docstring
stringlengths
52
499
function
stringlengths
67
35.2k
__index_level_0__
int64
52.6k
1.16M
Get movies that match the search query string from the API. Args: q (optional): plain text search query; remember to URI encode page_limit (optional): number of search results to show per page, default=30 page (optional): results page number, default=1 Returns: A dict respresentation of the JSON returned from the API.
def search(self, **kwargs): path = self._get_path('search') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,015,625
Find the tty device for a given usbserial devices identifiers. Args: vendor: (int) something like 0x0000 product: (int) something like 0x0000 Returns: String, like /dev/ttyACM0 or /dev/tty.usb...
def find_usbserial(vendor, product): if platform.system() == 'Linux': vendor, product = [('%04x' % (x)).strip() for x in (vendor, product)] return linux_find_usbserial(vendor, product) elif platform.system() == 'Darwin': return osx_find_usbserial(vendor, product) else: raise NotImplementedError('Cannot find serial ports on %s' % platform.system())
1,015,666
Dispatcher for the info generators. Determines which __info_*_gen() should be used based on the supplied parameters. Args: code: The status code for the command response. message: The status message for the command reponse. compressed: Force decompression. Useful for xz* commands. Returns: An info generator.
def info_gen(self, code, message, compressed=False): if "COMPRESS=GZIP" in message: return self.__info_gzip_gen() if compressed: return self.__info_yenczlib_gen() return self.__info_plain_gen()
1,015,867
Generator for the LIST ACTIVE command. Generates a list of active newsgroups that match the specified pattern. If no pattern is specfied then all active groups are generated. See <http://tools.ietf.org/html/rfc3977#section-7.6.3> Args: pattern: Glob matching newsgroups of intrest. Yields: A tuple containing the name, low water mark, high water mark, and status for the newsgroup.
def list_active_gen(self, pattern=None): args = pattern if args is None: cmd = "LIST" else: cmd = "LIST ACTIVE" code, message = self.command(cmd, args) if code != 215: raise NNTPReplyError(code, message) for line in self.info_gen(code, message): yield utils.parse_newsgroup(line)
1,015,879
Generator for the LIST NEWSGROUPS command. Generates a list of newsgroups including the name and a short description. See <http://tools.ietf.org/html/rfc3977#section-7.6.6> Args: pattern: Glob matching newsgroups of intrest. Yields: A tuple containing the name, and description for the newsgroup.
def list_newsgroups_gen(self, pattern=None): args = pattern code, message = self.command("LIST NEWSGROUPS", args) if code != 215: raise NNTPReplyError(code, message) for line in self.info_gen(code, message): parts = line.strip().split() name, description = parts[0], "" if len(parts) > 1: description = parts[1] yield name, description
1,015,881
XZHDR command. Args: msgid_range: A message-id as a string, or an article number as an integer, or a tuple of specifying a range of article numbers in the form (first, [last]) - if last is omitted then all articles after first are included. A msgid_range of None (the default) uses the current article.
def xzhdr(self, header, msgid_range=None): args = header if msgid_range is not None: args += " " + utils.unparse_msgid_range(msgid_range) code, message = self.command("XZHDR", args) if code != 221: raise NNTPReplyError(code, message) return self.info(code, message, compressed=True)
1,015,893
Prepare the transformer to convert data and return the processed table. Args: col(pandas.DataFrame): Data to transform. Returns: pandas.DataFrame
def transform(self, col): out = pd.DataFrame(index=col.index) out[self.col_name] = col.apply(self.get_val, axis=1) if self.subtype == 'int': out[self.col_name] = out[self.col_name].astype(int) return out
1,015,988
Converts data back into original format. Args: col(pandas.DataFrame): Data to transform. Returns: pandas.DataFrame
def reverse_transform(self, col): output = pd.DataFrame(index=col.index) output[self.col_name] = col.apply(self.safe_round, axis=1) if self.subtype == 'int': output[self.col_name] = output[self.col_name].astype(int) return output
1,015,989
Returns a converter that takes in a value and turns it into an integer, if necessary. Args: col_name(str): Name of the column. subtype(str): Numeric subtype of the values. Returns: function
def safe_round(self, x): val = x[self.col_name] if np.isposinf(val): val = sys.maxsize elif np.isneginf(val): val = -sys.maxsize if np.isnan(val): val = self.default_val if self.subtype == 'integer': return int(round(val)) return val
1,015,992
Gets the top box office earning movies from the API. Sorted by most recent weekend gross ticket sales. Args: limit (optional): limits the number of movies returned, default=10 country (optional): localized data for selected country, default="us" Returns: A dict respresentation of the JSON returned from the API.
def movies_box_office(self, **kwargs): path = self._get_path('movies_box_office') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,016,073
Gets the movies currently in theaters from the API. Args: page_limit (optional): number of movies to show per page, default=16 page (optional): results page number, default=1 country (optional): localized data for selected country, default="us" Returns: A dict respresentation of the JSON returned from the API.
def movies_in_theaters(self, **kwargs): path = self._get_path('movies_in_theaters') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,016,074
Gets the current opening movies from the API. Args: limit (optional): limits the number of movies returned, default=10 country (optional): localized data for selected country, default="us" Returns: A dict respresentation of the JSON returned from the API.
def movies_opening(self, **kwargs): path = self._get_path('movies_opening') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,016,075
Gets the upcoming movies from the API. Args: page_limit (optional): number of movies to show per page, default=16 page (optional): results page number, default=1 country (optional): localized data for selected country, default="us" Returns: A dict respresentation of the JSON returned from the API.
def movies_upcoming(self, **kwargs): path = self._get_path('movies_upcoming') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,016,076
Gets the current opening movies from the API. Args: limit (optional): limits the number of movies returned, default=10 country (optional): localized data for selected country, default="us" Returns: A dict respresentation of the JSON returned from the API.
def dvds_top_rentals(self, **kwargs): path = self._get_path('dvds_top_rentals') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,016,078
Gets the upcoming movies from the API. Args: page_limit (optional): number of movies to show per page, default=16 page (optional): results page number, default=1 country (optional): localized data for selected country, default="us" Returns: A dict respresentation of the JSON returned from the API.
def dvds_current_releases(self, **kwargs): path = self._get_path('dvds_current_releases') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,016,079
Gets the upcoming movies from the API. Args: page_limit (optional): number of movies to show per page, default=16 page (optional): results page number, default=1 country (optional): localized data for selected country, default="us" Returns: A dict respresentation of the JSON returned from the API.
def dvds_new_releases(self, **kwargs): path = self._get_path('dvds_new_releases') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,016,080
Gets the upcoming movies from the API. Args: page_limit (optional): number of movies to show per page, default=16 page (optional): results page number, default=1 country (optional): localized data for selected country, default="us" Returns: A dict respresentation of the JSON returned from the API.
def dvds_upcoming(self, **kwargs): path = self._get_path('dvds_upcoming') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
1,016,081
Returns the predictions for ``X``. Under the hood this method simply goes through the outputs of ``iter_predict`` and returns the final one. Arguments: X (array-like or sparse matrix of shape (n_samples, n_features)): The input samples. Sparse matrices are accepted only if they are supported by the weak model. Returns: array of shape (n_samples,) containing the predicted values.
def predict(self, X): return collections.deque(self.iter_predict(X), maxlen=1).pop()
1,016,115
Returns the predicted probabilities for ``X``. Arguments: X (array-like or sparse matrix of shape (n_samples, n_features)): The input samples. Sparse matrices are accepted only if they are supported by the weak model. Returns: array of shape (n_samples, n_classes) containing the predicted probabilities.
def predict_proba(self, X): return collections.deque(self.iter_predict_proba(X), maxlen=1).pop()
1,016,122
Creates an endpoint and call bindToEndpoint(endpoint). This is a convenience method. Parameters: instance -- the object instance to which the getter, setter and changedSignal belong setter -- the value setter method valueChangedSignal -- the pyqtSignal that is emitted with the value changes getter -- the value getter method (default None) If None, the signal argument(s) are passed to the setter method
def bind(self,instance,setter,valueChangedSignal,getter = None): endpoint = BindingEndpoint(instance,setter,valueChangedSignal,getter=getter) self.bindToEndPoint(endpoint)
1,016,315
Anonymize in `table_data` the fields in `pii_fields`. Args: table_data (pandas.DataFrame): Original dataframe/table. pii_fields (list[dict]): Metadata for the fields to transform. Result: pandas.DataFrame: Anonymized table.
def _anonymize_table(cls, table_data, pii_fields): for pii_field in pii_fields: field_name = pii_field['name'] transformer = cls.get_class(TRANSFORMERS['categorical'])(pii_field) table_data[field_name] = transformer.anonymize_column(table_data) return table_data
1,016,319
Load the contents of meta_file and the corresponding data. If fields containing Personally Identifiable Information are detected in the metadata they are anonymized before asign them into `table_dict`. Args: base_dir(str): Root folder of the dataset files. Returns: dict: Mapping str -> tuple(pandas.DataFrame, dict)
def _get_tables(self, base_dir): table_dict = {} for table in self.metadata['tables']: if table['use']: relative_path = os.path.join(base_dir, self.metadata['path'], table['path']) data_table = pd.read_csv(relative_path) pii_fields = self._get_pii_fields(table) data_table = self._anonymize_table(data_table, pii_fields) table_dict[table['name']] = (data_table, table) return table_dict
1,016,320
Apply the stored transformers to `table`. Args: table(pandas.DataFrame): Contents of the table to be transformed. table_meta(dict): Metadata for the given table. missing(bool): Wheter or not use NullTransformer to handle missing values. Returns: pandas.DataFrame: Transformed table.
def transform_table(self, table, table_meta, missing=None): if missing is None: missing = self.missing else: self.missing = missing warnings.warn(DEPRECATION_MESSAGE.format('transform_table'), DeprecationWarning) content = {} columns = [] table_name = table_meta['name'] for field in table_meta['fields']: column_name = field['name'] if missing and table[column_name].isnull().any(): null_transformer = transformers.NullTransformer(field) clean_column = null_transformer.fit_transform(table[column_name]) null_name = '?' + column_name columns.append(null_name) content[null_name] = clean_column[null_name].values column = clean_column[column_name] else: column = table[column_name].to_frame() transformer = self.transformers[(table_name, column_name)] content[column_name] = transformer.transform(column)[column_name].values columns.append(column_name) return pd.DataFrame(content, columns=columns)
1,016,326
Transform a `table` back to its original format. Args: table(pandas.DataFrame): Contents of the table to be transformed. table_meta(dict): Metadata for the given table. missing(bool): Wheter or not use NullTransformer to handle missing values. Returns: pandas.DataFrame: Table in original format.
def reverse_transform_table(self, table, table_meta, missing=None): if missing is None: missing = self.missing else: self.missing = missing warnings.warn( DEPRECATION_MESSAGE.format('reverse_transform_table'), DeprecationWarning) result = pd.DataFrame(index=table.index) table_name = table_meta['name'] for field in table_meta['fields']: new_column = self._reverse_transform_column(table, field, table_name) if new_column is not None: result[field['name']] = new_column return result
1,016,327
Encrypt File Args: filename: Pass the filename to encrypt. Returns: No return.
def encrpyt_file(self, filename): if not os.path.exists(filename): print "Invalid filename %s. Does not exist" % filename return if self.vault_password is None: print "ENV Variable PYANSI_VAULT_PASSWORD not set" return if self.is_file_encrypted(filename): # No need to do anything. return cipher = 'AES256' vaulteditor = VaultEditor(cipher, self.vault_password, filename) vaulteditor.encrypt_file()
1,016,425
Decrypt File Args: filename: Pass the filename to encrypt. Returns: No return.
def decrypt_file(self, filename): if not os.path.exists(filename): print "Invalid filename %s. Does not exist" % filename return if self.vault_password is None: print "ENV Variable PYANSI_VAULT_PASSWORD not set" return if not self.is_file_encrypted(filename): # No need to do anything. return cipher = 'AES256' vaulteditor = VaultEditor(cipher, self.vault_password, filename) vaulteditor.decrypt_file()
1,016,426
Run converter. Args: language: (unicode) language code.
def convert(self, language, *args, **kwargs): for f in find_pos(language): PoToXls(src=f, **kwargs).convert()
1,016,458
Prepare the transformer to convert data and return the processed table. Args: col(pandas.DataFrame): Data to transform. Returns: pandas.DataFrame
def transform(self, col): out = pd.DataFrame(index=col.index) out[self.col_name] = col.fillna(self.default_value) out[self.new_name] = (pd.notnull(col) * 1).astype(int) return out
1,016,487
Converts data back into original format. Args: col(pandas.DataFrame): Data to transform. Returns: pandas.DataFrame
def reverse_transform(self, col): output = pd.DataFrame() new_name = '?' + self.col_name col.loc[col[new_name] == 0, self.col_name] = np.nan output[self.col_name] = col[self.col_name] return output
1,016,488
Init conversion. Args: src: (unicode or string) path to ".po" file.
def __init__(self, src, *args, **kwargs): self.quiet = kwargs.pop("quiet", False) if os.path.exists(src): self.src = src else: if not self.quiet: sys.stderr.write("ERROR: File '{src}' does not exists.".format(**{"src": src, })) self.logger.error("ERROR: File '{src}' does not exists.".format(**{"src": src, })) sys.exit(-1) self.po = polib.pofile(self.src) self.result = xlwt.Workbook(encoding="utf-8")
1,016,518
Write sheet header. Args: sheet: (xlwt.Worksheet.Worksheet) instance of xlwt sheet. name: (unicode) name of sheet.
def header(self, sheet, name): header = sheet.row(0) for i, column in enumerate(self.headers[name]): header.write(i, self.headers[name][i])
1,016,519
Create a map of the empirical probability for each category. Args: col(pandas.DataFrame): Data to transform.
def _fit(self, col): column = col[self.col_name].replace({np.nan: np.inf}) frequencies = column.groupby(column).count().rename({np.inf: None}).to_dict() # next set probability ranges on interval [0,1] start = 0 end = 0 num_vals = len(col) for val in frequencies: prob = frequencies[val] / num_vals end = start + prob interval = (start, end) mean = np.mean(interval) std = prob / 6 self.probability_map[val] = (interval, mean, std) start = end
1,016,701
Prepare the transformer to convert data and return the processed table. Args: col(pandas.DataFrame): Data to transform. Returns: pandas.DataFrame
def transform(self, col): out = pd.DataFrame() # Make sure all nans are handled the same by replacing with None column = col[self.col_name].replace({np.nan: None}) out[self.col_name] = column.apply(self.get_val) return out
1,016,702
Prepare the transformer and return processed data. Args: col(pandas.DataFrame): Data to transform. Returns: pandas.DataFrame
def fit_transform(self, col): if self.anonymize: col = self.anonymize_column(col) self._fit(col) return self.transform(col)
1,016,703
Converts data back into original format. Args: col(pandas.DataFrame): Data to transform. Returns: pandas.DataFrame
def reverse_transform(self, col): output = pd.DataFrame() output[self.col_name] = self.get_category(col[self.col_name]) return output
1,016,704
Returns categories for the specified numeric values Args: column(pandas.Series): Values to transform into categories Returns: pandas.Series
def get_category(self, column): result = pd.Series(index=column.index) for category, stats in self.probability_map.items(): start, end = stats[0] result[(start < column) & (column < end)] = category return result
1,016,706
Parse timezone to offset in seconds. Args: value: A timezone in the '+0000' format. An integer would also work. Returns: The timezone offset from GMT in seconds as an integer.
def _offset(value): o = int(value) if o == 0: return 0 a = abs(o) s = a*36+(a%100)*24 return (o//a)*s
1,016,716
Convert timestamp string to time in seconds since epoch. Timestamps strings like '18 Jun 2013 12:00:00 GMT' are able to be converted by this function. Args: value: A timestamp string in the format '%d %b %Y %H:%M:%S GMT'. Returns: The time in seconds since epoch as an integer. Raises: ValueError: If timestamp is invalid. KeyError: If the abbrieviated month is invalid. Note: The timezone is ignored it is simply assumed to be UTC/GMT.
def timestamp_d_b_Y_H_M_S(value): d, b, Y, t, Z = value.split() H, M, S = t.split(":") return int(calendar.timegm(( int(Y), _months[b.lower()], int(d), int(H), int(M), int(S), 0, 0, 0 )))
1,016,717
Convert timestamp string to a datetime object. Timestamps strings like '18 Jun 2013 12:00:00 GMT' are able to be converted by this function. Args: value: A timestamp string in the format '%d %b %Y %H:%M:%S GMT'. Returns: A datetime object. Raises: ValueError: If timestamp is invalid. KeyError: If the abbrieviated month is invalid. Note: The timezone is ignored it is simply assumed to be UTC/GMT.
def datetimeobj_d_b_Y_H_M_S(value): d, b, Y, t, Z = value.split() H, M, S = t.split(":") return datetime.datetime( int(Y), _months[b.lower()], int(d), int(H), int(M), int(S), tzinfo=TZ_GMT )
1,016,718
Convert timestamp string to time in seconds since epoch. Timestamps strings like 'Tue, 18 Jun 2013 22:00:00 +1000' are able to be converted by this function. Args: value: A timestamp string in the format '%a, %d %b %Y %H:%M:%S %z'. Returns: The time in seconds since epoch as an integer. Raises: ValueError: If timestamp is invalid. KeyError: If the abbrieviated month is invalid.
def timestamp_a__d_b_Y_H_M_S_z(value): a, d, b, Y, t, z = value.split() H, M, S = t.split(":") return int(calendar.timegm(( int(Y), _months[b.lower()], int(d), int(H), int(M), int(S), 0, 0, 0 ))) - _offset(z)
1,016,719
Convert timestamp string to a datetime object. Timestamps strings like 'Tue, 18 Jun 2013 22:00:00 +1000' are able to be converted by this function. Args: value: A timestamp string in the format '%a, %d %b %Y %H:%M:%S %z'. Returns: A datetime object. Raises: ValueError: If timestamp is invalid. KeyError: If the abbrieviated month is invalid.
def datetimeobj_a__d_b_Y_H_M_S_z(value): a, d, b, Y, t, z = value.split() H, M, S = t.split(":") return datetime.datetime( int(Y), _months[b.lower()], int(d), int(H), int(M), int(S), tzinfo=dateutil.tz.tzoffset(None, _offset(z)) )
1,016,720
Convert timestamp string to time in seconds since epoch. Timestamps strings like '20130618120000' are able to be converted by this function. Args: value: A timestamp string in the format '%Y%m%d%H%M%S'. Returns: The time in seconds since epoch as an integer. Raises: ValueError: If timestamp is invalid. Note: The timezone is assumed to be UTC/GMT.
def timestamp_YmdHMS(value): i = int(value) S = i M = S//100 H = M//100 d = H//100 m = d//100 Y = m//100 return int(calendar.timegm(( Y % 10000, m % 100, d % 100, H % 100, M % 100, S % 100, 0, 0, 0) ))
1,016,721
Convert timestamp string to a datetime object. Timestamps strings like '20130618120000' are able to be converted by this function. Args: value: A timestamp string in the format '%Y%m%d%H%M%S'. Returns: A datetime object. Raises: ValueError: If timestamp is invalid. Note: The timezone is assumed to be UTC/GMT.
def datetimeobj_YmdHMS(value): i = int(value) S = i M = S//100 H = M//100 d = H//100 m = d//100 Y = m//100 return datetime.datetime( Y % 10000, m % 100, d % 100, H % 100, M % 100, S % 100, tzinfo=TZ_GMT )
1,016,722
Convert timestamp string to a datetime object. Timestamps strings like '1383470155' are able to be converted by this function. Args: value: A timestamp string as seconds since epoch. Returns: A datetime object. Raises: ValueError: If timestamp is invalid.
def datetimeobj_epoch(value): return datetime.datetime.utcfromtimestamp(int(value)).replace(tzinfo=TZ_GMT)
1,016,723
Convert timestamp string to time in seconds since epoch. Wraps the datetime.datetime.strptime(). This is slow use the other timestamp_*() functions if possible. Args: value: A timestamp string. fmt: A timestamp format string. Returns: The time in seconds since epoch as an integer.
def timestamp_fmt(value, fmt): return int(calendar.timegm( datetime.datetime.strptime(value, fmt).utctimetuple() ))
1,016,724
Convert timestamp string to time in seconds since epoch. Most timestamps strings are supported in fact this wraps the dateutil.parser.parse() method. This is SLOW use the other timestamp_*() functions if possible. Args: value: A timestamp string. Returns: The time in seconds since epoch as an integer.
def timestamp_any(value): return int(calendar.timegm(dateutil.parser.parse(value).utctimetuple()))
1,016,725
Applies an exponential to values to turn them positive numbers. Args: column (pandas.DataFrame): Data to transform. Returns: pd.DataFrame
def transform(self, column): self.check_data_type() return pd.DataFrame({self.col_name: np.exp(column[self.col_name])})
1,016,768
Applies the natural logarithm function to turn positive values into real ranged values. Args: column (pandas.DataFrame): Data to transform. Returns: pd.DataFrame
def reverse_transform(self, column): self.check_data_type() return pd.DataFrame({self.col_name: np.log(column[self.col_name])})
1,016,769
Return the contents and metadata of a given table. Args: table_name(str): Name of the table. meta_file(str): Path to the meta.json file. meta(dict): Contents of meta.json. Returns: tuple(pandas.DataFrame, dict)
def load_data_table(table_name, meta_file, meta): for table in meta['tables']: if table['name'] == table_name: prefix = os.path.dirname(meta_file) relative_path = os.path.join(prefix, meta['path'], table['path']) return pd.read_csv(relative_path), table
1,016,864
Return the content and metadata of a fiven column. Args: table_name(str): Name of the table. col_name(str): Name of the column. meta_file(str): Path to the meta.json file. Returns: tuple(pandas.Series, dict)
def get_col_info(table_name, col_name, meta_file): with open(meta_file, 'r') as f: meta = json.load(f) data_table, table = load_data_table(table_name, meta_file, meta) for field in table['fields']: if field['name'] == col_name: col_meta = field col = data_table[col_name] return (col, col_meta)
1,016,865
Parse a newsgroup info line to python types. Args: line: An info response line containing newsgroup info. Returns: A tuple of group name, low-water as integer, high-water as integer and posting status. Raises: ValueError: If the newsgroup info cannot be parsed. Note: Posting status is a character is one of (but not limited to): "y" posting allowed "n" posting not allowed "m" posting is moderated
def parse_newsgroup(line): parts = line.split() try: group = parts[0] low = int(parts[1]) high = int(parts[2]) status = parts[3] except (IndexError, ValueError): raise ValueError("Invalid newsgroup info") return group, low, high, status
1,016,882
Parse a header line. Args: line: A header line as a string. Returns: None if end of headers is found. A string giving the continuation line if a continuation is found. A tuple of name, value when a header line is found. Raises: ValueError: If the line cannot be parsed as a header.
def parse_header(line): if not line or line == "\r\n": return None if line[0] in " \t": return line[1:].rstrip() name, value = line.split(":", 1) return (name.strip(), value.strip())
1,016,883
Parse a string a iterable object (including file like objects) to a python dictionary. Args: obj: An iterable object including file-like objects. Returns: An dictionary of headers. If a header is repeated then the last value for that header is given. Raises: ValueError: If the first line is a continuation line or the headers cannot be parsed.
def parse_headers(obj): if isinstance(obj, basestring): obj = cStringIO.StringIO(obj) hdrs = [] for line in obj: hdr = parse_header(line) if not hdr: break if isinstance(hdr, basestring): if not hdrs: raise ValueError("First header is a continuation") hdrs[-1] = (hdrs[-1][0], hdrs[-1][1] + hdr) continue hdrs.append(hdr) return iodict.IODict(hdrs)
1,016,884
Parse a dictionary of headers to a string. Args: hdrs: A dictionary of headers. Returns: The headers as a string that can be used in an NNTP POST.
def unparse_headers(hdrs): return "".join([unparse_header(n, v) for n, v in hdrs.items()]) + "\r\n"
1,016,885
Initialize the build rule. Args: **kwargs: Assorted parameters; see subclass implementations for details.
def __init__(self, **kwargs): self.address = self.name = address.new(kwargs['name']) # TODO: eliminate use of .name self.subgraph = None self.params = {} log.debug('New target: %s', self.address) try: for param_name, param_type in self.required_params: self.params[param_name] = kwargs.pop(param_name) assert isinstance(self.params[param_name], param_type) except AssertionError as err: if isinstance(param_type, tuple) and len(param_type) > 1: msg = 'one of: %s' % ', '.join(param_type.__name__) else: msg = str(param_type.__name__) raise error.InvalidRule( 'While loading %s: Invalid type for %s. ' 'Expected: %s. Actual: %s.' % ( self.address, param_name, msg, repr(self.params[param_name]))) except KeyError as err: log.error(err) raise error.InvalidRule( 'While loading %s: Required parameter %s not given.' % repr( self.address, param_name)) for (param_name, param_type, param_default) in self.optional_params: if param_name not in kwargs: self.params[param_name] = param_default else: self.params[param_name] = kwargs.pop(param_name) if not isinstance(self.params[param_name], param_type): msg = str(param_type.__name__) if isinstance(param_type, tuple) and len(param_type) > 1: msg = 'one of: %s' % ', '.join(param_type.__name__) raise error.InvalidRule( 'While loading %s: Invalid type for %s. ' 'Expected: %s. Actual: %s.' % ( self.address, param_name, msg, repr(self.params[param_name]))) if kwargs: # There are leftover arguments. raise error.InvalidRule( '[%s]: Unknown argument(s): %s' % ( self.address, ', '.join(kwargs.keys()))) if self.graphcontext is not None: self.graphcontext.add_node(self.address, target_obj=self) # TODO: process deps here? try: self.validate_args() except AssertionError as err: raise error.InvalidRule('Error in %s: %s' % (self.address, err))
1,017,070
Construct request for the Retsly API Args: client (dict): Retsly client method (string): method url (string): url query (list): query
def __init__(self, client, method, url, query=None): self.client = client self.method = method self.url = url self.query = query if query is not None else {}
1,017,076
Get the contents of a specific subtag from Clusterpoint Storage's response's content tag. Args: name -- A name string of the content's subtag to be returned. Returns: A dict representing the contents of the specified field or a list of dicts if there are multiple fields with that tag name. Returns None if no field found.
def get_content_field(self, name): fields = self._content.findall(name) if not fields: return None elif len(fields) == 1: return etree_to_dict(fields[0])[name] else: return [etree_to_dict(field)[name] for field in fields]
1,017,273
Run the tests that are loaded by each of the strings provided. Arguments: tests (iterable): the collection of tests (specified as `str` s) to run reporter (Reporter): a `Reporter` to use for the run. If unprovided, the default is to return a `virtue.reporters.Counter` (which produces no output). stop_after (int): a number of non-successful tests to allow before stopping the run.
def run(tests=(), reporter=None, stop_after=None): if reporter is None: reporter = Counter() if stop_after is not None: reporter = _StopAfterWrapper(reporter=reporter, limit=stop_after) locator = ObjectLocator() cases = ( case for test in tests for loader in locator.locate_by_name(name=test) for case in loader.load() ) suite = unittest.TestSuite(cases) getattr(reporter, "startTestRun", lambda: None)() suite.run(reporter) getattr(reporter, "stopTestRun", lambda: None)() return reporter
1,017,386
Generates the path to a file in the mh cache. The generated path does not imply the file's existence! Args: filename: Filename relative to buildroot rule: A targets.SomeBuildRule object metahash: hash object
def path_in_cache(self, filename, metahash): cpath = self._genpath(filename, metahash) if os.path.exists(cpath): return cpath else: raise CacheMiss
1,017,424
Put a file in the cache. Args: filepath: Path to file on disk. buildroot: Path to buildroot buildrule: The rule that generated this file. metahash: hash object
def putfile(self, filepath, buildroot, metahash): def gen_obj_path(filename): filehash = util.hash_file(filepath).hexdigest() return filehash, os.path.join(self.obj_cachedir, filehash[0:2], filehash[2:4], filehash) filepath_relative = filepath.split(buildroot)[1][1:] # Strip leading / # Path for the metahashed reference: incachepath = self._genpath(filepath_relative, metahash) filehash, obj_path = gen_obj_path(filepath) if not os.path.exists(obj_path): obj_dir = os.path.dirname(obj_path) if not os.path.exists(obj_dir): os.makedirs(obj_dir) log.debug('Adding to obj cache: %s -> %s', filepath, obj_path) os.link(filepath, obj_path) if os.path.exists(incachepath): existingfile_hash = util.hash_file(incachepath).hexdigest() if filehash != existingfile_hash: log.warn('File found in mh cache, but checksum differs. ' 'Replacing with this new version. (File: %s)', filepath) log.warn('Possible reasons for this:') log.warn(' 1. This build is not hermetic, and something ' 'differs about the build environment compared to the ' 'previous build.') log.warn(' 2. This file has a timestamp or other build-time ' 'related data encoded into it, which will always ' 'cause the checksum to differ when built.') log.warn(' 3. Everything is terrible and nothing works.') os.unlink(incachepath) if not os.path.exists(incachepath): log.debug('Adding to mh cache: %s -> %s', filepath, incachepath) if not os.path.exists(os.path.dirname(incachepath)): os.makedirs(os.path.dirname(incachepath)) os.link(obj_path, incachepath)
1,017,426
Returns true if object is cached. Args: objpath: Filename relative to buildroot. metahash: hash object
def in_cache(self, objpath, metahash): try: self.path_in_cache(objpath, metahash) return True except CacheMiss: return False
1,017,427
Get object from cache, write it to dst_path. Args: objpath: filename relative to buildroot (example: mini-boot/blahblah/somefile.bin) metahash: metahash. See targets/base.py dst_path: Absolute path where the file should be written. Raises: CacheMiss: if the item is not in the cache
def get_obj(self, objpath, metahash, dst_path): incachepath = self.path_in_cache(objpath, metahash) if not os.path.exists(incachepath): raise CacheMiss('%s not in cache.' % incachepath) else: log.debug('Cache hit! %s~%s', objpath, metahash.hexdigest()) if not os.path.exists(os.path.dirname(dst_path)): os.makedirs(os.path.dirname(dst_path)) os.link(incachepath, dst_path)
1,017,428
Connect given term strings or list(s) of term strings with an AND operator for querying. Args: An arbitrary number of either strings or lists of strings representing query terms. Returns A query string consisting of argument terms and'ed together.
def and_terms(*args): args = [arg if not isinstance(arg, list) else ' '.join(arg) for arg in args] return '({0})'.format(' '.join(args))
1,017,930
Connect given term strings or list(s) of term strings with a OR operator for querying. Args: An arbitrary number of either strings or lists of strings representing query terms. Returns A query string consisting of argument terms or'ed together.
def or_terms(*args): args = [arg if not isinstance(arg, list) else ' '.join(arg) for arg in args] return '{{{0}}}'.format(' '.join(args))
1,017,931
Runs iSort (https://pypi.python.org/pypi/isort) Args: amend: whether or not to commit results stage: whether or not to stage changes
def sort(amend: bool = False, stage: bool = False): _sort(amend, stage)
1,018,113
Pass file as a filename, open file object, or None to return the request bytes Args: url (str): URL of file to download file (Union[str, io, None]): One of the following: - Filename of output file - File opened in binary write mode - None: Return raw bytes instead Returns: Union[bytes, None]: Bytes of file if file is None
def download(url, file=None): import urllib.request import shutil if isinstance(file, str): file = open(file, 'wb') try: with urllib.request.urlopen(url) as response: if file: shutil.copyfileobj(response, file) else: return response.read() finally: if file: file.close()
1,018,402
Download and extract the tar at the url to the given folder Args: tar_url (str): URL of tar file to download folder (str): Location of parent directory to extract to. Doesn't have to exist tar_filename (str): Location to download tar. Default is to a temp file
def download_extract_tar(tar_url, folder, tar_filename=''): try: makedirs(folder) except OSError: if not isdir(folder): raise data_file = tar_filename if not data_file: fd, data_file = mkstemp('.tar.gz') download(tar_url, os.fdopen(fd, 'wb')) else: download(tar_url, data_file) with tarfile.open(data_file) as tar: tar.extractall(path=folder)
1,018,403
Install or update a tar package that has an md5 Args: tar_url (str): URL of package to download folder (str): Location to extract tar. Will be created if doesn't exist md5_url (str): URL of md5 to use to check for updates on_download (Callable): Function that gets called when downloading a new update on_complete (Callable): Function that gets called when a new download is complete Returns: bool: Whether the package was updated
def install_package(tar_url, folder, md5_url='{tar_url}.md5', on_download=lambda: None, on_complete=lambda: None): data_file = join(folder, basename(tar_url)) md5_url = md5_url.format(tar_url=tar_url) try: remote_md5 = download(md5_url).decode('utf-8').split(' ')[0] except (UnicodeDecodeError, URLError): raise ValueError('Invalid MD5 url: ' + md5_url) if remote_md5 != calc_md5(data_file): on_download() if isfile(data_file): try: with tarfile.open(data_file) as tar: for i in reversed(list(tar)): try: os.remove(join(folder, i.path)) except OSError: pass except (OSError, EOFError): pass download_extract_tar(tar_url, folder, data_file) on_complete() if remote_md5 != calc_md5(data_file): raise ValueError('MD5 url does not match tar: ' + md5_url) return True return False
1,018,404
Return a date created from the last 6 digits of a uuid. Arguments: uuid The unique identifier to parse. century The first 2 digits to assume in the year. Default is '20'. Examples: >>> uuid_to_date('e8820616-1462-49b6-9784-e99a32120201') datetime.date(2012, 2, 1) >>> uuid_to_date('e8820616-1462-49b6-9784-e99a32120201', '18') datetime.date(1812, 2, 1)
def uuid_to_date(uuid, century='20'): day = int(uuid[-2:]) month = int(uuid[-4:-2]) year = int('%s%s' % (century, uuid[-6:-4])) return datetime.date(year=year, month=month, day=day)
1,018,462
Adds a line to the .gitignore file of the repo Args: line: line to add
def add_to_gitignore(line: str): if not line.endswith('\n'): line = f'{line}\n' if GIT_IGNORE.exists(): if line in GIT_IGNORE.read_text(encoding='utf8'): return previous_content = GIT_IGNORE.read_text(encoding='utf8') else: previous_content = '' GIT_IGNORE.write_text(previous_content + line, encoding='utf8')
1,018,466
Initialize from a list of options with random weights. The weights assigned to each object are uniformally random integers between ``1`` and ``len(options)`` Args: options (list): The list of options of any type this object can return with the ``get()`` method. Returns: SoftOptions: A newly constructed instance
def with_random_weights(cls, options): return cls([(value, random.randint(1, len(options))) for value in options])
1,018,620
Convert an ``(r, g, b)`` color tuple to a hexadecimal string. Alphabetical characters in the output will be capitalized. Args: color (tuple): An rgb color tuple of form: (int, int, int) Returns: string Example: >>> SoftColor.rgb_to_hex((0, 0, 0)) '#000000' >>> SoftColor.rgb_to_hex((255, 255, 255)) '#FFFFFF'
def rgb_to_hex(cls, color): return '#{0:02x}{1:02x}{2:02x}'.format( cls._bound_color_value(color[0]), cls._bound_color_value(color[1]), cls._bound_color_value(color[2])).upper()
1,018,629
Parse spss header file Arguments: path {str} -- path al fichero de cabecera. leyend_position -- posicion del la leyenda en el header.
def parse_spss_headerfile(path, **kwargs): headers_clean = {} try: with codecs.open(path, 'r', kwargs.get('encoding', 'latin-1')) as file_: raw_file = file_.read() raw_splited = exclude_empty_values(raw_file.split('.\r\n')) # suposse that by default spss leyend is in position 0. leyend = parse_spss_header_leyend( raw_leyend=raw_splited.pop(kwargs.get('leyend_position', 0)), leyend=headers_clean) if not leyend: raise Exception('Empty leyend') # only want VARIABLE(S) LABEL(S) & VALUE(S) LABEL(S) for label in [x for x in raw_splited if 'label' in x.lower()]: values = parse_spss_header_labels( raw_labels=label, headers=leyend) except Exception as ex: logger.error('Fail to parse spss headerfile - {}'.format(ex), header_file=path) headers_clean = {} return headers_clean
1,018,655
Parse spss data file Arguments: path {str} -- path al fichero de cabecera. **kwargs {[dict]} -- otros argumentos que puedan llegar
def parse_spss_datafile(path, **kwargs): data_clean = [] with codecs.open(path, 'r', kwargs.get('encoding', 'latin-1')) as file_: raw_file = file_.read() data_clean = raw_file.split('\r\n') return exclude_empty_values(data_clean)
1,018,656
Parse pdf to a list of strings using the pdfminer lib. Args: no_laparams=False, all_texts=None, detect_vertical=None, word_margin=None, char_margin=None, line_margin=None, boxes_flow=None, codec='utf-8', strip_control=False, maxpages=0, page_numbers=None, password="", scale=1.0, rotation=0, layoutmode='normal', debug=False, disable_caching=False,
def pdf_to_text(pdf_filepath='', **kwargs): result = [] try: if not os.path.exists(pdf_filepath): raise ValueError("No valid pdf filepath introduced..") # TODO: REVIEW THIS PARAMS # update params if not defined kwargs['outfp'] = kwargs.get('outfp', StringIO()) kwargs['laparams'] = kwargs.get('laparams', pdfminer.layout.LAParams()) kwargs['imagewriter'] = kwargs.get('imagewriter', None) kwargs['output_type'] = kwargs.get('output_type', "text") kwargs['codec'] = kwargs.get('codec', 'utf-8') kwargs['disable_caching'] = kwargs.get('disable_caching', False) with open(pdf_filepath, "rb") as f_pdf: pdfminer.high_level.extract_text_to_fp(f_pdf, **kwargs) result = kwargs.get('outfp').getvalue() except Exception: logger.error('fail pdf to text parsing') return result
1,018,659
Function to set a default namespace/include. It returns a decorator with the namespace/include argument already set. Arguments: - include: A custom URL list, previously set on the module's urls.py; - namespace: the URL's namespace.
def uconf(**kwargs): if len(kwargs) != 1: # this function must have exactly # one specific argument (namespace or include) raise TypeError( 'uconf() takes exactly 1 argument. ({} given)'.format(len(kwargs)) ) # gets the argument name arg_name = list(kwargs.keys()).pop(0) # checks if it has a valid name (it must be 'namespace' or 'include') if arg_name not in ['include', 'namespace']: # if it's not a valid name, raise a TypeError raise TypeError( 'Invalid argument: {}'.format(arg_name) ) # creates the decorator with namespace/include already set. return partial(umap, **kwargs)
1,018,744
Runs Pyup's Safety tool (https://pyup.io/safety/) Args: amend: whether or not to commit results stage: whether or not to stage changes
def pep8(amend: bool = False, stage: bool = False): _pep8(amend, stage)
1,018,749
It is just stub for simplify setting timeout. Args: timeout (int): timeout in milliseconds, after which callback will be called callback (callable): usually, just a function that will be called each time after timeout *callback_args (any type): arguments that will be passed to callback function
def set_refresh(self, timeout, callback, *callback_args): GObject.timeout_add(timeout, callback, *callback_args)
1,018,919
Add mouse right click menu item. Args: command (callable): function that will be called after left mouse click on title title (str): label that will be shown in menu
def add_menu_item(self, command, title): m_item = Gtk.MenuItem() m_item.set_label(title) m_item.connect('activate', command) self.menu.append(m_item) self.menu.show_all()
1,018,920
Return packages mentioned in the given file. Args: requirements_file (str): path to the requirements file to be parsed. Returns: (list): 3rd-party package dependencies contained in the file.
def requirements(requirements_file): return [ str(pkg.req) for pkg in parse_requirements( requirements_file, session=pip_download.PipSession()) if pkg.req is not None]
1,019,015
Read from fileobj stream, return hash of its contents. Args: fileobj: File-like object with read() hasher: Hash object such as hashlib.sha1(). Defaults to sha1. blocksize: Read from fileobj this many bytes at a time.
def hash_stream(fileobj, hasher=None, blocksize=65536): hasher = hasher or hashlib.sha1() buf = fileobj.read(blocksize) while buf: hasher.update(buf) buf = fileobj.read(blocksize) return hasher
1,019,110
Returns list of paths matching one or more wildcard patterns. Args: include_dirs: Include directories in the output
def glob(*args): if len(args) is 1 and isinstance(args[0], list): args = args[0] matches = [] for pattern in args: for item in glob2.glob(pattern): if not os.path.isdir(item): matches.append(item) return matches
1,019,112
Build an audio chunk and progress the oscillator states. Args: oscillators (list): A list of oscillator.Oscillator objects to build chunks from Returns: str: a string of audio sample bytes ready to be written to a wave file
def build_chunk(oscillators): step_random_processes(oscillators) subchunks = [] for osc in oscillators: osc.amplitude.step_amp() osc_chunk = osc.get_samples(config.CHUNK_SIZE) if osc_chunk is not None: subchunks.append(osc_chunk) if len(subchunks): new_chunk = sum(subchunks) else: new_chunk = numpy.zeros(config.CHUNK_SIZE) # If we exceed the maximum amplitude, handle it gracefully chunk_amplitude = amplitude.find_amplitude(new_chunk) if chunk_amplitude > config.MAX_AMPLITUDE: # Normalize the amplitude chunk to mitigate immediate clipping new_chunk = amplitude.normalize_amplitude(new_chunk, config.MAX_AMPLITUDE) # Pick some of the offending oscillators (and some random others) # and lower their drift targets avg_amp = (sum(osc.amplitude.value for osc in oscillators) / len(oscillators)) for osc in oscillators: if (osc.amplitude.value > avg_amp and rand.prob_bool(0.1) or rand.prob_bool(0.01)): osc.amplitude.drift_target = rand.weighted_rand( [(-5, 1), (0, 10)]) osc.amplitude.change_rate = rand.weighted_rand( osc.amplitude.change_rate_weights) return new_chunk.astype(config.SAMPLE_DATA_TYPE).tostring()
1,019,168
Read default and user config files. Args: all_linters (dict): Names and classes of all available linters.
def __init__(self, all_linters): self._all_linters = all_linters default_cfg = self._read_default_file() user_cfg = self._read_user_files() self._config = self._merge(default_cfg, user_cfg) self.user_linters = [] # chosen by the user self.linters = {} # chosen by the user or all of them self._set_linters()
1,019,225
r"""Converts the given class into a static one, by changing all the methods of it into static methods. Args: cls (class): The class to be converted.
def static(cls): r for attr in dir(cls): im_func = getattr(getattr(cls, attr), 'im_func', None) if im_func: setattr(cls, attr, staticmethod(im_func)) return cls
1,019,600
Generates a two digit string based on a provided string Args: rule_name (str): A configured rule name 'pytest_mark3'. Returns: str: A two digit code based on the provided string '03'
def _generate_mark_code(rule_name): code = ''.join([i for i in str(rule_name) if i.isdigit()]) code = code.zfill(2) return code
1,019,601
Validate filename against a pattern if the filename passes the filter. Args: filename (str): The name of the file being parsed by flake8. rule_name (str): The name of the rule. rule_conf (dict): The dictionary containing the properties of the rule class_type (class): The class that this rule was called from Yields: tuple: (int, int, str, type) the tuple used by flake8 to construct a violation
def rule_n5xx(filename, rule_name, rule_conf, class_type): line_num = 0 code = _generate_mark_code(rule_name) message = "N5{} filename failed regex validation '{}'".format(code, rule_conf['filename_regex']) sanitized_filename = splitext(basename(filename))[0] # Strip path and extension if re.match(rule_conf['filter_regex'], sanitized_filename): if not re.match(rule_conf['filename_regex'], sanitized_filename): yield (line_num, 0, message, class_type)
1,019,602
r"""Gives the details on the args of the given func. Args: func (function): The function to get details on.
def _getFuncArgs(func): r code = func.func_code Defaults = func.func_defaults nargs = code.co_argcount ArgNames = code.co_varnames[:nargs] Args = OrderedDict() argCount = len(ArgNames) defCount = len(Defaults) if Defaults else 0 diff = argCount - defCount for i in range(0, diff): Args[ArgNames[i]] = {} for i in range(diff, argCount): Args[ArgNames[i]] = {'default': Defaults[i - diff]} return Args
1,019,940
Remove a node from ``self.node_list`` and links pointing to it. If ``node`` is not in the graph, do nothing. Args: node (Node): The node to be removed Returns: None Example: >>> from blur.markov.node import Node >>> node_1 = Node('One') >>> graph = Graph([node_1]) >>> graph.remove_node(node_1) >>> len(graph.node_list) 0
def remove_node(self, node): if node not in self.node_list: return self.node_list.remove(node) # Remove links pointing to the deleted node for n in self.node_list: n.link_list = [link for link in n.link_list if link.target != node]
1,020,128
Delete all nodes in ``self.node_list`` with the value ``value``. Args: value (Any): The value to find and delete owners of. Returns: None Example: >>> from blur.markov.node import Node >>> node_1 = Node('One') >>> graph = Graph([node_1]) >>> graph.remove_node_by_value('One') >>> len(graph.node_list) 0
def remove_node_by_value(self, value): self.node_list = [node for node in self.node_list if node.value != value] # Remove links pointing to the deleted node for node in self.node_list: node.link_list = [link for link in node.link_list if link.target.value != value]
1,020,129
Whether any node in ``self.node_list`` has the value ``value``. Args: value (Any): The value to find in ``self.node_list`` Returns: bool Example: >>> from blur.markov.node import Node >>> node_1 = Node('One') >>> graph = Graph([node_1]) >>> graph.has_node_with_value('One') True >>> graph.has_node_with_value('Foo') False
def has_node_with_value(self, value): for node in self.node_list: if node.value == value: return True else: return False
1,020,130
Initialize the only Config object and assign it to other classes. Args: config (Config): Config object. all_linters (dict): Names and classes of all available linters.
def __init__(self, config=None, all_linters=None): self._classes = all_linters or LINTERS self._config = config or Config(self._classes) LinterRunner.config = self._config
1,020,503
Run linters in parallel and sort all results. Args: targets (list): List of files and folders to lint.
def lint(self, targets): LinterRunner.targets = targets linters = self._config.get_linter_classes() with Pool() as pool: out_err_none = pool.map(LinterRunner.run, linters) out_err = [item for item in out_err_none if item is not None] stdout, stderr = zip(*out_err) return sorted(chain.from_iterable(stdout)), chain.from_iterable(stderr)
1,020,504
Read arguments, run and print results. Args: args (dict): Arguments parsed by docopt.
def run_from_cli(self, args): if args['--dump-config']: self._config.print_config() else: stdout, stderr = self.lint(args['<path>']) self.print_results(stdout, stderr)
1,020,505
Takes a list of files which are assumed to be jinja2 templates and tries to parse the contents of the files Args: file_contents (str): File contents of a jinja file Raises: Exception: An exception is raised if the contents of the file cannot be parsed.
def parse(file_contents, file_name): env = Environment() result = "" try: env.parse(file_contents) except Exception: _, exc_value, _ = sys.exc_info() result += "ERROR: Jinja2 Template File: {0}".format(file_name) result += repr(exc_value) + '\n' return result
1,020,603
r"""Helps to interactively get user input. Args: desc (str): The description for input. type (type / CustomType): The type of the input (defaults to None).
def get(type=None, **ArgConfig): r ArgConfig.update(type=type) return gatherInput(**reconfigArg(ArgConfig))
1,020,657
Get version info from executable Args: path: path to the executable Returns: VersionInfo
def get_product_version(path: typing.Union[str, Path]) -> VersionInfo: path = Path(path).absolute() pe_info = pefile.PE(str(path)) try: for file_info in pe_info.FileInfo: # pragma: no branch if isinstance(file_info, list): result = _parse_file_info(file_info) if result: return result else: result = _parse_file_info(pe_info.FileInfo) if result: return result raise RuntimeError(f'unable to obtain version from {path}') except (KeyError, AttributeError) as exc: traceback.print_exc() raise RuntimeError(f'unable to obtain version from {path}') from exc
1,020,680
This is a blocking function call that will wait for the queuing thread to complete. parameters: waiting_func - this function will be called every one second while waiting for the queuing thread to quit. This allows for logging timers, status indicators, etc.
def wait_for_completion(self, waiting_func=None): self.logger.debug("waiting to join queuingThread") self._responsive_join(self.queuing_thread, waiting_func)
1,020,722
Initialize a new thread. parameters: config - the configuration from configman task_queue - a reference to the queue from which to fetch jobs
def __init__(self, config, task_queue): super(TaskThread, self).__init__() self.task_queue = task_queue self.config = config
1,020,729
Find a value in the cumulative distribution function of a normal curve. See https://en.wikipedia.org/wiki/Normal_distribution Args: x (float): Value to feed into the normal function mean (float): Mean of the normal function variance (float): Variance of the normal function Returns: float Example: >>> round(_normal_function(0, 0, 5), 4) 0.1784
def _normal_function(x, mean, variance): e_power = -1 * (((x - mean) ** 2) / (2 * variance)) return (1 / math.sqrt(2 * variance * math.pi)) * (math.e ** e_power)
1,020,760