docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Encrypts a string using a given rsa.PublicKey object. If the message
is larger than the key, it will split it up into a list and encrypt
each line in the list.
Args:
message (string): The string to encrypt.
public_key (rsa.PublicKey): The key object used to encrypt the
message. Only the paired private key can decrypt it.
Returns:
A json string of the list of encrypted lines of the message.
|
def encrypt(self, message, public_key):
# Get the maximum message length based on the key
max_str_len = rsa.common.byte_size(public_key.n) - 11
# If the message is longer than the key size, split it into a list to
# be encrypted
if len(message) > max_str_len:
message = textwrap.wrap(message, width=max_str_len)
else:
message = [message]
# Create a list for the encrypted message to send
enc_msg = []
# If we have a long message, loop through and encrypt each part of the
# string
for line in message:
# Encrypt the line in the message into a bytestring
enc_line = rsa.encrypt(line, public_key)
# Convert the encrypted bytestring into ASCII, so we can send it
# over the network
enc_line_converted = binascii.b2a_base64(enc_line)
enc_msg.append(enc_line_converted)
# Serialize the encrypted message again with json
enc_msg = json.dumps(enc_msg)
# Return the list of encrypted strings
return enc_msg
| 879,697 |
Decrypts a string using our own private key object.
Args:
message (string): The string of the message to decrypt.
Returns:
The unencrypted string.
|
def decrypt(self, message):
# Unserialize the encrypted message
message = json.loads(message)
# Set up a list for the unencrypted lines of the message
unencrypted_msg = []
for line in message:
# Convert from ascii back to bytestring
enc_line = binascii.a2b_base64(line)
# Decrypt the line using our private key
unencrypted_line = rsa.decrypt(enc_line, self.private_key)
unencrypted_msg.append(unencrypted_line)
# Convert the message from a list back into a string
unencrypted_msg = "".join(unencrypted_msg)
return unencrypted_msg
| 879,698 |
Create dummies for the elements of a set-valued column. Operates in place.
Args:
df: data frame
columns: either a dictionary of column: values pairs or a collection of columns.
cast: whether or not to cast values to set
drop: whether or not to drop the binarized columns
TODO: make interface same as binarize(). merge the two?
|
def binarize_sets(df, columns, cast=False, drop=True, min_freq=None):
for column in columns:
d = df[column].dropna() # avoid nulls
if cast:
d = d.apply(set)
values = columns[column] if isinstance(columns, dict) else util.union(d)
for value in values:
name = values[value] if type(values) is dict else str(value)
column_name = column + '_' + name.replace(' ', '_')
series = d.apply(lambda c: value in c)
series.fillna(0, inplace=True)
if not min_freq or series.sum() >= min_freq:
df[column_name] = series
if drop:
# list(columns) will return keys if columns was dict
df.drop(list(columns), axis=1, inplace=True)
return df
| 879,770 |
Performs mean imputation on a pandas dataframe.
Args:
train: an optional training mask with which to compute the mean
value: instead of computing the mean, use this as the value argument to fillna
dropna: whether to drop all null columns
inplace: whether to perform the imputation inplace
Returns: the imputed DataFrame
|
def impute(X, value=None, train=None, dropna=True, inplace=True):
if value is None:
Xfit = X[train] if train is not None else X
value = Xfit.mean()
else:
if train is not None:
raise ValueError("Cannot pass both train and value arguments")
if dropna:
null_columns = value.index[value.isnull()]
if len(null_columns) > 0:
logging.info('Dropping null columns: \n\t%s' % null_columns)
if inplace:
X.drop(null_columns, axis=1, inplace=True)
else:
X = X.drop(null_columns, axis=1, inplace=False)
if inplace:
X.fillna(value.dropna(), inplace=True)
else:
X = X.fillna(value.dropna(), inplace=False)
return X
| 879,776 |
Copy source -> destination
Args:
source (str | None): Source file or folder
destination (str | None): Destination file or folder
ignore (callable | list | str | None): Names to be ignored
adapter (callable | None): Optional function to call on 'source' before copy
fatal (bool | None): Abort execution on failure if True
logger (callable | None): Logger to use
Returns:
(int): 1 if effectively done, 0 if no-op, -1 on failure
|
def copy(source, destination, ignore=None, adapter=None, fatal=True, logger=LOG.debug):
return _file_op(source, destination, _copy, adapter, fatal, logger, ignore=ignore)
| 880,055 |
Perform re.sub with the patterns in the given dict
Args:
dict_: {pattern: repl}
source: str
|
def substitute(dict_, source):
d_esc = (re.escape(k) for k in dict_.keys())
pattern = re.compile('|'.join(d_esc))
return pattern.sub(lambda x: dict_[x.group()], source)
| 880,108 |
Processes messages that have been delivered from the listener.
Args:
data (dict): A dictionary containing the uuid, euuid, and message
response. E.g. {"cuuid": x, "euuid": y, "response": z}.
Returns:
None
|
def retransmit(self, data):
# If that shit is still in self.event_uuids, then that means we STILL
# haven't gotten a response from the client. Then we resend that shit
# and WAIT
if data["euuid"] in self.event_uuids:
# Increment the current retry count of the euuid
self.event_uuids[data["euuid"]] += 1
# If we've tried more than the maximum, just log an error
# and stahap.
if (self.event_uuids[data["euuid"]] > self.max_retries or
data["cuuid"] not in self.registry):
logger.warning("<%s> Retry limit exceeded. "
"Timed out waiting for client for "
"event: %s" % (data["cuuid"], data["euuid"]))
logger.warning("<%s> Deleting event from currently processing "
"event uuids" % data["cuuid"])
del self.event_uuids[data["euuid"]]
else:
# Retransmit that shit
logger.debug("<%s> Timed out waiting for response. Retry %s. "
"Retransmitting message: "
"%s" % (data["cuuid"],
pformat(self.event_uuids[data["euuid"]]),
data["response"]))
# Look up the host and port based on cuuid
host = self.registry[data["cuuid"]]["host"]
port = self.registry[data["cuuid"]]["port"]
# Send the packet to the client
self.listener.send_datagram(data["response"], (host, port))
# Then we set another schedule to check again
logger.debug("<%s> Scheduling to retry in %s "
"seconds" % (data["cuuid"], str(self.timeout)))
self.listener.call_later(self.timeout, self.retransmit, data)
| 880,135 |
Processes messages that have been delivered from the listener.
Args:
msg (string): The raw packet data delivered from the listener. This
data will be unserialized and then processed based on the packet's
method.
host (tuple): The (address, host) tuple of the source message.
Returns:
A response that will be sent back to the client via the listener.
|
def handle_message(self, msg, host):
response = None
# Unserialize the packet, and decrypt if the host has encryption enabled
if host in self.encrypted_hosts:
msg_data = unserialize_data(msg, self.compression, self.encryption)
else:
msg_data = unserialize_data(msg, self.compression)
logger.debug("Packet received: " + pformat(msg_data))
# If the message data is blank, return none
if not msg_data: return response
# For debug purposes, check if the client is registered or not
if self.is_registered(msg_data["cuuid"], host[0]):
logger.debug("<%s> Client is currently registered" % msg_data["cuuid"])
else:
logger.debug("<%s> Client is not registered" % msg_data["cuuid"])
if "method" in msg_data:
if msg_data["method"] == "REGISTER":
logger.debug("<%s> Register packet received" % msg_data["cuuid"])
response = self.register(msg_data, host)
elif msg_data["method"] == "OHAI":
if not self.discoverable:
return False
logger.debug("<%s> Autodiscover packet received" % msg_data["cuuid"])
response = self.autodiscover(msg_data)
elif msg_data["method"] == "AUTH":
logger.debug("<%s> Authentication packet recieved" % msg_data["cuuid"])
response = self.auth_server.verify_login(msg_data)
if response:
self.registry[host]["authenticated"] = True
else:
if self.auth_server:
if self.registry[host]["authenticated"]:
response = self.handle_message_registered(msg_data, host)
else:
response = self.handle_message_registered(msg_data, host)
logger.debug("Packet processing completed")
return response
| 880,136 |
Processes messages that have been delivered by a registered client.
Args:
msg (string): The raw packet data delivered from the listener. This
data will be unserialized and then processed based on the packet's
method.
host (tuple): The (address, host) tuple of the source message.
Returns:
A response that will be sent back to the client via the listener.
|
def handle_message_registered(self, msg_data, host):
response = None
if msg_data["method"] == "EVENT":
logger.debug("<%s> <euuid:%s> Event message "
"received" % (msg_data["cuuid"], msg_data["euuid"]))
response = self.event(msg_data["cuuid"],
host,
msg_data["euuid"],
msg_data["event_data"],
msg_data["timestamp"],
msg_data["priority"])
elif msg_data["method"] == "OK EVENT":
logger.debug("<%s> <euuid:%s> Event confirmation message "
"received" % (msg_data["cuuid"], msg_data["euuid"]))
try:
del self.event_uuids[msg_data["euuid"]]
except KeyError:
logger.warning("<%s> <euuid:%s> Euuid does not exist in event "
"buffer. Key was removed before we could process "
"it." % (msg_data["cuuid"], msg_data["euuid"]))
elif msg_data["method"] == "OK NOTIFY":
logger.debug("<%s> <euuid:%s> Ok notify "
"received" % (msg_data["cuuid"], msg_data["euuid"]))
try:
del self.event_uuids[msg_data["euuid"]]
except KeyError:
logger.warning("<%s> <euuid:%s> Euuid does not exist in event "
"buffer. Key was removed before we could process "
"it." % (msg_data["cuuid"], msg_data["euuid"]))
return response
| 880,137 |
This function simply returns the server version number as a response
to the client.
Args:
message (dict): A dictionary of the autodiscover message from the
client.
Returns:
A JSON string of the "OHAI Client" server response with the server's
version number.
Examples:
>>> response
'{"method": "OHAI Client", "version": "1.0"}'
|
def autodiscover(self, message):
# Check to see if the client's version is the same as our own.
if message["version"] in self.allowed_versions:
logger.debug("<%s> Client version matches server "
"version." % message["cuuid"])
response = serialize_data({"method": "OHAI Client",
"version": self.version,
"server_name": self.server_name},
self.compression,
encryption=False)
else:
logger.warning("<%s> Client version %s does not match allowed server "
"versions %s" % (message["cuuid"],
message["version"],
self.version))
response = serialize_data({"method": "BYE REGISTER"},
self.compression,
encryption=False)
return response
| 880,138 |
This function will check to see if a given host with client uuid is
currently registered.
Args:
cuuid (string): The client uuid that wishes to register.
host (tuple): The (address, port) tuple of the client that is
registering.
Returns:
Will return True if the client is registered and will return False if
it is not.
|
def is_registered(self, cuuid, host):
# Check to see if the host with the client uuid exists in the registry
# table.
if (cuuid in self.registry) and (self.registry[cuuid]["host"] == host):
return True
else:
return False
| 880,140 |
Register the extension with Sphinx.
Args:
app: The Sphinx application.
|
def setup(app):
for name, (default, rebuild, _) in ref.CONFIG_VALUES.iteritems():
app.add_config_value(name, default, rebuild)
app.add_directive('javaimport', ref.JavarefImportDirective)
app.add_role('javaref', ref.JavarefRole(app))
app.connect('builder-inited', initialize_env)
app.connect('env-purge-doc', ref.purge_imports)
app.connect('env-merge-info', ref.merge_imports)
app.connect('build-finished', ref.cleanup)
| 880,205 |
Purge expired values from the environment.
When certain configuration values change, related values in the
environment must be cleared. While Sphinx can rebuild documents on
configuration changes, it does not notify extensions when this
happens. Instead, cache relevant values in the environment in order
to detect when they change.
Args:
app: The Sphinx application.
|
def validate_env(app):
if not hasattr(app.env, 'javalink_config_cache'):
app.env.javalink_config_cache = {}
for conf_attr, (_, _, env_attr) in ref.CONFIG_VALUES.iteritems():
if not env_attr:
continue
value = getattr(app.config, conf_attr)
cached = app.env.javalink_config_cache.get(conf_attr, value)
app.env.javalink_config_cache[conf_attr] = value
if value != cached:
app.verbose('[javalink] config.%s has changed, clearing related env', conf_attr)
delattr(app.env, env_attr)
| 880,206 |
Example:
short("examined /Users/joe/foo") => "examined ~/foo"
Args:
path: Path to represent in its short form
Returns:
(str): Short form, using '~' if applicable
|
def short(cls, path):
if not path:
return path
path = str(path)
if cls.paths:
for p in cls.paths:
if p:
path = path.replace(p + "/", "")
path = path.replace(cls.home, "~")
return path
| 880,277 |
cartesian product of dict whose values are lists
Args:
d: dictionary to take product of. multiple dictionaries will first
be merged by dict_merge
kwargs: additional kwargs for convenience
Returns:
a list of dictionaries with the same keys as d and kwargs
|
def dict_product(*d, **kwargs):
d = dict(dict_merge(*d), **kwargs)
holdout = {k: d[k] for k in d if not isinstance(d[k], list)}
d = {k: d[k] for k in d if k not in holdout}
items = d.items()
if len(items) == 0:
dicts = [{}]
else:
keys, values = zip(*items)
dicts = [dict_filter_none(dict(zip(keys, v))) for v in product(*values)]
for d in dicts:
d.update(holdout)
return dicts
| 880,304 |
Indent all new lines
Args:
n_spaces: number of spaces to use for indentation
initial: whether or not to start with an indent
|
def indent(s, n_spaces=2, initial=True):
i = ' '*n_spaces
t = s.replace('\n', '\n%s' % i)
if initial:
t = i + t
return t
| 880,308 |
Create a new target representing a task and its parameters
Args:
task: Task instance to create target for; the task class has to inherit
from :class:`ozelot.tasks.TaskBase`.
Returns:
ozelot.tasks.ORMTarget: a new target instance
|
def from_task(cls, task):
target = cls(name=task.get_name(),
params=task.get_param_string())
return target
| 880,317 |
Base query for a target.
Args:
session: database session to query in
|
def _base_query(self, session):
return session.query(ORMTargetMarker) \
.filter(ORMTargetMarker.name == self.name) \
.filter(ORMTargetMarker.params == self.params)
| 880,318 |
Store entities and their attributes
Args:
df (pandas.DataFrame): data to store (storing appends 'id' and 'type' columns!)
attribute_columns (list(str)): list of column labels that define attributes
|
def store(self, df, attribute_columns):
# ID start values depend on currently stored entities/attributes!
entity_id_start = models.Entity.get_max_id(self.session) + 1
attribute_id_start = models.Attribute.get_max_id(self.session) + 1
# append ID and type columns
df['id'] = range(entity_id_start, entity_id_start + len(df))
df['type'] = self.type
# store entities
df[['id', 'type']].to_sql(name=models.Entity.__tablename__,
con=self.client.engine,
if_exists='append',
index=False)
# store attributes
for col in attribute_columns:
# ID column of df is the entity ID of the attribute
attr_df = df[[col, 'id']].rename(columns={'id': 'entity_id',
col: 'value'})
attr_df['name'] = col
# add entity ID column, need to respect already existing entities
attr_df['id'] = range(attribute_id_start, attribute_id_start + len(df))
attribute_id_start += len(df)
# store
attr_df.to_sql(name=models.Attribute.__tablename__,
con=self.client.engine,
if_exists='append',
index=False)
| 880,326 |
Starts the listen loop. If threading is enabled, then the loop will
be started in its own thread.
Args:
None
Returns:
None
|
def listen(self):
self.listening = True
if self.threading:
from threading import Thread
self.listen_thread = Thread(target=self.listen_loop)
self.listen_thread.daemon = True
self.listen_thread.start()
self.scheduler_thread = Thread(target=self.scheduler)
self.scheduler_thread.daemon = True
self.scheduler_thread.start()
else:
self.listen_loop()
| 880,335 |
Starts the listen loop and executes the receieve_datagram method
whenever a packet is receieved.
Args:
None
Returns:
None
|
def listen_loop(self):
while self.listening:
try:
data, address = self.sock.recvfrom(self.bufsize)
self.receive_datagram(data, address)
if self.stats_enabled:
self.stats['bytes_recieved'] += len(data)
except socket.error as error:
if error.errno == errno.WSAECONNRESET:
logger.info("connection reset")
else:
raise
logger.info("Shutting down the listener...")
| 880,336 |
Starts the scheduler to check for scheduled calls and execute them
at the correct time.
Args:
sleep_time (float): The amount of time to wait in seconds between
each loop iteration. This prevents the scheduler from consuming
100% of the host's CPU. Defaults to 0.2 seconds.
Returns:
None
|
def scheduler(self, sleep_time=0.2):
while self.listening:
# If we have any scheduled calls, execute them and remove them from
# our list of scheduled calls.
if self.scheduled_calls:
timestamp = time.time()
self.scheduled_calls[:] = [item for item in self.scheduled_calls
if not self.time_reached(timestamp, item)]
time.sleep(sleep_time)
logger.info("Shutting down the call scheduler...")
| 880,337 |
Executes when UDP data has been received and sends the packet data
to our app to process the request.
Args:
data (str): The raw serialized packet data received.
address (tuple): The address and port of the origin of the received
packet. E.g. (address, port).
Returns:
None
|
def receive_datagram(self, data, address):
# If we do not specify an application, just print the data.
if not self.app:
logger.debug("Packet received", address, data)
return False
# Send the data we've recieved from the network and send it
# to our application for processing.
try:
response = self.app.handle_message(data, address)
except Exception as err:
logger.error("Error processing message from " + str(address) +
":" + str(data))
logger.error(traceback.format_exc())
return False
# If our application generated a response to this message,
# send it to the original sender.
if response:
self.send_datagram(response, address)
| 880,341 |
Generate analysis output as html page
Args:
query_module (module): module to use for querying data for the
desired model/pipeline variant, e.g. leonardo.standard.queries
|
def plots_html_page(query_module):
# page template
template = jenv.get_template("analysis.html")
# container for template context
context = dict(extended=config.EXTENDED)
# a database client/session to run queries in
cl = client.get_client()
session = cl.create_session()
# general styling
seaborn.set_style('whitegrid')
#
# plot: painting area by decade, with linear regression
#
decade_df = query_module.decade_query()
pix_size = pixels_to_inches((600, 400))
ax = seaborn.lmplot(x='decade', y='area', data=decade_df,
size=pix_size[1], aspect=pix_size[0] / pix_size[1],
scatter_kws={"s": 30, "alpha": 0.3})
ax.set(xlabel='Decade', ylabel='Area, m^2')
context['area_by_decade_svg'] = fig_to_svg(plt.gcf())
plt.close('all')
#
# plot: painting area by gender, with logistic regression
#
if config.EXTENDED:
gender_df = query_module.gender_query()
pix_size = pixels_to_inches((600, 400))
g = seaborn.FacetGrid(gender_df, hue="gender", margin_titles=True,
size=pix_size[1], aspect=pix_size[0] / pix_size[1])
bins = np.linspace(0, 5, 30)
g.map(plt.hist, "area", bins=bins, lw=0, alpha=0.5, normed=True)
g.axes[0, 0].set_xlabel('Area, m^2')
g.axes[0, 0].set_ylabel('Percentage of paintings')
context['area_by_gender_svg'] = fig_to_svg(plt.gcf())
plt.close('all')
#
# render template
#
out_file = path.join(out_dir, "analysis.html")
html_content = template.render(**context)
with open(out_file, 'w') as f:
f.write(html_content)
# done, clean up
plt.close('all')
session.close()
| 880,372 |
Convert `value` to bytes, accepts notations such as "4k" to mean 4096 bytes
Args:
value (str | unicode | int | None): Number of bytes optionally suffixed by a char from UNITS
default_unit (str | unicode | None): Default unit to use for unqualified values
base (int): Base to use (usually 1024)
Returns:
(int | None): Deduced bytesize value, if possible
|
def to_bytesize(value, default_unit=None, base=DEFAULT_BASE):
if isinstance(value, (int, float)):
return unitized(value, default_unit, base)
if value is None:
return None
try:
if value[-1].lower() == "b":
# Accept notations such as "1mb", as they get used out of habit
value = value[:-1]
unit = value[-1:].lower()
if unit.isdigit():
unit = default_unit
else:
value = value[:-1]
return unitized(to_number(float, value), unit, base)
except (IndexError, TypeError, ValueError):
return None
| 880,631 |
BGEN file reader.
Args:
filename (str): The name of the BGEN file.
sample_filename (str): The name of the sample file (optional).
probability_threshold (float): The probability threshold.
|
def __init__(self, filename, sample_filename=None, chromosome=None,
probability_threshold=0.9, cpus=1):
# The BGEN reader (parallel or no)
if cpus == 1:
self.is_parallel = False
self._bgen = PyBGEN(filename, prob_t=probability_threshold)
else:
self.is_parallel = True
self._bgen = ParallelPyBGEN(filename, prob_t=probability_threshold,
cpus=cpus)
# Getting the samples
self.samples = self._bgen.samples
if self.samples is None:
# The BGEN file didn't contain samples, so we read from file
if sample_filename is None:
raise ValueError("No sample information in BGEN file, "
"requires a 'sample_filename'")
self._parse_sample_file(sample_filename)
# Does the user ask for a chromosome?
self.chrom = chromosome
| 880,774 |
Get the genotypes from a well formed variant instance.
Args:
marker (Variant): A Variant instance.
Returns:
A list of Genotypes instance containing a pointer to the variant as
well as a vector of encoded genotypes.
|
def get_variant_genotypes(self, variant):
# The chromosome to search for (if a general one is set, that's the one
# we need to search for)
chrom = variant.chrom.name
if self.chrom is not None and chrom == self.chrom:
chrom = "NA"
# Getting the results
results = []
iterator = self._bgen.iter_variants_in_region(
CHROM_STR_DECODE.get(chrom, chrom), variant.pos, variant.pos,
)
for info, dosage in iterator:
if (variant.alleles is None or
variant.iterable_alleles_eq([info.a1, info.a2])):
results.append(Genotypes(
Variant(
info.name,
CHROM_STR_ENCODE.get(info.chrom, info.chrom),
info.pos, [info.a1, info.a2],
),
dosage,
reference=info.a1,
coded=info.a2,
multiallelic=True,
))
# If there are no results
if not results:
logging.variant_name_not_found(variant)
return results
| 880,775 |
Iterates over the genotypes for variants using a list of names.
Args:
names (list): The list of names for variant extraction.
|
def iter_variants_by_names(self, names):
if not self.is_parallel:
yield from super().iter_variants_by_names(names)
else:
for info, dosage in self._bgen.iter_variants_by_names(names):
yield Genotypes(
Variant(info.name,
CHROM_STR_ENCODE.get(info.chrom, info.chrom),
info.pos, [info.a1, info.a2]),
dosage,
reference=info.a1,
coded=info.a2,
multiallelic=True,
)
| 880,779 |
Get the genotype of a marker using it's name.
Args:
name (str): The name of the marker.
Returns:
list: A list of Genotypes.
|
def get_variant_by_name(self, name):
results = []
try:
for info, dosage in self._bgen.get_variant(name):
results.append(Genotypes(
Variant(
info.name,
CHROM_STR_ENCODE.get(info.chrom, info.chrom),
info.pos,
[info.a1, info.a2],
),
dosage,
reference=info.a1,
coded=info.a2,
multiallelic=False,
))
except ValueError:
logging.variant_name_not_found(name)
return results
| 880,780 |
Iterates over the genotypes for variants using a list of names.
Args:
names (list): The list of names for variant extraction.
|
def iter_variants_by_names(self, names):
for name in names:
for result in self.get_variant_by_name(name):
yield result
| 880,877 |
Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
|
def avg_grads(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(0, grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
| 881,183 |
Process a string of content for include tags.
This function assumes there are no blocks in the content. The content is split into segments,
with include tags being replaced by Block objects.
PARAMETERS:
content -- str; content to be converted into a Block.
block_map -- BlockMap
link_stack -- LinkStack
source_path -- str; the filepath of the file from which this content came.
RETURNS:
list of str; segments that the comprise the content.
|
def process_links(include_match, block_map, link_stack, source_path):
leading_whitespace = include_match.group(1)
include_path = include_match.group(2)
# Optional block name. If match is None, block name was ommitted (default to 'all').
block_name = include_match.group(3)
if block_name is not None:
block_name = block_name.lstrip(':')
else:
block_name = ALL_BLOCK_NAME
return retrieve_block_from_map(
source_path,
include_path.strip(),
block_name.strip(),
leading_whitespace,
block_map,
link_stack)
| 881,310 |
IMPUTE2 file reader.
Args:
filename (str): The name of the IMPUTE2 file.
sample_filename (str): The name of the SAMPLE file.
probability_threshold (float): The probability threshold.
Note
====
If the sample IDs are not unique, the index is changed to be the
sample family ID and individual ID (i.e. fid_iid).
|
def __init__(self, filename, sample_filename, probability_threshold=0.9):
# Reading the samples
self.samples = pd.read_csv(sample_filename, sep=" ", skiprows=2,
names=["fid", "iid", "missing", "father",
"mother", "sex", "plink_geno"],
dtype=dict(fid=str, iid=str))
# We want to set the index for the samples
try:
self.samples = self.samples.set_index("iid", verify_integrity=True)
except ValueError:
logging.info(
"Setting the index as 'fid_iid' because the individual IDs "
"are not unique."
)
self.samples["fid_iid"] = [
"{fid}_{iid}".format(fid=fid, iid=iid)
for fid, iid in zip(self.samples.fid, self.samples.iid)
]
self.samples = self.samples.set_index(
"fid_iid", verify_integrity=True,
)
# The IMPUTE2 file
self._impute2_file = get_open_func(filename)(filename, "r")
# If we have an index, we read it
self.has_index = path.isfile(filename + ".idx")
self._impute2_index = None
self._index_has_location = False
if self.has_index:
self._impute2_index = get_index(
filename,
cols=[0, 1, 2],
names=["chrom", "name", "pos"],
sep=" ",
)
# Checking for duplicated marker iD
try:
self._impute2_index = self._impute2_index.set_index(
"name", verify_integrity=True,
)
self._has_duplicated = False
except ValueError as e:
self._has_duplicated = True
# Finding the duplicated markers
duplicated = self._impute2_index.name.duplicated(keep=False)
duplicated_markers = self._impute2_index.loc[
duplicated, "name"
]
duplicated_marker_counts = duplicated_markers.value_counts()
# The dictionary that will contain information about the
# duplicated markers
self._dup_markers = {
m: [] for m in duplicated_marker_counts.index
}
# Logging a warning
logging.found_duplicates(duplicated_marker_counts.iteritems())
# Renaming the markers
counter = Counter()
for i, marker in duplicated_markers.iteritems():
counter[marker] += 1
new_name = "{}:dup{}".format(marker, counter[marker])
self._impute2_index.loc[i, "name"] = new_name
# Updating the dictionary containing the duplicated markers
self._dup_markers[marker].append(new_name)
# Resetting the index
self._impute2_index = self._impute2_index.set_index(
"name", verify_integrity=True,
)
# Checking if we have chrom/pos in the index
self._index_has_location = (
"chrom" in self._impute2_index.columns and
"pos" in self._impute2_index.columns
)
if self._index_has_location:
# Setting the multiallelic values
self._impute2_index["multiallelic"] = False
self._impute2_index.loc[
self._impute2_index.duplicated(["chrom", "pos"],
keep=False),
"multiallelic"
] = True
# Saving the probability threshold
self.prob_t = probability_threshold
| 881,404 |
Get the genotypes from a well formed variant instance.
Args:
marker (Variant): A Variant instance.
Returns:
A list of Genotypes instance containing a pointer to the variant as
well as a vector of encoded genotypes.
|
def get_variant_genotypes(self, variant):
if not self.has_index:
raise NotImplementedError("Not implemented when IMPUTE2 file is "
"not indexed (see genipe)")
# Find the variant in the index
try:
impute2_chrom = CHROM_STR_TO_INT[variant.chrom.name]
except KeyError:
raise ValueError(
"Invalid chromosome ('{}') for IMPUTE2.".format(variant.chrom)
)
variant_info = self._impute2_index[
(self._impute2_index.chrom == impute2_chrom) &
(self._impute2_index.pos == variant.pos)
]
if variant_info.shape[0] == 0:
logging.variant_not_found(variant)
return []
elif variant_info.shape[0] == 1:
return self._get_biallelic_variant(variant, variant_info)
else:
return self._get_multialleic_variant(variant, variant_info)
| 881,405 |
Parses the current IMPUTE2 line (a single variant).
Args:
line (str): An IMPUTE2 line.
Returns:
Genotypes: The genotype in dosage format.
Warning
=======
By default, the genotypes object has multiallelic set to False.
|
def _parse_impute2_line(self, line):
# Splitting
row = line.rstrip("\r\n").split(" ")
# Constructing the probabilities
prob = np.array(row[5:], dtype=float)
prob.shape = (prob.shape[0] // 3, 3)
# Constructing the dosage
dosage = 2 * prob[:, 2] + prob[:, 1]
if self.prob_t > 0:
dosage[~np.any(prob >= self.prob_t, axis=1)] = np.nan
return Genotypes(
Variant(row[1], CHROM_STR_ENCODE.get(row[0], row[0]), int(row[2]),
[row[3], row[4]]),
dosage,
reference=row[3],
coded=row[4],
multiallelic=False,
)
| 881,413 |
get ore:aggregates for this resource, optionally retrieving resource payload
Args:
retrieve (bool): if True, issue .refresh() on resource thereby confirming existence and retrieving payload
|
def get_related(self):
if self.exists and hasattr(self.rdf.triples, 'ore') and hasattr(self.rdf.triples.ore, 'aggregates'):
related = [ self.repo.parse_uri(uri) for uri in self.rdf.triples.ore.aggregates ]
# return
return related
else:
return []
| 881,416 |
get pcdm:hasMember for this resource
Args:
retrieve (bool): if True, issue .refresh() on resource thereby confirming existence and retrieving payload
|
def get_members(self, retrieve=False):
if self.exists and hasattr(self.rdf.triples, 'pcdm') and hasattr(self.rdf.triples.pcdm, 'hasMember'):
members = [ self.repo.parse_uri(uri) for uri in self.rdf.triples.pcdm.hasMember ]
# return
return members
else:
return []
| 881,420 |
get pcdm:hasFile for this resource
Args:
retrieve (bool): if True, issue .refresh() on resource thereby confirming existence and retrieving payload
|
def get_files(self, retrieve=False):
if self.exists and hasattr(self.rdf.triples, 'pcdm') and hasattr(self.rdf.triples.pcdm, 'hasFile'):
files = [ self.repo.parse_uri(uri) for uri in self.rdf.triples.pcdm.hasFile ]
# return
return files
else:
return []
| 881,421 |
get pcdm:hasRelatedFile for this resource
Args:
retrieve (bool): if True, issue .refresh() on resource thereby confirming existence and retrieving payload
|
def get_associated(self, retrieve=False):
if self.exists and hasattr(self.rdf.triples, 'pcdm') and hasattr(self.rdf.triples.pcdm, 'hasRelatedFile'):
files = [ self.repo.parse_uri(uri) for uri in self.rdf.triples.pcdm.hasRelatedFile ]
# return
return files
else:
return []
| 881,422 |
Binary plink file reader.
Args:
prefix (str): the prefix of the Plink binary files.
|
def __init__(self, prefix):
self.bed = PyPlink(prefix)
self.bim = self.bed.get_bim()
self.fam = self.bed.get_fam()
# Identify all multi-allelics.
self.bim["multiallelic"] = False
self.bim.loc[
self.bim.duplicated(["chrom", "pos"], keep=False),
"multiallelic"
] = True
# We want to set the index for the FAM file
try:
self.fam = self.fam.set_index("iid", verify_integrity=True)
except ValueError:
logging.info(
"Setting the index as 'fid_iid' because the individual IDs "
"are not unique."
)
self.fam["fid_iid"] = [
"{fid}_{iid}".format(fid=fid, iid=iid)
for fid, iid in zip(self.fam.fid, self.fam.iid)
]
self.fam = self.fam.set_index("fid_iid", verify_integrity=True)
| 881,431 |
Get the genotypes from a well formed variant instance.
Args:
marker (Variant): A Variant instance.
Returns:
A list of Genotypes instance containing a pointer to the variant as
well as a vector of encoded genotypes.
Note
====
If the sample IDs are not unique, the index is changed to be the
sample family ID and individual ID (i.e. fid_iid).
|
def get_variant_genotypes(self, variant):
# Find the variant in the bim.
try:
plink_chrom = CHROM_STR_TO_INT[variant.chrom.name]
except KeyError:
raise ValueError(
"Invalid chromosome ('{}') for Plink.".format(variant.chrom)
)
info = self.bim.loc[
(self.bim.chrom == plink_chrom) &
(self.bim.pos == variant.pos), :
]
if info.shape[0] == 0:
logging.variant_not_found(variant)
return []
elif info.shape[0] == 1:
return self._get_biallelic_variant(variant, info)
else:
return self._get_multialleic_variant(variant, info)
| 881,432 |
Get the genotype of a marker using it's name.
Args:
name (str): The name of the marker.
Returns:
list: A list of Genotypes (only one for PyPlink, see note below).
Note
====
From PyPlink version 1.3.2 and onwards, each name is unique in the
dataset. Hence, we can use the 'get_geno_marker' function and be
sure only one variant is returned.
|
def get_variant_by_name(self, name):
# From 1.3.2 onwards, PyPlink sets unique names.
# Getting the genotypes
try:
geno, i = self.bed.get_geno_marker(name, return_index=True)
except ValueError:
if name in self.bed.get_duplicated_markers():
# The variant is a duplicated one, so we go through all the
# variants with the same name and the :dupx suffix
return [
self.get_variant_by_name(dup_name).pop()
for dup_name in self.bed.get_duplicated_markers()[name]
]
else:
# The variant is not in the BIM file, so we return an empty
# list
logging.variant_name_not_found(name)
return []
else:
info = self.bim.iloc[i, :]
return [Genotypes(
Variant(info.name, CHROM_INT_TO_STR[info.chrom], info.pos,
[info.a1, info.a2]),
self._normalize_missing(geno),
reference=info.a2,
coded=info.a1,
multiallelic=info.multiallelic,
)]
| 881,438 |
Compute LD between a marker and a list of markers.
Args:
cur_geno (Genotypes): The genotypes of the marker.
other_genotypes (list): A list of genotypes.
Returns:
numpy.array: An array containing the r or r**2 values between cur_geno
and other_genotypes.
Note:
The genotypes will automatically be normalized using (x - mean) / std.
|
def compute_ld(cur_geno, other_genotypes, r2=False):
# Normalizing the current genotypes
norm_cur = normalize_genotypes(cur_geno)
# Normalizing and creating the matrix for the other genotypes
norm_others = np.stack(
tuple(normalize_genotypes(g) for g in other_genotypes),
axis=1,
)
# Making sure the size is the same
assert norm_cur.shape[0] == norm_others.shape[0]
# Getting the number of "samples" per marker (taking into account NaN)
n = (
~np.isnan(norm_cur.reshape(norm_cur.shape[0], 1)) *
~np.isnan(norm_others)
).sum(axis=0)
# Computing r (replacing NaN by 0)
r = pd.Series(
np.dot(
np.nan_to_num(norm_cur), np.nan_to_num(norm_others) / n
),
index=[g.variant.name for g in other_genotypes],
name="r2" if r2 else "r",
)
# Checking no "invalid" values (i.e. < -1 or > 1)
r.loc[r > 1] = 1
r.loc[r < -1] = -1
if r2:
return r ** 2
else:
return r
| 881,475 |
Normalize the genotypes.
Args:
genotypes (Genotypes): The genotypes to normalize.
Returns:
numpy.array: The normalized genotypes.
|
def normalize_genotypes(genotypes):
genotypes = genotypes.genotypes
return (genotypes - np.nanmean(genotypes)) / np.nanstd(genotypes)
| 881,476 |
Infer the antibiotics resistance of the given record.
Arguments:
record (`~Bio.SeqRecord.SeqRecord`): an annotated sequence.
Raises:
RuntimeError: when there's not exactly one resistance cassette.
|
def find_resistance(record):
for feature in record.features:
labels = set(feature.qualifiers.get("label", []))
cassettes = labels.intersection(_ANTIBIOTICS)
if len(cassettes) > 1:
raise RuntimeError("multiple resistance cassettes detected")
elif len(cassettes) == 1:
return _ANTIBIOTICS.get(cassettes.pop())
raise RuntimeError("could not find the resistance of '{}'".format(record.id))
| 881,559 |
Build a index for the given file.
Args:
fn (str): the name of the file.
cols (list): a list containing column to keep (as int).
names (list): the name corresponding to the column to keep (as str).
sep (str): the field separator.
Returns:
pandas.DataFrame: the index.
|
def generate_index(fn, cols=None, names=None, sep=" "):
# Some assertions
assert cols is not None, "'cols' was not set"
assert names is not None, "'names' was not set"
assert len(cols) == len(names)
# Getting the open function
bgzip, open_func = get_open_func(fn, return_fmt=True)
# Reading the required columns
data = pd.read_csv(fn, sep=sep, engine="c", usecols=cols, names=names,
compression="gzip" if bgzip else None)
# Getting the seek information
f = open_func(fn, "rb")
data["seek"] = np.fromiter(_seek_generator(f), dtype=np.uint)[:-1]
f.close()
# Saving the index to file
write_index(get_index_fn(fn), data)
return data
| 881,677 |
Get the opening function.
Args:
fn (str): the name of the file.
return_fmt (bool): if the file format needs to be returned.
Returns:
tuple: either a tuple containing two elements: a boolean telling if the
format is bgzip, and the opening function.
|
def get_open_func(fn, return_fmt=False):
# The file might be compressed using bgzip
bgzip = None
with open(fn, "rb") as i_file:
bgzip = i_file.read(3) == b"\x1f\x8b\x08"
if bgzip and not HAS_BIOPYTHON:
raise ValueError("needs BioPython to index a bgzip file")
open_func = open
if bgzip:
open_func = BgzfReader
# Trying to read
try:
with open_func(fn, "r") as i_file:
if bgzip:
if not i_file.seekable():
raise ValueError
pass
except ValueError:
raise ValueError("{}: use bgzip for compression...".format(fn))
if return_fmt:
return bgzip, open_func
return open_func
| 881,678 |
Restores the index for a given file.
Args:
fn (str): the name of the file.
cols (list): a list containing column to keep (as int).
names (list): the name corresponding to the column to keep (as str).
sep (str): the field separator.
Returns:
pandas.DataFrame: the index.
If the index doesn't exist for the file, it is first created.
|
def get_index(fn, cols, names, sep):
if not has_index(fn):
# The index doesn't exists, generate it
return generate_index(fn, cols, names, sep)
# Retrieving the index
file_index = read_index(get_index_fn(fn))
# Checking the names are there
if len(set(names) - (set(file_index.columns) - {'seek'})) != 0:
raise ValueError("{}: missing index columns: reindex".format(fn))
if "seek" not in file_index.columns:
raise ValueError("{}: invalid index: reindex".format(fn))
return file_index
| 881,679 |
Writes the index to file.
Args:
fn (str): the name of the file that will contain the index.
index (pandas.DataFrame): the index.
|
def write_index(fn, index):
with open(fn, "wb") as o_file:
o_file.write(_CHECK_STRING)
o_file.write(zlib.compress(bytes(
index.to_csv(None, index=False, encoding="utf-8"),
encoding="utf-8",
)))
| 881,680 |
Reads index from file.
Args:
fn (str): the name of the file containing the index.
Returns:
pandas.DataFrame: the index of the file.
Before reading the index, we check the first couple of bytes to see if it
is a valid index file.
|
def read_index(fn):
index = None
with open(fn, "rb") as i_file:
if i_file.read(len(_CHECK_STRING)) != _CHECK_STRING:
raise ValueError("{}: not a valid index file".format(fn))
index = pd.read_csv(io.StringIO(
zlib.decompress(i_file.read()).decode(encoding="utf-8"),
))
return index
| 881,681 |
Indexes an IMPUTE2 file.
Args:
fn (str): The name of the IMPUTE2 file.
|
def index_impute2(fn):
logger.info("Indexing {} (IMPUTE2)".format(fn))
impute2_index(fn, cols=[0, 1, 2], names=["chrom", "name", "pos"], sep=" ")
logger.info("Index generated")
| 881,695 |
Indexes a BGEN file.
Args:
fn (str): The name of the BGEN file.
|
def index_bgen(fn, legacy=False):
logger.info("Indexing {} (BGEN) using 'bgenix'{}".format(
fn, " (legacy mode)" if legacy else "",
))
command = ["bgenix", "-g", fn, "-index"]
if legacy:
command.append("-with-rowid")
try:
logger.info("Executing '{}'".format(" ".join(command)))
subprocess.Popen(command).communicate()
except FileNotFoundError:
logger.error("Cannot find 'bgenix', impossible to index {}".format(fn))
sys.exit(1)
logger.info("Index generated")
| 881,696 |
Returns the default action fluents regardless of the current `state` and `timestep`.
Args:
state (Sequence[tf.Tensor]): The current state fluents.
timestep (tf.Tensor): The current timestep.
Returns:
Sequence[tf.Tensor]: A tuple of action fluents.
|
def __call__(self,
state: Sequence[tf.Tensor],
timestep: tf.Tensor) -> Sequence[tf.Tensor]:
return self._default
| 882,062 |
Render the simulated state-action `trajectories` for Navigation domain.
Args:
stats: Performance statistics.
trajectories: NonFluents, states, actions, interms and rewards.
batch: Number of batches to render.
|
def render(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array],
batch: Optional[int] = None) -> None:
non_fluents, initial_state, states, actions, interms, rewards = trajectories
non_fluents = dict(non_fluents)
states = dict((name, fluent[0]) for name, fluent in states)
actions = dict((name, fluent[0]) for name, fluent in actions)
rewards = rewards[0]
idx = self._compiler.rddl.domain.state_fluent_ordering.index('location/1')
start = initial_state[idx][0]
g = non_fluents['GOAL/1']
path = states['location/1']
deltas = actions['move/1']
centers = non_fluents['DECELERATION_ZONE_CENTER/2']
decays = non_fluents['DECELERATION_ZONE_DECAY/1']
zones = [(x, y, d) for (x, y), d in zip(centers, decays)]
self._ax1 = plt.gca()
self._render_state_space()
self._render_start_and_goal_positions(start, g)
self._render_deceleration_zones(zones)
self._render_state_action_trajectory(start, path, deltas)
plt.title('Navigation', fontweight='bold')
plt.legend(loc='lower right')
plt.show()
| 882,086 |
Prints the first batch of simulated `trajectories`.
Args:
trajectories: NonFluents, states, actions, interms and rewards.
|
def _render_trajectories(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array]) -> None:
if self._verbose:
non_fluents, initial_state, states, actions, interms, rewards = trajectories
shape = states[0][1].shape
batch_size, horizon, = shape[0], shape[1]
states = [(s[0], s[1][0]) for s in states]
interms = [(f[0], f[1][0]) for f in interms]
actions = [(a[0], a[1][0]) for a in actions]
rewards = np.reshape(rewards, [batch_size, horizon])[0]
self._render_batch(non_fluents, states, actions, interms, rewards)
| 882,129 |
Prints `non_fluents`, `states`, `actions`, `interms` and `rewards`
for given `horizon`.
Args:
states (Sequence[Tuple[str, np.array]]): A state trajectory.
actions (Sequence[Tuple[str, np.array]]): An action trajectory.
interms (Sequence[Tuple[str, np.array]]): An interm state trajectory.
rewards (np.array): Sequence of rewards (1-dimensional array).
horizon (Optional[int]): Number of timesteps.
|
def _render_batch(self,
non_fluents: NonFluents,
states: Fluents, actions: Fluents, interms: Fluents,
rewards: np.array,
horizon: Optional[int] = None) -> None:
if horizon is None:
horizon = len(states[0][1])
self._render_round_init(horizon, non_fluents)
for t in range(horizon):
s = [(s[0], s[1][t]) for s in states]
f = [(f[0], f[1][t]) for f in interms]
a = [(a[0], a[1][t]) for a in actions]
r = rewards[t]
self._render_timestep(t, s, a, f, r)
self._render_round_end(rewards)
| 882,130 |
Prints fluents and rewards for the given timestep `t`.
Args:
t (int): timestep
s (Sequence[Tuple[str], np.array]: State fluents.
a (Sequence[Tuple[str], np.array]: Action fluents.
f (Sequence[Tuple[str], np.array]: Interm state fluents.
r (np.float32): Reward.
|
def _render_timestep(self,
t: int,
s: Fluents, a: Fluents, f: Fluents,
r: np.float32) -> None:
print("============================")
print("TIME = {}".format(t))
print("============================")
fluent_variables = self._compiler.rddl.action_fluent_variables
self._render_fluent_timestep('action', a, fluent_variables)
fluent_variables = self._compiler.rddl.interm_fluent_variables
self._render_fluent_timestep('interms', f, fluent_variables)
fluent_variables = self._compiler.rddl.state_fluent_variables
self._render_fluent_timestep('states', s, fluent_variables)
self._render_reward(r)
| 882,131 |
Prints `fluents` of given `fluent_type` as list of instantiated variables
with corresponding values.
Args:
fluent_type (str): Fluent type.
fluents (Sequence[Tuple[str, np.array]]): List of pairs (fluent_name, fluent_values).
fluent_variables (Sequence[Tuple[str, List[str]]]): List of pairs (fluent_name, args).
|
def _render_fluent_timestep(self,
fluent_type: str,
fluents: Sequence[Tuple[str, np.array]],
fluent_variables: Sequence[Tuple[str, List[str]]]) -> None:
for fluent_pair, variable_list in zip(fluents, fluent_variables):
name, fluent = fluent_pair
_, variables = variable_list
print(name)
fluent = fluent.flatten()
for variable, value in zip(variables, fluent):
print('- {}: {} = {}'.format(fluent_type, variable, value))
print()
| 882,132 |
Returns action fluents for the current `state` and `timestep`.
Args:
state (Sequence[tf.Tensor]): The current state fluents.
timestep (tf.Tensor): The current timestep.
Returns:
Sequence[tf.Tensor]: A tuple of action fluents.
|
def __call__(self,
state: Sequence[tf.Tensor],
timestep: tf.Tensor) -> Sequence[tf.Tensor]:
raise NotImplementedError
| 882,136 |
Renders the simulated `trajectories` for the given `batch`.
Args:
trajectories: NonFluents, states, actions, interms and rewards.
batch: Number of batches to render.
|
def render(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array],
batch: Optional[int] = None) -> None:
raise NotImplementedError
| 882,164 |
Reads genotypes from a pandas DataFrame.
Args:
dataframe (pandas.DataFrame): The data.
map_info (pandas.DataFrame): The mapping information.
Note
====
The index of the dataframe should be the sample IDs. The index of
the map_info should be the variant name, and there should be
columns named chrom and pos.
|
def __init__(self, dataframe, map_info):
self.df = dataframe
self.map_info = map_info
| 882,256 |
Get the genotypes for a given variant (by name).
Args:
name (str): The name of the variant to retrieve the genotypes.
Returns:
list: A list of Genotypes. This is a list in order to keep the same
behaviour as the other functions.
|
def get_variant_by_name(self, name):
try:
geno = self.df.loc[:, name].values
info = self.map_info.loc[name, :]
except KeyError:
# The variant is not in the data, so we return an empty
# list
logging.variant_name_not_found(name)
return []
else:
return [Genotypes(
Variant(info.name, info.chrom, info.pos, [info.a1, info.a2]),
geno,
reference=info.a2,
coded=info.a1,
multiallelic=False,
)]
| 882,258 |
Hashes HTML block tags.
PARAMETERS:
text -- str; Markdown text
hashes -- dict; a dictionary of all hashes, where keys are hashes
and values are their unhashed versions.
When HTML block tags are used, all content inside the tags is
preserved as-is, without any Markdown processing. See block_tags
for a list of block tags.
|
def hash_blocks(text, hashes):
def sub(match):
block = match.group(1)
hashed = hash_text(block, 'block')
hashes[hashed] = block
return '\n\n' + hashed + '\n\n'
return re_block.sub(sub, text)
| 882,428 |
parses and cleans up possible uri inputs, return instance of rdflib.term.URIRef
Args:
uri (rdflib.term.URIRef,str): input URI
Returns:
rdflib.term.URIRef
|
def parse_uri(self, uri=None):
# no uri provided, assume root
if not uri:
return rdflib.term.URIRef(self.root)
# string uri provided
elif type(uri) == str:
# assume "short" uri, expand with repo root
if type(uri) == str and not uri.startswith('http'):
return rdflib.term.URIRef("%s%s" % (self.root, uri))
# else, assume full uri
else:
return rdflib.term.URIRef(uri)
# already rdflib.term.URIRef
elif type(uri) == rdflib.term.URIRef:
return uri
# unknown input
else:
raise TypeError('invalid URI input')
| 882,679 |
Convenience method for creating a new resource
Note: A Resource is instantiated, but is not yet created. Still requires resource.create().
Args:
uri (rdflib.term.URIRef, str): uri of resource to create
resource_type (NonRDFSource (Binary), BasicContainer, DirectContainer, IndirectContainer): resource type to create
Returns:
(NonRDFSource (Binary), BasicContainer, DirectContainer, IndirectContainer): instance of appropriate type
|
def create_resource(self, resource_type=None, uri=None):
if resource_type in [NonRDFSource, Binary, BasicContainer, DirectContainer, IndirectContainer]:
return resource_type(self, uri)
else:
raise TypeError("expecting Resource type, such as BasicContainer or NonRDFSource")
| 882,680 |
Request new transaction from repository, init new Transaction,
store in self.txns
Args:
txn_name (str): human name for transaction
Return:
(Transaction): returns intance of newly created transaction
|
def start_txn(self, txn_name=None):
# if no name provided, create one
if not txn_name:
txn_name = uuid.uuid4().hex
# request new transaction
txn_response = self.api.http_request('POST','%s/fcr:tx' % self.root, data=None, headers=None)
# if 201, transaction was created
if txn_response.status_code == 201:
txn_uri = txn_response.headers['Location']
logger.debug("spawning transaction: %s" % txn_uri)
# init new Transaction, and pass Expires header
txn = Transaction(
self, # pass the repository
txn_name,
txn_uri,
expires = txn_response.headers['Expires'])
# append to self
self.txns[txn_name] = txn
# return
return txn
| 882,682 |
Retrieves known transaction and adds to self.txns.
TODO:
Perhaps this should send a keep-alive request as well? Obviously still needed, and would reset timer.
Args:
txn_prefix (str, rdflib.term.URIRef): uri of the transaction. e.g. http://localhost:8080/rest/txn:123456789
txn_name (str): local, human name for transaction
Return:
(Transaction) local instance of transactions from self.txns[txn_uri]
|
def get_txn(self, txn_name, txn_uri):
# parse uri
txn_uri = self.parse_uri(txn_uri)
# request new transaction
txn_response = self.api.http_request('GET',txn_uri, data=None, headers=None)
# if 200, transaction exists
if txn_response.status_code == 200:
logger.debug("transactoin found: %s" % txn_uri)
# init new Transaction, and pass Expires header
txn = Transaction(
self, # pass the repository
txn_name,
txn_uri,
expires = None)
# append to self
self.txns[txn_name] = txn
# return
return txn
# if 404, transaction does not exist
elif txn_response.status_code in [404, 410]:
logger.debug("transaction does not exist: %s" % txn_uri)
return False
else:
raise Exception('HTTP %s, could not retrieve transaction' % txn_response.status_code)
| 882,683 |
Keep current transaction alive, updates self.expires
Args:
None
Return:
None: sets new self.expires
|
def keep_alive(self):
# keep transaction alive
txn_response = self.api.http_request('POST','%sfcr:tx' % self.root, data=None, headers=None)
# if 204, transaction kept alive
if txn_response.status_code == 204:
logger.debug("continuing transaction: %s" % self.root)
# update status and timer
self.active = True
self.expires = txn_response.headers['Expires']
return True
# if 410, transaction does not exist
elif txn_response.status_code == 410:
logger.debug("transaction does not exist: %s" % self.root)
self.active = False
return False
else:
raise Exception('HTTP %s, could not continue transaction' % txn_response.status_code)
| 882,685 |
Ends transaction by committing, or rolling back, all changes during transaction.
Args:
close_type (str): expects "commit" or "rollback"
Return:
(bool)
|
def _close(self, close_type):
# commit transaction
txn_response = self.api.http_request('POST','%sfcr:tx/fcr:%s' % (self.root, close_type), data=None, headers=None)
# if 204, transaction was closed
if txn_response.status_code == 204:
logger.debug("%s for transaction: %s, successful" % (close_type, self.root))
# update self.active
self.active = False
# return
return True
# if 410 or 404, transaction does not exist
elif txn_response.status_code in [404, 410]:
logger.debug("transaction does not exist: %s" % self.root)
# update self.active
self.active = False
return False
else:
raise Exception('HTTP %s, could not commit transaction' % txn_response.status_code)
| 882,686 |
parse resource type from self.http_request()
Note: uses isinstance() as plugins may extend these base LDP resource type.
Args:
response (requests.models.Response): response object
Returns:
[NonRDFSource, BasicContainer, DirectContainer, IndirectContainer]
|
def parse_resource_type(self, response):
# parse 'Link' header
links = [
link.split(";")[0].lstrip('<').rstrip('>')
for link in response.headers['Link'].split(', ')
if link.startswith('<http://www.w3.org/ns/ldp#')]
# parse resource type string with self.repo.namespace_manager.compute_qname()
ldp_resource_types = [
self.repo.namespace_manager.compute_qname(resource_type)[2]
for resource_type in links]
logger.debug('Parsed LDP resource types from LINK header: %s' % ldp_resource_types)
# with LDP types in hand, select appropriate resource type
# NonRDF Source
if 'NonRDFSource' in ldp_resource_types:
return NonRDFSource
# Basic Container
elif 'BasicContainer' in ldp_resource_types:
return BasicContainer
# Direct Container
elif 'DirectContainer' in ldp_resource_types:
return DirectContainer
# Indirect Container
elif 'IndirectContainer' in ldp_resource_types:
return IndirectContainer
else:
logger.debug('could not determine resource type from Link header, returning False')
return False
| 882,688 |
small function to parse RDF payloads from various repository endpoints
Args:
data (response.data): data from requests response
headers (response.headers): headers from requests response
Returns:
(rdflib.Graph): parsed graph
|
def parse_rdf_payload(self, data, headers):
# handle edge case for content-types not recognized by rdflib parser
if headers['Content-Type'].startswith('text/plain'):
logger.debug('text/plain Content-Type detected, using application/n-triples for parser')
parse_format = 'application/n-triples'
else:
parse_format = headers['Content-Type']
# clean parse format for rdf parser (see: https://www.w3.org/2008/01/rdf-media-types)
if ';charset' in parse_format:
parse_format = parse_format.split(';')[0]
# parse graph
graph = rdflib.Graph().parse(
data=data.decode('utf-8'),
format=parse_format)
# return graph
return graph
| 882,689 |
Small method to loop through three graphs in self.diffs, identify unique namespace URIs.
Then, loop through provided dictionary of prefixes and pin one to another.
Args:
None: uses self.prefixes and self.diffs
Returns:
None: sets self.update_namespaces and self.update_prefixes
|
def _derive_namespaces(self):
# iterate through graphs and get unique namespace uris
for graph in [self.diffs.overlap, self.diffs.removed, self.diffs.added]:
for s,p,o in graph:
try:
ns_prefix, ns_uri, predicate = graph.compute_qname(p) # predicates
self.update_namespaces.add(ns_uri)
except:
logger.debug('could not parse Object URI: %s' % ns_uri)
try:
ns_prefix, ns_uri, predicate = graph.compute_qname(o) # objects
self.update_namespaces.add(ns_uri)
except:
logger.debug('could not parse Object URI: %s' % ns_uri)
logger.debug(self.update_namespaces)
# build unique prefixes dictionary
# NOTE: can improve by using self.rdf.uris (reverse lookup of self.rdf.prefixes)
for ns_uri in self.update_namespaces:
for k in self.prefixes.__dict__:
if str(ns_uri) == str(self.prefixes.__dict__[k]):
logger.debug('adding prefix %s for uri %s to unique_prefixes' % (k,str(ns_uri)))
self.update_prefixes[k] = self.prefixes.__dict__[k]
| 882,691 |
Using the three graphs derived from self._diff_graph(), build a sparql update query in the format:
PREFIX foo: <http://foo.com>
PREFIX bar: <http://bar.com>
DELETE {...}
INSERT {...}
WHERE {...}
Args:
None: uses variables from self
Returns:
(str) sparql update query as string
|
def build_query(self):
# derive namespaces to include prefixes in Sparql update query
self._derive_namespaces()
sparql_query = ''
# add prefixes
for ns_prefix, ns_uri in self.update_prefixes.items():
sparql_query += "PREFIX %s: <%s>\n" % (ns_prefix, str(ns_uri))
# deletes
removed_serialized = self.diffs.removed.serialize(format='nt').decode('utf-8')
sparql_query += '\nDELETE {\n%s}\n\n' % removed_serialized
# inserts
added_serialized = self.diffs.added.serialize(format='nt').decode('utf-8')
sparql_query += '\nINSERT {\n%s}\n\n' % added_serialized
# where (not yet implemented)
sparql_query += 'WHERE {}'
# debug
# logger.debug(sparql_query)
# return query
return sparql_query
| 882,692 |
Handles response from self.create()
Args:
response (requests.models.Response): response object from self.create()
ignore_tombstone (bool): If True, will attempt creation, if tombstone exists (409), will delete tombstone and retry
|
def _handle_create(self, response, ignore_tombstone, auto_refresh):
# 201, success, refresh
if response.status_code == 201:
# if not specifying uri, capture from response and append to object
self.uri = self.repo.parse_uri(response.text)
# creation successful
if auto_refresh:
self.refresh()
elif auto_refresh == None:
if self.repo.default_auto_refresh:
self.refresh()
# fire resource._post_create hook if exists
if hasattr(self,'_post_create'):
self._post_create(auto_refresh=auto_refresh)
# 404, assumed POST, target location does not exist
elif response.status_code == 404:
raise Exception('HTTP 404, for this POST request target location does not exist')
# 409, conflict, resource likely exists
elif response.status_code == 409:
raise Exception('HTTP 409, resource already exists')
# 410, tombstone present
elif response.status_code == 410:
if ignore_tombstone:
response = self.repo.api.http_request('DELETE', '%s/fcr:tombstone' % self.uri)
if response.status_code == 204:
logger.debug('tombstone removed, retrying create')
self.create()
else:
raise Exception('HTTP %s, Could not remove tombstone for %s' % (response.status_code, self.uri))
else:
raise Exception('tombstone for %s detected, aborting' % self.uri)
# 415, unsupported media type
elif response.status_code == 415:
raise Exception('HTTP 415, unsupported media type')
# unknown status code
else:
raise Exception('HTTP %s, unknown error creating resource' % response.status_code)
# if all goes well, return self
return self
| 882,696 |
Small method to return headers of an OPTIONS request to self.uri
Args:
None
Return:
(dict) response headers from OPTIONS request
|
def options(self):
# http request
response = self.repo.api.http_request('OPTIONS', self.uri)
return response.headers
| 882,697 |
Method to copy resource to another location
Args:
destination (rdflib.term.URIRef, str): URI location to move resource
Returns:
(Resource) new, moved instance of resource
|
def copy(self, destination):
# set move headers
destination_uri = self.repo.parse_uri(destination)
# http request
response = self.repo.api.http_request('COPY', self.uri, data=None, headers={'Destination':destination_uri.toPython()})
# handle response
if response.status_code == 201:
return destination_uri
else:
raise Exception('HTTP %s, could not move resource %s to %s' % (response.status_code, self.uri, destination_uri))
| 882,699 |
Method to delete resources.
Args:
remove_tombstone (bool): If True, will remove tombstone at uri/fcr:tombstone when removing resource.
Returns:
(bool)
|
def delete(self, remove_tombstone=True):
response = self.repo.api.http_request('DELETE', self.uri)
# update exists
if response.status_code == 204:
# removal successful, updating self
self._empty_resource_attributes()
if remove_tombstone:
self.repo.api.http_request('DELETE', '%s/fcr:tombstone' % self.uri)
return True
| 882,700 |
Performs GET request and refreshes RDF information for resource.
Args:
None
Returns:
None
|
def refresh(self, refresh_binary=True):
updated_self = self.repo.get_resource(self.uri)
# if resource type of updated_self != self, raise exception
if not isinstance(self, type(updated_self)):
raise Exception('Instantiated %s, but repository reports this resource is %s' % (type(updated_self), type(self)) )
if updated_self:
# update attributes
self.status_code = updated_self.status_code
self.rdf.data = updated_self.rdf.data
self.headers = updated_self.headers
self.exists = updated_self.exists
# update graph if RDFSource
if type(self) != NonRDFSource:
self._parse_graph()
# empty versions
self.versions = SimpleNamespace()
# if NonRDF, set binary attributes
if type(updated_self) == NonRDFSource and refresh_binary:
self.binary.refresh(updated_self)
# fire resource._post_create hook if exists
if hasattr(self,'_post_refresh'):
self._post_refresh()
# cleanup
del(updated_self)
else:
logger.debug('resource %s not found, dumping values')
self._empty_resource_attributes()
| 882,701 |
Parse incoming rdf as self.rdf.orig_graph, create copy at self.rdf.graph
Args:
data (): payload from GET request, expected RDF content in various serialization formats
Returns:
None
|
def _build_rdf(self, data=None):
# recreate rdf data
self.rdf = SimpleNamespace()
self.rdf.data = data
self.rdf.prefixes = SimpleNamespace()
self.rdf.uris = SimpleNamespace()
# populate prefixes
for prefix,uri in self.repo.context.items():
setattr(self.rdf.prefixes, prefix, rdflib.Namespace(uri))
# graph
self._parse_graph()
| 882,702 |
use Content-Type from headers to determine parsing method
Args:
None
Return:
None: sets self.rdf by parsing data from GET request, or setting blank graph of resource does not yet exist
|
def _parse_graph(self):
# if resource exists, parse self.rdf.data
if self.exists:
self.rdf.graph = self.repo.api.parse_rdf_payload(self.rdf.data, self.headers)
# else, create empty graph
else:
self.rdf.graph = rdflib.Graph()
# bind any additional namespaces from repo instance, but do not override
self.rdf.namespace_manager = rdflib.namespace.NamespaceManager(self.rdf.graph)
for ns_prefix, ns_uri in self.rdf.prefixes.__dict__.items():
self.rdf.namespace_manager.bind(ns_prefix, ns_uri, override=False)
# conversely, add namespaces from parsed graph to self.rdf.prefixes
for ns_prefix, ns_uri in self.rdf.graph.namespaces():
setattr(self.rdf.prefixes, ns_prefix, rdflib.Namespace(ns_uri))
setattr(self.rdf.uris, rdflib.Namespace(ns_uri), ns_prefix)
# pin old graph to resource, create copy graph for modifications
self.rdf._orig_graph = copy.deepcopy(self.rdf.graph)
# parse triples for object-like access
self.parse_object_like_triples()
| 882,703 |
method to parse triples from self.rdf.graph for object-like
access
Args:
None
Returns:
None: sets self.rdf.triples
|
def parse_object_like_triples(self):
# parse triples as object-like attributes in self.rdf.triples
self.rdf.triples = SimpleNamespace() # prepare triples
for s,p,o in self.rdf.graph:
# get ns info
ns_prefix, ns_uri, predicate = self.rdf.graph.compute_qname(p)
# if prefix as list not yet added, add
if not hasattr(self.rdf.triples, ns_prefix):
setattr(self.rdf.triples, ns_prefix, SimpleNamespace())
# same for predicate
if not hasattr(getattr(self.rdf.triples, ns_prefix), predicate):
setattr(getattr(self.rdf.triples, ns_prefix), predicate, [])
# append object for this prefix
getattr(getattr(self.rdf.triples, ns_prefix), predicate).append(o)
| 882,704 |
small method to empty values if resource is removed or absent
Args:
None
Return:
None: empties selected resource attributes
|
def _empty_resource_attributes(self):
self.status_code = 404
self.headers = {}
self.exists = False
# build RDF
self.rdf = self._build_rdf()
# if NonRDF, empty binary data
if type(self) == NonRDFSource:
self.binary.empty()
| 882,707 |
Method to handle possible values passed for adding, removing, modifying triples.
Detects type of input and sets appropriate http://www.w3.org/2001/XMLSchema# datatype
Args:
object_input (str,int,datetime,): many possible inputs
Returns:
(rdflib.term.Literal): with appropriate datatype attribute
|
def _handle_object(self, object_input):
# if object is string, convert to rdflib.term.Literal with appropriate datatype
if type(object_input) == str:
return rdflib.term.Literal(object_input, datatype=rdflib.XSD.string)
# integer
elif type(object_input) == int:
return rdflib.term.Literal(object_input, datatype=rdflib.XSD.int)
# float
elif type(object_input) == float:
return rdflib.term.Literal(object_input, datatype=rdflib.XSD.float)
# date
elif type(object_input) == datetime.datetime:
return rdflib.term.Literal(object_input, datatype=rdflib.XSD.date)
else:
return object_input
| 882,708 |
add triple by providing p,o, assumes s = subject
Args:
p (rdflib.term.URIRef): predicate
o (): object
auto_refresh (bool): whether or not to update object-like self.rdf.triples
Returns:
None: adds triple to self.rdf.graph
|
def add_triple(self, p, o, auto_refresh=True):
self.rdf.graph.add((self.uri, p, self._handle_object(o)))
# determine if triples refreshed
self._handle_triple_refresh(auto_refresh)
| 882,709 |
Assuming the predicate or object matches a single triple, sets the other for that triple.
Args:
p (rdflib.term.URIRef): predicate
o (): object
auto_refresh (bool): whether or not to update object-like self.rdf.triples
Returns:
None: modifies pre-existing triple in self.rdf.graph
|
def set_triple(self, p, o, auto_refresh=True):
self.rdf.graph.set((self.uri, p, self._handle_object(o)))
# determine if triples refreshed
self._handle_triple_refresh(auto_refresh)
| 882,710 |
remove triple by supplying p,o
Args:
p (rdflib.term.URIRef): predicate
o (): object
auto_refresh (bool): whether or not to update object-like self.rdf.triples
Returns:
None: removes triple from self.rdf.graph
|
def remove_triple(self, p, o, auto_refresh=True):
self.rdf.graph.remove((self.uri, p, self._handle_object(o)))
# determine if triples refreshed
self._handle_triple_refresh(auto_refresh)
| 882,711 |
method to return hierarchical children of this resource
Args:
as_resources (bool): if True, opens each as appropriate resource type instead of return URI only
Returns:
(list): list of resources
|
def children(self, as_resources=False):
children = [o for s,p,o in self.rdf.graph.triples((None, self.rdf.prefixes.ldp.contains, None))]
# if as_resources, issue GET requests for children and return
if as_resources:
logger.debug('retrieving children as resources')
children = [ self.repo.get_resource(child) for child in children ]
return children
| 882,714 |
method to return hierarchical parents of this resource
Args:
as_resources (bool): if True, opens each as appropriate resource type instead of return URI only
Returns:
(list): list of resources
|
def parents(self, as_resources=False):
parents = [o for s,p,o in self.rdf.graph.triples((None, self.rdf.prefixes.fedora.hasParent, None))]
# if as_resources, issue GET requests for children and return
if as_resources:
logger.debug('retrieving parent as resource')
parents = [ self.repo.get_resource(parent) for parent in parents ]
return parents
| 882,715 |
method to return hierarchical siblings of this resource.
Args:
as_resources (bool): if True, opens each as appropriate resource type instead of return URI only
Returns:
(list): list of resources
|
def siblings(self, as_resources=False):
siblings = set()
# loop through parents and get children
for parent in self.parents(as_resources=True):
for sibling in parent.children(as_resources=as_resources):
siblings.add(sibling)
# remove self
if as_resources:
siblings.remove(self)
if not as_resources:
siblings.remove(self.uri)
return list(siblings)
| 882,716 |
method to create a new version of the resource as it currently stands
- Note: this will create a version based on the current live instance of the resource,
not the local version, which might require self.update() to update.
Args:
version_label (str): label to be used for version
Returns:
(ResourceVersion): instance of ResourceVersion, also appended to self.versions
|
def create_version(self, version_label):
# create version
version_response = self.repo.api.http_request('POST', '%s/fcr:versions' % self.uri, data=None, headers={'Slug':version_label})
# if 201, assume success
if version_response.status_code == 201:
logger.debug('version created: %s' % version_response.headers['Location'])
# affix version
self._affix_version(version_response.headers['Location'], version_label)
| 882,718 |
retrieves all versions of an object, and stores them at self.versions
Args:
None
Returns:
None: appends instances
|
def get_versions(self):
# get all versions
versions_response = self.repo.api.http_request('GET', '%s/fcr:versions' % self.uri)
# parse response
versions_graph = self.repo.api.parse_rdf_payload(versions_response.content, versions_response.headers)
# loop through fedora.hasVersion
for version_uri in versions_graph.objects(self.uri, self.rdf.prefixes.fedora.hasVersion):
# get label
version_label = versions_graph.value(version_uri, self.rdf.prefixes.fedora.hasVersionLabel, None).toPython()
# affix version
self._affix_version(version_uri, version_label)
| 882,719 |
Convenience method to return RDF data for resource,
optionally selecting serialization format.
Inspired by .dump from Samvera.
Args:
format (str): expecting serialization formats accepted by rdflib.serialization(format=)
|
def dump(self,format='ttl'):
return self.rdf.graph.serialize(format=format).decode('utf-8')
| 882,720 |
method to revert resource to this version by issuing PATCH
Args:
None
Returns:
None: sends PATCH request, and refreshes parent resource
|
def revert_to(self):
# send patch
response = self.resource.repo.api.http_request('PATCH', self.uri)
# if response 204
if response.status_code == 204:
logger.debug('reverting to previous version of resource, %s' % self.uri)
# refresh current resource handle
self._current_resource.refresh()
else:
raise Exception('HTTP %s, could not revert to resource version, %s' % (response.status_code, self.uri))
| 882,722 |
method to refresh binary attributes and data
Args:
updated_self (Resource): resource this binary data attaches to
Returns:
None: updates attributes
|
def refresh(self, updated_self):
logger.debug('refreshing binary attributes')
self.mimetype = updated_self.binary.mimetype
self.data = updated_self.binary.data
| 882,726 |
Sets Content-Type header based on headers and/or self.binary.mimetype values
Implicitly favors Content-Type header if set
Args:
None
Returns:
None: sets attributes in self.binary and headers
|
def _prep_binary_mimetype(self):
# neither present
if not self.mimetype and 'Content-Type' not in self.resource.headers.keys():
raise Exception('to create/update NonRDFSource, mimetype or Content-Type header is required')
# mimetype, no Content-Type
elif self.mimetype and 'Content-Type' not in self.resource.headers.keys():
logger.debug('setting Content-Type header with provided mimetype: %s'
% self.mimetype)
self.resource.headers['Content-Type'] = self.mimetype
| 882,728 |
Sets delivery method of either payload or header
Favors Content-Location header if set
Args:
None
Returns:
None: sets attributes in self.binary and headers
|
def _prep_binary_content(self):
# nothing present
if not self.data and not self.location and 'Content-Location' not in self.resource.headers.keys():
raise Exception('creating/updating NonRDFSource requires content from self.binary.data, self.binary.location, or the Content-Location header')
elif 'Content-Location' in self.resource.headers.keys():
logger.debug('Content-Location header found, using')
self.delivery = 'header'
# if Content-Location is not set, look for self.data_location then self.data
elif 'Content-Location' not in self.resource.headers.keys():
# data_location set, trumps Content self.data
if self.location:
# set appropriate header
self.resource.headers['Content-Location'] = self.location
self.delivery = 'header'
# data attribute is plain text, binary, or file-like object
elif self.data:
# if file-like object, set flag for api.http_request
if isinstance(self.data, io.BufferedIOBase):
logger.debug('detected file-like object')
self.delivery = 'payload'
# else, just bytes
else:
logger.debug('detected bytes')
self.delivery = 'payload'
| 882,729 |
method to return a particular byte range from NonRDF resource's binary data
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
Args:
byte_start(int): position of range start
byte_end(int): position of range end
Returns:
(requests.Response): streamable response
|
def range(self, byte_start, byte_end, stream=True):
response = self.resource.repo.api.http_request(
'GET',
self.resource.uri,
data=None,
headers={
'Content-Type':self.mimetype,
'Range':'bytes=%s-%s' % (byte_start, byte_end)
},
is_rdf=False,
stream=stream)
# expects 206
if response.status_code == 206:
return response
else:
raise Exception('HTTP %s, but was expecting 206' % response.status_code)
| 882,730 |
Issues fixity check, return parsed graph
Args:
None
Returns:
(dict): ('verdict':(bool): verdict of fixity check, 'premis_graph':(rdflib.Graph): parsed PREMIS graph from check)
|
def fixity(self, response_format=None):
# if no response_format, use default
if not response_format:
response_format = self.repo.default_serialization
# issue GET request for fixity check
response = self.repo.api.http_request('GET', '%s/fcr:fixity' % self.uri)
# parse
fixity_graph = self.repo.api.parse_rdf_payload(response.content, response.headers)
# determine verdict
for outcome in fixity_graph.objects(None, self.rdf.prefixes.premis.hasEventOutcome):
if outcome.toPython() == 'SUCCESS':
verdict = True
else:
verdict = False
return {
'verdict':verdict,
'premis_graph':fixity_graph
}
| 882,732 |
Perform a Yelp Phone API Search based on phone number given.
Args:
phone - Phone number to search by
cc - ISO 3166-1 alpha-2 country code. (Optional)
|
def by_phone(self, phone, cc=None):
header, content = self._http_request(self.BASE_URL, phone=phone, cc=cc)
return json.loads(content)
| 882,782 |
Perform a Yelp Neighborhood API Search based on a geopoint.
Args:
lat - geopoint latitude
long - geopoint longitude
|
def by_geopoint(self, lat, long):
header, content = self._http_request(self.BASE_URL, lat=lat, long=long)
return json.loads(content)
| 882,783 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.