fight_data = [
[
win1_prob,
f1_odds,
f2_odds,
f1_ts,
f2_ts,
f1_sigma,
f2_sigma,
f1_ts_min - f2_ts_min,
f1_ts - f2_ts,
f1_ts_max - f2_ts_max,
last_fights[f1],
last_fights[f2],
early_fights[f1],
early_fights[f2],
f1_wins_losses[1],
f1_wins_losses[-1],
f1_wnl_winrate,
f2_wins_losses[1],
f2_wins_losses[-1],
f2_wnl_winrate,
],
[
win2_prob,
f2_odds,
f1_odds,
f2_ts,
f1_ts,
f2_sigma,
f1_sigma,
f2_ts_min - f1_ts_min,
f2_ts - f1_ts,
f2_ts_max - f1_ts_max,
last_fights[f2],
last_fights[f1],
early_fights[f2],
early_fights[f1],
f2_wins_losses[1],
f2_wins_losses[-1],
f2_wnl_winrate,
f1_wins_losses[1],
f1_wins_losses[-1],
f1_wnl_winrate,
]
]
##########################################
# update data
if 'winner' in fight:
# get winner
fw = fight['winner']['fighter']
is_win_1 = fw == f1
fl = f2 if is_win_1 else f1
if not is_win_1 and fw != f2 and fw is not None:
raise ValueError(f'unknown winner {fw}')
drawn = fw is None
# update wins losses
wins_losses[f1] += [1]
wins_losses[f2] += [-1]
# update fights
early_fights[fw] = last_fights[fw]
early_fights[fl] = last_fights[fl]
last_fights[fw] = 1
last_fights[fl] = 0
# update ratings
ratings[fw], ratings[fl] = rate_1vs1(ratings[fw], ratings[fl], drawn=drawn)
###################################
# train
if is_training:
if 'winner' in fight:
X_train.extend(fight_data)
y_train.extend([is_win_1, not is_win_1])
###################################
# test
else:
scaled_fight_data = scaler.transform(fight_data)
f1_pred, f2_pred = reg.predict(scaled_fight_data)
#############################
# bet scaling
bet_multi = 1
# pred max
if f1_pred > f2_pred:
f_pred = f1_pred - f2_pred
else:
f_pred = f2_pred - f1_pred
bet_pred_multi = np.polyval([bet_pred_a, bet_pred_b], [f_pred])[0]
bet_pred_multi = round(min(1, max(0, bet_pred_multi)))
bet_multi += bet_pred_multi
bet_multis_cat.append(f'pred:{bet_pred_multi:.0f}')
# odds diff
if f1_pred > f2_pred:
f_odds = 1 / f1_odds - 1 / f2_odds
else:
f_odds = 1 / f2_odds - 1 / f1_odds
bet_odds_multi = np.polyval([bet_odds_a, bet_odds_b], [f_odds])[0]
bet_odds_multi = round(min(1, max(0, bet_odds_multi)))
bet_multi += bet_odds_multi
bet_multis_cat.append(f'odds:{bet_odds_multi:.0f}')
# wins and losses
if f1_pred > f2_pred:
f_wnl = f1_wnl_winrate - f2_wnl_winrate
else:
f_wnl = f2_wnl_winrate - f1_wnl_winrate
bet_wnl_multi = np.polyval([bet_wnl_a, bet_wnl_b], [f_wnl])[0]
bet_wnl_multi = round(min(1, max(0, bet_wnl_multi)))
bet_multi += bet_wnl_multi
bet_multis_cat.append(f'wnl:{bet_wnl_multi:.0f}')
# trueskill mu
if f1_pred > f2_pred:
f_ts = f1_ts - f2_ts
else:
f_ts = f2_ts - f1_ts
bet_ts_multi = np.polyval([bet_ts_a, bet_ts_b], [f_ts])[0]
bet_ts_multi = round(min(1, max(0, bet_ts_multi)))
bet_multi += bet_ts_multi
bet_multis_cat.append(f'ts:{bet_ts_multi:.0f}')
# trueskill min
if f1_pred > f2_pred:
f_ts_min = f1_ts_min - f2_ts_min
else:
f_ts_min = f2_ts_min - f1_ts_min
bet_tmi_multi = np.polyval([bet_tmi_a, bet_tmi_b], [f_ts_min])[0]
bet_tmi_multi = round(min(1, max(0, bet_tmi_multi)))
bet_multi += bet_tmi_multi
bet_multis_cat.append(f'tmi:{bet_tmi_multi:.0f}')
# trueskill max
if f1_pred > f2_pred:
f_ts_max = f1_ts_max - f2_ts_max
else:
f_ts_max = f2_ts_max - f1_ts_max
bet_tma_multi = np.polyval([bet_tma_a, bet_tma_b], [f_ts_max])[0]
bet_tma_multi = round(min(1, max(0, bet_tma_multi)))
bet_multi += bet_tma_multi
bet_multis_cat.append(f'tma:{bet_tma_multi:.0f}')
bet_size *= round(bet_multi)
bet_amt = round(bet_size * bet_multi)
assert bet_amt >= 1, f'bet multi is fucked: {bet_multi}'
bet_amts.append(bet_size)
bet_multis.append(int(round(bet_multi)))
#############################
# prediction made
if 'prediction' in fight and fight['prediction'] is None:
if f1_pred > f2_pred:
exp_winner = f1
pred_exp_winner = f1_pred
exp_loser = f2
pred_exp_loser = f2_pred
else:
exp_winner = f2
pred_exp_winner = f2_pred
exp_loser = f1
pred_exp_loser = f1_pred
logger.warning(f'[{pred_exp_winner * 100:.0f}% vs {pred_exp_loser * 100:.0f}%] Bet x{bet_multi} on {exp_winner} to beat {exp_loser} [{ratings[exp_winner].mu:.0f} vs {ratings[exp_loser].mu:.0f}]')
continue
# good luck with your bets
elif 'winner' not in fight:
logger.warning(f'Pending {f1} vs {f2}')
continue
if is_win_1:
fw_pred = f1_pred
fl_pred = f2_pred
else:
fw_pred = f2_pred
fl_pred = f1_pred
# add test data
X_test.extend(scaled_fight_data)
y_test.extend([is_win_1, not is_win_1])
# testing outcome
correct = 0
payout = -bet_size
if is_win_1 and f1_pred > f2_pred:
correct = 1
payout += f1_odds * bet_size
elif not is_win_1 and f2_pred > f1_pred:
correct = 1
payout += f2_odds * bet_size
odds_outcomes.append(int((f1_odds < f2_odds and is_win_1) or (f2_odds > f1_odds and not is_win_1)))
payouts.append(round(payout, 2))
accuracy = (accuracy[0] + correct, accuracy[1] + 1)
# actual outcome
pred_flipped = False
if 'bet' in fight:
is_actual_correct = fight['prediction'] == fw
actual = (actual[0] + is_actual_correct, actual[1] + 1)
cash = -fight['bet']
if is_actual_correct:
fw_odds = f1_odds if is_win_1 else f2_odds
cash += fw_odds * fight['bet']
else:
fw_odds = f2_odds if is_win_1 else f1_odds
tab.append(round(cash, 2))
tab_amts.append(fight['bet'])
# pred flipped?
pred_flipped = (f1_pred > f2_pred and fight['prediction'] != f1) or (
f2_pred > f1_pred and fight['prediction'] != f2)
actual_debug.append(f'${fight["bet"]} {fw_odds:.2f}: {cash:.2f} {fight["prediction"]} {fight["date"]}')
preds_flipped.append(int(pred_flipped))
log_balance = f'{"!!" if pred_flipped else " "}[{sum(payouts):.0f}|{payout:.0f}]'
log_pred = f'[{fw_pred * 100:.0f}% vs {fl_pred * 100:.0f}%]'
log_fight = f'x{bet_multi} {fw} {fight["winner"]["by"]} {fl}'
log_ratings = f'[{ratings[fw].mu:.0f} vs {ratings[fl].mu:.0f}]'
logger.info(f'{log_balance} {log_pred} {log_fight} {log_ratings}')
if train:
total_payouts = sum(payouts)
roi = total_payouts / sum(bet_amts)
res = -roi - (total_payouts / 5000)
print(f'Score: {-res*100:.2f} ROI {roi * 100:.1f}% Profit ${total_payouts:.0f}')
return res
else:
summary(reg, accuracy, payouts, start_date, bet_amts, bet_multis, bet_multis_cat, actual, tab, tab_amts, odds_outcomes)
def summary(reg, accuracy, payouts, start_date, bet_amts, bet_multis, bet_multis_cat, actual, tab, tab_amts, odds_outcomes):
logger.info('')
logger.info('Tree info:')
# reg = get_regressor(X_train, y_train, X_test, y_test, estimators=estimators, max_depth=max_depth)
reg_score = reg.evals_result()
params = reg.get_params()
logger.info(f'Num estimators: {params["n_estimators"]}')
logger.info(f'Learning rate: {params["learning_rate"]:.2f}')
logger.info(f'Max depth: {params["max_depth"]}')
logger.info(f'Accuracy: training={reg_score["validation_0"]["auc"][-1]*100:.0f}%')
feature_names = [
'win%',
'odds', '~odds',
'ts', '~ts', 'sigma', '~sigma',
'ts_min_diff', 'ts_diff', 'ts_max_diff',
'last', '~last',
'early', '~early',
'wins', '~wins', 'losses', '~losses', 'winrate', '~winrate',
]
assert len(feature_names) == len(reg.feature_importances_), f'{len(feature_names)} features vs {len(reg.feature_importances_)} reg values'
logger.info('')
logger.info(f'Features:')
features = SortedDict({v: k for k, v in zip(feature_names, reg.feature_importances_)})
for k in features.keys():
logger.info(f'{features[k]}: {k*1000:.0f}')
continue
if accuracy[1]:
payouts = np.array(payouts)
logger.info('')
logger.info('Testing:')
odds_acc = sum([t for t in odds_outcomes if t > 0]) / len(odds_outcomes)
logger.info(f'Accuracy {accuracy[0]}/{accuracy[1]} = {accuracy[0]/accuracy[1]*100:.1f}% Odds: {odds_acc*100:.1f}%')
logger.info(f'ROI {sum(payouts) / sum(bet_amts) * 100:.1f}% Profit ${sum(payouts):.0f}')
days = (datetime.now() - start_date).days
logger.info(f'Profit: per day: ${sum(payouts) / days:.2f} per bet ${payouts.mean():.2f}')
logger.info(f'Common multis: {Counter(bet_multis).most_common(4)}')
logger.info(f'cat multis: {Counter(bet_multis_cat).most_common()}')
if actual[1]:
tab = np.array(tab)
logger.info('')
logger.info('Actual:')
logger.info(f'Accuracy {actual[0]}/{actual[1]} = {actual[0]/actual[1] * 100:.1f}%')
logger.info(f'ROI {sum(tab) / sum(tab_amts) * 100:.2f}% Profit ${sum(tab):.0f}')
days = (datetime.now() - datetime(2019, 7, 13)).days
logger.info(f'Profit: per day: ${sum(tab) / days:.2f} per bet ${tab.mean():.2f}')
sheet = -62.62
if abs(sum(tab) - sheet) > 0.01:
for l in actual_debug:
logger.warning(l)
logger.error(f'debug! {sheet:.2f} != {sum(tab):.2f} diff {sum(tab) - sheet:.2f}')
def run():
train = 0
names = [
# 'bet_pred_a', 'bet_pred_b', 'bet_odds_a', 'bet_odds_b', 'bet_wnl_a', 'bet_wnl_b',
'bet_ts_a', 'bet_ts_b', 'bet_tmi_a', 'bet_tmi_b', 'bet_tma_a', 'bet_tma_b',
]
params = [
0, 0, 0, 0, 0, 0
]
bounds = [[-np.inf],
[np.inf]]
assert len(params) == len(names)
# assert len(params) == len(bounds[0])
if train:
sigma = 1
opts = CMAOptions()
# opts['tolx'] = 1E-2
opts['bounds'] = bounds
es = CMAEvolutionStrategy(params, sigma, inopts=opts)
while not es.stop():
solutions = es.ask()
fitness = [main(x, train=1) for x in solutions]
es.tell(solutions, fitness)
es.disp()
print(list(es.result[0]))
print(list(es.result[5]))
es.result_pretty()
print('')
print('best')
print(list(es.result[0]))
print('')
print('xfavorite: distribution mean in "phenotype" space, to be considered as current best estimate of the optimum')
print(list(es.result[5]))
else:
main(params)
if __name__ == '__main__':
run()
| 2.09375 | 2 |
kron.py | seangilleran/kron | 0 | 12792024 | from flask_script import Manager
from kron import Kron, db, restore_from_file
from kron import Tag, Post, Archive, Box, Document, Person, Topic
app = Kron(__name__)
manager = Manager(app)
@manager.command
def restore(file):
restore_from_file(file)
@manager.shell
def _make_shell_context():
return dict(
app=app, db=db, Tag=Tag, Post=Post,
Archive=Archive, Box=Box, Document=Document, Person=Person,
Topic=Topic
)
if __name__ == "__main__":
manager.run()
| 2.140625 | 2 |
Corpus_Olusturma/gezi_web_siteleri.py | Halil-ibrahim-GUNBULAK/IMAGEPROCESSORS | 4 | 12792025 | import requests
from bs4 import BeautifulSoup
linklertoplam=[]
# öncelikle haber sitesinin page şeklinde olması önemli
# burda linkleri alıp link listesi oluşturuyoruz
#html bilenler bilir a href kısmında bizim linklerimiz bulunmakta fakat sitedeki her link işimize yaramıyor
# bu yüzden öncelikle göslem yapmanız geriyor ben yaptığım gözlemle birlikte işimize yarayan linkler
#https://play.google.com/store/apps/details?id=hurriyet.mobil.android&hl=tr && /seyahat/konu/gezgin/?p= linkleri arasında olduğunu keşfettim
# bu yüzden buna uygun bir kod ile linkeri aldım
# oluşan korpusunu düzenlemeniz için korpus düzenleme py de bırakıyorum bu metninizdeki noktalama işaretlerini kaldıracak bir program örnek vermek gerekirse
# Fenerbahçe'nin takım otobüsü. cümlesini size Fenerbahçe takım otobüsü olarak dönderecek bu da size Fenerbahçe ve otobüsü kelimesini kazandıracak
# diğer türlü modelinizin bu kelimeleri tanıması için çokca otobüsü. ve Fenerbahçe'nin kelimelerinin çokca geçmesi gerekir bu şekilde özel isimler ve noktalama işaretlerinden kurtuluyoruz
for p in range(2,49):
r=requests.get("https://www.hurriyet.com.tr/seyahat/konu/gezgin/".format(p))
soup=BeautifulSoup(r.content)
linkler=soup.find_all("a")
linklist=[]
list_min=0
list_max=0
counter=0
counter2=1
for link in linkler:
s=link.get("href")
linklist.append(s)
counter=counter+1
str_s=str(s)
if str_s[:]=="https://play.google.com/store/apps/details?id=hurriyet.mobil.android&hl=tr":
print(counter)
list_min = counter
if str_s[0:24]=='/seyahat/konu/gezgin/?p=' and counter2==1:
counter2=counter2+1
print(counter)
list_max = counter
for i in range(list_min,list_max-1):
linklertoplam.append(linklist[i])
print(len(linklertoplam))
dosya= open('turklink.txt', 'a', encoding='utf8')
for d in range(len(linklertoplam)):
dosya.write('https://www.hurriyet.com.tr'+str(linklertoplam[d])+'\n')
| 2.203125 | 2 |
src/library/utils/transforms/param_copy.py | inessus/ai-skills | 5 | 12792026 | import copy
def transfer_weights(model_from, model_to):
"""
实现了从model_from到model to的相同网络参数的拷贝。
复制一个目标参数,把没有的都填上,就可以使用了,
:param model_from:
:param model_to:
:return:
"""
wf = copy.deepcopy(model_from.state_dict())
wt = model_to.state_dict()
for k in wt.keys() :
if (not k in wf) | (k == 'fc.weight') | (k == 'fc.bias'): # 例如两个都有fc层,那么要求fc层的参数是一样的 就是参数维度不匹配啦。
wf[k] = wt[k]
model_to.load_state_dict(wf)
| 2.78125 | 3 |
code/crawler/src/get_raw_arxiv.py | vipulraheja/IteraTeR | 11 | 12792027 | import os
import time
import json
import arxiv
def get_paper_list(query="cat:cs.CL", domain='cscl',
latest_year=2021, end_year=2010, max_results=1000):
outs = {}
year = latest_year
i = 0
while year > end_year:
print(f"Results {i} - {i+max_results}:")
result = arxiv.query(query = query,
start = i,
sort_by = 'submittedDate',
sort_order = 'descending',
max_results = max_results)
new_papers = 0
for paper in result:
arxiv_id = paper.id.split('/')[-1]
N = int(arxiv_id[-1])
if '.' in arxiv_id and N > 1:
arxiv_id = arxiv_id.replace(f'v{N}', '')
print(arxiv_id)
new_papers += 1
year = int(paper.updated[:4])
if arxiv_id not in outs.keys():
outs[arxiv_id] = [N]
else:
outs[arxiv_id].append(N)
i += max_results
time.sleep(3)
print(year)
if new_papers == 0: break
with open(f'../data/arxiv/list/{domain}_list_{len(outs)}.json', 'w') as json_file:
json.dump(outs, json_file, indent=2)
return outs
def generate_json_file(preprint_list, tmp_file_path, domain):
with open(f'{tmp_file_path}/raw_revisions_{domain}.json', 'a') as json_file:
for ID in preprint_list.keys():
max_ver = max(preprint_list[ID])
for i in range(1, max_ver):
print(ID)
preprint_v1 = ID+f'v{i}'
preprint_v2 = ID+f'v{i+1}'
papers = arxiv.query(query="",
id_list=[preprint_v1,preprint_v2],
max_results=2)
try:
source_abs = papers[0].summary
target_abs = papers[1].summary
except:
print(f'Fail to get paper {ID}!!!')
continue
tmp = {
"arxiv_id": ID,
"before_version": i,
"after_version": i+1,
"before_raw_txt": source_abs,
"after_raw_txt": target_abs,
}
time.sleep(3)
json_file.write(json.dumps(tmp)+'\n')
if __name__ == '__main__':
tmp_path = '../data/arxiv'
tmp_list_path = '../data/arxiv/list'
tmp_file_path = '../data/arxiv/raw'
if not os.path.isdir(tmp_path):
os.mkdir(tmp_path)
if not os.path.isdir(tmp_list_path):
os.mkdir(tmp_list_path)
if not os.path.isdir(tmp_file_path):
os.mkdir(tmp_file_path)
# get raw paper id list (paper version >= 2)
cates = ['econ.EM', 'econ.GN', 'econ.TH']
cates += ['q-fin.CP', 'q-fin.EC', 'q-fin.GN', 'q-fin.MF', 'q-fin.PM', 'q-fin.PR',
'q-fin.RM', 'q-fin.ST', 'q-fin.TR']
cates += ['q-bio.BM', 'q-bio.CB', 'q-bio.GN', 'q-bio.MN', 'q-bio.NC', 'q-bio.OT',
'q-bio.PE', 'q-bio.QM', 'q-bio.SC', 'q-bio.TO']
cates += ['cs.AI', 'cs.CC', 'cs.CE', 'cs.CG', 'cs.GT', 'cs.CV', 'cs.CY', 'cs.CR',
'cs.DS', 'cs.DB', 'cs.DL', 'cs.DM', 'cs.DC', 'cs.ET', 'cs.FL', 'cs.GL',
'cs.GR', 'cs.AR', 'cs.HC', 'cs.IR', 'cs.IT', 'cs.LO', 'cs.LG', 'cs.MS',
'cs.MA', 'cs.MM', 'cs.NI', 'cs.NE', 'cs.NA', 'cs.OS', 'cs.OH', 'cs.PF',
'cs.PL', 'cs.RO', 'cs.SI', 'cs.SE', 'cs.SD', 'cs.SC', 'cs.SY']
for cate in cates:
preprint_list = get_paper_list(query=f"cat:{cate}", domain=f'{cate}',
latest_year=2021, end_year=1900, max_results=1000)
# extract paper abstract by paper id
files = os.listdir(tmp_list_path)
for fname in files:
if fname == '.DS_Store': continue
domain = fname.split('_')[0]
print(domain)
with open(f'{tmp_list_path}/{fname}', 'r') as f:
preprint_list = json.load(f)
outs = generate_json_file(preprint_list, tmp_file_path, domain)
| 2.6875 | 3 |
examples/casvlm1_avl_plane_SAND.py | KikeM/AeroSandbox | 0 | 12792028 | import copy
from aerosandbox import *
opti = cas.Opti() # Initialize an optimization environment
def variable(init_val, lb=None, ub=None):
"""
Initialize attrib_name scalar design variable.
:param init_val: Initial guess
:param lb: Optional lower bound
:param ub: Optional upper bound
:return: The created variable
"""
var = opti.variable()
opti.set_initial(var, init_val)
if lb is not None:
opti.subject_to(var >= lb)
if ub is not None:
opti.subject_to(var <= ub)
return var
def quasi_variable(val):
"""
Initialize attrib_name scalar design variable.
:param init_val: Initial guess
:param lb: Optional lower bound
:param ub: Optional upper bound
:return: The created variable
"""
var = opti.variable()
opti.set_initial(var, val)
opti.subject_to(var == val)
return var
airplane = Airplane(
name="AVL's plane.avl",
x_ref=0.02463, # CG location
y_ref=0, # CG location
z_ref=0.2239, # CG location
s_ref=12,
c_ref=1,
b_ref=15,
wings=[
Wing(
name="Main Wing",
x_le=0, # Coordinates of the wing's leading edge
y_le=0, # Coordinates of the wing's leading edge
z_le=0, # Coordinates of the wing's leading edge
symmetric=True,
chordwise_panels=1,
xsecs=[ # The wing's cross ("X") sections
WingXSec( # Root
x_le=-0.25, # Coordinates of the XSec's leading edge, relative to the wing's leading edge.
y_le=0, # Coordinates of the XSec's leading edge, relative to the wing's leading edge.
z_le=0, # Coordinates of the XSec's leading edge, relative to the wing's leading edge.
chord=1, # 0.18,
twist=4, # variable(0,-10,10), # degrees
airfoil=Airfoil(name="naca0012"),
control_surface_type='symmetric_problem',
# Flap # Control surfaces are applied between attrib_name given XSec and the next one.
control_surface_deflection=0, # degrees
control_surface_hinge_point=0.75, # as chord fraction
spanwise_panels=16,
),
WingXSec( # Mid
x_le=-0.175,
y_le=7.5,
z_le=0.5,
chord=0.7, # 0.16,
twist=4, # variable(0,-10,10),
airfoil=Airfoil(name="naca0012"),
control_surface_type='asymmetric', # Aileron
control_surface_deflection=0,
control_surface_hinge_point=0.75
),
# WingXSec( # Tip
# x_c=0.08,#variable(0.08, 0, 0.16),
# y_c=1,#variable(1, 0.5, 1.25),
# z_c=0.1,#variable(0.1, 0, 0.2),
# chord=variable(0.08,0,1),#0.08,#variable(0.08, 0.01, 1),
# twist=0,#variable(0,-10,10),
# airfoil=Airfoil(name="naca4412"),
# )
]
),
Wing(
name="Horizontal Stabilizer",
x_le=6,
y_le=0,
z_le=0.5,
symmetric=True,
chordwise_panels=1,
xsecs=[
WingXSec( # root
x_le=-0.1,
y_le=0,
z_le=0,
chord=0.4,
twist=variable(0, -60, 60),
airfoil=Airfoil(name="naca0012"),
control_surface_type='symmetric_problem', # Elevator
control_surface_deflection=0,
control_surface_hinge_point=0.75,
spanwise_panels=10
),
WingXSec( # tip
x_le=-0.075,
y_le=2,
z_le=0,
chord=0.3,
twist=variable(0, -60, 60),
airfoil=Airfoil(name="naca0012")
)
]
),
Wing(
name="Vertical Stabilizer",
x_le=6,
y_le=0,
z_le=0.5,
symmetric=False,
chordwise_panels=1,
xsecs=[
WingXSec(
x_le=-0.1,
y_le=0,
z_le=0,
chord=0.4,
twist=0,
airfoil=Airfoil(name="naca0012"),
control_surface_type='symmetric_problem', # Rudder
control_surface_deflection=0,
control_surface_hinge_point=0.75,
spanwise_panels=10
),
WingXSec(
x_le=-0.075,
y_le=0,
z_le=1,
chord=0.3,
twist=0,
airfoil=Airfoil(name="naca0012")
)
]
)
]
)
# airplane.set_paneling_everywhere(6, 10)
ap = Casvlm1( # Set up the AeroProblem
airplane=airplane,
op_point=OperatingPoint(
velocity=65,
density=0.002377,
alpha=variable(0),
beta=quasi_variable(0),
p=quasi_variable(0),
q=quasi_variable(0),
r=quasi_variable(0),
),
opti=opti
)
# Set up the VLM optimization submatrix
ap.setup()
# Extra constraints
# Trim constraint
opti.subject_to([
ap.CL == 0.390510,
ap.airplane.wings[1].xsecs[0].twist == ap.airplane.wings[1].xsecs[1].twist,
ap.Cm == 0,
# -ap.force_total_inviscid_wind[2] == 9.81 * 0.5,
# # ap.CY == 0,
# # ap.Cl == 0,
# ap.Cm == 0,
# # ap.Cn == 0,
])
# Cmalpha constraint
# opti.subject_to(cas.gradient(ap.Cm, ap.op_point.alpha) * 180/np.pi == -1)
# Objective
# opti.minimize(-ap.force_total_inviscid_wind[0])
# Solver options
p_opts = {}
s_opts = {}
s_opts["max_iter"] = 1e6 # If you need to interrupt, just use ctrl+c
# s_opts["mu_strategy"] = "adaptive"
# s_opts["start_with_resto"] = "yes"
# s_opts["required_infeasibility_reduction"] = 0.1
opti.solver('ipopt', p_opts, s_opts)
# Solve
try:
sol = opti.solve()
except RuntimeError:
sol = opti.debug
# Create solved object
ap_sol = copy.deepcopy(ap)
ap_sol.substitute_solution(sol)
# Postprocess
ap_sol.draw()
# Answer you should get: (XFLR5)
# CL = 0.797
# CDi = 0.017
# CL/CDi = 47.211
| 2.34375 | 2 |
exercicios/aula08-ex-a.py | anildoferreira/CursoPython-PyCharm | 0 | 12792029 | import math
num = int(input('Digite um número para encontrar a raíz: '))
raiz = math.sqrt(num)
print('A raíz quadrada de {}, é {}.'.format(num, raiz))
| 4.0625 | 4 |
apps/decision/templatetags/calculation.py | bahattincinic/cheers | 3 | 12792030 | from __future__ import division
import json
from django.template import Library
register = Library()
def global_weight(criterion, report):
"""
Formula:
Global Weight = Criterion W value / Criterion Count
For example:
W Value = 1
Criterion Count = 5
Global Weight = 1 / 5 = 0.2
"""
criterion_count = criterion['parent']['count']
data = report.criterion_compare[str(criterion['parent']['id'])]
criterion_index = 0
columns = filter(lambda x: x != 'criterion_0',
data['main_table'][0])
# get column index from matris
for index, column in enumerate(columns):
if 'criterion_%s' % criterion['id'] == column:
criterion_index = index
break
w_value = data['w'][criterion_index]
return json.dumps(round(w_value / criterion_count, 4))
@register.simple_tag
def criterion_w(criterion, report, index):
"""
Get W value for given index.
"""
data = report.supplier_compare[str(criterion['id'])]
return data['w'][index - 1]
@register.simple_tag
def calculate_supplier_score(report, index):
"""
Calculate supplier score for given report and index.
"""
total = 0
for cr_id, data in report.supplier_compare.items():
criterion = list(filter(lambda x: str(x['id']) == str(cr_id),
report.get_child_criterions()))[0]
w = float(data['w'][index - 1])
weight = w * float(global_weight(criterion, report))
total += weight
return '%.3f' % total
@register.simple_tag
def get_supplier_criterion_score(report, supplier, criterion):
"""
Vikor Step 1 Calculation.
"""
result = filter(
lambda x: x['criterion_id'] == str(criterion['id']) and
x['supplier_id'] == str(supplier['id']),
report.criterion_supplier_score)
if len(result) > 0:
return result[0]['score']
return 0
@register.simple_tag
def get_supplier_normalized_criterion_score(report, supplier, criterion):
"""
Vikor Step 1 Calculation.
"""
result = filter(
lambda x: x['criterion_id'] == str(criterion['id']) and
x['supplier_id'] == str(supplier['id']),
report.criterion_supplier_score)
if len(result) > 0:
score = int(result[0]['score'])
best = best_criterion_score(report, criterion)
worst = worst_criterion_score(report, criterion)
result = float((best - score) / (best - worst))
return '%.3f' % result
return 0
@register.simple_tag
def get_supplier_weighted_criterion_score(report, supplier, criterion):
"""
Vikor Step 1 Calculation.
"""
normalized = float(get_supplier_normalized_criterion_score(
report, supplier, criterion))
w = float(global_weight(criterion, report))
result = normalized * w
return '%.3f' % result
@register.simple_tag
def best_criterion_score(report, criterion):
"""
Vikor Step 1 Calculation.
"""
max_score = 0
for item in report.criterion_supplier_score:
if item['criterion_id'] == str(criterion['id']) and \
int(item['score']) > max_score:
max_score = int(item['score'])
return max_score
@register.simple_tag
def get_si_value(report, supplier):
"""
Vikor Step 1 Calculation.
"""
total = 0
for criterion in report.get_child_criterions():
total += float(get_supplier_weighted_criterion_score(
report, supplier, criterion))
return '%.4f' % total
@register.simple_tag
def get_min_si_value(report):
"""
Vikor Step 1 Calculation.
"""
min_value = 0
for supplier in report.suppliers:
value = float(get_si_value(report, supplier))
if min_value == 0 or value < min_value:
min_value = value
return '%.4f' % min_value
@register.simple_tag
def get_max_si_value(report):
"""
Vikor Step 1 Calculation.
"""
max_value = 0
for supplier in report.suppliers:
value = float(get_si_value(report, supplier))
if value > max_value:
max_value = value
return '%.4f' % max_value
@register.simple_tag
def get_min_ri_value(report):
"""
Vikor Step 1 Calculation.
"""
min_value = 0
for supplier in report.suppliers:
value = float(get_ri_value(report, supplier))
if min_value == 0 or value < min_value:
min_value = value
return '%.4f' % min_value
@register.simple_tag
def get_max_ri_value(report):
"""
Vikor Step 1 Calculation.
"""
max_value = 0
for supplier in report.suppliers:
value = float(get_ri_value(report, supplier))
if value > max_value:
max_value = value
return '%.4f' % max_value
@register.simple_tag
def get_ri_value(report, supplier):
"""
Vikor Step 1 Calculation.
"""
max_value = 0
for criterion in report.get_child_criterions():
score = float(get_supplier_weighted_criterion_score(
report, supplier, criterion))
if score > max_value:
max_value = score
return '%.4f' % max_value
@register.simple_tag
def get_qi_value(report, supplier, weight, min_si, max_si,
min_ri, max_ri, si, ri):
"""
Vikor Step 1 Calculation.
"""
si = float(si)
ri = float(ri)
min_si = float(min_si)
max_si = float(max_si)
min_ri = float(min_ri)
max_ri = float(max_ri)
total = ((weight * (si - min_si)) / (max_si - min_si)) + \
(((1 - weight) * (ri - min_ri)) / (max_ri - min_ri))
return '%.4f' % total
@register.simple_tag
def worst_criterion_score(report, criterion):
"""
Vikor Step 1 Calculation.
"""
min_score = 0
for item in report.criterion_supplier_score:
if item['criterion_id'] == str(criterion['id']) and \
(min_score == 0 or int(item['score']) < min_score):
min_score = int(item['score'])
return min_score
register.filter('global_weight', global_weight)
| 2.125 | 2 |
src/triggers/recommendation_trigger.py | jherrerotardon/spies | 0 | 12792031 | <filename>src/triggers/recommendation_trigger.py
from pyframework.triggers.abstract_trigger import AbstractTrigger
from src.commands.fire.base_fire import Event
class RecommendationTrigger(AbstractTrigger):
ACTION_KEY_PREFIX = AbstractTrigger.ACTION_KEY_PREFIX + ':' + 'download'
EVENT_TASK = Event.RECOMMENDATION_DOWNLOAD_TASK.value
EVENT_ACTION = Event.RECOMMENDATION_DOWNLOAD_ACTION.value
| 1.695313 | 2 |
tests/test_show.py | SickChill/libtvdb | 1 | 12792032 | """Test searching for shows."""
import datetime
from tests.context import BaseTVDBTest
from libtvdb.model.enums import AirDay, ShowStatus
class ShowTestSuite(BaseTVDBTest):
"""Show test cases."""
def test_show_parse(self):
"""Test that a show is parsed as we'd expect."""
show = self.client().show_info(73739)
self.assertEqual(show.added, None, f"'{show.added}' was not equal to expected added 'None'")
self.assertEqual(show.added_by, None, f"'{show.added_by}' was not equal to expected added by 'None'")
self.assertEqual(show.air_day, AirDay.tuesday, f"'{show.air_day}' was not equal to expected air_day '{AirDay.tuesday}'")
self.assertEqual(show.air_time, '9:00 PM', f"'{show.air_time}' was not equal to expected air time '9:00 PM'")
self.assertEqual(show.aliases, ['Lost: Missing Pieces'], f"'{show.aliases}' was not equal to expected aliases '{['Lost: Missing Pieces']}'")
self.assertEqual(show.banner, 'graphical/73739-g4.jpg', f"'{show.banner}' was not equal to expected banner 'graphical/73739-g4.jpg")
self.assertEqual(show.first_aired, datetime.date(2004, 9, 22), f"'{show.first_aired}' was not equal to expected first_aired '{datetime.date(2004, 9, 22)}'")
self.assertEqual(show.genres, ['Action', 'Adventure', 'Drama', 'Science-Fiction'], f"'{show.genres}' was not equal to expected genres '{['Action', 'Adventure', 'Drama', 'Science-Fiction']}'")
self.assertEqual(show.identifier, 73739, f"'{show.identifier}' was not equal to expected identifier '73739'")
self.assertEqual(show.imdb_id, 'tt0411008', f"'{show.imdb_id}' was not equal to expected imdb_id 'tt0411008'")
self.assertEqual(show.name, 'Lost', f"'{show.name}' was not equal to expected name Lost'")
self.assertEqual(show.network, 'ABC (US)', f"'{show.network}' was not equal to expected network 'ABC (US)'")
self.assertEqual(show.network_identifier, '', f"'{show.network_identifier}' was not equal to expected network_identifier ''")
self.assertEqual(show.rating, 'TV-14', f"'{show.rating}' was not equal to expected rating 'TV-14'")
self.assertEqual(show.runtime, '45', f"'{show.runtime}' was not equal to expected runtime '45'")
self.assertEqual(show.series_identifier, '24313', f"'{show.series_identifier}' was not equal to expected series_identifier '24313'")
self.assertEqual(show.site_rating, 9.1, f"'{show.site_rating}' was not equal to expected site_rating '9.1'")
self.assertEqual(show.site_rating_count, 768, f"'{show.site_rating_count}' was not equal to expected site_rating_count '768'")
self.assertEqual(show.slug, 'lost', f"'{show.slug}' was not equal to expected slug 'lost")
self.assertEqual(show.status, ShowStatus.ended, f"'{show.status}' was not equal to expected status '{ShowStatus.ended}'")
self.assertEqual(show.zap2it_id, 'SH672362', f"'{show.zap2it_id}' was not equal to expected zap2it_id 'SH672362'")
self.assertGreaterEqual(
show.last_updated,
datetime.datetime(2018, 11, 23, 0, 28, 59),
f"'{show.last_updated}' was not greater or equal to expected last_updated '{datetime.datetime(2018, 11, 23, 0, 28, 59)}'"
)
#pylint: disable=line-too-long
self.assertEqual(show.overview, 'After their plane, Oceanic Air flight 815, tore apart whilst thousands of miles off course, the survivors find themselves on a mysterious deserted island where they soon find out they are not alone.', f"'{show.overview}' was not equal to expected overview 'After their plane, Oceanic Air flight 815, tore apart whilst thousands of miles off course, the survivors find themselves on a mysterious deserted island where they soon find out they are not alone.'")
#pylint: enable=line-too-long
| 2.703125 | 3 |
dffml/source/memory.py | Patil2099/dffml | 0 | 12792033 | <filename>dffml/source/memory.py<gh_stars>0
# SPDX-License-Identifier: MIT
# Copyright (c) 2019 Intel Corporation
"""
Fake data sources used for testing
"""
import asyncio
from typing import Any, Dict, List, NamedTuple, AsyncIterator
from ..base import BaseConfig
from ..repo import Repo
from .source import BaseSourceContext, BaseSource
from ..util.cli.arg import Arg
from ..util.entrypoint import entry_point
class MemorySourceContext(BaseSourceContext):
async def update(self, repo):
self.parent.mem[repo.src_url] = repo
async def repos(self) -> AsyncIterator[Repo]:
for repo in self.parent.mem.values():
yield repo
async def repo(self, src_url: str) -> Repo:
return self.parent.mem.get(src_url, Repo(src_url))
class MemorySourceConfig(BaseConfig, NamedTuple):
repos: List[Repo]
@entry_point("memory")
class MemorySource(BaseSource):
"""
Stores repos in a dict in memory
"""
CONTEXT = MemorySourceContext
def __init__(self, config: BaseConfig) -> None:
super().__init__(config)
self.mem: Dict[str, Repo] = {}
if isinstance(self.config, MemorySourceConfig):
self.mem = {repo.src_url: repo for repo in self.config.repos}
@classmethod
def args(cls, args, *above) -> Dict[str, Arg]:
cls.config_set(
args, above, "keys", Arg(type=str, nargs="+", default=[])
)
return args
@classmethod
def config(cls, config, *above):
return MemorySourceConfig(
repos=list(map(Repo, cls.config_get(config, above, "keys")))
)
| 2.078125 | 2 |
gp_dev/core.py | matjesg/gp_dev | 0 | 12792034 | # AUTOGENERATED! DO NOT EDIT! File to edit: nbs/00_core.ipynb (unless otherwise specified).
__all__ = ['ExactGPModel', 'MultitaskGPModel', 'nv_cost', 'week_of_month']
# Cell
import gpytorch
from math import ceil
import datetime
# Cell
class ExactGPModel(gpytorch.models.ExactGP):
def __init__(self, train_x, train_y, likelihood):
super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
self.mean_module = gpytorch.means.ConstantMean()
self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.PeriodicKernel())
def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_module(x)
return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
# Cell
class MultitaskGPModel(gpytorch.models.ExactGP):
def __init__(self, train_x, train_y, likelihood, num_tasks):
super(MultitaskGPModel, self).__init__(train_x, train_y, likelihood)
self.mean_module = gpytorch.means.MultitaskMean(
gpytorch.means.ConstantMean(), num_tasks=num_tasks
)
self.covar_module = gpytorch.kernels.MultitaskKernel(
gpytorch.kernels.RBFKernel(), num_tasks=num_tasks, rank=1
)
def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_module(x)
return gpytorch.distributions.MultitaskMultivariateNormal(mean_x, covar_x)
# Cell
def nv_cost(q, y, cu, co):
if q>y:
cost = (q-y)*co
else:
cost = (y-q)*cu
return cost
# Cell
def week_of_month(dt_str):
""" Returns the week of the month for the specified date.
"""
dt = datetime.datetime.strptime(dt_str, '%Y-%m-%d')
first_day = dt.replace(day=1)
dom = dt.day
adjusted_dom = dom + first_day.weekday()
return int(ceil(adjusted_dom/7.0)) | 2.09375 | 2 |
dephell/__main__.py | OliverHofkens/dephell | 1,880 | 12792035 | # app
from .cli import entrypoint
entrypoint()
| 1.0625 | 1 |
s06_classes_intro/exercises/book.py | silverfield/pythonsessions | 0 | 12792036 | <gh_stars>0
__author__ = 'ferrard'
# ---------------------------------------------------------------
# Imports
# ---------------------------------------------------------------
import pickle
import math
# ---------------------------------------------------------------
# Class - Book
# ---------------------------------------------------------------
class Book:
"""Represents an "electronic book" - one can add pages, save/load to file and search for phrases"""
# ---------------------------------------------------------------
# Initialisation
# ---------------------------------------------------------------
def __init__(self):
self._pages = []
self.can_do_tfidf = False
self._word2number_of_pages_having_it = None
self._page2word_frequency = None
self._page2max_word_frequency = None
# ---------------------------------------------------------------
# Interface
# ---------------------------------------------------------------
def add_page(self, page):
"""Adds a new page to the book"""
self._pages.append(page)
self.can_do_tfidf = False
def make_pages_from_textfile(self, fname, lines_per_page=20):
"""Opens given text file, and makes pages out of it"""
with open(fname, 'r') as f:
lines = f.readlines()
buffer = []
for line in lines:
buffer.append(line)
if len(buffer) == lines_per_page:
self.add_page("\n".join(buffer))
buffer.clear()
if len(buffer) != 0:
self.add_page("\n".join(buffer))
self.can_do_tfidf = False
def search_for(self, text):
"""Searches for the text in all the pages, then sorts the results by TF.IDF importance of the search phrase
in the page
"""
# find pages containing the text
found_pages = [i for i in range(len(self._pages)) if text in self._pages[i]]
# split the search string to words
words = [word for word in self.__split_to_words(text)]
# get the importance-score for each found page
pages_and_scores = []
for i in found_pages:
score = 0
for word in words:
score += self.__tf_idf(word, i)
pages_and_scores.append((i, score))
# sort by importance score
pages_and_scores.sort(key=lambda x: x[1], reverse=True)
print("Search phrase \"" + text + "\" located in following pages (sorted by importance): ")
for pas in pages_and_scores:
print("\tPage " + str(pas[0]) + " (importance = " + str(pas[1]) + ")")
def save_to_file(self, fname):
"""Saves the book to a specified file"""
with open(fname, 'wb') as f:
pickle.dump(self._pages, f)
def load_from_file(self, fname):
"""Loads the book from specified file"""
with open(fname, 'rb') as f:
self._pages = pickle.load(f)
self.can_do_tfidf = False
def print_page(self, page_number, width=120):
"""Prints the specified page of the book, to the console
One may specify the maximum width of the page
"""
print('-'*width)
print("| Page " + str(page_number + 1))
print('-'*width)
line = ""
for c in self._pages[page_number]:
line += c
if len(line) == width:
print(line)
line = ""
print(line)
print('-'*width)
print()
def print_all(self, width=120):
"""Prints all the pages of the book, one by one, to the console"""
for i in range(len(self._pages)):
self.print_page(i, width)
def print_important_words(self, page_number, k=10):
"""Gets the top k important words for given page"""
words_and_importances = []
for word in self.__get_words_for_page(page_number):
words_and_importances.append((word, self.__tf_idf(word, page_number)))
words_and_importances.sort(key=lambda x: x[1], reverse=True)
print("Most important words on page " + str(page_number + 1))
for wai in words_and_importances[:k]:
print("\t" + wai[0] + " (importance = " + str(wai[1]) + ")")
# ---------------------------------------------------------------
# Implementation
# ---------------------------------------------------------------
def __tf_idf(self, word, page_index):
"""Computes the TF.IDF for given word on given page"""
if not self.can_do_tfidf:
self.__compute_stats_for_tfidf()
return self.__tf(word, page_index)*self.__idf(word)
def __tf(self, word, page_index):
"""Computes the TF for given word"""
if not self.can_do_tfidf:
self.__compute_stats_for_tfidf()
f = 0 if word not in self._page2word_frequency[page_index] else self._page2word_frequency[page_index][word]
return f/self._page2max_word_frequency[page_index]
def __idf(self, word):
"""Computes the IDF for given word"""
if not self.can_do_tfidf:
self.__compute_stats_for_tfidf()
n_word = 0 if word not in self._word2number_of_pages_having_it else self._word2number_of_pages_having_it[word]
return math.log(len(self._pages)/(1 + n_word))
def __get_words_for_page(self, page_index):
"""Gets the set of words found in the given page"""
if not self.can_do_tfidf:
self.__compute_stats_for_tfidf()
return self._page2word_frequency[page_index].keys()
@staticmethod
def __filter_to_letters(word):
"""Returns the word filtered to contain letters only"""
filtered = ""
for c in word:
if not c.isalpha():
continue
filtered += c
return filtered
def __split_to_words(self, s):
"""Splits the string s to words (in a simplistic manner used in this class) and iterates through them"""
for word in s.split(' '):
# skip empty words
word = self.__filter_to_letters(word)
word = word.lower()
if len(word.strip()) == 0:
continue
yield word
def __compute_stats_for_tfidf(self):
"""Computes stats necessary for computation of TF.IDF"""
# get the necessary stats on the words
word2number_of_pages_having_it = {} # e.g. 'word' -> '15'
page2word_frequency = {} # e.g. 47 -> ('word' -> 2)
for i in range(len(self._pages)):
page = self._pages[i]
page2word_frequency[i] = {}
for word in self.__split_to_words(page):
# mark the occurence of the word for this page
first_occurence = False
if word not in page2word_frequency[i]:
page2word_frequency[i][word] = 0
first_occurence = True
page2word_frequency[i][word] += 1
# if this is the first time we see this word for this page, we also increase the # of pages having it
if first_occurence:
if word not in word2number_of_pages_having_it:
word2number_of_pages_having_it[word] = 0
word2number_of_pages_having_it[word] += 1
# get max-word frequency for each page
page2max_word_frequency = {} # e.g. 47 -> 17
for i in page2word_frequency:
page2max_word_frequency[i] = max(page2word_frequency[i].values())
self._word2number_of_pages_having_it = word2number_of_pages_having_it
self._page2word_frequency = page2word_frequency
self._page2max_word_frequency = page2max_word_frequency
self.can_do_tfidf = True
# ---------------------------------------------------------------
# Main
# ---------------------------------------------------------------
def main():
b = Book()
b.make_pages_from_textfile('animal_farm.txt')
b.print_page(0)
b.print_important_words(0)
b.search_for("pig")
b.print_important_words(38)
b.search_for("point of view")
b.print_page(10)
if __name__ == '__main__':
main() | 2.921875 | 3 |
ocs_sample_library_preview/Security/AccessControlEntry.py | osisoft/sample-ocs-sample_libraries-python | 4 | 12792037 | <gh_stars>1-10
from enum import IntEnum
import json
from .AccessType import AccessType
from .CommonAccessRightsEnum import CommonAccessRightsEnum
from .Trustee import Trustee
class AccessControlEntry(object):
"""OCS access control entry definition"""
def __init__(self, trustee: 'Trustee' = None, access_type: 'AccessType' = None,
access_rights: CommonAccessRightsEnum = None):
self.Trustee = trustee
self.AccessType = access_type
self.AccessRights = access_rights
@property
def Trustee(self) -> 'Trustee':
return self.__trustee
@Trustee.setter
def Trustee(self, value: 'Trustee'):
self.__trustee = value
@property
def AccessType(self) -> 'AccessType':
return self.__access_type
@AccessType.setter
def AccessType(self, value: 'AccessType'):
self.__access_type = value
@property
def AccessRights(self) -> CommonAccessRightsEnum:
return self.__access_rights
@AccessRights.setter
def AccessRights(self, value: CommonAccessRightsEnum):
self.__access_rights = value
def toJson(self):
return json.dumps(self.toDictionary())
def toDictionary(self):
return {'Trustee': self.Trustee.toDictionary(), 'AccessType': self.AccessType.value,
'AccessRights': self.AccessRights.value}
@staticmethod
def fromJson(content: dict[str, str]):
result = AccessControlEntry()
if not content:
return result
if 'Trustee' in content:
result.Trustee = Trustee.fromJson(content['Trustee'])
if 'AccessType' in content and type(content['AccessType']) == int:
result.AccessType = AccessType(content['AccessType'])
elif 'AccessType' in content and type(content['AccessType']) == str:
result.AccessType = AccessType[content['AccessType']]
else:
result.AccessType = AccessType.Allowed
if 'AccessRights' in content:
result.AccessRights = CommonAccessRightsEnum(
content['AccessRights'])
else:
result.AccessRights = CommonAccessRightsEnum.none
return result
| 2.578125 | 3 |
tests/odometry.py | oknuutti/visnav-py | 4 | 12792038 | import unittest
import pickle
import tempfile
import os
import math
from datetime import datetime
import numpy as np
import quaternion
import cv2
from visnav.algo.model import Camera
from visnav.algo.odometry import VisualOdometry, Pose
from visnav.algo import tools
class TestOdometry(unittest.TestCase):
def setUp(self, verbose=False):
self.cam = get_cam()
params = {
'min_keypoint_dist': 10,
'min_inliers': 12,
'min_2d2d_inliers': 24,
}
self.odo = VisualOdometry(self.cam, self.cam.width/4, verbose=verbose, pause=False,
use_scale_correction=False, est_cam_pose=False, **params)
def tearDown(self):
pass
def assertQuatAlmostEqual(self, quat0, quat1, delta=1e-4, msg=None):
if quat0 is None and quat1 is None:
return
diff = math.degrees(tools.angle_between_q(quat0, quat1))
self.assertAlmostEqual(0, diff, delta=delta,
msg=None if msg is None else (msg + ': angle[deg] %f > %f' % (diff, delta)))
def assertArrayAlmostEqual(self, arr0, arr1, delta=1e-7, ord=np.inf, msg=None):
if arr0 is None and arr1 is None:
return
norm = np.linalg.norm(np.array(arr0)-np.array(arr1), ord=ord)
self.assertAlmostEqual(0, norm, delta=delta,
msg=None if msg is None else (msg + ': norm(%s) %f > %f' % (ord, norm, delta)))
def assertPoseAlmostEqual(self, pose0: Pose, pose1: Pose, delta_v=1e-7, delta_q=1e-4, msg=None):
if pose0 is None and pose1 is None:
return
self.assertArrayAlmostEqual(pose0.loc, pose1.loc, delta=delta_v, ord=2,
msg=None if msg is None else (msg + ': loc %s vs %s'%(pose0.loc, pose1.loc)))
self.assertQuatAlmostEqual(pose0.quat, pose1.quat, delta=delta_q,
msg=None if msg is None else (msg + ': quat %s vs %s'%(pose0.quat, pose1.quat)))
def assertOdomResultAlmostEqual(self, result0, result1):
pose0, bias_sds0, scale_sd0 = result0
pose1, bias_sds1, scale_sd1 = result1
msg = '%s deviate(s) too much from the expected value(s)'
self.assertPoseAlmostEqual(pose0, pose1, delta_v=0.02, delta_q=1, msg=msg%'estimated poses')
self.assertArrayAlmostEqual(bias_sds0, bias_sds1, delta=0.1, ord=np.inf, msg=msg%'error estimates')
self.assertAlmostEqual(scale_sd0, scale_sd1, delta=0.01, msg=msg%'scale error estimate')
def test_rotating_object(self, inputs=None, results=None):
pickle_file = os.path.join(os.path.dirname(__file__), 'data', 'test_rotating_object.pickle')
record = inputs is not None and results is None
if not record and results is None:
inputs, results = self._load_recording(pickle_file)
else:
results = []
cam_q = quaternion.one
orig_time = datetime.strptime('2020-07-01 15:42:00', '%Y-%m-%d %H:%M:%S').timestamp()
for i, (img, cam_obj_v, cam_obj_q) in enumerate(inputs):
time = datetime.fromtimestamp(orig_time + i*60)
prior = Pose(cam_obj_v, cam_obj_q, np.ones((3,)) * 0.1, np.ones((3,)) * 0.01)
res = self.odo.process(img, time, prior, cam_q)
if record:
results.append(res)
elif 0:
self.assertOdomResultAlmostEqual(results[i], res)
if i > 1 and 0:
self.assertIsNotNone(res[0], msg='failed to get pose estimate')
self.assertPoseAlmostEqual(prior, res[0], delta_v=0.1, delta_q=10,
msg='estimated pose deviates too much from the real one')
if record:
self._save_recording(pickle_file, inputs, results)
def _save_recording(self, fname, inputs, results):
tf = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
tf.close()
for i in range(len(inputs)):
cv2.imwrite(tf.name, inputs[i][0], (cv2.IMWRITE_PNG_COMPRESSION, 9))
with open(tf.name, 'br') as fh:
inputs[i][0] = fh.read()
os.unlink(tf.name)
with open(fname, 'wb') as fh:
pickle.dump((inputs, results), fh)
def _load_recording(self, fname):
with open(fname, 'rb') as fh:
inputs, results = pickle.load(fh)
tf = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
tf.close()
for i in range(len(inputs)):
with open(tf.name, 'wb') as fh:
fh.write(inputs[i][0])
inputs[i][0] = cv2.imread(tf.name, cv2.IMREAD_GRAYSCALE)
os.unlink(tf.name)
return inputs, results
def get_rot_imgs():
pass
def get_cam():
common_kwargs_worst = {
'sensor_size': (2048 * 0.0022, 1944 * 0.0022),
'quantum_eff': 0.30,
'px_saturation_e': 2200, # snr_max = 20*log10(sqrt(sat_e)) dB
'lambda_min': 350e-9, 'lambda_eff': 580e-9, 'lambda_max': 800e-9,
'dark_noise_mu': 40, 'dark_noise_sd': 6.32, 'readout_noise_sd': 15,
# dark_noise_sd should be sqrt(dark_noise_mu)
'emp_coef': 1, # dynamic range = 20*log10(sat_e/readout_noise))
'exclusion_angle_x': 55,
'exclusion_angle_y': 90,
}
common_kwargs_best = dict(common_kwargs_worst)
common_kwargs_best.update({
'quantum_eff': 0.4,
'px_saturation_e': 3500,
'dark_noise_mu': 25, 'dark_noise_sd': 5, 'readout_noise_sd': 5,
})
common_kwargs = common_kwargs_best
return Camera(
2048, # width in pixels
1944, # height in pixels
7.7, # x fov in degrees (could be 6 & 5.695, 5.15 & 4.89, 7.7 & 7.309)
7.309, # y fov in degrees
f_stop=5, # TODO: put better value here
point_spread_fn=0.50, # ratio of brightness in center pixel
scattering_coef=2e-10, # affects strength of haze/veil when sun shines on the lens
**common_kwargs
)
if __name__ == '__main__':
import sys
if len(sys.argv) > 1 and sys.argv[1] == 'record':
from visnav.algo.model import SystemModel
from visnav.missions.didymos import DidymosSystemModel
from visnav.render.render import RenderEngine
from visnav.settings import *
sm = DidymosSystemModel(use_narrow_cam=False, target_primary=False, hi_res_shape_model=True)
re = RenderEngine(sm.cam.width, sm.cam.height, antialias_samples=0)
re.set_frustum(sm.cam.x_fov, sm.cam.y_fov, 0.05, 2)
obj = sm.asteroid.real_shape_model
obj_idx = re.load_object(obj)
light = np.array([1, 0, -0.5])
light /= np.linalg.norm(light)
cam_ast_v0 = np.array([0, 0, -sm.min_med_distance * 0.7])
cam_ast_q0 = quaternion.one
dq = tools.angleaxis_to_q((math.radians(1), 0, 1, 0))
inputs = []
for i in range(60):
cam_ast_v = cam_ast_v0
cam_ast_q = dq**i * cam_ast_q0
image = re.render(obj_idx, cam_ast_v, cam_ast_q, light, gamma=1.8, get_depth=False)
cam_ast_cv_v = tools.q_times_v(SystemModel.cv2gl_q, cam_ast_v)
cam_ast_cv_q = SystemModel.cv2gl_q * cam_ast_q * SystemModel.cv2gl_q.conj()
inputs.append([image, cam_ast_cv_v, cam_ast_cv_q])
if 0:
for image, _, _ in inputs:
cv2.imshow('t', cv2.resize(image, None, fx=0.5, fy=0.5))
cv2.waitKey()
else:
t = TestOdometry()
t.setUp(verbose=True)
t.test_rotating_object(inputs=inputs)
else:
unittest.main()
| 2.5625 | 3 |
bot/main.py | curtonius/HitchhikerBot | 0 | 12792039 | <filename>bot/main.py
import discord
import os
#import pynacl
#import dnspython
import server
from discord.ext import commands
from discord.utils import get
import re
bot = commands.Bot(command_prefix="!")
TOKEN = os.getenv("DISCORD_TOKEN")
replace = {
"\\|3": "b",
"/\\\\": "a",
"ph": "f",
"ck": "k",
"zz": "s",
"qw": "qu",
"kw": "qu",
"wh": "h",
"uh": "a",
"pe": "p",
"p3": "p",
"nn": "n",
"🇦 ": "a",
"🇧 ": "b",
"🇨 ": "c",
"🇩 ": "d",
"🇪 ": "e",
"🇫 ": "f",
"🇬 ": "g",
"🇭 ": "h",
"🇮 ": "i",
"🇯 ": "j",
"🇰 ": "k",
"🇱 ": "l",
"🇲 ": "m",
"🇳 ": "n",
"🇴 ": "o",
"🇵 ": "p",
"🇶 ": "q",
"🇷 ": "r",
"🇸 ": "s",
"🇹 ": "t",
"🇺 ": "u",
"🇻 ": "v",
"🇼 ": "w",
"🇽 ": "x",
"🇾 ": "y",
"🇿 ": "z",
"¶":"p",
"[@4^âäàåæáã]": "a",
"[68]": "b",
"[瀩]": "c",
"[3êëèæ€]": "e",
"[l1!|ïîìí¡¦]": "i",
"[0ôöòó•Ø]": "o",
"[z5$§]":"s",
"[%+7]":"t",
"[üûùúµ]":"u",
"[ÿ¥µŸý]": "y"
}
bad_word = {
"re+ta+rd", #r slur
"ni+g+[eau]r?", #n slur
"[qck]o+o+n", #c slur
"we+tba+[qck]", #wetback
"be+[ae]n[euar]r", #beaner
"chi+n[qck]", #chinese c slur
"g[yi]psy", #g slur
"tra+n+y", #t slur
"she+ma+le", #shemale
"d[yi]ke", #d slur
"fa+g", #f slur
}
exceptions = {
"retardant", "rac+oon","cocoon","tycoon","cooncan", "puccoon","coontie", "coonskin", "coonhound", "beanery", "beaneries", "pachinko", "chinkapin", "chinquapin", "chinch", "chincapin", "vandyke", "klondike","fagin","fage"
}
role_type_dictionary = {
'React to this message with the notification roles you would like.\n🔴 Youtube Notifications\n🟣 Stream Notifications\n🟡 Announcement Notifications':
{
"🔴": 'Youtube Notifications',
"🟣": 'Stream Notifications',
"🟡": 'Announcement Notifications'
},
'React to this message with the gender roles you identify as.\n❤️ He/Him\n🧡 She/Her\n💛 They/Them\n💚 He/They\n💙 She/They\n💜 Name Only\n🤍 Ask for Pronouns':
{
"❤️": 'He/Him',
"🧡": 'She/Her',
"💛": 'They/Them',
"💚": 'He/They',
"💙": 'She/They',
"💜": 'Name Only',
"🤍": 'Ask for Pronouns'
},
'React to this message with a ✅ to accept being pinged by anybody at any time (Non-Notification based pings)':
{
"✅": 'Accept Pings'
}
}
channels = {
"🔔-assign-roles": 951692177086488626,
"bot-dev": 958468714846634004
}
@bot.event
async def on_ready():
print('We have logged in as {0.user}'.format(bot))
@bot.event
async def on_message(message):
if message.author == bot.user:
return
str = message.content
for replacer in replace.keys():
str = str.replace(replacer, replace[replacer])
matched = False
match = 0
for pattern in bad_word:
result = re.search(pattern, str)
if result:
matched = True
match += 1
print("Matched with: " + pattern)
for pattern in exceptions:
result = re.search(pattern, str)
if result and matched == True:
match -= 1
print("Unmatched with: " + pattern)
if matched == True and match != 0:
channel = bot.get_channel(channels['bot-dev'])
await channel.send(message.author.display_name + " posted in " + "Channel **" + message.channel.name + "**:\n" + message.content )
await message.delete()
await bot.process_commands(message)
@bot.event
async def on_raw_reaction_add(payload):
if payload.channel_id != channels["🔔-assign-roles"]:
return
channel = bot.get_channel(payload.channel_id)
message = await channel.fetch_message(payload.message_id)
user = payload.member
emoji_check = str(payload.emoji)
if message.content in role_type_dictionary.keys():
role = None
role_dictionary = role_type_dictionary[message.content]
if emoji_check in role_dictionary.keys():
role = get(user.guild.roles, name=role_dictionary[emoji_check])
else:
await message.remove_reaction(emoji_check, user)
if role != None:
await user.add_roles(role)
@bot.event
async def on_raw_reaction_remove(payload):
if payload.channel_id != channels["🔔-assign-roles"]:
return
channel = bot.get_channel(payload.channel_id)
message = await channel.fetch_message(payload.message_id)
guild = await bot.fetch_guild(payload.guild_id)
user = await guild.fetch_member(payload.user_id)
emoji_check = str(payload.emoji)
if message.content in role_type_dictionary.keys():
role = None
role_dictionary = role_type_dictionary[message.content]
if emoji_check in role_dictionary.keys():
role = get(user.guild.roles, name=role_dictionary[emoji_check])
if role != None:
await user.remove_roles(role)
@bot.command()
async def get_channel_id(ctx):
channel = bot.get_channel(channels['bot-dev'])
await channel.send('Channel **' + ctx.channel.name + '** ID: ' + str(ctx.channel.id))
await ctx.message.delete()
@bot.command()
async def prime_reactions(ctx):
if ctx.message.reference == None:
return
ref_message = await ctx.channel.fetch_message(ctx.message.reference.message_id)
await ctx.message.delete()
if ref_message.content in role_type_dictionary.keys():
for emoji_check in role_type_dictionary[ref_message.content].keys():
await ref_message.add_reaction(emoji_check)
server.server()
bot.run(TOKEN)
| 2.46875 | 2 |
shepard.py | randbrown/PyWaveTools | 1 | 12792040 | <reponame>randbrown/PyWaveTools<gh_stars>1-10
""" Generate shepard tone """
import wavelib
#import plotlib
FREQ_A4 = 440.0
STEPS = 12.0
DURATION_PER_STEP = 1.0 # seconds
TOTAL_DURATION = DURATION_PER_STEP * STEPS
def shepard_glissando(times, freq_start, freq_end):
# the exponential glissando sounds good, but when stitching together with play_n,
# there is an audible click. perhaps due to rounding?
# so for now I'm leaving this as the linear scaling to avoid the click... TODO fix it
#freq = wavelib.glissando(times, freq_start, freq_end)
freq = wavelib.glissando_lin(times, freq_start, freq_end)
print('gliss: ', freq)
vals = wavelib.shepardtone(times, freq)
return vals
def shepard_discrete(times, freq_start, freq_end):
freq = wavelib.discrete(times, freq_start, freq_end, STEPS)
print('discrete: ', freq)
vals = wavelib.shepardtone(times, freq)
return vals
def main():
"""main function"""
# times is array of values at each time slot of the whole wav file
times = wavelib.createtimes(TOTAL_DURATION)
vals = wavelib.normalize(shepard_glissando(times, FREQ_A4*2, FREQ_A4))
#plotlib.plot_wave_and_fft(times, vals)
vals = wavelib.play_n(vals, 2)
wavelib.write_wave_file('output/shepard_glissando_down_2x.wav', vals)
vals = wavelib.normalize(shepard_discrete(times, FREQ_A4*2, FREQ_A4))
#plotlib.plot_wave_and_fft(times, vals)
vals = wavelib.play_n(vals, 2)
wavelib.write_wave_file('output/shepard_discrete_down_2x.wav', vals)
vals = wavelib.normalize(shepard_glissando(times, FREQ_A4, FREQ_A4*2))
#plotlib.plot_wave_and_fft(times, vals)
vals = wavelib.play_n(vals, 2)
wavelib.write_wave_file('output/shepard_glissando_up_2x.wav', vals)
vals = wavelib.normalize(shepard_discrete(times, FREQ_A4, FREQ_A4*2))
#plotlib.plot_wave_and_fft(times, vals)
vals = wavelib.play_n(vals, 2)
wavelib.write_wave_file('output/shepard_discrete_up_2x.wav', vals)
main()
| 2.703125 | 3 |
retinal-fundus/src/bsmu/retinal_fundus/app/main.py | IvanKosik/vision | 2 | 12792041 | <filename>retinal-fundus/src/bsmu/retinal_fundus/app/main.py<gh_stars>1-10
from bsmu.vision.app.base import App
class RetinalFundusApp(App):
pass
def run_app():
print('Run, Retinal Fundus! Run!')
app = RetinalFundusApp()
app.run()
if __name__ == '__main__':
run_app()
| 1.382813 | 1 |
plugins/content/content_birthday.py | almazboot/sketal | 43 | 12792042 | <filename>plugins/content/content_birthday.py
import datetime
from handler.base_plugin import CommandPlugin
from utils import plural_form, age
class BirthdayPlugin(CommandPlugin):
__slots__ = ("max_users_in_group", )
def __init__(self, *commands, prefixes=None, strict=False, max_users_in_group=1000):
"""Answers with birthday for users in group (but no more than `max_users_in_group`), for users in conference."""
if not commands:
commands = ("дни рождения",)
super().__init__(*commands, prefixes=prefixes, strict=strict)
self.max_users_in_group = max_users_in_group
self.set_description()
def set_description(self):
example = self.command_example()
self.description = [f"Дни рождения",
f"Вывод дней рождений людей в группе или в беседе.",
f"{example} - показать дни кождения в конференции.",
f"{example} <id группы> - показать дни рождения пользователей в группу."]
async def process_message(self, msg):
command, argument = self.parse_message(msg)
if argument:
members = []
offset = 0
while True:
result = await msg.api.groups.getMembers(group_id=argument, offset=offset, fields="bdate")
if not result or "items" not in result or not result["items"]:
if offset == 0:
return await msg.answer("Не удалось получить сообщество или оно пусто!")
break
members += result["items"]
offset += 1000
if result["count"] > self.max_users_in_group:
await msg.answer(f"Вы пытаетесь узнать дни рождения слишком многих людей!\n"
f"Будут показана лишь {self.max_users_in_group} из пользователей")
break
message = f"Дни рождения пользователей в группе \"{argument}\" ✨:\n"
else:
if not msg.is_multichat:
members = await msg.api.users.get(user_ids=msg.user_id, fields="bdate")
message = f"Ваш день рождения ✨:\n"
else:
members = await msg.api.messages.getChatUsers(chat_id=msg.chat_id, fields="bdate")
message = f"Дни рождения пользователей в беседе ✨:\n"
data = []
now = datetime.datetime.today().date()
for m in members:
if "bdate" not in m or "deactivated" in m:
continue
try:
if m['bdate'].count(".") > 1:
year = True
user_date = datetime.datetime.strptime(m['bdate'], '%d.%m.%Y').date()
else:
year = False
user_date = datetime.datetime.strptime(m['bdate'], '%d.%m').date()
except ValueError:
continue
try:
check_date = user_date.replace(year=now.year)
except ValueError:
check_date = user_date + (datetime.date(now.year, 1, 1) - datetime.date(user_date.year, 1, 1))
difference = check_date - now
if difference.days < 0:
check_date = check_date.replace(year=now.year + 1)
difference = check_date - now
bdate_in = " (будет через " + plural_form(difference.days, ("день", "дня", "дней")) + ")"
if year:
bdate_in = bdate_in[:-1] + ", исполнится " + plural_form(age(user_date) + 1,
("год", "года", "лет")) + ")"
data.append((" 🌍 " + m["first_name"] + " " + m["last_name"] + ": "
+ user_date.strftime("%d.%m") + bdate_in,
difference.days))
message += "\n".join(d[0] for d in sorted(data, key=lambda x: x[1]))
return await msg.answer(message)
| 2.65625 | 3 |
src/powerbidedicated/azext_powerbidedicated/vendored_sdks/powerbidedicated/models/_power_bi_dedicated_management_client_enums.py | Mannan2812/azure-cli-extensions | 8 | 12792043 | # coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------
from enum import Enum
class SkuTier(str, Enum):
pbie_azure = "PBIE_Azure"
class State(str, Enum):
deleting = "Deleting"
succeeded = "Succeeded"
failed = "Failed"
paused = "Paused"
suspended = "Suspended"
provisioning = "Provisioning"
updating = "Updating"
suspending = "Suspending"
pausing = "Pausing"
resuming = "Resuming"
preparing = "Preparing"
scaling = "Scaling"
class ProvisioningState(str, Enum):
deleting = "Deleting"
succeeded = "Succeeded"
failed = "Failed"
paused = "Paused"
suspended = "Suspended"
provisioning = "Provisioning"
updating = "Updating"
suspending = "Suspending"
pausing = "Pausing"
resuming = "Resuming"
preparing = "Preparing"
scaling = "Scaling"
| 2.0625 | 2 |
scripts/opengitdiff.py | jmettraux/dotvim | 2 | 12792044 | <gh_stars>1-10
# -*- coding: UTF-8 -*-
# opengitdiff.py
import sys, re, subprocess
lines = subprocess\
.Popen(
'git diff -U9999999 --no-color ' + sys.argv[1],
shell=True,
stdout=subprocess.PIPE)\
.stdout\
.readlines()
digits = str(len(str(len(lines))))
lnum = -1
for line in lines:
line = line.rstrip('\r\n')
if lnum > -1:
if re.match(r'^[^-]', line): lnum = lnum + 1
print(('%' + digits + 'i %s') % (lnum, line))
else:
print(line)
m = re.match(r'^@@ [-+0-9, ]+ @@$', line)
if m:
lnum = 0
print()
print()
| 2.59375 | 3 |
web_scanner/whois.py | ntnshrm87/4hathacker | 0 | 12792045 | <reponame>ntnshrm87/4hathacker<filename>web_scanner/whois.py
#!/usr/bin/python
import os
def get_whois(url):
command = "whois" + " " + url
process = os.popen(command)
results = str(process.read())
#print results
return results
| 2.640625 | 3 |
setup.py | bsodhi/books_scraper | 0 | 12792046 | import setuptools
with open("README.md", "r") as fh:
long_description = fh.read()
setuptools.setup(
name="books_info-bsodhi",
version="0.0.2",
author="<NAME>",
author_email="<EMAIL>",
description="Books data scraper.",
long_description="Scrapes books and articles informatio from Goodreads and Google Scholar",
long_description_content_type="text/markdown",
url="https://github.com/bsodhi/books_scraper",
packages=setuptools.find_packages(),
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
install_requires=["requests",
"cryptography",
"pyOpenSSL",
"lxml",
"argparse",
"beautifulsoup4",
"fake_useragent",
"scholarly",
"selenium", ],
entry_points={
'console_scripts': [
'bscrape=books_scraper.scraper:main',
],
},
)
| 1.695313 | 2 |
triangulos.py | userddssilva/Exemplos-python-introducao-a-programacao | 0 | 12792047 | <filename>triangulos.py
def lado_maior(a, b, c):
if a > b and a > c:
return a
elif b > a and b > c:
return b
else:
return c
def lados_menores(a, b, c):
if a > b and a > c:
return b, c
elif b > a and b > c:
return a, c
else:
return a, b
def eh_triangulo(a, b, c):
_a = lado_maior(a, b, c)
_b, _c = lados_menores(a, b, c)
if _a >= _b + _c:
return False
else:
return True
def eh_equilatero(a, b, c):
if a == b and b == c:
return True
return False
def eh_isosceles(a, b, c):
if (a == b) or (a == c) or (b == c):
return True
return False
def eh_escaleno(a, b, c):
if (a != b) and (a != c) and (b != c):
return True
return False
def tipo_triangulo(a, b, c):
_a = lado_maior(a, b, c)
_b, _c = lados_menores(a, b, c)
a, b, c = _a, _b, _c
if eh_equilatero(a, b, c):
return 1
elif eh_isosceles(a, b, c):
return 2
elif eh_escaleno(a, b, c):
return 3
ler = True
while ler == True:
print("Informe três valores!")
lado_a = int(input())
lado_b = int(input())
lado_c = int(input())
if (lado_a < 1) or (lado_b < 1) or (lado_c < 1):
print("Valor errado!")
print("Insira valores maiores que 1!")
else :
if eh_triangulo(lado_a, lado_b, lado_c):
print("É triangulo")
tipo = tipo_triangulo(lado_a, lado_b, lado_c)
if tipo == 1:
print("Tipo Equilátero")
elif tipo == 2:
print("Tipo Isósceles")
elif tipo == 3:
print("Tipo Escaleno")
else:
print("Não é um triangulo")
novo = input("Deseja fazer nova inserção? [S/N]: ")
if (novo == "N"):
print("********** fim ************")
ler = False
| 4 | 4 |
ignore_signals.py | alex-bormotov/AXE-Bot-open | 18 | 12792048 | <gh_stars>10-100
import time
from time import sleep
from notification import notificator
from config import get_config
ignore_buy_signal_counter = 0
ignore_sell_signal_counter = 0
def ignore_buy_signal_times(signal, times):
global ignore_buy_signal_counter
if signal["signal"] == "BUY" and ignore_buy_signal_counter < times:
notificator(
"Ignore {} {} ... cooldown {} seconds".format(
signal["signal"],
str(ignore_buy_signal_counter + 1),
get_config()["ignore_buy_cooldown_sec"],
)
)
ignore_buy_signal_counter = ignore_buy_signal_counter + 1
time.sleep(int(get_config()["ignore_buy_cooldown_sec"]))
return "PASS"
else:
notificator("Execute {}".format(signal["signal"]))
ignore_buy_signal_counter = 0
return "OK"
def ignore_sell_signal_times(signal, times):
global ignore_sell_signal_counter
if signal["signal"] == "SELL" and ignore_sell_signal_counter < times:
notificator(
"Ignore {} {} ... cooldown {} seconds".format(
signal["signal"],
str(ignore_sell_signal_counter + 1),
get_config()["ignore_sell_cooldown_sec"],
)
)
ignore_sell_signal_counter = ignore_sell_signal_counter + 1
time.sleep(int(get_config()["ignore_sell_cooldown_sec"]))
return "PASS"
else:
notificator("Execute {}".format(signal["signal"]))
ignore_sell_signal_counter = 0
return "OK"
def ingnore_signal_time(signal, time_sec):
notificator(
"{} signal received, sleep {} sec ...".format(signal["signal"], time_sec)
)
time.sleep(time_sec)
notificator("Execute {}, after sleep {} sec ".format(signal["signal"], time_sec))
return signal
| 2.5625 | 3 |
perftool/__main__.py | YajanaRao/Perftool | 3 | 12792049 | <reponame>YajanaRao/Perftool
import sys,os
from perftool import interactive,main
from os import path
import sys
import random
import sys
sys.path.insert(0, path.dirname(path.abspath(path.dirname(__file__))))
class color:
HEADER = '\033[95m'
IMPORTANT = '\33[35m'
NOTICE = '\033[33m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
RED = '\033[91m'
END = '\033[0m'
UNDERLINE = '\033[4m'
LOGGING = '\33[34m'
class welcome:
color_random=[color.HEADER,color.IMPORTANT,color.NOTICE,color.OKBLUE,color.OKGREEN,color.WARNING,color.RED,color.END,color.UNDERLINE,color.LOGGING]
random.shuffle(color_random)
note = color_random[0] +'''
____ _____ ____ _____ _____ ___ ___ _
| _ \ | ____| | _ \ | ___| |_ _| / _ \ / _ \ | |
| |_) | | _| | |_) | | |_ | | | | | | | | | | | |
| __/ | |___ | _ < | _| | | | |_| | | |_| | | |___
|_| |_____| |_| \_\ |_| |_| \___/ \___/ |_____|
'''+color.END
inputPrompt = ">>"
if __name__ == '__main__':
if len(sys.argv) < 2:
print(welcome.note)
print("\t \t \033[0m :- Yajana.N.Rao")
print("Enter 'break' to exit the console")
while True:
if sys.version_info[0] > 2:
#print(sys.version_info)
#from future.builtins import input
command = input(welcome.inputPrompt)
else:
command = raw_input(welcome.inputPrompt)
if "break" in command or "exit" in command:
print("Exiting the application")
break
elif command == "clear":
os.system('cls' if os.name == 'nt' else 'clear')
else:
interactive(command)
else:
main()
| 2.875 | 3 |
geodex/utils.py | developmentseed/geodex | 37 | 12792050 | """
utils.py
@author: developmentseed
Functions used to generate a list of tiles via recursion
"""
from os import path as op
import json
from shapely.geometry import Polygon
from pygeotile.tile import Tile
def _get_quadrant_tiles(tile):
"""Return indicies of tiles at one higher zoom (in google tiling scheme)"""
ul = (tile.google[0] * 2, tile.google[1] * 2)
return [Tile.from_google(ul[0], ul[1], tile.zoom + 1), # UL
Tile.from_google(ul[0], ul[1] + 1, tile.zoom + 1), # LL
Tile.from_google(ul[0] + 1, ul[1], tile.zoom + 1), # UR
Tile.from_google(ul[0] + 1, ul[1] + 1, tile.zoom + 1)] # LR
def _calc_overlap(geom1, geom2):
"""Return area overlap"""
return geom1.intersection(geom2).area
def load_geojson(geojson_fpath):
"""Load geojson and return all contained polygons.
Parameters:
----------
geojson_fpath: str
Filepath of to geojson containing boundaries.
Returns:
-------
bounds: list
List of geometries read from geojson file."""
if not op.exists(geojson_fpath):
raise FileNotFoundError('{} does not exist'.format(geojson_fpath))
if not op.splitext(geojson_fpath) not in ['.geojson', '.json']:
raise ValueError('{} should be a .geojson or .json file'.format(geojson_fpath))
bounds = None
with open(geojson_fpath, 'r') as geojson_f:
raw_json = json.loads(geojson_f.read())
features = raw_json['features']
bounds = [feat['geometry'] for feat in features
if feat['geometry']['type'] in ['Polygon', 'MultiPolygon']]
return bounds
def format_tile(tile, tile_format, format_str='{x} {y} {z}'):
"""Convert tile to necessary format.
Parameters
----------
tile: pygeotile.tile.Tile
Tile object to be formatted.
tile_format: str
Desired tile format. `google`, `tms`, or `quad_tree`
format_str: str
String to guide formatting. Only used for `google` or `tms`
(as quad_tree is one value).
Default: "{x} {y} {z}". Example: "{z}-{x}-{y}"
"""
if tile_format == 'google':
td = {key: val for key, val
in zip(['x', 'y', 'z'], list(tile.google) + [tile.zoom])}
return format_str.format(**td)
elif tile_format == 'tms':
td = {key: val for key, val
in zip(['x', 'y', 'z'], list(tile.tms) + [tile.zoom])}
return format_str.format(**td)
elif tile_format == 'quad_tree':
return tile.quad_tree
else:
raise ValueError('`tile_format`: {} not recognized'.format(tile_format))
def get_overlap_child_tiles(tile, roi_geom, completely_contained=False):
"""Find all children tiles that overlap a boundary
Parameters
----------
tile: pygeotile.tile.Tile
Tile that is checked for overlap with `roi_geom`.
roi_geom: shapely.geometry.shape
Boundary of region-of-interest.
completely_contained: bool
Whether or not a tile is completely contained in the boundary.
If a tile is found to have 100% overlap with boundary, set to `True`
and algorithm can avoid calculating overlap for all future child tiles.
Default False.
Returns:
-------
return_tiles: list of pygeotile.tile.Tile, bool
Tiles that are children of `tile` and overlap the boundary
"""
return_tiles = []
quad_tiles = _get_quadrant_tiles(tile) # Compute four contained tiles
# If sub-tiles are completely contained within boundary, no need to compute overlap
if completely_contained:
return [[qt, True] for qt in quad_tiles]
# For each tile, compute overlap with ROI boundary
for qt in quad_tiles:
ll, ur = qt.bounds # Get lower-left and upper-right points
tile_pts = ((ll[1], ll[0]), (ur[1], ll[0]),
(ur[1], ur[0]), (ll[1], ur[0]))
tile_polygon = Polygon(tile_pts)
# Calculate overlap of tile with ROI
overlap_area = _calc_overlap(roi_geom, tile_polygon)
# If 100% overlap, indicate this to avoid checking overlap in future
if overlap_area == tile_polygon.area:
return_tiles.append([qt, True])
elif overlap_area > 0:
return_tiles.append([qt, False])
return return_tiles
| 3.015625 | 3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.