docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Input a graph and output a DAG.
The heuristic is to reverse the edge with the lowest score of the cycle
if possible, else remove it.
Args:
g (networkx.DiGraph): Graph to modify to output a DAG
Returns:
networkx.DiGraph: DAG made out of the input graph. | def dagify_min_edge(g):
while not nx.is_directed_acyclic_graph(g):
cycle = next(nx.simple_cycles(g))
scores = []
edges = []
for i, j in zip(cycle[:1], cycle[:1]):
edges.append((i, j))
scores.append(g[i][j]['weight'])
i, j = edges[scores.index(min(scores))]
gc = deepcopy(g)
gc.remove_edge(i, j)
gc.add_edge(j, i)
if len(list(nx.simple_cycles(gc))) < len(list(nx.simple_cycles(g))):
g.add_edge(j, i, weight=min(scores))
g.remove_edge(i, j)
return g | 226,646 |
Apply causal discovery on observational data using CAM.
Args:
data (pandas.DataFrame): DataFrame containing the data
Returns:
networkx.DiGraph: Solution given by the CAM algorithm. | def create_graph_from_data(self, data, **kwargs):
# Building setup w/ arguments.
self.arguments['{SCORE}'] = self.scores[self.score]
self.arguments['{CUTOFF}'] = str(self.cutoff)
self.arguments['{VARSEL}'] = str(self.variablesel).upper()
self.arguments['{SELMETHOD}'] = self.var_selection[self.selmethod]
self.arguments['{PRUNING}'] = str(self.pruning).upper()
self.arguments['{PRUNMETHOD}'] = self.var_selection[self.prunmethod]
self.arguments['{NJOBS}'] = str(self.nb_jobs)
self.arguments['{VERBOSE}'] = str(self.verbose).upper()
results = self._run_cam(data, verbose=self.verbose)
return nx.relabel_nodes(nx.DiGraph(results),
{idx: i for idx, i in enumerate(data.columns)}) | 226,694 |
For one variable, predict its neighbouring nodes.
Args:
df_features (pandas.DataFrame):
df_target (pandas.Series):
idx (int): (optional) for printing purposes
kwargs (dict): additional options for algorithms
Returns:
list: scores of each feature relatively to the target | def predict_features(self, df_features, df_target, idx=0, **kwargs):
estimator = SVR(kernel='linear')
selector = RFECV(estimator, step=1)
selector = selector.fit(df_features.values, df_target.values[:, 0])
return selector.grid_scores_ | 226,695 |
For one variable, predict its neighbouring nodes.
Args:
df_features (pandas.DataFrame):
df_target (pandas.Series):
idx (int): (optional) for printing purposes
kwargs (dict): additional options for algorithms
C (float): Penalty parameter of the error term
Returns:
list: scores of each feature relatively to the target | def predict_features(self, df_features, df_target, idx=0, C=.1, **kwargs):
lsvc = LinearSVR(C=C).fit(df_features.values, df_target.values)
return np.abs(lsvc.coef_) | 226,696 |
For one variable, predict its neighbouring nodes.
Args:
df_features (pandas.DataFrame):
df_target (pandas.Series):
idx (int): (optional) for printing purposes
kwargs (dict): additional options for algorithms
Returns:
list: scores of each feature relatively to the target | def predict_features(self, df_features, df_target, idx=0, **kwargs):
X = df_features.values
y = df_target.values
regressor = DecisionTreeRegressor()
regressor.fit(X, y)
return regressor.feature_importances_ | 226,697 |
For one variable, predict its neighbouring nodes.
Args:
df_features (pandas.DataFrame):
df_target (pandas.Series):
idx (int): (optional) for printing purposes
kwargs (dict): additional options for algorithms
Returns:
list: scores of each feature relatively to the target | def predict_features(self, df_features, df_target, idx=0, **kwargs):
X = df_features.values
y = df_target.values
clf = ard(compute_score=True)
clf.fit(X, y.ravel())
return np.abs(clf.coef_) | 226,698 |
For one variable, predict its neighbouring nodes.
Args:
df_features (pandas.DataFrame):
df_target (pandas.Series):
idx (int): (optional) for printing purposes
kwargs (dict): additional options for algorithms
Returns:
list: scores of each feature relatively to the target | def predict_features(self, df_features, df_target, idx=0, **kwargs):
X = df_features.values
y = df_target.values[:, 0]
rr = ReliefF()
rr.fit(X, y)
return rr.feature_importances_ | 226,699 |
Fit the NCC model.
Args:
x_tr (pd.DataFrame): CEPC format dataframe containing the pairs
y_tr (pd.DataFrame or np.ndarray): labels associated to the pairs
epochs (int): number of train epochs
learning_rate (float): learning rate of Adam
verbose (bool): verbosity (defaults to ``cdt.SETTINGS.verbose``)
device (str): cuda or cpu device (defaults to ``cdt.SETTINGS.default_device``) | def fit(self, x_tr, y_tr, epochs=50, batchsize=32,
learning_rate=0.01, verbose=None, device=None):
if batchsize > len(x_tr):
batchsize = len(x_tr)
verbose, device = SETTINGS.get_default(('verbose', verbose),
('device', device))
self.model = NCC_model()
opt = th.optim.Adam(self.model.parameters(), lr=learning_rate)
criterion = th.nn.BCEWithLogitsLoss()
y = y_tr.values if isinstance(y_tr, pd.DataFrame) else y_tr
y = th.Tensor(y)/2 + .5
# print(y)
self.model = self.model.to(device)
y = y.to(device)
dataset = []
for i, (idx, row) in enumerate(x_tr.iterrows()):
a = row['A'].reshape((len(row['A']), 1))
b = row['B'].reshape((len(row['B']), 1))
m = np.hstack((a, b))
m = m.astype('float32')
m = th.from_numpy(m).t().unsqueeze(0)
dataset.append(m)
dataset = [m.to(device) for m in dataset]
acc = [0]
da = th.utils.data.DataLoader(Dataset(dataset, y), batch_size=batchsize,
shuffle=True)
data_per_epoch = (len(dataset) // batchsize)
with trange(epochs, desc="Epochs", disable=not verbose) as te:
for epoch in te:
with trange(data_per_epoch, desc="Batches of {}".format(batchsize),
disable=not (verbose and batchsize == len(dataset))) as t:
output = []
labels = []
for (batch, label), i in zip(da, t):
opt.zero_grad()
# print(batch.shape, labels.shape)
out = th.stack([self.model(m) for m in batch], 0).squeeze(2)
loss = criterion(out, label)
loss.backward()
t.set_postfix(loss=loss.item())
opt.step()
output.append(out)
labels.append(label)
acc = th.where(th.cat(output, 0) > .5,
th.ones(len(output)),
th.zeros(len(output))) - th.cat(labels, 0)
te.set_postfix(Acc=1-acc.abs().mean().item()) | 226,703 |
Infer causal directions using the trained NCC pairwise model.
Args:
a (numpy.ndarray): Variable 1
b (numpy.ndarray): Variable 2
device (str): Device to run the algorithm on (defaults to ``cdt.SETTINGS.default_device``)
Returns:
float: Causation score (Value : 1 if a->b and -1 if b->a) | def predict_proba(self, a, b, device=None):
device = SETTINGS.get_default(device=device)
if self.model is None:
print('Model has to be trained before doing any predictions')
raise ValueError
if len(np.array(a).shape) == 1:
a = np.array(a).reshape((-1, 1))
b = np.array(b).reshape((-1, 1))
m = np.hstack((a, b))
m = scale(m)
m = m.astype('float32')
m = th.from_numpy(m).t().unsqueeze(0)
if th.cuda.is_available():
m = m.cuda()
return (self.model(m).data.cpu().numpy()-.5) * 2 | 226,704 |
Sets the action to take when conflicts arise when attempting
to insert/create a new row.
Arguments:
fields:
The fields the conflicts can occur in.
action:
The action to take when the conflict occurs.
index_predicate:
The index predicate to satisfy an arbiter partial index (i.e. what partial index to use for checking
conflicts) | def on_conflict(self, fields: List[Union[str, Tuple[str]]], action, index_predicate: str=None):
self.conflict_target = fields
self.conflict_action = action
self.index_predicate = index_predicate
return self | 226,776 |
Creates a new record in the database.
This allows specifying custom conflict behavior using .on_conflict().
If no special behavior was specified, this uses the normal Django create(..)
Arguments:
fields:
The fields of the row to create.
Returns:
The primary key of the record that was created. | def insert(self, **fields):
if self.conflict_target or self.conflict_action:
compiler = self._build_insert_compiler([fields])
rows = compiler.execute_sql(return_id=True)
pk_field_name = self.model._meta.pk.name
return rows[0][pk_field_name]
# no special action required, use the standard Django create(..)
return super().create(**fields).pk | 226,778 |
Creates a new record in the database and then gets
the entire row.
This allows specifying custom conflict behavior using .on_conflict().
If no special behavior was specified, this uses the normal Django create(..)
Arguments:
fields:
The fields of the row to create.
Returns:
The model instance representing the row that was created. | def insert_and_get(self, **fields):
if not self.conflict_target and not self.conflict_action:
# no special action required, use the standard Django create(..)
return super().create(**fields)
compiler = self._build_insert_compiler([fields])
rows = compiler.execute_sql(return_id=False)
columns = rows[0]
# get a list of columns that are officially part of the model and preserve the fact that the attribute name
# might be different than the database column name
model_columns = {}
for field in self.model._meta.local_concrete_fields:
model_columns[field.column] = field.attname
# strip out any columns/fields returned by the db that
# are not present in the model
model_init_fields = {}
for column_name, column_value in columns.items():
try:
model_init_fields[model_columns[column_name]] = column_value
except KeyError:
pass
return self.model(**model_init_fields) | 226,779 |
Creates a set of new records or updates the existing
ones with the specified data.
Arguments:
conflict_target:
Fields to pass into the ON CONFLICT clause.
rows:
Rows to upsert.
index_predicate:
The index predicate to satisfy an arbiter partial index (i.e. what partial index to use for checking
conflicts) | def bulk_upsert(self, conflict_target: List, rows: List[Dict], index_predicate: str=None):
if not rows or len(rows) <= 0:
return
self.on_conflict(conflict_target, ConflictAction.UPDATE, index_predicate)
return self.bulk_insert(rows) | 226,782 |
Builds the SQL compiler for a insert query.
Arguments:
rows:
A list of dictionaries, where each entry
describes a record to insert.
Returns:
The SQL compiler for the insert. | def _build_insert_compiler(self, rows: List[Dict]):
# create model objects, we also have to detect cases
# such as:
# [dict(first_name='swen'), dict(fist_name='swen', last_name='kooij')]
# we need to be certain that each row specifies the exact same
# amount of fields/columns
objs = []
field_count = len(rows[0])
for index, row in enumerate(rows):
if field_count != len(row):
raise SuspiciousOperation((
'In bulk upserts, you cannot have rows with different field '
'configurations. Row {0} has a different field config than '
'the first row.'
).format(index))
objs.append(self.model(**row))
# indicate this query is going to perform write
self._for_write = True
# get the fields to be used during update/insert
insert_fields, update_fields = self._get_upsert_fields(rows[0])
# build a normal insert query
query = PostgresInsertQuery(self.model)
query.conflict_action = self.conflict_action
query.conflict_target = self.conflict_target
query.index_predicate = self.index_predicate
query.values(objs, insert_fields, update_fields)
# use the postgresql insert query compiler to transform the insert
# into an special postgresql insert
connection = django.db.connections[self.db]
compiler = PostgresInsertCompiler(query, connection, self.db)
return compiler | 226,783 |
Sets the action to take when conflicts arise when attempting
to insert/create a new row.
Arguments:
fields:
The fields the conflicts can occur in.
action:
The action to take when the conflict occurs.
index_predicate:
The index predicate to satisfy an arbiter partial index. | def on_conflict(self, fields: List[Union[str, Tuple[str]]], action, index_predicate: str=None):
return self.get_queryset().on_conflict(fields, action, index_predicate) | 226,787 |
Creates a new record or updates the existing one
with the specified data.
Arguments:
conflict_target:
Fields to pass into the ON CONFLICT clause.
fields:
Fields to insert/update.
index_predicate:
The index predicate to satisfy an arbiter partial index.
Returns:
The primary key of the row that was created/updated. | def upsert(self, conflict_target: List, fields: Dict, index_predicate: str=None) -> int:
return self.get_queryset().upsert(conflict_target, fields, index_predicate) | 226,788 |
Creates a new record or updates the existing one
with the specified data and then gets the row.
Arguments:
conflict_target:
Fields to pass into the ON CONFLICT clause.
fields:
Fields to insert/update.
index_predicate:
The index predicate to satisfy an arbiter partial index.
Returns:
The model instance representing the row
that was created/updated. | def upsert_and_get(self, conflict_target: List, fields: Dict, index_predicate: str=None):
return self.get_queryset().upsert_and_get(conflict_target, fields, index_predicate) | 226,789 |
Creates a set of new records or updates the existing
ones with the specified data.
Arguments:
conflict_target:
Fields to pass into the ON CONFLICT clause.
index_predicate:
The index predicate to satisfy an arbiter partial index.
rows:
Rows to upsert. | def bulk_upsert(self, conflict_target: List, rows: List[Dict], index_predicate: str=None):
return self.get_queryset().bulk_upsert(conflict_target, rows, index_predicate) | 226,790 |
Selects whichever field is not None, in the specified order.
Arguments:
fields:
The fields to attempt to get a value from,
in order.
default:
The value to return in case all values are None.
Returns:
A Case-When expression that tries each field and
returns the specified default value when all of
them are None. | def IsNotNone(*fields, default=None):
when_clauses = [
expressions.When(
~expressions.Q(**{field: None}),
then=expressions.F(field)
)
for field in reversed(fields)
]
return expressions.Case(
*when_clauses,
default=expressions.Value(default),
output_field=CharField()
) | 226,793 |
Initializes a new instance of :see:HStoreColumn.
Arguments:
alias:
The table name.
target:
The field instance.
hstore_key
The name of the hstore key to include
in the epxression. | def __init__(self, alias, target, hstore_key):
super().__init__(alias, target, output_field=target)
self.alias, self.target, self.hstore_key = alias, target, hstore_key | 226,796 |
Initializes a new instance of :see:HStoreRef.
Arguments:
name:
The name of the column/field to resolve.
key:
The name of the HStore key to select. | def __init__(self, name: str, key: str):
super().__init__(name)
self.key = key | 226,800 |
Renames the aliases for the specified annotations:
.annotate(myfield=F('somestuf__myfield'))
.rename_annotations(myfield='field')
Arguments:
annotations:
The annotations to rename. Mapping the
old name to the new name. | def rename_annotations(self, annotations) -> None:
for old_name, new_name in annotations.items():
annotation = self.annotations.get(old_name)
if not annotation:
raise SuspiciousOperation((
'Cannot rename annotation "{old_name}" to "{new_name}", because there'
' is no annotation named "{old_name}".'
).format(old_name=old_name, new_name=new_name))
self._annotations = OrderedDict(
[(new_name, v) if k == old_name else (k, v) for k, v in self._annotations.items()])
if django.VERSION < (2, 0):
self.set_annotation_mask(
(new_name if v == old_name else v for v in (self.annotation_select_mask or []))) | 226,804 |
Gets the name for a CONSTRAINT that applies
to a single hstore key.
Arguments:
table:
The name of the table the field is
a part of.
field:
The hstore field to create a
UNIQUE INDEX for.
key:
The name of the hstore key
to create the name for.
Returns:
The name for the UNIQUE index. | def _required_constraint_name(table: str, field, key):
return '{table}_{field}_required_{postfix}'.format(
table=table,
field=field.column,
postfix=key
) | 226,819 |
Rewrites a formed SQL INSERT query to include
the ON CONFLICT clause.
Arguments:
sql:
The SQL INSERT query to rewrite.
params:
The parameters passed to the query.
returning:
What to put in the `RETURNING` clause
of the resulting query.
Returns:
A tuple of the rewritten SQL query and new params. | def _rewrite_insert(self, sql, params, return_id=False):
returning = self.qn(self.query.model._meta.pk.attname) if return_id else '*'
if self.query.conflict_action.value == 'UPDATE':
return self._rewrite_insert_update(sql, params, returning)
elif self.query.conflict_action.value == 'NOTHING':
return self._rewrite_insert_nothing(sql, params, returning)
raise SuspiciousOperation((
'%s is not a valid conflict action, specify '
'ConflictAction.UPDATE or ConflictAction.NOTHING.'
) % str(self.query.conflict_action)) | 226,842 |
Gets the field on a model with the specified name.
Arguments:
name:
The name of the field to look for.
This can be both the actual field name, or
the name of the column, both will work :)
Returns:
The field with the specified name or None if
no such field exists. | def _get_model_field(self, name: str):
field_name = self._normalize_field_name(name)
# 'pk' has special meaning and always refers to the primary
# key of a model, we have to respect this de-facto standard behaviour
if field_name == 'pk' and self.query.model._meta.pk:
return self.query.model._meta.pk
for field in self.query.model._meta.local_concrete_fields:
if field.name == field_name or field.column == field_name:
return field
return None | 226,846 |
Formats a field's name for usage in SQL.
Arguments:
field_name:
The field name to format.
Returns:
The specified field name formatted for
usage in SQL. | def _format_field_name(self, field_name) -> str:
field = self._get_model_field(field_name)
return self.qn(field.column) | 226,847 |
Formats a field's value for usage in SQL.
Arguments:
field_name:
The name of the field to format
the value of.
Returns:
The field's value formatted for usage
in SQL. | def _format_field_value(self, field_name) -> str:
field_name = self._normalize_field_name(field_name)
field = self._get_model_field(field_name)
return SQLInsertCompiler.prepare_value(
self,
field,
# Note: this deliberately doesn't use `pre_save_val` as we don't
# want things like auto_now on DateTimeField (etc.) to change the
# value. We rely on pre_save having already been done by the
# underlying compiler so that things like FileField have already had
# the opportunity to save out their data.
getattr(self.query.objs[0], field.attname)
) | 226,848 |
Normalizes a field name into a string by
extracting the field name if it was specified
as a reference to a HStore key (as a tuple).
Arguments:
field_name:
The field name to normalize.
Returns:
The normalized field name. | def _normalize_field_name(self, field_name) -> str:
if isinstance(field_name, tuple):
field_name, _ = field_name
return field_name | 226,849 |
Iterates over the keys marked as "unique"
in the specified field.
Arguments:
field:
The field of which key's to
iterate over. | def _iterate_uniqueness_keys(self, field):
uniqueness = getattr(field, 'uniqueness', None)
if not uniqueness:
return
for keys in uniqueness:
composed_keys = self._compose_keys(keys)
yield composed_keys | 226,858 |
Adds an extra condition to this join.
Arguments:
field:
The field that the condition will apply to.
value:
The value to compare. | def add_condition(self, field, value: Any) -> None:
self.extra_conditions.append((field, value)) | 226,860 |
Creates a new :see:ConditionalJoin from the
specified :see:Join object.
Arguments:
join:
The :see:Join object to create the
:see:ConditionalJoin object from.
Returns:
A :see:ConditionalJoin object created from
the :see:Join object. | def from_join(cls, join: Join) -> 'ConditionalJoin':
return cls(
join.table_name,
join.parent_alias,
join.table_alias,
join.join_type,
join.join_field,
join.nullable
) | 226,862 |
Get dashboard meta info from in page `page` and page size is `size`.
Args:
page: page number.
size: size number.
Returns:
list of dict containing the dash_id and accordingly meta info.
maybe empty list [] when page * size > total dashes in db. that's reasonable. | def get(self, page=0, size=10):
dash_list = r_db.zrevrange(config.DASH_ID_KEY, 0, -1, True)
id_list = dash_list[page * size : page * size + size]
dash_meta = []
data = []
if id_list:
dash_meta = r_db.hmget(config.DASH_META_KEY, [i[0] for i in id_list])
data = [json.loads(i) for i in dash_meta]
return build_response(dict(data=data, code=200)) | 228,717 |
Just return the dashboard id in the rendering html.
JS will do other work [ajax and rendering] according to the dash_id.
Args:
dash_id: dashboard id.
Returns:
rendered html. | def get(self, dash_id):
return make_response(render_template('dashboard.html', dash_id=dash_id, api_root=config.app_host)) | 228,720 |
Read dashboard content.
Args:
dash_id: dashboard id.
Returns:
A dict containing the content of that dashboard, not include the meta info. | def get(self, dash_id):
data = json.loads(r_db.hmget(config.DASH_CONTENT_KEY, dash_id)[0])
return build_response(dict(data=data, code=200)) | 228,721 |
Update a dash meta and content, return updated dash content.
Args:
dash_id: dashboard id.
Returns:
A dict containing the updated content of that dashboard, not include the meta info. | def put(self, dash_id=0):
data = request.get_json()
updated = self._update_dash(dash_id, data)
return build_response(dict(data=updated, code=200)) | 228,722 |
Delete a dash meta and content, return updated dash content.
Actually, just remove it to a specfied place in database.
Args:
dash_id: dashboard id.
Returns:
Redirect to home page. | def delete(self, dash_id):
removed_info = dict(
time_modified = r_db.zscore(config.DASH_ID_KEY, dash_id),
meta = r_db.hget(config.DASH_META_KEY, dash_id),
content = r_db.hget(config.DASH_CONTENT_KEY, dash_id))
r_db.zrem(config.DASH_ID_KEY, dash_id)
r_db.hdel(config.DASH_META_KEY, dash_id)
r_db.hdel(config.DASH_CONTENT_KEY, dash_id)
return {'removed_info': removed_info} | 228,723 |
Fibonacci example function
Args:
n (int): integer
Returns:
int: n-th Fibonacci number | def fib(n):
assert n > 0
a, b = 1, 1
for i in range(n - 1):
a, b = b, a + b
return a | 228,780 |
Parse command line parameters
Args:
args ([str]): command line parameters as list of strings
Returns:
:obj:`argparse.Namespace`: command line parameters namespace | def parse_args(args):
parser = argparse.ArgumentParser(
description="Just a Fibonnaci demonstration")
parser.add_argument(
'--version',
action='version',
version='nlpia {ver}'.format(ver=__version__))
parser.add_argument(
dest="n",
help="n-th Fibonacci number",
type=int,
metavar="INT")
parser.add_argument(
'-v',
'--verbose',
dest="loglevel",
help="set loglevel to INFO",
action='store_const',
const=logging.INFO)
parser.add_argument(
'-vv',
'--very-verbose',
dest="loglevel",
help="set loglevel to DEBUG",
action='store_const',
const=logging.DEBUG)
return parser.parse_args(args) | 228,781 |
Setup basic logging
Args:
loglevel (int): minimum loglevel for emitting messages | def setup_logging(loglevel):
logformat = "[%(asctime)s] %(levelname)s:%(name)s:%(message)s"
logging.basicConfig(level=loglevel, stream=sys.stdout,
format=logformat, datefmt="%Y-%m-%d %H:%M:%S") | 228,782 |
Main entry point allowing external calls
Args:
args ([str]): command line parameter list | def main(args):
args = parse_args(args)
setup_logging(args.loglevel)
_logger.debug("Starting crazy calculations...")
print("The {}-th Fibonacci number is {}".format(args.n, fib(args.n)))
_logger.info("Script ends here") | 228,783 |
Convert a dataset in a local file (usually a CSV) into a Pandas DataFrame
TODO: should be called read_named_dataset
Args:
`name` is assumed not to have an extension (like ".csv"), alternative extensions are tried automatically.file | def read_named_csv(name, data_path=DATA_PATH, nrows=None, verbose=True):
if os.path.isfile(name):
try:
return read_json(name)
except (IOError, UnicodeDecodeError, json.JSONDecodeError):
pass
try:
return read_csv(name, nrows=nrows)
except (IOError, pd.errors.ParserError):
pass
try:
return read_txt(name, nrows=nrows)
except (IOError, UnicodeDecodeError):
pass
data_path = expand_filepath(data_path)
if os.path.isfile(os.path.join(data_path, name)):
return read_csv(os.path.join(data_path, name), nrows=nrows)
if name in DATASET_NAME2FILENAME:
name = DATASET_NAME2FILENAME[name]
if name.lower().endswith('.txt') or name.lower().endswith('.txt.gz'):
return read_text(os.path.join(data_path, name), nrows=nrows)
else:
return read_csv(os.path.join(data_path, name), nrows=nrows)
try:
return read_csv(os.path.join(data_path, name + '.csv.gz'), nrows=nrows)
except IOError:
pass
try:
return read_csv(os.path.join(data_path, name + '.csv'), nrows=nrows)
except IOError:
pass
try:
return read_json(os.path.join(data_path, name + '.json'))
except IOError:
pass
try:
return read_txt(os.path.join(data_path, name + '.txt'), verbose=verbose)
except IOError:
pass
# FIXME: mapping from short name to uncompressed filename
# BIGDATA files are usually not loadable into dataframes
try:
return KeyedVectors.load_word2vec_format(os.path.join(BIGDATA_PATH, name + '.bin.gz'), binary=True)
except IOError:
pass
except ValueError:
pass
try:
return read_txt(os.path.join(BIGDATA_PATH, name + '.txt'), verbose=verbose)
except IOError:
pass | 228,878 |
One hot encode the tokens
Args:
dataset list of lists of tokens
char_indices dictionary of {key=character, value=index to use encoding vector}
maxlen int Length of each sample
Return:
np array of shape (samples, tokens, encoding length) | def onehot_encode(dataset, char_indices, maxlen):
X = np.zeros((len(dataset), maxlen, len(char_indices.keys())))
for i, sentence in enumerate(dataset):
for t, char in enumerate(sentence):
X[i, t, char_indices[char]] = 1
return X | 228,913 |
Use bitly or similar minifier to shrink all URLs in text files within a folder structure.
Used for the NLPIA manuscript directory for Manning Publishing
bitly API: https://dev.bitly.com/links.html
Args:
path (str): Directory or file path
ext (str): File name extension to filter text files by. default='.asc'
output_ext (str): Extension to append to filenames of altered files default='' (in-place replacement of URLs)
FIXME: NotImplementedError! Untested! | def minify_urls(filepath, ext='asc', url_regex=None, output_ext='.urls_minified', access_token=None):
access_token = access_token or secrets.bitly.access_token
output_ext = output_ext or ''
url_regex = regex.compile(url_regex) if isinstance(url_regex, str) else url_regex
filemetas = []
for filemeta in find_files(filepath, ext=ext):
filemetas += [filemeta]
altered_text = ''
with open(filemeta['path'], 'rt') as fin:
text = fin.read()
end = 0
for match in url_regex.finditer(text):
url = match.group()
start = match.start()
altered_text += text[:start]
resp = requests.get('https://api-ssl.bitly.com/v3/shorten?access_token={}&longUrl={}'.format(
access_token, url), allow_redirects=True, timeout=5)
js = resp.json()
short_url = js['shortUrl']
altered_text += short_url
end = start + len(url)
altered_text += text[end:]
with open(filemeta['path'] + (output_ext or ''), 'wt') as fout:
fout.write(altered_text)
return altered_text | 228,920 |
Count the words in a corpus and return a TfidfVectorizer() as well as all the TFIDF vecgtors for the corpus
Args:
docs (iterable of strs): a sequence of documents (strings)
Returns:
(TfidfVectorizer, tfidf_vectors) | def tfidf_corpus(docs=CORPUS):
vectorizer = TfidfVectorizer()
vectorizer = vectorizer.fit(docs)
return vectorizer, vectorizer.transform(docs) | 228,937 |
Setup basic logging
Args:
loglevel (int): minimum loglevel for emitting messages | def stdout_logging(loglevel=logging.INFO):
logformat = "[%(asctime)s] %(levelname)s:%(name)s:%(lineno)d: %(message)s"
logging.config.dictConfig(level=loglevel, stream=sys.stdout,
format=logformat, datefmt="%Y-%m-%d %H:%M:%S") | 228,956 |
Convert UTF8 characters in a CSV file or dataframe into ASCII
Args:
df (DataFrame or str): DataFrame or path or url to CSV | def clean_df(df, header=None, **read_csv_kwargs):
df = read_csv(df, header=header, **read_csv_kwargs)
df = df.fillna(' ')
for col in df.columns:
df[col] = df[col].apply(unicode2ascii)
return df | 228,980 |
Tap element identified by ``locator``.
Args:
- ``x_offset`` - (optional) x coordinate to tap, relative to the top left corner of the element.
- ``y_offset`` - (optional) y coordinate. If y is used, x must also be set, and vice versa
- ``count`` - can be used for multiple times of tap on that element | def tap(self, locator, x_offset=None, y_offset=None, count=1):
driver = self._current_application()
el = self._element_find(locator, True, True)
action = TouchAction(driver)
action.tap(el,x_offset,y_offset, count).perform() | 229,138 |
Create a new C{SpiderCrawl}er.
Args:
protocol: A :class:`~kademlia.protocol.KademliaProtocol` instance.
node: A :class:`~kademlia.node.Node` representing the key we're
looking for
peers: A list of :class:`~kademlia.node.Node` instances that
provide the entry point for the network
ksize: The value for k based on the paper
alpha: The value for alpha based on the paper | def __init__(self, protocol, node, peers, ksize, alpha):
self.protocol = protocol
self.ksize = ksize
self.alpha = alpha
self.node = node
self.nearest = NodeHeap(self.node, self.ksize)
self.last_ids_crawled = []
log.info("creating spider with peers: %s", peers)
self.nearest.push(peers) | 229,463 |
Create a server instance. This will start listening on the given port.
Args:
ksize (int): The k parameter from the paper
alpha (int): The alpha parameter from the paper
node_id: The id for this node on the network.
storage: An instance that implements
:interface:`~kademlia.storage.IStorage` | def __init__(self, ksize=20, alpha=3, node_id=None, storage=None):
self.ksize = ksize
self.alpha = alpha
self.storage = storage or ForgetfulStorage()
self.node = Node(node_id or digest(random.getrandbits(255)))
self.transport = None
self.protocol = None
self.refresh_loop = None
self.save_state_loop = None | 229,470 |
Bootstrap the server by connecting to other known nodes in the network.
Args:
addrs: A `list` of (ip, port) `tuple` pairs. Note that only IP
addresses are acceptable - hostnames will cause an error. | async def bootstrap(self, addrs):
log.debug("Attempting to bootstrap node with %i initial contacts",
len(addrs))
cos = list(map(self.bootstrap_node, addrs))
gathered = await asyncio.gather(*cos)
nodes = [node for node in gathered if node is not None]
spider = NodeSpiderCrawl(self.protocol, self.node, nodes,
self.ksize, self.alpha)
return await spider.find() | 229,477 |
Save the state of node with a given regularity to the given
filename.
Args:
fname: File name to save retularly to
frequency: Frequency in seconds that the state should be saved.
By default, 10 minutes. | def save_state_regularly(self, fname, frequency=600):
self.save_state(fname)
loop = asyncio.get_event_loop()
self.save_state_loop = loop.call_later(frequency,
self.save_state_regularly,
fname,
frequency) | 229,484 |
Render the template with the context given.
Arguments:
template_name_or_list: Template name to render of a list of
possible template names.
context: The variables to pass to the template. | async def render_template(template_name_or_list: Union[str, List[str]], **context: Any) -> str:
await current_app.update_template_context(context)
template = current_app.jinja_env.get_or_select_template(template_name_or_list)
return await _render(template, context) | 229,628 |
Render the template source with the context given.
Arguments:
source: The template source code.
context: The variables to pass to the template. | async def render_template_string(source: str, **context: Any) -> str:
await current_app.update_template_context(context)
template = current_app.jinja_env.from_string(source)
return await _render(template, context) | 229,629 |
Create a Quart specific Jinja2 Environment.
Arguments:
app: The Quart app to bind to.
options: The standard Jinja2 Environment options. | def __init__(self, app: 'Quart', **options: Any) -> None:
if 'loader' not in options:
options['loader'] = app.create_global_jinja_loader()
options['enable_async'] = True
super().__init__(**options) | 229,632 |
Return a blueprint setup state instance.
Arguments:
first_registration: True if this is the first registration
of this blueprint on the app.
url_prefix: An optional prefix to all rules | def make_setup_state(
self,
app: 'Quart',
first_registration: bool,
*,
url_prefix: Optional[str]=None,
) -> 'BlueprintSetupState':
return BlueprintSetupState(self, app, first_registration, url_prefix=url_prefix) | 229,677 |
Convert the multidict to a plain dictionary.
Arguments:
flat: If True only return the a value for each key, if
False return all values as lists. | def to_dict(self, flat: bool=True) -> Dict[Any, Any]:
if flat:
return {key: value for key, value in self.items()} # type: ignore
else:
return {key: self.getall(key) for key in self} | 229,687 |
Save the file to the destination.
Arguments:
destination: A filename (str) or file object to write to.
buffer_size: Buffer size as used as length in
:func:`shutil.copyfileobj`. | def save(self, destination: BinaryIO, buffer_size: int=16384) -> None:
close_destination = False
if isinstance(destination, str):
destination = open(destination, 'wb')
close_destination = True
try:
copyfileobj(self.stream, destination, buffer_size)
finally:
if close_destination:
destination.close() | 229,691 |
Create a request object.
Arguments:
path: The full unquoted path of the request.
query_string: The raw bytes for the query string part.
scheme: The scheme used for the request.
headers: The request headers.
subprotocols: The subprotocols requested.
receive: Returns an awaitable of the current data
accept: Idempotent callable to accept the websocket connection. | def __init__(
self,
path: str,
query_string: bytes,
scheme: str,
headers: CIMultiDict,
subprotocols: List[str],
receive: Callable,
send: Callable,
accept: Callable,
) -> None:
super().__init__('GET', scheme, path, query_string, headers)
self._accept = accept
self._receive = receive
self._send = send
self._subprotocols = subprotocols | 229,747 |
Manually chose to accept the websocket connection.
Arguments:
headers: Additional headers to send with the acceptance
response.
subprotocol: The chosen subprotocol, optional. | async def accept(
self,
headers: Optional[Union[dict, CIMultiDict, Headers]] = None,
subprotocol: Optional[str] = None,
) -> None:
if headers is None:
headers_ = Headers()
else:
headers_ = Headers(headers)
await self._accept(headers_, subprotocol) | 229,749 |
Update the provided template context.
This adds additional context from the various template context
processors.
Arguments:
context: The context to update (mutate). | async def update_template_context(self, context: dict) -> None:
processors = self.template_context_processors[None]
if has_request_context():
blueprint = _request_ctx_stack.top.request.blueprint
if blueprint is not None and blueprint in self.template_context_processors:
processors = chain(processors, self.template_context_processors[blueprint]) # type: ignore # noqa
extra_context: dict = {}
for processor in processors:
extra_context.update(await processor())
original = context.copy()
context.update(extra_context)
context.update(original) | 229,773 |
Register a function as an endpoint.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.endpoint('name')
def endpoint():
...
Arguments:
endpoint: The endpoint name to use. | def endpoint(self, endpoint: str) -> Callable:
def decorator(func: Callable) -> Callable:
handler = ensure_coroutine(func)
self.view_functions[endpoint] = handler
return func
return decorator | 229,776 |
Register a function as an error handler.
This is designed to be used on the application directly. An
example usage,
.. code-block:: python
def error_handler():
return "Error", 500
app.register_error_handler(500, error_handler)
Arguments:
error: The error code or Exception to handle.
func: The function to handle the error.
name: Optional blueprint key name. | def register_error_handler(
self, error: Union[Type[Exception], int], func: Callable, name: AppOrBlueprintKey=None,
) -> None:
handler = ensure_coroutine(func)
if isinstance(error, int):
error = all_http_exceptions[error]
self.error_handler_spec[name][error] = handler | 229,777 |
Add a template filter.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.template_filter('name')
def to_upper(value):
return value.upper()
Arguments:
name: The filter name (defaults to function name). | def template_filter(self, name: Optional[str]=None) -> Callable:
def decorator(func: Callable) -> Callable:
self.add_template_filter(func, name=name)
return func
return decorator | 229,778 |
Add a template filter.
This is designed to be used on the application directly. An
example usage,
.. code-block:: python
def to_upper(value):
return value.upper()
app.add_template_filter(to_upper)
Arguments:
func: The function that is the filter.
name: The filter name (defaults to function name). | def add_template_filter(self, func: Callable, name: Optional[str]=None) -> None:
self.jinja_env.filters[name or func.__name__] = func | 229,779 |
Add a template test.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.template_test('name')
def is_upper(value):
return value.isupper()
Arguments:
name: The test name (defaults to function name). | def template_test(self, name: Optional[str]=None) -> Callable:
def decorator(func: Callable) -> Callable:
self.add_template_test(func, name=name)
return func
return decorator | 229,780 |
Add a template test.
This is designed to be used on the application directly. An
example usage,
.. code-block:: python
def is_upper(value):
return value.isupper()
app.add_template_test(is_upper)
Arguments:
func: The function that is the test.
name: The test name (defaults to function name). | def add_template_test(self, func: Callable, name: Optional[str]=None) -> None:
self.jinja_env.tests[name or func.__name__] = func | 229,781 |
Add a template global.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.template_global('name')
def five():
return 5
Arguments:
name: The global name (defaults to function name). | def template_global(self, name: Optional[str]=None) -> Callable:
def decorator(func: Callable) -> Callable:
self.add_template_global(func, name=name)
return func
return decorator | 229,782 |
Add a template global.
This is designed to be used on the application directly. An
example usage,
.. code-block:: python
def five():
return 5
app.add_template_global(five)
Arguments:
func: The function that is the global.
name: The global name (defaults to function name). | def add_template_global(self, func: Callable, name: Optional[str]=None) -> None:
self.jinja_env.globals[name or func.__name__] = func | 229,783 |
Add a before request function.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.before_request
def func():
...
Arguments:
func: The before request function itself.
name: Optional blueprint key name. | def before_request(self, func: Callable, name: AppOrBlueprintKey=None) -> Callable:
handler = ensure_coroutine(func)
self.before_request_funcs[name].append(handler)
return func | 229,796 |
Add a before websocket function.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.before_websocket
def func():
...
Arguments:
func: The before websocket function itself.
name: Optional blueprint key name. | def before_websocket(self, func: Callable, name: AppOrBlueprintKey=None) -> Callable:
handler = ensure_coroutine(func)
self.before_websocket_funcs[name].append(handler)
return func | 229,797 |
Add a before **first** request function.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.before_first_request
def func():
...
Arguments:
func: The before first request function itself.
name: Optional blueprint key name. | def before_first_request(self, func: Callable, name: AppOrBlueprintKey=None) -> Callable:
handler = ensure_coroutine(func)
self.before_first_request_funcs.append(handler)
return func | 229,798 |
Add a before serving function.
This will allow the function provided to be called once before
anything is served (before any byte is received).
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.before_serving
def func():
...
Arguments:
func: The function itself. | def before_serving(self, func: Callable) -> Callable:
handler = ensure_coroutine(func)
self.before_serving_funcs.append(handler)
return func | 229,799 |
Add an after request function.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.after_request
def func(response):
return response
Arguments:
func: The after request function itself.
name: Optional blueprint key name. | def after_request(self, func: Callable, name: AppOrBlueprintKey=None) -> Callable:
handler = ensure_coroutine(func)
self.after_request_funcs[name].append(handler)
return func | 229,800 |
Add an after websocket function.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.after_websocket
def func(response):
return response
Arguments:
func: The after websocket function itself.
name: Optional blueprint key name. | def after_websocket(self, func: Callable, name: AppOrBlueprintKey=None) -> Callable:
handler = ensure_coroutine(func)
self.after_websocket_funcs[name].append(handler)
return func | 229,801 |
Add a after serving function.
This will allow the function provided to be called once after
anything is served (after last byte is sent).
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.after_serving
def func():
...
Arguments:
func: The function itself. | def after_serving(self, func: Callable) -> Callable:
handler = ensure_coroutine(func)
self.after_serving_funcs.append(handler)
return func | 229,802 |
Add a teardown request function.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.teardown_request
def func():
...
Arguments:
func: The teardown request function itself.
name: Optional blueprint key name. | def teardown_request(self, func: Callable, name: AppOrBlueprintKey=None) -> Callable:
handler = ensure_coroutine(func)
self.teardown_request_funcs[name].append(handler)
return func | 229,803 |
Add a teardown websocket function.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.teardown_websocket
def func():
...
Arguments:
func: The teardown websocket function itself.
name: Optional blueprint key name. | def teardown_websocket(self, func: Callable, name: AppOrBlueprintKey=None) -> Callable:
handler = ensure_coroutine(func)
self.teardown_websocket_funcs[name].append(handler)
return func | 229,804 |
Add a teardown app (context) function.
This is designed to be used as a decorator. An example usage,
.. code-block:: python
@app.teardown_appcontext
def func():
...
Arguments:
func: The teardown function itself.
name: Optional blueprint key name. | def teardown_appcontext(self, func: Callable) -> Callable:
handler = ensure_coroutine(func)
self.teardown_appcontext_funcs.append(handler)
return func | 229,805 |
Register a blueprint on the app.
This results in the blueprint's routes, error handlers
etc... being added to the app.
Arguments:
blueprint: The blueprint to register.
url_prefix: Optional prefix to apply to all paths. | def register_blueprint(self, blueprint: Blueprint, url_prefix: Optional[str]=None) -> None:
first_registration = False
if blueprint.name in self.blueprints and self.blueprints[blueprint.name] is not blueprint:
raise RuntimeError(
f"Blueprint name '{blueprint.name}' "
f"is already registered by {self.blueprints[blueprint.name]}. "
"Blueprints must have unique names",
)
else:
self.blueprints[blueprint.name] = blueprint
first_registration = True
blueprint.register(self, first_registration, url_prefix=url_prefix) | 229,806 |
Teardown the request, calling the teardown functions.
Arguments:
exc: Any exception not handled that has caused the request
to teardown.
request_context: The request context, optional as Flask
omits this argument. | async def do_teardown_request(
self,
exc: Optional[BaseException],
request_context: Optional[RequestContext]=None,
) -> None:
request_ = (request_context or _request_ctx_stack.top).request
functions = self.teardown_request_funcs[None]
blueprint = request_.blueprint
if blueprint is not None:
functions = chain(functions, self.teardown_request_funcs[blueprint]) # type: ignore
for function in functions:
await function(exc=exc)
await request_tearing_down.send(self, exc=exc) | 229,809 |
Teardown the websocket, calling the teardown functions.
Arguments:
exc: Any exception not handled that has caused the websocket
to teardown.
websocket_context: The websocket context, optional as Flask
omits this argument. | async def do_teardown_websocket(
self,
exc: Optional[BaseException],
websocket_context: Optional[WebsocketContext]=None,
) -> None:
websocket_ = (websocket_context or _websocket_ctx_stack.top).websocket
functions = self.teardown_websocket_funcs[None]
blueprint = websocket_.blueprint
if blueprint is not None:
functions = chain(functions, self.teardown_websocket_funcs[blueprint]) # type: ignore
for function in functions:
await function(exc=exc)
await websocket_tearing_down.send(self, exc=exc) | 229,810 |
Adds pre and post processing to the request dispatching.
Arguments:
request_context: The request context, optional as Flask
omits this argument. | async def full_dispatch_request(
self, request_context: Optional[RequestContext]=None,
) -> Response:
await self.try_trigger_before_first_request_functions()
await request_started.send(self)
try:
result = await self.preprocess_request(request_context)
if result is None:
result = await self.dispatch_request(request_context)
except Exception as error:
result = await self.handle_user_exception(error)
return await self.finalize_request(result, request_context) | 229,818 |
Preprocess the request i.e. call before_request functions.
Arguments:
request_context: The request context, optional as Flask
omits this argument. | async def preprocess_request(
self, request_context: Optional[RequestContext]=None,
) -> Optional[ResponseReturnValue]:
request_ = (request_context or _request_ctx_stack.top).request
blueprint = request_.blueprint
processors = self.url_value_preprocessors[None]
if blueprint is not None:
processors = chain(processors, self.url_value_preprocessors[blueprint]) # type: ignore
for processor in processors:
processor(request.endpoint, request.view_args)
functions = self.before_request_funcs[None]
if blueprint is not None:
functions = chain(functions, self.before_request_funcs[blueprint]) # type: ignore
for function in functions:
result = await function()
if result is not None:
return result
return None | 229,819 |
Dispatch the request to the view function.
Arguments:
request_context: The request context, optional as Flask
omits this argument. | async def dispatch_request(
self, request_context: Optional[RequestContext]=None,
) -> ResponseReturnValue:
request_ = (request_context or _request_ctx_stack.top).request
if request_.routing_exception is not None:
raise request_.routing_exception
if request_.method == 'OPTIONS' and request_.url_rule.provide_automatic_options:
return await self.make_default_options_response()
handler = self.view_functions[request_.url_rule.endpoint]
return await handler(**request_.view_args) | 229,820 |
Turns the view response return value into a response.
Arguments:
result: The result of the request to finalize into a response.
request_context: The request context, optional as Flask
omits this argument. | async def finalize_request(
self,
result: ResponseReturnValue,
request_context: Optional[RequestContext]=None,
from_error_handler: bool=False,
) -> Response:
response = await self.make_response(result)
try:
response = await self.process_response(response, request_context)
await request_finished.send(self, response=response)
except Exception:
if not from_error_handler:
raise
self.logger.exception('Request finalizing errored')
return response | 229,821 |
Postprocess the request acting on the response.
Arguments:
response: The response after the request is finalized.
request_context: The request context, optional as Flask
omits this argument. | async def process_response(
self,
response: Response,
request_context: Optional[RequestContext]=None,
) -> Response:
request_ = (request_context or _request_ctx_stack.top).request
functions = (request_context or _request_ctx_stack.top)._after_request_functions
blueprint = request_.blueprint
if blueprint is not None:
functions = chain(functions, self.after_request_funcs[blueprint])
functions = chain(functions, self.after_request_funcs[None])
for function in functions:
response = await function(response)
session_ = (request_context or _request_ctx_stack.top).session
if not self.session_interface.is_null_session(session_):
await self.save_session(session_, response)
return response | 229,822 |
Adds pre and post processing to the websocket dispatching.
Arguments:
websocket_context: The websocket context, optional to match
the Flask convention. | async def full_dispatch_websocket(
self, websocket_context: Optional[WebsocketContext]=None,
) -> Optional[Response]:
await self.try_trigger_before_first_request_functions()
await websocket_started.send(self)
try:
result = await self.preprocess_websocket(websocket_context)
if result is None:
result = await self.dispatch_websocket(websocket_context)
except Exception as error:
result = await self.handle_user_exception(error)
return await self.finalize_websocket(result, websocket_context) | 229,824 |
Preprocess the websocket i.e. call before_websocket functions.
Arguments:
websocket_context: The websocket context, optional as Flask
omits this argument. | async def preprocess_websocket(
self, websocket_context: Optional[WebsocketContext]=None,
) -> Optional[ResponseReturnValue]:
websocket_ = (websocket_context or _websocket_ctx_stack.top).websocket
blueprint = websocket_.blueprint
processors = self.url_value_preprocessors[None]
if blueprint is not None:
processors = chain(processors, self.url_value_preprocessors[blueprint]) # type: ignore
for processor in processors:
processor(websocket_.endpoint, websocket_.view_args)
functions = self.before_websocket_funcs[None]
if blueprint is not None:
functions = chain(functions, self.before_websocket_funcs[blueprint]) # type: ignore
for function in functions:
result = await function()
if result is not None:
return result
return None | 229,825 |
Dispatch the websocket to the view function.
Arguments:
websocket_context: The websocket context, optional to match
the Flask convention. | async def dispatch_websocket(
self, websocket_context: Optional[WebsocketContext]=None,
) -> None:
websocket_ = (websocket_context or _websocket_ctx_stack.top).websocket
if websocket_.routing_exception is not None:
raise websocket_.routing_exception
handler = self.view_functions[websocket_.url_rule.endpoint]
return await handler(**websocket_.view_args) | 229,826 |
Turns the view response return value into a response.
Arguments:
result: The result of the websocket to finalize into a response.
websocket_context: The websocket context, optional as Flask
omits this argument. | async def finalize_websocket(
self,
result: ResponseReturnValue,
websocket_context: Optional[WebsocketContext]=None,
from_error_handler: bool=False,
) -> Optional[Response]:
if result is not None:
response = await self.make_response(result)
else:
response = None
try:
response = await self.postprocess_websocket(response, websocket_context)
await websocket_finished.send(self, response=response)
except Exception:
if not from_error_handler:
raise
self.logger.exception('Request finalizing errored')
return response | 229,827 |
Postprocess the websocket acting on the response.
Arguments:
response: The response after the websocket is finalized.
webcoket_context: The websocket context, optional as Flask
omits this argument. | async def postprocess_websocket(
self,
response: Optional[Response],
websocket_context: Optional[WebsocketContext]=None,
) -> Response:
websocket_ = (websocket_context or _websocket_ctx_stack.top).websocket
functions = (websocket_context or _websocket_ctx_stack.top)._after_websocket_functions
blueprint = websocket_.blueprint
if blueprint is not None:
functions = chain(functions, self.after_websocket_funcs[blueprint])
functions = chain(functions, self.after_websocket_funcs[None])
for function in functions:
response = await function(response)
session_ = (websocket_context or _request_ctx_stack.top).session
if not self.session_interface.is_null_session(session_):
if response is None and isinstance(session_, SecureCookieSession) and session_.modified:
self.logger.exception(
"Secure Cookie Session modified during websocket handling. "
"These modifications will be lost as a cookie cannot be set."
)
else:
await self.save_session(session_, response)
return response | 229,828 |
Make the response conditional to the
Arguments:
request_range: The range as requested by the request.
max_partial_size: The maximum length the server is willing
to serve in a single response. Defaults to unlimited. | async def make_conditional(
self,
request_range: Range,
max_partial_size: Optional[int]=None,
) -> None:
self.accept_ranges = "bytes" # Advertise this ability
if len(request_range.ranges) == 0: # Not a conditional request
return
if request_range.units != "bytes" or len(request_range.ranges) > 1:
from ..exceptions import RequestRangeNotSatisfiable
raise RequestRangeNotSatisfiable()
begin, end = request_range.ranges[0]
try:
complete_length = await self.response.make_conditional( # type: ignore
begin, end, max_partial_size,
)
except AttributeError:
self.response = self.data_body_class(await self.response.convert_to_sequence())
return await self.make_conditional(request_range, max_partial_size)
else:
self.content_length = self.response.end - self.response.begin # type: ignore
if self.content_length != complete_length:
self.content_range = ContentRange(
request_range.units,
self.response.begin, self.response.end - 1, # type: ignore
complete_length,
)
self.status_code = 206 | 229,893 |
Parses the body data as JSON and returns it.
Arguments:
force: Force JSON parsing even if the mimetype is not JSON.
silent: Do not trigger error handling if parsing fails, without
this the :meth:`on_json_loading_failed` will be called on
error.
cache: Cache the parsed JSON on this request object. | async def get_json(
self, force: bool=False, silent: bool=False, cache: bool=True,
) -> Any:
if cache and self._cached_json is not sentinel:
return self._cached_json
if not (force or self.is_json):
return None
data = await self._load_json_data()
try:
result = loads(data)
except ValueError as error:
if silent:
result = None
else:
self.on_json_loading_failed(error)
if cache:
self._cached_json = result
return result | 229,946 |
Create a request or websocket base object.
Arguments:
method: The HTTP verb.
scheme: The scheme used for the request.
path: The full unquoted path of the request.
query_string: The raw bytes for the query string part.
headers: The request headers.
Attributes:
args: The query string arguments.
scheme: The URL scheme, http or https. | def __init__(
self,
method: str,
scheme: str,
path: str,
query_string: bytes,
headers: CIMultiDict,
) -> None:
super().__init__(headers)
self.args = MultiDict()
for key, values in parse_qs(query_string.decode('ascii'), keep_blank_values=True).items():
for value in values:
self.args.add(key, value)
self.path = path
self.query_string = query_string
self.scheme = scheme
self.method = method | 229,949 |
Load the configuration from a Python object.
This can be used to reference modules or objects within
modules for example,
.. code-block:: python
app.config.from_object('module')
app.config.from_object('module.instance')
from module import instance
app.config.from_object(instance)
are valid.
Arguments:
instance: Either a str referencing a python object or the
object itself. | def from_object(self, instance: Union[object, str]) -> None:
if isinstance(instance, str):
try:
path, config = instance.rsplit('.', 1)
except ValueError:
path = instance
instance = importlib.import_module(path)
else:
module = importlib.import_module(path)
instance = getattr(module, config)
for key in dir(instance):
if key.isupper():
self[key] = getattr(instance, key) | 229,969 |
Load the configuration values from a JSON formatted file.
This allows configuration to be loaded as so
.. code-block:: python
app.config.from_json('config.json')
Arguments:
filename: The filename which when appended to
:attr:`root_path` gives the path to the file.
silent: If True any errors will fail silently. | def from_json(self, filename: str, silent: bool=False) -> None:
file_path = self.root_path / filename
try:
with open(file_path) as file_:
data = json.loads(file_.read())
except (FileNotFoundError, IsADirectoryError):
if not silent:
raise
else:
self.from_mapping(data) | 229,970 |
Load the configuration values from a mapping.
This allows either a mapping to be directly passed or as
keyword arguments, for example,
.. code-block:: python
config = {'FOO': 'bar'}
app.config.from_mapping(config)
app.config.form_mapping(FOO='bar')
Arguments:
mapping: Optionally a mapping object.
kwargs: Optionally a collection of keyword arguments to
form a mapping. | def from_mapping(self, mapping: Optional[Mapping[str, Any]]=None, **kwargs: Any) -> None:
mappings: Dict[str, Any] = {}
if mapping is not None:
mappings.update(mapping)
mappings.update(kwargs)
for key, value in mappings.items():
if key.isupper():
self[key] = value | 229,971 |
Send a file from a given directory.
Arguments:
directory: Directory that when combined with file_name gives
the file path.
file_name: File name that when combined with directory gives
the file path.
See :func:`send_file` for the other arguments. | async def send_from_directory(
directory: FilePath,
file_name: str,
*,
mimetype: Optional[str]=None,
as_attachment: bool=False,
attachment_filename: Optional[str]=None,
add_etags: bool=True,
cache_timeout: Optional[int]=None,
conditional: bool=True,
last_modified: Optional[datetime]=None,
) -> Response:
file_path = safe_join(directory, file_name)
if not file_path.is_file():
raise NotFound()
return await send_file(
file_path,
mimetype=mimetype,
as_attachment=as_attachment,
attachment_filename=attachment_filename,
add_etags=add_etags,
cache_timeout=cache_timeout,
conditional=conditional,
last_modified=last_modified,
) | 230,003 |
Construct ellipse coordinates from two arrays of numbers.
Args:
X (1D array_like)
Y (1D array_like)
Returns:
float: The mean of `X`.
float: The mean of `Y`.
float: The width of the ellipse.
float: The height of the ellipse.
float: The angle of orientation of the ellipse. | def build_ellipse(X, Y):
x_mean = np.mean(X)
y_mean = np.mean(Y)
cov_matrix = np.cov(np.vstack((X, Y)))
U, s, V = linalg.svd(cov_matrix, full_matrices=False)
chi_95 = np.sqrt(4.61) # 90% quantile of the chi-square distribution
width = np.sqrt(cov_matrix[0][0]) * chi_95 * 2
height = np.sqrt(cov_matrix[1][1]) * chi_95 * 2
eigenvector = V.T[0]
angle = np.arctan(eigenvector[1] / eigenvector[0])
return x_mean, y_mean, width, height, angle | 230,663 |
Mix colors.
Args:
ca (gdk.RGBA): first color
cb (gdk.RGBA): second color
xb (float): between 0.0 and 1.0
Return:
gdk.RGBA: linear interpolation between ca and cb,
0 or 1 return the unaltered 1st or 2nd color respectively,
as in CSS. | def mix(self, ca, cb, xb):
r = (1 - xb) * ca.red + xb * cb.red
g = (1 - xb) * ca.green + xb * cb.green
b = (1 - xb) * ca.blue + xb * cb.blue
a = (1 - xb) * ca.alpha + xb * cb.alpha
return gdk.RGBA(red=r, green=g, blue=b, alpha=a) | 231,406 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.