docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Default deserializer factory.
Arguments:
init (callable): type constructor.
exposes (iterable): attributes to be peeked and passed to `init`.
Returns:
callable: deserializer (`peek` routine). | def peek(init, exposes, debug=False):
def _peek(store, container, _stack=None):
args = [ store.peek(objname, container, _stack=_stack) \
for objname in exposes ]
if debug:
print(args)
return init(*args)
return _peek | 1,102,921 |
Core engine for the automatic generation of storable instances.
Finds the attributes exposed by the objects of a given type.
Mostly Python3-only.
Does not handle types which `__new__` method requires extra arguments either.
Arguments:
python_type (type): object type.
Returns:
list: attributes exposed. | def most_exposes(python_type):
_exposes = set()
try:
# list all standard class attributes and methods:
do_not_expose = set(python_type.__dir__(object) + \
['__slots__', '__module__', '__weakref__']) # may raise `AttributeError`
empty = python_type.__new__(python_type) # may raise `TypeError`
except AttributeError: # Py2 does not have `__dir__`
try:
_exposes = python_type.__slots__
except AttributeError:
pass
except TypeError: # `__new__` requires input arguments
for _workaround in storable_workarounds:
try:
_exposes = _workaround(python_type)
except (SystemExit, KeyboardInterrupt):
raise
except:
pass
else:
break
else:
# note that slots from parent classes are not in `__dict__` (like all slots)
# and - in principle - not in `__slots__` either.
all_members = empty.__dir__() # all slots are supposed to appear in this list
for attr in all_members:
if attr in do_not_expose:
# note that '__dict__' is in `do_not_expose` (comes from `object`)
continue
try: # identify the methods and properties
getattr(empty, attr)
except AttributeError as e: # then `attr` might be a slot
# properties can still throw an `AttributeError`;
# try to filter some more out
if e.args:
msg = e.args[0]
if msg == attr or msg.endswith("' object has no attribute '{}'".format(attr)):
_exposes.add(attr)
except (SystemExit, KeyboardInterrupt):
raise
except:
pass
for attr in ('__dict__',):
if attr in all_members:
_exposes.add(attr)
return list(_exposes) | 1,102,923 |
Default mechanics for building the storable instance for a type.
Arguments:
python_type (type): type.
exposes (iterable): attributes exposed by the type.
version (tuple): version number.
storable_type (str): universal string identifier for the type.
peek (callable): peeking routine.
Returns:
Storable: storable instance. | def default_storable(python_type, exposes=None, version=None, storable_type=None, peek=default_peek):
if not exposes:
for extension in expose_extensions:
try:
exposes = extension(python_type)
except (SystemExit, KeyboardInterrupt):
raise
except:
pass
else:
if exposes:
break
if not exposes:
raise AttributeError('`exposes` required for type: {!r}'.format(python_type))
return Storable(python_type, key=storable_type, \
handlers=StorableHandler(version=version, exposes=exposes, \
poke=poke(exposes), peek=peek(python_type, exposes))) | 1,102,924 |
Helper for tagging unserializable types.
Arguments:
_type (type): type to be ignored.
Returns:
Storable: storable instance that does not poke. | def not_storable(_type):
return Storable(_type, handlers=StorableHandler(poke=fake_poke, peek=fail_peek(_type))) | 1,102,938 |
Helper for forcing autoserialization of a datatype with already registered explicit
storable instance.
Arguments:
service (StorableService): active storable service.
_type (type): type to be autoserialized.
**Not tested** | def force_auto(service, _type):
storable = service.byPythonType(_type, istype=True)
version = max(handler.version[0] for handler in storable.handlers) + 1
_storable = default_storable(_type, version=(version, ))
storable.handlers.append(_storable.handlers[0]) | 1,102,939 |
Serializer factory for types which state can be natively serialized.
Arguments:
getstate (callable): takes an object and returns the object's state
to be passed to `pokeNative`.
Returns:
callable: serializer (`poke` routine). | def poke_native(getstate):
def poke(service, objname, obj, container, visited=None, _stack=None):
service.pokeNative(objname, getstate(obj), container)
return poke | 1,102,940 |
Deserializer factory for types which state can be natively serialized.
Arguments:
make (callable): type constructor.
Returns:
callable: deserializer (`peek` routine) | def peek_native(make):
def peek(service, container, _stack=None):
return make(service.peekNative(container))
return peek | 1,102,941 |
Simple handler with default `peek` and `poke` procedures.
Arguments:
init (callable): type constructor.
exposes (iterable): attributes to be (de-)serialized.
version (tuple): version number.
Returns:
StorableHandler: storable handler. | def handler(init, exposes, version=None):
return StorableHandler(poke=poke(exposes), peek=peek(init, exposes), version=version) | 1,102,942 |
Generate a default storable instance.
Arguments:
python_type (type): Python type of the object.
storable_type (str): storable type name.
version (tuple): version number of the storable handler.
Returns:
StorableHandler: storable instance.
Extra keyword arguments are passed to :meth:`registerStorable`. | def defaultStorable(self, python_type=None, storable_type=None, version=None, **kwargs):
if python_type is None:
python_type = lookup_type(storable_type)
if self.verbose:
print('generating storable instance for type: {}'.format(python_type))
self.storables.registerStorable(default_storable(python_type, \
version=version, storable_type=storable_type), **kwargs)
return self.byPythonType(python_type, True).asVersion(version) | 1,102,951 |
Generates the Sphinx configuration and Makefile.
Args:
organization (str): the organization name.
package (str): the package to be documented.
destination (str): the destination directory. | def generate(organization, package, destination):
gen = ResourceGenerator(organization, package)
tmp = tempfile.NamedTemporaryFile(mode='w+t', delete=False)
try:
tmp.write(gen.conf())
finally:
tmp.close()
shutil.copy(tmp.name, os.path.join(destination, 'conf.py'))
tmp = tempfile.NamedTemporaryFile(mode='w+t', delete=False)
try:
tmp.write(gen.makefile())
finally:
tmp.close()
shutil.copy(tmp.name, os.path.join(destination, 'Makefile')) | 1,103,128 |
Display a graph of the price history for the list of ticker symbols provided
Arguments:
symbols (list of str): Ticker symbols like "GOOG", "AAPL", etc
start (datetime): The date at the start of the period being analyzed.
end (datetime): The date at the end of the period being analyzed.
normalize (bool): Whether to normalize prices to 1 at the start of the time series. | def chart(
symbols=("AAPL", "GLD", "GOOG", "$SPX", "XOM", "msft"),
start=datetime.datetime(2008, 1, 1),
end=datetime.datetime(2009, 12, 31), # data stops at 2013/1/1
normalize=True,
):
start = util.normalize_date(start or datetime.date(2008, 1, 1))
end = util.normalize_date(end or datetime.date(2009, 12, 31))
symbols = [s.upper() for s in symbols]
timeofday = datetime.timedelta(hours=16)
timestamps = du.getNYSEdays(start, end, timeofday)
ls_keys = ['open', 'high', 'low', 'close', 'volume', 'actual_close']
ldf_data = da.get_data(timestamps, symbols, ls_keys)
d_data = dict(zip(ls_keys, ldf_data))
na_price = d_data['close'].values
if normalize:
na_price /= na_price[0, :]
plt.clf()
plt.plot(timestamps, na_price)
plt.legend(symbols)
plt.ylabel('Adjusted Close')
plt.xlabel('Date')
plt.savefig('chart.pdf', format='pdf')
plt.grid(True)
plt.show()
return na_price | 1,103,205 |
Retrieve the prices of a list of equities as a DataFrame (columns = symbols)
Arguments:
symbols (list of str): Ticker symbols like "GOOG", "AAPL", etc
e.g. ["AAPL", " slv ", GLD", "GOOG", "$SPX", "XOM", "msft"]
start (datetime): The date at the start of the period being analyzed.
end (datetime): The date at the end of the period being analyzed.
Yahoo data stops at 2013/1/1 | def price_dataframe(symbols='sp5002012',
start=datetime.datetime(2008, 1, 1),
end=datetime.datetime(2009, 12, 31),
price_type='actual_close',
cleaner=clean_dataframe,
):
if isinstance(price_type, basestring):
price_type = [price_type]
start = util.normalize_date(start or datetime.date(2008, 1, 1))
end = util.normalize_date(end or datetime.date(2009, 12, 31))
symbols = normalize_symbols(symbols)
t = du.getNYSEdays(start, end, datetime.timedelta(hours=16))
df = clean_dataframes(dataobj.get_data(t, symbols, price_type))
if not df or len(df) > 1:
return cleaner(df)
else:
return cleaner(df[0]) | 1,103,207 |
Calculate the Sharpe Ratio and other performance metrics for a portfolio
Arguments:
symbols (list of str): Ticker symbols like "GOOG", "AAPL", etc
start (datetime): The date at the start of the period being analyzed.
end (datetime): The date at the end of the period being analyzed.
normalize (bool): Whether to normalize prices to 1 at the start of the time series.
allocation (list of float): The portion of the portfolio allocated to each equity. | def portfolio_prices(
symbols=("AAPL", "GLD", "GOOG", "$SPX", "XOM", "msft"),
start=datetime.datetime(2005, 1, 1),
end=datetime.datetime(2011, 12, 31), # data stops at 2013/1/1
normalize=True,
allocation=None,
price_type='actual_close',
):
symbols = normalize_symbols(symbols)
start = util.normalize_date(start)
end = util.normalize_date(end)
if allocation is None:
allocation = [1. / len(symbols)] * len(symbols)
if len(allocation) < len(symbols):
allocation = list(allocation) + [1. / len(symbols)] * (len(symbols) - len(allocation))
total = np.sum(allocation.sum)
allocation = np.array([(float(a) / total) for a in allocation])
timestamps = du.getNYSEdays(start, end, datetime.timedelta(hours=16))
ls_keys = [price_type]
ldf_data = da.get_data(timestamps, symbols, ls_keys)
d_data = dict(zip(ls_keys, ldf_data))
na_price = d_data[price_type].values
if normalize:
na_price /= na_price[0, :]
na_price *= allocation
return np.sum(na_price, axis=1) | 1,103,208 |
Start and end index that clips the price/value of a time series the most
Assumes that the integrated maximum includes the peak (instantaneous maximum).
Arguments:
ts (TimeSeries): Time series to attempt to clip to as low a max value as possible
capacity (float): Total "funds" or "energy" available for clipping (integrated area under time series)
Returns:
2-tuple: Timestamp of the start and end of the period of the maximum clipped integrated increase | def clipping_params(ts, capacity=100):
ts_sorted = ts.order(ascending=False)
i, t0, t1, integral = 1, None, None, 0
while integral <= capacity and i+1 < len(ts):
i += 1
t0_within_capacity = t0
t1_within_capacity = t1
t0 = min(ts_sorted.index[:i])
t1 = max(ts_sorted.index[:i])
integral = integrated_change(ts[t0:t1])
print i, t0, ts[t0], t1, ts[t1], integral
if t0_within_capacity and t1_within_capacity:
return t0_within_capacity, t1_within_capacity | 1,103,223 |
Add any predefined or custom extension.
Args:
extension: Extension to add to the processor.
Returns:
The DictMentor itself for chaining. | def bind(self, extension: Extension) -> 'DictMentor':
if not Extension.is_valid_extension(extension):
raise ValueError("Cannot bind extension due to missing interface requirements")
self._extensions.append(extension)
return self | 1,103,331 |
Augments the given dictionary by using all the bound extensions.
Args:
dct: Dictionary to augment.
document: The document the dictionary was loaded from.
Returns:
The augmented dictionary. | def augment(self, dct: NonAugmentedDict,
document: Optional[YamlDocument] = None) -> AugmentedDict:
Validator.instance_of(dict, raise_ex=True, dct=dct)
# Apply any configured loader
for instance in self._extensions:
nodes = list(dict_find_pattern(dct, **instance.config()))
for parent, k, val in nodes:
parent.pop(k)
fragment = instance.apply(
ExtensionContext(
mentor=self,
document=document or dct,
dct=dct,
parent_node=parent,
node=(k, val)
)
)
if fragment is not None:
parent.update(fragment)
return dct | 1,103,332 |
Outputs the report in a zip container.
Figs and tabs as pngs and excells.
Args:
figtype (str): Figure type of images in the zip folder. | def outputZip(self,figtype='png'):
from zipfile import ZipFile
with ZipFile(self.outfile+'.zip', 'w') as zipcontainer:
zipcontainer.writestr(
'summary.txt',
'# {}\n\n{}\n{}'.format(
self.title,
self.p,
('\n## Conclusion\n' if self.conclusion else '')+self.conclusion
).encode()
)
c = count(1)
for section in self.sections:
section.sectionOutZip(zipcontainer,'s{}_{}/'.format(next(c),section.title.replace(' ','_')),
figtype=figtype) | 1,103,461 |
Parse region of type chr1:10-20 or chr1:10-20:+
Parameters:
-----------
region : str
Region of type chr1:10-20 or chr1:10-20:+.
Returns
-------
groups : tuple
Tuple of groups from regex e.g. (chr1, 10, 20) or (chr1, 10, 20, +). | def parse_region(region):
m = R_REGEX_STRAND.search(region)
if not m:
m = R_REGEX.search(region)
if m:
groups = m.groups()
return groups
else:
return None | 1,103,494 |
Serve app using wsgiref or provided server.
Args:
- server (callable): An callable | def serve(self, server=None):
if server is None:
from wsgiref.simple_server import make_server
server = lambda app: make_server('', 8000, app).serve_forever()
print('Listening on 0.0.0.0:8000')
try:
server(self)
finally:
server.socket.close() | 1,103,514 |
Configure the timing Timing context manager.
Args:
verbose: Print elapsed time | def __init__(self, *, verbose: bool = False) -> None:
self.verbose = verbose
self._start = None
self.elapsed = None | 1,103,824 |
Configure ``gettext`` for given package.
Args:
__pkg: Package to use as location for :program:`gettext` files
Returns:
:program:`gettext` functions for singular and plural translations | def setup(__pkg: ModuleType) -> Tuple[Callable[[str], str],
Callable[[str, str, int], str]]:
package_locale = path.join(path.dirname(__pkg.__file__), 'locale')
gettext.install(__pkg.__name__, package_locale)
return gettext.gettext, gettext.ngettext | 1,104,055 |
Validates a data dict against this schema.
Args:
data (dict): The data to be validated.
Raises:
ValidationError: If the data is invalid. | def validate(self, data):
try:
self._validator.validate(data)
except jsonschema.ValidationError as e:
six.raise_from(ValidationError.create_from(e), e) | 1,104,325 |
Gets netCDF file metadata attributes.
Arguments:
nc (netCDF4.Dataset): an open NetCDF4 Dataset to pull attributes from.
Returns:
dict: Metadata as extracted from the netCDF file. | def get_nc_attrs(nc):
meta = {
'experiment': nc.experiment_id,
'frequency': nc.frequency,
'institute': nc.institute_id,
'model': nc.model_id,
'modeling_realm': nc.modeling_realm,
'ensemble_member': 'r{}i{}p{}'.format(nc.realization, nc.initialization_method, nc.physics_version),
}
variable_name = get_var_name(nc)
if variable_name:
meta.update({'variable_name': variable_name})
return meta | 1,104,405 |
Appends a column to the raw data without any integrity checks.
Args:
default_value: The value which will assigned, not copied into each row | def append_column(table, col_name, default_value=None):
table[0].append(col_name.strip())
for row in table[1:]:
row.append(default_value) | 1,104,551 |
Inserts a new column before another specified column (by name or index).
Args:
insert_column: The column index or first row name where the insertion should occur
col_name: The name to insert into the first row of the column. Leaving this argument
to the default of None will apply the default_value to that row's cell.
default_value: Can be a value or function which takes (row, index, value) as
arguments to return a value. | def insert_column(table, insert_column, col_name=None, default_value=None):
column_labels = table[0]
following_index = 0
def set_cell(row, column_index, value):
# Allow function calls
if hasattr(value, '__call__'):
row[column_index] = value(column_labels, row, column_index)
else:
row[column_index] = value
if isinstance(insert_column, basestring):
insert_column = insert_column.strip()
for column_index in range(len(column_labels)):
if column_labels[column_index] == insert_column:
following_index = column_index
break
else:
following_index = insert_column
col_data_start = 0
if col_name != None:
table[0].insert(following_index, col_name.strip())
col_data_start = 1
for row in table[col_data_start:]:
row.insert(following_index, None)
if default_value:
set_cell(row, min(following_index, len(row)-1), default_value) | 1,104,553 |
初始化对象的私有属性.
Parameters:
send (Callable): - 可执行的发送函数,要求参数要有ID和methodname
name (str): - 要远端执行的函数名
ID (str):- 要远端执行的任务ID | def __init__(self, send: Callable, name: str, ID: str):
# private
self.__send = send
self.__name = name
self.__ID = ID | 1,105,023 |
执行发送任务.
Parameters:
args (Any): - 远端名字是<name>的函数的位置参数
kwargs (Any): - 远端名字是<name>的函数的关键字参数
Return:
(Any): - 发送函数send的返回值 | def __call__(self, *args: Any, **kwargs: Any):
sys_method = ("listMethods", "methodSignature",
'methodHelp', 'lenConnections',
'lenUndoneTasks', 'getresult')
if self.__name.startswith("system."):
if self.__name.split(".")[-1] not in sys_method:
raise UnsupportSysMethodError(
"UnsupportSysMethod:{}".format(self.__name), self.__ID
)
return self.__send(
self.__ID,
self.__name,
*args, **kwargs) | 1,105,025 |
Pass output through pager.
See :manpage:`less(1)`, if you wish to configure the default pager. For
example, you may wish to check ``FRSX`` options.
Args:
__text: Text to page
pager: Pager to use | def pager(__text: str, *, pager: Optional[str] = 'less'):
if pager:
run([pager, ], input=__text.encode())
else:
print(__text) | 1,105,855 |
Add a file descriptor to the processor and wait for READ.
Args:
fd (IFileLike): Any obect that exposes a 'fileno' method that
returns a valid file descriptor integer.
callback (typing.Callable[[IFileLike], typing.Any]): A function
that consumes the IFileLike object whenever the READ event is
fired. | def add_reader(
self,
fd: IFileLike,
callback: typing.Callable[[IFileLike], typing.Any],
) -> None:
raise NotImplementedError() | 1,106,120 |
Root Mean Square"
Arguments:
x (seq of float): A sequence of numerical values
Returns:
The square root of the average of the squares of the values
math.sqrt(sum(x_i**2 for x_i in x) / len(x))
or
return (np.array(x) ** 2).mean() ** 0.5
>>> rms([0, 2, 4, 4])
3.0 | def rms(x):
try:
return (np.array(x) ** 2).mean() ** 0.5
except:
x = np.array(dropna(x))
invN = 1.0 / len(x)
return (sum(invN * (x_i ** 2) for x_i in x)) ** .5 | 1,106,256 |
Fill NaNs with the previous value, the next value or if all are NaN then 1.0
TODO:
Linear interpolation and extrapolation
Arguments:
dfs (list of dataframes): list of dataframes that contain NaNs to be removed
Returns:
list of dataframes: list of dataframes with NaNs replaced by interpolated values | def clean_dataframes(dfs):
if isinstance(dfs, (list)):
for df in dfs:
df = clean_dataframe(df)
return dfs
else:
return [clean_dataframe(dfs)] | 1,106,261 |
Insert/append threshold crossing points (time and value) into a timeseries (pd.Series)
Arguments:
ts (pandas.Series): Time series of values to be interpolated at `thresh` crossings
thresh (float or np.float64): | def insert_crossings(ts, thresh):
# import time
# tic0 = time.clock(); tic = tic0
# int64 for fast processing, pandas.DatetimeIndex is 5-10x slower, 0.3 ms
index = ts.index
index_type = type(index)
ts.index = ts.index.astype(np.int64)
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# value immediately before an upward thresh crossing, 6 ms
preup = ts[(ts < thresh) & (ts.shift(-1) > thresh)]
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# values immediately after an upward thresh crossing, 4 ms\
postup = ts[(ts.shift(1) < thresh) & (ts > thresh)]
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# value immediately after a downward thresh crossing, 1.8 ms
postdown = ts[(ts < thresh) & (ts.shift(1) > thresh)]
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# value immediately before an upward thresh crossing, 1.9 ms
predown = ts[(ts.shift(-1) < thresh) & (ts > thresh)]
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# upward slope (always positive) between preup and postup in units of
# "value" per nanosecond (timestamps convert to floats as nanoseconds), 0.04 ms
slopeup = (postup.values - preup.values) / (postup.index.values - preup.index.values).astype(np.float64)
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# upward crossing point index/time, 0.04 ms
tup = preup.index.values + ((thresh - preup.values) / slopeup).astype(np.int64)
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# downward slope (always negative) between predown and postdown in units of
# "value" per nanosecond (timestamps convert to floats as nanoseconds), 0.03 ms
slopedown = (postdown.values - predown.values) / \
(postdown.index.values - predown.index.values).astype(np.float64)
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# upward crossing point index/time, 0.02 ms
tdown = predown.index.values + ((thresh - predown.values) / slopedown).astype(np.int64)
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# insert crossing points into time-series (if it had a regular sample period before, it won't now!), 2.0 ms
ts.index = index # pd.DatetimeIndex(ts.index)
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# insert crossing points into time-series (if it had a regular sample period before, it won't now!), 2.0 ms
ts = ts.append(pd.Series(thresh * np.ones(len(tup)), index=index_type(tup.astype(np.int64))))
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# insert crossing points into time-series (if it had a regular sample period before, it won't now!), 1.9 ms
ts = ts.append(pd.Series(thresh * np.ones(len(tdown)), index=index_type(tdown.astype(np.int64))))
# toc = time.clock();
# print((toc-tic)*1000); tic = time.clock()
# if you don't `sort_index()`, numerical integrators in `scipy.integrate` will give the wrong answer, 0.1 ms
ts = ts.sort_index()
# toc = time.clock();
# if you don't `sort_index()`, numerical integrators in `scipy.integrate` will give the wrong answer
# print((toc-tic)*1000); tic = time.clock()
# print((toc-tic0)*1000);
return ts | 1,106,267 |
Init method.
Args:
value (str): value to match.
method (const): Method constant, matching method. | def __init__(self, value, method=Method.PREFIX):
self.value = value
self.method = method | 1,106,466 |
Check if given name matches.
Args:
name (str): name to check.
Returns:
bool: matches name. | def match(self, name):
if self.method == Ex.Method.PREFIX:
return name.startswith(self.value)
elif self.method == Ex.Method.SUFFIX:
return name.endswith(self.value)
elif self.method == Ex.Method.CONTAINS:
return self.value in name
elif self.method == Ex.Method.EXACT:
return self.value == name
elif self.method == Ex.Method.REGEX:
return re.search(self.value, name)
return False | 1,106,467 |
Init method.
Args:
exclude_module (list): list of Ex instances.
exclude_class (list): list of Ex instances.
exclude_function (list): list of Ex instances.
nested_class (bool): whether to get nested classes in classes.
missing_doc (bool): whether to get doc even when empty. | def __init__(self,
exclude_module=None,
exclude_class=None,
exclude_function=None,
nested_class=False,
missing_doc=True):
self.exclude_module = exclude_module
self.exclude_class = exclude_class
self.exclude_function = exclude_function
self.nested_class = nested_class
self.missing_doc = missing_doc | 1,106,468 |
Hashes the first time step. Only will work as long as
the hash can fit in a uint64.
Parameters:
-----------
frame : first frame.
Keywords:
---------
removedups: specify duplicates for the given frame.
Returns a dictionary of everything needed
to generate hashes from the genhash function. | def firsthash(frame, removedupes=False):
#hashes must have i8 available
#overwise, we'll have overflow
def avgdiff(d):
d=np.sort(d);
d = d[1:] - d[:-1]
ret = np.average(d[np.nonzero(d)]);
if np.isnan(ret):
return 1.0;
return ret;
def hasextent(l,eps=1e-10):
#will I one day make pic sims on the pm scale??
dim = frame['data'][l];
return np.abs(dim.max()-dim.min()) > eps;
fields = list(frame['data'].dtype.names);
dims = [ i for i in ['xi','yi','zi']
if i in fields and hasextent(i) ];
ip = np.array([ frame['data'][l]
for l in dims ]).T;
avgdiffs = np.array([avgdiff(a) for a in ip.T]);
mins = ip.min(axis=0);
ips = (((ip - mins)/avgdiffs).round().astype('uint64'))
pws = np.floor(np.log10(ips.max(axis=0))).astype('uint64')+1
pws = list(pws);
pw = [0]+[ ipw+jpw for ipw,jpw in
zip([0]+pws[:-1],pws[:-1]) ];
pw = 10**np.array(pw);#.astype('int64');
#the dictionary used for hashing
d=dict(dims=dims, mins=mins, avgdiffs=avgdiffs, pw=pw);
hashes = genhash(frame,removedupes=False,**d);
if removedupes:
#consider if the negation of this is faster for genhash
uni,counts = np.unique(hashes,return_counts=True);
d['dupes']=uni[counts>1]
dupei = np.in1d(hashes, d['dupes']);
hashes[dupei] = -1;
d['removedupes']=True;
return hashes,d | 1,106,777 |
helper function to add hashes to the given frame
given in the dictionary d returned from firsthash.
Parameters:
-----------
frame : frame to hash.
Keywords:
---------
same as genhash
Returns frame with added hashes, although it will be added in
place. | def addhash(frame,**kw):
hashes = genhash(frame,**kw);
frame['data'] = rfn.rec_append_fields(
frame['data'],'hash',hashes);
return frame; | 1,106,780 |
Obtain good hashes from a .p4 file with the dict hashd and a
function that returns good hashes. Any keywords will be
sent to read_and_hash.
Parameters:
-----------
fname -- filename of file.
f -- function that returns a list of good hashes. | def filter_hashes_from_file(fname, f, **kw):
return np.concatenate([
frame['data']['hash'][f(frame)]
for frame in read_and_hash(fname, **kw)
]); | 1,106,783 |
连接建立起来触发的回调函数.
用于设定一些参数,并将监听任务放入事件循环,如果设置了timeout,也会将timeout_callback放入事件循环
Parameters:
transport (asyncio.Transports): - 连接的传输对象 | def connection_made(self, transport: asyncio.transports.Transport):
self._transport = transport
self._remote_host = self._transport.get_extra_info('peername')
self._extra = {"client": str(self._remote_host)}
self.connections.add(self)
self._stream_reader = asyncio.StreamReader(loop=self._loop)
self._stream_writer = asyncio.StreamWriter(transport, self,
self._stream_reader,
self._loop)
super().connection_made(transport)
if self.timeout:
self._timeout_handler = self._loop.call_soon(
self.timeout_callback)
self._handlertask = asyncio.ensure_future(self.query_handler())
if self.debug:
access_logger.info("connected", extra=self._extra) | 1,107,249 |
连接丢失时触发的回调函数.
用于清理一些任务和关闭连接,包括:
+ 取消监听任务
+ 取消过期监控任务
+ 取消其他还没执行完的任务
+ 将流读写器都重置
+ 将本连接从当前的连接池中去除
Parameters:
exc (Exception): - 异常,如果是None的话说明不是因为异常而关闭的连接 | def connection_lost(self, exc: Exception=None):
self._handlertask.cancel()
super().connection_lost(exc)
if self._timeout_handler:
self._timeout_handler.cancel()
self._transport = None
for i, task in self.tasks.items():
task.cancel()
self.connections.discard(self)
if self.debug:
access_logger.info("lost connection", extra=self._extra) | 1,107,250 |
将响应的python结构转化为字节,并写入到流中,同时刷新最后一次响应时间为当前时间
Parameters:
response (Dict[str,Any]): - 要写入给客户端的响应的python结构 | def writer(self, response: Dict[str, Any]):
responseb = self.encoder(response)
self._stream_writer.write(responseb)
if self.debug:
access_logger.info("write {}".format(responseb), extra=self._extra)
self._last_response_time = time() | 1,107,253 |
用于验证客户端是否有权限调服务.
如果服务端有验证信息,则会根据验证信息判断是否合法
+ 如果合法,那么返回一条信息用于响应验证请求
+ 如果不合法,那么返回验证错误
如果服务端没有验证信息
+ 如果验证信息都为空,直接返回响应
+ 如果信息不为空,那么返回验证错误
Parameters:
request (Dict[str, Any]): - python字典形式的请求
Return:
(bool): - 请求是否被验证通过,通过了返回True
Raise:
(LoginError): - 当验证不通过时抛出 | def _check_auth_handler(self, request: Dict[str, Any]):
a_username = request.get("AUTH").get("USERNAME")
a_password = request.get("AUTH").get("PASSWORD")
auth_len = len(self.auth)
if auth_len == 0:
if any([a_username, a_password]):
if self.debug:
access_logger.info("login failed", extra=self._extra)
raise LoginError("login error ,unknown username/password")
else:
return True
else:
for username, password in self.auth:
if all([a_username == username, a_password == password]):
response = {
"MPRPC": self.VERSION,
"CODE": 100,
"VERSION": self.method_wrapper.version,
"DESC": self.method_wrapper.__doc__,
"DEBUG": self.debug,
"COMPRESER": self.compreser.__name__ if (
self.compreser) else None,
"TIMEOUT": self.timeout,
}
self.writer(response)
if self.debug:
access_logger.info("login succeed", extra=self._extra)
break
else:
if self.debug:
access_logger.info("login failed", extra=self._extra)
raise LoginError("login error ,unknown username/password")
return True | 1,107,256 |
用于调用函数并执行.同时如果执行出错也负责将错误转化为对应的调用错误返回给客户端.
执行成功后根据结果进行不同的处理,如果注册的是函数,实例中的方法,或者协程,则获取计算得的结果,并返回给客户端.
如果是异步生成器函数,那么返回的就是一个对应的异步生成器,我们通过对其包装后循环调用实现流传输.
Parameters:
request (Dict[str, Any]): - python字典形式的请求
Raise:
(Exception): - 当执行调用后抛出了异常,且异常不在定义范围内,则抛出
Return:
(bool): - 当正常调用则返回True,如果抛出了规定范围内的异常则返回False | async def _RPC_handler(self, request: Dict[str, Any]):
ID = request.get("ID")
method = request.get("METHOD")
with_return = request.get("RETURN")
args = request.get("ARGS") or []
kwargs = request.get("KWARGS") or {}
try:
if method is None:
raise RequestError(
"request do not have method", request.get("ID"))
if method == "system.getresult":
await self._get_result(ID, *args, **kwargs)
else:
result = await self.method_wrapper.apply(ID, method,
*args, **kwargs)
except MethodError as se:
exinfo = traceback.TracebackException.from_exception(
se).format(chain=True)
frames = "".join([i + "/n" for i in exinfo])
response = {
"MPRPC": self.VERSION,
"CODE": se.status_code,
"MESSAGE": {
"ID": ID,
'EXCEPTION': str(type(se)),
'MESSAGE': str(se),
"DATA": {
'METHOD': request.get("METHOD"),
"ARGS": request.get("ARGS"),
"KWARGS": request.get("KWARGS"),
'FRAME': frames}
}
}
self.writer(response)
return False
except ServerException as me:
response = {
"MPRPC": self.VERSION,
"CODE": me.status_code,
}
self.writer(response)
return False
except Exception as e:
if self.debug is True:
raise e
else:
logger.info(
"Task[{}]: Unknown Error {}:\nmessage:{}".format(
ID, e.__class__.__name__, str(e))
)
else:
if with_return:
if inspect.isasyncgen(result):
await self._asyncgen_wrap(result, ID)
else:
response = {
"MPRPC": self.VERSION,
"CODE": 200,
"MESSAGE": {
"ID": ID,
'RESULT': result
}
}
self.writer(response)
if self.debug:
access_logger.info(
"Task[{}]: response answered".format(ID),
extra=self._extra
)
return result | 1,107,257 |
流包装器.
通过调用异步生成器传输流数据.
Parameters:
cor (AsyncIterator): - 异步迭代器
ID (str): - 任务的ID
Return:
(bool): - 当正常调用则返回True | async def _asyncgen_wrap(self, cor: AsyncIterator, ID: str):
response = {
"MPRPC": self.VERSION,
"CODE": 201,
"MESSAGE": {
"ID": ID
}
}
self.writer(response)
if self.debug:
access_logger.info(
"Task[{}]: response stream start".format(ID),
extra=self._extra
)
async for i in cor:
response = {
"MPRPC": self.VERSION,
"CODE": 202,
"MESSAGE": {
"ID": ID,
'RESULT': i
}
}
self.writer(response)
if self.debug:
access_logger.info(
"Task[{}]: response stream yield".format(ID),
extra=self._extra
)
response = {
"MPRPC": self.VERSION,
"CODE": 206,
"MESSAGE": {
"ID": ID
}
}
self.writer(response)
if self.debug:
access_logger.info(
"Task[{}]: response stream end".format(ID),
extra=self._extra
)
return True | 1,107,258 |
Take a lists of strings or strings and flatten these into
a list of strings.
Arguments:
- `*args`: "" or [""...]
Return: [""...]
Exceptions: None | def _stringlist(*args):
return list(itertools.chain.from_iterable(itertools.repeat(x,1) if stringy(x) else x for x in args if x)) | 1,107,449 |
Parse an outgoing mail and put it into the OUTBOX.
Arguments:
- `sender`: str
- `to`: str
- `msgstring`: str
Return: None
Exceptions: None | def _parse_outgoing_mail(sender, to, msgstring):
global OUTBOX
OUTBOX.append(email.message_from_string(msgstring))
return | 1,107,450 |
Make sure that our addressees are a unicoded list
Arguments:
- `to`: str or list
Return: [u, ...]
Exceptions: None | def tolist(self, to):
return ', '.join(isinstance(to, list) and [u(x) for x in to] or [u(to)]) | 1,107,453 |
Sanity check the message.
If we have PLAIN and HTML versions, send a multipart alternative
MIME message, else send whichever we do have.
If we have neither, raise NoContentError
Arguments:
- `sender`: str
- `to`: list
- `subject`: str
- `plain`: str
- `html`: str
Return: None
Exceptions: NoContentError | def sanity_check(self, sender, to, subject, plain=None, html=None, cc=None, bcc=None):
if not plain and not html:
raise NoContentError() | 1,107,454 |
Deliver our message
Arguments:
- `message`: MIMEMultipart
Return: None
Exceptions: None | def deliver(self, message, to):
# Send the message via local SMTP server.
s = smtplib.SMTP(self.host, self.port)
# sendmail function takes 3 arguments: sender's address, recipient's address
# and message to send - here it is sent as one string.
s.sendmail(message['From'], to, message.as_string())
s.quit()
return | 1,107,456 |
Deliver our message
Arguments:
- `message`: MIMEMultipart
Return: None
Exceptions: None | def deliver(self, message, to):
# Send the message via local SMTP server.
s = smtplib.SMTP(self.host, self.port)
s.ehlo()
s.starttls()
s.login(self.user, self.pw)
# sendmail function takes 3 arguments: sender's address, recipient's address
# and message to send - here it is sent as one string.
s.sendmail(message['From'], to, message.as_string())
s.quit()
return | 1,107,458 |
Send the message.
If we have PLAIN and HTML versions, send a multipart alternative
MIME message, else send whichever we do have.
If we have neither, raise NoContentError
Arguments:
- `sender`: str
- `to`: list
- `subject`: str
- `plain`: str
- `html`: str
- `attach`: str or iterable of str
- `replyto`: str
Return: None
Exceptions: NoContentError | def send(self, sender, to, subject, plain=None, html=None, cc=None, bcc=None,
attach=None, replyto=None):
headers = {}
if attach:
raise NotImplementedError('Attachments not implemented for Django yet!')
if replyto:
headers['Reply-To'] = replyto
self.sanity_check(sender, to, subject, plain=plain, html=html,
cc=cc, bcc=bcc)
if not cc:
cc = []
if not bcc:
bcc = []
# This comes straight from the docs at
# https://docs.djangoproject.com/en/dev/topics/email/
from django.core.mail import EmailMultiAlternatives
if not plain:
plain = ''
msg = EmailMultiAlternatives(u(subject), u(plain), u(sender), _stringlist(to),
bcc=bcc, cc=cc, headers=headers)
if html:
msg.attach_alternative(ensure_unicode(html), "text/html")
msg.send()
return | 1,107,459 |
Return a Path object representing the Template we're after,
searching SELF.tpls or None
Arguments:
- `name`: str
Return: Path or None
Exceptions: None | def _find_tpl(self, name, extension='.jinja2'):
found = None
for loc in self.tpls:
if not loc:
continue
contents = [f for f in loc.ls() if f.find(name) != -1 and f.endswith(extension)]
if contents:
found = contents[0]
break
exact = loc + (name + extension)
if exact.is_file:
found = exact
return found | 1,107,461 |
Return plain, html templates for NAME
Arguments:
- `name`: str
Return: tuple
Exceptions: None | def _find_tpls(self, name):
return self._find_tpl(name, extension='.txt'), self._find_tpl(name, extension='.html') | 1,107,462 |
Send a Letter (MESSAGE) from SENDER to TO, with the subject SUBJECT
Arguments:
- `sender`: unicode
- `to`: unicode
- `subject`: unicode
- `message`: unicode
- `cc`: str or [str]
- `bcc`: str or [str]
` `replyto`: str
Return: None
Exceptions: None | def _send(self, sender, to, subject, message, cc=None, bcc=None, attach=None, replyto=None):
self.mailer.send(sender, to, subject, plain=message, cc=cc, bcc=bcc, attach=attach, replyto=replyto)
return | 1,107,463 |
Send a Letter from SENDER to TO, with the subject SUBJECT.
Use the current template, with KWARGS as the context.
Arguments:
- `sender`: unicode
- `to`: unicode
- `subject`: unicode
- `cc`: str or [str]
- `bcc`: str or [str]
- `replyto`: str
- `**kwargs`: objects
Return: None
Exceptions: None | def _sendtpl(self, sender, to, subject, cc=None, bcc=None, attach=None, replyto=None, **kwargs):
plain, html = self.body(**kwargs)
self.mailer.send(sender, to, subject, plain=plain, html=html, cc=cc, bcc=bcc,
replyto=replyto, attach=attach)
return | 1,107,464 |
Set an active template to use with our Postman.
This changes the call signature of send.
Arguments:
- `name`: str
Return: None
Exceptions: None | def template(self, name):
self.plain, self.html = self._find_tpls(name)
if not self.plain:
self.plain = self._find_tpl(name)
try:
self.send = self._sendtpl
yield
finally:
self.plain, self.html = None, None
self.send = self._send | 1,107,466 |
找出对象中的函数.
Parameters:
obj (Any): - 要执行的对象
Returns:
(List[str]): - 所有对象中的公开的方法名 | def list_public_methods(obj: Any):
return [member for member in dir(obj)
if not member.startswith('_') and
callable(getattr(obj, member))] | 1,107,594 |
Decorator to enable DebugPrint for a given function.
Args:
__func: Function to wrap
Returns:
Wrapped function | def noisy_wrap(__func: Callable) -> Callable:
# pylint: disable=missing-docstring
def wrapper(*args, **kwargs):
DebugPrint.enable()
try:
__func(*args, **kwargs)
finally:
DebugPrint.disable()
return wrapper | 1,107,676 |
Decorator to display a message when entering a function.
Args:
__msg: Message to display
Returns:
Wrapped function | def on_enter(__msg: Optional[Union[Callable, str]] = None) -> Callable:
# pylint: disable=missing-docstring
def decorator(__func):
@wraps(__func)
def wrapper(*args, **kwargs):
if __msg:
print(__msg)
else:
print('Entering {!r}({!r})'.format(__func.__name__, __func))
return __func(*args, **kwargs)
return wrapper
if callable(__msg):
return on_enter()(__msg)
return decorator | 1,107,677 |
Write text to the debug stream.
Args:
__text: Text to write | def write(self, __text: str) -> None:
if __text == os.linesep:
self.handle.write(__text)
else:
frame = inspect.currentframe()
if frame is None:
filename = 'unknown'
lineno = 0
else:
outer = frame.f_back
filename = outer.f_code.co_filename.split(os.sep)[-1]
lineno = outer.f_lineno
self.handle.write('[{:>15s}:{:03d}] {}'.format(filename[-15:],
lineno, __text)) | 1,107,678 |
Save dictionary with user data to passwd file (default
:attr:`ftp.settings.LOGIN_FILE`).
Args:
users (dict): dictionary with user data. For details look at dict
returned from :func:`load_users`.
path (str, default settings.LOGIN_FILE): path of the file, where the
data will be stored (default :attr:`ftp.settings.LOGIN_FILE`). | def save_users(users, path=settings.LOGIN_FILE):
with open(path, "w") as fh:
for username, data in users.items():
pass_line = username + ":" + ":".join([
data["pass_hash"],
data["uid"],
data["gid"],
data["full_name"],
data["home"],
data["shell"]
])
fh.write(pass_line + "\n") | 1,107,712 |
Set pemissions for given `filename`.
Args:
filename (str): name of the file/directory
uid (int, default proftpd): user ID - if not set, user ID of `proftpd`
is used
gid (int): group ID, if not set, it is not changed
mode (int, default 0775): unix access mode | def set_permissions(filename, uid=None, gid=None, mode=0775):
if uid is None:
uid = get_ftp_uid()
if gid is None:
gid = -1
os.chown(filename, uid, gid)
os.chmod(filename, mode) | 1,107,713 |
Restores the full text of either the edited text using the
compressed diff.
Args:
cdiff (dict): compressed diff returned by
:func:`~acorn.logging.diff.compress`.
a (str or list): *original* string or list of strings to use as a
reference to restore the edited version. | def restore(cdiff, a):
left = a.splitlines(1) if isinstance(a, string_types) else a
lrest = []
iline = 0
for i, line in enumerate(left):
if iline not in cdiff:
lrest.append(" " + line)
iline += 1
else:
cs = [l[0] for l in cdiff[iline]]
add = cs.count('+') - cs.count('-')
lrest.extend(cdiff[iline])
iline += add + 1
for i in sorted(cdiff.keys()):
if i >= len(left):
lrest.extend(cdiff[i])
from difflib import restore
return list(restore(lrest, 2)) | 1,107,792 |
Performs the *compressed* diff of `a` and `b` such that the original
contents of the :func:`difflib.ndiff` call can be reconstructed using
:func:`~acorn.logging.diff.restore`.
Args:
a (str or list): *original* string or list of strings to diff.
b (str or list): *edited* string or list of strings to diff. | def compress(a, b):
from difflib import ndiff
left = a.splitlines(1) if isinstance(a, string_types) else a
right = b.splitlines(1) if isinstance(b, string_types) else b
ldiff = list(ndiff(left, right))
result = {}
latest = None
combo = None
icombo = 0
iorig = 0
for i, line in enumerate(ldiff):
cs = [l[0] for l in ldiff[i:min((i+4, len(ldiff)))]]
if cs[0] != ' ':
#Initialize a new entry in the diff list.
if latest is None:
latest = iorig
result[latest] = []
#We have to be careful. At a minimum, there may be a '-' or a '+' when the lines are
#completely added or deleted. When they are *altered*, then we also expect one or
#more '?' lines showing the differences.
if combo is None:
if cs[0] == '-':
#Check whether the next lines have one of these combinations:
if (len(cs) >=3 and cs[1] == '+' and cs[2] == '?'):
combo = 3
elif (len(cs) >= 4 and cs[1] == '?' and cs[2] == '+'
and cs[3] == '?'):
combo = 4
else:
#This is a stand-alone deletion.
combo = 1
elif cs[0] == '+':
#This is for the stand-alone addition.
combo = 1
if icombo < combo:
result[latest].append(line)
icombo += 1
if icombo == combo:
if combo > 1:
latest = None
combo = None
icombo = 0
if cs[0] != '+':
iorig += 1
else:
latest = None
iorig += 1
return result | 1,107,793 |
Records the specified markdown text to the acorn database.
Args:
text (str): the *raw* markdown text entered into the cell in the ipython
notebook. | def record_markdown(text, cellid):
from acorn.logging.database import record
from time import time
ekey = "nb-{}".format(cellid)
global _cellid_map
if cellid not in _cellid_map:
from acorn.logging.database import active_db
from difflib import SequenceMatcher
from acorn.logging.diff import cascade
taskdb = active_db()
if ekey not in taskdb.entities:
#Compute a new ekey if possible with the most similar markdown cell
#in the database.
possible = [k for k in taskdb.entities if k[0:3] == "nb-"]
maxkey, maxvalue = None, 0.
for pkey in possible:
sequence = [e["c"] for e in taskdb.entities[pkey]]
state = ''.join(cascade(sequence))
matcher = SequenceMatcher(a=state, b=text)
ratio = matcher.quick_ratio()
if ratio > maxvalue and ratio > 0.5:
maxkey, maxvalue = pkey, ratio
#We expect the similarity to be at least 0.5; otherwise we decide
#that it is a new cell.
if maxkey is not None:
ekey = pkey
_cellid_map[cellid] = ekey
ekey = _cellid_map[cellid]
entry = {
"m": "md",
"a": None,
"s": time(),
"r": None,
"c": text,
}
record(ekey, entry, diff=True) | 1,107,870 |
Loads the interacting decorator that ships with `acorn` into the ipython
interactive shell.
Args:
ip (IPython.core.interactiveshell.InteractiveShell): ipython shell instance
for interacting with the shell variables. | def load_ipython_extension(ip):
decor = InteractiveDecorator(ip)
ip.events.register('post_run_cell', decor.post_run_cell)
#Unfortunately, the built-in "pre-execute" and "pre-run" methods are
#triggered *before* the input from the cell has been stored to
#history. Thus, we don't have access to the actual code that is about to be
#executed. Instead, we use our own :class:`HistoryManager` that overrides
#the :meth:`store_inputs` so we can handle the loop detection.
newhist = AcornHistoryManager(ip.history_manager, decor)
ip.history_manager = newhist | 1,107,871 |
Store source and raw input in history and create input cache
variables ``_i*``.
Args:
line_num (int): The prompt number of this input.
source (str): Python input.
source_raw (str): If given, this is the raw input without any
IPython transformations applied to it. If not given, ``source``
is used. | def store_inputs(self, line_num, source, source_raw=None):
self.old.store_inputs(line_num, source, source_raw)
#Now that the input has been stored correctly, intercept the
#pre-execution and create logs accordingly.
self.decorator.pre_run_cell(line_num, source) | 1,107,874 |
Returns a list of the objects that need to be decorated in the
current user namespace based on their type.
Args:
atype (str): one of the values in :attr:`atypes`. Specifies the type of
object to search. | def _get_decoratables(self, atype):
result = []
defmsg = "Skipping {}; not decoratable or already decorated."
for varname in self.shell.run_line_magic("who_ls", atype):
varobj = self.shell.user_ns.get(varname, None)
decorate = False
if varobj is None: # Nothing useful can be done.
continue
if atype in ["classobj", "type"]:
#Classes are only relevant if they have no __file__
#attribute; all other classes should be decorated by the
#full acorn machinery.
if (not hasattr(varobj, "__acorn__") and
hasattr(varobj, "__module__") and
varobj.__module__ == "__main__" and
not hasattr(varobj, "__file__")):
decorate = True
else:
msg.std(defmsg.format(varname), 3)
elif atype in ["function", "staticmethod"]:
# %who_ls will only return functions from the *user*
# namespace, so we don't have a lot to worry about here.
func = None
if atype == "staticmethod" and hasattr(varobj, "__func__"):
func = varobj.__func__
elif atype == "function":
func = varobj
if (func is not None and
not hasattr(func, "__acorn__") and
hasattr(func, "__code__") and
"<ipython-input" in func.__code__.co_filename):
decorate = True
else:
msg.std(defmsg.format(varname), 3)
if decorate:
self.entities[atype][varname] = varobj
result.append((varname, varobj))
return result | 1,107,876 |
Decorates the specified object for automatic logging with acorn.
Args:
atype (str): one of the types specified in :attr:`atypes`.
varobj: object instance to decorate; no additional type checking is
performed. | def _decorate(self, atype, n, o):
typemap = {"function": "functions",
"classobj": "classes",
"staticmethod": "methods",
"type": "classes"}
from acorn.logging.decoration import decorate_obj
try:
otype = typemap[atype]
decorate_obj(self.shell.user_ns, n, o, otype)
#Also create a log in the database for this execution; this allows a
#user to track the changes they make in prototyping function and
#class definitions.
self._logdef(n, o, otype)
msg.okay("Auto-decorated {}: {}.".format(n, o))
except:
msg.err("Error auto-decorating {}: {}.".format(n, o))
raise | 1,107,878 |
Determines the most similar cell (if any) to the specified code. It
must have at least 50% overlap ratio and have been a loop-intercepted
cell previously.
Args:
code (str): contents of the code cell that were executed. | def _find_cellid(self, code):
from difflib import SequenceMatcher
maxvalue = 0.
maxid = None
for cellid, c in self.cellids.items():
matcher = SequenceMatcher(a=c, b=code)
ratio = matcher.quick_ratio()
if ratio > maxvalue and ratio > 0.5:
maxid, maxvalue = cellid, ratio
return maxid | 1,107,879 |
Executes before the user-entered code in `ipython` is run. This
intercepts loops and other problematic code that would produce lots of
database entries and streamlines it to produce only a single entry.
Args:
cellno (int): the cell number that is about to be executed.
code (str): python source code that is about to be executed. | def pre_run_cell(self, cellno, code):
#First, we look for loops and list/dict comprehensions in the code. Find
#the id of the latest cell that was executed.
self.cellid = cellno
#If there is a loop somewhere in the code, it could generate millions of
#database entries and make the notebook unusable.
import ast
if findloop(ast.parse(code)):
#Disable the acorn logging systems so that we don't pollute the
#database.
from acorn.logging.decoration import set_streamlining
set_streamlining(True)
#Create the pre-execute entry for the database.
from time import time
self.pre = {
"m": "loop",
"a": None,
"s": time(),
"r": None,
"c": code,
} | 1,107,883 |
Decorator for marking a function as a graft.
Parameters:
namespace (str): namespace of data, same format as targeting.
Returns:
Graft
For example, these grafts::
@graft
def foo_data:
return {'foo', True}
@graft(namespace='bar')
def bar_data:
return False
will be redered has::
{
'foo': True,
'bar': False
} | def graft(func=None, *, namespace=None):
if not func:
return functools.partial(graft, namespace=namespace)
if isinstance(func, Graft):
return func
return Graft(func, namespace=namespace) | 1,108,080 |
Magical loading of all grafted functions.
Parameters:
force (bool): force reload | def load(force=False):
if GRAFTS and not force:
return GRAFTS
# insert missing paths
# this could be a configurated item
userpath = settings.userpath
if os.path.isdir(userpath) and userpath not in __path__:
__path__.append(userpath)
def notify_error(name):
logging.error('unable to load %s package' % name)
# autoload decorated functions
walker = walk_packages(__path__, '%s.' % __name__, onerror=notify_error)
for module_finder, name, ispkg in walker:
loader = module_finder.find_module(name)
mod = loader.load_module(name)
for func in mod.__dict__.values():
if is_graft(func):
GRAFTS.append(func)
# append setuptools modules
for entry_point in iter_entry_points(group=settings.entry_point):
try:
func = entry_point.load()
if is_graft(func):
GRAFTS.append(func)
else:
notify_error(entry_point.name)
except Exception as error:
logging.exception(error)
notify_error(entry_point.name)
return GRAFTS | 1,108,081 |
Print out the animation cycle to stdout. This function is for use with
synchronous functions and must be run in a thread.
Args:
animation_ (generator): A generator that produces strings for the
animation. Should be endless.
step (float): Seconds between each animation frame. | def animate_cli(animation_, step, event):
while True: # run at least once, important for tests!
time.sleep(step)
frame = next(animation_)
sys.stdout.write(frame)
sys.stdout.flush()
if event.is_set():
break
sys.stdout.write(animation_.get_erase_frame())
sys.stdout.flush()
animation_.reset() | 1,108,226 |
Make sure, that all items in `array` has good type and size.
Args:
array (list): Array of python types.
Returns:
True/False | def _all_correct_list(array):
if type(array) not in _ITERABLE_TYPES:
return False
for item in array:
if not type(item) in _ITERABLE_TYPES:
return False
if len(item) != 2:
return False
return True | 1,108,325 |
Convert `data` to dictionary.
Tries to get sense in multidimensional arrays.
Args:
data: List/dict/tuple of variable dimension.
Returns:
dict: If the data can be converted to dictionary.
Raises:
MetaParsingException: When the data are unconvertible to dict. | def _convert_to_dict(data):
if isinstance(data, dict):
return data
if isinstance(data, list) or isinstance(data, tuple):
if _all_correct_list(data):
return dict(data)
else:
data = zip(data[::2], data[1::2])
return dict(data)
else:
raise MetaParsingException(
"Can't decode provided metadata - unknown structure."
) | 1,108,326 |
Check whether the structure is flat dictionary. If not, try to convert it
to dictionary.
Args:
data: Whatever data you have (dict/tuple/list).
Returns:
dict: When the conversion was successful or `data` was already `good`.
Raises:
MetaParsingException: When the data couldn't be converted or had `bad`
structure. | def check_structure(data):
if not isinstance(data, dict):
try:
data = _convert_to_dict(data)
except MetaParsingException:
raise
except:
raise MetaParsingException(
"Metadata format has invalid strucure (dict is expected)."
)
for key, val in data.iteritems():
if type(key) not in _ALLOWED_TYPES:
raise MetaParsingException(
"Can't decode the meta file - invalid type of keyword '" +
str(key) +
"'!"
)
if type(val) not in _ALLOWED_TYPES:
raise MetaParsingException(
"Can't decode the meta file - invalid type of keyword '" +
str(key) +
"'!"
)
return data | 1,108,327 |
Check whether `key` matchs the :attr:`keyword`. If so, set the
:attr:`value` to `value`.
Args:
key (str): Key which will be matched with :attr:`keyword`.
value (str): Value which will be assigned to :attr:`value` if keys
matches.
Returns:
True/False: Whether the key matched :attr:`keyword`. | def check(self, key, value):
key = key.lower().strip()
# try unicode conversion
try:
key = key.decode("utf-8")
except UnicodeEncodeError:
pass
key = self._remove_accents(key)
if self.keyword in key.split():
self.value = value
return True
return False | 1,108,329 |
Formats an image.
Args:
path (str): Path to the image file.
options (dict): Options to apply to the image.
Returns:
(list) A list of PIL images. The list will always be of length
1 unless resolutions for resizing are provided in the options. | def format_image(path, options):
image = Image.open(path)
image_pipeline_results = __pipeline_image(image, options)
return image_pipeline_results | 1,108,378 |
Sends an image through a processing pipeline.
Applies all (relevant) provided options to a given image.
Args:
image: An instance of a PIL Image.
options: Options to apply to the image (i.e. resolutions).
Returns:
A list containing instances of PIL Images. This list will always be length
1 if no options exist that require multiple copies to be created for a single
image (i.e resolutions). | def __pipeline_image(image, options):
results = []
# Begin pipline
# 1. Create image copies for each resolution
if 'resolutions' in options:
resolutions = options['resolutions'] # List of resolution tuples
for res in resolutions:
img_rs = resize(image, res) # Resized image
# Add image to result set. This result set will be pulled from
# throughout the pipelining process to perform more processing (watermarking).
results.append(img_rs)
# 2. Apply watermark to each image copy
if 'wmark-img' in options:
wtrmk_path = options['wmark-img']
if wtrmk_path:
if len(results) == 0:
image = watermark_image(image, wtrmk_path) #watermark actual image?
else:
for i in range(0, len(results)):
results[i] = watermark_image(
results[i], wtrmk_path) #watermark actual image
if 'wmark-txt' in options:
wtrmk_txt = options['wmark-txt']
if wtrmk_txt:
if len(results) == 0:
image = watermark_text(image, wtrmk_txt) #watermark actual image?
else:
for i in range(0, len(results)):
results[i] = watermark_text(results[i],
wtrmk_txt) #watermark actual image
# Fallback: Nothing was done to the image
if len(results) == 0:
results.append(image)
return results | 1,108,379 |
Returns a set of strings to be used as Slots with Pabianas default Clock.
Args:
layer: The layer in the hierarchy this Area is placed in.
Technically, the number specifies how many of the Clocks signals are relevant to the Area.
Between 1 and limit.
limit: The number of layers of the hierarchy. | def multiple(layer: int, limit: int) -> Set[str]:
return {str(x).zfill(2) for x in [2**x for x in range(limit)] if x % 2**(layer - 1) == 0} | 1,108,477 |
Search a collection for the query provided. Just a raw interface to
mongo to do any query you want.
Args:
collection: The db collection. See main class documentation.
query: A mongo find query.
Returns:
pymongo Cursor object with the results. | def find(self, collection, query):
obj = getattr(self.db, collection)
result = obj.find(query)
return result | 1,108,619 |
Search a collection for all available items.
Args:
collection: The db collection. See main class documentation.
Returns:
List of all items in the collection. | def find_all(self, collection):
obj = getattr(self.db, collection)
result = obj.find()
return result | 1,108,620 |
Search a collection for the query provided and return one result. Just
a raw interface to mongo to do any query you want.
Args:
collection: The db collection. See main class documentation.
query: A mongo find query.
Returns:
pymongo Cursor object with the results. | def find_one(self, collection, query):
obj = getattr(self.db, collection)
result = obj.find_one(query)
return result | 1,108,621 |
Search a collection for the distinct key values provided.
Args:
collection: The db collection. See main class documentation.
key: The name of the key to find distinct values. For example with
the indicators collection, the key could be "type".
Returns:
List of distinct values. | def find_distinct(self, collection, key):
obj = getattr(self.db, collection)
result = obj.distinct(key)
return result | 1,108,622 |
Adds an embedded campaign to the TLO.
Args:
id: the CRITs object id of the TLO
collection: The db collection. See main class documentation.
campaign: The campaign to assign.
confidence: The campaign confidence
analyst: The analyst making the assignment
date: The date of the assignment
description: A description
Returns:
The resulting mongo object | def add_embedded_campaign(self, id, collection, campaign, confidence,
analyst, date, description):
if type(id) is not ObjectId:
id = ObjectId(id)
# TODO: Make sure the object does not already have the campaign
# Return if it does. Add it if it doesn't
obj = getattr(self.db, collection)
result = obj.find({'_id': id, 'campaign.name': campaign})
if result.count() > 0:
return
else:
log.debug('Adding campaign to set: {}'.format(campaign))
campaign_obj = {
'analyst': analyst,
'confidence': confidence,
'date': date,
'description': description,
'name': campaign
}
result = obj.update(
{'_id': id},
{'$push': {'campaign': campaign_obj}}
)
return result | 1,108,623 |
Removes an item from the bucket list
Args:
id: the CRITs object id of the TLO
collection: The db collection. See main class documentation.
item: the bucket list item to remove
Returns:
The mongodb result | def remove_bucket_list_item(self, id, collection, item):
if type(id) is not ObjectId:
id = ObjectId(id)
obj = getattr(self.db, collection)
result = obj.update(
{'_id': id},
{'$pull': {'bucket_list': item}}
)
return result | 1,108,624 |
Translates a unit position to a known parking spot
Args:
unit_pos: unit position as Vec2
Returns: ParkingSpot object | def unit_pos_to_spot(unit_pos) -> ParkingSpot:
min_ = 50
res = None
for airport in parkings:
for spot in parkings[airport]: # type: ignore
spot_pos = parkings[airport][spot] # type: ignore
dist = math.hypot(unit_pos[0] - spot_pos[0], unit_pos[1] - spot_pos[1])
if dist < min_:
min_ = dist # type: ignore
res = ParkingSpot(airport=airport, spot=spot)
return res | 1,108,724 |
Parse `data` to EPublication.
Args:
filename (str): Used to choose right parser based at suffix.
data (str): Content of the metadata file.
Returns:
EPublication: object. | def parse_meta(filename, data):
if "." not in filename:
raise MetaParsingException(
"Can't recognize type of your metadata ('%s')!" % filename
)
suffix = filename.rsplit(".", 1)[1].lower()
if suffix not in SUPPORTED_FILES:
raise MetaParsingException("Can't parse file of type '%s'!" % suffix)
fp = validator.FieldParser()
for key, val in SUPPORTED_FILES[suffix](data).items():
fp.process(key, val)
return fp.get_epublication() | 1,108,744 |
Subscribes this Area to the given Areas and optionally given Slots. Must be called before the Area is run.
Args:
clock_name: The name of the Area that is used as synchronizing Clock.
clock_slots: The slots of the Clock relevant to this Area.
subscriptions: A dictionary containing the relevant Areas names as keys and optionally the Slots as values. | def subscribe(self, clock_name: str=None, clock_slots: Iterable[str]=None, subscriptions: Dict[str, Any]={}):
for area in subscriptions: # type: str
init_full(self, area, subscriptions[area])
subscriptions[area] = {'slots': subscriptions[area]}
if clock_name is not None:
self.clock_name = clock_name
self.clock_slots = clock_slots
subscriptions[clock_name] = {'slots': clock_slots, 'buffer-length': 1}
self.setup(puller=True, subscriptions=subscriptions) | 1,108,881 |
Applies this datetime to a Miz object (it will be mutated in place)
Args:
miz: MIZ object to mutate
Returns: True | def apply_to_miz(self, miz):
miz.mission.day = self.date.day
miz.mission.month = self.date.month
miz.mission.year = self.date.year
miz.mission.mission_start_time = self.mission_start_time
return True | 1,109,112 |
Creates a MissionTime instance from a string
Format: YYYYMMDDHHMMSS
Args:
input_str: string to parse
Returns: MissionTime instance | def from_string(input_str) -> 'MissionTime':
# noinspection SpellCheckingInspection
match = RE_INPUT_STRING.match(input_str)
if not match:
raise ValueError(f'badly formatted date/time: {input_str}')
return MissionTime(
datetime.datetime(
int(match.group('year')),
int(match.group('month')),
int(match.group('day')),
int(match.group('hour')),
int(match.group('minute')),
int(match.group('second')),
)
) | 1,109,113 |
Queries AWC for the METAR of a given station
Args:
icao: station ID as a four letters-digits ICAO code
Returns: AWC result for the station | def query_icao(icao: str):
params = {
'dataSource': 'metars',
'requestType': 'retrieve',
'format': 'csv',
'hoursBeforeNow': 24,
}
AWC._validate_icao(icao)
params['stationString'] = icao
try:
return AWC._query(params)
except RequestsConnectionError:
raise AWCRequestFailed('failed to obtain requested data from AWC') | 1,109,151 |
Retrieves a TAF string from an online database
Args:
station_icao: ICAO of the station
Returns:
tuple of error, metar_str | def retrieve_taf(station_icao) -> typing.Tuple[typing.Union[str, None], typing.Union[str, None]]:
url = _BASE_TAF_URL.format(station=station_icao)
with requests.get(url) as resp:
if not resp.ok:
return f'unable to obtain TAF for station {station_icao}\n' \
f'Got to "http://tgftp.nws.noaa.gov/data/observations/metar/stations" ' \
f'for a list of valid stations', None
return None, resp.content.decode().split('\n')[1] | 1,109,199 |
Retrieves a METAR string from an online database
Args:
station_icao: ICAO of the station
Returns:
tuple of error, metar_str | def retrieve_metar(station_icao) -> typing.Tuple[typing.Optional[str], typing.Optional[str]]:
url = _BASE_METAR_URL.format(station=station_icao)
with requests.get(url) as resp:
if not resp.ok:
return f'unable to obtain METAR for station {station_icao}\n' \
f'Got to "http://tgftp.nws.noaa.gov/data/observations/metar/stations" ' \
f'for a list of valid stations', None
return None, resp.content.decode().split('\n')[1] | 1,109,200 |
Decisions on what verb to use and content headers happen here
Args:
op a string specifying a http verb | def _get_req_fp(self, op):
if(op):
op = op.lower()
if op == 'get':
return requests.get, None
if op == 'put':
return requests.put, {'Content-Type': 'application/x-www-form-urlencoded'}
if op == 'post':
return requests.post, {'Content-Type': 'application/json'}
if op == 'delete':
return requests.delete, None
else:
raise NotImplementedError('Operation {} is not supported!'.format(op)) | 1,109,407 |
HTTP reequest wrapper with data packaging fucntionality
Args:
op http verb in str
uri address of the request
payload data to be sent in dict format (default: None)
If not provided no data is sent
return code and req response dict (single or list) | def _req(self, op, uri, payload = None):
if DEBUG:
print(('uri', uri))
req_fp, content_type = self._get_req_fp(op)
if payload:
if content_type:
r = req_fp(uri, payload, auth = self.api_auth, headers = content_type)
else:
r = req_fp(uri, payload, auth = self.api_auth)
else:
r = req_fp(uri, auth = self.api_auth)
if r.status_code == requests.codes.ok:
data = r.json()
else:
data = None
pass
#keep for debugging
#in case there's an error and we're debugging
self._parse_req(r)
return r.status_code, data | 1,109,408 |
Initializes an instance of the class with an api key
Allows multiple instances with distinct keys.
Args:
my_api_key api key for this instance | def __init__(self, my_api_key):
super(self.__class__, self).__init__(my_api_key)
self.sort_by_postfix = '?sortBy='
self.boxes_suffix = 'boxes'
self.stages_suffix = 'stages'
self.pipelines_suffix = 'pipelines'
self.search_suffix = 'search?query='
self.snippets_suffix = 'snippets'
self.fields_suffix = 'fields'
self.newsfeed_suffix = 'newsfeed'
self.threads_suffix = 'threads'
self.comments_suffix = 'comments'
self.files_suffix = 'files'
self.file_contents_suffix = 'contents'
self.file_link_suffix = 'link'
self.reminders_suffix = 'reminders'
self.detail_level_suffix = '?detailLevel='
if DEBUG:
print((self.api_uri)) | 1,109,410 |
Parses a request object for relevant debugging information. Only works
if DEBUG is enabled.
Args:
req requests req object | def _parse_req(self, req):
if DEBUG:
if req.status_code != requests.codes.ok:
print(("code: {}".format(req.status_code)))
print(("response {}".format(req.json())))
print(("req headers {}".format(req.request.headers)))
print(("req body {}".format(req.request.body))) | 1,109,411 |
Get user information from the server and update the attribute
Args:
key user key (default: me)
return (status code for the get request, dict user data) | def get_user(self, key = None):
if key:
uri = self.api_uri + "/users/" + key
else:
uri = self.api_uri + "/users/me"
return self._req('get', uri) | 1,109,412 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.