|
--- |
|
license: apache-2.0 |
|
--- |
|
### Label info: |
|
``` |
|
0: "fragment", |
|
1: "statement", |
|
2: "question", |
|
3: "command", |
|
4: "rhetorical question", |
|
5: "rhetorical command", |
|
6: "intonation-dependent utterance" |
|
``` |
|
|
|
### Training process: |
|
``` |
|
{'loss': 1.8008, 'grad_norm': 7.2770233154296875, 'learning_rate': 1e-05, 'epoch': 0.03} |
|
{'loss': 0.894, 'grad_norm': 27.84651756286621, 'learning_rate': 2e-05, 'epoch': 0.06} |
|
{'loss': 0.6504, 'grad_norm': 30.617990493774414, 'learning_rate': 3e-05, 'epoch': 0.09} |
|
{'loss': 0.5939, 'grad_norm': 34.73934555053711, 'learning_rate': 4e-05, 'epoch': 0.12} |
|
{'loss': 0.5786, 'grad_norm': 6.585583209991455, 'learning_rate': 5e-05, 'epoch': 0.15} |
|
{'eval_loss': 0.5915874242782593, 'eval_accuracy': 0.8297766749379653, 'eval_f1': 0.8315132136625163, 'eval_precision': 0.8410462605264737, 'eval_recall': 0.8297766749379653, 'eval_runtime': 265.1144, 'eval_samples_per_second': 22.801, 'eval_steps_per_second': 1.426, 'epoch': 0.15} |
|
{'loss': 0.5928, 'grad_norm': 10.66515064239502, 'learning_rate': 4.8276456394346784e-05, 'epoch': 0.18} |
|
{'loss': 0.5611, 'grad_norm': 3.804234266281128, 'learning_rate': 4.655291278869355e-05, 'epoch': 0.21} |
|
{'loss': 0.5151, 'grad_norm': 8.275078773498535, 'learning_rate': 4.4829369183040333e-05, 'epoch': 0.24} |
|
{'loss': 0.4696, 'grad_norm': 2.44854474067688, 'learning_rate': 4.310582557738711e-05, 'epoch': 0.26} |
|
{'loss': 0.5183, 'grad_norm': 8.534456253051758, 'learning_rate': 4.138228197173389e-05, 'epoch': 0.29} |
|
{'eval_loss': 0.5429911017417908, 'eval_accuracy': 0.8415219189412738, 'eval_f1': 0.8231674368620022, 'eval_precision': 0.8383674385161947, 'eval_recall': 0.8415219189412738, 'eval_runtime': 268.1016, 'eval_samples_per_second': 22.547, 'eval_steps_per_second': 1.41, 'epoch': 0.29} |
|
{'loss': 0.4802, 'grad_norm': 10.636425018310547, 'learning_rate': 3.965873836608066e-05, 'epoch': 0.32} |
|
{'loss': 0.4877, 'grad_norm': 6.05213737487793, 'learning_rate': 3.793519476042744e-05, 'epoch': 0.35} |
|
{'loss': 0.5093, 'grad_norm': 5.5984015464782715, 'learning_rate': 3.621165115477422e-05, 'epoch': 0.38} |
|
{'loss': 0.496, 'grad_norm': 7.945780277252197, 'learning_rate': 3.4488107549120996e-05, 'epoch': 0.41} |
|
{'loss': 0.5005, 'grad_norm': 5.778200626373291, 'learning_rate': 3.276456394346777e-05, 'epoch': 0.44} |
|
{'eval_loss': 0.41184064745903015, 'eval_accuracy': 0.8684863523573201, 'eval_f1': 0.8635611747282996, 'eval_precision': 0.8629771033516368, 'eval_recall': 0.8684863523573201, 'eval_runtime': 270.0108, 'eval_samples_per_second': 22.388, 'eval_steps_per_second': 1.4, 'epoch': 0.44} |
|
{'loss': 0.4436, 'grad_norm': 4.413114070892334, 'learning_rate': 3.1041020337814545e-05, 'epoch': 0.47} |
|
{'loss': 0.4899, 'grad_norm': 18.563016891479492, 'learning_rate': 2.9317476732161327e-05, 'epoch': 0.5} |
|
{'loss': 0.4637, 'grad_norm': 26.92985725402832, 'learning_rate': 2.7593933126508105e-05, 'epoch': 0.53} |
|
{'loss': 0.4387, 'grad_norm': 7.494612693786621, 'learning_rate': 2.5870389520854876e-05, 'epoch': 0.56} |
|
{'loss': 0.4401, 'grad_norm': 20.5152530670166, 'learning_rate': 2.4146845915201654e-05, 'epoch': 0.59} |
|
{'eval_loss': 0.42229706048965454, 'eval_accuracy': 0.8663358147229115, 'eval_f1': 0.859666580414163, 'eval_precision': 0.8638930298685418, 'eval_recall': 0.8663358147229115, 'eval_runtime': 272.7465, 'eval_samples_per_second': 22.163, 'eval_steps_per_second': 1.386, 'epoch': 0.59} |
|
{'loss': 0.4289, 'grad_norm': 10.1361665725708, 'learning_rate': 2.2423302309548433e-05, 'epoch': 0.62} |
|
{'loss': 0.4193, 'grad_norm': 8.068666458129883, 'learning_rate': 2.0699758703895207e-05, 'epoch': 0.65} |
|
{'loss': 0.4038, 'grad_norm': 8.713869094848633, 'learning_rate': 1.8976215098241985e-05, 'epoch': 0.68} |
|
{'loss': 0.4073, 'grad_norm': 12.182595252990723, 'learning_rate': 1.7252671492588764e-05, 'epoch': 0.71} |
|
{'loss': 0.4095, 'grad_norm': 13.43953800201416, 'learning_rate': 1.5529127886935542e-05, 'epoch': 0.74} |
|
{'eval_loss': 0.3974127173423767, 'eval_accuracy': 0.8726220016542597, 'eval_f1': 0.8677290061110087, 'eval_precision': 0.8672987137526573, 'eval_recall': 0.8726220016542597, 'eval_runtime': 270.2975, 'eval_samples_per_second': 22.364, 'eval_steps_per_second': 1.398, 'epoch': 0.74} |
|
{'loss': 0.3473, 'grad_norm': 16.423139572143555, 'learning_rate': 1.3805584281282317e-05, 'epoch': 0.76} |
|
{'loss': 0.3982, 'grad_norm': 6.357703685760498, 'learning_rate': 1.2082040675629095e-05, 'epoch': 0.79} |
|
{'loss': 0.3286, 'grad_norm': 4.977189064025879, 'learning_rate': 1.0358497069975871e-05, 'epoch': 0.82} |
|
{'loss': 0.3712, 'grad_norm': 4.068944454193115, 'learning_rate': 8.634953464322648e-06, 'epoch': 0.85} |
|
{'loss': 0.345, 'grad_norm': 6.266202926635742, 'learning_rate': 6.911409858669425e-06, 'epoch': 0.88} |
|
{'eval_loss': 0.3740645945072174, 'eval_accuracy': 0.8822167080231597, 'eval_f1': 0.8780706451391699, 'eval_precision': 0.877925468669178, 'eval_recall': 0.8822167080231597, 'eval_runtime': 270.0795, 'eval_samples_per_second': 22.382, 'eval_steps_per_second': 1.4, 'epoch': 0.88} |
|
{'loss': 0.4049, 'grad_norm': 10.76927375793457, 'learning_rate': 5.187866253016201e-06, 'epoch': 0.91} |
|
{'loss': 0.3919, 'grad_norm': 12.331282615661621, 'learning_rate': 3.4643226473629783e-06, 'epoch': 0.94} |
|
{'loss': 0.3576, 'grad_norm': 8.6154203414917, 'learning_rate': 1.7407790417097554e-06, 'epoch': 0.97} |
|
{'loss': 0.3544, 'grad_norm': 10.01504135131836, 'learning_rate': 1.723543605653223e-08, 'epoch': 1.0} |
|
{'train_runtime': 7076.4012, 'train_samples_per_second': 7.688, 'train_steps_per_second': 0.481, 'train_loss': 0.5087223172678522, 'epoch': 1.0} |
|
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3401/3401 [1:57:56<00:00, 2.08s/it] |
|
Training completed. Model saved. |
|
``` |
|
|
|
### Classification Report: |
|
``` |
|
precision recall f1-score support |
|
|
|
fragment 0.95 0.92 0.94 597 |
|
statement 0.84 0.91 0.87 1811 |
|
question 0.95 0.94 0.94 1786 |
|
command 0.88 0.91 0.90 1296 |
|
rhetorical question 0.73 0.62 0.67 174 |
|
rhetorical command 0.86 0.56 0.68 108 |
|
intonation-dependent utterance 0.57 0.38 0.46 273 |
|
|
|
accuracy 0.88 6045 |
|
macro avg 0.83 0.75 0.78 6045 |
|
weighted avg 0.88 0.88 0.88 6045 |
|
|
|
Predictions saved |
|
``` |
|
### Train code: |
|
```python |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from transformers import ( |
|
RobertaTokenizerFast, |
|
RobertaForSequenceClassification, |
|
Trainer, |
|
TrainingArguments, |
|
EarlyStoppingCallback |
|
) |
|
from datasets import Dataset |
|
import torch |
|
import numpy as np |
|
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, classification_report |
|
from tensorflow.python.keras.optimizer_v2.adam import Adam |
|
|
|
# Load and prepare data |
|
train_df = pd.read_csv("./train_fix_v1.csv") |
|
test_df = pd.read_csv("./test_fix_v1.csv") |
|
|
|
# Convert to Dataset objects |
|
train_dataset = Dataset.from_pandas(train_df) |
|
test_dataset = Dataset.from_pandas(test_df) |
|
|
|
# Initialize tokenizer and model |
|
model_name = "FacebookAI/roberta-base" |
|
tokenizer = RobertaTokenizerFast.from_pretrained(model_name) |
|
model = RobertaForSequenceClassification.from_pretrained( |
|
model_name, |
|
num_labels=7, |
|
id2label={ |
|
0: "fragment", |
|
1: "statement", |
|
2: "question", |
|
3: "command", |
|
4: "rhetorical question", |
|
5: "rhetorical command", |
|
6: "intonation-dependent utterance" |
|
}, |
|
label2id={ |
|
"fragment": 0, |
|
"statement": 1, |
|
"question": 2, |
|
"command": 3, |
|
"rhetorical question": 4, |
|
"rhetorical command": 5, |
|
"intonation-dependent utterance": 6 |
|
} |
|
) |
|
|
|
# Tokenize function |
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512) |
|
|
|
# Tokenize datasets |
|
tokenized_train = train_dataset.map(tokenize_function, batched=True) |
|
tokenized_test = test_dataset.map(tokenize_function, batched=True) |
|
|
|
# Compute metrics function for evaluation |
|
def compute_metrics(pred): |
|
labels = pred.label_ids |
|
preds = pred.predictions.argmax(-1) |
|
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted') |
|
acc = accuracy_score(labels, preds) |
|
return { |
|
'accuracy': acc, |
|
'f1': f1, |
|
'precision': precision, |
|
'recall': recall |
|
} |
|
|
|
# Training arguments |
|
training_args = TrainingArguments( |
|
output_dir="./roberta_base_stock", |
|
num_train_epochs=1, # Ustawione na 10, ale z early stopping |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=16, |
|
warmup_steps=500, |
|
weight_decay=0.01, |
|
logging_dir='./logs', |
|
logging_steps=100, |
|
evaluation_strategy="steps", |
|
eval_steps=500, |
|
save_strategy="steps", |
|
save_steps=500, |
|
load_best_model_at_end=True, |
|
metric_for_best_model="f1", |
|
learning_rate=5e-05, |
|
) |
|
|
|
# Initialize Trainer |
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_train, |
|
eval_dataset=tokenized_test, |
|
compute_metrics=compute_metrics, |
|
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)] |
|
) |
|
|
|
# Train the model |
|
trainer.train() |
|
|
|
# Save the fine-tuned model |
|
model.save_pretrained("./roberta_base_stock") |
|
tokenizer.save_pretrained("./roberta_base_stock") |
|
|
|
print("Training completed. Model saved.") |
|
|
|
# Evaluate the model on the test set |
|
print("Evaluating model on test set...") |
|
test_results = trainer.evaluate(tokenized_test) |
|
|
|
print("Test set evaluation results:") |
|
for key, value in test_results.items(): |
|
print(f"{key}: {value}") |
|
|
|
# Perform predictions on the test set |
|
test_predictions = trainer.predict(tokenized_test) |
|
|
|
# Get predicted labels |
|
predicted_labels = np.argmax(test_predictions.predictions, axis=1) |
|
true_labels = test_predictions.label_ids |
|
|
|
# Print classification report |
|
print("\nClassification Report:") |
|
print(classification_report(true_labels, predicted_labels, |
|
target_names=model.config.id2label.values())) |
|
|
|
# Optional: Save predictions to CSV |
|
test_df['predicted_label'] = predicted_labels |
|
test_df.to_csv("./roberta_base_stock/test_predictions.csv", index=False) |
|
print("Predictions saved") |
|
``` |
|
|