max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
generateFormula.py
auto-staging/homebrew-stagectl
0
12792451
<reponame>auto-staging/homebrew-stagectl #!/usr/bin/env/python from jinja2 import Environment, FileSystemLoader import os envVersion = os.environ['VERSION'] envFileHash = os.environ['FILE_HASH'] file_loader = FileSystemLoader('templates') env = Environment(loader=file_loader) template = env.get_template('stagectl.rb.j2') output = template.stream(version=envVersion, sha256=envFileHash).dump('stagectl.rb')
2.203125
2
djhelpers/tests.py
trunneml/djhelpers
0
12792452
# Copyright 2014 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import mock from djhelpers.adminhelpers import ActionDecorator from djhelpers.modelhelpers import short_description class ShortDescriptionDecoratorTest(unittest.TestCase): def test_decorator(self): # Arrange description = 'description' # Act @short_description(description) def tfunc(x): return x result = tfunc(mock.sentinel.func_test_parameter) # Assert self.assertEqual(result, mock.sentinel.func_test_parameter) self.assertEqual(tfunc.short_description, description) self.assertFalse(hasattr(tfunc, 'boolean')) def test_decorator_with_kwargs(self): # Arrange description = 'description' # Act @short_description(description, boolean=mock.sentinel.kwarg) def tfunc(x): return x result = tfunc(mock.sentinel.func_test_parameter) # Assert self.assertEqual(result, mock.sentinel.func_test_parameter) self.assertEqual(tfunc.short_description, description) self.assertEqual(tfunc.boolean, mock.sentinel.kwarg) class ActionDecoratorTest(unittest.TestCase): def test_admin_action(self): # Arrange actions = ActionDecorator() # Act desc = 'test description' @actions.action(desc) def _t(x): return x # Assert self.assertIsInstance(actions, list) self.assertIn(_t, actions) self.assertEqual(len(actions), 1) self.assertEqual(_t.short_description, desc) if __name__ == '__main__': suite = unittest.TestLoader().discover('.') unittest.TextTestRunner(verbosity=2).run(suite)
2.25
2
programmers/blind_phone_number.py
schio/algorithm_test
0
12792453
<filename>programmers/blind_phone_number.py # https://programmers.co.kr/learn/courses/30/lessons/12948 def solution(phone_number): phone_number = list(phone_number) phone_number[:-4] = ["*"] * (len(phone_number) - 4) return "".join(phone_number)
3.390625
3
src/filesystem/transformation/transformer.py
pgecsenyi/fst
1
12792454
<filename>src/filesystem/transformation/transformer.py import os import re class Transformer: def __init__(self): self._cache = {} self._full_path_cache = {} def add_to_cache(self, directory_lister, transformations): pattern_pairs = [ (re.compile(transformation.from_path), transformation.to_path) for transformation in transformations ] paths = directory_lister.list_directory() transformed_paths = self._transform_paths(paths, pattern_pairs) self._build_cache(transformed_paths) def get_directory_contents(self, path): if path == os.sep: return list(self._cache.keys()) parts = path.split(os.sep) current_cache = self._cache for part in parts: if part == '': continue if part not in current_cache: return list(current_cache.keys()) current_cache = current_cache[part] return list(current_cache.keys()) def get_source_path(self, path): if path.startswith(os.sep): path = path[1:] if path in self._full_path_cache: return self._full_path_cache[path] return '' def _transform_paths(self, paths, patterns): for path in paths: for pattern_pair in patterns: source_regexp = pattern_pair[0] target_pattern = pattern_pair[1] if source_regexp.match(path): yield source_regexp.sub(target_pattern, path), path break def _build_cache(self, paths): for path in paths: source = path[1] target = path[0] parts = target.split(os.sep) current_cache = self._cache current_level = 0 deepest_level = len(parts) - 1 for part in parts: if current_level < deepest_level: current_cache.setdefault(part, {}) current_cache = current_cache[part] current_level = current_level + 1 else: current_cache[part] = source self._full_path_cache[target] = source break
2.71875
3
TestClient/TestClient.py
SHI3DO/prushka-web
1
12792455
from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5.QtGui import * import requests apiserver = "" class ListView(QWidget): def __init__(self, parent=None): super(ListView, self).__init__(parent) self.setWindowTitle('Asphodel Downloader Test Client') self.resize(400, 100) self.initUI() def append(self): """ 채팅을 추가함 """ res = requests.put(f"http://192.168.127.12:7474/publicchat?content={self.appendChatInput.text()}").json() def get(self): """ 클라에 보관된 해시가 없으면 그냥 보내서 10개 받아오고, 클라에 해시가 보관되어 있으면 그거 보내서 필요한 부분만 받아옴 """ if self.currentLastHashViewer.text() == '': res = requests.get("http://192.168.127.12:7474/publicchat").json() self.addItemList(res) else: res = requests.get(f"http://192.168.127.12:7474/publicchat?hash={self.currentLastHashViewer.text()}").json() self.addItemList(res) def addItemList(self, res): """ [[해시, 텍스트]] 형식의 리스트를 리스트뷰에 넣어줌 그리고 마지막 해시는 해시 뷰어에 넣어줌 """ print(res) for n, r in enumerate(res): print(n, r) self.chatting.addItem(str(r)) if n + 1== len(res): self.currentLastHashViewer.setText(str(r[0])) def save(self): """ API에 저장하라고 시킴 """ requests.get("http://192.168.127.12:7474/savedb") def initUI(self): self.mainLayout = QVBoxLayout() self.chatting = QListWidget() self.currentLastHashTitle = QLabel('currentLastHash : ') self.currentLastHashViewer = QLineEdit() self.hashes = QHBoxLayout() self.hashes.addWidget(self.currentLastHashTitle) self.hashes.addWidget(self.currentLastHashViewer) self.getChat = QPushButton('getChat') self.getChat.clicked.connect(self.get) self.appendChatInput = QLineEdit() self.appendChatInput.setPlaceholderText('Input text to send') self.appendChat = QPushButton('appendChat') self.appendChat.clicked.connect(self.append) self.saveBTN = QPushButton('SAVE') self.saveBTN.clicked.connect(self.save) self.mainLayout.addWidget(self.chatting) self.mainLayout.addWidget(self.getChat) self.mainLayout.addLayout(self.hashes) self.mainLayout.addWidget(self.appendChatInput) self.mainLayout.addWidget(self.appendChat) self.mainLayout.addWidget(self.saveBTN) self.setLayout(self.mainLayout) if __name__ == '__main__': import sys app = QApplication(sys.argv) window = ListView() window.show() sys.exit(app.exec())
2.640625
3
src/plot.py
ekholabs/nltk_tutorial
0
12792456
""" Organisation: ekholabs Author: <EMAIL> """ from nltk.book import text1, text2, text4 def plot_changes_in_use_of_words(book, words): # Dispersion plot of the use of natural language in different contexts or situations. For example, # the use of certain words used by Presidents over the years. book.dispersion_plot(words) if __name__ == '__main__': # Inaugural Address Corpus plot_changes_in_use_of_words(text4, ['citizen', 'democracy', 'freedom', 'duties', 'America']) # <NAME> - <NAME> plot_changes_in_use_of_words(text1, ['happy', 'sad']) # <NAME> - Sense and Sensibility plot_changes_in_use_of_words(text2, ['happy', 'sad'])
3.140625
3
app/admin.py
iam-feysal/awwwwwwwards
0
12792457
from django.contrib import admin from .models import Project,Profile,Review,Comment # Register your models here. class ReviewAdmin(admin.ModelAdmin): model = Review list_display = ('wine', 'rating', 'user_name', 'comment', 'pub_date') list_filter = ['pub_date', 'user_name'] search_fields = ['comment'] admin.site.register(Project) admin.site.register(Profile) admin.site.register(Review) admin.site.register(Comment)
1.632813
2
mrc/localization/color/nn/models.py
Lukasz1928/mobile-robots-control
2
12792458
from abc import ABC import chainer import chainer.functions as F import chainer.links as L class AbstractModel(ABC): def predict(self, blob): pass class DefaultModel: def __init__(self, n_units=100, n_out=6, colors=('red', 'blue', 'green', 'cyan', 'magenta', 'yellow')): self.n_units = n_units self.n_out = n_out self.model = self._net_model() self.colors = colors def _net_model(self): layer = chainer.Sequential(L.Linear(self.n_units), F.relu) model = layer.repeat(1) model.append(L.Linear(self.n_out)) return L.Classifier( self._net_model(), lossfun=F.sigmoid_cross_entropy, accfun=F.binary_accuracy) def _normalize_data(self, image): return image.reshape(100, -1, 3) def predict(self, blob): image = self._normalize_data(blob) return self.model.predictor(image[None]).data
3.125
3
backend.py
insertcustomname/EmailTrackExtension
0
12792459
from collections import Counter from notify_run import Notify import os import time import dropbox import json dropboxkey="" notify = Notify() notifyendpoint="" notify.endpoint=notifyendpoint notify.write_config() from flask import Flask,request maindictionary={} dbx = dropbox.Dropbox(dropboxkey) dbx.files_download_to_file("bannedpixel.txt","/bannedpixel.txt") dbx.files_download_to_file("logpixel.txt","/logpixel.txt") dbx.files_download_to_file("dictionary.txt","/dictionary.txt") app = Flask(__name__) @app.route("/pixel") def home(): maindictionary=json.load(open("dictionary.txt")) if (request.args.get("id")) in open("bannedpixel.txt").read(): pass elif open("logpixel.txt").read().count(request.args.get("id")) == 0: with open("logpixel.txt","a+") as f: f.writelines(request.args.get("id") +"\n") dbx = dropbox.Dropbox("") dbx.files_upload(open("logpixel.txt","rb").read(),"/logpixel.txt",mode=dropbox.files.WriteMode.overwrite) maindictionary[request.args.get("id")] = time.time() with open('dictionary.txt', 'w+') as file: file.write(json.dumps(t)) dbx = dropbox.Dropbox(dropboxkey) dbx.files_upload(open("dictionary.txt","rb").read(),"/dictionary.txt",mode=dropbox.files.WriteMode.overwrite) elif open("logpixel.txt").read().count(request.args.get("id")) == 1: if time.time() - maindictionary[request.args.get("id")] > 20: notify.send('Your email too ' + request.args.get("email") + " with subject: " + request.args.get("subject") + " has been opened") text=open("logpixel.txt","a+").read() text=text.replace((request.args.get("id")),"") with open("logpixel.txt","w+") as f: f.write(text) with open("bannedpixel.txt","a+") as f: f.writelines((request.args.get("id")) + "\n") dbx = dropbox.Dropbox(dropboxkey) dbx.files_upload(open("logpixel.txt","rb").read(),"/logpixel.txt",mode=dropbox.files.WriteMode.overwrite) dbx.files_upload(open("bannedpixel.txt","rb").read(),"/bannedpixel.txt",mode=dropbox.files.WriteMode.overwrite) return " NONE TEST VIEW " if __name__ == "__main__": app.run(port= int(os.environ.get('PORT', 5000)),host="0.0.0.0")
2.53125
3
Aula02/exercise1.py
GabiDeutner/Python_exercises
4
12792460
<reponame>GabiDeutner/Python_exercises<filename>Aula02/exercise1.py ''' 1. Escreva um programa para ler 2 valores (considere que não serão informados valores iguais) e escrever o maior deles. ''' print('Digite o numero 1:') numero1 = float(input()) print('Digite o numero 2:') numero2 = float(input()) if(numero1>numero2): print(numero1) else: print(numero2)
3.9375
4
web/ctf_gameserver/web/scoring/decorators.py
exokortex/kaindorfctf-2018-ctf-gameserver
0
12792461
<reponame>exokortex/kaindorfctf-2018-ctf-gameserver from functools import wraps from django.shortcuts import redirect from django.conf import settings from django.utils.translation import ugettext as _ from django.contrib import messages from .models import GameControl def registration_open_required(view): """ View decorator which prohibts access to the decorated view if registration is closed from the GameControl object. """ @wraps(view) def func(request, *args, **kwargs): if not GameControl.objects.get().registration_open: messages.error(request, _('Sorry, registration is currently closed.')) return redirect(settings.HOME_URL) return view(request, *args, **kwargs) return func def competition_started_required(view): """ View decorator which prohibts access to the decorated view if the competition has not yet started (i.e. it must be running or over). """ @wraps(view) def func(request, *args, **kwargs): game_control = GameControl.objects.get() if not game_control.competition_running() and not game_control.competition_over(): messages.error(request, _('Sorry, the scoreboard is not available yet.')) return redirect(settings.HOME_URL) return view(request, *args, **kwargs) return func
2.328125
2
pygraph/min_spanning_tree.py
jysh1214/pygraph
0
12792462
from .get_imformation import GI from .disjoint_set import DS import math class MST(): def __init__(self, adj_matrix, ins_matrix): """ Parameters: adj_matrix(list): The adjacency matrix of the graph. ins_matrix(list): The incidence matrix of the graph. Auto creat if the graph is undirect. Returns: Min spanning tree. Attention: Undirected graph difinition. Raises: ValueError, TypeError """ self.Adjacency_Matrix = adj_matrix self.N = len(self.Adjacency_Matrix) self.Insidence_Matrix = ins_matrix self.con_ver = [] # contain vertices list now self.mst = [] # min spanning tree now def kruskal_algo(self): """ Returns: Min spanning tree. Raises: ValueError, TypeError """ # from get_imformation gi = GI(self.Adjacency_Matrix, self.Insidence_Matrix) E = [(i, gi.get_weight(i)) for i in range(len(self.Insidence_Matrix[0]))] # edges sorted by weight E = sorted(E, key = lambda x: x[1]) for i in range(len(E)): E[i] = E[i][0] for i in range(len(E)): (v_a, v_b) = gi.edge_term(E[i]) # from disjoint_set ds = DS(self.Insidence_Matrix, self.con_ver, self.mst, v_a, v_b) if ds.same_set(v_a, v_b): pass # the edge could make circle else: self.mst.append(E[i]) if not (v_a in self.con_ver): self.con_ver.append(v_a) if not (v_b in self.con_ver): self.con_ver.append(v_b) return self.mst def prims_algo(self, root): """ Parameters: root(list): The root of the min spanning tree. Plays mst in interation. Input [root] first generally. Returns: Min spanning tree. Raises: ValueError, TypeError """ # from get_imformation gi = GI(self.Adjacency_Matrix, self.Insidence_Matrix) # all neighbors of mst min_ = math.inf for i in range(len(root)): root_nb = gi.get_nb(root[i]) # find which edges weight is min for j in range(len(root_nb)): if not(root_nb[j] in self.con_ver): e = gi.get_edge(root[i], root_nb[j]) if gi.get_weight(e) < min_: min_ = gi.get_weight(e) min_term = root_nb[j] min_edge = e if len(root) == self.N: return self.mst root.append(min_term) self.con_ver = root self.mst.append(min_edge) ### unnecessary check loop ### return self.prims_algo(root) def put_all(a, b): for i in a: if not(i in b): b.append(i) return b
3.0625
3
tests/x-custom_tests.py
ivoupton/sheet2dict
208
12792463
import sys from pathlib import Path sys.path.append(str(Path(".").absolute().parent)) from sheet2dict import Worksheet from io import BytesIO ws = Worksheet() ws.xlsx_to_dict(path="inventory.xlsx") print(">>", ws.header) print("ALL:", ws.sheet_items) print("SANITIZED:", ws.sanitize_sheet_items) path = "inventory.xlsx" xlsx_file = open(path, "rb") xlsx_file = BytesIO(xlsx_file.read()) ws = Worksheet() ws.xlsx_to_dict(path=xlsx_file) print(">>", ws.header) ws = Worksheet() path = "inventory.csv" csv_file = open(path, "r", encoding="utf-8-sig") ws.csv_to_dict(csv_file=csv_file, delimiter=";") print("ALL:", ws.sheet_items) print("SANITIZED:", ws.sanitize_sheet_items)
2.78125
3
python/code_troopers/Runner.py
tigeral/polygon
0
12792464
import sys from MyStrategy import MyStrategy from RemoteProcessClient import RemoteProcessClient from model.Move import Move from time import sleep class Runner: def __init__(self): sleep(4) if sys.argv.__len__() == 4: self.remote_process_client = RemoteProcessClient(sys.argv[1], int(sys.argv[2])) self.token = sys.argv[3] else: self.remote_process_client = RemoteProcessClient("localhost", 31001) self.token = "0<PASSWORD>" #next line enables my custom debugger window debuggerEnabled = True def run(self): try: self.remote_process_client.write_token(self.token) team_size = self.remote_process_client.read_team_size() self.remote_process_client.write_protocol_version() game = self.remote_process_client.read_game_context() strategies = [] for strategy_index in xrange(team_size): strategies.append(MyStrategy()) while True: player_context = self.remote_process_client.read_player_context() if player_context is None: break player_trooper = player_context.trooper move = Move() strategies[player_trooper.teammate_index].move(player_trooper, player_context.world, game, move) self.remote_process_client.write_move(move) finally: self.remote_process_client.close() Runner().run()
2.34375
2
xldlib/controllers/bindings/table.py
Alexhuszagh/XLDiscoverer
0
12792465
''' Controllers/Bindings/table __________________________ Class with designed inheritance for copy/paste methods. :copyright: (c) 2015 The Regents of the University of California. :license: GNU GPL, see licenses/GNU GPLv3.txt for more details. ''' # load modules/submodules from PySide import QtCore from xldlib.definitions import partial from xldlib.onstart.main import APP from xldlib.qt.objects import base, threads from xldlib.qt import resources as qt from . import copier, decorators, paster # MUTEX # ----- MUTEX = threads.ContextMutex(QtCore.QMutex.Recursive) # SLOTS # ----- def nullslot(result): pass def copyslot(result): APP.clipboard().setText(result) # OBJECTS # ------- class TableBindings(base.BaseObject): '''Provides methods to bind to QKeyShortcuts for facilitated table use''' def __init__(self, table): super(TableBindings, self).__init__(table) self.table = table self.copier = copier.HandleCopy(self.table) self.paster = paster.HandlePaste(self.table) self.set_shortcuts() # PUBLIC FUNCTIONS @decorators.newspinner(nullslot) def delete(self): self._delete() def _delete(self, blank=""): ''' Excel-like delete function. Deletes contents in all selected cells. delete() -> void (Row, Column) [Value] Selection: --> (1,2) ["AA"], (1,3) ["BB"], (2,2) ["CC"], (2,3) ["DD"] --> (1,2) [], (1,3) [], (2,2) [], (2,3) [] ''' selected_indexes = self.table.get_selected_indexes() items = (self.table.item(i.row, i.column) for i in selected_indexes) filtered = [i for i in items if i is not None] for item in filtered: item.setText(blank) self.table.model().delete(selected_indexes) if filtered and hasattr(self.table, "changed"): self.table.changed = True @decorators.newspinner(copyslot) def cut(self): '''Combines copy and delete operations for cut functionality''' result = self.copier.copy() self._delete() return result @decorators.newspinner(copyslot) def copy(self): return self.copier.copy() def paste(self): clipboard_text = self.app.clipboard().text() self._paste(clipboard_text) @decorators.newspinner(nullslot) def _paste(self, clipboard_text): self.paster.paste(clipboard_text) def select_all(self): '''Selects all item in the table''' with MUTEX: model = self.table.selectionModel() mode = self.table.selectionMode() self.table.setSelectionMode(qt.SELECTION_MODE['Extended']) # clear selection model.clearSelection() selection = model.selection() # reset the selection mode for all items for column in range(self.table.columnCount()): # only select visible items if not self.table.isColumnHidden(column): self.table.selectColumn(column) selection.merge(model.selection(), qt.SELECTION_MODEL['Select']) self.table.setSelectionMode(mode) def select_mode(self, mode=None): ''' Changes the QTableSelectionMode between the list options. mode -- QtGui.QAbstractItemView.<atribute> ExtendedSelection SingleSelection MultiSelection select_mode(QtGui.QAbstractItemView.ExtendedSelection) ''' mode = mode or qt.SELECTION_MODE['Extended'] self.table.setSelectionMode(mode) self.table.blockSignals(mode != qt.SELECTION_MODE['Single']) # GETTERS def set_shortcuts(self): self.shortcuts = { 'Ctrl+f': self.table.finder.show, 'Ctrl+b': self.table.block, 'Ctrl+c': self.copy, 'Ctrl+x': self.cut, 'Ctrl+v': self.paste, 'Del': self.delete, 'Ctrl+a': self.select_all } modes = { 'Ctrl+Shift+s': 'Single', 'Ctrl+Shift+m': 'Multi', 'Ctrl+Shift+e': 'Extended' } for keysequence, mode in modes.items(): fun = partial(self.select_mode, qt.SELECTION_MODE[mode]) self.shortcuts[keysequence] = fun
2.140625
2
01. Variable/021.py
MaksonViini/Aprendendo-Python
1
12792466
#Tocando um MP3 from pygame import mixer mixer.init() mixer.music.load('EX021.mp3') #Adicione o nome da musica mixer.music.play()
2.5
2
wp.py
zamoose/wp-ansible
0
12792467
<reponame>zamoose/wp-ansible #!/usr/bin/python # -*- coding: utf-8 -*- def main(): module = AnsibleModule( argument_spec = dict( path=dict(required=True), state=dict(), plugin=dict(), theme=dict(), user=dict(), version=dict(), executable=dict(default=None), ), supports_check_mode=True ) path = module.params['path'] state = module.params['state'] before = None after = None changed = False module.exit_json(changed=changed, before=before, after=after) # import module snippets from ansible.module_utils.basic import * main()
1.765625
2
tweets/migrations/0004_auto_20201201_2002.py
bubaic/twitt
0
12792468
# Generated by Django 3.1.3 on 2020-12-01 14:32 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('tweets', '0003_auto_20201201_0211'), ] operations = [ migrations.AlterField( model_name='tweet', name='created', field=models.DateTimeField(auto_now_add=True), ), migrations.CreateModel( name='TweetLikes', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timestamp', models.DateTimeField(auto_now_add=True)), ('tweet', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tweets.tweet')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='tweet', name='likes', field=models.ManyToManyField(blank=True, related_name='tweet_user', through='tweets.TweetLikes', to=settings.AUTH_USER_MODEL), ), ]
1.71875
2
leaderboard.py
cclauss/repo-tools
0
12792469
<gh_stars>0 #!/usr/bin/env python from __future__ import print_function import argparse import collections import datetime import sys from helpers import date_arg, make_timezone_aware from repos import Repo from webhookdb import get_pulls def get_external_pulls(repo): """Produce a stream of external pull requests.""" for issue in get_pulls(repo, state="all", org=True): if issue.intext == 'external': yield issue def get_all_external_pulls(): repos = [ r.name for r in Repo.from_yaml() if r.track_pulls ] for repo in repos: for pull in get_external_pulls(repo): yield pull def get_pulls_in_window(start, end): for pull in get_all_external_pulls(): if start < make_timezone_aware(pull.created_at) < end: yield pull def get_contributor_counts(pulls): board = collections.Counter() for pull in pulls: board[pull.user_login] += 1 return board def main(argv): parser = argparse.ArgumentParser(description="Count external pull requests opened by person") parser.add_argument( "--since", metavar="DAYS", type=int, help="Use a start date DAYS ago" ) parser.add_argument( "--start", type=date_arg, help="Date to start collecting, format is flexible: " "20141225, Dec/25/2014, 2014-12-25, etc" ) parser.add_argument( "--end", type=date_arg, help="Date to end collecting, format is flexible: " "20141225, Dec/25/2014, 2014-12-25, etc" ) args = parser.parse_args(argv[1:]) if args.start is None: if args.since is None: # Simplify the logic by always having a start date, but one so far back # that it is like having no start date. args.start = make_timezone_aware(datetime.datetime(2000, 1, 1)) else: args.start = make_timezone_aware(datetime.datetime.now() - datetime.timedelta(days=args.since)) if args.end is None: # Simplify the logic by always having an end date, but one so far ahead # that it is like having no end date. args.end = make_timezone_aware(datetime.datetime(2040, 1, 1)) pulls = get_pulls_in_window(args.start, args.end) board = get_contributor_counts(pulls) board = sorted(((v, k) for k,v in board.items()), reverse=True) for i, (count, user_login) in enumerate(board, start=1): print("{:4d}: {:4d} {}".format(i, count, user_login)) if __name__ == "__main__": sys.exit(main(sys.argv))
2.625
3
python/setup.py
SamChill/drunkardswalk
3
12792470
#!/usr/bin/env python from setuptools import setup from os.path import dirname, abspath, join setup(name='drunkardswalk', packages=['drunkardswalk'], )
1.320313
1
examples/docs_snippets/docs_snippets_tests/concepts_tests/io_management_tests/test_subselection.py
kstennettlull/dagster
0
12792471
from docs_snippets.concepts.io_management.subselection import ( execute_full, execute_subselection, ) def test_execute_job(): execute_full() def test_execute_subselection(): execute_subselection()
1.179688
1
src/Scapy2Library/keywords/__init__.py
wywincl/Scapy2Library
2
12792472
<filename>src/Scapy2Library/keywords/__init__.py from _corekeywords import _ScapyKeywords from _runonfailure import _RunOnFailureKeywords from _logging import _LoggingKeywords __all__ = ["_ScapyKeywords", "_RunOnFailureKeywords", "_LoggingKeywords"]
1.234375
1
1701-1800/1712-Binary Subarrays With Sum/1712-Binary Subarrays With Sum.py
jiadaizhao/LintCode
77
12792473
<reponame>jiadaizhao/LintCode class Solution: """ @param A: an array @param S: the sum @return: the number of non-empty subarrays """ def numSubarraysWithSum(self, A, S): # Write your code here. table = [0] * (len(A) + 1) table[0] = 1 curr = count = 0 for a in A: curr += a if curr >= S: count += table[curr - S] table[curr] += 1 return count
3.328125
3
app/enquiries/common/consent.py
uktrade/enquiry-mgmt-tool
3
12792474
from datetime import datetime from django.conf import settings from django.core.exceptions import ImproperlyConfigured from requests import HTTPError from rest_framework import status from app.enquiries.common.client import APIClient from app.enquiries.common.hawk import HawkAuth CONSENT_SERVICE_PATH_PERSON = "/api/v1/person/" def request(url, method, **kwargs): if not all([ settings.CONSENT_SERVICE_HAWK_ID, settings.CONSENT_SERVICE_HAWK_KEY, settings.CONSENT_SERVICE_BASE_URL, ]): raise ImproperlyConfigured("CONSENT_SERVICE_* environment variables must be set") client = APIClient( api_url=settings.CONSENT_SERVICE_BASE_URL, auth=HawkAuth( api_id=settings.CONSENT_SERVICE_HAWK_ID, api_key=settings.CONSENT_SERVICE_HAWK_KEY, verify_response=settings.CONSENT_SERVICE_VERIFY_RESPONSE, ), default_timeout=( settings.CONSENT_SERVICE_CONNECT_TIMEOUT, settings.CONSENT_SERVICE_READ_TIMEOUT, ), ) return client.request(path=url, method=method, **kwargs) def check_consent(key): if not settings.FEATURE_FLAGS["ENFORCE_CONSENT_SERVICE"]: return None key = key.lower().replace(" ", "") url = f"{settings.CONSENT_SERVICE_BASE_URL}{CONSENT_SERVICE_PATH_PERSON}{key}/" try: response = request(url=url, method="GET") return bool(len(response.json()["consents"])) except HTTPError as e: if e.response and e.response.status_code == status.HTTP_404_NOT_FOUND: return False return False def set_consent(key, value=True): if not settings.FEATURE_FLAGS["ENFORCE_CONSENT_SERVICE"]: return None key = key.lower() key_type = "email" if "@" in key else "phone" data = { "consents": [f"{key_type}_marketing"] if value else [], key_type: key, "modified_at": datetime.now().isoformat(), } try: url = f"{settings.CONSENT_SERVICE_BASE_URL}{CONSENT_SERVICE_PATH_PERSON}" request(url=url, method="POST", json=data) return True except Exception: return None
2.03125
2
models/det/__init__.py
BruceHan98/OCHTPS
0
12792475
from .pannet import PANNet
1.101563
1
pcep/prac_2.py
gliverm/devnet-study-group
1
12792476
def fun(inp=2, out=3): return inp * out print(fun(out=2))
2.6875
3
pgweb/util/admin.py
ChristophBerg/pgweb
1
12792477
<reponame>ChristophBerg/pgweb from django.contrib import admin from django.conf import settings from pgweb.core.models import ModerationNotification from mailqueue.util import send_simple_mail class PgwebAdmin(admin.ModelAdmin): """ ModelAdmin wrapper that will enable a few pg specific things: * Markdown preview for markdown capable textfields (specified by including them in a class variable named markdown_capable that is a tuple of field names) * Add an admin field for "notification", that can be sent to the submitter of an item to inform them of moderation issues. """ change_form_template = 'admin/change_form_pgweb.html' def formfield_for_dbfield(self, db_field, **kwargs): fld = admin.ModelAdmin.formfield_for_dbfield(self, db_field, **kwargs) if hasattr(self.model, 'markdown_fields'): if db_field.name in self.model.markdown_fields: fld.widget.attrs['class'] = fld.widget.attrs['class'] + ' markdown_preview' return fld def change_view(self, request, object_id, form_url='', extra_context=None): if self.model.send_notification: # Anything that sends notification supports manual notifications if extra_context == None: extra_context = dict() extra_context['notifications'] = ModerationNotification.objects.filter(objecttype=self.model.__name__, objectid=object_id).order_by('date') return super(PgwebAdmin, self).change_view(request, object_id, form_url, extra_context) # Remove the builtin delete_selected action, so it doesn't # conflict with the custom one. def get_actions(self, request): actions = super(PgwebAdmin, self).get_actions(request) del actions['delete_selected'] return actions # Define a custom delete_selected action. This is required because the # default one uses the delete functionality in QuerySet, which bypasses # the delete() operation on the model, and thus won't send out our # notifications. Manually calling delete() on each one will be slightly # slower, but will send proper notifications - and it's not like this # is something that happens often enough that we care about performance. def custom_delete_selected(self, request, queryset): for x in queryset: x.delete() custom_delete_selected.short_description = "Delete selected items" actions=['custom_delete_selected'] def save_model(self, request, obj, form, change): if change and self.model.send_notification: # We only do processing if something changed, not when adding # a new object. if request.POST.has_key('new_notification') and request.POST['new_notification']: # Need to send off a new notification. We'll also store # it in the database for future reference, of course. if not obj.org.email: # Should not happen because we remove the form field. Thus # a hard exception is ok. raise Exception("Organization does not have an email, canot send notification!") n = ModerationNotification() n.objecttype = obj.__class__.__name__ n.objectid = obj.id n.text = request.POST['new_notification'] n.author = request.user.username n.save() # Now send an email too msgstr = _get_notification_text(request.POST.has_key('remove_after_notify'), obj, request.POST['new_notification']) send_simple_mail(settings.NOTIFICATION_FROM, obj.org.email, "postgresql.org moderation notification", msgstr) # Also generate a mail to the moderators send_simple_mail(settings.NOTIFICATION_FROM, settings.NOTIFICATION_EMAIL, "Moderation comment on %s %s" % (obj.__class__._meta.verbose_name, obj.id), _get_moderator_notification_text(request.POST.has_key('remove_after_notify'), obj, request.POST['new_notification'], request.user.username )) if request.POST.has_key('remove_after_notify'): # Object should not be saved, it should be deleted obj.delete() return # Either no notifications, or done with notifications super(PgwebAdmin, self).save_model(request, obj, form, change) def register_pgwebadmin(model): admin.site.register(model, PgwebAdmin) def _get_notification_text(remove, obj, txt): objtype = obj.__class__._meta.verbose_name if remove: return """You recently submitted a %s to postgresql.org. This submission has been rejected by a moderator, with the following comment: %s """ % (objtype, txt) else: return """You recently submitted a %s to postgresql.org. During moderation, this item has received comments that need to be addressed before it can be approved. The comment given by the moderator is: %s Please go to https://www.postgresql.org/account/ and make any changes request, and your submission will be re-moderated. """ % (objtype, txt) def _get_moderator_notification_text(remove, obj, txt, moderator): return """Moderator %s made a comment to a pending object: Object type: %s Object id: %s Comment: %s Delete after comment: %s """ % (moderator, obj.__class__._meta.verbose_name, obj.id, txt, remove and "Yes" or "No", )
2.171875
2
new_venv/Lib/site-packages/cardio/core/utils.py
Shlyankin/cardio
250
12792478
"""Miscellaneous ECG Batch utils.""" import functools import pint import numpy as np from sklearn.preprocessing import LabelBinarizer as LB UNIT_REGISTRY = pint.UnitRegistry() def get_units_conversion_factor(old_units, new_units): """Return a multiplicative factor to convert a measured quantity from old to new units. Parameters ---------- old_units : str Current units in SI format. new_units : str Target units in SI format. Returns ------- factor : float A factor to convert quantities between units. """ try: # pint exceptions are wrapped with ValueError exceptions because they don't implement __repr__ method factor = UNIT_REGISTRY(old_units).to(new_units).magnitude except Exception as error: raise ValueError(error.__class__.__name__ + ": " + str(error)) return factor def partialmethod(func, *frozen_args, **frozen_kwargs): """Wrap a method with partial application of given positional and keyword arguments. Parameters ---------- func : callable A method to wrap. frozen_args : misc Fixed positional arguments. frozen_kwargs : misc Fixed keyword arguments. Returns ------- method : callable Wrapped method. """ @functools.wraps(func) def method(self, *args, **kwargs): """Wrapped method.""" return func(self, *frozen_args, *args, **frozen_kwargs, **kwargs) return method class LabelBinarizer(LB): """Encode categorical features using a one-hot scheme. Unlike ``sklearn.preprocessing.LabelBinarizer``, each label will be encoded using ``n_classes`` numbers even for binary problems. """ # pylint: disable=invalid-name def transform(self, y): """Transform ``y`` using one-hot encoding. Parameters ---------- y : 1-D ndarray of shape ``[n_samples,]`` Class labels. Returns ------- Y : 2-D ndarray of shape ``[n_samples, n_classes]`` One-hot encoded labels. """ Y = super().transform(y) if len(self.classes_) == 1: Y = 1 - Y if len(self.classes_) == 2: Y = np.hstack((1 - Y, Y)) return Y def inverse_transform(self, Y, threshold=None): """Transform one-hot encoded labels back to class labels. Parameters ---------- Y : 2-D ndarray of shape ``[n_samples, n_classes]`` One-hot encoded labels. threshold : float, optional The threshold used in the binary and multi-label cases. If ``None``, it is assumed to be half way between ``neg_label`` and ``pos_label``. Returns ------- y : 1-D ndarray of shape ``[n_samples,]`` Class labels. """ if len(self.classes_) == 1: y = super().inverse_transform(1 - Y, threshold) elif len(self.classes_) == 2: y = super().inverse_transform(Y[:, 1], threshold) else: y = super().inverse_transform(Y, threshold) return y
3.0625
3
test/unit/parser_test.py
jartigag/pydometer
2
12792479
import pytest from models.parser import Parser def test_new(): pass #TODO #data = '0.123,-0.123,5;0.456,-0.789,0.111;-0.212,0.001,1;' #parser = Parser(data) #assert parser.parsed_data==None # --- Creation Tests --- def test_create_combined_data(): data = '0.123,-0.123,5;0.456,-0.789,0.111;-0.212,0.001,1;' parser = Parser(data) assert parser.parsed_data==[ [[0.123, -0.123, 5.0], [0, 0, 0]], [[0.456, -0.789, 0.111], [0, 0, 0]], [[-0.2120710948533322, 0.0011468544965549535, 0.9994625125426089], [7.109485333219216e-05, -0.00014685449655495343, 0.0005374874573911294]]] def test_create_separated_data(): data = '0.028,-0.072,5|0.129,-0.945,-5;0,-0.07,0.06|0.123,-0.947,5;0.2,-1,2|0.1,-0.9,3;' parser = Parser(data) assert parser.parsed_data==[[[0.028, -0.072, 5.0], [0.129, -0.945, -5.0]], [[0.0, -0.07, 0.06], [0.123, -0.947, 5.0]], [[0.2, -1.0, 2.0], [0.1, -0.9, 3.0]]] def test_create_string_values_parses_to_0s(): data = "1,2,foo;" parser = Parser(data) assert parser.parsed_data==[[[1.0, 2.0, 0.0], [0, 0, 0]]] data = "1,2,foo|4,bar,6;" parser = Parser(data) assert parser.parsed_data==[[[1.0, 2.0, 0.0], [4.0, 0.0, 6.0]]] # --- Creation Failure Tests --- #def test_create_none(): # pass #TODO # #def test_create_empty(): # pass #TODO # #def test_create_bad_input_too_many_values(): # pass #TODO # #def test_create_bad_input_too_few_values(): # pass #TODO # #def test_create_bad_input_delimiters(): # pass #TODO
2.65625
3
models/stock_model.py
satyam93sinha/SuperSimpleStockMarket
0
12792480
class StockModel: def __init__(self): self.stock_symbol = None self.stock_type = None self.last_dividend = 0 self.fixed_dividend = 0 self.par_value = 0 def set_stock_symbol(self, symbol_of_stock: str) -> None: self.stock_symbol = symbol_of_stock def get_stock_symbol(self): return self.stock_symbol def set_stock_type(self, type_of_stock): self.stock_type = type_of_stock def get_stock_type(self): return self.stock_type def set_last_dividend(self, dividend): self.last_dividend = dividend def get_last_dividend(self): return self.last_dividend def set_fixed_dividend(self, dividend_fix): self.fixed_dividend = dividend_fix def get_fixed_dividend(self): return self.fixed_dividend def set_par_value(self, new_par_value): self.par_value = new_par_value def get_par_value(self): return self.par_value
3.09375
3
yowsup/demos/contacts/stack.py
zulu494/Anoa-Bot-
1
12792481
from .layer import SyncLayer from yowsup.stacks import YowStackBuilder from yowsup.layers import YowLayerEvent from yowsup.layers.auth import YowAuthenticationProtocolLayer from yowsup.layers.network import YowNetworkLayer class YowsupSyncStack(object): def __init__(self, profile, contacts): """ :param profile: :param contacts: list of [jid ] :return: """ stackBuilder = YowStackBuilder() self._stack = stackBuilder \ .pushDefaultLayers() \ .push(SyncLayer) \ .build() self._stack.setProp(SyncLayer.PROP_CONTACTS, contacts) self._stack.setProp(YowAuthenticationProtocolLayer.PROP_PASSIVE, True) self._stack.setProfile(profile) def set_prop(self, key, val): self._stack.setProp(key, val) def start(self): self._stack.broadcastEvent(YowLayerEvent(YowNetworkLayer.EVENT_STATE_CONNECT)) self._stack.loop()
2.015625
2
1-Python-Programming-Basics (Sep 2020)/Course-Exercises-and-Exams/02_Conditional-Statements/00.Book-Exercise-3.1-08-Metric-Converter.py
karolinanikolova/SoftUni-Software-Engineering
0
12792482
<reponame>karolinanikolova/SoftUni-Software-Engineering # конвертор за мерни единици # Да се напише програма, която преобразува разстояние между следните 8 мерни единици: m, mm, cm, mi, in, km, ft, yd. Използвайте съответствията от таблицата по-долу: amount = float(input()) unit_input = input().lower() unit_output = input().lower() if unit_input == 'mm': amount = amount / 1000 elif unit_input == 'cm': amount = amount / 100 elif unit_input == 'mi': amount = amount / 0.000621371192 elif unit_input == 'in': amount = amount / 39.3700787 elif unit_input == 'km': amount = amount / 0.001 elif unit_input == 'ft': amount = amount / 3.2808399 elif unit_input == 'yd': amount = amount / 1.0936133 if unit_output == 'mm': amount = amount * 1000 elif unit_output == 'cm': amount = amount * 100 elif unit_output == 'mi': amount = amount * 0.000621371192 elif unit_output == 'in': amount = amount * 39.3700787 elif unit_output == 'km': amount = amount * 0.001 elif unit_output == 'ft': amount = amount * 3.2808399 elif unit_output == 'yd': amount = amount * 1.0936133 print(amount) # # Other method # amount = float(input()) # # unit_input = input().lower() # unit_output = input().lower() # # dict = {'m':1, 'mm':1000, 'cm':100, 'mi':0.000621371192, 'in':39.3700787, 'km':0.001, 'ft':3.2808399, 'yd':1.0936133} # # amount = amount * dict[unit_output] / dict[unit_input] # # print(amount)
3.703125
4
Model/StaffModel.py
izazdhiya/E-Library-Desktop
2
12792483
from .BaseModel import * class StaffModel(BaseModel): def __init__(self): super().__init__() def validStaff(self,usr,passwd): query = f"SELECT * FROM staff WHERE email='{usr}' AND pass='{passwd}'" try: return self.database.fetchall(query)[0][0] except Exception as e: return False
2.6875
3
setup.py
SeabornGames/File
0
12792484
from setuptools import setup import os try: with open(os.path.join(os.path.dirname(__file__), 'README.md')) as f: long_description = f.read() except Exception: long_description = '' setup( name='seaborn-file', version='1.1.1', description='Seaborn-File enables the manipulation of the' 'directories of a computer within a program.', long_description='', author='<NAME>', author_email='<EMAIL>', url='https://github.com/SeabornGames/File', download_url='https://github.com/SeabornGames/File' '/tarball/download', keywords=['os'], install_requires=[ ], extras_require={}, packages=['seaborn_file'], license='MIT License', classifiers=[ 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: Other/Proprietary License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6'], )
1.65625
2
iot/led/light-sensor/main.py
Kevin181/geektime
0
12792485
from ble_lightsensor import BLELightSensor from lightsensor import LightSensor import time import bluetooth def main(): ble = bluetooth.BLE() ble.active(True) ble_light = BLELightSensor(ble) light = LightSensor(36) light_density = light.value() i = 0 while True: # Write every second, notify every 10 seconds. i = (i + 1) % 10 ble_light.set_light(light_density, notify=i == 0) print("Light Lux:", light_density) light_density = light.value() time.sleep_ms(1000) if __name__ == "__main__": main()
3.140625
3
scripts/summarize_word_frequency_by_corpus.py
codebyzeb/Zorro
2
12792486
<filename>scripts/summarize_word_frequency_by_corpus.py """ How often do words in test sentences occur in each target corpus? """ import numpy as np from zorro import configs from zorro.vocab import load_vocab_df vocab_df = load_vocab_df(return_excluded_words=True) column_names = [f'{corpus_name}-frequency' for corpus_name in configs.Data.corpus_names] f_df = vocab_df[column_names] vw2fs = {w: np.array([fs[k] for k in column_names]) for w, fs in f_df.iterrows()} stop_words = set((configs.Dirs.external_words / "stopwords.txt").open().read().split()) # collect types used in test sentences cn2f = {cn: 0 for cn in column_names} fs_sum_total = 0 for paradigm_path in (configs.Dirs.sentences / 'babyberta').glob('*.txt'): words_in_test_sentences = set() for w in paradigm_path.read_text().split(): if w not in stop_words: words_in_test_sentences.add(w.lower()) fs_sum = np.zeros(len(column_names)) for w in words_in_test_sentences: fs = vw2fs[w] fs_sum += fs # collect fs_sum_total += fs_sum.sum() print(fs_sum_total) print(paradigm_path.name) for cn, f in zip(column_names, fs_sum): print(f'{cn:.<32} {f:>12,} proportion={f/ fs_sum.sum():.2f}') # collect cn2f[cn] += f # summary print() print('Summary') for cn, f in cn2f.items(): print(f'{cn:.<32} {f:>12,} proportion={f/ fs_sum_total:.3f}')
3.09375
3
labpack/records/ip.py
collectiveacuity/labPack
2
12792487
<gh_stars>1-10 __author__ = 'rcj1492' __created__ = '2017.06' __licence__ = 'MIT' def get_ip(source='aws'): ''' a method to get current public ip address of machine ''' if source == 'aws': source_url = 'http://checkip.amazonaws.com/' else: raise Exception('get_ip currently only supports queries to aws') import requests try: response = requests.get(url=source_url) except Exception as err: from labpack.handlers.requests import handle_requests from requests import Request request_object = Request(method='GET', url=source_url) request_details = handle_requests(request_object) raise Exception(request_details['error']) current_ip = response.content.decode() current_ip = current_ip.strip() return current_ip def describe_ip(ip_address, source='whatismyip'): ''' a method to get the details associated with an ip address ''' # determine url if source == 'nekudo': source_url = 'https://geoip.nekudo.com/api/%s' % ip_address elif source == 'geoip': source_url = 'https://freegeoip.net/json/%s' % ip_address elif source == 'whatismyip': # http://whatismyipaddress.com/ip-lookup source_url = 'https://whatismyipaddress.com/ip/%s' % ip_address else: raise Exception('describe_ip currently only supports queries to nekudo') # TODO incorporate geoip module and c dependencies with local database # http://tech.marksblogg.com/ip-address-lookups-in-python.html # send request ip_details = { 'accuracy_radius': 0, 'asn': '', 'assignment': '', 'city': '', 'continent': '', 'country': '', 'hostname': '', 'ip': '', 'isp': '', 'latitude': 0.0, 'longitude': 0.0, 'organization': '', 'postal_code': '', 'region': '', 'timezone': '', 'type': '' } import requests try: response = requests.get(url=source_url) except Exception as err: from labpack.handlers.requests import handle_requests from requests import Request request_object = Request(method='GET', url=source_url) request_details = handle_requests(request_object) raise Exception(request_details['error']) # extract response if source == 'whatismyip': import re response_text = response.content.decode() table_regex = re.compile('<table>\n<tr><th>IP.*?</table>\n<span\sstyle', re.S) table_search = table_regex.findall(response_text) if table_search: table_text = table_search[0] field_list = [ 'IP', 'Hostname', 'ISP', 'Organization', 'Type', 'ASN', 'Assignment', 'Continent', 'Country', 'State/Region', 'City', 'Latitude', 'Longitude', 'Postal Code'] for field in field_list: field_regex = re.compile('<tr><th>%s:</th><td>(.*?)</td>' % field, re.S) field_search = field_regex.findall(table_text) if field_search: ip_details[field.lower().replace(' ','_')] = field_search[0] for field in ('longitude', 'latitude'): if field in ip_details.keys(): coord_regex = re.compile('\-?\d+\.\d+') coord_search = coord_regex.findall(ip_details[field]) if coord_search: ip_details[field] = float(coord_search[0]) if 'country' in ip_details.keys(): country_regex = re.compile('([\w\s]+?)($|\s<img)') country_search = country_regex.findall(ip_details['country']) if country_search: ip_details['country'] = country_search[0][0] for field in ('type', 'assignment'): if field in ip_details.keys(): link_regex = re.compile('>(.*?)<') link_search = link_regex.findall(ip_details[field]) if link_search: ip_details[field] = link_search[0] if 'state/region' in ip_details.keys(): ip_details['region'] = ip_details['state/region'] del ip_details['state/region'] elif source == 'nekudo': response_details = response.json() ip_details['country'] = response_details['country']['name'] ip_details['latitude'] = response_details['location']['latitude'] ip_details['longitude'] = response_details['location']['longitude'] ip_details['accuracy_radius'] = response_details['location']['accuracy_radius'] if response_details['city']: ip_details['city'] = response_details['city'] ip_details['ip'] = response_details['ip'] for key in response_details.keys(): if key not in ip_details.keys() and key != 'location': ip_details[key] = response_details[key] else: response_details = response.json() for field in ('city', 'ip', 'latitude', 'longitude'): ip_details[field] = response_details[field] ip_details['country'] = response_details['country_name'] ip_details['region'] = response_details['region_name'] ip_details['postal_code'] = response_details['zip_code'] ip_details['timezone'] = response_details['time_zone'] return ip_details if __name__ == '__main__': from pprint import pprint ip_address = get_ip() ip_details = describe_ip(ip_address) pprint(ip_details) pprint(describe_ip(ip_address, 'nekudo')) pprint(describe_ip(ip_address, 'geoip'))
2.84375
3
autobuyfast/cars/migrations/0045_auto_20210908_0458.py
dark-codr/autouyfast
0
12792488
<filename>autobuyfast/cars/migrations/0045_auto_20210908_0458.py # Generated by Django 3.1.13 on 2021-09-08 03:58 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('cars', '0044_carcompare'), ] operations = [ migrations.AlterField( model_name='carcompare', name='car_one', field=models.ForeignKey(default=4, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='carone', to='cars.autosearch'), ), migrations.AlterField( model_name='carcompare', name='car_three', field=models.ForeignKey(default=3, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='carthree', to='cars.autosearch'), ), migrations.AlterField( model_name='carcompare', name='car_two', field=models.ForeignKey(default=9, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='cartwo', to='cars.autosearch'), ), ]
1.359375
1
tests/test_list.py
zheng-gao/ez_code
0
12792489
<reponame>zheng-gao/ez_code from ezcode.list.linked_list import SinglyLinkedList from ezcode.list.stack import Stack, MinStack, MaxStack from ezcode.list.queue import Queue, MonotonicQueue from ezcode.list.lru_cache import LRUCache from fixture.utils import equal_list class Node: def __init__(self, v=None, n=None): self.v = v self.n = n def __repr__(self): return f"Node({self.v})" def test_singly_linked_list_basics(): list_0 = SinglyLinkedList(head=None, data_name="v", next_name="n") list_0_copy = SinglyLinkedList(head=None, data_name="v", next_name="n") list_0_reverse = SinglyLinkedList(head=None, data_name="v", next_name="n") list_1 = SinglyLinkedList(head=Node(1), data_name="v", next_name="n") list_1_copy = SinglyLinkedList(head=Node(1), data_name="v", next_name="n") list_1_reverse = SinglyLinkedList(head=Node(1), data_name="v", next_name="n") list_2 = SinglyLinkedList(head=Node(1, Node(2)), data_name="v", next_name="n") list_2_copy = SinglyLinkedList(head=Node(1, Node(2)), data_name="v", next_name="n") list_2_reverse = SinglyLinkedList(head=Node(2, Node(1)), data_name="v", next_name="n") list_3 = SinglyLinkedList(head=Node(1, Node(2, Node(3))), data_name="v", next_name="n") list_3_copy = SinglyLinkedList(head=Node(1, Node(2, Node(3))), data_name="v", next_name="n") list_3_reverse = SinglyLinkedList(head=Node(3, Node(2, Node(1))), data_name="v", next_name="n") assert list_0_copy == list_0 assert list_1_copy == list_1 assert list_2_copy == list_2 assert list_3_copy == list_3 assert list_0.copy() == list_0_copy assert list_1.copy() == list_1_copy assert list_2.copy() == list_2_copy assert list_3.copy() == list_3_copy assert not list_0 == list_1 assert not list_1 == list_2 assert not list_2 == list_3 assert not list_3 == list_0 assert str(list_0) == "None" assert str(list_1) == "1 ─> None" assert str(list_2) == "1 ─> 2 ─> None" assert str(list_3) == "1 ─> 2 ─> 3 ─> None" assert equal_list(list_0.to_array(), []) assert equal_list(list_1.to_array(), [1]) assert equal_list(list_2.to_array(), [1, 2]) assert equal_list(list_3.to_array(), [1, 2, 3]) list_0_reverse_copy = list_0_reverse.copy() list_1_reverse_copy = list_1_reverse.copy() list_2_reverse_copy = list_2_reverse.copy() list_3_reverse_copy = list_3_reverse.copy() list_0_reverse_copy.reverse() list_1_reverse_copy.reverse() list_2_reverse_copy.reverse() list_3_reverse_copy.reverse() assert list_0_copy == list_0_reverse_copy assert list_1_copy == list_1_reverse_copy assert list_2_copy == list_2_reverse_copy assert list_3_copy == list_3_reverse_copy list_0_reverse.head = list_0_reverse.algorithm.reverse(list_0_reverse.head, list_0_reverse.algorithm.get_next(list_0_reverse.head)) list_1_reverse.head = list_1_reverse.algorithm.reverse(list_1_reverse.head, list_1_reverse.algorithm.get_next(list_1_reverse.head)) list_2_reverse.head = list_2_reverse.algorithm.reverse(list_2_reverse.head, list_2_reverse.algorithm.get_next(list_2_reverse.head)) list_3_reverse.head = list_3_reverse.algorithm.reverse(list_3_reverse.head, list_3_reverse.algorithm.get_next(list_3_reverse.head)) assert list_0_copy == list_0_reverse assert list_1_copy == list_1_reverse assert list_2_copy == list_2_reverse assert list_3_copy == list_3_reverse try: list_0.peek_head() == 0 except IndexError as e: assert e.args[0] == "Peek head at an empty SinglyLinkedList" else: assert False list_1.peek_head() == 1 list_2.peek_head() == 2 list_3.peek_head() == 3 list_3_copy.pop_head() == list_2_copy list_2_copy.pop_head() == list_1_copy list_1_copy.pop_head() == list_0_copy try: list_0.pop_head() except IndexError as e: assert e.args[0] == "Pop head from an empty SinglyLinkedList" else: assert False list_3.delete(set([2, 3])) == list_1 list_2.delete(set([1, 2])) == list_0 def test_reverse_sublist(): lists = [ SinglyLinkedList(head=Node(0), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1)), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3)))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3, Node(4))))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3, Node(4, Node(5)))))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3, Node(4, Node(5, Node(6))))))), data_name="v", next_name="n"), SinglyLinkedList(head=Node(0, Node(1, Node(2, Node(3, Node(4, Node(5, Node(6, Node(7)))))))), data_name="v", next_name="n"), ] for list_orig in lists: list_orig.print() for i in range(len(list_orig)): list_orig_copy = list_orig.copy() list_orig_copy.reverse(start_index=i) assert equal_list(list_orig_copy.to_array(), [x for x in range(i)] + [x for x in range(len(list_orig) - 1, i - 1, -1)]) list_orig_copy = list_orig.copy() list_orig_copy.reverse(end_index=i) assert equal_list(list_orig_copy.to_array(), [x for x in range(i, -1, -1)] + [x for x in range(i + 1, len(list_orig))]) sublist_length = len(list_orig) // 2 if sublist_length > 0 and i <= len(list_orig) - sublist_length: start, end = i, i + sublist_length - 1 list_orig_copy = list_orig.copy() list_orig_copy.reverse(start_index=start, end_index=end) assert equal_list( list_orig_copy.to_array(), [x for x in range(start)] + [x for x in range(end, start - 1, -1)] + [x for x in range(end + 1, len(list_orig))] ) def test_queue(): queue = Queue() for i in range(3): assert len(queue) == i queue.push(i) assert queue.peek() == 0 for i in range(3): assert len(queue) == 3 - i assert queue.peek() == i assert queue.pop() == i def test_stack(): stack = Stack() for i in range(3): assert len(stack) == i stack.push(i) assert stack.peek() == i for i in range(3): assert len(stack) == 3 - i assert stack.peek() == 2 - i assert stack.pop() == 2 - i def test_lru_cache(): lru_cache = LRUCache(capacity=3) assert lru_cache.get(1) is None lru_cache.put(key=1, value=1) lru_cache.put(key=2, value=2) lru_cache.put(key=3, value=3) assert lru_cache.get(1) == 1 # 1 3 2 lru_cache.put(key=4, value=4) # 4 1 3 (no 2) assert lru_cache.get(2) is None assert lru_cache.get(4) == 4 # 4 1 3 lru_cache.put(key=3, value=33) # 3 4 1 lru_cache.put(key=5, value=5) # 5 3 4 (no 1) assert lru_cache.get(1) is None assert lru_cache.get(3) == 33 assert lru_cache.get(5) == 5 def test_min_max_stack(): min_stack = MinStack() max_stack = MaxStack() for data, min_data, max_data in zip([2, 1, 3, 5, 4], [2, 1, 1, 1, 1], [2, 2, 3, 5, 5]): min_stack.push(data) max_stack.push(data) assert min_stack.get_min() == min_data assert max_stack.get_max() == max_data for min_data, max_data in zip([1, 1, 1, 2], [5, 3, 2, 2]): min_stack.pop() max_stack.pop() assert min_stack.get_min() == min_data assert max_stack.get_max() == max_data def test_monontonic_queue(): mq = MonotonicQueue(is_increasing=True) for data, benchmark in zip([5, 3, 1, 2, 4], [5, 3, 1, 1, 1]): mq.push(data) assert mq.peek() == benchmark mq = MonotonicQueue(is_increasing=False) for data, benchmark in zip([5, 3, 1, 2, 4], [5, 5, 5, 5, 5]): mq.push(data) assert mq.peek() == benchmark
3.015625
3
examples/optimal_burst/bursts_ttk_simulation.py
spascou/ps2-analysis
2
12792490
import logging import os from typing import List, Optional import altair from ps2_census.enums import PlayerState from ps2_analysis.enums import DamageLocation from ps2_analysis.fire_groups.cone_of_fire import ConeOfFire from ps2_analysis.fire_groups.data_files import ( update_data_files as update_fire_groups_data_files, ) from ps2_analysis.fire_groups.fire_mode import FireMode from ps2_analysis.utils import CodeTimer from ps2_analysis.weapons.infantry.data_files import ( update_data_files as update_infantry_weapons_data_files, ) from ps2_analysis.weapons.infantry.generate import generate_all_infantry_weapons from ps2_analysis.weapons.infantry.infantry_weapon import InfantryWeapon logging.basicConfig(level=logging.INFO) SERVICE_ID: Optional[str] = os.environ.get("CENSUS_SERVICE_ID") DATAFILES_DIRECTORY: str = "../datafiles" if not SERVICE_ID: raise ValueError("CENSUS_SERVICE_ID envvar not found") update_fire_groups_data_files( directory=DATAFILES_DIRECTORY, service_id=SERVICE_ID, ) update_infantry_weapons_data_files( directory=DATAFILES_DIRECTORY, service_id=SERVICE_ID, ) infantry_weapons: List[InfantryWeapon] = list( generate_all_infantry_weapons(data_files_directory=DATAFILES_DIRECTORY) ) print(f"Generated {len(infantry_weapons)} infantry weapons") wp: InfantryWeapon = next(x for x in infantry_weapons if x.item_id == 43) fm: FireMode = wp.fire_groups[0].fire_modes[1] cof: ConeOfFire = fm.player_state_cone_of_fire[PlayerState.STANDING] rttks: List[dict] = [] distance: int = 30 burst_length: int for burst_length in range(0, int(round(fm.max_consecutive_shots / 4)) + 1, 1): control_time: int for control_time in range( 0, cof.recover_time(cof.min_cof_angle() + cof.bloom * burst_length * 2) + 10, 10 ): with CodeTimer( f"{burst_length} length and {control_time}ms control time simulation" ): ttk: int timed_out_ratio: float ttk, timed_out_ratio = fm.real_time_to_kill( distance=distance, runs=500, control_time=control_time, auto_burst_length=burst_length, aim_location=DamageLocation.TORSO, recoil_compensation=True, ) rttks.append( { "distance": distance, "control_time": control_time + fm.fire_timing.refire_time, "burst_length": burst_length, "ttk": ttk if timed_out_ratio < 0.20 else -1, "timed_out_ratio": timed_out_ratio, } ) dataset = altair.Data(values=rttks) chart = ( altair.Chart(dataset) .mark_rect() .encode( x="burst_length:O", y=altair.Y( "control_time:O", sort=altair.EncodingSortField("control_time", order="descending"), ), color=altair.Color( "ttk:Q", scale=altair.Scale(scheme="plasma"), sort="descending" ), tooltip=["ttk:Q", "timed_out_ratio:Q"], ) .properties( title=f"{wp.name} TTK by burst length and control time at {distance}m", height=900, width=900, ) .interactive() ) chart.save("bursts_ttk_simulation.html")
2.265625
2
trello/cards/views.py
copydataai/clon-trello
0
12792491
# DRF from rest_framework.viewsets import ModelViewSet from rest_framework import permissions from rest_framework.permissions import IsAuthenticated # Serializer from trello.cards.serializers import CardSerializer # Model from trello.cards.models import Card class CardViewSet(ModelViewSet): serializer_class = CardSerializer queryset = Car.objects.filter(list) permission_classes = [permissions.IsAuthenticated]
1.742188
2
python/caty/core/command/usage.py
hidaruma/caty
0
12792492
#coding: utf-8 class CommandUsage(object): def __init__(self, profile_container): self.pc = profile_container def get_type_info(self): r = [] for p in self.pc.profiles: opts, args, input, output = self.profile_usage(p) type_vars = ', '.join(map(lambda x:'<%s>' % x.var_name, self.pc.type_params)) if opts: r.append('Usage: %s%s OPTION %s' % (self.pc.name, type_vars, args)) r.append('Option:\n%s' % self.indent(opts)) else: if args == 'null': r.append('Usage: %s%s' % (self.pc.name, type_vars)) else: r.append('Usage: %s%s %s' % (self.pc.name, type_vars, args)) r.append('Input:\n%s' % self.indent(input)) r.append('Output:\n%s' % self.indent(output)) r.append('\n') return u'\n'.join(r) def get_usage(self): return self.get_type_info() + 'Description:\n' + self.get_doc() def get_doc(self): return self.pc.doc @property def title(self): return self.pc.doc.splitlines()[0].strip() def indent(self, s): r = [] for l in s.splitlines(): r.append(' ' + l) return '\n'.join(r) def profile_usage(self, prof): opt = TreeDumper().visit(prof.opts_schema) arg = ArgDumper().visit(prof.args_schema) inp = MiniDumper().visit(prof.in_schema) out = MiniDumper().visit(prof.out_schema) return opt, arg, inp, out from caty.core.casm.cursor.dump import TreeDumper class ArgDumper(TreeDumper): def _process_option(self, node, buff): if node.options: items = [(k, v) for k, v in node.options.items() if k not in ('subName', 'minCount', 'maxCount')] if 'subName' in node.options: buff.append(' ' + node.options['subName']) class MiniDumper(TreeDumper): def _visit_root(self, node): return node.name
2.328125
2
mbq/client/tests/test_storage.py
managedbyq/mbq.client
1
12792493
import os from tempfile import NamedTemporaryFile from unittest import TestCase from mbq.client.storage import FileStorage class FileStorageTestCase(TestCase): def setUp(self): self.test_filename = NamedTemporaryFile(delete=False).name self.storage = FileStorage(self.test_filename) def tearDown(self): os.remove(self.test_filename) def test_storage(self): # When the file is empty, we should receive None for any key. self.assertIsNone(self.storage.get('key1')) # We should be able to write a key/value, self.storage.set('key1', 'value1') # retrieve it, self.assertEqual(self.storage.get('key1'), 'value1') # and still receive None for missing keys. self.assertIsNone(self.storage.get('key2')) # We should be able to write a 2nd key, self.storage.set('key2', 'value2') # retrieve it, self.assertEqual(self.storage.get('key2'), 'value2') # still retrieve the earlier key we wrote, self.assertEqual(self.storage.get('key1'), 'value1') # and still receive None for missing keys. self.assertIsNone(self.storage.get('key3')) # We should be able to update an existing key, self.storage.set('key2', 'some-new-value') # see the value change when retrieving, self.assertEqual(self.storage.get('key2'), 'some-new-value') # the other values should remain unchanged, self.assertEqual(self.storage.get('key1'), 'value1') # and we should still receive None for missing keys. self.assertIsNone(self.storage.get('key3')) # If we re-init the storage object with the same file, self.storage = FileStorage(self.test_filename) # all keys should be persisted. self.assertEqual(self.storage.get('key2'), 'some-new-value') self.assertEqual(self.storage.get('key1'), 'value1') self.assertIsNone(self.storage.get('key3'))
2.890625
3
rpkiclientweb/web.py
job/rpki-client-web
0
12792494
<gh_stars>0 import asyncio import dataclasses import json import logging import os import random from dataclasses import dataclass from typing import Dict, List, Optional from aiohttp import web from prometheus_async import aio from rpkiclientweb.rpki_client import ExecutionResult, RpkiClient from rpkiclientweb.util import repeat LOG = logging.getLogger(__name__) OUTPUT_BUFFER_SIZE = 8_388_608 class RpkiClientWeb: result: Optional[ExecutionResult] = None conf: Dict app: web.Application host: str port: int interval: int jitter: int def __init__(self, conf: Dict) -> None: self.app = web.Application() self.interval = conf.pop("interval") # default to the interval for jitter value self.jitter = conf.pop("jitter") self.host = conf.pop("host", "localhost") self.port = conf.pop("port", 8080) self.conf = conf self.client = RpkiClient(**self.conf) self.app.add_routes( [ web.get("/", self.index), web.get("/config", self.config_response), web.get("/metrics", aio.web.server_stats), web.get("/result", self.json_result), web.get("/objects/validated", self.validated_objects), web.static( "/cache", os.path.abspath(conf["cache_dir"]), follow_symlinks=False, show_index=True, ), ] ) async def index(self, req) -> web.Response: return web.Response( text="""<html> <head><title>rpki-client wrapper</title></head> <body> <h1>rpki-client wrapper</h1> <p><a href="/cache">Cache directory</a></p> <p><a href="/config">Configuration</a></p> <p><a href="/metrics">Metrics</a></p> <p><a href="/objects/validated">Validated objects</a></p> <p><a href="/result">Result</a></p> </body> </html>""", content_type="text/html", ) async def config_response(self, req) -> web.Response: return web.json_response(self.conf) async def validated_objects(self, req) -> web.FileResponse: path = os.path.join(os.path.abspath(self.conf["output_dir"]), "json") return web.FileResponse(path) async def call_client(self) -> None: """Run the rpki-client wrapper again.""" self.result = await self.client.run() async def json_result(self, req) -> web.Response: if self.result: return web.json_response(dataclasses.asdict(self.result)) return web.json_response(None, status=500) async def run(self): LOG.info("starting webserver on %s:%d", self.host, self.port) runner = web.AppRunner(self.app) await runner.setup() site = web.TCPSite(runner, self.host, self.port) asyncio.create_task(site.start(), name="site") if self.jitter: jitter_delay = random.uniform(0, self.jitter) LOG.info( "delaying by random delay of [0, %d] seconds of %f seconds", self.jitter, jitter_delay, ) await asyncio.sleep(jitter_delay) return await repeat(self.interval, self.call_client)
2.140625
2
trivago2015/users/migrations/0002_userprofile.py
ephes/trivago2015
0
12792495
<gh_stars>0 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('image', models.ImageField(null=True, upload_to='image', default=None)), ('user', models.OneToOneField(to=settings.AUTH_USER_MODEL)), ], ), ]
1.84375
2
converge.py
adamorse/soccer-stats
1
12792496
# -*- coding: utf-8 -*- """ Created on Wed Mar 7 08:38:14 2018 @author: <NAME> compute how quickly soccer league tables converge to the final distribution """ import pandas as pd import numpy as np import glob import matplotlib.pyplot as plt from matplotlib import animation from scipy.stats import entropy from scipy.optimize import curve_fit import seaborn as sns sns.set() # function to compute Jensen-Shannon divergence def JSD(p, q): r = 0.5 * (p + q) return 0.5 * (entropy(p, r) + entropy(q, r)) # the data files have already been acquired and cleaned # see get_football-data_data.py # build a list of filenames filenames = glob.glob('data/*.csv') # initialize an array to hold JSD values # each row will contain the JSD curve data for one season jsds = np.zeros((len(filenames),500)) # initialize an array to hold final league tables finals = np.zeros((len(filenames),25)) # initialize a season counter season = 0 # list of columns needed from the data files cols = ['Date','HomeTeam','AwayTeam','FTHG','FTAG'] for file in filenames: # load the season data df = pd.read_csv(file,index_col='Date',encoding = "ISO-8859-1",usecols=cols).dropna(axis=0,how='any') # get the unique team names for that season teams = list(df.HomeTeam.unique()) # set up array for league tables # each column corresponds to a team # each row corresponds to the league table after that number of games tables = np.zeros((df.shape[0]+1,len(teams))) # initialize game counter num_games = 1 # loop through the season data game by game for idx,row in df.iterrows(): # initialize the current league table to be the same as the last tables[num_games,:] = tables[num_games-1,:] # get indices for the teams involved in thisgame home_idx = teams.index(row['HomeTeam']) away_idx = teams.index(row['AwayTeam']) # compute home goals - away goals goal_diff = row.FTHG - row.FTAG # update the league table based on the result if goal_diff > 0: tables[num_games,home_idx] += 3 elif goal_diff < 0: tables[num_games,away_idx] += 3 else: tables[num_games,home_idx] += 1 tables[num_games,away_idx] += 1 # increment the game counter num_games += 1 # delete first row of the table tables = tables[1:,:] # compute the probability distribution for the final league table p = tables[-1,:]/np.sum(tables[-1,:]) # store p for idx,team in enumerate(p): finals[season,idx] = team # for each of the running league tables, convert to a distribution # and then compute the JSD for i in range(len(tables[:,0])): #if np.count_nonzero(tables[idx,:]) == len(tables[idx,:]): q = tables[i,:]/np.sum(tables[i,:]) jsds[season,i] = JSD(p,q) # increment the season counter season += 1 # compute the average JSD curve avg = np.sum(jsds,axis=0)/110 # array of x values for the games xs = np.array([i for i in range(len(avg))]) # define function for curve-fitting def f(x, a, b, c): return a * np.exp(-b * x) + c # perform the curve fit popt, pcov = curve_fit(f, xs, avg) # plot the individual JSD curves for i in range(jsds.shape[0]): plt.plot(jsds[i,:],alpha=.3,color='gray') # add title and axis labels plt.title('Convergence of league tables over time') plt.xlabel('Number of games played') plt.ylabel('JSD with final table') # set axis limits, 461 most games in an individual season axes = plt.gca() axes.set_xlim([0,461]) plt.savefig('allseasons.png') # zoom in on the first 100 games axes.set_xlim([0,100]) plt.savefig('convbegin.png') # zoom out again axes.set_xlim([0,380]) # plot the average curve plt.plot(xs,avg,'b-',label='average JSD') # add a legend plt.legend() plt.savefig('convwithavg.png') # plot the best-fit curve plt.plot(xs, f(xs, *popt), 'r-', label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) # update the legend plt.legend() plt.savefig('conv.png') plt.show() plt.clf() plt.cla() plt.close() # compute examples of final probability distributions # spain 16-17 xd = [i for i in range(18)] plt.bar(xd,np.sort(finals[5,:18])) plt.title('La Liga 2016-2017') plt.xticks([],'') plt.xlabel('Ranked teams') plt.ylabel('Point distribution') plt.savefig('sp1617.png') plt.clf() plt.cla() plt.close() # italy 16-17 xd = [i for i in range(20)] plt.bar(xd,np.sort(finals[27,:20])) plt.title('Serie A 2016-2017') plt.xticks([],'') plt.xlabel('Ranked teams') plt.ylabel('Point distribution') plt.savefig('it1617.png') plt.clf() plt.cla() plt.close() # france 16-17 xd = [i for i in range(20)] plt.bar(xd,np.sort(finals[49,:20])) plt.title('Ligue 1 2016-2017') plt.xticks([],'') plt.xlabel('Ranked teams') plt.ylabel('Point distribution') plt.savefig('fr1617.png') plt.clf() plt.cla() plt.close() # england 16-17 xd = [i for i in range(20)] plt.bar(xd,np.sort(finals[71,:20])) plt.title('Premier League 2016-2017') plt.xticks([],'') plt.xlabel('Ranked teams') plt.ylabel('Point distribution') plt.savefig('en1617.png') plt.clf() plt.cla() plt.close() # germany 16-17 xd = [i for i in range(18)] plt.bar(xd,np.sort(finals[93,:18])) plt.title('Bundesliga 2016-2017') plt.xticks([],'') plt.xlabel('Ranked teams') plt.ylabel('Point distribution') plt.savefig('ge1617.png') plt.clf() plt.cla() plt.close() # generate animation # code below based on an example by <NAME>: # email: <EMAIL> # website: http://jakevdp.github.com # license: BSD # set up the figure fig = plt.figure() # set up the axes ax = plt.axes(xlim=(-1, 20), ylim=(0, .12)) line, = ax.plot([], [],'o',linestyle='None') # add title, legend, etc. plt.title('\'99-\'00 Premier League points distribution over time') plt.xticks([],'') plt.xlabel('Ranked teams') plt.ylabel('Proportion of total points') # draw the background def init(): line.set_data([],[]) plt.bar([i for i in range(20)],np.sort(tables[-1,:]/np.sum(tables[-1,:])),alpha=.3) return line, # animation function, each frame draws a distribution after one more game def animate(i): xd = [i for i in range(20)] y = np.sort(tables[i+40,:]/np.sum(tables[i+40,:])) line.set_data(xd, y) return line, # animate anim = animation.FuncAnimation(fig, animate, init_func=init, frames=340, interval=20, blit=True,repeat_delay=1000) # save the animation anim.save('basic_animation.mp4', fps=50, extra_args=['-vcodec', 'libx264']) plt.show()
2.84375
3
main.py
Abhishek-P/py-hello-world-run-from-colab
0
12792497
print("Hello World! from Colab")
1.117188
1
core/serializers/address.py
decosterkevin/foodtrack-back
0
12792498
<gh_stars>0 from rest_framework import serializers from core.models import Exploitation, Address from drf_extra_fields.geo_fields import PointField class AddressSerializer(serializers.ModelSerializer): # lat = PointSerializer(source='point.y', read_only=True) lat = PointField(source='point.y', read_only=True) lng = PointField(source='point.x', read_only=True) class Meta: model = Address fields = ("street", "street_cp", "city", "province", "postal_code", "country", "lat", "lng") class ExploitationSerializer(serializers.ModelSerializer): class Meta: model = Exploitation fields = ("address", "pictures", "creator")
2.3125
2
soluciones/operaciones/operaciones.py
carlosviveros/Soluciones
4
12792499
"""AyudaEnPython: https://www.facebook.com/groups/ayudapython """ # del repositorio del grupo AyudaEnPython: # https://github.com/AyudaEnPython/Soluciones/blob/main/soluciones/calculadora/operadores.py def suma(a: float, b: float) -> float: """Suma dos números. :param a: Primer número. :a type: float :param b: Segundo número. :b type: float :return: La suma de los dos números. :rtype: float """ return a + b def resta(a: float, b: float) -> float: """Resta dos números. :param a: Primer número. :a type: float :param b: Segundo número. :b type: float :return: La resta de los dos números. :rtype: float """ return a - b def multiplicacion(a: float, b: float) -> float: """Multiplica dos números. :param a: Primer número. :a type: float :param b: Segundo número. :b type: float :return: La multiplicación de los dos números. :rtype: float """ return a * b def division(a: float, b: float) -> float: """Divide dos números. :param a: Primer número. :a type: float :param b: Segundo número. :b type: float :raises ZeroDivisionError: Si el segundo número es cero. :return: La división de los dos números. :rtype: float """ try: return a / b except ZeroDivisionError: return "No se puede dividir entre cero"
3.84375
4
io_scene_vrm/external/cats_blender_plugin_support.py
iCyP/VRM_IMPORTER_for_Blender2.8
26
12792500
<reponame>iCyP/VRM_IMPORTER_for_Blender2.8 import traceback from typing import Dict import bpy from ..common.human_bone import HumanBoneName from .cats_blender_plugin.tools.armature import FixArmature from .cats_blender_plugin_armature import CatsArmature __cats_bone_name_to_human_bone_name = { # Order by priority # Required bones "Hips": HumanBoneName.HIPS, "Spine": HumanBoneName.SPINE, "Chest": HumanBoneName.CHEST, "Neck": HumanBoneName.NECK, "Head": HumanBoneName.HEAD, "Right arm": HumanBoneName.RIGHT_UPPER_ARM, "Right elbow": HumanBoneName.RIGHT_LOWER_ARM, "Right wrist": HumanBoneName.RIGHT_HAND, "Left arm": HumanBoneName.LEFT_UPPER_ARM, "Left elbow": HumanBoneName.LEFT_LOWER_ARM, "Left wrist": HumanBoneName.LEFT_HAND, "Right leg": HumanBoneName.RIGHT_UPPER_LEG, "Right knee": HumanBoneName.RIGHT_LOWER_LEG, "Right ankle": HumanBoneName.RIGHT_FOOT, "Left leg": HumanBoneName.LEFT_UPPER_LEG, "Left knee": HumanBoneName.LEFT_LOWER_LEG, "Left ankle": HumanBoneName.LEFT_FOOT, # Optional bones "Eye_R": HumanBoneName.RIGHT_EYE, "Eye_L": HumanBoneName.LEFT_EYE, "Right shoulder": HumanBoneName.RIGHT_SHOULDER, "Left shoulder": HumanBoneName.LEFT_SHOULDER, "Thumb0_R": HumanBoneName.RIGHT_THUMB_PROXIMAL, "Thumb1_R": HumanBoneName.RIGHT_THUMB_INTERMEDIATE, "Thumb2_R": HumanBoneName.RIGHT_THUMB_DISTAL, "Thumb0_L": HumanBoneName.LEFT_THUMB_PROXIMAL, "Thumb1_L": HumanBoneName.LEFT_THUMB_INTERMEDIATE, "Thumb2_L": HumanBoneName.LEFT_THUMB_DISTAL, "IndexFinger1_R": HumanBoneName.RIGHT_INDEX_PROXIMAL, "IndexFinger2_R": HumanBoneName.RIGHT_INDEX_INTERMEDIATE, "IndexFinger3_R": HumanBoneName.RIGHT_INDEX_DISTAL, "IndexFinger1_L": HumanBoneName.LEFT_INDEX_PROXIMAL, "IndexFinger2_L": HumanBoneName.LEFT_INDEX_INTERMEDIATE, "IndexFinger3_L": HumanBoneName.LEFT_INDEX_DISTAL, "MiddleFinger1_R": HumanBoneName.RIGHT_MIDDLE_PROXIMAL, "MiddleFinger2_R": HumanBoneName.RIGHT_MIDDLE_INTERMEDIATE, "MiddleFinger3_R": HumanBoneName.RIGHT_MIDDLE_DISTAL, "MiddleFinger1_L": HumanBoneName.LEFT_MIDDLE_PROXIMAL, "MiddleFinger2_L": HumanBoneName.LEFT_MIDDLE_INTERMEDIATE, "MiddleFinger3_L": HumanBoneName.LEFT_MIDDLE_DISTAL, "RingFinger1_R": HumanBoneName.RIGHT_RING_PROXIMAL, "RingFinger2_R": HumanBoneName.RIGHT_RING_INTERMEDIATE, "RingFinger3_R": HumanBoneName.RIGHT_RING_DISTAL, "RingFinger1_L": HumanBoneName.LEFT_RING_PROXIMAL, "RingFinger2_L": HumanBoneName.LEFT_RING_INTERMEDIATE, "RingFinger3_L": HumanBoneName.LEFT_RING_DISTAL, "LittleFinger1_R": HumanBoneName.RIGHT_LITTLE_PROXIMAL, "LittleFinger2_R": HumanBoneName.RIGHT_LITTLE_INTERMEDIATE, "LittleFinger3_R": HumanBoneName.RIGHT_LITTLE_DISTAL, "LittleFinger1_L": HumanBoneName.LEFT_LITTLE_PROXIMAL, "LittleFinger2_L": HumanBoneName.LEFT_LITTLE_INTERMEDIATE, "LittleFinger3_L": HumanBoneName.LEFT_LITTLE_DISTAL, "Right toe": HumanBoneName.RIGHT_TOES, "Left toe": HumanBoneName.LEFT_TOES, } def create_human_bone_mapping(armature: bpy.types.Armature) -> Dict[str, HumanBoneName]: cats_armature = CatsArmature.create(armature) try: FixArmature.create_cats_bone_name_mapping(cats_armature) except Exception as e: traceback.print_exc() print(f"Human Bone Name Auto Detection: {e}") mapping = {} cats_name_to_original_name = cats_armature.cats_name_to_original_name() for cats_name, human_name in __cats_bone_name_to_human_bone_name.items(): original_name = cats_name_to_original_name.get(cats_name) if not original_name: continue mapping[original_name] = human_name return mapping
1.710938
2
main.py
maajtga/python-pong
0
12792501
<gh_stars>0 import pygame from data import paddle from data import ball pygame.init() winsize = [900, 550] win = pygame.display.set_mode(winsize) pygame.display.set_caption('Pong') icon = pygame.image.load('gfx/icon.png') pygame.display.set_icon(icon) running = True Player1 = paddle.Paddle(70, 225) Player2 = paddle.Paddle(800, 225) Ball = ball.Ball(270, 400) ballspeedx = 0.5 ballspeedy = 0.5 while running: win.fill(0) Player1.render(win) Player2.render(win) Ball.render(win) Ball.x += ballspeedx Ball.y += ballspeedy if Ball.x > 486 or Ball.x < 0: ballspeedx *= -1 if Ball.y > 836 or Ball.y < 0: ballspeedy *= -1 for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_w: Player1.y -= 20 if event.key == pygame.K_s: Player1.y += 20 if event.key == pygame.K_UP: Player2.y -= 20 if event.key == pygame.K_DOWN: Player2.y += 20 if event.type == pygame.KEYUP: if event.key == pygame.K_w: Player1.y -= 20 pygame.display.flip()
2.9375
3
py/scrap_heroes/test/test_utils.py
BenjaminCbr/cinoisp-storm
0
12792502
<filename>py/scrap_heroes/test/test_utils.py<gh_stars>0 from __future__ import unicode_literals from django.test import TestCase from ..utils import partial_dict_equals class DictUtilsTest(TestCase): def test_partial_dict_equals__regular_case(self): small_dict = { "a": 1, "b": [2, 3, 6], "d": False } big_dict = { "aa": 123, "fdsg": 2, "a": 1, "b": [2, 6, 3], } self.assertTrue(partial_dict_equals(small_dict, big_dict)) def test_partial_dict_equals__irregular_case(self): small_dict = { "a": 1, "b": [2, 6], "d": False } big_dict = { "aa": 123, "fdsg": 2, "a": 1, "b": [2, 6, 3], } self.assertFalse(partial_dict_equals(small_dict, big_dict))
2.625
3
tests/test_klass.py
surroundaustralia/ndesgateway-testclient
1
12792503
<filename>tests/test_klass.py from rdflib.namespace import RDF, OWL from client.model import Klass def test_basic_rdf(): r1 = Klass() rdf = r1.to_graph() assert (None, RDF.type, OWL.Class) in rdf
2.3125
2
flake8_pytest_style/visitors/fail.py
kianmeng/flake8-pytest-style
125
12792504
<reponame>kianmeng/flake8-pytest-style<gh_stars>100-1000 import ast from flake8_plugin_utils import Visitor from flake8_pytest_style.config import Config from flake8_pytest_style.errors import AssertAlwaysFalse, FailWithoutMessage from flake8_pytest_style.utils import ( get_simple_call_args, is_empty_string, is_fail_call, is_falsy_constant, ) class FailVisitor(Visitor[Config]): def _check_fail_call(self, node: ast.Call) -> None: """Checks for PT016.""" args = get_simple_call_args(node) msg_argument = args.get_argument('msg', 0) if not msg_argument or is_empty_string(msg_argument): self.error_from_node(FailWithoutMessage, node) def visit_Assert(self, node: ast.Assert) -> None: """Checks for PT015.""" if is_falsy_constant(node.test): self.error_from_node(AssertAlwaysFalse, node) def visit_Call(self, node: ast.Call) -> None: if is_fail_call(node): self._check_fail_call(node)
2.21875
2
chat_app/management/commands/load_dummy_data.py
PS-Division-BITS/Chat
1
12792505
<reponame>PS-Division-BITS/Chat from django.core.management.base import BaseCommand from django.contrib.auth.models import User from django.utils.crypto import get_random_string from chat_app.models import * class Command(BaseCommand): def _create(self): # creating user and super-user User.objects.all().delete() print('Creating admin..') admin = User.objects.create_superuser(username='admin', password='<PASSWORD>') print('admin created.') print('username: admin password: <PASSWORD>') print('Creating Ghost user..') g = User.objects.create_user(username='Ghost', password=get_random_string(8),) print('done.') print('Creating other users..') u1 = User.objects.create_user(username='Ritik', password=get_random_string(8)) u2 = User.objects.create_user(username='Chetan', password=get_random_string(8)) u3 = User.objects.create_user(username='Random', password=get_random_string(8)) print('done.') # create chats Chat.objects.all().delete() print('Creating chats..') c1 = Chat.objects.create(uri='1', name='main', description='Main Chat Room') c2 = Chat.objects.create(uri='2', name='chat2', description='Chat Room 2') c3 = Chat.objects.create(uri='3', name='chat3', description='Chat Room 3') print('done.') # create msgs Message.objects.all().delete() print('Creating messages..') m1 = Message.objects.create(sender=admin, content='Hello World!') m2 = Message.objects.create(sender=admin, content='Foo Bar') m3 = Message.objects.create(sender=admin, content='Wazz Buzz') print('done.') # add users to chats print('winding up..') c1.participants.add(admin, u1, u2, u3, g) c2.participants.add(admin, u1, g) c3.participants.add(admin, u2, u3, g) # add msgs in chats c1.messages.add(m1, m2) c2.messages.add(m2) c3.messages.add(m3) print('done.') def handle(self, *args, **kwargs): self._create()
2.390625
2
tests/test_update_order.py
AltaPay/python-client-library
0
12792506
<reponame>AltaPay/python-client-library from __future__ import absolute_import, unicode_literals import responses from altapay import API, UpdateOrder from .test_cases import TestCase class UpdateOrderTest(TestCase): def setUp(self): self.api = API(mode='test', auto_login=False) @responses.activate def test_update_order_invalid_order_line(self): uo = UpdateOrder(api=self.api) responses.add( responses.POST, self.get_api_url('API/updateOrder'), body=self.load_xml_response( '200_update_order_success.xml'), status=200, content_type='application/xml') with self.assertRaisesRegexp(Exception, "order_lines must " "contain 2 elements"): uo.update("payment id", []) @responses.activate def test_update_order_success(self): uo = UpdateOrder(api=self.api) responses.add( responses.POST, self.get_api_url('API/updateOrder'), body=self.load_xml_response( '200_update_order_success.xml'), status=200, content_type='application/xml') self.assertEqual(uo.update("payment id", [{}, {}]), True) @responses.activate def test_update_order_error(self): uo = UpdateOrder(api=self.api) responses.add( responses.POST, self.get_api_url('API/updateOrder'), body=self.load_xml_response( '200_update_order_error.xml'), status=200, content_type='application/xml') self.assertEqual(uo.update("payment id", [{}, {}]), False) self.assertEqual(uo.error_code, 10000001) self.assertEqual(uo.error_message, "Number of original order lines " "and updated ones does not match.")
2.296875
2
src/titanic/scripts/cross_validate_models.py
alvaromendoza/pytanic
1
12792507
<filename>src/titanic/scripts/cross_validate_models.py """Cross-validate machine learning models.""" import os import time import pprint import random as rn import numpy as np from sklearn.model_selection import KFold from sklearn.pipeline import make_pipeline from sklearn.model_selection import RandomizedSearchCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, VotingClassifier from sklearn.svm import SVC from category_encoders.ordinal import OrdinalEncoder import titanic.tools as tools from titanic.modelling import SimpleDataFrameImputer, DataFrameDummifier, CategoricalToString from titanic.modelling import ExtendedClassifier from titanic.config import RANDOM_SEED np.random.seed(RANDOM_SEED) os.environ['PYTHONHASHSEED'] = '0' rn.seed(RANDOM_SEED) def cross_validate_logreg(X_train, y_train, pipes, grids, kfolds): """Cross-validate LogisticRegression pipeline.""" pipes['logreg'] = make_pipeline(SimpleDataFrameImputer(median_cols=['Age', 'Fare'], mode_cols=['Embarked']), DataFrameDummifier(), LogisticRegression(solver='liblinear')) grids['logreg'] = {'logisticregression__C': [0.01, 0.1, 0.5, 0.8, 1, 1.2, 2, 5, 10]} grids['logreg'] = {'logisticregression__C': [0.6, 0.75, 0.8, 0.85, 0.9]} logreg = ExtendedClassifier.cross_validate(pipes['logreg'], X_train, y_train, grids['logreg'], sklearn_gscv_kws={'cv': 3}, sklearn_cvs_kws={'cv': kfolds}, param_strategy='best', logdir_path=r'logs/models/logreg', serialize_to=r'models/logreg.pickle') return logreg def cross_validate_forest(X_train, y_train, pipes, grids, kfolds, random_search=False): """Cross-validate RandomForestClassifier pipeline.""" pipes['forest'] = make_pipeline(CategoricalToString(), SimpleDataFrameImputer(median_cols=['Age', 'Fare'], mode_cols=['Embarked']), OrdinalEncoder(cols=['Title', 'Deck', 'Embarked'], handle_unknown='impute'), RandomForestClassifier(**{'bootstrap': True, 'max_depth': 70, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 10, 'n_estimators': 64, 'random_state': RANDOM_SEED})) if random_search: n_estimators = [int(x) for x in np.linspace(start=10, stop=500, num=10)] max_features = ['auto', 'sqrt'] max_depth = [int(x) for x in np.linspace(10, 110, num=11)] max_depth.append(None) min_samples_split = [2, 5, 10] min_samples_leaf = [1, 2, 4] bootstrap = [True, False] random_grid = {'randomforestclassifier__n_estimators': n_estimators, 'randomforestclassifier__max_features': max_features, 'randomforestclassifier__max_depth': max_depth, 'randomforestclassifier__min_samples_split': min_samples_split, 'randomforestclassifier__min_samples_leaf': min_samples_leaf, 'randomforestclassifier__bootstrap': bootstrap} pprint.pprint(random_grid) randsearch = RandomizedSearchCV(pipes['forest'], random_grid, n_iter=50, cv=3, verbose=0, random_state=42) start = time.time() randsearch.fit(X_train, y_train) finish = time.time() print('randsearch.fit execution time:', finish - start) pprint.pprint(randsearch.best_params_) forest = ExtendedClassifier.cross_validate(pipes['forest'], X_train, y_train, sklearn_cvs_kws={'cv': kfolds}, param_strategy='init', logdir_path=r'logs/models/forest', serialize_to=r'models/forest.pickle') return forest def cross_validate_svc(X_train, y_train, pipes, grids, kfolds): """Cross-validate SVC pipeline.""" pipes['svc'] = make_pipeline(SimpleDataFrameImputer(median_cols=['Age', 'Fare'], mode_cols=['Embarked']), DataFrameDummifier(), SVC(kernel='linear', C=0.1, probability=False)) C = [0.001, 0.01, 0.1, 1, 10] gamma = [0.001, 0.01, 0.1, 1] grids['svc'] = {'svc__C': C, 'svc__gamma': gamma} svc = ExtendedClassifier.cross_validate(pipes['svc'], X_train, y_train, sklearn_cvs_kws={'cv': kfolds}, param_strategy='init', logdir_path=r'logs/models/svc', serialize_to=r'models/svc.pickle') return svc def cross_validate_voting(X_train, y_train, pipes, grids, kfolds): """Cross-validate VotingClassifier.""" estimators = [('logreg', pipes['logreg']), ('forest', pipes['forest']), ('svc', pipes['svc'])] voting = ExtendedClassifier.cross_validate(VotingClassifier(estimators, voting='hard'), X_train, y_train, sklearn_cvs_kws={'cv': kfolds}, param_strategy='init', logdir_path=r'logs/models/voting', serialize_to=r'models/voting.pickle') return voting def main(): X_train = tools.deserialize(r'data/processed/X_train.pickle') y_train = tools.deserialize(r'data/processed/y_train.pickle') pipes = dict() grids = dict() kfolds = KFold(n_splits=5, shuffle=True, random_state=RANDOM_SEED) cross_validate_logreg(X_train, y_train, pipes, grids, kfolds) cross_validate_forest(X_train, y_train, pipes, grids, kfolds) cross_validate_svc(X_train, y_train, pipes, grids, kfolds) cross_validate_voting(X_train, y_train, pipes, grids, kfolds) if __name__ == '__main__': os.chdir(r'../../../') main()
2.375
2
server/contests/auth/test_core.py
jauhararifin/ugrade
15
12792508
<gh_stars>10-100 import pytest import jwt import bcrypt from mixer.backend.django import mixer from django.test import TestCase from django.core.exceptions import ValidationError from ugrade import settings from contests.models import User from contests.exceptions import NoSuchUserError, \ NoSuchContestError, \ AuthenticationError, \ UserHaventSignedUpError, \ UserAlreadySignedUpError, \ UsernameAlreadyUsedError from .core import get_all_permissions, \ get_all_users, \ get_user_by_id, \ get_user_by_username, \ get_user_by_email, \ get_contest_users, \ sign_in, \ sign_up, \ forgot_password, \ reset_password, \ get_user_from_token @pytest.mark.django_db def test_get_all_permissions(): mixer.cycle(5).blend('contests.Permission') assert len(get_all_permissions()) == 5 @pytest.mark.django_db def test_get_all_users(): mixer.cycle(5).blend('contests.User') users = get_all_users() assert len(users) == 5 @pytest.mark.django_db def test_get_user_by_id(): perm1 = mixer.blend('contests.Permission', code='perm1') perm2 = mixer.blend('contests.Permission', code='perm2') mixer.cycle(5).blend('contests.User', name='<NAME>', permissions=[perm1, perm2]) user1 = get_user_by_id(1) assert user1.name == '<NAME>' assert user1.has_permission('perm1') and user1.has_permission('perm2') assert user1.permission_codes == ['perm1', 'perm2'] with pytest.raises(NoSuchUserError): get_user_by_id(6) @pytest.mark.django_db def test_get_user_by_username(): contest1 = mixer.blend('contests.Contest', id=1, name='Contest 1') mixer.blend('contests.Contest', id=2, name='Contest 2') mixer.blend('contests.User', name='Test 1', username='username1', contest=contest1) mixer.blend('contests.User', name='Test 2', username='username2', contest=contest1) assert get_user_by_username(1, 'username1').name == 'Test 1' assert get_user_by_username(1, 'username2').name == 'Test 2' with pytest.raises(NoSuchUserError): get_user_by_username(1, 'nonexistent') with pytest.raises(NoSuchUserError): get_user_by_username(2, 'username2') with pytest.raises(NoSuchContestError): get_user_by_username(3, 'username1') @pytest.mark.django_db def test_get_user_by_email(): contest1 = mixer.blend('contests.Contest', id=1, name='Contest 1') mixer.blend('contests.Contest', id=2, name='Contest 2') mixer.blend('contests.User', name='Test 1', email='email1', contest=contest1) mixer.blend('contests.User', name='Test 2', email='email2', contest=contest1) assert get_user_by_email(1, 'email1').name == 'Test 1' assert get_user_by_email(1, 'email2').name == 'Test 2' with pytest.raises(NoSuchUserError): get_user_by_email(1, 'nonexistent') with pytest.raises(NoSuchUserError): get_user_by_email(2, 'email2') with pytest.raises(NoSuchContestError): get_user_by_email(3, 'email1') @pytest.mark.django_db def test_get_contest_users(): contest1 = mixer.blend('contests.Contest', id=1) mixer.cycle(5).blend('contests.User', name='Name', contest=contest1) result = get_contest_users(1) assert len(result) == 5 for user in result: assert user.name == 'Name' with pytest.raises(NoSuchContestError): get_contest_users(2) @pytest.mark.django_db class SignInTest(TestCase): @classmethod def setUpTestData(cls): mixer.cycle(5).blend('contests.User', name=("User %d" % n for n in range(1, 6)), email=("<EMAIL>" % n for n in range(1, 6)), username=("user%d" % n for n in range(1, 6)), password=bcrypt.hashpw(b't<PASSWORD>', bcrypt.gensalt()).decode('utf-8')) mixer.blend('contests.User', name='User 6', email='<EMAIL>') def test_wrong_user_id(self): with pytest.raises(AuthenticationError): sign_in(7, 'pass') def test_havent_signed_up(self): with pytest.raises(UserHaventSignedUpError): sign_in(6, 'pass') def test_wrong_password(self): with pytest.raises(AuthenticationError): sign_in(1, '<PASSWORD>') def test_success(self): user, token = sign_in(2, 'testtest') assert user.id == 2 assert token is not None and token != '' token_data = jwt.decode(token, verify=False) assert token_data['id'] == 2 @pytest.mark.django_db class SignUpTest(TestCase): @classmethod def setUpTestData(cls): contest1 = mixer.blend('contests.Contest', id=1) contest2 = mixer.blend('contests.Contest', id=2) mixer.blend('contests.User', name='Some Name', email='<EMAIL>', username='username', password=bcrypt.hashpw( b'<PASSWORD>', bcrypt.gensalt()).decode('utf-8'), contest=contest1) mixer.blend('contests.User', email='<EMAIL>', contest=contest2, signup_otc='12345678') mixer.blend('contests.User', name='<NAME>', email='<EMAIL>', username='jauhararifin', password=bcrypt.hashpw( b'userpass', bcrypt.gensalt()).decode('utf-8'), contest=contest2) def test_wrong_email(self): with pytest.raises(NoSuchUserError): sign_up(4, 'username', 'name', 'somepass', '00000000') with pytest.raises(NoSuchUserError): sign_up(4, 'username', 'name', 'somepass', '<PASSWORD>') def test_already_signed_up(self): with pytest.raises(UserAlreadySignedUpError): sign_up(1, 'username', 'name', 'somepass', '00000000') def test_wrong_otc(self): with pytest.raises(AuthenticationError): sign_up(2, 'username', 'name', 'somepass', '00000000') def test_already_used_username(self): with pytest.raises(UsernameAlreadyUsedError): sign_up(2, 'jauhararifin', 'name', 'somepass', '12345678') def test_invalid_input(self): with pytest.raises(ValidationError) as error: sign_up(2, 'u', 'name', 'password', '<PASSWORD>') assert error.value.message_dict['username'] is not None def test_success(self): user, token = sign_up(2, 'username', 'My Name', '<PASSWORD>', '<PASSWORD>') assert user.id == 2 assert token is not None and token != '' token_data = jwt.decode(token, verify=False) assert token_data['id'] == 2 user = User.objects.get(pk=2) assert user.signup_otc is None @pytest.mark.django_db class ForgotPasswordTest(TestCase): @classmethod def setUpTestData(cls): mixer.blend('contests.User', name='Some Name 1', email='<EMAIL>', username='username1', password=bcrypt.hashpw(b'<PASSWORD>', bcrypt.gensalt()).decode('utf-8')) mixer.blend('contests.User', email='<EMAIL>', signup_otc='12345678') def test_wrong_email(self): with pytest.raises(NoSuchUserError): forgot_password(3) def test_havent_signed_up(self): with pytest.raises(UserHaventSignedUpError): forgot_password(2) def test_success_and_create_new_otc(self): forgot_password(1) user = User.objects.get(pk=1) assert user.reset_password_otc is not None def test_success_and_use_old_otc(self): user = User.objects.get(pk=1) user.reset_password_otc = '<PASSWORD>' user.save() forgot_password(1) user = User.objects.get(pk=1) assert user.reset_password_otc == '00000000' @pytest.mark.django_db class ResetPasswordTest(TestCase): @classmethod def setUpTestData(cls): contest1 = mixer.blend('contests.Contest', id=1) mixer.blend('contests.User', name='Some Name 1', email='<EMAIL>', username='username1', password=bcrypt.hashpw( b'<PASSWORD>', bcrypt.gensalt()).decode('utf-8'), contest=contest1) mixer.blend('contests.User', email='<EMAIL>', contest=contest1, signup_otc='12345678') def test_wrong_user_id(self): with pytest.raises(NoSuchUserError): reset_password(3, '<PASSWORD>', '<PASSWORD>') def test_havent_signed_up(self): with pytest.raises(UserHaventSignedUpError): reset_password(2, '<PASSWORD>', '<PASSWORD>') def test_wrong_code(self): user = User.objects.get(pk=1) user.reset_password_otc = '<PASSWORD>' user.save() with pytest.raises(AuthenticationError): reset_password(1, '<PASSWORD>', '<PASSWORD>') def test_success(self): user = User.objects.get(pk=1) user.reset_password_otc = '<PASSWORD>' user.save() reset_password(1, '<PASSWORD>', '<PASSWORD>') user = User.objects.get(pk=1) assert bcrypt.checkpw(b'<PASSWORD>', bytes(user.password, 'utf-8')) def test_with_forgot_password(self): forgot_password(1) user = User.objects.get(pk=1) assert user.reset_password_otc is not None reset_password(1, user.reset_password_otc, '<PASSWORD>') user = User.objects.get(pk=1) assert bcrypt.checkpw(b'<PASSWORD>', bytes(user.password, 'utf-8')) @pytest.mark.django_db class GetUserFromTokenTest(TestCase): @classmethod def setUpTestData(cls): contest1 = mixer.blend('contests.Contest', id=1) mixer.blend('contests.User', name='Some Name 1', email='<EMAIL>', username='username1', password=bcrypt.hashpw( b'<PASSWORD>', bcrypt.gensalt()).decode('utf-8'), contest=contest1) mixer.blend('contests.User', email='<EMAIL>', contest=contest1, signup_otc='12345678') def test_authentication_error(self): with pytest.raises(AuthenticationError): get_user_from_token('some.invalid.token') with pytest.raises(AuthenticationError): get_user_from_token('') # check wrong key with pytest.raises(AuthenticationError): get_user_from_token( '<KEY>') # check none algorithm with pytest.raises(AuthenticationError): get_user_from_token( '<KEY> with pytest.raises(AuthenticationError): get_user_from_token( '<KEY>') # invalid payload with pytest.raises(AuthenticationError): get_user_from_token( jwt.encode({'id': 'hehe'}, settings.SECRET_KEY, algorithm='HS256') ) # user not exists with pytest.raises(AuthenticationError): get_user_from_token( jwt.encode({'id': 10}, settings.SECRET_KEY, algorithm='HS256') ) def test_success(self): user = get_user_from_token( jwt.encode({'id': 1}, settings.SECRET_KEY, algorithm='HS256') ) assert user.id == 1
2
2
RecoHI/HiEgammaAlgos/python/HiIsolationCommonParameters_cff.py
ckamtsikis/cmssw
852
12792509
import FWCore.ParameterSet.Config as cms isolationInputParameters = cms.PSet( barrelBasicCluster = cms.InputTag("islandBasicClusters","islandBarrelBasicClusters"), endcapBasicCluster = cms.InputTag("islandBasicClusters","islandEndcapBasicClusters"), horeco = cms.InputTag("horeco"), hfreco = cms.InputTag("hfreco"), hbhereco = cms.InputTag("hbhereco"), track = cms.InputTag("hiGeneralTracks"), photons = cms.InputTag("cleanPhotons") )
1.132813
1
test/tcp/client.py
phpyii/workerman-test
0
12792510
<reponame>phpyii/workerman-test #! /usr/bin/env python #coding=utf-8 import socket # 创建socket对象 # 参数一 指定用ipv4版本,参数2 指定用udp协议 serverSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) HOST='127.0.0.1' PORT=17000 #从指定的端口,从任何发送者,接收UDP数据 BUFSIZ=1024 ADDR=(HOST, PORT) serverSocket.connect(ADDR) while True: #提示用户输入数据 send_data = input("请输入要发送的数据:") serverSocket.send(send_data.encode("utf-8")) # 接收对方发送过来的数据,最大接收1024个字节 recvData = serverSocket.recv(BUFSIZ) print('接收到的数据为:', recvData.decode('utf-8'))
2.703125
3
src/eventsHandler/on_message/on_message.py
gastbob40/discord-request-support-bot
2
12792511
import discord from src.eventsHandler.on_message.commands.activate import disable, enable from src.eventsHandler.on_message.commands.cancel import cancel_request from src.eventsHandler.on_message.commands.end_request import end_request from src.eventsHandler.on_message.commands.place import get_place from src.eventsHandler.on_message.commands.request import make_request class OnMessage: @staticmethod async def run(client: discord.Client, message: discord.Message): if message.author.bot: return if message.content and message.content[0] != '!': return command = message.content.split()[0][1:] args = message.content.split()[1:] if command == 'request': await make_request(client, message, args) elif command == 'cancel': await cancel_request(client, message, args) elif command == 'place': await get_place(client, message, args) elif command == 'close': await end_request(client, message) elif command == 'enable': await enable(client, message, args) elif command == 'disable': await disable(client, message, args)
2.4375
2
app/utils/mail.py
YogeshUpdhyay/Stocklytic.io
1
12792512
<gh_stars>1-10 from .. import mail from flask_mail import Message from flask import url_for def send_reset_email(user): token = user.generate_reset_token() msg = Message('Password Reset Request', sender="<EMAIL>", recipients=[user.email]) msg.body = f'''To reset your password, visit the following link: {url_for('user.reset_password', token=token, _external=True)}''' mail.send(msg)
2.4375
2
0x10-python-network_0/6-peak.py
BennettDixon/holbertonschool-higher_level_programming
1
12792513
<filename>0x10-python-network_0/6-peak.py #!/usr/bin/python3 """script for finding peak in list of ints, interview prep """ """ THOUGHT PROCESS it is not sorted, so sorting would take n(log(n)) -> not worth sorting looping through and keeping track of max (brute force) -> O(n) possibly looping from each end reducing to 1/2 run time -> still O(n) """ def find_peak(list_of_integers): """BRUTE force implementation for question """ max_i = None for ele in list_of_integers: if max_i is None or max_i < ele: max_i = ele return max_i
3.203125
3
imix/models/vqa_models/visdial_principles.py
linxi1158/iMIX
23
12792514
import torch.nn as nn from ..builder import VQA_MODELS, build_backbone, build_encoder, build_head @VQA_MODELS.register_module() class VISDIALPRINCIPLES(nn.Module): def __init__(self, vocabulary_len, word_embedding_size, encoder, backbone, head): super().__init__() self.embedding_model = nn.Embedding(vocabulary_len, word_embedding_size, padding_idx=0) self.encoder_model = build_encoder(encoder) self.backbone = build_backbone(backbone) self.head = build_head(head) # 包括 classification head, generation head def forward(self, data): img = data['img_feat'] ques = data['ques'] his = data['hist'] batch_size, rnd, max_his_length = his.size() cap = his[:, 0, :] ques_len = data['ques_len'] hist_len = data['hist_len'] cap_len = hist_len[:, 0] ques_embed = self.embedding_model(ques) cap_emb = self.embedding_model(cap.contiguous()) his = his.contiguous().view(-1, max_his_length) his_embed = self.embedding_model(his) q_output, c_output, his_feat = self.encoder_model(ques_embed, ques_len, cap_emb, cap_len, his_embed, hist_len) ques_location = ques_len.view(-1).cpu().numpy() - 1 ques_encoded = q_output[range(batch_size), ques_location, :] cap_location = cap_len.view(-1).cpu().numpy() - 1 cap_encoded = c_output[range(batch_size), cap_location, :] his_feat = his_feat.view(batch_size, rnd, -1) fuse_feat = self.backbone(ques_encoded, cap_encoded, his_feat, q_output, c_output, ques_len, cap_len, ques_embed, cap_emb, img, batch_size) scores = self.head(fuse_feat, data) return scores
2.09375
2
run_ppxf.py
cebarbosa/muse-maps
0
12792515
# -*- coding: utf-8 -*- """ Forked in Hydra IMF from Hydra/MUSE on Feb 19, 2018 @author: <NAME> Run pPXF in data """ import os import yaml import numpy as np import matplotlib.pyplot as plt from astropy.io import fits from astropy import constants from astropy.table import Table, vstack, hstack from ppxf.ppxf import ppxf from ppxf import ppxf_util from spectres import spectres import context import misc from der_snr import DER_SNR def run_ppxf(specs, templates_file, outdir, velscale=None, redo=False, V0=None): """ Running pPXF. """ velscale = context.velscale if velscale is None else velscale V0 = context.V if V0 is None else V0 # Reading templates ssp_templates = fits.getdata(templates_file, extname="SSPS").T params = Table.read(templates_file, hdu=1) nssps = ssp_templates.shape[1] logwave_temp = Table.read(templates_file, hdu=2)["loglam"].data wave_temp = np.exp(logwave_temp) # Use first spectrum to set emission lines start0 = [V0, 100., 0., 0.] bounds0 = [[V0 - 2000., V0 + 2000], [velscale/10, 800.]] for spec in specs: print("Processing spectrum {}".format(spec)) name = spec.replace(".fits", "") outyaml = os.path.join(outdir, "{}.yaml".format(name)) if os.path.exists(outyaml) and not redo: continue table = Table.read(spec) wave_lin = table["wave"] flux = table["flux"] fluxerr = table["fluxerr"] # Removing red part of the spectrum idx = np.where(wave_lin < 7000)[0] wave_lin = wave_lin[idx] flux = flux[idx] fluxerr = fluxerr[idx] der_sn = misc.snr(flux)[2] data_sn = np.nanmedian(flux / fluxerr) ################################################################### # Rebinning the data to a logarithmic scale for ppxf wave_range = [wave_lin[0], wave_lin[-1]] logwave = ppxf_util.log_rebin(wave_range, flux, velscale=velscale)[1] wave = np.exp(logwave) wave = wave[(wave > wave_lin[0]) & (wave < wave_lin[-1])][1:-1] flux, fluxerr = spectres(wave, wave_lin, flux, spec_errs=fluxerr) #################################################################### # Setting up the gas templates gas_templates, line_names, line_wave = \ ppxf_util.emission_lines(logwave_temp, [wave_lin[0], wave_lin[-1]], 2.95) ngas = gas_templates.shape[1] #################################################################### # Masking bad pixels skylines = np.array([4785, 5577, 5889, 6300, 6360, 6863]) goodpixels = np.arange(len(wave)) for line in skylines: sky = np.argwhere((wave < line - 10) | (wave > line + 10)).ravel() goodpixels = np.intersect1d(goodpixels, sky) # Making goodpixels mask goodpixels = np.intersect1d(goodpixels, np.where(np.isfinite(flux))[0]) goodpixels = np.intersect1d(goodpixels, np.where(np.isfinite( fluxerr))[0]) # Cleaning input spectrum fluxerr[~np.isfinite(fluxerr)] = np.nanmax(fluxerr) flux[~np.isfinite(flux)] = 0. ######################################################################## # Preparing the fit dv = (logwave_temp[0] - logwave[0]) * \ constants.c.to("km/s").value templates = np.column_stack((ssp_templates, gas_templates)) components = np.hstack((np.zeros(nssps), np.arange(ngas)+1)).astype( np.int) gas_component = components > 0 start = [start0[:2]] * (ngas + 1) bounds = [bounds0] * (ngas + 1) moments = [2] * (ngas + 1) ######################################################################## # Fitting with two components pp = ppxf(templates, flux, fluxerr, velscale=velscale, plot=True, moments=moments, start=start, vsyst=dv, lam=wave, component=components, mdegree=-1, gas_component=gas_component, gas_names=line_names, quiet=False, degree=15, bounds=bounds, goodpixels=goodpixels) plt.savefig(os.path.join(outdir, "{}.png".format(name)), dpi=250) plt.close() pp.name = name # Saving results and plot save(pp, outdir) def save(pp, outdir): """ Save results from pPXF into files excluding fitting arrays. """ array_keys = ["lam", "galaxy", "noise", "bestfit", "gas_bestfit", "mpoly", "apoly"] array_keys = [_ for _ in array_keys if isinstance(getattr(pp, _), np.ndarray)] table = Table([getattr(pp, key) for key in array_keys], names=array_keys) table.write(os.path.join(outdir, "{}_bestfit.fits".format(pp.name)), overwrite=True) ppdict = {} save_keys = ["name", "regul", "degree", "mdegree", "reddening", "clean", "ncomp", "chi2"] # Chi2 is a astropy.unit.quantity object, we have to make it a scalar pp.chi2 = float(pp.chi2) for key in save_keys: ppdict[key] = getattr(pp, key) klist = ["V", "sigma"] for j, sol in enumerate(pp.sol): for i in range(len(sol)): ppdict["{}_{}".format(klist[i], j)] = float(sol[i]) ppdict["{}err_{}".format(klist[i], j)] = float(pp.error[j][i]) with open(os.path.join(outdir, "{}.yaml".format(pp.name)), "w") as f: yaml.dump(ppdict, f, default_flow_style=False) # Saving table with emission lines gas = pp.gas_component emtable = [] for j, comp in enumerate(pp.component[gas]): t = Table() t["name"] = [ pp.gas_names[j]] t["flux"] = [pp.gas_flux[j]] t["fluxerr"] = [pp.gas_flux_error[j]] t["V"] = [pp.sol[comp][0]] t["Verr"] = [pp.error[comp][0]] t["sigma"] = [pp.sol[comp][1]] t["sigmaerr"] = [pp.error[comp][1]] emtable.append(t) emtable = vstack(emtable) emtable.write(os.path.join(outdir, "{}_emission_lines.fits".format( pp.name)), overwrite=True) def make_table(direc, output): """ Read all yaml files in a ppf directory to one make table for all bins. """ filenames = sorted([_ for _ in os.listdir(direc) if _.endswith(".yaml")]) keys = ["name", "V_0", "Verr_0", "sigma_0", "sigmaerr_0", "der_sn"] names = {"name": "spec", "V_0": "V", "Verr_0": "Verr", "sigma_0": "sigma", "sigmaerr_0": "sigmaerr", "der_sn": "SNR"} outtable = [] for fname in filenames: with open(os.path.join(direc, fname)) as f: props = yaml.load(f) data = Table([[props[k]] for k in keys], names=[names[k] for k in keys]) outtable.append(data) outtable = vstack(outtable) outtable.write(output, format="fits", overwrite=True) if __name__ == '__main__': targetSN = 100 sample = "kinematics" velscale = context.velscale tempfile = os.path.join(context.data_dir, "templates", "emiles_vel{}_{}_fwhm2.95.fits".format(int(velscale), sample)) wdir = os.path.join(context.data_dir, "MUSE/sn{}/sci".format(targetSN)) os.chdir(wdir) outdir = os.path.join(os.path.split(wdir)[0], "ppxf") if not os.path.exists(outdir): os.mkdir(outdir) specs = sorted([_ for _ in os.listdir(".") if _.endswith(".fits")]) run_ppxf(specs, tempfile, outdir, redo=False)
2.140625
2
run-filter.py
NaN-xyz/Glyph-Filters
69
12792516
import glyphsLib import importlib import argparse import sys from glob import glob parser = argparse.ArgumentParser(description='Filter a font file') parser.add_argument('input', metavar='GLYPHS', help='the Glyphs file') parser.add_argument('filter',metavar='FILTER', help='the filter to use') args = parser.parse_args() base_path = "NaNGlyphFilters" sys.path.append(base_path) glyphsLib.Glyphs.font = glyphsLib.GSFont(args.input) filter_script = args.filter sys.modules['GlyphsApp'] = glyphsLib try: i = importlib.import_module(filter_script) except ModuleNotFoundError as e: modules = [x[len(base_path)+1:-3] for x in sorted(glob(base_path+"/*.py")) if "/NaN" not in x] print("Couldn't find filter '%s'.\nTry one of: %s" % (filter_script, ", ".join(modules))) sys.exit(1) save_file = args.input.replace(".glyphs", "-"+filter_script+".glyphs") glyphsLib.Glyphs.font.save(save_file) print("Saved on %s" % save_file)
2.59375
3
twiiterbot.py
mahabharathi/twitterbot
0
12792517
import tweepy import time import sys auth = tweepy.OAuthHandler('FzQNofWMcCfK1ghaqpwM3sCJu', '<KEY>') auth.set_access_token('<KEY>', '<KEY>') api = tweepy.API(auth) '''user=api.me() print(user.name,user.screen_name,user.followers_count) public_tweets = api.home_timeline() for tweet in public_tweets: print(tweet.text) ''' def limit_handle(cursor): try: while True: yield cursor.next() except tweepy.RateLimitError: print("Limit Handle Exceeded. Sleeping for 7 minutes.") time.sleep(10) except StopIteration: return #Generous bot for follower in limit_handle(tweepy.Cursor(api.followers).items()): print(follower.name,follower.followers_count) #seach keywords python numberOfTweets=2 search_str='indiaforsale' for tweet in tweepy.Cursor(api.search,search_str).items(numberOfTweets): try: tweet.favorite() print('I liked the tweet') except tweepy.TweepError as e: print(e.reason) except StopIteration: break
3.03125
3
Python Script Tools/42.0 Weather Status of a Geographical Location.py
juan1305/0.11-incremento_descremento
1
12792518
<reponame>juan1305/0.11-incremento_descremento import openweather from datetime import datetime ow = openweather.openweather() # Obtener las estaciones metereologicas cercanas stations = ow.find_stations_near( 7.0, # Longitud 50.0, # Altitud 100 # Radio en Km ) # Estado del tiempo usando el ID de la estacion print(ow.get_weather(4885)) # fechas start_date = datetime(2013,9,10) end_date = datetime(2013, 9, 15) # Estado del tiempo en intervalo diario print(ow.get_historic_weather(4885, start_date, end_date)) print(ow.get_historic_weather(4885, start_date, end_date, "day"))
3.046875
3
1-code/editorialAssessment.py
gcabanac/editorial-assessment
0
12792519
<filename>1-code/editorialAssessment.py # Harvest Crossref for editorial assessment dates for ISSN 1866-7538: Arabian Journal of Geosciences (https://www.springer.com/journal/12517) # See also https://retractionwatch.com/2021/08/26/guest-editor-says-journal-will-retract-dozens-of-inappropriate-papers-after-his-email-was-hacked/ # See also https://retractionwatch.com/2021/09/28/springer-nature-slaps-more-than-400-papers-with-expressions-of-concern-all-at-once/ # # Caveat: data come from Crossref and publishers might not have pushed comprehensive metadata (especially in the early years). # # @since 06-SEP-2021 # @version 29-SEP-2021 # Crossref (https://github.com/fabiobatalha/crossrefapi) import crossref.restful as cr import jmespath # Please use the polite method to query the Crossref API (https://github.com/CrossRef/rest-api-doc#good-manners--more-reliable-service) # crossref = cr.Journals(etiquette=cr.Etiquette('editorial-assessment', '1.0', 'your URL', 'your email')) # Public Crossref API with no etiquette crossref = cr.Journals() # https://github.com/CrossRef/rest-api-doc#multiple-filters for pub in crossref.works('1866-7538').filter(from_pub_date='2018-01-01').select('author,assertion,DOI,title,volume').sort('published-print').order('desc'): doi = pub.get('DOI') title = pub.get('title')[0] volume = pub.get('volume') dateReceived = jmespath.search("assertion[?name == 'received'].value|[0]", pub) dateAccepted = jmespath.search("assertion[?name == 'accepted'].value|[0]", pub) dateOnline = jmespath.search("assertion[?name == 'first_online'].value|[0]", pub) authors = '; '.join([a.get('family') +', '+a.get('given', 'NO-GIVEN-NAME') for a in pub.get('author')]) if pub.get('author') else 'NO-AUTHORS' print(doi, volume, dateReceived, dateAccepted, dateOnline, title, authors, sep='\t')
1.929688
2
get_cmap.py
mathDR/BP-AR-HMM
11
12792520
<gh_stars>10-100 import matplotlib.pyplot as plt import matplotlib.cm as cmx import matplotlib.colors as colors def my_color_map(N): from numpy import mod colormap = ['r','g','b','k','c','m','y'] return colormap[mod(N,7)] def get_cmap(N): '''Returns a function that maps each index in 0, 1, ... N-1 to a distinct RGB color.''' color_norm = colors.Normalize(vmin=0, vmax=N-1) scalar_map = cmx.ScalarMappable(norm=color_norm, cmap='hsv') def map_index_to_rgb_color(index): return scalar_map.to_rgba(index) return map_index_to_rgb_color def main(): N = 30 fig=plt.figure() ax=fig.add_subplot(111) plt.axis('scaled') ax.set_xlim([ 0, N]) ax.set_ylim([-0.5, 0.5]) cmap = get_cmap(N) for i in range(N): col = cmap(i) rect = plt.Rectangle((i, -0.5), 1, 1, facecolor=col) ax.add_artist(rect) ax.set_yticks([]) plt.show() if __name__=='__main__': main()
3.046875
3
test/routes/test_collections.py
tiredpixel/pikka-bird-server-py
1
12792521
import datetime from flask import json import msgpack import pikka_bird_server from pikka_bird_server.models.collection import Collection from pikka_bird_server.models.machine import Machine from pikka_bird_server.models.report import Report from pikka_bird_server.models.service import Service class TestCollections: def assert_create_success(self, res, data): assert res.status_code == 201 assert data == {} assert Machine.query.count() == 1 machine = Machine.query.first() assert isinstance(machine.created_at, datetime.datetime) assert isinstance(machine.updated_at, datetime.datetime) assert machine.address == '127.0.0.1' assert machine.hostname == 'localhost' assert Service.query.count() == 1 service = Service.query.first() assert isinstance(service.created_at, datetime.datetime) assert service.code == 'system' assert Collection.query.count() == 1 collection = Collection.query.first() assert isinstance(collection.created_at, datetime.datetime) assert collection.collected_at == datetime.datetime(2015, 4, 4, 19, 32, 20, 616977) assert collection.collecting_at == datetime.datetime(2015, 4, 4, 19, 33, 1, 424242) assert collection.hostname == 'localhost' assert collection.machine == machine assert collection.pid == 42 assert collection.version_server == pikka_bird_server.__version__ assert collection.version_collector == '1.2.3' assert Report.query.count() == 1 report = Report.query.first() assert report.collection == collection assert report.data == {'load': {'avg_15_min': 1.62939453125}} assert report.service == service def test_create_json(self, client, collection_valid): res = client.post('/collections', data=json.dumps(collection_valid), headers={ 'Content-Type': 'application/json'}, environ_base={ 'REMOTE_ADDR': '127.0.0.1'}) data = json.loads(res.data) self.assert_create_success(res, data) def test_create_binary(self, client, collection_valid): res = client.post('/collections', data=msgpack.packb(collection_valid), headers={ 'Content-Type': 'application/octet-stream'}, environ_base={ 'REMOTE_ADDR': '127.0.0.1'}) data = json.loads(res.data) self.assert_create_success(res, data) def test_create_no_content_type(self, client, collection_valid): res = client.post('/collections', data=json.dumps(collection_valid)) data = json.loads(res.data) assert res.status_code == 415 assert data == { 'message': '415: Unsupported Media Type'} assert Machine.query.count() == 0 assert Service.query.count() == 0 assert Collection.query.count() == 0 assert Report.query.count() == 0 def test_create_collection_empty(self, client): res = client.post('/collections', data=json.dumps({}), headers={ 'Content-Type': 'application/json'}, environ_base={ 'REMOTE_ADDR': '127.0.0.1'}) data = json.loads(res.data) assert res.status_code == 422 assert data == { 'message': '422: Unprocessable Entity'} assert Machine.query.count() == 1 assert Service.query.count() == 0 assert Collection.query.count() == 0 assert Report.query.count() == 0 def test_create_collection_partial(self, client, collection_valid): collection_invalid = collection_valid.copy() del collection_invalid['environment']['hostname'] res = client.post('/collections', data=json.dumps(collection_invalid), headers={ 'Content-Type': 'application/json'}, environ_base={ 'REMOTE_ADDR': '127.0.0.1'}) data = json.loads(res.data) assert res.status_code == 422 assert data == { 'message': '422: Unprocessable Entity'} assert Machine.query.count() == 1 assert Service.query.count() == 0 assert Collection.query.count() == 0 assert Report.query.count() == 0 def test_create_collection_invalid_url(self, client, collection_valid): res = client.post('/this-is-not-the-service-you-are-looking-for', data=json.dumps(collection_valid), headers={ 'Content-Type': 'application/json'}, environ_base={ 'REMOTE_ADDR': '127.0.0.1'}) data = json.loads(res.data) assert res.status_code == 404 assert data == { 'message': '404: Not Found'} assert Machine.query.count() == 0 assert Service.query.count() == 0 assert Collection.query.count() == 0 assert Report.query.count() == 0
2.171875
2
baseline_app.py
hatdropper1977/flask-recaptcha
4
12792522
#!/usr/bin/env python from flask import Flask, render_template, request from flask_bootstrap import Bootstrap from models import QuizForm class Config(object): SECRET_KEY = '<KEY>' application = Flask(__name__) application.config.from_object(Config) Bootstrap(application) @application.route('/', methods=['GET', 'POST']) def take_test(): form = QuizForm(request.form) if not form.validate_on_submit(): return render_template('take_quiz_template.html', form=form) if request.method == 'POST': return 'Submitted!' if __name__ == '__main__': application.run(host='0.0.0.0', debug=True)
2.703125
3
polymorphism_and_magic_methods/exercise/wild_animals_04/test.py
BoyanPeychinov/object_oriented_programming
0
12792523
<filename>polymorphism_and_magic_methods/exercise/wild_animals_04/test.py<gh_stars>0 from wild_animals_04.animals.birds import Hen from wild_animals_04.food import Meat, Vegetable, Fruit # owl = Owl("Pip", 10, 10) # print(owl) # meat = Meat(4) # print(owl.make_sound()) # owl.feed(meat) # veg = Vegetable(1) # print(owl.feed(veg)) # print(owl) hen = Hen("Harry", 10, 10) veg = Vegetable(3) fruit = Fruit(5) meat = Meat(1) print(hen) print(hen.make_sound()) hen.feed(veg) hen.feed(fruit) hen.feed(meat) print(hen)
2.859375
3
utils/text_processing_utils.py
angelinaku/wsd_pipeline
0
12792524
<reponame>angelinaku/wsd_pipeline<gh_stars>0 from typing import List, Optional, Dict, Tuple import numpy as np import torch from gensim.models import Word2Vec from simple_elmo import ElmoModel from torch import nn def pad_sequences( sequences: List, maxlen: Optional[int], dtype: str = 'int32', padding: str = 'post', truncating: str = 'post', value: int = 0, ) -> np.array: """Pad sequences to the same length. from Keras This function transforms a list of `num_samples` sequences (lists of integers) into a 2D Numpy array of shape `(num_samples, num_timesteps)`. `num_timesteps` is either the `maxlen` argument if provided, or the length of the longest sequence otherwise. Sequences that are shorter than `num_timesteps` are padded with `value` at the end. Sequences longer than `num_timesteps` are truncated so that they fit the desired length. The position where padding or truncation happens is determined by the arguments `padding` and `truncating`, respectively. Pre-padding is the default. # Arguments sequences: List of lists, where each element is a sequence. maxlen: Int, maximum length of all sequences. dtype: Type of the output sequences. To pad sequences with variable length strings, you can use `object`. padding: String, 'pre' or 'post': pad either before or after each sequence. truncating: String, 'pre' or 'post': remove values from sequences larger than `maxlen`, either at the beginning or at the end of the sequences. value: Float or String, padding value. # Returns x: Numpy array with shape `(len(sequences), maxlen)` # Raises ValueError: In case of invalid values for `truncating` or `padding`, or in case of invalid shape for a `sequences` entry. """ if not hasattr(sequences, '__len__'): raise ValueError('`sequences` must be iterable.') num_samples = len(sequences) lengths = [] for x in sequences: try: lengths.append(len(x)) except TypeError: raise ValueError('`sequences` must be a list of iterables. ' 'Found non-iterable: ' + str(x)) if maxlen is None: maxlen = np.max(lengths) # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. sample_shape = () for s in sequences: if len(s) > 0: sample_shape = np.asarray(s).shape[1:] break x = np.full((num_samples, maxlen) + sample_shape, value, dtype=dtype) for idx, s in enumerate(sequences): if not len(s): continue # empty list/array was found if truncating == 'pre': trunc = s[-maxlen:] elif truncating == 'post': trunc = s[:maxlen] else: raise ValueError(f'Truncating type "{truncating}" ' 'not understood') # check `trunc` has expected shape trunc = np.asarray(trunc, dtype=dtype) if trunc.shape[1:] != sample_shape: raise ValueError( f'Shape of sample {trunc.shape[1:]} of sequence at position {idx}' f'is different from expected shape {sample_shape}' ) if padding == 'post': x[idx, : len(trunc)] = trunc elif padding == 'pre': x[idx, -len(trunc) :] = trunc else: raise ValueError(f'Padding type "{padding}" not understood') return x def build_matrix( word_idx: Dict, embedding_path: str = '', embeddings_type: str = 'word2vec', max_features: int = 100000, embed_size: int = 300, ) -> Tuple[np.array, int, List]: """ Create embedding matrix Args: embedding_path: path to embeddings embeddings_type: type of pretrained embeddings ('word2vec', 'glove'') word_idx: mapping from words to their indexes max_features: max features to use embed_size: size of embeddings Returns: embedding matrix, number of of words and the list of not found words """ if embeddings_type not in ['word2vec', 'glove']: raise ValueError('Unacceptable embedding type.\nPermissible values: word2vec, glove') model = Word2Vec.load(embedding_path) # Creating Embedding Index embedding_index = {} for word in model.wv.vocab: coefs = np.asarray(model.wv[word]) embedding_index[word] = coefs nb_words = min(max_features, len(word_idx)) if embeddings_type in ['word2vec', 'glove']: embedding_size = embed_size if embed_size != 0 else len(list(embedding_index.values())[0]) all_embs = np.stack(embedding_index.values()) embed_mean, embed_std = all_embs.mean(), all_embs.std() if '<unk>' not in embedding_index: embedding_index['<unk>'] = np.random.normal(embed_mean, embed_std, (1, embedding_size)) embedding_matrix = np.random.normal(embed_mean, embed_std, (nb_words + 1, embed_size)) for word, num in word_idx.items(): # possible variants of the word to be found in word to idx dictionary variants_of_word = [word, word.lower(), word.capitalize(), word.upper()] for variant in variants_of_word: embedding_vector = embedding_index.get(variant) if embedding_vector is not None: embedding_matrix[num] = embedding_vector break return embedding_matrix else: raise ValueError('Unacceptable embedding type.\nPermissible values: word2vec, glove') class Embedder(nn.Module): """ Transform tokens to embeddings """ def __init__(self, word_to_idx: Dict, embeddings_path: str, embeddings_type: str, embeddings_dim: int = 0): super().__init__() self.weights_matrix = build_matrix( word_idx=word_to_idx, embedding_path=embeddings_path, embeddings_type=embeddings_type, max_features=len(word_to_idx), embed_size=embeddings_dim ) self.weights_matrix = torch.tensor(self.weights_matrix, dtype=torch.float32) self.embedding = nn.Embedding.from_pretrained(self.weights_matrix) self.embedding.weight.requires_grad = False def forward(self, x: torch.LongTensor) -> torch.Tensor: embed = self.embedding(x) return embed class ELMo_Embedder(nn.Module): """ Transform tokens to embeddings """ def __init__(self, embeddings_path: str): super().__init__() self.model = ElmoModel() self.model.load(embeddings_path) self.sess = self.model.get_elmo_session() print('ELMo Embedding Model is Loaded') def forward(self, x: List) -> torch.Tensor: # embed = self.model.get_elmo_vectors(x) embed = self.model.get_elmo_vectors_session(x, self.sess) embed = torch.Tensor(embed) return embed
3.03125
3
hackathon/urls.py
AlexiaDelorme/ci-hackathon-app
0
12792525
from django.urls import path from .views import ( HackathonListView, create_hackathon, update_hackathon, delete_hackathon, judging ) urlpatterns = [ path('', HackathonListView.as_view(), name="hackathon-list"), path("<int:hack_id>/team/<int:team_id>/judging/", judging, name="judging"), path("create_hackathon", create_hackathon, name='create_hackathon'), path("<int:hackathon_id>/update_hackathon", update_hackathon, name="update_hackathon"), path("<int:hackathon_id>/delete_hackathon", delete_hackathon, name="delete_hackathon"), ]
1.84375
2
rex/data/dataset.py
Spico197/REx
4
12792526
<reponame>Spico197/REx from typing import Iterable, Optional from torch.utils.data import Dataset class CachedDataset(Dataset): def __init__(self, data: Iterable) -> None: super().__init__() self.data = data def __getitem__(self, index: int): return self.data[index] def __len__(self) -> int: return len(self.data) class CachedBagREDataset(Dataset): def __init__(self, data_with_scopes) -> None: super().__init__() data, scopes = data_with_scopes self.data = data self.scopes = scopes def __getitem__(self, index: int): results = [] for idx in self.scopes[index]: results.append(self.data[idx]) return results def __len__(self) -> int: return len(self.scopes) class StreamTransformDataset(Dataset): def __init__( self, data: Iterable, transform, debug: Optional[bool] = False ) -> None: super().__init__() if debug: data = data[:128] self.data = data self.transform = transform def __getitem__(self, index: int): return self.transform(self.data[index]) def __len__(self) -> int: return len(self.data)
2.5
2
Basic Programs/Day12.py
kv-95/pyStreak
1
12792527
# Python Program for n\’th multiple of a number in Fibonacci Series def findMultiple(n,k): a = 0 b = 1 count = 1 while(True): c = a+b if c % k==0: if count == n: return(c) count += 1 a,b = b,c if __name__ == "__main__": k = int(input("Enter the number which is in the Fibonacci Series: ")) n = int(input("Enter the value of n : ")) print("{}th/nd/rd multiple of {} in Fibonacci Series is {}".format(n,k,findMultiple(n,k)))
4.21875
4
biosys/apps/main/tests/api/test_auth.py
florianm/biosys
1
12792528
from django.conf import settings from django.urls import reverse from django.test import override_settings from rest_framework import status from rest_framework.test import APIClient from freezegun import freeze_time from main.tests.api import helpers class TestAuth(helpers.BaseUserTestCase): @override_settings(PASSWORD_HASHERS=('django.contrib.auth.hashers.MD5PasswordHasher',), REST_FRAMEWORK_TEST_SETTINGS=helpers.REST_FRAMEWORK_TEST_SETTINGS) def test_token_auth_end_point(self): """ Test that when hitting the auth_token end point we receive a token :return: """ client = APIClient() # request token url = reverse('api:auth-token') user = self.readonly_user self.assertTrue(user.check_password('password')) data = { 'username': "readonly", "password": "password" } resp = client.post(url, data=data, format='json') self.assertEqual(resp.status_code, status.HTTP_200_OK) # check that we have a token self.assertTrue('token' in resp.data) token = resp.data.get('token') self.assertTrue(token) @override_settings(PASSWORD_HASHERS=('django.contrib.auth.hashers.MD5PasswordHasher',), REST_FRAMEWORK_TEST_SETTINGS=helpers.REST_FRAMEWORK_TEST_SETTINGS) def test_token_valid(self): """ Test that the token received can be used for authentication :return: """ client = APIClient() user = self.readonly_user self.assertTrue(user.check_password('password')) url = reverse('api:auth-token') data = { 'username': user.username, "password": "password" } resp = client.post(url, data=data, format='json') token = resp.data.get('token') self.assertTrue(token) # can't get dataset list without token url = reverse('api:dataset-list') resp = client.get(url) self.assertIn(resp.status_code, [status.HTTP_401_UNAUTHORIZED, status.HTTP_403_FORBIDDEN]) # set credential token client.credentials(HTTP_AUTHORIZATION='Token ' + token) resp = client.get(url) self.assertEqual(resp.status_code, status.HTTP_200_OK) class TestUserAuthThrottling(helpers.BaseUserTestCase): """ Use case: Prevent brute force authentication by preventing the API user issuing too many auth-token request """ def test_brute_force(self): """ test that a hacker sending auth request with wrong password will be blocked after n attempts :return: """ rate = '6/hour' drf_settings = settings.REST_FRAMEWORK drf_settings['DEFAULT_THROTTLE_RATES']['auth'] = rate with override_settings(REST_FRAMEWORK=drf_settings): max_attempt = 6 client = APIClient() # request token url = reverse('api:auth-token') user = self.readonly_user self.assertTrue(user.check_password('password')) data = { 'username': "readonly", "password": "<PASSWORD>" } # Hacking attempt should return HTTP_400_BAD_REQUEST while attempts < throttle rate with freeze_time("2018-05-29 12:00:00", tick=True): for attempt in range(max_attempt): resp = client.post(url, data=data, format='json') self.assertEqual(resp.status_code, status.HTTP_400_BAD_REQUEST) # next attempt should return a HTTP_429_TOO_MANY_REQUESTS resp = client.post(url, data=data, format='json') self.assertEqual(resp.status_code, status.HTTP_429_TOO_MANY_REQUESTS) # let's simulate a 30 min jump in time. Should still return HTTP_429_TOO_MANY_REQUESTS with freeze_time("2018-05-29 12:30:00", tick=True): resp = client.post(url, data=data, format='json') self.assertEqual(resp.status_code, status.HTTP_429_TOO_MANY_REQUESTS) # let's jump more than one hour in time. Should be back at returning HTTP_400_BAD_REQUEST with freeze_time("2018-05-29 13:00:05", tick=True): resp = client.post(url, data=data, format='json') self.assertEqual(resp.status_code, status.HTTP_400_BAD_REQUEST)
2.390625
2
cride/registros/migrations/0001_initial.py
albertoaldanar/serecsinAPI
0
12792529
<reponame>albertoaldanar/serecsinAPI # Generated by Django 2.0.9 on 2019-07-28 03:39 import datetime from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Egreso', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True, help_text='Date time for created instance', verbose_name='created_a')), ('modified', models.DateTimeField(auto_now=True, help_text='Date time for modified instance', verbose_name='modified_at')), ('fecha', models.DateField(default=datetime.date.today)), ('importe', models.PositiveIntegerField(default=0)), ('mes', models.CharField(blank=True, max_length=30, null=True)), ('año', models.PositiveIntegerField(default=2019)), ('cliente', models.CharField(blank=True, max_length=30, null=True)), ('concepto', models.CharField(blank=True, max_length=30, null=True)), ('genero', models.CharField(blank=True, max_length=30, null=True)), ('cantidad', models.FloatField(blank=True, default=None, null=True)), ('usuario', models.CharField(blank=True, max_length=30, null=True)), ('lugar', models.CharField(blank=True, max_length=30, null=True)), ('cuenta_origen', models.PositiveIntegerField(default=0, null=True)), ('metodo_pago', models.CharField(blank=True, max_length=30, null=True)), ('forma_pago', models.CharField(blank=True, max_length=30, null=True)), ('cfdi', models.CharField(blank=True, max_length=30, null=True)), ('folio', models.CharField(blank=True, max_length=30, null=True)), ], options={ 'ordering': ['-created', '-modified'], 'get_latest_by': ['created'], 'abstract': False, }, ), migrations.CreateModel( name='Ingreso', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True, help_text='Date time for created instance', verbose_name='created_a')), ('modified', models.DateTimeField(auto_now=True, help_text='Date time for modified instance', verbose_name='modified_at')), ('cliente', models.CharField(blank=True, max_length=30, null=True)), ('mes', models.CharField(blank=True, max_length=30, null=True)), ('año', models.PositiveIntegerField(default=2019)), ('importe', models.PositiveIntegerField(default=0)), ('adeudo_mes', models.PositiveIntegerField(default=0)), ('importante', models.BooleanField(default=False)), ('adeudo_acumulado', models.PositiveIntegerField(default=0)), ], options={ 'ordering': ['-created', '-modified'], 'get_latest_by': ['created'], 'abstract': False, }, ), ]
1.890625
2
app/core/migrations/0003_auto_20210420_0656.py
sawamotokai/Project-Backend-Energy
0
12792530
<filename>app/core/migrations/0003_auto_20210420_0656.py # Generated by Django 2.1.15 on 2021-04-20 06:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0002_auto_20210420_0653'), ] operations = [ migrations.RemoveField( model_name='device', name='state', ), migrations.AddField( model_name='device', name='stateAlgo', field=models.CharField(choices=[('On', 'On'), ('Off', 'Off')], max_length=255, null=True), ), migrations.AddField( model_name='device', name='stateReal', field=models.CharField(choices=[('On', 'On'), ('Off', 'Off')], max_length=255, null=True), ), ]
1.601563
2
grammar_induction/earley_parser/earley_parser.py
tdonca/OpenBottle
0
12792531
<reponame>tdonca/OpenBottle<filename>grammar_induction/earley_parser/earley_parser.py import nltk def read_induced_grammar(path): with open(path) as f: rules = [rule.strip() for rule in f.readlines()] grammar = nltk.PCFG.fromstring(rules) return grammar def predict_next_symbols(grammar, tokens): def get_production_prob(selected_edge): # Find the corresponding production rule of the edge, and return its probability for production in grammar.productions(lhs=selected_edge.lhs()): if production.rhs() == selected_edge.rhs(): # print selected_edge, production.prob() return production.prob() def find_parent(selected_edge): # Find the parent edges that lead to the selected edge p_edges = list() for p_edge in e_chart.edges(): if p_edge.end() == selected_edge.start() and p_edge.nextsym() == selected_edge.lhs(): p_edges.append(p_edge) return p_edges def get_edge_prob(selected_edge): # Compute the probability of the edge by recursion prob = get_production_prob(selected_edge) if selected_edge.start() != 0: parent_prob = 0 for parent_edge in find_parent(selected_edge): parent_prob += get_edge_prob(parent_edge) prob *= parent_prob return prob symbols = list() earley_parser = nltk.EarleyChartParser(grammar, trace=0) e_chart = earley_parser.chart_parse(tokens) end_edges = list() for edge in e_chart.edges(): # print edge if edge.end() == len(tokens): # Only add terminal nodes if isinstance(edge.nextsym(), unicode): symbols.append(edge.nextsym()) end_edges.append(edge) probs = list() for end_edge in end_edges: probs.append(get_edge_prob(end_edge)) # Eliminate duplicate symbols_no_duplicate = list() probs_no_duplicate = list() for s, p in zip(symbols, probs): if s not in symbols_no_duplicate: symbols_no_duplicate.append(s) probs_no_duplicate.append(p) else: probs_no_duplicate[symbols_no_duplicate.index(s)] += p return zip(symbols_no_duplicate, probs_no_duplicate) def main(): grammar = read_induced_grammar('../grammars/parser_input.txt') sentence = 'approach' tokens = sentence.split() prediction = predict_next_symbols(grammar, tokens) print prediction sentence = 'approach pinch' tokens = sentence.split() prediction = predict_next_symbols(grammar, tokens) print prediction sentence = 'approach pinch twist' tokens = sentence.split() prediction = predict_next_symbols(grammar, tokens) print prediction sentence = 'approach pinch twist unpinch' tokens = sentence.split() prediction = predict_next_symbols(grammar, tokens) print prediction sentence = 'approach pinch twist unpinch move' tokens = sentence.split() prediction = predict_next_symbols(grammar, tokens) print prediction sentence = 'approach pinch twist unpinch move grasp_right' tokens = sentence.split() prediction = predict_next_symbols(grammar, tokens) print prediction sentence = 'approach pinch twist unpinch move grasp_right twist' tokens = sentence.split() prediction = predict_next_symbols(grammar, tokens) print prediction if __name__ == '__main__': main()
2.28125
2
kerosene/datasets/cifar100.py
dribnet/kerosene
35
12792532
<reponame>dribnet/kerosene # -*- coding: utf-8 -*- import fuel.datasets from .dataset import Dataset class CIFAR100(Dataset): basename = "cifar100" default_sources=['features', 'coarse_labels'] class_for_filename_patch = fuel.datasets.CIFAR100 def build_data(self, sets, sources): return map(lambda s: fuel.datasets.CIFAR100(which_sets=[s], sources=sources), sets) def load_data(sets=None, sources=None, fuel_dir=False): return CIFAR100().load_data(sets, sources, fuel_dir);
2.3125
2
gorden_crawler/spiders/shopbop_eastdane_common.py
Enmming/gorden_cralwer
2
12792533
# -*- coding: utf-8 -*- from gorden_crawler.spiders.shiji_base import BaseSpider from scrapy.selector import Selector from gorden_crawler.items import BaseItem, ImageItem, Color, SkuItem from scrapy import Request from gorden_crawler.utils.item_field_handler import handle_price import re import execjs class ShopbopEastdaneCommon(BaseSpider): def parse_pages(self, response): sel = Selector(response) category = response.meta['category'] product_type = response.meta['product_type'] gender = response.meta['gender'] category_url = response.meta['category_url'] item_link_lis = sel.xpath('//li[contains(@class, "hproduct product")]') if len(item_link_lis.extract())>0 : for item_link_li in item_link_lis: item_link_uri = item_link_li.xpath('./div/a/@href').extract()[0] url = self.shopbop_base_url + item_link_uri baseItem = BaseItem() baseItem['type'] = 'base' baseItem['category'] = category baseItem['product_type'] = product_type baseItem['url'] = url baseItem['gender'] = gender baseItem['brand'] = item_link_li.xpath('.//div[@class="brand"]/text()').extract()[0] baseItem['title'] = item_link_li.xpath('.//div[@class="title"]/text()').extract()[0] baseItem['cover'] = item_link_li.xpath('.//img/@src').extract()[0] baseItem['list_price'] = handle_price(item_link_li.xpath('.//span[@class="retail-price"]/text()').extract()[0]) baseItem['current_price'] = handle_price(item_link_li.xpath('.//span[@class="sale-price-low"]/text()').extract()[0]) yield Request(url, callback=self.parse_item, meta={'baseItem' : baseItem}) next_page_link = sel.xpath('//span[@data-at="nextPage"]/@data-next-link').extract() if len(next_page_link)>0 and (category_url[category] != next_page_link[0]): url = self.shopbop_base_url + next_page_link[0] yield Request(url, callback=self.parse_pages, meta={'category' : category, 'product_type' : product_type, 'gender' : gender, 'category_url' : category_url}) def parse_item(self, response): baseItem = response.meta['baseItem'] return self.handle_parse_item(response, baseItem) def handle_parse_item(self, response, baseItem): product_detail_str="".join(re.findall(r"var\s+productDetail[^;]+", response.body)) if len(product_detail_str)>0: context = execjs.compile(''' %s function get_product_detail(){ return productDetail; } ''' % (product_detail_str)) product_detail = context.call('get_product_detail') sel = Selector(response) product_id = sel.xpath('//div[@id="productId"]/text()').extract()[0] skus = [] baseItem['from_site'] = self.name baseItem['show_product_id'] = product_id size_js_infos = product_detail['sizes'] size_infos = {} size_values = [] for size_id in size_js_infos: size_infos[size_js_infos[size_id]['sizeCode']] = size_id size_values.append(size_id) list_price = sel.xpath('//div[@id="productPrices"]//meta[@itemprop="price"]/@content').extract()[0] color_price_blocks = sel.xpath('//div[@id="productPrices"]//div[@class="priceBlock"]') color_price_mapping = {} for color_price_block in color_price_blocks: color_name = color_price_block.xpath('./span[@class="priceColors"]/text()').extract() if len(color_name) > 0: regular_price_span = color_price_block.xpath('./span[@class="regularPrice"]/text()').extract() if len(regular_price_span) > 0: color_price_mapping[color_name[0]] = regular_price_span[0] else: color_price_mapping[color_name[0]] = color_price_block.xpath('./span[@class="salePrice"]/text()').extract()[0] image_items = product_detail['colors'] color_names = [] for key in image_items: imageItems = image_items[key]['images'] color_name = image_items[key]['colorName'].strip() color_names.append(color_name) images=[] tmp_images = [] for image_key in imageItems: imageItem = ImageItem() image = imageItems[image_key] imageItem['thumbnail'] = image['thumbnail'] imageItem['image'] = image['zoom'] tmp_images.append((image['index'], imageItem)) tmp_images = sorted(tmp_images, key=lambda x:x[0]) for tmp_tuple in tmp_images: images.append(tmp_tuple[1]) colorItem = Color() colorItem['type'] = 'color' colorItem['show_product_id'] = product_id colorItem['from_site'] = self.name colorItem['cover'] = image_items[key]['swatch'] colorItem['name'] = color_name colorItem['images'] = images yield colorItem sizes = image_items[key]['sizes'] for size in sizes: size_name = size_infos[size] skuItem = SkuItem() skuItem['type'] = 'sku' skuItem['from_site'] = self.name skuItem['color'] = color_name skuItem['show_product_id'] = product_id skuItem['id'] = key+"-"+size skuItem['size'] = size_name skuItem['list_price'] = list_price if len(color_price_mapping)>0 and color_name in color_price_mapping.keys(): # skuItem['current_price'] = sale_price_span.re(r'\d+.?\d*')[0] skuItem['current_price'] = color_price_mapping[colorItem['name']] else: skuItem['current_price'] = skuItem['list_price'] skuItem['is_outof_stock'] = False skus.append(skuItem) baseItem['sizes'] = size_values baseItem['colors']= color_names baseItem['skus'] = skus size_fit_container = sel.xpath('//div[@id="sizeFitContainer"]') if len(size_fit_container)>0: size_fit = size_fit_container.extract()[0] baseItem['desc'] = '<div>'+sel.xpath('//div[@itemprop="description"]').extract()[0]+size_fit+"</div>" else: baseItem['desc'] = sel.xpath('//div[@itemprop="description"]').extract()[0] baseItem['dimensions'] = ['size', 'color'] yield baseItem
2.28125
2
Program's_Contributed_By_Contributors/Python_Programs/regex_date_validator.py
a-ayush19/Hacktoberfest2k21
0
12792534
import re # import regex module # check if date is valid (yyyy-mm-dd) def date_validation(self, date): if re.fullmatch(r"/^\d{4}-\d{2}-\d{2}$/", date): return True else: return False date_validation("2022-02-29") # False/True
3.375
3
cfripper/main.py
ocrawford555/cfripper
0
12792535
<gh_stars>0 """ Copyright 2018 Skyscanner Ltd Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json from cfripper.config.config import Config from cfripper.s3_adapter import S3Adapter from cfripper.model.rule_processor import RuleProcessor from cfripper.rules import ALL_RULES from cfripper.model.result import Result from cfripper.config.logger import get_logger logger = get_logger() def log_results(project_name, service_name, stack_name, rules, _type, warnings, template_url): logger.info("{}: project - {}, service- {}, stack - {}. {} {} URL: {}".format( _type, project_name, service_name, stack_name, json.dumps(rules), str(warnings), template_url, )) def handler(event, context): """ Main entry point of the Lambda function. :param event: { "stack_template_url": String } :param context: :return: """ if not event.get("stack_template_url"): raise ValueError("Invalid event type: no parameter 'stack_template_url' in request.") result = Result() s3 = S3Adapter() template = s3.download_template_to_dictionary(event["stack_template_url"]) if not template: # In case of an ivalid script log a warning and return early result.add_exception(TypeError("Malformated CF script: {}".format(event["stack_template_url"]))) return { "valid": "true", "reason": '', "failed_rules": [], "exceptions": [x.args[0] for x in result.exceptions], } # Process Rules config = Config( project_name=event.get("project"), service_name=event.get("serviceName"), stack_name=event.get("stack", {}).get("name"), rules=ALL_RULES.keys(), event=event.get("event"), template_url=event.get("stack_template_url"), ) logger.info("Scan started for: {}; {}; {};".format( config.project_name, config.service_name, config.stack_name, )) rules = [ALL_RULES.get(rule)(config, result) for rule in config.RULES] processor = RuleProcessor(*rules) processor.process_cf_template(template, config, result) if not result.valid: log_results( "Failed rules", config.project_name, config.service_name, config.stack_name, result.failed_rules, result.warnings, event["stack_template_url"], ) logger.info("FAIL: {}; {}; {}".format( config.project_name, config.service_name, config.stack_name, )) else: logger.info("PASS: {}; {}; {}".format( config.project_name, config.service_name, config.stack_name, )) if len(result.failed_monitored_rules) > 0 or len(result.warnings) > 0: log_results( "Failed monitored rules", config.project_name, config.service_name, config.stack_name, result.failed_monitored_rules, result.warnings, event["stack_template_url"], ) return { "valid": str(result.valid).lower(), "reason": ",".join(["{}-{}".format(r["rule"], r["reason"]) for r in result.failed_rules]), "failed_rules": result.failed_rules, "exceptions": [x.args[0] for x in result.exceptions], "warnings": result.failed_monitored_rules, }
1.882813
2
examples/quicksort.py
RaphaelArkadyMeyer/LiveCoding
0
12792536
<reponame>RaphaelArkadyMeyer/LiveCoding<gh_stars>0 from sys import stdin @@ begin hide def main(): print("start qs", stdin.readline()) # Ignore first line with number of inputs on it array_in = stdin.readline() print(array_in) presort = list(map(int, array_in.split(' '))) sort = quickSort(presort) print(sort) @@ end hide def quickSort(arr): less = [] pivotList = [] more = [] if len(arr) <= 1: @@ begin question base case @@ description: Find the base case @@ points: 100 return arr @@ end question else: pivot = arr[0] @@ begin question recursion @@ points: 500 for i in arr: if i < pivot: less.append(i) elif i > pivot: more.append(i) else: pivotList.append(i) @@ end question less = quickSort(less) more = quickSort(more) return less + pivotList + more @@ begin hide if __name__ == '__main__': main() @@ end hide
3.34375
3
otherdave/util/madlib.py
BooGluten/OtherDave
0
12792537
import inflect import json import random import re infl = inflect.engine() class MadLibber(): def make(self): template = self.actions["template"]() tokens = template.split(" ") result = "" for token in tokens: action = re.match("\{\{(.+?)\}\}", token) if(action): if(action[1] in self.actions): result += self.actions[action[1]]() else: result += action[0] else: result += token result += " " return result.strip() class Complimenter(MadLibber): def __init__(self): with open("./data/respect/adjectives.json") as adf: self.adjectives = json.load(adf) with open("./data/respect/amounts.json") as amf: self.amounts = json.load(amf) with open("./data/respect/parts.json") as parf: self.parts = json.load(parf) with open("./data/respect/persons.json") as perf: self.persons = json.load(perf) with open("./data/respect/templates.json") as temf: self.templates = json.load(temf) with open("./data/respect/things.json") as thinf: self.things = json.load(thinf) self.actions = { "adjective" : lambda : random.choice(self.adjectives), "an_adjective" : lambda : infl.an(self.actions["adjective"]()), "amount" : lambda : random.choice(self.amounts), "an_amount" : lambda : infl.an(self.actions["amount"]()), "parts" : lambda : random.choice(self.parts), "person" : lambda : random.choice(self.persons), "thing" : lambda : random.choice(self.things), "template" : lambda : random.choice(self.templates) } class Prompter(MadLibber): def __init__(self): with open("./data/prompt/adjectives.json") as adf: self.adjectives = json.load(adf) with open("./data/prompt/nouns.json") as nf: self.nouns = json.load(nf) self.actions = { "adjective" : lambda : random.choice(self.adjectives), "noun" : lambda : random.choice(self.nouns), "template" : lambda : r"{{adjective}} {{noun}}" } def addNoun(self, noun): self.nouns.append(noun) with open("./data/prompt/nouns.json", "w") as nf: json.dump(nf) def remNoun(self, noun): if(noun in self.nouns): self.nouns.remove(noun) with open("./data/prompt/nouns.json", "w") as nf: json.dump(nf) def addAdjective(self, adjective): self.adjectives.append(adjective) with open("./data/prompt/adjectives.json", "w") as adf: json.dump(adf) def remAdjective(self, adjective): if(adjective in self.adjectives): self.adjectives.remove(adjective) with open("./data/prompt/adjectives.json", "w") as adf: json.dump(adf)
2.734375
3
gradient.py
sebdisdv/HdrProject
0
12792538
from math import exp import cv2 as cv import numpy as np from concurrent.futures import ProcessPoolExecutor from numba import jit from numpy import float32 from tqdm import tqdm from utils import ( get_region_indexes, get_region_centers, associate_index_to_centers, get_window, ) @jit def P(v): return v / 255 @jit def deltaIx(img, channel, x, y): res = 0 if x + 1 < img.shape[0] and y < img.shape[1]: res = abs(img[x + 1][y][channel] - img[x][y][channel]) else: res = 0 return res @jit def deltaIy(img, channel, x, y): res = 0 if y - 1 > 0 and x < img.shape[0]: res = abs(img[x][y - 1][channel] - img[x][y][channel]) else: res = 0 return res def getDetailsRegions(imgs): region_indexes = get_region_indexes(imgs[0].shape[0], imgs[0].shape[1], 10) M = [] for i in range(len(imgs)): M.append([]) for j in tqdm(range(region_indexes.shape[0])): M_B = 0 M_G = 0 M_R = 0 for x in range(region_indexes[j][0][0], region_indexes[j][0][1]): for y in range(region_indexes[j][1][0], region_indexes[j][1][1]): M_B += P(max(deltaIx(imgs[i], 0, x, y), deltaIy(imgs[i], 0, x, y))) M_G += P(max(deltaIx(imgs[i], 1, x, y), deltaIy(imgs[i], 1, x, y))) M_R += P(max(deltaIx(imgs[i], 2, x, y), deltaIy(imgs[i], 2, x, y))) M[i].append([M_B, M_G, M_R]) return np.array(M), region_indexes def joinBestRegions(imgs, M, region_indexes): res = np.zeros(imgs[0].shape) for channel_indx in range(3): for r_indx in tqdm(range(M.shape[1])): # iterate over each region max_r = {} for i in range(len(imgs)): max_r[np.sum(M[i][r_indx])] = i index_image = max_r[max(max_r)] for i in range(region_indexes[r_indx][0][0], region_indexes[r_indx][0][1]): for j in range( region_indexes[r_indx][1][0], region_indexes[r_indx][1][1] ): res[i][j][channel_indx] = imgs[index_image][i][j][channel_indx] return res @jit def U(x_c_reg, y_c_reg, x_c, y_c): epsilon = 2 return abs(x_c_reg - x_c) <= epsilon and abs(y_c_reg - y_c) <= epsilon @jit def exp_g(x, y, x_c, y_c) -> float: sigma_x = 100 sigma_y = 100 return exp( -((((x - x_c) ** 2) / (2 * sigma_x)) + (((y - y_c) ** 2) / (2 * sigma_y))) ) @jit def gaussianBlendingFunction(x, y, x_c, y_c, region_indexes, center_indexes): num = exp_g(x, y, x_c, y_c) den = 0.0 for i in range(center_indexes.shape[0]): den += exp_g(x, y, center_indexes[i][0], center_indexes[i][1]) den *= center_indexes.shape[0] return num / den def compute_channel(channel, region_indexes, center_indexes, map_px_center): center_indexes = np.float32(center_indexes) res = np.zeros(shape=channel.shape, dtype=float32) for x in tqdm(range(res.shape[0])): for y in range(res.shape[1]): window = get_window(x, y, channel, 5) # WINDOW VERSION for i in range(window[0][0], window[0][1]): for j in range(window[1][0], window[1][1]): # for i in range(res.shape[0]): # for j in range(res.shape[1]): add = 0 if U( map_px_center[(i, j)][0], map_px_center[(i, j)][1], map_px_center[(x, y)][0], map_px_center[(x, y)][1], ): add = 1 add *= gaussianBlendingFunction( map_px_center[(x, y)][0], map_px_center[(x, y)][1], map_px_center[(i, j)][0], map_px_center[(i, j)][1], region_indexes, center_indexes, ) add *= channel[x][y] res[x][y] += add return res def blend(img, regions_indexes): centers_indexes = get_region_centers(regions_indexes) pixel_region_center = associate_index_to_centers(regions_indexes, centers_indexes) b, g, r = cv.split(img) with ProcessPoolExecutor() as excecutor: proc1 = excecutor.submit( compute_channel, b, regions_indexes, centers_indexes, pixel_region_center ) proc2 = excecutor.submit( compute_channel, g, regions_indexes, centers_indexes, pixel_region_center ) proc3 = excecutor.submit( compute_channel, r, regions_indexes, centers_indexes, pixel_region_center ) b = proc1.result() g = proc2.result() r = proc3.result() return cv.merge((b, g, r)) def compute(imgs): for i in range(len(imgs)): imgs[i] = np.float32(imgs[i]) M, regions_indexes = getDetailsRegions(imgs) res = blend(joinBestRegions(imgs, M, regions_indexes), regions_indexes) res = res / np.amax(res) res = 255 * res return res
2.046875
2
model.py
imayank/project4
0
12792539
<gh_stars>0 import pandas as pd import numpy as np import csv import matplotlib.pyplot as plt import matplotlib.image as mpimg from sklearn.model_selection import train_test_split from keras import regularizers from keras.models import Sequential from keras.layers import Dense, Flatten, Lambda, Cropping2D, Conv2D, MaxPooling2D, Activation, BatchNormalization,Dropout """ Location of the driving_log.csv file and images generated using Udacity Car Simulator in training mode.""" base_path = "../data/recording/" base_path_img = "../data/recording/IMG/" """Reading in the drving_log file""" data = pd.read_csv(base_path + "driving_log.csv") """ This function takes the data frame and merge the three columns for the ceter, left , right images into a single column with respective target steering angle value in the second column.""" def expanding_data(data): X_center = data.loc[:,'center'] ## The central camera image y_center = data.loc[:,'target'] ## Respective value for steering X_left = data.loc[:,'left'] ## The image from left camera y_left = y_center + 0.3 ## To steer a bit right add a positive value X_right = data.loc[:,'right'] ## The image from the right camera y_right = y_center - 0.3 ## To steer a bit left add a negative value """ Three data frames for central, left, right camera data, each with two columns - image location and target value for steering""" center_data = pd.concat([X_center,y_center],axis=1,ignore_index=True) left_data = pd.concat([X_left,y_left],axis=1,ignore_index=True) right_data = pd.concat([X_right,y_right],axis=1,ignore_index=True) """Merging the data frames""" merged_data = pd.concat([center_data,left_data,right_data],axis=0,ignore_index=True) merged_data.columns=['path','target'] return merged_data """ The function takes as input a data frame and returns a data frame with undersampled data for some target steering values. The track in the simulator has long almost straight sections, therefore the data has a large number of observations having low steering angles. Due to this the model may be biased towards drving straight. The data for such low angle value are undersampled.""" def undersampling(merged_data): out = pd.cut(list(merged_data['target']),30,labels=False) ## divide the steering values in 30 eqaully sized bins bins, counts = np.unique(out, return_counts=True) ## count the unique bins and number of values in each bin avg_counts = np.mean(counts) ## average number of values in bins target_counts = int(np.percentile(counts,75)) ## the count to which the value will be undersampled -- 75th percentile indices = np.where(counts>avg_counts) ## indices where the counts in the bin is greater than average counts target_bins = bins[indices] ## bins corresponding to the above indices target_indices = [] ## list holding the undersampled data points total_indices = list(range(len(out))) ## Complete list of indices of the data remaining_indices = total_indices ## list containing the indices remaining after the values in undersampled bins are removed,initialized to the total_indices ### iterating through bins having value counts greater than avg_counts and undersampling from the those bins for value in target_bins: bin_ind = list(np.where(out == value)[0]) ## selecting data points in the bin being iterated remaining_indices = list(set(remaining_indices) - set(bin_ind)) ## remove the corresponding indices random_indices = list(np.random.choice(bin_ind,target_counts, replace=False)) ## randomly selecting 'target_counts' data points from the selected data points target_indices.extend(random_indices) ## adding undersampled indices to the list undersampled_indices = np.concatenate([target_indices,remaining_indices]) ## concatenating the remaining indices with undersampled indices undersampled_data = merged_data.loc[undersampled_indices] ## selecting the data points from the data frame return undersampled_data ## returning the undersampled data """Function that reset the index and adds an "ID" columns to the data frame input """ def reset_and_add(undersampled_data): undersampled_data = undersampled_data.reset_index() undersampled_data["ID"] = list(range(len(undersampled_data))) return undersampled_data """ The function is a python data generator for producing batches of data of size = batch_size to be used in keras fit_generator function""" def dataGenerator(data, batch_size,base_path_img): ids = data['ID'].values ## selecting all the IDs #print(ids) num = len(ids) ## length of the data frame #indices = np.arange(len(ids)) np.random.seed(42) while True: #indices = shuffle(indices) np.random.shuffle(ids) ## shuffling the data for offset in range(0,num,batch_size): batch = ids[offset:offset+batch_size] ## selectiing a batch images = [] ## list holding the batch images target = [] ## list holding the steering values corresponding to thte above list ## creating a batch of data for batch_id in batch: img_path = data.loc[batch_id,'path'] img_name = img_path.split('\\')[-1] new_path = base_path_img + img_name images.append(((mpimg.imread(new_path))/255)-0.5) target.append(data.loc[batch_id,'target']) images = np.array(images) target = np.array(target) yield images, target ## returning a batch """ Function that creates a model as given in the NVIDIA research paper""" def model_nvidia_updated(): model = Sequential() model.add(Cropping2D(((20,20),(0,0)),input_shape=(160,320,3))) model.add(Conv2D(24,5,strides=(2,2),padding='valid',kernel_regularizer=regularizers.l2(0.0001))) #model.add(BatchNormalization()) model.add(Activation('elu')) model.add(Conv2D(36,5,strides=(2,2),padding='valid',kernel_regularizer=regularizers.l2(0.0001))) #model.add(BatchNormalization()) model.add(Activation('elu')) model.add(Conv2D(48,5,strides=(2,2),padding='valid',kernel_regularizer=regularizers.l2(0.0001))) #model.add(BatchNormalization()) model.add(Activation('elu')) model.add(Conv2D(64,3,strides=(1,1),padding='valid',kernel_regularizer=regularizers.l2(0.0001))) #model.add(BatchNormalization()) model.add(Activation('elu')) model.add(Conv2D(64,3,strides=(1,1),padding='valid',kernel_regularizer=regularizers.l2(0.0001))) #model.add(BatchNormalization()) model.add(Activation('elu')) model.add(Flatten()) model.add(Dense(100,kernel_regularizer=regularizers.l2(0.0001))) model.add(Activation('elu')) model.add(Dense(50,kernel_regularizer=regularizers.l2(0.0001))) model.add(Activation('elu')) model.add(Dense(10,kernel_regularizer=regularizers.l2(0.0001))) model.add(Activation('elu')) model.add(Dense(1)) return model ### Tried undersampling the data, but results were not satisfactory, so end up using complete data for training """undersampled_data = undersampling(data) undersampled_data = expanding_data(undersampled_data) undersampled_data = reset_and_add(undersampled_data)""" ### using complete data undersampled_data = expanding_data(data) undersampled_data = reset_and_add(undersampled_data) ### dividing the data into training and validation sets train_data, validation_data = train_test_split(undersampled_data,test_size=0.2,random_state=42) #create data generators for training and validation with batch size of 128 train_generator = dataGenerator(train_data, 128,base_path_img) valid_generator = dataGenerator(validation_data,128, base_path_img) """ creating a model""" model = model_nvidia_updated() ## Compiling the model using Adam optimizer and mean squared error as loss function model.compile(loss='mse',optimizer='adam') ## training the model using fit_generator, batch size = 128 model.fit_generator(generator=train_generator, steps_per_epoch = (len(train_data)//128)+1, validation_data=valid_generator, validation_steps = (len(validation_data)//128)+1, epochs = 3) ## saving the model model.save('model_new.h5')
2.921875
3
badger_utils/sacred/natural_sort.py
GoodAI/distributed_es
6
12792540
import re from typing import List, Union, Iterable class NaturalSort: @staticmethod def atoi(text: str) -> int: return int(text) if text.isdigit() else text @staticmethod def natural_keys(text: str) -> List[Union[str, int]]: """ alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) """ return [NaturalSort.atoi(c) for c in re.split(r'(\d+)', text)] @staticmethod def sorted(data: Iterable): return sorted(data, key=NaturalSort.natural_keys)
3.5625
4
python_pb2/go/chromium/org/luci/buildbucket/proto/token_pb2.py
xswz8015/infra
0
12792541
<reponame>xswz8015/infra # -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: go.chromium.org/luci/buildbucket/proto/token.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='go.chromium.org/luci/buildbucket/proto/token.proto', package='buildbucket.v2', syntax='proto3', serialized_options=b'Z4go.chromium.org/luci/buildbucket/proto;buildbucketpb', create_key=_descriptor._internal_create_key, serialized_pb=b'\n2go.chromium.org/luci/buildbucket/proto/token.proto\x12\x0e\x62uildbucket.v2\"\x8f\x01\n\tTokenBody\x12\x10\n\x08\x62uild_id\x18\x01 \x01(\x03\x12\x32\n\x07purpose\x18\x02 \x01(\x0e\x32!.buildbucket.v2.TokenBody.Purpose\x12\r\n\x05state\x18\x03 \x01(\x0c\"-\n\x07Purpose\x12\x17\n\x13PURPOSE_UNSPECIFIED\x10\x00\x12\t\n\x05\x42UILD\x10\x01\"\x9b\x01\n\rTokenEnvelope\x12\x36\n\x07version\x18\x01 \x01(\x0e\x32%.buildbucket.v2.TokenEnvelope.Version\x12\x0f\n\x07payload\x18\x02 \x01(\x0c\"A\n\x07Version\x12\x17\n\x13VERSION_UNSPECIFIED\x10\x00\x12\x1d\n\x19UNENCRYPTED_PASSWORD_LIKE\x10\x01\x42\x36Z4go.chromium.org/luci/buildbucket/proto;buildbucketpbb\x06proto3' ) _TOKENBODY_PURPOSE = _descriptor.EnumDescriptor( name='Purpose', full_name='buildbucket.v2.TokenBody.Purpose', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='PURPOSE_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='BUILD', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=169, serialized_end=214, ) _sym_db.RegisterEnumDescriptor(_TOKENBODY_PURPOSE) _TOKENENVELOPE_VERSION = _descriptor.EnumDescriptor( name='Version', full_name='buildbucket.v2.TokenEnvelope.Version', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='VERSION_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='UNENCRYPTED_PASSWORD_LIKE', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=307, serialized_end=372, ) _sym_db.RegisterEnumDescriptor(_TOKENENVELOPE_VERSION) _TOKENBODY = _descriptor.Descriptor( name='TokenBody', full_name='buildbucket.v2.TokenBody', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='build_id', full_name='buildbucket.v2.TokenBody.build_id', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='purpose', full_name='buildbucket.v2.TokenBody.purpose', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='state', full_name='buildbucket.v2.TokenBody.state', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ _TOKENBODY_PURPOSE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=71, serialized_end=214, ) _TOKENENVELOPE = _descriptor.Descriptor( name='TokenEnvelope', full_name='buildbucket.v2.TokenEnvelope', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='version', full_name='buildbucket.v2.TokenEnvelope.version', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='payload', full_name='buildbucket.v2.TokenEnvelope.payload', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ _TOKENENVELOPE_VERSION, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=217, serialized_end=372, ) _TOKENBODY.fields_by_name['purpose'].enum_type = _TOKENBODY_PURPOSE _TOKENBODY_PURPOSE.containing_type = _TOKENBODY _TOKENENVELOPE.fields_by_name['version'].enum_type = _TOKENENVELOPE_VERSION _TOKENENVELOPE_VERSION.containing_type = _TOKENENVELOPE DESCRIPTOR.message_types_by_name['TokenBody'] = _TOKENBODY DESCRIPTOR.message_types_by_name['TokenEnvelope'] = _TOKENENVELOPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) TokenBody = _reflection.GeneratedProtocolMessageType('TokenBody', (_message.Message,), { 'DESCRIPTOR' : _TOKENBODY, '__module__' : 'go.chromium.org.luci.buildbucket.proto.token_pb2' # @@protoc_insertion_point(class_scope:buildbucket.v2.TokenBody) }) _sym_db.RegisterMessage(TokenBody) TokenEnvelope = _reflection.GeneratedProtocolMessageType('TokenEnvelope', (_message.Message,), { 'DESCRIPTOR' : _TOKENENVELOPE, '__module__' : 'go.chromium.org.luci.buildbucket.proto.token_pb2' # @@protoc_insertion_point(class_scope:buildbucket.v2.TokenEnvelope) }) _sym_db.RegisterMessage(TokenEnvelope) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
1.015625
1
concept_neuron/concept_neuron_accuracy.py
jacarvalho/concept_neurons
0
12792542
""" 2018, University of Freiburg. <NAME> <<EMAIL>> """ import os import argparse import pickle import numpy as np import re from sklearn.metrics import accuracy_score, precision_score, recall_score from concept_neuron import split_train_valid_test, process_sentence_pos_tags from concept_neuron import print_pos_tag_statistics, compute_LSTM_states # hidden_states or cell_states of LSTMs state_type = 'cell_states' # List of concepts to analyse - Upenn POS tags # http://www.nltk.org/api/nltk.tag.html # To find the available POS tags: # import nltk.help; nltk.help.upenn_tagset() concepts = ['(', ')', ',', '.', 'CC', 'CD', 'DT', 'IN', 'JJ', 'MD', 'NN', 'NNP', 'PRP', 'RB', 'TO', 'VB'] concepts.extend(['SPACE', 'OTHER']) def concept_neurons_accuracy(args): """ Computes the accuracy for various logistic regression classifiers for different POS tags, as a multiclass classifier. Args: args (argparse): arguments. Returns: None. """ # Directory with LSTM model. save_dir = args.save_dir # Folder to save results. if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir) results_dir = args.results_dir # Data to analyse. input_file = args.data_file # Get training data, tokenize and POS tag sentences. # X holds the sentences (word1, word2, ...) # Y holds the corresponding ((word1, tag1), (word2, tags), ...) X, Y = process_sentence_pos_tags(input_file, args.group_tags) # Set the concepts to the whole set if no grouping is required. unique_tags, counts = np.unique([y[1] for sublist in Y for y in sublist], return_counts=True) if not args.group_tags: global concepts concepts = unique_tags # Print some statistics about the initial distribution of POS tags. print_pos_tag_statistics(unique_tags, counts) # Computes the LSTM state for each byte in X. X_t, X_t_pos_tags = compute_LSTM_states(save_dir, X, Y) # Compute the overall metrics for the logistic regression classifiers. print('\n-----> Test results') classifiers_id = ['all', 'top1', 'top2', 'top3'] for classifier_id in classifiers_id: print('\n- {}'.format(classifier_id)) concept_classifiers = [] predicted_probs = [] classes = [] for concept in concepts: lr_file = os.path.join( results_dir, 'log_reg_model_' + concept + '_' + classifier_id + '.sav') if not os.path.exists(lr_file): continue concept_classifiers.append(concept) lr_model = pickle.load(open(lr_file, 'rb')) classes.append(lr_model.classes_[0]) # Largest coefficients lr_file_all = os.path.join( results_dir, 'log_reg_model_' + concept + '_all.sav') coef_sorted = np.argsort(-np.abs(np.squeeze( pickle.load(open(lr_file_all, 'rb')).coef_))) x = re.search(r'^top(?P<k>\d)$', classifier_id) if x is None: # all weights X_t_ = X_t else: # top k weights k = int(x.group('k')) X_t_ = [x[coef_sorted[0:k]] for x in X_t] trX, vaX, teX, trY, vaY, teY = split_train_valid_test(X_t_, X_t_pos_tags) predicted_probs.append(lr_model.predict_proba(teX)[:, 0]) # Find the class with largest predicted probability. concept_classifiers = np.array(concept_classifiers) predicted_probs = np.array(predicted_probs) max_prob_ind = np.argmax(predicted_probs, axis=0) pred_classes = concept_classifiers[max_prob_ind].tolist() y_true, y_pred = teY, pred_classes print('Test accuracy: {:.3f}'.format(accuracy_score(y_true, y_pred))) print('Test precision: {:.3f}'.format( precision_score(y_true, y_pred, average='weighted'))) print('Test recall: {:.3f}'.format( recall_score(y_true, y_pred, average='weighted'))) if __name__ == '__main__': """ Parse CLI arguments. """ parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( '--save_dir', type=str, default='../byte_LSTM_trained_models/wikitext/save/95/', help='directory containing LSTM-model') parser.add_argument('--data_file', type=str, default=None, help="""file to use as input to the classifier. If no file is provided, the nltk.corpus.treebank is used """) parser.add_argument('--results_dir', type=str, default='results', help='directory with saved classifiers') parser.add_argument('--group_tags', action='store_true', help="""group all VB* tags into VB; JJ* into JJ; NN* into NN; NNP* into NNP; RB* into RB. """) args = parser.parse_args() concept_neurons_accuracy(args)
2.671875
3
weblogic/server/set_server_log.py
codejsha/infrastructure
4
12792543
<filename>weblogic/server/set_server_log.py #!/usr/bin/env python log_dir = os.environ['LOG_DIR'] admin_server_listen_address = os.environ['ADMIN_SERVER_LISTEN_ADDRESS'] admin_server_listen_port = os.environ['ADMIN_SERVER_LISTEN_PORT'] admin_username = os.environ['ADMIN_USERNAME'] admin_password = os.environ['<PASSWORD>'] managed_server_name = os.environ['MANAGED_SERVER_NAME'] ###################################################################### def set_server_log_config(_domain_version, _log_dir, _server_name): cd('/Servers/' + _server_name + '/Log/' + _server_name) cmo.setFileName(_log_dir + '/' + _server_name + '/' + 'general.' + _server_name + '.%%yyyy%%%%MM%%%%dd%%_%%HH%%%%mm%%%%ss%%.log') # cmo.setFileName('/dev/null') cmo.setRotationType('byTime') cmo.setRotationTime('00:00') cmo.setFileTimeSpan(24) cmo.setNumberOfFilesLimited(True) cmo.setFileCount(30) cmo.setRotateLogOnStartup(False) cmo.setDateFormatPattern('MMM d, yyyy h:mm:ss,SSS a z') cmo.setLoggerSeverity('Info') # cmo.setLoggerSeverity('Trace') cmo.setRedirectStdoutToServerLogEnabled(True) cmo.setRedirectStderrToServerLogEnabled(True) if ('14.' in _domain_version) or ('12.2' in _domain_version): cmo.setLogMonitoringEnabled(True) cmo.setLogMonitoringIntervalSecs(30) cmo.setLogMonitoringThrottleThreshold(1500) cmo.setLogMonitoringThrottleMessageLength(50) cmo.setLogMonitoringMaxThrottleMessageSignatureCount(1000) cmo.setLogFileSeverity('Info') cmo.setBufferSizeKB(0) cmo.setStdoutSeverity('Info') cmo.setDomainLogBroadcastSeverity('Info') cmo.setDomainLogBroadcasterBufferSize(10) cmo.setStdoutLogStack(True) if '10.3' in _domain_version: cmo.setMemoryBufferSeverity('Info') cmo.setStacktraceDepth(5) cmo.setStdoutFormat('standard') ###################################################################### admin_server_url = 't3://' + admin_server_listen_address + ':' + admin_server_listen_port connect(admin_username, admin_password, admin_server_url) edit() startEdit() domain_version = cmo.getDomainVersion() set_server_log_config(domain_version, log_dir, managed_server_name) save() activate() exit()
1.859375
2
hyperstream/tools/clock/2016-11-14_v0.1.0.py
vishalbelsare/HyperStream
12
12792544
# The MIT License (MIT) # Copyright (c) 2014-2017 University of Bristol # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. from hyperstream.stream import StreamInstance from hyperstream.tool import Tool, check_input_stream_count from hyperstream.utils import MIN_DATE, get_timedelta from datetime import datetime class Clock(Tool): def __init__(self, first=MIN_DATE, stride=1.0): """ Simple clock ticker tool :param first: Start of the clock :param stride: Tick stride as timedelta """ super(Clock, self).__init__(first=first, stride=stride) if not isinstance(first, datetime): raise ValueError("Expected datetime.datetime, got {}".format(first.__type__.__name__)) self._stride = get_timedelta(stride) def message(self, interval): return '{} running from {} to {} with stride {}s'.format( self.__class__.__name__, str(interval.start), str(interval.end), str(self.stride)) @check_input_stream_count(0) def _execute(self, sources, alignment_stream, interval): if interval.start < self.first: interval.start = self.first n_strides = int((interval.start - self.first).total_seconds() // self._stride.total_seconds()) t = self.first + n_strides * self._stride while t <= interval.end: if t > interval.start: yield StreamInstance(t, t) t += self._stride
2.296875
2
settings.py
Asadbek07/aiogram-django-template
0
12792545
<filename>settings.py import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # SECURITY WARNING: Modify this secret key if using in production! SECRET_KEY = "" DEFAULT_AUTO_FIELD='django.db.models.AutoField' DATABASES = { "default": { "ENGINE": "django.db.backends.postgresql_psycopg2", "NAME": '', 'USER' : "", "PASSWORD" : "", "HOST" : "localhost", "PORT" : "5432", } } """ To connect to an existing postgres database, first: pip install psycopg2 then overwrite the settings above with: DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'YOURDB', 'USER': 'postgres', 'PASSWORD': 'password', 'HOST': 'localhost', 'PORT': '', } } """ INSTALLED_APPS = ("db",)
2.125
2
post_office/__init__.py
LeGast00n/django-post_office
0
12792546
VERSION = (1, 1, 1) from .backends import EmailBackend from .models import PRIORITY from .utils import send_mail
1.09375
1
tool.py
LasTAD/VAST-2017-MC-1
1
12792547
<gh_stars>1-10 import PySimpleGUI as sg import numpy as np from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from SOM import SOM layout = [[sg.Text('SOM для VAST 2017 MC1', font='Any 18')], # [sg.Text('Path to data'), sg.FileBrowse('output.txt', key='-Path-data-')], # [sg.Text('Path to target'), sg.FileBrowse('targets.txt', key='-Path-target-')], [sg.Text('Размер сетки SOM:'), sg.InputText('20', key='-width-', size=(2, 1)), sg.Text('на'), sg.InputText('20', key='-height-', size=(2, 1))], [sg.Text('Количество эпох'), sg.InputText(10000, key='-epochs-', size=(6, 1))], [sg.Text('Тип "Decay"'), sg.Radio('hill', 'DECAY', True, key='hill'), sg.Radio('linear', 'DECAY', key='linear')], [sg.Text('Тип инициализации'), sg.Radio('PCA', 'init', True, key='pca'), sg.Radio('Случайно', 'init', key='random')], [sg.Button('Начать расчет', key='-start-'), sg.Button('Выход', key="Exit")] ] # create the form and show it without the plot window = sg.Window('Аналитический инструмент для SOM', layout, finalize=True, size=(320, 170)) def draw_figure(canvas, figure, loc=(0, 0)): figure_canvas_agg = FigureCanvasTkAgg(figure, canvas) figure_canvas_agg.draw() figure_canvas_agg.get_tk_widget().pack(side='top', fill='both', expand=1) return figure_canvas_agg while True: event, values = window.read() if event == '-start-': data = np.loadtxt('output.txt', delimiter=';', usecols=range(40)) som = SOM(int(values['-width-']), int(values['-height-'])) # initialize the SOM if values['hill']: if values['random']: som.fit(data, int(values['-epochs-']), decay='hill', init_type='random') else: som.fit(data, int(values['-epochs-']), decay='hill') if values['linear']: if values['random']: som.fit(data, int(values['-epochs-']), decay='linear', init_type='random') else: som.fit(data, int(values['-epochs-']), decay='linear') targets = np.loadtxt('target.txt', dtype='int') targets = targets - 1 names = ['Автомобиль', 'Грузовик 2', 'Грузовик 3', 'Грузовик 4+', 'Автобус 2', 'Автобус 3', 'Грузовик рейнджеров' ] codes = ['1', '2', '3', '4', '5', '6', '2P'] fig1 = som.plot_point_map_gui(data, targets, codes) # fig2 = som.plot_class_density_gui(data, targets, t=0, name=names[0]) fig1.set_size_inches(7, 7) # fig2.set_size_inches(6, 6) figure1_x, figure1_y, figure1_w, figure1_h = fig1.bbox.bounds # figure_x, figure2_y, figure2_w, figure2_h = fig2.bbox.bounds layout2 = [[sg.Canvas(size=(figure1_w, figure1_h), key='canvas_som')], [sg.OK('OK'), sg.Button('Print result', key='-print-')] ] window2 = sg.Window('SOM Result', layout2, finalize=True) # fig_canvas_agg = draw_figure(window2['canvas_density'].TKCanvas, fig2) fig_canvas_agg = draw_figure(window2['canvas_som'].TKCanvas, fig1) while True: event2, values2 = window2.read() if event2 == 'OK': window2.close() break if event2 == '-print-': som.plot_point_map(data, targets, names, filename='images/SOM/som.png') # som.plot_class_density(data, targets, t=0, name='Vehicles', filename='images/density.png') if event == 'Exit': window.close() break pass
2.359375
2
Semester 1/Python/Q4.py
sufiyaanusmani/FAST-NUCES
0
12792548
from decimal import * decimal = int(input("Enter a number: ")) binary = 0 i = 1 while decimal != 0: digit = decimal % 2 binary = Decimal(binary + (i * digit)) i *= 10 decimal = decimal // 2 print(binary)
4.09375
4
stochpy/pscmodels/GeneDuplication.py
bgoli/stochpy
35
12792549
model = """ # Reactions R1: G1 > G1 + mRNA1 Ksyn*G1 R2: mRNA1 > $pool Kdeg*mRNA1 R3: G2 > G2 + mRNA2 Ksyn*G2 R4: mRNA2 > $pool Kdeg*mRNA2 # Fixed species # Variable species mRNA1 = 50.0 G1 = 1 mRNA2 = 50.0 G2 = 1 # Parameters Ksyn = 10 Kdeg = 0.2 """
1.242188
1
coco_scripts/eval_coco.py
yourfatherI/VSR-guided-CIC
32
12792550
<filename>coco_scripts/eval_coco.py from speaksee.data import TextField import os, sys sys.path.append(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) from data import COCOControlSetField_Verb, COCODetSetField_Verb, ImageDetectionsField from data.dataset import COCOEntities from models import ControllableCaptioningModel from speaksee.data import DataLoader, DictionaryDataset, RawField from speaksee.evaluation import Bleu, Meteor, Rouge, Cider, Spice from speaksee.evaluation import PTBTokenizer from models import SinkhornNet, S_SSP from config import * import torch import random import numpy as np import itertools import argparse import munkres from tqdm import tqdm from utils import verb_rank_merge random.seed(1234) torch.manual_seed(1234) device = torch.device('cuda') parser = argparse.ArgumentParser() parser.add_argument('--batch_size', default=16, type=int, help='batch size') parser.add_argument('--nb_workers', default=0, type=int, help='number of workers') parser.add_argument('--checkpoint_path', type=str, default="res") parser.add_argument('--start_from', type=str, default=None) parser.add_argument('--sinkhorn_len', type=int, default=10) parser.add_argument('--fixed_len', type=int, default=10) parser.add_argument('--det', action='store_true', help='whether use detected region') parser.add_argument('--gt', action='store_true', help="whether use gt verb") opt = parser.parse_args() print(opt) print('Loading caption model trained with CIDEr optimization.') saved_data = torch.load('saved_model/coco_cap/ours_coco_rl.pth') opt_cap = saved_data['opt'] # define the field image_field = ImageDetectionsField(detections_path=os.path.join(coco_root, 'coco_detections.hdf5'), load_in_tmp=False) if not opt.det: det_field = COCOControlSetField_Verb(detections_path=os.path.join(coco_root, 'coco_detections.hdf5'), classes_path=os.path.join(coco_root, 'object_class_list.txt'), img_shapes_path=os.path.join(coco_root, 'coco_img_shapes.json'), precomp_glove_path=os.path.join(coco_root, 'object_class_glove.pkl'), verb_idx_path=os.path.join(coco_root, 'verb_2_idx.json'), idx_vs_path=os.path.join(coco_root, 'idx_2_vs_v.json'), cap_classes_path=os.path.join(coco_root, 'cap_2_classes_v.json'), cap_verb_path=os.path.join(coco_root, 'cap_2_verb_v.json'), vocab_path=os.path.join(coco_root, 'vocab_tv.json'), idx_2_verb_og_path=os.path.join(coco_root, 'idx_2_v_og.json'), verb_vob_path=os.path.join(coco_root, 'verb_2_vob.json'), fix_length=10, max_detections=20, gt_verb=opt.gt) else: det_field = COCODetSetField_Verb(detections_path=os.path.join(coco_root, 'coco_detections.hdf5'), verb_idx_path=os.path.join(coco_root, 'verb_2_idx.json'), classes_path=os.path.join(coco_root, 'object_class_list.txt'), img_shapes_path=os.path.join(coco_root, 'coco_img_shapes.json'), precomp_glove_path=os.path.join(coco_root, 'object_class_glove.pkl'), vocab_path=os.path.join(coco_root, 'vocab_tv.json'), vlem_2_v_og_path=os.path.join(coco_root, 'vlem_2_vog_coco.json'), cls_seq_path=os.path.join('saved_data/coco', 'img_cap_v_2_class_self.json'), fix_length=10, max_detections=20, gt_verb=opt.gt) text_field = TextField(init_token='<bos>', eos_token='<eos>', lower=True, remove_punctuation=True, fix_length=20) # define the datasets dataset = COCOEntities(image_field, det_field, text_field, img_root='', ann_root=os.path.join(coco_root, 'annotations'), entities_file=os.path.join(coco_root, 'coco_entities.json'), id_root=os.path.join(coco_root, 'annotations')) test_dataset = COCOEntities(image_field, det_field, RawField(), img_root='', ann_root=os.path.join(coco_root, 'annotations'), entities_file=os.path.join(coco_root, 'coco_entities.json'), id_root=os.path.join(coco_root, 'annotations'), filtering=True, det_filtering=opt.det) train_dataset, val_dataset, _ = dataset.splits text_field.build_vocab(train_dataset, val_dataset, min_freq=5) # define the dataloader _, _, test_dataset = test_dataset.splits test_dataset = DictionaryDataset(test_dataset.examples, test_dataset.fields, 'image') dataloader_test = DataLoader(test_dataset, batch_size=opt.batch_size, num_workers=opt.nb_workers) # S-level SSP re_sort_net = S_SSP().cuda() re_sort_net.load_state_dict(torch.load(os.path.join('saved_model/coco_s_ssp', 'model-tr.pth'))) re_sort_net.eval() # R-level SSP sinkhorn_len = opt.sinkhorn_len sinkhorn_net = SinkhornNet(sinkhorn_len, 20, 0.1).cuda() sinkhorn_net.load_state_dict(torch.load(os.path.join('saved_model/coco_sinkhorn', 'model-sh.pth'))) sinkhorn_net.eval() # Role-shifting Captioning Model model = ControllableCaptioningModel(20, len(text_field.vocab), text_field.vocab.stoi['<bos>'], \ h2_first_lstm=opt_cap.h2_first_lstm, img_second_lstm=opt_cap.img_second_lstm).to(device) model.load_state_dict(saved_data['state_dict']) model.eval() fixed_len = opt.fixed_len predictions = [] gt_captions = [] # Evaluate with tqdm(desc='Test', unit='it', ncols=110, total=len(iter(dataloader_test))) as pbar: with torch.no_grad(): for it, (keys, values) in enumerate(iter(dataloader_test)): detections, imgids = keys # b_s, 100, feat if not opt.det: det_seqs_txt, det_seqs_vis, det_seqs_pos, det_seqs_all, det_seqs_v, \ det_seqs_sr, control_verb, _, _, _, verb_list, captions = values else: det_seqs_txt, det_seqs_vis, det_seqs_pos, det_seqs_all, det_seqs_v, \ det_seqs_sr, control_verb, _, verb_list, captions = values for i in range(detections.size(0)): # batch # add a region sort model det_seqs_recons = np.zeros(det_seqs_all[i].shape) img_verb_list = np.zeros(verb_list[i].shape) for idx in range(len(control_verb[i])): # caption数目 # visual feature this_seqs_vis = det_seqs_vis[i][idx] this_seqs_txt = det_seqs_txt[i][idx] this_seqs_pos = det_seqs_pos[i][idx] # pos是position信息 this_seqs_all = det_seqs_all[i][idx] # semantic role and verb this_control_verb = control_verb[i][idx] # (max_verb) this_det_seqs_v = det_seqs_v[i][idx] # (fixed_len, max_verb) this_det_seqs_sr = det_seqs_sr[i][idx] # (fixed_len, max_sr) this_verb_list = verb_list[i][idx] # visual feature concat this_seqs_perm = torch.cat((this_seqs_vis, this_seqs_txt, this_seqs_pos), -1) verb_ranks = [] for verb in this_control_verb: # 找到某个verb对应的semantic role序列 if verb == 0: break verb_det_seqs_sr = this_det_seqs_sr.new_zeros(this_det_seqs_sr.shape[0]) find_sr = 0 sr_find = {} need_re_rank = set() for j, vs in enumerate(this_det_seqs_v): # fixed_len for k, v in enumerate(vs): # max_verb if verb == v and find_sr < 10: if int(this_det_seqs_sr[j][k].item()) not in sr_find: sr_find[int(this_det_seqs_sr[j][k].item())] = [] sr_find[int(this_det_seqs_sr[j][k].item())].append(j) verb_det_seqs_sr[find_sr] = this_det_seqs_sr[j][k].item() find_sr += 1 else: sr_find[int(this_det_seqs_sr[j][k].item())].append(j) need_re_rank.add(int(this_det_seqs_sr[j][k].item())) if find_sr == 0: continue this_verb = verb.unsqueeze(0).to(device) verb_det_seqs_sr = verb_det_seqs_sr.unsqueeze(0).to(device) output = re_sort_net.generate(this_verb, verb_det_seqs_sr, mode='not-normal') sr_rank = {} if len(need_re_rank) != 0: for sr in need_re_rank: this_sr_perm = torch.zeros(sinkhorn_len, this_seqs_perm.shape[1]) tr_locs = torch.ones(sinkhorn_len) * 10 for j, loc in enumerate(sr_find[sr]): tr_locs[j] = loc this_sr_perm[j, :] = this_seqs_perm[loc] tr_matrix = sinkhorn_net(this_sr_perm.unsqueeze(0).to(device)) mx = torch.transpose(tr_matrix, 1, 2).squeeze() if isinstance(mx, torch.Tensor): mx = mx.detach().cpu().numpy() m = munkres.Munkres() ass = m.compute(munkres.make_cost_matrix(mx)) sr_re = [] for idx_ in range(len(sr_find[sr])): for a in ass: if a[0] == idx_: sr_re.append(a[1]) sr_re = np.array(sr_re) sr_idx = np.argsort(sr_re) # sr_idx代表 output_idx = np.zeros(len(sr_find[sr])) for j, idx_ in enumerate(sr_idx): output_idx[j] = sr_find[sr][idx_] sr_rank[sr] = output_idx verb_rank = [] for sr_ in output[0].squeeze().cpu().numpy(): if sr_ == 0: break if len(sr_find[sr_]) != 1: verb_rank += list(sr_rank[sr_]) else: verb_rank += sr_find[sr_] verb_ranks.append(verb_rank) final_rank = [] if len(verb_ranks) == 1: final_rank = verb_ranks[0] else: final_rank = verb_ranks[0] for j in range(len(verb_ranks) - 1): final_rank = verb_rank_merge(final_rank, verb_ranks[j+1]) # final_rank存的是原来idx现在应该在的位置 perm_matrix = np.zeros((fixed_len, fixed_len)) for j, rk in enumerate(final_rank): if j < fixed_len: perm_matrix[j, int(rk)] = 1 perm = np.reshape(this_seqs_all, (this_seqs_all.shape[0], -1)) # fixed_len, -1 recons = np.dot(perm_matrix, perm) recons = np.reshape(recons, this_seqs_all.shape[0:]) recons = recons[np.sum(recons, (1, 2)) != 0] last = recons.shape[0] - 1 det_seqs_recons[idx, :recons.shape[0]] = recons det_seqs_recons[idx, last + 1:] = recons[last:last+1] # permute the verb_list perm_mask = (np.sum(perm_matrix, -1) == 0).astype(int) img_verb_list[idx] = -1 * perm_mask[:, np.newaxis] + np.dot(perm_matrix, this_verb_list) # detections_i: (1, det_len, feat_dim), det_seqs_recons: (1, fixed_len, max_det, feat_dim) img_verb_list = torch.tensor(img_verb_list).to(device).squeeze(-1) detections_i, det_seqs_recons = detections[i].to(device), torch.tensor(det_seqs_recons).float().to(device) detections_i = detections_i.unsqueeze(0).expand(det_seqs_recons.size(0), detections_i.size(0), detections_i.size(1)) out, _ = model.beam_search_v((detections_i, det_seqs_recons, img_verb_list), eos_idxs=[text_field.vocab.stoi['<eos>'], -1], beam_size=5, \ out_size=1, gt=opt.gt) out = out[0].data.cpu().numpy() for o, caps in zip(out, captions[i]): predictions.append(np.expand_dims(o, axis=0)) gt_captions.append(caps) pbar.update() # Compute the metric scores predictions = np.concatenate(predictions, axis=0) gen = {} gts = {} print("Computing accuracy performance.") for i, cap in enumerate(predictions): pred_cap = text_field.decode(cap, join_words=False) pred_cap = ' '.join([k for k, g in itertools.groupby(pred_cap)]) gts[i] = [gt_captions[i]] gen[i] = [pred_cap] gts_t = PTBTokenizer.tokenize(gts) gen_t = PTBTokenizer.tokenize(gen) val_bleu, _ = Bleu(n=4).compute_score(gts_t, gen_t) method = ['Blue_1', 'Bleu_2', 'Bleu_3', 'Bleu_4'] for metric, score in zip(method, val_bleu): print(metric, score) val_meteor, _ = Meteor().compute_score(gts_t, gen_t) print('METEOR', val_meteor) val_rouge, _ = Rouge().compute_score(gts_t, gen_t) print('ROUGE_L', val_rouge) val_cider, _ = Cider().compute_score(gts_t, gen_t) print('CIDEr', val_cider) val_spice, _ = Spice().compute_score(gts_t, gen_t) print('SPICE', val_spice)
1.960938
2