text
stringlengths 13
30k
|
---|
{"text": "Why is your exchange rate so bad?", "inputs": {"text": "Why is your exchange rate so bad?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9997861981391907}, {"label": "POSITIVE", "score": 0.0002138292184099555}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 17}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "What do I need to do to get a card?", "inputs": {"text": "What do I need to do to get a card?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9983347058296204}, {"label": "POSITIVE", "score": 0.0016653436468914151}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 43}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "I transfered my balance a while back. Why doesn't my account reflect this?", "inputs": {"text": "I transfered my balance a while back. Why doesn't my account reflect this?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9987433552742004}, {"label": "POSITIVE", "score": 0.0012566670775413513}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 5}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "Am I able to track the card that was just sent to me?", "inputs": {"text": "Am I able to track the card that was just sent to me?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9978391528129578}, {"label": "POSITIVE", "score": 0.0021608469542115927}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 11}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "Where can I find the auto-top option?", "inputs": {"text": "Where can I find the auto-top option?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9992862343788147}, {"label": "POSITIVE", "score": 0.0007138242362998426}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 4}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "Should my top up still be pending?", "inputs": {"text": "Should my top up still be pending?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9979432225227356}, {"label": "POSITIVE", "score": 0.002056812634691596}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 47}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "I need to exchange a currency - can I do that here?", "inputs": {"text": "I need to exchange a currency - can I do that here?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9994100332260132}, {"label": "POSITIVE", "score": 0.0005899224197492003}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 33}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "How do you find the exchange rate?", "inputs": {"text": "How do you find the exchange rate?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9986760020256042}, {"label": "POSITIVE", "score": 0.001323980512097478}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 32}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "How long will my top-up be pending?", "inputs": {"text": "How long will my top-up be pending?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9976382255554199}, {"label": "POSITIVE", "score": 0.002361796796321869}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 47}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"text": "How do I get my virtual card?", "inputs": {"text": "How do I get my virtual card?"}, "prediction": [{"label": "NEGATIVE", "score": 0.9985155463218689}, {"label": "POSITIVE", "score": 0.0014844636898487806}], "prediction_agent": "distilbert-base-uncased-finetuned-sst-2-english", "annotation": null, "annotation_agent": null, "multi_label": false, "explanation": null, "id": null, "metadata": {"category": 40}, "status": "Default", "event_timestamp": null, "metrics": null} |
{"context": "This is the most common method of construction procurement and is well established and recognized. In this arrangement, the architect or engineer acts as the project coordinator. His or her role is to design the works, prepare the specifications and produce construction drawings, administer the contract, tender the works, and manage the works from inception to completion. There are direct contractual links between the architect's client and the main contractor. Any subcontractor has a direct contractual relationship with the main contractor. The procedure continues until the building is ready to occupy.", "question": "There are direct contractual links between who?", "answers.text": ["the architect's client and the main contractor", "architect's client and the main contractor", "the architect's client and the main contractor"], "answers.answer_start": [418, 422, 418], "feat_id": ["572753335951b619008f8855", "572753335951b619008f8855", "572753335951b619008f8855"], "feat_title": ["Construction", "Construction", "Construction"], "start_logits": [1.517578125, -8.3515625, -9.3046875, -7.84765625, -8.0546875, -8.03125, -8.34375, -7.67578125, -8.3125, -8.28125, -7.765625, -4.1640625, -6.98828125, -4.62890625, -5.5078125, -5.37890625, -5.70703125, -7.671875, -5.52734375, -5.69140625, -8.7578125, -7.08203125, -4.8515625, -4.66015625, -8.8203125, -5.02734375, -0.27490234375, -3.6796875, -5.859375, -5.7265625, -7.02734375, -2.083984375, -0.79541015625, -7.4609375, -5.05078125, -6.08984375, -6.19140625, -5.37109375, -5.37890625, -5.4296875, -0.275634765625, -1.6953125, -6.34765625, -6.48828125, -5.13671875, -7.0859375, -6.12890625, -3.841796875, -6.14453125, -5.57421875, -6.296875, -4.109375, -5.84375, -5.1015625, -7.95703125, -4.91015625, -4.9609375, -4.640625, -7.76171875, -3.4453125, -5.86328125, -4.875, -8.2578125, -3.814453125, -5.91015625, -6.45703125, -2.849609375, -7.23828125, -3.935546875, -5.5078125, -5.59375, -5.8984375, -4.578125, -7.43359375, -4.5625, -0.274658203125, 4.62109375, -3.25390625, 0.64013671875, -0.322509765625, 1.1953125, 4.58984375, 9.8671875, 8.84375, -0.861328125, 3.373046875, -1.0439453125, 3.35546875, 2.421875, 0.5146484375, -4.6015625, -0.11431884765625, -0.6875, -4.625, -3.59765625, -1.484375, -3.193359375, -5.5546875, -4.96484375, -2.80078125, 0.59912109375, 0.09619140625, -2.005859375, -0.275390625, -5.49609375, -6.765625, -7.5625, -6.34375, -6.34375, -4.9609375, -6.92578125, -5.4921875, -6.99609375, -6.078125, -0.275634765625, -4.71875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875, -9.9296875], "end_logits": [0.05859375, -9.3671875, -9.328125, -10.0703125, -8.9375, -9.453125, -9.046875, -8.3984375, -7.2890625, -8.734375, -9.4375, -7.6171875, -9.1171875, -7.1796875, -8.40625, -6.7578125, -6.90625, -8.5625, -6.47265625, -4.54296875, -8.7578125, -9.328125, -9.0546875, -6.94921875, -8.828125, -5.54296875, 3.23046875, -8.90625, -7.62109375, -5.421875, -7.1875, -7.49609375, -4.96875, -7.6640625, -5.33203125, -7.5546875, -9.1953125, -6.9921875, -6.4140625, -3.779296875, 3.23046875, -6.78515625, -8.28125, -6.70703125, -8.2109375, -8.5625, -8.5, -7.87890625, -7.296875, -5.6640625, -4.81640625, -8.234375, -7.37109375, -6.48046875, -8.109375, -7.88671875, -6.734375, -4.51953125, -7.09375, -8.1640625, -7.21875, -4.85546875, -7.30078125, -7.77734375, -7.55859375, -5.57421875, 2.064453125, -8.609375, -8.171875, -6.92578125, -6.1953125, -8.7734375, -6.40234375, -8.4765625, -4.265625, 3.23046875, -3.58203125, -6.09375, -6.515625, -5.73046875, -5.03125, -4.84375, -2.173828125, -2.642578125, -3.146484375, 0.2052001953125, -1.8427734375, 0.257080078125, -1.8466796875, 8.265625, 0.493896484375, -6.08984375, -5.32421875, -1.861328125, -8.203125, -6.1796875, -7.48046875, -5.7578125, -5.29296875, -7.94921875, -6.57421875, -5.83984375, -0.2366943359375, 3.23046875, -7.19921875, -6.4765625, -7.40234375, -9.328125, -8.1953125, -7.8828125, -9.8359375, -8.546875, -7.78125, -4.5, 3.23046875, -2.7890625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625, -9.4765625]} |
{"context": "After strengthening his government in northern China, Kublai pursued an expansionist policy in line with the tradition of Mongol and Chinese imperialism. He renewed a massive drive against the Song dynasty to the south. Kublai besieged Xiangyang between 1268 and 1273, the last obstacle in his way to capture the rich Yangzi River basin. An unsuccessful naval expedition was undertaken against Japan in 1274. Kublai captured the Song capital of Hangzhou in 1276, the wealthiest city of China. Song loyalists escaped from the capital and enthroned a young child as Emperor Bing of Song. The Mongols defeated the loyalists at the battle of Yamen in 1279. The last Song emperor drowned, bringing an end to the Song dynasty. The conquest of the Song reunited northern and southern China for the first time in three hundred years.", "question": " What area was Kublai trying to capture by defending Xiangyang?", "answers.text": [""], "answers.answer_start": [-1], "feat_id": ["5ad40432604f3c001a3ffdbd"], "feat_title": ["Yuan_dynasty"], "start_logits": [4.53125, -7.99609375, -9.0078125, -8.8125, -8.7734375, -9.546875, -9.9375, -8.421875, -9.125, -9.71875, -9.09375, -8.0, -8.875, -10.40625, -9.3984375, -8.5703125, -9.0703125, -8.7578125, -8.234375, -9.3359375, -8.609375, -8.734375, -6.7734375, -6.94921875, -9.0390625, -6.9921875, -9.4296875, -8.6171875, -8.671875, -8.5078125, -7.2265625, -9.015625, -8.0625, -8.828125, -8.4375, -8.7578125, -9.03125, -7.9921875, -9.4765625, -7.64453125, -9.609375, -7.37109375, -7.69921875, -7.15625, -7.40625, -8.328125, -6.80078125, -7.90234375, -7.3671875, -8.1015625, -5.40234375, -4.0703125, -7.734375, -7.6640625, -8.1484375, -7.421875, -8.3984375, -4.48828125, -8.078125, -8.25, -7.43359375, -4.85546875, -7.25, -8.34375, -8.09375, -8.296875, -8.71875, -8.03125, -7.21484375, -6.50390625, -3.23046875, -5.140625, -5.6484375, -5.8359375, -4.98828125, -6.83984375, -6.3984375, -3.951171875, -0.422119140625, -0.332763671875, 2.060546875, -4.44921875, -4.73828125, -4.40625, -7.15625, -8.6796875, -8.5078125, -8.28125, -8.796875, -9.5390625, -8.8671875, -8.1875, -7.5390625, -8.765625, -8.2109375, -8.2578125, -8.8515625, -6.11328125, -9.2421875, -8.5859375, -8.5625, -8.453125, -6.99609375, -8.6484375, -9.1328125, -6.74609375, -8.0, -9.1171875, -8.578125, -7.99609375, -9.203125, -8.359375, -7.859375, -8.0078125, -9.1640625, -7.27734375, -9.015625, -7.6640625, -8.8984375, -9.5546875, -9.34375, -9.1484375, -8.953125, -8.8046875, -9.4609375, -7.27734375, -7.6015625, -7.86328125, -9.4453125, -8.828125, -8.984375, -8.640625, -8.984375, -7.46484375, -7.01171875, -8.125, -7.9140625, -7.15625, -7.80859375, -7.68359375, -9.2734375, -8.5625, -8.609375, -7.890625, -8.8125, -8.796875, -9.1171875, -7.265625, -8.4609375, -5.8671875, -7.984375, -9.2109375, -7.92578125, -7.93359375, -7.15625, -7.625, -7.953125, -7.23046875, -8.296875, -7.83984375, -8.4296875, -6.734375, -9.1875, -8.65625, -8.7109375, -7.37890625, -6.74609375, -8.6640625, -8.59375, -6.7109375, -7.28515625, -8.625, -7.66796875, -6.828125, -8.34375, -7.52734375, -9.65625, -8.375, -7.84375, -8.5546875, -8.375, -8.125, -8.75, -8.8671875, -7.1953125, -7.98046875, -8.84375, -7.15625, -7.59765625, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875, -10.4296875], "end_logits": [3.25390625, -8.078125, -7.94921875, -9.265625, -10.734375, -9.609375, -8.828125, -10.046875, -9.28125, -8.3671875, -9.1640625, -9.5390625, -9.890625, -7.7734375, -8.140625, -9.03125, -9.140625, -10.09375, -10.328125, -9.9609375, -9.5703125, -10.4609375, -9.765625, -7.3984375, -8.4375, -8.7421875, -9.5625, -7.5546875, -9.953125, -10.2890625, -9.75, -9.2578125, -8.6015625, -10.359375, -9.890625, -10.40625, -9.78125, -9.171875, -10.4921875, -8.4921875, -9.6875, -9.3203125, -8.171875, -5.80859375, -9.7265625, -9.9375, -9.6953125, -9.2578125, -8.4609375, -9.4921875, -8.8203125, -6.4140625, -5.79296875, -9.8828125, -9.8203125, -6.40625, -8.203125, -8.375, -9.0234375, -7.50390625, -8.203125, -7.55859375, -6.4375, -9.8125, -10.046875, -8.359375, -10.0078125, -9.6875, -7.06640625, -7.77734375, -9.1640625, -7.55078125, -7.3125, -9.0625, -8.078125, -8.1875, -9.453125, -7.421875, -7.76171875, -7.23046875, -6.01171875, -5.23828125, -4.48046875, 0.6123046875, -5.8046875, -10.109375, -9.546875, -9.71875, -8.4296875, -10.2421875, -8.09375, -10.203125, -8.359375, -10.6484375, -9.46875, -7.6796875, -9.0625, -9.4609375, -9.9375, -8.3046875, -10.0078125, -10.546875, -8.1796875, -8.6171875, -10.625, -9.515625, -7.44921875, -10.59375, -9.9375, -8.25, -9.265625, -10.3515625, -9.5703125, -8.65625, -10.4375, -7.5859375, -9.0390625, -8.8828125, -9.890625, -9.0625, -9.9921875, -10.703125, -10.5859375, -9.6015625, -10.375, -10.1875, -9.5, -9.9609375, -10.4921875, -10.765625, -10.5859375, -9.2421875, -10.734375, -10.28125, -8.421875, -10.1953125, -7.796875, -5.80859375, -10.375, -9.140625, -8.2109375, -10.25, -10.2578125, -10.1796875, -8.953125, -10.46875, -10.515625, -9.8125, -10.390625, -8.6796875, -7.8125, -10.34375, -9.7421875, -8.2578125, -5.80859375, -10.421875, -9.8671875, -8.7109375, -8.3984375, -8.578125, -5.9453125, -9.9140625, -10.0546875, -10.109375, -10.5546875, -10.34375, -8.25, -7.69140625, -8.8046875, -9.7578125, -8.671875, -9.609375, -9.0625, -7.20703125, -9.015625, -9.4140625, -10.4453125, -9.5859375, -7.65625, -10.0, -10.03125, -9.6328125, -9.3828125, -9.984375, -9.671875, -8.984375, -7.8515625, -5.8046875, -7.359375, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125, -10.6328125]} |
{"context": "The neighborhood of Sunnyside is on Fresno's far southeast side, bounded by Chestnut Avenue to the West. Its major thoroughfares are Kings Canyon Avenue and Clovis Avenue. Although parts of Sunnyside are within the City of Fresno, much of the neighborhood is a \"county island\" within Fresno County. Largely developed in the 1950s through the 1970s, it has recently experienced a surge in new home construction. It is also the home of the Sunnyside Country Club, which maintains a golf course designed by William P. Bell.", "question": "Where is the home of the Sunnyside Country Club?", "answers.text": ["Sunnyside", "Sunnyside", "Sunnyside"], "answers.answer_start": [438, 190, 190], "feat_id": ["5725db98ec44d21400f3d6c8", "5725db98ec44d21400f3d6c8", "5725db98ec44d21400f3d6c8"], "feat_title": ["Fresno,_California", "Fresno,_California", "Fresno,_California"], "start_logits": [-0.0305633544921875, -9.0078125, -9.0859375, -8.828125, -9.1640625, -9.484375, -8.75, -6.63671875, -8.7578125, -9.1796875, -9.671875, -10.0390625, -9.9140625, -9.28125, -7.28125, -9.5859375, 2.515625, 1.8544921875, -4.13671875, 5.8046875, -1.0712890625, -3.134765625, -2.224609375, -7.4765625, -4.55078125, 0.267333984375, -6.16796875, -2.45703125, -3.21875, -5.46875, -6.76171875, -6.46484375, -7.74609375, -2.54296875, -7.7109375, -6.140625, -7.4375, -7.3125, -5.421875, -5.9921875, -6.91796875, -7.63671875, -7.23828125, -8.8671875, -8.6875, -8.5625, -3.341796875, -6.7890625, -7.265625, -9.140625, -2.51171875, -5.67578125, -8.1171875, -6.0234375, -4.265625, -5.64453125, -4.0078125, -6.0625, 3.87890625, -2.13671875, -3.39453125, -3.33203125, -8.796875, -7.1796875, -5.046875, -2.111328125, -7.33984375, -1.474609375, -7.875, -5.5234375, -7.859375, -4.09765625, -3.701171875, -9.265625, -6.546875, -6.265625, -3.591796875, -8.0625, -6.3515625, -8.859375, -6.0234375, -1.5185546875, -5.34765625, -4.265625, -5.12109375, -8.671875, -6.92578125, -8.3671875, -7.8828125, -4.94140625, -9.09375, -8.96875, -8.15625, -6.23046875, -8.5625, -7.8984375, -4.81640625, -8.0703125, -8.4921875, -8.40625, -8.140625, -7.99609375, -8.734375, -7.08203125, -8.0390625, -7.96484375, -4.265625, -3.98828125, -6.453125, -6.6640625, -5.7421875, -6.6875, -8.84375, -7.0234375, -1.12890625, -4.9375, -5.56640625, -5.7265625, -5.62890625, -6.3671875, -6.515625, -7.69140625, -7.1953125, -7.4453125, -6.94140625, -7.9765625, -7.97265625, -8.7265625, -7.08984375, -7.7421875, -4.265625, -8.0, -4.265625, -6.46875, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625, -10.0625], "end_logits": [-0.9013671875, -7.8671875, -8.6640625, -9.125, -9.6796875, -9.2734375, -9.8515625, -10.546875, -9.2734375, -9.53125, -8.6796875, -9.53125, -7.8671875, -7.19921875, -8.078125, -8.1796875, -5.25390625, -1.521484375, -3.01171875, -3.34765625, -4.078125, -2.572265625, 5.0, -3.244140625, -8.015625, -1.5341796875, -4.390625, -6.49609375, -2.90234375, -1.4736328125, -4.046875, -8.65625, -9.5390625, -7.16015625, -6.90625, -4.02734375, -9.7109375, -9.59375, -4.0859375, -4.8984375, -8.5625, -9.96875, -10.3203125, -9.546875, -7.2421875, -10.171875, -7.33203125, -5.23046875, -5.5859375, -10.4453125, -8.421875, -7.75390625, -6.671875, -3.94921875, -3.57421875, -9.2265625, -7.7421875, -8.7578125, -4.96484375, -5.25390625, -3.66796875, 2.484375, -6.2265625, -9.0546875, -9.3671875, -6.48828125, -8.609375, -1.951171875, -5.75, -8.703125, -9.828125, -7.5078125, -4.140625, -9.234375, -9.34375, -10.1640625, -7.5078125, -7.69140625, -5.06640625, -6.46484375, -9.390625, -4.14453125, -2.962890625, -3.57421875, -8.859375, -8.890625, -8.2734375, -10.34375, -10.2734375, -7.40625, -8.6484375, -9.828125, -10.2109375, -7.328125, -7.0546875, -7.796875, -7.4453125, -9.71875, -9.3125, -8.859375, -9.90625, -9.0234375, -10.4375, -9.8046875, -9.4296875, -6.77734375, -3.57421875, -6.14453125, -8.2265625, -8.6328125, -8.9453125, -8.40625, -9.7265625, -9.8828125, -8.0703125, -7.49609375, -5.859375, -3.5859375, -4.91015625, -3.84765625, -5.16015625, -8.5625, -8.8203125, -9.7109375, -9.3359375, -7.53125, -8.8671875, -10.3125, -10.4140625, -9.6640625, -3.57421875, -7.01953125, -3.57421875, -5.640625, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875, -10.3671875]} |
{"context": "The historical measure of a steam engine's energy efficiency was its \"duty\". The concept of duty was first introduced by Watt in order to illustrate how much more efficient his engines were over the earlier Newcomen designs. Duty is the number of foot-pounds of work delivered by burning one bushel (94 pounds) of coal. The best examples of Newcomen designs had a duty of about 7 million, but most were closer to 5 million. Watt's original low-pressure designs were able to deliver duty as high as 25 million, but averaged about 17. This was a three-fold improvement over the average Newcomen design. Early Watt engines equipped with high-pressure steam improved this to 65 million.", "question": "What was the ideal duty of a concept engine?", "answers.text": [""], "answers.answer_start": [-1], "feat_id": ["5ad41813604f3c001a4003e0"], "feat_title": ["Steam_engine"], "start_logits": [4.87890625, -8.671875, -9.109375, -8.234375, -7.5859375, -9.53125, -9.6171875, -8.4765625, -9.3125, -9.9609375, -9.625, -8.671875, -8.796875, -8.640625, -8.796875, -9.015625, -9.609375, -8.9375, -9.0859375, -9.5859375, -10.0234375, -8.65625, -9.0703125, -8.8828125, -8.375, -7.625, -7.3046875, -8.4140625, -8.1796875, -8.4765625, -9.21875, -7.30078125, -9.5703125, -8.8125, -8.609375, -9.0546875, -8.1640625, -8.96875, -9.0546875, -9.1171875, -8.6953125, -7.9140625, -8.953125, -8.8046875, -8.234375, -8.8046875, -9.125, -9.078125, -8.6640625, -8.4296875, -8.34375, -6.87890625, -9.0, -9.5859375, -8.796875, -8.3828125, -6.15625, -7.79296875, -4.4375, -4.9609375, -8.8125, -6.1015625, -9.09375, -8.484375, -8.15625, -8.6953125, -6.65234375, -7.4609375, -8.0546875, -7.63671875, -3.849609375, -4.890625, -8.75, -7.42578125, -6.81640625, -8.7734375, -8.828125, -8.46875, -6.19140625, -7.8984375, -7.09765625, -8.578125, -9.4375, -9.5546875, -7.46484375, -9.6875, -9.8359375, -9.6015625, -8.9453125, -8.34375, -8.1640625, -8.5234375, -5.89453125, -2.685546875, -6.4296875, -9.609375, -9.25, -8.2265625, -9.1328125, -8.828125, -9.0625, -4.41796875, -7.09765625, -8.8828125, -8.65625, -10.3359375, -9.625, -8.1484375, -9.84375, -9.96875, -9.625, -9.5, -9.21875, -9.5703125, -9.265625, -8.9296875, -9.1328125, -8.890625, -9.2109375, -4.38671875, -7.453125, -9.8046875, -9.4921875, -8.28125, -8.828125, -6.63671875, -7.8984375, -8.671875, -9.0625, -9.546875, -7.06640625, -9.4609375, -9.1484375, -9.484375, -9.28125, -8.890625, -8.2578125, -7.86328125, -9.5546875, -9.6953125, -9.0859375, -9.59375, -8.203125, -8.9296875, -9.765625, -9.1796875, -9.2109375, -7.67578125, -9.6015625, -9.1015625, -8.921875, -9.015625, -9.28125, -8.5078125, -4.46484375, -8.390625, -7.8984375, -7.5625, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875, -10.546875], "end_logits": [4.12109375, -8.71875, -9.3984375, -9.5, -8.9375, -9.1640625, -9.7421875, -9.9609375, -9.6953125, -8.8046875, -8.3125, -9.1875, -9.484375, -10.046875, -9.9140625, -10.1328125, -10.734375, -10.921875, -10.4609375, -9.1015625, -10.3046875, -10.0703125, -8.875, -10.46875, -10.3125, -10.7890625, -8.734375, -9.015625, -10.5625, -9.625, -10.53125, -8.0703125, -10.5546875, -10.140625, -10.046875, -10.8515625, -8.8125, -10.8125, -9.90625, -10.5859375, -9.90625, -10.453125, -10.5390625, -10.8515625, -8.4453125, -10.3515625, -9.3515625, -9.4921875, -9.9609375, -10.234375, -10.109375, -10.65625, -10.078125, -8.484375, -7.8046875, -7.421875, -6.65625, -9.9765625, -9.46875, -7.69140625, -9.2578125, -8.1640625, -10.3515625, -8.7265625, -5.50390625, -7.93359375, -6.453125, -6.9921875, -9.46875, -9.546875, -7.03515625, -8.21875, -4.4609375, -9.8828125, -7.80859375, -7.4453125, -7.7109375, -9.8515625, -4.78125, -7.734375, -11.015625, -10.3984375, -9.5859375, -10.40625, -10.8203125, -10.0078125, -9.5703125, -9.0625, -10.5546875, -10.5703125, -9.3046875, -10.5625, -10.625, -7.48046875, -4.54296875, -8.2734375, -10.078125, -10.671875, -10.7734375, -10.6875, -10.6796875, -7.8671875, -5.33203125, -7.99609375, -10.1328125, -10.2421875, -10.5390625, -10.71875, -10.7578125, -9.25, -9.4453125, -10.90625, -10.3671875, -10.34375, -10.2421875, -9.7265625, -10.8046875, -10.5234375, -10.6015625, -8.0625, -5.96875, -8.75, -9.96875, -10.28125, -10.609375, -6.76953125, -7.734375, -10.109375, -11.0, -10.7890625, -9.8671875, -9.515625, -9.2734375, -10.2265625, -10.9453125, -10.96875, -9.984375, -11.1484375, -10.34375, -9.90625, -8.3515625, -9.6171875, -10.421875, -10.3984375, -9.1484375, -10.4609375, -11.0078125, -10.5703125, -10.828125, -9.2890625, -8.046875, -10.640625, -9.984375, -10.7109375, -8.171875, -6.01171875, -7.734375, -7.4296875, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375, -10.859375]} |
{"context": "Imperialism and colonialism both dictate the political and economic advantage over a land and the indigenous populations they control, yet scholars sometimes find it difficult to illustrate the difference between the two. Although imperialism and colonialism focus on the suppression of an other, if colonialism refers to the process of a country taking physical control of another, imperialism refers to the political and monetary dominance, either formally or informally. Colonialism is seen to be the architect deciding how to start dominating areas and then imperialism can be seen as creating the idea behind conquest cooperating with colonialism. Colonialism is when the imperial nation begins a conquest over an area and then eventually is able to rule over the areas the previous nation had controlled. Colonialism's core meaning is the exploitation of the valuable assets and supplies of the nation that was conquered and the conquering nation then gaining the benefits from the spoils of the war. The meaning of imperialism is to create an empire, by conquering the other state's lands and therefore increasing its own dominance. Colonialism is the builder and preserver of the colonial possessions in an area by a population coming from a foreign region. Colonialism can completely change the existing social structure, physical structure and economics of an area; it is not unusual that the characteristics of the conquering peoples are inherited by the conquered indigenous populations.", "question": " what do conquering people take away from native populations?", "answers.text": [""], "answers.answer_start": [-1], "feat_id": ["5acff63377cf76001a68665d"], "feat_title": ["Imperialism"], "start_logits": [4.79296875, -8.1875, -8.421875, -7.41796875, -8.7421875, -7.7421875, -7.59375, -8.375, -8.375, -8.984375, -9.21875, -8.3203125, -8.09375, -8.2578125, -9.6171875, -9.53125, -9.7265625, -8.90625, -8.640625, -8.6484375, -8.46875, -8.4765625, -9.59375, -8.9140625, -9.1171875, -8.8828125, -9.4296875, -9.21875, -9.0625, -8.6484375, -9.53125, -9.828125, -8.7890625, -8.453125, -8.9296875, -8.140625, -8.78125, -8.734375, -8.25, -9.4609375, -8.3671875, -9.1171875, -8.40625, -8.96875, -8.6484375, -8.7265625, -8.5625, -8.7421875, -9.1171875, -7.66796875, -8.2265625, -9.9609375, -8.8359375, -8.46875, -9.4140625, -8.6953125, -7.890625, -9.703125, -9.15625, -8.828125, -9.3515625, -6.9765625, -7.7890625, -8.703125, -9.671875, -9.234375, -8.765625, -9.546875, -9.2890625, -9.03125, -8.578125, -8.90625, -9.171875, -9.578125, -8.75, -8.9375, -7.94140625, -8.328125, -9.484375, -9.3203125, -8.640625, -10.09375, -9.4140625, -9.2890625, -10.046875, -8.03125, -8.34375, -9.3671875, -9.0859375, -9.0703125, -8.5078125, -8.5859375, -10.015625, -10.2265625, -9.7890625, -10.140625, -10.046875, -9.734375, -9.96875, -9.4296875, -8.953125, -9.875, -9.8515625, -9.1484375, -9.6328125, -9.8125, -8.984375, -8.2109375, -7.671875, -9.8046875, -8.984375, -10.390625, -8.9765625, -9.484375, -8.8984375, -9.3828125, -8.4765625, -8.5, -9.2890625, -7.96875, -8.5234375, -6.75390625, -8.90625, -9.9140625, -8.171875, -9.1796875, -8.90625, -9.46875, -9.46875, -9.640625, -9.375, -9.796875, -9.6953125, -9.4453125, -9.765625, -8.8828125, -8.78125, -8.484375, -9.109375, -9.703125, -8.5390625, -9.5390625, -9.203125, -9.125, -8.6328125, -9.2578125, -9.4140625, -9.2109375, -9.296875, -8.0234375, -7.140625, -9.171875, -9.609375, -9.2265625, -9.0703125, -9.2421875, -7.640625, -8.3203125, -9.6953125, -9.046875, -7.3515625, -8.3125, -9.921875, -8.6875, -9.3046875, -9.0234375, -9.109375, -9.1875, -9.1640625, -9.234375, -9.1796875, -6.98046875, -6.89453125, -8.078125, -8.2578125, -7.7578125, -8.9609375, -8.109375, -8.734375, -8.953125, -7.83984375, -8.75, -9.203125, -9.0390625, -8.78125, -8.046875, -7.73828125, -7.8046875, -9.6640625, -7.703125, -9.2109375, -8.171875, -8.3984375, -9.5234375, -8.8515625, -9.9609375, -7.46484375, -7.859375, -8.6875, -8.7109375, -9.359375, -9.6875, -9.1328125, -9.9453125, -8.46875, -7.62109375, -9.0546875, -9.2890625, -8.265625, -8.046875, -6.34765625, -9.4921875, -8.8046875, -8.921875, -8.9453125, -10.203125, -7.796875, -8.9296875, -9.7734375, -8.4140625, -7.54296875, -8.0703125, -9.2109375, -9.3671875, -9.4296875, -7.171875, -8.28125, -8.140625, -8.03125, -8.796875, -8.921875, -8.078125, -9.390625, -8.046875, -7.02734375, -9.2421875, -7.78515625, -8.4765625, -7.7578125, -8.4140625, -8.9609375, -8.1640625, -9.0625, -9.8671875, -7.62890625, -8.671875, -9.59375, -8.234375, -9.140625, -9.109375, -9.0234375, -5.9296875, -4.9609375, -7.796875, -7.16796875, -8.1484375, -7.96484375, -4.4296875, -3.884765625, -8.3984375, -7.06640625, -6.2421875, -7.40234375, -8.0859375, -6.4765625, -7.73828125, -7.16015625, -6.38671875, -7.71484375, -7.37890625, -8.046875, -7.51953125, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375, -9.734375], "end_logits": [4.26171875, -8.8125, -9.65625, -9.1484375, -8.5390625, -8.5546875, -6.953125, -9.203125, -9.46875, -7.765625, -8.625, -9.359375, -9.078125, -10.5625, -9.6484375, -8.828125, -10.203125, -8.78125, -10.2265625, -9.96875, -10.625, -10.5625, -10.7109375, -9.28125, -9.4296875, -9.7109375, -9.8984375, -9.2578125, -10.421875, -10.484375, -10.1015625, -9.75, -9.8125, -8.6953125, -6.50390625, -9.0, -10.3203125, -10.1953125, -10.4296875, -10.484375, -9.4921875, -11.03125, -10.2578125, -10.1171875, -9.875, -10.4375, -9.4140625, -8.140625, -9.1484375, -9.546875, -9.1015625, -10.6328125, -8.5546875, -10.2109375, -10.5078125, -10.875, -9.546875, -10.515625, -10.4453125, -9.34375, -9.6015625, -9.1640625, -8.546875, -9.765625, -10.40625, -10.75, -9.7109375, -10.4609375, -10.7265625, -9.5234375, -10.6953125, -10.640625, -9.78125, -10.4296875, -9.3671875, -9.2421875, -8.9921875, -9.796875, -10.6640625, -10.6953125, -10.484375, -10.640625, -10.0234375, -9.3359375, -9.890625, -10.7109375, -10.3671875, -10.4921875, -10.3515625, -9.015625, -9.2109375, -10.5, -8.8203125, -10.7421875, -10.328125, -10.453125, -10.421875, -10.84375, -10.046875, -10.53125, -10.125, -10.109375, -10.0703125, -9.2421875, -9.03125, -10.8125, -10.1796875, -9.171875, -9.453125, -10.5546875, -9.859375, -10.3046875, -10.4296875, -11.078125, -10.4921875, -10.078125, -8.84375, -9.7890625, -10.875, -7.8515625, -8.390625, -9.34375, -7.984375, -10.4375, -10.6015625, -10.765625, -9.3671875, -8.8984375, -10.40625, -10.6015625, -9.015625, -10.15625, -10.28125, -9.359375, -10.5234375, -10.078125, -10.3125, -10.515625, -10.3203125, -10.3515625, -9.6875, -9.8515625, -10.5859375, -9.7734375, -10.8125, -10.1875, -9.1953125, -10.4296875, -8.0390625, -8.7734375, -9.5, -8.671875, -9.953125, -10.3359375, -10.0703125, -10.796875, -10.4453125, -9.8125, -10.78125, -10.90625, -9.8125, -9.1640625, -10.59375, -8.3046875, -10.4609375, -10.4375, -10.0859375, -10.609375, -10.234375, -8.15625, -9.84375, -9.8203125, -8.171875, -7.37890625, -9.0390625, -9.234375, -10.453125, -8.75, -10.1875, -10.6484375, -9.78125, -8.6328125, -10.515625, -9.921875, -7.76171875, -7.796875, -10.1875, -9.71875, -10.4375, -8.03125, -10.0703125, -9.953125, -10.078125, -10.375, -8.34375, -9.46875, -9.765625, -9.5703125, -10.578125, -10.421875, -9.9140625, -9.8203125, -8.84375, -10.1796875, -9.1484375, -9.8671875, -10.1640625, -9.9375, -8.21875, -7.796875, -8.984375, -7.8203125, -9.9453125, -10.6953125, -9.5625, -10.4296875, -9.484375, -8.421875, -10.3828125, -10.171875, -8.7265625, -7.1953125, -10.046875, -9.7421875, -9.03125, -9.3671875, -10.78125, -8.6328125, -9.359375, -10.65625, -10.75, -9.515625, -6.96875, -7.796875, -9.78125, -8.375, -9.7421875, -10.234375, -9.7421875, -10.140625, -10.1328125, -9.9765625, -8.75, -9.78125, -10.0390625, -8.8984375, -10.609375, -7.40625, -10.15625, -9.8125, -8.140625, -6.359375, -10.3984375, -10.40625, -10.2109375, -8.1640625, -10.3828125, -9.765625, -6.109375, -8.203125, -9.34375, -6.98046875, -5.609375, -9.4765625, -5.95703125, -8.59375, -9.5390625, -8.1875, -9.203125, -5.98828125, -7.796875, -5.90234375, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125, -10.8203125]} |
{"context": "Bills can be introduced to Parliament in a number of ways; the Scottish Government can introduce new laws or amendments to existing laws as a bill; a committee of the Parliament can present a bill in one of the areas under its remit; a member of the Scottish Parliament can introduce a bill as a private member; or a private bill can be submitted to Parliament by an outside proposer. Most draft laws are government bills introduced by ministers in the governing party. Bills pass through Parliament in a number of stages:", "question": "Who may also submit private bills to Parliament?", "answers.text": ["an outside proposer", "an outside proposer", "an outside proposer"], "answers.answer_start": [364, 364, 364], "feat_id": ["572fcd86947a6a140053ccdd", "572fcd86947a6a140053ccdd", "572fcd86947a6a140053ccdd"], "feat_title": ["Scottish_Parliament", "Scottish_Parliament", "Scottish_Parliament"], "start_logits": [1.56640625, -8.171875, -8.5859375, -7.84375, -8.3515625, -8.3125, -9.8046875, -9.578125, -9.3671875, -8.9375, -8.6171875, -8.2421875, -4.4140625, -7.296875, -7.5, -8.3671875, -6.78515625, -7.9375, -5.8046875, -7.38671875, -6.98046875, -6.5078125, -7.16015625, -7.24609375, -6.8203125, -4.375, -4.61328125, -6.2734375, -7.65625, -7.1015625, -7.0859375, -7.21484375, -8.8828125, -6.453125, -8.2734375, -7.5, -7.02734375, -6.65234375, -7.2734375, -6.53125, -6.4375, -3.978515625, -3.64453125, -6.73046875, -6.76171875, -4.7734375, -7.23828125, -6.5234375, -6.4921875, -6.44140625, -6.703125, -5.18359375, -7.25, -6.9296875, -6.75390625, -6.546875, -6.64453125, -6.4453125, -7.73828125, -5.56640625, -1.958984375, -2.353515625, -6.421875, -5.4921875, -4.13671875, -4.33203125, -6.9375, -6.63671875, -6.83984375, -7.1328125, -5.97265625, -6.63671875, -5.71875, -6.71484375, -3.615234375, -1.2255859375, 1.9296875, 0.2265625, -1.8359375, -1.166015625, -3.66015625, -0.73828125, -3.892578125, -1.0654296875, 0.47998046875, 7.3125, 6.8359375, 0.7646484375, -2.189453125, -1.4892578125, -4.75, -6.421875, -6.7734375, -8.8359375, -6.015625, -6.94140625, -6.52734375, -6.90625, -4.4296875, -6.140625, -5.1875, -5.55078125, -6.13671875, -1.4892578125, -7.5, -8.1171875, -9.0234375, -6.8359375, -7.8828125, -8.8984375, -7.26953125, -8.90625, -8.375, -6.83203125, -6.30078125, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625, -10.1015625], "end_logits": [0.52490234375, -6.51953125, -7.7578125, -7.62109375, -8.3984375, -9.90625, -8.7578125, -9.5859375, -7.62109375, -5.2734375, -8.0703125, -8.171875, -7.8359375, -6.46875, -8.765625, -8.9296875, -7.7734375, -9.1796875, -6.67578125, -9.4609375, -8.640625, -7.4453125, -8.3125, -7.0234375, -8.046875, -8.6171875, -7.015625, -5.42578125, -9.4453125, -8.8671875, -9.25, -7.63671875, -10.1328125, -8.4140625, -9.859375, -9.125, -7.59375, -9.0390625, -9.3046875, -6.73828125, -7.234375, -7.828125, -6.015625, -8.4765625, -8.1015625, -5.21875, -8.546875, -8.03125, -8.3984375, -7.09375, -8.859375, -7.6015625, -8.921875, -8.5625, -7.734375, -8.6015625, -7.1875, -8.1875, -5.9921875, -7.35546875, -7.82421875, -6.58984375, -8.34375, -8.3359375, -6.98046875, -2.634765625, -8.0625, -7.9765625, -8.359375, -6.82421875, -9.234375, -9.09375, -8.265625, -5.63671875, -6.68359375, -6.78515625, -6.4765625, -6.8671875, -6.00390625, -7.3203125, -7.81640625, -6.18359375, -8.7578125, -6.03125, -7.33984375, -3.814453125, 0.734375, -2.099609375, 5.84375, 0.74951171875, -7.5, -7.8359375, -6.82421875, -10.15625, -8.1640625, -7.98828125, -8.859375, -9.8359375, -7.03125, -9.6015625, -8.6328125, -7.60546875, -4.2890625, 0.75, -9.078125, -9.71875, -10.15625, -7.8828125, -9.9453125, -10.046875, -8.8515625, -9.6796875, -8.15625, -8.7421875, -5.3515625, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375, -9.8359375]} |
{"aa auto insurance information": "aa car insurance quote special offers great", "af12a2df01394db69b26ea21d77fd584.jpg": "a4cc4def13eac56b09abf7530d3d0eb5.jpg"} |
{"aa auto insurance information": "aa car insurance special offers great", "af12a2df01394db69b26ea21d77fd584.jpg": "af12a2df01394db69b26ea21d77fd584.jpg"} |
{"aa auto insurance information": "aa casey tool full line stationary tools", "af12a2df01394db69b26ea21d77fd584.jpg": "15dbada7861fd84d70ed59f72aebf5b4.jpg"} |
{"aa auto insurance information": "aa eneloop geprfte informationen hier", "af12a2df01394db69b26ea21d77fd584.jpg": "3fecbc0c22f2ad0ef640defe43135903.jpg"} |
{"aa auto insurance information": "aa home insurance pay less home insurance", "af12a2df01394db69b26ea21d77fd584.jpg": "af12a2df01394db69b26ea21d77fd584.jpg"} |
{"aa auto insurance information": "aa key lock services electronic door locks", "af12a2df01394db69b26ea21d77fd584.jpg": "3435d3988196cca6c108f04d6098dc27.jpg"} |
{"aa auto insurance information": "aa tyre fitting kensaq", "af12a2df01394db69b26ea21d77fd584.jpg": "fa626578cb29321e1e22bfa831f9aa3a.jpg"} |
{"aa auto insurance information": "aaa auto insurance avg auto insurance", "af12a2df01394db69b26ea21d77fd584.jpg": "c6992f0e75b766ed01b5169bd4427ff1.jpg"} |
{"aa auto insurance information": "aaa auto insurance custom auto insurance policies", "af12a2df01394db69b26ea21d77fd584.jpg": "c6992f0e75b766ed01b5169bd4427ff1.jpg"} |
{"aa auto insurance information": "aaa auto insurance dedicated serving get free quote", "af12a2df01394db69b26ea21d77fd584.jpg": "5c173ca63d841e78a61360ba2e9d653b.jpg"} |
{"text": "Raise a cup up for all my day ones\nTwo middle fingers for the haters\nLifes only getting greater\nStraight up from nothing we go\nHigher than the highest skyscraper\nNo Little League, we major\nThe proof is in the paper\nWe put the good in the good in the good life\nWe put the good in the good in the good life\nWe put the bad in the past, now we alright\nEazy\nAyy, ayy, ayy, ayy\nKehlani, I got you\nAyy, yeah\nAnd its a feelin that I cant explain\nHow you make it and your team still stay the same\nStay down from the jump and they never change\nMan, this a moment I could never trade, yeah\nI told my moms not to stress no more\nGo hit the Bentley store and no credit card debts no more \nI bought the crib and its in escrow now\nSo you dont ever have to worry about how you gon pay rent no more\nI put my team in position, now they makin a killin\nStackin blue faces straight to the ceilin\nOut in Vegas Im with em\nOrderin bottles of that Ace when they sit em\nTil there aint enough space up on the table to fit em\nGo ahead and\nRaise a cup up for all my day ones\nTwo middle fingers for the haters\nLifes only getting greater\nStraight up from nothing we go\nHigher than the highest skyscraper\nNo Little League, we major\nThe proof is in the paper\nWe put the good in the good in the good life\nThe good life\nWe put the good in the good in the good life\nI said the good life\nWe put the bad in the past, now we alright\nWe alright\nAyy, ayy, ayy, ayy\nYeah, yeah\nAyy, yeah\nPour some Clicquot in the glass, have a toast to success\nNo lookin back from here, no more bein broke and distressed\nI put my heart into this game like I opened my chest\nWe only pray for more Ms while you hope for the best\nWe make these plays, man Im finessin these checks\nTimes up for everybody, Im collectin on debts\nAnd I swear this champagne just tastes better on jets\nIm just out here bein great, man, this as real as it gets\nI put my team in position, now they makin a killin\nStackin blue faces straight to the ceilin\nOut in Vegas Im with em\nOrderin bottles of that Ace when they sit em\nTil there aint enough space up on the table to fit em\nGo ahead and\nRaise a cup up for all my day ones\nTwo middle fingers for the haters\nLifes only getting greater\nStraight up from nothing we go\nYeah, go up\nHigher than the highest skyscraper\nNo Little League, we major\nYeah\nThe proof is in the paper\nYou know\nWe put the good in the good in the good life\nThe good life\nWe put the good in the good in the good life\nI said the good life\nWe put the bad in the past, now we alright\nWe alright\nAyy, ayy, ayy, ayy\nYeah, yeah\nAyy, yeah\nDamn right, from the bottom we rise\nSo high, now we cover sky lights\nWere building an empire\nWe owe it all to each other\nJust look at us right now, destined\nWere so good right now, legend\nHeres to you and I\nRaise em to the sky\nWe put the good in the good in the good life\nYeah\nWe put the good in the good in the good life\nYeah\nWe put the bad in the past, now we alright\nYeah, you know, uh\nWe put the good in the good in the good life\nThe good life\nWe put the good in the good in the good life\nI said the good life\nWe put the bad in the past, now we alright\nWe alright\nAyy, ayy, ayy, ayy\nUh\nAyy, yeah\nUh, the good life"} |
{"text": "Ooh, ooh\nRing, ring, ring, ring\nYou dont hit my line no more, oh, oh\nYou dont make it ring, ring, ring, ring\nI cant keep this on the low\nI want you to make it ring, ring, ring, ring\nShould I call first? I cant decide\nI want to, but a bitch got pride\nThe switchin up shit is what I cant fuck with\nIm feelin you but you hard to get in touch with\nAnd you aint hit me up in a while\nActin like you dont know what number to dial\nYou quit, then thats it, Ima throw in the towel\nCause a nigga only gon do what you allow\nYou dont want this gun smoke\nLearn to text with your nose if your thumb broke\nI dont care if we get into it and I stall on your ass\nBetter still wake up to missed calls from your ass, nigga\nYou dont hit my line no more, oh, oh\nYou dont make it ring, ring, ring, ring\nI cant keep this on the low\nI want you to make it ring, ring, ring, ring\nNah, nigga, now you gon have to call me \nCause Im lookin at these messages, they on me \nActin like they aint niggas that want me\nLet another nigga in your spot, and you gon be hot, nigga, coffee\nYou gon be sick to your, stomach\nHit me when you free, 1-800\nIts emergency, call me 911\nCause right now Im out here tryna find someone\nThe ring on my phone, ring on my finger \nYou actin like you aint tryna do either \nOnce a good girl, watch me turn diva\nHere goes my heart, I put it on speaker \nYou dont hit my line no more, oh, oh\nYou dont make it ring, ring, ring, ring\nI cant keep this on the low\nI want you to make it ring, ring, ring, ring\nYou used to be on my line\nOn my tick all the time, yeah\nLove it when you make me feel\nLike you dont mind when I aint got time for you\nAnd no it dont go to my head, Im only arrogant in bed\nI just love to know you wanna spend time with me instead\nNow you all caught up, yeah\nYou all caught up and you done left me alone, yeah\nYou was all fed up\nReady for the next step, wanna be on your own\nSaid I just miss you, I just miss us, baby\nAll I know is\nYou dont hit my line no more, oh, oh\nYou dont make it ring, ring, ring, ring \nI cant keep this on the low \nI want you to make it ring, ring, ring, ring"} |
{"text": "I like my girls just like I like my honey; sweet\nA little selfish\nI like my women like I like my money; green\nA little jealous\nCause Im a beautiful wreck\nA colorful mess, but Im funny\nOh, Im a heartbreak vet\nWith a stone-cold neck, yeah, Im charming\nAll the pretty girls in the world\nBut Im in this space with you\nColored out the lines\nI came to find, my fire was fate with you\nHeartache would stay with you\nFly great escapes with you\nI countdown to the clock, saw you awake\nDont walk away, or would you wait for me?\nI go out to the bar, fuck hangin with the stars\nDont even have a car, but you would wait for me\nAll, all, all, all the pretty girls in the world\nBut Im in this space with you\nColored out the lines\nI came to find, my fire was fate with you\nMy heartache would stay with you\nEscape with you\nI like my girls just like I like my honey; sweet\nA little selfish, huh\nI like my women like I like my money; green\nA little jealous\nOh, Im a beautiful wreck\nA colorful mess, but Im funny\nOh, Im a heartbreak vet\nWith a stone-cold neck, Im so charming, oh, oh\nLa-la-la-la-la-la-la\nDo-do-do do-do\nDo-do-do do-do\nDo-do-do do-do\nDa-da-da da-da\nDo-do-do do-do\nIsnt love all we need? Is it love?\nDo-do-do do-do\nThe Beatles say prophecy is love\nDo-do-do do-do\nDo-re-mi-fa-so-la-ti, is it love?\nDo-do-do do-do\nLove, do-do-do do-do"} |
{"text": "You act like you need remindin\nTryna do it over, bring it back and rewind it\nBut all that glitters isnt gold, I was blinded\nShould have never gave you my heart on consignment\nAnd I cant believe the lies that I went for\nThought you was mine, but you decided to be with him though\nYou took my feelings and just threw em out the window\nFeel like its too hard to fall in love again, no\nOn some nights like this, shawty, I cant help but think of us\nIve been reminiscin, sippin, missin ya\nCan you tell me whats with all this distant love?\nIf I called, would you pick it up?\nOn some nights like this, I just wanna text you, but for what?\nYou gon say you want me, then go switch it up\nJust gon play with my emotions just because, no \nAll them times I played the fool for you\nThinkin we could put it back together, thought we had forever\nYou never see my point of view\nOur connection is so severed, you dont show no effort\nAnd I cant believe the lies that I went for\nThought you was mine, but you decided to be with him though\nTook my feelings and just threw em out the window\nFeel like its too hard to fall in love again, no\nOn some nights like this, shawty, I cant help but think of us\nIve been reminiscin, sippin, missin ya\nCan you tell me whats with all this distant love?\nIf I called, would you pick it up?\nOn some nights like this, I just wanna text you, but for what?\nYou gon say you want me, then go switch it up\nJust gon play with my emotions just because, no \nYou gon get my hopes high, girl\nYou gon get my hopes high, girl\nJust gon tell me more lies, girl\nJust gon get my hopes high, girl\nIve been way too good to you, you take me for granted\nYou was my day one since back at Big Bs house on Adams\nFirst day that we met, I flagged you down, I told you, Hit my line\nUsed to promise me youd never switch on me like Gemini\nYou think Im a fool, aint nobody stupid\nI see all the signs, I see all the clues\nYeah, sometimes I reminisce bout that shit when Im bingin\nCant believe its been a whole year, yeah, but...\nOn some nights like this, shawty, I cant help but think of us\nIve been reminiscin, sippin, missin ya \nCan you tell me whats with all this distant love? \nIf I called, would you pick it up?\nOn some nights like this, I just wanna text you, but for what?\nYou gon say you want me, then go switch it up \nJust gon play with my emotions just because, no \nYou gon get my hopes high, girl\nYou gon get my hopes high, girl\nJust gon tell me more lies, girl\nJust gon get my hopes high, girl"} |
{"text": "Pray to God, but Im feeling like hes going deaf\nNow when I lean on you and I got nothing left\nHey, Ive been wanting to call ya, tell you that Im sorry\nSame old fucking story everybody sing\nAnd I say Im okay, but I guess Im a liar\nYou say youre okay, but I saw that you liked it\n2 AM and faded, I know thats when you like it\nKnow thats when you miss me, know thats when you crying\nWhy you, why you, why you checking if youre over it?\nWhy you, why you say Let go if youre still holding it?\nJust a little bit better at faking it than me, baby\nJust a little bit better at faking it than me, baby\nWhy you, why you, why you checking if youre over it?\nWhy you, why you say Let go if youre still holding it?\nJust a little bit better at faking it than me, baby\nJust a little bit better at faking it than me, baby\nNowadays, Im just a bitch to everybody else\nI dont need no shoulders, Im good crying by myself\nMoving ons a chore, cause you know I still adore ya\nAn unrequited love is just a lovers hell\nAnd I say Im okay, but I guess Im a liar\nYou say youre okay, but I saw that you liked it\n2 AM and faded, I know thats when you like it\nKnow thats when you miss me, know thats when you crying\nWhy you, why you, why you checking if youre over it?\nWhy you, why you say Let go if youre still holding it?\nJust a little bit better at faking it than me, baby\nJust a little bit better at faking it than me, baby\nWhy you, why you, why you checking if youre over it?\nWhy you, why you say Let go if youre still holding it?\nJust a little bit better at faking it than me, baby\nJust a little bit better at faking it than me, baby\nIm not gonna act like I dont love ya baby\nCause deep in my mind, girl, I know I do \nTried to search all through the world and not well\nBut I cant find a girl who looks close like you \nI done made millions of dollars\nBut Im still alone until I come home back to you \nI remember all of the times we were parked by your house\nAnd laughed all on your avenue\nWhoa, you cant front, youre a stone cold diva \nI had to get counseling from my moms\nShes a heartbreak teacher \nRemember that time I put those pepperonis on your face\nMade you a creature\nNow I think about you every single time I eat pizza, ohh\nWhy you, why you, why you checking if youre over it?\nWhy you, why you say Let go if youre still holding it?\nJust a little bit better at faking it than me, baby\nJust a little bit better at faking it than me, baby\nWhy you, why you, why you checking if youre over it?\nWhy you, why you say Let go if youre still holding it?\nJust a little bit better at faking it than me, baby\nJust a little bit better at faking it than me, baby\nWhy you holding me?\nWhy you holding me?\nOh, she killed that shit\nShe was killing it, that was hard, bruh\nI didnt know she could get that high but she killed that\nGo Lani, go Lani"} |
{"text": "Yeah, yeah, yeah-eah-eah-eah, yeah-eah, yeah-eah \nYeah, yeah, yeah, yeah, yeah, yeah, yeah-eah \nShe talkin that noise, take her lovin with the dawn, all while I talk on the phone\nAfter we fuck in the morn, she wake up, she wearin my clothes\nShe always be callin my phone, she always be stealin my clothes, ayy\nAskin me, How does it feel when you know you could buy out the store?, ayy\nIm Bathin Ape down to the floor, ayy, Im droppin the four in the foreign, ayy\nI came a long way on my own, ayy, Im doin this shit on my own, ayy\nI dont give a fuck what Im told, ayy, I came a long way on my own, ayy\nNow her pussy made out of gold, ayy, I swear her pussy ownin my soul\nShe got that sauce, yeah, four days a hundred thousand\nForever like a diamond, she bring me back to life, yeah\nIm so fly, Im martian, quit talkin all that nonsense\nIm just tryna fuck you til you dont know nothin, oh-oh-oh\nI cross my Ts and dot my Is, yeah, Im for real \nHe hold me down , thats my shield \nHe buy whatever, he know the drill , dont need no pill \nHe whispered in my ear and told me\nFeel \nFee-eee-eee-eel \nFee-eee-eee-eee-eel \nOh-oh, oh-oh \nHe love that I say what I feel, he feel what I say cause its real\nYou couldnt forget, I never changed up on my set, and I only make calls to collect, thats why we connect\nWe can go half on a jet, baby, we on to the next, fuck all the stress\nFuckin with bitches whos new to the game when you got you a vet\nI know you like it when I act like Im still shy\nThen turn around and put that thing in overdrive, Im down to ride\nIma keep you on my shoulder\nCause every cold nigga need a bae thats ten times colder, no\nI cross my Ts and dot my Is, yeah, Im for real \nHe hold me down , thats my shield \nHe buy whatever, he know the drill , dont need no pill \nHe whispered in my ear and told me\nFeel \nFee-eee-eee-eel, ayy \nFee-eee-eee-eee-eel , oh\nOh-oh, oh-oh \nHey, fuck me til I cant see straight\nMake me think that ho was a mistake\nI just need to feel you all the time\nRide, ho, ride, ho, alright"} |
{"text": "the study of the equation of state ( eos ) , transport properties , and mixing rules of hydrogen ( h ) and helium ( he ) under extreme condition of high pressure and temperature is not only of fundamental interest but also of essential practical applications for astrophysics @xcite .\nfor instance , giant planets such as jupiter and saturn require accurate eos as the basic input into the respective interior models in order to solve hydrostatic equation and investigate the solubility of the rocky core @xcite . on the other side , the evolution of stars and the design of thermal protection system is assisted by high precision transport coefficients of h - he mixtures at high pressure @xcite . in addition ,\nthe viscosity and mutual diffusion coefficients are also important input properties for hydrodynamic simulations in modelling the stability of the hot spot - fuel interfaces and the degree of fuel contamination in inertial confinement fusion ( icf ) @xcite . since direct experimental access such as shock wave experiments\nis limited in the mbar regime @xcite , the states deep in the interior of jupiter ( @xmath2 mbar ) and saturn ( @xmath3 mbar ) @xcite can not be duplicated in the laboratory . as a consequence ,\ntheoretical modelling provides most of the insight into the internal structure of giant planets .\nthe eos of h - he mixtures have been treated by a linear mixing ( lm ) of the individual eos via fluid perturbation theory @xcite and monte carlo simulations @xcite . recently , several attempts have been made to calculate eos of h - he mixtures by means of quantum molecular dynamic ( qmd ) simulations .\n@xcite applied local density approximation of density functional theory ( lda - dft ) calculations for solid h - he mixtures , implying demixing for jupiter and saturn at 15000 k for a he fraction of @xmath4 .\n@xcite , lorenzen _ et al . _\n@xcite , and militzer @xcite performed qmd simulations by using generalized gradient expansion ( gga ) instead of the lda in order to evaluate the accuracy of the lm approximation and study the demixing of h - he at mbar pressures .\n@xcite introduced car - parrinello molecular dynamics ( cpmd ) simulations to calculate the excess gibbs free energy of mixing at a lower temperature compared to that set in the work of lorenzen _ et al .\n_ @xcite and militzer @xcite . considering the transport properties , qmd @xcite and orbital - free molecular dynamics ( ofmd ) @xcite simulations\nhave been introduced to study hydrogen and its isotropic deuterium ( d ) and tritium ( t ) .\nself - diffusion coefficients in the pure h system and mutual diffusion for d - t mixtures were determined for temperatures @xmath51 to 10 ev and equivalent h mass densities 0.1 to 8.0 g / cm@xmath1 @xcite .\nqmd and ofmd simulations of self - diffusion , mutual diffusion , and viscosity have recently been performed on heavier elements ( fe , au , be ) @xcite and on mixtures of li and h @xcite .\nthe present work selects h - he mixture as a representative system and examines some of the standard mixing rules with respect to the eos and transport properties ( viscosity , self and mutual diffusion coefficients ) in the warm dense regime that covers standard extreme condition as reached in the interiors of jupiter and saturn .\nthe thermophysical properties of the full mixture and the individual species have been derived from qmd simulations , where the electrons are quantum mechanically treated through finite - temperature ( ft ) dft and ions move classically . in the next section , we present the formalism for qmd and for determining the static and transport properties .\nthen , eos , viscosity , and diffusion coefficients for h - he mixtures are presented , and the qmd results are compared with the results from reduced models and qmd based linear mixing models . finally , concluding remarks are given .\nin this section , a brief description of the fundamental formalism employed to investigate h - he mixtures is introduced .\nthe basic quantum mechanical density functional theory forms the basis of our simulations .\nthe implementation of schemes in determining diffusion and viscosity is discussed . mixing rules that combine pure species quantities to form composite properties\nis also presented .\nqmd simulations have been performed for h - he mixtures by using vienna _\nab initio _ simulation package ( vasp ) @xcite . in these simulations , the electrons are treated fully quantum mechanically by employing a plane - wave ft - dft description , where the electronic states follow the fermi - dirac distribution .\nthe ions move classically according to the forces from the electron density and the ion - ion repulsion .\nsimulations have been performed in the nvt ( canonical ) ensemble where the number of particles @xmath7 and the volume are fixed .\nthe system was assumed to be in local thermodynamic equilibrium with the electron and ion temperatures being equal ( @xmath8 ) . in these calculations ,\nthe electronic temperature has been kept constant according to fermi - dirac distribution , and ion temperature is controlled by noe thermostat @xcite . at each step during md simulations , a set of electronic state functions [ @xmath9 for each * k*-point\nare determined within kohn - sham construction by @xmath10 with @xmath11 in which the four terms respectively represent the kinetic contribution , the electron - ion interaction , the hartree contribution and the exchange - correlation term . the electronic density is obtained by @xmath12 then by applying the velocity verlet algorithm , based on the force from interactions between ions and electrons , a new set of positions and velocities are obtained for ions .\nall simulations are performed with 256 atoms and 128 atoms for pure species of h and he , and as for the case of the h - he mixture , a total number of 245 atoms ( 234 h atoms and 11 he atoms ) for a mixing ratio @xmath13 ( corresponding to the h - he immiscibility region determined in the work of morales _ et al . _\n@xcite ) has been adopted , where a cubic cell of length @xmath14 ( volume @xmath15 ) is periodically repeated .\nthe simulated densities range from 1.0 to 4.0 g / cm@xmath1 for pure h system . as for pure\nhe and h - he mixture , the size of the supercell is chosen to be the same as that for pure h to secure a constant electron number density ( in the range @xmath0/m@xmath1 ) . the temperature from 4000 k to 20000 k\nhas been selected to highlight the conditions in the interiors of jupiter and saturn .\nthe convergence of the thermodynamic quantities plays an important role in the accuracy of qmd simulations . in the present work ,\na plane - wave cutoff energy of 1200 ev is employed in all simulations so that the pressure is converged within 2% .\nwe have also checked out the convergence with respect to a systematic enlargement of the * k*-point set in the representation of the brillouin zone . in the molecular dynamic simulations ,\nonly the @xmath16 point of brillouin zone is included .\nthe dynamic simulation is lasted 20000 steps with time steps of 0.2 @xmath17 0.7 fs according to different densities and temperatures . for each pressure and temperature ,\nthe system is equilibrated within 0.5 @xmath17 1 ps .\nthe eos data are obtained by averaging over the final 1 @xmath17 3 ps molecular dynamic simulations .\nthe self - diffusion coefficient @xmath18 can either be calculated from the trajectory by the mean - square displacement @xmath19 or by the velocity autocorrelation function @xmath20 where @xmath21 is the position and @xmath22 is the velocity of the @xmath23th nucleus . only in the long - time limit , these two formulas of @xmath18 are formally equivalent .\nsufficient lengths of the trajectories have been generated to secure contributions from the velocity autocorrelation function to the integral is zero , and the mean mean - square displacement away from the origin consistently fits to a straight line .\nthe diffusion coefficient obtained from these two approaches lie within 1 % accuracy of each other .\nhere , we report the results from velocity autocorrelation function .\nwe have also computed the mutual - diffusion coefficient @xmath24 from the autocorrelation function @xmath25 with @xmath26 where the concentration and particle number of species @xmath27 are denoted by @xmath28 and @xmath29 , respectively , and the total number of particles in the simulation box @xmath30 .\nthe quantity @xmath31 is the thermodynamic factor related to the second derivation of the gibbs free energy with respect to concentrations @xcite . in the present simulations ,\n@xmath31 value has been adopted equal to unity since studies with leonard - jones and other model potentials have shown that for dissimilar constituents the @xmath31-factor departs from unity by about 10% @xcite .\nthe viscosity @xmath32 has been computed from the autocorrelation function of the off - diagonal component of the stress tensor @xcite @xmath33 the results are averaged from the five independent off - diagonal components of the stress tensor @xmath34 , @xmath35 , @xmath36 , @xmath37 , and @xmath38 .\ndifferent from the self - diffusion coefficient , which involves single - particle correlations and attains significant statistical improvement from averaging over the particles , the viscosity depends on the entire system and thus needs very long trajectories so as to gain statistical accuracy . to shorten the length of the trajectory , we use empirical fits @xcite to the integrals of the autocorrelation functions .\nthus , extrapolation of the fits to @xmath39 can more effectively determine the basic dynamical properties .\nboth of the @xmath18 and @xmath40 have been fit to the functional in the form of @xmath41 $ ] , where @xmath42 and @xmath43 are free parameters .\nreasonable approximation to the viscosity can be produced from the finite time fitting procedure , which also serves to damp the long - time fluctuations .\nthe fractional statistical error in calculating a correlation function @xmath44 for molecular - dynamics trajectories @xcite can be given by @xmath45 where @xmath43 is the correlation time of the function , and @xmath46 is the length of the trajectory .\nin the present work , we generally fitted over a time interval of [ 0 , @xmath47 . here\n, we examine two representative mixing rules .\nthe first , termed density - matching rule ( mrd ) with the inspiration of a two - species ideal gas .\nthe second , termed pressure - matching rule ( mrp ) , which follows from two interacting immiscible fluids . in the mrd\n, the volume of the individual species is set equal to that of the mixture ( @xmath48 ) , and qmd simulations are performed for h at a density of @xmath49 and he at @xmath50 at a temperature @xmath51 .\nthen , pressure predicted by mrd is determined by simply adding the individual pressures from the pure species h and he simulations .\nother transport coefficients , such as mutual diffusion and viscosity , follow the same prescription and are summarized as @xmath52 the superscript is used to denote values predicted from mrd .\nthe derived pressure based on density mixing rule generally follows from the ideal noninteracting h and he gas in a volume @xmath53 .\nthe mrp has a more complicated construction compared to mrd .\nmrp can be characterized as the following prescription : @xmath54 in this case , we have performed a series of qmd simulations on the individual species h and he , where the volumes change under a constraint @xmath55 until the individual pressures equal to each other @xmath56 .\nthe total pressure becomes the predicted value .\nhere , we use the excess or electronic pressure @xmath57 to evaluate this mrp mixing rule .\ncomposite properties such as mutual diffusion and viscosity are evaluated by combining the individual species results via volume fractions @xmath58 .\nfinally , we also derive properties of the mixture from a slightly more complex mixing rule @xcite , as so - called binary ionic mixture ( bim ) : @xmath59 with @xmath60 the predicted mutual - diffusion coefficient or the viscosity .\nthe subscript @xmath61 denotes the mixture and @xmath23 the pure species .\nin this section , the wealth of information derived from qmd calculations are mainly presented through figures , and the general trends of the eos as well as transport coefficients are concentrated in the text .\nit is , therefore , interesting to explore not only to get insight into the interior physical properties of giant gas planets but also to examine a series of mixing rules for hydrogen and helium .\nadditionally , one can consider the influence of helium on the eos and transport coefficients of mixing .\nhigh precision eos data of hydrogen and helium are essential for understanding the evolution of jupiter and target implosion in icf .\nexperimentally , the eos of hydrogen and helium in the fluid regime have been studied through gas gun @xcite , chemical explosive @xcite , magnetic driven plate flyer @xcite , and high power laser @xcite . since these experiments were limited by the conservation of mass , momentum , and energy , the explored density of warm dense matter\nwere limited within @xmath62 times of the initial density .\nrecently , a new technique combined diamond anvil cell ( dac ) and high intensity laser pulse has successfully been proved to provide visible ways to generate shock huguniot data of hydrogen over a significantly broader density - temperature regime than previous experiments @xcite\n. however , the density therein was still restricted within 1 g / cm@xmath1 . in our simulations , wide range eos for h\n, he , and h - he mixtures have been determined according to qmd method .\nthe eos can be divided into two parts that is , contributions from the noninteracting motion of ions ( @xmath63 ) and the electronic term ( @xmath64 ) , @xmath65 where @xmath64 is calculated directly through dft . in fig .\n[ fig_eos1 ] ( a ) , we have compared our results of @xmath64 with that of holst _ et al . _\n@xcite , where the electronic pressure is expressed as a smooth function in terms of density and temperature , and the results agree with each other with a very slight difference ( accuracy within 5% ) . in the simulated density and temperature regime\n, we do not find any signs indicating a liquid - liquid phase transition ( @xmath66 ) or plasma phase transition ( @xmath67 ) , which are characterized by molecular dissociation and ionization of electrons , respectively . with considering the mixing of he into h ,\nthe electronic pressure is effectively reduced , as has been shown in fig .\n[ fig_eos1 ] ( b ) .\nmrd accounts for contribution from noninteracting h and he subsystems in the volume of the mixtures . in mrd ,\nthe pressure contributed from noninteracting ions is the same as that of the mixture , but the electronic pressure is much lower due to the low electronic density in the pure species simulations .\nit is indicated that the electronic pressure is underestimated by mrd model at about 8% @xmath17 9% ( see fig .\n[ fig_eos2 ] ) . for mrp model\n, we have firstly performed a series of pure species simulations at a wider density ( temperature ) regime compared to h - he mixtures .\nthen , the simulated eos data are fitted into smooth functions in terms of density and temperature . under the constraint of @xmath68\n, we have predicted the electronic pressures @xmath69 according to mrp model by solving pure species eos function at certain densities and temperatures , as shown in fig .\n[ fig_eos2 ] .\nit is indicated that the mrp model agrees better with direct qmd simulations ( accuracy within 3% ) , the difference mainly come from the ionic interactions between h and he species after mixing . and 8 g / cm@xmath1 , respectively .\n( a ) self - diffusion coefficient ; ( b ) viscosity .\nthe direct qmd simulated results are presented by black crosses , while the fitted results are denoted by blue dashed lines . ]\nqmd simulations have been performed within the framework of ft - dft to benchmark the dynamic properties of h , he , and h - he mixture in the wdm regime .\nillustrations for the self - diffusion coefficients and viscosity ( for h and he at densities of 2.0 g / cm@xmath1 and 8.0 g / cm@xmath1 , respectively ) at a temperature 12000 k , as well as their fits are shown in fig . [ fig_dandeta ] .\nthe trajectory of the present simulations lasts 4.0 @xmath17 14.0 ps , and correlation times between 1.0 and 15.0 fs . as a consequence ,\nthe computational error for the viscosity lies within 10% .\nafter accounting for the fitting error and extrapolation to infinite time , a total uncertainty of @xmath17 20% can be estimated .\nthe uncertainty in the self - diffusion coefficients is smaller than 1% , due to the additional @xmath70 advantage given by particle average . .\nfor helium , the density is 8 g / cm@xmath1 .\nthe electron number density for pure species ( h and he ) is @xmath71/m@xmath1 .\n] dynamic properties of wdm are generally governed by two dimensionless quantities , namely , ionic coupling ( @xmath16 ) and electronic degenerate ( @xmath72 ) parameter .\nthe former one is defined by the ratio of the potential to kinetic energy @xmath73 , with @xmath74 the ionic charge , and @xmath75 the ion - sphere radius ( @xmath76 is the number density ) . the latter one @xmath77 , where @xmath78 is fermi temperature .\nit has been reported that dynamic properties such as diffusion coefficients and viscosity can be represented purely in terms of ionic coupling parameter @xmath16 according to molecular dynamics or monte carlo simulations based on one component plasma ( ocp ) model @xcite , where ions move classically in a neutralizing background of electrons .\nfor instance , hansen _\n@xcite introduced a memory function to analyze the velocity autocorrelation function , and obtain the diffusion coefficient in terms of @xmath79 with the plasma frequency @xmath80 .\nbased on classical molecular dynamic simulations , bastea @xcite has fitted the viscosity into the following form @xmath81 with @xmath82 , @xmath83 , @xmath84 , and @xmath85 .\nsince ocp model is restricted to a fully ionized plasma , we use @xmath74=1.0 ( or 2.0 ) for hydrogen ( or helium ) to compute the self - diffusion coefficient and viscosity . in fig .\n[ fig_qmd_ocp ] ( a ) , we show comparison between qmd and ocp model @xcite for hydrogen and helium at densities of 2 g / cm@xmath1 and 8 g / cm@xmath1 .\nthe general tendency for the self - diffusion coefficient with respect to temperature is similar for qmd and ocp model , however , the difference up to @xmath1760 % is observed between the two results . for the viscosity [ fig .\n[ fig_qmd_ocp ] ( b ) ] , ocp @xcite predicts smaller ( larger ) values for hydrogen ( helium ) compared to qmd simulations .\nthe viscosity is governed by interactions between particles and ionic motions , contribution from the former one decrease with the increase of temperature , while , it increases for the latter one . as a consequence\n, the viscosity may have local minimum along temperature . for hydrogen\n, the local minimum locates around 10000 k and 14000 k indicated by qmd and ocp model , respectively . while in the case of helium\n, we do not observe any signs for the local minimum in the simulated regime .\n/m@xmath1 and temperature from 4000 @xmath17 20000 k. ] in fig .\n[ fig_mix ] , we have shown the mutual diffusion coefficient @xmath86 and viscosity @xmath87 for h - he mixture with an electron number density of @xmath88/m@xmath1 , and results from mixing models are also provided .\nthe transport coefficients predicted by mrd can be directly evaluated through eq .\n( [ eq_mrd ] ) . for mrp model ,\nwe have firstly fitted the self - diffusion coefficients and viscosity in terms of density and temperature , after determining the volume for each species under the constraint of @xmath89 , the transport coefficients are then obtained . in bim model , we have used @xmath90 and @xmath91 , then , the transport coefficients are determined by eq .\n( [ eq_bim ] ) . here\nwe would like to stress that in some mixture studies based on average atom models , the properties of pure species are derived from perturbed - atom models , where boundary conditions are introduced from the surrounding medium by treating a single atom within a cell . in the present work ,\nthe dynamic properties of different mixing rules originate from qmd calculations of the individual species . despite divorced of the h -\nhe interactions , the pure species calculations still contain complex intra - atomic interactions based on large samples of atoms .\nthe mutual diffusion coefficient of h - he mixture shows a linear increase with respect of temperature , as indicated in fig .\n[ fig_mix](a ) .\nthe data from mrp and bim models have a better agreement with qmd simulations compared with that of the mrd model , where ion densities are reduced and results in a larger diffusion coefficient .\nthe viscosity of h - he mixture has a more complex behavior than pure species under extreme condition . as shown in fig .\n[ fig_mix ] ( b ) , mrd is valid at low temperature , while mrp works at higher temperature .\nbim rule moves the results into better agreement with the h - he mixture , leaving within 30% or better for the simulated conditions .\nin summary , we have performed systematic qmd simulations of h , he , and h - he mixture in the warm dense regime for electron number density ranging from @xmath0/m@xmath1 and for temperatures from 4000 to 20000 k. the present study concentrated on thermophysical properties such as the eos , diffusion coefficient , and viscosity , which are of crucial interest in astrophysics and icf .\nvarious mixing rules have been introduced to predict dynamical properties from qmd simulations of the pure species and compare with direct calculations on the fully interacting mixture .\nwe have shown that mrd and mrp rules produce pressures within about 10 % of the h - he mixture , however , the mutual diffusion coefficients are as different as 75 % and it is 50 % for the viscosity .\nbim rule generally gives better agreement with the mixture results .\nwe have also compared our qmd results with ocp model for the pure species .\nthis work was supported by nsfc under grants no .\n11275032 , no . 11005012 and no . 51071032 , by the national basic security research program of china , and by the national high - tech icf committee of china .\n99 w. b. hubbard , science * 214 * , 145 ( 1981 ) . h. f. wilson and b. militzer , astrophys .\nj. * 745 * , 54 ( 2012 ) .\nh. f. wilson and b. militzer , phys .\nlett . * 108 * , 111101 ( 2012 ) .\nd. bruno , c. catalfamo , m. capitelli , g. colonna , o. de pascale , p. diomede , c. gorse , a. laricchiuta , s. longo , d. giordano , and f. pirani , phys .\nplasmas * 17 * , 112315 ( 2010 ) . s. atzeni and j. meyer - ter - vehn , _ the physics of inertial fusion : beam plasma interaction , hydrodynamics , hot dense matter _ , international series of monographs on physics ( clarendon press , oxford , 2004 ) . j. d. lindl , _ inertial confinement fusion : the quest for ignition and energy gain using indirect drive _ , ( springer - verlag , new york , 1998 ) .\nm. d. knudson and m. p. desjarlais , phys .\nlett . * 103 * , 225501 ( 2009 ) .\nw. lorenzen , b. holst , and r. redmer , phys .\nlett . * 102 * , 115701 ( 2009 ) .\nd. j. stevenson , phys .\nb * 12 * , 3999 ( 1975 ) .\nw. b. hubbard and h. e. dewitt , astrophys .\nj. * 290 * , 388 ( 1985 ) .\nj. e. klepeis , k. j. schafer , t. w. barbee iii , and m. ross , science * 254 * , 986 ( 1991 ) .\nj. vorberger , i. tamblyn , b. militzer , and s. a. bonev , phys .\nb * 75 * , 024206 ( 2007 ) .\nb. militzer , phys .\nb * 87 * , 014202 ( 2013 ) .\no. pfaffenzeller , d. hohl , and p. ballone , phys .\nlett . * 74 * , 2599 ( 1995 ) .\nl. a. collins , j. d. kress , d. l. lynch , and n. troullier , j. quant .\ntransf . * 51 * , 65 ( 1994 ) .\ni. kwon , j. d. kress , and l. a. collins , phys .\nb * 50 * , 9118 ( 1994 ) .\nl. collins , i. kwon , j. kress , n. troullier , and d. lynch , phys .\ne * 52 * , 6202 ( 1995 ) .\nj. clrouin and s. bernard , phys .\ne * 56 * , 3534 ( 1997 ) .\ni. kwon , l. collins , j. kress , and n. troullier , epl * 29 * , 537 ( 1995 ) .\nj. clrouin and j .- f .\ndufrche , phys .\ne * 64 * , 066406 ( 2001 ) .\nj. d. kress , j. s. cohen , d. a. horner , f. lambert , and l. a. collins , phys .\ne * 82 * , 036404 ( 2010 ) .\nf. lambert , j. clouin , and s. mazevet , epl * 75 * , 681 ( 2006 ) .\nf. lambert , j. clouin , and g. zrah , phys .\ne * 73 * , 016403 ( 2006 ) . c. wang , y. long , x .-\nhe , and p. zhang , phys .\ne * 87 * , 043105 ( 2013 ) .\nd. a. horner , f. lambert , j. d. kress , and l. a. collins , phys .\nb * 80 * , 024305 ( 2009 ) .\nm. a. morales , c. pierleoni , e. schwegler , and d. m. ceperley , proc .\n* 106 * , 1324 ( 2009 ) .\nj. p. hansen and i. r. mcdonald , _ the theory of simple liquids _ , 2nd ed .\n( academic press , new york , 1986 ) , chap . 8 .\nm. schoen and c. hoheisel , mol.phys .\n* 52 * , 33 ( 1984 ) ; * 52 * , 1029 ( 1984 ) .\nm. p. allen and d. j. tildesley , _ computer simulation of liquids _\n( oxford university press , new york , 1987 ) . j. d. kress , james s. cohen , d. p. kilcrease , d. a. horner , and l. a. collins , phys .\ne * 83 * , 026404 ( 2011 ) .\nr. zwanzig and n. k. ailawadi , phys . rev . * 182 * , 280 ( 1969 ) .\ns. bastea , phys .\ne * 71 * , 056405 ( 2005 ) . w. j. nellis , rep .\n* 69 * , 1479 ( 2006 ) .\ng. v. boriskov , a. i. bykov , r. ilkaev , v. d. selemir , g. v. simakov , r. f. trunin , v. d. urlin , a. n. shuikin , and w. j. nellis , phys .\nb * 71 * , 092104 ( 2005 )\n. m. d. knudson , d. l. hanson , j. e. bailey , c. a. hall , j. r. asay , and c. deeney , phys .\nb * 69 * , 144209 ( 2004 ) .\ng. w. collins , l. b. da silva , p. celliers , d. m. gold , m. e. foord , r. j. wallace , a. ng , s. v. weber , k. s. budil , and r. cauble , science * 281 * , 1178 ( 1998 ) .\nt. r. boehly , d. g. hicks , p. m. celliers , t. j. b. collins , r. earley , j. h. eggert , d. jacobs - perkins , s. j. moon , e. vianello , d. d. meyerhofer , and g. w. collins , phys .\nplasmas * 11 * , l49 ( 2004 ) .\nd. g. hicks , t. r. boehly , p. m. celliers , j. h. eggert , s. j. moon , d. d. meyerhofer , and g. w. collins , phys .\nb * 79 * , 014112 ( 2009 ) .\np. loubeyre , s. btygoo , j. eggert , p. m. celliers , d. k. spaulding , j. r. rygg , t. r. boehly , g. w. collins , and r. jeanloz , phys .\nb * 86 * , 144115 ( 2012 ) .\nb. holst , r. redmer , and m. p. desjarlais , phys .\nb * 77 * , 184201 ( 2008 ) .\nf. lambert , ph.d .\nthesis , universit paris xi .\ncommissariat l nergie atomique , 2007 .\nb. bernu and p. vieillefosse , phys .\na * 18 * , 2345 ( 1978 ) .\nz. donk , b. nyri , l. szalai , and s. holl , phys .\nlett . * 81 * , 1622 ( 1998 ) ; z. donk and b. nyri , phys .\nplasmas * 7 * , 45 ( 2000 ) .\nj. daligault , phys .\nlett . * 96 * , 065003 ( 2006 ) ; * 103 * , 029901(e ) ( 2009 ) . j. p. hansen , i. r. mcdonald , and e. l. pollock , phys\na * 11 * , 1025 ( 1975 ) .\nr. m. more , adv . at .\n* 21 * , 305 ( 1985 ) .", "target": " thermophysical properties of hydrogen , helium , and hydrogen - helium mixtures have been investigated in the warm dense matter regime at electron number densities ranging from @xmath0/m@xmath1 and temperatures from 4000 to 20000 k via quantum molecular dynamics simulations . \n we focus on the dynamical properties such as the equation of states , diffusion coefficients , and viscosity . mixing rules ( density matching , pressure matching , and binary ionic mixing rules ) \n have been validated by checking composite properties of pure species against that of the fully interacting mixture derived from qmd simulations . \n these mixing rules reproduce pressures within 10% accuracy , while it is 75 % and 50 % for the diffusion and viscosity , respectively . \n binary ionic mixing rule moves the results into better agreement . \n predictions from one component plasma model are also provided and discussed . ", "evaluation_predictions": [2, 109, 10635, 113, 449, 143, 860, 3106, 110, 158, 110, 108, 2725, 47312, 110, 108, 111, 5873, 1696, 113, 13535, 233, 38585, 143, 5124, 233, 178, 110, 158, 44575, 133, 174, 3035, 141, 12584, 10403, 3248, 143, 15593, 208, 252, 110, 158, 18486, 110, 107, 106, 15593, 208, 252, 18486, 133, 174, 2303, 373, 109, 3772, 113, 21109, 233, 1972, 6923, 3819, 3277, 143, 4954, 233, 3138, 4475, 110, 158, 110, 108, 241, 109, 27306, 127, 2839, 12584, 30935, 111, 109, 27944, 696, 41043, 992, 112, 109, 3062, 135, 109, 21312, 6923, 111, 109, 110, 2928, 233, 110, 2928, 920, 72319, 110, 107, 106, 109, 1367, 111, 1972, 133, 174, 1832, 112, 4135, 109, 1047, 115, 109, 11986, 113, 7174, 768, 24178, 111, 10446, 16041, 110, 107, 106, 109, 860, 3106, 113, 109, 357, 3173, 111, 109, 819, 2398, 143, 5124, 111, 178, 110, 158, 133, 174, 3035, 118, 4374, 135, 18171, 4817, 112, 280, 15502, 4817, 110, 108, 43459, 135, 11344, 3957, 943, 4761, 1384, 757, 23811, 3142, 112, 11873, 3957, 943, 4761, 1384, 757, 23811, 740, 110, 108, 111, 4526, 5124, 2977, 43459, 16195, 112, 32548, 3957, 943, 4761, 1384, 757, 23811, 740, 110, 107, 106, 109, 602, 127, 1711, 122, 274, 135, 2785, 1581, 111, 15593, 208, 252, 451, 8035, 5873, 1581, 110, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} |
{"text": "kouveliotou ( 1993 ) showed that the durations of gamma ray bursts ( grbs ) have a bimodal distribution , with roughly a third of the observed bursts corresponding to a short duration ( @xmath6 s ) population , and the remaining two - thirds belonging to a long duration ( @xmath7 s ) population .\nsearches for transient x - ray , optical and radio afterglow emission have so far been largely limited to long duration bursts .\nthis is because the italian - dutch bepposax satellite and other presently active instruments , which have been used to obtain well - determined grb coordinates , are sensitive only to bursts longer than a few seconds .\nmost of the x - ray follow - ups of long grbs have been successful , and 35 x - ray afterglows have been detected so far ( mid-2001 ) .\nthe success rate of optical searches has been somewhat less ( lazzati , covino & ghisellini 2001 ; fynbo 2001 ) , and 23 optical afterglows have been detected ; the majority of optical afterglows have yielded redshifts .\nthe success rate in radio has been comparable to that in the optical . among short grbs , optical and radio searches for afterglows\nhave so far been carried out for only four sources that happened to be well localized by the interplanetary network ( hurley 2001 ) .\nno afterglow emission was detected , but the sensitivity of the searches was not very high .\nmore searches will be carried out in the future when rapid arc - minute localizations of short grbs become routinely available from the upcoming hete ii and swift satellites . in this _\n, we make reasonable assumptions about the physical parameters of short grbs and estimate the broadband afterglow emission to be expected from these bursts .\nthe results may be useful for designing search strategies for afterglows of short grbs .\nthe predictions for the light - curves of the afterglows depend on some key parameters .\nwe attempt to estimate the relative magnitudes of these parameters in short and long grbs using observational data and some theoretical ideas .\nstudies of the temporal and spectral properties of short and long grbs have revealed that the burst duration is anticorrelated with the spectral hardness ( kouveliotou 1993 ) .\nthe peak frequency of the @xmath8 spectrum increases with the bulk lorentz factor of the grb in the external shock model for producing @xmath0-ray emission ( rees & mszros 1992 ; piran , shemi & narayan 1993 ; katz 1994 ) , however the relationship is complicated in the internal shock model ( see piran 1999 for a review ) .\nfortunately , the lorentz factor ( lf ) of the late - time grb remnant which produces the afterglow is practically independent of the lf during the early grb phase , and so it is unlikely that any difference in the initial lf for the long and the short duration grbs will have any effect on the afterglow flux .\nwe note , however , that if the initial jet opening angle @xmath9 for short duration grbs were larger than longer lasting grbs , it will cause the afterglows of short grbs to become considerably dimmer since the jet transition time ( see 3 ) varies as @xmath10 . by analysing a sample of over 400 grbs , and allowing for observational bias against detecting weak and long bursts with peak fluxes below the detection threshold ,\nlee & petrosian ( 1997 ) showed that there is a highly significant positive correlation between the burst fluence and duration . in another study ,\nmukherjee ( 1998 ) used two multivariate clustering methods to show that most of the structure in the multidimensional space of burst observations is contained in three fundamental quantities : duration , fluence , and spectral hardness . according to their analysis , short / hard grbs have a 25 kev1 mev fluence @xmath11 ( in cgs units ) of approximately @xmath12 , while long / soft grbs have @xmath13 .\nshort bursts thus have about 20 times less fluence than long bursts ( see also mao et al . 1994 , piran 1996 ) .\nfigure 1 shows the 25 kev1mev fluences @xmath11 and the durations @xmath14 of 34 long grbs for which afterglows have been observed .\nthe average duration for these grbs is @xmath15 , similar to that of the 486 long bursts analyzed by mukherjee ( 1998 ) from the third batse catalog ( meegan 1996 ) .\nthe average fluence of long grbs with afterglows is @xmath16 , implying that these bursts are , on average , approximately twice as bright as the long bursts analyzed by mukherjee et al .\n( 1998 ) and 40 times more energetic than the 203 short bursts analyzed by them .\nthe grb energy output is determined by the kinetic energy of the relativistic outflow and the efficiency with which dissipative and radiative mechanisms convert some of the energy into @xmath0-ray emission . assuming that grbs arise from internal shocks in unsteady winds , the dissipation efficiency is determined by the magnitude of the fluctuations in the ejection lorentz factors of various parts of the outflow .\nour present understanding of the properties of grb progenitors does not allow us to establish a correlation between the grb duration and efficiency .\nit is possible that short grbs are somewhat less efficient than long grbs because the radius at which internal shocks occur in short grbs is closer to the photospheric radius ( kumar 1999 ) , so that some of the emission may be degraded by multiple scattering . ignoring this effect\n, we expect the ratio of the kinetic energies of short and long grbs to be the ratio of their fluences , i.e. , a factor of about 20 .\nwe finally discuss the environments in which short and long bursts take place .\nthe existence of these two clearly distinct populations of grbs probably implies different physical origins .\nmost models of grbs mergers of binary neutron stars ( ns ns ) , black hole ( bh)ns , or bh white dwarf ( wd ) , and failed supernovae / collapsars involve the formation of a bh surrounded by a disk of debris .\nthe spin energy of the hole and the gravitational , thermal , and rotational energy of the disk represent the available reservoirs to power the @xmath17 ergs required for the grb .\nthe bh spin may be tapped by the blandford - znajek process ( 1977 ) , and the disk energy may be extracted either via neutrino annihilation ( eichler et al . 1989 ) or via magnetic fields / flares ( narayan , paczyski & piran 1992 ; see mszros , rees & wijers 1999 for a review ) . the burst duration is determined both by the timescale for ejecting the relativistic outflow , and by the processes that @xmath18 shape the outflow dynamics until the gas reaches the region where the @xmath0-ray photons are emitted , such as the penetration of the grb jet through the envelope of a collapsed star , and @xmath19 convert the outflow kinetic energy into @xmath0-rays . in those bursts where the high energy emission arises as the outflow energy is dissipated through interaction with the circumburst medium , grbs of long duration can be obtained even if the initial ejection is impulsive .\nhowever , the general absence of signatures of an external shock in the temporal structure of grbs ( sari & piran 1997 ; ramirez - ruiz & fenimore 2000 ) indicates that the grb emission is produced in internal shocks over a small range of distances . if this is the case , then the grb duration is a direct measure of the time interval during which the `` central engine '' is active . if grbs originate in ns \nns or ns - bh mergers ( goodman 1986 ; eichler 1989 ; paczyski 1991 ; narayan 1992 ; mszros & rees 1992 ; katz & canel 1996 ) , enough mass reaches the resulting bh to power the grb , provided the disk is sufficiently small and accretion is driven by neutrino cooling ( narayan , piran & kumar 2001 ) .\nthe expected duration of the relativistic wind ( and thus the grb ) is under 1 s. thus these progenitors can naturally produce short grbs .\nthe collapse of the iron core of a massive star ( collapsar model : woosley 1993 ; paczyski 1998 ) with intermediate angular momentum leads to the formation of a disk with a sufficient accretion rate to power a relativistic outflow lasting for 1020 s ( macfadyen & woosley 1999 ) .\nthe collapsar model is thus more appropriate for long grbs .\nif the core collapse produces a ns and an out - going shock , the bh and the torus form when the ejected matter , lacking sufficient momentum , falls back ( macfadyen , woosley & heger 2001 ) . in this model\nthe grb duration is set by the dynamics of the fallback , and most likely would accommodate only the longest grbs , lasting for more than 100 s. long grbs could also arise from wd bh ( fryer 1999 ) or helium star bh mergers ( zhang & fryer 2001 ) , which lead to the formation of larger disks with accretion times above 10 s. however , it is likely that the gas will accrete via a convection - dominated accretion flow in these systems , in which case the flow is likely to be rather inefficient at extracting the disk energy ( narayan 2001 ) . according to these ideas ,\nthen , there is a clear association between the type of grb progenitor and the burst duration .\nshort grbs are likely to involve merging ns binaries ( ns ns or ns bh ) , which should occur predominantly in the low density halo of the host galaxy , given the velocities of a few hundred @xmath20 acquired by the ns at birth and the binary coalescence time of about 100 myr .\nlong grbs , on the other hand , are likely to be associated with massive stars that at the end of their evolution ( a few myr ) are still within the cloud where they formed .\nwe note that bloom , kulkarni & djorgovski ( 2001 ) have identified the host galaxies of 20 afterglows of long duration grbs and have found grb host offsets lower than those expected for merging ns binaries ( bloom , sigurdsson & pols 1999 ; bulik , belczyski & zbijewski 1999 ; fryer , woosley & hartmann 1999 ) .\nfurthermore , the high column densities identified by owens ( 1998 ) and galama & wijers ( 2001 ) from the absorption of the x - ray afterglow emission indicate that long - duration grbs occur in giant molecular clouds , yielding further support for the massive star collapse model for long bursts .\nif the above arguments are correct , we expect the afterglows of short grbs to occur in a more tenuous medium compared to the afterglows of long - duration grbs .\nthe difference in the density of the medium is likely to be a few orders of magnitude .\ngiven the kinetic energy @xmath21 of the relativistic outflow and the number density @xmath22 of the ambient external medium , plus a few other dimensionless parameters described below , the afterglow light - curves in various bands may be theoretically estimated ( e.g. , sari , piran & narayan 1998 ; panaitescu & kumar 2001a , and references therein ) . if we consider early times , when the radio emission is below the peak frequency @xmath23 of the afterglow spectrum , and if we assume that the cooling frequency @xmath24 is between the optical and x - ray bands , then the analysis of panaitescu & kumar ( 2001a ) shows that f_radio ^-2/3 ^1/3 e^5/6 n^1/2 , [ radio ] f_optical ^p-1 ^(p+1)/4 e^(p+3)/4 n^1/2 , [ optic ] f_x - ray ^p-1 ^(p-2)/4 e^(p+2)/4 .\n[ xray ] here , @xmath21 is the isotropic equivalent kinetic energy of the outflow , @xmath25 is the fractional energy in electrons , @xmath26 is the index of the power - law distribution of the electron lorentz factor @xmath27 , and @xmath28 is the fraction of the post - shock thermal energy in magnetic field ( see panaitescu & kumar 2001a for details ) .\nthe break frequencies satisfy @xmath29 , @xmath30 for synchrotron - dominated electron cooling , and @xmath31^{1/(4-p)}$ ] when inverse compton losses exceed synchrotron cooling .\nthe above equations show that for @xmath32 , which is the average value for this parameter determined by panaitescu & kumar ( 2001b ) from numerical modeling of eight grb afterglows , the afterglow flux is roughly proportional to the kinetic energy @xmath21 .\nsince short grbs have a fluence on average @xmath2 times smaller than that of long grbs , other parameters being equal , we expect the afterglows of short grbs to be @xmath2 times dimmer than the afterglows of long grbs .\nthe equations show that the afterglow flux in short bursts would be further suppressed if these bursts occur in a lower density medium compared to long bursts .\nthe expressions for the radio and optical flux have an explicit dependence on @xmath22 .\neven though the formula for the x - ray flux does not have an explicit dependence , this flux is also suppressed since , for low @xmath22 , the cooling frequency @xmath24 moves above the x - ray band and so the x - ray afterglow light - curve is described by equation ( [ optic ] ) rather than equation ( [ xray ] ) . finally , if the breaks observed at one to a few days in the optical emission of several grb afterglows are due to collimation of the outflow ( rhoads 1999 ; sari et al .\n1999 ; kumar & panaitescu 2000 ) , then the @xmath2 times smaller kinetic energy of the jets in short grbs will cause the jet break time @xmath33 to occur @xmath34 times earlier in these bursts compared to long grbs .\nthis will further diminish the brightness of short - grb afterglows ( at a fixed observing time ) by a factor of about @xmath35 .\nthese conclusions are illustrated in figure 2 , which compares the radio , optical , and x - ray emission of a typical long - grb afterglow with that predicted for short - grb afterglows with lower values of @xmath21 and @xmath22 .\nthe numerical calculations of the afterglow dynamics and emission of radiation were done by the methods described in panaitescu & kumar ( 2000 ) .\nthe parameters for the long - grb afterglow were chosen such that at one day after the burst the model yields a radio flux of @xmath36 mjy , an optical brightness of @xmath37 and a 210 kev x - ray flux of @xmath38 , in rough agreement with observations .\nwe see from fig .\n2 that the radio emission from a typical short - grb afterglow will most likely be very difficult to detect . the same is true also for the optical emission , where only early ( @xmath39 day ) observations as deep as the measurements made by groot ( 1998 ) for grb 970828 and by fynbo ( 2001 ) for grb 000630 are likely to be successful . the best chance for detecting the afterglow of a short grb is with x - ray observations .\nbepposax will need to observe earlier than @xmath40 day , and cxo , hete ii and swift earlier than @xmath41 days .\nsuch observations are quite feasible . because of the roughly linear dependence of the afterglow brightness on the kinetic energy @xmath21 , any difference in the average redshifts of short and long grbs will not alter the above conclusions .\nthe redshift enters into the estimate of @xmath21 , and through it in the estimate of the afterglow luminosity , but it factors out when the luminosity is converted to the observed flux .\nthe fluences above 25 kev of grbs detected by batse are positively correlated with the durations of these bursts ; long bursts ( durations longer than a few seconds ) are on average 20 times more energetic than short bursts .\nmoreover , the @xmath42 three dozen long grbs for which afterglows have been detected so far ( following their accurate localization by bepposax and the interplanetary network ) are on average 40 times brighter ( in fluence ) than typical short grbs .\nthus we expect the relativistic outflow of a long grb to have about 20 times the kinetic energy of the outflow from a short grb .\nif the other parameters that influence the dynamics of the grb remnant and the emission of radiation are roughly the same , we predict that the afterglows of short grbs should be a factor of 10 or more dimmer than the afterglows of long grbs . if short grbs arise from merging ns ns or ns bh binaries which may have traveled upto or beyond the very tenuous outskirts of their host galaxies , and if long grbs are due to the core collapse of massive stars which die in the dense molecular clouds where they were formed , then the densities @xmath22 of the media surrounding these two types of grbs may differ by a few orders of magnitude .\nthis could further seriously diminish the prospects of detecting radio and optical afterglows of short grbs since the afterglow brightness in these bands is proportional to @xmath43 .\nwe conclude that the best chance of detecting afterglows of short grbs is with early x - ray observations within 1 day after the grb .\nrapid and deep optical follow - up within a few hours after the main event may also lead to a detection .\nradio observations appear the least promising ( fig .\n2 ) . of course\n, short grbs significantly brighter than average could be as energetic as some of the long grbs for which afterglows have been seen ( fig .\nthe afterglows of such unusually bright short grbs could be detected even beyond a day , particularly if the magnetic field strength is close to equipartition ( @xmath44 ) .\nbut such bursts should be in the minority .\non the other hand , if future observations indicate that the afterglows of most short grbs are as bright as those of long grbs , it would imply that one or more of the assumptions we have made in our analysis is invalid .\none possibility is that the @xmath0-efficiency is significantly lower in short bursts than in long bursts , as disussed in kumar ( 1999 ) , and another is that the efficiency spans a wide range in both types of bursts , indicating a highly inhomogeneous outflow ( kumar & piran 2000 ) .\neichler , d. 1989 , nature , 340 , 126 fryer , c. , woosley , s. , herant , m & davies , m. 1999 , apj , 520 , 650 fynbo , j. 2001 , a&a 369 , 373 goodman , j. 1986 , apj , 308 , l17 groot , p. 1998 , apj , 493 , l27 hurley , k. 2001 , apj , submitted ( astro - ph/0107188 ) katz , j. 1994 , apj , 422 , 248 katz , j. & canel , l. 1996 , apj , 471 , 915 kouveliotou , c. 1993 , apj , 413 , l101 kumar , p. 1999\n, apj , 523 , l113 kumar , p. & piran , t. 2000 , apj , 535 , 152 kumar , p. & panaitescu , a. 2000 , apj , 541 , l9 lazzati , d. , covino , s. & ghisellini , g. 2001 , a&a , submitted ( astro - ph/0011443 ) lee , t. & petrosian , v. 1997 , apj , 474 , 37 macfadyen , a. & woosley , s. 1999 , apj , 524 , 262 macfadyen , a. , woosley , s. & heger , a. 2001 , apj , 550 , 410 mao , s. , narayan , r. , and piran , t. , 1994 , apj , 420 , 171 meegan , c. 1996 , apj , s106 mszros , p. & rees , m. 1992 , apj , 397 , 570 mszros , p. , rees , m.j . & wijers , r. 1999 , new ast , 4 , 303 mukherjee , s. 1998 , apj , 508 , 314 narayan , r. , paczyski , b. & piran , t. 1992 , apj , 395 , l83 narayan , r. , piran , t. & kumar , p. 2001 , apj , in press ( astro - ph/0103360 ) paczyski , b. 1991 , acta ast , 41 , 257 paczyski , b. 1998 , apj , 494 , l45 panaitescu , a. & kumar , p. 2000 , apj , 543 , 66 panaitescu , a. & kumar , p. 2001a\n, apj , 554 , 667 panaitescu , a. & kumar , p. 2001b\n, apj , submitted piran , t. 1996 , in `` compact stars in binaries '' , proceedings from iau symposium 165 , eds j. van paradijs , e. p. j. van den heuvel , e. kuulkers .\nkluwer academic publishers , dordrecht , p.489 piran , t. 1999 , phys . rep .\n, 314 , 575 piran , t. , shemi , a. & narayan , r. 1993 , mnras , 263 , 861 ramirez - ruiz , e. & fenimore , e. 2000 , apj , 539 , 712 rees , m.j . & mszros , p. 1992 , mnras , 258 , 41p rhoads , j. 1999 , apj , 525 , 737 sari , r. , piran , t. 1997 , apj , 485 , 270 sari , r. , piran , t. , & halpern , j. 1999 , apj , 519 , l17 sari , r. , piran , t. , & narayan , r. 1998 , apj , 497 , l17 tavani , m. 1998 , apj , 497 , l21 woosley , s. 1993 , apj , 405 , 273 zhang , w. & fryer , c. 2001 , apj , 550 , 357", "target": " if the efficiency for producing @xmath0-rays is the same in short duration ( @xmath1 s ) gamma - ray bursts ( grbs ) as in long duration grbs , then the average kinetic energy of short grbs must be @xmath2 times less than that of long grbs . \n assuming further that the relativistic shocks in short and long duration grbs have similar parameters , we show that the afterglows of short grbs will be on average 1040 times dimmer than those of long grbs . \n we find that the afterglow of a typical short grb will be below the detection limit ( @xmath3 ) of searches at radio frequencies \n . the afterglow would be difficult to observe also in the optical , where we predict @xmath4 a few hours after the burst \n . the radio and optical afterglow would be even fainter if short grbs occur in a low - density medium , as expected in ns ns and ns bh merger models . \n the best prospects for detecting short - grb afterglows are with early ( @xmath5 day ) observations in x - rays . 3 ", "evaluation_predictions": [2, 109, 5400, 116, 113, 2650, 757, 23811, 14333, 5654, 27305, 143, 17050, 12903, 110, 158, 127, 1857, 13613, 3316, 122, 109, 31059, 25023, 110, 108, 111, 2297, 109, 244, 42225, 116, 113, 613, 17050, 12903, 246, 129, 2650, 757, 23811, 740, 488, 33367, 197, 109, 244, 42225, 116, 113, 300, 17050, 12903, 110, 107, 106, 109, 2650, 757, 23811, 522, 488, 1934, 28092, 644, 113, 109, 18585, 115, 613, 17050, 12903, 138, 1007, 109, 7769, 1295, 166, 2650, 757, 23811, 726, 112, 2902, 2650, 757, 23811, 914, 488, 1678, 115, 219, 27305, 1711, 112, 300, 17050, 12903, 110, 107, 175, 109, 5033, 5221, 134, 156, 112, 114, 324, 390, 115, 109, 8091, 15291, 113, 500, 17050, 1271, 244, 42225, 116, 127, 640, 112, 1229, 267, 49687, 113, 109, 45589, 110, 108, 237, 109, 2650, 757, 23811, 522, 488, 1934, 28092, 644, 113, 109, 18585, 115, 613, 17050, 12903, 138, 1007, 109, 7769, 1295, 166, 2650, 757, 23811, 1343, 112, 2902, 2650, 757, 23811, 914, 488, 1678, 115, 219, 27305, 1711, 112, 300, 17050, 12903, 110, 107, 106, 109, 602, 218, 129, 1498, 118, 4463, 725, 2175, 118, 244, 42225, 116, 113, 613, 17050, 12903, 110, 107, 110, 106, 1768, 305, 1768, 280, 110, 940, 213, 208, 110, 107, 110, 106, 167, 1152, 110, 107, 110, 106, 130, 13368, 110, 107, 110, 106, 126, 110, 107, 110, 940, 2834, 1768, 305, 2834, 110, 108, 1768, 280, 1768, 305, 1768, 280, 110, 940, 109, 20808, 110, 940, 2834, 1768, 305, 2834, 110, 108, 1768, 280, 1768, 305]} |
{"text": "the conception and construction of systems of well - defined coupled macrospins underpins both the fields of artificial frustrated magnetism@xcite and nanomagnetic logic.@xcite the two communities however remain largely separate , balanced at the fundamental and applied ends of the same physical problem : the predictable and controlled evolution of magnetic configurations in patterns of nanomagnets .\na carefully - designed balance of field scales allows for the manipulation of well - defined defects or `` frustrations '' in the local ground state ( gs ) macrospin order , forming the basis of interesting and useful operations . quenched disorder ( qd ) , the distribution in properties between the coupled components inherent from nanopatterning\n, however acts to disrupt these processes.@xcite antiferromagnetic ising lattices@xcite and ice models@xcite have been realized from patterned elements possessing well - defined bi - stable dipolar behavior , in which competing interactions control collective ordering .\npropagation of charge defects has generated substantial interest@xcite due to a qualitative analogy with `` monopole '' excitations in rare - earth pyrochlore materials.@xcite magnetic islands and multilayer heterostructures have also been employed for information processing , in the form of logic gates , shift registers and ratchets.@xcite a domain wall `` soliton''@xcite at the boundary between two gs ordered phases can be unidirectionally field - driven along a conduit given underlying symmetries are appropriately broken . in this work ,\nwe introduce a novel system which exemplifies the equality of such contemporary works in nanomagnetism , and explore its potential in executing reliable and repeatable operations .\nthe system is a circular ring of radially - aligned evenly - spaced ising - like spin moments .\ncrucially , the number of moments @xmath0 is fixed to be odd , which , as we will show , forces the system to possess a frustrated topological soliton defect@xcite in its gs and form an approximate realization of a magnetic mbius loop.@xcite the curvature of the ring imposes chirality under the application of a rotating constant - amplitude magnetic field , and we use numerical simulations to show how this allows for a soliton to be driven around the system . with experimental realization in mind ,\nwe make various assumptions appropriate for patterned nanomagnets to build the model and further test for robustness against qd .\nfurthermore , we discuss the application of the system as a multiturn counter.@xcite spin ring systems for ( a ) @xmath1 3 , and ( b ) @xmath1 5 .\nthe ring radius @xmath2 .\nspins are number from @xmath3 1 to @xmath0 .\nan intrinsic ground state defect can take positions p@xmath4 as indicated by circles .\nthe defect position for the given ground state configuration is emboldened in red at p@xmath5 .\n@xmath6 is the initial applied field used in simulations .\nthe spin ring is illustrated in fig .\n[ fig1 ] for @xmath0 = 3 and 5 spins .\nthe ising - like spins @xmath7 , represented by arrows numbered @xmath8 = 1 to @xmath0 anticlockwise , are radially - aligned and equally spaced by an angle @xmath9 on a ring of radius @xmath10 .\nspin @xmath8 experiences a net point - dipolar field from its neighbors @xmath11 @xmath12/{|\\bm{\\mathrm{x}}}_{ij}|^{3 } \\label{eqno1}\\ ] ] where * * x**@xmath13 is the vector displacement from spin * * s**@xmath4 to spin * * s**@xmath14 .\nwe work in normalized units , and set all @xmath15 = 1 .\nit is instructive to first consider the ground state ( gs ) of the system . to minimize the dominant pairwise interaction which exists between first nearest neighbors , an `` in - out '' relative configuration\nmust be adopted for a given pair .\nfurther neighbor interactions , whilst not necessarily insignificant , will not alter this ordering rule . because @xmath0 is odd , if one attempts to propagate the rule around a ring , a defect must always be ultimately formed , consisting of a frustrated `` in - in '' or `` out - out '' arrangement , resembling a magnetic soliton defect,@xcite as illustrated in fig .\nthe frustrated defect can hence exist at positions p@xmath4 , as indicated by circles , and we will refer to spins which constitute a soliton as `` defected spins '' .\nit is important to note that the system can generally support only odd numbers of solitons similar solitons are found in linear 1d chains of ising spins where two domains of opposite phase meet,@xcite a result of a two - fold degenerate antiferromagnet - like gs . in our ring system , the gs possesses an _ intrinsic _ local frustration , much like a 1d ising chain with periodic boundary conditions where setting @xmath0 = odd imposes this `` twist '' in the local order parameter .\nthere are also @xmath0 possible soliton positions .\ncalculation of the net zeeman energy @xmath16 shows that this is the gs , which is hence 2@xmath0-fold degenerate .\nan interesting analogy exists here between the spin ring system and the mbius loop , a planar strip possessing only one side due a twisted topology.@xcite following the antiferromagnetic order parameter around the ring , one finds it must invert once each cycle at the defect , which represents the topological kink of the mbius loop .\n( this analogy would only stand completely true for a spin ring possessing only 1@xmath17 nearest neighbor interactions , however , as we will show , this is the dominant interaction defining the system s behavior , hence the same qualitative behavior is expected . ) for now , we simply consider that each spin possesses an intrinsic switching astroid of a given type . as for a linear 1d chain system,@xcite it is anticipated that dipolar interactions result in a local instability at a frustrated defect , its two constituent spins being more willing to flip their orientations than non - defected spins , and local stability elsewhere .\nflipping an unstable spin , e.g. by applying a suitable magnetic field ( not large enough to reverse any stabilized spins ) , acts only to move the soliton , creating an energetically equivalent gs if the applied field is subsequently removed .\nhowever , for identical spins on the linear 1d chain , an applied field can not preferentially flip one defected spin over the other , due to symmetry , hence a directional `` pressure '' can not be established in the system . whilst qd\n, e.g. in the intrinsic switching fields of the spins , can locally break the symmetry , this produces no net directionality in the system . as can be seen by simple geometrical considerations , the employment of a curved chain , as for the ring system , potentially overcomes both of these issues , by imposing asymmetry when a uniform global applied field is present .\nit is hence possible to favour the switching of one defected spin over the other , given qd is not too strong . under a uniform applied field , two defect spins\nare now generally inequivalent , and their angular offset may be exploited .\na field sequence may hence be applied to propagate the soliton defect as desired . due to its simplicity in both experiment and simulation\n, we consider a uniform applied field @xmath18 of constant magnitude , rotating at a constant rate.@xcite three field regimes must exist .\nthere are two trivial regimes , one in which the applied field magnitude @xmath19 is too small to ever reconfigure the system , and one in which the field is so large that it only acts to polarizes the system . in between there\nexists a non - trivial field window in which meaningful dynamics should be possible , exploiting the local instability / stability of defected / non - defected spins imparted by the dipolar interactions and the form of the spins intrinsic switching astroid .\nour simulations are similar to those recently presented in studies of artificial spin ice systems.@xcite we set @xmath10 = @xmath0/3 , which keeps the first nearest neighbor interaction approximately constant at @xmath20 0.1 as a function of @xmath0 ( an approximation which improves as @xmath0 increases ) . for a given @xmath0\n, the system is primed from a gs configuration , as shown in fig .\n[ fig1 ] , with a defect existing at position p@xmath21 .\na field @xmath18 is applied at an initial angle @xmath22 , aligned with the initial net moment of the ring , taking field angle @xmath23 to be aligned with spin @xmath24 and the anti - clockwise sense as positive .\nthe field is incremented in anticlockwise angular steps of @xmath25 : this allows for a sufficient angular resolution , and for even division of the @xmath26 range , maintaining symmetry between @xmath27 and @xmath28 . for a given simulation step\n, a spin @xmath7 is selected at ( pseudo-)random and an attempt is made to flip its orientation .\nspin @xmath7 experiences a total field @xmath29 to represent realistic reversal behavior , a stoner - wolfarth ( sw ) switching criterion is implemented.@xcite even for elongated ferromagnetic nanowires which reverse via nucleation and propagation of a domain wall , nucleation often occurs within a coherently rotating sub - volume.@xcite spin @xmath7 flips given two inequalities are satisfied : @xmath30 and @xmath31 where @xmath32 is the angle between spin @xmath7 and @xmath33 .\nthis allows for reversal given the projection of @xmath33 onto @xmath7 is antiparallel with @xmath7 ( equation ( 3 ) ) , and that @xmath33 lies outside the sw astroid of spin @xmath7 ( equation ( 4 ) ) .\nthe sw astroid varies between @xmath34 and @xmath35 at its maxima and minima respectively , occurring at and halfway between integer multiples of @xmath36/2 respectively , where @xmath34 is a constant .\nthis random selection and test process is repeated until no further spins can flip , upon which the step ends .\nnote that this is a zero - temperature simulation hence the system only ever makes downward transitions in energy .\nthis is an appropriate starting point when considering nanomagnets which are robustly thermally stable at remanence@xcite and which will reverse their magnetization state effectively instantaneously relative to the applied field rotation rate.@xcite\nto illustrate the ideal behavior of the system , we first consider the case in which @xmath37 1 for all @xmath8 , @xmath1 5 and @xmath38 0.55 .\nan animation of a simulation realization is shown in the supplemental material,@xcite and we follow the initial behavior schematically in figures [ fig1](b ) and [ fig2](a - d ) . figure [ fig2](e ) shows a plot of the simulated soliton position p@xmath4 as a function of applied field angle @xmath27 . in the initial configuration ,\nthe soliton exists at position p@xmath21 , as illustrated in fig .\n[ fig1](b ) , with spins @xmath39 defected . whilst @xmath40 is anti - aligned with @xmath41\n, @xmath41 is unable to flip , experiencing an opposing net field of 0.3 along its axis ( @xmath42 1 , at @xmath43 ) .\nthis is true even as @xmath40 rotates , as @xmath44 remains within the sw astroid of spin @xmath41 .\nas @xmath40 approaches @xmath45 , spin @xmath46 is allowed to flip , destabilized by its neighboring spin @xmath24 , forming the state shown in fig .\n[ fig2](a ) .\nit is worth re - emphasizing that the shape of the sw astroid allows for reversal at such a value of @xmath47.@xcite the reversal of @xmath46 propagates the soliton from position p@xmath21 to position p@xmath48 , as shown in fig .\n[ fig2 ] ( e ) , acting to stabilize(destabilize ) @xmath49 .\nspins @xmath50 remain stabilized by their nearest neighbors . as @xmath40 continues to rotate , fig .\n[ fig2 ] ( b ) , no spin flips occur until @xmath51 ( fig .\n[ fig2](c ) ) , at which spin @xmath52 reverses , further incrementing the position of the soliton to position p@xmath53 . 5 and @xmath38 0.55 , as the applied field @xmath40 is swept anti - clockwise from its initial orientation .\n@xmath54 is large enough to sequentially flip defected spins , indicated by lightened gray arrows , but not large enough to polarize the system .\nthe soliton , represented by an emboldened circle , increments its position p@xmath4 every @xmath55 rotation of @xmath40 , as plotted in ( e ) . the red / blue color scheme in ( a - e )\nrepresents the out / in polarity of a soliton at a given position , as do the square / circular data points in ( e ) .\nthe angular position of the spin flips in ( a ) , ( c ) , and ( d ) are indicated in ( e ) .\n[ fig2 ] ] continued rotation of @xmath40 continues to propagate the soliton in this manner ( fig .\n[ fig2](d , e ) ) every @xmath56 rotation of @xmath40 , equal to @xmath57 for @xmath1 5 .\nnote that the net `` in / out '' polarity of the defect changes with each increment ( indicated by blue / red emboldened circles in figure [ fig2 ] ( a - d ) ) , and that the defect position rotates with the opposite sense to that of @xmath40 .\nonce the defect completes a full circuit of the system , the whole system has undergone a global spin flip transformation from its initial configuration , as the order parameter `` twist '' is swept around .\na total rotation of @xmath58 is required to achieve this .\nwe find the same non - trivial behavior throughout the range of @xmath59 , the phase of the spin flipping decreasing(increasing ) as @xmath54 increases(decreases ) due to the profile of the sw astroid .\nbelow @xmath38 0.43 , no dynamics occur as the net field @xmath33 is never large enough to satisfy equation ( 3 ) for all @xmath8 and @xmath32 . above @xmath38 0.675 ,\nthe applied field is strong enough to satisfy equation ( 3 ) even for non - defected spins , hence the net polarization of the system tracks @xmath40 ; whilst multiple soliton defects form under such conditions ( for @xmath60 ) , their motion is trivial , dominated by the zeeman energy .\nthe non - trivial interval has a width @xmath61 indicating how the operation of the system relies crucially on 1@xmath17 nearest neighbor coupling .\nwe have hence established that such a spin ring system may be used for the manipulation of a well - defined soliton defect . whilst the system possesses symmetry in its interactions , as for a linear chain , the _ anticlockwise _ rotating applied field provides the required chirality for unidirectional angular soliton propagation with a _ clockwise _ sense .\nit is of course possible to set the initial applied field angle @xmath62 to any direction and , in particular , a direction that first favors reversal of spin @xmath24 , rather than @xmath46 , from the initial spin configuration of fig .\n[ fig1](b ) .\nin such a case , the soliton will initially take a single step with the _ same _ sense as @xmath40 from position p@xmath21 to position p@xmath63 , however , as @xmath40 continues to rotate the behavior previously described is resumed .\nfurthermore , reversing the sense of rotation of @xmath40 to clockwise produces a complementary reversal in the sense of propagation of the soliton , which can be understood by symmetry .\nhence , the soliton may be translated to any position in any angular direction .\nthe scheme also works for alternative switching models and has been tested using an ising switching astroid .\nfundamentally , the scheme requires that spins possess switching astroids which vary as a function of net field direction , that are also offset in angle from each other such that switching can be accessed for individual spins in turn .\nhence , the scheme should work experimentally for any realisable bistable nanomagnet type .\nthis is particularly important when considering that the switching astroid of a sw nanomagnet loses four - fold rotational symmetry at finite temperature , the switching threshold for applied fields approaching the easy axis becoming reduced relative to that along the hard axis.@xcite the same qualitative behavior is hence expected .\nnext we consider a more realistic situation in which quenched disorder qd is present in the system .\nwe follow similar model studies and implement this as a distribution in the spins switching behavior.@xcite for a given realization , we generate the values @xmath34 from a psuedo - gaussian distribution with mean = 1 and standard deviation @xmath64 .\nstudies show that this provides a good approximation for the behavior of coupled nanomagnet vertex systems , accounting for a combination of possible property distributions.@xcite we explore the behavior of the system as a function of both @xmath54 and @xmath64 . to further characterize the system\n, we define the system as `` working '' if the single soliton is able to make a full circuit of the system , as previously described . over @xmath65 realizations for each parameter set ,\nwe build a map of the probability @xmath66 that the system operates as designed .\nthis map is shown in fig .\n[ fig3 ] for @xmath1 5 and @xmath67 150 . cross - sectional profiles from fig .\n[ fig3 ] are shown in fig .\n[ fig4 ] for select values of ( a ) @xmath54 , and ( b ) @xmath64 . a clear triangular region with @xmath68 1 exists spanning the interval @xmath59 at @xmath69 0 ( as previously discussed ) , converging linearly to a point at @xmath70 0.55 and @xmath71 0.1 .\n@xmath70 0.55 is an optimal field magnitude , allowing for the greatest robustness against qd . on moving out of this region\n, @xmath66 falls abruptly .\nthe size and shape of this triangular region of @xmath68 1 is defined by the size of @xmath72 0.1 . 5 system , @xmath66 ( see colour key ) , as a function of applied field magnitude @xmath54 and switching astroid constant standard deviation @xmath64 .\n[ fig3 ] ] for given values of @xmath54 and @xmath64 , the behavior within the phase diagram can be understood in terms of spins which are `` pinned '' , possessing sufficiently high values of @xmath34 to prevent their reversal even when defected , and spins which are `` loose '' , possessing sufficiently low values of @xmath34 such that they can flip even when not defected.@xcite for @xmath38 0.45 and @xmath69 0.1 , there is a significant probability of failure due to at least one spin being unable to flip . upon meeting a pinned spin ,\nthe soliton enters a trapped `` resonant '' behavior mode , taking one step back then one step forward within each rotation of @xmath54 .\nfailure can also occur if both @xmath46 and @xmath24 are pinned , preventing the soliton from ever moving .\nas @xmath64 increases , more erratic behavior can occur , with an increased chance of finding loose spins in a given realization . for @xmath38 0.65 and @xmath69 0.1\n, failure is likely for a given realization due to the increased probability of spins that are loose , which behave trivially under @xmath54 .\ntypically , a loose spin is allowed to flip when not defected by interactions , nucleating an additional pair of solitons in the system .\nthe evolution of the system then appears as the trivial high field regime discussed in section 3.1 . as @xmath64 increases the probability of such behavior increases .\nfor @xmath69 0.4 , there often exists increasing numbers of pinned spins too : the combination of loose and pinned spins can result in erratic behavior in which soliton pairs are periodically nucleated and annihilated on the ring , with no meaningful evolution . for @xmath38 0.55 and @xmath69 0.4 , the most erratic behavior is found , due to an average balance of pinned and loose spins , resulting in a balanced probability of various different failure modes . it should be noted that for @xmath73 0.4 , realizations become increasing unphysical , with negative values of @xmath34 becoming common , hence we do not explore this range . within the @xmath68 1 region in fig .\n[ fig3 ] , finite qd acts to modify the number of field steps the soliton spends at each position , which depends on the specific realization , however , given the defect can make a full circuit in the desired sequence , this is still a `` successful '' soliton .\n-map of fig .\n[ fig3 ] , taken along the ( a ) @xmath54 , and ( b ) @xmath64 axes at the labeled values of @xmath64 and @xmath54 respectively .\nnote , due the symmetry of the phase diagram , ( b ) shows data for @xmath74 only .\n[ fig4 ] ] the results shown @xmath75 are representative of all @xmath60 studied ( up to 11 ) , possessing the same form of triangular phase diagram defined by @xmath76 . for @xmath77 , no high - field failure phase is present , as both the trivial high - field regime and non - trivial regime possess a full polarization and a single soliton ( fig .\n[ fig1](a ) ) .\nthe @xmath77 system is incompatible with the generation of multiple defects under a uniform applied magnetic field . regarding experimental realization ,\nthe simulations show that the limit imposed by qd on the system s successful operation is a value of @xmath78 , for an optimal @xmath19 .\nkeeping within such a limit is in principle experimentally achievable and compares well with recently presented estimates in patterned artificial spin ice systems built from elongated highly - anisotropic bistable nife nanomagnets of @xmath79 100 nm dimensions spaced edge - to - edge by @xmath79 40 nm.@xcite qd is however not a straight - forward phenomenon to quantify.@xcite in order to first generate the required single - defect ground state , it is possible to reset an initial state in an experimental nanomagnet system via various methods currently being developed by the nanomagnetism community .\npatterns tailored to allow `` on / off '' switching of thermal dynamics e.g. via volume@xcite or material@xcite , allow for thermal equilibration of the magnetic macrospins towards their gs , which would remove all but one soliton from any given initial configuration as they undergo a random walk around the ring\n. it may also be possible to field - anneal the system , using the correct field sequence.@xcite\nas an example of a practical application , the macrospin ring is a multiturn counter .\na full @xmath26 motion of the soliton requires @xmath80 complete applied field rotations . as the soliton must travel around the system twice to reset the system ,\nthe system can count up to @xmath81 .\nmagnetic nano - systems have been shown to be highly applicable for such contactless powerless operation.@xcite this spin ring can potentially be realized experimentally by patterning of radially - aligned single - domain nanomagnets , as discussed , which experience the field of a rotating permanent magnet .\neach gs soliton state represents a unique macrospin configuration , which could be directly read by incorporation of giant magnetoresistance - based sensing .\nthere is no need to inject soliton defects as for spiral domain wall conduit counters,@xcite which also require a fixed rotational sense to operate and are limited to a maximum number of turns , domain walls eventually `` falling out '' of the ends .\nthe spin ring will count up to @xmath0 cyclically : each soliton step counts an angle @xmath82 , which = @xmath83 for @xmath84 , and converges to @xmath85 as @xmath0 increases .\nthe spin ring bares similarity to closed - loop conduit devices@xcite and perpendicular magnetic anisotropy shift register loops@xcite recently presented , always possessing at least one local defect , which may be used to count field oscillations .\na spin ring system built of highly anisotropic single - domain nanomagnets may also present further benefits , minimising switching time between states relative to extended nanowires .\nfurthermore , combining @xmath86 spin rings of different spin number @xmath87 allows for a total of @xmath88 rotations to be counted in a coprime scheme .\nthe odd - numbered macrospin ring demonstrates an unexplored means of imposing chirality in systems of coupled single - domain nanomagnet chains , as utilized in conventional magnetic logic and mqca architectures.@xcite the scheme is simple to implement using nanopatterned thin films and more general systems of curved spin chains may be designed .\nit is further an example of a user - designed artifical geometrically frustrated system , possessing an _ intrinsic _ soliton defect , which can be manipulated in a well - defined way and potentially employed for useful operations , exemplified here as a simple multiturn counter .\nit further represents a building block for the study of more complex coupled systems.@xcite whilst a small handful of reports exists in the field of molecular magnetism on such `` magnetic mbius loops'',@xcite built from odd - numbered spin-@xmath85 rings , our work highlights the possibility of exploring such physics in nanopatterned systems via real - space real - time microscopy.@xcite we thank c. h. marrows , z. budrikis , r. mansell , and a. fernandez - pacheco for useful discussions and careful proof - readings .\nwe acknowledge research funding from the ( uk ) epsrc , and the european community under the seventh framework programme contract no .\n247368 : 3spin .\nthis work has been partly carried out within the joint research project exl04 ( spincal ) , funded by the european metrology research programme .\nthe emrp is jointly funded by the emrp participating countries within euramet and the european union .\n45ifxundefined [ 1 ] ifx#1 ifnum [ 1 ] # 1firstoftwo secondoftwo ifx [ 1 ] # 1firstoftwo secondoftwo `` `` # 1''''@noop [ 0]secondoftwosanitize@url [ 0 ]\n + 12$12 & 12#1212_12%12@startlink[1]@endlink[0]@bib@innerbibempty @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) link:\\doibase 10.1007/bfb0045993 [ _ _ ] , ed . , ,\n( , ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) link:\\doibase 10.1098/rsta.1948.0007 [ * * , ( ) ] @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( ) @noop * * , ( )", "target": " we report simulations of a frustrated odd - numbered macrospin ring system , with full point dipolar interactions , driven by a rotating uniform applied magnetic field of constant magnitude . \n the system is designed with equally - spaced radially - aligned macrospins , which must carry a frustrated soliton defect in its ground state . \n it is shown how correctly tuning the applied field magnitude can allow for non - trivial unidirectional propagation of the soliton , the required directional pressure acquired via the curvature of the ring . \n furthermore , the system , which may be employed as a multiple rotation counter , is tested for robustness against quenched disorder as would be present in an experimental realization . ", "evaluation_predictions": [2, 145, 4094, 114, 327, 113, 8212, 117, 273, 233, 172, 10821, 28468, 116, 115, 114, 8578, 12587, 64629, 110, 107, 106, 52245, 110, 108, 109, 344, 113, 12337, 2650, 757, 23811, 3142, 117, 5811, 110, 108, 162, 3062, 109, 327, 112, 6465, 114, 9736, 75222, 167, 4068, 2035, 13665, 115, 203, 1230, 449, 110, 108, 111, 515, 142, 13734, 13783, 113, 114, 7214, 43224, 11641, 5568, 110, 107, 106, 109, 38391, 113, 109, 2702, 45410, 85432, 2922, 365, 109, 723, 113, 114, 12247, 3357, 233, 33667, 7214, 764, 110, 108, 111, 145, 207, 17327, 18486, 112, 403, 199, 136, 871, 118, 114, 167, 4068, 2035, 112, 129, 3830, 279, 109, 327, 110, 107, 122, 7707, 13783, 115, 653, 110, 108, 145, 193, 623, 12000, 1530, 118, 21266, 12587, 64629, 116, 112, 736, 109, 861, 111, 701, 804, 118, 40851, 464, 44875, 316, 6006, 110, 107, 106, 21905, 110, 108, 145, 1693, 109, 723, 113, 109, 327, 130, 114, 1546, 16041, 3029, 110, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} |
{"context": "Samantha enjoyed the blinch.", "hypothesis": "Something good happened .", "label": 1, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285976, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-5102", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "Samantha enjoyed the blinch.", "hypothesis": "Something neutral happened .", "label": 0, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285977, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-5102", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "Lisa rustled the pord from that place for Chelsea.", "hypothesis": "Something bad happened .", "label": 1, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285978, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-5813", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "Lisa rustled the pord from that place for Chelsea.", "hypothesis": "Something neutral happened .", "label": 0, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285979, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-5813", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "Alyssa drummed the gamps together.", "hypothesis": "Something neutral happened .", "label": 1, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285980, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-4400", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "Alyssa drummed the gamps together.", "hypothesis": "Something good happened .", "label": 0, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285981, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-4400", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "The crose's cheruffing overwhelmed Kyle.", "hypothesis": "Something bad happened .", "label": 1, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285982, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-3911", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "The crose's cheruffing overwhelmed Kyle.", "hypothesis": "Something good happened .", "label": 0, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285983, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-3911", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "Andrew scooted to Robert.", "hypothesis": "Something neutral happened .", "label": 1, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285984, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-14362", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"context": "Andrew scooted to Robert.", "hypothesis": "Something bad happened .", "label": 0, "label-set": ["entailed", "not-entailed"], "binary-label": true, "split": "train", "type-of-inference": "Lexicosyntactic VerbCorner A_Good_World.csv", "pair-id": 285985, "corpus": "VerbCorner", "corpus-sent-id": "A_Good_World.csv-14362", "corpus-license": "CCA-3.0", "creation-approach": "automatic"} |
{"id": 655, "tokens": ["The", "operating", "humidity", "shall", "be", "between", "0.4", "and", "0.6"], "ner_tags": [0, 3, 4, 0, 0, 5, 7, 5, 7]} |
{"id": 12, "tokens": ["Vertical", "profiles", "shall", "be", "measured", "in", "an", "altitude", "range", "extending", "from", "-", "0.5", "km", "up", "to", "40", "km", "with", "respect", "to", "the", "reference", "ellipsoid."], "ner_tags": [3, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} |
{"id": 264, "tokens": ["The", "CIS", "CNET", "shall", "accommodate", "a", "bandwidth", "of", "at", "least", "24.0575", "Gbps", "to", "the", "Computer", "Room", "."], "ner_tags": [0, 9, 10, 0, 1, 0, 3, 0, 5, 6, 7, 8, 0, 0, 9, 10, 0]} |
{"id": 1070, "tokens": ["The", "algorithm", "shall", "produce", "the", "SST", "product", "that", "has", "a", "measurement", "accuracy", ",", "skin", "and", "bulk,", "of", "0.5", "K", "."], "ner_tags": [0, 9, 0, 1, 0, 9, 10, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 7, 8, 0]} |
{"id": 259, "tokens": ["The", "CIS", "CNET", "shall", "accommodate", "a", "bandwidth", "of", "at", "least", "0.08", "Gbps", "to", "the", "Utility", "Room", "."], "ner_tags": [0, 9, 10, 0, 1, 0, 3, 0, 5, 6, 7, 8, 0, 0, 9, 10, 0]} |
{"id": 705, "tokens": ["The", "algorithm", "shall", "produce", "a", "cloud", "liquid", "water", "product", "that", "has", "a", "measurement", "precision", "of", "0.08", "mm", "over", "sea."], "ner_tags": [0, 9, 0, 1, 0, 9, 10, 10, 10, 0, 0, 0, 3, 4, 0, 7, 8, 0, 0]} |
{"id": 91, "tokens": ["The", "Herschel", "spacecraft", "shall", "provide", "a", "mass", "allocation", "of", "465", "kg", "for", "the", "baseline", "payload", "accommodation", "as", "defined", "in", "IID", "Part", "B", "(AD4-2,", "AD4-3", "and", "AD4-4)", "including", "margins."], "ner_tags": [0, 9, 10, 0, 1, 0, 3, 4, 0, 7, 8, 0, 0, 9, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} |
{"id": 112, "tokens": ["The", "probability", "of", "frame", "loss", "on", "the", "downlink", "shall", "be", "<", "5-Oct", "."], "ner_tags": [0, 3, 4, 4, 4, 0, 0, 9, 0, 0, 5, 7, 0]} |
{"text": "Another Great Day in Harlem"} |
{"text": "It was involved in long-distance trade between northern and southern Europe, involving luxury goods (as found in the burial mounds) and probably wine from the south, and amber, metals, as well as probably perishables like leather and fur, from the north."} |
{"text": "Category:Living people"} |
{"text": "It was not clear what route the new line would take, but it was hinted that there would be less use of cut-and-cover tunnelling to minimize disruption to businesses along Broadway and avoid the same problems seen during the Canada Line construction along Cambie Street."} |
{"text": "Ilic once said that he would give all of his wealth for just one child."} |
{"text": "Steve Riley and the Mamou Playboys"} |
{"text": "Ancien Regime (15th-18th centuries)"} |
{"text": "This restricts the camera to a more or less fixed position, zooming in and out with the action, but not tracking around the arena as would be common in most other 2D and 3D fighting games."} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.