File size: 11,426 Bytes
24dbd99 74e8192 24dbd99 b74d6b8 24dbd99 0877a5c 24dbd99 093085f 24dbd99 98b4d19 74e8192 24dbd99 74e8192 24dbd99 f935ace 7e95be1 24dbd99 f935ace 24dbd99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# coding=utf-8
# Copyright 2022 ExeBench authors
# The code required to produce and load this dataset is licensed under MIT License.
# The code samples included in this dataset keep their own licenses, which can be retrieved via their metadata.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Please note that the dataset release is still work in progress.
"""The ExeBench dataset."""
import json
import datasets
from pathlib import Path
_CITATION = """\
@inproceedings{10.1145/3520312.3534867,
author = {Armengol-Estap\'{e}, Jordi and Woodruff, Jackson and Brauckmann, Alexander and Magalh\~{a}es, Jos\'{e} Wesley de Souza and O'Boyle, Michael F. P.},
title = {ExeBench: An ML-Scale Dataset of Executable C Functions},
year = {2022},
isbn = {9781450392730},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3520312.3534867},
doi = {10.1145/3520312.3534867},
abstract = {Machine-learning promises to transform compilation and software engineering, yet is frequently limited by the scope of available datasets. In particular, there is a lack of runnable, real-world datasets required for a range of tasks ranging from neural program synthesis to machine learning-guided program optimization. We introduce a new dataset, ExeBench, which attempts to address this. It tackles two key issues with real-world code: references to external types and functions and scalable generation of IO examples. ExeBench is the first publicly available dataset that pairs real-world C code taken from GitHub with IO examples that allow these programs to be run. We develop a toolchain that scrapes GitHub, analyzes the code, and generates runnable snippets of code. We analyze our benchmark suite using several metrics, and show it is representative of real-world code. ExeBench contains 4.5M compilable and 700k executable C functions. This scale of executable, real functions will enable the next generation of machine learning-based programming tasks.},
booktitle = {Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming},
pages = {50–59},
numpages = {10},
keywords = {Code Dataset, Program Synthesis, Mining Software Repositories, C, Machine Learning for Code, Compilers},
location = {San Diego, CA, USA},
series = {MAPS 2022}
}
"""
_DESCRIPTION = """\
An ML-scale dataset of executable C functions
""" # TODO: expand
_HOMEPAGE = "https://github.com/jordiae/exebench"
_LICENSE = "Multiple: see each function license (fields 'ref' and 'path')"
_URL = "" # "https://huggingface.co/datasets/jordiae/exebench-test/resolve/main/"
_REMOVED_FEATURES = ["doc", "angha_error", "real_error", "angha_io_error", "real_io_error",
"angha_io_pairs_are_trivial", "real_io_pairs_are_trivial"]
_RENAMED_FEATURES = {"angha_deps": "synth_deps", "angha_io_pairs": "synth_io_pairs",
"angha_exe_wrapper": "synth_exe_wrapper", "angha_iospec": "synth_iospec"}
_FEATURES = datasets.Features(
{
"path": datasets.Value("string"),
"func_def": datasets.Value("string"),
"func_head": datasets.Value("string"),
"func_head_types": datasets.Value("string"),
"fname": datasets.Value("string"),
"signature": datasets.Sequence(datasets.Value("string")),
# "doc": datasets.Value("string"),
# "angha_error": datasets.Value("string"),
# "real_error": datasets.Value("string"),
"asm": datasets.Sequence({'target': datasets.Value("string"), 'code': datasets.Value("string")}), # unflat dict#Optional[Dict[str, Optional[FuncAsm]]] = None
"synth_deps": datasets.Value("string"),
"real_deps": datasets.Value("string"),
"synth_io_pairs": datasets.Sequence({
"input": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}),
"output": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}),
"dummy_funcs": datasets.Value("string"),
"dummy_funcs_seed": datasets.Value("int64")
}),
"real_io_pairs": datasets.Sequence({
"input": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}),
"output": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}),
"dummy_funcs": datasets.Value("string"),
"dummy_funcs_seed": datasets.Value("int64")
}),
# "angha_io_error": datasets.Value("string"),
# "real_io_error": datasets.Value("string"),
"synth_exe_wrapper": datasets.Value("string"),
"real_exe_wrapper": datasets.Value("string"),
# "angha_io_pairs_are_trivial": datasets.Value("bool"),
# "real_io_pairs_are_trivial": datasets.Value("bool"),
"ref": datasets.Value("string"),
"synth_iospec": datasets.Value("string"), # serialized, TODO: improve
"real_iospec": datasets.Value("string")
}
)
class ExeBenchConfig(datasets.BuilderConfig):
"""BuilderConfig for ExeBench."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for The Pile.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
**kwargs,
)
class ExeBench(datasets.GeneratorBasedBuilder):
"""ExeBench dataset"""
BUILDER_CONFIGS = [
ExeBenchConfig(
name="ExeBench",
version=datasets.Version("1.0.4"),
description="Executable C dataset"
),
]
def _info(self):
"""Give information and typings for the dataset."""
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=_FEATURES,
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train_not_compilable": f"{_URL}train_no_compilable.tar.gz",
"train_synth_compilable": f"{_URL}train_synth_compilable.tar.gz",
"train_real_compilable": f"{_URL}train_real_compilable.tar.gz",
"train_synth_simple_io": f"{_URL}train_synth_simple_io.tar.gz",
"train_real_simple_io": f"{_URL}train_real_simple_io.tar.gz",
"train_synth_rich_io": f"{_URL}train_synth_rich_io.tar.gz",
"valid_synth": f"{_URL}valid_synth.tar.gz",
"valid_real": f"{_URL}valid_real.tar.gz",
"test_synth": f"{_URL}test_synth.tar.gz",
"test_real": f"{_URL}test_real.tar.gz",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name='train_not_compilable',
gen_kwargs={"files": downloaded_files["train_not_compilable"]}),
datasets.SplitGenerator(name='train_synth_compilable',
gen_kwargs={"files": downloaded_files["train_synth_compilable"]}),
datasets.SplitGenerator(name='train_real_compilable',
gen_kwargs={"files": downloaded_files["train_real_compilable"]}),
datasets.SplitGenerator(name='train_synth_simple_io',
gen_kwargs={"files": downloaded_files["train_synth_simple_io"]}),
datasets.SplitGenerator(name='train_real_simple_io',
gen_kwargs={"files": downloaded_files["train_real_simple_io"]}),
datasets.SplitGenerator(name='train_synth_rich_io',
gen_kwargs={"files": downloaded_files["train_synth_rich_io"]}),
datasets.SplitGenerator(name='valid_synth',
gen_kwargs={"files": downloaded_files["valid_synth"]}),
datasets.SplitGenerator(name='valid_real',
gen_kwargs={"files": downloaded_files["valid_real"]}),
datasets.SplitGenerator(name='test_synth',
gen_kwargs={"files": downloaded_files["test_synth"]}),
datasets.SplitGenerator(name='test_real',
gen_kwargs={"files": downloaded_files["test_real"]}),
]
def _generate_examples(self, files):
"""Yield examples as (key, example) tuples."""
key = 0
import zstandard as zstd
for path in Path(files).rglob('*.jsonl.zst'):
with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f:
for row in f:
data = json.loads(row)
data = data['text']
data = self._fixes(data)
for io_pairs_kind in ('synth_io_pairs', 'real_io_pairs'):
if data[io_pairs_kind]:
new_io_pairs = []
for e in data[io_pairs_kind]:
new_e = {}
new_e['input'] = [{'var': var, 'value': json.dumps(value)} for (var, value) in e['input'].items()] if e['input'] else []
new_e['output'] = [{'var': var, 'value': json.dumps(value)} for (var, value) in e['output'].items()] if e['output'] else []
new_e['dummy_funcs'] = e['dummy_funcs']
new_e['dummy_funcs_seed'] = e['dummy_funcs_seed']
new_io_pairs.append(new_e)
data[io_pairs_kind] = new_io_pairs
data['synth_iospec'] = json.dumps(data['synth_iospec'])
data['real_iospec'] = json.dumps(data['real_iospec'])
yield key, data
key += 1
def _fixes(self, row):
if 'angha_iospec' not in row:
row['angha_iospec'] = None
if 'real_iospec' not in row:
row['real_iospec'] = None
if 'func_head_types' not in row:
row['func_head_types'] = ''
row['asm'] = [{'target': target, 'code': code['func_asm'] if code else None} for (target, code) in
row['asm'].items()] # TODO: pre_asm etc
for removed_key in _REMOVED_FEATURES:
if removed_key in row:
del row[removed_key]
for original_key, new_key in _RENAMED_FEATURES.items():
row[new_key] = row[original_key]
del row[original_key]
return row
|