juanjucm commited on
Commit
fd85575
·
verified ·
1 Parent(s): 83efee5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -23
README.md CHANGED
@@ -1,25 +1,56 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: id
5
- dtype: int32
6
- - name: audio
7
- dtype:
8
- audio:
9
- sampling_rate: 16000
10
- - name: text_gl
11
- dtype: string
12
- - name: text_en
13
- dtype: string
14
- splits:
15
- - name: train
16
- num_bytes: 2350499131.6252074
17
- num_examples: 3450
18
- download_size: 2338691367
19
- dataset_size: 2350499131.6252074
20
- configs:
21
- - config_name: default
22
- data_files:
23
- - split: train
24
- path: data/train-*
25
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ task_categories:
3
+ - translation
4
+ - automatic-speech-recognition
5
+ language:
6
+ - gl
7
+ - en
8
+ size_categories:
9
+ - 1K<n<10K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
+ # Dataset Details
12
+
13
+ **FLEURS-SpeechT-GL-EN** is Galician-to-English dataset for Speech Translation task.
14
+
15
+ This dataset has been compiled from Google's **[FLEURS data set](https://huggingface.co/datasets/google/fleurs)**
16
+ It contains ~10h11m of galician audios along with its text transcriptions and the correspondant English translations.
17
+
18
+ # Preprocessing
19
+
20
+ This dataset has been generated based on Google's FLEURS speech dataset, by aligning English and Galician data.
21
+ The alignment process has been performed following **[ymoslem's FLEURS dataset processing script](https://github.com/ymoslem/Speech/blob/main/FLEURS-GA-EN.ipynb)**
22
+
23
+ ### English translations quality
24
+
25
+ To get a sense of the quality of the english text with respect to the galician transcriptions, a Quality Estimation model has been applied.
26
+
27
+ - **QE model**: [Unbabel/wmt23-cometkiwi-da-xl](https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl)
28
+ - **Average QE score**: 0.76
29
+
30
+ # Dataset Structure
31
+
32
+ ```
33
+ DatasetDict({
34
+ train: Dataset({
35
+ features: ['id', 'audio', 'text_gl', 'text_en'],
36
+ num_rows: 3450
37
+ })
38
+ })
39
+ ```
40
+
41
+ # Citation
42
+
43
+ ```
44
+ @article{fleurs2022arxiv,
45
+ title = {FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech},
46
+ author = {Conneau, Alexis and Ma, Min and Khanuja, Simran and Zhang, Yu and Axelrod, Vera and Dalmia, Siddharth and Riesa, Jason and Rivera, Clara and Bapna, Ankur},
47
+ journal={arXiv preprint arXiv:2205.12446},
48
+ url = {https://arxiv.org/abs/2205.12446},
49
+ year = {2022},
50
+ ```
51
+
52
+ Yasmin Moslem preprocessing script: https://github.com/ymoslem/Speech/blob/main/FLEURS-GA-EN.ipynb
53
+
54
+ ## Dataset Card Contact
55
+
56
+ Juan Julián Cea Morán ([email protected])