max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
tests/test_db.py
heptaliane/RankingAnnotator
1
12796051
# -*- coding: utf-8 -*- import os from unittest import TestCase import tempfile from server import db def use_temp_db(filename): def _use_temp_db(fn): def wrapper(obj): with tempfile.TemporaryDirectory() as dirname: fn(obj, os.path.join(dirname, filename)) return wrapper return _use_temp_db class TestMatchResultDBController(TestCase): def test_get_from_blank(self): with tempfile.NamedTemporaryFile() as f: logger = db.MatchResultDBController(f.name) results = logger.get() self.assertEqual(results, []) @use_temp_db('test.db') def test_add_one(self, filename): logger = db.MatchResultDBController(filename) with logger as lg: lg.add(0, 1, 2, 0) lg.add(1, 2, 3, 0) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, }) self.assertEqual(logger.current_id, 1) @use_temp_db('test.db') def test_add_list(self, filename): logger = db.MatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 2), (2, 3), (0, 0)) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, }) @use_temp_db('test.db') def test_add_list2(self, filename): logger = db.MatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 2), (2, 3), 0) results = logger.get(ordered=True) self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, }) @use_temp_db('test.db') def test_delete(self, filename): logger = db.MatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 3), (2, 4), 0) lg.add((2, 3), (5, 7), (6, 8), 2) with logger as lg: deleted = lg.delete(0) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 3, 'winner': 7, 'loser': 8, 'trigger_id': 2, }) self.assertEqual(len(deleted), 2) self.assertEqual(deleted[1], { 'id': 1, 'winner': 3, 'loser': 4, 'trigger_id': 0, }) class TestRatedMatchResultDBController(TestCase): def test_get_from_blank(self): with tempfile.NamedTemporaryFile() as f: logger = db.RatedMatchResultDBController(f.name) results = logger.get() self.assertEqual(results, []) @use_temp_db('test.db') def test_add_one(self, filename): logger = db.RatedMatchResultDBController(filename) with logger as lg: lg.add(0, 1, 2, 0, 1400.0, 1600.0) lg.add(1, 2, 3, 0, 1550, 1450) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, 'winner_rate': 1550.0, 'loser_rate': 1450.0, }) @use_temp_db('test.db') def test_add_list(self, filename): logger = db.RatedMatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 2), (2, 3), 0, (1400, 1550), (1600, 1450)) results = logger.get(ordered=True) self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, 'winner_rate': 1550.0, 'loser_rate': 1450.0, }) @use_temp_db('test.db') def test_add_delete(self, filename): logger = db.RatedMatchResultDBController(filename) with logger as lg: lg.add((0, 1), (1, 2), (2, 3), 0, (1400, 1550), (1600, 1450)) lg.add((2, 3), (5, 6), (7, 8), 2, (1300, 1700), (1510, 1490)) with logger as lg: deleted = lg.delete(0) results = logger.get() self.assertEqual(len(results), 2) self.assertEqual(results[1], { 'id': 3, 'winner': 6, 'loser': 8, 'trigger_id': 2, 'winner_rate': 1700.0, 'loser_rate': 1490.0, }) self.assertEqual(len(deleted), 2) self.assertEqual(deleted[1], { 'id': 1, 'winner': 2, 'loser': 3, 'trigger_id': 0, 'winner_rate': 1550.0, 'loser_rate': 1450.0, }) class TestItemLabelDBController(TestCase): def test_get_from_blank(self): with tempfile.NamedTemporaryFile() as f: logger = db.ItemLabelDBController(f.name) results = logger.get() self.assertEqual(results, []) @use_temp_db('test.db') def test_add_one(self, filename): logger = db.ItemLabelDBController(filename) with logger as lg: lg.add(0, 'foo') lg.add(1, 'bar') results = logger.get() self.assertEqual(results, [ {'id': 0, 'label': 'foo'}, {'id': 1, 'label': 'bar'}, ]) @use_temp_db('test.db') def test_add_list(self, filename): logger = db.ItemLabelDBController(filename) with logger as lg: lg.add((0, 1), ('foo', 'bar')) results = logger.get(ordered=True) self.assertEqual(results, [ {'id': 0, 'label': 'foo'}, {'id': 1, 'label': 'bar'}, ]) @use_temp_db('test.db') def test_delete(self, filename): logger = db.ItemLabelDBController(filename) with logger as lg: lg.add((0, 1), ('foo', 'bar')) with logger as lg: deleted = lg.delete('foo') results = logger.get() self.assertEqual(results, [ {'id': 1, 'label': 'bar'}, ]) self.assertEqual(deleted, [ {'id': 0, 'label': 'foo'} ])
2.953125
3
acousticsim/analysis/formants/lpc.py
JoFrhwld/python-acoustic-similarity
5
12796052
<filename>acousticsim/analysis/formants/lpc.py import librosa import numpy as np import scipy as sp from scipy.signal import lfilter from scipy.fftpack import fft,ifft from scipy.signal import gaussian from ..helper import fix_time_points, nextpow2 def lpc_ref(signal, order): """Compute the Linear Prediction Coefficients. Return the order + 1 LPC coefficients for the signal. c = lpc(x, k) will find the k+1 coefficients of a k order linear filter: xp[n] = -c[1] * x[n-2] - ... - c[k-1] * x[n-k-1] Such as the sum of the squared-error e[i] = xp[i] - x[i] is minimized. Parameters ---------- signal: array_like input signal order : int LPC order (the output will have order + 1 items) Notes ---- This is just for reference, as it is using the direct inversion of the toeplitz matrix, which is really slow""" if signal.ndim > 1: raise ValueError("Array of rank > 1 not supported yet") if order > signal.size: raise ValueError("Input signal must have a lenght >= lpc order") if order > 0: p = order + 1 r = np.zeros(p, 'float32') # Number of non zero values in autocorrelation one needs for p LPC # coefficients nx = np.min([p, signal.size]) x = np.correlate(signal, signal, 'full') r[:nx] = x[signal.size-1:signal.size+order] phi = np.dot(sp.linalg.inv(sp.linalg.toeplitz(r[:-1])), -r[1:]) return np.concatenate(([1.], phi)) else: return np.ones(1, dtype = 'float32') #@jit def levinson_1d(r, order): """Levinson-Durbin recursion, to efficiently solve symmetric linear systems with toeplitz structure. Parameters --------- r : array-like input array to invert (since the matrix is symmetric Toeplitz, the corresponding pxp matrix is defined by p items only). Generally the autocorrelation of the signal for linear prediction coefficients estimation. The first item must be a non zero real. Notes ---- This implementation is in python, hence unsuitable for any serious computation. Use it as educational and reference purpose only. Levinson is a well-known algorithm to solve the Hermitian toeplitz equation: _ _ -R[1] = R[0] R[1] ... R[p-1] a[1] : : : : * : : : : _ * : -R[p] = R[p-1] R[p-2] ... R[0] a[p] _ with respect to a ( is the complex conjugate). Using the special symmetry in the matrix, the inversion can be done in O(p^2) instead of O(p^3). """ r = np.atleast_1d(r) if r.ndim > 1: raise ValueError("Only rank 1 are supported for now.") n = r.size if n < 1: raise ValueError("Cannot operate on empty array !") elif order > n - 1: raise ValueError("Order should be <= size-1") if not np.isreal(r[0]): raise ValueError("First item of input must be real.") elif not np.isfinite(1/r[0]): raise ValueError("First item should be != 0") # Estimated coefficients a = np.empty(order+1, 'float32') # temporary array t = np.empty(order+1, 'float32') # Reflection coefficients k = np.empty(order, 'float32') a[0] = 1. e = r[0] for i in range(1, order+1): acc = r[i] for j in range(1, i): acc += a[j] * r[i-j] k[i-1] = -acc / e a[i] = k[i-1] for j in range(order): t[j] = a[j] for j in range(1, i): a[j] += k[i-1] * np.conj(t[i-j]) e *= 1 - k[i-1] * np.conj(k[i-1]) return a, e, k #@jit def _acorr_last_axis(x, nfft, maxlag): a = np.real(ifft(np.abs(fft(x, n = nfft) ** 2))) return a[..., :maxlag+1] / x.shape[-1] #@jit def acorr_lpc(x, axis=-1): """Compute autocorrelation of x along the given axis. This compute the biased autocorrelation estimator (divided by the size of input signal) Notes ----- The reason why we do not use acorr directly is for speed issue.""" if not np.isrealobj(x): raise ValueError("Complex input not supported yet") maxlag = x.shape[axis] nfft = int(2 ** nextpow2(2 * maxlag - 1)) if axis != -1: x = np.swapaxes(x, -1, axis) a = _acorr_last_axis(x, nfft, maxlag) if axis != -1: a = np.swapaxes(a, -1, axis) return a #@jit def lpc(signal, order, axis=-1): """Compute the Linear Prediction Coefficients. Return the order + 1 LPC coefficients for the signal. c = lpc(x, k) will find the k+1 coefficients of a k order linear filter: xp[n] = -c[1] * x[n-2] - ... - c[k-1] * x[n-k-1] Such as the sum of the squared-error e[i] = xp[i] - x[i] is minimized. Parameters ---------- signal: array_like input signal order : int LPC order (the output will have order + 1 items) Returns ------- a : array-like the solution of the inversion. e : array-like the prediction error. k : array-like reflection coefficients. Notes ----- This uses Levinson-Durbin recursion for the autocorrelation matrix inversion, and fft for the autocorrelation computation. For small order, particularly if order << signal size, direct computation of the autocorrelation is faster: use levinson and correlate in this case.""" n = signal.shape[axis] if order > n: raise ValueError("Input signal must have length >= order") r = acorr_lpc(signal, axis) return levinson_1d(r, order) def process_frame(X, window, num_formants, new_sr): X = X * window A, e, k = lpc(X, num_formants*2) rts = np.roots(A) rts = rts[np.where(np.imag(rts) >= 0)] angz = np.arctan2(np.imag(rts), np.real(rts)) frqs = angz * (new_sr / (2 * np.pi)) frq_inds = np.argsort(frqs) frqs = frqs[frq_inds] bw = -1 / 2 * (new_sr / (2 * np.pi)) * np.log(np.abs(rts[frq_inds])) return frqs, bw def lpc_formants(signal, sr, num_formants, max_freq, time_step, win_len, window_shape = 'gaussian'): output = {} new_sr = 2 * max_freq alpha = np.exp(-2 * np.pi * 50 * (1 / new_sr)) proc = lfilter([1., -alpha], 1, signal) if sr > new_sr: proc = librosa.resample(proc, sr, new_sr) nperseg = int(win_len * new_sr) nperstep = int(time_step * new_sr) if window_shape == 'gaussian': window = gaussian(nperseg + 2, 0.45 * (nperseg - 1) / 2)[1:nperseg + 1] else: window = np.hanning(nperseg + 2)[1:nperseg + 1] indices = np.arange(int(nperseg / 2), proc.shape[0] - int(nperseg / 2) + 1, nperstep) num_frames = len(indices) for i in range(num_frames): if nperseg % 2 != 0: X = proc[indices[i] - int(nperseg / 2):indices[i] + int(nperseg / 2) + 1] else: X = proc[indices[i] - int(nperseg / 2):indices[i] + int(nperseg / 2)] frqs, bw = process_frame(X, window, num_formants, new_sr) formants = [] for j, f in enumerate(frqs): if f < 50: continue if f > max_freq - 50: continue formants.append((np.asscalar(f), np.asscalar(bw[j]))) missing = num_formants - len(formants) if missing: formants += [(None, None)] * missing output[indices[i] / new_sr] = formants return output def signal_to_formants(signal, sr, num_formants=5, max_freq=5000, time_step=0.01, win_len=0.025, begin=None, padding=None): output = lpc_formants(signal, sr, num_formants, max_freq, time_step, win_len, window_shape='gaussian') duration = signal.shape[0] / sr return fix_time_points(output, begin, padding, duration) def file_to_formants(file_path, num_formants, max_freq, win_len, time_step): sig, sr = librosa.load(file_path, sr=None, mono=False) output = signal_to_formants(sig, sr, num_formants, max_freq, win_len, time_step) return output
2.359375
2
src/pyqp/__main__.py
MMSB-MOBI/pyqp
0
12796053
"""Quantitative Proteomic Service Usage: pyqp api pyqp cli <proteomicTSV> <proteomeXML> [--field=<quantity_column>] [--adress=<apiAdress>] [--port=<apiPort>] [--verbose] [--topScore=<pathway_number>] Options: -h --help Show this screen. --field=<quantity column> csv column header featuring signal --purb=purb aa --intg=intg bbb --alpha=alpha ccc --ncore=ncore ddd --sizelim=sizelim eee --prot=<proteomeXML> ggg --adress=<apiAdress> aaa --port=<apiPort> aaa --verbose iiii --topScore=<pathway_number> aaaa """ # TEST W/ mycoplasma proteome # The test this #python -m pyqp cli previous/wt2_subset.tsv unigo/src/unigo/data/uniprot-proteome_UP000000625.xml.gz from docopt import docopt #from pyT2GA import analysis from unigo import Unigo as createUniGOTree from unigo import uloads as createGOTreeFromAPI from .utils import proteomicWrapper from pyproteinsExt.uniprot import EntrySet as createUniprotCollection from requests import get from .api import app import time arguments = docopt(__doc__) #print(arguments) abnd_field = arguments['--field'] if arguments['--field'] else "Corrected Abundance ratio (1,526968203)" nTop = int(arguments['--topScore']) if arguments['--topScore'] else 20 if arguments['cli']: quantProteomic = proteomicWrapper( csv_file = arguments['<proteomicTSV>'], abnd_label = abnd_field) uColl = createUniprotCollection(collectionXML = arguments['<proteomeXML>'] ) missingProt = [] for x in quantProteomic.uniprot: if not uColl.has(x): print(f"{x} not found in proteome") missingProt.append(x) for x in missingProt: quantProteomic.remove(x) taxid = uColl.taxids[0] apiAdress = arguments['--adress'] if arguments['--adress'] else "127.0.0.1" apiPort = arguments['--port'] if arguments['--port'] else "5000" url = f"http://{apiAdress}:{apiPort}/unigo/{taxid}" print(f"Fetching universal annotation tree from {url}") expUniprotID = [ _ for _ in quantProteomic.uniprot ] resp = get(url) if resp.status_code == 404: print(f"{url} returned 404, provided proteome XML {taxid} may not be registred") else: unigoTree = createGOTreeFromAPI(resp.text, expUniprotID) x,y = unigoTree.dimensions print("Unigo Object successfully buildt w/ following dimensions:") print(f"\txpTree => nodes:{x[0]} children_links:{x[1]}, total_protein_occurences:{x[2]}, protein_set:{x[3]}") print(f"\t universeTree => nodes:{y[0]} children_links:{y[1]}, total_protein_occurences:{y[2]}, protein_set:{y[3]}") nDelta=int(0.1 * len(quantProteomic)) print(f"{len(quantProteomic)} proteins available in quantitative records, taking first {nDelta} as of quantity modified") print("Computing ORA") deltaUniprotID = expUniprotID[:nDelta] rankingsORA = unigoTree.computeORA(deltaUniprotID, verbose = arguments['--verbose']) print(f"Test Top - {nTop}\n{rankingsORA[:nTop]}") if arguments['api']: app.run(port=1234) """ unigoTree = createUniGOTree( backgroundUniColl = uColl, proteinList = [ x for x in quantProteomic.uniprot ], fetchLatest = False) start = time.perf_counter() # Taking 10% w/ highest qtty value rankingsORA = unigoTree.computeORA( [ _ for _ in quantProteomic[nTop].uniprot ] , verbose = False) stop = time.perf_counter() print(f"Test Top - {5}\n{rankingsORA[5]}") print(f"Execution time is {stop-start} sc") """ # Unnecssary def typeGuardTaxID(proteomicData, uColl): taxids = {} for uID in proteomicData.uniprot: uObj = uColl.get(uID) if not uObj.taxid in taxids: taxids[uObj.taxid] = 0 taxids[uObj.taxid] += 1 return sorted( [ (k,v) for k,v in taxids.items() ], key=lambda x:x[1] ) #r = pyt2ga.analysis(proteoRes, GOpwRes, STRINGRes, mapperRes, intg=False, # abnd_label = "Corrected Abundance ratio (1,526968203)", ncore=3)
2.1875
2
phase3/consumer-new-customer.py
amanda-wink/Kafka3-Data
0
12796054
from kafka import KafkaConsumer, TopicPartition from json import loads from sqlalchemy import create_engine, Table, Column, Integer, String from sqlalchemy.ext.declarative import declarative_base import os user = os.getenv('MYSQL_user') pw = os.getenv('MYSQL') str_sql = 'mysql+mysqlconnector://' + user + ':' + pw + '@localhost/ZipBank' engine = create_engine(str_sql) Base = declarative_base(bind=engine) class XactionConsumer: def __init__(self): self.consumer = KafkaConsumer('bank-customer-new', bootstrap_servers=['localhost:9092'], # auto_offset_reset='earliest', value_deserializer=lambda m: loads(m.decode('ascii'))) ## These are two python dictionaries # Ledger is the one where all the transaction get posted self.customer = {} self.customer_list = [] #Go back to the readme. def handleMessages(self): self.CustDb() for message in self.consumer: message = message.value print('{} received'.format(message)) self.customer[message['custid']] = message # add message to the transaction table in your SQL usinf SQLalchemy if message['custid'] in self.customer_list: print("Already a customer") else: with engine.connect() as connection: connection.execute("insert into person (custid, createdate, fname, lname) values(%s, %s, %s, %s)", (message['custid'], message['createdate'], message['fname'], message['lname'])) print(self.customer) def CustDb(self): with engine.connect() as connection: cust = connection.execute("select custid from person") cust_list = cust.fetchall() for row in range(len(cust_list)): self.customer_list.append(row) class Transaction(Base): __tablename__ = 'person' # Here we define columns for the table person # Notice that each column is also a normal Python instance attribute. custid = Column(Integer, primary_key=True) createdate = Column(Integer) fname = Column(String(50)) lname = Column(String(50)) if __name__ == "__main__": Base.metadata.create_all(engine) c = XactionConsumer() c.handleMessages()
2.78125
3
Server/diarization_service.py
mmlabox/TeamAudio
0
12796055
import os from google.cloud import speech_v1p1beta1 as speech import io #Set env variable, because it resets every shell session os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/home/robin_jf_andersson/mbox_speaker_diarization/mbox1-28508a73fde1.json" def speaker_diarization(audio_file, channels, sample_rate, nbr_of_persons): client = speech.SpeechClient() speech_file = audio_file with open(speech_file, "rb") as audio_file: content = audio_file.read() audio = speech.RecognitionAudio(content=content) config = speech.RecognitionConfig( encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16, sample_rate_hertz=sample_rate, language_code="en-US", enable_speaker_diarization=True, diarization_speaker_count=nbr_of_persons, audio_channel_count=channels, enable_separate_recognition_per_channel=True, #change this if respeaker is configured correctly model="video", ) print("Waiting for operation to complete...") response = client.recognize(config=config, audio=audio) # The transcript within each result is separate and sequential per result. # However, the words list within an alternative includes all the words # from all the results thus far. Thus, to get all the words with speaker # tags, you only have to take the words list from the last result: result = response.results[-1] words_info = result.alternatives[0].words output_result = {} #saving each word with corresponding speaker tag into a dictionary of word lists for i in range(nbr_of_persons): word_counter = 0 speaker_data = {} words = [] for word_info in words_info: if(word_info.speaker_tag == (i+1)): words.append(word_info.word) word_counter += 1 speaker_data["number_of_words"] = word_counter speaker_data["words"] = words output_result[(i+1)] = speaker_data #print(output_result) return output_result #test #diarization_service("audiofiles/Test7.wav")
2.984375
3
Parabola/prop1_probs.py
pdcxs/ManimProjects
29
12796056
from manimlib.imports import * from ManimProjects.utils.Parabola import Parabola from ManimProjects.utils.geometry import CText class Prob1(Parabola): CONFIG = { 'x_min' : -5 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.7) focusLabel.next_to(focus, RIGHT) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) y_val = ValueTracker(8) p1 = Dot() p1.set_color(DARK_BLUE) p1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(y_val.get_value()), y_val.get_value() ))) p1.plot_depth = 1 p1Label = TexMobject('P_1').scale(0.7) p1Label.add_updater(lambda m:\ m.next_to(p1, RIGHT, buff=SMALL_BUFF)) p2 = Dot() p2.set_color(DARK_BLUE) p2.add_updater(lambda m:\ m.move_to(self.get_opposite(p1))) p2.plot_depth = 1 p2Label = TexMobject('P_2').scale(0.7) p2Label.add_updater(lambda m:\ m.next_to(p2, RIGHT, buff=SMALL_BUFF)) focus_chord = Line() focus_chord.add_updater(lambda m:\ m.put_start_and_end_on( p1.get_center(), self.get_opposite(p1) )) self.play(ShowCreation(p1), ShowCreation(p1Label)) self.play(ShowCreation(focus_chord)) self.play(ShowCreation(p2), ShowCreation(p2Label)) fc_def = CText('焦点弦') fc_def.move_to(focus_chord.get_center()) fc_def.shift(0.2 * RIGHT + 0.1 * DOWN) self.play(Write(fc_def)) self.wait(2) self.play(FadeOut(fc_def)) q_y = ValueTracker(2) q = Dot() q.set_fill(DARK_BLUE) q.plot_depth = 1 q.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(q_y.get_value()), q_y.get_value() ))) qLabel = TexMobject('Q').scale(0.7) qLabel.add_updater(lambda m:\ m.next_to(q, LEFT, buff=SMALL_BUFF)) k1 = Dot() k1.set_fill(BLUE_E) k1.plot_depth = 1 k1.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p1, q))) k1Label = TexMobject('K_1').scale(0.7) k1Label.add_updater(lambda m:\ m.next_to(k1, LEFT, buff=SMALL_BUFF)) k2 = Dot() k2.set_fill(BLUE_E) k2.plot_depth = 1 k2.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p2, q))) k2Label = TexMobject('K_2').scale(0.7) k2Label.add_updater(lambda m:\ m.next_to(k2, LEFT, buff=SMALL_BUFF)) l1 = Line() l1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q), self.chord_to_directrix(p1, q) )) l2 = Line() l2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q), self.chord_to_directrix(p2, q) )) self.play(ShowCreation(q), ShowCreation(qLabel)) self.play(ShowCreation(l1), ShowCreation(l2)) self.play(*[ShowCreation(e) for e in [k1, k2, k1Label, k2Label]]) k1f = Line() k1f.add_updater(lambda m:\ m.put_start_and_end_on( k1.get_center(), focus.get_center() )) k2f = Line() k2f.add_updater(lambda m:\ m.put_start_and_end_on( k2.get_center(), focus.get_center() )) self.play(ShowCreation(k1f), ShowCreation(k2f)) self.wait(1) self.play(ApplyMethod(y_val.set_value, 5)) summary = TexMobject('K_1F \\perp K_2F').scale(2) summary.to_edge(RIGHT) self.wait(1) self.play(Write(summary)) self.wait(5) qf = Line() qf.add_updater(lambda m:\ m.put_start_and_end_on(q.get_center(), focus.get_center())) self.play(ShowCreation(qf)) self.wait(1) self.play(ApplyMethod(q_y.set_value, -1)) self.wait(1) self.play(ApplyMethod(y_val.set_value, 0.5)) self.wait(1) self.play(ApplyMethod(y_val.set_value, 3), ApplyMethod(q_y.set_value, 0.5)) self.wait(10) class Prob2(Parabola): CONFIG = { 'focus': 2, 'x_min': -4 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.7) focusLabel.next_to(focus, RIGHT) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) q1_y = ValueTracker(9) q1 = Dot() q1.set_fill(DARK_BLUE) q1.plot_depth = 1 q1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(q1_y.get_value()), q1_y.get_value() ))) q1_label = TexMobject('Q_1').scale(0.5) q1_label.add_updater(lambda m:\ m.next_to(q1, RIGHT, buff=SMALL_BUFF)) self.play(ShowCreation(q1), ShowCreation(q1_label)) q2 = Dot() q2.set_fill(DARK_BLUE) q2.plot_depth = 1 q2.add_updater(lambda m:\ m.move_to(self.get_opposite(q1))) q2_label = TexMobject('Q_2').scale(0.5) q2_label.add_updater(lambda m:\ m.next_to(q2, RIGHT, buff=SMALL_BUFF)) q1q2 = Line() q1q2.add_updater(lambda m:\ m.put_start_and_end_on( q1.get_center(), self.get_opposite(q1) )) self.play(*[ShowCreation(e) for e in\ [q2, q2_label, q1q2]]) p1_y = ValueTracker(2) p1 = Dot() p1.set_fill(DARK_BLUE) p1.plot_depth = 1 p1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(p1_y.get_value()), p1_y.get_value() ))) p1_label = TexMobject('P_1').scale(0.5) p1_label.add_updater(lambda m:\ m.next_to(p1, RIGHT, buff=SMALL_BUFF)) self.play(ShowCreation(p1), ShowCreation(p1_label)) p2 = Dot() p2.set_fill(DARK_BLUE) p2.plot_depth = 1 p2.add_updater(lambda m:\ m.move_to(self.get_opposite(p1))) p2_label = TexMobject('P_2').scale(0.5) p2_label.add_updater(lambda m:\ m.next_to(p2, RIGHT, buff=SMALL_BUFF)) p1p2 = Line() p1p2.add_updater(lambda m:\ m.put_start_and_end_on( p1.get_center(), self.get_opposite(p1) )) self.play(*[ShowCreation(e) for e in\ [p2, p2_label, p1p2]]) k1 = Dot() k1.set_fill(DARK_BROWN) k1.plot_depth = 1 k1.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p1, q1))) k1_label = TexMobject('K_1').scale(0.5) k1_label.add_updater(lambda m:\ m.next_to(k1, LEFT, buff=SMALL_BUFF)) p1q1 = Line() p1q1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q1), self.chord_to_directrix(p1, q1) )) p2q2 = Line() p2q2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q2), self.chord_to_directrix(p2, q2) )) self.play(*[ShowCreation(e) for e in \ [k1, k1_label, p1q1, p2q2]]) k2 = Dot() k2.set_fill(DARK_BROWN) k2.plot_depth = 1 k2.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p2, q1))) k2_label = TexMobject('K_2').scale(0.5) k2_label.add_updater(lambda m:\ m.next_to(k2, LEFT, buff=SMALL_BUFF)) p2q1 = Line() p2q1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q1), self.chord_to_directrix(p2, q1) )) p1q2 = Line() p1q2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q2), self.chord_to_directrix(p1, q2) )) self.play(*[ShowCreation(e) for e in \ [k2, k2_label, p2q1, p1q2]]) explain = CText('这些交点在准线上').scale(0.3) explain.to_edge(RIGHT) self.wait(2) self.play(Write(explain)) self.wait(5) self.play(ApplyMethod(q1_y.set_value, 0.5), ApplyMethod(p1_y.set_value, -3)) self.wait(3) self.play(ApplyMethod(q1_y.set_value, 3), ApplyMethod(p1_y.set_value, -9)) self.wait(10) class Prob3(Parabola): CONFIG = { 'focus': 2, 'x_min': -4 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.7) focusLabel.next_to(focus, RIGHT) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) q1_y = ValueTracker(9) q1 = Dot() q1.set_fill(DARK_BLUE) q1.plot_depth = 1 q1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(q1_y.get_value()), q1_y.get_value() ))) q1_label = TexMobject('Q_1').scale(0.5) q1_label.add_updater(lambda m:\ m.next_to(q1, RIGHT, buff=SMALL_BUFF)) self.play(ShowCreation(q1), ShowCreation(q1_label)) q2 = Dot() q2.set_fill(DARK_BLUE) q2.plot_depth = 1 q2.add_updater(lambda m:\ m.move_to(self.get_opposite(q1))) q2_label = TexMobject('Q_2').scale(0.5) q2_label.add_updater(lambda m:\ m.next_to(q2, RIGHT, buff=SMALL_BUFF)) q1q2 = Line() q1q2.add_updater(lambda m:\ m.put_start_and_end_on( q1.get_center(), self.get_opposite(q1) )) self.play(*[ShowCreation(e) for e in\ [q2, q2_label, q1q2]]) p1_y = ValueTracker(2) p1 = Dot() p1.set_fill(DARK_BLUE) p1.plot_depth = 1 p1.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(p1_y.get_value()), p1_y.get_value() ))) p1_label = TexMobject('P_1').scale(0.5) p1_label.add_updater(lambda m:\ m.next_to(p1, RIGHT, buff=SMALL_BUFF)) self.play(ShowCreation(p1), ShowCreation(p1_label)) p2 = Dot() p2.set_fill(DARK_BLUE) p2.plot_depth = 1 p2.add_updater(lambda m:\ m.move_to(self.get_opposite(p1))) p2_label = TexMobject('P_2').scale(0.5) p2_label.add_updater(lambda m:\ m.next_to(p2, RIGHT, buff=SMALL_BUFF)) p1p2 = Line() p1p2.add_updater(lambda m:\ m.put_start_and_end_on( p1.get_center(), self.get_opposite(p1) )) self.play(*[ShowCreation(e) for e in\ [p2, p2_label, p1p2]]) k1 = Dot() k1.set_fill(DARK_BROWN) k1.plot_depth = 1 k1.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p1, q1))) k1_label = TexMobject('K_1').scale(0.5) k1_label.add_updater(lambda m:\ m.next_to(k1, LEFT, buff=SMALL_BUFF)) p1q1 = Line() p1q1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q1), self.chord_to_directrix(p1, q1) )) p2q2 = Line() p2q2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q2), self.chord_to_directrix(p2, q2) )) self.play(*[ShowCreation(e) for e in \ [k1, k1_label, p1q1, p2q2]]) k2 = Dot() k2.set_fill(DARK_BROWN) k2.plot_depth = 1 k2.add_updater(lambda m:\ m.move_to(self.chord_to_directrix(p2, q1))) k2_label = TexMobject('K_2').scale(0.5) k2_label.add_updater(lambda m:\ m.next_to(k2, LEFT, buff=SMALL_BUFF)) p2q1 = Line() p2q1.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p2, q1), self.chord_to_directrix(p2, q1) )) p1q2 = Line() p1q2.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p1, q2), self.chord_to_directrix(p1, q2) )) self.play(*[ShowCreation(e) for e in \ [k2, k2_label, p2q1, p1q2]]) k1f = Line() k1f.add_updater(lambda m:\ m.put_start_and_end_on( k1.get_center(), focus.get_center() )) k2f = Line() k2f.add_updater(lambda m:\ m.put_start_and_end_on( k2.get_center(), focus.get_center() )) explain = TexMobject('K_1F \\perp K_2F') explain.to_edge(RIGHT) self.wait(2) self.play(ShowCreation(k1f), ShowCreation(k2f)) self.wait(3) self.play(Write(explain)) self.wait(5) self.play(ApplyMethod(q1_y.set_value, 0.5), ApplyMethod(p1_y.set_value, -3)) self.wait(3) self.play(ApplyMethod(q1_y.set_value, 3), ApplyMethod(p1_y.set_value, -9)) self.wait(10) class Prob4(Parabola): CONFIG = { 'focus': 3, 'x_min': -10 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.5) focusLabel.next_to(focus, RIGHT) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) a = Dot() a.set_fill(DARK_BROWN) a.move_to(self.coords_to_point(0, 0)) a.plot_depth = 1 a_label = TexMobject('A').scale(0.5) a_label.next_to(a, RIGHT) self.play(*[ShowCreation(e) for e in [a, a_label]]) y_val = ValueTracker(8) m = Dot() m.set_fill(DARK_BLUE) m.plot_depth = 1 m.add_updater(lambda m:\ m.move_to(self.coords_to_point( -self.focus, y_val.get_value() ))) m_label = TexMobject('M').scale(0.5) m_label.add_updater(lambda l:\ l.next_to(m, LEFT)) p = Dot() p.set_fill(DARK_BLUE) p.plot_depth = 1 p.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(y_val.get_value()), y_val.get_value() ))) p_label = TexMobject('P').scale(0.5) p_label.add_updater(lambda m:\ m.next_to(p, RIGHT)) self.play(*[ShowCreation(e) for e in\ [m, m_label, p, p_label]]) k = Dot() k.set_fill(DARK_BLUE) k.plot_depth = 1 k.add_updater(lambda m:\ m.move_to(self.chord_to_directrix( p, a ))) k_label = TexMobject('K').scale(0.5) k_label.add_updater(lambda m:\ m.next_to(k, LEFT)) pk = Line() pk.add_updater(lambda l:\ l.put_start_and_end_on( p.get_center(), self.chord_to_directrix(p, a) )) mp = Line() mp.add_updater(lambda l:\ l.put_start_and_end_on( m.get_center(), p.get_center() )) self.play(*[ShowCreation(e) for e in\ [k, k_label, pk, mp]]) kf = Line() kf.add_updater(lambda l:\ l.put_start_and_end_on( k.get_center(), focus.get_center() )) mf = Line() mf.add_updater(lambda l:\ l.put_start_and_end_on( m.get_center(), focus.get_center() )) self.play(ShowCreation(kf), ShowCreation(mf)) form = TexMobject('KF \\perp MF') form.scale(0.7) form.to_edge(RIGHT) self.play(Write(form)) af = DashedLine(a.get_center(), focus.get_center()) pf = DashedLine() def get_pf_extent(): vec = focus.get_center() - p.get_center() vec = normalize(vec) return focus.get_center() + 2 * vec pf.add_updater(lambda m:\ m.put_start_and_end_on( p.get_center(), get_pf_extent() )) self.play(ShowCreation(af), ShowCreation(pf)) self.wait(3) self.play(ApplyMethod(y_val.set_value, 2)) self.wait(3) self.play(ApplyMethod(y_val.set_value, -2)) self.wait(3) self.play(ApplyMethod(y_val.set_value, -8)) self.wait(10) class Prob5(Parabola): CONFIG = { 'focus': 3, 'x_min': -10 } def construct(self): self.adjust_x_range() graph = self.get_graph(color=LIGHT_BROWN) directrix = self.get_directrix() focus = Dot().move_to(self.get_focus()) focus.set_fill(DARK_BROWN) focus.plot_depth = 1 focusLabel = TexMobject('F').scale(0.5) focusLabel.next_to(focus, RIGHT + UP) self.play(*[ShowCreation(e) for\ e in [graph, directrix, focus, focusLabel]]) h_line = self.get_horizontal() x = Dot() x.set_fill(DARK_BROWN) x.plot_depth = 1 x.move_to(self.coords_to_point(-self.focus, 0)) x_label = TexMobject('X').scale(0.5) x_label.next_to(x, LEFT + UP) self.play(ShowCreation(h_line)) self.play(ShowCreation(x), ShowCreation(x_label)) y_val = ValueTracker(8) p = Dot() p.set_fill(DARK_BLUE) p.plot_depth = 1 p.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(y_val.get_value()), y_val.get_value() ))) q = Dot() q.set_fill(DARK_BLUE) q.plot_depth = 1 q.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(-y_val.get_value()), -y_val.get_value() ))) t = Dot() t.set_fill(DARK_BLUE) t.plot_depth = 1 t.add_updater(lambda m:\ m.move_to(self.coords_to_point( self.func(y_val.get_value()), 0 ))) p_label = TexMobject('P').scale(0.5) p_label.add_updater(lambda m:\ m.next_to(p, RIGHT)) q_label = TexMobject('Q').scale(0.5) q_label.add_updater(lambda m:\ m.next_to(q, RIGHT)) t_label = TexMobject('T').scale(0.5) t_label.add_updater(lambda m:\ m.next_to(t, RIGHT + UP)) pq = Line() pq.add_updater(lambda m:\ m.put_start_and_end_on( p.get_center(), self.coords_to_point( self.func(-y_val.get_value()), -y_val.get_value() ))) pt = Line() pt.add_updater(lambda m:\ m.put_start_and_end_on( p.get_center(), self.coords_to_point( self.func(y_val.get_value()), 0 ))) self.play(ShowCreation(p), ShowCreation(p_label)) self.play(ShowCreation(pt)) self.play(ShowCreation(t), ShowCreation(t_label)) label1 = CText('纵标线').scale(0.3)\ .next_to(pt, RIGHT) self.play(ShowCreation(label1)) self.wait() self.play(FadeOut(label1)) self.play(ShowCreation(pq)) self.remove(pt) self.play(ShowCreation(q), ShowCreation(q_label)) label2 = CText('双纵标线').scale(0.3)\ .next_to(t, RIGHT+DOWN) self.play(ShowCreation(label2)) self.wait() self.play(FadeOut(label2)) self.wait() inter = Dot() inter.set_fill(DARK_BLUE) inter.plot_depth = 1 inter.add_updater(lambda m:\ m.move_to( self.coords_to_point( 4*(self.focus**3)/(y_val.get_value()**2), 4*self.focus**2/y_val.get_value() ) if y_val.get_value() != 0 else self.coords_to_point(0, 0) )) inter_label = TexMobject("P'").scale(0.5) inter_label.add_updater(lambda m:\ m.next_to(inter, LEFT + UP, buff=SMALL_BUFF)) px = Line() px.add_updater(lambda m:\ m.put_start_and_end_on( self.right(p, inter), x.get_center() )) self.play(ShowCreation(px)) self.play(ShowCreation(inter), ShowCreation(inter_label)) self.wait() form = CText("P'Q经过焦点").shift(UP) form.scale(0.5) form.to_edge(RIGHT) self.play(Write(form)) interq = Line() interq.add_updater(lambda m:\ m.put_start_and_end_on( inter.get_center(), q.get_center() )) self.play(ShowCreation(interq)) self.wait(2) self.play(ApplyMethod(y_val.set_value, 4)) self.wait(2) self.play(ApplyMethod(y_val.set_value, -4)) self.wait(2) self.play(ApplyMethod(y_val.set_value, -9)) self.wait(2) self.play(ApplyMethod(y_val.set_value, 9)) self.wait(10)
2.515625
3
pyfuseki/rdf/rdf_prefix.py
yubinCloud/pyfuseki
21
12796057
<reponame>yubinCloud/pyfuseki """ @Time: 2021/9/18 13:04 @Author: @File: rf_prefix.py """ import rdflib from pyfuseki import config import uuid name_to_uri = dict() class NameSpace(rdflib.Namespace): """ 继承 rdflib 的 Namespace 并扩充其他相关的功能 """ def __getitem__(self, key) -> rdflib.URIRef: return super(NameSpace, self).__getitem__(key) def __getattr__(self, name) -> rdflib.URIRef: return super(NameSpace, self).__getattr__(name) def uid(self, name) -> rdflib.URIRef: """ 以 uuid 生成一个唯一 id 来作为 value 包装成 URIRef :return: """ if name not in name_to_uri: name_to_uri[name] = str(uuid.uuid1()) uri = name_to_uri[name] return rdflib.URIRef(self[uri]) def to_uri(self) -> rdflib.URIRef: """ 将自身转换成 URIRef :return: """ uri = str(self) if uri.endswith('/'): uri = uri[:uri.rfind('/')] return rdflib.URIRef(uri) def rdf_prefix(cls: type, local_prefix: str = None): if local_prefix is None: local_prefix = config.COMMON_PREFIX attrs = cls.__annotations__.keys() for k in attrs: setattr(cls, k, NameSpace(local_prefix + k + '/')) return cls if __name__ == '__main__': a = NameSpace('http://www.google.com/person/') b = a.to_uri() @rdf_prefix class Node: name: str email: str n = Node() print(n.name['yubin'])
2.390625
2
Python 3 - Curso completo/exercicio067.py
PedroMunizdeMatos/Estudos-e-Projetos
0
12796058
'''faça um programa que mostre a tabuada de vários números, um de cada vez, para cada valor digitado pelo usuário. O programa será interrompido quando o valor solicitado for negativo.''' from time import sleep n = 0 cont = 0 while n >= 0: print('--' * 15) print('\033[33mPara cancelar, digite um número negativo.\033[m') n = int(input('Qual número deseja saber a tabuada ? ')) print('--' * 15) if n < 0: print('\033[31mFinalizando o programa...\033[m') sleep(1) break else: for c in range (0,11): print(f'{n} x {c} = {n*c}')
3.9375
4
src/core.py
foutoucour/nepo
1
12796059
#!/usr/bin/env python # -*- coding: utf-8 -*- import json import os from contextlib import contextmanager import click import crayons def open_url(url): click.echo("Opening {}.".format(crayons.white(url, bold=True))) click.launch(url) def get_config_file_path(): home = os.path.expanduser("~") return os.path.realpath('{}/.commands.json'.format(home)) @contextmanager def get_config_file(mode='r'): """ Return the file storing the commands. :param str mode: the mode the file with be opened with. Default: r :return: the file object. :rtype: file """ path = get_config_file_path() if not os.path.exists(path): generate_empty_config_file() with open(path, mode) as datafile: yield datafile def generate_empty_config_file(): """ Reset the config file.""" with open(get_config_file_path(), 'w') as datafile: json.dump({}, datafile) def build_command(name, url): """ Build a click command according the arguments. :param str name: label that the user will use to trigger the command. :param str url: the url that will be opened. :rtype: click.Command """ return click.Command( name, callback=lambda: open_url(url), help='Open {}'.format(url) )
3.125
3
src/tanuki/database/adapter/query/query_compiler.py
M-J-Murray/tanuki
0
12796060
<gh_stars>0 from __future__ import annotations from typing import Any, Generic, TYPE_CHECKING, TypeVar, Union T = TypeVar("T") from tanuki.data_store.query import Query if TYPE_CHECKING: from tanuki.data_store.query import ( AndGroupQuery, AndQuery, EqualsQuery, GreaterEqualQuery, GreaterThanQuery, LessEqualQuery, LessThanQuery, NotEqualsQuery, OrGroupQuery, OrQuery, RowCountQuery, SumQuery, ) class QueryCompiler(Generic[T]): def EQUALS(self: "QueryCompiler", query: EqualsQuery) -> T: raise NotImplementedError() def NOT_EQUALS(self: "QueryCompiler", query: NotEqualsQuery) -> T: raise NotImplementedError() def GREATER_THAN(self: "QueryCompiler", query: GreaterThanQuery) -> T: raise NotImplementedError() def GREATER_EQUAL(self: "QueryCompiler", query: GreaterEqualQuery) -> T: raise NotImplementedError() def LESS_THAN(self: "QueryCompiler", query: LessThanQuery) -> T: raise NotImplementedError() def LESS_EQUAL(self: "QueryCompiler", query: LessEqualQuery) -> T: raise NotImplementedError() def ROW_COUNT(self: "QueryCompiler", query: RowCountQuery) -> T: raise NotImplementedError() def SUM(self: "QueryCompiler", query: SumQuery) -> T: raise NotImplementedError() def AND(self: "QueryCompiler", query: AndQuery) -> T: raise NotImplementedError() def AND_GROUP(self: "QueryCompiler", query: AndGroupQuery) -> T: raise NotImplementedError() def OR(self: "QueryCompiler", query: OrQuery) -> T: raise NotImplementedError() def OR_GROUP(self: "QueryCompiler", query: OrGroupQuery) -> T: raise NotImplementedError() def compile(self: "QueryCompiler", query: Union[Any, Query]) -> T: if not isinstance(query, Query): return query return query.compile(self)
2.359375
2
trade_fetcher.py
jianwang0212/napoli_gang
1
12796061
import json import requests import ccxt import time import os import pandas as pd from datetime import datetime, timedelta import operator import csv import cfg liquid = ccxt.liquid(cfg.liquid_misc_credential) exchange = liquid since = exchange.milliseconds() - 86400000 # -1 day from now def save_and_get_str(): # SAVE all_orders = [] since = exchange.milliseconds() - 86400000 * 5 # -1 day from now while since < exchange.milliseconds(): symbol = 'ETH/JPY' # change for your symbol limit = 100 # change for your limit orders = exchange.fetch_my_trades(symbol, since, limit) if len(orders) > 1: since = orders[len(orders) - 1]['timestamp'] all_orders += orders else: break df = pd.DataFrame( columns=['utc', 'time', 'type', 'amount', 'price', 'fee', 'takerOrMaker']) for element in all_orders: trade = element['info'] trade_utc = datetime.utcfromtimestamp( float(trade['created_at'])).strftime('%Y-%m-%d %H:%M:%S.%f') trades_to_append = str(int(float(trade['created_at']) * 1000)) + ',' + str(trade_utc) + ',' + str(trade['my_side']) + ',' + str(abs( float(trade['quantity']))) + ',' + str(float(trade['price'])) + ',' + str(element['fee']) + ',' + str(element['takerOrMaker']) df.loc[len(df.index)] = trades_to_append.split(",") # df.to_csv('transaction_liquid.csv') if not os.path.isfile("transaction_liquid.csv"): csv_content = df.to_csv(index=False) else: csv_content = df.to_csv( index=False, header=None) with open('transaction_liquid.csv', 'a') as csvfile: csvfile.write(csv_content) def sort_csv(): x = pd.read_csv("transaction_liquid.csv") print(x.iloc[0]) x = x.drop_duplicates().sort_values('time', ascending=False) x.to_csv('transaction_liquid.csv', index=False) print('sorted') while True: save_and_get_str() sort_csv() time.sleep(23 * 60)
2.484375
2
mytb/datetime.py
quentinql/mytb
0
12796062
import re from datetime import datetime from datetime import timedelta import dateutil.parser import pytz import tzlocal # datetime objct for beginning of epoch T_EPOCH = datetime(1970, 1, 1, tzinfo=pytz.utc) DEFAULT = object() # singleton, for args with default values class DateTimeError(Exception): """ custom exception """ class DateTime(object): single_delta = r'(?:\s*([+-]\d+(?:\.\d*)?)(?:\s*([shMdw])?)\s*)' single_delta = r'(?:\s*([+-]\d+(?:\.\d*)?)\s*([shMdw]?)\s*)' # attempt to handle comma separated list of deltas # multi_delta = r'^%s(?:,%s)*$' % (single_delta, single_delta) delta_rex = re.compile('^' + single_delta + '$') delta_units = { 's': (0, 1), 'M': (0, 60), 'h': (0, 3600), 'd': (1, 0), 'w': (7, 0), '': (1, 0), # default unit = days } @classmethod def strptimedelta(cls, deltastr, info=None, raise_on_error=True): """ parses a date time string and returns a datetime timedelta object Supported Formats: '+-<num><unit>' where unit = s for seconds h for hours M for minutes d for days w for weeks default = days """ # not implemented so far # and rounding (use by strptime) = # d for days # default no rounding # """ # TODO: think about using dateutil.parser.relativedelta rslt = datetime.now(pytz.utc) fields = (val.strip() for val in deltastr.split(',')) delta_rex = cls.delta_rex for field in fields: match = delta_rex.match(field) if not match: raise DateTimeError("can't parse %r as delta" % field) value, unit = match.groups() value = float(value) days, seconds = cls.delta_units[unit] rslt += timedelta(days * value, seconds * value) return rslt @classmethod def strptime(cls, datestr=None, fmt=None, tzinfo=DEFAULT): """ parses a date time string and returns a date time object Supported Formats: - formats as supported by dateutil.parser - None, '', 0, '0' and 'now' -> datetime.now() - if fmt is passed same as datetime.strptime :param datestr: date string to be passed :param fmt: if passedm then use datetime's normal strptime BUT add a time zone info :param tzinfo: if no tz info is specified in the string, then this param decides which time zone shall be used. DEFAULT: use local time zone None: return naive time zone object other: use other time zone """ # NOT IMPLEMENTED SO FAR # - delta format with +-num units[rounding], # where unit = # s for seconds # M for minutes # h for hours # d for days # w for weeks # and rounding = # d for days # default no rounding tzinfo = tzinfo if tzinfo is not DEFAULT else tzlocal.get_localzone() if fmt: rslt = datetime.strptime(datestr, fmt) else: if isinstance(datestr, (int, float)): datestr = str(datestr) datestr = datestr.strip() if datestr else datestr if datestr in (None, '', '0', 'now'): return datetime.now(tzinfo) if datestr[:1] in "+-" or ',' in datestr: return cls.strptimedelta(datestr, tzinfo) rslt = dateutil.parser.parse(datestr) if rslt.tzinfo is None and tzinfo: rslt = tzinfo.localize(rslt) return rslt @classmethod def parse_range(cls, rangestr=None, default_from='-1d', default_to='now'): """ parses a time range string a time range string is a comma separated list of a start time and a end time """ if rangestr is None: from_str = default_from to_str = default_to else: from_str, to_str = [v.strip() for v in rangestr.split(',', 1)] from_str = from_str if from_str else default_from to_str = to_str if to_str else default_to t_from = cls.strptime(from_str) t_to = cls.strptime(to_str) return t_from, t_to class Time(DateTime): @classmethod def strptime(cls, datestr): pass class Date(DateTime): @classmethod def strptime(cls, datestr): pass def fname_to_time(fname, use_ctime=False, use_mtime=False, tz=None): """ extracts date time from an fname examples of supported formats: "fnameYYYYMMDD" just a date "fnameYYYY-MM-DD" date with separators "fnameYYYYMMDD_HHmmss" date and time "fnameYYYYMMDD-HHmmss" date and time "fnameYYYYMMDD-HH-mm-ss" date and time "fnameYYYYMMDD-ssssssssss" date and time(in seconds since epoche) :param fname: file name to parse :param use_ctime: if file name contains no string use file's ctime :param use_mtime: if file name contains no string use file's mtime """ def to_timestamp(t): """ convert a datetime object to seconds since epoch """ return (t - T_EPOCH).total_seconds()
2.96875
3
izzy.py
imre-kerr/better-ea
0
12796063
from __future__ import division from ea import float_gtype from ea import adult_selection from ea import parent_selection from ea import reproduction from ea import main from ea.ea_globals import * import pylab import sys import copy import multiprocessing as mp def spiketrain(a, b, c, d, k,): '''Compute a spike train according to the Izhikevich model''' tau = 10 thresh = 35 steps = 1000 ext_input = [10 for i in xrange(steps)] v = -60 u = 0 train = [] for i in xrange(steps): train += [v] if v >= thresh: v = c u = u + d dv = 1/tau * (k * v**2 + 5*v + 140 - u + ext_input[i]) du = a/tau * (b*v - u) v += dv u += du return train def spiketrain_list(params): '''Take a, b, c, d and k as a list and compute the corresponding spike train''' return spiketrain(params[0], params[1], params[2], params[3], params[4]) def detect_spikes(spike_train): '''Detect spikes in a spike train using a sliding window of size k''' thresh = 0 k = 5 spikes = [] for i in xrange(len(spike_train) - k + 1): window = spike_train[i:i+k] if window[k//2] == max(window) and window[k//2] > thresh: spikes += [i + k//2] return spikes def dist_spike_time(train1, train2): '''Compute distance between two spike trains using the spike time distance metric''' spikes1 = detect_spikes(train1) spikes2 = detect_spikes(train2) m = min(len(spikes1), len(spikes2)) n = max(len(spikes1), len(spikes2)) p = 2 dist = 0 for i in xrange(m): dist += abs(spikes1[i] - spikes2[i])**p dist = dist ** (1/p) penalty = (n-m)*len(train1) penalty = penalty / max(2*m, 1) dist = (1/n) * (dist + penalty) return dist def dist_spike_interval(train1, train2): '''Compute distance between two spike trains using the spike interval distance metric''' spikes1 = detect_spikes(train1) spikes2 = detect_spikes(train2) n = max(len(spikes1), len(spikes2)) m = min(len(spikes1), len(spikes2)) p = 2 dist = sum(abs((spikes1[i] - spikes1[i-1])-(spikes2[i] - spikes2[i-1]))**p for i in xrange(1,m)) ** (1/p) penalty = (n - m) * len(train1) / max(2*m, 1) dist = 1/max(m-1, 1) * (dist + penalty) return dist def dist_waveform(train1, train2): '''Compute distance between two spike trains using the waveform distance metric''' m = len(train1) p = 2 dist = 1/m * sum(abs(train1[i] - train2[i]) ** p for i in xrange(m)) ** (1/p) return dist def fitness_test(population, target, dist): '''Compute fitnesses based on distance to the target spike train''' tested = population for ind in tested: if ind.fitness != None: continue distance = dist(ind.ptype, target) if distance != 0: ind.fitness = 1 / distance else: ind.fitness = float('Inf') return tested def fitness_test_mp(population, target, dist): '''Compute fitnesses based on distance to the target spike train''' pool = mp.Pool(mp.cpu_count()) tested = population indices = [] workers = [] for i, ind in enumerate(population): if ind.fitness == None: indices += [i] workers += [pool.apply_async(dist, [ind.ptype, target])] for i, worker in enumerate(workers): distance = worker.get() population[indices[i]].fitness = 1 / (1 + distance) pool.close() pool.join() return tested def gen_fitness(target): '''Generate a fitness function interactively''' while True: method = raw_input("Input distance metric (time/interval/waveform):\n") if method == 'time': return (lambda population: fitness_test_mp(population, target, dist_spike_time)) elif method == 'interval': return (lambda population: fitness_test_mp(population, target, dist_spike_interval)) elif method == 'waveform': return (lambda population: fitness_test_mp(population, target, dist_waveform)) else: print "Unrecognized method: " + method def develop(population): '''Development function, generates spike train for each individual''' developed = population for ind in developed: if ind.ptype != None: continue ind.ptype = spiketrain_list(ind.gtype) return developed def develop_mp(population): '''Development function that makes use of multiprocessing''' developed = population workers = [] indices = [] pool = mp.Pool(mp.cpu_count()) for i, ind in enumerate(developed): if ind.ptype != None: continue indices += [i] workers += [pool.apply_async(spiketrain_list, [ind.gtype])] for i, worker in enumerate(workers): population[indices[i]].ptype = worker.get() pool.close() pool.join() return developed def visualize(generation_list, target): '''Generate pretty pictures using pylab''' best = [] average = [] stddev = [] average_plus_stddev = [] average_minus_stddev = [] for pop in generation_list: best += [most_fit(pop).fitness] average += [avg_fitness(pop)] stddev += [fitness_stddev(pop)] average_plus_stddev += [average[-1] + stddev[-1]] average_minus_stddev += [average[-1] - stddev[-1]] pylab.figure(1) pylab.fill_between(range(len(generation_list)), average_plus_stddev, average_minus_stddev, alpha=0.2, color='b', label="Standard deviation") pylab.plot(range(len(generation_list)), best, color='r', label='Best') pylab.plot(range(len(generation_list)), average, color='b', label='Average with std.dev.') pylab.title("Fitness plot - Izzy") pylab.xlabel("Generation") pylab.ylabel("Fitness") pylab.legend(loc="upper left") pylab.savefig("izzy_fitness.png") best_index = best.index(max(best)) best_individual = most_fit(generation_list[best_index]) best_spiketrain = best_individual.ptype print best_individual.gtype print best_individual.fitness pylab.figure(2) pylab.plot(range(len(best_spiketrain)), best_spiketrain, color='r', label='Best solution') pylab.plot(range(len(target)), target, color='blue', label='Target') pylab.title("Spiketrain plot") pylab.xlabel("Time - t") pylab.ylabel("Activation level - v") pylab.legend(loc="upper right") pylab.savefig("izzy_spiketrains.png") if __name__ == '__main__': if len(sys.argv) == 1: print "Error: No filename given" sys.exit() target_file = open(sys.argv[1]) target_spiketrain = [float(num) for num in target_file.read().split()] ranges = [(0.001, 0.2), (0.01, 0.3), (-80.0, -30.0), (0.1, 10.0), (0.01, 1.0)] popsize = int(raw_input("Input population size:\n")) fitness_tester = gen_fitness(target_spiketrain) adult_selector, litter_size = adult_selection.gen_adult_selection(popsize) parent_selector = parent_selection.gen_parent_selection(litter_size) mutate = float_gtype.gen_mutate(ranges) crossover = float_gtype.gen_crossover() reproducer = reproduction.gen_reproduction(mutate, crossover) generations = int(raw_input("Input max number of generations:\n")) fitness_goal = float(raw_input("Input fitness goal, 0 for none:\n")) initial = [individual(gtype=float_gtype.generate(ranges), age=0) for i in xrange(popsize)] generation_list = main.evolutionary_algorithm(initial, develop_mp, fitness_tester, adult_selector, parent_selector, reproducer, generations, fitness_goal) visualize(generation_list, target_spiketrain)
2.703125
3
contrib/python/CUBRIDdb/connections.py
eido5/cubrid
253
12796064
""" This module implements connections for CUBRIDdb. Presently there is only one class: Connection. Others are unlikely. However, you might want to make your own subclasses. In most cases, you will probably override Connection.default_cursor with a non-standard Cursor class. """ from CUBRIDdb.cursors import * import types, _cubrid class Connection(object): """CUBRID Database Connection Object""" def __init__(self, *args, **kwargs): 'Create a connecton to the database.' self.charset = '' kwargs2 = kwargs.copy() self.charset = kwargs2.pop('charset', 'utf8') self.connection = _cubrid.connect(*args, **kwargs2) def __del__(self): pass def cursor(self, dictCursor = None): if dictCursor: cursorClass = DictCursor else: cursorClass = Cursor return cursorClass(self) def set_autocommit(self, value): if not isinstance(value, bool): raise ValueError("Parameter should be a boolean value") if value: switch = 'TRUE' else: switch = 'FALSE' self.connection.set_autocommit(switch) def get_autocommit(self): if self.connection.autocommit == 'TRUE': return True else: return False autocommit = property(get_autocommit, set_autocommit, doc = "autocommit value for current Cubrid session") def commit(self): self.connection.commit() def rollback(self): self.connection.rollback() def close(self): self.connection.close() def escape_string(self, buf): return self.connection.escape_string(buf)
3.234375
3
client.py
pereztjacob/http-server
0
12796065
<reponame>pereztjacob/http-server import sys import socket def client(message): s = socket.socket() host = socket.gethostname() res = socket.gethostbyaddr("127.0.0.1") host = res[0] try: s.connect((host, 12345)) except: print("connection failed") else: s.send(str.encode(message)) gett = s.recv(len(message)) result = gett.decode() if(result == message): print('go ahead', message) s.close() if __name__ == "__main__": if len(sys.argv) <= 1: print('not good') else: client(sys.argv[1])
2.90625
3
Python/math/sum_of_digits.py
TechSpiritSS/NeoAlgo
897
12796066
# Python program to Find the Sum of Digits of a Number def sum_of_digits(num): # Extracting Each digits # and compute thier sum in 's' s = 0 while num != 0: s = s + (num % 10) num = num // 10 return s if __name__ == '__main__': # Input the number And # Call the function print("Enter the number: ", end="") n = int(input()) S = sum_of_digits(abs(n)) print("The sum of digits of the given number is {}.".format(S)) ''' Time Complexity: O(log(num)), where "num" is the length of the given number Space Complexity: O(1) SAMPLE INPUT AND OUTPUT SAMPLE 1 Enter the number: -12 The sum of digits of the given number is 3. SAMPLE 2 Enter the number: 43258 The sum of digits of the given number is 22. '''
4.28125
4
as2t.py
minitech/as2t
1
12796067
<gh_stars>1-10 import json import tarfile from typing import NamedTuple _UINT32_SIZE = b'\x04\x00\x00\x00' class FileRecord(NamedTuple): path: str offset: int size: int executable: bool def _read_exact(f, count): result = f.read(count) if len(result) != count: raise ValueError('Unexpected end of Asar file') return result def _expect(expectation): if not expectation: raise ValueError('Unexpected data in Asar file') def _read_uint4_le(f): return int.from_bytes(_read_exact(f, 4), 'little') def _read_padding(f, size): _expect(0 <= size < 4) if size != 0: _expect(f.read(size) == b'\0' * size) def _flatten(path, index): for key, value in index.items(): _expect(key and '/' not in key and key not in {'.', '..'}) if 'files' in value: yield from _flatten(path + (key,), value['files']) else: raw_offset = value['offset'] raw_size = value['size'] raw_executable = value.get('executable', False) _expect(isinstance(raw_offset, str)) _expect(isinstance(raw_size, int)) _expect(isinstance(raw_executable, bool)) offset = int(raw_offset) _expect(offset >= 0) _expect(raw_size >= 0) yield FileRecord(path + (key,), offset, raw_size, raw_executable) def transform(f, out): # header_size header _expect(f.read(4) == _UINT32_SIZE) # header_size header_pickled_size = _read_uint4_le(f) - 4 # header header _expect(_read_uint4_le(f) == header_pickled_size) # header header 2: return of the length prefixes header_unpadded_size = _read_uint4_le(f) padding_size = header_pickled_size - 4 - header_unpadded_size header_bytes = _read_exact(f, header_unpadded_size) header = json.loads(header_bytes) _read_padding(f, padding_size) offset = 0 for r in sorted(_flatten((), header['files']), key=lambda r: r.offset): _expect(offset == r.offset) offset = r.offset + r.size info = tarfile.TarInfo(name='/'.join(r.path)) info.size = r.size info.mode = 0o755 if r.executable else 0o644 out.addfile(info, f) if __name__ == '__main__': import sys with tarfile.open(fileobj=sys.stdout.buffer, mode='w|') as out: transform(sys.stdin.buffer, out)
2.4375
2
coole/settings.py
ahDDD/jwt-template
1
12796068
""" Django settings for coole project. Generated by 'django-admin startproject' using Django 1.11.4. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import datetime # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '<KEY> # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', 'localhost ', '.gaonengyujing.com'] HOST = '127.0.0.1:3000' # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'account', 'care' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'coole.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['frontend/dist'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'coole.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME':'cool', #数据库名 'USER': 'root', #数据库用户名 'PASSWORD': '<PASSWORD>', #数据库用户名密码 'HOST': '127.0.0.1', 'PORT': '5432', #数据库远程连接端口 } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] AUTH_USER_MODEL = 'account.User' AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', ) REST_FRAMEWORK = { 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.IsAuthenticated', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_jwt.authentication.JSONWebTokenAuthentication', # django-rest-framework-jwt ), 'DEFAULT_FILTER_BACKENDS': ( 'django_filters.rest_framework.DjangoFilterBackend', ) } JWT_AUTH = { 'JWT_EXPIRATION_DELTA': datetime.timedelta(days=30), 'JWT_REFRESH_EXPIRATION_DELTA': datetime.timedelta(days=7), 'JWT_ALLOW_REFRESH': True, 'JWT_RESPONSE_PAYLOAD_HANDLER': 'account.jwt.custom_jwt_response', 'JWT_AUTH_HEADER_PREFIX': 'COOL', # 请求头前缀 } # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'zh-Hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, "static") # build static out STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'frontend', 'dist').replace('//', '/'), ] MEDIA_URL = '/frontend/static/profile/' MEDIA_ROOT = os.path.join(BASE_DIR, 'frontend', 'static', 'profile').replace('//', '/') EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_USE_TLS = True EMAIL_HOST = 'smtp-mail.outlook.com' EMAIL_PORT = 587 EMAIL_HOST_USER = '' EMAIL_HOST_PASSWORD = '' DEFAULT_FROM_EMAIL = 'cool'
1.820313
2
sparse/repos/pyomeca/tutorials/setup.py
yuvipanda/mybinder.org-analytics
1
12796069
from setuptools import setup setup(name='tutorials', version='POC', url='https://github.com/pyomeca/tutorials.git', author='pyomeca', packages=['src'], zip_safe=False)
1.007813
1
troposphere/cassandra.py
compose-x/troposphere
0
12796070
<filename>troposphere/cassandra.py # Copyright (c) 2012-2022, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license. # # *** Do not modify - this file is autogenerated *** from . import AWSObject, AWSProperty, PropsDictType, Tags from .validators import boolean, integer from .validators.cassandra import ( validate_billingmode_mode, validate_clusteringkeycolumn_orderby, ) class Keyspace(AWSObject): """ `Keyspace <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cassandra-keyspace.html>`__ """ resource_type = "AWS::Cassandra::Keyspace" props: PropsDictType = { "KeyspaceName": (str, False), "Tags": (Tags, False), } class ProvisionedThroughput(AWSProperty): """ `ProvisionedThroughput <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cassandra-table-provisionedthroughput.html>`__ """ props: PropsDictType = { "ReadCapacityUnits": (integer, True), "WriteCapacityUnits": (integer, True), } class BillingMode(AWSProperty): """ `BillingMode <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cassandra-table-billingmode.html>`__ """ props: PropsDictType = { "Mode": (validate_billingmode_mode, True), "ProvisionedThroughput": (ProvisionedThroughput, False), } class Column(AWSProperty): """ `Column <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cassandra-table-column.html>`__ """ props: PropsDictType = { "ColumnName": (str, True), "ColumnType": (str, True), } class ClusteringKeyColumn(AWSProperty): """ `ClusteringKeyColumn <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cassandra-table-clusteringkeycolumn.html>`__ """ props: PropsDictType = { "Column": (Column, True), "OrderBy": (validate_clusteringkeycolumn_orderby, False), } class EncryptionSpecification(AWSProperty): """ `EncryptionSpecification <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cassandra-table-encryptionspecification.html>`__ """ props: PropsDictType = { "EncryptionType": (str, True), "KmsKeyIdentifier": (str, False), } class Table(AWSObject): """ `Table <http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cassandra-table.html>`__ """ resource_type = "AWS::Cassandra::Table" props: PropsDictType = { "BillingMode": (BillingMode, False), "ClusteringKeyColumns": ([ClusteringKeyColumn], False), "DefaultTimeToLive": (integer, False), "EncryptionSpecification": (EncryptionSpecification, False), "KeyspaceName": (str, True), "PartitionKeyColumns": ([Column], True), "PointInTimeRecoveryEnabled": (boolean, False), "RegularColumns": ([Column], False), "TableName": (str, False), "Tags": (Tags, False), }
1.929688
2
app/utils/game_logic.py
lik33v3n/Tower-of-God
3
12796071
import random import json import math async def battle_attack(x, y, u, e, call): if x == y: await call.answer("❗ Противник увернулся от удара", show_alert=True) return e.health, e.defence else: if e.defence <= 0: e.health -= u.damage return e.health, e.defence else: if u.damage > e.defence: miss_dmg = u.damage - e.defence e.health -= miss_dmg e.defence = 0 return e.health, e.defence else: e.defence -= u.damage return e.health, e.defence async def battle_defence(x, y, u, e, call): if x == y: await call.answer("❗ Ты увернулся от удара", show_alert=True) return u.health, u.defence else: if u.defence <= 0: u.health -= e.damage return u.health, u.defence else: if e.damage > u.defence: miss_dmg = e.damage - u.defence u.health -= miss_dmg u.defence = 0 return u.health, u.defence else: u.defence -= e.damage return u.health, u.defence def power(obj, maximal=False): if maximal is True: hp = obj.max_health + obj.max_defence else: hp = obj.health + obj.defence return hp * obj.damage def exam_choose(user): from app.models.examinators import exams for i in range(len(exams)): if user.rank == '-': return exams[0] elif exams[i].rank == user.rank: try: return exams[i + 1] except IndexError: return 'Максимальный ранг!' def set_difficulty(m, u): if m * 3 <= u: difficulty = 'Оч. легко' elif m * 2.5 <= u: difficulty = 'Легко' elif m * 2 < u: difficulty = 'Нормально' elif m * 1.5 < u: difficulty = 'Сложно' elif m < u: difficulty = 'Очень сложно' elif m > u * 3: difficulty = 'Верная смерть' elif m >= u: difficulty = 'Невозможно' else: return return difficulty def get_xp(lvl): """ Returns total XP according to gain level """ total_xp = int((lvl * 10) ** 1.1) return total_xp * lvl # def json_inv(u): # """ # Converts string from database to list # Example: '[3, 2]' => [3, 2] # :param u: User # :return: User's inventory as list # """ # inventory = json.loads(u['inventory']) if u['inventory'] != '[]' else [] # return inventory def item_drop(chance): """ :param chance: Mob's chance of drop :return: True/False """ c = random.randint(1, 100) if c <= chance: return True return False def round_down(n, decimals=0): """ Rounds a number down to a specified number of digits. :param decimals: Specified number of digits :param n: Float """ multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier def enemy_calc(u_attack, u_health, u_defence, lvl): enemy, result = [], [] if lvl != 1: multiplier = round_down(random.uniform(0.4, 1.1), 1) else: multiplier = 0.4 print(multiplier) for stat in (u_attack, u_health, u_defence): enemy.append(round(stat*multiplier) if stat != 0 else 0) e_power = enemy[0]*(enemy[1]+enemy[2]) formulae = int((e_power/(lvl**1.45))*2) result = [enemy, formulae if formulae > 1 else 2] return result
2.859375
3
app/components/menu.py
TechPriestJon/ChessPython
0
12796072
<gh_stars>0 import pyglet from .button import Button from .border import Border class Menu: def __init__(self, x, y, background): self.__x = x self.__y = y #self.__image = pyglet.image.load(background) #self.__sprite = pyglet.sprite.Sprite(self.__image, x, y - self.__image.height) self.__components = [] self.__border = Border(x -10, y + 5, background) def render(self): #self.__sprite.draw() self.component_height_sum = 0 for component in self.__components: component.render() self.component_height_sum += component.height() + 40 self.components_width = 0 for component in self.__components: if component.width() + 10 + 20 > self.components_width: self.components_width = component.width() + 10 + 20 self.__border.render(self.components_width, self.component_height_sum) #def add_button(self, text): #if len(self.__components) > 0: # x = self.__component[-1].x() + 10 # y = self.__components[-1].y() - (self.__components[-1].content_height + 10) #else: # x = self.__x + 10 # y = self.__y - 10 #button = Button(text, x, y) #self.__components.append(button) def add_button(self, text, background): if len(self.__components) > 0: x = self.__components[-1].x() y = self.__components[-1].y() - (self.__components[-1].height() + 40) else: x = self.__x + 10 y = self.__y - 10 button = Button(text, x, y, background) self.__components.append(button) def withinBoundry(self, x, y): x1left = self.__x x1right = self.__x + self.__label.content_width y1top = self.__y - self.__label.content_height y1bottom = self.__y return (x1right>x>x1left) and (y1bottom>y>y1top) def on_hover(self, x, y): for component in self.__components: component.on_hover(x,y) def on_click(self, x, y): for component in self.__components: component.on_click(x,y) def on_release(self, x, y): for component in self.__components: component.on_release(x,y)
2.890625
3
packages/news_classifier/news_classifier/utils/load_data.py
marco-cardoso/ML-News-article-classification-architecture
0
12796073
import pandas as pd from news_classifier.database import db def load_data(projection: dict) -> pd.DataFrame: """ Load the data from the Mongo collection and transform into a pandas dataframe :projection: A dictionary with the fields to load from database :return: A pandas dataframe with the data """ articles = db.read_articles( projection=projection ) return pd.DataFrame(articles)
3.234375
3
pvlib/clearsky.py
dpete2008/Sandia
0
12796074
<gh_stars>0 """ The ``clearsky`` module contains several methods to calculate clear sky GHI, DNI, and DHI. """ from __future__ import division import os from collections import OrderedDict import numpy as np import pandas as pd from pvlib import tools def ineichen(apparent_zenith, airmass_absolute, linke_turbidity, altitude=0, dni_extra=1364.): ''' Determine clear sky GHI, DNI, and DHI from Ineichen/Perez model. Implements the Ineichen and Perez clear sky model for global horizontal irradiance (GHI), direct normal irradiance (DNI), and calculates the clear-sky diffuse horizontal (DHI) component as the difference between GHI and DNI*cos(zenith) as presented in [1, 2]. A report on clear sky models found the Ineichen/Perez model to have excellent performance with a minimal input data set [3]. Default values for monthly Linke turbidity provided by SoDa [4, 5]. Parameters ----------- apparent_zenith: numeric Refraction corrected solar zenith angle in degrees. airmass_absolute: numeric Pressure corrected airmass. linke_turbidity: numeric Linke Turbidity. altitude: numeric Altitude above sea level in meters. dni_extra: numeric Extraterrestrial irradiance. The units of ``dni_extra`` determine the units of the output. Returns ------- clearsky : DataFrame (if Series input) or OrderedDict of arrays DataFrame/OrderedDict contains the columns/keys ``'dhi', 'dni', 'ghi'``. See also -------- lookup_linke_turbidity pvlib.location.Location.get_clearsky References ---------- [1] <NAME> and <NAME>, "A New airmass independent formulation for the Linke turbidity coefficient", Solar Energy, vol 73, pp. 151-157, 2002. [2] <NAME> et. al., "A New Operational Model for Satellite-Derived Irradiances: Description and Validation", Solar Energy, vol 73, pp. 307-317, 2002. [3] <NAME>, <NAME>, and <NAME>, "Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis", Sandia National Laboratories, SAND2012-2389, 2012. [4] http://www.soda-is.com/eng/services/climat_free_eng.php#c5 (obtained July 17, 2012). [5] <NAME>, et. al., "Worldwide Linke Turbidity Information", Proc. ISES Solar World Congress, June 2003. Goteborg, Sweden. ''' # Dan's note on the TL correction: By my reading of the publication # on pages 151-157, Ineichen and Perez introduce (among other # things) three things. 1) Beam model in eqn. 8, 2) new turbidity # factor in eqn 9 and appendix A, and 3) Global horizontal model in # eqn. 11. They do NOT appear to use the new turbidity factor (item # 2 above) in either the beam or GHI models. The phrasing of # appendix A seems as if there are two separate corrections, the # first correction is used to correct the beam/GHI models, and the # second correction is used to correct the revised turibidity # factor. In my estimation, there is no need to correct the # turbidity factor used in the beam/GHI models. # Create the corrected TL for TL < 2 # TLcorr = TL; # TLcorr(TL < 2) = TLcorr(TL < 2) - 0.25 .* (2-TLcorr(TL < 2)) .^ (0.5); # This equation is found in Solar Energy 73, pg 311. Full ref: Perez # et. al., Vol. 73, pp. 307-317 (2002). It is slightly different # than the equation given in Solar Energy 73, pg 156. We used the # equation from pg 311 because of the existence of known typos in # the pg 156 publication (notably the fh2-(TL-1) should be fh2 * # (TL-1)). # The NaN handling is a little subtle. The AM input is likely to # have NaNs that we'll want to map to 0s in the output. However, we # want NaNs in other inputs to propagate through to the output. This # is accomplished by judicious use and placement of np.maximum, # np.minimum, and np.fmax # use max so that nighttime values will result in 0s instead of # negatives. propagates nans. cos_zenith = np.maximum(tools.cosd(apparent_zenith), 0) tl = linke_turbidity fh1 = np.exp(-altitude/8000.) fh2 = np.exp(-altitude/1250.) cg1 = 5.09e-05 * altitude + 0.868 cg2 = 3.92e-05 * altitude + 0.0387 ghi = (np.exp(-cg2*airmass_absolute*(fh1 + fh2*(tl - 1))) * np.exp(0.01*airmass_absolute**1.8)) # use fmax to map airmass nans to 0s. multiply and divide by tl to # reinsert tl nans ghi = cg1 * dni_extra * cos_zenith * tl / tl * np.fmax(ghi, 0) # BncI = "normal beam clear sky radiation" b = 0.664 + 0.163/fh1 bnci = b * np.exp(-0.09 * airmass_absolute * (tl - 1)) bnci = dni_extra * np.fmax(bnci, 0) # "empirical correction" SE 73, 157 & SE 73, 312. bnci_2 = ((1 - (0.1 - 0.2*np.exp(-tl))/(0.1 + 0.882/fh1)) / cos_zenith) bnci_2 = ghi * np.fmin(np.fmax(bnci_2, 0), 1e20) dni = np.minimum(bnci, bnci_2) dhi = ghi - dni*cos_zenith irrads = OrderedDict() irrads['ghi'] = ghi irrads['dni'] = dni irrads['dhi'] = dhi if isinstance(dni, pd.Series): irrads = pd.DataFrame.from_dict(irrads) return irrads def lookup_linke_turbidity(time, latitude, longitude, filepath=None, interp_turbidity=True): """ Look up the Linke Turibidity from the ``LinkeTurbidities.mat`` data file supplied with pvlib. Parameters ---------- time : pandas.DatetimeIndex latitude : float longitude : float filepath : string The path to the ``.mat`` file. interp_turbidity : bool If ``True``, interpolates the monthly Linke turbidity values found in ``LinkeTurbidities.mat`` to daily values. Returns ------- turbidity : Series """ # The .mat file 'LinkeTurbidities.mat' contains a single 2160 x 4320 x 12 # matrix of type uint8 called 'LinkeTurbidity'. The rows represent global # latitudes from 90 to -90 degrees; the columns represent global longitudes # from -180 to 180; and the depth (third dimension) represents months of # the year from January (1) to December (12). To determine the Linke # turbidity for a position on the Earth's surface for a given month do the # following: LT = LinkeTurbidity(LatitudeIndex, LongitudeIndex, month). # Note that the numbers within the matrix are 20 * Linke Turbidity, # so divide the number from the file by 20 to get the # turbidity. try: import scipy.io except ImportError: raise ImportError('The Linke turbidity lookup table requires scipy. ' + 'You can still use clearsky.ineichen if you ' + 'supply your own turbidities.') if filepath is None: pvlib_path = os.path.dirname(os.path.abspath(__file__)) filepath = os.path.join(pvlib_path, 'data', 'LinkeTurbidities.mat') mat = scipy.io.loadmat(filepath) linke_turbidity_table = mat['LinkeTurbidity'] latitude_index = ( np.around(_linearly_scale(latitude, 90, -90, 1, 2160)) .astype(np.int64)) longitude_index = ( np.around(_linearly_scale(longitude, -180, 180, 1, 4320)) .astype(np.int64)) g = linke_turbidity_table[latitude_index][longitude_index] if interp_turbidity: # Data covers 1 year. # Assume that data corresponds to the value at # the middle of each month. # This means that we need to add previous Dec and next Jan # to the array so that the interpolation will work for # Jan 1 - Jan 15 and Dec 16 - Dec 31. # Then we map the month value to the day of year value. # This is approximate and could be made more accurate. g2 = np.concatenate([[g[-1]], g, [g[0]]]) days = np.linspace(-15, 380, num=14) linke_turbidity = pd.Series(np.interp(time.dayofyear, days, g2), index=time) else: linke_turbidity = pd.DataFrame(time.month, index=time) # apply monthly data linke_turbidity = linke_turbidity.apply(lambda x: g[x[0]-1], axis=1) linke_turbidity /= 20. return linke_turbidity def haurwitz(apparent_zenith): ''' Determine clear sky GHI from Haurwitz model. Implements the Haurwitz clear sky model for global horizontal irradiance (GHI) as presented in [1, 2]. A report on clear sky models found the Haurwitz model to have the best performance of models which require only zenith angle [3]. Extreme care should be taken in the interpretation of this result! Parameters ---------- apparent_zenith : Series The apparent (refraction corrected) sun zenith angle in degrees. Returns ------- pd.Series The modeled global horizonal irradiance in W/m^2 provided by the Haurwitz clear-sky model. Initial implementation of this algorithm by <NAME>. References ---------- [1] <NAME>, "Insolation in Relation to Cloudiness and Cloud Density," Journal of Meteorology, vol. 2, pp. 154-166, 1945. [2] <NAME>, "Insolation in Relation to Cloud Type," Journal of Meteorology, vol. 3, pp. 123-124, 1946. [3] <NAME>, <NAME>, and <NAME>, "Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis", Sandia National Laboratories, SAND2012-2389, 2012. ''' cos_zenith = tools.cosd(apparent_zenith) clearsky_ghi = 1098.0 * cos_zenith * np.exp(-0.059/cos_zenith) clearsky_ghi[clearsky_ghi < 0] = 0 df_out = pd.DataFrame({'ghi': clearsky_ghi}) return df_out def _linearly_scale(inputmatrix, inputmin, inputmax, outputmin, outputmax): """ used by linke turbidity lookup function """ inputrange = inputmax - inputmin outputrange = outputmax - outputmin outputmatrix = (inputmatrix-inputmin) * outputrange/inputrange + outputmin return outputmatrix def simplified_solis(apparent_elevation, aod700=0.1, precipitable_water=1., pressure=101325., dni_extra=1364.): """ Calculate the clear sky GHI, DNI, and DHI according to the simplified Solis model [1]_. Reference [1]_ describes the accuracy of the model as being 15, 20, and 18 W/m^2 for the beam, global, and diffuse components. Reference [2]_ provides comparisons with other clear sky models. Parameters ---------- apparent_elevation: numeric The apparent elevation of the sun above the horizon (deg). aod700: numeric The aerosol optical depth at 700 nm (unitless). Algorithm derived for values between 0 and 0.45. precipitable_water: numeric The precipitable water of the atmosphere (cm). Algorithm derived for values between 0.2 and 10 cm. Values less than 0.2 will be assumed to be equal to 0.2. pressure: numeric The atmospheric pressure (Pascals). Algorithm derived for altitudes between sea level and 7000 m, or 101325 and 41000 Pascals. dni_extra: numeric Extraterrestrial irradiance. The units of ``dni_extra`` determine the units of the output. Returns ------- clearsky : DataFrame (if Series input) or OrderedDict of arrays DataFrame/OrderedDict contains the columns/keys ``'dhi', 'dni', 'ghi'``. References ---------- .. [1] <NAME>, "A broadband simplified version of the Solis clear sky model," Solar Energy, 82, 758-762 (2008). .. [2] <NAME>, "Validation of models that estimate the clear sky global and beam solar irradiance," Solar Energy, 132, 332-344 (2016). """ p = pressure w = precipitable_water # algorithm fails for pw < 0.2 if np.isscalar(w): w = 0.2 if w < 0.2 else w else: w = w.copy() w[w < 0.2] = 0.2 # this algorithm is reasonably fast already, but it could be made # faster by precalculating the powers of aod700, the log(p/p0), and # the log(w) instead of repeating the calculations as needed in each # function i0p = _calc_i0p(dni_extra, w, aod700, p) taub = _calc_taub(w, aod700, p) b = _calc_b(w, aod700) taug = _calc_taug(w, aod700, p) g = _calc_g(w, aod700) taud = _calc_taud(w, aod700, p) d = _calc_d(w, aod700, p) # this prevents the creation of nans at night instead of 0s # it's also friendly to scalar and series inputs sin_elev = np.maximum(1.e-30, np.sin(np.radians(apparent_elevation))) dni = i0p * np.exp(-taub/sin_elev**b) ghi = i0p * np.exp(-taug/sin_elev**g) * sin_elev dhi = i0p * np.exp(-taud/sin_elev**d) irrads = OrderedDict() irrads['ghi'] = ghi irrads['dni'] = dni irrads['dhi'] = dhi if isinstance(dni, pd.Series): irrads = pd.DataFrame.from_dict(irrads) return irrads def _calc_i0p(i0, w, aod700, p): """Calculate the "enhanced extraterrestrial irradiance".""" p0 = 101325. io0 = 1.08 * w**0.0051 i01 = 0.97 * w**0.032 i02 = 0.12 * w**0.56 i0p = i0 * (i02*aod700**2 + i01*aod700 + io0 + 0.071*np.log(p/p0)) return i0p def _calc_taub(w, aod700, p): """Calculate the taub coefficient""" p0 = 101325. tb1 = 1.82 + 0.056*np.log(w) + 0.0071*np.log(w)**2 tb0 = 0.33 + 0.045*np.log(w) + 0.0096*np.log(w)**2 tbp = 0.0089*w + 0.13 taub = tb1*aod700 + tb0 + tbp*np.log(p/p0) return taub def _calc_b(w, aod700): """Calculate the b coefficient.""" b1 = 0.00925*aod700**2 + 0.0148*aod700 - 0.0172 b0 = -0.7565*aod700**2 + 0.5057*aod700 + 0.4557 b = b1 * np.log(w) + b0 return b def _calc_taug(w, aod700, p): """Calculate the taug coefficient""" p0 = 101325. tg1 = 1.24 + 0.047*np.log(w) + 0.0061*np.log(w)**2 tg0 = 0.27 + 0.043*np.log(w) + 0.0090*np.log(w)**2 tgp = 0.0079*w + 0.1 taug = tg1*aod700 + tg0 + tgp*np.log(p/p0) return taug def _calc_g(w, aod700): """Calculate the g coefficient.""" g = -0.0147*np.log(w) - 0.3079*aod700**2 + 0.2846*aod700 + 0.3798 return g def _calc_taud(w, aod700, p): """Calculate the taud coefficient.""" # isscalar tests needed to ensure that the arrays will have the # right shape in the tds calculation. # there's probably a better way to do this. if np.isscalar(w) and np.isscalar(aod700): w = np.array([w]) aod700 = np.array([aod700]) elif np.isscalar(w): w = np.full_like(aod700, w) elif np.isscalar(aod700): aod700 = np.full_like(w, aod700) aod700_mask = aod700 < 0.05 aod700_mask = np.array([aod700_mask, ~aod700_mask], dtype=np.int) # create tuples of coefficients for # aod700 < 0.05, aod700 >= 0.05 td4 = 86*w - 13800, -0.21*w + 11.6 td3 = -3.11*w + 79.4, 0.27*w - 20.7 td2 = -0.23*w + 74.8, -0.134*w + 15.5 td1 = 0.092*w - 8.86, 0.0554*w - 5.71 td0 = 0.0042*w + 3.12, 0.0057*w + 2.94 tdp = -0.83*(1+aod700)**(-17.2), -0.71*(1+aod700)**(-15.0) tds = (np.array([td0, td1, td2, td3, td4, tdp]) * aod700_mask).sum(axis=1) p0 = 101325. taud = (tds[4]*aod700**4 + tds[3]*aod700**3 + tds[2]*aod700**2 + tds[1]*aod700 + tds[0] + tds[5]*np.log(p/p0)) # be polite about matching the output type to the input type(s) if len(taud) == 1: taud = taud[0] return taud def _calc_d(w, aod700, p): """Calculate the d coefficient.""" p0 = 101325. dp = 1/(18 + 152*aod700) d = -0.337*aod700**2 + 0.63*aod700 + 0.116 + dp*np.log(p/p0) return d
2.34375
2
utils/utils.py
toandaominh1997/ProductDetectionShopee
0
12796075
import torch def get_state_dict(model): if type(model) == torch.nn.DataParallel: state_dict = model.module.state_dict() else: state_dict = model.state_dict() return state_dict
2.5
2
pylaprof/scripts/merge.py
glumia/pylaprof
14
12796076
#!/usr/bin/env python import argparse import sys from collections import defaultdict DEFAULT_OUT = "stackcollapse-merged.txt" def merge(files, dst): data = defaultdict(lambda: 0) for file in files: with open(file, "r") as fp: for line in fp.readlines(): stack, hits = line.rsplit(" ", 1) hits = int(hits) data[stack] += hits with open(dst, "w") as fp: for stack, hits in data.items(): print(stack, hits, file=fp) def main(): parser = argparse.ArgumentParser(sys.argv[0]) parser = argparse.ArgumentParser( description="merge multiple stackcollapes into a single one" ) parser.add_argument( "files", metavar="FILE", type=str, nargs="+", help="a stackcollapse file" ) parser.add_argument( "-o", "--out", default=DEFAULT_OUT, help=f"write resulting stackcollapse to this file (default: {DEFAULT_OUT})", ) opts = parser.parse_args(sys.argv[1:]) merge(opts.files, opts.out) if __name__ == "__main__": main()
3
3
src/imable_backend/app.py
AlinMH/imable-backend
0
12796077
import os from fastapi import Depends, FastAPI, Response, status from fastapi.middleware.cors import CORSMiddleware from fastapi_users import FastAPIUsers from fastapi_users.authentication import JWTAuthentication from sqlalchemy.orm import Session from .database.session import database, user_db from .deps import db_session from .models.disability import Disability as DisabilityModel from .models.education import Education as EducationModel from .models.experience import Experience as ExperienceModel from .models.language import Language as LanguageModel from .schemas.disability import Disability as DisabilitySchema from .schemas.disability import DisabilityDB from .schemas.education import Education as EducationSchema from .schemas.education import EducationDB from .schemas.experience import Experience as ExperienceSchema from .schemas.experience import ExperienceDB from .schemas.language import Language as LanguageSchema from .schemas.language import LanguageDB from .schemas.user import User, UserCreate, UserDB, UserUpdate APP_SECRET = os.getenv("APP_SECRET") jwt_authentication = JWTAuthentication(secret=APP_SECRET, lifetime_seconds=3600, tokenUrl="/auth/jwt/login") app = FastAPI() fastapi_users = FastAPIUsers( user_db, [jwt_authentication], User, UserCreate, UserUpdate, UserDB, ) app.include_router(fastapi_users.get_auth_router(jwt_authentication), prefix="/auth/jwt", tags=["auth"]) app.include_router(fastapi_users.get_register_router(), prefix="/auth", tags=["auth"]) app.include_router(fastapi_users.get_reset_password_router(APP_SECRET), prefix="/auth", tags=["auth"]) app.include_router(fastapi_users.get_verify_router(APP_SECRET), prefix="/auth", tags=["auth"]) app.include_router(fastapi_users.get_users_router(), prefix="/users", tags=["users"]) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"] ) @app.on_event("startup") async def startup(): await database.connect() @app.on_event("shutdown") async def shutdown(): await database.disconnect() @app.get("/user/experience", tags=["experience"], response_model=list[ExperienceDB]) def get_user_experience(user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session)): experiences = session.query(ExperienceModel).filter(ExperienceModel.user_id == user.id).all() return [ ExperienceDB( id=exp.id, position=exp.position, employer=exp.employer, city=exp.city, start_date=exp.start_date, end_date=exp.end_date, description=exp.description, ) for exp in experiences ] @app.post("/user/experience", tags=["experience"], status_code=status.HTTP_201_CREATED) def add_user_experience( request: ExperienceSchema, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): experience = ExperienceModel(**request.dict(), user_id=user.id) session.add(experience) session.commit() session.refresh(experience) @app.put("/user/experience", tags=["experience"]) def edit_user_experience( id: int, request: ExperienceSchema, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): experience = ( session.query(ExperienceModel) .filter(ExperienceModel.user_id == user.id) .filter(ExperienceModel.id == id) .one_or_none() ) if experience: experience.position = request.position experience.employer = request.employer experience.city = request.city experience.start_date = request.start_date experience.end_date = request.end_date experience.description = request.description session.commit() session.refresh(experience) return response.status_code = status.HTTP_404_NOT_FOUND @app.delete("/user/experience", tags=["experience"]) def remove_user_experience( id: int, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): deleted = ( session.query(ExperienceModel) .filter(ExperienceModel.user_id == user.id) .filter(ExperienceModel.id == id) .delete() ) if not deleted: response.status_code = status.HTTP_404_NOT_FOUND return session.commit() @app.get("/user/education", tags=["education"], response_model=list[EducationDB]) def get_user_education(user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session)): educations = session.query(EducationModel).filter(EducationModel.user_id == user.id).all() return [ EducationDB( id=edu.id, edu_type=edu.edu_type.value, name=edu.name, city=edu.city, start_date=edu.start_date, end_date=edu.end_date, ) for edu in educations ] @app.post("/user/education", tags=["education"], status_code=status.HTTP_201_CREATED) def add_user_education( request: EducationSchema, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): edu = EducationModel(**request.dict(), user_id=user.id) session.add(edu) session.commit() session.refresh(edu) @app.put("/user/education", tags=["education"]) def edit_user_education( id: int, request: EducationSchema, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): education = ( session.query(EducationModel) .filter(EducationModel.user_id == user.id) .filter(EducationModel.id == id) .one_or_none() ) if education: education.edu_type = request.edu_type education.name = request.name education.city = request.city education.start_date = request.start_date education.end_date = request.end_date session.commit() session.refresh(education) return response.status_code = status.HTTP_404_NOT_FOUND @app.delete("/user/education", tags=["education"]) def remove_user_education( id: int, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): deleted = ( session.query(EducationModel).filter(EducationModel.user_id == user.id).filter(EducationModel.id == id).delete() ) if not deleted: response.status_code = status.HTTP_404_NOT_FOUND return session.commit() @app.get("/user/language", tags=["language"], response_model=list[LanguageDB]) def get_user_language(user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session)): languages = session.query(LanguageModel).filter(LanguageModel.user_id == user.id).all() return [LanguageDB(id=lang.id, language=lang.language, level=lang.level.value) for lang in languages] @app.post("/user/language", tags=["language"], status_code=status.HTTP_201_CREATED) def add_user_language( request: LanguageSchema, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): edu = LanguageModel(**request.dict(), user_id=user.id) session.add(edu) session.commit() session.refresh(edu) @app.put("/user/language", tags=["language"]) def edit_user_language( id: int, request: LanguageSchema, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): lang = ( session.query(LanguageModel) .filter(LanguageModel.user_id == user.id) .filter(LanguageModel.id == id) .one_or_none() ) if lang: lang.level = request.level lang.language = request.language session.commit() session.refresh(lang) return response.status_code = status.HTTP_404_NOT_FOUND @app.delete("/user/language", tags=["language"]) def remove_user_language( id: int, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): deleted = ( session.query(LanguageModel).filter(LanguageModel.user_id == user.id).filter(LanguageModel.id == id).delete() ) if not deleted: response.status_code = status.HTTP_404_NOT_FOUND return session.commit() @app.get("/user/disability", tags=["disability"], response_model=list[DisabilityDB]) def get_user_language(user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session)): disabilities = session.query(DisabilityModel).filter(DisabilityModel.user_id == user.id).all() return [DisabilityDB(id=dis.id, type=dis.type.value, level=dis.level.value) for dis in disabilities] @app.post("/user/disability", tags=["disability"], status_code=status.HTTP_201_CREATED) def add_user_language( request: DisabilitySchema, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): edu = DisabilityModel(**request.dict(), user_id=user.id) session.add(edu) session.commit() session.refresh(edu) @app.put("/user/disability", tags=["disability"]) def edit_user_language( id: int, request: DisabilitySchema, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): dis = ( session.query(DisabilityModel) .filter(DisabilityModel.user_id == user.id) .filter(DisabilityModel.id == id) .one_or_none() ) if dis: dis.level = request.level dis.type = request.type session.commit() session.refresh(dis) return response.status_code = status.HTTP_404_NOT_FOUND @app.delete("/user/disability", tags=["disability"]) def remove_user_language( id: int, response: Response, user: User = Depends(fastapi_users.current_user()), session: Session = Depends(db_session), ): deleted = ( session.query(DisabilityModel) .filter(DisabilityModel.user_id == user.id) .filter(DisabilityModel.id == id) .delete() ) if not deleted: response.status_code = status.HTTP_404_NOT_FOUND return session.commit()
2.078125
2
api/tf_auth/migrations/0003_populate_email_preferences.py
prattl/teamfinder-web
9
12796078
<gh_stars>1-10 # -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2017-04-15 17:10 from __future__ import unicode_literals from django.db import migrations class EmailTag: ALL = 0 UPDATES = 1 PLAYER_NOTIFICATIONS = 2 TEAM_NOTIFICATIONS = 3 CHOICES = ( (ALL, 'All'), (UPDATES, 'Updates and New Features'), (PLAYER_NOTIFICATIONS, 'Player Notifications'), (TEAM_NOTIFICATIONS, 'Team Notifications'), ) def forwards(apps, schema_editor): TFUser = apps.get_model('tf_auth.TFUser') UserEmailPreferences = apps.get_model('tf_auth.UserEmailPreferences') EmailPreference = apps.get_model('tf_auth.EmailPreference') def create_default_preferences(self): for (option, _) in EmailTag.CHOICES: EmailPreference.objects.create(tag=option, user_email_preferences=self) UserEmailPreferences.create_default_preferences = create_default_preferences for user in TFUser.objects.all(): try: user.user_email_preferences except UserEmailPreferences.DoesNotExist: preferences = UserEmailPreferences.objects.create(user=user) preferences.create_default_preferences() class Migration(migrations.Migration): dependencies = [ ('tf_auth', '0002_auto_20170415_1821'), ] operations = [ migrations.RunPython(forwards, migrations.RunPython.noop) ]
1.953125
2
edgify/functional/linear.py
scale-lab/BitTrain
3
12796079
<gh_stars>1-10 import torch class Linear(torch.autograd.Function): @staticmethod def forward(ctx, input, weight, bias=None): ctx.save_for_backward(input.to_sparse(), weight.to_sparse(), bias.to_sparse() if bias else None) output = input.mm(weight.t()) if bias is not None: output += bias.unsqueeze(0).expand_as(output) return output @staticmethod def backward(ctx, grad_output): input, weight, bias = ctx.saved_tensors input, weight, bias = input.to_dense(), weight.to_dense(), bias.to_dense() if bias else None grad_input = grad_weight = grad_bias = None if ctx.needs_input_grad[0]: grad_input = grad_output.mm(weight) if ctx.needs_input_grad[1]: grad_weight = grad_output.t().mm(input) if bias is not None and ctx.needs_input_grad[2]: grad_bias = grad_output.sum(0) return grad_input, grad_weight, grad_bias
2.390625
2
tests/test_rate.py
kalaspuff/stockholm
15
12796080
<gh_stars>10-100 import json import pytest import stockholm from stockholm import ConversionError, ExchangeRate, Money, Rate def test_rate(): assert Rate(100) == 100 assert Rate("100.50551") == ExchangeRate("100.50551") assert str(Rate("4711.1338")) == "4711.1338" assert Rate(100).currency is None assert Rate(100).currency_code is None assert Rate(100).amount == 100 assert Rate(100).value == "100.00" assert Rate(50) < 51 assert Rate(50) > 49 assert Rate(50) > Rate(49) assert Rate(50) + Rate(50) == 100 assert (Rate(50) + Rate(50)).__class__ is Rate assert str(Rate(50) + Rate(50)) == "100.00" assert repr(Rate(50) + Rate(50)) == '<stockholm.Rate: "100.00">' assert (Rate(50) + Rate(50) + Money(50)).__class__ is Money assert str(Rate(50) + Rate(50) + Money(50)) == "150.00" assert repr(Rate(50) + Rate(50) + Money(50)) == '<stockholm.Money: "150.00">' assert Rate(Money(100)) == Rate(100) assert Rate(Money(100)).__class__ is Rate def test_bad_rates(): with pytest.raises(ConversionError): Rate(1, currency="EUR") with pytest.raises(ConversionError): Rate(Money(1, currency="SEK")) with pytest.raises(ConversionError): Rate(100, from_sub_units=True) with pytest.raises(ConversionError): Rate.from_sub_units(100) with pytest.raises(ConversionError): Rate(1).to_currency("SEK") with pytest.raises(ConversionError): Rate(1).to_sub_units() with pytest.raises(ConversionError): Rate(1).sub_units def test_rate_hashable() -> None: m = stockholm.Rate(0) assert hash(m) def test_rate_asdict(): assert Rate(1338).asdict() == { "value": "1338.00", "units": 1338, "nanos": 0, } assert Rate("1338.4711").as_dict() == { "value": "1338.4711", "units": 1338, "nanos": 471100000, } assert dict(Rate("0.123456")) == { "value": "0.123456", "units": 0, "nanos": 123456000, } assert dict(Rate("0.1")) == { "value": "0.10", "units": 0, "nanos": 100000000, } assert Rate(1338).keys() == ["value", "units", "nanos"] assert Rate(1338)["units"] == 1338 assert Rate(1338)["value"] == "1338.00" with pytest.raises(KeyError): Rate(1338)["does_not_exist"] def test_rate_from_dict(): d = {"value": "13384711", "units": 13384711, "nanos": 0} assert str(Rate.from_dict(d)) == "13384711.00" assert str(Rate(d)) == "13384711.00" def test_rate_json(): rate = Rate("-999999999999999999.999999999") json_string = json.dumps({"rate": rate.asdict()}) str(Rate(json.loads(json_string).get("rate"))) == "-999999999999999999.999999999"
2.84375
3
GLM/source/plugins/minimal_plugin.py
tomsimonart/LMPM
1
12796081
<reponame>tomsimonart/LMPM from ..libs.pluginbase import PluginBase class Plugin(PluginBase): def __init__(self, start, *args): super().__init__(start, *args) def _plugin_info(self): """Required informations about the plugin """ self.version = "0.11.0" self.data_dir = "minimal" def _make_layout(self): """Here is where the ingredients to bake a great plugin and webview template go """ pass def _event_loop(self, event): """Event getter before every _start cycle """ pass def _start(self): """Main loop of the plugin this includes a refresh of self.screen """ pass
2.34375
2
singlecell/util.py
johannesnicolaus/singlecell
0
12796082
"""Utility functions.""" import subprocess import logging import os import shutil import stat import itertools from collections import OrderedDict from pkg_resources import resource_string import pandas as pd from genometools.expression import ExpGeneTable from genometools import gtf import singlecell _LOGGER = logging.getLogger(__name__) def get_readable_gene_identifiers(gene_table: ExpGeneTable): """Return unique gene identifiers that primarily use the genes' names.""" # count occurrences for each of gene name counts = gene_table['name'].value_counts() gene_counts = counts.loc[gene_table['name']] gene_ids = gene_table.index.tolist() gene_ids = [name if c == 1 else '%s_%s' % (name, gene_ids[i]) for i, (name, c) in enumerate(gene_counts.items())] return gene_ids def get_edit_sequences(seq, num_edits, bases=None): """Return all nucleotide sequences with a given hamming distance.""" if num_edits > len(seq): raise ValueError('Asked to make make more edits (%d) than the length ' 'of the sequence (%d nt).' % (num_edits, len(seq))) if bases is None: bases = set('ACGT') length = len(seq) all_bases = [bases for i in range(num_edits)] seq_list = [nt for nt in seq] mismatch = [] for comb in itertools.combinations(range(length), num_edits): for subs in itertools.product(*all_bases): mut = seq_list[:] valid = True for pos, nt in zip(comb, subs): if mut[pos] == nt: valid = False break mut[pos] = nt if valid: mismatch.append(''.join(mut)) return sorted(mismatch) def concatenate_files(input_files, output_file, append=False): write_mode = 'wb' if append: write_mode = 'ab' with open(output_file, write_mode) as ofh: for f in input_files: with open(f, 'rb') as ifh: shutil.copyfileobj(ifh, ofh, 16*1024*1024) def make_file_executable(path): """Sets the user executable flag for a file.""" st = os.stat(path) os.chmod(path, st.st_mode | stat.S_IEXEC) def zcat_subproc(path): """Creates a subprocess for decompressing a gzip file. TODO: docstring""" subproc = subprocess.Popen('gunzip -c "%s"' % path, shell=True, stdout=subprocess.PIPE) return subproc def get_all_kmers(k, kmer='', kmer_list=None): """Returns all possible k-mer sequences (for A/C/G/T alphabet). TODO: docstring""" if kmer_list is None: kmer_list = [] if len(kmer) == k: kmer_list.append(kmer) else: for nuc in ['A', 'C', 'G', 'T']: var = kmer + nuc get_all_kmers(k, var, kmer_list) if not kmer: return kmer_list def get_mismatch_sequences(seq): """Generates all nucleotide sequences with hamming distance 1 to `seq`. TODO: docstring""" for pos in range(len(seq)): for nuc in ['A', 'C', 'G', 'T']: if nuc != seq[pos]: mm = seq[:pos] + nuc + seq[(pos+1):] yield mm def get_reverse_complement(seq): """Returns the reverse complement of a nucleotide sequence. TODO: docstring""" rc = { 'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G' } compseq = ''.join([rc[nuc] for nuc in seq[::-1]]) return compseq def get_gene_exons(gene_table, genome_annotation_file, chunksize=10000): """Parse GTF file and get a dictionary of gene=>list of exon intervals. (Only for protein-coding genes.) TODO: docstring""" # get gene names that are guaranteed to be unique #gene_names = get_readable_gene_identifiers(gene_table) # series with index = Ensembl ID, value = unique gene name #genes = pd.Series(index=gene_table.index, data=gene_names) # sort genes by chromosome, strand, and then position sorted_gene_ids = sorted( [id_ for id_ in gene_table.index], key=lambda id_: [gene_table.loc[id_, 'chromosome'], gene_table.loc[id_, 'position'] < 0, abs(gene_table.loc[id_, 'position'])]) #genes = genes.loc[sorted_gene_ids] gene_table = gene_table.loc[sorted_gene_ids] # dictionary for holding list of intervals for each gene gene_exons = OrderedDict([id_, []] for id_ in gene_table.index) valid = 0 total = 0 _LOGGER.info('Parsing GTF file "%s" in chunks...', genome_annotation_file) for i, df in enumerate(pd.read_csv( genome_annotation_file, dtype={0: str}, sep='\t', comment='#', header=None, chunksize=chunksize)): # select only exon entries df_sel = df.loc[df.iloc[:, 2] == 'exon'] # extract gene IDs gene_ids = df_sel.iloc[:, 8].apply( lambda x: gtf.parse_attributes(x)['gene_id']) for id_, chrom, start, end in zip( gene_ids, df_sel.iloc[:, 0], df_sel.iloc[:, 3], df_sel.iloc[:, 4]): total += 1 try: gene = gene_table.loc[id_] except KeyError: # this gene is not contained in the gene table continue gene_chrom = gene_table.loc[id_, 'chromosome'] if chrom != gene_chrom: _LOGGER.warning('%s exon ignored (wrong chromosome: ' '%s instead of %s).', id_, chrom, gene_chrom) else: valid += 1 gene_exons[id_].append([start-1, end]) _LOGGER.info('%d / %d exons from valid genes (%.1f %%).', valid, total, 100*(valid/float(total))) return gene_exons def merge_intervals(intervals): """Merge overlapping intervals. TODO: docstring""" if not intervals: return [] # sort intervals by start position intervals = sorted(intervals, key=lambda x:x[0]) merged = [] cur = list(intervals[0]) for iv in intervals[1:]: # interval starts inside/right after current interval if iv[0] <= cur[1]: if iv[1] > cur[1]: # interval ends after current interval cur[1] = iv[1] else: merged.append(cur) cur = list(iv) merged.append(cur) return merged def get_mitochondrial_genes(species='human'): """Get a list of all mitochondrial genes for a given species. "Mitochondrial genes" are defined here as all genes on the mitochondrial chromosome. TODO: docstring """ path = os.path.join(singlecell._root, 'data', 'gene_lists', 'mitochondrial_%s.tsv' % species) with open(path) as fh: return fh.read().split('\n') def get_ribosomal_genes(species='human'): """Get a list of all ribosomal genes for a given species. "Ribosomal genes" are defined here as all protein-coding genes whose protein products are a structural component of the small or large ribosomal subunit (including fusion genes). TODO: docstring """ path = os.path.join(singlecell._root, 'data', 'gene_lists', 'ribosomal_%s.tsv' % species) with open(path) as fh: return fh.read().split('\n') def get_plotly_js(): """Return the plotly javascript code. TODO: docstring """ # resource_string? path = 'package_data/plotly.min.js' return resource_string('plotly', path).decode('utf-8') def is_empty_dir(dir_): """Tests whether a directory is empty. Note: Also returns True if the directory doesn't exist. TODO: docstring """ is_empty = True try: _, dirnames, filenames = next(os.walk(dir_)) if dirnames or filenames: is_empty = False except StopIteration: pass return is_empty
2.609375
3
app.py
maguowei/aweme-sign
2
12796083
import os import frida from flask import Flask, jsonify, request from hook import start_hook REMOTE_DEVICE = os.getenv('REMOTE_DEVICE', '') app = Flask(__name__) api = start_hook(REMOTE_DEVICE) @app.route('/sign') def sign(): global api url = request.args.get('url', '') headers = dict(request.headers) try: data = api.exports.sign(url, headers) except frida.InvalidOperationError as e: print(f'app crash: {e}') api = start_hook(REMOTE_DEVICE) data = api.exports.sign(url, headers) return jsonify({ 'url': url, 'headers': headers, 'sign': data, }) if __name__ == '__main__': app.run()
2.328125
2
aserializer/fields/time_fields.py
orderbird/aserializer
0
12796084
<reponame>orderbird/aserializer<filename>aserializer/fields/time_fields.py<gh_stars>0 # -*- coding: utf-8 -*- from datetime import datetime, date, time from aserializer.utils import py2to3 from aserializer.fields.base import BaseSerializerField, SerializerFieldValueError from aserializer.fields import validators as v class BaseDatetimeField(BaseSerializerField): date_formats = ['%Y-%m-%dT%H:%M:%S.%f', ] error_messages = { 'required': 'This field is required.', 'invalid': 'Invalid date value.', } def __init__(self, formats=None, serialize_to=None, *args, **kwargs): super(BaseDatetimeField, self).__init__(*args, **kwargs) self._date_formats = formats or self.date_formats self._serialize_format = serialize_to self._current_format = None self.invalid = False def validate(self): if self.ignore: return if self.invalid: raise SerializerFieldValueError(self._error_messages['invalid'], field_names=self.names) if self.value in v.VALIDATORS_EMPTY_VALUES and (self.required or self.identity): raise SerializerFieldValueError(self._error_messages['required'], field_names=self.names) if self._is_instance(self.value): return _value = self.strptime(self.value, self._date_formats) if _value is None and self.invalid: raise SerializerFieldValueError(self._error_messages['invalid'], field_names=self.names) def set_value(self, value): if self._is_instance(value): self.value = value elif isinstance(value, py2to3.string): self.value = self.strptime(value, self._date_formats) self.invalid = self.value is None def _is_instance(self, value): return False def strptime(self, value, formats): for f in formats: try: result = datetime.strptime(value, f) self._current_format = f except (ValueError, TypeError): continue else: return result return None def strftime(self, value): if self._serialize_format: return value.strftime(self._serialize_format) elif self._current_format: return value.strftime(self._current_format) else: return py2to3._unicode(value.isoformat()) class DatetimeField(BaseDatetimeField): date_formats = ['%Y-%m-%dT%H:%M:%S.%f%z', '%Y-%m-%dT%H:%M:%S.%f', '%Y-%m-%dT%H:%M:%S'] error_messages = { 'required': 'This field is required.', 'invalid': 'Invalid date time value.', } def _is_instance(self, value): return isinstance(value, datetime) def _to_native(self): if self.value in v.VALIDATORS_EMPTY_VALUES: return None if isinstance(self.value, datetime): return self.strftime(self.value) return py2to3._unicode(self.value) def _to_python(self): if self.value in v.VALIDATORS_EMPTY_VALUES: return None if isinstance(self.value, datetime): return self.value self.value = self.strptime(self.value, self._date_formats) return self.value class DateField(BaseDatetimeField): date_formats = ['%Y-%m-%d', ] error_messages = { 'required': 'This field is required.', 'invalid': 'Invalid date value.', } def _is_instance(self, value): return isinstance(value, date) def set_value(self, value): if self._is_instance(value): self.value = value elif isinstance(value, datetime): self.value = value.date() elif isinstance(value, py2to3.string): _value = self.strptime(value, self._date_formats) if _value is not None: self.value = _value.date() self.invalid = _value is None def _to_native(self): if self.value in v.VALIDATORS_EMPTY_VALUES: return None if isinstance(self.value, date): return self.strftime(self.value) return py2to3._unicode(self.value) def _to_python(self): if self.value in v.VALIDATORS_EMPTY_VALUES: return None if isinstance(self.value, date): return self.value _value = self.strptime(self.value, self._date_formats) if _value: self.value = _value.date() return self.value class TimeField(BaseDatetimeField): date_formats = ['%H:%M:%S', ] error_messages = { 'required': 'This field is required.', 'invalid': 'Invalid time value.', } def _is_instance(self, value): return isinstance(value, time) def set_value(self, value): if self._is_instance(value): self.value = value elif isinstance(value, datetime): self.value = value.time() elif isinstance(value, py2to3.string): _value = self.strptime(value, self._date_formats) if _value is not None: self.value = _value.time() self.invalid = _value is None def _to_native(self): if self.value in v.VALIDATORS_EMPTY_VALUES: return None if isinstance(self.value, time): return self.strftime(self.value) return py2to3._unicode(self.value) def _to_python(self): if self.value in v.VALIDATORS_EMPTY_VALUES: return None if isinstance(self.value, time): return self.value _value = self.strptime(self.value, self._date_formats) if _value: self.value = _value.time() return self.value
2.40625
2
_scripts/objecteditor/controller/newproduction.py
Son-Guhun/Titan-Land-Lands-of-Plenty
12
12796085
import PySimpleGUI as sg from ..model.objectdata import ObjectData from ..model.search import SearchableList from ..view import newproduction from . import get_string_unit, RACES, filter_listbox from myconfigparser import Section def open_window(data): options = SearchableList() for u in data: unit = Section(data[u]) if 'peon' in unit['type'].lower() and u != 'e000' and u != 'udr' and 'A00J' not in unit['abilList']: options.append('{name} [{code}]'.format(code=u, name=unit['Name'][1:-1])) window = sg.Window('New Production', newproduction.get_layout(), default_element_size=(40, 1), grab_anywhere=False).Finalize() window.find_element('Options').Update(sorted(options)) while True: event, values = window.read() if event is None: break elif event == 'Submit': try: ObjectData(data).create_production(values['Name'], get_string_unit(values['Options'][0]), RACES[values['ProdRace']]) sg.popup('Success') except Exception as e: sg.popup(str(e),title='Error') filter_listbox(data, window, values, '', options)
2.453125
2
DallasPlayers/soft_grudger_player.py
fras2560/Competition
0
12796086
''' @author: <NAME> @id: 20652186 @class: CS686 @date: 2016-02-13 @note: contains a player using an soft grudge strategy ''' from DallasPlayers.player import COOPERATE, Player, DEFECT import unittest class SoftGrudgerPlayer(Player): """ Soft Grudger Player - Co-operates until the opponent defects, in such case opponent is punished with d,d,d,d,c,c. """ def __init__(self): self.grudge = False self.moves = [] def studentID(self): return "20652186" def agentName(self): return "Soft Grudge Player" def play(self, myHistory, oppHistory1, oppHistory2): # are we cooperating if self.first_move(oppHistory1, oppHistory2): self.grudge = False self.moves = [] move = COOPERATE else: if not self.grudge: # lets work together move = COOPERATE if oppHistory1[-1] == DEFECT or oppHistory2[-1] == DEFECT: # someone has betrayed us, now have a grudge move = DEFECT self.grudge = True self.moves = 2 * [COOPERATE] + 3 * [DEFECT] else: # still have a grudge move = self.moves.pop() if len(self.moves) == 0: # can move on now, no more grudge self.grudge = False return move class TestPlayer(unittest.TestCase): def setUp(self): self.player = SoftGrudgerPlayer() def testPlay(self): for x in range(0, 5): # no grudge everyone gets along move = self.player.play(x * [COOPERATE], x * [COOPERATE], x * [COOPERATE]) self.assertEqual(move, COOPERATE) self.assertEqual(self.player.grudge, False) # now test the grudge moves = 2 * [COOPERATE] + 3 * [DEFECT] # HERE COMES THE GRUDGE move = self.player.play([COOPERATE], [DEFECT], [COOPERATE]) self.assertEqual(move, DEFECT) self.assertEqual(self.player.grudge, True) # grudge it out while len(moves) > 0: move = self.player.play([COOPERATE], [DEFECT], [COOPERATE]) self.assertEqual(move, moves.pop()) # grudge should be gone self.assertEqual(self.player.grudge, False) # now back to life being good for x in range(0, 5): # no grudge everyone gets along move = self.player.play(x * [COOPERATE], x * [COOPERATE], x * [COOPERATE]) self.assertEqual(move, COOPERATE) self.assertEqual(self.player.grudge, False)
3.390625
3
beats/migrations/0003_auto_20210809_1938.py
cybrvybe/FactorBeats-Platform
0
12796087
# Generated by Django 3.2.3 on 2021-08-10 02:38 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('artists', '0002_artist_bio'), ('beats', '0002_instrumental_img_file'), ] operations = [ migrations.AlterField( model_name='instrumental', name='producer', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='+', to='artists.artist'), ), migrations.AlterField( model_name='instrumentalcollection', name='instrumentals', field=models.ManyToManyField(blank=True, related_name='_beats_instrumentalcollection_instrumentals_+', to='beats.Instrumental'), ), ]
1.523438
2
autodiscover/util/helper.py
macbryc/IX-DiscoveryTools
3
12796088
<reponame>macbryc/IX-DiscoveryTools #Copyright 2021, Battelle Energy Alliance, LLC from uuid import uuid4 from stix2.datastore import Filter, FilterSet from stix2 import Software, Process, IPv4Address, Infrastructure, Relationship, CustomExtension, properties import logging import re def gen_uuid(string): return f'{string}--{uuid4()}' def get_rels(stix_loader, obj, direction='in', filters=None): fs = FilterSet() if not filters is None: if type(filters) == list: for f in filters: fs.add(f) else: fs.add(filters) if direction == 'in': f = Filter('target_ref', '=', obj.id) fs.add() elif direction == 'out': f = Filter('source_ref', '=', obj.id) fs.add() else: logging.error(f'Unexpected direction passed to get_rels: {direction}') return stix_loader.ms_source.query(fs) def get_connected_objs(stix_loader, obj, direction='in', obj_type=None): f = None l = [] if not obj_type is None: if direction == 'in': f = Filter('source_ref', 'contains', obj_type) elif direction == 'out': f = Filter('target_ref', 'contains', obj_type) rels = get_rels(stix_loader, obj, direction=direction, filters=f) for rel in rels: if direction == 'in': l.append(stix_loader.ms_source.get(rel.source_ref)) elif direction == 'out': l.append(stix_loader.ms_source.get(rel.target_ref)) return l def get_connected_obj(stix_loader, obj, direction='in', obj_type=None): objs = get_connected_objs(stix_loader, obj, direction=direction, obj_type=obj_type) if len(objs) < 1: return None else: return objs[0] def get_infrastructure_by_ip(stix_loader, ip): ip_obj = stix_loader.ms_source.query(query=Filter('value', '=', ip))[0] if type(ip_obj) == list and len(ip_obj) != 1: return None elif ip_obj is None: return None else: return get_connected_obj(stix_loader, ip_obj, direction='in', obj_type='infrastructure') def multi_filt(op='=', **kwargs): fs = FilterSet() for key in kwargs: if key == 'op': continue fs.add(Filter(key, op , kwargs[key])) return fs #TODO HELPER FUNCTION (param = class (software, process,etc), dictionary) #TODO: returns created object (extensions:()) #TODO: dict.keys(startswith(x_)) key.add +'_inl' def fix_stix(SDOType, stixdict, sdostring): ''' Allows us to fix our dictionary every time we create STIX Objects to have all custom properties in an extensions list ''' newList = stixdict.copy() extensions = {} for key, value in newList.items(): if key.startswith('x_'): addString = key + '_inl' logging.debug(f'type of str: {type(addString)}') extensions[addString] = value stixdict.pop(key) stixdict['extensions'] = extensions # print(stixdict) # id = '' # print('our type: ', type(SDOType)) # if sdostring == 'Software': # id = gen_uuid('software') # elif sdostring == 'Infrastructure': # id = gen_uuid('infrastructure') # elif SDOType == 'Process': # id = gen_uuid('process') # else: # print('SDO TYPE NOT INF/Software/PROCESS') # print(id) if 'id' not in stixdict.keys(): stixdict['id'] = gen_uuid(sdostring) if 'allow_custom' not in stixdict.keys(): stixdict['allow_custom'] = True if 'spec_version' not in stixdict.keys(): stixdict['spec_version'] = '2.1' s = SDOType(**stixdict) return s #Get infra connected to ip: # - get ip by value # - get connected by type (infra) # - get connected by type, port, protocol, service def get_objects(filt, stix_loader): objs = stix_loader.ms_source.query(filt) if len(objs) > 0 : return objs else: return None def get_object(filt, stix_loader): objs = get_objects(filt, stix_loader) if objs is None: return None elif len(objs) == 1: return objs[0] elif len(objs) > 1: logging.error(f'{filt} object matched multiple objects! This could cause unexpected behavior!') return objs[0] def get_related_multi(obj, filt, stix_loader): objs = stix_loader.ms.related_to(obj, filters=filt) if len(objs) > 0: return objs else: return None def get_related_single(obj, filt, stix_loader): objs = get_related_multi(obj, filt, stix_loader) if objs is None: return None elif len(objs) == 1: return objs[0] elif len(objs) > 1: logging.error(f'{filt} object matched multiple objects! This could cause unexpected behavior!') return objs[0] def get_object_or_create(ip_addr, port, protocol, service, stix_loader): #need to go from ip -> infra -> software (if any link is missing we need to create that link) # self.ms_source = self.ms.source # self.ms_sink = self.ms.sink # stix_loader.ms_source ret_objs = [] ip = get_object(multi_filt(type='ipv4-addr', value=ip_addr), stix_loader) if ip is None: ip = IPv4Address(value=ip_addr) ret_objs.append(ip) infra = get_related_single(ip, multi_filt(type='infrastructure'), stix_loader) print(f'get_related_single_infra: {infra}') if infra is None: infra = Infrastructure(name=ip.value) rel = Relationship(source_ref=infra, relationship_type='has', target_ref=ip) ret_objs.extend([infra, rel]) software = get_related_single(ip, multi_filt(type='software', x_port=port, x_protocol=protocol), stix_loader) if software is None: software = Software(name=f'{service if service else f"{port}/{protocol}"} Server', x_port=port, x_protocol=protocol, x_service=service, allow_custom=True, id=gen_uuid('software')) rel = Relationship(source_ref=infra, relationship_type='has', target_ref=software) # stix_loader.merge([software, rel]) ret_objs.extend([software, rel]) # ret_objs.extend([software, rel]) return (software, ret_objs) def get_stix_attr(obj, attr_string): if hasattr(obj, attr_string): return getattr(obj, attr_string) elif hasattr(obj, 'extensions'): if attr_string in obj.extensions: return obj.extensions[attr_string] return None
2.015625
2
examples/dataPipe.py
kirillovmr/python-pipeline
2
12796089
import os import sys sys.path.append(os.path.join(sys.path[0], '../')) from smart_pipeline import Pipeline data = [1,2,3,4,5] # Define a data function def onlyOdd(item): return False if item%2==0 else True pl = Pipeline() # Adds function into pipeline pl.addDataPipe(onlyOdd) res = pl(data) for item in res: print(item)
2.734375
3
y2_test_feed_tensor.py
ZhengDeQuan/AAA
0
12796090
import tensorflow as tf batch_size = 4 feature_num = 3 csv1 = [ "harden|james|curry", "wrestbrook|harden|durant", "paul|towns", ] csv2 = [ "curry", "wrestbrook|harden|durant", "paul|towns", ] csv3 = [ "harden|james|curry", "durant", "paul|towns", ] csv4 = [ "wrestbrook|harden|durant", "wrestbrook|harden|durant", "wrestbrook|harden|durant" ] csv_s= [csv1,csv2,csv3,csv4] X = tf.placeholder(shape=[None,feature_num],dtype=tf.string) one_feature = tf.contrib.layers.sparse_column_with_hash_bucket( column_name="zhengquan_test", hash_bucket_size=10, combiner="sum", dtype=tf.string # dtype=tf.dtypes.int32 ) res = tf.contrib.layers.embedding_column(one_feature, # initializer=my_initializer, combiner="mean", dimension=3) #除了有下面这种方法还有tf.unstack的方法 # for i in range(batch_size): # for j in range(feature_num): # one_feature = X[i][j] # one_feature = tf.reshape(one_feature,shape=[1]) # split_tag = tf.string_split(one_feature, "|") # one_sparse = tf.SparseTensor( # indices=split_tag.indices, # values= split_tag.values, # dense_shape=split_tag.dense_shape # ) # # current_mapping = {'zhengquan_test': one_sparse} # one_feature_embedding_res = tf.feature_column.input_layer(current_mapping, res) # #[[ 0.08187684, 0.22063671, -0.16549297]] #用unstack证明也是可行的,但是placeholder的第一个dimension不能是None,需要是一个确切的数值,不然unstack函数不能解析 # exp_X = tf.expand_dims(X,axis=-1) # example_list = tf.unstack(exp_X,axis = 0) # for one_example in example_list: # features = tf.unstack(one_example,axis = 0) # feature = features[0] # for one_feature in features: # # one_feature = tf.reshape(one_feature,shape=[1]) # split_tag = tf.string_split(one_feature, "|") # one_sparse = tf.SparseTensor( # indices=split_tag.indices, # values= split_tag.values, # dense_shape=split_tag.dense_shape # ) # # current_mapping = {'zhengquan_test': one_sparse} # one_feature_embedding_res = tf.feature_column.input_layer(current_mapping, res) #[[-0.10367388, 0.25915673, -0.00741819]] def my_function(one_example): features = tf.unstack(one_example,axis = 0) for one_feature in features: split_tag = tf.string_split(one_feature, "|") one_sparse = tf.SparseTensor( indices=split_tag.indices, values= split_tag.values, dense_shape=split_tag.dense_shape ) current_mapping = {'zhengquan_test': one_sparse} one_feature_embedding_res = tf.feature_column.input_layer(current_mapping, res) return one_feature_embedding_res exp_X = tf.expand_dims(X,axis=-1) res = tf.map_fn(fn=my_function,elems=exp_X,dtype=tf.float32) print(tf.shape(res)) import pdb pdb.set_trace() # res_seq = tf.squeeze(res,squeeze_dims=[-1]) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess_res = sess.run([res],feed_dict={X:csv_s}) print(type(sess_res)) print(sess_res)
2.421875
2
products/migrations/0008_auto_20201019_1155.py
akshaynot/farmedorganic
0
12796091
<reponame>akshaynot/farmedorganic # Generated by Django 3.1.2 on 2020-10-19 11:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0007_product_detail'), ] operations = [ migrations.RemoveField( model_name='product', name='images', ), migrations.AddField( model_name='product', name='image', field=models.FileField(blank=True, upload_to='Products'), ), ]
1.554688
2
python/experiments/feedback/bcipy_psd_explore.py
oken-cognitive-neuroscience-lab/scripts
0
12796092
<filename>python/experiments/feedback/bcipy_psd_explore.py import csv import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings from bcipy.helpers.load import read_data_csv from bcipy.signal.process.filter import bandpass, notch, downsample from bcipy.helpers.task import trial_reshaper from bcipy.helpers.load import load_experimental_data from bcipy.helpers.triggers import trigger_decoder from bcipy.helpers.acquisition import ( analysis_channels, analysis_channel_names_by_pos) from bcipy.signal.process.decomposition.psd import ( power_spectral_density, PSD_TYPE) # BciPy Constants # [TODO] We can load some of these from the session parameter files MODE = 'calibration' TRIGGERS_FN = 'triggers.txt' RAW_DATA_FN = 'raw_data.csv' CSV_EXPORT_NAME = 'feedback_exports.csv' # Parameters TRIAL_LENGTH = 2.5 NUMBER_OF_STIMULI_PER_SEQUENCE = 10 DOWNSAMPLE_RATE = 2 NOTCH_FREQ = 60 FILTER_HP = 2 FILTER_LP = 40 # Quantile Exports QUANTILES = [15, 30, 45, 70] # PSD Parameters """Define bands here and add to PSD_TO_DETERMINE list.""" ALPHA = ('alpha', [8, 11.99]) ALPHA_SUB_1 = ('alpha_sub_1', [7.00, 9.00]) ALPHA_SUB_2 = ('alpha_sub_2', [11.5, 12.5]) BETA = ('beta', [12, 25]) THETA = ('theta', [4, 7.99]) THETA_SUB_1 = ('theta_sub_1', [3.00, 5.00]) DELTA = ('delta', [1, 3.99]) DELTA_SUB_1 = ('delta_sub_1', [3.20, 4.00]) # append desired psd defined above to the list to use PSD_TO_DETERMINE = [ALPHA, ALPHA_SUB_1, ALPHA_SUB_2, BETA, THETA, THETA_SUB_1, DELTA] # Initialize exports exports = {} for name, band in PSD_TO_DETERMINE: exports[name] = {} exports[name]['data'] = [] def psd_explore( data_folder, channel_index, plot=True, relative=False, reverse=False, export_to_csv=False): """PSD Explore. This assumes use with VR300 for the AD Feedback experiment. data_folder: path to a BciPy data folder with raw data and triggers channel_index: channel to use for PSD calculation plot: whether or not to plot the filtered data and psd spectrum relative: whether or not to export relative PSD output reverse: whether the level estimations should be descending (default; ie band increases with attention) or ascending export_to_csv: whether or not to write output to csv returns: average, standard deviation """ # construct the relevant data paths trigger_path = f'{data_folder}/{TRIGGERS_FN}' raw_data_path = f'{data_folder}/{RAW_DATA_FN}' # print helpful information to console print('CONFIGURATION:\n' f'Trial length: {TRIAL_LENGTH} \n' f'Downsample rate: {DOWNSAMPLE_RATE} \n' f'Notch Frequency: {NOTCH_FREQ} \n' f'Bandpass Range: [{FILTER_HP}-{FILTER_LP}] \n' f'Trigger Path: [{trigger_path}] \n' f'Raw Data Path: [{raw_data_path}] \n') # process and get the data from csv raw_data, _, channels, type_amp, fs = read_data_csv(raw_data_path) # print helpful information to console print( 'DEVICE INFO:' f'\nChannels loaded: {channels}. \n' f'Using channel: {channels[channel_index]} \n' f'Using Device: {type_amp} - {fs} samples/sec \n') # filter the data filtered_data, sampling_rate_post_filter = filter_data( raw_data, fs, DOWNSAMPLE_RATE, NOTCH_FREQ) # decode triggers and get a channel map _, trigger_targetness, trigger_timing, offset = trigger_decoder( mode=MODE, trigger_path=trigger_path) # add a static offset of 100 ms [TODO load from parameters] offset = offset + .1 # reshape the data x, y, num_seq, _ = trial_reshaper( trigger_targetness, trigger_timing, filtered_data, mode=MODE, fs=fs, k=DOWNSAMPLE_RATE, offset=offset, channel_map=analysis_channels(channels, type_amp), trial_length=TRIAL_LENGTH) data = create_sequence_exports( x, num_seq * 10, channel_index, TRIAL_LENGTH, sampling_rate_post_filter, plot, relative, reverse) # plot raw data for the trial index given if plot: time = np.arange( data.size) / sampling_rate_post_filter fig, ax = plt.subplots(1, 1, figsize=(12, 4)) plt.plot(time, data, lw=1.5, color='k') plt.xlabel('Time (seconds)') plt.ylabel('Voltage') plt.xlim([time.min(), time.max()]) plt.title('Raw Data Plot') sns.set(font_scale=1.2) sns.despine() plt.show() if export_to_csv: export_data_to_csv(exports) return exports def create_sequence_exports( data, num_trials, channel_index, trial_length, sampling_rate, plot, relative, reverse, step=NUMBER_OF_STIMULI_PER_SEQUENCE): """Create Sequence exports. Loops through segmented data and calculates the PSD sequence data. data: reshaped trial data ['first', 'second'] num_trials: total number of sequences in task (ie 50, 100) channel_index: channel we're interested in extracting trial_length: length of reshaping sampling_rate: data sampling rate of EEG plot: whether or not to plot the data for exploration relative: whether this is a relative or absolute calculation of PSD reverse: whether the level estimations should be descending (default; ie band increases with attention) or ascending step: how many stimuli between each trial [TODO: this could be taken from parameters from the session] * we want the PSD from the first stimuli in trial to the trial_length """ index = 0 frames = int(num_trials / step) tmp = [] # Calculate PSD for every sequence (called frame here) for _ in range(frames): process_data = data[channel_index][index] tmp.append(process_data) index += step for name, band in PSD_TO_DETERMINE: exports[name]['data'].append( power_spectral_density( process_data, band, sampling_rate=sampling_rate, window_length=TRIAL_LENGTH, method=PSD_TYPE.WELCH, plot=False, relative=relative)) # calculate the fields of interest for export for name, band in PSD_TO_DETERMINE: stats_data = np.array(exports[name]['data']) exports[name]['average'] = np.mean(stats_data, axis=0) exports[name]['stdev'] = np.std(stats_data, axis=0) exports[name]['range'] = [ np.min(stats_data, axis=0), np.max(stats_data, axis=0) ] if reverse: QUANTILES.reverse() exports[name]['quantiles'] = np.percentile(stats_data, QUANTILES) del exports[name]['data'] # calculate a raw data average for plotting purposes only average = np.mean(np.array(tmp), axis=0) if plot: power_spectral_density( average, [1, 2], sampling_rate=sampling_rate, window_length=TRIAL_LENGTH, method=PSD_TYPE.WELCH, plot=plot, relative=relative) return average def filter_data(raw_data, fs, downsample_rate, notch_filter_freqency): """Filter Data. Using the same procedure as AD supplement, filter and downsample the data for futher processing. Return: Filtered data & sampling rate """ notch_filterted_data = notch.notch_filter( raw_data, fs, notch_filter_freqency) bandpass_filtered_data = bandpass.butter_bandpass_filter( notch_filterted_data, FILTER_HP, FILTER_LP, fs, order=2) filtered_data = downsample.downsample( bandpass_filtered_data, factor=downsample_rate) sampling_rate_post_filter = fs / downsample_rate return filtered_data, sampling_rate_post_filter def export_data_to_csv(exports): with open(CSV_EXPORT_NAME, 'w') as feedback_file: writer = csv.writer( feedback_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # write headers writer.writerow( ['', 'Average', 'Standard Deviation', 'Range [min max]', f'Quantiles {QUANTILES}']) # write PSD data for name, _ in PSD_TO_DETERMINE: writer.writerow( [name, exports[name]['average'], exports[name]['stdev'], exports[name]['range'], exports[name]['quantiles']] ) if __name__ == '__main__': import argparse # Define necessary command line arguments parser = argparse.ArgumentParser(description='Explore PSD.') parser.add_argument('-channel', '--channel', default=6, type=int, help='channel Index to compute PSD') parser.add_argument('-plot', '--plot', default=False, type=lambda x: (str(x).lower() == 'true'), help='Whether or not to plot raw data and PSD') parser.add_argument('-relative', '--relative', default=False, type=lambda x: (str(x).lower() == 'true'), help='Whether or not to use relative band calculation for PSD') parser.add_argument('-path', '--path', default=False, type=str, help='Path to BciPy data directory of interest.') parser.add_argument('-feedback_desc', '--feedback_desc', default=False, type=lambda x: (str(x).lower() == 'true'), help='By default, PSD are assumed desceding in ' \ 'nature; ie PSD increases with attention. ' \ 'Use this flag to reverse that direction. ' \ 'Used to calculate appropriate cutoffs for feedback levels ') parser.add_argument('-export', '--export', required=False, default=False, type=str, help='Path to BciPy data directory of interest.') # parse and define the command line arguments. args = parser.parse_args() data_folder = args.path # Note: this doesn't work on Mac for some reason... supply the path in the console if not data_folder: data_folder = load_experimental_data() channel_index = args.channel plot = args.plot relative_calculation = args.relative reverse = args.feedback_desc export_to_csv = args.export # ignore some pandas warnings, run the psd explore function and print results with warnings.catch_warnings(): warnings.simplefilter('ignore') # explore! psd = psd_explore( data_folder, channel_index, plot=plot, relative=relative_calculation, reverse=reverse, export_to_csv=export_to_csv) print( 'RESULTS:\n' f'{psd}')
2.390625
2
src/lightmlrestapi/testing/__init__.py
sdpython/lightmlrestapi
0
12796093
""" @file @brief Shortcuts to *testing*. """ from .dummy_applications import dummy_application, dummy_application_image from .dummy_applications import dummy_application_fct, dummy_application_neighbors, dummy_application_neighbors_image from .dummy_applications import dummy_application_auth, dummy_mlstorage
1.070313
1
mnotes/cmd_index.py
mattj23/m-notes
0
12796094
""" Commands for index operations """ import os import re import sys import time from typing import List from zipfile import ZipFile, ZIP_DEFLATED from datetime import datetime as DateTime import click from mnotes.environment import MnoteEnvironment, pass_env, echo_line, save_global_index_data from mnotes.notes.index import NoteIndex from mnotes.notes.markdown_notes import NoteInfo valid_chars_pattern = re.compile(r"[^a-z0-9\-]") @click.group(name="index", invoke_without_command=True) @click.pass_context @pass_env def main(env: MnoteEnvironment, ctx: click.core.Context): """ Manage M-Notes' global directory of indices. Indices represent folders containing indexed notes.""" style = env.config.styles env.global_index.load_all() echo_line(" * index mode") if len(env.global_index.indices) == 0 and ctx.invoked_subcommand != "create": echo_line(" * there are ", style.warning("no indices"), " in the global directory") echo_line(" -> to create an index navigate to the folder containing notes you want to add") echo_line(" -> then use the 'mnote index create <name>' command") sys.exit() else: echo_line(" * there are ", style.visible(f"{len(env.global_index.indices)}"), " indices in the global directory") if ctx.invoked_subcommand is None: # Update the global index start_time = time.time() env.global_index.load_all() end_time = time.time() click.echo(style.success(f" * updated all indices, took {end_time - start_time:0.2f} seconds")) click.echo() echo_line(click.style("Current Indices in Global Directory:", bold=True)) for index in env.global_index.indices.values(): echo_line(" * ", style.visible(index.name), f" ({len(index.notes)} notes): {index.path}") echo_line() echo_line(style.visible(" (use 'mnote index reload' to rebuild with checksums)")) @main.command(name="zip") @click.argument("names", type=str, nargs=-1) @pass_env def zip_cmd(env: MnoteEnvironment, names: List[str]): """ Archive an index or multiple/all indices in zip files Creates archives of the markdown notes (text files only, no resources) of the indices by compressing them into zip files. The files will be named with the index name and the current date and time and saved in the current directory. This command can be run from anywhere on the machine, it does not need to be run from inside any of the index folders. You can specify a single index by name, several indices, or leave the 'name' argument blank in order to back up all of them at once. """ style = env.config.styles click.echo() failed = False for index_name in names: if index_name not in env.global_index.indices: echo_line(style.fail(f"There is no index named '{index_name}' to archive!")) failed = True if failed: return if not names: echo_line(style.visible("No index(s) specified, so zipping all of them...")) names = [i.name for i in env.global_index.indices.values()] start = time.time() for name in names: echo_line() echo_line(click.style("Zipping index ", bold=True), style.visible(f"'{name}'", bold=True)) index: NoteIndex = env.global_index.indices[name] now = DateTime.now().strftime("%Y-%m-%d-%H-%M-%S") output_name = os.path.join(env.cwd, f"{name}-{now}.zip") with ZipFile(output_name, "w") as zip_handle: with click.progressbar(index.notes.values()) as notes: for note in notes: note: NoteInfo zip_handle.write(note.file_path, arcname=os.path.relpath(note.file_path, start=index.path), compress_type=ZIP_DEFLATED) end = time.time() echo_line() echo_line(style.success(f"Operation completed in {end - start:0.1f} seconds")) @main.command(name="reload") @pass_env def reload(env: MnoteEnvironment): """ Rebuild all indices using checksums. M-Notes by default will verify the integrity of its cached data by looking at the file size and last modified timestamp to guess at whether the file has changed since it was last read (this is similar to the method which rsync uses) However, it's up to the file system to report these values accurately, so this option uses the SHA1 checksum to rebuild the indicies. It's faster than re-reading all of the files, but slower than simply looking at the file size and timestamps. """ style = env.config.styles start_time = time.time() env.global_index.load_all(True) end_time = time.time() click.echo(style.success(f"Updated all indices with checksums, took {end_time - start_time:0.2f} seconds")) @main.command(name="delete") @click.argument("name", type=str) @pass_env def delete(env: MnoteEnvironment, name: str): """ Delete an index from the global directory. """ style = env.config.styles click.echo() if name not in env.global_index.indices: echo_line(style.fail(f"There is no index named '{name}' to remove!")) return # If we got to this point we can create the index! click.echo() echo_line(style.warning(f"You are about to remove the index named '{name}'", bold=True)) echo_line(style.warning(f"which maps to the folder '{env.cwd}'", bold=True)) click.echo() if click.confirm(click.style(f"Apply this change?", bold=True)): click.echo(style.success("User deleted index")) del env.global_index.index_directory[name] save_global_index_data(env.global_index) else: click.echo(style.fail("User rejected index creation")) @main.command(name="create") @click.argument("name", type=str) @pass_env def create(env: MnoteEnvironment, name: str): """ Create a new index in the global directory with the specified name. """ style = env.config.styles click.echo() # Check if this folder is already part of another index if env.index_of_cwd is not None: echo_line(style.fail(f"The current working directory is already part of an index named " f"'{env.index_of_cwd.name}'. Indexes cannot be contained by other indexes")) return # Check if this index would contain another index contained = env.indices_in_cwd if contained: echo_line(style.fail("The following already-existing indices are subdirectories of the current working " "directory. You can't create an index here because indexes cannot be contained by other " "indexes.")) for index in contained: echo_line(f" * {index.name}: {index.path}") return # Check if the name given is valid if valid_chars_pattern.findall(name): echo_line("The name ", style.fail(f"'{name}'"), " contains invalid characters for an index name") click.echo() echo_line("Index names may contain numbers, lowercase letters, and dashes only. Also consider that shorter " "names are faster to type. Think of the index name as a nickname or an alias for the folder you" "are adding to the global directory.") return if name in env.global_index.indices: echo_line("The name ", style.fail(f"'{name}'"), " is already used by another index.") click.echo() echo_line("Index names may contain numbers, lowercase letters, and dashes only. Also consider that shorter " "names are faster to type. Think of the index name as a nickname or an alias for the folder you" "are adding to the global directory.") # Check for conflicts before allowing M-Notes to add this as an index conflicts = env.global_index.find_conflicts(env.cwd) if conflicts: echo_line(style.fail("There are ID conflicts which would be created if this folder is merged into the global" "directory as it is.")) for id_, conflict in conflicts.items(): click.echo() echo_line(style.warning(f"Conflict for ID {id_}:", bold=True)) for e in conflict.existing: echo_line(style.visible(f" * Already in global: {e.file_path}")) for c in conflict.conflicting: echo_line(style.warning(f" * In this directory: {c.file_path}")) return # If we got to this point we can create the index! click.echo() echo_line(style.warning(f"You are about to create an index named '{name}'", bold=True)) echo_line(style.warning(f"which will be located in the folder '{env.cwd}'", bold=True)) click.echo() if click.confirm(click.style(f"Apply this change?", bold=True)): click.echo(style.success("User created index")) env.global_index.index_directory[name] = {"path": env.cwd} save_global_index_data(env.global_index) else: click.echo(style.fail("User rejected index creation"))
2.96875
3
src/evaluate_attn_maps.py
MkuuWaUjinga/leopart
0
12796095
import numpy as np import os import torch import torch.nn as nn import pytorch_lightning as pl from data.VOCdevkit.vocdata import VOCDataset from torch.utils.data import DataLoader from torchvision.transforms import Compose, Resize, ToTensor, Normalize, GaussianBlur from torchvision.transforms.functional import InterpolationMode from skimage.measure import label class EvaluateAttnMaps(pl.callbacks.Callback): def __init__(self, voc_root: str, train_input_height: int, attn_batch_size: int, num_workers: int, threshold: float = 0.6): # Setup transforms and dataloader pvoc image_transforms = Compose([Resize((train_input_height, train_input_height)), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) target_transforms = Compose([Resize((train_input_height, train_input_height), interpolation=InterpolationMode.NEAREST), ToTensor()]) self.dataset = VOCDataset(root=os.path.join(voc_root, "VOCSegmentation"), image_set="val", transform=image_transforms, target_transform=target_transforms) self.loader = DataLoader(self.dataset, batch_size=attn_batch_size, shuffle=False, num_workers=num_workers, drop_last=True, pin_memory=True) self.threshold = threshold def on_validation_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule): # Evaluate attention maps. if pl_module.global_rank == 0 and pl_module.local_rank == 0: print("\n" + "#" * 20 + "Evaluating attention maps on VOC2012 with threshold: " + str(self.threshold) + "#" * 20) jacs_merged_attn = 0 jacs_all_heads = 0 # If teacher is present use teacher attention as it is also used during training if hasattr(pl_module, 'teacher'): patch_size = pl_module.teacher.patch_size model = pl_module.teacher else: patch_size = pl_module.model.patch_size model = pl_module.model model.eval() for i, (imgs, maps) in enumerate(self.loader): w_featmap = imgs.shape[-2] // patch_size h_featmap = imgs.shape[-1] // patch_size with torch.no_grad(): attentions = model.get_last_selfattention(imgs.to(pl_module.device)) bs = attentions.shape[0] attentions = attentions[..., 0, 1:] # Evaluate two different protocols: merged attention and best head jacs_merged_attn += self.evaluate_merged_attentions(attentions, bs, w_featmap, h_featmap, patch_size, maps) jacs_all_heads += self.evaluate_best_head(attentions, bs, w_featmap, h_featmap, patch_size, maps) jacs_merged_attn /= len(self.dataset) jacs_all_heads /= len(self.dataset) print(f"Merged Jaccard on VOC12: {jacs_merged_attn.item()}") print(f"All heads Jaccard on VOC12: {jacs_all_heads.item()}") pl_module.logger.experiment.log_metric('attn_jacs_voc', jacs_merged_attn.item()) pl_module.logger.experiment.log_metric('all_heads_jacs_voc', jacs_all_heads.item()) def evaluate_best_head(self, attentions: torch.Tensor, bs: int, w_featmap: int, h_featmap: int, patch_size: int, maps: torch.Tensor) -> torch.Tensor: jacs = 0 nh = attentions.shape[1] # number of heads # we keep only a certain percentage of the mass val, idx = torch.sort(attentions) val /= torch.sum(val, dim=-1, keepdim=True) cumval = torch.cumsum(val, dim=-1) th_attn = cumval > (1 - self.threshold) idx2 = torch.argsort(idx) for head in range(nh): th_attn[:, head] = torch.gather(th_attn[:, head], dim=1, index=idx2[:, head]) th_attn = th_attn.reshape(bs, nh, w_featmap, h_featmap).float() # interpolate th_attn = nn.functional.interpolate(th_attn, scale_factor=patch_size, mode="nearest").cpu().numpy() # Calculate IoU for each image for k, map in enumerate(maps): jac = 0 objects = np.unique(map) objects = np.delete(objects, [0, -1]) for o in objects: masko = map == o intersection = masko * th_attn[k] intersection = torch.sum(torch.sum(intersection, dim=-1), dim=-1) union = (masko + th_attn[k]) > 0 union = torch.sum(torch.sum(union, dim=-1), dim=-1) jaco = intersection / union jac += max(jaco) if len(objects) != 0: jac /= len(objects) jacs += jac return jacs def evaluate_merged_attentions(self, attentions: torch.Tensor, bs: int, w_featmap: int, h_featmap: int, patch_size: int, maps: torch.Tensor) -> torch.Tensor: jacs = 0 # Average attentions attentions = sum(attentions[:, i] * 1 / attentions.size(1) for i in range(attentions.size(1))) nh = 1 # number of heads is one as we merged all heads # Gaussian blurring attentions = GaussianBlur(7, sigma=(.6))(attentions.reshape(bs * nh, 1, w_featmap, h_featmap))\ .reshape(bs, nh, -1) # we keep only a certain percentage of the mass val, idx = torch.sort(attentions) val /= torch.sum(val, dim=-1, keepdim=True) cumval = torch.cumsum(val, dim=-1) th_attn = cumval > (1 - self.threshold) idx2 = torch.argsort(idx) th_attn[:, 0] = torch.gather(th_attn[:, 0], dim=1, index=idx2[:, 0]) th_attn = th_attn.reshape(bs, nh, w_featmap, h_featmap).float() # remove components that are less then 3 pixels for j, th_att in enumerate(th_attn): labelled = label(th_att.cpu().numpy()) for k in range(1, np.max(labelled) + 1): mask = labelled == k if np.sum(mask) <= 2: th_attn[j, 0][mask] = 0 # interpolate th_attn = nn.functional.interpolate(th_attn, scale_factor=patch_size, mode="nearest").cpu().numpy() # Calculate IoU for each image for k, map in enumerate(maps): gt_fg_mask = (map != 0.).float() intersection = gt_fg_mask * th_attn[k] intersection = torch.sum(torch.sum(intersection, dim=-1), dim=-1) union = (gt_fg_mask + th_attn[k]) > 0 union = torch.sum(torch.sum(union, dim=-1), dim=-1) jacs += intersection / union return jacs
2.078125
2
students/K33402/Karatetskaya_Maria/lab1/4/server.py
marysadness/ITMO_ICT_WebDevelopment_2021-2022
0
12796096
import socket, threading server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host = "127.0.0.1" port = 9090 server.bind((host, port)) server.listen(5) clients = list() end = list() def get(): while True: client, addr = server.accept() clients.append(client) print(f'сервер подключен через {addr}: количество клиентов: {len (clients)}', end = '\n') def recv_data(client): while True: try: indata = client.recv(1024) except Exception: clients.remove(client) end.remove(client) print( f'Сервер отключен: количество клиентов: {len (clients)}', end = '\n') break print(indata.decode('utf-8')) for i in clients: if i != client: i.send(indata) def send_mes(): while True: print('') outdata = input('') print() for client in clients: client.send(f"Сервер: {outdata}".encode('utf-8)')) def get_mes(): while True: for i in clients: if i in end: continue index = threading.Thread(target=recv_data, args=(i,)) index.start() end.append(i) t1 = threading.Thread(target=send_mes, name='input') t1.start() t2 = threading.Thread(target=get_mes, name='out') t2.start() t3 = threading.Thread(target=get(), name='get') t3.start() t2.join() for i in clients: i.close()
3.125
3
src/deep_autoencoder.py
Cc618/PyTorch-Collections
0
12796097
# Autoencoder using convolutional layers # Dataset : MNIST # Requires : PIL, matplotlib # Inspired by https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html # To compress data : net.encode(data) # To decompress data : net.decode(data) # To mutate data : net(data) import os import numpy as np import matplotlib.pyplot as plt import torch as T from torch import nn from torch import cuda import torch.nn.functional as F from torchvision import transforms import torchvision from torchvision.datasets import MNIST from torch.nn import ReLU, Linear, Sigmoid, Conv2d, ConvTranspose2d, MaxPool2d import PIL.Image as im from utils import dataset_dir, models_dir # Displays an image (1 dim tensor) # t has values in [0, 1] def imshow(t): transforms.ToPILImage()(t).show() # Show in matplotlib def gridshow(img): npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() class Net(nn.Module): def __init__(self, hidden_size, latent_size): super().__init__() self.latent_size = latent_size self.encodeConv1 = Conv2d(1, 16, 4) self.encodeConv2 = Conv2d(16, 32, 2) self.encodeFC1 = Linear(800, hidden_size) self.encodeFC2 = Linear(hidden_size, self.latent_size) self.decodeFC1 = Linear(self.latent_size, 13 * 13) self.decodeConv1 = ConvTranspose2d(1, 1, 2) self.decodeFC2 = Linear(14 * 14, 28 * 28) def encode(self, x): x = MaxPool2d(2)(F.relu(self.encodeConv1(x))) x = MaxPool2d(2)(F.relu(self.encodeConv2(x))) x = x.view(-1, 800) x = F.relu(self.encodeFC1(x)) x = T.sigmoid(self.encodeFC2(x)) return x def decode(self, x): x = F.relu(self.decodeFC1(x)) x = x.view(-1, 1, 13, 13) x = F.relu(self.decodeConv1(x)) x = x.view(-1, 14 * 14) x = T.sigmoid(self.decodeFC2(x)) x = x.view(-1, 1, 28, 28) return x def forward(self, x): return self.decode(self.encode(x)) # Hyper params latent_size = 10 hidden_size = 256 epochs = 3 batch_size = 10 learning_rate = .0002 train_or_test = 'test' path = models_dir + '/deep_autoencoder' # Training device device = T.device('cuda:0' if cuda.is_available() else 'cpu') # Dataset trans = transforms.ToTensor() dataset = MNIST(root=dataset_dir, train=True, download=True, transform=trans) loader = T.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0) # Model net = Net(hidden_size, latent_size) net.to(device) if train_or_test == 'train': # Load if os.path.exists(path): net.load_state_dict(T.load(path)) print('Model loaded') # Train optim = T.optim.Adam(net.parameters(), lr=learning_rate, betas=(.9, .999)) criterion = nn.MSELoss() for e in range(epochs): avg_loss = 0 for i, data in enumerate(loader, 0): # Only inputs (no labels) inputs, _ = data # Zero the parameter gradients optim.zero_grad() # Predictions x = inputs.to(device) y = net(x) # Back prop loss = criterion(y, x) loss.backward() optim.step() avg_loss += loss.item() # Stats print_freq = 100 if i % print_freq == print_freq - 1: print(f'Epoch {e + 1:2d}, Batch {i + 1:5d}, Loss {avg_loss / print_freq:.3f}') avg_loss = 0.0 # Save T.save(net.state_dict(), path) print('Model trained and saved') else: # Load net.load_state_dict(T.load(path)) # Test dataiter = iter(loader) images, _ = dataiter.next() # Show ground truth gridshow(torchvision.utils.make_grid(images)) # Show predictions with T.no_grad(): preds = T.cat([net(images[i].view(1, 1, 28, 28).to(device)).view(1, 1, 28, 28).cpu() for i in range(batch_size)]) preds = T.tensor(preds) gridshow(torchvision.utils.make_grid(preds))
3.203125
3
src/main/python/monocyte/handler/ec2.py
claytonbrown/aws-monocyte
20
12796098
# Monocyte - Search and Destroy unwanted AWS Resources relentlessly. # Copyright 2015 Immobilien Scout GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from boto import ec2 from boto.exception import EC2ResponseError from monocyte.handler import Resource, Handler class Instance(Handler): VALID_TARGET_STATES = ["terminated", "shutting-down"] def fetch_region_names(self): return [region.name for region in ec2.regions()] def fetch_unwanted_resources(self): for region_name in self.region_names: connection = ec2.connect_to_region(region_name) resources = connection.get_only_instances() or [] for resource in resources: resource_wrapper = Resource(resource=resource, resource_type=self.resource_type, resource_id=resource.id, creation_date=resource.launch_time, region=region_name) if resource.id in self.ignored_resources: self.logger.info('IGNORE ' + self.to_string(resource_wrapper)) continue yield resource_wrapper def to_string(self, resource): return "ec2 instance found in {region.name}, " \ "with identifier {id}, instance type is {instance_type}, created {launch_time}, " \ "dnsname is {public_dns_name}, key {key_name}, with state {_state}".format(**vars(resource.wrapped)) def delete(self, resource): if resource.wrapped.state in Instance.VALID_TARGET_STATES: raise Warning("state '{0}' is a valid target state, skipping".format( resource.wrapped.state)) connection = ec2.connect_to_region(resource.region) if self.dry_run: try: connection.terminate_instances([resource.wrapped.id], dry_run=True) except EC2ResponseError as exc: if exc.status == 412: # Precondition Failed raise Warning("Termination {message}".format(**vars(exc))) raise else: instances = connection.terminate_instances([resource.wrapped.id], dry_run=False) self.logger.info("Initiating shutdown sequence for {0}".format(instances)) return instances class Volume(Handler): def fetch_region_names(self): return [region.name for region in ec2.regions()] def fetch_unwanted_resources(self): for region_name in self.region_names: connection = ec2.connect_to_region(region_name) resources = connection.get_all_volumes() or [] for resource in resources: resource_wrapper = Resource(resource=resource, resource_type=self.resource_type, resource_id=resource.id, creation_date=resource.create_time, region=region_name) if resource.id in self.ignored_resources: self.logger.info('IGNORE ' + self.to_string(resource_wrapper)) continue yield resource_wrapper def to_string(self, resource): return "ebs volume found in {region.name}, " \ "with identifier {id}, created {create_time}, " \ "with state {status}".format(**vars(resource.wrapped)) def delete(self, resource): connection = ec2.connect_to_region(resource.region) if self.dry_run: try: connection.delete_volume(resource.wrapped.id, dry_run=True) except EC2ResponseError as exc: if exc.status == 412: # Precondition Failed warnings.warn(Warning("Termination {message}".format(**vars(exc)))) raise else: self.logger.info("Initiating deletion of EBS volume {0}".format(resource.wrapped.id)) connection.delete_volume(resource.wrapped.id, dry_run=False)
2.015625
2
vendas/forms.py
Moisestuli/karrata
0
12796099
<gh_stars>0 from django import forms from vendas.models import Venda class VendaAdminForm(forms.ModelForm): class Meta: model = Venda fields = ('nome_client','telefone','cidade','email','produto','deu',)
1.84375
2
deck_code.py
BenWiederhake/solitaire_aide
0
12796100
#!/usr/bin/env python3 import common import os import sys def run_encode(base): x = 0 for i in range(base) b = sys.stdin.buffer.read(1) if b == b'': break def run_decode(base): raise NotImplementedError() def usage(progname): print('USAGE: {} {{encode | decode}} [<BASENUM>]'.format(progname), file=sys.stderr) exit(1) def run(argv): if not 2 <= len(argv) <= 3: print('error: bad argument count', file=sys.stderr) usage(argv[0]) base = None try: base = int(argv[2]) if not 1 < base < 1000: print('error: "{}" is not a valid base (must be integer between 1 and 1000)'.format(argv[2]), file=sys.stderr) usage(argv[0]) except IndexError: pass except ValueError: print('error: "{}" is not a valid base (must be integer)'.format(argv[2]), file=sys.stderr) usage(argv[0]) if len(argv) == 2: base = os.environ.get('DECKCODE_BASE') if base is None: base = os.environ.get('DECKCODE_BASE') if base is None: base = 54 else: print('note: base set to {}'.format(base), file=sys.stderr) if argv[1] == 'encode': run_encode(base) elif argv[1] == 'decode': run_decode(base) else: print('error: unknown command "{}"'.format(argv[1]), file=sys.stderr) usage(argv[0]) if __name__ == '__main__': run(sys.argv)
3.359375
3
twitch-chat-reader/acapyla.py
Evshaddock/scripts
11
12796101
from pathlib import Path import requests import string import urllib import random import json import sys def acapyla(quote, voicename="willfromafar"): try: voiceid = "enu_" + voicename + "_22k_ns.bvcu" except IndexError: voiceid = "enu_willfromafar_22k_ns.bvcu" letters = string.ascii_lowercase premail = ''.join(random.choice(letters) for i in range(64)) email = premail + "@gmail.com" noncerl = "https://acapelavoices.acapela-group.com/index/getnonce/" noncedata = {'googleid':email} noncer = requests.post(url = noncerl, data = noncedata) nonce = noncer.text[10:50] synthrl = "http://www.acapela-group.com:8080/webservices/1-34-01-Mobility/Synthesizer" synthdata = "req_voice=" + voiceid + "&cl_pwd=&cl_vers=1-30&req_echo=ON&cl_login=AcapelaGroup&req_comment=%7B%22nonce%22%3A%22" + nonce + "%22%2C%22user%22%3A%22" + email + "%22%7D&req_text=" + quote + "&cl_env=ACAPELA_VOICES&prot_vers=2&cl_app=AcapelaGroup_WebDemo_Android" headers = {'content-type': 'application/x-www-form-urlencoded'} synthr = requests.post(url = synthrl, data = synthdata, headers = headers) minuspre = synthr.text[synthr.text.find('http://'):] minussuf = minuspre.split(".mp3", 1)[0] synthresult = minussuf + ".mp3" urllib.request.urlretrieve(synthresult, str(Path.home()) + "/.dominae/out/tts/" + email[:8] + ".mp3") return email[:8]
2.71875
3
getFeed.py
kjohn01/fbexample
0
12796102
<gh_stars>0 #!/usr/bin/python # -*- coding: UTF-8 -*- import requests import json import datetime import pandas as pd from dateutil.parser import parse def handleDate(x): if isinstance(x, datetime.date): return "{}-{}-{}".format(x.year, x.month, x.day) token = '<KEY>' group = {'689157281218904':'台北技能交換'} feeds = [] for ele in group: res = requests.get('https://graph.facebook.com/v2.9/{}/feed?limit=100&access_token={}'.format(ele, token)) while 'paging' in res.json(): for information in res.json()['data']: if 'message' in information: feeds.append([group[ele], information['message'], parse(information['updated_time']).date(), information['id']]) res = requests.get(res.json()['paging']['next']) # print(json.dumps(feeds, indent=4, separators=(',', ': '), ensure_ascii=False, default = handleDate)) with open('feeds.json', 'w') as outfile: json.dump(feeds, outfile, indent=4, separators=(',', ': '), ensure_ascii=False, default = handleDate) #最後將list轉換成dataframe,並輸出成csv檔 # # information_df = pd.DataFrame(feeds, columns=['粉絲專頁', '發文內容', '發文時間']) # information_df.to_csv('Data Visualization Information.csv', index=False)
2.75
3
agnes/algos/configs/a2c_config.py
rotinov/CITUS
24
12796103
<gh_stars>10-100 from typing import Dict, Tuple def atari_config() -> Dict: return dict( timesteps=10e6, nsteps=32, nminibatches=1, gamma=0.99, lam=0.95, noptepochs=1, max_grad_norm=0.5, learning_rate=lambda x: 7e-4*x, vf_coef=0.5, ent_coef=0.01, bptt=16 ) def mujoco_config() -> Dict: return dict( timesteps=1e6, nsteps=64, nminibatches=1, gamma=0.99, lam=0.95, noptepochs=1, max_grad_norm=0.5, learning_rate=lambda x: 7e-4*x, vf_coef=0.5, ent_coef=0.0, bptt=8 ) def get_config(env_type: str) -> Tuple[Dict, str]: if env_type == 'mujoco': cnfg = mujoco_config() elif env_type == 'atari': cnfg = atari_config() else: cnfg = atari_config() return cnfg, env_type
2.484375
2
cottonformation/res/batch.py
MacHu-GWU/cottonformation-project
5
12796104
# -*- coding: utf-8 -*- """ This module """ import attr import typing from ..core.model import ( Property, Resource, Tag, GetAtt, TypeHint, TypeCheck, ) from ..core.constant import AttrMeta #--- Property declaration --- @attr.s class PropJobDefinitionAuthorizationConfig(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.AuthorizationConfig" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html Property Document: - ``p_AccessPointId``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html#cfn-batch-jobdefinition-authorizationconfig-accesspointid - ``p_Iam``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html#cfn-batch-jobdefinition-authorizationconfig-iam """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.AuthorizationConfig" p_AccessPointId: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "AccessPointId"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html#cfn-batch-jobdefinition-authorizationconfig-accesspointid""" p_Iam: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Iam"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-authorizationconfig.html#cfn-batch-jobdefinition-authorizationconfig-iam""" @attr.s class PropJobDefinitionResourceRequirement(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.ResourceRequirement" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html Property Document: - ``p_Type``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html#cfn-batch-jobdefinition-resourcerequirement-type - ``p_Value``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html#cfn-batch-jobdefinition-resourcerequirement-value """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.ResourceRequirement" p_Type: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Type"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html#cfn-batch-jobdefinition-resourcerequirement-type""" p_Value: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Value"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-resourcerequirement.html#cfn-batch-jobdefinition-resourcerequirement-value""" @attr.s class PropJobDefinitionEnvironment(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Environment" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html Property Document: - ``p_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html#cfn-batch-jobdefinition-environment-name - ``p_Value``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html#cfn-batch-jobdefinition-environment-value """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Environment" p_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html#cfn-batch-jobdefinition-environment-name""" p_Value: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Value"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-environment.html#cfn-batch-jobdefinition-environment-value""" @attr.s class PropJobDefinitionVolumesHost(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.VolumesHost" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumeshost.html Property Document: - ``p_SourcePath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumeshost.html#cfn-batch-jobdefinition-volumeshost-sourcepath """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.VolumesHost" p_SourcePath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "SourcePath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumeshost.html#cfn-batch-jobdefinition-volumeshost-sourcepath""" @attr.s class PropJobQueueComputeEnvironmentOrder(Property): """ AWS Object Type = "AWS::Batch::JobQueue.ComputeEnvironmentOrder" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html Property Document: - ``rp_ComputeEnvironment``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html#cfn-batch-jobqueue-computeenvironmentorder-computeenvironment - ``rp_Order``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html#cfn-batch-jobqueue-computeenvironmentorder-order """ AWS_OBJECT_TYPE = "AWS::Batch::JobQueue.ComputeEnvironmentOrder" rp_ComputeEnvironment: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "ComputeEnvironment"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html#cfn-batch-jobqueue-computeenvironmentorder-computeenvironment""" rp_Order: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "Order"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobqueue-computeenvironmentorder.html#cfn-batch-jobqueue-computeenvironmentorder-order""" @attr.s class PropJobDefinitionSecret(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Secret" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html Property Document: - ``rp_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html#cfn-batch-jobdefinition-secret-name - ``rp_ValueFrom``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html#cfn-batch-jobdefinition-secret-valuefrom """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Secret" rp_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html#cfn-batch-jobdefinition-secret-name""" rp_ValueFrom: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "ValueFrom"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-secret.html#cfn-batch-jobdefinition-secret-valuefrom""" @attr.s class PropJobDefinitionNetworkConfiguration(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.NetworkConfiguration" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-networkconfiguration.html Property Document: - ``p_AssignPublicIp``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-networkconfiguration.html#cfn-batch-jobdefinition-containerproperties-networkconfiguration-assignpublicip """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.NetworkConfiguration" p_AssignPublicIp: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "AssignPublicIp"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-networkconfiguration.html#cfn-batch-jobdefinition-containerproperties-networkconfiguration-assignpublicip""" @attr.s class PropJobDefinitionLogConfiguration(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.LogConfiguration" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html Property Document: - ``rp_LogDriver``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-logdriver - ``p_Options``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-options - ``p_SecretOptions``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-secretoptions """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.LogConfiguration" rp_LogDriver: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "LogDriver"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-logdriver""" p_Options: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Options"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-options""" p_SecretOptions: typing.List[typing.Union['PropJobDefinitionSecret', dict]] = attr.ib( default=None, converter=PropJobDefinitionSecret.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionSecret), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "SecretOptions"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-logconfiguration.html#cfn-batch-jobdefinition-containerproperties-logconfiguration-secretoptions""" @attr.s class PropComputeEnvironmentLaunchTemplateSpecification(Property): """ AWS Object Type = "AWS::Batch::ComputeEnvironment.LaunchTemplateSpecification" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html Property Document: - ``p_LaunchTemplateId``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-launchtemplateid - ``p_LaunchTemplateName``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-launchtemplatename - ``p_Version``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-version """ AWS_OBJECT_TYPE = "AWS::Batch::ComputeEnvironment.LaunchTemplateSpecification" p_LaunchTemplateId: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "LaunchTemplateId"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-launchtemplateid""" p_LaunchTemplateName: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "LaunchTemplateName"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-launchtemplatename""" p_Version: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Version"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-launchtemplatespecification.html#cfn-batch-computeenvironment-launchtemplatespecification-version""" @attr.s class PropJobDefinitionMountPoints(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.MountPoints" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html Property Document: - ``p_ContainerPath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-containerpath - ``p_ReadOnly``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-readonly - ``p_SourceVolume``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-sourcevolume """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.MountPoints" p_ContainerPath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ContainerPath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-containerpath""" p_ReadOnly: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "ReadOnly"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-readonly""" p_SourceVolume: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "SourceVolume"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-mountpoints.html#cfn-batch-jobdefinition-mountpoints-sourcevolume""" @attr.s class PropSchedulingPolicyShareAttributes(Property): """ AWS Object Type = "AWS::Batch::SchedulingPolicy.ShareAttributes" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html Property Document: - ``p_ShareIdentifier``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html#cfn-batch-schedulingpolicy-shareattributes-shareidentifier - ``p_WeightFactor``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html#cfn-batch-schedulingpolicy-shareattributes-weightfactor """ AWS_OBJECT_TYPE = "AWS::Batch::SchedulingPolicy.ShareAttributes" p_ShareIdentifier: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ShareIdentifier"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html#cfn-batch-schedulingpolicy-shareattributes-shareidentifier""" p_WeightFactor: float = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(float)), metadata={AttrMeta.PROPERTY_NAME: "WeightFactor"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-shareattributes.html#cfn-batch-schedulingpolicy-shareattributes-weightfactor""" @attr.s class PropJobDefinitionEvaluateOnExit(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.EvaluateOnExit" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html Property Document: - ``rp_Action``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-action - ``p_OnExitCode``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onexitcode - ``p_OnReason``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onreason - ``p_OnStatusReason``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onstatusreason """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.EvaluateOnExit" rp_Action: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Action"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-action""" p_OnExitCode: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "OnExitCode"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onexitcode""" p_OnReason: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "OnReason"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onreason""" p_OnStatusReason: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "OnStatusReason"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-evaluateonexit.html#cfn-batch-jobdefinition-evaluateonexit-onstatusreason""" @attr.s class PropJobDefinitionUlimit(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Ulimit" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html Property Document: - ``rp_HardLimit``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-hardlimit - ``rp_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-name - ``rp_SoftLimit``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-softlimit """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Ulimit" rp_HardLimit: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "HardLimit"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-hardlimit""" rp_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-name""" rp_SoftLimit: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "SoftLimit"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-ulimit.html#cfn-batch-jobdefinition-ulimit-softlimit""" @attr.s class PropJobDefinitionFargatePlatformConfiguration(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.FargatePlatformConfiguration" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-fargateplatformconfiguration.html Property Document: - ``p_PlatformVersion``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-fargateplatformconfiguration.html#cfn-batch-jobdefinition-containerproperties-fargateplatformconfiguration-platformversion """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.FargatePlatformConfiguration" p_PlatformVersion: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "PlatformVersion"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-fargateplatformconfiguration.html#cfn-batch-jobdefinition-containerproperties-fargateplatformconfiguration-platformversion""" @attr.s class PropJobDefinitionTimeout(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Timeout" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-timeout.html Property Document: - ``p_AttemptDurationSeconds``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-timeout.html#cfn-batch-jobdefinition-timeout-attemptdurationseconds """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Timeout" p_AttemptDurationSeconds: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "AttemptDurationSeconds"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-timeout.html#cfn-batch-jobdefinition-timeout-attemptdurationseconds""" @attr.s class PropJobDefinitionTmpfs(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Tmpfs" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html Property Document: - ``rp_ContainerPath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-containerpath - ``rp_Size``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-size - ``p_MountOptions``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-mountoptions """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Tmpfs" rp_ContainerPath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "ContainerPath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-containerpath""" rp_Size: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "Size"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-size""" p_MountOptions: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "MountOptions"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-tmpfs.html#cfn-batch-jobdefinition-tmpfs-mountoptions""" @attr.s class PropJobDefinitionEfsVolumeConfiguration(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.EfsVolumeConfiguration" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html Property Document: - ``rp_FileSystemId``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-filesystemid - ``p_AuthorizationConfig``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-authorizationconfig - ``p_RootDirectory``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-rootdirectory - ``p_TransitEncryption``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-transitencryption - ``p_TransitEncryptionPort``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-transitencryptionport """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.EfsVolumeConfiguration" rp_FileSystemId: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "FileSystemId"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-filesystemid""" p_AuthorizationConfig: typing.Union['PropJobDefinitionAuthorizationConfig', dict] = attr.ib( default=None, converter=PropJobDefinitionAuthorizationConfig.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionAuthorizationConfig)), metadata={AttrMeta.PROPERTY_NAME: "AuthorizationConfig"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-authorizationconfig""" p_RootDirectory: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "RootDirectory"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-rootdirectory""" p_TransitEncryption: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "TransitEncryption"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-transitencryption""" p_TransitEncryptionPort: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "TransitEncryptionPort"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-efsvolumeconfiguration.html#cfn-batch-jobdefinition-efsvolumeconfiguration-transitencryptionport""" @attr.s class PropJobDefinitionDevice(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Device" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html Property Document: - ``p_ContainerPath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-containerpath - ``p_HostPath``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-hostpath - ``p_Permissions``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-permissions """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Device" p_ContainerPath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ContainerPath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-containerpath""" p_HostPath: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "HostPath"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-hostpath""" p_Permissions: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Permissions"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-device.html#cfn-batch-jobdefinition-device-permissions""" @attr.s class PropComputeEnvironmentEc2ConfigurationObject(Property): """ AWS Object Type = "AWS::Batch::ComputeEnvironment.Ec2ConfigurationObject" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html Property Document: - ``rp_ImageType``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html#cfn-batch-computeenvironment-ec2configurationobject-imagetype - ``p_ImageIdOverride``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html#cfn-batch-computeenvironment-ec2configurationobject-imageidoverride """ AWS_OBJECT_TYPE = "AWS::Batch::ComputeEnvironment.Ec2ConfigurationObject" rp_ImageType: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "ImageType"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html#cfn-batch-computeenvironment-ec2configurationobject-imagetype""" p_ImageIdOverride: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ImageIdOverride"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-ec2configurationobject.html#cfn-batch-computeenvironment-ec2configurationobject-imageidoverride""" @attr.s class PropJobDefinitionVolumes(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.Volumes" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html Property Document: - ``p_EfsVolumeConfiguration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-efsvolumeconfiguration - ``p_Host``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-host - ``p_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-name """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.Volumes" p_EfsVolumeConfiguration: typing.Union['PropJobDefinitionEfsVolumeConfiguration', dict] = attr.ib( default=None, converter=PropJobDefinitionEfsVolumeConfiguration.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionEfsVolumeConfiguration)), metadata={AttrMeta.PROPERTY_NAME: "EfsVolumeConfiguration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-efsvolumeconfiguration""" p_Host: typing.Union['PropJobDefinitionVolumesHost', dict] = attr.ib( default=None, converter=PropJobDefinitionVolumesHost.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionVolumesHost)), metadata={AttrMeta.PROPERTY_NAME: "Host"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-host""" p_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-volumes.html#cfn-batch-jobdefinition-volumes-name""" @attr.s class PropSchedulingPolicyFairsharePolicy(Property): """ AWS Object Type = "AWS::Batch::SchedulingPolicy.FairsharePolicy" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html Property Document: - ``p_ComputeReservation``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-computereservation - ``p_ShareDecaySeconds``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-sharedecayseconds - ``p_ShareDistribution``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-sharedistribution """ AWS_OBJECT_TYPE = "AWS::Batch::SchedulingPolicy.FairsharePolicy" p_ComputeReservation: float = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(float)), metadata={AttrMeta.PROPERTY_NAME: "ComputeReservation"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-computereservation""" p_ShareDecaySeconds: float = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(float)), metadata={AttrMeta.PROPERTY_NAME: "ShareDecaySeconds"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-sharedecayseconds""" p_ShareDistribution: typing.List[typing.Union['PropSchedulingPolicyShareAttributes', dict]] = attr.ib( default=None, converter=PropSchedulingPolicyShareAttributes.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropSchedulingPolicyShareAttributes), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "ShareDistribution"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-schedulingpolicy-fairsharepolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy-sharedistribution""" @attr.s class PropComputeEnvironmentComputeResources(Property): """ AWS Object Type = "AWS::Batch::ComputeEnvironment.ComputeResources" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html Property Document: - ``rp_MaxvCpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-maxvcpus - ``rp_Subnets``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-subnets - ``rp_Type``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-type - ``p_AllocationStrategy``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-allocationstrategy - ``p_BidPercentage``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-bidpercentage - ``p_DesiredvCpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-desiredvcpus - ``p_Ec2Configuration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-ec2configuration - ``p_Ec2KeyPair``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-ec2keypair - ``p_ImageId``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-imageid - ``p_InstanceRole``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-instancerole - ``p_InstanceTypes``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-instancetypes - ``p_LaunchTemplate``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-launchtemplate - ``p_MinvCpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-minvcpus - ``p_PlacementGroup``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-placementgroup - ``p_SecurityGroupIds``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-securitygroupids - ``p_SpotIamFleetRole``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-spotiamfleetrole - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-tags """ AWS_OBJECT_TYPE = "AWS::Batch::ComputeEnvironment.ComputeResources" rp_MaxvCpus: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "MaxvCpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-maxvcpus""" rp_Subnets: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list)), metadata={AttrMeta.PROPERTY_NAME: "Subnets"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-subnets""" rp_Type: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Type"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-type""" p_AllocationStrategy: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "AllocationStrategy"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-allocationstrategy""" p_BidPercentage: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "BidPercentage"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-bidpercentage""" p_DesiredvCpus: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "DesiredvCpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-desiredvcpus""" p_Ec2Configuration: typing.List[typing.Union['PropComputeEnvironmentEc2ConfigurationObject', dict]] = attr.ib( default=None, converter=PropComputeEnvironmentEc2ConfigurationObject.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropComputeEnvironmentEc2ConfigurationObject), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Ec2Configuration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-ec2configuration""" p_Ec2KeyPair: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Ec2KeyPair"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-ec2keypair""" p_ImageId: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ImageId"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-imageid""" p_InstanceRole: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "InstanceRole"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-instancerole""" p_InstanceTypes: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "InstanceTypes"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-instancetypes""" p_LaunchTemplate: typing.Union['PropComputeEnvironmentLaunchTemplateSpecification', dict] = attr.ib( default=None, converter=PropComputeEnvironmentLaunchTemplateSpecification.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropComputeEnvironmentLaunchTemplateSpecification)), metadata={AttrMeta.PROPERTY_NAME: "LaunchTemplate"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-launchtemplate""" p_MinvCpus: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "MinvCpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-minvcpus""" p_PlacementGroup: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "PlacementGroup"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-placementgroup""" p_SecurityGroupIds: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "SecurityGroupIds"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-securitygroupids""" p_SpotIamFleetRole: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "SpotIamFleetRole"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-spotiamfleetrole""" p_Tags: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-computeenvironment-computeresources.html#cfn-batch-computeenvironment-computeresources-tags""" @attr.s class PropJobDefinitionRetryStrategy(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.RetryStrategy" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html Property Document: - ``p_Attempts``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html#cfn-batch-jobdefinition-retrystrategy-attempts - ``p_EvaluateOnExit``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html#cfn-batch-jobdefinition-retrystrategy-evaluateonexit """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.RetryStrategy" p_Attempts: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "Attempts"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html#cfn-batch-jobdefinition-retrystrategy-attempts""" p_EvaluateOnExit: typing.List[typing.Union['PropJobDefinitionEvaluateOnExit', dict]] = attr.ib( default=None, converter=PropJobDefinitionEvaluateOnExit.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionEvaluateOnExit), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "EvaluateOnExit"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-retrystrategy.html#cfn-batch-jobdefinition-retrystrategy-evaluateonexit""" @attr.s class PropJobDefinitionLinuxParameters(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.LinuxParameters" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html Property Document: - ``p_Devices``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-devices - ``p_InitProcessEnabled``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-initprocessenabled - ``p_MaxSwap``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-maxswap - ``p_SharedMemorySize``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-sharedmemorysize - ``p_Swappiness``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-swappiness - ``p_Tmpfs``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-tmpfs """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.LinuxParameters" p_Devices: typing.List[typing.Union['PropJobDefinitionDevice', dict]] = attr.ib( default=None, converter=PropJobDefinitionDevice.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionDevice), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Devices"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-devices""" p_InitProcessEnabled: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "InitProcessEnabled"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-initprocessenabled""" p_MaxSwap: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "MaxSwap"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-maxswap""" p_SharedMemorySize: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "SharedMemorySize"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-sharedmemorysize""" p_Swappiness: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "Swappiness"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-swappiness""" p_Tmpfs: typing.List[typing.Union['PropJobDefinitionTmpfs', dict]] = attr.ib( default=None, converter=PropJobDefinitionTmpfs.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionTmpfs), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Tmpfs"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties-linuxparameters.html#cfn-batch-jobdefinition-containerproperties-linuxparameters-tmpfs""" @attr.s class PropJobDefinitionContainerProperties(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.ContainerProperties" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html Property Document: - ``rp_Image``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-image - ``p_Command``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-command - ``p_Environment``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-environment - ``p_ExecutionRoleArn``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-executionrolearn - ``p_FargatePlatformConfiguration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-fargateplatformconfiguration - ``p_InstanceType``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-instancetype - ``p_JobRoleArn``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-jobrolearn - ``p_LinuxParameters``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-linuxparameters - ``p_LogConfiguration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-logconfiguration - ``p_Memory``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-memory - ``p_MountPoints``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-mountpoints - ``p_NetworkConfiguration``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-networkconfiguration - ``p_Privileged``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-privileged - ``p_ReadonlyRootFilesystem``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-readonlyrootfilesystem - ``p_ResourceRequirements``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-resourcerequirements - ``p_Secrets``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-secrets - ``p_Ulimits``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-ulimits - ``p_User``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-user - ``p_Vcpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-vcpus - ``p_Volumes``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-volumes """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.ContainerProperties" rp_Image: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Image"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-image""" p_Command: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Command"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-command""" p_Environment: typing.List[typing.Union['PropJobDefinitionEnvironment', dict]] = attr.ib( default=None, converter=PropJobDefinitionEnvironment.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionEnvironment), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Environment"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-environment""" p_ExecutionRoleArn: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ExecutionRoleArn"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-executionrolearn""" p_FargatePlatformConfiguration: typing.Union['PropJobDefinitionFargatePlatformConfiguration', dict] = attr.ib( default=None, converter=PropJobDefinitionFargatePlatformConfiguration.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionFargatePlatformConfiguration)), metadata={AttrMeta.PROPERTY_NAME: "FargatePlatformConfiguration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-fargateplatformconfiguration""" p_InstanceType: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "InstanceType"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-instancetype""" p_JobRoleArn: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "JobRoleArn"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-jobrolearn""" p_LinuxParameters: typing.Union['PropJobDefinitionLinuxParameters', dict] = attr.ib( default=None, converter=PropJobDefinitionLinuxParameters.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionLinuxParameters)), metadata={AttrMeta.PROPERTY_NAME: "LinuxParameters"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-linuxparameters""" p_LogConfiguration: typing.Union['PropJobDefinitionLogConfiguration', dict] = attr.ib( default=None, converter=PropJobDefinitionLogConfiguration.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionLogConfiguration)), metadata={AttrMeta.PROPERTY_NAME: "LogConfiguration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-logconfiguration""" p_Memory: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "Memory"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-memory""" p_MountPoints: typing.List[typing.Union['PropJobDefinitionMountPoints', dict]] = attr.ib( default=None, converter=PropJobDefinitionMountPoints.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionMountPoints), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "MountPoints"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-mountpoints""" p_NetworkConfiguration: typing.Union['PropJobDefinitionNetworkConfiguration', dict] = attr.ib( default=None, converter=PropJobDefinitionNetworkConfiguration.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionNetworkConfiguration)), metadata={AttrMeta.PROPERTY_NAME: "NetworkConfiguration"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-networkconfiguration""" p_Privileged: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "Privileged"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-privileged""" p_ReadonlyRootFilesystem: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "ReadonlyRootFilesystem"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-readonlyrootfilesystem""" p_ResourceRequirements: typing.List[typing.Union['PropJobDefinitionResourceRequirement', dict]] = attr.ib( default=None, converter=PropJobDefinitionResourceRequirement.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionResourceRequirement), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "ResourceRequirements"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-resourcerequirements""" p_Secrets: typing.List[typing.Union['PropJobDefinitionSecret', dict]] = attr.ib( default=None, converter=PropJobDefinitionSecret.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionSecret), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Secrets"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-secrets""" p_Ulimits: typing.List[typing.Union['PropJobDefinitionUlimit', dict]] = attr.ib( default=None, converter=PropJobDefinitionUlimit.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionUlimit), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Ulimits"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-ulimits""" p_User: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "User"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-user""" p_Vcpus: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "Vcpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-vcpus""" p_Volumes: typing.List[typing.Union['PropJobDefinitionVolumes', dict]] = attr.ib( default=None, converter=PropJobDefinitionVolumes.from_list, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionVolumes), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "Volumes"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-containerproperties.html#cfn-batch-jobdefinition-containerproperties-volumes""" @attr.s class PropJobDefinitionNodeRangeProperty(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.NodeRangeProperty" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html Property Document: - ``rp_TargetNodes``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html#cfn-batch-jobdefinition-noderangeproperty-targetnodes - ``p_Container``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html#cfn-batch-jobdefinition-noderangeproperty-container """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.NodeRangeProperty" rp_TargetNodes: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "TargetNodes"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html#cfn-batch-jobdefinition-noderangeproperty-targetnodes""" p_Container: typing.Union['PropJobDefinitionContainerProperties', dict] = attr.ib( default=None, converter=PropJobDefinitionContainerProperties.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionContainerProperties)), metadata={AttrMeta.PROPERTY_NAME: "Container"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-noderangeproperty.html#cfn-batch-jobdefinition-noderangeproperty-container""" @attr.s class PropJobDefinitionNodeProperties(Property): """ AWS Object Type = "AWS::Batch::JobDefinition.NodeProperties" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html Property Document: - ``rp_MainNode``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-mainnode - ``rp_NodeRangeProperties``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-noderangeproperties - ``rp_NumNodes``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-numnodes """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition.NodeProperties" rp_MainNode: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "MainNode"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-mainnode""" rp_NodeRangeProperties: typing.List[typing.Union['PropJobDefinitionNodeRangeProperty', dict]] = attr.ib( default=None, converter=PropJobDefinitionNodeRangeProperty.from_list, validator=attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobDefinitionNodeRangeProperty), iterable_validator=attr.validators.instance_of(list)), metadata={AttrMeta.PROPERTY_NAME: "NodeRangeProperties"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-noderangeproperties""" rp_NumNodes: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "NumNodes"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-batch-jobdefinition-nodeproperties.html#cfn-batch-jobdefinition-nodeproperties-numnodes""" #--- Resource declaration --- @attr.s class JobQueue(Resource): """ AWS Object Type = "AWS::Batch::JobQueue" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html Property Document: - ``rp_ComputeEnvironmentOrder``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-computeenvironmentorder - ``rp_Priority``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-priority - ``p_JobQueueName``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-jobqueuename - ``p_SchedulingPolicyArn``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-schedulingpolicyarn - ``p_State``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-state - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-tags """ AWS_OBJECT_TYPE = "AWS::Batch::JobQueue" rp_ComputeEnvironmentOrder: typing.List[typing.Union['PropJobQueueComputeEnvironmentOrder', dict]] = attr.ib( default=None, converter=PropJobQueueComputeEnvironmentOrder.from_list, validator=attr.validators.deep_iterable(member_validator=attr.validators.instance_of(PropJobQueueComputeEnvironmentOrder), iterable_validator=attr.validators.instance_of(list)), metadata={AttrMeta.PROPERTY_NAME: "ComputeEnvironmentOrder"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-computeenvironmentorder""" rp_Priority: int = attr.ib( default=None, validator=attr.validators.instance_of(int), metadata={AttrMeta.PROPERTY_NAME: "Priority"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-priority""" p_JobQueueName: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "JobQueueName"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-jobqueuename""" p_SchedulingPolicyArn: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "SchedulingPolicyArn"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-schedulingpolicyarn""" p_State: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "State"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-state""" p_Tags: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobqueue.html#cfn-batch-jobqueue-tags""" @attr.s class JobDefinition(Resource): """ AWS Object Type = "AWS::Batch::JobDefinition" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html Property Document: - ``rp_Type``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-type - ``p_ContainerProperties``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-containerproperties - ``p_JobDefinitionName``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-jobdefinitionname - ``p_NodeProperties``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-nodeproperties - ``p_Parameters``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-parameters - ``p_PlatformCapabilities``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-platformcapabilities - ``p_PropagateTags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-propagatetags - ``p_RetryStrategy``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-retrystrategy - ``p_SchedulingPriority``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-schedulingpriority - ``p_Timeout``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-timeout - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-tags """ AWS_OBJECT_TYPE = "AWS::Batch::JobDefinition" rp_Type: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Type"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-type""" p_ContainerProperties: typing.Union['PropJobDefinitionContainerProperties', dict] = attr.ib( default=None, converter=PropJobDefinitionContainerProperties.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionContainerProperties)), metadata={AttrMeta.PROPERTY_NAME: "ContainerProperties"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-containerproperties""" p_JobDefinitionName: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "JobDefinitionName"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-jobdefinitionname""" p_NodeProperties: typing.Union['PropJobDefinitionNodeProperties', dict] = attr.ib( default=None, converter=PropJobDefinitionNodeProperties.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionNodeProperties)), metadata={AttrMeta.PROPERTY_NAME: "NodeProperties"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-nodeproperties""" p_Parameters: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Parameters"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-parameters""" p_PlatformCapabilities: typing.List[TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_iterable(member_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), iterable_validator=attr.validators.instance_of(list))), metadata={AttrMeta.PROPERTY_NAME: "PlatformCapabilities"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-platformcapabilities""" p_PropagateTags: bool = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(bool)), metadata={AttrMeta.PROPERTY_NAME: "PropagateTags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-propagatetags""" p_RetryStrategy: typing.Union['PropJobDefinitionRetryStrategy', dict] = attr.ib( default=None, converter=PropJobDefinitionRetryStrategy.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionRetryStrategy)), metadata={AttrMeta.PROPERTY_NAME: "RetryStrategy"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-retrystrategy""" p_SchedulingPriority: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "SchedulingPriority"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-schedulingpriority""" p_Timeout: typing.Union['PropJobDefinitionTimeout', dict] = attr.ib( default=None, converter=PropJobDefinitionTimeout.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropJobDefinitionTimeout)), metadata={AttrMeta.PROPERTY_NAME: "Timeout"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-timeout""" p_Tags: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-jobdefinition.html#cfn-batch-jobdefinition-tags""" @attr.s class SchedulingPolicy(Resource): """ AWS Object Type = "AWS::Batch::SchedulingPolicy" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html Property Document: - ``p_FairsharePolicy``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy - ``p_Name``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-name - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-tags """ AWS_OBJECT_TYPE = "AWS::Batch::SchedulingPolicy" p_FairsharePolicy: typing.Union['PropSchedulingPolicyFairsharePolicy', dict] = attr.ib( default=None, converter=PropSchedulingPolicyFairsharePolicy.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropSchedulingPolicyFairsharePolicy)), metadata={AttrMeta.PROPERTY_NAME: "FairsharePolicy"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-fairsharepolicy""" p_Name: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "Name"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-name""" p_Tags: typing.Dict[str, TypeHint.intrinsic_str] = attr.ib( default=None, validator=attr.validators.optional(attr.validators.deep_mapping(key_validator=attr.validators.instance_of(str), value_validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type))), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#cfn-batch-schedulingpolicy-tags""" @property def rv_Arn(self) -> GetAtt: """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-schedulingpolicy.html#aws-resource-batch-schedulingpolicy-return-values""" return GetAtt(resource=self, attr_name="Arn") @attr.s class ComputeEnvironment(Resource): """ AWS Object Type = "AWS::Batch::ComputeEnvironment" Resource Document: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html Property Document: - ``rp_Type``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-type - ``p_ComputeEnvironmentName``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-computeenvironmentname - ``p_ComputeResources``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-computeresources - ``p_ServiceRole``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-servicerole - ``p_State``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-state - ``p_UnmanagedvCpus``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-unmanagedvcpus - ``p_Tags``: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-tags """ AWS_OBJECT_TYPE = "AWS::Batch::ComputeEnvironment" rp_Type: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.instance_of(TypeCheck.intrinsic_str_type), metadata={AttrMeta.PROPERTY_NAME: "Type"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-type""" p_ComputeEnvironmentName: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ComputeEnvironmentName"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-computeenvironmentname""" p_ComputeResources: typing.Union['PropComputeEnvironmentComputeResources', dict] = attr.ib( default=None, converter=PropComputeEnvironmentComputeResources.from_dict, validator=attr.validators.optional(attr.validators.instance_of(PropComputeEnvironmentComputeResources)), metadata={AttrMeta.PROPERTY_NAME: "ComputeResources"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-computeresources""" p_ServiceRole: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "ServiceRole"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-servicerole""" p_State: TypeHint.intrinsic_str = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(TypeCheck.intrinsic_str_type)), metadata={AttrMeta.PROPERTY_NAME: "State"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-state""" p_UnmanagedvCpus: int = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(int)), metadata={AttrMeta.PROPERTY_NAME: "UnmanagedvCpus"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-unmanagedvcpus""" p_Tags: dict = attr.ib( default=None, validator=attr.validators.optional(attr.validators.instance_of(dict)), metadata={AttrMeta.PROPERTY_NAME: "Tags"}, ) """Doc: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-batch-computeenvironment.html#cfn-batch-computeenvironment-tags"""
1.953125
2
monitor/utils/mail.py
laozhudetui/wam
227
12796105
#!/usr/bin/env python # coding: utf-8 # __buildin__ modules import smtplib from email.mime.text import MIMEText from monitor.utils.settings import EMAIL_SERVER from monitor.utils.settings import EMAIL_PORT from monitor.utils.settings import EMAIL_USER from monitor.utils.settings import EMAIL_PASS from monitor.utils.settings import EMAIL_FROM_ADDR from monitor.utils.email_list import EMAIL_LIST def _sendmail(to_list, subject, content): """ params: to_addr[list]: subject[str]: content[str]: plain content """ msg = MIMEText(content, 'plain', 'utf-8') msg['Subject'] = subject msg['From'] = EMAIL_FROM_ADDR msg['To'] = ', '.join(to_list) smtp = smtplib.SMTP_SSL() smtp.set_debuglevel(0) smtp.connect(EMAIL_SERVER, EMAIL_PORT) smtp.login(EMAIL_USER, EMAIL_PASS) smtp.sendmail(EMAIL_FROM_ADDR, to_list, msg.as_string()) smtp.quit() def sendmail(subject, content): """ params: subject[str]: content[str]: plain content """ if EMAIL_LIST: _sendmail(EMAIL_LIST, subject, content) else: raise ValueError('email list is empty')
2.25
2
py_kiwoom/kiwoom_evol.py
ijhan21/hackathon_kiwoom
0
12796106
<gh_stars>0 import os import pickle import sys from PyQt5.QAxContainer import * from PyQt5.QtCore import * from config.errorCode import * from PyQt5.QtTest import * from config.kiwoomType import * # from config.slack import * import logging from PyQt5.QtWidgets import * STOP_LOSS_RATE = 0.03 STOP_PROFIT_RATE = 0.03 # class Ui_class(): # def __init__(self): # self.app = QApplication(sys.argv) # self.kiwoom = Kiwoom() # ret = self.kiwoom.multi_test() # # self.app.exec_() logging.basicConfig(filename="kiwoom.log", level=logging.INFO) class Kiwoom(QAxWidget): def __init__(self): super().__init__() self.realType = RealType() # self.slack = Slack() #슬랙 동작 #print("kiwoom() class start. ") print("Kiwoom() class start.") ####### event loop를 실행하기 위한 변수모음 self.login_event_loop = QEventLoop() #로그인 요청용 이벤트루프 self.detail_account_info_event_loop = QEventLoop() # 예수금 요청용 이벤트루프 self.calculator_event_loop = QEventLoop() self.get_not_concluded_account_event_loop = QEventLoop() ######################################### ####### 계좌 관련된 변수 self.account_stock_dict = {} self.not_concluded_account = {} self.deposit = 0 #예수금 self.use_money = 0 #실제 투자에 사용할 금액 self.use_money_percent = 0.5 #예수금에서 실제 사용할 비율 self.output_deposit = 0 #출력가능 금액 self.total_profit_loss_money = 0 #총평가손익금액 self.total_profit_loss_rate = 0.0 #총수익률(%) ######################################## ######## 종목 정보 가져오기 self.portfolio_stock_dict = {} self.jango_dict = {} ######################## ########################################## self.data = None ####### 요청 스크린 번호 self.screen_my_info = "2000" #계좌 관련한 스크린 번호 self.screen_calculation_stock = "4000" #계산용 스크린 번호 self.screen_real_stock = "5000" #종목별 할당할 스크린 번호 self.screen_meme_stock = "6000" #종목별 할당할 주문용스크린 번호 self.screen_start_stop_real = "1000" #장 시작/종료 실시간 스크린번호 ######################################## ######### 초기 셋팅 함수들 바로 실행 self.get_ocx_instance() #OCX 방식을 파이썬에 사용할 수 있게 변환해 주는 함수 self.event_slots() # 키움과 연결하기 위한 시그널 / 슬롯 모음 self.real_event_slot() # 실시간 이벤트 시그널 / 슬롯 연결 self.signal_login_commConnect() #로그인 요청 시그널 포함 self.get_account_info() #계좌번호 가져오기 self.detail_account_info() #예수금 요청 시그널 포함 self.detail_account_mystock() #계좌평가잔고내역 요청 시그널 포함 QTimer.singleShot(5000, self.get_not_concluded_account) #5초 뒤에 미체결 종목들 가져오기 실행 ######################################### # QTest.qWait(10000) self.read_code() self.screen_number_setting() QTest.qWait(5000) #실시간 수신 관련 함수 #장시작 종료 세팅 self.dynamicCall("SetRealReg(QString, QString, QString, QString)", self.screen_start_stop_real, '', self.realType.REALTYPE['장시작시간']['장운영구분'], "0") def setRealReg(self, companys): for code in companys: screen_num = self.not_concluded_account[code]['스크린번호'] fids = self.realType.REALTYPE['주식체결']['체결시간'] self.dynamicCall("SetRealReg(QString, QString, QString, QString)", screen_num, code, fids, "1") def get_ocx_instance(self): self.setControl("KHOPENAPI.KHOpenAPICtrl.1") # 레지스트리에 저장된 api 모듈 불러오기 def event_slots(self): self.OnEventConnect.connect(self.login_slot) # 로그인 관련 이벤트 self.OnReceiveTrData.connect(self.trdata_slot) # 트랜잭션 요청 관련 이벤트 self.OnReceiveMsg.connect(self.msg_slot) def real_event_slot(self): self.OnReceiveRealData.connect(self.realdata_slot) # 실시간 이벤트 연결 self.OnReceiveChejanData.connect(self.chejan_slot) #종목 주문체결 관련한 이벤트 def signal_login_commConnect(self): self.dynamicCall("CommConnect()") # 로그인 요청 시그널 self.login_event_loop.exec_() # 이벤트루프 실행 def login_slot(self, err_code): logging.debug(errors(err_code)[1]) #로그인 처리가 완료됐으면 이벤트 루프를 종료한다. self.login_event_loop.exit() def get_account_info(self): QTest.qWait(3600) #3.6초마다 딜레이를 준다. account_list = self.dynamicCall("GetLoginInfo(QString)", "ACCNO") # 계좌번호 반환 account_num = account_list.split(';')[1] self.account_num = account_num logging.debug("계좌번호 : %s" % account_num) def detail_account_info(self, sPrevNext="0"): QTest.qWait(3600) #3.6초마다 딜레이를 준다. self.dynamicCall("SetInputValue(QString, QString)", "계좌번호", self.account_num) self.dynamicCall("SetInputValue(QString, QString)", "비밀번호", "0000") self.dynamicCall("SetInputValue(QString, QString)", "비밀번호입력매체구분", "00") self.dynamicCall("SetInputValue(QString, QString)", "조회구분", "1") self.dynamicCall("CommRqData(QString, QString, int, QString)", "예수금상세현황요청", "opw00001", sPrevNext, self.screen_my_info) self.detail_account_info_event_loop.exec_() def detail_account_mystock(self, sPrevNext="0"): QTest.qWait(3600) #3.6초마다 딜레이를 준다. self.account_stock_dict = dict() self.dynamicCall("SetInputValue(QString, QString)", "계좌번호", self.account_num) self.dynamicCall("SetInputValue(QString, QString)", "비밀번호", "0000") self.dynamicCall("SetInputValue(QString, QString)", "비밀번호입력매체구분", "00") self.dynamicCall("SetInputValue(QString, QString)", "조회구분", "1") self.dynamicCall("CommRqData(QString, QString, int, QString)", "계좌평가잔고내역요청", "opw00018", sPrevNext, self.screen_my_info) self.detail_account_info_event_loop.exec_() def get_not_concluded_account(self, sPrevNext="0"): QTest.qWait(3600) #3.6초마다 딜레이를 준다. self.dynamicCall("SetInputValue(QString, QString)", "계좌번호", self.account_num) self.dynamicCall("SetInputValue(QString, QString)", "체결구분", "1") self.dynamicCall("SetInputValue(QString, QString)", "매매구분", "0") self.dynamicCall("CommRqData(QString, QString, int, QString)", "실시간미체결요청", "opt10075", sPrevNext, self.screen_my_info) self.get_not_concluded_account_event_loop.exec_() def trdata_slot(self, sScrNo, sRQName, sTrCode, sRecordName, sPrevNext): # print("sRQName", sRQName) if sRQName == "예수금상세현황요청": deposit = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, 0, "예수금") self.deposit = int(deposit) use_money = float(self.deposit) * self.use_money_percent self.use_money = int(use_money) self.use_money = self.use_money / 4 output_deposit = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, 0, "출금가능금액") self.output_deposit = int(output_deposit) logging.debug("예수금 : %s" % self.output_deposit) print("예수금 : %s" % self.output_deposit) self.stop_screen_cancel(self.screen_my_info) self.detail_account_info_event_loop.exit() elif sRQName == "계좌평가잔고내역요청": total_buy_money = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, 0, "총매입금액") self.total_buy_money = int(total_buy_money) total_profit_loss_money = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, 0, "총평가손익금액") self.total_profit_loss_money = int(total_profit_loss_money) total_profit_loss_rate = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, 0, "총수익률(%)") self.total_profit_loss_rate = float(total_profit_loss_rate) logging.debug("계좌평가잔고내역요청 싱글데이터 : %s - %s - %s" % (total_buy_money, total_profit_loss_money, total_profit_loss_rate)) rows = self.dynamicCall("GetRepeatCnt(QString, QString)", sTrCode, sRQName) for i in range(rows): code = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "종목번호") # 출력 : A039423 // 알파벳 A는 장내주식, J는 ELW종목, Q는 ETN종목 code = code.strip()[1:] code_nm = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "종목명") # 출럭 : 한국기업평가 stock_quantity = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "보유수량") # 보유수량 : 000000000000010 buy_price = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "매입가") # 매입가 : 000000000054100 learn_rate = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "수익률(%)") # 수익률 : -000000001.94 current_price = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "현재가") # 현재가 : 000000003450 total_chegual_price = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "매입금액") possible_quantity = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "매매가능수량") logging.debug("종목코드: %s - 종목명: %s - 보유수량: %s - 매입가:%s - 수익률: %s - 현재가: %s" % ( code, code_nm, stock_quantity, buy_price, learn_rate, current_price)) if code in self.account_stock_dict: # dictionary 에 해당 종목이 있나 확인 pass else: self.account_stock_dict[code] = Jango(code) code_nm = code_nm.strip() stock_quantity = int(stock_quantity.strip()) buy_price = int(buy_price.strip()) learn_rate = float(learn_rate.strip()) current_price = int(current_price.strip()) total_chegual_price = int(total_chegual_price.strip()) possible_quantity = int(possible_quantity.strip()) tmp = self.account_stock_dict[code] tmp.jango.update({"종목명": code_nm}) # tmp.jango.update({"보유수량": stock_quantity}) tmp.jango.update({"체결량": stock_quantity}) # tmp.jango.update({"매입가": buy_price}) tmp.jango.update({"체결가": buy_price}) # tmp.jango.update({"수익률(%)": learn_rate}) tmp.jango.update({"현재가": current_price}) # tmp.jango.update({"매입금액": total_chegual_price}) # tmp.jango.update({'매매가능수량' : possible_quantity}) tmp.update() logging.debug("sPreNext : %s" % sPrevNext) print("\n계좌에 가지고 있는 종목은 %s " % rows) # for item in self.account_stock_dict.keys(): # print(self.account_stock_dict[item].jango) if sPrevNext == "2": self.detail_account_mystock(sPrevNext="2") else: self.detail_account_info_event_loop.exit() elif sRQName == "실시간미체결요청": rows = self.dynamicCall("GetRepeatCnt(QString, QString)", sTrCode, sRQName) for i in range(rows): code = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "종목코드") code_nm = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "종목명") order_no = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "주문번호") order_status = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "주문상태") # 접수,확인,체결 order_quantity = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "주문수량") order_price = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "주문가격") order_gubun = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "주문구분") # -매도, +매수, -매도정정, +매수정정 not_quantity = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "미체결수량") ok_quantity = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "체결량") code = code.strip() code_nm = code_nm.strip() order_no = int(order_no.strip()) order_status = order_status.strip() order_quantity = int(order_quantity.strip()) order_price = int(order_price.strip()) order_gubun = order_gubun.strip().lstrip('+').lstrip('-') not_quantity = int(not_quantity.strip()) ok_quantity = int(ok_quantity.strip()) if code in self.not_concluded_account: pass else: self.not_concluded_account[code] = Jango(code) tmp = self.not_concluded_account[code] tmp.jango.update({'종목코드': code}) tmp.jango.update({'종목명': code_nm}) tmp.jango.update({'주문번호': order_no}) tmp.jango.update({'주문상태': order_status}) tmp.jango.update({'주문수량': order_quantity}) tmp.jango.update({'주문가격': order_price}) tmp.jango.update({'주문구분': order_gubun}) tmp.jango.update({'미체결수량': not_quantity}) tmp.jango.update({'체결량': ok_quantity}) tmp.jango.update({'스크린번호': 1000}) tmp.update() logging.debug("미체결 종목 : %s " % self.not_concluded_account[code]) print("미체결 종목 : %s " % self.not_concluded_account[code].jango) self.get_not_concluded_account_event_loop.exit() ####################################### elif sRQName == "3분봉조회": cnt = self.dynamicCall("GetRepeatCnt(QString, QString)", sTrCode, sRQName) # print(sTrCode) # data = self.dynamicCall("GetCommDataEx(QString, QString)", sTrCode, sRQName) # [[‘’, ‘현재가’, ‘거래량’, ‘거래대금’, ‘날짜’, ‘시가’, ‘고가’, ‘저가’. ‘’], [‘’, ‘현재가’, ’거래량’, ‘거래대금’, ‘날짜’, ‘시가’, ‘고가’, ‘저가’, ‘’]. […]] logging.debug("3분봉조회 %s" % cnt) ret_data=list() for i in range(cnt): data = [] code = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, 0, "종목코드") code = code.strip() code_name = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, 0, "종목명") code_name = code_name.strip() current_price = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "현재가").strip() # 출력 : 000070 volume = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "거래량").strip() # 출력 : 000070 trading_value = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "거래대금") # 출력 : 000070 date = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "일자") # 출력 : 000070 start_price = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "시가").strip() # 출력 : 000070 high_price = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "고가").strip() # 출력 : 000070 low_price = self.dynamicCall("GetCommData(QString, QString, int, QString)", sTrCode, sRQName, i, "저가").strip() # 출력 : 000070 data=[int(current_price),int(volume), int(start_price), int(high_price), int(low_price)] ret_data.append(data) self.data = ret_data self.calculator_event_loop.exit() def multi_rq3(self, sCode, tick): QTest.qWait(3600) #3.6초마다 딜레이를 준다. trCode = "opt10080" sRQName = "3분봉조회" 수정주가구분 = 1 self.dynamicCall("SetInputValue(QString, QString)", "종목코드", sCode) self.dynamicCall("SetInputValue(QString, QString)", "틱범위", tick) self.dynamicCall("SetInputValue(QString, QString)", "수정주가구분", 수정주가구분) ret = self.dynamicCall("CommRqData(QString, QString, int, QString, QString, QString)",sRQName,trCode, "0", self.screen_meme_stock) # ret = self.dynamicCall("GetCommDataEx(QString, QString)", trCode, "주식분봉차트") self.calculator_event_loop.exec_() return self.data def stop_screen_cancel(self, sScrNo=None): self.dynamicCall("DisconnectRealData(QString)", sScrNo) # 스크린번호 연결 끊기 def get_code_list_by_market(self, market_code): ''' 종목코드 리스트 받기 #0:장내, 10:코스닥 :param market_code: 시장코드 입력 :return: ''' code_list = self.dynamicCall("GetCodeListByMarket(QString)", market_code) code_list = code_list.split(';')[:-1] return code_list def read_code(self): # if os.path.exists("files/condition_stock.txt"): # 해당 경로에 파일이 있는지 체크한다. # f = open("files/condition_stock.txt", "r", encoding="utf8") # "r"을 인자로 던져주면 파일 내용을 읽어 오겠다는 뜻이다. # lines = f.readlines() #파일에 있는 내용들이 모두 읽어와 진다. # for line in lines: #줄바꿈된 내용들이 한줄 씩 읽어와진다. # if line != "": # ls = line.split("\t") # stock_code = ls[0] # stock_name = ls[1] # stock_price = int(ls[2].split("\n")[0]) # stock_price = abs(stock_price) # self.portfolio_stock_dict.update({stock_code:{"종목명":stock_name, "현재가":stock_price}}) # f.close() files = os.listdir("./models/") codes=list() for f in files: codes.append(f.replace(".pt","")) for code in codes: self.portfolio_stock_dict[code] = Jango(code) return codes def screen_number_setting(self): screen_overwrite = [] #계좌평가잔고내역에 있는 종목들 for code in self.account_stock_dict.keys(): if code not in screen_overwrite: screen_overwrite.append(code) #미체결에 있는 종목들 for code in self.not_concluded_account.keys(): code = self.not_concluded_account[code]['종목코드'] if code not in screen_overwrite: screen_overwrite.append(code) #포트폴리로에 담겨있는 종목들 for code in self.portfolio_stock_dict.keys(): if code not in screen_overwrite: screen_overwrite.append(code) # 스크린번호 할당 cnt = 0 for code in screen_overwrite: temp_screen = int(self.screen_real_stock) meme_screen = int(self.screen_meme_stock) if (cnt % 50) == 0: temp_screen += 1 self.screen_real_stock = str(temp_screen) if (cnt % 50) == 0: meme_screen += 1 self.screen_meme_stock = str(meme_screen) if code in self.portfolio_stock_dict.keys(): self.portfolio_stock_dict[code].jango.update({"스크린번호": str(self.screen_real_stock)}) self.portfolio_stock_dict[code].jango.update({"주문용스크린번호": str(self.screen_meme_stock)}) elif code not in self.portfolio_stock_dict.keys(): self.portfolio_stock_dict[code] = Jango(code) self.portfolio_stock_dict[code].jango.update({"스크린번호": str(self.screen_real_stock)}) self.portfolio_stock_dict[code].jango.update({"주문용스크린번호": str(self.screen_meme_stock)}) cnt += 1 # 실시간 데이터 얻어오기 def realdata_slot(self, sCode, sRealType, sRealData): if sRealType == "장시작시간": fid = self.realType.REALTYPE[sRealType]['장운영구분'] # (0:장시작전, 2:장종료전(20분), 3:장시작, 4,8:장종료(30분), 9:장마감) value = self.dynamicCall("GetCommRealData(QString, int)", sCode, fid) if value == '0': logging.debug("장 시작 전") elif value == '3': logging.debug("장 시작") elif value == "2": logging.debug("장 종료, 동시호가로 넘어감") elif value == "4": logging.debug("3시30분 장 종료") for code in self.not_concluded_account.keys(): self.dynamicCall("SetRealRemove(QString, QString)", self.not_concluded_account[code]['스크린번호'], code) QTest.qWait(5000) sys.exit() elif sRealType == "주식체결": a = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['체결시간']) # 출력 HHMMSS b = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['현재가']) # 출력 : +(-)2520 b = abs(int(b)) c = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['전일대비']) # 출력 : +(-)2520 c = abs(int(c)) d = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['등락율']) # 출력 : +(-)12.98 d = float(d) e = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['(최우선)매도호가']) # 출력 : +(-)2520 e = abs(int(e)) f = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['(최우선)매수호가']) # 출력 : +(-)2515 f = abs(int(f)) g = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['거래량']) # 출력 : +240124 매수일때, -2034 매도일 때 g = abs(int(g)) h = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['누적거래량']) # 출력 : 240124 h = abs(int(h)) i = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['고가']) # 출력 : +(-)2530 i = abs(int(i)) j = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['시가']) # 출력 : +(-)2530 j = abs(int(j)) k = self.dynamicCall("GetCommRealData(QString, int)", sCode, self.realType.REALTYPE[sRealType]['저가']) # 출력 : +(-)2530 k = abs(int(k)) if sCode not in self.not_concluded_account: self.not_concluded_account[sCode]=Jango(sCode) tmp_not_c = self.not_concluded_account[sCode] tmp_not_c.jango.update({"현재가": b}) tmp_not_c.jango.update({"거래량": g}) # 현재 가지고 있는 대상인지 파악 if sCode in self.account_stock_dict.keys(): try: # 스탑로스 구현 print(self.account_stock_dict[sCode].jango["종목명"],(self.account_stock_dict[sCode].jango['체결가']-k)/self.account_stock_dict[sCode].jango['체결가']) if self.account_stock_dict[sCode].jango["체결량"]>0 and self.account_stock_dict[sCode].jango['체결가']*(1-STOP_LOSS_RATE)>k: count = self.account_stock_dict[sCode].jango["체결량"] while count >0: print("스탑로스 가동",self.account_stock_dict[sCode].jango['체결가'], k) print('스탑로스 기준가',self.account_stock_dict[sCode].jango['체결가']*(1-STOP_LOSS_RATE)) ret = self.send_order("신규매도",sCode=sCode,order_quantity=1,order_price=b,hoga_type="시장가") count -= 1 self.account_stock_dict[sCode].jango["체결량"]=count elif self.account_stock_dict[sCode].jango["체결량"]>0 and self.account_stock_dict[sCode].jango['체결가']*(1+STOP_PROFIT_RATE)<b: # 익절 count = self.account_stock_dict[sCode].jango["체결량"] while count >0: print("스탑프로핏 가동",self.account_stock_dict[sCode].jango['체결가'], k) print('스탑프로핏 기준가',self.account_stock_dict[sCode].jango['체결가']*(1+STOP_LOSS_RATE)) ret = self.send_order("신규매도",sCode=sCode,order_quantity=1,order_price=b,hoga_type="지정가") count -= 1 self.account_stock_dict[sCode].jango["체결량"]=count except Exception as e: print(e) print("EXception 현재 가지고 있는 잔고 비교 정보",self.account_stock_dict[sCode].jango) try: #print("실시간 주식체결 정보 : ", self.not_concluded_account[sCode]["종목명"],a, b) pass except Exception as e: print("실시간 주식체결 정보 : ", sCode,a, b) def send_order(self,order_type, sCode, order_quantity, order_price, hoga_type, order_num=""): if order_type == "신규매수": type_dict = 1 elif order_type =="신규매도": type_dict = 2 elif order_type =="매수취소": type_dict = 3 elif order_type =="매도취소": type_dict = 4 elif order_type =="매수정정": type_dict = 5 elif order_type =="매도정정": type_dict = 6 if hoga_type =="지정가": hoga_dict = "00" elif hoga_type =="시장가": hoga_dict = "03" order_success = self.dynamicCall( "SendOrder(QString, QString, QString, int, QString, int, int, QString, QString)", [order_type, self.screen_meme_stock, self.account_num, type_dict, sCode, order_quantity, order_price, hoga_dict, order_num] ) if order_success == 0: logging.debug("%s 전달 성공"%order_type) print("%s 전달 성공"%order_type) else: logging.debug("%s 전달 실패"%order_type) return order_success # 실시간 체결 정보 def chejan_slot(self, sGubun, nItemCnt, sFidList): if int(sGubun) == 0: #주문체결 account_num = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['계좌번호']) sCode = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['종목코드'])[1:] stock_name = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['종목명']) stock_name = stock_name.strip() origin_order_number = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['원주문번호']) # 출력 : defaluse : "000000" order_number = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['주문번호']) # 출럭: 0115061 마지막 주문번호 order_status = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['주문상태']) # 출력: 접수, 확인, 체결 order_quan = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['주문수량']) # 출력 : 3 order_quan = int(order_quan) order_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['주문가격']) # 출력: 21000 order_price = int(order_price) not_chegual_quan = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['미체결수량']) # 출력: 15, default: 0 not_chegual_quan = int(not_chegual_quan) order_gubun = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['주문구분']) # 출력: -매도, +매수 order_gubun = order_gubun.strip().lstrip('+').lstrip('-') chegual_time_str = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['주문/체결시간']) # 출력: '151028' chegual_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['체결가']) # 출력: 2110 default : '' if chegual_price == '': chegual_price = 0 else: chegual_price = int(chegual_price) chegual_quantity = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['체결량']) # 출력: 5 default : '' if chegual_quantity == '': chegual_quantity = 0 else: chegual_quantity = int(chegual_quantity) current_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['현재가']) # 출력: -6000 current_price = abs(int(current_price)) first_sell_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['(최우선)매도호가']) # 출력: -6010 first_sell_price = abs(int(first_sell_price)) first_buy_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['주문체결']['(최우선)매수호가']) # 출력: -6000 first_buy_price = abs(int(first_buy_price)) ######## 새로 들어온 주문이면 주문번호 할당 if sCode not in self.not_concluded_account.keys(): self.not_concluded_account[sCode]=Jango(sCode) tmp = self.not_concluded_account[sCode] tmp.jango.update({"종목코드": sCode}) tmp.jango.update({"주문번호": order_number}) tmp.jango.update({"종목명": stock_name}) tmp.jango.update({"주문상태": order_status}) tmp.jango.update({"주문수량": order_quan}) tmp.jango.update({"주문가격": order_price}) tmp.jango.update({"미체결수량": not_chegual_quan}) tmp.jango.update({"원주문번호": origin_order_number}) tmp.jango.update({"주문구분": order_gubun}) tmp.jango.update({"체결가": chegual_price}) tmp.jango.update({"체결량": chegual_quantity}) tmp.jango.update({"현재가": current_price}) tmp.update() print("주문체결") print(self.not_concluded_account[sCode].jango) elif int(sGubun) == 1: #잔고 account_num = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['계좌번호']) sCode = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['종목코드'])[1:] stock_name = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['종목명']) stock_name = stock_name.strip() current_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['현재가']) current_price = abs(int(current_price)) stock_quan = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['보유수량']) stock_quan = int(stock_quan) like_quan = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['주문가능수량']) like_quan = int(like_quan) buy_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['매입단가']) buy_price = abs(int(buy_price)) total_buy_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['총매입가']) # 계좌에 있는 종목의 총매입가 total_buy_price = int(total_buy_price) meme_gubun = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['매도매수구분']) meme_gubun = self.realType.REALTYPE['매도수구분'][meme_gubun] first_sell_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['(최우선)매도호가']) first_sell_price = abs(int(first_sell_price)) first_buy_price = self.dynamicCall("GetChejanData(int)", self.realType.REALTYPE['잔고']['(최우선)매수호가']) first_buy_price = abs(int(first_buy_price)) if sCode not in self.jango_dict.keys(): self.jango_dict.update({sCode:{}}) self.jango_dict[sCode].update({"현재가": current_price}) self.jango_dict[sCode].update({"종목코드": sCode}) self.jango_dict[sCode].update({"종목명": stock_name}) self.jango_dict[sCode].update({"보유수량": stock_quan}) self.jango_dict[sCode].update({"주문가능수량": like_quan}) self.jango_dict[sCode].update({"매입단가": buy_price}) self.jango_dict[sCode].update({"총매입가": total_buy_price}) self.jango_dict[sCode].update({"매도매수구분": meme_gubun}) self.jango_dict[sCode].update({"(최우선)매도호가": first_sell_price}) self.jango_dict[sCode].update({"(최우선)매수호가": first_buy_price}) # print("잔고") # print(self.jango_dict) if stock_quan == 0: del self.jango_dict[sCode] #송수신 메세지 get def msg_slot(self, sScrNo, sRQName, sTrCode, msg): logging.debug("스크린: %s, 요청이름: %s, tr코드: %s --- %s" %(sScrNo, sRQName, sTrCode, msg)) # ui = Ui_class() class Jango(): def __init__(self, code): self.jango=dict() self.jango["종목코드"]=code self.jango["종목명"] = "" self.jango["체결가"]=0 self.jango["현재가"]=0 self.jango["체결량"]=0 #보유수량 self.jango["주문번호"]="" self.jango["원주문번호"]="" self.jango["주문상태"]="" self.jango["주문수량"]=0 self.jango["주문가격"]=0 self.jango["주문구분"]="" self.jango["미체결수량"]="" self.jango["스크린번호"]="" self.jango["주문용스크린번호"]="" self.jango["손익률"]=0. # self.jango["평균단가"]=0 self.jango["보유금액"]=0 def update(self): #손익률 if self.jango["체결가"] != 0: self.jango["손익률"] = (self.jango["현재가"]-self.jango["체결가"])/self.jango["체결가"] #보유금액 self.jango["보유금액"]=self.jango["체결가"]*self.jango["체결량"] #내용 확인해 보자. 기존 주식과 합산 계산 되는지
2.0625
2
ibsng/handler/session/__init__.py
ParspooyeshFanavar/pyibsng
6
12796107
"""Session library."""
1.007813
1
src/runner.py
jayantik/AiCorExample
0
12796108
<filename>src/runner.py import collections import torch # Train # Validate # On given arguments, data def run(model, criterion, optimizer, dataset, is_training: bool, **metrics): model.train(is_training) dictionary = collections.defaultdict(int) counter = 0 with torch.set_grad_enabled(is_training): for X, y in dataset: counter += 1 y_pred = model(X) loss = criterion(y_pred, y) for name, metric in metrics.items(): dictionary[name] += metric(y_pred, y) if is_training: loss.backward() optimizer.step() optimizer.zero_grad() return {name: value / counter for name, value in dictionary.items()}
2.890625
3
pl_bolts/callbacks/ssl_online.py
Aayush-Jain01/lightning-bolts
504
12796109
<filename>pl_bolts/callbacks/ssl_online.py from contextlib import contextmanager from typing import Any, Dict, Optional, Sequence, Tuple, Union import torch from pytorch_lightning import Callback, LightningModule, Trainer from pytorch_lightning.utilities import rank_zero_warn from torch import Tensor, nn from torch.nn import functional as F from torch.optim import Optimizer from torchmetrics.functional import accuracy from pl_bolts.models.self_supervised.evaluator import SSLEvaluator class SSLOnlineEvaluator(Callback): # pragma: no cover """Attaches a MLP for fine-tuning using the standard self-supervised protocol. Example:: # your datamodule must have 2 attributes dm = DataModule() dm.num_classes = ... # the num of classes in the datamodule dm.name = ... # name of the datamodule (e.g. ImageNet, STL10, CIFAR10) # your model must have 1 attribute model = Model() model.z_dim = ... # the representation dim online_eval = SSLOnlineEvaluator( z_dim=model.z_dim ) """ def __init__( self, z_dim: int, drop_p: float = 0.2, hidden_dim: Optional[int] = None, num_classes: Optional[int] = None, dataset: Optional[str] = None, ): """ Args: z_dim: Representation dimension drop_p: Dropout probability hidden_dim: Hidden dimension for the fine-tune MLP """ super().__init__() self.z_dim = z_dim self.hidden_dim = hidden_dim self.drop_p = drop_p self.optimizer: Optional[Optimizer] = None self.online_evaluator: Optional[SSLEvaluator] = None self.num_classes: Optional[int] = None self.dataset: Optional[str] = None self.num_classes: Optional[int] = num_classes self.dataset: Optional[str] = dataset self._recovered_callback_state: Optional[Dict[str, Any]] = None def setup(self, trainer: Trainer, pl_module: LightningModule, stage: Optional[str] = None) -> None: if self.num_classes is None: self.num_classes = trainer.datamodule.num_classes if self.dataset is None: self.dataset = trainer.datamodule.name def on_pretrain_routine_start(self, trainer: Trainer, pl_module: LightningModule) -> None: # must move to device after setup, as during setup, pl_module is still on cpu self.online_evaluator = SSLEvaluator( n_input=self.z_dim, n_classes=self.num_classes, p=self.drop_p, n_hidden=self.hidden_dim, ).to(pl_module.device) # switch fo PL compatibility reasons accel = ( trainer.accelerator_connector if hasattr(trainer, "accelerator_connector") else trainer._accelerator_connector ) if accel.is_distributed: if accel.use_ddp: from torch.nn.parallel import DistributedDataParallel as DDP self.online_evaluator = DDP(self.online_evaluator, device_ids=[pl_module.device]) elif accel.use_dp: from torch.nn.parallel import DataParallel as DP self.online_evaluator = DP(self.online_evaluator, device_ids=[pl_module.device]) else: rank_zero_warn( "Does not support this type of distributed accelerator. The online evaluator will not sync." ) self.optimizer = torch.optim.Adam(self.online_evaluator.parameters(), lr=1e-4) if self._recovered_callback_state is not None: self.online_evaluator.load_state_dict(self._recovered_callback_state["state_dict"]) self.optimizer.load_state_dict(self._recovered_callback_state["optimizer_state"]) def to_device(self, batch: Sequence, device: Union[str, torch.device]) -> Tuple[Tensor, Tensor]: # get the labeled batch if self.dataset == "stl10": labeled_batch = batch[1] batch = labeled_batch inputs, y = batch # last input is for online eval x = inputs[-1] x = x.to(device) y = y.to(device) return x, y def shared_step( self, pl_module: LightningModule, batch: Sequence, ): with torch.no_grad(): with set_training(pl_module, False): x, y = self.to_device(batch, pl_module.device) representations = pl_module(x).flatten(start_dim=1) # forward pass mlp_logits = self.online_evaluator(representations) # type: ignore[operator] mlp_loss = F.cross_entropy(mlp_logits, y) acc = accuracy(mlp_logits.softmax(-1), y) return acc, mlp_loss def on_train_batch_end( self, trainer: Trainer, pl_module: LightningModule, outputs: Sequence, batch: Sequence, batch_idx: int, dataloader_idx: int, ) -> None: train_acc, mlp_loss = self.shared_step(pl_module, batch) # update finetune weights mlp_loss.backward() self.optimizer.step() self.optimizer.zero_grad() pl_module.log("online_train_acc", train_acc, on_step=True, on_epoch=False) pl_module.log("online_train_loss", mlp_loss, on_step=True, on_epoch=False) def on_validation_batch_end( self, trainer: Trainer, pl_module: LightningModule, outputs: Sequence, batch: Sequence, batch_idx: int, dataloader_idx: int, ) -> None: val_acc, mlp_loss = self.shared_step(pl_module, batch) pl_module.log("online_val_acc", val_acc, on_step=False, on_epoch=True, sync_dist=True) pl_module.log("online_val_loss", mlp_loss, on_step=False, on_epoch=True, sync_dist=True) def on_save_checkpoint(self, trainer: Trainer, pl_module: LightningModule, checkpoint: Dict[str, Any]) -> dict: return {"state_dict": self.online_evaluator.state_dict(), "optimizer_state": self.optimizer.state_dict()} def on_load_checkpoint(self, trainer: Trainer, pl_module: LightningModule, callback_state: Dict[str, Any]) -> None: self._recovered_callback_state = callback_state @contextmanager def set_training(module: nn.Module, mode: bool): """Context manager to set training mode. When exit, recover the original training mode. Args: module: module to set training mode mode: whether to set training mode (True) or evaluation mode (False). """ original_mode = module.training try: module.train(mode) yield module finally: module.train(original_mode)
2.265625
2
math/stochastic_modeling/program.py
spideynolove/Other-repo
0
12796110
<reponame>spideynolove/Other-repo import numpy as np print("Hello stochastic_modeling!")
1.273438
1
tests/regressions/python/530_augmented_assignment_indexed_lhs.py
frzfrsfra4/phylanx
83
12796111
# Copyright (c) 2018 <NAME> # Copyright (c) 2018 <NAME> # # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) from phylanx import Phylanx import numpy as np @Phylanx def foo(): local_a = np.array((2, 1)) local_a[0] += 55 return local_a assert (np.array((57, 1)) == foo()).any()
1.9375
2
test/test-cases/conftest.py
vkuma82/DASH
0
12796112
import importlib import json import os import sys from pprint import pprint as pp import pytest import utils as util from ixload import IxLoadTestSettings as TestSettings from ixload import IxLoadUtils as IxLoadUtils from ixload import IxRestUtils as IxRestUtils from ixnetwork_restpy import SessionAssistant from ixnetwork_restpy.testplatform.testplatform import TestPlatform targets_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "targets")) sys.path.insert(0, targets_dir) @pytest.fixture(scope="session") def tbinfo(request): """Create and return testbed information""" from credentials import CREDENTIALS as CR from testbed import TESTBED as TB TB["CR"] = CR return TB @pytest.fixture(name="smartnics", scope="session") def fixture_smartnics(tbinfo): test_type = tbinfo['stateless'][0]['dpu'][0]['type'] if test_type: modname = test_type.lower() + "." + test_type.lower() else: raise Exception('Fail to load module %s' % modname) try: imod = importlib.import_module(modname) cls = getattr(imod, test_type.title() + "Test") return cls(**tbinfo) except: raise Exception('Fail to load module %s' % modname) @pytest.fixture(scope="session") def utils(): return util @pytest.fixture def create_ixload_session_url(tbinfo): ixload_settings = {} tb = tbinfo['stateful'][0] tg = { 'chassis_list': tb['server'], 'tgen': tb['tgen'], 'vxlan': tb['vxlan'], 'dpu': tb } # Helper Functions def create_test_settings(): # TEST CONFIG test_settings = TestSettings.IxLoadTestSettings() test_settings.gatewayServer = tbinfo['stateful'][0]['server'][0]['addr'] test_settings.apiVersion = "v0" test_settings.ixLoadVersion = "9.20.0.279" slot1 = tg['tgen'][0][1] port1 = tg['tgen'][0][2] slot2 = tg['tgen'][1][1] port2 = tg['tgen'][1][2] test_settings.portListPerCommunity = { # format: { community name : [ port list ] } "Traffic1@Network1": [(1, slot1, port1)], "Traffic2@Network2": [(1, slot2, port2)] } chassisList = tg['tgen'][0][0] test_settings.chassisList = [chassisList] #test_settings.chassisList = ["10.36.79.165"] return test_settings def create_session(test_settings): connection = IxRestUtils.getConnection( test_settings.gatewayServer, test_settings.gatewayPort, httpRedirect=test_settings.httpRedirect, version=test_settings.apiVersion ) return connection test_settings = create_test_settings() connection = create_session(test_settings) connection.setApiKey(test_settings.apiKey) ixload_settings['connection'] = connection #ixload_settings['session_url'] = session_url ixload_settings['test_settings'] = test_settings yield ixload_settings def getTestClass(*args, **kwargs): if test_type: modname = test_type.lower() + "." + test_type.lower() else: raise Exception('Fail to load module %s' % modname) try: imod = importlib.import_module(modname) cls = getattr(imod, test_type.title() + "Test") return cls(*args, **kwargs) except: raise Exception('Fail to load module %s' % modname)
1.859375
2
Array/MaxProductOfTwoElements.py
haaris272k/Problem-Solving-Collection
1
12796113
<filename>Array/MaxProductOfTwoElements.py """Given the array of integers nums, you will choose two different indices i and j of that array. Return the maximum value of (nums[i]-1)*(nums[j]-1). Example 1: Input: nums = [3,4,5,2] Output: 12 Explanation: If you choose the indices i=1 and j=2 (indexed from 0), you will get the maximum value, that is, (nums[1]-1)*(nums[2]-1) = (4-1)*(5-1) = 3*4 = 12. """ nums = [3, 4, 5, 2] hashmap = {} for i in range(len(nums)): for j in range(i + 1, len(nums)): formula = (nums[i] - 1) * (nums[j] - 1) hashmap.update({formula: [i, j]}) max_val = max(list(hashmap.keys())) print(max_val)
4.25
4
tests/test_attributes.py
uilianries/bintray-python
4
12796114
<filename>tests/test_attributes.py import pytest from bintray.bintray import Bintray @pytest.fixture() def create_attributes(): bintray = Bintray() attributes = [{"name": "att1", "values": ["val1"], "type": "string"}] return bintray.set_attributes("uilianries", "generic", "statistics", "test", attributes) @pytest.fixture() def create_file_attributes(): bintray = Bintray() attributes = [{"name": "att1", "values": ["val1"], "type": "string"}] response = bintray.set_file_attributes("uilianries", "generic", "packages.json", attributes) return response def test_get_attributes(create_attributes): bintray = Bintray() response = bintray.get_attributes("uilianries", "generic", "statistics", "test") assert [{'name': 'att1', 'type': 'string', 'values': ['val1']}, {'error': False, 'statusCode': 200}] == response response = bintray.get_attributes("uilianries", "generic", "statistics", "test", ["att1"]) assert [{'name': 'att1', 'type': 'string', 'values': ['val1']}, {'error': False, 'statusCode': 200}] == response def test_set_attributes(create_attributes): assert [{'name': 'att1', 'type': 'string', 'values': ['val1']}, {'error': False, 'statusCode': 200}] == create_attributes def test_update_attributes(create_attributes): bintray = Bintray() attributes = [{"name": "att1", "values": ["val2"], "type": "string"}] response = bintray.update_attributes("uilianries", "generic", "statistics", "test", attributes) assert [{'name': 'att1', 'type': 'string', 'values': ['val2']}, {'error': False, 'statusCode': 200}] == response def test_delete_attributes(create_attributes): bintray = Bintray() attributes = ["att1"] response = bintray.delete_attributes("uilianries", "generic", "statistics", "test", attributes) assert {'error': False, 'message': 'success', 'statusCode': 200} == response def test_search_attributes(create_attributes): bintray = Bintray() attributes = [{'att1': ["val1", "val2"]}] response = bintray.search_attributes("uilianries", "generic", "statistics", attributes) assert {'error': False, 'statusCode': 200} in response def test_get_files_attributes(create_file_attributes): assert [{'name': 'att1', 'type': 'STRING', 'values': ['val1']}, {'error': False, 'statusCode': 200}] == create_file_attributes def test_set_files_attributes(): bintray = Bintray() attributes = [{'name': 'att1', 'values': ['val2'], 'type': "string"}] response = bintray.set_file_attributes("uilianries", "generic", "packages.json", attributes) assert [{'name': 'att1', 'type': 'STRING', 'values': ['val2']}, {'error': False, 'statusCode': 200}] == response def test_update_files_attributes(): bintray = Bintray() attributes = [{"name": "att1", "values": ["val3"], "type": "string"}] response = bintray.update_file_attributes("uilianries", "generic", "packages.json", attributes) assert [{'name': 'att1', 'type': 'STRING', 'values': ['val3']}, {'error': False, 'statusCode': 200}] == response def test_delete_file_attributes(create_file_attributes): bintray = Bintray() attributes = ["att1"] response = bintray.delete_file_attributes("uilianries", "generic", "packages.json", attributes) assert {'error': False, 'message': 'Attributes were deleted successfully from the following file path: ' 'packages.json', 'statusCode': 200} == response def test_search_file_attributes(create_file_attributes): bintray = Bintray() attributes = [{'att1': ["val1"]}] response = bintray.search_file_attributes("uilianries", "generic", attributes) assert "packages.json" == response[0]["name"]
2.125
2
floodsystem/plot.py
vuquach99/1a-flood-warning-system
0
12796115
import matplotlib.pyplot as plt import matplotlib import numpy as np import datetime from dateutil.tz import tzutc def plot_water_levels(station, dates, levels): """Task 2E: Plots water level against time""" #Assign variables range_high = [station.typical_range[1]]*len(dates) range_low = [station.typical_range[0]]*len(dates) # Plot plt.plot(dates, levels, label="Water Level") plt.plot(dates, range_high, label="Typical High") plt.plot(dates, range_low, label="Typical Low") # Add axis labels, add legend, rotate date labels and add plot title plt.xlabel('Date') plt.ylabel('Water Level (m)') plt.legend() plt.xticks(rotation=45) plt.title(station.name) # Display plot plt.tight_layout() # This makes sure plot does not cut off date labels return plt.show() def plot_water_level_with_fit(station, dates, levels, p): """Task 2F: Plots the water level data and the best-fit polynomial""" # Convert dates to floats dates_float = matplotlib.dates.date2num(dates) # Create a shifted time list dates_shifted = [] for i in range(len(dates_float)): dates_shifted.append(dates_float[i] - dates_float[0]) # Find coefficients of best-fit polynomial f(x) of degree p p_coeff = np.polyfit(dates_shifted, levels, p) # Convert coefficient into a polynomial that can be evaluated, # e.g. poly(0.3) poly = np.poly1d(p_coeff) # Plot original data points plt.plot(dates_shifted, levels, '.', label='Data Points') # Plot polynomial fit and typical range low/high at 30 points along interval # (note that polynomial is evaluated using the date shift) x = np.linspace(dates_shifted[0], dates_shifted[-1], 30) range_high = [station.typical_range[1]]*len(x) range_low = [station.typical_range[0]]*len(x) plt.plot(x, poly(x - x[0]), label="Polynomial Fit") plt.plot(x, range_high, label="Typical High") plt.plot(x, range_low, label="Typical Low") # Add axis labels, add legend, rotate date labels and add plot title plt.xlabel('Dates from {}'.format(dates[-1])) plt.ylabel('Water Level (m)') plt.legend() plt.xticks(rotation=45) plt.title(station.name) # Display plot plt.tight_layout() # This makes sure plot does not cut off date labels return plt.show()
3.8125
4
sp_pipe.py
icanswim/seneca
0
12796116
<gh_stars>0 # Author: <NAME> from __future__ import unicode_literals import spacy import numpy as np class SpPipe(): def __init__(self): self.nlp = spacy.load('en_core_web_md', disable=['ner','parser','tagger','textcat']) def __call__(self, texts, labels, steps=10): print 'tokenizing with spacy...' docs = [self.nlp(unicode(text)) for text in texts] X, y = self._get_features(docs, labels, steps) return X, y def _get_features(self, docs, labels, steps): X = np.zeros((len(labels), steps), dtype='int32') for n, doc in enumerate(docs): m = 0 for token in doc: vector_id = token.vocab.vectors.find(key=token.orth) if vector_id >= 0: X[n, m] = vector_id else: X[n, m] = 0 m += 1 if m >= steps: break return X, labels def get_embedding(self): return self.nlp.vocab.vectors.data
2.828125
3
app/api_tools.py
AndreyAD1/forum
0
12796117
from app import database def get_single_json_entity(entity_query): query_result_proxy = database.session.execute(entity_query) database.session.commit() row_proxies = [r for r in query_result_proxy] if len(row_proxies) == 1: json_entity = {k: v for k, v in row_proxies[0].items()} else: json_entity = {} return json_entity
2.40625
2
test.py
rykumar13/news-scrapper-backend
0
12796118
<filename>test.py import requests def main(): # url = "http://127.0.0.1:5000/" url = "http://localhost:8080/" raw_response = requests.get(url=url, auth=('api_username', 'api_password')) if raw_response.status_code == 200: result = raw_response.json() print(result) else: print(str(raw_response.status_code) + " - " + raw_response.text) if __name__ == "__main__": main()
2.984375
3
test/formats/test_mrea.py
randovania/retro-data-structures
0
12796119
<filename>test/formats/test_mrea.py from pathlib import Path import pytest from retro_data_structures.base_resource import AssetId from retro_data_structures.formats import Mlvl from retro_data_structures.formats.mrea import MREA, Mrea from retro_data_structures.game_check import Game from test import test_lib _mrea_path_p1 = "Resources/Worlds/EndCinema/!EndCinema_Master/01_endcinema.MREA" _mrea_path_p2 = "Resources/Worlds/SandWorld/!SandWorld_Master/00_pickup_sand_d_dark.MREA" @pytest.fixture(name="p1_mrea_path") def _p1_mrea_path(prime1_pwe_project) -> Path: return prime1_pwe_project.joinpath(_mrea_path_p1) @pytest.fixture(name="p2_mrea_path") def _p2_mrea_path(prime2_pwe_project) -> Path: return prime2_pwe_project.joinpath(_mrea_path_p2) def test_compare_p1(p1_mrea_path): # Known difference: some Prime 1 script layers have sizes that # are not multiples of 32; building always pads to 32 test_lib.parse_and_build_compare(MREA, Game.PRIME, p1_mrea_path) def test_compare_p1_parsed(p1_mrea_path): test_lib.parse_and_build_compare_parsed(MREA, Game.PRIME, p1_mrea_path) def test_compare_p2(p2_mrea_path): test_lib.parse_and_build_compare_parsed(MREA, Game.ECHOES, p2_mrea_path) def test_compare_all_p2(prime2_asset_manager, mrea_asset_id: AssetId): resource, decoded, encoded = test_lib.parse_and_build_compare_from_manager( prime2_asset_manager, mrea_asset_id, Mrea, ) assert isinstance(decoded, Mrea) def test_add_instance(prime2_asset_manager): from retro_data_structures.properties.echoes.objects.SpecialFunction import SpecialFunction from retro_data_structures.enums import echoes mlvl = prime2_asset_manager.get_parsed_asset(0x42b935e4, type_hint=Mlvl) area = mlvl.get_area(0x5DFA984F) area.get_layer("Default").add_instance_with(SpecialFunction( function=echoes.Function.Darkworld, )) assert area.mrea.build() is not None
2.234375
2
build/tools/build_resource_to_bytecode.py
openharmony-gitee-mirror/ace_ace_engine
0
12796120
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2020 Huawei Device Co., Ltd. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys def resource_file_to_bytecode(input_dir, input_file, output_path): with open(os.path.join(input_dir, input_file), 'rb')\ as resource_file_object: with open(output_path, 'a') as cpp_file_object: length = 0; all_the_content = resource_file_object.read(); template0 = "#include <stdint.h>\n"; template1 = "const uint8_t _binary_$1_start[$2] = {$3};\n"; template2 = \ "const uint8_t* _binary_$1_end = _binary_$1_start + $2;"; formats = "," seq = [] for content in all_the_content: seq.append(str(hex(content))) length = length + 1 byte_code = formats.join(seq); input_file = input_file.replace(".", "_") template1 = template1.replace("$1", str(input_file)) \ .replace("$2", str(length)) \ .replace("$3", str(byte_code)) template2 = template2.replace("$1", str(input_file)) \ .replace("$2", str(length)) cpp_file_object.seek(0) cpp_file_object.truncate(); cpp_file_object.write(template0 + template1 + template2); def main(): parser = argparse.ArgumentParser() parser.add_argument('--objcopy', type=str, required=False) parser.add_argument('--input', type=str, required=True) parser.add_argument('--output', type=str, required=True) parser.add_argument('--arch', type=str, required=False) args = parser.parse_args() input_dir, input_file = os.path.split(args.input) output_path = os.path.abspath(args.output) resource_file_to_bytecode(input_dir, input_file, output_path) if __name__ == '__main__': sys.exit(main())
2.484375
2
config.py
nowindxdw/flask_base
0
12796121
<filename>config.py #!/usr/bin/env python # encoding: utf-8 import os basedir = os.path.abspath(os.path.dirname(__file__)) BASEDIR = basedir DEBUG = False SECRET_KEY = 'This is a secret key forexample' # not end with else throw AttributeError: 'tuple' object has no attribute 'drivername' SQLALCHEMY_DATABASE_URI = "mysql+pymysql://root:[email protected]/test?charset=utf8" # base管理 SQLALCHEMY_BINDS = { 'base': "mysql+pymysql://root:[email protected]/test?charset=utf8", # web数据库 'website': "mysql+pymysql://root:[email protected]/website?charset=utf8", # web数据库 'otherdb': "mysql+pymysql://root:[email protected]/otherdb?charset=utf8", # other管理 } SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_COMMIT_ON_TEARDOWN = False SQLALCHEMY_AUTOFLUSH = False SQLALCHEMY_ECHO = True REDIS_URL = 'redis://:@127.0.0.1:6379'
2.0625
2
examples/miniapps/engines_cars/example/cars.py
kinow/python-dependency-injector
0
12796122
"""Dependency injection example, cars module.""" class Car: """Example car.""" def __init__(self, engine): """Initialize instance.""" self._engine = engine # Engine is injected
2.8125
3
GCC-paddle/gcc/models/emb/from_numpy.py
S-HuaBomb/Contrib
243
12796123
<reponame>S-HuaBomb/Contrib import random import networkx as nx import numpy as np class Zero(object): def __init__(self, hidden_size, **kwargs): self.hidden_size = hidden_size def train(self, G): return np.zeros((G.number_of_nodes(), self.hidden_size)) class FromNumpy(object): def __init__(self, hidden_size, emb_path, **kwargs): super(FromNumpy, self).__init__() self.hidden_size = hidden_size self.emb = np.load(emb_path) def train(self, G): id2node = dict([(vid, node) for vid, node in enumerate(G.nodes())]) embeddings = np.asarray([self.emb[id2node[i]] for i in range(len(id2node))]) assert G.number_of_nodes() == embeddings.shape[0] return embeddings class FromNumpyGraph(FromNumpy): def train(self, G): assert G is None return self.emb class FromNumpyAlign(object): def __init__(self, hidden_size, emb_path_1, emb_path_2, **kwargs): self.hidden_size = hidden_size self.emb_1 = np.load(emb_path_1) self.emb_2 = np.load(emb_path_2) self.t1, self.t2 = False, False def train(self, G): if G.number_of_nodes() == self.emb_1.shape[0] and not self.t1: emb = self.emb_1 self.t1 = True elif G.number_of_nodes() == self.emb_2.shape[0] and not self.t2: emb = self.emb_2 self.t2 = True else: raise NotImplementedError id2node = dict([(vid, node) for vid, node in enumerate(G.nodes())]) embeddings = np.asarray([emb[id2node[i]] for i in range(len(id2node))]) return embeddings
2.3125
2
tests/__init__.py
robinsax/canvas
4
12796124
# coding: utf-8 ''' Unit tests on the canvas framework. ''' from . import exceptions, utils, json, views, controller_service, assets, \ model, service
1.132813
1
files/042 - coded triangle numbers.py
farukara/Project-Euler-problems
0
12796125
<filename>files/042 - coded triangle numbers.py<gh_stars>0 #!python3 # coding: utf-8 # The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are: # 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... # By converting each letter in a word to a number corresponding to its alphabetical position and adding these values we form a word value. For example, the word value for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a triangle number then we shall call the word a triangle word. # Using words.txt (right click and 'Save Link/Target As...'), a 16K text file containing nearly two-thousand common English words, how many are triangle words? #https://projecteuler.net/problem=42 from time import perf_counter def timeit(func): def wrapper(*args, **kwargs): start = perf_counter() result = func(*args, **kwargs) finish = perf_counter() print(f"{func.__name__} function took {finish - start:.3f} seconds") return result return wrapper @timeit def main(): triangle_num_values = [] for i in range(1, 27): triangle_num_values.append(int(i*(i+1)*0.5)) counter = 0 with open("p042_words.txt", "r") as f: words = f.readlines()[0][1:-1].split('","') for word in words: sum_of_letters = 0 for letter in word: sum_of_letters += ord(letter)-64 if sum_of_letters in triangle_num_values: counter += 1 print("\n", counter) if __name__ == "__main__": main()
3.828125
4
nucleus/__init__.py
ciex/souma
5
12796126
<filename>nucleus/__init__.py import logging import blinker from web_ui import db, app from sqlalchemy.orm import sessionmaker ERROR = { "MISSING_MESSAGE_TYPE": (1, "No message type found."), "MISSING_PAYLOAD": (2, "No data payload found."), "OBJECT_NOT_FOUND": lambda name: (3, "Object does not exist: ".format(name)), "MISSING_KEY": lambda name: (4, "Missing data for this request: {}".format(name)), "INVALID_SIGNATURE": (5, "Invalid signature."), "INVALID_SESSION": (6, "Session invalid. Please re-authenticate."), "DUPLICATE_ID": lambda id: (7, "Duplicate ID: {}".format(id)), "SOUMA_NOT_FOUND": lambda id: (8, "Souma not found: {}".format(id)), "MISSING_PARAMETER": lambda name: (9, "Missing HTTP parameter: {}".format(name)), } # Setup Blinker namespace notification_signals = blinker.Namespace() # Setup logger namespace logger = logging.getLogger('nucleus') # Source formatting helper source_format = lambda address: None if address is None else \ "{host}:{port}".format(host=address[0], port=address[1]) # Possible states of stars STAR_STATES = { -2: (-2, "deleted"), -1: (-1, "unavailable"), 0: (0, "published"), 1: (1, "draft"), 2: (2, "private"), 3: (3, "updating") } # Possible states of planets PLANET_STATES = { -1: (-1, "unavailable"), 0: (0, "published"), 1: (1, "private"), 2: (2, "updating") } # Possible states of 1ups ONEUP_STATES = { -1: "disabled", 0: "active", 1: "unknown author" } CHANGE_TYPES = ("insert", "update", "delete") class InvalidSignatureError(Exception): """Throw this error when a signature fails authenticity checks""" pass class PersonaNotFoundError(Exception): """Throw this error when the Persona profile specified for an action is not available""" pass class UnauthorizedError(Exception): """Throw this error when the active Persona is not authorized for an action""" pass class VesicleStateError(Exception): """Throw this error when a Vesicle's state does not allow for an action""" pass # Import at bottom to avoid circular imports # Import all models to allow querying db binds from nucleus.models import * from vesicle import Vesicle # _Session is a custom sessionmaker that returns a session prefconfigured with the # model bindings from Nucleus _Session = sessionmaker(bind=db.get_engine(app)) def create_session(): """Return a session to be used for database connections Returns: Session: SQLAlchemy session object """ # Produces integrity errors! # return _Session() # db.session is managed by Flask-SQLAlchemy and bound to a request return db.session
2.28125
2
2018/day2/part2.py
MartinPetkov/AdventOfCode
0
12796127
<reponame>MartinPetkov/AdventOfCode #!/usr/bin/env python import argparse def part2(input): # Track all strings with each letter missing. # If seen, exit early. seen = {} for box_id in input: for i in range(len(box_id) - 1): if i not in seen: seen[i] = set() s = box_id[:i] + box_id[i+1:] if s in seen[i]: print(s) seen[i].add(s) def main(): parser = argparse.ArgumentParser() parser.add_argument( '-f', default='input.txt', dest='input_file', ) args = parser.parse_known_args()[0] input_file = args.input_file with open(input_file) as f: input = [l.strip() for l in f.readlines()] print(part2(input)) if __name__ == '__main__': main()
3.5
4
analysis.py
cangokceaslanx/2D-Scattering
1
12796128
<reponame>cangokceaslanx/2D-Scattering from scipy.stats import linregress import matplotlib.pyplot as mt import math import numpy as np import statistics as st datax = [20,40,60,80,100,120,140,160,180,200,220,240,260,280,300,320,340] data = [43,23,25,32,46,55,55,72,73,92,73,56,37,54,33,26,16] datax_symmetric = [20,40,60,80,100,120,140,160,180] sin_symmetric = [] errorbars = [] symmetric = [] errorbars_symmetric = [] for i in range(len(data)): errorbars.append(math.sqrt(data[i])) for k in range(8): symmetric.append(data[k]+data[16-k]) errorbars_symmetric.append(math.sqrt((data[k])+(data[16-k]))) symmetric.append(data[8]*2) errorbars_symmetric.append(math.sqrt((data[8])+(data[8]))) for l in range(len(symmetric)): sin_symmetric.append(np.sin(math.radians(datax_symmetric[l] / 2))) sine = np.array(sin_symmetric) error = np.array(errorbars_symmetric) dNarr = np.array(symmetric) slope,intercept,rvalue,pvalue,stderr=linregress(sine,dNarr) fit=np.polyfit(sine,dNarr,1) bfl=np.poly1d(fit) mt.errorbar(sine,dNarr,yerr=errorbars_symmetric,linestyle="None",color="red") #this is the error bar on linefit of sinus mt.legend("Error bars") mt.scatter(sine,dNarr, color="red") #this is the points for symmetric symmetric summation mt.legend("Sinus function") mt.plot(sine,bfl(sine),color="green") #this is the fitting symmetric summation plot mt.show() chi_squared = np.sum((np.polyval(fit, sine) - dNarr) ** 2) #Chi of line fit dNi = sum(symmetric) #Total of Symmetric Summation stDni = st.stdev(symmetric) #Standard Deviation of Symmetric Summation mt.title("Theta vs dN") mt.xlabel("Theta") mt.ylabel("dN") #mt.bar(datax,data,width=19,align='center',yerr=errorbars,color="gray") #this is the plot of real data we took from the paper #mt.bar(datax_symmetric,symmetric,width=19,align='center',yerr=errorbars_symmetric,color="green") #this is the data for symmetric summation
2.5
2
Python-LoopControlBreak.py
H2oPtic/Codecademy-Education
0
12796129
<gh_stars>0 dog_breeds_available_for_adoption = ["french_bulldog", "dalmatian", "shihtzu", "poodle", "collie"] dog_breed_I_want = "collie" for dog_breed in dog_breeds_available_for_adoption: print(dog_breed) if dog_breed == dog_breed_I_want: print("They have the dog I want!") break
3.5625
4
calibration/python/bolopropertiesutils.py
tskisner/spt3g_software
6
12796130
<reponame>tskisner/spt3g_software<gh_stars>1-10 from spt3g.calibration import BolometerProperties from spt3g import core import math __all__ = ['SplitByProperty', 'SplitByBand', 'SplitTimestreamsByBand', 'SplitByWafer', 'SplitByPixelType'] @core.indexmod class SplitByProperty(object): ''' Take an input G3FrameObject-derivative Map keyed by bolometer name and split it into several based on the property of the detectors as given by the BolometerProperties key. Return the same type of maps as the one it was handed, e.g. G3TimestreamMap, G3MapInt, etc. ''' def __init__(self, input='CalTimestreams', property=None, property_list=None, output_root=None, bpm='BolometerProperties'): ''' Split the input map given by input into several output maps named output_root + key (e.g. CalTimestreams + str(property)) with the default options). Arguments --------- input : str Key name of the input map to split. property : str Attribute name to extract from the BolometerProperties object. Required. property_list : list of properties Properties to include in the output keys. Entries that are not strings will be converted to strings using the `SplitByProperty.converter` method. If property_list is not None, use only the names in the list (possibly writing empty timestream maps to the frame). Otherwise, creates maps for every that exists in the input. output_root : str Prefix for the output keys. If None (default), use `input` as the output root. bpm : str The key name of the BolometerPropertiesMap from which to extract the requested `property` for splitting the input map. ''' if property is None: core.log_fatal("Property is a required argument") self.bpmattr = property self.input = input self.output_root = output_root if output_root is not None else input if property_list is not None: self.props = [self.converter(x) if not isinstance(x, str) else x for x in property_list] else: self.props = None self.bpmkey = bpm self.bpm = None @staticmethod def converter(prop): """ Function for converting the property to its corresponding string name. Returns a string representation of the input argument, or None if the argument is invalid. Overload this function in subclasses of SplitByProperty to change how attributes are parsed into their string representations. """ if prop is None: return None return str(prop) def __call__(self, frame): if self.bpmkey in frame: self.bpm = frame[self.bpmkey] if self.input not in frame: return inmap = frame[self.input] out = {} if self.props is not None: for prop in self.props: out[prop] = type(inmap)() for b in inmap.keys(): try: prop = self.converter(getattr(self.bpm[b], self.bpmattr)) except KeyError: continue if prop not in out: if self.props is None and prop is not None: out[prop] = type(inmap)() else: continue out[prop][b] = inmap[b] for prop in out.keys(): frame['%s%s' % (self.output_root, prop)] = out[prop] @core.indexmod class SplitByBand(SplitByProperty): ''' Take an input G3FrameObject-derivative Map keyed by bolometer name and split it into several based on the bands of the detectors as given by the BolometerProperties key. Return the same type of maps as the one it was handed, e.g. G3TimestreamMap, G3MapInt, etc. ''' def __init__(self, input='CalTimestreams', output_root=None, bands=None, bpm='BolometerProperties'): ''' Split the input map given by input into several output maps named output_root + band + GHz (e.g. CalTimestreams150GHz with the default options). If bands is not None, use only the bands in the list (possibly writing empty timestream maps to the frame). Otherwise, creates maps for every band that exists in the input. Setting bpm to a non-default value causes this to get its band mapping from an alternative data source. ''' super(SplitByBand, self).__init__( input=input, output_root=output_root, property_list=bands, bpm=bpm, property='band') @staticmethod def converter(band): if isinstance(band, str): return band if math.isnan(band) or math.isinf(band): return None if band < 0: return None return '%dGHz' % int(band/core.G3Units.GHz) @core.indexmod class SplitTimestreamsByBand(SplitByBand): def __init__(self, input='CalTimestreams', output_root=None, bands=None, bpm='BolometerProperties'): core.log_warn("SplitTimestreamsByBand is deprecated, use SplitByBand instead") super(SplitTimestreamsByBand, self).__init__( input=input, output_root=output_root, bands=bands, bpm=bpm) @core.indexmod class SplitByWafer(SplitByProperty): ''' Take an input G3FrameObject-derivative Map keyed by bolometer name and split it into several based on the wafers of the detectors as given by the BolometerProperties key. Return the same type of maps as the one it was handed, e.g. G3TimestreamMap, G3MapInt, etc. ''' def __init__(self, input='CalTimestreams', output_root=None, wafers=None, bpm='BolometerProperties'): ''' Split the input map given by input into several output maps named output_root + wafer (e.g. CalTimestreamsW172 with the default options). If wafers is not None, use only the wafers in the list (possibly writing empty timestream maps to the frame). Otherwise, creates maps for every wafer that exists in the input. Setting bpm to a non-default value causes this to get its wafer mapping from an alternative data source. ''' super(SplitByWafer, self).__init__( input=input, output_root=output_root, property_list=wafers, bpm=bpm, property='wafer_id') @staticmethod def converter(wafer): if wafer is None: return None return str(wafer).capitalize() @core.indexmod class SplitByPixelType(SplitByProperty): ''' Take an input G3FrameObject-derivative Map keyed by bolometer name and split it into several based on the pixel types of the detectors as given by the BolometerProperties key. Return the same type of maps as the one it was handed, e.g. G3TimestreamMap, G3MapInt, etc. ''' def __init__(self, input='CalTimestreams', output_root=None, types=None, bpm='BolometerProperties'): ''' Split the input map given by input into several output maps named output_root + wafer (e.g. CalTimestreamsW172 with the default options). If wafers is not None, use only the wafers in the list (possibly writing empty timestream maps to the frame). Otherwise, creates maps for every wafer that exists in the input. Setting bpm to a non-default value causes this to get its wafer mapping from an alternative data source. ''' super(SplitByPixelType, self).__init__( input=input, output_root=output_root, property_list=types, bpm=bpm, property='pixel_type') @staticmethod def converter(pixel_type): if pixel_type is None: return None if not pixel_type: return None pixel_type = str(pixel_type) if pixel_type.lower() == 'n/a': return None if pixel_type.islower(): return pixel_type.capitalize() return pixel_type
2.609375
3
controle_financeiro/lancamentos/migrations/0001_initial.py
douglaspands/controle-financeiro
0
12796131
<reponame>douglaspands/controle-financeiro # Generated by Django 3.2 on 2021-04-27 02:00 import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('carteiras', '0001_initial'), ] operations = [ migrations.CreateModel( name='Categoria', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('criado_em', models.DateTimeField(auto_now_add=True)), ('atualizado_em', models.DateTimeField(auto_now=True)), ('titulo', models.CharField(max_length=100)), ('slug', models.SlugField(max_length=100, unique=True)), ('descricao', models.TextField()), ], options={ 'ordering': ['slug'], }, ), migrations.CreateModel( name='Despesa', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('criado_em', models.DateTimeField(auto_now_add=True)), ('atualizado_em', models.DateTimeField(auto_now=True)), ('nome', models.CharField(max_length=100)), ('valor_total', models.DecimalField(decimal_places=2, max_digits=11)), ('datahora', models.DateTimeField()), ('quantidade_parcelas', models.IntegerField(default=1)), ('situacao', models.IntegerField(choices=[(1, 'Em Aberto'), (2, 'Pago'), (3, 'Cancelado'), (4, 'Estornado')], default=1)), ], options={ 'ordering': ['-datahora'], }, ), migrations.CreateModel( name='Lancamento', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('criado_em', models.DateTimeField(auto_now_add=True)), ('atualizado_em', models.DateTimeField(auto_now=True)), ('tipo', models.IntegerField(choices=[(1, 'Receita'), (2, 'Despesa')])), ('datahora', models.DateTimeField()), ('categorias', models.ManyToManyField(blank=True, to='lancamentos.Categoria')), ('centro_custo', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='lancamentos', to='carteiras.centrocusto')), ], options={ 'ordering': ['-datahora'], }, ), migrations.CreateModel( name='Receita', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('criado_em', models.DateTimeField(auto_now_add=True)), ('atualizado_em', models.DateTimeField(auto_now=True)), ('nome', models.CharField(max_length=100)), ('valor_total', models.DecimalField(decimal_places=2, default=0, max_digits=11)), ('datahora', models.DateTimeField()), ('lancamento', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='receita', to='lancamentos.lancamento')), ], options={ 'ordering': ['-datahora'], }, ), migrations.CreateModel( name='Parcela', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('criado_em', models.DateTimeField(auto_now_add=True)), ('atualizado_em', models.DateTimeField(auto_now=True)), ('ordem', models.IntegerField(validators=[django.core.validators.MinValueValidator(1)])), ('data', models.DateField()), ('valor', models.DecimalField(decimal_places=2, max_digits=11)), ('situacao', models.IntegerField(choices=[(1, 'Em Aberto'), (2, 'Pago'), (3, 'Cancelado'), (4, 'Estornado')], default=1)), ('despesa', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='parcelas', to='lancamentos.despesa')), ], options={ 'ordering': ['data'], }, ), migrations.AddField( model_name='despesa', name='lancamento', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='despesa', to='lancamentos.lancamento'), ), migrations.AddIndex( model_name='categoria', index=models.Index(fields=['slug'], name='lancamentos_slug_1e2e80_idx'), ), ]
1.882813
2
test_time_log_window.py
sphericalpm/jira-quick-reporter
1
12796132
<filename>test_time_log_window.py from jiraclient import JiraClient import unittest from types import SimpleNamespace as sn class Test(unittest.TestCase): def test_get_remaining_estimate_empty(self): issue = sn( fields=sn( timetracking=sn( raw={} ) ) ) self.assertEqual(JiraClient.get_remaining_estimate(issue), '0m') def test_get_remaining_estimate(self): issue = sn( fields=sn( timetracking=sn( raw={'remainingEstimate': '1h'} ) ) ) self.assertEqual(JiraClient.get_remaining_estimate(issue), '1h') if __name__ == '__main__': unittest.main()
2.421875
2
test_old.py
knightman/skybitz-gatewaydemo
0
12796133
import gateway import soapreqs import time from datetime import datetime #Imports currently used for testing only # import pprint # import json # --------------------------------------------------------- # ''' EARLY TEST SCENARIOS ''' # --------------------------------------------------------- # # invalrmlist = d['soap:Body']['GetInventoryCalcAlarmResponse']['GetInventoryCalcAlarmResult']['CalcAlarmInventory'] # inventorytime = '' # for item in invalrmlist: # if item['sUTCInventoryTime']: # #datetime_object = datetime.strptime(str(item['sUTCInventoryTime']), '%m %d %Y %I:%M:%S %p') # print(str(item['sUTCInventoryTime'])) # # if item['iCalcAlarmBits'] != str(0): # # print('Tank ' + item['iTankID'] + ' has alarm status ' + item['iCalcAlarmBits']) # f = open('temp.json', 'w') # f.write(json.dumps(resp, sort_keys=True, indent=4)) # for k in d['soap:Body']: # print(k) # break # d = {'ONE':{'TWO':{'THREE':'some txt value'}}} # pprint.pprint(d) # print(d['ONE']) # print(d['ONE']['TWO']) # print(d['soap:Body']['GetTankResponse']['@xmlns']) # print(d['soap:Body']['GetTankResponse']['iErrorCode']) # tanklist = d['soap:Body']['GetTankResponse']['GetTankResult']['Tank'] # for item in tanklist: # print(item) #need to fix # #Org example reading the list in Organization value # print(d['soap:Body']['GetOrganizationResponse']['@xmlns']) # print(d['soap:Body']['GetOrganizationResponse']['iErrorCode']) # list = d['soap:Body']['GetOrganizationResponse']['GetOrganizationResult']['Organization'] #returns list # for k in list: # #print(type(k)) # #print(k) # for k, v in k.items(): # if k == 'iOrganizationID': # print(k, v) # #print(v) # #Loc example reading the list in Location value # print('Return code: ' + str(d['soap:Body']['GetLocationResponse']['iErrorCode'])) # print('Location List: ') # list = d['soap:Body']['GetLocationResponse']['GetLocationResult']['Location'] #returns list # for k in list: # try: # if k['iLocationID']: # print('ID: ' + str(k['iLocationID']) + ' Name: ' + str(k['sLocationName']) # + ' Address: ' + str(k['sAddress1'])) # except KeyError: # pass # #Tank example reading the list in Tank value # print('Return code: ' + str(d['soap:Body']['GetTankResponse']['iErrorCode'])) # print('Tank List: ') # list = d['soap:Body']['GetTankResponse']['GetTankResult']['Tank'] #returns list # for k in list: # try: # if k['iTankID']: # print('ID: ' + str(k['iTankID'])) # except KeyError: # pass # --------------------------------------------------------- # ''' REAL GATEWAY TEST SECTION ''' # --------------------------------------------------------- # # GATEWAY SOAP GEN AND REQUEST TESTS # g = gateway.Gateway() # Make the Request to Gateway # soapResponse = g.gateway_request(soapreqs.get_org_soap()) # soapResponse = g.gateway_request(soapreqs.get_loc_soap()) # soapResponse = g.gateway_request(soapreqs.get_tank_soap()) # soapResponse = g.gateway_request(soapreqs.get_inv_soap()) # soapResponse = g.gateway_request(soapreqs.get_invalrm_soap()) # tankgenlatlonstr = '10203647' # soapResponse = g.gateway_request(soapreqs.get_tankgenlatlon_soap(tankgenlatlonstr)) # # Parse response # dresp = g.parse_response(soapResponse) # print(dresp) # INV ALARM CALC TRANSACTIONID TESTS # # Step1 - make request using simple inventory soap (ie. zero as ACK code), parse response and save json file # g = gateway.Gateway() # dictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_soap())) #soapreqs.get_invalrm_transactid_soap('0') works the same # # Step2 - Process the json file to get the TransactionID and Inv Calc Alarm count # p = gateway.Process() # transactidstr = p.get_inventorycalcalrm_transactID() # invalrmcount = p.count_inventorycalcalrm() # print('TransactionID: ' + transactidstr + ' Inv Count: ' + str(invalrmcount)) # time.sleep(2) #wait 2 secs # #Step2.5 - make a second gateway req using the TransactionID to create unique json - first test # testinvtransactid = '47174434' # #g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(testinvtransactid))) # newinvalrmcount = p.count_inventorycalcalrm_unique(testinvtransactid) # print('new count: ' + str(newinvalrmcount)) # #Step3 - make a second gateway request using the TransactionID to create unique json file # uniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(transactidstr))) # g.save_resp_unique_json(uniquedictresponse, transactidstr) # #Step4 - Now parse the unique json file to get the new transaction id and count # newtransactidstr = p.get_inventorycalcalrm_unique_transactID(transactidstr) # newinvalrmcount = p.count_inventorycalcalrm_unique(transactidstr) # print('NEW TransactionID: ' + newtransactidstr + ' NEW Inv Count: ' + str(newinvalrmcount)) # #Step 5- Repeat as neccessary until count < 100 to get the latest inventory # nexttransactidstr = transactidstr # newinvalrmcount = invalrmcount # while newinvalrmcount == 100: # time.sleep(3) # #replaces step3 # uniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(nexttransactidstr))) # g.save_resp_unique_json(uniquedictresponse, nexttransactidstr) # print('Created unique json for TransactionID ' + nexttransactidstr) # #replaces step4 # newinvalrmcount = p.count_inventorycalcalrm_unique(nexttransactidstr) #updates newinvalrmcount # newtransactidstr = p.get_inventorycalcalrm_unique_transactID(nexttransactidstr) #temp var # print('NEW TransactionID: ' + nexttransactidstr + ' NEW Inv Count: ' + str(newinvalrmcount)) # nexttransactidstr = newtransactidstr #updates nexttransactidstr # # NEW TEST TO GET LATEST INV RECORDS - THIS PROCESS GIVES YOU LATEST UNIQUE INVCALCALARM # #NOTE: THIS METHOD OF GETTING LATEST INVENTORY ONLY WORKS IF YOU HAVE LESS THAN 100 TANKS! # #TODO: Place thi ALL into a function that whose job is to basically create the latest inventory json file. # g = gateway.Gateway() # firstresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_soap())) # g.save_resp_json(firstresponse) # # Everything depends on count of this first item # p = gateway.Process() # thecount = p.count_inventorycalcalrm() # transactidstr = p.get_inventorycalcalrm_transactID() # print('TransactID: ' + transactidstr) # print('Inventory count: ' + str(thecount)) # #IF COUNT <= 0 --> NO NEW INV RECORDS # #MUST USE LATEST UNIQUE JSON FILE FOR INV RECORDS # #ELSE IF COUNT >= 100 --> NEED TO ITERATE THRU TO GET LATEST # #MUST MAKE SURE YOU SAVE EACH UNIQUE JSON! ONCE YOU CALL THE WEB SERVICE WITH TRANSACTID, YOU CANNOT GET IT AGAIN! # #ELSE YOU HAVE THE LATEST INV IN GetInventoryCalcAlarmResponse.json, SAVE TO LATEST # if thecount <= 0: # #No new inv, Use latest unique - BASICALLY THIS MEANS NEED TO COMPARE EMPTY GetInventoryCalcAlarmResponse.json # #FILE TO THE LATEST GetInventoryCalcAlarmResponse_latest.json INVENTORY THAT SOULD ALREADY EXIST # print('Zero new inventory records, use the existing latest') # elif thecount >= 100: # #ITERATE TO GET THE LATEST INVENTORY GetInventoryCalcAlarmResponse_latest.json; ALSO DEL EMPTY LATEST IF PRESENT AT END! # print('more than 100, need to iterate to latest') # #transactidstr = p.get_inventorycalcalrm_transactID() # #invalrmcount = p.count_inventorycalcalrm() # print('TransactionID: ' + transactidstr) # #get and save unique json reponse # uniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(transactidstr))) # g.save_resp_unique_json(uniquedictresponse, transactidstr) # #get the new inv alarm count from the uniquedictresponse # invalrmcount = p.count_inventorycalcalrm_unique(transactidstr) # print(' NEW Inv Count: ' + str(invalrmcount)) # #set transactid and count to first one above # #nextinvalrmcount = invalrmcount # nextinvalrmcount = thecount # nexttransactidstr = transactidstr # # while more to get, set new transactid to that from latest unique json # while True: # #save next to last id string in case last item has zero records # nexttolastidstr = nexttransactidstr # #break while loop if count less than 100 # if nextinvalrmcount < 100: # break # print('fetching next...') # newtransactidstr = p.get_inventorycalcalrm_unique_transactID(nexttransactidstr) # print('NEW TransactionID: ' + newtransactidstr) # #get the next unique json from gateway request # newuniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(newtransactidstr))) # g.save_resp_unique_json(newuniquedictresponse, newtransactidstr) # #get the new inv alrm count from the newtransactidstr # newinvalrmcount = p.count_inventorycalcalrm_unique(newtransactidstr) # print(' NEW Inv Count: ' + str(newinvalrmcount)) # #update nexttransactid and nextinvalrmcount # nexttransactidstr = p.get_inventorycalcalrm_unique_transactID(nexttransactidstr) # nextinvalrmcount = p.count_inventorycalcalrm_unique(nexttransactidstr) # time.sleep(2) # #now, check if latest unique json has no records, if so delete it # if len(nexttolastidstr) > 0 and newinvalrmcount < 1: # deletresponsestr = 'data/GetInventoryCalcAlarmResponse{0}.json' # g.delete_resp_unique_json(deletresponsestr.format(nexttransactidstr)) # #finally, save the latest non-empty unique inv json file to the latest # g.save_resp_unique_json(newuniquedictresponse, '_latest') # else: # print('Less than 100') # #save as latest inv json file # g.save_resp_unique_json(firstresponse, '_latest') # # #also get and save unique json reponse for the next transactid - IMPORTANT: THIS WILL GIVE AN EMPTY NEXT REPONSE # # uniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(transactidstr))) # # g.save_resp_unique_json(firstresponse, transactidstr) # transactidstr = p.get_inventorycalcalrm_transactID() # # invalrmcount = p.count_inventorycalcalrm() # print('TransactionID: ' + transactidstr) # #get and save unique json reponse # uniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(transactidstr))) # g.save_resp_unique_json(uniquedictresponse, transactidstr) # #get the new inv alarm count from the uniquedictresponse # invalrmcount = p.count_inventorycalcalrm_unique(transactidstr) # print(' NEW Inv Count: ' + str(invalrmcount)) # #determine inv count - if less than 100, nothing more to do # nexttolastidstr = '' # newuniquedictresponse = [] # if invalrmcount == 100: # print('more than 100, need to iterate to latest') # #set transactid and count to first one above # nexttransactidstr = transactidstr # nextinvalrmcount = invalrmcount # # while more to get, set new transactid to that from latest unique json # while True: # #save next to last id string in case last item has zero records # nexttolastidstr = nexttransactidstr # #break while loop if count less than 100 # if nextinvalrmcount < 100: # break # print('fetching next...') # newtransactidstr = p.get_inventorycalcalrm_unique_transactID(nexttransactidstr) # print('NEW TransactionID: ' + newtransactidstr) # #get the next unique json from gateway request # newuniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(newtransactidstr))) # g.save_resp_unique_json(newuniquedictresponse, newtransactidstr) # #get the new inv alrm count from the newtransactidstr # newinvalrmcount = p.count_inventorycalcalrm_unique(newtransactidstr) # print(' NEW Inv Count: ' + str(newinvalrmcount)) # #update nexttransactid and nextinvalrmcount # nexttransactidstr = p.get_inventorycalcalrm_unique_transactID(nexttransactidstr) # nextinvalrmcount = p.count_inventorycalcalrm_unique(nexttransactidstr) # time.sleep(3) # #now, check if latest unique json has no records, if so delete it # if len(nexttolastidstr) > 0 and newinvalrmcount < 1: # deletresponsestr = 'data/GetInventoryCalcAlarmResponse{0}.json' # g.delete_resp_unique_json(deletresponsestr.format(nexttransactidstr)) # #finally, rename the unique inv json file to be the generic starting point GetInventoryCalcAlarmResponselatest json file! # if len(str(newuniquedictresponse)) > 0: # g.save_resp_unique_json(newuniquedictresponse, 'latest') # else: # print('less than 100, have latest') # g.save_resp_unique_json(uniquedictresponse, 'latest') # PROCESSING TEST SECTION ONLY # p = gateway.Process() #test1 # tanklist = p.get_tank_list() # for item in tanklist: # print(item) #test2 # invlist = p.get_inventory_list() # for item in invlist: # print(item) #test3 # bothlist = p.get_tankinv_list() # for item in bothlist: # print(item) #test4 # print(p.get_grossvol_byinvid('194699940')) #test5 # latestinvstr = p.get_latestinvid_bytank('10203647') #works! # print(latestinvstr) #test6 - nice working test! # tanklist = p.get_tank_list() #gives list of tank ids # print(tanklist) # for item in tanklist: #display latest inventory for each tank in list # latestinvidstr = p.get_latestinvid_bytank(str(item)) #get the latest inventory id for the tank # print('TankID: ' + str(item) + ' currently has gross vol ' + p.get_grossvol_byinvid(latestinvidstr) + ' gals') #test7 #print(str(p.get_tankname_bytankid('10203647'))) # # TEST 8 - full test working thru step 4 - fully working # g = gateway.Gateway() # p = gateway.Process() # #step1 - req all tanks and write to master tanks file # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_tank_soap()))) # time.sleep(2) # #step2 - build tank list from file created in step 1 # tanklist = p.get_tank_list() #gives list of tank ids - THIS IS AN IMPORTANT STEP FOR SEVERAL ITEMS BELOW!!!!!!! # #print(tanklist) # for item in tanklist: #for each unique tank, create a unique file for each tank # g.save_resp_unique_json(g.parse_response(g.gateway_request(soapreqs.get_tankgenlatlon_soap(item))), item) # time.sleep(1) # #step3 - get latest inv and save file # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_inv_soap()))) # #step4 - for each tank in tanklist get latest inventory and display # #note: for this to work, you must have already done steps 1 and 3 above - need tank and inv # for item in tanklist: # latestinvidstr = p.get_latestinvid_bytank(str(item)) #get the latest inventory id for the tank # print('Tank ' + p.get_tankname_bytankid_file(str(item)) + ' currently has gross vol of ' # + str(int(float(p.get_grossvol_byinvid(latestinvidstr)))) + ' gals') # #step5 - works now, similar to step 4 # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_invalrm_soap()))) # #step7 - parse and display the data # for item in tanklist: # latestinvidstr = p.get_latestinvid_bytank(str(item)) #get the latest inventory id for the tank # alarmstatus = p.get_tankalrm_byinvid(latestinvidstr) # if alarmstatus != '0': # print('Tank ' + p.get_tankname_bytankid_file(str(item)) + ' currently has alarm status of ' # + alarmstatus + ' calc alarm bits') # #TODO: Add function in Process to perform an alarm bits lookup to decode the actual alarm state # #RUN.PY TEST # # SETUP RUN TEST TO CHECK FOR CHANGES VIA GATEWAY # # TODO: Switch print stmts to log statements # print('\nWELCOME TO THE GATEWAY DEMO APP\n--------------------------------') # g = gateway.Gateway() # p = gateway.Process() # while True: # print(str(datetime.datetime.now()) + ' - wake up...') # #step1 - request all tanks and write to master tanks file # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_tank_soap()))) # time.sleep(1) # print('retrieved tanks...') # #step2 - build tank list from file created in step 1 # tanklist = p.get_tank_list() #gives list of tank ids # print('TankIDs: ' + str(tanklist)) # for item in tanklist: #for each unique tank, create a unique file for each tank # g.save_resp_unique_json(g.parse_response(g.gateway_request(soapreqs.get_tankgenlatlon_soap(item))), item) # time.sleep(1) # #step3 - get latest inv and save file # print('writing parsed inventory data to file...') # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_inv_soap()))) # print('writing parsed alarm data to file...') # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_invalrm_soap()))) # #delay # print('zzzzz') # time.sleep(180) #sleep for 3mins, increase this later # def build_latest_inv_file(): # '''NEW TEST TO GET LATEST INV RECORDS - THIS PROCESS GIVES YOU LATEST UNIQUE INVCALCALARM # NOTE: THIS METHOD OF GETTING LATEST INVENTORY ONLY WORKS IF YOU HAVE LESS THAN 100 TANKS!''' # try: # logtxt = '' # g = gateway.Gateway() # firstresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_soap())) # g.save_resp_json(firstresponse) # # Everything depends on count of this first item # p = gateway.Process() # thecount = p.count_inventorycalcalrm() # transactidstr = p.get_inventorycalcalrm_transactID() # print('TransactID: ' + transactidstr) # print('Inventory count: ' + str(thecount)) # #IF COUNT <= 0 --> NO NEW INV RECORDS # #MUST USE LATEST UNIQUE JSON FILE FOR INV RECORDS # #ELSE IF COUNT >= 100 --> NEED TO ITERATE THRU TO GET LATEST # #MUST MAKE SURE YOU SAVE EACH UNIQUE JSON! ONCE YOU CALL THE WEB SERVICE WITH TRANSACTID, YOU CANNOT GET IT AGAIN! # #ELSE YOU HAVE THE LATEST INV IN GetInventoryCalcAlarmResponse.json, SAVE TO LATEST # if thecount <= 0: # #No new inv, Use latest unique - BASICALLY THIS MEANS NEED TO COMPARE EMPTY GetInventoryCalcAlarmResponse.json # #FILE TO THE LATEST GetInventoryCalcAlarmResponse_latest.json INVENTORY THAT SOULD ALREADY EXIST # print('Zero new inventory records, use the existing latest') # elif thecount >= 100: # #ITERATE TO GET THE LATEST INVENTORY GetInventoryCalcAlarmResponse_latest.json; ALSO DEL EMPTY LATEST IF PRESENT AT END! # print('more than 100, need to iterate to latest') # #transactidstr = p.get_inventorycalcalrm_transactID() # #invalrmcount = p.count_inventorycalcalrm() # print('TransactionID: ' + transactidstr) # #get and save unique json reponse # uniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(transactidstr))) # g.save_resp_unique_json(uniquedictresponse, transactidstr) # #get the new inv alarm count from the uniquedictresponse # invalrmcount = p.count_inventorycalcalrm_unique(transactidstr) # print(' NEW Inv Count: ' + str(invalrmcount)) # #set transactid and count to first one above # #nextinvalrmcount = invalrmcount # nextinvalrmcount = thecount # nexttransactidstr = transactidstr # # while more to get, set new transactid to that from latest unique json # while True: # #save next to last id string in case last item has zero records # nexttolastidstr = nexttransactidstr # #break while loop if count less than 100 # if nextinvalrmcount < 100: # break # print('fetching next...') # newtransactidstr = p.get_inventorycalcalrm_unique_transactID(nexttransactidstr) # print('NEW TransactionID: ' + newtransactidstr) # #get the next unique json from gateway request # newuniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(newtransactidstr))) # g.save_resp_unique_json(newuniquedictresponse, newtransactidstr) # #get the new inv alrm count from the newtransactidstr # newinvalrmcount = p.count_inventorycalcalrm_unique(newtransactidstr) # print(' NEW Inv Count: ' + str(newinvalrmcount)) # #update nexttransactid and nextinvalrmcount # nexttransactidstr = p.get_inventorycalcalrm_unique_transactID(nexttransactidstr) # nextinvalrmcount = p.count_inventorycalcalrm_unique(nexttransactidstr) # time.sleep(2) # #now, check if latest unique json has no records, if so delete it # if len(nexttolastidstr) > 0 and newinvalrmcount < 1: # deletresponsestr = 'data/GetInventoryCalcAlarmResponse{0}.json' # g.delete_resp_unique_json(deletresponsestr.format(nexttransactidstr)) # #finally, save the latest non-empty unique inv json file to the latest # g.save_resp_unique_json(newuniquedictresponse, '_latest') # else: # print('Less than 100') # #save as latest inv json file # g.save_resp_unique_json(firstresponse, '_latest') # # #also get and save unique json reponse for the next transactid - IMPORTANT: THIS WILL GIVE AN EMPTY NEXT REPONSE # # uniquedictresponse = g.parse_response(g.gateway_request(soapreqs.get_invalrm_transactid_soap(transactidstr))) # # g.save_resp_unique_json(firstresponse, transactidstr) # except: # logtxt = 'error' # return logtxt # # TEST 9 - modified test #8 for using latest inv above based on count # g = gateway.Gateway() # p = gateway.Process() # #step1 - req all tanks and write to master tanks file # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_tank_soap()))) # time.sleep(2) # #step2 - build tank list from file created in step 1 # tanklist = p.get_tank_list() #gives list of tank ids - THIS IS AN IMPORTANT STEP FOR SEVERAL ITEMS BELOW!!!!!!! # #print(tanklist) # for item in tanklist: #for each unique tank, create a unique json file for each tank # g.save_resp_unique_json(g.parse_response(g.gateway_request(soapreqs.get_tankgenlatlon_soap(item))), item) # time.sleep(1) # #step3 - get latest inv and save file # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_inv_soap()))) # #step4 - for each tank in tanklist get latest inventory and display # #note: for this to work, you must have already done steps 1 and 3 above - need tank and inv # for item in tanklist: # latestinvidstr = p.get_latestinvid_bytank(str(item)) #get the latest inventory id for the tank # print('Tank ' + p.get_tankname_bytankid_file(str(item)) + ' currently has gross vol of ' # + str(int(float(p.get_grossvol_byinvid(latestinvidstr)))) + ' gals') # #step5 - works now, similar to step 4 # g.save_resp_json(g.parse_response(g.gateway_request(soapreqs.get_invalrm_soap()))) # #step7 - parse and display the data # for item in tanklist: # latestinvidstr = p.get_latestinvid_bytank(str(item)) #get the latest inventory id for the tank # alarmstatus = p.get_tankalrm_byinvid(latestinvidstr) # if alarmstatus != '0': # print('Tank ' + p.get_tankname_bytankid_file(str(item)) + ' currently has alarm status of ' # + alarmstatus + ' calc alarm bits')
2.28125
2
setup.py
vspaz/pclient
1
12796134
<reponame>vspaz/pclient import os import setuptools def _build_path(file_path, base=os.path.abspath(os.path.dirname(__file__))): return os.path.join(base, file_path) def _get_dependencies(): with open(_build_path(file_path='requirements/prod.txt')) as fh: return [line.strip() for line in fh.readlines()] def _get_readme(): with open(_build_path(file_path='README.md')) as fh: return fh.read() def _get_package_info(): with open(_build_path(file_path='pyclient/__version__.py')) as fh: package_info = {} exec(fh.read(), package_info) return package_info _PACKAGE_INFO = _get_package_info() setuptools.setup( name=_PACKAGE_INFO['__title__'], version=_PACKAGE_INFO['__version__'], description=_PACKAGE_INFO['__description__'], long_description=_get_readme(), packages=setuptools.find_packages(exclude=['tests', 'requirements']), install_requires=_get_dependencies(), url=_PACKAGE_INFO['__url__'], license='MIT License', author=_PACKAGE_INFO['__author__'], author_email=_PACKAGE_INFO['__email__'], maintainer=_PACKAGE_INFO['__maintainer__'], classifiers=[ 'Programming Language :: Python :: 3' 'Programming Language :: Python :: 3.7' 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', ], )
1.921875
2
performance_curves/__init__.py
erp12/performance-curves
0
12796135
<gh_stars>0 """Hello world! A brief overview of the package should go here. """
1.179688
1
tcs.py
DeViL3998/hackerrankChallenges
0
12796136
n, m = list(map(int, input().split(" "))) arr = [ ] count = count2 = 0 for i in range(n, m+1): for j in range(1, i//2 + 1): if i%j == 0: count += 1 if count == 1: arr.append(i) count = 0 for i in arr: if i + 6 in arr: count2 += 1 print(count2)
3.046875
3
basicts/data/transforms.py
zezhishao/GuanCang_BasicTS
3
12796137
from basicts.utils.registry import SCALER_REGISTRY """ data normalization and re-normalization """ # ====================================== re-normalizations ====================================== # @SCALER_REGISTRY.register() def re_max_min_normalization(x, **kwargs): _min, _max = kwargs['min'], kwargs['max'] x = (x + 1.) / 2. x = 1. * x * (_max - _min) + _min return x @SCALER_REGISTRY.register() def standard_re_transform(x, **kwargs): mean, std = kwargs['mean'], kwargs['std'] x = x * std x = x + mean return x # ====================================== normalizations ====================================== # # omitted to avoid redundancy, as they should only be used in data preprocessing in `scripts/data_preparation`
2.84375
3
ex009.py
vinisantos7/PythonExercicios
2
12796138
print("Bem-Vindo a Tabuada v1.0!") num = (int(input("Digite um número para a tabuada: "))) print('-'*12) print(f"{num} x {1:2} = {num * 1}") print(f"{num} x {2:2} = {num * 2}") print(f"{num} x {3:2} = {num * 3}") print(f"{num} x {4:2} = {num * 4}") print(f"{num} x {5:2} = {num * 5}") print(f"{num} x {6:2} = {num * 6}") print(f"{num} x {7:2} = {num * 7}") print(f"{num} x {8:2} = {num * 8}") print(f"{num} x {9:2} = {num * 9}") print(f"{num} x {10:2} = {num * 10}") print("-"*12)
4.25
4
python-pattern-matching/stdlib_ast.py
oilshell/blog-code
54
12796139
<reponame>oilshell/blog-code #!/usr/bin/env python3 """ demo.py Run with Python 3.10 """ from __future__ import print_function import sys import ast from ast import BinOp, UnaryOp, Constant, Add, Sub, USub # https://gvanrossum.github.io/docs/PyPatternMatching.pdf def fact(arg): match arg: case 0 | 1: f = 1 case n: f = n * fact(n - 1) return f def mysum(seq): match seq: case []: s = 0 case [head, *tail]: s = head + mysum(tail) return s # This one is superficially different than in the paper! # # Hm this depends on __match_args__ ? Is it set in the ast module nodes? def simplify(node): match node: case BinOp(Constant(left), Add(), Constant(right)): return Constant(left + right) case BinOp(left, Add() | Sub(), Constant(0)): return simplify(left) case UnaryOp(USub(), UnaryOp(USub(), item)): return simplify(item) case _: return node def main(argv): print('Hello from demo.py') print(fact(6)) print(mysum([1, 2, 3])) # Test out all the optimizations for code_str in ['3 + 4', '3 - 0', '- - 5']: print(' %s' % code_str) module = ast.parse(code_str) expr = module.body[0].value print(ast.dump(expr)) opt = simplify(expr) print(' => optimized') print(opt) print(ast.dump(opt)) print('-----') if __name__ == '__main__': try: main(sys.argv) except RuntimeError as e: print('FATAL: %s' % e, file=sys.stderr) sys.exit(1)
2.546875
3
swaty/classes/subbasin.py
changliao1025/pyswat
2
12796140
<filename>swaty/classes/subbasin.py import os,stat import sys import glob import shutil import numpy as np from pathlib import Path import tarfile import subprocess from shutil import copyfile from abc import ABCMeta, abstractmethod import datetime from shutil import copy2 import json from json import JSONEncoder from swaty.classes.swatpara import swatpara class SubbasinClassEncoder(JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.float32): return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, swatpara): return json.loads(obj.tojson()) if isinstance(obj, list): pass return JSONEncoder.default(self, obj) class pysubbasin(object): __metaclass__ = ABCMeta lIndex_subbasin=-1 iFlag_subbasin=0 nSoil_layer = 1 nParameter_subbasin=0 aParameter_subbasin=None aParameter_subbasin_name = None def __init__(self, aConfig_in =None): if aConfig_in is not None: pass else: pass return def setup_parameter(self, aPara_in= None): if aPara_in is not None: self.nParameter_subbasin = len(aPara_in) self.aParameter_subbasin=list() self.aParameter_subbasin_name =list() for i in range(self.nParameter_subbasin): subbasin_dummy = aPara_in[i] pParameter_subbasin = swatpara(subbasin_dummy) self.aParameter_subbasin.append(pParameter_subbasin) sName = pParameter_subbasin.sName if sName not in self.aParameter_subbasin_name: self.aParameter_subbasin_name.append(sName) else: pass return def tojson(self): aSkip = [] obj = self.__dict__.copy() for sKey in aSkip: obj.pop(sKey, None) sJson = json.dumps(obj,\ sort_keys=True, \ indent = 4, \ ensure_ascii=True, \ cls=SubbasinClassEncoder) return sJson
2.234375
2
Ch1-Arrays-and-Strings/04_palindrome_permutation.py
fatima-rizvi/CtCI-Solutions-6th-Edition
0
12796141
<filename>Ch1-Arrays-and-Strings/04_palindrome_permutation.py<gh_stars>0 # Given a string, write a function to check if it is a permutation of a palindrome def palindrome_permutation(str1): str1 = str1.replace(" ", "") count = {} for char in str1: if count.get(char): count[char] += 1 else: count[char] = 1 odds = 0 for char, num in count.items(): if num % 2 != 0: odds += 1 if odds > 1: return False return True print(palindrome_permutation("tact coa")) # True, taco cat print(palindrome_permutation("cacr ear")) # True, race car print(palindrome_permutation("livo veile")) # True, evil olive print(palindrome_permutation("not one")) # False
3.96875
4
instructors/need-rework/24_curses/cu0.py
mgadagin/PythonClass
46
12796142
import curses def main(stdscr): """ Curses is controlled from here. This might be called 'the loop' in a game. game loop: http://gameprogrammingpatterns.com/game-loop.html """ curses.textpad.rectangle(stdscr,0,0,10,10) keypress = int() # 113 is the lowercase 'q' key. while keypress != 113: keypress = stdscr.getch() print keypress if __name__=='__main__': """ This is our most basic model. This presupposes you know how to read a try... finally... block. For now, put it in your 'to learn' notes. You can come back to this to see the components initialized by curses.wrapper. This code is pretty identical to example 1. Moving on!! """ try: stdscr=curses.initscr() curses.noecho() ; curses.cbreak() stdscr.keypad(1) main(stdscr) # Enter the main loop finally: stdscr.erase() stdscr.refresh() stdscr.keypad(0) curses.echo() ; curses.nocbreak() curses.endwin() # Terminate curses
3.9375
4
treecompare/__init__.py
mx-pycoder/treecompare
0
12796143
# API from ._treecompare import namecomp from ._treecompare import treedups from ._treecompare import treepurge from ._treecompare import duplicate
1.046875
1
kite-python/metrics/kite_metrics/loader.py
kiteco/kiteco-public
17
12796144
from jinja2 import Environment, PackageLoader, select_autoescape import yaml import json import pkg_resources import os env = Environment( loader=PackageLoader('kite_metrics', 'schemas'), ) cache = {} def _schema_exists(filename): return pkg_resources.resource_exists('kite_metrics', 'schemas/{}'.format(filename)) def _schema_open(filename): return pkg_resources.resource_stream('kite_metrics', 'schemas/{}'.format(filename)) def load_context(key): filename = '{}.ctx.yaml'.format(key) if filename not in cache: ctx = {} if _schema_exists(filename): ctx = yaml.load(_schema_open(filename), yaml.FullLoader) cache[filename] = ctx return cache[filename] def load_schema(key): filename = '{}.yaml.tmpl'.format(key) if filename not in cache: ctx = load_context(key) cache[filename] = yaml.load(env.get_template(filename).render(ctx), Loader=yaml.FullLoader) return cache[filename] def load_json_schema(key, extra_ctx=None): filename = '{}.schema.json'.format(key) if filename not in cache: if _schema_exists(filename): cache[filename] = json.load(_schema_open(filename)) else: tmpl_filename = '{}.schema.json.tmpl'.format(key) ctx = {'schema': load_schema(key)} if extra_ctx: ctx.update(extra_ctx) rendered = env.get_template(tmpl_filename).render(ctx) try: cache[filename] = json.loads(rendered) except json.decoder.JSONDecodeError: print("Error decoding schema JSON:\n{}".format(rendered)) return cache[filename]
2.265625
2
scan/link_finders/find_links_for_disks.py
korenlev/calipso-cvim
0
12796145
############################################################################### # Copyright (c) 2017-2020 <NAME> (Cisco Systems), # # <NAME> (Cisco Systems), <NAME> (Cisco Systems) and others # # # # All rights reserved. This program and the accompanying materials # # are made available under the terms of the Apache License, Version 2.0 # # which accompanies this distribution, and is available at # # http://www.apache.org/licenses/LICENSE-2.0 # ############################################################################### from base.utils.configuration import Configuration from base.utils.origins import Origin from scan.link_finders.find_links import FindLinks class FindLinksForDisks(FindLinks): # per future ceph releases this might need revisions DB_PARTITION_PATH_ATT = 'bluefs_db_partition_path' BLK_PARTITION_PATH_ATT = 'bluestore_bdev_partition_path' def __init__(self): super().__init__() self.environment_type = None self.hosts = [] self.osds = [] self.disks = [] self.partitions = [] def setup(self, env, origin: Origin = None): super().setup(env, origin) self.configuration = Configuration() self.environment_type = self.configuration.get_env_type() def add_links(self): self.log.info("adding links of types: host-osd, osd-partition, partition-disk") self.hosts = self.inv.find_items({ "environment": self.configuration.env_name, "type": "host" }) self.osds = self.inv.find_items({ "environment": self.get_env(), "type": "osd" }) self.partitions = self.inv.find_items({ "environment": self.get_env(), "type": "partition" }) self.disks = self.inv.find_items({ "environment": self.get_env(), "type": "disk" }) for osd in self.osds: self.add_link_for_hosts(osd) for partition in self.partitions: self.add_link_for_osds(partition) for disk in self.disks: self.add_link_for_partitions(disk) def add_link_for_hosts(self, osd): # link_type: "host-osd" metadata = osd.get('metadata', '') for host in self.hosts: if host.get('id', 'None') == osd.get('host', ''): self.add_links_with_specifics(host, osd, extra_att={"osd_data": metadata.get('osd_data', '')}) def add_link_for_osds(self, partition): # link_type: "osd-partition" for osd in self.osds: metadata = osd.get('metadata', '') if ((metadata.get(self.DB_PARTITION_PATH_ATT, 'None') == partition.get('device', '')) and ( osd.get('host', 'None') == partition.get('host', ''))) or (( metadata.get(self.BLK_PARTITION_PATH_ATT, 'None') == partition.get('device', '')) and ( osd.get('host', 'None') == partition.get('host', ''))) or ( metadata.get('osd_data', 'None') == partition.get('mount_point', '')): self.add_links_with_specifics(osd, partition, extra_att={"osd_objectstore": metadata.get('osd_objectstore', '')}) def add_link_for_partitions(self, disk): # link_type: "partition-disk" for partition in self.partitions: if (partition.get('master_disk', 'None') == disk.get('name', '')) and ( partition.get('host', 'None') == disk.get('host', 'None')): self.add_links_with_specifics(partition, disk, extra_att={"partition_type": partition.get('label', '')}) def add_links_with_specifics(self, source, target, extra_att=None): link_name = '{}-{}'.format(source.get('name', 'None'), target.get('name', '')) source_label = '{}-{}-{}'.format(source.get('cvim_region', ''), source.get('cvim_metro', ''), source.get('id', '')) target_label = target.get('id', '') extra = {"source_label": source_label, "target_label": target_label} if extra_att: extra.update(extra_att) self.link_items(source, target, link_name=link_name, extra_attributes=extra)
1.835938
2
gws_volume_scanner/scanner/util.py
cedadev/gws-scanner
0
12796146
<filename>gws_volume_scanner/scanner/util.py<gh_stars>0 import multiprocessing as mp import queue as queue_ from . import config, elastic, models, scanner class ElasticQueueWorker: """Create and manage a worker for sending files to es.""" def __init__(self, config_: config.ScannerSchema): # Used to signal to the worker to exit. self._shutdown = mp.Event() # Setup queue of items for elasticsearch. self.queue: mp.JoinableQueue[models.File] = mp.JoinableQueue( config_["queue_length_scale_factor"] ) # Start process to to elastic tasks. self._pr = mp.Process( target=elastic.worker, args=((self.queue, config_, self._shutdown)), ) self._pr.start() def shutdown(self) -> None: """Shutdown queue and worker and make sure everything gets tidied up.""" # Ensure queue is done. self.queue.close() self.queue.join() # Signal to worker it should finish. self._shutdown.set() # Shut the process down. self._pr.join() self._pr.close() # Shutdown queue completely. self.queue.join_thread() class ScanQueueWorker: """Create and mannage queue and worker pool for scanning files.""" def __init__( self, config_: config.ScannerSchema, elastic_q: queue_.Queue[models.File] ): # Used to signal to the worker to exit. self._shutdown = mp.Event() # Setup queue of items for the scanner. self.queue: mp.JoinableQueue[scanner.ToScan] = mp.JoinableQueue( config_["scan_processes"] * config_["queue_length_scale_factor"] ) # Pool of workers to deal with the queue. self._pl = mp.Pool( # pylint: disable=consider-using-with processes=config_["scan_processes"], initializer=scanner.worker, initargs=((self.queue, elastic_q, config_, self._shutdown)), ) def shutdown(self) -> None: """Shutdown queue and worker pool and make sure everything gets tidied up.""" # Ensure queue is done. self.queue.close() self.queue.join() # Signal to worker it should finish. self._shutdown.set() # Ensure pool is done. # The order of these is different to if you are using a worker. self._pl.close() self._pl.join() # Shutdown queue completely. self.queue.join_thread()
2.5
2
src/Plot.py
ComicSphinx/TimeTracker
1
12796147
<gh_stars>1-10 # @Author: <NAME> (@ComicSphinx) from database.DatabaseUtilities import DatabaseUtilities as dbu from datetime import datetime as dt class Plot(): str_sleeping = "Sleeping" str_unknown = "?" int_maxMinutes = 1440 int_sleep = 480 def addData(self, minutes): select = dbu.buildSelect(dbu, dt.now().year, dt.now().month, dt.now().day, self.str_sleeping) if (dbu.dataIsNotExist(dbu, select)): self.addSleep(self) select = dbu.buildSelect(dbu, dt.now().year, dt.now().month, dt.now().day, self.str_unknown) if (dbu.dataIsNotExist(dbu, select)): self.addUnknown(self, minutes) def addSleep(self): insert = dbu.buildInsert(dbu, self.str_sleeping, self.int_sleep) dbu.executeCommand(dbu, insert) def addUnknown(self, minutes): tmp = 0 for i in range(len(minutes)): tmp += minutes[i] tmp = self.int_maxMinutes - tmp insert = dbu.buildInsert(dbu, self.str_unknown, tmp) dbu.executeCommand(dbu, insert)
2.828125
3
bluebottle/time_based/migrations/0020_auto_20201102_1230.py
terrameijar/bluebottle
10
12796148
# -*- coding: utf-8 -*- # Generated by Django 1.11.17 on 2020-11-02 11:30 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('activities', '0027_contributionvalue'), ('time_based', '0019_auto_20201030_1317'), ] operations = [ migrations.CreateModel( name='OnADateApplication', fields=[ ('contribution_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='activities.Contribution')), ], options={ 'verbose_name': 'On a date application', 'verbose_name_plural': 'On a date application', 'permissions': (('api_read_onadateapplication', 'Can view application through the API'), ('api_add_onadateapplication', 'Can add application through the API'), ('api_change_onadateapplication', 'Can change application through the API'), ('api_delete_onadateapplication', 'Can delete application through the API'), ('api_read_own_onadateapplication', 'Can view own application through the API'), ('api_add_own_onadateapplication', 'Can add own application through the API'), ('api_change_own_onadateapplication', 'Can change own application through the API'), ('api_delete_own_onadateapplication', 'Can delete own application through the API')), }, bases=('activities.contribution',), ), migrations.CreateModel( name='PeriodApplication', fields=[ ('contribution_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='activities.Contribution')), ('current_period', models.DateField(blank=True, null=True)), ], options={ 'verbose_name': 'Period application', 'verbose_name_plural': 'Period application', 'permissions': (('api_read_periodapplication', 'Can view application through the API'), ('api_add_periodapplication', 'Can add application through the API'), ('api_change_periodapplication', 'Can change application through the API'), ('api_delete_periodapplication', 'Can delete application through the API'), ('api_read_own_periodapplication', 'Can view own application through the API'), ('api_add_own_periodapplication', 'Can add own application through the API'), ('api_change_own_periodapplication', 'Can change own application through the API'), ('api_delete_own_periodapplication', 'Can delete own application through the API')), }, bases=('activities.contribution',), ), migrations.RemoveField( model_name='application', name='current_period', ), ]
1.679688
2
amulet/world_interface/chunk/interfaces/leveldb/leveldb_15/interface.py
architectdrone/Amulet-Core
0
12796149
from __future__ import annotations from amulet.world_interface.chunk.interfaces.leveldb.leveldb_14.interface import ( LevelDB14Interface, ) class LevelDB15Interface(LevelDB14Interface): def __init__(self): LevelDB14Interface.__init__(self) self.features["chunk_version"] = 15 INTERFACE_CLASS = LevelDB15Interface
1.5625
2
main.py
knishioka/arxiv-bot
0
12796150
<reponame>knishioka/arxiv-bot import datetime from arxiv_bot.arxiv_scraper import ArxivScraper from arxiv_bot.translator import translate def main(): """List updated articles.""" today = datetime.date.today() start_date = today - datetime.timedelta(days=2) end_date = today - datetime.timedelta(days=1) articles = ArxivScraper().search(start_date=start_date, end_date=end_date, category_id="cs.AI") for article in articles: print(article["itemTitle"]) print(", ".join(article["itemAuthors"])) print(translate(article["itemSummary"])) print(f'https://arxiv.org/abs/{article["id"]}') if __name__ == "__main__": main()
2.640625
3