docstring
stringlengths
52
499
function
stringlengths
67
35.2k
__index_level_0__
int64
52.6k
1.16M
Authenticate the gmusicapi Musicmanager instance. Parameters: oauth_filename (str): The filename of the oauth credentials file to use/create for login. Default: ``oauth`` uploader_id (str): A unique id as a MAC address (e.g. ``'00:11:22:33:AA:BB'``). This should only be provided in cases where the default (host MAC address incremented by 1) won't work. Returns: ``True`` on successful login, ``False`` on unsuccessful login.
def login(self, oauth_filename="oauth", uploader_id=None): cls_name = type(self).__name__ oauth_cred = os.path.join(os.path.dirname(OAUTH_FILEPATH), oauth_filename + '.cred') try: if not self.api.login(oauth_credentials=oauth_cred, uploader_id=uploader_id): try: self.api.perform_oauth(storage_filepath=oauth_cred) except OSError: logger.exception("\nUnable to login with specified oauth code.") self.api.login(oauth_credentials=oauth_cred, uploader_id=uploader_id) except (OSError, ValueError): logger.exception("{} authentication failed.".format(cls_name)) return False if not self.is_authenticated: logger.warning("{} authentication failed.".format(cls_name)) return False logger.info("{} authentication succeeded.\n".format(cls_name)) return True
846,342
Download Google Music songs. Parameters: songs (list or dict): Google Music song dict(s). template (str): A filepath which can include template patterns. Returns: A list of result dictionaries. :: [ {'result': 'downloaded', 'id': song_id, 'filepath': downloaded[song_id]}, # downloaded {'result': 'error', 'id': song_id, 'message': error[song_id]} # error ]
def download(self, songs, template=None): if not template: template = os.getcwd() songnum = 0 total = len(songs) results = [] errors = {} pad = len(str(total)) for result in self._download(songs, template): song_id = songs[songnum]['id'] songnum += 1 downloaded, error = result if downloaded: logger.info( "({num:>{pad}}/{total}) Successfully downloaded -- {file} ({song_id})".format( num=songnum, pad=pad, total=total, file=downloaded[song_id], song_id=song_id ) ) results.append({'result': 'downloaded', 'id': song_id, 'filepath': downloaded[song_id]}) elif error: title = songs[songnum].get('title', "<empty>") artist = songs[songnum].get('artist', "<empty>") album = songs[songnum].get('album', "<empty>") logger.info( "({num:>{pad}}/{total}) Error on download -- {title} -- {artist} -- {album} ({song_id})".format( num=songnum, pad=pad, total=total, title=title, artist=artist, album=album, song_id=song_id ) ) results.append({'result': 'error', 'id': song_id, 'message': error[song_id]}) if errors: logger.info("\n\nThe following errors occurred:\n") for filepath, e in errors.items(): logger.info("{file} | {error}".format(file=filepath, error=e)) logger.info("\nThese files may need to be synced again.\n") return results
846,345
Configure root logger using a standard stream handler. Args: level (string, optional): lowest level to log to the console Returns: logging.RootLogger: root logger instance with attached handler
def configure_stream(level='WARNING'): # get the root logger root_logger = logging.getLogger() # set the logger level to the same as will be used by the handler root_logger.setLevel(level) # customize formatter, align each column template = "[%(asctime)s] %(name)-25s %(levelname)-8s %(message)s" formatter = logging.Formatter(template) # add a basic STDERR handler to the logger console = logging.StreamHandler() console.setLevel(level) console.setFormatter(formatter) root_logger.addHandler(console) return root_logger
846,352
Create a Transcript based on the vep annotation Args: transcript_info (dict): A dict with vep info Returns: transcript (puzzle.models.Transcript): A Transcripts
def _get_vep_transcript(self, transcript_info): transcript = Transcript( hgnc_symbol = transcript_info.get('SYMBOL'), transcript_id = transcript_info.get('Feature'), ensembl_id = transcript_info.get('Gene'), biotype = transcript_info.get('BIOTYPE'), consequence = transcript_info.get('Consequence'), strand = transcript_info.get('STRAND'), sift = transcript_info.get('SIFT'), polyphen = transcript_info.get('PolyPhen'), exon = transcript_info.get('EXON'), HGVSc = transcript_info.get('HGVSc'), HGVSp = transcript_info.get('HGVSp'), GMAF = transcript_info.get('GMAF'), ExAC_MAF = transcript_info.get('ExAC_MAF') ) return transcript
846,392
Create a transcript based on the snpeff annotation Args: transcript_info (dict): A dict with snpeff info Returns: transcript (puzzle.models.Transcript): A Transcripts
def _get_snpeff_transcript(self, transcript_info): transcript = Transcript( hgnc_symbol = transcript_info.get('Gene_Name'), transcript_id = transcript_info.get('Feature'), ensembl_id = transcript_info.get('Gene_ID'), biotype = transcript_info.get('Transcript_BioType'), consequence = transcript_info.get('Annotation'), exon = transcript_info.get('Rank'), HGVSc = transcript_info.get('HGVS.c'), HGVSp = transcript_info.get('HGVS.p') ) return transcript
846,393
Generates parsed VcfRecord objects. Typically called in a for loop to process each vcf record in a VcfReader. VcfReader must be opened in advanced and closed when complete. Skips all headers. Args: qualified: When True, sample names are prefixed with file name Returns: Parsed VcfRecord Raises: StopIteration: when reader is exhausted. TypeError: if reader is closed.
def vcf_records(self, format_tags=None, qualified=False): if qualified: sample_names = self.qualified_sample_names else: sample_names = self.sample_names for line in self._file_reader.read_lines(): if line.startswith("#"): continue vcf_record = vcf.VcfRecord.parse_record(line, sample_names) if format_tags: vcf_record = self.modify_format_tag(vcf_record, format_tags) yield vcf_record
846,442
Extracts a single clip according to audioClipSpec. Arguments: audioClipSpec (AudioClipSpec): Clip specification showLogs (bool): Show ffmpeg output
def _extractClipData(self, audioClipSpec, showLogs=False): command = [self._ffmpegPath] if not showLogs: command += ['-nostats', '-loglevel', '0'] command += [ '-i', self._audioFilePath, '-ss', '%.3f' % audioClipSpec.start, '-t', '%.3f' % audioClipSpec.duration(), '-c', 'copy', '-map', '0', '-acodec', 'libmp3lame', '-ab', '128k', '-f', 'mp3' ] # Add clip TEXT as metadata and set a few more to default metadata = { self._textMetadataName: audioClipSpec.text } for k, v in metadata.items(): command.append('-metadata') command.append("{}='{}'".format(k, v)) command.append('pipe:1') return subprocess.check_output(command)
846,489
Return a gemini query Args: name (str)
def gemini_query(self, query_id): logger.debug("Looking for query with id {0}".format(query_id)) return self.query(GeminiQuery).filter_by(id=query_id).first()
846,504
Add a user defined gemini query Args: name (str) query (str)
def add_gemini_query(self, name, query): logger.info("Adding query {0} with text {1}".format(name, query)) new_query = GeminiQuery(name=name, query=query) self.session.add(new_query) self.save() return new_query
846,505
Delete a gemini query Args: name (str)
def delete_gemini_query(self, query_id): query_obj = self.gemini_query(query_id) logger.debug("Delete query: {0}".format(query_obj.name_query)) self.session.delete(query_obj) self.save()
846,506
Add the genotype calls for the variant Args: variant_obj (puzzle.models.Variant) variant_dict (dict): A variant dictionary case_obj (puzzle.models.Case)
def _add_genotype_calls(self, variant_obj, variant_line, case_obj): variant_line = variant_line.split('\t') #if there is gt calls we have no individuals to add if len(variant_line) > 8: gt_format = variant_line[8].split(':') for individual in case_obj.individuals: sample_id = individual.ind_id index = individual.ind_index gt_call = variant_line[9+index].split(':') raw_call = dict(zip(gt_format, gt_call)) genotype = Genotype(**raw_call) variant_obj.add_individual(puzzle_genotype( sample_id = sample_id, genotype = genotype.genotype, case_id = case_obj.name, phenotype = individual.phenotype, ref_depth = genotype.ref_depth, alt_depth = genotype.alt_depth, genotype_quality = genotype.genotype_quality, depth = genotype.depth_of_coverage, supporting_evidence = genotype.supporting_evidence, pe_support = genotype.pe_support, sr_support = genotype.sr_support, ))
846,547
Add a case obj with individuals to adapter Args: case_obj (puzzle.models.Case)
def add_case(self, case_obj): for ind_obj in case_obj.individuals: self._add_individual(ind_obj) logger.debug("Adding case {0} to plugin".format(case_obj.case_id)) self.case_objs.append(case_obj) if case_obj.tabix_index: logger.debug("Setting filters.can_filter_range to True") self.filters.can_filter_range = True
846,584
Return a Case object If no case_id is given return one case Args: case_id (str): A case id Returns: A Case object
def case(self, case_id=None): if case_id: for case in self.case_objs: if case.case_id == case_id: return case else: if self.cases: return list(self.case_objs)[0] return Case(case_id='unknown')
846,585
Return a individual object Args: ind_id (str): A individual id Returns: individual (puzzle.models.individual)
def individual(self, ind_id=None): for ind_obj in self.individual_objs: if ind_obj.ind_id == ind_id: return ind_obj return None
846,586
Return information about individuals Args: ind_ids (list(str)): List of individual ids Returns: individuals (Iterable): Iterable with Individuals
def individuals(self, ind_ids=None): if ind_ids: for ind_id in ind_ids: for ind in self.individual_objs: if ind.ind_id == ind_id: yield ind else: for ind in self.individual_objs: yield ind
846,587
Append sql to a gemini query Args: query(str): The gemini query extra_info(str): The text that should be added Return: extended_query(str)
def build_gemini_query(self, query, extra_info): if 'WHERE' in query: return "{0} AND {1}".format(query, extra_info) else: return "{0} WHERE {1}".format(query, extra_info)
846,602
Return a specific variant. We solve this by building a gemini query and send it to _variants Args: case_id (str): Path to a gemini database variant_id (int): A gemini variant id Returns: variant_obj (dict): A puzzle variant
def variant(self, case_id, variant_id): #Use the gemini id for fast lookup variant_id = int(variant_id) gemini_query = "SELECT * from variants WHERE variant_id = {0}".format( variant_id ) individuals = [] # Get the individuals for the case case_obj = self.case(case_id) for individual in case_obj.individuals: individuals.append(individual) self.db = case_obj.variant_source self.variant_type = case_obj.variant_type gq = GeminiQuery(self.db) gq.run(gemini_query) for gemini_variant in gq: variant = self._format_variant( case_id=case_id, gemini_variant=gemini_variant, individual_objs=individuals, index=gemini_variant['variant_id'], add_all_info = True ) return variant return None
846,604
Return variants found in the gemini database Args: case_id (str): The case for which we want to see information gemini_query (str): What variants should be chosen filters (dict): A dictionary with filters Yields: variant_obj (dict): A Variant formatted dictionary
def _variants(self, case_id, gemini_query): individuals = [] # Get the individuals for the case case_obj = self.case(case_id) for individual in case_obj.individuals: individuals.append(individual) self.db = case_obj.variant_source self.variant_type = case_obj.variant_type gq = GeminiQuery(self.db) gq.run(gemini_query) index = 0 for gemini_variant in gq: variant = None # Check if variant is non ref in the individuals is_variant = self._is_variant(gemini_variant, individuals) if self.variant_type == 'snv' and not is_variant: variant = None else: index += 1 logger.debug("Updating index to: {0}".format(index)) variant = self._format_variant( case_id=case_id, gemini_variant=gemini_variant, individual_objs=individuals, index=index ) if variant: yield variant
846,605
Make a puzzle variant from a gemini variant Args: case_id (str): related case id gemini_variant (GeminiQueryRow): The gemini variant individual_objs (list(dict)): A list of Individuals index(int): The index of the variant Returns: variant (dict): A Variant object
def _format_variant(self, case_id, gemini_variant, individual_objs, index=0, add_all_info=False): chrom = gemini_variant['chrom'] if chrom.startswith('chr') or chrom.startswith('CHR'): chrom = chrom[3:] variant_dict = { 'CHROM':chrom, 'POS':str(gemini_variant['start']), 'ID':gemini_variant['rs_ids'], 'REF':gemini_variant['ref'], 'ALT':gemini_variant['alt'], 'QUAL':gemini_variant['qual'], 'FILTER':gemini_variant['filter'] } variant = Variant(**variant_dict) # Use the gemini id for fast search variant.update_variant_id(gemini_variant['variant_id']) logger.debug("Creating a variant object of variant {0}".format( variant.variant_id)) variant['index'] = index # Add the most severe consequence self._add_most_severe_consequence(variant, gemini_variant) #Add the impact severity self._add_impact_severity(variant, gemini_variant) ### POSITON ANNOATTIONS ### variant.start = int(gemini_variant['start']) variant.stop = int(gemini_variant['end']) #Add the sv specific coordinates if self.variant_type == 'sv': variant.sv_type = gemini_variant['sub_type'] variant.stop = int(gemini_variant['end']) self._add_sv_coordinates(variant) else: ### Consequence and region annotations #Add the transcript information self._add_transcripts(variant, gemini_variant) self._add_thousand_g(variant, gemini_variant) self._add_exac(variant, gemini_variant) self._add_gmaf(variant, gemini_variant) #### Check the impact annotations #### if gemini_variant['cadd_scaled']: variant.cadd_score = gemini_variant['cadd_scaled'] # We use the prediction in text polyphen = gemini_variant['polyphen_pred'] if polyphen: variant.add_severity('Polyphen', polyphen) # We use the prediction in text sift = gemini_variant['sift_pred'] if sift: variant.add_severity('SIFT', sift) #Add the genes based on the hgnc symbols self._add_hgnc_symbols(variant) if self.variant_type == 'snv': self._add_genes(variant) self._add_consequences(variant) ### GENOTYPE ANNOATTIONS ### #Get the genotype info if add_all_info: self._add_genotypes(variant, gemini_variant, case_id, individual_objs) if self.variant_type == 'sv': self._add_genes(variant) return variant
846,606
Check if the variant is a variation in any of the individuals Args: gemini_variant (GeminiQueryRow): The gemini variant ind_objs (list(puzzle.models.individual)): A list of individuals to check Returns: bool : If any of the individuals has the variant
def _is_variant(self, gemini_variant, ind_objs): indexes = (ind.ind_index for ind in ind_objs) #Check if any individual have a heterozygous or homozygous variant call for index in indexes: gt_call = gemini_variant['gt_types'][index] if (gt_call == 1 or gt_call == 3): return True return False
846,607
Add the consequences found in all transcripts Args: variant_obj (puzzle.models.Variant)
def _add_consequences(self, variant_obj): consequences = set() for transcript in variant_obj.transcripts: for consequence in transcript.consequence.split('&'): consequences.add(consequence) variant_obj.consequences = list(consequences)
846,670
Add the impact severity for the most severe consequence Args: variant_obj (puzzle.models.Variant) gemini_variant (GeminiQueryRow)
def _add_impact_severity(self, variant_obj, gemini_variant): gemini_impact = gemini_variant['impact_severity'] if gemini_impact == 'MED': gemini_impact = 'MEDIUM' variant_obj.impact_severity = gemini_impact
846,671
Compare two song collections to find missing songs. Parameters: src_songs (list): Google Music song dicts or filepaths of local songs. dest_songs (list): Google Music song dicts or filepaths of local songs. Returns: A list of Google Music song dicts or local song filepaths from source missing in destination.
def compare_song_collections(src_songs, dst_songs): def gather_field_values(song): return tuple((_normalize_metadata(song[field]) for field in _filter_comparison_fields(song))) dst_songs_criteria = {gather_field_values(_normalize_song(dst_song)) for dst_song in dst_songs} return [src_song for src_song in src_songs if gather_field_values(_normalize_song(src_song)) not in dst_songs_criteria]
846,680
Get filepaths with supported extensions from given filepaths. Parameters: filepaths (list or str): Filepath(s) to check. supported_extensions (tuple or str): Supported file extensions or a single file extension. max_depth (int): The depth in the directory tree to walk. A depth of '0' limits the walk to the top directory. Default: No limit. Returns: A list of supported filepaths.
def get_supported_filepaths(filepaths, supported_extensions, max_depth=float('inf')): supported_filepaths = [] for path in filepaths: if os.name == 'nt' and CYGPATH_RE.match(path): path = convert_cygwin_path(path) if os.path.isdir(path): for root, __, files in walk_depth(path, max_depth): for f in files: if f.lower().endswith(supported_extensions): supported_filepaths.append(os.path.join(root, f)) elif os.path.isfile(path) and path.lower().endswith(supported_extensions): supported_filepaths.append(path) return supported_filepaths
846,681
Exclude file paths based on regex patterns. Parameters: filepaths (list or str): Filepath(s) to check. exclude_patterns (list): Python regex patterns to check filepaths against. Returns: A list of filepaths to include and a list of filepaths to exclude.
def exclude_filepaths(filepaths, exclude_patterns=None): if not exclude_patterns: return filepaths, [] exclude_re = re.compile("|".join(pattern for pattern in exclude_patterns)) included_songs = [] excluded_songs = [] for filepath in filepaths: if exclude_patterns and exclude_re.search(filepath): excluded_songs.append(filepath) else: included_songs.append(filepath) return included_songs, excluded_songs
846,682
Generate a filename for a song based on metadata. Parameters: metadata (dict): A metadata dict. Returns: A filename.
def get_suggested_filename(metadata): if metadata.get('title') and metadata.get('track_number'): suggested_filename = '{track_number:0>2} {title}'.format(**metadata) elif metadata.get('title') and metadata.get('trackNumber'): suggested_filename = '{trackNumber:0>2} {title}'.format(**metadata) elif metadata.get('title') and metadata.get('tracknumber'): suggested_filename = '{tracknumber:0>2} {title}'.format(**metadata) else: suggested_filename = '00 {}'.format(metadata.get('title', '')) return suggested_filename
846,687
Create directory structure and file name based on metadata template. Parameters: template (str): A filepath which can include template patterns as defined by :param template_patterns:. metadata (dict): A metadata dict. template_patterns (dict): A dict of ``pattern: field`` pairs used to replace patterns with metadata field values. Default: :const TEMPLATE_PATTERNS: Returns: A filepath.
def template_to_filepath(template, metadata, template_patterns=None): if template_patterns is None: template_patterns = TEMPLATE_PATTERNS metadata = metadata if isinstance(metadata, dict) else _mutagen_fields_to_single_value(metadata) assert isinstance(metadata, dict) suggested_filename = get_suggested_filename(metadata).replace('.mp3', '') if template == os.getcwd() or template == '%suggested%': filepath = suggested_filename else: t = template.replace('%suggested%', suggested_filename) filepath = _replace_template_patterns(t, metadata, template_patterns) return filepath
846,689
Walk a directory tree with configurable depth. Parameters: path (str): A directory path to walk. max_depth (int): The depth in the directory tree to walk. A depth of '0' limits the walk to the top directory. Default: No limit.
def walk_depth(path, max_depth=float('inf')): start_level = os.path.abspath(path).count(os.path.sep) for dir_entry in os.walk(path): root, dirs, _ = dir_entry level = root.count(os.path.sep) - start_level yield dir_entry if level >= max_depth: dirs[:] = []
846,690
Check what kind of file variant source is Args: variant_source (str): Path to variant source Returns: file_type (str): 'vcf', 'gemini' or 'unknown'
def get_file_type(variant_source): file_type = 'unknown' valid_vcf_suffixes = ('.vcf', '.vcf.gz') if variant_source: logger.debug("Check file type with file: {0}".format(variant_source)) if variant_source.endswith('.db'): file_type = 'gemini' logger.debug("File {0} is a gemini database".format(variant_source)) elif variant_source.endswith(valid_vcf_suffixes): file_type = 'vcf' logger.debug("File {0} is a vcf".format(variant_source)) else: logger.debug("File is in a unknown format") return file_type
846,726
Try to find out what type of variants that exists in a variant source Args: variant_source (str): Path to variant source source_mode (str): 'vcf' or 'gemini' Returns: variant_type (str): 'sv' or 'snv'
def get_variant_type(variant_source): file_type = get_file_type(variant_source) variant_type = 'sv' if file_type == 'vcf': variants = VCF(variant_source) elif file_type == 'gemini': variants = GeminiQuery(variant_source) gemini_query = "SELECT * from variants" variants.run(gemini_query) # Check 1000 first variants, if anyone is a snv we set the variant_type # to 'snv' for i,variant in enumerate(variants): if file_type == 'vcf': if variant.is_snp: variant_type = 'snv' elif file_type == 'gemini': if variant['type'] == 'snp': variant_type = 'snv' if i > 1000: break return variant_type
846,727
Recognizes and claims Strelka VCFs form the set of all input VCFs. Each defined caller has a chance to evaluate and claim all the incoming files as something that it can process. Args: file_readers: the collection of currently unclaimed files Returns: A tuple of unclaimed readers and StrelkaVcfReaders.
def claim(self, file_readers): (prefix_to_reader, unclaimed_readers) = self._find_strelka_files(file_readers) prefix_by_patients = self._split_prefix_by_patient(prefix_to_reader) self._validate_vcf_readers(prefix_by_patients) vcf_readers = self._create_vcf_readers(prefix_to_reader) return (unclaimed_readers, vcf_readers)
846,797
Add a frequency that will be displayed on the variant level Args: name (str): The name of the frequency field
def add_frequency(self, name, value): logger.debug("Adding frequency {0} with value {1} to variant {2}".format( name, value, self['variant_id'])) self['frequencies'].append({'label': name, 'value': value})
846,825
Set the max frequency for the variant If max_freq use this, otherwise go through all frequencies and set the highest as self['max_freq'] Args: max_freq (float): The max frequency
def set_max_freq(self, max_freq=None): if max_freq: self['max_freq'] = max_freq else: for frequency in self['frequencies']: if self['max_freq']: if frequency['value'] > self['max_freq']: self['max_freq'] = frequency['value'] else: self['max_freq'] = frequency['value'] return
846,826
Add a severity to the variant Args: name (str): The name of the severity value : The value of the severity
def add_severity(self, name, value): logger.debug("Adding severity {0} with value {1} to variant {2}".format( name, value, self['variant_id'])) self['severities'].append({name: value})
846,827
Add the information for a individual This adds a genotype dict to variant['individuals'] Args: genotype (dict): A genotype dictionary
def add_individual(self, genotype): logger.debug("Adding genotype {0} to variant {1}".format( genotype, self['variant_id'])) self['individuals'].append(genotype)
846,828
Add the information transcript This adds a transcript dict to variant['transcripts'] Args: transcript (dict): A transcript dictionary
def add_transcript(self, transcript): logger.debug("Adding transcript {0} to variant {1}".format( transcript, self['variant_id'])) self['transcripts'].append(transcript)
846,829
Add the information of a gene This adds a gene dict to variant['genes'] Args: gene (dict): A gene dictionary
def add_gene(self, gene): logger.debug("Adding gene {0} to variant {1}".format( gene, self['variant_id'])) self['genes'].append(gene)
846,830
Add the information of a compound variant This adds a compound dict to variant['compounds'] Args: compound (dict): A compound dictionary
def add_compound(self, compound): logger.debug("Adding compound {0} to variant {1}".format( compound, self['variant_id'])) self['compounds'].append(compound)
846,831
Generates parsed VcfRecord objects. Typically called in a for loop to process each vcf record in a VcfReader. VcfReader must be opened in advanced and closed when complete. Skips all headers. Args: qualified: When True, sample names are prefixed with file name Returns: Parsed VcfRecord Raises: StopIteration: when reader is exhausted. TypeError: if reader is closed.
def vcf_records(self, qualified=False): if qualified: sample_names = self.qualified_sample_names else: sample_names = self.sample_names for line in self._file_reader.read_lines(): if line.startswith("#"): continue yield VcfRecord.parse_record(line, sample_names)
846,852
Adds new info field (flag or key=value pair). Args: field: String flag (e.g. "SOMATIC") or key-value ("NEW_DP=42") Raises: KeyError: if info field already exists
def add_info_field(self, field): if field in self.info_dict: msg = "New info field [{}] already exists.".format(field) raise KeyError(msg) if "=" in field: key, value = field.split("=") self.info_dict[key] = value else: self.info_dict[field] = field self._join_info_fields()
846,860
Appends a new format tag-value for all samples. Args: tag_name: string tag name; must not already exist new_sample Raises: KeyError: if tag_name to be added already exists
def add_sample_tag_value(self, tag_name, new_sample_values): if tag_name in self.format_tags: msg = "New format value [{}] already exists.".format(tag_name) raise KeyError(msg) if not self._samples_match(new_sample_values): raise KeyError("Sample name values must match " "existing sample names") for sample in self.sample_tag_values.keys(): value = str(new_sample_values[sample]) self.sample_tag_values[sample][tag_name] = value
846,867
Add all transcripts for a variant Go through all transcripts found for the variant Args: gemini_variant (GeminiQueryRow): The gemini variant Yields: transcript (puzzle.models.Transcript)
def _add_transcripts(self, variant_obj, gemini_variant): query = "SELECT * from variant_impacts WHERE variant_id = {0}".format( gemini_variant['variant_id'] ) gq = GeminiQuery(self.db) gq.run(query) for gemini_transcript in gq: transcript = Transcript( hgnc_symbol=gemini_transcript['gene'], transcript_id=gemini_transcript['transcript'], consequence=gemini_transcript['impact_so'], biotype=gemini_transcript['biotype'], polyphen=gemini_transcript['polyphen_pred'], sift=gemini_transcript['sift_pred'], HGVSc=gemini_transcript['codon_change'], HGVSp=', '.join([gemini_transcript['aa_change'] or '', gemini_transcript['aa_length'] or '']) ) variant_obj.add_transcript(transcript)
846,872
Return a specific variant. Args: case_id (str): Path to vcf file variant_id (str): A variant id Returns: variant (Variant): The variant object for the given id
def variant(self, case_id, variant_id): case_obj = self.case(case_id=case_id) vcf_file_path = case_obj.variant_source self.head = get_header(vcf_file_path) self.vep_header = self.head.vep_columns self.snpeff_header = self.head.snpeff_columns handle = VCF(vcf_file_path) for index, variant in enumerate(handle): index += 1 line_id = get_variant_id(variant_line=str(variant)).lstrip('chrCHR') if line_id == variant_id: return self._format_variants( variant=variant, index=index, case_obj=case_obj, add_all_info=True ) return None
846,960
Check if variants follows the filters This function will try to make filters faster for the vcf adapter Args: vcf_file_path(str): Path to vcf filters (dict): A dictionary with filters Yields: varian_line (str): A vcf variant line
def _get_filtered_variants(self, vcf_file_path, filters={}): genes = set() consequences = set() sv_types = set() if filters.get('gene_ids'): genes = set([gene_id.strip() for gene_id in filters['gene_ids']]) if filters.get('consequence'): consequences = set(filters['consequence']) if filters.get('sv_types'): sv_types = set(filters['sv_types']) logger.info("Get variants from {0}".format(vcf_file_path)) if filters.get('range'): range_str = "{0}:{1}-{2}".format( filters['range']['chromosome'], filters['range']['start'], filters['range']['end']) vcf = VCF(vcf_file_path) handle = vcf(range_str) else: handle = VCF(vcf_file_path) for variant in handle: variant_line = str(variant) keep_variant = True if genes and keep_variant: keep_variant = False for gene in genes: if "{0}".format(gene) in variant_line: keep_variant = True break if consequences and keep_variant: keep_variant = False for consequence in consequences: if consequence in variant_line: keep_variant = True break if sv_types and keep_variant: keep_variant = False for sv_type in sv_types: if sv_type in variant_line: keep_variant = True break if keep_variant: yield variant
846,962
Return a Variant object Format variant make a variant that includes enough information for the variant view. If add_all_info then all transcripts will be parsed Args: variant (cython2.Variant): A variant object index (int): The index of the variant case_obj (puzzle.models.Case): A case object
def _format_variants(self, variant, index, case_obj, add_all_info=False): header_line = self.head.header # Get the individual ids for individuals in vcf file vcf_individuals = set([ind_id for ind_id in self.head.individuals]) #Create a info dict: info_dict = dict(variant.INFO) chrom = variant.CHROM if chrom.startswith('chr') or chrom.startswith('CHR'): chrom = chrom[3:] variant_obj = Variant( CHROM=chrom, POS=variant.POS, ID=variant.ID, REF=variant.REF, ALT=variant.ALT[0], QUAL=variant.QUAL, FILTER=variant.FILTER, ) variant_obj._set_variant_id() logger.debug("Creating a variant object of variant {0}".format( variant_obj.variant_id)) variant_obj.index = index logger.debug("Updating index to: {0}".format( index)) ########### Get the coordinates for the variant ############## variant_obj.start = variant.start variant_obj.stop = variant.end #SV variants needs to be handeled a bit different since the can be huge #it would take to much power to parse all vep/snpeff entrys for these. if self.variant_type == 'sv': variant_obj.stop = int(info_dict.get('END', variant_obj.POS)) self._add_sv_coordinates(variant_obj) variant_obj.sv_type = info_dict.get('SVTYPE') # Special for FindSV software: # SV specific tag for number of occurances occurances = info_dict.get('OCC') if occurances: logger.debug("Updating occurances to: {0}".format( occurances)) variant_obj['occurances'] = float(occurances) variant_obj.add_frequency('OCC', occurances) else: self._add_thousand_g(variant_obj, info_dict) self._add_cadd_score(variant_obj, info_dict) self._add_genetic_models(variant_obj, info_dict) self._add_transcripts(variant_obj, info_dict) self._add_exac(variant_obj, info_dict) self._add_hgnc_symbols(variant_obj) if add_all_info: self._add_genotype_calls(variant_obj, str(variant), case_obj) self._add_compounds(variant_obj, info_dict) self._add_gmaf(variant_obj, info_dict) self._add_genes(variant_obj) ##### Add consequences #### self._add_consequences(variant_obj, str(variant)) self._add_most_severe_consequence(variant_obj) self._add_impact_severity(variant_obj) self._add_rank_score(variant_obj, info_dict) variant_obj.set_max_freq() return variant_obj
846,963
Add the genes for a variant Get the hgnc symbols from all transcripts and add them to the variant Args: variant (dict): A variant dictionary Returns: genes (list): A list of Genes
def _get_genes(self, variant): ensembl_ids = [] hgnc_symbols = [] for transcript in variant.transcripts: if transcript.ensembl_id: ensembl_ids.append(transcript.ensembl_id) if transcript.hgnc_symbol: hgnc_symbols.append(transcript.hgnc_symbol) genes = get_gene_info( ensembl_ids=ensembl_ids, hgnc_symbols=hgnc_symbols ) return genes
847,000
Add the neccesary sv coordinates for a variant Args: variant (puzzle.models.variant)
def _add_sv_coordinates(self, variant): variant.stop_chrom = variant.CHROM variant.start = int(variant.POS) # If we have a translocation: if ':' in variant.ALT: other_coordinates = variant.ALT.strip('ACGTN[]').split(':') variant.stop_chrom = other_coordinates[0].lstrip('chrCHR') other_position = other_coordinates[1] # variant.stop = other_position #Set 'infinity' to length if translocation variant.sv_len = float('inf') variant.sv_type = 'BND' else: variant.sv_len = variant.stop - variant.start variant['cytoband_start'] = get_cytoband_coord( chrom=variant.CHROM, pos=variant.start ) variant['cytoband_stop'] = get_cytoband_coord( chrom=variant.stop_chrom, pos=variant.stop )
847,001
Initialize a vcf adapter. When instansiating all cases are found. Args: variant_type(str) : 'snv' or 'sv'
def __init__(self, variant_type='snv'): super(VcfPlugin, self).__init__() self.individual_objs = [] self.case_objs = [] self.variant_type = variant_type logger.info("Setting variant type to {0}".format(variant_type)) self.variant_columns = ['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER'] self.head = None self.vep_header = None self.snpeff_header = None self.filters.can_filter_gene = True self.filters.can_filter_frequency = True self.filters.can_filter_cadd = True self.filters.can_filter_consequence = True self.filters.can_filter_impact_severity = True self.filters.can_filter_sv = True self.filters.can_filter_sv_len = True self.filters.can_filter_inheritance = True
847,002
Parse the header and return a header object Args: vcf_file_path(str): Path to vcf Returns: head: A HeaderParser object
def get_header(vcf_file_path): logger.info("Parsing header of file {0}".format(vcf_file_path)) head = HeaderParser() handle = get_vcf_handle(infile=vcf_file_path) # Parse the header for line in handle: line = line.rstrip() if line.startswith('#'): if line.startswith('##'): head.parse_meta_data(line) else: head.parse_header_line(line) else: break handle.close() return head
847,021
Calculate the 2D integral of the 1D surface brightness profile (i.e, the flux) between rmin and rmax (elliptical radii). Parameters: ----------- rmin : minimum integration radius (deg) rmax : maximum integration radius (deg) Returns: -------- integral : Solid angle integral (deg^2)
def integrate(self, rmin=0, rmax=np.inf): if rmin < 0: raise Exception('rmin must be >= 0') integrand = lambda r: self._pdf(r) * 2*np.pi * r return scipy.integrate.quad(integrand,rmin,rmax,full_output=True,epsabs=0)[0]
847,034
Calculate Jenks natural breaks. Adapted from http://danieljlewis.org/files/2010/06/Jenks.pdf Credit: Daniel Lewis Arguments: data -- Array of values to classify. num_breaks -- Number of breaks to perform.
def jenks(data, num_breaks): data = numpy.ma.compressed(data) if len(data) > 1000: data.sort() ls = numpy.linspace(0, len(data)-1, 1000) ls = [int(round(x)) for x in ls] data_list = data[ls] else: data_list = data data_list.sort() mat1 = [] for i in range(0, len(data_list) + 1): temp = [] for j in range(0, num_breaks + 1): temp.append(0) mat1.append(temp) mat2 = [] for i in range(0, len(data_list) + 1): temp = [] for j in range(0, num_breaks + 1): temp.append(0) mat2.append(temp) for i in range(1, num_breaks + 1): mat1[1][i] = 1 mat2[1][i] = 0 for j in range(2, len(data_list) + 1): mat2[j][i] = float('inf') v = 0.0 for l in range(2, len(data_list) + 1): s1 = 0.0 s2 = 0.0 w = 0.0 for m in range(1, l + 1): i3 = l - m + 1 val = float(data_list[i3-1]) s2 += val * val s1 += val w += 1 v = s2 - (s1 * s1) / w i4 = i3 - 1 if i4 != 0: for j in range(2, num_breaks + 1): if mat2[l][j] >= (v + mat2[i4][j - 1]): mat1[l][j] = i3 mat2[l][j] = v + mat2[i4][j - 1] mat1[l][1] = 1 mat2[l][1] = v k = len(data_list) kclass = [] for i in range(0, num_breaks + 1): kclass.append(0) kclass[num_breaks] = float(data_list[len(data_list) - 1]) count_num = num_breaks while count_num >= 2: id = int((mat1[k][count_num]) - 2) kclass[count_num - 1] = data_list[id] k = int((mat1[k][count_num] - 1)) count_num -= 1 return [float(x) for x in kclass][1:]
847,171
Calculate quantile breaks. Arguments: data -- Array of values to classify. num_breaks -- Number of breaks to perform.
def quantile(data, num_breaks): def scipy_mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()): def _quantiles1D(data,m,p): x = numpy.sort(data.compressed()) n = len(x) if n == 0: return numpy.ma.array(numpy.empty(len(p), dtype=float), mask=True) elif n == 1: return numpy.ma.array(numpy.resize(x, p.shape), mask=numpy.ma.nomask) aleph = (n*p + m) k = numpy.floor(aleph.clip(1, n-1)).astype(int) gamma = (aleph-k).clip(0,1) return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()] # Initialization & checks --------- data = numpy.ma.array(a, copy=False) if data.ndim > 2: raise TypeError("Array should be 2D at most !") # if limit: condition = (limit[0] < data) & (data < limit[1]) data[~condition.filled(True)] = numpy.ma.masked # p = numpy.array(prob, copy=False, ndmin=1) m = alphap + p*(1.-alphap-betap) # Computes quantiles along axis (or globally) if (axis is None): return _quantiles1D(data, m, p) return numpy.ma.apply_along_axis(_quantiles1D, axis, data, m, p) return scipy_mquantiles(data, numpy.linspace(1.0 / num_breaks, 1, num_breaks))
847,172
Calculate equal interval breaks. Arguments: data -- Array of values to classify. num_breaks -- Number of breaks to perform.
def equal(data, num_breaks): step = (numpy.amax(data) - numpy.amin(data)) / num_breaks return numpy.linspace(numpy.amin(data) + step, numpy.amax(data), num_breaks)
847,173
Read a generic input file into a recarray. Accepted file formats: [.fits,.fz,.npy,.csv,.txt,.dat] Parameters: filename : input file name kwargs : keyword arguments for the reader Returns: recarray : data array
def read(filename,**kwargs): base,ext = os.path.splitext(filename) if ext in ('.fits','.fz'): # Abstract fits here... return fitsio.read(filename,**kwargs) elif ext in ('.npy'): return np.load(filename,**kwargs) elif ext in ('.csv'): return np.recfromcsv(filename,**kwargs) elif ext in ('.txt','.dat'): return np.genfromtxt(filename,**kwargs) msg = "Unrecognized file type: %s"%filename raise ValueError(msg)
847,196
Write a recarray to a specific format. Accepted file formats: [.fits,.fz,.npy,.csv,.txt,.dat] Parameters: filename : output file name data : the recarray data kwargs : keyword arguments for the writer Returns: ret : writer return (usually None)
def write(filename,data,**kwargs): base,ext = os.path.splitext(filename) if ext in ('.fits','.fz'): # Abstract fits here... return fitsio.write(filename,data,**kwargs) elif ext in ('.npy'): return np.save(filename,data,**kwargs) elif ext in ('.csv'): return np.savetxt(filename,data,header=','.join(data.dtype.names),delimiter=',',**kwargs) elif ext in ('.txt','.dat'): return np.savetxt(filename,data,**kwargs) msg = "Unrecognized file type: %s"%filename raise ValueError(msg)
847,197
Write a catalog file of the likelihood region including membership properties. Parameters: ----------- loglike : input loglikelihood object filename : output filename Returns: -------- None
def write_membership(loglike,filename): ra,dec = gal2cel(loglike.catalog.lon,loglike.catalog.lat) name_objid = loglike.config['catalog']['objid_field'] name_mag_1 = loglike.config['catalog']['mag_1_field'] name_mag_2 = loglike.config['catalog']['mag_2_field'] name_mag_err_1 = loglike.config['catalog']['mag_err_1_field'] name_mag_err_2 = loglike.config['catalog']['mag_err_2_field'] # Angular and isochrone separations sep = angsep(loglike.source.lon,loglike.source.lat, loglike.catalog.lon,loglike.catalog.lat) isosep = loglike.isochrone.separation(loglike.catalog.mag_1,loglike.catalog.mag_2) data = odict() data[name_objid] = loglike.catalog.objid data['GLON'] = loglike.catalog.lon data['GLAT'] = loglike.catalog.lat data['RA'] = ra data['DEC'] = dec data[name_mag_1] = loglike.catalog.mag_1 data[name_mag_err_1] = loglike.catalog.mag_err_1 data[name_mag_2] = loglike.catalog.mag_2 data[name_mag_err_2] = loglike.catalog.mag_err_2 data['COLOR'] = loglike.catalog.color data['ANGSEP'] = sep data['ISOSEP'] = isosep data['PROB'] = loglike.p # HIERARCH allows header keywords longer than 8 characters header = [] for param,value in loglike.source.params.items(): card = dict(name='HIERARCH %s'%param.upper(), value=value.value, comment=param) header.append(card) card = dict(name='HIERARCH %s'%'TS',value=loglike.ts(), comment='test statistic') header.append(card) card = dict(name='HIERARCH %s'%'TIMESTAMP',value=time.asctime(), comment='creation time') header.append(card) fitsio.write(filename,data,header=header,clobber=True)
847,204
Take the value from a two-dimensional histogram from the bin corresponding to (x, y). Parameters: ----------- histogram : The values in the histogram (n,m) (ADW: is this ordering right?) x : the x-value to take from the hist y : the y-value to take from the hist bins_x : the xbin edges, including upper edge (n-dim) bins_y : the ybin edges, including upper edge (m-dim)
def take2D(histogram, x, y, bins_x, bins_y): histogram = np.array(histogram) if np.isscalar(x): x = [x] if np.isscalar(y): y = [y] bins_x[-1] += 1.e-10 * (bins_x[-1] - bins_x[-2]) # Numerical stability bins_y[-1] += 1.e-10 * (bins_y[-1] - bins_y[-2]) #return np.take(histogram, (histogram.shape[1] * (np.digitize(y, bins_y) - 1)) + (np.digitize(x, bins_x) - 1)) # Return np.nan for entries which are outside the binning range on either axis index = (histogram.shape[1] * (np.digitize(y, bins_y) - 1)) + (np.digitize(x, bins_x) - 1) index_clipped = np.clip(index, 0, (histogram.shape[0] * histogram.shape[1]) - 1) val = np.take(histogram, index_clipped) outlier_x = np.logical_or(x < bins_x[0], x > bins_x[-1]) outlier_y = np.logical_or(y < bins_y[0], y > bins_y[-1]) outlier = np.logical_or(outlier_x, outlier_y) val[outlier] = np.nan return val
847,205
Numerical Riemannn integral of the IMF (stupid simple). Parameters: ----------- mass_min: minimum mass bound for integration (solar masses) mass_max: maximum mass bound for integration (solar masses) log_mode[True]: use logarithmic steps in stellar mass as oppose to linear weight[False]: weight the integral by stellar mass steps: number of numerical integration steps Returns: -------- result of integral
def integrate(self, mass_min, mass_max, log_mode=True, weight=False, steps=1e4): if log_mode: d_log_mass = (np.log10(mass_max) - np.log10(mass_min)) / float(steps) log_mass = np.linspace(np.log10(mass_min), np.log10(mass_max), steps) mass = 10.**log_mass if weight: return np.sum(mass * d_log_mass * self.pdf(mass, log_mode=True)) else: return np.sum(d_log_mass * self.pdf(mass, log_mode=True)) else: d_mass = (mass_max - mass_min) / float(steps) mass = np.linspace(mass_min, mass_max, steps) if weight: return np.sum(mass * d_mass * self.pdf(mass, log_mode=False)) else: return np.sum(d_mass * self.pdf(mass, log_mode=False))
847,320
New method. Args: cls (str): class name. bases (tuple): base classes to inherit from. dct (dict): class attributes. Returns: class: the new created class.
def __new__(mcs, cls, bases, dct): super_new = super(_Metaclass, mcs).__new__ # Also ensure initialization is only performed for subclasses # of AppSettings (excluding AppSettings class itself). parents = [b for b in bases if isinstance(b, _Metaclass)] if not parents: return super_new(mcs, cls, bases, dct) new_attr = {} _meta = dct.pop("Meta", type("Meta", (), {"setting_prefix": ""}))() _meta.settings = {} for name, setting in dct.items(): if isinstance(setting, Setting): _meta.settings[name] = setting # populate name if setting.name == "": setting.name = name # populate prefix if setting.prefix == "": setting.prefix = _meta.setting_prefix else: new_attr[name] = setting new_attr["_meta"] = _meta new_attr["settings"] = _meta.settings return super_new(mcs, cls, bases, new_attr)
847,362
Return a setting object if it is in the ``_meta.settings`` dictionary. Args: item (str): the name of the setting variable (not the setting's name). Returns: ``Setting``: the setting object. Raises: AttributeError if the setting does not exist.
def __getattr__(cls, item): if item in cls._meta.settings.keys(): return cls._meta.settings[item] raise AttributeError("'%s' class has no attribute '%s'" % (cls.__name__, item))
847,363
r"""Wrap a string (tyically a regex) with a prefix and suffix (usually a nonconuming word break) Arguments: prefix, suffix (str): strings to append to the front and back of the provided string grouper (2-len str or 2-tuple): characters or strings to separate prefix and suffix from the middle >>> wrap(r'\w*') '\\b(\\w*)\\b' >>> wrap(r'middle', prefix=None) '(middle)\\b'
def wrap(s, prefix=r'\b', suffix=r'\b', grouper='()'): r return ((prefix or '') + try_get(grouper, 0, '') + (s or '') + try_get(grouper, 1, try_get(grouper, 0, '')) + (suffix or ''))
847,449
Merge a list of Catalogs. Parameters: ----------- catalog_list : List of Catalog objects. Returns: -------- catalog : Combined Catalog object
def mergeCatalogs(catalog_list): # Check the columns for c in catalog_list: if c.data.dtype.names != catalog_list[0].data.dtype.names: msg = "Catalog data columns not the same." raise Exception(msg) data = np.concatenate([c.data for c in catalog_list]) config = catalog_list[0].config return Catalog(config,data=data)
847,457
Class to store information about detected objects. This class augments the raw data array with several aliases and derived quantities. Parameters: ----------- config : Configuration object roi : Region of Interest to load catalog data for data : Data array object filenames : FITS filenames to read catalog from Returns: -------- catalog : The Catalog object
def __init__(self, config, roi=None, data=None, filenames=None): self.config = Config(config) if data is None: self._parse(roi,filenames) else: self.data = data self._defineVariables()
847,458
Write the current object catalog to FITS file. Parameters: ----------- filename : the FITS file to write. clobber : remove existing file kwargs : passed to fitsio.write Returns: -------- None
def write(self, outfile, clobber=True, **kwargs): fitsio.write(outfile,self.data,clobber=True,**kwargs)
847,463
Parse catalog FITS files into recarray. Parameters: ----------- roi : The region of interest; if 'roi=None', read all catalog files Returns: -------- None
def _parse(self, roi=None, filenames=None): if (roi is not None) and (filenames is not None): msg = "Cannot take both roi and filenames" raise Exception(msg) if roi is not None: pixels = roi.getCatalogPixels() filenames = self.config.getFilenames()['catalog'][pixels] elif filenames is None: filenames = self.config.getFilenames()['catalog'].compressed() else: filenames = np.atleast_1d(filenames) if len(filenames) == 0: msg = "No catalog files found." raise Exception(msg) # Load the data self.data = load_infiles(filenames) # Apply a selection cut self._applySelection() # Cast data to recarray (historical reasons) self.data = self.data.view(np.recarray)
847,464
Calculate the surface intensity for each pixel in the interior region of the ROI. Pixels are adaptively subsampled around the kernel centroid out to a radius of 'factor * max_pixrad'. Parameters: ----------- factor : the radius of the oversample region in units of max_pixrad Returns: -------- surface_intensity : the surface intensity at each pixel
def calc_surface_intensity(self, factor=10): # First we calculate the surface intensity at native resolution pixels = self.roi.pixels_interior nside_in = self.config['coords']['nside_pixel'] surface_intensity = self.kernel.pdf(pixels.lon,pixels.lat) # Then we recalculate the surface intensity around the kernel # centroid at higher resolution for i in np.arange(1,5): # Select pixels within the region of interest nside_out = 2**i * nside_in radius = factor*np.degrees(hp.max_pixrad(nside_out)) pix = ang2disc(nside_in,self.kernel.lon,self.kernel.lat, radius,inclusive=True) # Select pix within the interior region of the ROI idx = ugali.utils.healpix.index_pix_in_pixels(pix,pixels) pix = pix[(idx >= 0)]; idx = idx[(idx >= 0)] # Reset the surface intensity for the subsampled pixels subpix = ugali.utils.healpix.ud_grade_ipix(pix,nside_in,nside_out) pix_lon,pix_lat = pix2ang(nside_out,subpix) surface_intensity[idx]=np.mean(self.kernel.pdf(pix_lon,pix_lat),axis=1) return surface_intensity
847,555
Calculate the spatial signal probability for each catalog object. Parameters: ----------- None Returns: -------- u_spatial : array of spatial probabilities per object
def calc_signal_spatial(self): # Calculate the surface intensity self.surface_intensity_sparse = self.calc_surface_intensity() # Calculate the probability per object-by-object level self.surface_intensity_object = self.kernel.pdf(self.catalog.lon, self.catalog.lat) # Spatial component of signal probability u_spatial = self.surface_intensity_object return u_spatial
847,556
Maximize the log-likelihood as a function of richness. ADW 2018-06-04: Does it make sense to set the richness to the mle? Parameters: ----------- atol : absolute tolerence for conversion maxiter : maximum number of iterations Returns: -------- loglike, richness, parabola : the maximum loglike, the mle, and the parabola
def fit_richness(self, atol=1.e-3, maxiter=50): # Check whether the signal probability for all objects are zero # This can occur for finite kernels on the edge of the survey footprint if np.isnan(self.u).any(): logger.warning("NaN signal probability found") return 0., 0., None if not np.any(self.u): logger.warning("Signal probability is zero for all objects") return 0., 0., None if self.f == 0: logger.warning("Observable fraction is zero") return 0., 0., None # Richness corresponding to 0, 1, and 10 observable stars richness = np.array([0., 1./self.f, 10./self.f]) loglike = np.array([self.value(richness=r) for r in richness]) found_maximum = False iteration = 0 while not found_maximum: parabola = ugali.utils.parabola.Parabola(richness, 2.*loglike) if parabola.vertex_x < 0.: found_maximum = True else: richness = np.append(richness, parabola.vertex_x) loglike = np.append(loglike, self.value(richness=richness[-1])) if np.fabs(loglike[-1] - np.max(loglike[0: -1])) < atol: found_maximum = True iteration+=1 if iteration > maxiter: logger.warning("Maximum number of iterations reached") break index = np.argmax(loglike) return loglike[index], richness[index], parabola
847,557
Write a catalog file of the likelihood region including membership properties. Parameters: ----------- filename : output filename Returns: -------- None
def write_membership(self,filename): # Column names name_objid = self.config['catalog']['objid_field'] name_mag_1 = self.config['catalog']['mag_1_field'] name_mag_2 = self.config['catalog']['mag_2_field'] name_mag_err_1 = self.config['catalog']['mag_err_1_field'] name_mag_err_2 = self.config['catalog']['mag_err_2_field'] # Coordinate conversion #ra,dec = gal2cel(self.catalog.lon,self.catalog.lat) glon,glat = self.catalog.glon_glat ra,dec = self.catalog.ra_dec # Angular and isochrone separations sep = angsep(self.source.lon,self.source.lat, self.catalog.lon,self.catalog.lat) isosep = self.isochrone.separation(self.catalog.mag_1,self.catalog.mag_2) # If size becomes an issue we can make everything float32 data = odict() data[name_objid] = self.catalog.objid data['GLON'] = glon data['GLAT'] = glat data['RA'] = ra data['DEC'] = dec data[name_mag_1] = self.catalog.mag_1 data[name_mag_err_1] = self.catalog.mag_err_1 data[name_mag_2] = self.catalog.mag_2 data[name_mag_err_2] = self.catalog.mag_err_2 data['COLOR'] = self.catalog.color data['ANGSEP'] = sep.astype(np.float32) data['ISOSEP'] = isosep.astype(np.float32) data['PROB'] = self.p.astype(np.float32) # HIERARCH allows header keywords longer than 8 characters header = [] for param,value in self.source.params.items(): card = dict(name='HIERARCH %s'%param.upper(), value=value.value, comment=param) header.append(card) card = dict(name='HIERARCH %s'%'TS',value=self.ts(), comment='test statistic') header.append(card) card = dict(name='HIERARCH %s'%'TIMESTAMP',value=time.asctime(), comment='creation time') header.append(card) fitsio.write(filename,data,header=header,clobber=True)
847,559
Decorator that stores the result of the stored function in the user's results cache until the batch completes. Keyword arguments are not yet supported. Arguments: func (callable(*a)): The function whose results we want to store. The positional arguments, ``a``, are used as cache keys. Returns: callable(*a): The memosing version of ``func``.
def memoise(cls, func): @functools.wraps(func) def f(*a): for arg in a: if isinstance(arg, User): user = arg break else: raise ValueError("One position argument must be a User") func_key = (func, tuple(a)) cache = cls.get_cache(user) if func_key not in cache: cache[func_key] = func(*a) return cache[func_key] return f
847,565
Call method. Args: name (str): the value's name. value (object): the value to check. Raises: ValueError: if value is not type base_type.
def __call__(self, name, value): if not isinstance(value, self.base_type): raise ValueError("%s must be %s, not %s" % (name, self.base_type, value.__class__))
847,806
Initialization method. Args: minimum (int): a minimum value (included). maximum (int): a maximum value (included).
def __init__(self, minimum=None, maximum=None): super(IntegerTypeChecker, self).__init__(base_type=int) self.minimum = minimum self.maximum = maximum
847,807
Call method. Args: name (str): the value's name. value (int): the value to check. Raises: ValueError: if value is not type int. ValueError: if value is less than minimum. ValueError: if value is more than maximum.
def __call__(self, name, value): super(IntegerTypeChecker, self).__call__(name, value) if isinstance(self.minimum, int): if value < self.minimum: raise ValueError("%s must be greater or equal %s" % (name, self.minimum)) if isinstance(self.maximum, int): if value > self.maximum: raise ValueError("%s must be less or equal %s" % (name, self.maximum))
847,808
Initialization method. Args: minimum (float): a minimum value (included). maximum (float): a maximum value (included).
def __init__(self, minimum=None, maximum=None): super(FloatTypeChecker, self).__init__(base_type=float) self.minimum = minimum self.maximum = maximum
847,809
Call method. Args: name (str): the value's name. value (float): the value to check. Raises: ValueError: if value is not type float. ValueError: if value is less than minimum. ValueError: if value is more than maximum.
def __call__(self, name, value): super(FloatTypeChecker, self).__call__(name, value) if isinstance(self.minimum, float): if value < self.minimum: raise ValueError("%s must be greater or equal %s" % (name, self.minimum)) if isinstance(self.maximum, float): if value > self.maximum: raise ValueError("%s must be less or equal %s" % (name, self.maximum))
847,810
Initialization method. Args: iter_type (type): the type of the iterable object. item_type (type): the type of the items inside the object. min_length (int): a minimum length (included). max_length (int): a maximum length (included). empty (bool): whether emptiness is allowed.
def __init__(self, iter_type, item_type=None, min_length=None, max_length=None, empty=True): super(IterableTypeChecker, self).__init__(base_type=iter_type) self.item_type = item_type self.min_length = min_length self.max_length = max_length self.empty = empty
847,811
Call method. Args: name (str): the value's name. value (iterable): the value to check. Raises: ValueError: if value is not type iter_type. ValueError: if any item in value is not type item_type. ValueError: if value's length is less than min_length. ValueError: if value's length is more than max_length. ValueError: if value's length is 0 and emptiness is not allowed.
def __call__(self, name, value): super(IterableTypeChecker, self).__call__(name, value) if isinstance(self.item_type, type): if not all(isinstance(o, self.item_type) for o in value): raise ValueError("All elements of %s must be %s" % (name, self.item_type)) if isinstance(self.min_length, int): if len(value) < self.min_length: raise ValueError("%s must be longer than %s (or equal)" % (name, self.min_length)) if isinstance(self.max_length, int): if len(value) > self.max_length: raise ValueError("%s must be shorter than %s (or equal)" % (name, self.max_length)) if len(value) == 0 and not self.empty: raise ValueError("%s must not be empty" % name)
847,812
Initialization method. Args: min_length (int): minimum length of the string (included). max_length (int): maximum length of the string (included). empty (bool): whether empty string is allowed.
def __init__(self, min_length=None, max_length=None, empty=True): super(StringTypeChecker, self).__init__( iter_type=str, min_length=min_length, max_length=max_length, empty=empty )
847,813
Initialization method. Args: item_type (type): the type of the items inside the list. min_length (int): minimum length of the list (included). max_length (int): maximum length of the list (included). empty (bool): whether empty list is allowed.
def __init__(self, item_type=None, min_length=None, max_length=None, empty=True): super(ListTypeChecker, self).__init__( iter_type=list, item_type=item_type, min_length=min_length, max_length=max_length, empty=empty )
847,814
Initialization method. Args: item_type (type): the type of the items inside the set. min_length (int): minimum length of the set (included). max_length (int): maximum length of the set (included). empty (bool): whether empty set is allowed.
def __init__(self, item_type=None, min_length=None, max_length=None, empty=True): super(SetTypeChecker, self).__init__( iter_type=set, item_type=item_type, min_length=min_length, max_length=max_length, empty=empty )
847,815
Initialization method. Args: item_type (type): the type of the items inside the tuple. min_length (int): minimum length of the tuple (included). max_length (int): maximum length of the tuple (included). empty (bool): whether empty tuple is allowed.
def __init__(self, item_type=None, min_length=None, max_length=None, empty=True): super(TupleTypeChecker, self).__init__( iter_type=tuple, item_type=item_type, min_length=min_length, max_length=max_length, empty=empty )
847,816
Initialization method. Args: key_type (type): the type of the dict keys. value_type (type): the type of the dict values. min_length (int): minimum length of the dict (included). max_length (int): maximum length of the dict (included). empty (bool): whether empty dict is allowed.
def __init__(self, key_type=None, value_type=None, min_length=None, max_length=None, empty=True): super(DictTypeChecker, self).__init__(base_type=dict) self.key_type = key_type self.value_type = value_type self.min_length = min_length self.max_length = max_length self.empty = empty
847,817
Initialization method. Args: empty (bool):
def __init__(self, empty=True): super(ObjectTypeChecker, self).__init__(empty=empty)
847,819
Call method. Args: name (str): the value's name. value (str): the value to check. Raises: ValueError: if value is not type str.
def __call__(self, name, value): super(ObjectTypeChecker, self).__call__(name, value)
847,820
Sum an array of magnitudes in flux space. Parameters: ----------- mags : array of magnitudes weights : array of weights for each magnitude (i.e. from a pdf) Returns: -------- sum_mag : the summed magnitude of all the stars
def sum_mags(mags, weights=None): flux = 10**(-np.asarray(mags) / 2.5) if weights is None: return -2.5 * np.log10(np.sum(flux)) else: return -2.5 * np.log10(np.sum(weights*flux))
847,844
Compute the stellar mass (Msun; average per star). PDF comes from IMF, but weight by actual stellar mass. Parameters: ----------- mass_min : Minimum mass to integrate the IMF steps : Number of steps to sample the isochrone Returns: -------- mass : Stellar mass [Msun]
def stellar_mass(self, mass_min=0.1, steps=10000): mass_max = self.mass_init_upper_bound d_log_mass = (np.log10(mass_max) - np.log10(mass_min)) / float(steps) log_mass = np.linspace(np.log10(mass_min), np.log10(mass_max), steps) mass = 10.**log_mass if mass_min < np.min(self.mass_init): mass_act_interpolation = scipy.interpolate.interp1d(np.insert(self.mass_init, 0, mass_min), np.insert(self.mass_act, 0, mass_min)) else: mass_act_interpolation = scipy.interpolate.interp1d(self.mass_init, self.mass_act) mass_act = mass_act_interpolation(mass) return np.sum(mass_act * d_log_mass * self.imf.pdf(mass, log_mode=True))
847,851
Calculate the absolute visual magnitude (Mv) from the richness by transforming the isochrone in the SDSS system and using the g,r -> V transform equations from Jester 2005 [astro-ph/0506022]. Parameters: ----------- richness : isochrone normalization parameter steps : number of isochrone sampling steps Returns: -------- abs_mag : Absolute magnitude (Mv)
def absolute_magnitude(self, richness=1, steps=1e4): # Using the SDSS g,r -> V from Jester 2005 [astro-ph/0506022] # for stars with R-I < 1.15 # V = g_sdss - 0.59*(g_sdss - r_sdss) - 0.01 # Create a copy of the isochrone in the SDSS system params = {k:v.value for k,v in self._params.items()} params.update(band_1='g',band_2='r',survey='sdss') iso = self.__class__(**params) # g, r are absolute magnitude mass_init, mass_pdf, mass_act, sdss_g, sdss_r = iso.sample(mass_steps=steps) V = jester_mag_v(sdss_g,sdss_r) # Sum the V-band absolute magnitudes return sum_mags(V,weights=mass_pdf*richness)
847,854
Simulate a set of stellar magnitudes (no uncertainty) for a satellite of a given stellar mass and distance. Parameters: ----------- stellar_mass : the total stellar mass of the system (Msun) distance_modulus : distance modulus of the system (if None takes from isochrone) kwargs : passed to iso.imf.sample Returns: -------- mag_1, mag_2 : simulated magnitudes with length stellar_mass/iso.stellar_mass()
def simulate(self, stellar_mass, distance_modulus=None, **kwargs): if distance_modulus is None: distance_modulus = self.distance_modulus # Total number of stars in system n = int(round(stellar_mass / self.stellar_mass())) f_1 = scipy.interpolate.interp1d(self.mass_init, self.mag_1) f_2 = scipy.interpolate.interp1d(self.mass_init, self.mag_2) mass_init_sample = self.imf.sample(n, np.min(self.mass_init), np.max(self.mass_init), **kwargs) mag_1_sample, mag_2_sample = f_1(mass_init_sample), f_2(mass_init_sample) return mag_1_sample + distance_modulus, mag_2_sample + distance_modulus
847,856
Return a 2D histogram the isochrone in mag-mag space. Parameters: ----------- distance_modulus : distance modulus to calculate histogram at delta_mag : magnitude bin size mass_steps : number of steps to sample isochrone at Returns: -------- bins_mag_1 : bin edges for first magnitude bins_mag_2 : bin edges for second magnitude isochrone_pdf : weighted pdf of isochrone in each bin
def histogram2d(self,distance_modulus=None,delta_mag=0.03,steps=10000): if distance_modulus is not None: self.distance_modulus = distance_modulus # Isochrone will be binned, so might as well sample lots of points mass_init,mass_pdf,mass_act,mag_1,mag_2 = self.sample(mass_steps=steps) #logger.warning("Fudging intrinisic dispersion in isochrone.") #mag_1 += np.random.normal(scale=0.02,size=len(mag_1)) #mag_2 += np.random.normal(scale=0.02,size=len(mag_2)) # We cast to np.float32 to save memory bins_mag_1 = np.arange(self.mod+mag_1.min() - (0.5*delta_mag), self.mod+mag_1.max() + (0.5*delta_mag), delta_mag).astype(np.float32) bins_mag_2 = np.arange(self.mod+mag_2.min() - (0.5*delta_mag), self.mod+mag_2.max() + (0.5*delta_mag), delta_mag).astype(np.float32) # ADW: Completeness needs to go in mass_pdf here... isochrone_pdf = np.histogram2d(self.mod + mag_1, self.mod + mag_2, bins=[bins_mag_1, bins_mag_2], weights=mass_pdf)[0].astype(np.float32) return isochrone_pdf, bins_mag_1, bins_mag_2
847,862
Calculate the separation between a specific point and the isochrone in magnitude-magnitude space. Uses an interpolation ADW: Could speed this up... Parameters: ----------- mag_1 : The magnitude of the test points in the first band mag_2 : The magnitude of the test points in the second band Returns: -------- sep : Minimum separation between test points and isochrone interpolation
def separation(self, mag_1, mag_2): iso_mag_1 = self.mag_1 + self.distance_modulus iso_mag_2 = self.mag_2 + self.distance_modulus def interp_iso(iso_mag_1,iso_mag_2,mag_1,mag_2): interp_1 = scipy.interpolate.interp1d(iso_mag_1,iso_mag_2,bounds_error=False) interp_2 = scipy.interpolate.interp1d(iso_mag_2,iso_mag_1,bounds_error=False) dy = interp_1(mag_1) - mag_2 dx = interp_2(mag_2) - mag_1 dmag_1 = np.fabs(dx*dy) / (dx**2 + dy**2) * dy dmag_2 = np.fabs(dx*dy) / (dx**2 + dy**2) * dx return dmag_1, dmag_2 # Separate the various stellar evolution stages if np.issubdtype(self.stage.dtype,np.number): sel = (self.stage < self.hb_stage) else: sel = (self.stage != self.hb_stage) # First do the MS/RGB rgb_mag_1 = iso_mag_1[sel] rgb_mag_2 = iso_mag_2[sel] dmag_1,dmag_2 = interp_iso(rgb_mag_1,rgb_mag_2,mag_1,mag_2) # Then do the HB (if it exists) if not np.all(sel): hb_mag_1 = iso_mag_1[~sel] hb_mag_2 = iso_mag_2[~sel] hb_dmag_1,hb_dmag_2 = interp_iso(hb_mag_1,hb_mag_2,mag_1,mag_2) dmag_1 = np.nanmin([dmag_1,hb_dmag_1],axis=0) dmag_2 = np.nanmin([dmag_2,hb_dmag_2],axis=0) #return dmag_1,dmag_2 return np.sqrt(dmag_1**2 + dmag_2**2)
847,866
Aggregates the items that this user has purchased. Arguments: cart_status (int or Iterable(int)): etc category (Optional[models.inventory.Category]): the category of items to restrict to. Returns: [ProductAndQuantity, ...]: A list of product-quantity pairs, aggregating like products from across multiple invoices.
def _items(self, cart_status, category=None): if not isinstance(cart_status, Iterable): cart_status = [cart_status] status_query = ( Q(productitem__cart__status=status) for status in cart_status ) in_cart = Q(productitem__cart__user=self.user) in_cart = in_cart & reduce(operator.__or__, status_query) quantities_in_cart = When( in_cart, then="productitem__quantity", ) quantities_or_zero = Case( quantities_in_cart, default=Value(0), ) products = inventory.Product.objects if category: products = products.filter(category=category) products = products.select_related("category") products = products.annotate(quantity=Sum(quantities_or_zero)) products = products.filter(quantity__gt=0) out = [] for prod in products: out.append(ProductAndQuantity(prod, prod.quantity)) return out
847,881
Aggregates the items that this user has purchased. Arguments: category (Optional[models.inventory.Category]): the category of items to restrict to. Returns: [ProductAndQuantity, ...]: A list of product-quantity pairs, aggregating like products from across multiple invoices.
def items_purchased(self, category=None): return self._items(commerce.Cart.STATUS_PAID, category=category)
847,883
Render a color map (image) of a matrix or sequence of Matrix objects A color map is like a contour map except the "height" or "value" of each matrix element is used to select a color from a continuous spectrum of colors (for heatmap white is max and red is medium) Arguments: mat (np.matrix or np.array or list of list): the matrix to be rendered as a color map
def __init__(self, mat, **kwargs): # try: # self.colormaps = [ColorMap(m, cmap=cmap, pixelspervalue=pixelspervalue, # minvalue=minvalue, maxvalue=maxvalue) for m in mat] # except: # pass # # raise ValueError("Don't know how to display ColorMaps for a sequence of type {}".format(type(mat))) try: mat = np.array(mat.values) except AttributeError: try: mat = np.array(mat) except ValueError: pass if not isinstance(mat, np.ndarray): raise ValueError("Don't know how to display a ColorMap for a matrix of type {}".format(type(mat))) kwargs['vmin'] = kwargs.get('vmin', np.amin(mat)) kwargs['vmax'] = kwargs.get('vmax', np.amax(mat)) kwargs['cmap'] = kwargs.get('cmap', 'bone') # 'hot', 'greens', 'blues' kwargs['linewidths'] = kwargs.get('linewidths', 0.25) kwargs['square'] = kwargs.get('square', True) sb.heatmap(mat, **kwargs)
848,326
Initialize a configuration object from a filename or a dictionary. Provides functionality to merge with a default configuration. Parameters: config: filename, dict, or Config object (deep copied) default: default configuration to merge Returns: config
def __init__(self, config, default=None): self.update(self._load(default)) self.update(self._load(config)) self._formatFilepaths() # For back-compatibility... self.params = self # Run some basic validation # ADW: This should be run after creating filenames self._validate() # Filenames from this config (masked by existence) # ADW: We should not recreate filenames if they already exist # in the input config if not hasattr(self,'filenames'): try: self.filenames = self._createFilenames() except: exc_type,exc_value,exc_traceback = sys.exc_info() logger.warning("%s %s"%(exc_type,exc_value)) logger.warning("Filenames could not be created for config.")
848,369
Load this config from an existing config Parameters: ----------- config : filename, config object, or dict to load Returns: -------- params : configuration parameters
def _load(self, config): if isstring(config): self.filename = config params = yaml.load(open(config)) elif isinstance(config, Config): # This is the copy constructor... self.filename = config.filename params = copy.deepcopy(config) elif isinstance(config, dict): params = copy.deepcopy(config) elif config is None: params = {} else: raise Exception('Unrecognized input') return params
848,370
Write a copy of this config object. Parameters: ----------- outfile : output filename Returns: -------- None
def write(self, filename): ext = os.path.splitext(filename)[1] writer = open(filename, 'w') if ext == '.py': writer.write(pprint.pformat(self)) elif ext == '.yaml': writer.write(yaml.dump(self)) else: writer.close() raise Exception('Unrecognized config format: %s'%ext) writer.close()
848,373
Create a masked records array of all filenames for the given set of pixels and store the existence of those files in the mask values. Parameters: ----------- None Returns: -------- recarray : pixels and mask value
def _createFilenames(self): nside_catalog = self['coords']['nside_catalog'] npix = hp.nside2npix(nside_catalog) pixels = np.arange(npix) catalog_dir = self['catalog']['dirname'] catalog_base = self['catalog']['basename'] catalog_path = os.path.join(catalog_dir,catalog_base) mask_dir = self['mask']['dirname'] mask_base_1 = self['mask']['basename_1'] mask_base_2 = self['mask']['basename_2'] mask_path_1 = os.path.join(mask_dir,mask_base_1) mask_path_2 = os.path.join(mask_dir,mask_base_2) data = np.ma.empty(npix,dtype=[('pix',int), ('catalog',object), ('mask_1',object), ('mask_2',object)]) mask = np.ma.empty(npix,dtype=[('pix',bool), ('catalog',bool), ('mask_1',bool), ('mask_2',bool)]) # Build the filenames data['pix'] = pixels data['catalog'] = np.char.mod(catalog_path,pixels) data['mask_1'] = np.char.mod(mask_path_1,pixels) data['mask_2'] = np.char.mod(mask_path_2,pixels) # Build the mask of existing files using glob mask['catalog'] = ~np.in1d(data['catalog'],glob.glob(catalog_dir+'/*')) mask['mask_1'] = ~np.in1d(data['mask_1'],glob.glob(mask_dir+'/*')) mask['mask_2'] = ~np.in1d(data['mask_2'],glob.glob(mask_dir+'/*')) for name in ['catalog','mask_1','mask_2']: if np.all(mask[name]): logger.warn("All '%s' files masked"%name) # mask 'pix' if all files not present mask['pix'] = mask['catalog'] | mask['mask_1'] | mask['mask_2'] if np.all(mask['pix']): logger.warn("All pixels masked") return np.ma.MaskedArray(data, mask, fill_value=[-1,'','',''])
848,375
Return the requested filenames. Parameters: ----------- pixels : requeseted pixels Returns: -------- filenames : recarray
def getFilenames(self,pixels=None): logger.debug("Getting filenames...") if pixels is None: return self.filenames else: return self.filenames[np.in1d(self.filenames['pix'],pixels)]
848,376
Return the indices of the super-pixels which contain each of the sub-pixels (nside_in > nside_out). Parameters: ----------- ipix : index of the input subpixels nside_in : nside of the input subpix nside_out : nside of the desired superpixels Returns: -------- ipix_out : superpixels for each subpixel
def d_grade_ipix(ipix, nside_in, nside_out, nest=False): if nside_in==nside_out: return ipix if not (nside_in > nside_out): raise ValueError("nside_out must be less than nside_in") return hp.vec2pix(nside_out, *hp.pix2vec(nside_in, ipix, nest), nest=nest)
848,387
Return the indices of sub-pixels (resolution nside_subpix) within the super-pixel(s) (resolution nside_superpix). Parameters: ----------- ipix : index of the input superpixel(s) nside_in : nside of the input superpixel nside_out : nside of the desired subpixels Returns: -------- ipix_out : subpixels for each superpixel
def u_grade_ipix(ipix, nside_in, nside_out, nest=False): if nside_in==nside_out: return ipix if not (nside_in < nside_out): raise ValueError("nside_in must be less than nside_out") if nest: nest_ipix = ipix else: nest_ipix = hp.ring2nest(nside_in, ipix) factor = (nside_out//nside_in)**2 if np.isscalar(ipix): nest_ipix_out = factor*nest_ipix + np.arange(factor) else: nest_ipix_out = factor*np.asarray(nest_ipix)[:,np.newaxis]+np.arange(factor) if nest: return nest_ipix_out else: return hp.nest2ring(nside_out, nest_ipix_out)
848,388