max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
nihars.com/server.py
niharokz/website_archive
0
12796351
<reponame>niharokz/website_archive #!/bin/python # # ███╗░░██╗██╗██╗░░██╗░█████╗░██████╗░░█████╗░██╗░░██╗███████╗ # ████╗░██║██║██║░░██║██╔══██╗██╔══██╗██╔══██╗██║░██╔╝╚════██║ # ██╔██╗██║██║███████║███████║██████╔╝██║░░██║█████═╝░░░███╔═╝ # ██║╚████║██║██╔══██║██╔══██║██╔══██╗██║░░██║██╔═██╗░██╔══╝░░ # ██║░╚███║██║██║░░██║██║░░██║██║░░██║╚█████╔╝██║░╚██╗███████╗ # ╚═╝░░╚══╝╚═╝╚═╝░░╚═╝╚═╝░░╚═╝╚═╝░░╚═╝░╚════╝░╚═╝░░╚═╝╚══════╝ # # DRAFTED BY <NAME> ON 22-03-21. [https://nihars.com] # SOURCE [server.py] LAST MODIFIED ON 27-03-21 import http.server import socketserver import os PORT = 8000 web_dir = os.path.join(os.path.dirname(__file__), 'public') os.chdir(web_dir) Handler = http.server.SimpleHTTPRequestHandler httpd = socketserver.TCPServer(("", PORT), Handler) print("serving at port", PORT) httpd.serve_forever() #python -m http.server --directory public &1
2.546875
3
catkin_ws/src/aruco_intercept/src/grab_object.py
filesmuggler/ur3e-ird435-rg2
1
12796352
#!/usr/bin/env python import sys import copy import rospy import moveit_commander import moveit_msgs.msg import geometry_msgs.msg from math import pi from std_msgs.msg import String from moveit_commander.conversions import pose_to_list import tf def all_close(goal, actual, tolerance): """ Convenience method for testing if a list of values are within a tolerance of their counterparts in another list @param: goal A list of floats, a Pose or a PoseStamped @param: actual A list of floats, a Pose or a PoseStamped @param: tolerance A float @returns: bool """ all_equal = True if type(goal) is list: for index in range(len(goal)): if abs(actual[index] - goal[index]) > tolerance: return False elif type(goal) is geometry_msgs.msg.PoseStamped: return all_close(goal.pose, actual.pose, tolerance) elif type(goal) is geometry_msgs.msg.Pose: return all_close(pose_to_list(goal), pose_to_list(actual), tolerance) return True def callback(data,args): print("hello there") ur_robot = args[0] ur_scene = args[1] ur_move_group = args[2] ur_planning_frame = args[3] ur_eef_link = args[4] ur_group_names = args[5] move_group = ur_move_group print("elo grab") print(data) data.position.x = data.position.x - 0.05 data.position.y = data.position.y - 0.03 data.position.z = 0.15 data.orientation.x = -0.0 data.orientation.y = 1.0 data.orientation.z = 0.0 data.orientation.w = -0.0 move_group.set_pose_target(data) plan = move_group.go(wait=True) move_group.stop() move_group.clear_pose_targets() current_pose = move_group.get_current_pose().pose return all_close(data, current_pose, 0.01) def main(): try: print("Grab") moveit_commander.roscpp_initialize(sys.argv) robot = moveit_commander.RobotCommander() scene = moveit_commander.PlanningSceneInterface() group_name = "manipulator" move_group = moveit_commander.MoveGroupCommander(group_name) planning_frame = move_group.get_planning_frame() eef_link = move_group.get_end_effector_link() group_names = robot.get_group_names() robot.get_current_state() # Misc variables ur_robot = robot ur_scene = scene ur_move_group = move_group ur_planning_frame = planning_frame ur_eef_link = eef_link ur_group_names = group_names rospy.init_node('move_ur_python_interface', anonymous=True) rospy.Subscriber("/aruco_pose",geometry_msgs.msg.Pose,callback,(ur_robot, ur_scene, ur_move_group, ur_planning_frame, ur_eef_link, ur_group_names)) rospy.spin() except rospy.ROSInterruptException: return except KeyboardInterrupt: return if __name__ == '__main__': main()
2.75
3
LLDBagility/lldbagility.py
killvxk/LLDBagility
1
12796353
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from __future__ import print_function import argparse import functools import re import shlex import threading import time import traceback import kdpserver import lldb import lldbagilityutils import stubvm vm = None def _exec_cmd(debugger, command, capture_output=False): if capture_output: cmdretobj = lldb.SBCommandReturnObject() debugger.GetCommandInterpreter().HandleCommand(command, cmdretobj) return cmdretobj else: debugger.HandleCommand(command) return None def _evaluate_expression(exe_ctx, expression): res = exe_ctx.frame.EvaluateExpression(expression) try: vaddr = int(res.GetValue(), 0) except (TypeError, ValueError): return None else: return vaddr def fdp_attach(debugger, command, exe_ctx, result, internal_dict): """ Connect to a macOS VM via FDP. The VM must have already been started. Existing breakpoints are deleted on attaching. Re-execute this command every time the VM is rebooted. """ parser = argparse.ArgumentParser(prog="fdp-attach") parser.add_argument("vm_name") args = parser.parse_args(shlex.split(command)) _attach(debugger, exe_ctx, stubvm.FDPSTUB, args.vm_name) def vmsn_attach(debugger, command, exe_ctx, result, internal_dict): """ Connect to a macOS VM via VMSN. Currently not maintained! Existing breakpoints are deleted on attaching. """ parser = argparse.ArgumentParser(prog="vmsn-attach") parser.add_argument("vm_name") args = parser.parse_args(shlex.split(command)) _attach(debugger, exe_ctx, stubvm.VMSNSTUB, args.vm_name) def _attach(debugger, exe_ctx, vm_stub, vm_name): global vm print(lldbagilityutils.LLDBAGILITY) print("* Attaching to the VM") try: vm = stubvm.STUBVM(vm_stub, vm_name) except Exception as exc: print("* Could not attach! {}".format(str(exc))) return print("* Resuming the VM execution until reaching kernel code") vm.complete_attach() print("* Kernel load address: 0x{:016x}".format(vm.kernel_load_vaddr)) print("* Kernel slide: 0x{:x}".format(vm.kernel_slide)) print("* Kernel cr3: 0x{:x}".format(vm.kernel_cr3)) print("* Kernel version: {}".format(vm.kernel_version)) print("* VM breakpoints deleted") # detach the previous process (if any) exe_ctx.process.Detach() # remove all LLDB breakpoints exe_ctx.target.DeleteAllBreakpoints() print("* LLDB breakpoints deleted") # start the fake KDP server kdpsv = kdpserver.KDPServer() th = threading.Thread(target=kdpsv.debug, args=(vm,)) th.daemon = True th.start() # connect LLDB to the fake KDP server kdpsv_addr, kdpsv_port = kdpsv.sv_sock.getsockname() _exec_cmd(debugger, "kdp-remote '{}:{}'".format(kdpsv_addr, kdpsv_port)) # trigger a memory write to find out the address of the kdp struct vm.store_kdp_at_next_write_virtual_memory() if _exec_cmd(debugger, "memory write &kdp 41", capture_output=True).GetError(): print("* Unable to find the 'kdp' symbol. Did you specify the target to debug?") vm.abort_store_kdp_at_next_write_virtual_memory() def _attached(f): @functools.wraps(f) def _wrapper(*args, **kwargs): global vm if not vm: print("* Not attached to a VM!") return return f(*args, **kwargs) return _wrapper @_attached def fdp_save(debugger, command, exe_ctx, result, internal_dict): """ Save the current state of the attached macOS VM. Breakpoints are not saved (but retained for the current session). """ # saving the state causes all breakpoints (soft and hard) to be unset, but # we can preserve them at least for the current session # we disable soft breakpoints before saving and then re-enable them once the state # has been saved, so that LLDB sends again the KDP requests for setting them exe_ctx.target.DisableAllBreakpoints() # similarly, for hard breakpoints we save the state of the debug registers before saving, # and restore it afterwards dbgregs = vm.read_registers(("dr0", "dr1", "dr2", "dr3", "dr6", "dr7")) # interrupt and save the VM state process_was_stopped = exe_ctx.process.is_stopped print("* Saving the VM state") vm.interrupt_and_take_snapshot() print("* State saved") # restore soft breakpoints exe_ctx.target.EnableAllBreakpoints() # restore hard breakpoints vm.write_registers(dbgregs) if not process_was_stopped: # display stop info _exec_cmd(debugger, "process status") @_attached def fdp_restore(debugger, command, exe_ctx, result, internal_dict): """ Restore the attached macOS VM to the last saved state. Breakpoints are deleted on restoring. """ # interrupt and restore the VM state print("* Restoring the last saved VM state") if vm.interrupt_and_restore_last_snapshot(): print("* State restored") # do a full reattach (the kernel load address may differ) fdp_attach(debugger, vm.name, exe_ctx, result, internal_dict) else: print("* No saved state found") @_attached def fdp_interrupt(debugger, command, exe_ctx, result, internal_dict): """ Interrupt (pause) the execution of the attached macOS VM. """ vm.interrupt() @_attached def fdp_hbreakpoint(debugger, command, exe_ctx, result, internal_dict): """ Set or unset hardware breakpoints. Hardware breakpoints are implemented using the debug registers DR0, DR1, DR2 and DR3. Consequently, a maximum of four hardware breakpoints can be active simultaneously. """ parser = argparse.ArgumentParser(prog="fdp-hbreakpoint") subparsers = parser.add_subparsers(dest="action") set_parser = subparsers.add_parser("set") set_parser.add_argument( "trigger", choices={"e", "rw", "w"}, help="Type of memory access to trap on: execute, read/write, or write only.", ) set_parser.add_argument( "nreg", type=lambda i: int(i, 0), choices={0, 1, 2, 3}, help="Breakpoint slot to use (corresponding to registers ).", ) set_parser.add_argument( "expression", help="Breakpoint address or expression to be evaluated as such." ) unset_parser = subparsers.add_parser("unset") unset_parser.add_argument( "nreg", type=lambda i: int(i, 0), choices={0, 1, 2, 3}, help="Breakpoint slot to free (corresponding to registers DR0, DR1, DR2 and DR3).", ) args = parser.parse_args(shlex.split(command)) if args.action == "set": vaddr = _evaluate_expression(exe_ctx, args.expression) if vaddr: vm.set_hard_breakpoint(args.trigger, args.nreg, vaddr) print("* Hardware breakpoint set: address = 0x{:016x}".format(vaddr)) else: print("* Invalid expression") elif args.action == "unset": vm.unset_hard_breakpoint(args.nreg) print("* Hardware breakpoint unset") else: raise AssertionError @_attached def fdp_test(debugger, command, exe_ctx, result, internal_dict): """ Run some tests. Warning: tests change the state of the machine and modify the last saved state! """ regs = { "rax", "rbx", "rcx", "rdx", "rdi", "rsi", "rbp", "rsp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rip", "rflags", "cs", "fs", "gs", } def _t1(): print("* Halt/resume/single step") vm.halt() assert vm.is_state_halted() vm.resume() assert not vm.is_state_halted() vm.halt() for _ in range(100): vm.single_step() assert vm.is_state_halted() def _t2(): print("* Read/write registers") vm.halt() orig_values = vm.read_registers(regs) new_values = {reg: 0x1337 for reg in regs} for reg in regs: vm.write_register(reg, new_values[reg]) # modifications to RFLAGS should be disabled assert vm.read_register("rflags") == orig_values["rflags"] del new_values["rflags"] assert vm.read_registers(regs - {"rflags"}) == new_values vm.write_registers(orig_values) for reg in regs: assert vm.read_register(reg) == orig_values[reg] def _t3(): print("* Read/write virtual memory") vm.halt() data = vm.read_virtual_memory(vm.read_register("rsp"), 0x8) new_data = b"ABCDEFGH" vm.write_virtual_memory(vm.read_register("rsp"), new_data) assert vm.read_virtual_memory(vm.read_register("rsp"), 0x8) == new_data vm.write_virtual_memory(vm.read_register("rsp"), data) assert vm.read_virtual_memory(vm.read_register("rsp"), 0x8) == data def _t4(): print("* Save/restore") vm.halt() orig_values = vm.read_registers(regs) orig_data = vm.read_virtual_memory(vm.read_register("rsp"), 0x100) vm.interrupt_and_take_snapshot() assert vm.is_state_halted() vm.write_virtual_memory(vm.read_register("rsp"), b"A" * 0x100) vm.single_step() vm.resume() time.sleep(0.100) vm.interrupt_and_restore_last_snapshot() assert vm.is_state_halted() assert not vm.is_breakpoint_hit() assert vm.read_registers(regs) == orig_values assert vm.read_virtual_memory(vm.read_register("rsp"), 0x100) == orig_data def _t5(): print("* Debug registers") vm.halt() vm.write_register("dr7", 0x0) vm.set_hard_breakpoint("rw", 0x0, 0x1234) assert vm.read_register("dr0") == 0x1234 assert vm.read_register("dr7") == 0b00000000000000110000000000000010 vm.set_hard_breakpoint("e", 0x0, 0x1234) assert vm.read_register("dr7") == 0b00000000000000000000000000000010 vm.set_hard_breakpoint("w", 0x0, 0x1234) assert vm.read_register("dr7") == 0b00000000000000010000000000000010 vm.set_hard_breakpoint("rw", 0x1, 0x1234) assert vm.read_register("dr1") == 0x1234 assert vm.read_register("dr7") == 0b00000000001100010000000000001010 vm.set_hard_breakpoint("rw", 0x2, 0x1234) assert vm.read_register("dr2") == 0x1234 assert vm.read_register("dr7") == 0b00000011001100010000000000101010 vm.set_hard_breakpoint("rw", 0x3, 0x1234) assert vm.read_register("dr3") == 0x1234 assert vm.read_register("dr7") == 0b00110011001100010000000010101010 vm.unset_hard_breakpoint(0x0) assert vm.read_register("dr7") == 0b00110011001100010000000010101000 vm.unset_hard_breakpoint(0x1) assert vm.read_register("dr7") == 0b00110011001100010000000010100000 vm.unset_hard_breakpoint(0x2) assert vm.read_register("dr7") == 0b00110011001100010000000010000000 vm.unset_hard_breakpoint(0x3) assert vm.read_register("dr7") == 0b00110011001100010000000000000000 def _t6(): print("* Soft/hard exec breakpoint") vm.halt() # keep in mind that FDP soft and page breakpoints do not work just after a restore # (see VMR3AddSoftBreakpoint()) vm.unset_all_breakpoints() vm.single_step() assert not vm.is_breakpoint_hit() vm.interrupt_and_take_snapshot() vm.single_step() vm.single_step() rip = vm.read_register("rip") vm.interrupt_and_restore_last_snapshot() vm.single_step() bpid = vm.set_soft_exec_breakpoint(rip) assert 0 <= bpid <= 254 assert not vm.is_breakpoint_hit() vm.resume() time.sleep(0.100) vm.halt() assert vm.is_breakpoint_hit() vm.interrupt_and_restore_last_snapshot() vm.single_step() vm.set_hard_breakpoint("e", 0x0, rip) assert not vm.is_breakpoint_hit() vm.resume() time.sleep(0.100) vm.halt() assert vm.is_breakpoint_hit() if exe_ctx.process.is_running: vm.interrupt() vm.unset_all_breakpoints() for _t in (_t1, _t2, _t3, _t4, _t5, _t6): _t() print("* All tests passed!") def __lldb_init_module(debugger, internal_dict): # FDP debugger.HandleCommand("command script add -f lldbagility.fdp_attach fdp-attach") debugger.HandleCommand("command script add -f lldbagility.fdp_save fdp-save") debugger.HandleCommand("command script add -f lldbagility.fdp_restore fdp-restore") debugger.HandleCommand( "command script add -f lldbagility.fdp_interrupt fdp-interrupt" ) debugger.HandleCommand( "command script add -f lldbagility.fdp_hbreakpoint fdp-hbreakpoint" ) debugger.HandleCommand("command script add -f lldbagility.fdp_test fdp-test") debugger.HandleCommand("command alias fa fdp-attach") debugger.HandleCommand("command alias fs fdp-save") debugger.HandleCommand("command alias fr fdp-restore") debugger.HandleCommand("command alias fi fdp-interrupt") debugger.HandleCommand("command alias fh fdp-hbreakpoint") # VMSN debugger.HandleCommand("command script add -f lldbagility.vmsn_attach vmsn-attach") debugger.HandleCommand("command alias va vmsn-attach")
2.203125
2
pytglib/api/functions/write_generated_file_part.py
iTeam-co/pytglib
6
12796354
from ..utils import Object class WriteGeneratedFilePart(Object): """ Writes a part of a generated file. This method is intended to be used only if the client has no direct access to TDLib's file system, because it is usually slower than a direct write to the destination file Attributes: ID (:obj:`str`): ``WriteGeneratedFilePart`` Args: generation_id (:obj:`int`): The identifier of the generation process offset (:obj:`int`): The offset from which to write the data to the file data (:obj:`bytes`): The data to write Returns: Ok Raises: :class:`telegram.Error` """ ID = "writeGeneratedFilePart" def __init__(self, generation_id, offset, data, extra=None, **kwargs): self.extra = extra self.generation_id = generation_id # int self.offset = offset # int self.data = data # bytes @staticmethod def read(q: dict, *args) -> "WriteGeneratedFilePart": generation_id = q.get('generation_id') offset = q.get('offset') data = q.get('data') return WriteGeneratedFilePart(generation_id, offset, data)
3.140625
3
Month 03/Week 04/Day 03/c.py
KevinKnott/Coding-Review
0
12796355
<filename>Month 03/Week 04/Day 03/c.py # Merge k Sorted Lists: https://leetcode.com/problems/merge-k-sorted-lists/ # You are given an array of k linked-lists lists, each linked-list is sorted in ascending order. # Merge all the linked-lists into one sorted linked-list and return it. from types import List, Optional # Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next # This problem is actually just a merge sort no need to explain really # There are two solutions one with a for loop that creates a new list of ll # and one that simply merges the current list which saves us o (N) space # to become O(1) class Solution: def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]: if lists is None or len(lists) == 0: return None interval = 1 total = len(lists) while interval < total: for i in range(0, total - interval, interval * 2): lists[i] = self.merge2(lists[i], lists[i + interval]) interval *= 2 return lists[0] if total > 0 else [] def merge2(self, l1, l2): dummy = ListNode() cur = dummy while l1 and l2: if l1.val < l2.val: cur.next = l1 l1 = l1.next else: cur.next = l2 l2 = l2.next cur = cur.next if l1: cur.next = l1 else: cur.next = l2 return dummy.next # This works although I forgot that my range needs to decrease then number of nodes to review # by the number of merged (going up 2 at a time) # This runs in o(nlogk) where k is the number of ll and uses O(1) additional space # Score Card # Did I need hints? Nope # Did you finish within 30 min? 12 # Was the solution optimal? Yup # Were there any bugs? None # 5 5 5 5 = 5
3.828125
4
pset6/crack.py
holodon/CS50
0
12796356
<reponame>holodon/CS50 ## # Cracks up to 4 letter alphabetical passwords by bruteforce ## import sys import crypt import itertools def main(): # check if called with exactly one argument if len(sys.argv) != 2: show_usage() exit(1) # all possible characters aA = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" h = sys.argv[1] # check the hash length if len(h) != 13: show_usage() exit(1) # crack with itertools for i in range(1, 5): for c in itertools.product(aA, repeat=i): p = ''.join(c) if crypt.crypt(''.join(p), h) == h: print(p) exit(0) # not cracked print("All variations tested - none matched!") exit(1) # shows usage def show_usage(): print("Usage: ./crack hash") if __name__ == "__main__": main()
3.03125
3
awards/signals.py
Sundaybrian/prodev
0
12796357
#signal fired after an obj is saved in this cas when a user is created from django.db.models.signals import post_save #post to sende the signal from .models import Post #reciever of the signal from django.dispatch import receiver from .models import Review @receiver(post_save,sender=Post) def create_review(sender,instance,created,**kwargs): ''' post_save:is the signal that is fired after and object is saved Post:model is the sender of the signal receiver:is the create rating function that fetches the signal and performs some task instance:is the instance of Post class created : if a post was created ''' if created: Review.objects.create(post=instance)
2.5
2
sparse_matrices/sparse_gauss.py
j-adamczyk/Matrix_algorithms
1
12796358
<gh_stars>1-10 from copy import deepcopy from typing import Union import numpy as np from .sparse_matrices import CoordinateSparseMatrix, CSRMatrix def sparse_gauss_elimination_row(A: Union[CoordinateSparseMatrix, CSRMatrix]) \ -> Union[CoordinateSparseMatrix, CSRMatrix]: """ Performs Gaussian elimination on sparse matrix A row-wise. Allows either coordinate format or CSR format. :param A: sparse square matrix of shape (n, n) :return: matrix A after Gaussian elimination """ A = deepcopy(A) A.dtype = np.float if isinstance(A, CoordinateSparseMatrix): A = _coordinate_row(A) elif isinstance(A, CSRMatrix): pass # not yet implemented return A def _coordinate_row(A: CoordinateSparseMatrix) -> CoordinateSparseMatrix: """ Performs Gaussian elimination on sparse matrix A in the coordinate format row-wise. :param A: sparse square matrix in the coordinate format of shape (n, n) :return: matrix A after Gaussian elimination """ n = A.shape[0] for k in range(n - 1): Akk = A.get(k, k) assert Akk != 0, "Akk = 0" for i in range(k + 1, n): Aki, ki_index = A.get(k, i, index=True) if ki_index != -1: A.vals[ki_index] /= Akk for j in range(k + 1, n): Ajk = A.get(j, k) if Ajk == 0: continue for i in range(k + 1, n): Aki = A.get(k, i) if Aki == 0: continue Aji, ji_index = A.get(j, i, index=True) val = (-1) * (Aki * Ajk) if ji_index >= 0: # value already exists A.vals[ji_index] += val else: # we have to insert new non-zero value A.insert(j, i, val) return A
2.625
3
setup.py
kim-younghan/MultiResUNet
23
12796359
from setuptools import setup, find_packages setup( name = 'multiresunet', version = '0.1', description = 'MultiResUNet implementation in PyTorch; MultiResUNet: Rethinking the U-Net Architecture for Multimodal', author = '<NAME>', author_email = '<EMAIL>', install_requires= [], packages = find_packages(), python_requires = '>=3.6' )
1.195313
1
generate.py
chteuchteu/Material-Colors-SCSS-Variables
0
12796360
<reponame>chteuchteu/Material-Colors-SCSS-Variables #!/usr/bin/python3 # -*- coding: utf-8 -*- import urllib.request from bs4 import BeautifulSoup import re material_guidelines_url = 'http://www.google.com/design/spec/style/color.html#color-color-palette' output_file = 'dist/_material-colors.scss' foreground_color_light = '#ffffff' foreground_color_dark = '#000000' def slugify(string): return re.sub(r'[-\s]+', '-', (re.sub(r'[^\w\s-]', '', string).strip().lower())) def print_scss_map(output_handle, name, keys, values): output_handle.write('$' + name + ': (\n') longest_key = max(len(key) for key in keys) pattern = ' "{key}": {indent}{value},\n' for key, value in zip(keys, values): output_handle.write(fill_placeholders(pattern, { 'key': key, 'value': value, 'indent': ' ' * (longest_key - len(key)) })) output_handle.write(');\n') def print_scss_vars(output_handle, names, values): indent = max(len(name) for name in names) pattern = '${var_name}: {indent}{value};\n' for name, value in zip(names, values): output_handle.write(fill_placeholders(pattern, { 'var_name': name, 'value': value, 'indent': ' ' * (indent - len(name)) })) def has_class(element, classname): class_attr = element.get('class') if class_attr is None: return False return classname in class_attr def fill_placeholders(string, dict): for what, with_what in dict.items(): string = string.replace('{' + what + '}', with_what) return string # Download & parse guidelines HTML response = urllib.request.urlopen(material_guidelines_url) data = response.read() raw_html = data.decode('utf-8') parsed_html = BeautifulSoup(raw_html, 'html.parser') # Parse it! html_palette = parsed_html.body.find('div', attrs={'class': 'color-palette'}) color_groups = html_palette.find_all('section', attrs={'class', 'color-group'}) colors = [] for color_group in color_groups: name_span = color_group.find(attrs={'class', 'name'}) # We skip black + white colors if name_span is None: continue color_name = name_span.text color_slug = slugify(color_name) # Find each shade html_shades = color_group.find_all('li') shades = [] for shade in html_shades: if has_class(shade, 'main-color'): continue shade_name = shade.find(attrs={'class', 'shade'}).text hex = shade.find(attrs={'class', 'hex'}).text foreground = foreground_color_dark if has_class(shade, 'dark') else foreground_color_light shades.append({ 'name': shade_name, 'hex': hex, 'foreground': foreground, }) colors.append({ 'name': color_name, 'slug': color_slug, 'shades': shades }) # Print vars & map definitions to output file with open(output_file, 'w') as output: output.truncate() output.writelines('\n'.join([ "/**", " * Material-Colors-SCSS-Variables", " * https://github.com/chteuchteu/Material-Colors-SCSS-Variables", " */\n\n" ])) for color in colors: color_name = color['name'] color_slug = color['slug'] shades = color['shades'] # Write to file output.writelines('\n'.join([ '//', '// ' + color_name, '//', '' ])) # Map print_scss_map(output, 'color-' + color_slug + '-list', [shade['name'] for shade in shades], [shade['hex'] for shade in shades]) output.write('\n') # Separate colors # Main shade main_shade = next(shade for shade in shades if shade['name'] == '500') print_scss_vars(output, ['color-' + color_slug], [main_shade['hex']]) output.write('\n') # All shades print_scss_vars(output, ['color-' + color_slug + '-' + shade['name'] for shade in shades], [shade['hex'] for shade in shades]) # Foreground color output.writelines('\n'.join([ '', '// Foreground', '' ])) print_scss_map(output, 'color-' + color_slug + '-foreground-list', [shade['name'] for shade in shades], [shade['foreground'] for shade in shades]) output.write('\n') # Separate colors # Main shade main_shade = next(shade for shade in shades if shade['name'] == '500') print_scss_vars(output, ['color-' + color_slug + '-foreground'], [main_shade['hex']]) output.write('\n') print_scss_vars(output, ['color-' + color_slug + '-' + shade['name'] + '-foreground' for shade in shades], [shade['hex'] for shade in shades]) output.write('\n\n') # Print a map of all colors print_scss_map(output, 'colors', [color['slug'] for color in colors], ['$color-' + color['slug'] + '-list' for color in colors]) colors_count = len(colors) shades_count = sum([len(color['shades']) for color in colors]) print(output_file + ' created, containing ' + str(colors_count) + ' colors and ' + str(shades_count) + ' shades')
2.75
3
buy_stuff.py
learning-python/testing
0
12796361
<filename>buy_stuff.py import calc class Pocket: def __init__(self, settings): self.money = settings['money'] self.apples = settings['apples'] self.price = settings['price'] def buy_apples(self, num_apples): needed = calc.multiply(self.price, num_apples) would_be_left = calc.subtract(self.money, needed) if would_be_left >= 0: self.money -= self.price * num_apples self.apples += num_apples else: raise Exception("Not enough money to buy " + str(num_apples) + " apples")
3.640625
4
programming_lesson5/make_coin_sorter_version5.py
zhazhijibaba/zhazhijibaba_programming_lessons
0
12796362
<gh_stars>0 from vector import * import openmesh as om import numpy as np # version3 slope 15 degree theta = np.pi / 12.0 # https://en.wikipedia.org/wiki/Coins_of_the_Canadian_dollar # create mesh for coin sorter # Nickel 5 cents 21.2mm (1.76mm) # Dime 10 cents 18.03mm (1.22mm) # Quatoer 25 cents 23.88mm (1.58mm) # Loonie $1 26.5mm (1.75mm) # Toonie $2 28mm (1.8mm) dd0 = [18.03, 21.2, 23.88, 26.5, 28] d0 = 0.8 dd = [d + d0 for d in dd0] d1 = 35 d2 = 2 # slope 30 degree d3 = d1 / np.cos(theta) mesh = om.TriMesh() # part 1 sorter x0 = 0 # screen layer for i in range(len(dd)): ri = dd[i] / 2 make_block_mesh(mesh, [x0, 0, 0], [d3 - dd[i], 0, 0], [0, d1, 0], [0, 0, d2]) x0 = x0 + d3 - dd[i] make_pipe_square_mesh(mesh, [x0 + ri, ri, 0], [x0 + ri, ri, d2], p2=[x0 + ri, 0.0, 0.0], r1=ri, r2=ri, n=256) make_block_mesh(mesh, [x0, dd[i], 0], [dd[i], 0, 0], [0, d1 - dd[i], 0], [0, 0, d2]) x0 = x0 + dd[i] make_block_mesh(mesh, [x0, 0, 0], [d2, 0, 0], [0, d1, 0], [0, 0, d2]) x0 = x0 + d2 # wall block # total length of sortor d4 = x0 make_block_mesh(mesh, [0, 0, 0], [0, -d2, 0], [d4, 0, 0], [0, 0, 8*d2]) om.write_mesh("coin_sorter_v5_p1.obj", mesh) # part 2 holder mesh = om.TriMesh() d5 = d4 * np.cos(theta) d6 = d2 * np.cos(theta) d7 = 40 + 2*d2 d8 = 1.0 x1 = 0 make_block_mesh(mesh, [0, 0, 0], [d5, 0, 0], [0, d1, 0], [0, 0, d2]) make_block_mesh(mesh, [x1, 0, 0], [d6, 0, 0], [0, d1, 0], [0, 0, d7 + d4 * np.sin(theta)]) make_block_mesh(mesh, [x1, 0, 0], [d6 + 2*d2, 0, 0], [0, d8, 0], [0, 0, d7 + d4 * np.sin(theta) + 6*d2]) make_block_triangle_mesh(mesh, [x1, 0, d7 + d4 * np.sin(theta)], [0, d1, d1*np.tan(theta)], [0, d1, 0], [d6, 0, 0]) x1 = x1 + d6 for i in range(len(dd)): x1 = x1 + d1 dh = d7 + (d4 - (i + 1) * d3) * np.sin(theta) make_block_mesh(mesh, [x1, 0, 0], [d8, 0, 0], [0, d1, 0], [0, 0, dh]) make_block_triangle_mesh(mesh, [x1, 0, dh], [0, d1, d1*np.tan(theta)], [0, d1, 0], [d8, 0, 0]) if i < len(dd) - 1: make_block_mesh(mesh, [x1, 0, 0], [d8 + 2*d2, 0, 0], [0, d8, 0], [0, 0, dh + 6*d2]) else: make_block_mesh(mesh, [x1, 0, 0], [d8 + d8, 0, 0], [0, d8, 0], [0, 0, dh + 6*d2]) make_block_mesh(mesh, [x1 + d8, 0, 0], [d8, 0, 0], [0, d1, 0], [0, 0, dh + 6*d2]) make_block_triangle_mesh(mesh, [x1 + d8, 0, dh + 6*d2], [0, d1, d1*np.tan(theta)], [0, d1, 0], [d8, 0, 0]) om.write_mesh("coin_sorter_v5_p2.obj", mesh) # part 2 coin collector mesh = om.TriMesh() d9 = d1 - d8 d10 = d9 - 2*d8 d11 = d7 - 2*d2 make_rod_mesh(mesh, [0, 0, 0], [0, 0, d8], p2=[1.0, 0.0, 0.0], r=d9 / 2.0, n=256) make_pipe_mesh(mesh, [0,0,d8], [0,0,d11], p2=[1.0, 0.0, 0.0], r1=d10/2.0, r2=d9/2.0, n=256) om.write_mesh("coin_sorter_v5_p3.obj", mesh)
2.3125
2
examples/image/plot_dataset_mtf.py
Pandinosaurus/pyts
1,217
12796363
""" ==================================== Data set of Markov transition fields ==================================== A Markov transition field is an image obtained from a time series, representing a field of transition probabilities for a discretized time series. Different strategies can be used to bin time series. It is implemented as :class:`pyts.image.MarkovTransitionField`. In this example, we consider the training samples of the `GunPoint dataset <http://timeseriesclassification.com/description.php?Dataset=GunPoint>`_, consisting of 50 univariate time series of length 150. The Markov transition field of each time series is independently computed and the 50 Markov transition fields are plotted. """ # noqa:E501 # Author: <NAME> <<EMAIL>> # License: BSD-3-Clause import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import ImageGrid from pyts.image import MarkovTransitionField from pyts.datasets import load_gunpoint # Load the GunPoint dataset X, _, _, _ = load_gunpoint(return_X_y=True) # Get the recurrence plots for all the time series mtf = MarkovTransitionField(n_bins=8) X_mtf = mtf.fit_transform(X) # Plot the 50 Gramian angular fields fig = plt.figure(figsize=(10, 5)) grid = ImageGrid(fig, 111, nrows_ncols=(5, 10), axes_pad=0.1, share_all=True, cbar_mode='single') for i, ax in enumerate(grid): im = ax.imshow(X_mtf[i], cmap='rainbow', origin='lower', vmin=0., vmax=1.) grid[0].get_yaxis().set_ticks([]) grid[0].get_xaxis().set_ticks([]) plt.colorbar(im, cax=grid.cbar_axes[0]) ax.cax.toggle_label(True) fig.suptitle("Markov transition fields for the 50 time series in the " "'GunPoint' dataset", y=0.92) plt.show()
3.046875
3
vprocess/older/yolo_detection_face_reco.py
rezeck/itelicam
0
12796364
#!/usr/bin/env python3.5 import os import dlib import numpy as np import cv2 import time import darknet from ctypes import * import math import random class YOLO_NN: def __init__(self, yoloDataFolder): self.configPath = yoloDataFolder + "/cfg/yolov3-tiny.cfg" self.weightPath = yoloDataFolder + "/yolov3-tiny.weights" self.metaPath = yoloDataFolder + "/cfg/coco.data" print("self.configPath: " + self.configPath) print("self.weightPath: " + self.weightPath) print("self.metaPath: " + self.metaPath) self.netMain = None self.metaMain = None self.altNames = None if not os.path.exists(self.configPath): raise ValueError("Invalid config path `" + os.path.abspath(self.configPath)+"`") if not os.path.exists(self.weightPath): raise ValueError("Invalid weight path `" + os.path.abspath(self.weightPath)+"`") if not os.path.exists(self.metaPath): raise ValueError("Invalid data file path `" + os.path.abspath(self.metaPath)+"`") if self.netMain is None: self.netMain = darknet.load_net_custom(self.configPath.encode( "ascii"), self.weightPath.encode("ascii"), 0, 1) # batch size = 1 if self.metaMain is None: self.metaMain = darknet.load_meta(self.metaPath.encode("ascii")) if self.altNames is None: try: with open(self.metaPath) as metaFH: metaContents = metaFH.read() import re match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE) if match: result = match.group(1) else: result = None try: if os.path.exists(result): with open(result) as namesFH: namesList = namesFH.read().strip().split("\n") self.altNames = [x.strip() for x in namesList] except TypeError: pass except Exception: pass # Create an image we reuse for each detect self.darknet_image = darknet.make_image(darknet.network_width(self.netMain), darknet.network_height(self.netMain),3) self.data_dir = os.path.expanduser(yoloDataFolder+'/face_data') self.faces_folder_path = self.data_dir + '/users/' self.face_detector = dlib.get_frontal_face_detector() self.shape_predictor = dlib.shape_predictor(self.data_dir + '/dlib/shape_predictor_68_face_landmarks.dat') self.face_recognition_model = dlib.face_recognition_model_v1(self.data_dir + '/dlib/dlib_face_recognition_resnet_model_v1.dat') def convertBack(self, x, y, w, h): xmin = int(round(x - (w / 2))) xmax = int(round(x + (w / 2))) ymin = int(round(y - (h / 2))) ymax = int(round(y + (h / 2))) return xmin, ymin, xmax, ymax def cvDrawBoxes(self, detections, img): for detection in detections: x, y, w, h = detection[2][0],\ detection[2][1],\ detection[2][2],\ detection[2][3] xmin, ymin, xmax, ymax = self.convertBack( float(x), float(y), float(w), float(h)) pt1 = (xmin, ymin) pt2 = (xmax, ymax) cv2.rectangle(img, pt1, pt2, (0, 255, 0), 1) cv2.putText(img, detection[0].decode() + " [" + str(round(detection[1] * 100, 2)) + "]", (pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, [0, 255, 0], 2) return img def get_face_encodings(self, face): bounds = self.face_detector(face, 1) faces_landmarks = [self.shape_predictor(face, face_bounds) for face_bounds in bounds] try: h = [np.array(self.face_recognition_model.compute_face_descriptor(face, face_pose, 1)) for face_pose in faces_landmarks] except: return [] return h def get_face_matches(self, known_faces, face): return np.linalg.norm(known_faces - face, axis=1) def find_match(self, known_faces, person_names, face): matches = self.get_face_matches(known_faces, face) # get a list of True/False min_index = matches.argmin() min_value = matches[min_index] if min_value < 0.55: return person_names[min_index]+"! ({0:.2f})".format(min_value) if min_value < 0.58: return person_names[min_index]+" ({0:.2f})".format(min_value) if min_value < 0.65: return person_names[min_index]+"?"+" ({0:.2f})".format(min_value) return 'Not Found' def load_face_encodings(self): image_filenames = filter(lambda x: x.endswith('.jpg'), os.listdir(self.faces_folder_path)) image_filenames = sorted(image_filenames) person_names = [x[:-4] for x in image_filenames] full_paths_to_images = [self.faces_folder_path + x for x in image_filenames] face_encodings = [] win = dlib.image_window() for path_to_image in full_paths_to_images: print("Loading user: " + path_to_image) #face = io.imread(path_to_image) face = cv2.imread(path_to_image) face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) faces_bounds = self.face_detector(face, 1) if len(faces_bounds) != 1: print("Expected one and only one face per image: " + path_to_image + " - it has " + str(len(faces_bounds))) exit() face_bounds = faces_bounds[0] face_landmarks = self.shape_predictor(face, face_bounds) face_encoding = np.array(self.face_recognition_model.compute_face_descriptor(face, face_landmarks, 1)) win.clear_overlay() win.set_image(face) win.add_overlay(face_bounds) win.add_overlay(face_landmarks) face_encodings.append(face_encoding) #print(face_encoding) #dlib.hit_enter_to_continue() return face_encodings, person_names def detect(self, frame_read): prev_time = time.time() frame_resized = cv2.resize(frame_read, (darknet.network_width(rn.netMain), darknet.network_height(rn.netMain)), interpolation=cv2.INTER_LINEAR) frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB) darknet.copy_image_from_bytes(self.darknet_image, frame_rgb.tobytes()) detections = darknet.detect_image(self.netMain, self.metaMain, self.darknet_image, thresh=0.25) #print(1/(time.time()-prev_time)) return detections # function to get the output layer names # in the architecture def get_output_layers(self,net): layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] return output_layers # function to draw bounding box on the detected object with class name def draw_bounding_box(self,img, class_id, confidence, x, y, x_plus_w, y_plus_h): cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), (0, 0, 255), 2) #cv2.putText(img, label, (x-10,y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) if __name__ == "__main__": # Start Yolo Setup rn = YOLO_NN('.') # initialize video input cap = cv2.VideoCapture(1) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 360) face_encodings, person_names = rn.load_face_encodings() faceClassifier = cv2.CascadeClassifier(rn.data_dir + '/dlib/haarcascade_frontalface_default.xml') #rn.recognize_faces_in_video(face_encodings, person_names) while True: ret, frame_read = cap.read() draw_frame = frame_read.copy() gray = cv2.cvtColor(frame_read, cv2.COLOR_BGR2GRAY) overlay = frame_read.copy() cv2.rectangle(overlay, (0, 0), (640, 35), (0, 0, 0), -1) alpha = 0.8 draw_frame = cv2.addWeighted(overlay, alpha, draw_frame, 1 - alpha, 0) # Yolo Detection detections = rn.detect(frame_read.copy()) filter_detections = [] n_users = 0 n_persons = 0 for detection in detections: if detection[0] == b'person': # It is a person filter_detections.append(detection) if len(filter_detections) == 0: # Case Yolo didn't detected any person, try with dlib face_rects = faceClassifier.detectMultiScale( # Detect faces with dlib gray, scaleFactor = 1.1, minNeighbors = 5, minSize = (50, 50), flags = cv2.CASCADE_SCALE_IMAGE) n_persons = len(face_rects) if len(face_rects) > 0: # Case find any face for (x, y, w, h) in face_rects: face = draw_frame[y:y + h, x:x + w] face_encodings_in_image = rn.get_face_encodings(face) if (face_encodings_in_image): match = rn.find_match(face_encodings, person_names, face_encodings_in_image[0]) if match == "Not Found": cv2.putText(draw_frame, "Unknow", (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2) else: cv2.putText(draw_frame, match, (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 255, 0), 2) n_users += 1 else: cv2.putText(draw_frame, "Unknow", (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2) else: for detection in filter_detections: x1, y1, w1, h1 = detection[2][0],\ detection[2][1],\ detection[2][2],\ detection[2][3] xmin, ymin, xmax, ymax = rn.convertBack( float(x1), float(y1), float(w1), float(h1)) sx = 640.0/416.0 sy = 360.0/416.0 xmin = int(xmin*sx) ymin = int(ymin*sy) xmax = int(xmax*sx) ymax = int(ymax*sy) pt1 = (xmin, ymin) pt2 = (xmax, ymax) cropped = gray[ymin:ymax, xmin:xmax] face_rects = faceClassifier.detectMultiScale( # Detect faces with dlib gray, scaleFactor = 1.1, minNeighbors = 5, minSize = (50, 50), flags = cv2.CASCADE_SCALE_IMAGE) n_persons += 1 if len(face_rects) > 0: for (x, y, w, h) in face_rects: face = cropped[y:y + h, x:x + w] face_encodings_in_image = rn.get_face_encodings(face) #x += xmin #y += ymin if (face_encodings_in_image): match = rn.find_match(face_encodings, person_names, face_encodings_in_image[0]) if match == "Not Found": cv2.putText(draw_frame, "Unknow", (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2) else: cv2.putText(draw_frame, match, (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 255, 0), 2) n_users += 1 else: cv2.putText(draw_frame, "Unknow", (x+5, y-15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.rectangle(draw_frame, (x, y), (x + w, y + h), (0, 0, 255), 2) else: cv2.rectangle(draw_frame, pt1, pt2, (0, 0, 255), 2) cv2.putText(draw_frame, "Unknow", (pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.putText(draw_frame, "InteliCam Users: " + str(n_users) + " | "+ \ "Persons: " + str(n_persons), (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, [255, 255, 255], 1) cv2.imshow("Frame", draw_frame) key = cv2.waitKey(3) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break cv2.destroyAllWindows()
2.359375
2
color_guess.py
Software-Cat/Python-Graphics-Project
0
12796365
# import all the required python libaries: graphics and random from graphics import * import random # create the graphics window and set background colour win = GraphWin("Colour Guessing Game", 1000, 500) win.setBackground('#232323') # create a title for your game titleBg = Rectangle(Point(0, 0), Point(1000, 135)) titleBg.setOutline('steelblue') titleBg.setFill('steelblue') titleBg.draw(win) title = Text(Point(500, 67.5),"RGB Colour Guessing Game") title.setTextColor('white') title.setSize(48) title.setFace('times roman') title.draw(win) colors = [] correctChoice = int # generate random colors and questions def randomise_answers(): global colors global correctChoice colors = [] for i in range(4): rand_r = random.randint(0, 255) rand_g = random.randint(0, 255) rand_b = random.randint(0, 255) colors.append([rand_r, rand_g, rand_b]) correctChoice = random.randint(0, 3) randomise_answers() squares = [] # create 4 squares of random colour evenly spaced across the page def create_squares(x, y, sideLen, spacing): global squares squares = [] for i in range(4): # create a square (Rectangle) that is positioned based on the current 'i' value square = Rectangle(Point(x+i*sideLen+i*spacing, y), Point(x+(i+1)*sideLen+i*spacing, y+sideLen)) # set the fill of the square to the random values of r,g and b square.setFill(color_rgb(colors[i][0], colors[i][1], colors[i][2])) # draw the square in the window square.draw(win) squares.append(square) create_squares(225, 325, 100, 50) def wait_for_click(): while True: # get the click position of the mouse mousePos = win.getMouse() mouseX = mousePos.getX() mouseY = mousePos.getY() # check if the mouse clicked on the correct square, if it did display correct otherwise incorrect for i in range(4): currentSquare = squares[i] currentX1 = currentSquare.getP1().getX() currentY1 = currentSquare.getP1().getY() currentX2 = currentSquare.getP2().getX() currentY2 = currentSquare.getP2().getY() if mouseX > currentX1 and mouseX < currentX2 and mouseY > currentY1 and mouseY < currentY2: return i ''' main game ''' gameover = False # create a rectangle that fills the whole screen bgRect = Rectangle(Point(0, 0), Point(1000, 500)) # create a Text box that will display the results of the guess (correct/incorrect) resultText = Text(Point(500, 125),"") resultText.setSize(128) resultText.setFill('white') # create a Text box that will display the rgb of the correct choice questionText = Text(Point(500, 225), f"rgb({colors[correctChoice][0]}, {colors[correctChoice][1]}, {colors[correctChoice][2]})") questionText.setFill('white') questionText.setSize(25) questionText.setStyle('bold') questionText.draw(win) # create a Text box that will display the score of the player score = 0 scoreText = Text(Point(500, 155), f"SCORE: {score}") scoreText.setFill('white') scoreText.setSize(12) scoreText.draw(win) while gameover == False: square_clicked = wait_for_click() if square_clicked == correctChoice: score += 1 scoreText.setText(f"SCORE: {score}") randomise_answers() create_squares(225, 325, 100, 50) questionText.setText(f"rgb({colors[correctChoice][0]}, {colors[correctChoice][1]}, {colors[correctChoice][2]})") else: bgRect.setFill(color_rgb(colors[square_clicked][0], colors[square_clicked][1], colors[square_clicked][2])) bgRect.draw(win) resultText.setText("TOO BAD") resultText.draw(win) scoreText.setSize(24) scoreText.anchor = Point(500, 350) scoreText.undraw() scoreText.draw(win) gameover = True # wait for click to close window win.getMouse()
3.875
4
utils/scripts/OOOlevelGen/src/levels/Release_The_Cheese.py
fullscreennl/monkeyswipe
0
12796366
<gh_stars>0 import LevelBuilder from sprites import * def render(name,bg): lb = LevelBuilder.LevelBuilder(name+".plist",background=bg) lb.addObject(Beam.BeamSprite(x=217, y=83,width=167,height=36,angle='90' ,restitution=0.2,static='false',friction=0.5,density=20 )) lb.addObject(Wizard.WizardSprite(x=409,y=68)) lb.addObject(Enemy.EnemySprite(x=217, y=238,width=136,height=136,angle='0',restitution=0.2,static='false',friction=0.5,density=20 )) lb.addObject(Hero.HeroSprite(x=22, y=21,width=32,height=32)) lb.addObject(Star.StarSprite(x=217, y=238,width=32,height=32)) lb.addObject(Contacts.Contact(body1='Hero',body2=':hat_top',event_name='onReleaseStar')) lb.addObject(Joints.RevoluteJoint(body1='Enemy',body2='Star',motor_speed='1',enable_motor='true',torque='1000',lower_angle='12',upper_angle='50',userData='star_joint',enable_limit='false',collide_connected='false')) lb.render()
2.171875
2
example.py
papamoose/nvidia-ml-py
0
12796367
#!/usr/bin/python3 import nvidia_smi import json mydict = nvidia_smi.JsonDeviceQuery() # Example print JSON print(json.dumps(mydict, indent=2))
2.390625
2
utests/cfg_up.py
georgsp/mdmTerminal2
24
12796368
<gh_stars>10-100 import json import unittest import run from lib.tools import config_updater def dummy(*_, **__): pass def new_updater(): return config_updater.ConfigUpdater(CFG(), dummy) def CFG(): return run.get_cfg() class ConfigUpdater(unittest.TestCase): ADD_5 = {'ip_server': '', 'ip': 1, 'two__': '2', 'three__': 3, 'four__': '4'} TXT_4 = '{"PROVIDERTTS":"NoYandex","APIKEYTTS":"y_key","PROVIDERSTT":"NoGoogle","APIKEYSTT":"g_key",' \ '"ALARMKWACTIVATED":"1","ALARMTTS":"1","ALARMSTT":"1","newer__":{"fdfd":"777"}}' def test_self(self): updater = new_updater() self.assertEqual(updater.from_dict(CFG()), 0) self.assertEqual(updater._updated_count, 0) self.assertEqual(updater._updated_count, updater._change_count) self.assertFalse(updater.save_ini) def test_5(self): updater = new_updater() self.assertEqual(updater.from_dict({'be never': self.ADD_5}), 5) self.assertFalse(updater.save_ini) def test_5_0_str(self): add = json.dumps({'be never': self.ADD_5}) updater = new_updater() self.assertEqual(updater.from_json(add), 0) self.assertFalse(updater.save_ini) def test_5_4_str(self): add = json.dumps(self.ADD_5) updater = new_updater() self.assertEqual(updater.from_json(add), 4) self.assertTrue(updater.save_ini) def test_5_5_dict(self): updater = new_updater() self.assertEqual(updater.from_dict({'settings': self.ADD_5}), 5) self.assertFalse(updater.save_ini) def test_prov(self): updater = new_updater() self.assertEqual(updater.from_json(self.TXT_4), 4) self.assertTrue(updater.save_ini) self.assertEqual(updater.from_dict(CFG()), 2) self.assertFalse(updater.save_ini) self.assertEqual(updater.from_dict(CFG()), 0) self.assertFalse(updater.save_ini) def test_prov_proxy(self): txt_5 = self.TXT_4[:-1] + ',"proxy":{"enable": "1"}}' updater = new_updater() self.assertEqual(updater.from_json(txt_5), 5) self.assertTrue(updater.save_ini) self.assertEqual(updater.from_dict(CFG()), 3) self.assertFalse(updater.save_ini) self.assertEqual(updater.from_dict(CFG()), 0) self.assertFalse(updater.save_ini)
2.546875
3
Dirt.py
damianStrojek/Python-GameOfLife
4
12796369
<gh_stars>1-10 # OOP PG WETI PROJECT NR 2 # <NAME> s184407 2021 IT/CS # @ Copyright 2021, <NAME>, All rights reserved. import os, pygame from Organism import Organism class Dirt(Organism): # Default block that makes our world def __init__(self, _currentWorld, _positionX, _positionY): super(Dirt, self).__init__(0, 0, _currentWorld, _positionX, _positionY, False) def getImage(self): if self.currentWorld.getWorldType() == 1: self.image = pygame.image.load(os.path.join('icons', 'dirthex.jpg')) else: self.image = pygame.image.load(os.path.join('icons', 'dirt.jpg')) self.image = pygame.transform.scale(self.image, (self.currentWorld.getIconWidth(), self.currentWorld.getIconHeight())) return self.image def getName(self): return "Dirt"
2.9375
3
agora_analytica/analytics/dummy.py
Kyrmy/prototyyppi
0
12796370
<reponame>Kyrmy/prototyyppi<filename>agora_analytica/analytics/dummy.py """ Dummy module for generating fixed - or random - distances. """ from numpy.random import randint from numpy import abs, int import pandas as pd def distance(source: pd.Series, target: pd.Series, answers: pd.DataFrame, answer_scale=5, answer_source=None, answer_target=None): def _maybe_random(answer: int) -> int: """ Return either :param:`answer` or random number in `answer_scale` """ return answer if answer is not None else randint(0, answer_scale) answer_source = _maybe_random(answer_source) answer_target = _maybe_random(answer_target) return abs(answer_source - answer_target)
2.78125
3
nr_common/fs_utils/fs_utils.py
nitred/nr-common
0
12796371
<reponame>nitred/nr-common<gh_stars>0 """Simple file system utils.""" import os def makedirs(path, is_file, to_abs=False): """Make directory from path (filename or directory) if it doesn't already exist. Args: path (str): Absolute path of directory or filename. is_file (bool): Whether the path is a directory of filename. If True, then path is treated as a filename and its parent directory is created. If False, then path is treated as a directory and it is created. to_abs (bool): If True, convert the path to absolute path. If False, assume that the path is absolute. Default False. Returns: None """ if to_abs: if not os.path.isabs(path): path = os.path.abspath(path) if not os.path.isabs(path): raise ValueError("Path must be an absolute path. This method does not deal with relative paths. " "Use `to_abs` if you want to explicitly convert path to absolute.") if is_file: directory = os.path.dirname(path) else: directory = path # If directory does not exist, then simple create it. if not os.path.exists(directory): os.makedirs(directory) # elif the directory exists else: # Assert that the path is a directory if not os.path.isdir(directory): raise OSError("Path already exists but is not a directory! Path: {}".format(directory)) else: # Alles in Ordnung pass return
3.671875
4
tony-setanddict.py
tonythott/tonnewcode
0
12796372
<filename>tony-setanddict.py ''' #set is a container that stores a collection of unique values #Union , intersection , substraction for sets #Substruction means remove elements from intersection of a and b list =[] #empty list setN = {} #error setN = set() #empty set cast = {"tony","preetha","luke"} if luke in cast: for tony in sorted(cast) : print (tony) cast = set(["tony","preetha","luke"]) cast.add("tessa") #to get to know the hash print(hash("tony")) namelist = ["tt","nn","jj","rr","uu"] names = set(namelist) #copy list and create a new set names.add("nn") #You cant have same elements in a set so elemensts wont repeat but in a list we can repeat items names.discard("rr") #we can use "remove" also for elem in names: print(elem) #To remove everything from the set names.clear() namelist1 = ["tt1","nn2","jj3","rr4","uu5"] namelist2 = ["tt1","nn","jj3","rr4","uu5"] names1 = set(namelist1) names2 = set(namelist2) #nameunion = names1.union(names2) #nameunion = names1.intersection(names2) nameunion = names1.difference(names2) for elem in nameunion: print(elem) if names2.issubset(names1): print("True") else: print("False") ''' #Dictionary or map ; key is unique and value can be anything d = dict() d = {} d = dict() d["tony"] = 98 print (d) sd = {"Tony":98,"preetha":99,"pre":99,"etha":99,"tha":99} print (sd) td = {} td["tony"] = 98 print (td) if "tony" in d: print("YES") td["tony"] = 101 print(td["tony"]) print(len(sd)) l = sd.values() print (l) sd.pop("preetha") print(sd) print(sd.get("tony","not found")) print(sd.get("Tony","not found")) #if key doesnt exist then print "not found" as per the given example for elem in sd: print(sd[elem]) # print all the value for the keys exist in the dict #item() # this will return both key and value ; it will return it as tuple for item in sd.items(): print(item[0], " ",item[1]) for (u,v) in sd.items(): print(u, " ",v)
4.21875
4
moanna/model/Autoencoder.py
rlupat/moanna
2
12796373
<gh_stars>1-10 # Libraries import torch import torch.nn as nn import numpy as np import pandas as pd from tensorboardX import SummaryWriter import torch.nn.functional as F import pdb import seaborn as sns import matplotlib.pyplot as plt from livelossplot import PlotLosses #Encoder class LayerBlockEncode(nn.Module): def __init__(self, hidden_size_1, hidden_size_2, p): super().__init__() self.layer = nn.Linear(hidden_size_1, hidden_size_2) self.activation = nn.Tanh() self.bn = nn.BatchNorm1d(hidden_size_2) self.dropout = nn.Dropout(p) def forward(self, x): x = self.layer(x) x = self.activation(x) x = self.bn(x) x = self.dropout(x) return (x) class Encoder(nn.Module): def __init__(self, input_shape, hidden_size, encoded_size, n_layers=3, drop_prob=0.5): super(Encoder, self).__init__() self.n_layers = n_layers self.drop_prob = drop_prob self.e1 = nn.Linear(input_shape, hidden_size) self.activation1 = nn.Tanh() self.bn1 = nn.BatchNorm1d(hidden_size) if (hidden_size // (2**n_layers)) > encoded_size: self.layers = nn.ModuleList([]) for i in range(n_layers): self.layers.append(LayerBlockEncode(hidden_size//(2**i), hidden_size//(2**(i+1)), self.drop_prob)) else: self.n_layers = 0 self.e2 = nn.Linear((hidden_size//(2**n_layers)), encoded_size) def forward(self, input): x = self.e1(input) x = self.activation1(x) x = self.bn1(x) for i in range(self.n_layers): encode_block = self.layers[i] x = encode_block(x) #block1 = F.dropout(self.bn1(F.elu(self.e1(input))), p=self.drop_prob) #encoded_representation = torch.tanh(self.e2(block1)) encoded_representation = self.e2(x) return encoded_representation #Decoder: class LayerBlockDecode(nn.Module): def __init__(self, hidden_size_1, hidden_size_2, p): super().__init__() self.layer = nn.Linear(hidden_size_1, hidden_size_2) self.activation = nn.Tanh() self.bn = nn.BatchNorm1d(hidden_size_2) self.dropout = nn.Dropout(p) def forward(self, x): x = self.layer(x) x = self.activation(x) x = self.bn(x) x = self.dropout(x) return (x) class Decoder(nn.Module): def __init__(self, output_shape, hidden_size, encoded_size, n_layers=3, drop_prob=0.5): super(Decoder, self).__init__() self.n_layers = n_layers self.drop_prob = drop_prob self.second_last_layer_size = hidden_size // (2**n_layers) self.d1 = nn.Linear(encoded_size, self.second_last_layer_size) self.activation1 = nn.Tanh() self.bn1 = nn.BatchNorm1d(self.second_last_layer_size) if (self.second_last_layer_size) > encoded_size: self.layers = nn.ModuleList([]) for i in range(self.n_layers): self.layers.append(LayerBlockDecode(hidden_size//(2**(n_layers-i)), hidden_size//(2**(n_layers-i-1)), self.drop_prob)) else: self.n_layers = 0 self.d2 = nn.Linear(hidden_size, output_shape) def forward(self, input): x = self.d1(input) x = self.activation1(x) x = self.bn1(x) for i in range(self.n_layers): decode_block = self.layers[i] x = decode_block(x) #block = F.dropout(self.bn(F.elu(self.d(input))), p=self.drop_prob) #reconstruction = torch.tanh(self.d4(block)) reconstruction = self.d2(x) return reconstruction # Training AutoEncoders Function def train_ae(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, hidden_size, encoded_size, n_layers, drop_prob, phase): if phase == 'train': encoder.train() decoder.train() else: encoder.eval() decoder.eval() # clear the gradients in the optimizers if phase == 'train': encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() # Forward pass through encoded_representation = encoder(input_tensor) reconstruction = decoder(encoded_representation) # Compute the loss loss = criterion(reconstruction, target_tensor) if phase == 'train': # Compute the gradients loss.backward() # Step the optimizers to update the model weights encoder_optimizer.step() decoder_optimizer.step() # Return the loss value to track training progress return loss.item() # Training Loop def trainIters(encoder, decoder, data_tensor, data_tensor_valid, epochs, hidden_size, encoded_size, n_layers, drop_prob, print_every_n_batches=100, learning_rate=0.01, phases=["train", "validation"],): # Live Loss liveloss = PlotLosses() # keep track of losses train_plot_losses = [] test_plot_losses = [] # Initialize Encoder Optimizer encoder_optimizer = torch.optim.Adam(encoder.parameters(), lr=learning_rate, weight_decay=1e-5) # Initialize Decoder Optimizer decoder_optimizer = torch.optim.Adam(decoder.parameters(), lr=learning_rate, weight_decay=1e-5) # Specify loss function criterion = torch.nn.MSELoss(reduce=True) # Cycle through epochs for epoch in range(epochs): logs = {} for phase in phases: print(f'Epoch {epoch + 1}/{epochs}') if phase == 'train': loss = train_ae(data_tensor, data_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, hidden_size, encoded_size, n_layers, drop_prob, phase) train_plot_losses.append(loss) else: loss = train_ae(data_tensor_valid, data_tensor_valid, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, hidden_size, encoded_size, n_layers, drop_prob, phase) test_plot_losses.append(loss) print(loss) #plot_losses.append(loss) prefix = '' if phase == 'validation': prefix = 'val_' logs[prefix + 'log loss'] = loss liveloss.update(logs) #liveloss liveloss.draw() #liveloss return train_plot_losses, test_plot_losses
2.53125
3
project/face_api_server/proxy/redis_function.py
1step6thswmaestro/29
0
12796374
import datetime import json import redis redis_device_key = 'redis_device_key' device_expire_second = 60 class RedisProxy(object): def __init__(self, host='127.0.0.1', port=6379): self.redis_pool = redis.ConnectionPool(host=host, port=port, db=0) def connect(self): return redis.Redis(connection_pool=self.redis_pool) def get_device_datas(self): device_datas = [] r = self.connect() result = r.hgetall(redis_device_key) remove_device_list = [] for user_pair in result.items(): values = user_pair[1].split('@') ''' device_id = user_pair[0] update_time = datetime.datetime.strptime(values[1], "%Y-%m-%d %H:%M:%S.%f") now_time = datetime.datetime.today() expire_time_delta = datetime.timedelta(seconds=device_expire_second) if now_time > update_time + expire_time_delta: device_ids.append(device_id) else: remove_device_list.append(device_id) ''' device_datas.append(json.loads(values[0])) self.remove_devices(remove_device_list) return device_datas def remove_devices(self, device_list): r = self.connect() p = r.pipeline() for device_id in device_list: p.hdel(redis_device_key, device_id) p.execute() def update_device(self, device_id, websocket_send_data): r = self.connect() insert_value = "%s@%s" % (json.dumps(websocket_send_data), datetime.datetime.now()) return r.hset(redis_device_key, device_id, insert_value)
2.5
2
fungit/style/cursor.py
zlj-zz/pyzgit
0
12796375
<reponame>zlj-zz/pyzgit class Cursor: """Class with collection of cursor movement functions: .t[o](line, column) | .r[ight](columns) | .l[eft](columns) | .u[p](lines) | .d[own](lines) | .save() | .restore()""" @staticmethod def to(line: int, col: int) -> str: # * Move cursor to line, column return "\033[{};{}f".format(line, col) @staticmethod def right(dx: int) -> str: return "\033[{}C".format(dx) @staticmethod def left(dx: int) -> str: return "\033[{}D".format(dx) @staticmethod def up(dy: int) -> str: return "\033[{}A".format(dy) @staticmethod def down(dy: int) -> str: return "\033[{}B".format(dy) save: str = "\033[s" # * Save cursor position restore: str = "\033[u" # * Restore saved cursor postion t = to r = right l = left u = up d = down
3.109375
3
src/cors.py
danztensai/covid-19-api
53
12796376
from flask_cors import CORS cors = CORS(resources={r"/maskmap/*": {"origins": "*"}}) def init_app(app): cors.init_app(app)
1.757813
2
day08.py
Yalfoosh/Advent-of-Code-2019
0
12796377
import numpy as np image_dimensions = (25, 6) def load(image_dims, path: str = "input/08.txt"): with open(path) as file: return np.array([c for c in file.read()]).reshape((-1, image_dims[0] * image_dims[1])) def number_of_values_in_layer(layer, value): return np.count_nonzero(layer == value) def stack_layers(image_layers): final_layer = list() for i in range(len(image_layers[0])): for j in range(len(image_layers)): if image_layers[j][i] != "2": final_layer.append(image_layers[j][i]) break return np.array(final_layer) # Prep layers = load(image_dimensions) # First wanted_layer = None minimum = None for l in layers: n = number_of_values_in_layer(l, "0") if minimum is None or wanted_layer is None or n < minimum: minimum = n wanted_layer = l wanted_1 = number_of_values_in_layer(wanted_layer, "1") * number_of_values_in_layer(wanted_layer, "2") print(f"[1]\t{wanted_1}") # Second stacked_layer = stack_layers(layers).reshape(image_dimensions[::-1]) final_image = list() for row in stacked_layer: r = "" for element in row: r += "##" if element == "1" else " " if element == "0" else " " final_image.append(r) print(f"[2]") for r in final_image: print(r)
3
3
Robotix/apps/miscellaneous/models.py
Robotix/rbtxportal
0
12796378
<filename>Robotix/apps/miscellaneous/models.py<gh_stars>0 from django.db import models class Country(models.Model): name = models.CharField(max_length=20) class Meta: verbose_name_plural = 'Countries' def __str__(self): return self.name class State(models.Model): name = models.CharField(max_length=20) country = models.ForeignKey(Country) def __str__(self): return self.name class College(models.Model): name = models.CharField( max_length=255, blank=False, verbose_name='College Name' ) abbv = models.CharField( max_length=30, blank=False, verbose_name='Abbreviation' ) state = models.ForeignKey(State) @staticmethod def autocomplete_search_fields(): return 'name', 'abbv' def __str__(self): return self.name
2.484375
2
senet/keras_fn/se_resnet_test.py
AI-Huang/SENet
1
12796379
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Date : Jan-02-21 20:43 # @Author : <NAME> (<EMAIL>) import tensorflow as tf from tensorflow.python.keras import keras_parameterized from tensorflow.python.platform import test from tensorflow.keras.utils import plot_model from senet.keras_fn.se_resnet import SE_ResNet_18, SE_ResNet_50, SE_ResNet_101, SE_ResNet_152 class TestModelArchitectures(keras_parameterized.TestCase): def test_se_resnet_18(self): model_type = "SE_ResNet_18" input_shape = (224, 224, 3) num_classes = 2 model = SE_ResNet_18( include_top=True, weights=None, input_shape=input_shape, classes=num_classes ) plot_model(model, to_file=model_type + ".png", show_shapes=True) def test_se_resnet_50(self): model_type = "SE_ResNet_50" input_shape = (224, 224, 3) num_classes = 2 model = SE_ResNet_50( include_top=True, weights=None, input_shape=input_shape, classes=num_classes ) plot_model(model, to_file=model_type + ".png", show_shapes=True) def test_se_resnet_101(self): model_type = "SE_ResNet_101" input_shape = (224, 224, 3) num_classes = 2 model = SE_ResNet_101( include_top=True, weights=None, input_shape=input_shape, classes=num_classes ) plot_model(model, to_file=model_type + ".png", show_shapes=True) def test_se_resnet_152(self): model_type = "SE_ResNet_152" input_shape = (224, 224, 3) num_classes = 2 model = SE_ResNet_152( include_top=True, weights=None, input_shape=input_shape, classes=num_classes ) plot_model(model, to_file=model_type + ".png", show_shapes=True) if __name__ == "__main__": test.main()
2.578125
3
stage_data/main.py
shermanflan/clinical-data-architecture
0
12796380
""" Usage: - From Spark 3.1.1 base container with Python bindings: docker run --rm -it --name test_pyspark spark-ingest:latest /bin/bash ./bin/spark-submit spark-ingest/main.py --filepath ./examples/src/main/python/pi.py - From binaries: ./pyspark --packages io.delta:delta-core_2.12:1.0.0 \ --conf "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension" \ --conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog" ./spark-sql --packages io.delta:delta-core_2.12:1.0.0 \ --conf "spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension" \ --conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog" """ from datetime import datetime, date, timedelta import os import shutil import boto3 import click from pyspark.sql import SparkSession from spark_etl import logger, SPARK_LOG_LEVEL from spark_etl.etl import ( create_vitals_delta, cache_mpmi, save_mpmi, load_vitals, upsert_vitals, time_travel ) from spark_etl.secret import get_secret """ To configure AWS bucket-specific authorization, use the `fs.s3a.bucket.[bucket name].access.key` configuration setting. As specified here: - https://hadoop.apache.org/docs/current2/hadoop-aws/tools/hadoop-aws/index.html#Configuring_different_S3_buckets TODO: Consider optimizing the S3A for I/O. - https://spark.apache.org/docs/3.1.1/cloud-integration.html#recommended-settings-for-writing-to-object-stores """ spark_session = ( SparkSession .builder .appName("stage_data") # AWS general authorization # .config("spark.hadoop.fs.s3a.access.key", os.environ['P3_AWS_ACCESS_KEY']) # .config("spark.hadoop.fs.s3a.secret.key", os.environ['P3_AWS_SECRET_KEY']) # AWS bucket-specific authorization # .config(f"fs.s3a.bucket.{os.environ['P3_BUCKET']}.access.key", os.environ['P3_AWS_ACCESS_KEY']) # .config(f"fs.s3a.bucket.{os.environ['P3_BUCKET']}.secret.key", os.environ['P3_AWS_SECRET_KEY']) # .config(f"fs.s3a.bucket.{os.environ['P3_BUCKET']}.session.token", os.environ['P3_AWS_SESSION_TOKEN']) # Or .config(f"spark.hadoop.fs.s3a.bucket.{os.environ['P3_BUCKET']}.access.key", os.environ['P3_AWS_ACCESS_KEY']) .config(f"spark.hadoop.fs.s3a.bucket.{os.environ['P3_BUCKET']}.secret.key", os.environ['P3_AWS_SECRET_KEY']) # .config("spark.hadoop.fs.s3a.bucket.bangkok.access.key", os.environ['BK_AWS_ACCESS_KEY']) # .config("spark.hadoop.fs.s3a.bucket.bangkok.secret.key", os.environ['BK_AWS_SECRET_KEY']) # .config("spark.hadoop.fs.s3a.bucket.condesa.access.key", os.environ['CO_AWS_ACCESS_KEY']) # .config("spark.hadoop.fs.s3a.bucket.condesa.secret.key", os.environ['CO_AWS_SECRET_KEY']) # TODO: S3A Optimizations .config("spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version", "2") .config("spark.hadoop.mapreduce.fileoutputcommitter.cleanup-failures.ignored", "true") # TODO: S3A Optimizations: PathOutputCommitProtocol cannot be resolved # .config("spark.hadoop.fs.s3a.committer.name", "directory") # .config("spark.sql.sources.commitProtocolClass", # "org.apache.spark.internal.io.cloud.PathOutputCommitProtocol") # .config("spark.sql.parquet.output.committer.class", # "org.apache.spark.internal.io.cloud.BindingParquetOutputCommitter") # TODO: Parquet Optimizations .config("spark.hadoop.parquet.enable.summary-metadata", "false") .config("spark.sql.parquet.mergeSchema", "false") .config("spark.sql.parquet.filterPushdown", "true") .config("spark.sql.hive.metastorePartitionPruning", "true") # Specify different location for Hive metastore # .config("spark.sql.warehouse.dir", "/opt/spark/hive_warehouse") # .config("spark.sql.catalogImplementation", "hive") # Delta lake integration with Spark DataSourceV2 and Catalog # .config("spark.jars.packages", "io.delta:delta-core_2.12:1.0.0") # .config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") # .config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog") .getOrCreate() ) spark_session.sparkContext.setLogLevel(SPARK_LOG_LEVEL) @click.group() def cli(): pass @cli.command() def smoke_test(): pass @cli.command() @click.option('--filepath', required=False, help='The input file path') @click.option('--filepath2', required=False, help='The input file path') @click.option( '--output-path', required=False, help='The output file path') @click.option( '--delta-truncate/--no-delta-truncate', default=True, help='Clear previous delta runs') def acquire_vitals( filepath: str, filepath2: str, output_path: str, delta_truncate: bool) -> None: """ """ # TODO: Import spark_etl to Jupyter container # TODO: Build Spark 3.2 container with Python bindings # TODO: RE: patient matches, load demographics as a Delta and keep sync'd # TODO: Partition demographics Delta by prac # TODO: Implement "Current" tables as delta lake tables (merge/upsert) # TODO: How to write parent/child tables to db at scale? # See here: https://www.youtube.com/watch?v=aF2hRH5WZAU # monotonically_increasing_id() can also be used. start = datetime.now() delta_path = "{root}/public/vitals/delta".format(root=output_path) if delta_truncate: logger.info(f"Clearing vitals delta: {delta_path}") shutil.rmtree(delta_path, ignore_errors=True) # logger.info(f"Creating vitals delta: {output_path}") # delta_path = create_vitals_delta(spark_session, output_path) # logger.info(f"Create finished in {datetime.now() - start}") logger.info(f"Caching mpmi") mpmi = cache_mpmi(spark_session) logger.info(f"Cache finished in {datetime.now() - start}") # logger.info(f"Persisting mpmi") # mpmi_path = save_mpmi(spark_session, output_path) # logger.info(f"Save finished in {datetime.now() - start}") logger.info(f"Processing vitals: {filepath}") load_vitals(spark_session, mpmi, filepath, output_path) logger.info(f"Load process finished in {datetime.now() - start}") logger.info(f"Processing vitals: {filepath2}") upsert_vitals(spark_session, mpmi, filepath2, output_path) logger.info(f"Upsert process finished in {datetime.now() - start}") logger.info(f"Time-travel vitals: {delta_path}") time_travel( spark_session, delta_path ) logger.info(f"Time-travel finished in {datetime.now() - start}") input("Press enter to exit...") # keep alive for Spark UI @cli.command() @click.option('--source-path', required=False, help='The Delta path') @click.option('--output-path', required=False, help='The output file path') def stream_vitals(source_path: str, output_path: str) -> None: """ JDBC streaming is not supported so I'm not sure how to use this. It may be that Kafka is necessary for true streaming. """ logger.info(f"Stream (append mode) to delta on: {source_path}") ( spark_session .readStream .format("delta") # .option("ignoreDeletes", "true") # .option("ignoreChanges", "true") .load(source_path) .writeStream # .format("console") # debug .format("delta") .outputMode("append") .option("checkpointLocation", f"{output_path}/_checkpoints/stream-from-delta") .queryName('vitals_stream') .start(output_path) .awaitTermination(timeout=60*5) # 5 min ) if __name__ == "__main__": cli()
1.765625
2
src/runner/views.py
OpenROAD-Cloud/flow-runner
0
12796381
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from runner.tasks import start_flow_task class RunnerStartFlow(APIView): def post(self, request): flow_uuid = request.POST.get('flow_uuid', None) flow_repo_url = request.POST.get('flow_repo_url', None) if not flow_uuid or not flow_repo_url: return Response('Missing parameters', status=status.HTTP_400_BAD_REQUEST) start_flow_task.delay(flow_uuid, flow_repo_url) return Response('Received', status=status.HTTP_202_ACCEPTED)
2.15625
2
libp2p/network/connection/raw_connection.py
ChihChengLiang/py-libp2p
0
12796382
from .raw_connection_interface import IRawConnection class RawConnection(IRawConnection): def __init__(self, ip, port, reader, writer, initiator): # pylint: disable=too-many-arguments self.conn_ip = ip self.conn_port = port self.reader = reader self.writer = writer self._next_id = 0 if initiator else 1 self.initiator = initiator async def write(self, data): self.writer.write(data) self.writer.write("\n".encode()) await self.writer.drain() async def read(self): line = await self.reader.readline() adjusted_line = line.decode().rstrip('\n') # TODO: figure out a way to remove \n without going back and forth with # encoding and decoding return adjusted_line.encode() def close(self): self.writer.close() def next_stream_id(self): """ Get next available stream id :return: next available stream id for the connection """ next_id = self._next_id self._next_id += 2 return next_id
2.9375
3
app.py
porcelainruler/Image-Search-Engine
1
12796383
<reponame>porcelainruler/Image-Search-Engine import os from flask import Flask, render_template, request, jsonify import numpy as np import cv2 from Searcher import Searcher from ColorDescriptor import ColorDescriptor app = Flask(__name__) INDEX = os.path.join(os.path.dirname(__file__), 'index.csv') cd = ColorDescriptor() @app.route('/', methods=['GET', 'POST']) def search(): if request.method == 'POST': query = cv2.imdecode(np.fromstring(request.files['img'].read(), np.uint8), cv2.IMREAD_COLOR) features = cd.describe(query) searcher = Searcher(INDEX) results = searcher.search(features, 10) res = [] for (score, resultID) in results: res.append({"Image": str(resultID), "Score": str(score)}) context = {"images": res} print(context) return render_template('index.html', context=context) res = [] context = {"images": res} return render_template('index.html', context=context) if __name__ == '__main__': app.run('127.0.0.1', debug=True)
2.546875
3
sdk/python/pulumi_gcp/compute/get_default_service_account.py
23doors/pulumi-gcp
1
12796384
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetDefaultServiceAccountResult: """ A collection of values returned by getDefaultServiceAccount. """ def __init__(__self__, display_name=None, email=None, name=None, project=None, unique_id=None, id=None): if display_name and not isinstance(display_name, str): raise TypeError("Expected argument 'display_name' to be a str") __self__.display_name = display_name """ The display name for the service account. """ if email and not isinstance(email, str): raise TypeError("Expected argument 'email' to be a str") __self__.email = email """ Email address of the default service account used by VMs running in this project """ if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name """ The fully-qualified name of the service account. """ if project and not isinstance(project, str): raise TypeError("Expected argument 'project' to be a str") __self__.project = project if unique_id and not isinstance(unique_id, str): raise TypeError("Expected argument 'unique_id' to be a str") __self__.unique_id = unique_id """ The unique id of the service account. """ if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ class AwaitableGetDefaultServiceAccountResult(GetDefaultServiceAccountResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDefaultServiceAccountResult( display_name=self.display_name, email=self.email, name=self.name, project=self.project, unique_id=self.unique_id, id=self.id) def get_default_service_account(project=None,opts=None): """ Use this data source to retrieve default service account for this project :param str project: The project ID. If it is not provided, the provider project is used. > This content is derived from https://github.com/terraform-providers/terraform-provider-google/blob/master/website/docs/d/compute_default_service_account.html.markdown. """ __args__ = dict() __args__['project'] = project if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:compute/getDefaultServiceAccount:getDefaultServiceAccount', __args__, opts=opts).value return AwaitableGetDefaultServiceAccountResult( display_name=__ret__.get('displayName'), email=__ret__.get('email'), name=__ret__.get('name'), project=__ret__.get('project'), unique_id=__ret__.get('uniqueId'), id=__ret__.get('id'))
1.960938
2
data_visualization/chp15_GeneratingData/plottingSquares.py
sergejsm/pythonCrashCourseProjects
0
12796385
<reponame>sergejsm/pythonCrashCourseProjects import matplotlib.pyplot as plt x_values = list(range(1, 1001)) y_values = [x**2 for x in x_values] plt.title("Square Numbers", fontsize=24) plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # Set size of tick labels. plt.tick_params(axis='both', which='major', labelsize=14) plt.axis([0, 1100, 0, 1100000]) plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Reds, edgecolor='none', s=40) plt.savefig('squares_plot.png', bbox_inches='tight') plt.show()
3.578125
4
power_sizing.py
ThyagoFRTS/power-eletric
1
12796386
import math def calculate_power_luminance(ambient_area): #area in m^2 potency = 0 if ambient_area <= 6: print('Lighting Potency: '+ str(100) +' (VA)') potency = 100 else: print('extra potency: ' + str((ambient_area - 6))) potency = 100 + 60 * int((ambient_area - 6)/4) print('Lighting Potency: '+ str(potency) +' (VA)') print('') return potency """#Dimensionamento de TUGs""" def calculate_number_and_power_of_tugs(ambient_name, perimeter = 0): #area in m^2 #perimeter in m class1 = ['banheiro'] class2 = ['cozinha', 'copa','copa-cozinha', 'area de servico', 'lavanderia'] class3 = ['varanda'] class4 = ['sala', 'quarto', 'dormitorio', 'escritorio'] number_tugs = 0 power_tugs = 0 if ambient_name in class1: number_tugs = 1 power_tugs = number_tugs * 600 elif ambient_name in class2: number_tugs = math.ceil(perimeter/3.5) if number_tugs <= 3: power_tugs = number_tugs * 600 else: power_tugs = 3 * 600 + 100 * (number_tugs - 3) elif ambient_name in class3: number_tugs = 1 power_tugs = number_tugs * 100 elif ambient_name in class4: number_tugs = math.ceil(perimeter/5) power_tugs = number_tugs * 100 else: print('No matches found') print('warning: ambient is calculated by area, see in 54.10 norma\nEntry with area: ') area = float(input()) if area <= 2.55: number_tugs = 1 power_tugs = number_tugs * 100 return 0 print('Numbers TUG: ' + str(number_tugs) + '\nTUG Potency:' + str(power_tugs) +'(VA)') print('') return number_tugs, power_tugs
3.671875
4
lab3/index.py
xiong35/HUST-BigData
0
12796387
import pandas as pd SUPPORT = 0.005 CONF = 0.5 def csv2list(): df = pd.read_csv("./实验三/数据/Groceries.csv") itemsets = [] for itemset_str in df["items"]: itemsets.append(set(itemset_str[1:-1].split(","))) return itemsets itemsets = csv2list() itemsets_len = itemsets.__len__() def build1deg(itemsets): SAVE_PATH = "./one_deg_support.txt" one_deg = {} for itemset in itemsets: for item in itemset: one_deg[item] = one_deg.get(item, 0) + 1 one_deg_count = 0 items = list(one_deg.keys()) with open(SAVE_PATH, "w") as fw: for item in items: support = one_deg[item] / itemsets_len if support > SUPPORT: one_deg[item] = support fw.write(f"{item}: {support}\n") one_deg_count += 1 else: del one_deg[item] print(f"频繁一项集数量: {one_deg_count}", ) print(f"频繁一项集保存在`{SAVE_PATH}`") return one_deg one_deg = build1deg(itemsets) def build2deg(one_deg, itemsets): SAVE_PATH = "./two_deg_support.txt" items = list(one_deg.keys()) two_deg = {} for i in range(0, len(items)): for j in range(i+1, len(items)): key = (items[i], items[j]) for itemset in itemsets: if key[0] in itemset and key[1] in itemset: two_deg[key] = two_deg.get(key, 0) + 1 pairs = list(two_deg.keys()) two_deg_count = 0 with open(SAVE_PATH, "w") as fw: for pair in pairs: support = two_deg[pair] / itemsets_len if support > SUPPORT: two_deg[pair] = support fw.write(f"{pair}: {support}\n") two_deg_count += 1 else: del two_deg[pair] print(f"频繁二项集数量: {two_deg_count}", ) print(f"频繁二项集保存在`{SAVE_PATH}`") return two_deg two_deg = build2deg(one_deg, itemsets) def gen2deg_rules(one_deg, two_deg): SAVE_PATH = "./two_deg_rules.txt" pairs = list(two_deg.keys()) rules = {} for pair in pairs: rule = (pair[0], pair[1]) conf = two_deg[pair] / one_deg[rule[0]] if conf > CONF: rules[rule] = conf rule = (pair[1], pair[0]) conf = two_deg[pair] / one_deg[rule[0]] if conf > CONF: rules[rule] = conf with open(SAVE_PATH, "w") as fw: for k, v in rules.items(): fw.write(f"{k[0]}->{k[1]}: {v}\n") print(f"频繁二项集规则数量: {len(rules.keys())}", ) print(f"频繁二项集规则保存在`{SAVE_PATH}`") gen2deg_rules(one_deg, two_deg) def build3deg(two_deg, itemsets): SAVE_PATH = "./three_deg_support.txt" pairs = list(two_deg.keys()) itemset_3 = set() for pair in pairs: itemset_3.add(pair[0]) itemset_3.add(pair[1]) itemset_3 = list(itemset_3) itemset_3.sort() three_deg = {} for i in range(0, len(itemset_3)): for j in range(i+1, len(itemset_3)): for k in range(j+1, len(itemset_3)): item_i = itemset_3[i] item_j = itemset_3[j] item_k = itemset_3[k] for itemset in itemsets: if item_i in itemset and item_j in itemset and item_k in itemset: tup = (item_i, item_j, item_k) three_deg[tup] = three_deg.get(tup, 0)+1 three_deg_count = 0 tups = list(three_deg.keys()) with open(SAVE_PATH, "w") as fw: for tup in tups: support = three_deg[tup] / itemsets_len if support > SUPPORT: three_deg[tup] = support fw.write(f"{tup}: {support}\n") three_deg_count += 1 else: del three_deg[tup] print(f"频繁三项集数量: {three_deg_count}", ) print(f"频繁三项集保存在`{SAVE_PATH}`") return three_deg three_deg = build3deg(two_deg, itemsets) def gen3deg_rules(one_deg, two_deg, three_deg): SAVE_PATH = "./three_deg_rules.txt" tups = list(three_deg.keys()) rules = {} def enumTup(tup): return [ (tup, tup[0], (tup[1], tup[2])), (tup, tup[1], (tup[0], tup[2])), (tup, tup[2], (tup[0], tup[1])), (tup, (tup[1], tup[2]), tup[0]), (tup, (tup[0], tup[2]), tup[1]), (tup, (tup[0], tup[1]), tup[2]), ] three_deg_rule_num = 0 with open(SAVE_PATH, "w") as fw: for tup in tups: rules = enumTup(tup) for three, one, two in rules[:3]: conf = three_deg[three] / one_deg[one] if conf > CONF: fw.write(f"{one}->{two}: {conf}\n") three_deg_rule_num += 1 for three, two, one in rules[3:]: try: conf = three_deg[three] / two_deg[two] except: try: conf = three_deg[three] / two_deg[(two[1], two[0])] except: print(two, "not found") if conf > CONF: fw.write(f"{two}->{one}: {conf}\n") three_deg_rule_num += 1 print(f"频繁三项集规则数量: {three_deg_rule_num}", ) print(f"频繁三项集规则保存在`{SAVE_PATH}`") gen3deg_rules(one_deg, two_deg, three_deg)
3.171875
3
core/src/autogluon/core/searcher/bayesopt/tuning_algorithms/defaults.py
zhiqiangdon/autogluon
4,462
12796388
<gh_stars>1000+ from .bo_algorithm_components import LBFGSOptimizeAcquisition from ..models.meanstd_acqfunc_impl import EIAcquisitionFunction DEFAULT_ACQUISITION_FUNCTION = EIAcquisitionFunction DEFAULT_LOCAL_OPTIMIZER_CLASS = LBFGSOptimizeAcquisition DEFAULT_NUM_INITIAL_CANDIDATES = 250 DEFAULT_NUM_INITIAL_RANDOM_EVALUATIONS = 3
1.203125
1
analysis/study_definition.py
orlamac/Antidepressants-in-LD-A
0
12796389
<filename>analysis/study_definition.py<gh_stars>0 from cohortextractor import StudyDefinition, patients, codelist, codelist_from_csv, filter_codes_by_category, combine_codelists, Measure # NOQA # Import codelists from codelist.py folder from codelists import SSRI_codes, LD_codes, Autism_codes # Define Study time variables from datetime import datetime end_date = datetime.today().strftime('%Y-%m-%d') # Define Study population and variables study = StudyDefinition( default_expectations={ "date": {"earliest": "2019-01-01", "latest": end_date}, "rate": "uniform", "incidence": 0.5, }, population=patients.registered_with_one_practice_between( "2019-01-01", end_date ), ) # Set index date index_date = "2019-01-01" # Define Medication variables # Patients who are taking SSRIs SSRI_cohort = patients.with_these_medications( SSRI_codes, on_or_before=index_date, returning="binary_flag", return_expectations={"incidence": 0.5} ) # Define patient populations # Patients with a learning disability learning_disability = patients.with_these_clinical_events( LD_codes, on_or_before=index_date, returning="binary_flag", return_expectations={"incidence": 0.5} ) # Patients with Autism autism = patients.with_these_clinical_events( Autism_codes, on_or_before=index_date, returning="binary_flag", return_expectations={"incidence": 0.5}, )
2.359375
2
app/models/Address.py
winlongit/shop_pc_server
1
12796390
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ------------------------------------------------- @ Author : pengj @ date : 2019/12/10 15:45 @ IDE : PyCharm @ GitHub : https://github.com/JackyPJB @ Contact : <EMAIL> ------------------------------------------------- Description : ------------------------------------------------- """ import datetime __author__ = 'Max_Pengjb' from app.models import db from app.models.User import User class Address(db.Document): user_id = db.ReferenceField(User, required=True, verbose_name='用户id') streetName = db.StringField(max_length=512, required=True, verbose_name='地址') userName = db.StringField(max_length=128, required=True, verbose_name='收货人姓名') tel = db.StringField(max_length=64, required=True, verbose_name='收货人手机号') isDefault = db.BooleanField(default=False, required=True, verbose_name='是否默认地址') create_time = db.DateTimeField(default=datetime.datetime.now, verbose_name='创建时间') def __unicode__(self): return str(self.streetName) + str(self.userName)
2.390625
2
src/allennlp/fortex/allennlp/__init__.py
Piyush13y/forte-wrappers
3
12796391
from fortex.allennlp.allennlp_processors import AllenNLPProcessor
1.0625
1
tensorflow/27.pyflink-kafka/notebooks/tensorflow_predict.py
huseinzol05/Gather-Tensorflow-Serving
267
12796392
from pyflink.datastream import StreamExecutionEnvironment, TimeCharacteristic from pyflink.table import StreamTableEnvironment, DataTypes, EnvironmentSettings from pyflink.table.descriptors import ( Schema, Kafka, Json, Rowtime, OldCsv, FileSystem, ) from pyflink.table.udf import udf s_env = StreamExecutionEnvironment.get_execution_environment() s_env.set_stream_time_characteristic(TimeCharacteristic.EventTime) s_env.set_parallelism(1) st_env = StreamTableEnvironment.create( s_env, environment_settings = EnvironmentSettings.new_instance() .in_streaming_mode() .use_blink_planner() .build(), ) X, Y, sess = None, None, None @udf(result_type = DataTypes.STRING()) def predict(string): global X, Y, sess import tensorflow as tf import json import numpy as np def load_graph(frozen_graph_filename): with tf.gfile.GFile(frozen_graph_filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def) return graph if X is None or Y is None or sess is None: g = load_graph('/notebooks/frozen_model.pb') X = g.get_tensor_by_name('import/Placeholder:0') Y = g.get_tensor_by_name('import/logits:0') sess = tf.Session(graph = g) label = ['negative', 'positive'] maxlen = 50 UNK = 3 with open('/notebooks/dictionary-test.json', 'r') as fopen: dic = json.load(fopen) sentences = [string] x = np.zeros((len(sentences), maxlen)) for i, sentence in enumerate(sentences): for no, k in enumerate(sentence.split()[:maxlen][::-1]): x[i, -1 - no] = dic.get(k, UNK) indices = np.argmax(sess.run(Y, feed_dict = {X: x}), axis = 1) return label[indices[0]] st_env.set_python_requirements('/notebooks/requirements.txt') st_env.register_function('predict', predict) st_env.connect( Kafka() .version('universal') .topic('test') .start_from_earliest() .property('zookeeper.connect', 'zookeeper:2181') .property('bootstrap.servers', 'kafka:9092') ).with_format( Json() .fail_on_missing_field(True) .schema( DataTypes.ROW( [ DataTypes.FIELD('datetime', DataTypes.STRING()), DataTypes.FIELD('text', DataTypes.STRING()), ] ) ) ).with_schema( Schema() .field('datetime', DataTypes.STRING()) .field('text', DataTypes.STRING()) ).in_append_mode().register_table_source( 'source' ) result_path = '/notebooks/output-tensorflow.csv' t_env.connect(FileSystem().path(result_path)).with_format( OldCsv() .field_delimiter(',') .field('datetime', DataTypes.STRING()) .field('sentence', DataTypes.STRING()) .field('label', DataTypes.STRING()) ).with_schema( Schema() .field('datetime', DataTypes.STRING()) .field('sentence', DataTypes.STRING()) .field('label', DataTypes.STRING()) ).in_append_mode().register_table_sink( 'sink' ) st_env.from_path('source').select( 'datetime, sentence, predict(sentence)' ).insert_into('sink') st_env.execute('predict')
1.960938
2
example/servers/migrations/0004_auto_20170524_0707.py
jayvdb/django-test-tools
9
12796393
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-05-24 12:07 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('servers', '0003_auto_20170523_1409'), ] operations = [ migrations.AlterField( model_name='server', name='operating_system', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='servers', to='servers.OperatingSystem'), ), ]
1.53125
2
src/datasets.py
vidalt/BA-Trees
45
12796394
<filename>src/datasets.py<gh_stars>10-100 # MIT License # Copyright(c) 2020 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import pathlib import pandas as pd import visualization as tree_view from IPython.display import display dataset_names = [ "Breast-Cancer-Wisconsin", "COMPAS-ProPublica", "FICO", "HTRU2", "Pima-Diabetes", "Seeds" ] def create_dataset_selection(show=True ,no_fico_sa=True): import ipywidgets as widgets selected_datasets = widgets.Select( options=dataset_names, value=dataset_names[0], description="Datasets", disabled=False ) if show: display(selected_datasets) return selected_datasets def create_kfold_selection(min_v=1, max_v=10, show=True): import ipywidgets as widgets select = widgets.IntSlider( value=1, min=min_v, max=max_v, step=1, description='Fold:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d', ) if show: display(select) return select def create_cplex_linking_selection(show=True): import ipywidgets as widgets select = widgets.Checkbox( value=False, description='CPLEX linking', disabled=False, indent=False ) if show: display(select) return select def load_info(dataset, df_train, fn): info = { 'classes': {}, 'filename': fn, 'colors': None, } info['features'] = {k:v for k,v in zip(range(len(df_train.columns)-1), df_train.columns[:-1])} return info def load(dataset, fold, F=None, S=None): respath = str(pathlib.Path(__file__).parent.absolute()) + '/resources/datasets/' if F or S: fn = respath+'{}/F{}.S{}/{}.F{}.S{}.train{}.csv'.format(dataset, F, S, dataset, F, S, fold) df_train = pd.read_csv(fn) df_test = pd.read_csv(respath+'{}/F{}.S{}/{}.F{}.S{}.test{}.csv'.format(dataset, F, S, dataset, F, S, fold)) else: fn = respath+'{}/{}.train{}.csv'.format(dataset, dataset, fold) df_train = pd.read_csv(fn) df_test = pd.read_csv(respath+'{}/{}.test{}.csv'.format(dataset, dataset, fold)) return df_train, df_test, load_info(dataset, df_train, fn)
1.992188
2
py/py_0558_irrational_base.py
lcsm29/project-euler
0
12796395
# Solution of; # Project Euler Problem 558: Irrational base # https://projecteuler.net/problem=558 # # Let r be the real root of the equation x3 = x2 + 1. Every positive integer # can be written as the sum of distinct increasing powers of r. If we require # the number of terms to be finite and the difference between any two # exponents to be three or more, then the representation is unique. For # example, 3 = r -10 + r -5 + r -1 + r 2 and 10 = r -10 + r -7 + r 6. # Interestingly, the relation holds for the complex roots of the equation. Let # w(n) be the number of terms in this unique representation of n. Thus w(3) = # 4 and w(10) = 3. More formally, for all positive integers n, we have:n = # $\displaystyle \sum_{k=-\infty}^{\infty}$ bk rkunder the conditions that:bk # is 0 or 1 for all k;bk + bk+1 + bk+2 ≤ 1 for all k;w(n) = $\displaystyle # \sum_{k=-\infty}^{\infty}$ bk is finite. Let S(m) = $\displaystyle # \sum_{j=1}^{m}$ w(j2). You are given S(10) = 61 and S(1000) = 19403. Find # S(5 000 000). # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 558 timed.caller(dummy, n, i, prob_id)
3.375
3
pyoptools/raytrace/__init__.py
fcichos/pyoptools
1
12796396
<reponame>fcichos/pyoptools<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2007, 2008, 2009,2010 <NAME> # <<EMAIL>>, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' Package containing modules and submodules defining an *API* that can be used to describe Optical surfaces, components and systems. ''' #~ import calc #~ import component #~ import comp_lib #~ import library #~ import mat_lib #~ import shape #~ import surface #~ import system #~ #~ __all__=["calc", #~ "component", #~ "comp_lib", #~ "library", #~ "mat_lib", #~ "shape", #~ "surface", #~ "system"] #~ from calc import * #~ from component import * #~ from comp_lib import * #~ #from config import * #~ from library import * #~ from mat_lib import * #~ from ray import * #~ from shape import * #~ from surface import * #~ from system import *
1.289063
1
tests/test_legacy_version.py
GamzeUnlu95/message_ix
0
12796397
<reponame>GamzeUnlu95/message_ix import numpy as np from message_ix import Scenario msg_args = ('canning problem (MESSAGE scheme)', 'standard') msg_multiyear_args = ('canning problem (MESSAGE scheme)', 'multi-year') def test_solve_legacy_scenario(test_legacy_mp): scen = Scenario(test_legacy_mp, *msg_args) exp = scen.var('OBJ')['lvl'] # solve scenario, assert that the new objective value is close to previous scen.remove_solution() scen.solve() assert np.isclose(exp, scen.var('OBJ')['lvl'])
2.296875
2
src/cogs/moderation.py
Necrozma200/Zeron
1
12796398
<gh_stars>1-10 import nextcord from nextcord.channel import CategoryChannel,DMChannel from nextcord.colour import Color from nextcord.components import Button from nextcord.embeds import Embed from nextcord.ext import commands from nextcord.ext.commands.cooldowns import BucketType from nextcord.ui.view import View from nextcord.ext import commands import json import random import asyncio from datetime import datetime from difflib import get_close_matches from nextcord.webhook import sync class AllConfirm(nextcord.ui.View): def __init__(self,ctx): super().__init__(timeout=200) self.value = None self.ctx=ctx @nextcord.ui.button( label="Confirm", style=nextcord.ButtonStyle.grey,emoji="<a:yes:909765403801182208>") async def confirm( self, button: nextcord.ui.Button, interaction: nextcord.Interaction): self.value = True self.stop() @nextcord.ui.button(label="Cancel", style=nextcord.ButtonStyle.grey, emoji="<a:no:909765403872481280>") async def cancel( self, button: nextcord.ui.Button, interaction: nextcord.Interaction): self.value = False self.stop() async def interaction_check(self, interaction) -> bool: if interaction.user !=self.ctx.author: await interaction.response.send_message("You can't use that!!" , ephemeral=True) else: return True BOT_USER_ID="897762972603150346" class Moderation(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_message(self, message): if str(message.author.id) != str(BOT_USER_ID): send = message.channel.send @commands.command(name="tempban") @commands.has_permissions(ban_members=True) async def tempban(self,ctx, user:nextcord.User, time=None,reason=None): if reason==None: reason="No Reason" if user!= None: if time==None: em = nextcord.Embed(title=f"<a:yes:909765403801182208> | {user.name} Was Banned indefinitely") await ctx.send(embed=em) await ctx.guild.ban(user) if time !=None : time_convert = {"s": 1, "m": 60, "h": 3600, "d": 86400} tempban1 = int(time[0]) * time_convert[time[-1]] em = nextcord.Embed(title=f"<a:yes:909765403801182208> | `{user.name}` Was Banned | Duration: {tempban1}{time[1:]} | Reason:{reason}") await ctx.send(embed=em) if bool(user.bot)==True: await ctx.guild.ban(user) await asyncio.sleep(tempban1) await ctx.guild.unban(user) else: await DMChannel.send(user,f"**{ctx.guild.name}**: You have been banned for {tempban1}{time[1:]}\n**Reason:** {reason}") await ctx.guild.ban(user) await asyncio.sleep(tempban1) await ctx.guild.unban(user) else: em = nextcord.Embed(title=f"<a:no:909765403872481280> | Member To Ban Was Found") await ctx.send(embed=em) @commands.command(name="ban", description="Bans the member from your server.") async def ban(self, ctx, member: nextcord.Member = None, *, reason=None): """ **Info**: Bans a member """ if member == None: embed1 = nextcord.Embed( title="Ban Error", description="Member to ban - Not Found" ) return await ctx.send(embed=embed1) if member.id == ctx.author.id: embed69 = nextcord.Embed( title="Ban Error", description="Ban yourself... only a skid would do that XD !", ) return await ctx.send(embed=embed69) elif ctx.author.top_role.position < member.top_role.position: em3 = nextcord.Embed( title="Ban Error", description="Member **higher** than you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em3) elif ctx.author.top_role.position == member.top_role.position: em3 = nextcord.Embed( title="Ban Error", description="Member has same role as you in the role heirarchy - Invalid Permission",) return await ctx.send(embed=em3) guild = ctx.guild banEmbed = nextcord.Embed(title=f"Moderation Action <:moderation:910472145824542721> | Ban Case ",color=nextcord.Color.red()) banEmbed.add_field(name="Reason: ", value=reason) view=AllConfirm(ctx) await ctx.send(embed=banEmbed,view=view) await view.wait() if view.value==False: em = nextcord.Embed(title=f"<a:no:909765403872481280> | *{member.name} Was Not Banned!*") await ctx.send(embed=em) elif view.value== True: em = nextcord.Embed(title=f"<a:yes:909765403801182208> | *{member.name} Was Banned!*") await ctx.send(embed=em) await member.send(f"You got banned in **{guild}** | Reason: **{reason}**") await member.ban(reason=reason) @commands.command(description="Lucas unban method") @commands.has_permissions(ban_members=True) async def unban(self, ctx,*,member): f""" **Info**: Unbans a member """ banned_user = await ctx.guild.bans() member_name, member_discriminator = member.split('#') for ban_entry in banned_user: user = ban_entry.user if (user.name, user.discriminator) == (member_name, member_discriminator): await ctx.guild.unban(user) view=AllConfirm(ctx) if view.value==False: em = nextcord.Embed(title=f"<a:no:909765403872481280> | *{member.name} Was Not Unbanned!*") await ctx.send(embed=em) elif view.value== True: em = nextcord.Embed(title=f"<a:yes:909765403801182208> | *{member.name} Was Unbanned!*") await ctx.send(embed=em) @commands.command(name="kick", description="Kicks the member from your server.") @commands.has_permissions(kick_members=True) async def kick(self, ctx, member: nextcord.Member = None, *, reason=None): if member == None: embed1 = nextcord.Embed( title="Kick Error", description="Member to kick - Not Found") return await ctx.send(embed=embed1) if not (ctx.guild.me.guild_permissions.kick_members): embed2 = nextcord.Embed(title="Kick Error",description="I require the ``Kick Members`` permisson to run this command - Missing Permission") return await ctx.send(embed=embed2) if member.id == ctx.author.id: embed = nextcord.Embed(title="Kick Error", description="Can't kick yourself ",) return await ctx.send(embed=embed) elif ctx.author.top_role.position < member.top_role.position: em3 = nextcord.Embed( title="Kick Error", description="Member **higher** than you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em3) elif ctx.author.top_role.position == member.top_role.position: em3 = nextcord.Embed( title="Kick Error", description="Member has same role as you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em3) kickEmbed = nextcord.Embed(title=f"Moderation Action <:moderation:910472145824542721> | Kick Case ",color=nextcord.Color.red()) kickEmbed.add_field(name="Reason: ", value=reason) view=AllConfirm(ctx) await ctx.send(embed=kickEmbed,view=view) await view.wait() view=AllConfirm(ctx) if view.value==False: em = nextcord.Embed(title=f"<a:no:909765403872481280> | *{member.name} Was Not Kicked!*") await ctx.send(embed=em) elif view.value== True: em = nextcord.Embed(title=f"<a:yes:909765403801182208> | *{member.name} Was Kicked!*") await ctx.send(embed=em) await member.send(f"You got kicked in **{ctx.guild}** | Reason: **{reason}**") await member.kick(reason=reason) @commands.command(aliases=["cs", "ci", "channelinfo"]) async def channelstats(self, ctx, channel: nextcord.TextChannel = None): f""" **Info**: Get ChannelStats *Syntax*: "{self.ctx.prefix}" channelstats [channel] """ if channel == None: channel = ctx.channel embed = nextcord.Embed( title=f"**ChannelStats for {channel.name}**", description=f"{'Category :{}'.format(channel.category.name) if channel.category else 'Channel is not in any category'}", color=nextcord.Color.random()) embed.add_field(name="Channel Guild:-", value=ctx.guild.name, inline=True) embed.add_field(name="Channel Id:-", value=channel.id, inline=False) embed.add_field(name="Channel Topic:-",value=f"{channel.topic if channel.topic else 'No topic.'}",inline=False,) embed.add_field(name="Channel Position:-", value=channel.position, inline=True) embed.add_field(name="Channel Slowmode?", value=channel.slowmode_delay, inline=True) embed.add_field(name="Channel is NSFW?", value=channel.is_nsfw(), inline=True) embed.add_field(name="Channel Permissions Synced?", value=bool(CategoryChannel.permissions_synced), inline=True) embed.add_field(name="Channel is Annoucement?", value=channel.is_news(), inline=True) embed.add_field(name="Channel Hash:", value=hash(channel), inline=True) embed.add_field(name="Channel Creation Time:", value=channel.created_at.strftime("%a, %d %B %Y , %I:%M %p"), inline=False) embed.set_thumbnail(url=ctx.guild.icon.url) await ctx.send(embed=embed) @commands.command(name="tempmute", description="Mutes a member indefinitely.") @commands.has_permissions(manage_messages=True) async def tempmute( self, ctx, member: nextcord.Member = None, time=None, *, reason=None ): guild = ctx.guild mutedRole = nextcord.utils.get(guild.roles, name="Muted") if member == None: em1 = nextcord.Embed( title="Tempmute Error", description="Member to mute - Not Found" ) return await ctx.send(embed=em1) elif member.id == ctx.author.id: em5 = nextcord.Embed( title="Tempmute Error", description="Don't bother, ive tried" ) return await ctx.send(embed=em5) if time == None: em2 = nextcord.Embed( title="Tempmute Error", description="Time to mute - Not Found" ) return await ctx.send(embed=em2) elif ctx.author.top_role.position < member.top_role.position: em3 = nextcord.Embed( title="Tempmute Error", description="Member **higher** than you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em3) if not (ctx.guild.me.guild_permissions.manage_roles): embed2 = nextcord.Embed( title="Tempmute Error", description="I require the ``Manage Roles`` permisson to run this command - Missing Permission", ) return await ctx.send(embed=embed2) elif ctx.author.top_role.position == member.top_role.position: em4 = nextcord.Embed( title="Tempmute Error", description="Member has same role as you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em4) if ctx.guild.me.top_role.position < mutedRole.position: em3 = nextcord.Embed( title="Tempmute Error", description="Muted role too high to give to a member", ) return await ctx.send(embed=em3) if not mutedRole: mutedRole = await guild.create_role(name="Muted") await ctx.send("No mute role found. Creating mute role...") for channel in guild.channels: await channel.set_permissions( mutedRole, speak=False, send_messages=False, read_message_history=True, ) if not time == None: time_convert = {"s": 1, "m": 60, "h": 3600, "d": 86400} tempmute = int(time[0]) * time_convert[time[-1]] embed = nextcord.Embed( title="Tempmute Success", description=f"{member.mention} was muted ", colour=nextcord.Colour.blue(), ) embed.add_field(name="Reason:", value=reason, inline=False) embed.add_field(name="Duration", value=time) await ctx.send(embed=embed) await member.add_roles(mutedRole, reason=reason) await member.send( f"You have been muted from: **{guild.name}** | Reason: **{reason}** | Time: **{time}**" ) if not time == None: await asyncio.sleep(tempmute) await member.remove_roles(mutedRole) await member.send(f"You have been unmuted from **{guild}**") return @commands.command( name="mute", description="Mutes a member for a specific amount of time." ) @commands.has_permissions(manage_messages=True) async def mute(self, ctx, member: nextcord.Member = None, *, reason=None): guild = ctx.guild mutedRole = nextcord.utils.get(guild.roles, name="Muted") if not mutedRole: mutedRole = await guild.create_role(name="Muted") await ctx.send("No mute role found. Creating mute role...") for channel in guild.channels: await channel.set_permissions( mutedRole, speak=False, send_messages=False, read_message_history=True, ) if member == None: em1 = nextcord.Embed( title="Mute Error", description="Member to mute - Not Found" ) return await ctx.send(embed=em1) elif member.id == ctx.author.id: em5 = nextcord.Embed( title="Mute Error", description="Error" ) return await ctx.send(embed=em5) elif ctx.author.top_role.position < member.top_role.position: em3 = nextcord.Embed( title="Mute Error", description="Member **higher** than you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em3) elif ctx.author.top_role.position == member.top_role.position: em4 = nextcord.Embed( title="Mute Error", description="Member has same role as you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em4) if not (ctx.guild.me.guild_permissions.manage_roles): embed2 = nextcord.Embed( title="Mute Error", description="I require the **Manage Roles** permisson to run this command - Missing Permission", ) return await ctx.send(embed=embed2) mutedRole = nextcord.utils.get(guild.roles, name="Muted") if ctx.guild.me.top_role.position < mutedRole.position: em3 = nextcord.Embed( title="Mute Error", description="Muted role too high to give to a member", ) return await ctx.send(embed=em3) embed = nextcord.Embed( title="Mute Success", description=f"{member.mention} was muted Indefinitly ", colour=nextcord.Colour.blue(), ) embed.add_field(name="Reason:", value=reason, inline=False) await ctx.send(embed=embed) await member.add_roles(mutedRole, reason=reason) await member.send( f"You have been muted from: **{guild.name}** | Reason: **{reason}**" ) return @commands.command(name="unmute", description="Unmutes a muted member.") @commands.has_permissions(manage_messages=True) async def unmute(self, ctx, member: nextcord.Member = None, *, reason=None): guild = ctx.guild if member == None: em1 = nextcord.Embed( title="Unmute Error", description="Member to unmute - Not Found" ) return await ctx.send(embed=em1) elif member.id == ctx.author.id: em5 = nextcord.Embed( title="Unmute Error", description="wHat? <:WHA:815331017854025790>" ) return await ctx.send(embed=em5) elif ctx.author.top_role.position < member.top_role.position: em3 = nextcord.Embed( title="Unmute Error", description="Member **higher** than you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em3) elif ctx.author.top_role.position == member.top_role.position: em4 = nextcord.Embed( title="Unmute Error", description="Member has same role as you in the role heirarchy - Invalid Permission", ) return await ctx.send(embed=em4) if not (ctx.guild.me.guild_permissions.manage_roles): embed2 = nextcord.Embed( title="Unmute Error", description="I require the ``Manage Roles`` permisson to run this command - Missing Permission", ) return await ctx.send(embed=embed2) mutedRole = nextcord.utils.get(guild.roles, name="Muted") if ctx.guild.me.top_role.position < mutedRole.position: em3 = nextcord.Embed( title="Unmute Error", description="Muted role too high to remove from a member", ) return await ctx.send(embed=em3) if not mutedRole: mutedRole = await guild.create_role(name="Muted") await ctx.send("No mute role found. Creating mute role...") for channel in guild.channels: await channel.set_permissions( mutedRole, speak=False, send_messages=False, read_message_history=True, ) embed = nextcord.Embed( title="Unmute Success", description=f"{member.mention} was unmuted ", colour=nextcord.Colour.blue(), ) embed.add_field(name="Reason:", value=reason, inline=False) await ctx.send(embed=embed) await member.remove_roles(mutedRole, reason=reason) await member.send( f"You have been unmuted from: **{guild.name}** | Reason: **{reason}**" ) return @commands.command(description="Clears a bundle of messages.",aliases=['purge']) @commands.has_permissions(manage_messages=True) async def clear(self, ctx, amount=10): amount = amount + 1 if amount > 101: em1 = nextcord.Embed( title="Clear Error", description="Purge limit exedeed - Greater than 100", ) return await ctx.send(embed=em1) else: await ctx.channel.purge(limit=amount) msg = await ctx.send("Cleared Messages") asyncio.sleep(10) await msg.delete() @commands.command(description="Change the channels slowmode.") @commands.has_permissions(manage_channels=True) async def slowmode(self, ctx, time: int): try: if time == 0: em1 = nextcord.Embed( title="Slowmode Success", description="Slowmode turned off" ) await ctx.send(embed=em1) await ctx.channel.edit(slowmode_delay=0) elif time > 21600: em2 = nextcord.Embed( title="Slowmode Error", description="Slowmode over 6 hours" ) await ctx.send(embed=em2) else: await ctx.channel.edit(slowmode_delay=time) em3 = nextcord.Embed( title="Slowmode Success", description=f"Slowmode set to {time} seconds", ) await ctx.send(embed=em3) except Exception: await ctx.send("Error has occoured, notifying dev team") print(Exception) @commands.command( aliases=["giverole", "addr"], description="Gives a member a certain role." ) @commands.has_permissions(manage_roles=True) async def addrole( self, ctx, member: nextcord.Member = None, *, role: nextcord.Role = None ): if member is None: embed = nextcord.Embed( title="Add Role Error", description="Please ping a user to give them a role!", ) await ctx.send(embed=embed) return if role is None: embed = nextcord.Embed( title="Add Role Error", description="Please ping a role to give {} that role!".format( member.mention ), ) await ctx.send(embed=embed) return if ctx.author.top_role.position < role.position: em = nextcord.Embed( title="Add Role Error", description="You do not have enough permissions to give this role", ) return await ctx.send(embed=em) if ctx.guild.me.top_role.position < role.position: embed = nextcord.Embed( title="Add Role Error", description="That role is too high for me to perform this action", ) return await ctx.send(embed=embed) try: addRole = True for role_ in member.roles: if role_ == role: addRole = False break if not addRole: embed = nextcord.Embed( title="Add Role Error", description=f"{member.mention} already has the role you are trying to give", ) await ctx.send(embed=embed) return else: em = nextcord.Embed( title="Add Role Success", description=f"{role.mention} has been assigned to {member.mention}", ) await ctx.send(embed=em) await member.add_roles(role) return except Exception: print(Exception) @commands.command( aliases=["takerole", "remover"], description="Removes a certain role from a member.", ) @commands.has_permissions(manage_roles=True) async def removerole( self, ctx, member: nextcord.Member = None, role: nextcord.Role = None, *, reason=None, ): if member is None: embed = nextcord.Embed( title="Remove Role Error", description="Please ping a user to remove a role from them!", ) await ctx.send(embed=embed) return if role is None: embed = nextcord.Embed( title="Remove Role Error", description="Please ping a role to remove the role from {}!".format( member.mention ), ) await ctx.send(embed=embed) return if ctx.author.top_role.position < role.position: em = nextcord.Embed( title="Remove Role Error", description="You do not have enough permissions to remove this role", ) return await ctx.send(embed=em) if ctx.guild.me.top_role.position < role.position: embed = nextcord.Embed( title="Remove Role Error", description="That role is too high for me to perform this action", ) return await ctx.send(embed=embed) try: roleRemoved = False for role_ in member.roles: if role_ == role: await member.remove_roles(role) roleRemoved = True break if not roleRemoved: embed = nextcord.Embed( title="Remove Role Error", description=f"{member.mention} already has the role you are trying to give", ) await ctx.send(embed=embed) return else: em = nextcord.Embed( title="Remove Role Success!", description=f"{role.mention} has been removed from {member.mention}", ) await ctx.send(embed=em) return except Exception: print(Exception) @commands.command(description="Locks the channel.") @commands.has_permissions(kick_members=True) async def lock(self, ctx, channel: nextcord.TextChannel = None, setting = None): if setting == '--server': view = LockConfirm() em = nextcord.Embed( title="Are you sure?", description="This is a very risky command only to be used in important situations such as, `Raid on the Server`. **If this command is used for the wrong purpose you may risk getting demoted if not banned from the staff team.**", ) await ctx.author.send(embed = em, view=view) await view.wait() if view.value is None: await ctx.author.send("Command has been Timed Out, please try again.") elif view.value: for channel in ctx.guild.channels: await channel.set_permissions( ctx.guild.default_role, reason=f"{ctx.author.name} locked {channel.name} using --server override", send_messages=False, ) embed = nextcord.Embed( title="Lockdown Success", description=f"Locked entire server ", ) await ctx.send(embed=embed) else: lockEmbed = nextcord.Embed( title="Lock Cancelled", description="Lets pretend like this never happened them :I", ) await ctx.author.send(embed=lockEmbed) return if channel is None: channel = ctx.message.channel await channel.set_permissions( ctx.guild.default_role, reason=f"{ctx.author.name} locked {channel.name}", send_messages=False, # ) embed = nextcord.Embed( title="Lockdown Success", description=f"Locked {channel.mention} ", ) await ctx.send(embed=embed) @commands.command(description="Unlocks the channel.") @commands.has_permissions(kick_members=True) async def unlock(self, ctx, channel: nextcord.TextChannel = None, setting=None): if setting == '--server': for channel in ctx.guild.channels: await channel.set_permissions( ctx.guild.default_role, reason=f"{ctx.author.name} unlocked {channel.name} using --server override", send_messages=None, ) embed = nextcord.Embed( title="Unlock Success", description=f"Unlocked entire server ", ) await ctx.send(embed=embed) return if channel is None: channel = ctx.channel await channel.set_permissions( ctx.guild.default_role, reason=f"{ctx.author.name} unlocked {channel.name}", send_messages=True, ) embed = nextcord.Embed( title="Unlock Success", description=f"Unlocked {channel.mention} ", ) await ctx.send(embed=embed) @commands.command(description="Modbans the member.") @commands.has_permissions(kick_members=True) @commands.cooldown(1, 21600, commands.BucketType.user) async def modban(self, ctx, member, *, reason=None): if reason is None: reason = f"{ctx.author.name} modbanned {member.name}" else: reason = ( f"{ctx.author.name} modbanned {member.name} for the reason of {reason}" ) if member == None: embed1 = nextcord.Embed( title="Ban Error", description="Member to ban - Not Found" ) return await ctx.send(embed=embed1) if member.id == ctx.author.id: embed69 = nextcord.Embed( title="Ban Error", description="No banning yourself...", ) return await ctx.send(embed=embed69) em = nextcord.Embed( title="Are you sure?", description="This is a very risky command only to be used in important situations such as, `NSFW or NSFLPosting` or `Raid on the Server`. Only use this command if no admin is online or responding. **If this command is used for the wrong purpose you may risk getting demoted if not banned from the staff team.**", ) await ctx.author.send(embed=em, view=view) await view.wait() if view.value is None: await ctx.author.send("Command has been Timed Out, please try again.") elif view.value: guild = ctx.guild banMsg = random.choice("BANNED") banEmbed = nextcord.Embed( title="Ban Success", description=f"{member.mention} {banMsg}" ) banEmbed.add_field(name="Reason", value=reason) await ctx.author.send(embed=banEmbed) await member.ban(reason=reason) await member.send(f"You got banned in **{guild}** | Reason: **{reason}**") else: banEmbed = nextcord.Embed( title="Ban Cancelled", description="Lets pretend like this never happened them :I", ) await ctx.author.send(embed=banEmbed) def setup(bot): bot.add_cog(Moderation(bot))
1.921875
2
apps/discovery_pyre/uniflex_app_discovery_pyre/pyre_discovery_master_module.py
danieldUKIM/uniflex_wishrem
0
12796399
from pyre import Pyre from pyre import zhelper import threading import zmq import logging import json import time from uniflex.core import modules __author__ = "<NAME>" __copyright__ = "Copyright (c) 2015, Technische Universitat Berlin" __version__ = "0.1.0" __email__ = <EMAIL>" class PyreDiscoveryMasterModule(modules.ControlApplication): def __init__(self, iface, groupName="uniflex", downlink=None, sub=None, uplink=None, pub=None): super(PyreDiscoveryMasterModule, self).__init__() self.log = logging.getLogger('pyre_discovery_module.main') pyreLogger = logging.getLogger('pyre') pyreLogger.setLevel(logging.CRITICAL) self.running = False self.iface = iface self.sub = downlink if not self.sub: self.sub = sub self.pub = uplink if not self.pub: self.pub = pub self.groupName = groupName self.ctx = zmq.Context() def _sending_announcements(self): while self.running: self.log.debug("Discovery Announcements:" " SUB={}, PUB={}" .format(self.sub, self.pub)) msg = json.dumps({'downlink': self.sub, 'uplink': self.pub}) self.discovery_pipe.send(msg.encode('utf_8')) time.sleep(2) @modules.on_start() def start_discovery_announcements(self): self.log.debug("Start discovery announcements".format()) self.running = True self.discovery_pipe = zhelper.zthread_fork( self.ctx, self.discovery_task) d = threading.Thread(target=self._sending_announcements) d.setDaemon(True) d.start() return True @modules.on_exit() def stop_discovery_announcements(self): self.log.debug("Stop discovery announcements".format()) if self.running: self.running = False self.discovery_pipe.send("$$STOP".encode('utf_8')) def discovery_task(self, ctx, pipe): self.log.debug("Pyre on iface : {}".format(self.iface)) n = Pyre(self.groupName, sel_iface=self.iface) n.set_header("DISCOVERY_Header1", "DISCOVERY_HEADER") n.join(self.groupName) n.start() poller = zmq.Poller() poller.register(pipe, zmq.POLLIN) while(True): items = dict(poller.poll()) if pipe in items and items[pipe] == zmq.POLLIN: message = pipe.recv() # message to quit if message.decode('utf-8') == "$$STOP": break n.shout(self.groupName, message) n.stop()
2.078125
2
spire/wsgi/upload.py
siq/spire
0
12796400
<filename>spire/wsgi/upload.py import os, json from scheme import Json, Text from werkzeug.exceptions import MethodNotAllowed from werkzeug.formparser import parse_form_data from werkzeug.utils import secure_filename from spire.core import Configuration, Unit, Dependency from spire.util import uniqid from spire.wsgi.util import Mount from spire.wsgi.sessions import SessionMiddleware from spire.context import ContextMiddleware, HeaderParser, SessionParser from bastion.security.middleware import RedirectMiddleware class UploadEndpoint(Mount): session_middleware = Dependency(SessionMiddleware) context_middleware = ContextMiddleware([HeaderParser(), SessionParser()]) redirect_middleware = Dependency(RedirectMiddleware) configuration = Configuration({ 'upload_directory': Text(nonempty=True, default='/tmp'), }) def _dispatch_request(self, request, response): directory = self.configuration['upload_directory'] if request.method == 'GET': return elif request.method != 'POST': raise MethodNotAllowed() mapping = {} for name, uploaded_file in request.files.iteritems(): filename = mapping[name] = '%s_%s' % ( uniqid(), secure_filename(uploaded_file.filename)) uploaded_file.save(os.path.join(directory, filename)) response.mimetype = 'text/html' response.data = Json.serialize(mapping) class UploadManager(Unit): configuration = Configuration({ 'upload_directory': Text(nonempty=True, default='/tmp'), }) def acquire(self, id): return open(self.find(id)) def dispose(self, id): try: filename = self.find(id) except ValueError: pass else: os.unlink(filename) def find(self, id): filename = os.path.join(self.configuration['upload_directory'], id) if os.path.exists(filename): return filename else: raise ValueError(id)
2.03125
2
pythonProject/venv/Desafio 34.py
lucasjlgc/Aulas-de-Python-
0
12796401
# Pergunte salario e calcule aumento, maior que 1250 é 10%, menor é 15%. salario = int(input('Qual o valor do seu salário? ')) salario1= (1250*0.1)+salario salario2=(1250*0.15)+salario if salario>=1250: print('Você teve aumento de 10% e agora receberá {}'.format(salario1)) else: print('Você teve aumento de 15% e agora receberá {}'.format(salario2)) print('FIM')
3.703125
4
frds/mktstructure/measures/__init__.py
mgao6767/wrds
1
12796402
<reponame>mgao6767/wrds<gh_stars>1-10 from . import bidask_spread, effective_spread, realized_spread, price_impact
1.046875
1
analyzer/benchmark_analyzer.py
alexirae/benchmark-analyzer-visualizer
0
12796403
import argparse import numpy as np from benchmark_statistics import Statistics from benchmark_containers import BenchmarkResultsContainer ############################################################################## def createBenchmarkResults(benchmark_samples, operation): benchmark_results = BenchmarkResultsContainer() benchmark_results.operation = operation # Filter outliers lower_fence, upper_fence = Statistics.getTukeyFences(benchmark_samples) lower_outliers_samples = benchmark_samples[benchmark_samples < lower_fence] benchmark_no_outliers_samples = benchmark_samples[(benchmark_samples >= lower_fence) & (benchmark_samples <= upper_fence)] upper_outliers_samples = benchmark_samples[benchmark_samples > upper_fence] benchmark_results.sorted_lower_outliers_samples = np.sort(lower_outliers_samples).tolist() benchmark_results.sorted_no_outliers_samples = np.sort(benchmark_no_outliers_samples).tolist() benchmark_results.sorted_upper_outliers_samples = np.sort(upper_outliers_samples).tolist() # Create statistics info from benchmark samples for key in benchmark_results.statistics: without_outliers = key == "Without outliers" benchmark_samples_to_process = benchmark_no_outliers_samples if without_outliers else benchmark_samples benchmark_stats = benchmark_results.statistics[key] benchmark_stats.num_analyzed_samples = Statistics.getNumAnalyzedSamples(benchmark_samples_to_process) benchmark_stats.minimum = Statistics.getMin(benchmark_samples_to_process) benchmark_stats.lower_fence = benchmark_results.sorted_no_outliers_samples[0] # Plotly uses first non outlier point, for exact lower_fence set to: lower_fence benchmark_stats.q1 = Statistics.getPercentile(benchmark_samples_to_process, 25) benchmark_stats.mean = Statistics.getMean(benchmark_samples_to_process) benchmark_stats.median = Statistics.getPercentile(benchmark_samples_to_process, 50) benchmark_stats.q3 = Statistics.getPercentile(benchmark_samples_to_process, 75) benchmark_stats.upper_fence = benchmark_results.sorted_no_outliers_samples[-1] # Plotly uses last non outlier point, for exact upper_fence set to: upper_fence benchmark_stats.maximum = Statistics.getMax(benchmark_samples_to_process) benchmark_stats.iqr = Statistics.getIQR(benchmark_samples_to_process) benchmark_stats.std_dev = Statistics.getStdDev(benchmark_samples_to_process) benchmark_stats.std_err = Statistics.getStdErr(benchmark_samples_to_process) benchmark_stats.std_err_percentage = benchmark_stats.std_err / benchmark_stats.mean * 100.0 if benchmark_stats.std_err > 0.0 else 0.0 benchmark_stats.margin = Statistics.getMargin(benchmark_samples_to_process) benchmark_stats.margin_percentage = benchmark_stats.margin / benchmark_stats.mean * 100.0 if benchmark_stats.margin > 0.0 else 0.0 benchmark_stats.confidence_interval = Statistics.getConfidenceInterval(benchmark_samples_to_process) benchmark_stats.skewness = Statistics.getSkewness(benchmark_samples_to_process) benchmark_stats.kurtosis = Statistics.getKurtosis(benchmark_samples_to_process) return benchmark_results ############################################################################## def printBenchmarkResults(benchmark_samples, benchmark_results): print("Samples:") print(benchmark_samples, "\n") print("Sorted Samples:") print(benchmark_results.sorted_lower_outliers_samples, benchmark_results.sorted_no_outliers_samples, benchmark_results.sorted_upper_outliers_samples, "\n") for key in benchmark_results.statistics: without_outliers = key == "Without outliers" statistics_results = benchmark_results.getFormatedStatisticsResultsWithoutOutliers() if without_outliers else benchmark_results.getFormatedStatisticsResultsWithOutliers() text_alignment_offset = len(max(statistics_results, key=len)) + 3 print(key + ":") for stat_key in statistics_results: print(stat_key + "= ".rjust(text_alignment_offset - len(stat_key)) + statistics_results[stat_key]) print("\n") ############################################################################## def runAnalyzer(kwargs=None): # Parse args parser = argparse.ArgumentParser(description="Benchmark Analyzer") parser.add_argument("-in", "--benchmark_samples_file", type=str, required=True, help="File path containing the benchmark observations as comma separated numbers.") parser.add_argument("-out", "--json_output_path", type=str, required=True, help="JSON output path for file containing the statistical information of the analyzed benchmark.") parser.add_argument("-op", "--operation_name", type=str, required=True, help="Name of the operation related to the benchmark observations.") parser.add_argument("-out_name", "--output_file_name", type=str, required=False, help="(Optional) The name of the output file, if this option is not used the file will be called Benchmark_Results_<MONTH>-<DAY>-<YEAR>_<HOUR>h<MINUTE>m<SECOND>s.") args = parser.parse_args() # Input Params benchmark_samples_file = args.benchmark_samples_file json_output_path = args.json_output_path operation_name = args.operation_name output_file_name = args.output_file_name # Create an array from benchmark samples in file with open(benchmark_samples_file) as file: benchmark_samples = np.fromfile(file, dtype=float, sep=",") # Create benchmark results benchmark_results = createBenchmarkResults(benchmark_samples, operation_name) # Print benchmark results printBenchmarkResults(benchmark_samples, benchmark_results) # Export benchmark results to a JSON file benchmark_results.toJSONFile(json_output_path, operation_name, output_file_name) ############################################################################## #----------------------------------------------------------------------------- # Main #----------------------------------------------------------------------------- if __name__ == '__main__': runAnalyzer()
2.578125
3
running_modes/enums/__init__.py
marco-foscato/Lib-INVENT
26
12796404
from running_modes.enums.diversity_filter_enum import DiversityFilterEnum from running_modes.enums.learning_strategy_enum import LearningStrategyEnum from running_modes.enums.logging_mode_enum import LoggingModeEnum from running_modes.enums.running_mode_enum import RunningModeEnum from running_modes.enums.generative_model_regime import GenerativeModelRegimeEnum from running_modes.enums.generative_model_parameters import GenerativeModelParametersEnum from running_modes.enums.scoring_strategy_enum import ScoringStrategyEnum
1.226563
1
code/dataloaders/__init__.py
ShawnCheung/Attention-depth
87
12796405
from .nyu_dataloader import NYUDataset from .kitti_dataloader import KITTIDataset from .dataloader import MyDataloader from .transforms import Resize, Rotate, RandomCrop, CenterCrop, \ ColorJitter, HorizontalFlip, ToTensor, \ Compose, Crop from .get_datasets import create_datasets __all__ = ['MyDataloader', 'NYUDataset', 'KITTIDataset', 'Resize', 'Rotate', 'RandomCrop', 'CenterCrop', 'ColorJitter', 'HorizontalFlip', 'ToTensor', 'Compose', 'Crop', 'create_datasets']
1.476563
1
uri/iniciante/1037.py
AllefLobo/AlgorithmsProblemsSolution
2
12796406
valor = float(input()) if valor >= 0 and valor <= 25: print "Intervalo [0,25]" elif valor >= 0 and valor <= 50: print "Intervalo (25,50]" elif valor >= 0 and valor <= 75: print "Intervalo (50, 75]" elif valor >= 0 and valor <= 100: print "Intervalo (75,100]" else: print "Fora de intervalo"
3.890625
4
csv_cleaner.py
jing-viz/radiohead
1
12796407
<reponame>jing-viz/radiohead import csv k_frame_count = 2101 k_skip_frame = 5 for idx in range(1, k_frame_count, k_skip_frame): org_filename = 'data/csv_org/%s.csv' % idx new_filename = 'data/csv/%s.csv' % idx with open(org_filename) as input_csv: with open(new_filename, 'w') as output_csv: csv_writer = csv.writer(output_csv) row_id = 0 for row in csv.reader(input_csv): row_id = row_id + 1 if row_id % 2 == 0: continue x = (int(float(row[0]))) y = (int(float(row[1]))) z = (int(float(row[2]))) w = (int(float(row[3]))) if x < 0 or x > 170: continue if y < 30 or y > 220: continue if z > 0 or z < -130: continue csv_writer.writerow([x,y,z,w])
2.6875
3
brains/namelist/models.py
crisisking/udbraaains
1
12796408
<gh_stars>1-10 import datetime from django.db import models class Category(models.Model): class Meta: verbose_name_plural = 'categories' name = models.CharField(max_length=25, null=False, blank=False) color_code = models.CharField(max_length=7, null=False, blank=False) def __unicode__(self): return self.name class Player(models.Model): name = models.CharField(max_length=50, null=False, db_index=True) profile_id = models.IntegerField(null=False, unique=True, db_index=True) group_name = models.CharField(max_length=50, blank=True, null=True, default=None, db_index=True) category = models.ForeignKey(Category, null=True, blank=True) join_date = models.DateTimeField(default=datetime.datetime.now) scrape_date = models.DateTimeField(auto_now=True, auto_now_add=True) is_dead = models.BooleanField(default=False, db_index=True) def last_known_position(self): """Grabs the player's last known location from the report set.""" try: last_filed = self.report_set.filter(zombies_only=False) last_filed = last_filed.order_by('-reported_date')[0] except IndexError: last_filed = None try: last_spotted = self.reported_at.order_by('-reported_date')[0] except IndexError: last_spotted = None if last_filed is None and last_spotted is None: return u"Never seen" else: if last_filed is None: return last_spotted elif last_spotted is None: return last_filed else: if last_filed.reported_date >= last_spotted.reported_date: return last_filed else: return last_spotted def __unicode__(self): return self.name
2.375
2
prog/stepik_course/lab_2/task5.py
phen0menon/university-tasks
0
12796409
from collections import Counter def find_occurrencies(): text = str(input()) num_inputs = input().split(" ") k = int(num_inputs[0]) L = int(num_inputs[1]) t = int(num_inputs[2]) curr_pos = 0 occur = set() for curr_pos, i in enumerate(range(len(text) - L), 0): curr_str = text[curr_pos:L + curr_pos + 1] words = Counter(curr_str[i:i+k] for i in range(len(curr_str) - k + 1)).most_common() occur.update({word[0] for word in words if word[1] == t}) print(" ".join(sorted(list(occur)))) if __name__ == "__main__": find_occurrencies()
3.953125
4
hashdist/spec/hook_api.py
krafczyk/hashdist
67
12796410
<filename>hashdist/spec/hook_api.py """ The API exported to Python hook files that are part of stack descriptions. A significant portion of the package building logic should eventually find its way into here. Hook files are re-loaded for every package build, and so decorators etc. are run again. The machinery used to HashDist to load hook files is found in .hook. """ import types from .utils import substitute_profile_parameters from .exceptions import ProfileError, IllegalHookFileError class PackageBuildContext(object): def __init__(self, package_name, dependency_dir_vars, parameters): import hook self._build_stage_handlers = {'bash': hook.bash_handler} self._modules = [] self._bundled_files = {} # Available in API self.package_name = package_name self.parameters = dict(parameters) self.dependency_dir_vars = list(dependency_dir_vars) def register_build_stage_handler(self, handler_name, handler_func): """ Registers a function as a handler for a given stage handler type. """ self._build_stage_handlers[handler_name] = handler_func def register_module(self, mod): """ Hold a reference to the registered module; this is necesary to avoid them getting deallocated under our feet, as we don't allow them to live in sys.modules. """ self._modules.append(mod) def dispatch_build_stage(self, stage): # Copy stage dict and substitute all string arguments stage = self.deep_sub(stage) handler = stage['handler'] if handler not in self._build_stage_handlers: raise ProfileError(stage, 'build stage handler "%s" not registered' % handler) return self._build_stage_handlers[handler](self, stage) def sub(self, s): """ Substitute ``{{var}}`` in `s` with variables from `self.parameters` in `s`, and return resulting string. """ return substitute_profile_parameters(s, self.parameters) def deep_sub(self, doc): """ Recursively walk the document `doc`, and for all non-key strings, make a substitution as described in `sub`. A deep copy is returned. """ if isinstance(doc, dict): return dict((key, self.deep_sub(value)) for key, value in doc.iteritems()) elif isinstance(doc, (list, tuple)): return [self.deep_sub(item) for item in doc] elif isinstance(doc, basestring): return self.sub(doc) elif isinstance(doc, (int, bool, float, types.NoneType)): return doc elif (not doc): return None else: raise TypeError("unexpected item in documents of type %r: %s" % (type(doc), doc)) def bundle_file(self, filename, target_name=None): """ Makes sure that a file located in the same directory as the package spec YAML-file can be found in the ``_hastdist`` sub-directory of the build directory during the build. """ if target_name is None: target_name = filename self._bundled_files[target_name] = filename def build_stage(handler_name=None): """ Decorator used to register a function as a handler generating the code for a given build stage. Parameters ---------- handler_name : str (optional) Name of the handler, defaults to the name of the function. """ def decorator(func): handler_name_ = handler_name if handler_name_ is None: handler_name_ = func.__name__ import hook hook.current_package_context.register_build_stage_handler(handler_name_, func) return func return decorator
2.359375
2
COT/vm_description/ovf/hardware.py
morneaup/cot
81
12796411
#!/usr/bin/env python # # hardware.py - OVFHardware class # # June 2016, <NAME> # Copyright (c) 2013-2016, 2019 the COT project developers. # See the COPYRIGHT.txt file at the top-level directory of this distribution # and at https://github.com/glennmatthews/cot/blob/master/COPYRIGHT.txt. # # This file is part of the Common OVF Tool (COT) project. # It is subject to the license terms in the LICENSE.txt file found in the # top-level directory of this distribution and at # https://github.com/glennmatthews/cot/blob/master/LICENSE.txt. No part # of COT, including this file, may be copied, modified, propagated, or # distributed except according to the terms contained in the LICENSE.txt file. """Representation of OVF hardware definitions. **Classes and Exceptions** .. autosummary:: :nosignatures: OVFHardware OVFHardwareDataError """ import copy import logging from COT.data_validation import natural_sort from COT.xml_file import XML from .item import OVFItem, OVFItemDataError logger = logging.getLogger(__name__) class OVFHardwareDataError(Exception): """The input data used to construct an :class:`OVFHardware` is not sane.""" class OVFHardware(object): """Helper class for :class:`~COT.vm_description.ovf.ovf.OVF`. Represents all hardware items defined by this OVF; i.e., the contents of all Items in the VirtualHardwareSection. Fundamentally it's just a dict of :class:`~COT.vm_description.ovf.item.OVFItem` objects with a bunch of helper methods. """ def __init__(self, ovf): """Construct an OVFHardware object describing all Items in the OVF. Args: ovf (OVF): OVF instance to extract hardware information from. Raises: OVFHardwareDataError: if any data errors are seen """ self.ovf = ovf self.item_dict = {} valid_profiles = set(ovf.config_profiles) item_count = 0 for item in ovf.virtual_hw_section: namespace = ovf.namespace_for_item_tag(item.tag) if not namespace: continue item_count += 1 # We index the dict by InstanceID as it's the one property of # an Item that uniquely identifies this set of hardware items. instance = item.find(namespace + self.ovf.INSTANCE_ID).text # Pre-sanity check - are all of the profiles associated with this # item properly defined in the OVF DeploymentOptionSection? item_profiles = set(item.get(self.ovf.ITEM_CONFIG, "").split()) unknown_profiles = item_profiles - valid_profiles if unknown_profiles: raise OVFHardwareDataError("Unknown profile(s) {0} for " "Item instance {1}" .format(unknown_profiles, instance)) if instance not in self.item_dict: self.item_dict[instance] = OVFItem(self.ovf, item) else: try: self.item_dict[instance].add_item(item) except OVFItemDataError as exc: logger.debug(exc) # Mask away the nitty-gritty details from our caller raise OVFHardwareDataError("Data conflict for instance {0}" .format(instance)) logger.debug( "OVF contains %s hardware Item elements describing %s " "unique devices", item_count, len(self.item_dict)) # Treat the current state as golden: for ovfitem in self.item_dict.values(): ovfitem.modified = False def update_xml(self): """Regenerate all Items under the VirtualHardwareSection, if needed. Will do nothing if no Items have been changed. """ modified = False if len(self.item_dict) != len(XML.find_all_children( self.ovf.virtual_hw_section, set([self.ovf.ITEM, self.ovf.STORAGE_ITEM, self.ovf.ETHERNET_PORT_ITEM]))): modified = True else: for ovfitem in self.item_dict.values(): if ovfitem.modified: modified = True break if not modified: logger.verbose("No changes to hardware definition, " "so no XML update is required") return # Delete the existing Items: delete_count = 0 for item in list(self.ovf.virtual_hw_section): if (item.tag == self.ovf.ITEM or item.tag == self.ovf.STORAGE_ITEM or item.tag == self.ovf.ETHERNET_PORT_ITEM): self.ovf.virtual_hw_section.remove(item) delete_count += 1 logger.debug("Cleared %d existing items from VirtualHWSection", delete_count) # Generate the new XML Items, in appropriately sorted order by Instance ordering = [self.ovf.INFO, self.ovf.SYSTEM, self.ovf.ITEM] for instance in natural_sort(self.item_dict): logger.debug("Writing Item(s) with InstanceID %s", instance) ovfitem = self.item_dict[instance] new_items = ovfitem.generate_items() logger.spam("Generated %d items", len(new_items)) for item in new_items: XML.add_child(self.ovf.virtual_hw_section, item, ordering) logger.verbose("Updated XML VirtualHardwareSection, now contains %d " "Items representing %d devices", len(self.ovf.virtual_hw_section.findall(self.ovf.ITEM)), len(self.item_dict)) def find_unused_instance_id(self, start=1): """Find the first available ``InstanceID`` number. Args: start (int): First InstanceID value to consider (disregarding all lower InstanceIDs, even if available). Returns: str: An instance ID that is not yet in use. """ instance = int(start) while str(instance) in self.item_dict.keys(): instance += 1 logger.debug("Found unused InstanceID %d", instance) return str(instance) def new_item(self, resource_type, profile_list=None): """Create a new OVFItem of the given type. Args: resource_type (str): String such as 'cpu' or 'harddisk' - used as a key to :data:`~COT.vm_description.ovf.name_helper.OVFNameHelper1.RES_MAP` profile_list (list): Profiles the new item should belong to Returns: tuple: ``(instance_id, ovfitem)`` """ instance = self.find_unused_instance_id() ovfitem = OVFItem(self.ovf) ovfitem.set_property(self.ovf.INSTANCE_ID, instance, profile_list) ovfitem.set_property(self.ovf.RESOURCE_TYPE, self.ovf.RES_MAP[resource_type], profile_list) # ovftool freaks out if we leave out the ElementName on an Item, # so provide a simple default value. ovfitem.set_property(self.ovf.ELEMENT_NAME, resource_type, profile_list) self.item_dict[instance] = ovfitem ovfitem.modified = True logger.info("Created new %s under profile(s) %s, InstanceID is %s", resource_type, profile_list, instance) return (instance, ovfitem) def delete_item(self, item): """Delete the given Item from the hardware. Args: item (OVFItem): Item to delete """ instance = item.get_value(self.ovf.INSTANCE_ID) if self.item_dict[instance] == item: del self.item_dict[instance] # TODO: error handling - currently a no-op if item not in item_dict def clone_item(self, parent_item, profile_list): """Clone an OVFItem to create a new instance. Args: parent_item (OVFItem): Instance to clone from profile_list (list): List of profiles to clone into Returns: tuple: ``(instance_id, ovfitem)`` """ instance = self.find_unused_instance_id(start=parent_item.instance_id) logger.spam("Cloning existing Item %s with new instance ID %s", parent_item, instance) ovfitem = copy.deepcopy(parent_item) # Delete any profiles from the parent that we don't need now, # otherwise we'll get an error when trying to set the instance ID # on our clone due to self-inconsistency (#64). for profile in self.ovf.config_profiles: if ovfitem.has_profile(profile) and profile not in profile_list: ovfitem.remove_profile(profile) ovfitem.set_property(self.ovf.INSTANCE_ID, instance, profile_list) ovfitem.modified = True self.item_dict[instance] = ovfitem logger.spam("Added clone of %s under %s, instance is %s", parent_item, profile_list, instance) return (instance, ovfitem) def item_match(self, item, resource_type, properties, profile_list): """Check whether the given item matches the given filters. Args: item (OVFItem): Item to validate resource_type (str): Resource type string like 'scsi' or 'serial' properties (dict): Properties and their values to match profile_list (list): List of profiles to filter on Returns: bool: True if the item matches all filters, False if not. """ if resource_type and (self.ovf.RES_MAP[resource_type] != item.get_value(self.ovf.RESOURCE_TYPE)): return False if profile_list: for profile in profile_list: if not item.has_profile(profile): return False for (prop, value) in properties.items(): if item.get_value(prop) != value: return False return True def find_all_items(self, resource_type=None, properties=None, profile_list=None): """Find all items matching the given type, properties, and profiles. Args: resource_type (str): Resource type string like 'scsi' or 'serial' properties (dict): Properties and their values to match profile_list (list): List of profiles to filter on Returns: list: Matching OVFItem instances """ items = [self.item_dict[instance] for instance in natural_sort(self.item_dict)] filtered_items = [] if properties is None: properties = {} for item in items: if self.item_match(item, resource_type, properties, profile_list): filtered_items.append(item) logger.spam("Found %s Items of type %s with properties %s and" " profiles %s", len(filtered_items), resource_type, properties, profile_list) return filtered_items def find_item(self, resource_type=None, properties=None, profile=None): """Find the only OVFItem of the given :attr:`resource_type`. Args: resource_type (str): Resource type string like 'scsi' or 'serial' properties (dict): Properties and their values to match profile (str): Single profile ID to search within Returns: OVFItem: Matching instance, or None Raises: LookupError: if more than one such Item exists. """ matches = self.find_all_items(resource_type, properties, [profile]) if len(matches) > 1: raise LookupError( "Found multiple matching '{0}' Items (instances {1})" .format(resource_type, [m.instance_id for m in matches])) elif len(matches) == 0: return None else: return matches[0] def get_item_count(self, resource_type, profile): """Get the number of Items of the given type for the given profile. Wrapper for :meth:`get_item_count_per_profile`. Args: resource_type (str): Resource type string like 'scsi' or 'serial' profile (str): Single profile identifier string to look up. Returns: int: Number of items of this type in this profile. """ return (self.get_item_count_per_profile(resource_type, [profile]) [profile]) def get_item_count_per_profile(self, resource_type, profile_list): """Get the number of Items of the given type per profile. Items present under "no profile" will be counted against the total for each profile. Args: resource_type (str): Resource type string like 'scsi' or 'serial' profile_list (list): List of profiles to filter on (default: apply across all profiles) Returns: dict: mapping profile strings to the number of items under each profile. """ count_dict = {} if not profile_list: # Get the count under all profiles profile_list = self.ovf.config_profiles + [None] for profile in profile_list: count_dict[profile] = 0 for ovfitem in self.find_all_items(resource_type): for profile in profile_list: if ovfitem.has_profile(profile): count_dict[profile] += 1 for (profile, count) in count_dict.items(): logger.spam("Profile '%s' has %s %s Item(s)", profile, count, resource_type) return count_dict def _update_existing_item_profiles(self, resource_type, count, profile_list): """Change profile membership of existing items as needed. Helper method for :meth:`set_item_count_per_profile`. Args: resource_type (str): 'cpu', 'harddisk', etc. count (int): Desired number of items profile_list (list): List of profiles to filter on (default: apply across all profiles) Returns: tuple: (count_dict, items_to_add, last_item) """ count_dict = self.get_item_count_per_profile(resource_type, profile_list) items_seen = dict.fromkeys(profile_list, 0) last_item = None # First, iterate over existing Items. # Once we've seen "count" items under a profile, remove all subsequent # items from this profile. # If we don't have enough items under a profile, add any items found # under other profiles to this profile as well. for ovfitem in self.find_all_items(resource_type): last_item = ovfitem for profile in profile_list: if ovfitem.has_profile(profile): if items_seen[profile] >= count: # Too many items - remove this one! ovfitem.remove_profile(profile) else: items_seen[profile] += 1 else: if count_dict[profile] < count: # Add this profile to this Item ovfitem.add_profile(profile) count_dict[profile] += 1 items_seen[profile] += 1 # How many new Items do we need to create in total? items_to_add = 0 for profile in profile_list: delta = count - items_seen[profile] if delta > items_to_add: items_to_add = delta return count_dict, items_to_add, last_item def _update_cloned_item(self, new_item, new_item_profiles, item_count): """Update a cloned item to make it distinct from its parent. Helper method for :meth:`set_item_count_per_profile`. Args: new_item (OVFItem): Newly cloned Item new_item_profiles (list): Profiles new_item should belong to item_count (int): How many Items of this type (including this item) now exist. Used with :meth:`COT.platform.Platform.guess_nic_name` Returns: OVFItem: Updated :param:`new_item` Raises: NotImplementedError: No support yet for updating ``Address`` NotImplementedError: If updating ``AddressOnParent`` but the prior value varies across config profiles. NotImplementedError: if ``AddressOnParent`` is not an integer. """ resource_type = new_item.hardware_type address = new_item.get(self.ovf.ADDRESS) if address: raise NotImplementedError("Don't know how to ensure a unique " "Address value when cloning an Item " "of type {0}".format(resource_type)) address_on_parent = new_item.get(self.ovf.ADDRESS_ON_PARENT) if address_on_parent: address_list = new_item.get_all_values(self.ovf.ADDRESS_ON_PARENT) if len(address_list) > 1: raise NotImplementedError("AddressOnParent is not common " "across all profiles but has " "multiple values {0}. COT can't " "handle this yet." .format(address_list)) address_on_parent = address_list[0] # Currently we only handle integer addresses try: address_on_parent = int(address_on_parent) address_on_parent += 1 new_item.set_property(self.ovf.ADDRESS_ON_PARENT, str(address_on_parent), new_item_profiles) except ValueError: raise NotImplementedError("Don't know how to ensure a " "unique AddressOnParent value " "given base value '{0}'" .format(address_on_parent)) if resource_type == 'ethernet': # Update ElementName to reflect the NIC number element_name = self.ovf.platform.guess_nic_name(item_count) new_item.set_property(self.ovf.ELEMENT_NAME, element_name, new_item_profiles) return new_item def set_item_count_per_profile(self, resource_type, count, profile_list): """Set the number of items of a given type under the given profile(s). If the new count is greater than the current count under this profile, then additional instances that already exist under another profile will be added to this profile, starting with the lowest-sequence instance not already present, and only as a last resort will new instances be created. If the new count is less than the current count under this profile, then the highest-numbered instances will be removed preferentially. Args: resource_type (str): 'cpu', 'harddisk', etc. count (int): Desired number of items profile_list (list): List of profiles to filter on (default: apply across all profiles) """ if not profile_list: # Set the profile list for all profiles, including the default profile_list = self.ovf.config_profiles + [None] count_dict, items_to_add, last_item = \ self._update_existing_item_profiles( resource_type, count, profile_list) logger.debug("Creating %d new items", items_to_add) while items_to_add > 0: # Which profiles does this Item need to belong to? new_item_profiles = [] for profile in profile_list: if count_dict[profile] < count: new_item_profiles.append(profile) count_dict[profile] += 1 if last_item is None: logger.notice("No existing items of type %s found. " "Will create new %s from scratch.", resource_type, resource_type) (_, new_item) = self.new_item(resource_type, new_item_profiles) else: (_, new_item) = self.clone_item(last_item, new_item_profiles) # Check/update other properties of the clone that should be unique: # TODO - we assume that the count is the same across profiles new_item = self._update_cloned_item( new_item, new_item_profiles, count_dict[new_item_profiles[0]]) last_item = new_item items_to_add -= 1 def set_value_for_all_items(self, resource_type, prop_name, new_value, profile_list, create_new=False): """Set a property to the given value for all items of the given type. If no items of the given type exist, will create a new ``Item`` if :attr:`create_new` is set to ``True``; otherwise will log a warning and do nothing. Args: resource_type (str): Resource type such as 'cpu' or 'harddisk' prop_name (str): Property name to update new_value (str): New value to set the property to profile_list (list): List of profiles to filter on (default: apply across all profiles) create_new (bool): Whether to create a new entry if no items of this :attr:`resource_type` presently exist. """ ovfitem_list = self.find_all_items(resource_type) if not ovfitem_list: if not create_new: logger.warning("No items of type %s found. Nothing to do.", resource_type) return logger.notice("No existing items of type %s found. " "Will create new %s from scratch.", resource_type, resource_type) (_, ovfitem) = self.new_item(resource_type, profile_list) ovfitem_list = [ovfitem] for ovfitem in ovfitem_list: ovfitem.set_property(prop_name, new_value, profile_list) logger.debug("Updated %s %s to %s under profiles %s", resource_type, prop_name, new_value, profile_list) def set_item_values_per_profile(self, resource_type, prop_name, value_list, profile_list, default=None): """Set value(s) for a property of multiple items of a type. Args: resource_type (str): Device type such as 'harddisk' or 'cpu' prop_name (str): Property name to update value_list (list): List of values to set (one value per item of the given :attr:`resource_type`) profile_list (list): List of profiles to filter on (default: apply across all profiles) default (str): If there are more matching items than entries in :attr:`value_list`, set extra items to this value """ if profile_list is None: profile_list = self.ovf.config_profiles + [None] for ovfitem in self.find_all_items(resource_type): if len(value_list): new_value = value_list.pop(0) else: new_value = default for profile in profile_list: if ovfitem.has_profile(profile): ovfitem.set_property(prop_name, new_value, [profile]) logger.info("Updated %s property %s to %s under %s", resource_type, prop_name, new_value, profile_list) if len(value_list): logger.warning("After scanning all known %s Items, not all " "%s values were used - leftover %s", resource_type, prop_name, value_list)
2.328125
2
myjson.py
phattarin-kitbumrung/basic-python
0
12796412
import json #Convert from JSON to Python # some JSON: x = '{ "name":"John", "age":30, "city":"New York"}' # parse x: y = json.loads(x) # the result is a Python dictionary: print(y["name"]) #Convert from Python to JSON # a Python object (dict): x = { "name": "John", "age": 30, "city": "New York" } # convert into JSON: y = json.dumps(x) # the result is a JSON string: print(y) #Convert a Python object containing all the legal data types: x = { "name": "John", "age": 30, "married": True, "divorced": False, "children": ("Ann","Billy"), "pets": None, "cars": [ {"model": "BMW 230", "mpg": 27.5}, {"model": "Ford Edge", "mpg": 24.1} ] } print(json.dumps(x)) #Use the indent parameter to define the numbers of indents: #Use the separators parameter change the default separator: y = json.dumps(x, indent=4, separators=(". ", " = ")) #Use the sort_keys parameter to specify if the result should be sorted or not: z = json.dumps(x, indent=4, sort_keys=True) print(y) print(z)
3.9375
4
clispy/macro/system_macro.py
takahish/lispy
4
12796413
<filename>clispy/macro/system_macro.py # Copyright 2019 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from clispy.macro import Macro from clispy.package import assign_helper, use_package_helper from clispy.type import Cons, Null, Symbol # ============================================================================== # Defines base classes. # # SystemMacro # ============================================================================== class SystemMacro(Macro): """SystemMacro provide some macros for defmacro, defun, and lambda etc. """ def __new__(cls, *args, **kwargs): """Instantiates SystemMacro. """ cls.__name__ = 'SYSTEM-MACRO' return object.__new__(cls) def __repr__(self): """The official string representation. """ return "#<SYSTEM-MACRO {0} {{{1:X}}}>".format(self.__class__.__name__, id(self)) # ============================================================================== # Defines system macro classes. # ============================================================================== class BlockSystemMacro(SystemMacro): """block establishes a block and then evaluates forms as an implicit progn. """ def __new__(cls, *args, **kwargs): """Instantiates BlockSystemMacro. """ cls.__name__ = 'BLOCK' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of BlockSystemMacro. """ from clispy.expander import Expander name, body = forms.car, forms.cdr # Expands body recursively. body = Expander.expand(body, var_env, func_env, macro_env) # The body of a block has an implicit progn. forms = Cons(Symbol('BLOCK'), Cons(name, Cons(Cons(Symbol('PROGN'), body), Null()))) return forms class FletSystemMacro(SystemMacro): """flet, labels, and macrolet define local functions and macros, and execute forms using the local definitions. forms are executed in order of occurence. The body forms (but not the lambda list) of each function created by flet and labels and each macro created by macrolet are enclosed in an implicit block whose name is the function block name of the function-name or name, as appropriate. flet defines locally named functions and executes a series of forms with these definition bindings. Any number of such local functions can be defined. """ def __new__(cls, *args, **kwargs): """Instantiates FletSystemMacro. """ cls.__name__ = 'FLET' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of FletSystemMacro. """ from clispy.expander import Expander bindings, body = forms.car, forms.cdr # Expands body recursively. body = Expander.expand(body, var_env, macro_env, macro_env) # The body of flet has an implicit progn. forms = Cons(Symbol('FLET'), Cons(bindings, Cons(Cons(Symbol('PROGN'), body), Null()))) return forms class IfSystemMacro(SystemMacro): """if allows the execution of a form to be dependent on a single test-form. First test-form is evaluated. If the result is true, then then-form is selected; otherwise else-form is selected. Whichever form is selected is then evaluated. """ def __new__(cls, *args, **kwargs): """Instantiates IfSystemMacro. """ cls.__name__ = 'IF' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of IfSystemMacro. """ from clispy.expander import Expander # If else_form is Null, then else_form is set to Null. test_form, then_form, else_form = forms.car, forms.cdr.car, forms.cdr.cdr.car # Expands body recursively. test_form = Expander.expand(test_form, var_env, func_env, macro_env) then_form = Expander.expand(then_form, var_env, func_env, macro_env) else_form = Expander.expand(else_form, var_env, func_env, macro_env) forms = Cons(Symbol('IF'), Cons(test_form, Cons(then_form, Cons(else_form, Null())))) return forms class LabelsSystemMacro(SystemMacro): """flet, labels, and macrolet define local functions and macros, and execute forms using the local definitions. forms are executed in order of occurence. The body forms (but not the lambda list) of each function created by flet and labels and each macro created by macrolet are enclosed in an implicit block whose name is the function block name of the function-name or name, as appropriate. labels is equivalent to flet except that the scope of the defined function names for labels encompasses the function definitions themselves as well as the body. """ def __new__(cls, *args, **kwargs): """Instantiates LabelsSystemMacro. """ cls.__name__ = 'LABELS' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of LablesSystemMacro. """ from clispy.expander import Expander bindings, body = forms.car, forms.cdr # Expands body recursively. body = Expander.expand(body, var_env, func_env, macro_env) # The body of labels has an implicit progn. forms = Cons(Symbol('LABELS'), Cons(bindings, Cons(Cons(Symbol('PROGN'), body), Null()))) return forms class LetSystemMacro(SystemMacro): """let and let* create new variable bindings and execute a series of forms that use these bindings. let performs the bindings in parallel and let* does them sequentially. """ def __new__(cls, *args, **kwargs): """Instantiates LetSystemMacro. """ cls.__name__ = 'LET' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of LetSystemMacro. """ from clispy.expander import Expander bindings, body = forms.car, forms.cdr # Expands body recursively. body = Expander.expand(body, var_env, func_env, macro_env) # The body of let has an implicit progn. forms = Cons(Symbol('LET'), Cons(bindings, Cons(Cons(Symbol('PROGN'), body), Null()))) return forms class LetAsterSystemMacro(SystemMacro): """let and let* create new variable bindings and execute a series of forms that use these bindings. let performs the bindings in parallel and let* does them sequentially. """ def __new__(cls, *args, **kwargs): """Instantiates LetAsterSytemMacro. """ cls.__name__ = 'LET*' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of LetAsterSystemMacro. """ from clispy.expander import Expander bindings, body = forms.car, forms.cdr # Expands body recursively. body = Expander.expand(body, var_env, func_env, macro_env) # The body of let* has an implicit progn forms = Cons(Symbol('LET*'), Cons(bindings, Cons(Cons(Symbol('PROGN'), body), Null()))) return forms class QuoteSystemMacro(SystemMacro): """The quote special operator just returns object. """ def __new__(cls, *args, **kwargs): cls.__name__ = 'QUOTE' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of QuoteSystemMacro. """ # Retruns itself. return Cons(Symbol('QUOTE'), forms) class LambdaSystemMacro(SystemMacro): """Provides a shorthand notation for a function special form involving a lambda expression. """ def __new__(cls, *args, **kwargs): """Instantiates LambdaSystemMacro. """ cls.__name__ = 'LAMBDA' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of LambdaSystemMacro. """ from clispy.expander import Expander params, body = forms.car, forms.cdr # Expands body recursively. body = Expander.expand(body, var_env, func_env, macro_env) # The body of a lambda has an implicit progn. forms = Cons(Symbol('LAMBDA'), Cons(params, Cons(Cons(Symbol('PROGN'), body), Null()))) return forms class DefunSystemMacro(SystemMacro): """defun implicitly puts a block named block-name around the body forms """ def __new__(cls, *args, **kwargs): """Instantiates DefunSystemMacro. """ cls.__name__ = 'DEFUN' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of DefunSystemMacro. """ from clispy.expander import Expander name, params, body = forms.car, forms.cdr.car, forms.cdr.cdr # Expands body, recursively. body = Expander.expand(body, var_env, func_env, macro_env) # The body of a defun has an implicit progn. body = Cons(Cons(Symbol('PROGN'), body), Null()) # The body of a defun has an implicit block. forms = Cons(Symbol('DEFUN'), Cons(name, Cons(params, Cons(Cons(Symbol('BLOCK'), Cons(name, body)), Null())))) return forms class DefmacroSystemMacro(SystemMacro): """Defines name as a macro by associating a macro function with that name in the global environment. The macro function is defined in the same lexical environment in which the defmacro form appears. The expansion function accepts two arguments, a form and an environment. The expansion function returns a form. The body of the expansion function is specified by forms. Forms are executed in order. The value of the last form executed is returned as the expansion of the macro. The body forms of the expansion function (but not the lambda-list) are implicitly enclosed in a block whose name is name. """ def __new__(cls, *args, **kwargs): """Instantiates DefmacroSystemMacro. """ cls.__name__ = 'DEFMACRO' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of DefmacroSystemMacro. """ from clispy.expander import Expander name, params, body = forms.car, forms.cdr.car, forms.cdr.cdr # Expands body, recursively. body = Expander.expand(body, var_env, func_env, macro_env) # The value of the last form executed is returned as the expansion of the macro. body = Cons(Cons(Symbol('PROGN'), body), Null()) # The body of a defmacro has an implicit block. forms = Cons(Symbol('DEFMACRO'), Cons(name, Cons(params, Cons(Cons(Symbol('BLOCK'), Cons(name, body)), Null())))) return forms class BackquoteSystemMacro(SystemMacro): """The backquote introduces a template of a data structure to be built. """ def __new__(cls, *args, **kwargs): """Instantiates BackquoteSystemMacro. """ cls.__name__ = 'BACKQUOTE' return object.__new__(cls) def __call__(self, forms, var_env, func_env, macro_env): """Behavior of BackquoteSystemMacro. """ return self.expand_hepler(forms.car) @classmethod def expand_hepler(cls, forms): """Expand quotes recursively. """ if not isinstance(forms, Cons): # An argument is not an instance of Cons, it is quoted. return Cons(Symbol('QUOTE'), Cons(forms, Null())) if forms.car is Symbol('UNQUOTE'): # Unquote (,). return forms.cdr.car elif isinstance(forms.car, Cons) and forms.car.car is Symbol('UNQUOTE-SPLICING'): # Unquote-splicing (,@). return Cons(Symbol('APPEND'), Cons(forms.car.cdr.car, Cons(cls.expand_hepler(forms.cdr), Null()))) else: # Expands recursively and returns cons. return Cons(Symbol('CONS'), Cons(cls.expand_hepler(forms.car), Cons(cls.expand_hepler(forms.cdr), Null()))) # ============================================================================== # Set functions related on special operators # ============================================================================== # For special operators assign_helper(symbol_name='BLOCK', value=BlockSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='FLET', value=FletSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='IF', value=IfSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='LABELS', value=LabelsSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='LET', value=LetSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='LET*', value=LetAsterSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='QUOTE', value=QuoteSystemMacro(), package_name='COMMON-LISP', env='MACRO', status='EXTERNAL') # For system functions assign_helper(symbol_name='LAMBDA', value=LambdaSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='DEFUN', value=DefunSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='DEFMACRO', value=DefmacroSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') assign_helper(symbol_name='BACKQUOTE', value=BackquoteSystemMacro(), package_name='COMMON-LISP', env='MACRO', status=':EXTERNAL') # COMMON-LISP-USER package use_package_helper(package_name_to_use='COMMON-LISP', package_name='COMMON-LISP-USER')
1.929688
2
examples/calendar_widget.py
whitegreyblack/PyWin
0
12796414
"""Calendar_widget.py""" import re import curses import random import calendar import itertools import source.config as config from collections import namedtuple date = namedtuple("Date", "Year Month Day") def iter_months_years(startDate: object, endDate: object) -> tuple: """Returns years and months based on given start and end dates. Expected date format is YYYY-MM-DD. Ex. 2012-07-15 """ # TODO: Make the function an iterable months = [] # begin with all years between start and end date years = [year for year in range(startDate.Year, endDate.Year + 1)] if len(years) > 1: # covering more than a single year, find the months being used for year in range(len(years)): monthsRange = (1, 13) # normal year covers between months 1-12 if year == 0: monthsRange = (startDate.Month, 13) # first year in list elif year == len(years) - 1: monthsRange = (1, endDate.Month + 1) # last year in list months.append([month for month in range(*monthsRange)]) else: # dates are in the same year. grab the months between the dates months.append([i for i in range(startDate.Month, endDate.Month + 1)]) # return [(year, m) for year, month in zip(years, months) for m in month] for year, month in zip(years, months): for m in month: yield (year, m) def days_in_month_year(startDate, endDate): """Returns the day/date tuple combination for each month/year input passed into the calendar.TextCalendar class method months2calendar(year, month). Differences in TextCalendar methods (W => number of weeks in the month): monthdatescalendar -> returns Wx7 matrix of datetime objects monthdays2calendar -> returns Wx7 matrix of tuple objects (date, day) monthdayscalendar -> returns Wx7 matrix of ints representing the date """ # setup calendar settings to retrieve dates based on year/month pairs tc = calendar.TextCalendar() tc.setfirstweekday(6) # set to sunday as first day days_per_monthyear = dict() for year, month in iter_months_years(startDate, endDate): days_per_monthyear[(year, month)] = tc.monthdays2calendar(year, month) return days_per_monthyear def parse_date(datestring: str) -> object: """Takes in a string object representing a formatted date. If not formatted correctly, will raise an error giving description of the correct format. Returns a date object with year, month, date properties """ if not re.match(config.DATE_FORMAT_REGEX, datestring): error = f"{config.DATE_FORMAT_INVALID} {config.DATE_FORMAT_EXPECTED}" raise ValueError(error) return date(*[int(i) for i in datestring.split('-')]) def initialize_curses_settings(): """Curses settings that need to be called before the rest of program""" curses.curs_set(0) def main(window): """Creates a navigatable calendar widget for the dates passed in. Later on should use min/max dates from the database holding the date infos. """ initialize_curses_settings() loc = 0 # dateParser(db.getMinDate, db.getMaxDate) start = parse_date("2017-12-1") end = parse_date("2018-2-1") # we should now have a list of lists matrix holding weeks per month/year monthtable = days_in_month_year(start, end) window.border() y, x = window.getmaxyx() window.vline(1, 8, curses.ACS_VLINE, y - 2) verticaloffset = 2 horizontaloffset = 1 window.addstr(1, 1, "SMTWTFS") for month in monthtable.values(): for week in month: window.addstr(verticaloffset, horizontaloffset + 9, str(week)) weekdayindex = 0 for date, dayofweek in week: if (date) != 0: window.addstr(verticaloffset, horizontaloffset + weekdayindex, 'o') weekdayindex += 1 verticaloffset += 1 ch = window.getch() print(ch, curses.KEY_PPAGE == ch) #ppage:339, #npage:338 # TODO: implement program loop involving vertical/horiontal scrolling if __name__ == "__main__": curses.wrapper(main)
3.84375
4
python/tvm/autotvm/tuner/sampler.py
ryujaehun/chameleon
1
12796415
<filename>python/tvm/autotvm/tuner/sampler.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return,invalid-name,consider-using-enumerate,abstract-method """Base class for sampler This type of sampler will build an internal method to prune or reduce number of configs measured on hardware to speed up tuning without performance loss. """ import numpy as np from ..env import GLOBAL_SCOPE class Sampler(object): """Base class for sampler This type of sampler will build an internal method to prune or reduce number of configs measured on hardware to speed up tuning without performance loss. Parameters ---------- dims: list knob form of the dimensions for the configs """ def __init__(self, dims): self.dims = dims def sample(self, xs): """Sample a subset of configs from a larger set of configs Parameters ---------- xs: Array of int The indexes of configs from a larger set Returns ------- a reduced set of configs """ raise NotImplementedError()
2.1875
2
templates/includes/loader.py
angeal185/flask-jinja-greensock-portfolio-webapp
0
12796416
 <script id="sf" type="x-shader/x-fragment"> precision highp float; uniform float time; uniform vec2 mouse; uniform vec2 resolution; float ball(vec2 p, float k, float d) { vec2 r = vec2(p.x - cos(time * k) * d, p.y + sin(time * k) * d); return smoothstep(0.0, 1.0, 0.03 / length(r)); } void main(void) { vec2 q = gl_FragCoord.xy / resolution.xy; vec2 p = -1.0 + 2.0 * q; p.x *= resolution.x / resolution.y; float col = 0.0; for (int i = 1; i <= 7; ++i) { col += ball(p, float(i), 0.3); } for (int i = 1; i <= 5; ++i) { col += ball(p, float(i), 0.1); } gl_FragColor = vec4(col*0.8, col, col*1.8, 1.0); } </script> <script id="sv" type="x-shader/x-vertex"> attribute vec4 vPosition; void main (void) { gl_Position = vPosition; } </script> <canvas id="cnv"></canvas>
1.710938
2
webservice/api/others/func_d.py
galenothiago/switch-automation
0
12796417
from flask import Flask, Request, Response, request import json def devices(): dict_device = request.get_data(as_text=True) dados_device = json.loads(dict_device)
2.203125
2
python/tests/test_openfermion_integration.py
ausbin/qcor
59
12796418
<reponame>ausbin/qcor import faulthandler faulthandler.enable() import unittest from qcor import * try: from openfermion.ops import FermionOperator as FOp from openfermion.ops import QubitOperator as QOp from openfermion.transforms import reverse_jordan_wigner, jordan_wigner class TestOpenFermion(unittest.TestCase): def test_simple_fermion(self): # Create Operator as OpenFermion FermionOperator H = FOp('', 0.0002899) + FOp('0^ 0', -.43658) + \ FOp('1 0^', 4.2866) + FOp('1^ 0', -4.2866) + FOp('1^ 1', 12.25) @qjit def ansatz(q: qreg, theta: float): X(q[0]) Ry(q[1], theta) CX(q[1], q[0]) n_params = 1 obj = createObjectiveFunction(ansatz, H, n_params, {'gradient-strategy':'parameter-shift'}) optimizer = createOptimizer('nlopt', {'nlopt-optimizer':'l-bfgs'}) results = optimizer.optimize(obj) self.assertAlmostEqual(results[0], -1.74, places=1) def test_simple_qubit(self): # Create Operator as OpenFermion FermionOperator H = QOp('', 5.907) + QOp('Y0 Y1', -2.1433) + \ QOp('X0 X1', -2.1433) + QOp('Z0', .21829) + QOp('Z1', -6.125) @qjit def ansatz(q: qreg, theta: float): X(q[0]) Ry(q[1], theta) CX(q[1], q[0]) n_params = 1 obj = createObjectiveFunction(ansatz, H, n_params, {'gradient-strategy':'parameter-shift'}) optimizer = createOptimizer('nlopt', {'nlopt-optimizer':'l-bfgs'}) results = optimizer.optimize(obj) self.assertAlmostEqual(results[0], -1.74, places=1) def test_convert_to_qcor(self): H = FOp('', 0.0002899) + FOp('0^ 0', -.43658) + \ FOp('1 0^', 4.2866) + FOp('1^ 0', -4.2866) + FOp('1^ 1', 12.25) ours = createOperator('fermion', H) print(ours.toString()) H = QOp('', 5.907) + QOp('Y0 Y1', -2.1433) + \ QOp('X0 X1', -2.1433) + QOp('Z0', .21829) + QOp('Z1', -6.125) ours = createOperator('pauli', H) print(ours.toString()) except: pass if __name__ == '__main__': unittest.main()
2.328125
2
posts/nano/dog-breed-classifier/dog_scratch_model.py
necromuralist/Neurotic-Networking
0
12796419
<reponame>necromuralist/Neurotic-Networking # python from functools import partial import argparse import os # pypi from dotenv import load_dotenv from PIL import Image, ImageFile from torchvision import datasets import numpy import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optimizer import torchvision.transforms as transforms # this project from neurotic.tangles.data_paths import DataPathTwo from neurotic.tangles.timer import Timer from neurotic.constants.imagenet_map import imagenet # the output won't show up if you don't flush it when redirecting it to a file print = partial(print, flush=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) ImageFile.LOAD_TRUNCATED_IMAGES = True load_dotenv() dog_path = DataPathTwo(folder_key="DOG_PATH") dog_training_path = DataPathTwo(folder_key="DOG_TRAIN") dog_testing_path = DataPathTwo(folder_key="DOG_TEST") dog_validation_path = DataPathTwo(folder_key="DOG_VALIDATE") human_path = DataPathTwo(folder_key="HUMAN_PATH") BREEDS = len(set(dog_training_path.folder.iterdir())) print("Number of Dog Breeds: {}".format(BREEDS)) timer = Timer(beep=SPEAKABLE) means = [0.485, 0.456, 0.406] deviations = [0.229, 0.224, 0.225] IMAGE_SIZE = 224 IMAGE_HALF_SIZE = IMAGE_SIZE//2 train_transform = transforms.Compose([ transforms.RandomRotation(30), transforms.RandomResizedCrop(IMAGE_SIZE), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(means, deviations)]) test_transform = transforms.Compose([transforms.Resize(255), transforms.CenterCrop(IMAGE_SIZE), transforms.ToTensor(), transforms.Normalize(means, deviations)]) training = datasets.ImageFolder(root=str(dog_training_path.folder), transform=train_transform) validation = datasets.ImageFolder(root=str(dog_validation_path.folder), transform=test_transform) testing = datasets.ImageFolder(root=str(dog_testing_path.folder), transform=test_transform) BATCH_SIZE = 10 WORKERS = 0 train_batches = torch.utils.data.DataLoader(training, batch_size=BATCH_SIZE, shuffle=True, num_workers=WORKERS) validation_batches = torch.utils.data.DataLoader( validation, batch_size=BATCH_SIZE, shuffle=True, num_workers=WORKERS) test_batches = torch.utils.data.DataLoader( testing, batch_size=BATCH_SIZE, shuffle=True, num_workers=WORKERS) loaders_scratch = dict(train=train_batches, validate=validation_batches, test=test_batches) LAYER_ONE_OUT = 16 LAYER_TWO_OUT = LAYER_ONE_OUT * 2 LAYER_THREE_OUT = LAYER_TWO_OUT * 2 KERNEL = 3 PADDING = 1 FULLY_CONNECTED_OUT = 500 class Net(nn.Module): """Naive Neural Network to classify dog breeds""" def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(3, LAYER_ONE_OUT, KERNEL, padding=PADDING) self.conv2 = nn.Conv2d(LAYER_ONE_OUT, LAYER_TWO_OUT, KERNEL, padding=PADDING) self.conv3 = nn.Conv2d(LAYER_TWO_OUT, LAYER_THREE_OUT, KERNEL, padding=PADDING) # max pooling layer self.pool = nn.MaxPool2d(2, 2) # linear layer (64 * 4 * 4 -> 500) self.fc1 = nn.Linear((IMAGE_HALF_SIZE//4)**2 * LAYER_THREE_OUT, FULLY_CONNECTED_OUT) self.fc2 = nn.Linear(FULLY_CONNECTED_OUT, BREEDS) # dropout layer (p=0.25) self.dropout = nn.Dropout(0.25) return def forward(self, x): # add sequence of convolutional and max pooling layers x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = self.pool(F.relu(self.conv3(x))) x = x.view(-1, (IMAGE_HALF_SIZE//4)**2 * LAYER_THREE_OUT) x = self.dropout(x) x = self.dropout(F.relu(self.fc1(x))) x = self.fc2(x) return x model_scratch = Net() if torch.cuda.is_available(): print("Using {} GPUs".format(torch.cuda.device_count())) model_scratch = nn.DataParallel(model_scratch) model_scratch.to(device) criterion_scratch = nn.CrossEntropyLoss() optimizer_scratch = optimizer.SGD(model_scratch.parameters(), lr=0.001, momentum=0.9) def train(epochs: int, train_batches: torch.utils.data.DataLoader, validation_batches: torch.utils.data.DataLoader, model: nn.Module, optimizer: optimizer.SGD, criterion: nn.CrossEntropyLoss, epoch_start: int=1, save_path: str="model_scratch.pt"): """Trains the Model Args: epochs: number of times to train on the data set train_batches: the batch-loaders for training validation_batches: batch-loaders for validation model: the network to train optimizer: the gradient descent object criterion: object to do backwards propagation epoch_start: number to start the epoch count with save_path: path to save the best network parameters """ validation_loss_min = numpy.Inf end = epoch_start + epochs for epoch in range(epoch_start, end): timer.start() training_loss = 0.0 validation_loss = 0.0 model.train() for data, target in train_batches: data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() training_loss += loss.item() * data.size(0) model.eval() for data, target in validation_batches: data, target = data.to(device), target.cuda(device) output = model(data) loss = criterion(output, target) validation_loss += loss.item() * data.size(0) training_loss /= len(train_batches.dataset) validation_loss /= len(validation_batches.dataset) timer.end() print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, training_loss, validation_loss )) if validation_loss < validation_loss_min: print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format( validation_loss_min, validation_loss)) torch.save(model.state_dict(), save_path) validation_loss_min = validation_loss return model def test(test_batches: torch.utils.data.DataLoader, model: nn.Module, criterion: nn.CrossEntropyLoss) -> None: """Test the model Args: test_batches: batch loader of test images model: the network to test criterion: calculator for the loss """ test_loss = 0. correct = 0. total = 0. model.eval() for data, target in test_batches: data, target = data.to(device), target.to(device) output = model(data) loss = criterion(output, target) test_loss += loss.item() * data.size(0) # convert output probabilities to predicted class predictions = output.data.max(1, keepdim=True)[1] # compare predictions to true label correct += numpy.sum( numpy.squeeze( predictions.eq( target.data.view_as(predictions))).cpu().numpy()) total += data.size(0) test_loss /= len(test_batches.dataset) print('Test Loss: {:.6f}\n'.format(test_loss)) print('\nTest Accuracy: %2d%% (%2d/%2d)' % ( 100. * correct / total, correct, total)) return def train_and_test(train_batches: torch.utils.data.DataLoader, validate_batches: torch.utils.data.DataLoader, test_batches: torch.utils.data.DataLoader, model: nn.Module, model_path: Path, optimizer: optimizer.SGD, criterion: nn.CrossEntropyLoss, epochs: int=10, epoch_start: int=1, load_model: bool=False) -> None: """Trains and Tests the Model Args: train_batches: batch-loaders for training validate_batches: batch-loaders for validation test_batches: batch-loaders for testing model: the network to train model_path: where to save the best model optimizer: the gradient descent object criterion: object to do backwards propagation epochs: number of times to train on the data set epoch_start: number to start the epoch count with load_model: whether to load the model from a file """ if load_model and model_path.is_file(): model.load_state_dict(torch.load(model_path)) print("Starting Training") timer.start() model_scratch = train(epochs=epochs, epoch_start=epoch_start, train_batches=train_batches, validation_batches=validate_batches, model=model, optimizer=optimizer, criterion=criterion, save_path=model_path) timer.end() # load the best model model.load_state_dict(torch.load(model_path)) print("Starting Testing") timer.start() test(test_batches, model, criterion) timer.end() return model_path = DataPathTwo( folder_key="MODELS", filename="model_scratch.pt") assert model_path.folder.is_dir() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Test or Train the Naive Dog Classifier") parser.add_argument("--test", action="store_true", help="Only run the test") parser.add_argument("--epochs", default=10, type=int, help="Training epochs (default: %(default)s)") parser.add_argument( "--epoch-offset", default=0, type=int, help="Offset for the output of epochs (default: %(default)s)") parser.add_argument("--restart", action="store_true", help="Wipe out old model.") arguments = parser.parse_args() if arguments.test: test(loaders_scratch["test"], model_scratch, criterion_scratch) else: train_and_test(epochs=arguments.epochs, train_batches=loaders_scratch["train"], validate_batches=loaders_scratch["validate"], test_batches=loaders_scratch["test"], model=model_scratch, optimizer=optimizer_scratch, criterion=criterion_scratch, epoch_start=arguments.epoch_offset, model_path=model_path.from_folder, load_model=not arguments.restart)
2.484375
2
tests/test_public_datasets.py
scaleapi/nucleus-python-client
13
12796420
from nucleus.dataset import Dataset PANDASET_ID = "ds_bwhjbyfb8mjj0ykagxf0" def test_get_pandaset_items(CLIENT): dataset: Dataset = CLIENT.get_dataset(PANDASET_ID) items = dataset.items items_and_annotations = dataset.items_and_annotations() target_item = items[0] assert {_["item"].reference_id for _ in items_and_annotations} == set( [i.reference_id for i in items] ) ref_item = dataset.refloc(target_item.reference_id) assert ref_item["item"] == target_item index_item = dataset.iloc(0) assert index_item["item"] in items
2.5
2
work/NCS/test_files/test_wtih_restraints.py
youdar/work
0
12796421
<gh_stars>0 from __future__ import division import mmtbx.monomer_library.pdb_interpretation from mmtbx import monomer_library import mmtbx.monomer_library.server import getpass import sys import os def run(file_name): pdb_processed_file = monomer_library.pdb_interpretation.run(args=[file_name], assume_hydrogens_all_missing=False, hard_minimum_nonbonded_distance=0.0, nonbonded_distance_threshold=None, substitute_non_crystallographic_unit_cell_if_necessary=True) grm = pdb_processed_file.geometry_restraints_manager() print 'done' def set_test_folder(): """ Change working directory to avoid littering of phenix_sources\phenix_regression\development\ncs_constraints.py """ username = getpass.getuser() if username.lower() == 'youval': osType = sys.platform if osType.startswith('win'): tempdir = (r'C:\Phenix\Dev\Work\work\NCS\junk') else: tempdir = ('/net/cci/youval/Work/work/NCS/junk') os.chdir(tempdir) if __name__=='__main__': set_test_folder() run('full_asu.pdb')
1.882813
2
protocol/__init__.py
KESHAmambo/IEEE_802_11ad_beamforming_simulation
0
12796422
settings = { 'log': True, 'verbosity': False, 'vcolored': True, 'time_precision': 1e-10 }
1.242188
1
model/MinionType.py
waniz/russian_ai_cup
0
12796423
<gh_stars>0 class MinionType: ORC_WOODCUTTER = 0 FETISH_BLOWDART = 1
1.1875
1
main.py
zeek0x/common
0
12796424
import sys from urllib import request, parse, error from multiprocessing import Process urls = [ 'https://github.com/', 'https://twitter.com/', 'https://hub.docker.com/v2/users/' ] def inspect_status_code(url): try: response = request.urlopen(url) return response.code except error.HTTPError as e: return e.code def inspect(url, user_id): code = inspect_status_code(url+user_id) title = parse.urlparse(url).netloc prefix = '\033[32m' if code == 404 else '\033[31m' suffix = '\033[0m' result = '{}{}{}'.format(prefix, code, suffix) print(title.ljust(16), result) def main(): if len(sys.argv) < 2: print('usage: python3 main.py ${USER_ID}') exit(1) user_id = sys.argv[1] ps = [Process(target=inspect, args=(url, user_id)).start() for url in urls] if __name__ == '__main__': main()
2.703125
3
data_loader/data_loaders.py
Hhhhhhhhhhao/I2T2I
0
12796425
import torch import numpy as np from torch.utils.data import DataLoader from torchvision import transforms from data_loader.datasets_custom import TextImageDataset, COCOTextImageDataset from base import BaseDataLoader def text_image_collate_fn(data): collate_data = {} # Sort a data list by right caption length (descending order). data.sort(key=lambda x: x['right_caption'].size(0), reverse=True) collate_data['right_img_id'] = [] collate_data['class_id'] = [] collate_data['right_txt'] = [] class_ids = [] right_captions = [] right_embeds = [] right_images_32 = [] right_images_64 = [] right_images_128 = [] right_images_256 = [] collate_data['wrong_img_id'] = [] collate_data['wrong_txt'] = [] wrong_captions = [] wrong_embeds = [] wrong_images_32 = [] wrong_images_64 = [] wrong_images_128 = [] wrong_images_256 = [] for i in range(len(data)): class_ids.append(data[i]['right_img_id']) collate_data['class_id'].append(data[i]['right_class_id']) collate_data['right_txt'].append(data[i]['right_txt']) right_captions.append(data[i]['right_caption']) right_embeds.append(data[i]['right_embed']) right_images_32.append(data[i]['right_image_32']) right_images_64.append(data[i]['right_image_64']) right_images_128.append(data[i]['right_image_128']) right_images_256.append(data[i]['right_image_256']) collate_data['wrong_txt'].append(data[i]['wrong_txt']) wrong_captions.append(data[i]['wrong_caption']) wrong_embeds.append(data[i]['wrong_embed']) wrong_images_32.append(data[i]['wrong_image_32']) wrong_images_64.append(data[i]['wrong_image_64']) wrong_images_128.append(data[i]['wrong_image_128']) wrong_images_256.append(data[i]['wrong_image_256']) # sort and get captions, lengths, images, embeds, etc. right_caption_lengths = [len(cap) for cap in right_captions] collate_data['right_caption_lengths'] = torch.LongTensor(right_caption_lengths) collate_data['right_captions'] = torch.zeros(len(right_caption_lengths), max(right_caption_lengths)).long() for i, cap in enumerate(right_captions): end = right_caption_lengths[i] collate_data['right_captions'][i, :end] = cap[:end] # sort and get captions, lengths, images, embeds, etc. wrong_captions.sort(key=lambda x: len(x), reverse=True) wrong_caption_lengths = [len(cap) for cap in wrong_captions] collate_data['wrong_caption_lengths'] = torch.LongTensor(wrong_caption_lengths) collate_data['wrong_captions'] = torch.zeros(len(wrong_caption_lengths), max(wrong_caption_lengths)).long() for i, cap in enumerate(wrong_captions): end = wrong_caption_lengths[i] collate_data['wrong_captions'][i, :end] = cap[:end] collate_data['class_id'] = np.stack(class_ids) collate_data['right_embeds'] = torch.stack(right_embeds, 0) collate_data['right_images_32'] = torch.stack(right_images_32, 0) collate_data['right_images_64'] = torch.stack(right_images_64, 0) collate_data['right_images_128'] = torch.stack(right_images_128, 0) collate_data['right_images_256'] = torch.stack(right_images_256, 0) collate_data['wrong_embeds'] = torch.stack(wrong_embeds, 0) collate_data['wrong_images_32'] = torch.stack(wrong_images_32, 0) collate_data['wrong_images_64'] = torch.stack(wrong_images_64, 0) collate_data['wrong_images_128'] = torch.stack(wrong_images_128, 0) collate_data['wrong_images_256'] = torch.stack(wrong_images_256, 0) return collate_data class TextImageDataLoader(DataLoader): def __init__(self, data_dir, dataset_name, which_set, image_size, batch_size, num_workers): self.data_dir = data_dir self.which_set = which_set self.dataset_name = dataset_name assert self.which_set in {'train', 'valid', 'test'} self.image_size = (image_size, image_size) self.batch_size = batch_size self.num_workers = num_workers # transforms.ToTensor convert PIL images in range [0, 255] to a torch in range [-1.0, 1.0] self.transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) self.dataset = TextImageDataset(self.data_dir, self.dataset_name, self.which_set, self.transform, vocab_from_file=False) self.n_samples = len(self.dataset) if self.which_set == 'train' or self.which_set == 'valid': super(TextImageDataLoader, self).__init__( dataset=self.dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, collate_fn=text_image_collate_fn ) else: super(TextImageDataLoader, self).__init__( dataset=self.dataset, batch_size=self.batch_size, shuffle=False, num_workers=0, collate_fn=text_image_collate_fn) class COCOTextImageDataLoader(BaseDataLoader): """ COCO Image Caption Model Data Loader """ def __init__(self, data_dir, which_set, image_size, batch_size, validation_split, num_workers): self.data_dir = data_dir self.which_set = which_set self.validation_split = validation_split assert self.which_set in {'train', 'val', 'test'} self.image_size = (image_size, image_size) self.batch_size = batch_size self.num_workers = num_workers # transforms.ToTensor convert PIL images in range [0, 255] to a torch in range [-1.0, 1.0] mean = torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32) std = torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32) if which_set == 'val' or which_set == 'test': self.transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) else: self.transform = transforms.Compose([ # transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) self.dataset = COCOTextImageDataset(self.data_dir, self.which_set, self.transform, vocab_from_file=True) # self.n_samples = len(self.dataset) if self.which_set == 'train': super(COCOTextImageDataLoader, self).__init__( dataset=self.dataset, batch_size=self.batch_size, shuffle=True, validation_split=validation_split, num_workers=self.num_workers, collate_fn=text_image_collate_fn ) else: super(COCOTextImageDataLoader, self).__init__( dataset=self.dataset, batch_size=self.batch_size, shuffle=False, validation_split=0, num_workers=self.num_workers, collate_fn=text_image_collate_fn) if __name__ == '__main__': data_loader = COCOTextImageDataLoader( data_dir='/Users/leon/Projects/I2T2I/data/coco/', # dataset_name="birds", which_set='val', image_size=256, batch_size=16, validation_split=0.05, num_workers=0) print(len(data_loader.dataset.vocab)) print(len(data_loader.dataset.vocab.word2idx)) for i, data in enumerate(data_loader): print(i) print("right_img_id:", data['right_img_id']) # print("class_ids:", data["class_id"]) print('right images 32 shape:', data['right_images_32'].shape) print('right images 64 shape:', data['right_images_64'].shape) print('right images 128 shape:', data['right_images_128'].shape) print('right images 256 shape:', data['right_images_256'].shape) print("right embed shape:", data['right_embeds'].shape) print("right caption shape:", data['right_captions'].shape) print("right caption lengths:", data['right_caption_lengths']) print("right txt:", data["right_txt"]) print("wrong_img_id:", data['wrong_img_id']) print('wrong images 32 shape:', data['wrong_images_32'].shape) print('wrong images 64 shape:', data['wrong_images_64'].shape) print('wrong images 128 shape:', data['wrong_images_128'].shape) print('wrong images 256 shape:', data['wrong_images_256'].shape) print("wrong embed shape:", data['wrong_embeds'].shape) print("wrong caption shape:", data['wrong_captions'].shape) print("wrong caption lengths:", data['wrong_caption_lengths']) print("wrong txt:", data["wrong_txt"]) if i == 10: print("done") break
2.578125
3
tests/orm/test_app_user.py
KoalicjaOtwartyKrakow/backend
0
12796426
import pytest from sqlalchemy.exc import ProgrammingError from sqlalchemy_continuum.utils import count_versions from kokon.orm import Guest from kokon.utils.db import DB from tests.helpers import admin_session def test_app_user(): with admin_session() as session: session.execute("TRUNCATE guests_version RESTART IDENTITY;") session.execute("TRUNCATE guests RESTART IDENTITY;") session.execute("TRUNCATE transaction RESTART IDENTITY;") with DB().acquire() as session: # creates a guest without error and version as well guid = "74b86069-c837-4431-a7ee-3a4aedda978b" guest = Guest( guid=guid, full_name="<NAME>", email="<EMAIL>", phone_number="100-330-497", people_in_group=4, adult_male_count=0, adult_female_count=2, children_ages=[1, 10], have_pets=False, how_long_to_stay="1w", updated_by_id="782962fc-dc11-4a33-8f08-b7da532dd40d", ) session.add(guest) session.commit() session.refresh(guest) assert guest.claimed_by_id is None # trigger works claimed_at = guest.claimed_at assert claimed_at is not None guest.adult_male_count = 1 session.commit() with pytest.raises(ProgrammingError): _ = guest.versions[0] with admin_session() as session: guest = session.query(Guest).where(Guest.guid == guid).one() assert count_versions(guest) == 2 assert str(guest.versions[0].guid) == guid
2.125
2
bandc/settings.py
crccheck/atx-bandc
0
12796427
<reponame>crccheck/atx-bandc # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import dj_database_url from project_runpy import env BASE_DIR = os.path.dirname(__file__) SECRET_KEY = env.get("SECRET_KEY", "Rotom") DEBUG = env.get("DEBUG", False) ALLOWED_HOSTS = ["*"] INSTALLED_APPS = ( "bandc.apps.agenda.apps.AgendaConfig", "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", # support "django_extensions", "django_object_actions", "bootstrap_pagination", ) MIDDLEWARE = ( "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ) ROOT_URLCONF = "bandc.urls" WSGI_APPLICATION = "bandc.wsgi.application" # Database # https://docs.djangoproject.com/en/stable/ref/settings/#databases DATABASES = {"default": dj_database_url.config(default="sqlite:///bandc.db")} DEFAULT_AUTO_FIELD = "django.db.models.AutoField" # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # Internationalization # https://docs.djangoproject.com/en/stable/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "America/Chicago" USE_I18N = False USE_L10N = False USE_TZ = True TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [os.path.join(BASE_DIR, "templates")], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "bandc.context_processors.base_url", ], "debug": DEBUG, }, }, ] # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/dev/howto/static-files/ STATIC_URL = "/static/" STATICFILES_DIRS = (os.path.join(BASE_DIR, "static"),) MEDIA_ROOT = os.path.join(BASE_DIR, "..", "media") MEDIA_URL = "/media/" LOGGING = { "version": 1, "disable_existing_loggers": False, "root": {"level": os.environ.get("LOG_LEVEL", "WARNING"), "handlers": ["console"]}, "formatters": { "dev": { "format": "%(levelname)s %(name)s %(message)s", # 'datefmt': '%Y-%m-%dT%H:%M:%S%z', # I want milliseconds but Python doesn't make it easy # "class": "pythonjsonlogger.jsonlogger.JsonFormatter", }, }, "filters": { "require_debug_false": {"()": "django.utils.log.RequireDebugFalse"}, "require_debug_true": {"()": "django.utils.log.RequireDebugTrue"}, "readable_sql": {"()": "project_runpy.ReadableSqlFilter"}, }, "handlers": { "console": { "level": "DEBUG", "formatter": "dev", "class": "project_runpy.ColorizingStreamHandler", }, }, "loggers": { "django.db.backends": { "level": "DEBUG" if env.get("SQL", False) else "INFO", "handlers": ["console"], "filters": ["require_debug_true", "readable_sql"], "propagate": False, }, "sh": {"level": "WARNING", "propagate": False}, "pdfminer": {"level": "WARNING", "propagate": False}, "factory": {"level": "ERROR", "propagate": False}, }, }
1.976563
2
algorithms_keeper/api.py
hfz1337/algorithms-keeper
0
12796428
<filename>algorithms_keeper/api.py from typing import Mapping, Tuple from gidgethub.abc import UTF_8_CHARSET from gidgethub.aiohttp import GitHubAPI as BaseGitHubAPI from .log import STATUS_OK, inject_status_color, logger TOKEN_ENDPOINT = "access_tokens" class GitHubAPI(BaseGitHubAPI): # pragma: no cover LOG_FORMAT = 'api "%(method)s %(path)s %(data)s %(version)s" => %(status)s' async def _request( self, method: str, url: str, headers: Mapping[str, str], body: bytes = b"" ) -> Tuple[int, Mapping[str, str], bytes]: """This is the same method as `gidgethub.aiohttp.GitHubAPI._request` with the addition of logging the request-response cycle. No need to cover this function. The logger information will be useful to know what actions the bot made. INFO: All actions taken by the bot. ERROR: Unknown error in the API call. """ async with self._session.request( method, url, headers=headers, data=body ) as response: # We don't want to reveal the `installation_id` from the URL. if response.url.name != TOKEN_ENDPOINT: inject_status_color(response.status) data = "NONE" if body == b"" else body.decode(UTF_8_CHARSET) loggerlevel = ( logger.info if response.status in STATUS_OK else logger.error ) loggerlevel( self.LOG_FORMAT, { "method": method, # host is always going to be 'api.github.com'. "path": response.url.raw_path_qs, "version": f"{response.url.scheme.upper()}/" f"{response.version.major}.{response.version.minor}", "data": data, "status": f"{response.status}:{response.reason}", }, ) return response.status, response.headers, await response.read()
2.390625
2
pymecompress/codecs.py
python-microscopy/pymecompress
0
12796429
<filename>pymecompress/codecs.py """ numcodecs compatible compression and quantization codecs. """ from . import bcl import numcodecs from numcodecs.abc import Codec class Huffman(Codec): codec_id='pymecompress.huffman' def encode(self, buf): return bcl.huffman_compress_buffer(buf) def decode(self, buf, out=None): return bcl.huffman_decompress_buffer(buf, out) def get_config(self): return {'codec_id': self.codec_id} @classmethod def from_config(cls, config): return cls() numcodecs.register_codec(Huffman) class HuffmanQuant16(Codec): codec_id = 'pymecompress.quant16' def __init__(self, offset=0, scale=1): self._offset = offset self._scale = scale def encode(self, buf): return bcl.huffman_compress_quant_buffer(buf, self._offset, self._scale) def decode(self, buf, out=None): ret = bcl.huffman_decompress_buffer(buf, None) ret = (ret*ret)/self._scale + self._offset if out is None: out = ret else: out[:] = ret return out def get_config(self): return {'codec_id': self.codec_id, 'offset': self._offset, 'scale' : self._scale} @classmethod def from_config(cls, config): return cls(offset=config.get('offset', 0), scale=config.get('scale', 1)) numcodecs.register_codec(HuffmanQuant16)
2.578125
3
payflowpro/__init__.py
pelotoncycle/python-payflowpro
18
12796430
VERSION = (0, 3, 'pre',)
1.257813
1
test.py
narumiruna/pytorch-cpp-extension-example
1
12796431
<filename>test.py import torch from cppexample import normalize, gaussian def main(): x = torch.tensor([1, 2, 3], dtype=torch.float) y = normalize(x) print(y) x = gaussian(x, 0.0, 1.0, 1.0) print(x) if __name__ == '__main__': main()
2.640625
3
randaugment.py
Hayoung93/UDA
0
12796432
import torch import torch.nn as nn from torchvision import transforms as ttf class RandAugment(nn.Module): def __init__(self, N, M): super().__init__() """ rotate shear x shear y translate y translate x autoContrast sharpness identity contrast color brightness eqaulize solarize posterize """ self.N = N self.M = M self.aug_list = [Rotate, ShearX, ShearY, TranslateX, TranslateY, AutoContrast, Sharpness, Identity, Contrast, Color, Brightness, Equalize, Solarize, Posterize] def forward(self, img): self.aug_index = torch.randperm(len(self.aug_list))[:self.N] self.augmentations = nn.ModuleList([]) for aug_id in self.aug_index: self.augmentations.append(self.aug_list[aug_id](self.M)) self.augmentations = nn.Sequential(*self.augmentations) return self.augmentations(img) class Rotate(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M def forward(self, img): return ttf.functional.rotate(img, self.angle) class ShearX(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M - 180 def forward(self, img): return ttf.functional.affine(img, 0, [0, 0], 1, [self.angle, 0]) class ShearY(nn.Module): def __init__(self, M): super().__init__() self.M = M self.angle = 359 / 10 * self.M - 180 def forward(self, img): return ttf.functional.affine(img, 0, [0, 0], 1, [0, self.angle]) class TranslateX(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): try: max_size = img.size()[0] except TypeError: max_size = img.size()[0] return ttf.functional.affine(img, 0, [(max_size - 1) / 10 * self.M, 0], 1, [0, 0]) class TranslateY(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): try: max_size = img.size()[1] except TypeError: max_size = img.size()[1] return ttf.functional.affine(img, 0, [0, (max_size - 1) / 10 * self.M], 1, [0, 0]) class AutoContrast(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.autocontrast(img) class Sharpness(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.adjust_sharpness(img, self.M / 5.) class Identity(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return img class Contrast(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.adjust_contrast(img, self.M / 5.) class Color(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.adjust_saturation(img, self.M / 5.) class Brightness(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.adjust_brightness(img, self.M / 5.) class Equalize(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.equalize(img) class Solarize(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.solarize(img, (10 - self.M) * 25.5) class Posterize(nn.Module): def __init__(self, M): super().__init__() self.M = M def forward(self, img): return ttf.functional.posterize(img, round((10 - self.M) / 10 * 8))
2.390625
2
sipy/test.py
riikkano/protopaja2018
0
12796433
<reponame>riikkano/protopaja2018<gh_stars>0 #Aja konsolissa: py -m unittest test.py import unittest from lib.mittaus import * from lib.classes import load from main import * #Testaa funktiot pääohjelmasta class TestMain(unittest.TestCase): def test_openLoads(self): #Testi tähän pass def test_openPhases(self): #Testi tähön pass def test_openMonthMax(self): #Testi tähän pass #Testaa palauttaako getConsAll() objektin def test_getConsAll(self): result = getConsAll() val = isinstance(result, object) self.assertTrue(val) #Testaa paketin "mittaus" funktiot class TestMittaus(unittest.TestCase): def test_val_to_volt(self): result_1 = val_to_volt(4095) result_2 = val_to_volt(300) result_3 = val_to_volt(2000) self.assertEqual(result_1, 1.1) self.assertEqual(result_2, 0.0806) self.assertEqual(result_3, 0.5372) def test_adc_read(self): sensorPin='P14' result = adc_read(sensorPin) bol = isinstance(result, int) self.assertTrue(bol) self.assertGreaterEqual(result, 0) def test_adc_save(self): #Testi tähän pass #Testaa luokan "load" metodit class Testload(unittest.TestCase): def setUp(self): self.kuorma_1=load(name="Lattialämmitys", ID=12345, sensorPin="P11", relayPin=2, maximumCurrent=10, phase=1, priority=0) self.kuorma_2=load("Kiuas",12346,"P12",2,10,1,0) def tearDown(self): #Testi tähän pass def test_changeRelayPin(self): #Testi tähän pass def test_resetHour(self): #Parempi testi tähän result_1 = self.kuorma_1.resetHour() result_2 = self.kuorma_2.resetHour() self.assertEqual(result_1, 1) self.assertEqual(result_2, 1) def test_getName(self): result_1 = self.kuorma_1.getName() result_2 = self.kuorma_2.getName() self.assertEqual(result_1, self.kuorma_1._load__name) self.assertEqual(result_2, self.kuorma_2._load__name) def test_getCons(self): #Parempi testi tähän result_1 = self.kuorma_1.getCons() result_2 = self.kuorma_2.getCons() self.assertGreaterEqual(result_1, 0) self.assertGreaterEqual(result_2, 0) def test_info(self): #Testi tähän pass if __name__ == "__main__": unittest.main()
2.78125
3
ikats/manager/timeseries_mgr_.py
IKATS/ikats_api
0
12796434
# -*- coding: utf-8 -*- """ Copyright 2019 CS Systèmes d'Information Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import re from ikats.client.datamodel_client import DatamodelClient from ikats.client.datamodel_stub import DatamodelStub from ikats.client.opentsdb_client import OpenTSDBClient from ikats.client.opentsdb_stub import OpenTSDBStub from ikats.exceptions import (IkatsConflictError, IkatsException, IkatsNotFoundError) from ikats.lib import (MDType, check_is_fid_valid, check_is_valid_epoch, check_type) from ikats.manager.generic_mgr_ import IkatsGenericApiEndPoint from ikats.objects import Timeseries NON_INHERITABLE_PATTERN = re.compile("^qual(.)*|ikats(.)*|funcId") class IkatsTimeseriesMgr(IkatsGenericApiEndPoint): """ Ikats EndPoint specific to Timeseries management """ def __init__(self, *args, **kwargs): super(IkatsTimeseriesMgr, self).__init__(*args, **kwargs) if self.api.emulate: self.tsdb_client = OpenTSDBStub(session=self.api.session) self.dm_client = DatamodelStub(session=self.api.session) else: self.tsdb_client = OpenTSDBClient(session=self.api.session) self.dm_client = DatamodelClient(session=self.api.session) def new(self, fid=None, data=None): """ Create an empty local Timeseries (if fid not provided) If fid is set, the identifier will be created to database :param fid: Identifier to create (if provided) :param data: List of data points as numpy array or python 2D-list :type fid: str :type data: list or np.array :returns: the Timeseries object :rtype: Timeseries :raises IkatsConflictError: if *fid* already present in database (use `get` instead of `new`) """ if fid is None: ts = Timeseries(api=self.api) else: ts = self._create_ref(fid=fid) ts.data = data return ts def get(self, fid=None, tsuid=None): """ Returns an existing Timeseries object by providing either its FID or TSUID (only one shall be provided) :param fid: FID of the Timeseries :param tsuid: TSUID of the Timeseries :type fid: str :type tsuid: str :returns: The Timeseries object :rtype: Timeseries :raises ValueError: if both *fid* and *tsuid* are set (or none of them) :raises IkatsNotFoundError: if the identifier was not found in database """ if bool(fid) == bool(tsuid): raise ValueError("fid and tsuid are mutually exclusive") if fid is not None: tsuid = self.fid2tsuid(fid=fid, raise_exception=True) return Timeseries(api=self.api, tsuid=tsuid, fid=fid) def save(self, ts, parent=None, generate_metadata=True, raise_exception=True): """ Import timeseries data points to database or update an existing timeseries with new points if *generate_metadata* is set or if no TSUID is present in *ts* object, the *ikats_start_date*, *ikats_end_date* and *qual_nb_points* will be overwritten by the first point date, last point date and number of points in *ts.data* *parent* is the original timeseries where metadata shall be taken from (except intrinsic ones, eg. *qual_nb_points*) If the timeseries is a new one (object has no tsuid defined), the computation of the metadata is forced Returns a boolean status of the action (True means "OK", False means "errors occurred") :param ts: Timeseries object containing information about what to create :param parent: (optional) Timeseries object of inheritance parent :param generate_metadata: Generate metadata (set to False when doing partial import) (Default: True) :param raise_exception: Indicates if exceptions shall be raised (True, default) or not (False) :type ts: Timeseries :type parent: Timeseries :type generate_metadata: bool :type raise_exception: bool :returns: the status of the action :rtype: bool :raises TypeError: if *ts* is not a valid Timeseries object """ # Input checks check_type(ts, Timeseries, "ts", raise_exception=True) check_type(parent, [Timeseries, None], "parent", raise_exception=True) check_type(generate_metadata, bool, "generate_metadata", raise_exception=True) check_is_fid_valid(ts.fid, raise_exception=True) try: # First, we shall create the TSUID reference (if not provided) if ts.tsuid is None: ts.tsuid = self._create_ref(ts.fid).tsuid # If the TS is fresh, we force the creation of the metadata generate_metadata = True # Add points to this TSUID start_date, end_date, nb_points = self.tsdb_client.add_points(tsuid=ts.tsuid, data=ts.data) if generate_metadata: # ikats_start_date self.dm_client.metadata_update(tsuid=ts.tsuid, name='ikats_start_date', value=start_date, data_type=MDType.DATE, force_create=True) ts.metadata.set(name='ikats_start_date', value=start_date, dtype=MDType.DATE) # ikats_end_date self.dm_client.metadata_update(tsuid=ts.tsuid, name='ikats_end_date', value=end_date, data_type=MDType.DATE, force_create=True) ts.metadata.set(name='ikats_end_date', value=end_date, dtype=MDType.DATE) # qual_nb_points self.dm_client.metadata_update(tsuid=ts.tsuid, name='qual_nb_points', value=nb_points, data_type=MDType.NUMBER, force_create=True) ts.metadata.set(name='qual_nb_points', value=nb_points, dtype=MDType.NUMBER) # Inherit from parent when it is defined if parent is not None: self.inherit(ts=ts, parent=parent) except IkatsException: if raise_exception: raise return False return True def delete(self, ts, raise_exception=True): """ Delete the data corresponding to a *ts* object and all associated metadata Note that if timeseries belongs to a dataset it will not be removed Returns a boolean status of the action (True means "OK", False means "errors occurred") :param ts: tsuid of the timeseries or Timeseries Object to remove :param raise_exception: (optional) Indicates if IKATS exceptions shall be raised (True, default) or not (False) :type ts: str or Timeseries :type raise_exception: bool :returns: the status of the action :rtype: bool :raises TypeError: if *ts* is not a str nor a Timeseries :raises IkatsNotFoundError: if timeseries is not found on server :raises IkatsConflictError: if timeseries belongs to -at least- one dataset """ check_type(value=ts, allowed_types=[str, Timeseries], var_name="ts", raise_exception=True) tsuid = ts if isinstance(ts, Timeseries): if ts.tsuid is not None: tsuid = ts.tsuid elif ts.fid is not None: try: tsuid = self.dm_client.get_tsuid_from_fid(fid=ts.fid) except IkatsException: if raise_exception: raise return False else: raise ValueError("Timeseries object shall have set at least tsuid or fid") return self.dm_client.ts_delete(tsuid=tsuid, raise_exception=raise_exception) def list(self): """ Get the list of all Timeseries from database .. note:: This action may take a while :returns: the list of Timeseries object :rtype: list """ return [Timeseries(tsuid=x["tsuid"], fid=x["funcId"], api=self.api) for x in self.dm_client.get_ts_list()] def fetch(self, ts, sd=None, ed=None): """ Retrieve the data corresponding to a Timeseries object as a numpy array .. note:: if omitted, *sd* (start date) and *ed* (end date) will be retrieved from metadata if you want a fixed windowed range, set *sd* and *ed* manually (but be aware that the TS may be not completely gathered) :param ts: Timeseries object :param sd: (optional) starting date (timestamp in ms from epoch) :param ed: (optional) ending date (timestamp in ms from epoch) :type ts: Timeseries :type sd: int or None :type ed: int or None :returns: The data points :rtype: np.array :raises TypeError: if *ts* is not a Timeseries object :raises TypeError: if *sd* is not an int :raises TypeError: if *ed* is not an int :raises IkatsNotFoundError: if TS data points couldn't be retrieved properly """ check_type(value=ts, allowed_types=Timeseries, var_name="ts", raise_exception=True) check_type(value=sd, allowed_types=[int, None], var_name="sd", raise_exception=True) check_type(value=ed, allowed_types=[int, None], var_name="ed", raise_exception=True) if sd is None: sd = ts.metadata.get(name="ikats_start_date") check_is_valid_epoch(value=sd, raise_exception=True) if ed is None: ed = ts.metadata.get(name="ikats_end_date") check_is_valid_epoch(value=ed, raise_exception=True) try: data_points = self.tsdb_client.get_ts_by_tsuid(tsuid=ts.tsuid, sd=sd, ed=ed) # Return the points return data_points except ValueError: raise IkatsNotFoundError("TS data points couldn't be retrieved properly") def inherit(self, ts, parent): """ Make a timeseries inherit of parent's metadata according to a pattern (not all metadata inherited) :param ts: TS object in IKATS (which will inherit) :param parent: TS object in IKATS of inheritance parent :type ts: Timeseries :param parent: Timeseries """ try: result = self.dm_client.metadata_get_typed([parent.tsuid])[parent.tsuid] for meta_name in result: # Flag metadata as "not deleted" result[meta_name]["deleted"] = False if not NON_INHERITABLE_PATTERN.match(meta_name): self.dm_client.metadata_create(tsuid=ts.tsuid, name=meta_name, value=result[meta_name]["value"], data_type=MDType(result[meta_name]["dtype"]), force_update=True) except(ValueError, TypeError, SystemError) as exception: self.api.session.log.warning( "Can't get metadata of parent TS (%s), nothing will be inherited; \nreason: %s", parent, exception) def find_from_meta(self, constraint=None): """ From a metadata constraint provided in parameter, the method get a TS list matching these constraints Example of constraint: | { | frequency: [1, 2], | flight_phase: 8 | } will find the TS having the following metadata: | (frequency == 1 OR frequency == 2) | AND | flight_phase == 8 :param constraint: constraint definition :type constraint: dict :returns: list of TSUID matching the constraints :rtype: dict :raises TypeError: if *constraint* is not a dict """ return self.dm_client.get_ts_from_metadata(constraint=constraint) def tsuid2fid(self, tsuid, raise_exception=True): """ Retrieve the functional ID associated to the tsuid param. :param tsuid: one tsuid value :param raise_exception: Allow to specify if the action shall assert if not found or not :type tsuid: str :type raise_exception: bool :returns: retrieved functional identifier value :rtype: str :raises TypeError: if tsuid is not a defined str :raises ValueError: no functional ID matching the tsuid :raises ServerError: http answer with status : 500 <= status < 600 """ try: return self.dm_client.get_func_id_from_tsuid(tsuid=tsuid) except IkatsException: if raise_exception: raise return None def fid2tsuid(self, fid, raise_exception=True): """ Retrieve the TSUID associated to the functional ID param. :param fid: the functional Identifier :param raise_exception: Allow to specify if the action shall assert if not found or not :type fid: str :type raise_exception: bool :returns: retrieved TSUID value or None if not found :rtype: str :raises TypeError: if fid is not str :raises IkatsNotFoundError: no match """ check_is_fid_valid(fid=fid) # Check if fid already associated to an existing tsuid try: return self.dm_client.get_tsuid_from_fid(fid=fid) except IkatsException: if raise_exception: raise return None def _create_ref(self, fid): """ Create a reference of timeseries in temporal data database and associate it to fid in temporal database for future use. Shall be used before create method in case of parallel creation of data (import data via spark for example) :param fid: Functional Identifier of the TS in Ikats :type fid: str :returns: A prepared Timeseries object :rtype: Timeseries :raises IkatsConflictError: if FID already present in database (use `get` instead of `new`) """ check_is_fid_valid(fid, raise_exception=True) try: # Check if fid already associated to an existing tsuid tsuid = self.dm_client.get_tsuid_from_fid(fid=fid) # if fid already exists in database, raise a conflict exception raise IkatsConflictError("%s already associated to an existing tsuid: %s" % (fid, tsuid)) except IkatsNotFoundError: # Creation of a new tsuid metric, tags = self.tsdb_client.gen_metric_tags() tsuid = self.tsdb_client.assign_metric(metric=metric, tags=tags) # finally importing tsuid/fid pair in non temporal database self.dm_client.import_fid(tsuid=tsuid, fid=fid) return Timeseries(tsuid=tsuid, fid=fid, api=self.api)
1.78125
2
roc.py
dmitryduev/deep-asteroids
8
12796435
import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "1" import tensorflow as tf from keras.models import model_from_json import json from sklearn.metrics import roc_curve, auc, confusion_matrix import numpy as np import pandas as pd from copy import deepcopy import itertools from utils import load_data # import matplotlib # matplotlib.use('agg') import matplotlib.pyplot as plt def load_model_helper(path, model_base_name): # return load_model(path) with open(os.path.join(path, f'{model_base_name}.architecture.json'), 'r') as json_file: loaded_model_json = json_file.read() m = model_from_json(loaded_model_json) m.load_weights(os.path.join(path, f'{model_base_name}.weights.h5')) return m def thres(v, thr: float = 0.5): v_ = np.array(deepcopy(v)) v_[v_ >= thr] = 1 v_[v_ < thr] = 0 return v_ if __name__ == '__main__': tf.keras.backend.clear_session() # path_base = '/Users/dmitryduev/_caltech/python/deep-asteroids/' path_base = './' with open(os.path.join(path_base, 'service/code/config.json')) as f: config = json.load(f) # models = config['models'] models = config['models_201901'] model_names = list(models.keys()) path_models = os.path.join(path_base, 'service/models') c_families = {'rb': '5b96af9c0354c9000b0aea36', 'sl': '5b99b2c6aec3c500103a14de', 'kd': '5be0ae7958830a0018821794', 'os': '5c05bbdc826480000a95c0bf'} # c_families = {'rb': '5b96af9c0354c9000b0aea36', # 'sl': '5b99b2c6aec3c500103a14de', # 'kd': '5be0ae7958830a0018821794'} # c_families = {'rb': '5b96af9c0354c9000b0aea36'} path_data = './data' # mpl colors: colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] # [u'#1f77b4', u'#ff7f0e', u'#2ca02c', u'#d62728', u'#9467bd', # u'#8c564b', u'#e377c2', u'#7f7f7f', u'#bcbd22', u'#17becf'] # line styles: line_styles = ['-', '--', ':'] # thresholds score_thresholds = [0.99, 0.9, 0.5, 0.1, 0.01] # ROC fig = plt.figure(figsize=(14, 5)) fig.subplots_adjust(bottom=0.09, left=0.05, right=0.70, top=0.98, wspace=0.2, hspace=0.2) lw = 1.6 # ROCs ax = fig.add_subplot(1, 2, 1) # zoomed ROCs ax2 = fig.add_subplot(1, 2, 2) ax.plot([0, 1], [0, 1], color='#333333', lw=lw, linestyle='--') ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.set_xlabel('False Positive Rate (Contamination)') ax.set_ylabel('True Positive Rate (Sensitivity)') # ax.legend(loc="lower right") # ax.legend(loc="best") ax.grid(True) ax2.set_xlim([0.0, .2]) ax2.set_ylim([0.8, 1.0]) ax2.set_xlabel('False Positive Rate (Contamination)') ax2.set_ylabel('True Positive Rate (Sensitivity)') # ax.legend(loc="lower right") # ax2.legend(loc="best") ax2.grid(True) # Confusion matrices fig2 = plt.figure() fig2.subplots_adjust(bottom=0.06, left=0.01, right=1.0, top=0.93, wspace=0.0, hspace=0.12) cn = 0 for cfi, c_family in enumerate(c_families): project_id = c_families[c_family] print(c_family, project_id) # load data x_train, y_train, x_test, y_test, classes = load_data(path=path_data, project_id=project_id, binary=True, grayscale=True, resize=(144, 144), test_size=0.1, verbose=True, random_state=42) mn = [m_ for m_ in model_names if c_family in m_] n_mn = len(mn) for ii, model_name in enumerate(mn): print(f'loading model {model_name}: {models[model_name]}') m = load_model_helper(path_models, models[model_name]) y = m.predict(x_test, batch_size=32, verbose=True) # for thr in (0.5, 0.9): for thr in (0.5,): labels_pred = thres(y, thr=thr) confusion_matr = confusion_matrix(y_test, labels_pred) confusion_matr_normalized = confusion_matr.astype('float') / confusion_matr.sum(axis=1)[:, np.newaxis] print(f'Threshold: {thr}') print('Confusion matrix:') print(confusion_matr) print('Normalized confusion matrix:') print(confusion_matr_normalized) fpr, tpr, thresholds = roc_curve(y_test, y) roc_auc = auc(fpr, tpr) ax.plot(fpr, tpr, line_styles[ii], color=colors[cfi], lw=lw) ax2.plot(fpr, tpr, line_styles[ii], color=colors[cfi], lw=lw, label=f'{model_name} curve (area = {roc_auc:.5f})') # plot thresholds for it, thr in enumerate(score_thresholds): x_ = np.interp(thr, thresholds[::-1], fpr) y_ = np.interp(thr, thresholds[::-1], tpr) # print(thr, x_, y_) if cfi == 0 and ii == 0: ax.plot(x_, y_, '.', markersize=8, color=colors[-(it + 1)], label=f'Threshold: {1-thr:.2f}') else: ax.plot(x_, y_, '.', markersize=8, color=colors[-(it + 1)]) ax2.plot(x_, y_, 'o', markersize=8, color=colors[-(it + 1)]) # plot confusion matrices ax_ = fig2.add_subplot(3, 2 * len(c_families), ii * 8 + cfi * 2 + 1) ax2_ = fig2.add_subplot(3, 2 * len(c_families), ii * 8 + cfi * 2 + 2) ax_.imshow(confusion_matr, interpolation='nearest', cmap=plt.cm.Blues) ax2_.imshow(confusion_matr_normalized, interpolation='nearest', cmap=plt.cm.Blues) tick_marks = np.arange(2) # ax_.set_xticks(tick_marks, tick_marks) # ax_.set_yticks(tick_marks, tick_marks) # ax2_.set_xticks(tick_marks, tick_marks) # ax2_.set_yticks(tick_marks, tick_marks) # # ax_.xaxis.set_visible(False) # ax_.yaxis.set_visible(False) # ax2_.xaxis.set_visible(False) # ax2_.yaxis.set_visible(False) ax_.axis('off') ax2_.axis('off') thresh = confusion_matr.max() / 2. thresh_norm = confusion_matr_normalized.max() / 2. for i, j in itertools.product(range(confusion_matr.shape[0]), range(confusion_matr.shape[1])): ax_.text(j, i, format(confusion_matr[i, j], 'd'), horizontalalignment="center", color="white" if confusion_matr[i, j] > thresh else "black") ax2_.text(j, i, format(confusion_matr_normalized[i, j], '.2f'), horizontalalignment="center", color="white" if confusion_matr_normalized[i, j] > thresh_norm else "black") # if ii == 0: # break ax.legend(loc='lower right') ax2.legend(bbox_to_anchor=(1.04, 1), loc="upper left") fig.savefig(f'./roc_rb_sl_kd.png', dpi=300) fig2.savefig(f'./cm_rb_sl_kd.png', dpi=300) plt.show()
1.898438
2
test_field.py
pwcberry/footy-simulator-python
0
12796436
<gh_stars>0 import unittest from field import * from data import Team, Skills from status import BallStatus, FieldZone, LateralDirection, Possession class TestField(unittest.TestCase): def setUp(self): self.team_a = Team( # name "AAA", # forwards Skills(0.5, 0.5, 0.5), # mid_field Skills(0.5, 0.5, 0.5), # backs Skills(0.5, 0.5, 0.5), # ruck Skills(0.5, 0.5, 0.5), ) self.team_b = Team("BBB", Skills(0.5, 0.5, 0.5), Skills(0.5, 0.5, 0.5), Skills(0.5, 0.5, 0.5), Skills(0.5, 0.5, 0.5), ) def test_init(self): f = Field(self.team_a, self.team_b) self.assertEqual(f.position, Position(FIELD_CENTER_X, FIELD_CENTER_Y)) self.assertEqual(f.ball_status, BallStatus.BOUNCE) self.assertEqual(f.possession, Possession.IN_CONTENTION) self.assertEqual(f.teams[0], self.team_a) self.assertEqual(f.teams[1], self.team_b) def test_set_position(self): f = Field(self.team_a, self.team_b) f.set_position(Position(4, 3)) self.assertEqual(f.position.x, 4) self.assertEqual(f.position.y, 3) def test_set_position_x_less_than_minimum(self): f = Field(self.team_a, self.team_b) f.set_position(Position(-1, 3)) self.assertEqual(f.position.x, FIELD_MIN_X) def test_set_position_x_greater_than_maximum(self): f = Field(self.team_a, self.team_b) f.set_position(Position(10, 3)) self.assertEqual(f.position.x, FIELD_MAX_X) def test_set_position_x_less_than_minimum(self): f = Field(self.team_a, self.team_b) f.set_position(Position(3, 0)) self.assertEqual(f.position.y, FIELD_MIN_Y) def test_set_position_x_greater_than_maximum(self): f = Field(self.team_a, self.team_b) f.set_position(Position(3, 6)) self.assertEqual(f.position.y, FIELD_MAX_Y) def test_centre_ball(self): f = Field(self.team_a, self.team_b) f.centre_ball() self.assertEqual(f.position, Position(FIELD_CENTER_X, FIELD_CENTER_Y)) self.assertEqual(f.ball_status, BallStatus.BOUNCE) self.assertEqual(f.possession, Possession.IN_CONTENTION) def test_get_field_zone_at_bounce(self): f = Field(self.team_a, self.team_b) zone = f.get_field_zone() self.assertEqual(zone, FieldZone.RUCK) def test_get_field_zone_when_moving(self): f = Field(self.team_a, self.team_b) f.ball_status = BallStatus.MOVING f.set_position(Position(1, 1)) zone = f.get_field_zone() self.assertEqual(zone, FieldZone.FORWARDS) f.set_position(Position(3, 2)) zone = f.get_field_zone() self.assertEqual(zone, FieldZone.FORWARDS) f.set_position(Position(4, 3)) zone = f.get_field_zone() self.assertEqual(zone, FieldZone.MID_FIELD) f.set_position(Position(6, 4)) zone = f.get_field_zone() self.assertEqual(zone, FieldZone.MID_FIELD) f.set_position(Position(7, 5)) zone = f.get_field_zone() self.assertEqual(zone, FieldZone.BACKS) f.set_position(Position(9, 4)) zone = f.get_field_zone() self.assertEqual(zone, FieldZone.BACKS) def test_get_field_zone_when_ball_is_thrown_in(self): f = Field(self.team_a, self.team_b) f.ball_status = BallStatus.THROW_IN f.set_position(Position(6, 1)) zone = f.get_field_zone() self.assertEqual(zone, FieldZone.RUCK) def test_field_status_returns_possession_and_ball_status(self): f = Field(self.team_a, self.team_b) fs = f.field_status self.assertEqual(fs.possession, Possession.IN_CONTENTION) self.assertEqual(fs.ball_status, BallStatus.BOUNCE) # Move forwards def test_move_forward_when_possession_is_home_team_and_in_field_center(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.move_forward() self.assertEqual(f.position.x, FIELD_CENTER_X - 1) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_forward_when_possession_is_home_team_and_at_forward_limit(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.set_position(Position(FIELD_MIN_X, FIELD_CENTER_Y)) f.move_forward() self.assertEqual(f.position.x, FIELD_MIN_X) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_forward_when_possession_is_home_team_and_in_back_field(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.set_position(Position(FIELD_MAX_X, FIELD_CENTER_Y)) f.move_forward() self.assertEqual(f.position.x, FIELD_MAX_X - 1) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_forward_when_possession_is_away_team_and_in_field_center(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.move_forward() self.assertEqual(f.position.x, FIELD_CENTER_X + 1) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_forward_when_possession_is_away_team_and_at_forward_limit(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.set_position(Position(FIELD_MAX_X, FIELD_CENTER_Y)) f.move_forward() self.assertEqual(f.position.x, FIELD_MAX_X) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_forward_when_possession_is_away_team_and_in_back_field(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.set_position(Position(FIELD_MIN_X, FIELD_CENTER_Y)) f.move_forward() self.assertEqual(f.position.x, FIELD_MIN_X + 1) self.assertEqual(f.position.y, FIELD_CENTER_Y) ## Move backwards def test_move_backward_when_possession_is_home_team_and_in_field_center(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.move_backward() self.assertEqual(f.position.x, FIELD_CENTER_X + 1) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_backward_when_possession_is_home_team_and_at_back_limit(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.set_position(Position(FIELD_MAX_X, FIELD_CENTER_Y)) f.move_backward() self.assertEqual(f.position.x, FIELD_MAX_X) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_backward_when_possession_is_home_team_and_in_forward_field(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.set_position(Position(FIELD_MIN_X, FIELD_CENTER_Y)) f.move_backward() self.assertEqual(f.position.x, FIELD_MIN_X + 1) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_backward_when_possession_is_away_team_and_in_field_center(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.move_backward() self.assertEqual(f.position.x, FIELD_CENTER_X - 1) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_backward_when_possession_is_away_team_and_at_back_limit(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.set_position(Position(FIELD_MIN_X, FIELD_CENTER_Y)) f.move_backward() self.assertEqual(f.position.x, FIELD_MIN_X) self.assertEqual(f.position.y, FIELD_CENTER_Y) def test_move_backward_when_possession_is_away_team_and_in_forward_field(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.set_position(Position(FIELD_MAX_X, FIELD_CENTER_Y)) f.move_backward() self.assertEqual(f.position.x, FIELD_MAX_X - 1) self.assertEqual(f.position.y, FIELD_CENTER_Y) # Move laterally - HOME_TEAM def test_move_laterally_when_possession_is_home_team_and_in_field_center_and_move_left(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.move_laterally(LateralDirection.LEFT) self.assertEqual(f.position.x, FIELD_CENTER_X) self.assertEqual(f.position.y, FIELD_CENTER_Y + 1) def test_move_laterally_when_possession_is_home_team_and_in_field_center_and_move_right(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.move_laterally(LateralDirection.RIGHT) self.assertEqual(f.position.x, FIELD_CENTER_X) self.assertEqual(f.position.y, FIELD_CENTER_Y - 1) def test_move_laterally_when_possession_is_home_team_and_at_left_side_and_move_left(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.set_position(Position(FIELD_CENTER_X, FIELD_MAX_Y)) f.move_laterally(LateralDirection.LEFT) self.assertEqual(f.position.x, FIELD_CENTER_X) self.assertEqual(f.position.y, FIELD_MAX_Y) def test_move_laterally_when_possession_is_home_team_and_at_right_side_and_move_right(self): f = Field(self.team_a, self.team_b) f.possession = Possession.HOME_TEAM f.set_position(Position(FIELD_CENTER_X, FIELD_MIN_Y)) f.move_laterally(LateralDirection.RIGHT) self.assertEqual(f.position.x, FIELD_CENTER_X) self.assertEqual(f.position.y, FIELD_MIN_Y) # Move laterally - AWAY_TEAM def test_move_laterally_when_possession_is_away_team_and_in_field_center_and_move_left(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.move_laterally(LateralDirection.LEFT) self.assertEqual(f.position.x, FIELD_CENTER_X) self.assertEqual(f.position.y, FIELD_CENTER_Y - 1) def test_move_laterally_when_possession_is_away_team_and_in_field_center_and_move_right(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.move_laterally(LateralDirection.RIGHT) self.assertEqual(f.position.x, FIELD_CENTER_X) self.assertEqual(f.position.y, FIELD_CENTER_Y + 1) def test_move_laterally_when_possession_is_away_team_and_at_left_side_and_move_left(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.set_position(Position(FIELD_CENTER_X, FIELD_MIN_Y)) f.move_laterally(LateralDirection.LEFT) self.assertEqual(f.position.x, FIELD_CENTER_X) self.assertEqual(f.position.y, FIELD_MIN_Y) def test_move_laterally_when_possession_is_away_team_and_at_right_side_and_move_right(self): f = Field(self.team_a, self.team_b) f.possession = Possession.AWAY_TEAM f.set_position(Position(FIELD_CENTER_X, FIELD_MAX_Y)) f.move_laterally(LateralDirection.RIGHT) self.assertEqual(f.position.x, FIELD_CENTER_X) self.assertEqual(f.position.y, FIELD_MAX_Y) if __name__ == "__main__": unittest.main()
2.96875
3
trustpayments/models/subscription_version.py
TrustPayments/python-sdk
2
12796437
# coding: utf-8 import pprint import six from enum import Enum class SubscriptionVersion: swagger_types = { 'activated_on': 'datetime', 'billing_currency': 'str', 'component_configurations': 'list[SubscriptionComponentConfiguration]', 'created_on': 'datetime', 'expected_last_period_end': 'datetime', 'failed_on': 'datetime', 'id': 'int', 'language': 'str', 'linked_space_id': 'int', 'planned_purge_date': 'datetime', 'planned_termination_date': 'datetime', 'product_version': 'SubscriptionProductVersion', 'selected_components': 'list[SubscriptionProductComponent]', 'state': 'SubscriptionVersionState', 'subscription': 'Subscription', 'terminated_on': 'datetime', 'terminating_on': 'datetime', 'termination_issued_on': 'datetime', 'version': 'int', } attribute_map = { 'activated_on': 'activatedOn','billing_currency': 'billingCurrency','component_configurations': 'componentConfigurations','created_on': 'createdOn','expected_last_period_end': 'expectedLastPeriodEnd','failed_on': 'failedOn','id': 'id','language': 'language','linked_space_id': 'linkedSpaceId','planned_purge_date': 'plannedPurgeDate','planned_termination_date': 'plannedTerminationDate','product_version': 'productVersion','selected_components': 'selectedComponents','state': 'state','subscription': 'subscription','terminated_on': 'terminatedOn','terminating_on': 'terminatingOn','termination_issued_on': 'terminationIssuedOn','version': 'version', } _activated_on = None _billing_currency = None _component_configurations = None _created_on = None _expected_last_period_end = None _failed_on = None _id = None _language = None _linked_space_id = None _planned_purge_date = None _planned_termination_date = None _product_version = None _selected_components = None _state = None _subscription = None _terminated_on = None _terminating_on = None _termination_issued_on = None _version = None def __init__(self, **kwargs): self.discriminator = None self.activated_on = kwargs.get('activated_on', None) self.billing_currency = kwargs.get('billing_currency', None) self.component_configurations = kwargs.get('component_configurations', None) self.created_on = kwargs.get('created_on', None) self.expected_last_period_end = kwargs.get('expected_last_period_end', None) self.failed_on = kwargs.get('failed_on', None) self.id = kwargs.get('id', None) self.language = kwargs.get('language', None) self.linked_space_id = kwargs.get('linked_space_id', None) self.planned_purge_date = kwargs.get('planned_purge_date', None) self.planned_termination_date = kwargs.get('planned_termination_date', None) self.product_version = kwargs.get('product_version', None) self.selected_components = kwargs.get('selected_components', None) self.state = kwargs.get('state', None) self.subscription = kwargs.get('subscription', None) self.terminated_on = kwargs.get('terminated_on', None) self.terminating_on = kwargs.get('terminating_on', None) self.termination_issued_on = kwargs.get('termination_issued_on', None) self.version = kwargs.get('version', None) @property def activated_on(self): """Gets the activated_on of this SubscriptionVersion. :return: The activated_on of this SubscriptionVersion. :rtype: datetime """ return self._activated_on @activated_on.setter def activated_on(self, activated_on): """Sets the activated_on of this SubscriptionVersion. :param activated_on: The activated_on of this SubscriptionVersion. :type: datetime """ self._activated_on = activated_on @property def billing_currency(self): """Gets the billing_currency of this SubscriptionVersion. The subscriber is charged in the billing currency. The billing currency has to be one of the enabled currencies on the subscription product. :return: The billing_currency of this SubscriptionVersion. :rtype: str """ return self._billing_currency @billing_currency.setter def billing_currency(self, billing_currency): """Sets the billing_currency of this SubscriptionVersion. The subscriber is charged in the billing currency. The billing currency has to be one of the enabled currencies on the subscription product. :param billing_currency: The billing_currency of this SubscriptionVersion. :type: str """ self._billing_currency = billing_currency @property def component_configurations(self): """Gets the component_configurations of this SubscriptionVersion. :return: The component_configurations of this SubscriptionVersion. :rtype: list[SubscriptionComponentConfiguration] """ return self._component_configurations @component_configurations.setter def component_configurations(self, component_configurations): """Sets the component_configurations of this SubscriptionVersion. :param component_configurations: The component_configurations of this SubscriptionVersion. :type: list[SubscriptionComponentConfiguration] """ self._component_configurations = component_configurations @property def created_on(self): """Gets the created_on of this SubscriptionVersion. :return: The created_on of this SubscriptionVersion. :rtype: datetime """ return self._created_on @created_on.setter def created_on(self, created_on): """Sets the created_on of this SubscriptionVersion. :param created_on: The created_on of this SubscriptionVersion. :type: datetime """ self._created_on = created_on @property def expected_last_period_end(self): """Gets the expected_last_period_end of this SubscriptionVersion. The expected last period end is the date on which the projected end date of the last period is. This is only a projection and as such the actual date may be different. :return: The expected_last_period_end of this SubscriptionVersion. :rtype: datetime """ return self._expected_last_period_end @expected_last_period_end.setter def expected_last_period_end(self, expected_last_period_end): """Sets the expected_last_period_end of this SubscriptionVersion. The expected last period end is the date on which the projected end date of the last period is. This is only a projection and as such the actual date may be different. :param expected_last_period_end: The expected_last_period_end of this SubscriptionVersion. :type: datetime """ self._expected_last_period_end = expected_last_period_end @property def failed_on(self): """Gets the failed_on of this SubscriptionVersion. :return: The failed_on of this SubscriptionVersion. :rtype: datetime """ return self._failed_on @failed_on.setter def failed_on(self, failed_on): """Sets the failed_on of this SubscriptionVersion. :param failed_on: The failed_on of this SubscriptionVersion. :type: datetime """ self._failed_on = failed_on @property def id(self): """Gets the id of this SubscriptionVersion. The ID is the primary key of the entity. The ID identifies the entity uniquely. :return: The id of this SubscriptionVersion. :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this SubscriptionVersion. The ID is the primary key of the entity. The ID identifies the entity uniquely. :param id: The id of this SubscriptionVersion. :type: int """ self._id = id @property def language(self): """Gets the language of this SubscriptionVersion. :return: The language of this SubscriptionVersion. :rtype: str """ return self._language @language.setter def language(self, language): """Sets the language of this SubscriptionVersion. :param language: The language of this SubscriptionVersion. :type: str """ self._language = language @property def linked_space_id(self): """Gets the linked_space_id of this SubscriptionVersion. The linked space id holds the ID of the space to which the entity belongs to. :return: The linked_space_id of this SubscriptionVersion. :rtype: int """ return self._linked_space_id @linked_space_id.setter def linked_space_id(self, linked_space_id): """Sets the linked_space_id of this SubscriptionVersion. The linked space id holds the ID of the space to which the entity belongs to. :param linked_space_id: The linked_space_id of this SubscriptionVersion. :type: int """ self._linked_space_id = linked_space_id @property def planned_purge_date(self): """Gets the planned_purge_date of this SubscriptionVersion. The planned purge date indicates when the entity is permanently removed. When the date is null the entity is not planned to be removed. :return: The planned_purge_date of this SubscriptionVersion. :rtype: datetime """ return self._planned_purge_date @planned_purge_date.setter def planned_purge_date(self, planned_purge_date): """Sets the planned_purge_date of this SubscriptionVersion. The planned purge date indicates when the entity is permanently removed. When the date is null the entity is not planned to be removed. :param planned_purge_date: The planned_purge_date of this SubscriptionVersion. :type: datetime """ self._planned_purge_date = planned_purge_date @property def planned_termination_date(self): """Gets the planned_termination_date of this SubscriptionVersion. :return: The planned_termination_date of this SubscriptionVersion. :rtype: datetime """ return self._planned_termination_date @planned_termination_date.setter def planned_termination_date(self, planned_termination_date): """Sets the planned_termination_date of this SubscriptionVersion. :param planned_termination_date: The planned_termination_date of this SubscriptionVersion. :type: datetime """ self._planned_termination_date = planned_termination_date @property def product_version(self): """Gets the product_version of this SubscriptionVersion. :return: The product_version of this SubscriptionVersion. :rtype: SubscriptionProductVersion """ return self._product_version @product_version.setter def product_version(self, product_version): """Sets the product_version of this SubscriptionVersion. :param product_version: The product_version of this SubscriptionVersion. :type: SubscriptionProductVersion """ self._product_version = product_version @property def selected_components(self): """Gets the selected_components of this SubscriptionVersion. :return: The selected_components of this SubscriptionVersion. :rtype: list[SubscriptionProductComponent] """ return self._selected_components @selected_components.setter def selected_components(self, selected_components): """Sets the selected_components of this SubscriptionVersion. :param selected_components: The selected_components of this SubscriptionVersion. :type: list[SubscriptionProductComponent] """ self._selected_components = selected_components @property def state(self): """Gets the state of this SubscriptionVersion. :return: The state of this SubscriptionVersion. :rtype: SubscriptionVersionState """ return self._state @state.setter def state(self, state): """Sets the state of this SubscriptionVersion. :param state: The state of this SubscriptionVersion. :type: SubscriptionVersionState """ self._state = state @property def subscription(self): """Gets the subscription of this SubscriptionVersion. :return: The subscription of this SubscriptionVersion. :rtype: Subscription """ return self._subscription @subscription.setter def subscription(self, subscription): """Sets the subscription of this SubscriptionVersion. :param subscription: The subscription of this SubscriptionVersion. :type: Subscription """ self._subscription = subscription @property def terminated_on(self): """Gets the terminated_on of this SubscriptionVersion. :return: The terminated_on of this SubscriptionVersion. :rtype: datetime """ return self._terminated_on @terminated_on.setter def terminated_on(self, terminated_on): """Sets the terminated_on of this SubscriptionVersion. :param terminated_on: The terminated_on of this SubscriptionVersion. :type: datetime """ self._terminated_on = terminated_on @property def terminating_on(self): """Gets the terminating_on of this SubscriptionVersion. :return: The terminating_on of this SubscriptionVersion. :rtype: datetime """ return self._terminating_on @terminating_on.setter def terminating_on(self, terminating_on): """Sets the terminating_on of this SubscriptionVersion. :param terminating_on: The terminating_on of this SubscriptionVersion. :type: datetime """ self._terminating_on = terminating_on @property def termination_issued_on(self): """Gets the termination_issued_on of this SubscriptionVersion. :return: The termination_issued_on of this SubscriptionVersion. :rtype: datetime """ return self._termination_issued_on @termination_issued_on.setter def termination_issued_on(self, termination_issued_on): """Sets the termination_issued_on of this SubscriptionVersion. :param termination_issued_on: The termination_issued_on of this SubscriptionVersion. :type: datetime """ self._termination_issued_on = termination_issued_on @property def version(self): """Gets the version of this SubscriptionVersion. The version number indicates the version of the entity. The version is incremented whenever the entity is changed. :return: The version of this SubscriptionVersion. :rtype: int """ return self._version @version.setter def version(self, version): """Sets the version of this SubscriptionVersion. The version number indicates the version of the entity. The version is incremented whenever the entity is changed. :param version: The version of this SubscriptionVersion. :type: int """ self._version = version def to_dict(self): result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) elif isinstance(value, Enum): result[attr] = value.value else: result[attr] = value if issubclass(SubscriptionVersion, dict): for key, value in self.items(): result[key] = value return result def to_str(self): return pprint.pformat(self.to_dict()) def __repr__(self): return self.to_str() def __eq__(self, other): if not isinstance(other, SubscriptionVersion): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
1.695313
2
Janeiro/008-Digitos-Pares.py
brenodt/Desafio-365-dias-programando
0
12796438
"""Exercício 8: Escreva uma função que receba dois números inteiros (a e b), e retorne uma lista contendo todos os números inteiros cujos dígitos são todos pares (a e b inclusos)""" def digitos_pares(valor_inicial: int = 0, valor_final: int = 1000): saida = [] # usando (valor final + 1) pois a função range não inclui o valor final por definição for numero in range(valor_inicial, valor_final + 1): digitos_str = str(numero) check = True # essa variável se manterá como True se todos os digitos forem positivos for digito in digitos_str: if int(digito) % 2 != 0: # usando operador modulo pra determinar se o número é par check = False break # após o primeiro dígito ímpar, sai do for loop if check: # se o número é par, adiciona ele à lista saida.append(numero) return saida inicio = 0 fim = 30 print(digitos_pares(inicio, fim))
3.96875
4
trefoil/examples/csv_pivot.py
icpac-igad/trefoil
9
12796439
""" Example to demonstrate creating a pivot table from the output of zonal stats CLI """ import time import pandas # Return a pipe-delimited combination of value from every column up through zone def get_key(row): key_parts = [] for col in row.keys(): if col == 'zone': return '|'.join(key_parts) key_parts.append(str(row[col])) start = time.time() infilename = '/tmp/test.csv' df = pandas.read_csv(infilename) df['key'] = df.apply(lambda x: get_key(x), axis=1) sub_df = df[['key', 'zone', 'mean']] pivot = sub_df.pivot('zone', columns='key') # Need to manually create the CSV instead of letting pandas do it, due to composite header # we don't want with open('/tmp/pivot.csv', 'w') as outfile: header = ','.join( ['zone'] + pivot.columns.levels[1].tolist()) csv_data = pivot.to_csv(None, index=True, header=False) outfile.write(header + '\n' + csv_data) print('Elapsed: {0:.2f}'.format(time.time() - start))
3.296875
3
day18/test/test_main.py
JoseTomasTocino/AdventOfCode2020
0
12796440
<filename>day18/test/test_main.py import logging import os.path from day18.code.main import evaluate_expression logger = logging.getLogger(__name__) local_path = os.path.abspath(os.path.dirname(__file__)) sample_input = None def test_sample_input(caplog): # caplog.set_level(logging.INFO) assert evaluate_expression("1 + 2 * 3 + 4 * 5 + 6") == 71 assert evaluate_expression("1 + (2 * 3) + (4 * (5 + 6))") == 51 assert evaluate_expression("2 * 3 + (4 * 5)") == 26 assert evaluate_expression("5 + (8 * 3 + 9 + 3 * 4 * 3)") == 437 assert evaluate_expression("5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4))") == 12240 assert evaluate_expression("((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2") == 13632 def test_sample_input_with_advanced_priorities(caplog): # caplog.set_level(logging.INFO) assert evaluate_expression("1 + 2 * 3 + 4 * 5 + 6", use_advanced_precedence=True) == 231 assert evaluate_expression("1 + (2 * 3) + (4 * (5 + 6))", use_advanced_precedence=True) == 51 assert evaluate_expression("2 * 3 + (4 * 5)", use_advanced_precedence=True) == 46 assert evaluate_expression("5 + (8 * 3 + 9 + 3 * 4 * 3)", use_advanced_precedence=True) == 1445 assert evaluate_expression("5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4))", use_advanced_precedence=True) == 669060 assert evaluate_expression("((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2", use_advanced_precedence=True) == 23340 def test_big_input(caplog): # caplog.set_level(logging.INFO) with open(os.path.join(local_path, "input"), "r") as f: content = f.read() assert sum(evaluate_expression(x) for x in content.split("\n") if x) == 4696493914530 assert sum(evaluate_expression(x, use_advanced_precedence=True) for x in content.split("\n") if x) == 362880372308125
2.609375
3
210.py
wilbertgeng/LeetCode_exercise
0
12796441
<filename>210.py """210. Course Schedule II""" class Solution(object): def findOrder(self, numCourses, prerequisites): """ :type numCourses: int :type prerequisites: List[List[int]] :rtype: List[int] """ ## Practice: graph = collections.defaultdict(list) num_pre = [0]*numCourses for after, prev in prerequisites: graph[prev].append(after) num_pre[after] += 1 coursesCanBeTaken = [] for i in range(numCourses): if num_pre[i] == 0: coursesCanBeTaken.append(i) res = [] while coursesCanBeTaken: course = coursesCanBeTaken.pop() res.append(course) for c in graph[course]: num_pre[c] -= 1 if num_pre[c] == 0: coursesCanBeTaken.append(c) return res if len(res) == numCourses else [] ## bfs graph = [[] for _ in range(numCourses)] num_pre = [0]*numCourses for after, pre in prerequisites: graph[pre].append(after) num_pre[after] += 1 coursesCanBeTaken = [i for i in range(numCourses) if num_pre[i] == 0] res = [] while coursesCanBeTaken: courseTaken = coursesCanBeTaken.pop(0) res.append(courseTaken) for j in graph[courseTaken]: num_pre[j] -= 1 if num_pre[j] == 0: coursesCanBeTaken.append(j) return res if len(res) == numCourses else [] ## DFS graph = [[] for _ in range(numCourses)] visit = [0 for _ in range(numCourses)] for a, b in prerequisites: graph[a].append(b) result = [] def dfs(i): if visit[i] == 1: return True if visit[i] == -1: return False visit[i] = -1 for j in graph[i]: if not dfs(j): return False result.append(i) visit[i] = 1 return True for i in range(numCourses): if not dfs(i): return [] return result
3.546875
4
fastapi_sso/sso/kakao.py
thdwoqor/fastapi-sso
0
12796442
<reponame>thdwoqor/fastapi-sso import os from typing import Dict from fastapi_sso.sso.base import OpenID, SSOBase class KakaoSSO(SSOBase): provider = "kakao" scope = ["openid"] version = "v2" async def get_discovery_document(self) -> Dict[str, str]: return { "authorization_endpoint": f"https://kauth.kakao.com/oauth/authorize?client_id={self.client_secret}&response_type=code&redirect_uri={self.redirect_uri}", "token_endpoint": f"https://kauth.kakao.com/oauth/token", "userinfo_endpoint": f"https://kapi.kakao.com/{self.version}/user/me", } @classmethod async def openid_from_response(cls, response: dict) -> OpenID: return OpenID(display_name=response["properties"]["nickname"], provider=cls.provider)
2.53125
3
aio_background/job.py
anna-money/aio-background
7
12796443
import abc import asyncio from typing import Collection class Job(abc.ABC): __slots__ = () @property @abc.abstractmethod def is_running(self) -> bool: ... @abc.abstractmethod async def close(self, *, timeout: float = 0.5) -> bool: ... class SingleTaskJob(Job): __slots__ = ("_task",) def __init__(self, task: asyncio.Task[None]): self._task = task @property def is_running(self) -> bool: return not self._task.done() async def close(self, *, timeout: float = 0.5) -> bool: if self._task.done(): return True self._task.cancel() await asyncio.wait({self._task}, timeout=timeout) return self._task.done() class CombinedJob(Job): __slots__ = ("_jobs",) def __init__(self, jobs: Collection[Job]): self._jobs = jobs @property def is_running(self) -> bool: return all(job.is_running for job in self._jobs) async def close(self, *, timeout: float = 0.5) -> bool: tasks = [asyncio.create_task(job.close(timeout=timeout)) for job in self._jobs] closed = True for task in tasks: closed &= await task return closed
2.734375
3
ulmo.py
simusid/ulmo
0
12796444
# provide status of all jobs import ulmodb dbname = "ulmodb.db" db = ulmodb.UlmoDB(dbname)
1.25
1
docs/code/snippet_nmf_fro.py
askerdb/nimfa
325
12796445
import numpy as np import nimfa V = np.random.rand(40, 100) nmf = nimfa.Nmf(V, seed="nndsvd", rank=10, max_iter=12, update='euclidean', objective='fro') nmf_fit = nmf()
1.992188
2
ether/qparser.py
alexin-ivan/ether
0
12796446
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- # ############################################################################## from PyQt4 import QtCore import logging ############################################################################## class QParser(QtCore.QThread): def __init__(self, f, parent=None): super(QParser, self).__init__(parent) self.f = f self.logger = logging.getLogger('QParser') def run(self): self.logger.debug('started') self.f() self.logger.debug('stoped')
2.265625
2
04_chat/client.py
pymug/ARJ_SpoonfeedingSockets_APR2021
0
12796447
<filename>04_chat/client.py<gh_stars>0 ''' Modified by <NAME> <EMAIL> ''' import socket, threading def handle_messages(connection: socket.socket): ''' Receive messages sent by the server and display them to user ''' while True: try: msg = connection.recv(1024) # If there is no message, there is a chance that connection has closed # so the connection will be closed and an error will be displayed. # If not, it will try to decode message in order to show to user. if msg: print(msg.decode()) else: connection.close() break except Exception as e: print(f'Error handling message from server: {e}') connection.close() break def client() -> None: ''' Main process that start client connection to the server and handle it's input messages ''' SERVER_ADDRESS = '127.0.0.1' SERVER_PORT = 12000 try: # Instantiate socket and start connection with server socket_instance = socket.socket() socket_instance.connect((SERVER_ADDRESS, SERVER_PORT)) # Create a thread in order to handle messages sent by server threading.Thread(target=handle_messages, args=[socket_instance]).start() print('Connected to chat!') # Read user's input until it quit from chat and close connection while True: msg = input('> ') if msg == 'quit': break # Parse message to utf-8 socket_instance.send(msg.encode()) # Close connection with the server socket_instance.close() except Exception as e: print(f'Error connecting to server socket {e}') socket_instance.close() if __name__ == "__main__": client()
3.328125
3
bin/config-get.py
chrisbrierley/jaspy-manager
0
12796448
#!/usr/bin/env python import os import json import sys import argparse def _find_config_file(): config = 'etc/minicondas.json' while not os.path.isfile(config): config = '../{}'.format(config) if len(config) > 70: raise Exception('Cannot locate config file "etc/minicondas.json".') return config def _get(py_version, miniconda_version, attribute): config = _find_config_file() with open(config) as reader: data = json.load(reader) if miniconda_version == 'latest': _all_versions = [i.split('-')[1] for i in data['minicondas'][py_version].keys()] m_start = 'm' + py_version.replace('py', '')[0] _av_ints = sorted([[int(i) for i in item.split('.')] for item in _all_versions]) _all_versions = ['.'.join([str(item) for item in items]) for items in _av_ints] miniconda_version = m_start + '-' + _all_versions[-1] try: attr = data['minicondas'][py_version][miniconda_version][attribute] except: print('Could not find {} attribute for python version: "{}"'.format(attribute, py_version)) return attr if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("py_version", type=str, help="Python version") parser.add_argument("attribute", type=str, choices=['url', 'md5', 'short_id'], help="Attribute") parser.add_argument('-m', '--miniconda-version', default='latest', help='Add Miniconda version (or use "latest").', type=str) args = parser.parse_args() print(_get(args.py_version, args.miniconda_version, args.attribute))
2.734375
3
tokenizer.py
datares/recipe-gpt
2
12796449
from transformers import GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') tokenizer.pad_token = tokenizer.eos_token
2.25
2
ete_component/EteComponent.py
marco-mariotti/treedex
0
12796450
# AUTO GENERATED FILE - DO NOT EDIT from dash.development.base_component import Component, _explicitize_args class EteComponent(Component): """An EteComponent component. Keyword arguments: - id (string; required): The ID used to identify this component in Dash callbacks. - activeClades (list of dicts; optional): Active clade selections (nodes not saved with name). - activeLeaves (list of dicts; optional): Active leaf selections (nodes not saved with name). - activeNodes (list of dicts; optional): Active node selections (nodes not saved with name). - height (string; default "100%"): iframe height. Default: 100%. - hover (dict; optional): Hovered node. - path (string; default ""): URL from where ETE's server is running. - saved (dict; optional): Saved selections. `saved` is a dict with strings as keys and values of type dict with keys: - color (string; optional) - name (string; optional) - selectCommand (string; optional) - treeid (number; required): Integer that defines a tree. - url (string; required): URL from where ETE's server is running. - width (string; default "100%"): iframe width. Default: 100%.""" @_explicitize_args def __init__(self, id=Component.REQUIRED, url=Component.REQUIRED, path=Component.UNDEFINED, treeid=Component.REQUIRED, width=Component.UNDEFINED, height=Component.UNDEFINED, hover=Component.UNDEFINED, activeNodes=Component.UNDEFINED, activeClades=Component.UNDEFINED, activeLeaves=Component.UNDEFINED, saved=Component.UNDEFINED, **kwargs): self._prop_names = ['id', 'activeClades', 'activeLeaves', 'activeNodes', 'height', 'hover', 'path', 'saved', 'treeid', 'url', 'width'] self._type = 'EteComponent' self._namespace = 'ete_component' self._valid_wildcard_attributes = [] self.available_properties = ['id', 'activeClades', 'activeLeaves', 'activeNodes', 'height', 'hover', 'path', 'saved', 'treeid', 'url', 'width'] self.available_wildcard_properties = [] _explicit_args = kwargs.pop('_explicit_args') _locals = locals() _locals.update(kwargs) # For wildcard attrs args = {k: _locals[k] for k in _explicit_args if k != 'children'} for k in ['id', 'url', 'treeid']: if k not in args: raise TypeError( 'Required argument `' + k + '` was not specified.') super(EteComponent, self).__init__(**args)
2.046875
2