docstring
stringlengths
52
499
function
stringlengths
67
35.2k
__index_level_0__
int64
52.6k
1.16M
Check if ``jsondata`` has the structure of a keystore file version 3. Note that this test is not complete, e.g. it doesn't check key derivation or cipher parameters. Copied from https://github.com/vbuterin/pybitcointools Args: jsondata: Dictionary containing the data from the json file Returns: `True` if the data appears to be valid, otherwise `False`
def check_keystore_json(jsondata: Dict) -> bool: if 'crypto' not in jsondata and 'Crypto' not in jsondata: return False if 'version' not in jsondata: return False if jsondata['version'] != 3: return False crypto = jsondata.get('crypto', jsondata.get('Crypto')) if 'cipher' not in crypto: return False if 'ciphertext' not in crypto: return False if 'kdf' not in crypto: return False if 'mac' not in crypto: return False return True
181,202
Find the keystore file for an account, unlock it and get the private key Args: address: The Ethereum address for which to find the keyfile in the system password: Mostly for testing purposes. A password can be provided as the function argument here. If it's not then the user is interactively queried for one. Returns The private key associated with the address
def get_privkey(self, address: AddressHex, password: str) -> PrivateKey: address = add_0x_prefix(address).lower() if not self.address_in_keystore(address): raise ValueError('Keystore file not found for %s' % address) with open(self.accounts[address]) as data_file: data = json.load(data_file) acc = Account(data, password, self.accounts[address]) return acc.privkey
181,205
Load an account from a keystore file. Args: path: full path to the keyfile password: the password to decrypt the key file or `None` to leave it encrypted
def load(cls, path: str, password: str = None) -> 'Account': with open(path) as f: keystore = json.load(f) if not check_keystore_json(keystore): raise ValueError('Invalid keystore file') return Account(keystore, password, path=path)
181,207
Consume tokens. Args: tokens (float): number of transport tokens to consume Returns: wait_time (float): waiting time for the consumer
def consume(self, tokens): wait_time = 0. self.tokens -= tokens if self.tokens < 0: self._get_tokens() if self.tokens < 0: wait_time = -self.tokens / self.fill_rate return wait_time
181,301
Checks if the account has enough balance to handle the lifecycles of all open channels as well as the to be created channels. Note: This is just an estimation. Args: raiden: A raiden service instance channels_to_open: The number of new channels that should be opened Returns: Tuple of a boolean denoting if the account has enough balance for the remaining lifecycle events and the estimate for the remaining lifecycle cost
def has_enough_gas_reserve( raiden, channels_to_open: int = 0, ) -> Tuple[bool, int]: secure_reserve_estimate = get_reserve_estimate(raiden, channels_to_open) current_account_balance = raiden.chain.client.balance(raiden.chain.client.address) return secure_reserve_estimate <= current_account_balance, secure_reserve_estimate
181,307
Initializes a new `LogFilter` Args: config: Dictionary mapping module names to logging level default_level: The default logging level
def __init__(self, config: Dict[str, str], default_level: str): self._should_log: Dict[Tuple[str, str], bool] = {} # the empty module is not matched, so set it here self._default_level = config.get('', default_level) self._log_rules = [ (logger.split('.') if logger else list(), level) for logger, level in config.items() ]
181,331
Creates a new channel in the TokenNetwork contract. Args: partner: The peer to open the channel with. settle_timeout: The settle timeout to use for this channel. given_block_identifier: The block identifier of the state change that prompted this proxy action Returns: The ChannelID of the new netting channel.
def new_netting_channel( self, partner: Address, settle_timeout: int, given_block_identifier: BlockSpecification, ) -> ChannelID: checking_block = self.client.get_checking_block() self._new_channel_preconditions( partner=partner, settle_timeout=settle_timeout, block_identifier=given_block_identifier, ) log_details = { 'peer1': pex(self.node_address), 'peer2': pex(partner), } gas_limit = self.proxy.estimate_gas( checking_block, 'openChannel', participant1=self.node_address, participant2=partner, settle_timeout=settle_timeout, ) if not gas_limit: self.proxy.jsonrpc_client.check_for_insufficient_eth( transaction_name='openChannel', transaction_executed=False, required_gas=GAS_REQUIRED_FOR_OPEN_CHANNEL, block_identifier=checking_block, ) self._new_channel_postconditions( partner=partner, block=checking_block, ) log.critical('new_netting_channel call will fail', **log_details) raise RaidenUnrecoverableError('Creating a new channel will fail') log.debug('new_netting_channel called', **log_details) # Prevent concurrent attempts to open a channel with the same token and # partner address. if gas_limit and partner not in self.open_channel_transactions: new_open_channel_transaction = AsyncResult() self.open_channel_transactions[partner] = new_open_channel_transaction gas_limit = safe_gas_limit(gas_limit, GAS_REQUIRED_FOR_OPEN_CHANNEL) try: transaction_hash = self.proxy.transact( 'openChannel', gas_limit, participant1=self.node_address, participant2=partner, settle_timeout=settle_timeout, ) self.client.poll(transaction_hash) receipt_or_none = check_transaction_threw(self.client, transaction_hash) if receipt_or_none: self._new_channel_postconditions( partner=partner, block=receipt_or_none['blockNumber'], ) log.critical('new_netting_channel failed', **log_details) raise RaidenUnrecoverableError('creating new channel failed') except Exception as e: log.critical('new_netting_channel failed', **log_details) new_open_channel_transaction.set_exception(e) raise else: new_open_channel_transaction.set(transaction_hash) finally: self.open_channel_transactions.pop(partner, None) else: # All other concurrent threads should block on the result of opening this channel self.open_channel_transactions[partner].get() channel_identifier: ChannelID = self._detail_channel( participant1=self.node_address, participant2=partner, block_identifier='latest', ).channel_identifier log_details['channel_identifier'] = str(channel_identifier) log.info('new_netting_channel successful', **log_details) return channel_identifier
181,364
Install a new filter for an array of topics emitted by the contract. Args: topics: A list of event ids to filter for. Can also be None, in which case all events are queried. from_block: The block number at which to start looking for events. to_block: The block number at which to stop looking for events. Return: Filter: The filter instance.
def events_filter( self, topics: List[str] = None, from_block: BlockSpecification = None, to_block: BlockSpecification = None, ) -> StatelessFilter: return self.client.new_filter( self.address, topics=topics, from_block=from_block, to_block=to_block, )
181,386
Install a new filter for all the events emitted by the current token network contract Args: from_block: Create filter starting from this block number (default: 0). to_block: Create filter stopping at this block number (default: 'latest'). Return: The filter instance.
def all_events_filter( self, from_block: BlockSpecification = GENESIS_BLOCK_NUMBER, to_block: BlockSpecification = 'latest', ) -> StatelessFilter: return self.events_filter(None, from_block, to_block)
181,387
Register a token with the raiden token manager. Args: registry_address: registry address token_address_hex (string): a hex encoded token address. Returns: The token network proxy.
def register_token( self, registry_address_hex: typing.AddressHex, token_address_hex: typing.AddressHex, retry_timeout: typing.NetworkTimeout = DEFAULT_RETRY_TIMEOUT, ) -> TokenNetwork: registry_address = decode_hex(registry_address_hex) token_address = decode_hex(token_address_hex) registry = self._raiden.chain.token_network_registry(registry_address) contracts_version = self._raiden.contract_manager.contracts_version if contracts_version == DEVELOPMENT_CONTRACT_VERSION: token_network_address = registry.add_token_with_limits( token_address=token_address, channel_participant_deposit_limit=UINT256_MAX, token_network_deposit_limit=UINT256_MAX, ) else: token_network_address = registry.add_token_without_limits( token_address=token_address, ) # Register the channel manager with the raiden registry waiting.wait_for_payment_network( self._raiden, registry.address, token_address, retry_timeout, ) return self._raiden.chain.token_network(token_network_address)
181,413
Wait until a contract is mined Args: contract_address_hex (string): hex encoded address of the contract timeout (int): time to wait for the contract to get mined Returns: True if the contract got mined, false otherwise
def wait_for_contract(self, contract_address_hex, timeout=None): contract_address = decode_hex(contract_address_hex) start_time = time.time() result = self._raiden.chain.client.web3.eth.getCode( to_checksum_address(contract_address), ) current_time = time.time() while not result: if timeout and start_time + timeout > current_time: return False result = self._raiden.chain.client.web3.eth.getCode( to_checksum_address(contract_address), ) gevent.sleep(0.5) current_time = time.time() return len(result) > 0
181,415
Save events. Args: state_change_identifier: Id of the state change that generate these events. events: List of Event objects.
def write_events(self, events): with self.write_lock, self.conn: self.conn.executemany( 'INSERT INTO state_events(' ' identifier, source_statechange_id, log_time, data' ') VALUES(?, ?, ?, ?)', events, )
181,425
Delete state changes. Args: state_changes_to_delete: List of ids to delete.
def delete_state_changes(self, state_changes_to_delete: List[int]) -> None: with self.write_lock, self.conn: self.conn.executemany( 'DELETE FROM state_events WHERE identifier = ?', state_changes_to_delete, )
181,426
Save events. Args: state_change_identifier: Id of the state change that generate these events. events: List of Event objects.
def write_events(self, state_change_identifier, events, log_time): events_data = [ (None, state_change_identifier, log_time, self.serializer.serialize(event)) for event in events ] return super().write_events(events_data)
181,450
Open a port for the raiden service (listening at `internal_port`) through UPnP. Args: internal_port (int): the target port of the raiden service external_start_port (int): query for an external port starting here (default: internal_port) Returns: external_ip_address, external_port (tuple(str, int)): if successful or None
def open_port(upnp, internal_port, external_start_port=None): if external_start_port is None: external_start_port = internal_port if upnp is None: return False def register(internal, external): # test existing mappings mapping = upnp.getspecificportmapping(external, 'UDP') if mapping is not None: # FIXME: figure out semantics of the last two values lanaddr, internal_mapped, name, _, _ = mapping is_valid_mapping = ( lanaddr == upnp.lanaddr and name == RAIDEN_IDENTIFICATOR and internal_mapped == internal ) is_not_our_mapping = ( internal_mapped != internal and name != RAIDEN_IDENTIFICATOR ) is_previous_mapping = ( internal_mapped != internal and name == RAIDEN_IDENTIFICATOR and lanaddr == upnp.lanaddr ) if is_valid_mapping: log.debug( 'keeping pre-existing portmapping', internal=internal, external=external, lanaddr=lanaddr, ) return True elif lanaddr != upnp.lanaddr: # don't touch other people's mappings log.debug( 'ignoring existing mapping for other IP', internal=internal, external=external, other_ip=lanaddr, our_ip=upnp.lanaddr, ) return False elif is_not_our_mapping: log.debug( 'ignoring existing mapping for other program', name=name, ) # some other program uses our port return False elif is_previous_mapping: # we ran before on a different internal port log.debug('releasing previous port mapping') upnp.deleteportmapping(external, 'UDP') log.debug('trying to create new port mapping', internal=internal, external=external) return upnp.addportmapping( external, 'UDP', upnp.lanaddr, internal, RAIDEN_IDENTIFICATOR, '', ) external_port = external_start_port success = register(internal_port, external_port) while not success and external_port <= MAX_PORT: external_port += 1 log.debug('trying', external=external_port) success = register(internal_port, external_port) if success: return upnp.externalipaddress(), external_port else: log.error( 'could not register a port-mapping', location='FIXME', ) return False return False
181,496
Try to release the port mapping for `external_port`. Args: external_port (int): the port that was previously forwarded to. Returns: success (boolean): if the release was successful.
def release_port(upnp, external_port): mapping = upnp.getspecificportmapping(external_port, 'UDP') if mapping is None: log.error('could not find a port mapping', external=external_port) return False else: log.debug('found existing port mapping', mapping=mapping) if upnp.deleteportmapping(external_port, 'UDP'): log.info('successfully released port mapping', external=external_port) return True log.warning( 'could not release port mapping, check your router for stale mappings', ) return False
181,497
Calculate a blocktime estimate based on some past blocks. Args: oldest: delta in block numbers to go back. Return: average block time in seconds
def estimate_blocktime(self, oldest: int = 256) -> float: last_block_number = self.block_number() # around genesis block there is nothing to estimate if last_block_number < 1: return 15 # if there are less than `oldest` blocks available, start at block 1 if last_block_number < oldest: interval = (last_block_number - 1) or 1 else: interval = last_block_number - oldest assert interval > 0 last_timestamp = self.get_block_header(last_block_number)['timestamp'] first_timestamp = self.get_block_header(last_block_number - interval)['timestamp'] delta = last_timestamp - first_timestamp return delta / interval
181,502
Return a proxy for interacting with a smart contract. Args: contract_interface: The contract interface as defined by the json. address: The contract's address.
def new_contract_proxy(self, contract_interface, contract_address: Address): return ContractProxy( self, contract=self.new_contract(contract_interface, contract_address), )
181,550
Wait until the `transaction_hash` is applied or rejected. Args: transaction_hash: Transaction hash that we are waiting for.
def poll( self, transaction_hash: bytes, ): if len(transaction_hash) != 32: raise ValueError( 'transaction_hash must be a 32 byte hash', ) transaction_hash = encode_hex(transaction_hash) # used to check if the transaction was removed, this could happen # if gas price is too low: # # > Transaction (acbca3d6) below gas price (tx=1 Wei ask=18 # > Shannon). All sequential txs from this address(7d0eae79) # > will be ignored # last_result = None while True: # Could return None for a short period of time, until the # transaction is added to the pool transaction = self.web3.eth.getTransaction(transaction_hash) # if the transaction was added to the pool and then removed if transaction is None and last_result is not None: raise Exception('invalid transaction, check gas price') # the transaction was added to the pool and mined if transaction and transaction['blockNumber'] is not None: last_result = transaction # this will wait for both APPLIED and REVERTED transactions transaction_block = transaction['blockNumber'] confirmation_block = transaction_block + self.default_block_num_confirmations block_number = self.block_number() if block_number >= confirmation_block: return transaction gevent.sleep(1.0)
181,555
Helper function to unpack event data using a provided ABI Args: abi: The ABI of the contract, not the ABI of the event log_: The raw event data Returns: The decoded event
def decode_event(abi: ABI, log_: Dict) -> Dict: if isinstance(log_['topics'][0], str): log_['topics'][0] = decode_hex(log_['topics'][0]) elif isinstance(log_['topics'][0], int): log_['topics'][0] = decode_hex(hex(log_['topics'][0])) event_id = log_['topics'][0] events = filter_by_type('event', abi) topic_to_event_abi = { event_abi_to_log_topic(event_abi): event_abi for event_abi in events } event_abi = topic_to_event_abi[event_id] return get_event_data(event_abi, log_)
181,610
Returns events emmitted by a contract for a given event name, within a certain range. Args: web3: A Web3 instance contract_manager: A contract manager contract_address: The address of the contract to be filtered, can be `None` contract_name: The name of the contract topics: The topics to filter for from_block: The block to start search events to_block: The block to stop searching for events Returns: All matching events
def query_blockchain_events( web3: Web3, contract_manager: ContractManager, contract_address: Address, contract_name: str, topics: List, from_block: BlockNumber, to_block: BlockNumber, ) -> List[Dict]: filter_params = { 'fromBlock': from_block, 'toBlock': to_block, 'address': to_checksum_address(contract_address), 'topics': topics, } events = web3.eth.getLogs(filter_params) contract_abi = contract_manager.get_contract_abi(contract_name) return [ decode_event( abi=contract_abi, log_=raw_event, ) for raw_event in events ]
181,611
Returns the path with the highest `version` number. Raises: AssertionError: If any of the `paths` in the list is an invalid name. Args: paths: A list of file names.
def latest_db_file(paths: List[str]) -> Optional[str]: dbs = {} for db_path in paths: matches = VERSION_RE.match(os.path.basename(db_path)) assert matches, f'Invalid path name {db_path}' try: version = int(matches.group(1)) except ValueError: continue dbs[version] = db_path if dbs: highest_version = sorted(dbs)[-1] return dbs[highest_version] return None
181,643
Returns a filtered list of `paths`, where every name matches our format. Args: paths: A list of file names.
def filter_db_names(paths: List[str]) -> List[str]: return [ db_path for db_path in paths if VERSION_RE.match(os.path.basename(db_path)) ]
181,644
Automatically maintain channels open for the given token network. Args: token_address: the ERC20 token network to connect to. funds: the amount of funds that can be used by the ConnectionMananger. initial_channel_target: number of channels to open proactively. joinable_funds_target: fraction of the funds that will be used to join channels opened by other participants.
def token_network_connect( self, registry_address: PaymentNetworkID, token_address: TokenAddress, funds: TokenAmount, initial_channel_target: int = 3, joinable_funds_target: float = 0.4, ) -> None: if not is_binary_address(registry_address): raise InvalidAddress('registry_address must be a valid address in binary') if not is_binary_address(token_address): raise InvalidAddress('token_address must be a valid address in binary') token_network_identifier = views.get_token_network_identifier_by_token_address( chain_state=views.state_from_raiden(self.raiden), payment_network_id=registry_address, token_address=token_address, ) connection_manager = self.raiden.connection_manager_for_token_network( token_network_identifier, ) has_enough_reserve, estimated_required_reserve = has_enough_gas_reserve( raiden=self.raiden, channels_to_open=initial_channel_target, ) if not has_enough_reserve: raise InsufficientGasReserve(( 'The account balance is below the estimated amount necessary to ' 'finish the lifecycles of all active channels. A balance of at ' f'least {estimated_required_reserve} wei is required.' )) connection_manager.connect( funds=funds, initial_channel_target=initial_channel_target, joinable_funds_target=joinable_funds_target, )
181,725
After Raiden learns about a new block this function must be called to handle expiration of the hash time locks. Args: state: The current state. Return: TransitionResult: The resulting iteration
def handle_block( mediator_state: MediatorTransferState, state_change: Block, channelidentifiers_to_channels: ChannelMap, pseudo_random_generator: random.Random, ) -> TransitionResult[MediatorTransferState]: expired_locks_events = events_to_remove_expired_locks( mediator_state, channelidentifiers_to_channels, state_change.block_number, pseudo_random_generator, ) secret_reveal_events = events_for_onchain_secretreveal_if_dangerzone( channelmap=channelidentifiers_to_channels, secrethash=mediator_state.secrethash, transfers_pair=mediator_state.transfers_pair, block_number=state_change.block_number, block_hash=state_change.block_hash, ) unlock_fail_events = events_for_expired_pairs( channelidentifiers_to_channels=channelidentifiers_to_channels, transfers_pair=mediator_state.transfers_pair, waiting_transfer=mediator_state.waiting_transfer, block_number=state_change.block_number, ) iteration = TransitionResult( mediator_state, unlock_fail_events + secret_reveal_events + expired_locks_events, ) return iteration
181,880
Keep listening for events forever. Args: timeout_ms: How long to poll the Home Server for before retrying. exception_handler: Optional exception handler function which can be used to handle exceptions in the caller thread. bad_sync_timeout: Base time to wait after an error before retrying. Will be increased according to exponential backoff.
def listen_forever( self, timeout_ms: int = 30000, exception_handler: Callable[[Exception], None] = None, bad_sync_timeout: int = 5, ): _bad_sync_timeout = bad_sync_timeout self.should_listen = True while self.should_listen: try: # may be killed and raise exception from _handle_thread self._sync(timeout_ms) _bad_sync_timeout = bad_sync_timeout except MatrixRequestError as e: log.warning('A MatrixRequestError occured during sync.') if e.code >= 500: log.warning( 'Problem occured serverside. Waiting', wait_for=_bad_sync_timeout, ) gevent.sleep(_bad_sync_timeout) _bad_sync_timeout = min(_bad_sync_timeout * 2, self.bad_sync_timeout_limit) else: raise except MatrixHttpLibError: log.exception('A MatrixHttpLibError occured during sync.') if self.should_listen: gevent.sleep(_bad_sync_timeout) _bad_sync_timeout = min(_bad_sync_timeout * 2, self.bad_sync_timeout_limit) except Exception as e: log.exception('Exception thrown during sync') if exception_handler is not None: exception_handler(e) else: raise
182,225
Start a listener greenlet to listen for events in the background. Args: timeout_ms: How long to poll the Home Server for before retrying. exception_handler: Optional exception handler function which can be used to handle exceptions in the caller thread.
def start_listener_thread(self, timeout_ms: int = 30000, exception_handler: Callable = None): assert not self.should_listen and self.sync_thread is None, 'Already running' self.should_listen = True self.sync_thread = gevent.spawn(self.listen_forever, timeout_ms, exception_handler) self.sync_thread.name = f'GMatrixClient.listen_forever user_id:{self.user_id}'
182,226
Search user directory for a given term, returning a list of users Args: term: term to be searched for Returns: user_list: list of users returned by server-side search
def search_user_directory(self, term: str) -> List[User]: response = self.api._send( 'POST', '/user_directory/search', { 'search_term': term, }, ) try: return [ User(self.api, _user['user_id'], _user['display_name']) for _user in response['results'] ] except KeyError: return []
182,228
Send typing event directly to api Args: room: room to send typing event to timeout: timeout for the event, in ms
def typing(self, room: Room, timeout: int = 5000): path = f'/rooms/{quote(room.room_id)}/typing/{quote(self.user_id)}' return self.api._send('PUT', path, {'typing': True, 'timeout': timeout})
182,231
Initialize the state manager. Args: state_transition: function that can apply a StateChange message. current_state: current application state.
def __init__(self, state_transition: Callable, current_state: Optional[State]) -> None: if not callable(state_transition): raise ValueError('state_transition must be a callable') self.state_transition = state_transition self.current_state = current_state
182,304
Apply the `state_change` in the current machine and return the resulting events. Args: state_change: An object representation of a state change. Return: A list of events produced by the state transition. It's the upper layer's responsibility to decided how to handle these events.
def dispatch(self, state_change: StateChange) -> List[Event]: assert isinstance(state_change, StateChange) # the state objects must be treated as immutable, so make a copy of the # current state and pass the copy to the state machine to be modified. next_state = deepcopy(self.current_state) # update the current state by applying the change iteration = self.state_transition( next_state, state_change, ) assert isinstance(iteration, TransitionResult) self.current_state = iteration.new_state events = iteration.events assert isinstance(self.current_state, (State, type(None))) assert all(isinstance(e, Event) for e in events) return events
182,305
Sorts a list of servers by http round-trip time Params: servers: sequence of http server urls Returns: sequence of pairs of url,rtt in seconds, sorted by rtt, excluding failed servers (possibly empty)
def sort_servers_closest(servers: Sequence[str]) -> Sequence[Tuple[str, float]]: if not {urlparse(url).scheme for url in servers}.issubset({'http', 'https'}): raise TransportError('Invalid server urls') get_rtt_jobs = set( gevent.spawn(lambda url: (url, get_http_rtt(url)), server_url) for server_url in servers ) # these tasks should never raise, returns None on errors gevent.joinall(get_rtt_jobs, raise_error=False) # block and wait tasks sorted_servers: List[Tuple[str, float]] = sorted( (job.value for job in get_rtt_jobs if job.value[1] is not None), key=itemgetter(1), ) log.debug('Matrix homeserver RTT times', rtt_times=sorted_servers) return sorted_servers
182,408
Given a list of possible servers, chooses the closest available and create a GMatrixClient Params: servers: list of servers urls, with scheme (http or https) Rest of args and kwargs are forwarded to GMatrixClient constructor Returns: GMatrixClient instance for one of the available servers
def make_client(servers: Sequence[str], *args, **kwargs) -> GMatrixClient: if len(servers) > 1: sorted_servers = [ server_url for (server_url, _) in sort_servers_closest(servers) ] log.info( 'Automatically selecting matrix homeserver based on RTT', sorted_servers=sorted_servers, ) elif len(servers) == 1: sorted_servers = servers else: raise TransportError('No valid servers list given') last_ex = None for server_url in sorted_servers: server_url: str = server_url client = GMatrixClient(server_url, *args, **kwargs) try: client.api._send('GET', '/versions', api_path='/_matrix/client') except MatrixError as ex: log.warning('Selected server not usable', server_url=server_url, _exception=ex) last_ex = ex else: break else: raise TransportError( 'Unable to find a reachable Matrix server. Please check your network connectivity.', ) from last_ex return client
182,409
Sends a message to one of the global rooms These rooms aren't being listened on and therefore no reply could be heard, so these messages are sent in a send-and-forget async way. The actual room name is composed from the suffix given as parameter and chain name or id e.g.: raiden_ropsten_discovery Params: room: name suffix as passed in config['global_rooms'] list message: Message instance to be serialized and sent
def send_global(self, room: str, message: Message) -> None: self._global_send_queue.put((room, message)) self._global_send_event.set()
182,459
Helper function to unpack event data using a provided ABI Args: abi: The ABI of the contract, not the ABI of the event log: The raw event data Returns: The decoded event
def decode_event(abi: Dict, log: Dict): if isinstance(log['topics'][0], str): log['topics'][0] = decode_hex(log['topics'][0]) elif isinstance(log['topics'][0], int): log['topics'][0] = decode_hex(hex(log['topics'][0])) event_id = log['topics'][0] events = filter_by_type('event', abi) topic_to_event_abi = { event_abi_to_log_topic(event_abi): event_abi for event_abi in events } event_abi = topic_to_event_abi[event_id] return get_event_data(event_abi, log)
182,717
Resample the dataset. Args: seed (int, optional): Seed for resampling. By default no seed is used.
def resample(self, seed=None): if seed is not None: gen = torch.manual_seed(seed) else: gen = torch.default_generator if self.replacement: self.perm = torch.LongTensor(len(self)).random_( len(self.dataset), generator=gen) else: self.perm = torch.randperm( len(self.dataset), generator=gen).narrow(0, 0, len(self))
182,751
Outputs a function which will log the arguments to Visdom in an appropriate way. Args: vis_fn: A function, such as self.vis.image
def _viz_prototype(self, vis_fn): def _viz_logger(*args, **kwargs): self.win = vis_fn(*args, win=self.win, env=self.env, opts=self.opts, **kwargs) return _viz_logger
182,794
Multiple lines can be added to the same plot with the "name" attribute (see example) Args: fields: Currently unused plot_type: {scatter, line} Examples: >>> scatter_logger = VisdomPlotLogger('line') >>> scatter_logger.log(stats['epoch'], loss_meter.value()[0], name="train") >>> scatter_logger.log(stats['epoch'], loss_meter.value()[0], name="test")
def __init__(self, plot_type, fields=None, win=None, env=None, opts={}, port=8097, server="localhost", name=None): super(VisdomPlotLogger, self).__init__(fields, win, env, opts, port, server) valid_plot_types = { "scatter": self.viz.scatter, "line": self.viz.line} self.plot_type = plot_type # Set chart type if plot_type not in valid_plot_types.keys(): raise ValueError("plot_type \'{}\' not found. Must be one of {}".format( plot_type, valid_plot_types.keys())) self.chart = valid_plot_types[plot_type]
182,798
Update the results file with new information. Args: task_name (str): Name of the currently running task. A previously unseen ``task_name`` will create a new entry in both :attr:`tasks` and :attr:`results`. result: This will be appended to the list in :attr:`results` which corresponds to the ``task_name`` in ``task_name``:attr:`tasks`.
def update(self, task_name, result): with open(self.filepath, 'rb') as f: existing_results = pickle.load(f) if task_name not in self.tasks: self._add_task(task_name) existing_results['tasks'].append(task_name) existing_results['results'].append([]) task_name_idx = existing_results['tasks'].index(task_name) results = existing_results['results'][task_name_idx] results.append(result) with open(self.filepath, 'wb') as f: pickle.dump(existing_results, f)
182,821
Function to sample a new configuration This function is called inside Hyperband to query a new configuration Parameters: ----------- budget: float the budget for which this configuration is scheduled returns: config should return a valid configuration
def get_config(self, budget): self.logger.debug('start sampling a new configuration.') sample = None info_dict = {} # If no model is available, sample from prior # also mix in a fraction of random configs if len(self.kde_models.keys()) == 0 or np.random.rand() < self.random_fraction: sample = self.configspace.sample_configuration() info_dict['model_based_pick'] = False best = np.inf best_vector = None if sample is None: try: #sample from largest budget budget = max(self.kde_models.keys()) l = self.kde_models[budget]['good'].pdf g = self.kde_models[budget]['bad' ].pdf minimize_me = lambda x: max(1e-32, g(x))/max(l(x),1e-32) kde_good = self.kde_models[budget]['good'] kde_bad = self.kde_models[budget]['bad'] for i in range(self.num_samples): idx = np.random.randint(0, len(kde_good.data)) datum = kde_good.data[idx] vector = [] for m,bw,t in zip(datum, kde_good.bw, self.vartypes): bw = max(bw, self.min_bandwidth) if t == 0: bw = self.bw_factor*bw try: vector.append(sps.truncnorm.rvs(-m/bw,(1-m)/bw, loc=m, scale=bw)) except: self.logger.warning("Truncated Normal failed for:\ndatum=%s\nbandwidth=%s\nfor entry with value %s"%(datum, kde_good.bw, m)) self.logger.warning("data in the KDE:\n%s"%kde_good.data) else: if np.random.rand() < (1-bw): vector.append(int(m)) else: vector.append(np.random.randint(t)) val = minimize_me(vector) if not np.isfinite(val): self.logger.warning('sampled vector: %s has EI value %s'%(vector, val)) self.logger.warning("data in the KDEs:\n%s\n%s"%(kde_good.data, kde_bad.data)) self.logger.warning("bandwidth of the KDEs:\n%s\n%s"%(kde_good.bw, kde_bad.bw)) self.logger.warning("l(x) = %s"%(l(vector))) self.logger.warning("g(x) = %s"%(g(vector))) # right now, this happens because a KDE does not contain all values for a categorical parameter # this cannot be fixed with the statsmodels KDE, so for now, we are just going to evaluate this one # if the good_kde has a finite value, i.e. there is no config with that value in the bad kde, so it shouldn't be terrible. if np.isfinite(l(vector)): best_vector = vector break if val < best: best = val best_vector = vector if best_vector is None: self.logger.debug("Sampling based optimization with %i samples failed -> using random configuration"%self.num_samples) sample = self.configspace.sample_configuration().get_dictionary() info_dict['model_based_pick'] = False else: self.logger.debug('best_vector: {}, {}, {}, {}'.format(best_vector, best, l(best_vector), g(best_vector))) for i, hp_value in enumerate(best_vector): if isinstance( self.configspace.get_hyperparameter( self.configspace.get_hyperparameter_by_idx(i) ), ConfigSpace.hyperparameters.CategoricalHyperparameter ): best_vector[i] = int(np.rint(best_vector[i])) sample = ConfigSpace.Configuration(self.configspace, vector=best_vector).get_dictionary() try: sample = ConfigSpace.util.deactivate_inactive_hyperparameters( configuration_space=self.configspace, configuration=sample ) info_dict['model_based_pick'] = True except Exception as e: self.logger.warning(("="*50 + "\n")*3 +\ "Error converting configuration:\n%s"%sample+\ "\n here is a traceback:" +\ traceback.format_exc()) raise(e) except: self.logger.warning("Sampling based optimization with %i samples failed\n %s \nUsing random configuration"%(self.num_samples, traceback.format_exc())) sample = self.configspace.sample_configuration() info_dict['model_based_pick'] = False try: sample = ConfigSpace.util.deactivate_inactive_hyperparameters( configuration_space=self.configspace, configuration=sample.get_dictionary() ).get_dictionary() except Exception as e: self.logger.warning("Error (%s) converting configuration: %s -> " "using random configuration!", e, sample) sample = self.configspace.sample_configuration().get_dictionary() self.logger.debug('done sampling a new configuration.') return sample, info_dict
182,930
Function to sample a new configuration This function is called inside Hyperband to query a new configuration Parameters: ----------- budget: float the budget for which this configuration is scheduled returns: config should return a valid configuration
def get_config(self, budget): sample = None info_dict = {} # If no model is available, sample from prior # also mix in a fraction of random configs if len(self.kde_models.keys()) == 0 or np.random.rand() < self.random_fraction: sample = self.configspace.sample_configuration() info_dict['model_based_pick'] = False if sample is None: try: #import pdb; pdb.set_trace() samples = self.kde_models[budget]['good'].sample(self.num_samples) ei = self.kde_models[budget]['good'].pdf(samples)/self.kde_models[budget]['bad'].pdf(samples) best_idx = np.argmax(ei) best_vector = samples[best_idx] sample = ConfigSpace.Configuration(self.configspace, vector=best_vector) sample = ConfigSpace.util.deactivate_inactive_hyperparameters( configuration_space=self.configspace, configuration=sample.get_dictionary() ) info_dict['model_based_pick'] = True except Exception as e: self.logger.warning(("="*50 + "\n")*3 +\ "Error sampling a configuration!\n"+\ "Models for budgets: %s"%(self.kde_models.keys()) +\ "\n here is a traceback:" +\ traceback.format_exc()) for b,l in self.losses.items(): self.logger.debug("budget: {}\nlosses:{}".format(b,l)) sample = self.configspace.sample_configuration() info_dict['model_based_pick'] = False return sample.get_dictionary(), info_dict
182,949
function to register finished runs Every time a run has finished, this function should be called to register it with the result logger. If overwritten, make sure to call this method from the base class to ensure proper logging. Parameters: ----------- job: hpbandster.distributed.dispatcher.Job object contains all the info about the run
def new_result(self, job, update_model=True): super().new_result(job) if job.result is None: # One could skip crashed results, but we decided # assign a +inf loss and count them as bad configurations loss = np.inf else: loss = job.result["loss"] budget = job.kwargs["budget"] if budget not in self.configs.keys(): self.configs[budget] = [] self.losses[budget] = [] if len(self.configs.keys()) == 1: min_num_points = 6 else: min_num_points = self.min_points_in_model # skip model building if we already have a bigger model if max(list(self.kde_models.keys()) + [-np.inf]) > budget: return # We want to get a numerical representation of the configuration in the original space conf = ConfigSpace.Configuration(self.configspace, job.kwargs["config"]).get_array().tolist() #import pdb; pdb.set_trace() if conf in self.configs[budget]: i = self.configs[budget].index(conf) self.losses[budget][i].append(loss) print('-'*50) print('ran config %s with loss %f again'%(conf, loss)) else: self.configs[budget].append(conf) self.losses[budget].append([loss]) # skip model building: # a) if not enough points are available tmp = np.array([np.mean(r) for r in self.losses[budget]]) if np.sum(np.isfinite(tmp)) < min_num_points: self.logger.debug("Only %i successful run(s) for budget %f available, need more than %s -> can't build model!"%(np.sum(np.isfinite(tmp)), budget, min_num_points)) return # b) during warnm starting when we feed previous results in and only update once if not update_model: return if budget not in self.kde_models.keys(): self.kde_models[budget] = { 'good': MultivariateKDE(self.configspace, min_bandwidth=self.min_bandwidth, fully_dimensional=self.fully_dimensional), 'bad' : MultivariateKDE(self.configspace, min_bandwidth=self.min_bandwidth, fully_dimensional=self.fully_dimensional) } #import pdb; pdb.set_trace() num_configs = len(self.losses[budget]) train_configs = np.array(self.configs[budget][-num_configs:]) train_losses = np.array(list(map(np.mean, self.losses[budget][-num_configs:]))) n_good= max(3,(num_configs * self.top_n_percent) // 100) n_bad = num_configs-n_good # Refit KDE for the current budget idx = np.argsort(train_losses) train_data_good = self.impute_conditional_data(train_configs[idx[:n_good]]) train_data_bad = self.impute_conditional_data(train_configs[idx[n_good:n_good+n_bad+1]]) self.kde_models[budget]['bad'].fit(train_data_bad, bw_estimator=self.bw_estimator) self.kde_models[budget]['good'].fit(train_data_good, bw_estimator=self.bw_estimator) if self.bw_estimator in ['mlcv'] and n_good < 3: self.kde_models[budget]['good'].bandwidths[:] = self.kde_models[budget]['bad'].bandwidths # update probs for the categorical parameters for later sampling self.logger.debug('done building a new model for budget %f based on %i/%i split\nBest loss for this budget:%f\n\n\n\n\n'%(budget, n_good, n_bad, np.min(train_losses)))
182,950
Iteration class to resample new configurations along side keeping the good ones in SuccessiveHalving. Parameters: ----------- resampling_rate: float fraction of configurations that are resampled at each stage min_samples_advance:int number of samples that are guaranteed to proceed to the next stage regardless of the fraction.
def __init__(self, *args, resampling_rate = 0.5, min_samples_advance = 1, **kwargs): self.resampling_rate = resampling_rate self.min_samples_advance = min_samples_advance
182,955
BO-HB uses (just like Hyperband) SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters: ----------- iteration: int the index of the iteration to be instantiated Returns: -------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations
def get_next_iteration(self, iteration, iteration_kwargs={}): min_budget = max( self.min_budget, self.config_generator.largest_budget_with_model()) max_budget = self.max_budget eta = self.eta # precompute some HB stuff max_SH_iter = -int(np.log(min_budget/max_budget)/np.log(eta)) + 1 budgets = max_budget * np.power(eta, -np.linspace(max_SH_iter-1, 0, max_SH_iter)) # number of 'SH rungs' s = max_SH_iter - 1 # number of configurations in that bracket n0 = int(np.floor((self.max_SH_iter)/(s+1)) * eta**s) ns = np.array([max(int(n0*(eta**(-i))), 1) for i in range(s+1)]) while (ns * budgets[-s-1:]).sum() <= self.budget_per_iteration: n0 += 1 ns = np.array([max(int(n0*(eta**(-i))), 1) for i in range(s+1)]) n0 -= 1 ns = np.array([max(int(n0*(eta**(-i))), 1) for i in range(s+1)]) assert (ns * budgets[-s-1:]).sum() <= self.budget_per_iteration, 'Sampled iteration exceeds the budget per iteration!' return(SuccessiveHalving(HPB_iter=iteration, num_configs=ns, budgets=budgets, config_sampler=self.config_generator.get_config, **iteration_kwargs))
182,958
Function to sample a new configuration This function is called inside Hyperband to query a new configuration Parameters: ----------- budget: float the budget for which this configuration is scheduled returns: config should return a valid configuration
def get_config(self, budget): # No observations available for this budget sample from the prior if len(self.kde_models.keys()) == 0: return self.configspace.sample_configuration().get_dictionary() # If we haven't seen anything with this budget, we sample from the kde trained on the highest budget if budget not in self.kde_models.keys(): budget = sorted(self.kde_models.keys())[-1] # TODO: This only works in continuous space and with gaussian kernels kde = self.kde_models[budget] idx = np.random.randint(0, len(self.kde_models[budget].data)) vector = [sps.truncnorm.rvs(-m/bw,(1-m)/bw, loc=m, scale=bw) for m,bw in zip(self.kde_models[budget].data[idx], kde.bw)] if np.any(np.array(vector)>1) or np.any(np.array(vector)<0): raise RuntimeError("truncated normal sampling problems!") sample = ConfigSpace.Configuration(self.configspace, vector=vector) return sample.get_dictionary(), {}
182,960
function to register finished runs Every time a run has finished, this function should be called to register it with the result logger. If overwritten, make sure to call this method from the base class to ensure proper logging. Parameters: ----------- job_id: dict a dictionary containing all the info about the run job_result: dict contains all the results of the job, i.e. it's a dict with the keys 'loss' and 'info'
def new_result(self, job): super(KernelDensityEstimator, self).new_result(job) budget = job.kwargs["budget"] if budget not in self.configs.keys(): self.configs[budget] = [] self.losses[budget] = [] # We want to get a numerical representation of the configuration in the original space conf = ConfigSpace.Configuration(self.configspace, job.kwargs['config']) self.configs[budget].append(conf.get_array()) self.losses[budget].append(job.result['result']["loss"]) # Check if we have enough data points to fit a KDE if len(self.configs[budget]) % self.update_after_n_points == 0: train_configs, train_losses = [], [] train_configs.extend(self.configs[budget]) train_losses.extend(self.losses[budget]) n = int(self.top_n_percent * len(train_configs) / 100.) remaining_budgets = list(self.configs.keys()) remaining_budgets.remove(budget) remaining_budgets.sort(reverse=True) for b in remaining_budgets: if n >= self.min_points_in_model: break train_configs.extend(self.configs[b]) train_losses.extend(self.losses[b]) n = int(self.top_n_percent * len(train_configs) / 100.) if len(train_losses) < self.min_points_in_model: return n = max(self.min_points_in_model, n) # Refit KDE for the current budget idx = np.argsort(train_losses) train_data = (np.array(train_configs)[idx])[:n] self.kde_models[budget] = sm.nonparametric.KDEMultivariate(data=train_data, var_type=self.var_type, bw='cv_ls')
182,961
predict the loss of an unseen configuration Parameters: ----------- times: numpy array times where to predict the loss config: numpy array the numerical representation of the config Returns: -------- mean and variance prediction at input times for the given config
def predict_unseen(self, times, config): assert np.all(times > 0) and np.all(times <= self.max_num_epochs) x = np.array(config)[None, :] idx = times / self.max_num_epochs x = np.repeat(x, idx.shape[0], axis=0) x = np.concatenate((x, idx[:, None]), axis=1) mean, var = self.model.predict(x) return 1 - mean, var
182,982
function to sample a new configuration This function is called inside Hyperband to query a new configuration Parameters: ----------- budget: float the budget for which this configuration is scheduled returns: config should return a valid configuration
def get_config(self, budget): self.lock.acquire() if not self.is_trained: c = self.config_space.sample_configuration().get_array() else: candidates = np.array([self.config_space.sample_configuration().get_array() for _ in range(self.n_candidates)]) # We are only interested on the asymptotic value projected_candidates = np.concatenate((candidates, np.ones([self.n_candidates, 1])), axis=1) # Compute the upper confidence bound of the function at the asymptote m, v = self.model.predict(projected_candidates) ucb_values = m + self.delta * np.sqrt(v) print(ucb_values) # Sample a configuration based on the ucb values p = np.ones(self.n_candidates) * (ucb_values / np.sum(ucb_values)) idx = np.random.choice(self.n_candidates, 1, False, p) c = candidates[idx][0] config = ConfigSpace.Configuration(self.config_space, vector=c) self.lock.release() return config.get_dictionary(), {}
183,046
starts a Pyro4 nameserver in a daemon thread Parameters: ----------- host: str the hostname to use for the nameserver port: int the port to be used. Default =0 means a random port nic_name: str name of the network interface to use Returns: -------- tuple (str, int): the host name and the used port
def start_local_nameserver(host=None, port=0, nic_name=None): if host is None: if nic_name is None: host = 'localhost' else: host = nic_name_to_host(nic_name) uri, ns, _ = Pyro4.naming.startNS(host=host, port=port) host, port = ns.locationStr.split(':') thread = threading.Thread(target=ns.requestLoop, name='Pyro4 nameserver started by HpBandSter') thread.daemon=True thread.start() return(host, int(port))
183,048
Connect to the device. Args: banner: See protocol_handler.Connect. **kwargs: See protocol_handler.Connect and adb_commands.ConnectDevice for kwargs. Includes handle, rsa_keys, and auth_timeout_ms. Returns: An instance of this class if the device connected successfully.
def _Connect(self, banner=None, **kwargs): if not banner: banner = socket.gethostname().encode() conn_str = self.protocol_handler.Connect(self._handle, banner=banner, **kwargs) # Remove banner and colons after device state (state::banner) parts = conn_str.split(b'::') self._device_state = parts[0] # Break out the build prop info self.build_props = str(parts[1].split(b';')) return True
183,205
Removes a package from the device. Args: package_name: Package name of target package. keep_data: whether to keep the data and cache directories timeout_ms: Expected timeout for pushing and installing. Returns: The pm uninstall output.
def Uninstall(self, package_name, keep_data=False, timeout_ms=None): cmd = ['pm uninstall'] if keep_data: cmd.append('-k') cmd.append('"%s"' % package_name) return self.Shell(' '.join(cmd), timeout_ms=timeout_ms)
183,207
Return a directory listing of the given path. Args: device_path: Directory to list.
def List(self, device_path): connection = self.protocol_handler.Open(self._handle, destination=b'sync:') listing = self.filesync_handler.List(connection, device_path) connection.Close() return listing
183,211
Reboot the device. Args: destination: Specify 'bootloader' for fastboot.
def Reboot(self, destination=b''): self.protocol_handler.Open(self._handle, b'reboot:%s' % destination)
183,212
Run command on the device, returning the output. Args: command: Shell command to run timeout_ms: Maximum time to allow the command to run.
def Shell(self, command, timeout_ms=None): return self.protocol_handler.Command( self._handle, service=b'shell', command=command, timeout_ms=timeout_ms)
183,213
Run command on the device, yielding each line of output. Args: command: Command to run on the target. timeout_ms: Maximum time to allow the command to run. Yields: The responses from the shell command.
def StreamingShell(self, command, timeout_ms=None): return self.protocol_handler.StreamingCommand( self._handle, service=b'shell', command=command, timeout_ms=timeout_ms)
183,214
Initialize USB Handle. Arguments: device: libusb_device to connect to. setting: libusb setting with the correct endpoints to communicate with. usb_info: String describing the usb path/serial/device, for debugging. timeout_ms: Timeout in milliseconds for all I/O.
def __init__(self, device, setting, usb_info=None, timeout_ms=None): self._setting = setting self._device = device self._handle = None self._usb_info = usb_info or '' self._timeout_ms = timeout_ms if timeout_ms else DEFAULT_TIMEOUT_MS self._max_read_packet_len = 0
183,220
Find and return the first matching device. Args: setting_matcher: See cls.FindDevices. device_matcher: See cls.FindDevices. **kwargs: See cls.FindDevices. Returns: An instance of UsbHandle. Raises: DeviceNotFoundError: Raised if the device is not available.
def FindFirst(cls, setting_matcher, device_matcher=None, **kwargs): try: return next(cls.FindDevices( setting_matcher, device_matcher=device_matcher, **kwargs)) except StopIteration: raise usb_exceptions.DeviceNotFoundError( 'No device available, or it is in the wrong configuration.')
183,230
Initialize the TCP Handle. Arguments: serial: Android device serial of the form host or host:port. Host may be an IP address or a host name.
def __init__(self, serial, timeout_ms=None): # if necessary, convert serial to a unicode string if isinstance(serial, (bytes, bytearray)): serial = serial.decode('utf-8') if ':' in serial: self.host, self.port = serial.split(':') else: self.host = serial self.port = 5555 self._connection = None self._serial_number = '%s:%s' % (self.host, self.port) self._timeout_ms = float(timeout_ms) if timeout_ms else None self._connect()
183,232
Constructs a FastbootProtocol instance. Args: usb: UsbHandle instance. chunk_kb: Packet size. For older devices, 4 may be required.
def __init__(self, usb, chunk_kb=1024): self.usb = usb self.chunk_kb = chunk_kb
183,259
Sends a command to the device. Args: command: The command to send. arg: Optional argument to the command.
def SendCommand(self, command, arg=None): if arg is not None: if not isinstance(arg, bytes): arg = arg.encode('utf8') command = b'%s:%s' % (command, arg) self._Write(io.BytesIO(command), len(command))
183,260
Accepts normal responses from the device. Args: timeout_ms: Timeout in milliseconds to wait for each response. info_cb: Optional callback for text sent from the bootloader. Returns: OKAY packet's message.
def HandleSimpleResponses( self, timeout_ms=None, info_cb=DEFAULT_MESSAGE_CALLBACK): return self._AcceptResponses(b'OKAY', info_cb, timeout_ms=timeout_ms)
183,261
Flashes a partition from the file on disk. Args: partition: Partition name to flash to. source_file: Filename to download to the device. source_len: Optional length of source_file, uses os.stat if not provided. info_cb: See Download. progress_callback: See Download. Returns: Download and flash responses, normally nothing.
def FlashFromFile(self, partition, source_file, source_len=0, info_cb=DEFAULT_MESSAGE_CALLBACK, progress_callback=None): if source_len == 0: # Fall back to stat. source_len = os.stat(source_file).st_size download_response = self.Download( source_file, source_len=source_len, info_cb=info_cb, progress_callback=progress_callback) flash_response = self.Flash(partition, info_cb=info_cb) return download_response + flash_response
183,267
Flashes the last downloaded file to the given partition. Args: partition: Partition to overwrite with the new image. timeout_ms: Optional timeout in milliseconds to wait for it to finish. info_cb: See Download. Usually no messages. Returns: Response to a download request, normally nothing.
def Flash(self, partition, timeout_ms=0, info_cb=DEFAULT_MESSAGE_CALLBACK): return self._SimpleCommand(b'flash', arg=partition, info_cb=info_cb, timeout_ms=timeout_ms)
183,269
Erases the given partition. Args: partition: Partition to clear.
def Erase(self, partition, timeout_ms=None): self._SimpleCommand(b'erase', arg=partition, timeout_ms=timeout_ms)
183,270
Returns the given variable's definition. Args: var: A variable the bootloader tracks. Use 'all' to get them all. info_cb: See Download. Usually no messages. Returns: Value of var according to the current bootloader.
def Getvar(self, var, info_cb=DEFAULT_MESSAGE_CALLBACK): return self._SimpleCommand(b'getvar', arg=var, info_cb=info_cb)
183,271
Executes an OEM command on the device. Args: command: Command to execute, such as 'poweroff' or 'bootconfig read'. timeout_ms: Optional timeout in milliseconds to wait for a response. info_cb: See Download. Messages vary based on command. Returns: The final response from the device.
def Oem(self, command, timeout_ms=None, info_cb=DEFAULT_MESSAGE_CALLBACK): if not isinstance(command, bytes): command = command.encode('utf8') return self._SimpleCommand( b'oem %s' % command, timeout_ms=timeout_ms, info_cb=info_cb)
183,272
Reboots the device. Args: target_mode: Normal reboot when unspecified. Can specify other target modes such as 'recovery' or 'bootloader'. timeout_ms: Optional timeout in milliseconds to wait for a response. Returns: Usually the empty string. Depends on the bootloader and the target_mode.
def Reboot(self, target_mode=b'', timeout_ms=None): return self._SimpleCommand( b'reboot', arg=target_mode or None, timeout_ms=timeout_ms)
183,273
Push a file-like object to the device. Args: connection: ADB connection datafile: File-like object for reading from filename: Filename to push to st_mode: stat mode for filename mtime: modification time progress_callback: callback method that accepts filename, bytes_written and total_bytes Raises: PushFailedError: Raised on push failure.
def Push(cls, connection, datafile, filename, st_mode=DEFAULT_PUSH_MODE, mtime=0, progress_callback=None): fileinfo = ('{},{}'.format(filename, int(st_mode))).encode('utf-8') cnxn = FileSyncConnection(connection, b'<2I') cnxn.Send(b'SEND', fileinfo) if progress_callback: total_bytes = os.fstat(datafile.fileno()).st_size if isinstance(datafile, file) else -1 progress = cls._HandleProgress(lambda current: progress_callback(filename, current, total_bytes)) next(progress) while True: data = datafile.read(MAX_PUSH_DATA) if data: cnxn.Send(b'DATA', data) if progress_callback: progress.send(len(data)) else: break if mtime == 0: mtime = int(time.time()) # DONE doesn't send data, but it hides the last bit of data in the size # field. cnxn.Send(b'DONE', size=mtime) for cmd_id, _, data in cnxn.ReadUntil((), b'OKAY', b'FAIL'): if cmd_id == b'OKAY': return raise PushFailedError(data)
183,285
Send/buffer FileSync packets. Packets are buffered and only flushed when this connection is read from. All messages have a response from the device, so this will always get flushed. Args: command_id: Command to send. data: Optional data to send, must set data or size. size: Optionally override size from len(data).
def Send(self, command_id, data=b'', size=0): if data: if not isinstance(data, bytes): data = data.encode('utf8') size = len(data) if not self._CanAddToSendBuffer(len(data)): self._Flush() buf = struct.pack(b'<2I', self.id_to_wire[command_id], size) + data self.send_buffer[self.send_idx:self.send_idx + len(buf)] = buf self.send_idx += len(buf)
183,287
Prints a directory listing. Args: device_path: Directory to list.
def List(device, device_path): files = device.List(device_path) files.sort(key=lambda x: x.filename) maxname = max(len(f.filename) for f in files) maxsize = max(len(str(f.size)) for f in files) for f in files: mode = ( ('d' if stat.S_ISDIR(f.mode) else '-') + ('r' if f.mode & stat.S_IRUSR else '-') + ('w' if f.mode & stat.S_IWUSR else '-') + ('x' if f.mode & stat.S_IXUSR else '-') + ('r' if f.mode & stat.S_IRGRP else '-') + ('w' if f.mode & stat.S_IWGRP else '-') + ('x' if f.mode & stat.S_IXGRP else '-') + ('r' if f.mode & stat.S_IROTH else '-') + ('w' if f.mode & stat.S_IWOTH else '-') + ('x' if f.mode & stat.S_IXOTH else '-')) t = time.gmtime(f.mtime) yield '%s %*d %04d-%02d-%02d %02d:%02d:%02d %-*s\n' % ( mode, maxsize, f.size, t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, maxname, f.filename)
183,294
Runs a command on the device and prints the stdout. Args: command: Command to run on the target.
def Shell(device, *command): if command: return device.StreamingShell(' '.join(command)) else: # Retrieve the initial terminal prompt to use as a delimiter for future reads terminal_prompt = device.InteractiveShell() print(terminal_prompt.decode('utf-8')) # Accept user input in a loop and write that into the interactive shells stdin, then print output while True: cmd = input('> ') if not cmd: continue elif cmd == 'exit': break else: stdout = device.InteractiveShell(cmd, strip_cmd=True, delim=terminal_prompt, strip_delim=True) if stdout: if isinstance(stdout, bytes): stdout = stdout.decode('utf-8') print(stdout) device.Close()
183,295
Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], assuming uniform distribution of set sizes within the interval. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives.
def _compute_nfp_uniform(l, u, cum_counts, sizes): if l > u: raise ValueError("l must be less or equal to u") if l == 0: n = cum_counts[u] else: n = cum_counts[u]-cum_counts[l-1] return n * float(sizes[u] - sizes[l]) / float(2*sizes[u])
183,565
Computes the matrix of expected false positives for all possible sub-intervals of the complete domain of set sizes, assuming uniform distribution of set_sizes within each sub-intervals. Args: cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (np.array): the 2-D array of expected number of false positives for every pair of [l, u] interval, where l is axis-0 and u is axis-1.
def _compute_nfps_uniform(cum_counts, sizes): nfps = np.zeros((len(sizes), len(sizes))) # All u an l are inclusive bounds for intervals. # Compute p = 1, the NFPs for l in range(len(sizes)): for u in range(l, len(sizes)): nfps[l, u] = _compute_nfp_uniform(l, u, cum_counts, sizes) return nfps
183,566
Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], using the real set size distribution. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives.
def _compute_nfp_real(l, u, counts, sizes): if l > u: raise ValueError("l must be less or equal to u") return np.sum((float(sizes[u])-sizes[l:u+1])/float(sizes[u])*counts[l:u+1])
183,567
Computes the matrix of expected false positives for all possible sub-intervals of the complete domain of set sizes. Args: counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (np.array): the 2-D array of expected number of false positives for every pair of [l, u] interval, where l is axis-0 and u is axis-1.
def _compute_nfps_real(counts, sizes): nfps = np.zeros((len(sizes), len(sizes))) # All u an l are inclusive bounds for intervals. # Compute p = 1, the NFPs for l in range(len(sizes)): for u in range(l, len(sizes)): nfps[l, u] = _compute_nfp_real(l, u, counts, sizes) return nfps
183,568
Initialize the slots of the LeanMinHash. Args: seed (int): The random seed controls the set of random permutation functions generated for this LeanMinHash. hashvalues: The hash values is the internal state of the LeanMinHash.
def _initialize_slots(self, seed, hashvalues): self.seed = seed self.hashvalues = self._parse_hashvalues(hashvalues)
183,605
Compute the byte size after serialization. Args: byteorder (str, optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. Returns: int: Size in number of bytes after serialization.
def bytesize(self, byteorder='@'): # Use 8 bytes to store the seed integer seed_size = struct.calcsize(byteorder+'q') # Use 4 bytes to store the number of hash values length_size = struct.calcsize(byteorder+'i') # Use 4 bytes to store each hash value as we are using the lower 32 bit hashvalue_size = struct.calcsize(byteorder+'I') return seed_size + length_size + len(self) * hashvalue_size
183,607
Estimate the `Jaccard similarity`_ (resemblance) between the sets represented by this MinHash and the other. Args: other (datasketch.MinHash): The other MinHash. Returns: float: The Jaccard similarity, which is between 0.0 and 1.0.
def jaccard(self, other): if other.seed != self.seed: raise ValueError("Cannot compute Jaccard given MinHash with\ different seeds") if len(self) != len(other): raise ValueError("Cannot compute Jaccard given MinHash with\ different numbers of permutation functions") return np.float(np.count_nonzero(self.hashvalues==other.hashvalues)) /\ np.float(len(self))
183,616
Merge the other MinHash with this one, making this one the union of both. Args: other (datasketch.MinHash): The other MinHash.
def merge(self, other): if other.seed != self.seed: raise ValueError("Cannot merge MinHash with\ different seeds") if len(self) != len(other): raise ValueError("Cannot merge MinHash with\ different numbers of permutation functions") self.hashvalues = np.minimum(other.hashvalues, self.hashvalues)
183,618
Create a MinHash which is the union of the MinHash objects passed as arguments. Args: *mhs: The MinHash objects to be united. The argument list length is variable, but must be at least 2. Returns: datasketch.MinHash: A new union MinHash.
def union(cls, *mhs): if len(mhs) < 2: raise ValueError("Cannot union less than 2 MinHash") num_perm = len(mhs[0]) seed = mhs[0].seed if any((seed != m.seed or num_perm != len(m)) for m in mhs): raise ValueError("The unioning MinHash must have the\ same seed and number of permutation functions") hashvalues = np.minimum.reduce([m.hashvalues for m in mhs]) permutations = mhs[0].permutations return cls(num_perm=num_perm, seed=seed, hashvalues=hashvalues, permutations=permutations)
183,621
Index all sets given their keys, MinHashes, and sizes. It can be called only once after the index is created. Args: entries (`iterable` of `tuple`): An iterable of tuples, each must be in the form of `(key, minhash, size)`, where `key` is the unique identifier of a set, `minhash` is the MinHash of the set, and `size` is the size or number of unique items in the set. Note: `size` must be positive.
def index(self, entries): if not self.is_empty(): raise ValueError("Cannot call index again on a non-empty index") if not isinstance(entries, list): queue = deque([]) for key, minhash, size in entries: if size <= 0: raise ValueError("Set size must be positive") queue.append((key, minhash, size)) entries = list(queue) if len(entries) == 0: raise ValueError("entries is empty") # Create optimal partitions. sizes, counts = np.array(sorted( Counter(e[2] for e in entries).most_common())).T partitions = optimal_partitions(sizes, counts, len(self.indexes)) for i, (lower, upper) in enumerate(partitions): self.lowers[i], self.uppers[i] = lower, upper # Insert into partitions. entries.sort(key=lambda e : e[2]) curr_part = 0 for key, minhash, size in entries: if size > self.uppers[curr_part]: curr_part += 1 for r in self.indexes[curr_part]: self.indexes[curr_part][r].insert(key, minhash)
183,627
Giving the MinHash and size of the query set, retrieve keys that references sets with containment with respect to the query set greater than the threshold. Args: minhash (datasketch.MinHash): The MinHash of the query set. size (int): The size (number of unique items) of the query set. Returns: `iterator` of keys.
def query(self, minhash, size): for i, index in enumerate(self.indexes): u = self.uppers[i] if u is None: continue b, r = self._get_optimal_param(u, size) for key in index[r]._query_b(minhash, b): yield key
183,628
Estimate the `weighted Jaccard similarity`_ between the multi-sets represented by this weighted MinHash and the other. Args: other (datasketch.WeightedMinHash): The other weighted MinHash. Returns: float: The weighted Jaccard similarity between 0.0 and 1.0. .. _`weighted Jaccard similarity`: http://mathoverflow.net/questions/123339/weighted-jaccard-similarity
def jaccard(self, other): if other.seed != self.seed: raise ValueError("Cannot compute Jaccard given WeightedMinHash objects with\ different seeds") if len(self) != len(other): raise ValueError("Cannot compute Jaccard given WeightedMinHash objects with\ different numbers of hash values") # Check how many pairs of (k, t) hashvalues are equal intersection = 0 for this, that in zip(self.hashvalues, other.hashvalues): if np.array_equal(this, that): intersection += 1 return float(intersection) / float(len(self))
183,632
Create a new weighted MinHash given a weighted Jaccard vector. Each dimension is an integer frequency of the corresponding element in the multi-set represented by the vector. Args: v (numpy.array): The Jaccard vector.
def minhash(self, v): if not isinstance(v, collections.Iterable): raise TypeError("Input vector must be an iterable") if not len(v) == self.dim: raise ValueError("Input dimension mismatch, expecting %d" % self.dim) if not isinstance(v, np.ndarray): v = np.array(v, dtype=np.float32) elif v.dtype != np.float32: v = v.astype(np.float32) hashvalues = np.zeros((self.sample_size, 2), dtype=np.int) vzeros = (v == 0) if vzeros.all(): raise ValueError("Input is all zeros") v[vzeros] = np.nan vlog = np.log(v) for i in range(self.sample_size): t = np.floor((vlog / self.rs[i]) + self.betas[i]) ln_y = (t - self.betas[i]) * self.rs[i] ln_a = self.ln_cs[i] - ln_y - self.rs[i] k = np.nanargmin(ln_a) hashvalues[i][0], hashvalues[i][1] = k, int(t[k]) return WeightedMinHash(self.seed, hashvalues)
183,634
Remove the key from the index. Args: key (hashable): The unique identifier of a set.
def remove(self, key): if self.prepickle: key = pickle.dumps(key) if key not in self.keys: raise ValueError("The given key does not exist") for H, hashtable in zip(self.keys[key], self.hashtables): hashtable.remove_val(H, key) if not hashtable.get(H): hashtable.remove(H) self.keys.remove(key)
183,648
Returns the bucket allocation counts (see :func:`~datasketch.MinHashLSH.get_counts` above) restricted to the list of keys given. Args: keys (hashable) : the keys for which to get the bucket allocation counts
def get_subset_counts(self, *keys): if self.prepickle: key_set = [pickle.dumps(key) for key in set(keys)] else: key_set = list(set(keys)) hashtables = [unordered_storage({'type': 'dict'}) for _ in range(self.b)] Hss = self.keys.getmany(*key_set) for key, Hs in zip(key_set, Hss): for H, hashtable in zip(Hs, hashtables): hashtable.insert(H, key) return [hashtable.itemcounts() for hashtable in hashtables]
183,650
Merge the other HyperLogLog with this one, making this the union of the two. Args: other (datasketch.HyperLogLog):
def merge(self, other): if self.m != other.m or self.p != other.p: raise ValueError("Cannot merge HyperLogLog with different\ precisions.") self.reg = np.maximum(self.reg, other.reg)
183,667
Check equivalence between two HyperLogLogs Args: other (datasketch.HyperLogLog): Returns: bool: True if both have the same internal state.
def __eq__(self, other): return type(self) is type(other) and \ self.p == other.p and \ self.m == other.m and \ np.array_equal(self.reg, other.reg)
183,669
Add a unique key, together with a MinHash (or weighted MinHash) of the set referenced by the key. Note: The key won't be searchbale until the :func:`datasketch.MinHashLSHForest.index` method is called. Args: key (hashable): The unique identifier of the set. minhash (datasketch.MinHash): The MinHash of the set.
def add(self, key, minhash): if len(minhash) < self.k*self.l: raise ValueError("The num_perm of MinHash out of range") if key in self.keys: raise ValueError("The given key has already been added") self.keys[key] = [self._H(minhash.hashvalues[start:end]) for start, end in self.hashranges] for H, hashtable in zip(self.keys[key], self.hashtables): hashtable[H].append(key)
183,687
Return the approximate top-k keys that have the highest Jaccard similarities to the query set. Args: minhash (datasketch.MinHash): The MinHash of the query set. k (int): The maximum number of keys to return. Returns: `list` of at most k keys.
def query(self, minhash, k): if k <= 0: raise ValueError("k must be positive") if len(minhash) < self.k*self.l: raise ValueError("The num_perm of MinHash out of range") results = set() r = self.k while r > 0: for key in self._query(minhash, r, self.l): results.add(key) if len(results) >= k: return list(results) r -= 1 return list(results)
183,690
Find matching expectations within _expectation_config. Args: expectation_type=None : The name of the expectation type to be matched. column=None : The name of the column to be matched. expectation_kwargs=None : A dictionary of kwargs to match against. Returns: A list of indexes for matching expectation objects. If there are no matches, the list will be empty.
def find_expectation_indexes(self, expectation_type=None, column=None, expectation_kwargs=None ): if expectation_kwargs == None: expectation_kwargs = {} if "column" in expectation_kwargs and column != None and column != expectation_kwargs["column"]: raise ValueError("Conflicting column names in remove_expectation: %s and %s" % ( column, expectation_kwargs["column"])) if column != None: expectation_kwargs["column"] = column match_indexes = [] for i, exp in enumerate(self._expectations_config.expectations): if expectation_type == None or (expectation_type == exp['expectation_type']): # if column == None or ('column' not in exp['kwargs']) or (exp['kwargs']['column'] == column) or (exp['kwargs']['column']==: match = True for k, v in expectation_kwargs.items(): if k in exp['kwargs'] and exp['kwargs'][k] == v: continue else: match = False if match: match_indexes.append(i) return match_indexes
183,849
Get an evaluation parameter value that has been stored in meta. Args: parameter_name (string): The name of the parameter to store. default_value (any): The default value to be returned if the parameter is not found. Returns: The current value of the evaluation parameter.
def get_evaluation_parameter(self, parameter_name, default_value=None): if "evaluation_parameters" in self._expectations_config and \ parameter_name in self._expectations_config['evaluation_parameters']: return self._expectations_config['evaluation_parameters'][parameter_name] else: return default_value
183,856
Provide a value to be stored in the data_asset evaluation_parameters object and used to evaluate parameterized expectations. Args: parameter_name (string): The name of the kwarg to be replaced at evaluation time parameter_value (any): The value to be used
def set_evaluation_parameter(self, parameter_name, parameter_value): if 'evaluation_parameters' not in self._expectations_config: self._expectations_config['evaluation_parameters'] = {} self._expectations_config['evaluation_parameters'].update( {parameter_name: parameter_value})
183,857
Convenience method for creating weights from categorical data. Args: data (list-like): The data from which to construct the estimate. Returns: A new partition object:: { "partition": (list) The categorical values present in the data "weights": (list) The weights of the values in the partition. }
def categorical_partition_data(data): # Make dropna explicit (even though it defaults to true) series = pd.Series(data) value_counts = series.value_counts(dropna=True) # Compute weights using denominator only of nonnull values null_indexes = series.isnull() nonnull_count = (null_indexes == False).sum() weights = value_counts.values / nonnull_count return { "values": value_counts.index.tolist(), "weights": weights }
183,867
This function will take a dataset and add expectations that each column present exists. Args: inspect_dataset (great_expectations.dataset): The dataset to inspect and to which to add expectations.
def columns_exist(inspect_dataset): # Attempt to get column names. For pandas, columns is just a list of strings if not hasattr(inspect_dataset, "columns"): warnings.warn( "No columns list found in dataset; no autoinspection performed.") return elif isinstance(inspect_dataset.columns[0], string_types): columns = inspect_dataset.columns elif isinstance(inspect_dataset.columns[0], dict) and "name" in inspect_dataset.columns[0]: columns = [col['name'] for col in inspect_dataset.columns] else: raise AutoInspectError( "Unable to determine column names for this dataset.") create_multiple_expectations( inspect_dataset, columns, "expect_column_to_exist")
183,877
Helper function to convert a dict object to one that is serializable Args: test_obj: an object to attempt to convert a corresponding json-serializable object Returns: (dict) A converted test_object Warning: test_obj may also be converted in place.
def recursively_convert_to_json_serializable(test_obj): # Validate that all aruguments are of approved types, coerce if it's easy, else exception # print(type(test_obj), test_obj) # Note: Not 100% sure I've resolved this correctly... try: if not isinstance(test_obj, list) and np.isnan(test_obj): # np.isnan is functionally vectorized, but we only want to apply this to single objects # Hence, why we test for `not isinstance(list))` return None except TypeError: pass except ValueError: pass if isinstance(test_obj, (string_types, integer_types, float, bool)): # No problem to encode json return test_obj elif isinstance(test_obj, dict): new_dict = {} for key in test_obj: # A pandas index can be numeric, and a dict key can be numeric, but a json key must be a string new_dict[str(key)] = recursively_convert_to_json_serializable( test_obj[key]) return new_dict elif isinstance(test_obj, (list, tuple, set)): new_list = [] for val in test_obj: new_list.append(recursively_convert_to_json_serializable(val)) return new_list elif isinstance(test_obj, (np.ndarray, pd.Index)): #test_obj[key] = test_obj[key].tolist() # If we have an array or index, convert it first to a list--causing coercion to float--and then round # to the number of digits for which the string representation will equal the float representation return [recursively_convert_to_json_serializable(x) for x in test_obj.tolist()] # Note: This clause has to come after checking for np.ndarray or we get: # `ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()` elif test_obj is None: # No problem to encode json return test_obj elif isinstance(test_obj, (datetime.datetime, datetime.date)): return str(test_obj) # Use built in base type from numpy, https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html # https://github.com/numpy/numpy/pull/9505 elif np.issubdtype(type(test_obj), np.bool_): return bool(test_obj) elif np.issubdtype(type(test_obj), np.integer) or np.issubdtype(type(test_obj), np.uint): return int(test_obj) elif np.issubdtype(type(test_obj), np.floating): # Note: Use np.floating to avoid FutureWarning from numpy return float(round(test_obj, sys.float_info.dig)) elif isinstance(test_obj, pd.DataFrame): return recursively_convert_to_json_serializable(test_obj.to_dict(orient='records')) # elif np.issubdtype(type(test_obj), np.complexfloating): # Note: Use np.complexfloating to avoid Future Warning from numpy # Complex numbers consist of two floating point numbers # return complex( # float(round(test_obj.real, sys.float_info.dig)), # float(round(test_obj.imag, sys.float_info.dig))) elif isinstance(test_obj, decimal.Decimal): return float(test_obj) else: raise TypeError('%s is of type %s which cannot be serialized.' % ( str(test_obj), type(test_obj).__name__))
183,902
Read a file using Pandas read_excel and return a great_expectations dataset. Args: filename (string): path to file to read dataset_class (Dataset class): class to which to convert resulting Pandas df expectations_config (string): path to great_expectations config file Returns: great_expectations dataset or ordered dict of great_expectations datasets, if multiple worksheets are imported
def read_excel( filename, dataset_class=dataset.pandas_dataset.PandasDataset, expectations_config=None, autoinspect_func=None, *args, **kwargs ): df = pd.read_excel(filename, *args, **kwargs) if isinstance(df, dict): for key in df: df[key] = _convert_to_dataset_class( df[key], dataset_class, expectations_config, autoinspect_func) else: df = _convert_to_dataset_class( df, dataset_class, expectations_config, autoinspect_func) return df
183,913
Context manager for creating a unix-domain socket and listen for ffmpeg progress events. The socket filename is yielded from the context manager and the socket is closed when the context manager is exited. Args: handler: a function to be called when progress events are received; receives a ``key`` argument and ``value`` argument. (The example ``show_progress`` below uses tqdm) Yields: socket_filename: the name of the socket file.
def _watch_progress(handler): with _tmpdir_scope() as tmpdir: socket_filename = os.path.join(tmpdir, 'sock') sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) with contextlib.closing(sock): sock.bind(socket_filename) sock.listen(1) child = gevent.spawn(_do_watch_progress, socket_filename, sock, handler) try: yield socket_filename except: gevent.kill(child) raise
187,664
Change the PTS (presentation timestamp) of the input frames. Args: expr: The expression which is evaluated for each frame to construct its timestamp. Official documentation: `setpts, asetpts <https://ffmpeg.org/ffmpeg-filters.html#setpts_002c-asetpts>`__
def setpts(stream, expr): return FilterNode(stream, setpts.__name__, args=[expr]).stream()
187,673
Crop the input video. Args: x: The horizontal position, in the input video, of the left edge of the output video. y: The vertical position, in the input video, of the top edge of the output video. width: The width of the output video. Must be greater than 0. heigth: The height of the output video. Must be greater than 0. Official documentation: `crop <https://ffmpeg.org/ffmpeg-filters.html#crop>`__
def crop(stream, x, y, width, height, **kwargs): return FilterNode( stream, crop.__name__, args=[width, height, x, y], kwargs=kwargs ).stream()
187,676