docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Joins terms using OR operator.
Args:
terms (list): terms to join
Examples:
self._or_join(['term1', 'term2']) -> 'term1 | term2'
Returns:
str | def _or_join(self, terms):
from six import text_type
if isinstance(terms, (tuple, list)):
if len(terms) > 1:
return ' | '.join(text_type(t) for t in terms)
else:
return terms[0]
else:
return terms | 988,068 |
Finds datasets by search phrase.
Args:
search_phrase (str or unicode):
limit (int, optional): how many results to return. None means without limit.
Returns:
list of DatasetSearchResult instances. | def search(self, search_phrase, limit=None):
query, query_params = self._make_query_from_terms(search_phrase, limit=limit)
self._parsed_query = (str(query), query_params)
assert isinstance(query, TextClause)
datasets = {}
def make_result(vid=None, b_score=0, p_score=0):
res = DatasetSearchResult()
res.b_score = b_score
res.p_score = p_score
res.partitions = set()
res.vid = vid
return res
if query_params:
results = self.execute(query, **query_params)
for result in results:
vid, dataset_score = result
datasets[vid] = make_result(vid, b_score=dataset_score)
logger.debug('Extending datasets with partitions.')
for partition in self.backend.partition_index.search(search_phrase):
if partition.dataset_vid not in datasets:
datasets[partition.dataset_vid] = make_result(partition.dataset_vid)
datasets[partition.dataset_vid].p_score += partition.score
datasets[partition.dataset_vid].partitions.add(partition)
return list(datasets.values()) | 988,070 |
Creates a query for dataset from decomposed search terms.
Args:
terms (dict or unicode or string):
Returns:
tuple of (TextClause, dict): First element is FTS query, second is parameters
of the query. Element of the execution of the query is pair: (vid, score). | def _make_query_from_terms(self, terms, limit=None):
expanded_terms = self._expand_terms(terms)
if expanded_terms['doc']:
# create query with real score.
query_parts = ["SELECT vid, ts_rank_cd(setweight(doc,'C'), to_tsquery(:doc)) as score"]
if expanded_terms['doc'] and expanded_terms['keywords']:
query_parts = ["SELECT vid, ts_rank_cd(setweight(doc,'C'), to_tsquery(:doc)) "
" + ts_rank_cd(setweight(to_tsvector(coalesce(keywords::text,'')),'B'), to_tsquery(:keywords))"
' as score']
else:
# create query with score = 1 because query will not touch doc field.
query_parts = ['SELECT vid, 1 as score']
query_parts.append('FROM dataset_index')
query_params = {}
where_counter = 0
if expanded_terms['doc']:
where_counter += 1
query_parts.append('WHERE doc @@ to_tsquery(:doc)')
query_params['doc'] = self.backend._and_join(expanded_terms['doc'])
if expanded_terms['keywords']:
query_params['keywords'] = self.backend._and_join(expanded_terms['keywords'])
kw_q = "to_tsvector(coalesce(keywords::text,'')) @@ to_tsquery(:keywords)"
query_parts.append( ("AND " if where_counter else "WHERE ") + kw_q )
query_parts.append('ORDER BY score DESC')
if limit:
query_parts.append('LIMIT :limit')
query_params['limit'] = limit
query_parts.append(';')
deb_msg = 'Dataset terms conversion: `{}` terms converted to `{}` with `{}` params query.'\
.format(terms, query_parts, query_params)
logger.debug(deb_msg)
q = text('\n'.join(query_parts)), query_params
logger.debug('Dataset search query: {}'.format(q))
return q | 988,074 |
Deletes given dataset from index.
Args:
vid (str): dataset vid. | def _delete(self, vid=None):
assert vid is not None
query = text()
self.execute(query, vid=vid) | 988,075 |
Creates a query for partition from decomposed search terms.
Args:
terms (dict or unicode or string):
Returns:
tuple of (TextClause, dict): First element is FTS query, second is
parameters of the query. Element of the execution of the query is
tuple of three elements: (vid, dataset_vid, score). | def _make_query_from_terms(self, terms, limit=None):
expanded_terms = self._expand_terms(terms)
terms_used = 0
if expanded_terms['doc']:
# create query with real score.
query_parts = ["SELECT vid, dataset_vid, ts_rank_cd(setweight(doc,'C'), to_tsquery(:doc)) as score"]
if expanded_terms['doc'] and expanded_terms['keywords']:
query_parts = ["SELECT vid, dataset_vid, ts_rank_cd(setweight(doc,'C'), to_tsquery(:doc)) "
" + ts_rank_cd(setweight(to_tsvector(coalesce(keywords::text,'')),'B'), to_tsquery(:keywords))"
' as score']
else:
# create query with score = 1 because query will not touch doc field.
query_parts = ['SELECT vid, dataset_vid, 1 as score']
query_parts.append('FROM partition_index')
query_params = {}
where_count = 0
if expanded_terms['doc']:
query_parts.append('WHERE doc @@ to_tsquery(:doc)')
query_params['doc'] = self.backend._and_join(expanded_terms['doc'])
where_count += 1
terms_used += 1
if expanded_terms['keywords']:
query_params['keywords'] = self.backend._and_join(expanded_terms['keywords'])
kw_q = "to_tsvector(coalesce(keywords::text,'')) @@ to_tsquery(:keywords)"
query_parts.append(("AND " if where_count else "WHERE ") + kw_q)
where_count += 1
terms_used += 1
if expanded_terms['from']:
query_parts.append(("AND " if where_count else "WHERE ") + ' from_year >= :from_year')
query_params['from_year'] = expanded_terms['from']
where_count += 1
terms_used += 1
if expanded_terms['to']:
query_parts.append(("AND " if where_count else "WHERE ") + ' to_year <= :to_year')
query_params['to_year'] = expanded_terms['to']
where_count += 1
terms_used += 1
query_parts.append('ORDER BY score DESC')
if limit:
query_parts.append('LIMIT :limit')
query_params['limit'] = limit
if not terms_used:
logger.debug('No terms used; not creating query')
return None, None
query_parts.append(';')
deb_msg = 'Dataset terms conversion: `{}` terms converted to `{}` with `{}` params query.'\
.format(terms, query_parts, query_params)
logger.debug(deb_msg)
return text('\n'.join(query_parts)), query_params | 988,076 |
Finds partitions by search phrase.
Args:
search_phrase (str or unicode):
limit (int, optional): how many results to generate. None means without limit.
Generates:
PartitionSearchResult instances. | def search(self, search_phrase, limit=None):
query, query_params = self._make_query_from_terms(search_phrase, limit=limit)
self._parsed_query = (str(query), query_params)
if query is not None:
self.backend.library.database.set_connection_search_path()
results = self.execute(query, **query_params)
for result in results:
vid, dataset_vid, score = result
yield PartitionSearchResult(
vid=vid, dataset_vid=dataset_vid, score=score) | 988,077 |
Converts partition to document indexed by to FTS index.
Args:
partition (orm.Partition): partition to convert.
Returns:
dict with structure matches to BasePartitionIndex._schema. | def _as_document(self, partition):
doc = super(self.__class__, self)._as_document(partition)
# pass time_coverage to the _index_document.
doc['time_coverage'] = partition.time_coverage
return doc | 988,078 |
Finds identifiers by search phrase.
Args:
search_phrase (str or unicode):
limit (int, optional): how many results to return. None means without limit.
Returns:
list of IdentifierSearchResult instances. | def search(self, search_phrase, limit=None):
query_parts = [
'SELECT identifier, type, name, similarity(name, :word) AS sml',
'FROM identifier_index',
'WHERE name % :word',
'ORDER BY sml DESC, name']
query_params = {
'word': search_phrase}
if limit:
query_parts.append('LIMIT :limit')
query_params['limit'] = limit
query_parts.append(';')
query = text('\n'.join(query_parts))
self.backend.library.database.set_connection_search_path()
results = self.execute(query, **query_params).fetchall()
for result in results:
vid, type, name, score = result
yield IdentifierSearchResult(
score=score, vid=vid,
type=type, name=name) | 988,082 |
Deletes given identifier from index.
Args:
identifier (str): identifier of the document to delete. | def _delete(self, identifier=None):
query = text()
self.execute(query, identifier=identifier) | 988,084 |
Creates new partition and returns it.
Args:
table (orm.Table):
Returns:
orm.Partition | def new_partition(self, table, **kwargs):
from . import Partition
# Create the basic partition record, with a sequence ID.
if isinstance(table, string_types):
table = self.table(table)
if 'sequence_id' in kwargs:
sequence_id = kwargs['sequence_id']
del kwargs['sequence_id']
else:
sequence_id = self._database.next_sequence_id(Dataset, self.vid, Partition)
p = Partition(
t_vid=table.vid,
table_name=table.name,
sequence_id=sequence_id,
dataset=self,
d_vid=self.vid,
**kwargs
)
p.update_id()
return p | 988,155 |
Finds appropriate term in the prop_tree and sets its value from config_instance.
Args:
configs_map (dict): key is id of the config, value is Config instance (AKA cache of the configs)
prop_tree (PropertyDictTree): poperty tree to populate.
config_instance (Config): | def _set_value(instance_to_path_map, path_to_instance_map, prop_tree, config_instance):
path = instance_to_path_map[config_instance]
# find group
group = prop_tree
for elem in path[:-1]:
group = getattr(group, elem)
assert group._key == config_instance.parent.key
setattr(group, config_instance.key, config_instance.value)
#
# bind config to the term
#
# FIXME: Make all the terms to store config instance the same way.
term = getattr(group, config_instance.key)
try:
if hasattr(term, '_term'):
# ScalarTermS and ScalarTermU case
term._term._config = config_instance
return
except KeyError:
# python3 case. TODO: Find the way to make it simple.
pass
try:
if hasattr(term, '_config'):
term._config = config_instance
return
except KeyError:
# python3 case. TODO: Find the way to make it simple.
pass
else:
pass | 988,170 |
Get or create sqlalchemy instance.
Args:
session (Sqlalchemy session):
model (sqlalchemy model):
kwargs (dict): kwargs to lookup or create instance.
Returns:
Tuple: first element is found or created instance, second is boolean - True if instance created,
False if instance found. | def get_or_create(session, model, **kwargs):
instance = session.query(model).filter_by(**kwargs).first()
if instance:
return instance, False
else:
instance = model(**kwargs)
if 'dataset' in kwargs:
instance.update_sequence_id(session, kwargs['dataset'])
session.add(instance)
session.commit()
return instance, True | 988,171 |
Finds appropriate config instance and returns it.
Args:
group_or_term (Group or Term):
session (Sqlalchemy session):
kwargs (dict): kwargs to pass to get_or_create.
Returns:
tuple of (Config, bool): | def _get_config_instance(group_or_term, session, **kwargs):
path = group_or_term._get_path()
cached = group_or_term._top._cached_configs.get(path)
if cached:
config = cached
created = False
else:
# does not exist or not yet cached
config, created = get_or_create(session, Config, **kwargs)
return config, created | 988,172 |
Creates materialized view for each indexed partition found in the query.
Args:
asql_query (str): asql query
library (ambry.Library):
backend (SQLiteBackend):
connection (apsw.Connection):
Returns:
str: converted asql if it contains index query. If not, returns asql_query as is. | def _preprocess_sqlite_index(asql_query, library, backend, connection):
new_query = None
if asql_query.strip().lower().startswith('index'):
logger.debug(
'_preprocess_index: create index query found.\n asql query: {}'
.format(asql_query))
index = parse_index(asql_query)
partition = library.partition(index.source)
table = backend.install(connection, partition, materialize=True)
index_name = '{}_{}_ind'.format(partition.vid, '_'.join(index.columns))
new_query = 'CREATE INDEX IF NOT EXISTS {index} ON {table} ({columns});'.format(
index=index_name, table=table, columns=','.join(index.columns))
logger.debug(
'_preprocess_index: preprocess finished.\n asql query: {}\n new query: {}'
.format(asql_query, new_query))
return new_query or asql_query | 988,415 |
Creates virtual table or read-only table for gion.
Args:
ref (str): id, vid, name or versioned name of the partition.
materialize (boolean): if True, create read-only table. If False create virtual table.
Returns:
str: name of the created table. | def install(self, connection, partition, table_name = None, index_columns=None, materialize=False,
logger = None):
virtual_table = partition.vid
table = partition.vid if not table_name else table_name
if self._relation_exists(connection, table):
if logger:
logger.debug("Skipping '{}'; already installed".format(table))
return
else:
if logger:
logger.info("Installing '{}'".format(table))
partition.localize()
virtual_table = partition.vid + '_vt'
self._add_partition(connection, partition)
if materialize:
if self._relation_exists(connection, table):
debug_logger.debug(
'Materialized table of the partition already exists.\n partition: {}, table: {}'
.format(partition.name, table))
else:
cursor = connection.cursor()
# create table
create_query = self.__class__._get_create_query(partition, table)
debug_logger.debug(
'Creating new materialized view for partition mpr.'
'\n partition: {}, view: {}, query: {}'
.format(partition.name, table, create_query))
cursor.execute(create_query)
# populate just created table with data from virtual table.
copy_query = .format(table, virtual_table)
debug_logger.debug(
'Populating sqlite table with rows from partition mpr.'
'\n partition: {}, view: {}, query: {}'
.format(partition.name, table, copy_query))
cursor.execute(copy_query)
cursor.close()
else:
cursor = connection.cursor()
view_q = "CREATE VIEW IF NOT EXISTS {} AS SELECT * FROM {} ".format(partition.vid, virtual_table)
cursor.execute(view_q)
cursor.close()
if index_columns is not None:
self.index(connection,table, index_columns)
return table | 988,416 |
Create an index on the columns.
Args:
connection (apsw.Connection): connection to sqlite database who stores mpr table or view.
partition (orm.Partition):
columns (list of str): | def index(self, connection, partition, columns):
import hashlib
query_tmpl =
if not isinstance(columns,(list,tuple)):
columns = [columns]
col_list = ','.join('"{}"'.format(col) for col in columns)
col_hash = hashlib.md5(col_list).hexdigest()
try:
table_name = partition.vid
except AttributeError:
table_name = partition # Its really a table name
query = query_tmpl.format(
index_name='{}_{}_i'.format(table_name, col_hash), table_name=table_name,
columns=col_list)
logger.debug('Creating sqlite index: query: {}'.format(query))
cursor = connection.cursor()
cursor.execute(query) | 988,417 |
Finds and returns view name in the sqlite db represented by given connection.
Args:
connection: connection to sqlite db where to look for partition table.
table (orm.Table):
Raises:
MissingViewError: if database does not have partition table.
Returns:
str: database table storing partition data. | def _get_mpr_view(self, connection, table):
logger.debug(
'Looking for view of the table.\n table: {}'.format(table.vid))
view = self.get_view_name(table)
view_exists = self._relation_exists(connection, view)
if view_exists:
logger.debug(
'View of the table exists.\n table: {}, view: {}'
.format(table.vid, view))
return view
raise MissingViewError('sqlite database does not have view for {} table.'
.format(table.vid)) | 988,419 |
Returns name of the sqlite table who stores mpr data.
Args:
connection (apsw.Connection): connection to sqlite database who stores mpr data.
partition (orm.Partition):
Returns:
str:
Raises:
MissingTableError: if partition table not found in the db. | def _get_mpr_table(self, connection, partition):
# TODO: This is the first candidate for optimization. Add field to partition
# with table name and update it while table creation.
# Optimized version.
#
# return partition.mpr_table or raise exception
# Not optimized version.
#
# first check either partition has readonly table.
virtual_table = partition.vid
table = '{}_v'.format(virtual_table)
logger.debug(
'Looking for materialized table of the partition.\n partition: {}'.format(partition.name))
table_exists = self._relation_exists(connection, table)
if table_exists:
logger.debug(
'Materialized table of the partition found.\n partition: {}, table: {}'
.format(partition.name, table))
return table
# now check for virtual table
logger.debug(
'Looking for a virtual table of the partition.\n partition: {}'.format(partition.name))
virtual_exists = self._relation_exists(connection, virtual_table)
if virtual_exists:
logger.debug(
'Virtual table of the partition found.\n partition: {}, table: {}'
.format(partition.name, table))
return virtual_table
raise MissingTableError('sqlite database does not have table for mpr of {} partition.'
.format(partition.vid)) | 988,420 |
Returns True if relation (table or view) exists in the sqlite db. Otherwise returns False.
Args:
connection (apsw.Connection): connection to sqlite database who stores mpr data.
partition (orm.Partition):
Returns:
boolean: True if relation exists, False otherwise. | def _relation_exists(self, connection, relation):
query = 'SELECT 1 FROM sqlite_master WHERE (type=\'table\' OR type=\'view\') AND name=?;'
cursor = connection.cursor()
cursor.execute(query, [relation])
result = cursor.fetchall()
return result == [(1,)] | 988,421 |
Creates and returns `CREATE TABLE ...` sql statement for given mprows.
Args:
partition (orm.Partition):
tablename (str): name of the table in the return create query.
include (list of str, optional): list of columns to include to query.
Returns:
str: create table query. | def _get_create_query(partition, tablename, include=None):
TYPE_MAP = {
'int': 'INTEGER',
'float': 'REAL',
six.binary_type.__name__: 'TEXT',
six.text_type.__name__: 'TEXT',
'date': 'DATE',
'datetime': 'TIMESTAMP WITHOUT TIME ZONE'
}
columns_types = []
if not include:
include = []
for column in sorted(partition.datafile.reader.columns, key=lambda x: x['pos']):
if include and column['name'] not in include:
continue
sqlite_type = TYPE_MAP.get(column['type'])
if not sqlite_type:
raise Exception('Do not know how to convert {} to sql column.'.format(column['type']))
columns_types.append(' "{}" {}'.format(column['name'], sqlite_type))
columns_types_str = ',\n'.join(columns_types)
query = 'CREATE TABLE IF NOT EXISTS {}(\n{})'.format(tablename, columns_types_str)
return query | 988,422 |
Creates sqlite virtual table for mpr file of the given partition.
Args:
connection: connection to the sqlite db who stores mpr data.
partition (orm.Partition): | def _add_partition(self, connection, partition):
logger.debug('Creating virtual table for partition.\n partition: {}'.format(partition.name))
sqlite_med.add_partition(connection, partition.datafile, partition.vid+'_vt') | 988,424 |
Executes given query using given connection.
Args:
connection (apsw.Connection): connection to the sqlite db who stores mpr data.
query (str): sql query
fetch (boolean, optional): if True, fetch query result and return it. If False, do not fetch.
Returns:
iterable with query result. | def _execute(self, connection, query, fetch=True):
cursor = connection.cursor()
try:
cursor.execute(query)
except Exception as e:
from ambry.mprlib.exceptions import BadSQLError
raise BadSQLError("Failed to execute query: {}; {}".format(query, e))
if fetch:
return cursor.fetchall()
else:
return cursor | 988,425 |
Authenticate user by any means and return either true or false.
Args:
Returns:
tuple (is_valid, username): True is valid user, False if not | def authenticate(self):
basic_auth = request.authorization
is_valid = False
user = None
if basic_auth:
is_valid, user = self.check_basic_auth(
basic_auth.username, basic_auth.password
)
else: # Try token auth
token = request.headers.get('Authorization', None)
param_token = request.args.get('access_token')
if token or param_token:
if token:
# slice the 'token ' piece of the header (following
# github style):
token = token[6:]
else:
# Grab it from query dict instead
token = param_token
log.debug('Received token: %s', token)
is_valid, user = self.check_token_auth(token)
return (is_valid, user) | 988,452 |
Decode a Base X encoded string into the number.
Arguments:
- `string`: The encoded string
- `alphabet`: The alphabet to use for encoding
Stolen from: http://stackoverflow.com/a/1119769/1144479 | def base62_decode(cls, string):
alphabet = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
base = len(alphabet)
strlen = len(string)
num = 0
idx = 0
for char in string:
power = (strlen - (idx + 1))
try:
num += alphabet.index(char) * (base ** power)
except ValueError:
raise Base62DecodeError(
"Failed to decode char: '{}'".format(char))
idx += 1
return num | 988,485 |
Returns list of tuple containg columns of the table.
Args:
connection: sqlalchemy connection to sqlite database.
table (str): name of the table
Returns:
list of (name, datatype, position): where name is column name, datatype is
python type of the column, position is ordinal position of the column. | def _get_sqlite_columns(connection, table):
# TODO: Move to the sqlite wrapper.
# TODO: Consider sqlalchemy mapping.
SQL_TO_PYTHON_TYPES = {
'INT': int,
'INTEGER': int,
'TINYINT': int,
'SMALLINT': int,
'MEDIUMINT': int,
'BIGINT': int,
'UNSIGNED BIG INT': int,
'INT': int,
'INT8': int,
'NUMERIC': float,
'REAL': float,
'FLOAT': float,
'DOUBLE': float,
'BOOLEAN': bool,
'CHARACTER': str,
'VARCHAR': str,
'TEXT': str
}
query = 'PRAGMA table_info(\'{}\');'
result = connection.execute(query.format(table))
ret = []
for row in result:
position = row[0] + 1
name = row[1]
datatype = row[2]
try:
datatype = SQL_TO_PYTHON_TYPES[datatype]
except KeyError:
raise Exception(
'Do not know how to convert {} sql datatype to python data type.'
.format(datatype))
ret.append((name, datatype, position))
return ret | 988,703 |
Converts ambry bundle to dict ready to send to CKAN API.
Args:
bundle (ambry.bundle.Bundle): bundle to convert.
Returns:
dict: dict to send to CKAN to create dataset.
See http://docs.ckan.org/en/latest/api/#ckan.logic.action.create.package_create | def _convert_bundle(bundle):
# shortcut for metadata
meta = bundle.dataset.config.metadata
notes = ''
for f in bundle.dataset.files:
if f.path.endswith('documentation.md'):
contents = f.unpacked_contents
if isinstance(contents, six.binary_type):
contents = contents.decode('utf-8')
notes = json.dumps(contents)
break
ret = {
'name': bundle.dataset.vid.lower(),
'title': meta.about.title,
'author': meta.contacts.wrangler.name,
'author_email': meta.contacts.wrangler.email,
'maintainer': meta.contacts.maintainer.name,
'maintainer_email': meta.contacts.maintainer.email,
'license_id': '',
'notes': notes,
'url': meta.identity.source,
'version': bundle.dataset.version,
'state': 'active',
'owner_org': CKAN_CONFIG['organization'],
}
return ret | 988,764 |
Finds table by ref and returns it.
Args:
ref (str): id, vid (versioned id) or name of the table
Raises:
NotFoundError: if table with given ref not found.
Returns:
orm.Table | def table(self, ref):
try:
obj_number = ObjectNumber.parse(ref)
ds_obj_number = obj_number.as_dataset
dataset = self._db.dataset(ds_obj_number) # Could do it in on SQL query, but this is easier.
table = dataset.table(ref)
except NotObjectNumberError:
q = self.database.session.query(Table)\
.filter(Table.name == str(ref))\
.order_by(Table.vid.desc())
table = q.first()
if not table:
raise NotFoundError("No table for ref: '{}'".format(ref))
return table | 988,885 |
Indexes all datasets of the library.
Args:
tick_f (callable, optional): callable of one argument. Gets string with index state. | def index_library_datasets(self, tick_f=None):
dataset_n = 0
partition_n = 0
def tick(d, p):
if tick_f:
tick_f('datasets: {} partitions: {}'.format(d, p))
for dataset in self.library.datasets:
if self.backend.dataset_index.index_one(dataset):
# dataset added to index
dataset_n += 1
tick(dataset_n, partition_n)
for partition in dataset.partitions:
self.backend.partition_index.index_one(partition)
partition_n += 1
tick(dataset_n, partition_n)
else:
# dataset already indexed
pass | 989,054 |
Finds partition by reference and installs it to warehouse db.
Args:
ref (str): id, vid (versioned id), name or vname (versioned name) of the partition. | def install(self, ref, table_name=None, index_columns=None,logger=None):
try:
obj_number = ObjectNumber.parse(ref)
if isinstance(obj_number, TableNumber):
table = self._library.table(ref)
connection = self._backend._get_connection()
return self._backend.install_table(connection, table, logger=logger)
else:
# assume partition
raise NotObjectNumberError
except NotObjectNumberError:
# assume partition.
partition = self._library.partition(ref)
connection = self._backend._get_connection()
return self._backend.install(
connection, partition, table_name=table_name, index_columns=index_columns,
logger=logger) | 989,187 |
Creates materialized table for given partition reference.
Args:
ref (str): id, vid, name or vname of the partition.
Returns:
str: name of the partition table in the database. | def materialize(self, ref, table_name=None, index_columns=None, logger=None):
from ambry.library import Library
assert isinstance(self._library, Library)
logger.debug('Materializing warehouse partition.\n partition: {}'.format(ref))
partition = self._library.partition(ref)
connection = self._backend._get_connection()
return self._backend.install(connection, partition, table_name=table_name,
index_columns=index_columns, materialize=True, logger=logger) | 989,188 |
Create an index on the columns.
Args:
ref (str): id, vid, name or versioned name of the partition.
columns (list of str): names of the columns needed indexes. | def index(self, ref, columns):
from ambry.orm.exc import NotFoundError
logger.debug('Creating index for partition.\n ref: {}, columns: {}'.format(ref, columns))
connection = self._backend._get_connection()
try:
table_or_partition = self._library.partition(ref)
except NotFoundError:
table_or_partition = ref
self._backend.index(connection, table_or_partition, columns) | 989,189 |
Executes all sql statements from asql.
Args:
library (library.Library):
asql (str): ambry sql query - see https://github.com/CivicKnowledge/ambry/issues/140 for details. | def parse_sql(self, asql):
import sqlparse
statements = sqlparse.parse(sqlparse.format(asql, strip_comments=True))
parsed_statements = []
for statement in statements:
statement_str = statement.to_unicode().strip()
for preprocessor in self._backend.sql_processors():
statement_str = preprocessor(statement_str, self._library, self._backend, self.connection)
parsed_statements.append(statement_str)
return parsed_statements | 989,190 |
Return url parameter with given index.
Args:
- index: starts from zero, and come after controller and
action names in url. | def get_url_param(self, index, default=None):
params = self.get_url_params()
return params[index] if index < len(params) else default | 989,195 |
Gets a tzinfo object from a string.
Args:
tzinfo: A string (or string like) object, or a datetime.tzinfo object.
Returns:
An datetime.tzinfo object.
Raises:
UnknownTimeZoneError: If the timezone given can't be decoded. | def _tzinfome(tzinfo):
if not isinstance(tzinfo, datetime.tzinfo):
try:
tzinfo = pytz.timezone(tzinfo)
assert tzinfo.zone in pytz.all_timezones
except AttributeError:
raise pytz.UnknownTimeZoneError("Unknown timezone! %s" % tzinfo)
return tzinfo | 989,286 |
Localize a datetime to the local timezone.
If dt is naive, returns the same datetime with the local timezone, otherwise
uses astimezone to convert.
Args:
dt: datetime object.
force_to_local: Force all results to be in local time.
Returns:
A datetime_tz object. | def localize(dt, force_to_local=True):
if not isinstance(dt, datetime_tz):
if not dt.tzinfo:
return datetime_tz(dt, tzinfo=localtz())
dt = datetime_tz(dt)
if force_to_local:
return dt.astimezone(localtz())
return dt | 989,287 |
Gets a naive datetime from a datetime.
datetime_tz objects can't just have tzinfo replaced with None, you need to
call asdatetime.
Args:
dt: datetime object.
Returns:
datetime object without any timezone information. | def get_naive(dt):
if not dt.tzinfo:
return dt
if hasattr(dt, "asdatetime"):
return dt.asdatetime()
return dt.replace(tzinfo=None) | 989,288 |
Wrap a method.
Patch a method which might return a datetime.datetime to return a
datetime_tz.datetime_tz instead.
Args:
name: The name of the method to patch | def _wrap_method(name):
method = getattr(datetime.datetime, name)
# Have to give the second argument as method has no __module__ option.
@functools.wraps(method, ("__name__", "__doc__"), ())
def wrapper(self, *args, **kw):
r = method(self, *args, **kw)
if isinstance(r, datetime.datetime) and not isinstance(r, type(self)):
r = type(self)(r)
return r
setattr(datetime_tz, name, wrapper) | 989,295 |
Return this datetime_tz as a datetime object.
Args:
naive: Return *without* any tz info.
Returns:
This datetime_tz as a datetime object. | def asdatetime(self, naive=True):
args = list(self.timetuple()[0:6])+[self.microsecond]
if not naive:
args.append(self.tzinfo)
return datetime.datetime(*args) | 989,299 |
Returns a version of this timestamp converted to the given timezone.
Args:
tzinfo: Either a datetime.tzinfo object or a string (which will be looked
up in pytz.
Returns:
A datetime_tz object in the given timezone. | def astimezone(self, tzinfo):
# Assert we are not a naive datetime object
assert self.tzinfo is not None
tzinfo = _tzinfome(tzinfo)
d = self.asdatetime(naive=False).astimezone(tzinfo)
return type(self)(d) | 989,301 |
Return datetime with new specified fields given as arguments.
For example, dt.replace(days=4) would return a new datetime_tz object with
exactly the same as dt but with the days attribute equal to 4.
Any attribute can be replaced, but tzinfo can not be set to None.
Args:
Any datetime_tz attribute.
Returns:
A datetime_tz object with the attributes replaced.
Raises:
TypeError: If the given replacement is invalid. | def replace(self, **kw):
if "tzinfo" in kw:
if kw["tzinfo"] is None:
raise TypeError("Can not remove the timezone use asdatetime()")
else:
tzinfo = kw["tzinfo"]
del kw["tzinfo"]
else:
tzinfo = None
is_dst = None
if "is_dst" in kw:
is_dst = kw["is_dst"]
del kw["is_dst"]
else:
# Use our own DST setting..
is_dst = self.is_dst
replaced = self.asdatetime().replace(**kw)
return type(self)(
replaced, tzinfo=tzinfo or self.tzinfo.zone, is_dst=is_dst) | 989,302 |
Iterate over the days between the given datetime_tzs.
Args:
start: datetime_tz to start from.
end: (Optional) Date to end at, if not given the iterator will never
terminate.
Returns:
An iterator which generates datetime_tz objects a day apart. | def days(start, end=None):
return iterate.between(start, datetime.timedelta(days=1), end) | 989,310 |
Iterate over the hours between the given datetime_tzs.
Args:
start: datetime_tz to start from.
end: (Optional) Date to end at, if not given the iterator will never
terminate.
Returns:
An iterator which generates datetime_tz objects a hour apart. | def hours(start, end=None):
return iterate.between(start, datetime.timedelta(hours=1), end) | 989,311 |
Iterate over the minutes between the given datetime_tzs.
Args:
start: datetime_tz to start from.
end: (Optional) Date to end at, if not given the iterator will never
terminate.
Returns:
An iterator which generates datetime_tz objects a minute apart. | def minutes(start, end=None):
return iterate.between(start, datetime.timedelta(minutes=1), end) | 989,312 |
Parses asql query to view object.
Args:
query (str): asql query
Returns:
View instance: parsed view. | def parse_view(query):
try:
idx = query.lower().index('where')
query = query[:idx]
except ValueError:
pass
if not query.endswith(';'):
query = query.strip()
query += ';'
result = _view_stmt.parseString(query)
return View(result) | 989,391 |
Updates current record.
Args:
rec (FIMRecord): | def update(self, rec=None, drop=None, tables=None, install=None, materialize=None,
indexes=None, joins=0, views=0):
if not drop:
drop = []
if not tables:
tables = set()
if not install:
install = set()
if not materialize:
materialize = set()
if not indexes:
indexes = set()
if rec:
self.update(
drop=rec.drop, tables=rec.tables, install=rec.install, materialize=rec.materialize,
indexes=rec.indexes, joins=rec.joins
)
self.drop += drop
self.tables |= set(tables)
self.install |= set(install)
self.materialize |= set(materialize)
self.indexes |= set(indexes)
self.joins += joins
self.views += views
# Joins or views promote installed partitions to materialized partitions
if self.joins > 0 or self.views > 0:
self.materialize |= self.install
self.install = set() | 989,404 |
Create a three letter acronym from the input string s.
Args:
past: A set object, for storing acronyms that have already been created
prefix: A prefix added to the acronym before storing in the set
s: The string to create the acronym from. | def make_acro(past, prefix, s): # pragma: no cover
def _make_acro(s, t=0):
# Really should cache these ...
v = ['a', 'e', 'i', 'o', 'u', 'y']
c = [chr(x) for x in six_xrange(ord('a'), ord('z') + 1) if chr(x) not in v]
s = re.sub(r'\W+', '', s.lower())
vx = [x for x in s if x in v] # Vowels in input string
cx = [x for x in s if x in c] # Consonants in input string
if s.startswith('Mc'):
if t < 1:
return 'Mc' + v[0]
if t < 2:
return 'Mc' + c[0]
if s[0] in v: # Starts with a vowel
if t < 1:
return vx[0] + cx[0] + cx[1]
if t < 2:
return vx[0] + vx[1] + cx[0]
if s[0] in c and s[1] in c: # Two first consonants
if t < 1:
return cx[0] + cx[1] + vx[0]
if t < 2:
return cx[0] + cx[1] + cx[2]
if t < 3:
return cx[0] + vx[0] + cx[1]
if t < 4:
return cx[0] + cx[1] + cx[2]
if t < 5:
return cx[0] + vx[0] + vx[1]
if t < 6:
return cx[0] + cx[1] + cx[-1]
# These are punts; just take a substring
if t < 7:
return s[0:3]
if t < 8:
return s[1:4]
if t < 9:
return s[2:5]
if t < 10:
return s[3:6]
return None
for t in six_xrange(11): # Try multiple forms until one isn't in the past acronyms
try:
a = _make_acro(s, t)
if a is not None:
if prefix:
aps = prefix + a
else:
aps = a
if aps not in past:
past.add(aps)
return a
except IndexError:
pass
raise Exception('Could not get acronym.') | 989,774 |
Initalizes partition search result fields.
Args:
dataset_vid (str): vid of the partition's dataset.
vid (str): partition vid.
score (int): score of the search result. | def __init__(self, dataset_vid=None, vid=None, score=None):
assert vid is not None, 'vid can not be None.'
assert dataset_vid is not None, 'dataset_vid can not be None.'
assert score is not None, 'score can not be None.'
self.dataset_vid = dataset_vid
self.vid = vid
self.score = score | 989,947 |
Joins terms using OR operator.
Args:
terms (list): terms to join
Examples:
self._or_join(['term1', 'term2']) -> 'term1 OR term2'
Returns:
str | def _or_join(self, terms):
if isinstance(terms, (tuple, list)):
if len(terms) > 1:
return '(' + ' OR '.join(terms) + ')'
else:
return terms[0]
else:
return terms | 989,950 |
Joins terms using AND operator.
Args:
terms (list): terms to join
Examples:
self._and_join(['term1']) -> 'term1'
self._and_join(['term1', 'term2']) -> 'term1 AND term2'
self._and_join(['term1', 'term2', 'term3']) -> 'term1 AND term2 AND term3'
Returns:
str | def _and_join(self, terms):
if len(terms) > 1:
return ' AND '.join([self._or_join(t) for t in terms])
else:
return self._or_join(terms[0]) | 989,952 |
Indexes exactly one object of the Ambry system.
Args:
instance (any): instance to index.
force (boolean): if True replace document in the index.
Returns:
boolean: True if document added to index, False if document already exists in the index. | def index_one(self, instance, force=False):
if not self.is_indexed(instance) and not force:
doc = self._as_document(instance)
self._index_document(doc, force=force)
logger.debug('{} indexed as\n {}'.format(instance.__class__, pformat(doc)))
return True
logger.debug('{} already indexed.'.format(instance.__class__))
return False | 989,953 |
Converts dataset to document indexed by to FTS index.
Args:
dataset (orm.Dataset): dataset to convert.
Returns:
dict with structure matches to BaseDatasetIndex._schema. | def _as_document(self, dataset):
# find tables.
assert isinstance(dataset, Dataset)
execute = object_session(dataset).connection().execute
query = text()
columns = u('\n').join(
[u(' ').join(list(text_type(e) for e in t)) for t in execute(query, dataset_vid=str(dataset.identity.vid))])
doc = '\n'.join([u('{}').format(x) for x in [dataset.config.metadata.about.title,
dataset.config.metadata.about.summary,
dataset.identity.id_,
dataset.identity.vid,
dataset.identity.source,
dataset.identity.name,
dataset.identity.vname,
columns]])
# From the source, make a variety of combinations for keywords:
# foo.bar.com -> "foo foo.bar foo.bar.com bar.com"
parts = u('{}').format(dataset.identity.source).split('.')
sources = (['.'.join(g) for g in [parts[-i:] for i in range(2, len(parts) + 1)]]
+ ['.'.join(g) for g in [parts[:i] for i in range(0, len(parts))]])
# Re-calculate the summarization of grains, since the geoid 0.0.7 package had a bug where state level
# summaries had the same value as state-level allvals
def resum(g):
try:
return str(GVid.parse(g).summarize())
except (KeyError, ValueError):
return g
def as_list(value):
if not value:
return []
if isinstance(value, string_types):
lst = [value]
else:
try:
lst = list(value)
except TypeError:
lst = [value]
return lst
about_time = as_list(dataset.config.metadata.about.time)
about_grain = as_list(dataset.config.metadata.about.grain)
keywords = (
list(dataset.config.metadata.about.groups) +
list(dataset.config.metadata.about.tags) +
about_time +
[resum(g) for g in about_grain] +
sources)
document = dict(
vid=u('{}').format(dataset.identity.vid),
title=u('{} {}').format(dataset.identity.name, dataset.config.metadata.about.title),
doc=u('{}').format(doc),
keywords=' '.join(u('{}').format(x) for x in keywords)
)
return document | 989,954 |
Expands terms of the dataset to the appropriate fields. It will parse the search phrase
and return only the search term components that are applicable to a Dataset query.
Args:
terms (dict or str):
Returns:
dict: keys are field names, values are query strings | def _expand_terms(self, terms):
ret = {
'keywords': list(),
'doc': list()}
if not isinstance(terms, dict):
stp = SearchTermParser()
terms = stp.parse(terms, term_join=self.backend._and_join)
if 'about' in terms:
ret['doc'].append(terms['about'])
if 'source' in terms:
ret['keywords'].append(terms['source'])
return ret | 989,955 |
Converts given partition to the document indexed by FTS backend.
Args:
partition (orm.Partition): partition to convert.
Returns:
dict with structure matches to BasePartitionIndex._schema. | def _as_document(self, partition):
schema = ' '.join(
u'{} {} {} {} {}'.format(
c.id,
c.vid,
c.name,
c.altname,
c.description) for c in partition.table.columns)
values = ''
for stat in partition.stats:
if stat.uvalues :
# SOme geometry vlaues are super long. They should not be in uvbalues, but when they are,
# need to cut them down.
values += ' '.join(e[:200] for e in stat.uvalues) + '\n'
# Re-calculate the summarization of grains, since the geoid 0.0.7 package had a bug where state level
# summaries had the same value as state-level allvals
def resum(g):
try:
return str(GVid.parse(g).summarize())
except KeyError:
return g
except ValueError:
logger.debug("Failed to parse gvid '{}' from partition '{}' grain coverage"
.format(g, partition.identity.vname))
return g
keywords = (
' '.join(partition.space_coverage) + ' ' +
' '.join([resum(g) for g in partition.grain_coverage if resum(g)]) + ' ' +
' '.join(str(x) for x in partition.time_coverage)
)
doc_field = u('{} {} {} {} {} {}').format(
values,
schema,
' '.join([
u('{}').format(partition.identity.vid),
u('{}').format(partition.identity.id_),
u('{}').format(partition.identity.name),
u('{}').format(partition.identity.vname)]),
partition.display.title,
partition.display.description,
partition.display.sub_description,
partition.display.time_description,
partition.display.geo_description
)
document = dict(
vid=u('{}').format(partition.identity.vid),
dataset_vid=u('{}').format(partition.identity.as_dataset().vid),
title=u('{}').format(partition.table.description),
keywords=u('{}').format(keywords),
doc=doc_field)
return document | 989,956 |
Expands partition terms to the appropriate fields.
Args:
terms (dict or str):
Returns:
dict: keys are field names, values are query strings | def _expand_terms(self, terms):
ret = {
'keywords': list(),
'doc': list(),
'from': None,
'to': None}
if not isinstance(terms, dict):
stp = SearchTermParser()
terms = stp.parse(terms, term_join=self.backend._and_join)
if 'about' in terms:
ret['doc'].append(terms['about'])
if 'with' in terms:
ret['doc'].append(terms['with'])
if 'in' in terms:
place_vids = self._expand_place_ids(terms['in'])
ret['keywords'].append(place_vids)
if 'by' in terms:
ret['keywords'].append(terms['by'])
ret['from'] = terms.get('from', None)
ret['to'] = terms.get('to', None)
return ret | 989,957 |
Lookups all of the place identifiers to get gvids
Args:
terms (str or unicode): terms to lookup
Returns:
str or list: given terms if no identifiers found, otherwise list of identifiers. | def _expand_place_ids(self, terms):
place_vids = []
first_type = None
for result in self.backend.identifier_index.search(terms):
if not first_type:
first_type = result.type
if result.type != first_type:
# Ignore ones that aren't the same type as the best match
continue
place_vids.append(result.vid)
if place_vids:
# Add the 'all region' gvids for the higher level
all_set = set(itertools.chain.from_iterable(iallval(GVid.parse(x)) for x in place_vids))
place_vids += list(str(x) for x in all_set)
return place_vids
else:
return terms | 989,958 |
Converts given identifier to the document indexed by FTS backend.
Args:
identifier (dict): identifier to convert. Dict contains at
least 'identifier', 'type' and 'name' keys.
Returns:
dict with structure matches to BaseIdentifierIndex._schema. | def _as_document(self, identifier):
return {
'identifier': u('{}').format(identifier['identifier']),
'type': u('{}').format(identifier['type']),
'name': u('{}').format(identifier['name'])
} | 989,959 |
Parses search term to
Args:
s (str): string with search term.
or_join (callable): function to join 'OR' terms.
Returns:
dict: all of the terms grouped by marker. Key is a marker, value is a term.
Example:
>>> SearchTermParser().parse('table2 from 1978 to 1979 in california')
{'to': 1979, 'about': 'table2', 'from': 1978, 'in': 'california'} | def parse(self, s, term_join=None):
if not term_join:
term_join = lambda x: '(' + ' OR '.join(x) + ')'
toks = self.scan(s)
# Examples: starting with this query:
# diabetes from 2014 to 2016 source healthindicators.gov
# Assume the first term is ABOUT, if it is not marked with a marker.
if toks and toks[0] and (toks[0][0] == self.TERM or toks[0][0] == self.QUOTEDTERM):
toks = [(self.MARKER, 'about')] + toks
# The example query produces this list of tokens:
#[(3, 'about'),
# (0, 'diabetes'),
# (3, 'from'),
# (4, 2014),
# (3, 'to'),
# (4, 2016),
# (3, 'source'),
# (0, 'healthindicators.gov')]
# Group the terms by their marker.
bymarker = []
for t in toks:
if t[0] == self.MARKER:
bymarker.append((t[1], []))
else:
bymarker[-1][1].append(t)
# After grouping tokens by their markers
# [('about', [(0, 'diabetes')]),
# ('from', [(4, 2014)]),
# ('to', [(4, 2016)]),
# ('source', [(0, 'healthindicators.gov')])
# ]
# Convert some of the markers based on their contents. This just changes the marker type for keywords
# we'll do more adjustments later.
comps = []
for t in bymarker:
t = list(t)
if t[0] == 'in' and len(t[1]) == 1 and isinstance(t[1][0][1], string_types) and self.stem(
t[1][0][1]) in self.geograins.keys():
t[0] = 'by'
# If the from term isn't an integer, then it is really a source.
if t[0] == 'from' and len(t[1]) == 1 and t[1][0][0] != self.YEAR:
t[0] = 'source'
comps.append(t)
# After conversions
# [['about', [(0, 'diabetes')]],
# ['from', [(4, 2014)]],
# ['to', [(4, 2016)]],
# ['source', [(0, 'healthindicators.gov')]]]
# Join all of the terms into single marker groups
groups = {marker: [] for marker, _ in comps}
for marker, terms in comps:
groups[marker] += [term for marker, term in terms]
# At this point, the groups dict is formed, but it will have a list
# for each marker that has multiple terms.
# Only a few of the markers should have more than one term, so move
# extras to the about group
for marker, group in groups.items():
if marker == 'about':
continue
if len(group) > 1 and marker not in self.multiterms:
groups[marker], extras = [group[0]], group[1:]
if not 'about' in groups:
groups['about'] = extras
else:
groups['about'] += extras
if marker == 'by':
groups['by'] = [ self.geograins.get(self.stem(e)) for e in group]
for marker, terms in iteritems(groups):
if len(terms) > 1:
if marker in 'in':
groups[marker] = ' '.join(terms)
else:
groups[marker] = term_join(terms)
elif len(terms) == 1:
groups[marker] = terms[0]
else:
pass
# After grouping:
# {'to': 2016,
# 'about': 'diabetes',
# 'from': 2014,
# 'source': 'healthindicators.gov'}
# If there were any markers with multiple terms, they would be cast in the or_join form.
return groups | 989,963 |
Returns table names found in the query.
NOTE. This routine would use the sqlparse parse tree, but vnames don't parse very well.
Args:
statement (sqlparse.sql.Statement): parsed by sqlparse sql statement.
Returns:
list of str | def _get_table_names(statement):
parts = statement.to_unicode().split()
tables = set()
for i, token in enumerate(parts):
if token.lower() == 'from' or token.lower().endswith('join'):
tables.add(parts[i + 1].rstrip(';'))
return list(tables) | 989,981 |
Installs partition's mpr to the database to allow to execute sql queries over mpr.
Args:
connection:
partition (orm.Partition):
materialize (boolean): if True, create generic table. If False create MED over mpr.
Returns:
str: name of the created table. | def install(self, connection, partition, table_name=None, index_columns=None, materialize=False,
logger=None):
raise NotImplementedError | 989,983 |
Installs all partitons of the table and create view with union of all partitons.
Args:
connection: connection to database who stores mpr data.
table (orm.Table): | def install_table(self, connection, table, logger = None):
# first install all partitions of the table
queries = []
query_tmpl = 'SELECT * FROM {}'
for partition in table.partitions:
partition.localize()
installed_name = self.install(connection, partition)
queries.append(query_tmpl.format(installed_name))
# now create view with union of all partitions.
query = 'CREATE VIEW {} AS {} '.format( table.vid, '\nUNION ALL\n'.join(queries))
logger.debug('Creating view for table.\n table: {}\n query: {}'.format(table.vid, query))
self._execute(connection, query, fetch=False) | 989,984 |
Creates virtual tables for all partitions found in the query and executes query.
Args:
query (str): sql query
fetch (bool): fetch result from database if True, do not fetch overwise. | def query(self, connection, query, fetch=True):
self.install_module(connection)
statements = sqlparse.parse(sqlparse.format(query, strip_comments=True))
# install all partitions and replace table names in the query.
#
logger.debug('Finding and installing all partitions from query. \n query: {}'.format(query))
new_query = []
if len(statements) > 1:
raise BadSQLError("Can only query a single statement")
if len(statements) == 0:
raise BadSQLError("DIdn't get any statements in '{}'".format(query))
statement = statements[0]
logger.debug( 'Searching statement for partition ref.\n statement: {}'.format(statement.to_unicode()))
#statement = self.install_statement(connection, statement.to_unicode())
logger.debug(
'Executing updated query after partition install.'
'\n query before update: {}\n query to execute (updated query): {}'
.format(statement, new_query))
return self._execute(connection, statement.to_unicode(), fetch=fetch) | 989,985 |
Creates new index or opens existing.
Args:
root_dir (str): root dir where to find or create index.
schema (whoosh.fields.Schema): schema of the index to create or open.
index_name (str): name of the index.
Returns:
tuple ((whoosh.index.FileIndex, str)): first element is index, second is index directory. | def _init_index(root_dir, schema, index_name):
index_dir = os.path.join(root_dir, index_name)
try:
if not os.path.exists(index_dir):
os.makedirs(index_dir)
return create_in(index_dir, schema), index_dir
else:
return open_dir(index_dir), index_dir
except Exception as e:
logger.error("Init error: failed to open search index at: '{}': {} ".format(index_dir, e))
raise | 990,147 |
Finds datasets by search phrase.
Args:
search_phrase (str or unicode):
limit (int, optional): how many results to return. None means without limit.
Returns:
list of DatasetSearchResult instances. | def search(self, search_phrase, limit=None):
query_string = self._make_query_from_terms(search_phrase)
self._parsed_query = query_string
schema = self._get_generic_schema()
parser = QueryParser('doc', schema=schema)
query = parser.parse(query_string)
datasets = defaultdict(DatasetSearchResult)
# collect all datasets
logger.debug('Searching datasets using `{}` query.'.format(query))
with self.index.searcher() as searcher:
results = searcher.search(query, limit=limit)
for hit in results:
vid = hit['vid']
datasets[vid].vid = hit['vid']
datasets[vid].b_score += hit.score
# extend datasets with partitions
logger.debug('Extending datasets with partitions.')
for partition in self.backend.partition_index.search(search_phrase):
datasets[partition.dataset_vid].p_score += partition.score
datasets[partition.dataset_vid].partitions.add(partition)
return list(datasets.values()) | 990,151 |
Creates a query for dataset from decomposed search terms.
Args:
terms (dict or unicode or string):
Returns:
tuple: First element is str with FTS query, second is parameters of the query. | def _make_query_from_terms(self, terms):
expanded_terms = self._expand_terms(terms)
cterms = ''
if expanded_terms['doc']:
cterms = self.backend._and_join(expanded_terms['doc'])
if expanded_terms['keywords']:
if cterms:
cterms = self.backend._and_join(
cterms, self.backend._join_keywords(expanded_terms['keywords']))
else:
cterms = self.backend._join_keywords(expanded_terms['keywords'])
logger.debug('Dataset terms conversion: `{}` terms converted to `{}` query.'.format(terms, cterms))
return cterms | 990,152 |
Deletes given dataset from index.
Args:
vid (str): dataset vid. | def _delete(self, vid=None):
assert vid is not None, 'vid argument can not be None.'
writer = self.index.writer()
writer.delete_by_term('vid', vid)
writer.commit() | 990,154 |
Deletes given identifier from index.
Args:
identifier (str): identifier of the document to delete. | def _delete(self, identifier=None):
assert identifier is not None, 'identifier argument can not be None.'
writer = self.index.writer()
writer.delete_by_term('identifier', identifier)
writer.commit() | 990,159 |
Finds partitions by search phrase.
Args:
search_phrase (str or unicode):
limit (int, optional): how many results to generate. None means without limit.
Yields:
PartitionSearchResult instances. | def search(self, search_phrase, limit=None):
query_string = self._make_query_from_terms(search_phrase)
self._parsed_query = query_string
schema = self._get_generic_schema()
parser = QueryParser('doc', schema=schema)
query = parser.parse(query_string)
logger.debug('Searching partitions using `{}` query.'.format(query))
with self.index.searcher() as searcher:
results = searcher.search(query, limit=limit)
for hit in results:
yield PartitionSearchResult(
vid=hit['vid'], dataset_vid=hit['dataset_vid'], score=hit.score) | 990,163 |
returns a FTS query for partition created from decomposed search terms.
args:
terms (dict or str):
returns:
str containing fts query. | def _make_query_from_terms(self, terms):
expanded_terms = self._expand_terms(terms)
cterms = ''
if expanded_terms['doc']:
cterms = self.backend._or_join(expanded_terms['doc'])
keywords = expanded_terms['keywords']
frm_to = self._from_to_as_term(expanded_terms['from'], expanded_terms['to'])
if frm_to:
keywords.append(frm_to)
if keywords:
if cterms:
cterms = self.backend._and_join(
[cterms, self.backend._field_term('keywords', expanded_terms['keywords'])])
else:
cterms = self.backend._field_term('keywords', expanded_terms['keywords'])
logger.debug('partition terms conversion: `{}` terms converted to `{}` query.'.format(terms, cterms))
return cterms | 990,164 |
Turns from and to into the query format.
Args:
frm (str): from year
to (str): to year
Returns:
FTS query str with years range. | def _from_to_as_term(self, frm, to):
# The wackiness with the conversion to int and str, and adding ' ', is because there
# can't be a space between the 'TO' and the brackets in the time range
# when one end is open
from_year = ''
to_year = ''
def year_or_empty(prefix, year, suffix):
try:
return prefix + str(int(year)) + suffix
except (ValueError, TypeError):
return ''
if frm:
from_year = year_or_empty('', frm, ' ')
if to:
to_year = year_or_empty(' ', to, '')
if bool(from_year) or bool(to_year):
return '[{}TO{}]'.format(from_year, to_year)
else:
return None | 990,165 |
Converts given string to ascii ignoring non ascii.
Args:
s (text or binary):
Returns:
str: | def _to_ascii(s):
# TODO: Always use unicode within ambry.
from six import text_type, binary_type
if isinstance(s, text_type):
ascii_ = s.encode('ascii', 'ignore')
elif isinstance(s, binary_type):
ascii_ = s.decode('utf-8').encode('ascii', 'ignore')
else:
raise Exception('Unknown text type - {}'.format(type(s)))
return ascii_ | 990,214 |
Creates FDW or materialize view for given partition.
Args:
connection: connection to postgresql
partition (orm.Partition):
materialize (boolean): if True, create read-only table. If False create virtual table.
Returns:
str: name of the created table. | def install(self, connection, partition, table_name=None, columns=None, materialize=False,
logger=None):
partition.localize()
self._add_partition(connection, partition)
fdw_table = partition.vid
view_table = '{}_v'.format(fdw_table)
if materialize:
with connection.cursor() as cursor:
view_exists = self._relation_exists(connection, view_table)
if view_exists:
logger.debug(
'Materialized view of the partition already exists.\n partition: {}, view: {}'
.format(partition.name, view_table))
else:
query = 'CREATE MATERIALIZED VIEW {} AS SELECT * FROM {};'\
.format(view_table, fdw_table)
logger.debug(
'Creating new materialized view of the partition.'
'\n partition: {}, view: {}, query: {}'
.format(partition.name, view_table, query))
cursor.execute(query)
cursor.execute('COMMIT;')
final_table = view_table if materialize else fdw_table
with connection.cursor() as cursor:
view_q = "CREATE VIEW IF NOT EXISTS {} AS SELECT * FROM {} ".format(partition.vid, final_table)
cursor.execute(view_q)
cursor.execute('COMMIT;')
return partition.vid | 990,327 |
Create an index on the columns.
Args:
connection:
partition (orm.Partition):
columns (list of str): | def index(self, connection, partition, columns):
query_tmpl = 'CREATE INDEX ON {table_name} ({column});'
table_name = '{}_v'.format(partition.vid)
for column in columns:
query = query_tmpl.format(table_name=table_name, column=column)
logger.debug('Creating postgres index.\n column: {}, query: {}'.format(column, query))
with connection.cursor() as cursor:
cursor.execute(query)
cursor.execute('COMMIT;') | 990,328 |
Returns name of the postgres table who stores mpr data.
Args:
connection: connection to postgres db who stores mpr data.
partition (orm.Partition):
Returns:
str:
Raises:
MissingTableError: if partition table not found in the db. | def _get_mpr_table(self, connection, partition):
# TODO: This is the first candidate for optimization. Add field to partition
# with table name and update it while table creation.
# Optimized version.
#
# return partition.mpr_table or raise exception
# Not optimized version.
#
# first check either partition has materialized view.
logger.debug(
'Looking for materialized view of the partition.\n partition: {}'.format(partition.name))
foreign_table = partition.vid
view_table = '{}_v'.format(foreign_table)
view_exists = self._relation_exists(connection, view_table)
if view_exists:
logger.debug(
'Materialized view of the partition found.\n partition: {}, view: {}'
.format(partition.name, view_table))
return view_table
# now check for fdw/virtual table
logger.debug(
'Looking for foreign table of the partition.\n partition: {}'.format(partition.name))
foreign_exists = self._relation_exists(connection, foreign_table)
if foreign_exists:
logger.debug(
'Foreign table of the partition found.\n partition: {}, foreign table: {}'
.format(partition.name, foreign_table))
return foreign_table
raise MissingTableError('postgres database does not have table for {} partition.'
.format(partition.vid)) | 990,330 |
Creates FDW for the partition.
Args:
connection:
partition (orm.Partition): | def _add_partition(self, connection, partition):
logger.debug('Creating foreign table for partition.\n partition: {}'.format(partition.name))
with connection.cursor() as cursor:
postgres_med.add_partition(cursor, partition.datafile, partition.vid) | 990,331 |
Executes given query and returns result.
Args:
connection: connection to postgres database who stores mpr data.
query (str): sql query
fetch (boolean, optional): if True, fetch query result and return it. If False, do not fetch.
Returns:
iterable with query result or None if fetch is False. | def _execute(self, connection, query, fetch=True):
# execute query
with connection.cursor() as cursor:
cursor.execute(query)
if fetch:
return cursor.fetchall()
else:
cursor.execute('COMMIT;') | 990,333 |
Returns True if relation exists in the postgres db. Otherwise returns False.
Args:
connection: connection to postgres database who stores mpr data.
relation (str): name of the table, view or materialized view.
Note:
relation means table, view or materialized view here.
Returns:
boolean: True if relation exists, False otherwise. | def _relation_exists(cls, connection, relation):
schema_name, table_name = relation.split('.')
exists_query =
with connection.cursor() as cursor:
cursor.execute(exists_query, [schema_name, table_name])
result = cursor.fetchall()
return result == [(1,)] | 990,334 |
Creates a map between Windows and Olson timezone names.
Args:
windows_zones_xml: The CLDR XML mapping.
Yields:
(win32_name, olson_name, comment) | def create_win32tz_map(windows_zones_xml):
coming_comment = None
win32_name = None
territory = None
parser = genshi.input.XMLParser(StringIO(windows_zones_xml))
map_zones = {}
zone_comments = {}
for kind, data, _ in parser:
if kind == genshi.core.START and str(data[0]) == "mapZone":
attrs = data[1]
win32_name, territory, olson_name = (
attrs.get("other"), attrs.get("territory"), attrs.get("type").split(" ")[0])
map_zones[(win32_name, territory)] = olson_name
elif kind == genshi.core.END and str(data) == "mapZone" and win32_name:
if coming_comment:
zone_comments[(win32_name, territory)] = coming_comment
coming_comment = None
win32_name = None
elif kind == genshi.core.COMMENT:
coming_comment = data.strip()
elif kind in (genshi.core.START, genshi.core.END, genshi.core.COMMENT):
coming_comment = None
for win32_name, territory in sorted(map_zones):
yield (win32_name, territory, map_zones[(win32_name, territory)],
zone_comments.get((win32_name, territory), None)) | 990,553 |
Collects all migrations and applies missed.
Args:
connection (sqlalchemy connection): | def migrate(connection, dsn):
all_migrations = _get_all_migrations()
logger.debug('Collected migrations: {}'.format(all_migrations))
for version, modname in all_migrations:
if _is_missed(connection, version) and version <= SCHEMA_VERSION:
logger.info('Missed migration: {} migration is missed. Migrating...'.format(version))
module = __import__(modname, fromlist='dummy')
# run each migration under its own transaction. This allows us to apply valid migrations
# and break on invalid.
trans = connection.begin()
try:
module.Migration().migrate(connection)
_update_version(connection, version)
trans.commit()
except:
trans.rollback()
logger.error("Failed to migrate '{}' on {} ".format(version, dsn))
raise | 990,690 |
Creates migration file. Returns created file name.
Args:
name (str): name of the migration.
Returns:
str: name of the migration file. | def create_migration_template(name):
assert name, 'Name of the migration can not be empty.'
from . import migrations
# Find next number
#
package = migrations
prefix = package.__name__ + '.'
all_versions = []
for importer, modname, ispkg in pkgutil.iter_modules(package.__path__, prefix):
version = int(modname.split('.')[-1].split('_')[0])
all_versions.append(version)
next_number = max(all_versions) + 1
# Generate next migration name
#
next_migration_name = '{}_{}.py'.format(next_number, name)
migration_fullname = os.path.join(package.__path__[0], next_migration_name)
# Write next migration file content.
#
with open(migration_fullname, 'w') as f:
f.write(MIGRATION_TEMPLATE)
return migration_fullname | 990,691 |
Returns database version.
Args:
connection (sqlalchemy connection):
Raises: Assuming user_version pragma (sqlite case) and user_version table (postgresql case)
exist because they created with the database creation.
Returns:
int: version of the database. | def get_stored_version(connection):
if connection.engine.name == 'sqlite':
version = connection.execute('PRAGMA user_version').fetchone()[0]
if version == 0:
raise VersionIsNotStored
return version
elif connection.engine.name == 'postgresql':
try:
r = connection\
.execute('SELECT version FROM {}.user_version;'.format(POSTGRES_SCHEMA_NAME))\
.fetchone()
if not r:
raise VersionIsNotStored
version = r[0]
except ProgrammingError:
# This happens when the user_version table doesn't exist
raise VersionIsNotStored
return version
else:
raise DatabaseError('Do not know how to get version from {} engine.'.format(connection.engine.name)) | 990,692 |
Updates version in the db to the given version.
Args:
connection (sqlalchemy connection): sqlalchemy session where to update version.
version (int): version of the migration. | def _update_version(connection, version):
if connection.engine.name == 'sqlite':
connection.execute('PRAGMA user_version = {}'.format(version))
elif connection.engine.name == 'postgresql':
connection.execute(DDL('CREATE SCHEMA IF NOT EXISTS {};'.format(POSTGRES_SCHEMA_NAME)))
connection.execute(DDL('CREATE SCHEMA IF NOT EXISTS {};'.format(POSTGRES_PARTITION_SCHEMA_NAME)))
connection.execute('CREATE TABLE IF NOT EXISTS {}.user_version(version INTEGER NOT NULL);'
.format(POSTGRES_SCHEMA_NAME))
# upsert.
if connection.execute('SELECT * FROM {}.user_version;'.format(POSTGRES_SCHEMA_NAME)).fetchone():
# update
connection.execute('UPDATE {}.user_version SET version = {};'
.format(POSTGRES_SCHEMA_NAME, version))
else:
# insert
connection.execute('INSERT INTO {}.user_version (version) VALUES ({})'
.format(POSTGRES_SCHEMA_NAME, version))
else:
raise DatabaseMissingError('Do not know how to migrate {} engine.'
.format(connection.engine.driver)) | 990,695 |
Initializes database.
Args:
dsn (str): database connect string, 'sqlite://' for example.
echo (boolean): echo parameter of the create_engine.
engine_kwargs (dict): parameters to pass to the create_engine method of the Sqlalchemy. | def __init__(self, dsn, echo=False, foreign_keys=True, engine_kwargs=None, application_prefix='ambry'):
self.dsn = dsn
d = parse_url_to_dict(self.dsn)
self.path = d['path'].replace('//', '/')
self.driver = d['scheme']
self.engine_kwargs = engine_kwargs or {}
self.Session = None
self._session = None
self._engine = None
self._connection = None
self._echo = echo
self._foreign_keys = foreign_keys
self._raise_on_commit = False # For debugging
if self.driver in ['postgres', 'postgresql', 'postgresql+psycopg2', 'postgis']:
self.driver = 'postgres'
self._schema = POSTGRES_SCHEMA_NAME
else:
self._schema = None
self.logger = logger
self.library = None # Set externally when checking in in
self._application_prefix = application_prefix | 990,697 |
Get a partition by the id number.
Arguments:
id_ -- a partition id value
Returns:
A partitions.Partition object
Throws:
a Sqlalchemy exception if the partition either does not exist or
is not unique
Because this method works on the bundle, the id_ ( without version information )
is equivalent to the vid ( with version information ) | def partition(self, id_):
from ..orm import Partition as OrmPartition
from sqlalchemy import or_
from ..identity import PartialPartitionName
if isinstance(id_, PartitionIdentity):
id_ = id_.id_
elif isinstance(id_, PartialPartitionName):
id_ = id_.promote(self.bundle.identity.name)
session = self.bundle.dataset._database.session
q = session\
.query(OrmPartition)\
.filter(OrmPartition.d_vid == self.bundle.dataset.vid)\
.filter(or_(OrmPartition.id == str(id_).encode('ascii'),
OrmPartition.vid == str(id_).encode('ascii')))
try:
orm_partition = q.one()
return self.bundle.wrap_partition(orm_partition)
except NoResultFound:
orm_partition = None
if not orm_partition:
q = session\
.query(OrmPartition)\
.filter(OrmPartition.d_vid == self.bundle.dataset.vid)\
.filter(OrmPartition.name == str(id_).encode('ascii'))
try:
orm_partition = q.one()
return self.bundle.wrap_partition(orm_partition)
except NoResultFound:
orm_partition = None
return orm_partition | 990,835 |
Finds datasets by search phrase.
Args:
search_phrase (str or unicode):
limit (int, optional): how many results to return. None means without limit.
Returns:
list of DatasetSearchResult instances. | def search(self, search_phrase, limit=None):
# SQLite FTS can't find terms with `-`, therefore all hyphens were replaced with underscore
# before save. Now to get appropriate result we need to replace all hyphens in the search phrase.
# See http://stackoverflow.com/questions/3865733/how-do-i-escape-the-character-in-sqlite-fts3-queries
search_phrase = search_phrase.replace('-', '_')
query, query_params = self._make_query_from_terms(search_phrase)
self._parsed_query = (query, query_params)
connection = self.backend.library.database.connection
# Operate on the raw connection
connection.connection.create_function('rank', 1, _make_rank_func((1., .1, 0, 0)))
logger.debug('Searching datasets using `{}` query.'.format(query))
results = connection.execute(query,
**query_params).fetchall() # Query on the Sqlite proxy to the raw connection
datasets = defaultdict(DatasetSearchResult)
for result in results:
vid, score = result
datasets[vid] = DatasetSearchResult()
datasets[vid].vid = vid
datasets[vid].b_score = score
logger.debug('Extending datasets with partitions.')
for partition in self.backend.partition_index.search(search_phrase):
datasets[partition.dataset_vid].p_score += partition.score
datasets[partition.dataset_vid].partitions.add(partition)
return list(datasets.values()) | 991,006 |
Converts dataset to document indexed by to FTS index.
Args:
dataset (orm.Dataset): dataset to convert.
Returns:
dict with structure matches to BaseDatasetIndex._schema. | def _as_document(self, dataset):
assert isinstance(dataset, Dataset)
doc = super(self.__class__, self)._as_document(dataset)
# SQLite FTS can't find terms with `-`, replace it with underscore here and while searching.
# See http://stackoverflow.com/questions/3865733/how-do-i-escape-the-character-in-sqlite-fts3-queries
doc['keywords'] = doc['keywords'].replace('-', '_')
doc['doc'] = doc['doc'].replace('-', '_')
doc['title'] = doc['title'].replace('-', '_')
return doc | 991,007 |
Deletes given dataset from index.
Args:
vid (str): dataset vid. | def _delete(self, vid=None):
query = text()
self.backend.library.database.connection.execute(query, vid=vid) | 991,009 |
Generates vids of all indexed identifiers.
Args:
limit (int, optional): If not empty, the maximum number of results to return
Generates:
str: vid of the document. | def list_documents(self, limit=None):
limit_str = ''
if limit:
try:
limit_str = 'LIMIT {}'.format(int(limit))
except (TypeError, ValueError):
pass
query = ('SELECT identifier FROM identifier_index ' + limit_str)
for row in self.backend.library.database.connection.execute(query).fetchall():
yield row['identifier'] | 991,013 |
Deletes given identifier from index.
Args:
identifier (str): identifier of the document to delete. | def _delete(self, identifier=None):
query = text()
self.backend.library.database.connection.execute(query, identifier=identifier) | 991,015 |
Finds partitions by search phrase.
Args:
search_phrase (str or unicode):
limit (int, optional): how many results to generate. None means without limit.
Generates:
PartitionSearchResult instances. | def search(self, search_phrase, limit=None):
# SQLite FTS can't find terms with `-`, therefore all hyphens replaced with underscore before save.
# Now to make proper query we need to replace all hyphens in the search phrase.
# See http://stackoverflow.com/questions/3865733/how-do-i-escape-the-character-in-sqlite-fts3-queries
search_phrase = search_phrase.replace('-', '_')
terms = SearchTermParser().parse(search_phrase)
from_year = terms.pop('from', None)
to_year = terms.pop('to', None)
query, query_params = self._make_query_from_terms(terms)
self._parsed_query = (query, query_params)
connection = self.backend.library.database.connection
connection.connection.create_function('rank', 1, _make_rank_func((1., .1, 0, 0)))
# SQLite FTS implementation does not allow to create indexes on FTS tables.
# see https://sqlite.org/fts3.html 1.5. Summary, p 1:
# ... it is not possible to create indices ...
#
# So, filter years range here.
results = connection.execute(query, query_params).fetchall()
for result in results:
vid, dataset_vid, score, db_from_year, db_to_year = result
if from_year and from_year < db_from_year:
continue
if to_year and to_year > db_to_year:
continue
yield PartitionSearchResult(
vid=vid, dataset_vid=dataset_vid, score=score) | 991,018 |
Converts partition to document indexed by to FTS index.
Args:
partition (orm.Partition): partition to convert.
Returns:
dict with structure matches to BasePartitionIndex._schema. | def _as_document(self, partition):
doc = super(self.__class__, self)._as_document(partition)
# SQLite FTS can't find terms with `-`, replace it with underscore here and while searching.
# See http://stackoverflow.com/questions/3865733/how-do-i-escape-the-character-in-sqlite-fts3-queries
doc['keywords'] = doc['keywords'].replace('-', '_')
doc['doc'] = doc['doc'].replace('-', '_')
doc['title'] = doc['title'].replace('-', '_')
# pass time_coverage to the _index_document.
doc['time_coverage'] = partition.time_coverage
return doc | 991,019 |
Creates a query for partition from decomposed search terms.
Args:
terms (dict or unicode or string):
Returns:
tuple of (str, dict): First element is str with FTS query, second is parameters of the query. | def _make_query_from_terms(self, terms):
match_query = ''
expanded_terms = self._expand_terms(terms)
if expanded_terms['doc']:
match_query = self.backend._and_join(expanded_terms['doc'])
if expanded_terms['keywords']:
if match_query:
match_query = self.backend._and_join(
[match_query, self.backend._join_keywords(expanded_terms['keywords'])])
else:
match_query = self.backend._join_keywords(expanded_terms['keywords'])
if match_query:
query = text()
query_params = {
'match_query': match_query}
else:
query = text()
query_params = {}
return query, query_params | 991,020 |
Sends email.
Args:
recipients (list of str):
subject (str):
message (str):
attachments (list of str): list containing full paths (txt files only) to attach to email. | def send_email(recipients, subject, message, attachments=None):
if not attachments:
attachments = []
if os.path.exists(EMAIL_SETTINGS_FILE):
email_settings = json.load(open(EMAIL_SETTINGS_FILE))
sender = email_settings.get('sender', 'ambry@localhost')
use_tls = email_settings.get('use_tls')
username = email_settings['username']
password = email_settings['password']
server = email_settings['server']
else:
# use local smtp
server = 'localhost'
username = None
password = None
sender = 'ambry@localhost'
# Create the container (outer) email message.
msg = MIMEMultipart()
msg['Subject'] = subject
msg['From'] = sender
msg['To'] = ','.join(recipients)
msg.attach(MIMEText(message, 'plain'))
# Add attachments.
for file_name in attachments:
if os.path.exists(file_name):
with open(file_name, 'r') as fp:
attachment = MIMEBase('application', 'text')
attachment.set_payload(fp.read())
attachment.add_header(
'Content-Disposition',
'attachment; filename="{}"'.format(os.path.basename(file_name)))
msg.attach(attachment)
# The actual mail send.
srv = smtplib.SMTP(server)
if use_tls:
srv.starttls()
if username:
srv.login(username, password)
srv.sendmail(sender, ','.join(recipients), msg.as_string())
srv.quit() | 991,082 |
A set of rules that applies to one or more directories
within a Layout.
Args:
name (str): The name of the Domain.
config (dict): The configuration dictionary that defines the
entities and paths for the current domain. | def __init__(self, config):
self.name = config['name']
self.config = config
self.entities = {}
self.files = []
self.include = listify(self.config.get('include', []))
self.exclude = listify(self.config.get('exclude', []))
if self.include and self.exclude:
raise ValueError("The 'include' and 'exclude' arguments cannot "
"both be set. Please pass at most one of these "
"for domain '%s'." % self.name)
self.path_patterns = listify(config.get('default_path_patterns', [])) | 991,420 |
Determine whether the passed file matches the Entity.
Args:
f (File): The File instance to match against.
Returns: the matched value if a match was found, otherwise None. | def match_file(self, f, update_file=False):
if self.map_func is not None:
val = self.map_func(f)
else:
m = self.regex.search(f.path)
val = m.group(1) if m is not None else None
return self._astype(val) | 991,422 |
Return a domain if one already exists, or create a new one if not.
Args:
domain (str, dict): Can be one of:
- The name of the Domain to return (fails if none exists)
- A path to the Domain configuration file
- A dictionary containing configuration information | def _get_or_load_domain(self, domain):
if isinstance(domain, six.string_types):
if domain in self.domains:
return self.domains[domain]
elif exists(domain):
with open(domain, 'r') as fobj:
domain = json.load(fobj)
else:
raise ValueError("No domain could be found/loaded from input "
"'{}'; value must be either the name of an "
"existing Domain, or a valid path to a "
"configuration file.".format(domain))
# At this point, domain is a dict
name = domain['name']
if name in self.domains:
msg = ("Domain with name '{}' already exists; returning existing "
"Domain configuration.".format(name))
warnings.warn(msg)
return self.domains[name]
entities = domain.get('entities', [])
domain = Domain(domain)
for e in entities:
self.add_entity(domain=domain, **e)
self.domains[name] = domain
return self.domains[name] | 991,424 |
Save the current Layout's index to a .json file.
Args:
filename (str): Filename to write to.
Note: At the moment, this won't serialize directory-specific config
files. This means reconstructed indexes will only work properly in
cases where there aren't multiple layout specs within a project. | def save_index(self, filename):
data = {}
for f in self.files.values():
entities = {v.entity.id: v.value for k, v in f.tags.items()}
data[f.path] = {'domains': f.domains, 'entities': entities}
with open(filename, 'w') as outfile:
json.dump(data, outfile) | 991,431 |
Return the count of unique values or files for the named entity.
Args:
entity (str): The name of the entity.
files (bool): If True, counts the number of filenames that contain
at least one value of the entity, rather than the number of
unique values of the entity. | def count(self, entity, files=False):
return self._find_entity(entity).count(files) | 991,435 |
Return information for all Files tracked in the Layout as a pandas
DataFrame.
Args:
kwargs: Optional keyword arguments passed on to get(). This allows
one to easily select only a subset of files for export.
Returns:
A pandas DataFrame, where each row is a file, and each column is
a tracked entity. NaNs are injected whenever a file has no
value for a given attribute. | def as_data_frame(self, **kwargs):
try:
import pandas as pd
except ImportError:
raise ImportError("What are you doing trying to export a Layout "
"as a pandas DataFrame when you don't have "
"pandas installed? Eh? Eh?")
if kwargs:
files = self.get(return_type='obj', **kwargs)
else:
files = self.files.values()
data = pd.DataFrame.from_records([f.entities for f in files])
data.insert(0, 'path', [f.path for f in files])
return data | 991,436 |
Build FM-index
Params:
<iterator> | <generator> docs
<str> filename | def build(self, docs=None, filename=None):
if docs:
if hasattr(docs, 'items'):
for (idx, doc) in sorted(getattr(docs, 'items')(),
key=lambda x: x[0]):
self.fm.push_back(doc)
else:
for doc in filter(bool, docs):
self.fm.push_back(doc)
self.fm.build()
if filename:
self.fm.write(filename) | 991,748 |
Merge of filter search results
Params:
<str> | <Sequential> query
<bool> _or
Return:
<list> computed_dids | def _merge_search_result(self, search_results, _or=False):
all_docids = reduce(add, [list(x.keys()) for x in search_results])
if _or:
return sorted(set(all_docids), key=all_docids.index)
return [docid for docid in set(all_docids) if all_docids.count(docid) > 1] | 991,749 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.