topic
stringlengths
3
96
wiki
stringlengths
33
127
url
stringlengths
101
106
action
stringclasses
7 values
sent
stringlengths
34
223
annotation
stringlengths
74
227
logic
stringlengths
207
5.45k
logic_str
stringlengths
37
493
interpret
stringlengths
43
471
num_func
stringclasses
15 values
nid
stringclasses
13 values
g_ids
stringlengths
70
455
g_ids_features
stringlengths
98
670
g_adj
stringlengths
79
515
table_header
stringlengths
40
458
table_cont
large_stringlengths
135
4.41k
list of cities , towns and villages in vojvodina
https://en.wikipedia.org/wiki/List_of_cities%2C_towns_and_villages_in_Vojvodina
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-2562572-2.html.csv
aggregation
the average population in 2011 of urban settlements in vojvodina was 29547 .
{'scope': 'all', 'col': '7', 'type': 'average', 'result': '29547', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'population ( 2011 )'], 'result': '29547', 'ind': 0, 'tostr': 'avg { all_rows ; population ( 2011 ) }'}, '29547'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; population ( 2011 ) } ; 29547 } = true', 'tointer': 'the average of the population ( 2011 ) record of all rows is 29547 .'}
round_eq { avg { all_rows ; population ( 2011 ) } ; 29547 } = true
the average of the population ( 2011 ) record of all rows is 29547 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'population (2011)_4': 4, '29547_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'population (2011)_4': 'population ( 2011 )', '29547_5': '29547'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'population (2011)_4': [0], '29547_5': [1]}
['urban settlement', 'cyrillic name', 'city / municipality', 'district', 'population ( 1991 )', 'population ( 2002 )', 'population ( 2011 )']
[['bač', 'бач', 'bač', 'south bačka', '6046', '6087', '5399'], ['bačka palanka', 'бачка паланка', 'bačka palanka', 'south bačka', '26780', '29449', '28239'], ['bački jarak', 'бачки јарак', 'temerin', 'south bačka', '5426', '6049', '5687'], ['bački petrovac', 'бачки петровац', 'bački petrovac', 'south bačka', '7236', '6727', '6155'], ['bečej', 'бечеј', 'bečej', 'south bačka', '26634', '25774', '23895'], ['beočin', 'беочин', 'beočin', 'south bačka', '7873', '8058', '7839'], ['futog', 'футог', 'novi sad', 'south bačka', '16048', '18582', '18641'], ['novi sad', 'нови сад', 'novi sad', 'south bačka', '179626', '191405', '250439'], ['petrovaradin', 'петроварадин', 'petrovaradin , novi sad', 'south bačka', '11285', '13973', '14810'], ['srbobran', 'србобран', 'srbobran', 'south bačka', '12798', '13091', '12009'], ['sremska kamenica', 'сремска каменица', 'petrovaradin , novi sad', 'south bačka', '7955', '11205', '12273'], ['sremski karlovci', 'сремски карловци', 'sremski karlovci', 'south bačka', '7534', '8839', '8750'], ['temerin', 'темерин', 'temerin', 'south bačka', '16971', '19216', '19661'], ['titel', 'тител', 'titel', 'south bačka', '6007', '5894', '5294'], ['vrbas', 'врбас', 'vrbas', 'south bačka', '25858', '25907', '24112']]
2008 - 09 fiba eurochallenge
https://en.wikipedia.org/wiki/2008%E2%80%9309_FIBA_EuroChallenge
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18842999-2.html.csv
comparative
energy invest rustavi scored more total points in the 2008 - 09 fiba eurochallenge than spartak pleven .
{'row_1': '7', 'row_2': '8', 'col': '2', 'col_other': '1', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'team 1', 'energy invest rustavi'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose team 1 record fuzzily matches to energy invest rustavi .', 'tostr': 'filter_eq { all_rows ; team 1 ; energy invest rustavi }'}, 'agg'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; team 1 ; energy invest rustavi } ; agg }', 'tointer': 'select the rows whose team 1 record fuzzily matches to energy invest rustavi . take the agg record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'team 1', 'spartak pleven'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose team 1 record fuzzily matches to spartak pleven .', 'tostr': 'filter_eq { all_rows ; team 1 ; spartak pleven }'}, 'agg'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; team 1 ; spartak pleven } ; agg }', 'tointer': 'select the rows whose team 1 record fuzzily matches to spartak pleven . take the agg record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; team 1 ; energy invest rustavi } ; agg } ; hop { filter_eq { all_rows ; team 1 ; spartak pleven } ; agg } } = true', 'tointer': 'select the rows whose team 1 record fuzzily matches to energy invest rustavi . take the agg record of this row . select the rows whose team 1 record fuzzily matches to spartak pleven . take the agg record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; team 1 ; energy invest rustavi } ; agg } ; hop { filter_eq { all_rows ; team 1 ; spartak pleven } ; agg } } = true
select the rows whose team 1 record fuzzily matches to energy invest rustavi . take the agg record of this row . select the rows whose team 1 record fuzzily matches to spartak pleven . take the agg record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'team 1_7': 7, 'energy invest rustavi_8': 8, 'agg_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'team 1_11': 11, 'spartak pleven_12': 12, 'agg_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'team 1_7': 'team 1', 'energy invest rustavi_8': 'energy invest rustavi', 'agg_9': 'agg', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'team 1_11': 'team 1', 'spartak pleven_12': 'spartak pleven', 'agg_13': 'agg'}
{'greater_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'team 1_7': [0], 'energy invest rustavi_8': [0], 'agg_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'team 1_11': [1], 'spartak pleven_12': [1], 'agg_13': [3]}
['team 1', 'agg', 'team 2', '1st leg', '2nd leg']
[['bk prostějov', '134 - 148', 'kk zagreb', '61 - 69', '73 - 79'], ['kk amak', '148 - 145', 'zlatorog laško', '70 - 76', '78 - 69'], ['csu asesoft', '147 - 145', 'spartak', '79 - 76', '68 - 69'], ['u mobitelco cluj', '132 - 163', 'ewe baskets', '60 - 86', '72 - 77'], ['svendborg rabbits', '168 - 180', 'hkk široki', '92 - 100', '76 - 80'], ['mbc mykolaiv', '138 - 151', 'db skyliners', '68 - 75', '70 - 76'], ['energy invest rustavi', '160 - 200', 'sumykhimprom', '81 - 110', '79 - 90'], ['spartak pleven', '153 - 176', 'antalya bb bk', '83 - 87', '70 - 89'], ['apoel', '113 - 135', 'ja vichy', '52 - 66', '61 - 69'], ['csu sibiu', '144 - 186', 'banvit bandırma', '67 - 74', '77 - 112'], ['cedevita zagreb', '150 - 157', 'hyères - toulon', '92 - 82', '58 - 75'], ['körmend', '171 - 201', 'eiffeltowers den bosch', '71 - 88', '100 - 113'], ['bc donetsk', '120 - 134', 'ael', '65 - 65', '55 - 79'], ['bakken bears', '119 - 164', 'liege basket', '55 - 67', '64 - 97']]
list of manchester city f.c. records and statistics
https://en.wikipedia.org/wiki/List_of_Manchester_City_F.C._records_and_statistics
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-14962287-1.html.csv
unique
in manchester city f.c. records and statistics , for players that started playing in the 1960s , the only one with a total over 600 is joe corrigan .
{'scope': 'subset', 'row': '2', 'col': '8', 'col_other': '1,2', 'criterion': 'greater_than', 'value': '600', 'subset': {'col': '2', 'criterion': 'fuzzily_match', 'value': '196'}}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_greater', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'years', '196'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; years ; 196 }', 'tointer': 'select the rows whose years record fuzzily matches to 196 .'}, 'total', '600'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose years record fuzzily matches to 196 . among these rows , select the rows whose total record is greater than 600 .', 'tostr': 'filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 }'}], 'result': True, 'ind': 2, 'tostr': 'only { filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 } }', 'tointer': 'select the rows whose years record fuzzily matches to 196 . among these rows , select the rows whose total record is greater than 600 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_greater', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'years', '196'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; years ; 196 }', 'tointer': 'select the rows whose years record fuzzily matches to 196 .'}, 'total', '600'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose years record fuzzily matches to 196 . among these rows , select the rows whose total record is greater than 600 .', 'tostr': 'filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 }'}, 'name'], 'result': 'joe corrigan', 'ind': 3, 'tostr': 'hop { filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 } ; name }'}, 'joe corrigan'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 } ; name } ; joe corrigan }', 'tointer': 'the name record of this unqiue row is joe corrigan .'}], 'result': True, 'ind': 5, 'tostr': 'and { only { filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 } } ; eq { hop { filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 } ; name } ; joe corrigan } } = true', 'tointer': 'select the rows whose years record fuzzily matches to 196 . among these rows , select the rows whose total record is greater than 600 . there is only one such row in the table . the name record of this unqiue row is joe corrigan .'}
and { only { filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 } } ; eq { hop { filter_greater { filter_eq { all_rows ; years ; 196 } ; total ; 600 } ; name } ; joe corrigan } } = true
select the rows whose years record fuzzily matches to 196 . among these rows , select the rows whose total record is greater than 600 . there is only one such row in the table . the name record of this unqiue row is joe corrigan .
8
6
{'and_5': 5, 'result_6': 6, 'only_2': 2, 'filter_greater_1': 1, 'filter_str_eq_0': 0, 'all_rows_7': 7, 'years_8': 8, '196_9': 9, 'total_10': 10, '600_11': 11, 'str_eq_4': 4, 'str_hop_3': 3, 'name_12': 12, 'joe corrigan_13': 13}
{'and_5': 'and', 'result_6': 'true', 'only_2': 'only', 'filter_greater_1': 'filter_greater', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_7': 'all_rows', 'years_8': 'years', '196_9': '196', 'total_10': 'total', '600_11': '600', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'name_12': 'name', 'joe corrigan_13': 'joe corrigan'}
{'and_5': [6], 'result_6': [], 'only_2': [5], 'filter_greater_1': [2, 3], 'filter_str_eq_0': [1], 'all_rows_7': [0], 'years_8': [0], '196_9': [0], 'total_10': [1], '600_11': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'name_12': [3], 'joe corrigan_13': [4]}
['name', 'years', 'league', 'fa cup', 'league cup', 'europe', 'other a', 'total']
[['alan oakes', '1959 - 1976', '561 ( 3 )', '41 ( 0 )', '46 ( 1 )', '17 ( 0 )', '11 ( 0 )', '676 ( 4 )'], ['joe corrigan', '1967 - 1983', '476 ( 0 )', '37 ( 0 )', '52 ( 0 )', '27 ( 0 )', '12 ( 1 )', '604 ( 1 )'], ['mike doyle', '1967 - 1978', '441 ( 7 )', '44 ( 0 )', '23 ( 0 )', '20 ( 0 )', '37 ( 0 )', '565 ( 7 )'], ['bert trautmann', '1949 - 1964', '508 ( 0 )', '33 ( 0 )', '4 ( 0 )', '00 ( 0 )', '0 ( 0 )', '545 ( 0 )'], ['colin bell', '1966 - 1979', '393 ( 1 )', '33 ( 1 )', '40 ( 0 )', '23 ( 1 )', '9 ( 0 )', '498 ( 3 )'], ['eric brook', '1928 - 1939', '450 ( 0 )', '41 ( 0 )', '0 ( 0 )', '0 ( 0 )', '2 ( 0 )', '493 ( 0 ) b'], ['tommy booth', '1968 - 1981', '380 ( 2 )', '27 ( 0 )', '44 ( 2 )', '26 ( 0 )', '11 ( 0 )', '487 ( 4 )'], ['mike summerbee', '1965 - 1975', '355 ( 2 )', '34 ( 0 )', '36 ( 0 )', '16 ( 0 )', '8 ( 1 )', '449 ( 3 )'], ['paul power', '1975 - 1986', '358 ( 7 )', '28 ( 0 )', '37 ( 1 )', '7 ( 1 )', '7 ( 1 )', '437 ( 10 )']]
women 's british open
https://en.wikipedia.org/wiki/Women%27s_British_Open
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1520559-2.html.csv
aggregation
the average margin of victory for the women 's british open was 4 strokes .
{'scope': 'all', 'col': '8', 'type': 'average', 'result': '4', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'margin of victory'], 'result': '4', 'ind': 0, 'tostr': 'avg { all_rows ; margin of victory }'}, '4'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; margin of victory } ; 4 } = true', 'tointer': 'the average of the margin of victory record of all rows is 4 .'}
round_eq { avg { all_rows ; margin of victory } ; 4 } = true
the average of the margin of victory record of all rows is 4 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'margin of victory_4': 4, '4_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'margin of victory_4': 'margin of victory', '4_5': '4'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'margin of victory_4': [0], '4_5': [1]}
['year', 'date', 'venue', 'champion', 'country', 'score', 'to par', 'margin of victory', 'purse', "winner 's share"]
[['2000', 'aug 17 - 20', 'royal birkdale golf club', 'sophie gustafson', 'sweden', '282', '- 6', '2 strokes', '1250000', '178000'], ['1999', 'aug 12 - 15', 'woburn golf and country club', 'sherri steinhauer', 'united states', '283', '- 5', '1 stroke', '1000000', '160000'], ['1998', 'aug 13 - 16', 'royal lytham & st annes golf club', 'sherri steinhauer', 'united states', '292', '+ 4', '1 stroke', '1000000', '162000'], ['1997', 'aug 14 - 17', 'sunningdale golf club', 'karrie webb', 'australia', '269', '- 19', '8 strokes', '900000', '129938'], ['1996', 'aug 15 - 18', 'woburn golf and country club', 'emilee klein', 'united states', '277', '- 11', '7 strokes', '850000', '124000'], ['1995', 'aug 17 - 20', 'woburn golf and country club', 'karrie webb', 'australia', '278', '- 10', '6 strokes', '600000', '92400'], ['1994', 'aug 11 - 14', 'woburn golf and country club', 'liselotte neumann', 'sweden', '280', '- 8', '3 strokes', '500000', '80325']]
1993 washington redskins season
https://en.wikipedia.org/wiki/1993_Washington_Redskins_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14610099-1.html.csv
majority
the majority of games in the 1993 washington redskins ended in losses for the redskins .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'fuzzily_match', 'value': 'l', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'result', 'l'], 'result': True, 'ind': 0, 'tointer': 'for the result records of all rows , most of them fuzzily match to l .', 'tostr': 'most_eq { all_rows ; result ; l } = true'}
most_eq { all_rows ; result ; l } = true
for the result records of all rows , most of them fuzzily match to l .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'result_3': 3, 'l_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'result_3': 'result', 'l_4': 'l'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'result_3': [0], 'l_4': [0]}
['week', 'date', 'opponent', 'result', 'attendance']
[['1', 'september 6 , 1993', 'dallas cowboys', 'w 35 - 16', '56345'], ['2', 'september 12 , 1993', 'phoenix cardinals', 'l 17 - 10', '53525'], ['3', 'september 19 , 1993', 'philadelphia eagles', 'l 34 - 31', '65435'], ['5', 'october 4 , 1993', 'miami dolphins', 'l 17 - 10', '68568'], ['6', 'october 10 , 1993', 'new york giants', 'l 41 - 7', '53715'], ['7', 'october 17 , 1993', 'phoenix cardinals', 'l 36 - 6', '48143'], ['9', 'november 1 , 1993', 'buffalo bills', 'l 24 - 10', '79106'], ['10', 'november 7 , 1993', 'indianapolis colts', 'w 30 - 24', '50523'], ['11', 'november 14 , 1993', 'new york giants', 'l 20 - 6', '76606'], ['12', 'november 21 , 1993', 'los angeles rams', 'l 10 - 6', '45546'], ['13', 'november 28 , 1993', 'philadelphia eagles', 'l 17 - 14', '46663'], ['14', 'december 5 , 1993', 'tampa bay buccaneers', 'w 23 - 17', '49035'], ['15', 'december 11 , 1993', 'new york jets', 'l 3 - 0', '47970'], ['16', 'december 19 , 1993', 'atlanta falcons', 'w 30 - 17', '50192'], ['17', 'december 26 , 1993', 'dallas cowboys', 'l 38 - 3', '64497'], ['18', 'december 31 , 1993', 'minnesota vikings', 'l 14 - 9', '42836']]
within these walls
https://en.wikipedia.org/wiki/Within_These_Walls
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-2582519-5.html.csv
superlative
silent night was the last of these episodes to air in 1976 .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '17', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '3', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'original airdate'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; original airdate }'}, 'title'], 'result': 'silent night', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; original airdate } ; title }'}, 'silent night'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; original airdate } ; title } ; silent night } = true', 'tointer': 'select the row whose original airdate record of all rows is maximum . the title record of this row is silent night .'}
eq { hop { argmax { all_rows ; original airdate } ; title } ; silent night } = true
select the row whose original airdate record of all rows is maximum . the title record of this row is silent night .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'original airdate_5': 5, 'title_6': 6, 'silent night_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'original airdate_5': 'original airdate', 'title_6': 'title', 'silent night_7': 'silent night'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'original airdate_5': [0], 'title_6': [1], 'silent night_7': [2]}
['total', 'series', 'title', 'director', 'writer ( s )', 'original airdate']
[['43', '1', 'catalyst', 'christopher hodson', 'david butler', '4 september 1976'], ['44', '2', 'the man with the magic touch', 'christopher hodson', 'terence feely', '11 september 1976'], ['45', '3', 'the complaint', 'paul annett', 'tony hoare', '18 september 1976'], ['46', '4', 'the line of duty', 'paddy russell', 'david butler', '25 september 1976'], ['47', '5', 'k block', 'bryan izzard', 'david butler', '2 october 1976'], ['48', '6', 'a way of loving', 'john gorrie', 'john gorrie', '9 october 1976'], ['49', '7', 'love and the chaplain', 'paddy russell', 'kathleen j smith', '16 october 1976'], ['50', '8', 'the mystery', 'bryan izzard', 'tony hoare', '23 october 1976'], ['51', '9', 'a sentence of death', 'bryan izzard', 'peter wildeblood', '30 october 1976'], ['52', '10', 'vacuum', 'paul annett', 'pj hammond', '6 november 1976'], ['53', '11', 'on trial', 'marek kanievska', 'susan pleat', '13 november 1976'], ['54', '12', 'visitors', 'peter moffatt', 'terence feely', '20 november 1976'], ['55', '13', 'transfer', 'christopher hodson', 'tony parker', '27 november 1976'], ['56', '14', "someone 's got to do it", 'mike gibbon', 'mona bruce and robert james', '4 december 1976'], ['57', '15', 'islands in the heartline', 'marek kanievska', 'susan pleat', '11 december 1976'], ['58', '16', 'invasion of privacy', 'bill bain', 'david butler', '18 december 1976'], ['59', '17', 'silent night', 'phillip casson', 'david butler', '24 december 1976']]
united states house of representatives elections , 1888
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1888
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1431459-6.html.csv
count
the year 1882 was the year that three of the incumbents in the 1888 united states house of representatives elections from the districts of south carolina were first seated .
{'scope': 'all', 'criterion': 'equal', 'value': '1882', 'result': '3', 'col': '4', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'first elected', '1882'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose first elected record is equal to 1882 .', 'tostr': 'filter_eq { all_rows ; first elected ; 1882 }'}], 'result': '3', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; first elected ; 1882 } }', 'tointer': 'select the rows whose first elected record is equal to 1882 . the number of such rows is 3 .'}, '3'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; first elected ; 1882 } } ; 3 } = true', 'tointer': 'select the rows whose first elected record is equal to 1882 . the number of such rows is 3 .'}
eq { count { filter_eq { all_rows ; first elected ; 1882 } } ; 3 } = true
select the rows whose first elected record is equal to 1882 . the number of such rows is 3 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'first elected_5': 5, '1882_6': 6, '3_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'first elected_5': 'first elected', '1882_6': '1882', '3_7': '3'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'first elected_5': [0], '1882_6': [0], '3_7': [2]}
['district', 'incumbent', 'party', 'first elected', 'result']
[['south carolina 1', 'samuel dibble', 'democratic', '1882', 're - elected'], ['south carolina 2', 'george d tillman', 'democratic', '1878', 're - elected'], ['south carolina 3', 'james s cothran', 'democratic', '1886', 're - elected'], ['south carolina 4', 'william h perry', 'democratic', '1884', 're - elected'], ['south carolina 5', 'john j hemphill', 'democratic', '1882', 're - elected'], ['south carolina 6', 'george w dargan', 'democratic', '1882', 're - elected'], ['south carolina 7', 'william elliott', 'democratic', '1884', 're - elected']]
chalid arrab
https://en.wikipedia.org/wiki/Chalid_Arrab
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10363239-3.html.csv
unique
the hero ’s 2005 event was the only one help in seoul korea .
{'scope': 'all', 'row': '1', 'col': '6', 'col_other': '5', 'criterion': 'equal', 'value': 'seoul , south korea', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'location', 'seoul , south korea'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose location record fuzzily matches to seoul , south korea .', 'tostr': 'filter_eq { all_rows ; location ; seoul , south korea }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; location ; seoul , south korea } }', 'tointer': 'select the rows whose location record fuzzily matches to seoul , south korea . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'location', 'seoul , south korea'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose location record fuzzily matches to seoul , south korea .', 'tostr': 'filter_eq { all_rows ; location ; seoul , south korea }'}, 'event'], 'result': "hero 's 2005 in seoul", 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; location ; seoul , south korea } ; event }'}, "hero 's 2005 in seoul"], 'result': True, 'ind': 3, 'tostr': "eq { hop { filter_eq { all_rows ; location ; seoul , south korea } ; event } ; hero 's 2005 in seoul }", 'tointer': "the event record of this unqiue row is hero 's 2005 in seoul ."}], 'result': True, 'ind': 4, 'tostr': "and { only { filter_eq { all_rows ; location ; seoul , south korea } } ; eq { hop { filter_eq { all_rows ; location ; seoul , south korea } ; event } ; hero 's 2005 in seoul } } = true", 'tointer': "select the rows whose location record fuzzily matches to seoul , south korea . there is only one such row in the table . the event record of this unqiue row is hero 's 2005 in seoul ."}
and { only { filter_eq { all_rows ; location ; seoul , south korea } } ; eq { hop { filter_eq { all_rows ; location ; seoul , south korea } ; event } ; hero 's 2005 in seoul } } = true
select the rows whose location record fuzzily matches to seoul , south korea . there is only one such row in the table . the event record of this unqiue row is hero 's 2005 in seoul .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'location_7': 7, 'seoul , south korea_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'event_9': 9, "hero 's 2005 in seoul_10": 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'location_7': 'location', 'seoul , south korea_8': 'seoul , south korea', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'event_9': 'event', "hero 's 2005 in seoul_10": "hero 's 2005 in seoul"}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'location_7': [0], 'seoul , south korea_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'event_9': [2], "hero 's 2005 in seoul_10": [3]}
['res', 'record', 'opponent', 'method', 'event', 'location']
[['win', '7 - 3', 'hiromitsu kanehara', 'decision ( majority )', "hero 's 2005 in seoul", 'seoul , south korea'], ['win', '6 - 3', 'yukiya naito', 'decision ( unanimous )', "hero 's 1", 'saitama , saitama , japan'], ['loss', '5 - 3', 'kazuhiro nakamura', 'submission ( armbar )', 'pride bushido 3', 'yokohama , japan'], ['win', '5 - 2', 'rodney glunder', 'decision ( unanimous )', 'pride bushido 1', 'saitama , saitama , japan'], ['loss', '4 - 2', 'jeremy horn', 'decision ( unanimous )', '2h2h 6 - simply the best 6', 'rotterdam , netherlands'], ['win', '4 - 1', 'stanislav nuschik', 'ko ( punches )', 'm - 1 mfc - european championship 2002', 'saint petersburg , russia'], ['win', '3 - 1', 'roman zentsov', 'ko', 'm - 1 mfc - russia vs the world 2', 'saint petersburg , russia'], ['win', '2 - 1', 'peter varga', 'submission ( arm lock )', 'millenniumsports - veni vidi vici', 'veenendaal , netherlands'], ['loss', '1 - 1', 'ramazan mezhidov', 'submission ( rear naked choke )', 'iafc - pankration world championship 2000', 'moscow , russia'], ['win', '1 - 0', 'spartak kochnev', 'tko ( strikes )', 'iafc - pankration world championship 2000', 'moscow , russia']]
2010 tim hortons brier
https://en.wikipedia.org/wiki/2010_Tim_Hortons_Brier
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-25381437-2.html.csv
aggregation
the average number of blank ends for tim hortons brier in 2010 is 7.64 .
{'scope': 'all', 'col': '9', 'type': 'average', 'result': '7.64', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'blank ends'], 'result': '7.64', 'ind': 0, 'tostr': 'avg { all_rows ; blank ends }'}, '7.64'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; blank ends } ; 7.64 } = true', 'tointer': 'the average of the blank ends record of all rows is 7.64 .'}
round_eq { avg { all_rows ; blank ends } ; 7.64 } = true
the average of the blank ends record of all rows is 7.64 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'blank ends_4': 4, '7.64_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'blank ends_4': 'blank ends', '7.64_5': '7.64'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'blank ends_4': [0], '7.64_5': [1]}
['locale', 'skip', 'w', 'l', 'pf', 'pa', 'ends won', 'ends lost', 'blank ends', 'stolen ends', 'shot pct']
[['ontario', 'glenn howard', '11', '0', '90', '45', '50', '35', '8', '15', '88'], ['northern ontario', 'brad jacobs', '9', '2', '80', '54', '49', '39', '6', '17', '84'], ['alberta', 'kevin koe', '8', '3', '81', '62', '45', '42', '9', '11', '85'], ['newfoundland and labrador', 'brad gushue', '8', '3', '79', '53', '45', '35', '9', '11', '84'], ['manitoba', 'jeff stoughton', '7', '4', '71', '58', '45', '41', '9', '12', '83'], ['quebec', 'serge reid', '5', '6', '60', '71', '41', '42', '8', '9', '76'], ['saskatchewan', 'darrell mckee', '4', '7', '70', '79', '44', '44', '5', '7', '80'], ['british columbia', 'jeff richard', '4', '7', '68', '71', '43', '45', '9', '6', '79'], ['new brunswick', 'james grattan', '3', '8', '56', '71', '38', '47', '11', '6', '79'], ['nova scotia', 'ian fitzner - leblanc', '3', '8', '62', '90', '38', '54', '2', '5', '76'], ['prince edward island', 'rod macdonald', '3', '8', '64', '75', '44', '47', '8', '7', '80']]
harlem rocker
https://en.wikipedia.org/wiki/Harlem_Rocker
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17644295-1.html.csv
majority
most of the surface on which harlem rocker performed its races was dirt .
{'scope': 'all', 'col': '6', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'dirt', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'surface', 'dirt'], 'result': True, 'ind': 0, 'tointer': 'for the surface records of all rows , most of them fuzzily match to dirt .', 'tostr': 'most_eq { all_rows ; surface ; dirt } = true'}
most_eq { all_rows ; surface ; dirt } = true
for the surface records of all rows , most of them fuzzily match to dirt .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'surface_3': 3, 'dirt_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'surface_3': 'surface', 'dirt_4': 'dirt'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'surface_3': [0], 'dirt_4': [0]}
['date', 'race', 'track', 'location', 'distance', 'surface', 'purse', 'finish']
[['february 14 , 2008', 'maiden special weight', 'gulfstream park', 'hallandale beach , florida', '7 fur', 'dirt', '40000', '1st'], ['march 30 , 2008', 'allowance', 'gulfstream park', 'hallandale beach , florida', '1 mi', 'dirt', '42500', '1st'], ['april 26 , 2008', 'withers stakes', 'aqueduct racetrack', 'new york city , new york', '1 mi', 'dirt', '142500', '1st'], ['june 1 , 2008', 'plate trial stakes', 'woodbine racetrack', 'toronto , ontario', '1 ⅛ mi', 'polytrack', '151781', '4th'], ['july 13 , 2008', 'prince of wales stakes', 'fort erie racetrack', 'fort erie , ontario', '1 1 / 16 mi', 'dirt', '495400', '1st'], ['august 23 , 2008', 'travers stakes', 'saratoga race course', 'saratoga springs , new york', '1 ¼ mi', 'dirt', '1000000', '4th'], ['october 5 , 2008', 'jerome handicap', 'belmont park', 'elmont , new york', '1 mi', 'dirt', '150000', '3rd'], ['november 29 , 2008', 'cigar mile handicap', 'aqueduct racetrack', 'new york city , new york', '1 mi', 'dirt', '300000', '2nd'], ['november 14 , 2009', 'allowance optional claiming', 'churchill downs', 'louisville , kentucky', '7 fur', 'dirt', '56000', '2nd'], ['january 3 , 2010', "hal 's hope handicap", 'gulfstream park', 'hallandale beach , florida', '1 mi', 'dirt', '100000', '4th']]
elena reid
https://en.wikipedia.org/wiki/Elena_Reid
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1433370-2.html.csv
unique
tko ( liver punch ) is the only method used once by elena reid .
{'scope': 'all', 'row': '4', 'col': '4', 'col_other': 'n/a', 'criterion': 'equal', 'value': 'tko ( liver punch )', 'subset': None}
{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'method', 'tko ( liver punch )'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose method record fuzzily matches to tko ( liver punch ) .', 'tostr': 'filter_eq { all_rows ; method ; tko ( liver punch ) }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; method ; tko ( liver punch ) } } = true', 'tointer': 'select the rows whose method record fuzzily matches to tko ( liver punch ) . there is only one such row in the table .'}
only { filter_eq { all_rows ; method ; tko ( liver punch ) } } = true
select the rows whose method record fuzzily matches to tko ( liver punch ) . there is only one such row in the table .
2
2
{'only_1': 1, 'result_2': 2, 'filter_str_eq_0': 0, 'all_rows_3': 3, 'method_4': 4, 'tko (liver punch)_5': 5}
{'only_1': 'only', 'result_2': 'true', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_3': 'all_rows', 'method_4': 'method', 'tko (liver punch)_5': 'tko ( liver punch )'}
{'only_1': [2], 'result_2': [], 'filter_str_eq_0': [1], 'all_rows_3': [0], 'method_4': [0], 'tko (liver punch)_5': [0]}
['res', 'record', 'opponent', 'method', 'event', 'round', 'time', 'location']
[['loss', '4 - 1', 'catia vitoria', 'tko ( punches )', 'playboy fight night 4', '3', '3:59', 'new town , north dakota , united states'], ['win', '4 - 0', 'masako yoshida', 'tko ( punches )', 'eb - beatdown at 4 bears 5', '3', '2:35', 'new town , north dakota , united states'], ['win', '3 - 0', 'michelle waterson', 'tko ( punches )', 'apache gold : extreme beatdown', '2', '1:50', 'phoenix , arizona , united states'], ['win', '2 - 0', 'stephanie palmer', 'tko ( liver punch )', 'superfights mma - night of combat 2', '1', '0:53', 'las vegas , nevada , united states'], ['win', '1 - 0', 'tammie schneider', 'tko ( punches )', 'ifo - fireworks in the cage iv', '2', '2:05', 'las vegas , nevada , united states']]
primera división de fútbol profesional apertura 2008
https://en.wikipedia.org/wiki/Primera_Divisi%C3%B3n_de_F%C3%BAtbol_Profesional_Apertura_2008
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18522916-5.html.csv
ordinal
carlos jurado was appointed the 4th soonest in the primera division de futbol .
{'row': '4', 'col': '6', 'order': '4', 'col_other': '5', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'date of appointment', '4'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; date of appointment ; 4 }'}, 'replaced by'], 'result': 'carlos jurado', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; date of appointment ; 4 } ; replaced by }'}, 'carlos jurado'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; date of appointment ; 4 } ; replaced by } ; carlos jurado } = true', 'tointer': 'select the row whose date of appointment record of all rows is 4th minimum . the replaced by record of this row is carlos jurado .'}
eq { hop { nth_argmin { all_rows ; date of appointment ; 4 } ; replaced by } ; carlos jurado } = true
select the row whose date of appointment record of all rows is 4th minimum . the replaced by record of this row is carlos jurado .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'date of appointment_5': 5, '4_6': 6, 'replaced by_7': 7, 'carlos jurado_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'date of appointment_5': 'date of appointment', '4_6': '4', 'replaced by_7': 'replaced by', 'carlos jurado_8': 'carlos jurado'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'date of appointment_5': [0], '4_6': [0], 'replaced by_7': [1], 'carlos jurado_8': [2]}
['team', 'outgoing manager', 'manner of departure', 'date of vacancy', 'replaced by', 'date of appointment', 'position in table']
[['nejapa', 'mauricio cienfuegos', 'mutual consent', '14 august 2008', 'daniel uberti', '5 september 2008', '10th'], ['firpo', 'gerardo reinoso', 'sacked', '25 august 2008', 'oscar benitez', '2 september 2008', '7th'], ['balboa', 'gustavo de simone', 'sacked', '30 august 2008', 'roberto gamarra', '5 september 2008', '10th'], ['alianza', 'pablo centrone', 'sacked', '14 september 2008', 'carlos jurado', '16 september 2008', '5th'], ['firpo', 'oscar benítez', 'sacked', '9 december 2008', 'agustín castillo', '23 december 2008', 'post - season ( 6th )'], ['águila', 'agustín castillo', 'sacked', '15 december 2008', 'pablo centrone', '24 december 2008', 'post - season ( semifinals )'], ['fas', 'nelson ancheta', 'sacked', '27 december 2008', 'roberto gamarra', '1 january 2009', 'post - season ( semifinals )'], ['nejapa', 'daniel uberti', 'sacked', '29 december 2008', 'nelson ancheta', '29 december 2008', 'post - season ( 10th )'], ['balboa', 'roberto gamarra', 'mutual consent', '1 january 2009', 'carlos de toro', '16 january 2009', 'post - season ( 7th )'], ['independiente', 'jorge abrego', 'sacked', 'december 2008', 'ramón sánchez', 'december 2009', 'post - season ( 8th )']]
2008 - 09 detroit red wings season
https://en.wikipedia.org/wiki/2008%E2%80%9309_Detroit_Red_Wings_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17371135-30.html.csv
superlative
in the 2008-09 detroit red wings season , the last overall pick for a player from the united states , was max nicastro .
{'scope': 'subset', 'col_superlative': '2', 'row_superlative': '2', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '3', 'subset': {'col': '5', 'criterion': 'equal', 'value': 'united states'}}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'nationality', 'united states'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; nationality ; united states }', 'tointer': 'select the rows whose nationality record fuzzily matches to united states .'}, 'overall pick'], 'result': None, 'ind': 1, 'tostr': 'argmax { filter_eq { all_rows ; nationality ; united states } ; overall pick }'}, 'player'], 'result': 'max nicastro', 'ind': 2, 'tostr': 'hop { argmax { filter_eq { all_rows ; nationality ; united states } ; overall pick } ; player }'}, 'max nicastro'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { argmax { filter_eq { all_rows ; nationality ; united states } ; overall pick } ; player } ; max nicastro } = true', 'tointer': 'select the rows whose nationality record fuzzily matches to united states . select the row whose overall pick record of these rows is maximum . the player record of this row is max nicastro .'}
eq { hop { argmax { filter_eq { all_rows ; nationality ; united states } ; overall pick } ; player } ; max nicastro } = true
select the rows whose nationality record fuzzily matches to united states . select the row whose overall pick record of these rows is maximum . the player record of this row is max nicastro .
4
4
{'str_eq_3': 3, 'result_4': 4, 'str_hop_2': 2, 'argmax_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'nationality_6': 6, 'united states_7': 7, 'overall pick_8': 8, 'player_9': 9, 'max nicastro_10': 10}
{'str_eq_3': 'str_eq', 'result_4': 'true', 'str_hop_2': 'str_hop', 'argmax_1': 'argmax', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'nationality_6': 'nationality', 'united states_7': 'united states', 'overall pick_8': 'overall pick', 'player_9': 'player', 'max nicastro_10': 'max nicastro'}
{'str_eq_3': [4], 'result_4': [], 'str_hop_2': [3], 'argmax_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'nationality_6': [0], 'united states_7': [0], 'overall pick_8': [1], 'player_9': [2], 'max nicastro_10': [3]}
['round', 'overall pick', 'player', 'position', 'nationality', 'college / junior / club team ( league )']
[['1', '30', 'thomas mccollum', 'goaltender', 'united states', 'guelph storm ( ohl )'], ['3', '91', 'max nicastro', 'defenseman', 'united states', 'chicago steel ( ushl )'], ['4', '121', 'gustav nyquist', 'center', 'sweden', 'malmö redhawks ( sweden jr )'], ['5', '151', 'julien cayer', 'center', 'canada', 'northwood school ( hs - new york )'], ['6', '181', 'stephen johnston', 'left wing', 'canada', 'belleville bulls ( ohl )'], ['7', '211', 'jesper samuelsson', 'center', 'sweden', 'hc vita hästen ( swe - 3 )']]
jacksonville jaguars draft history
https://en.wikipedia.org/wiki/Jacksonville_Jaguars_draft_history
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15100419-11.html.csv
unique
alvin pearman is the only player in the running back position drafted by the jacksonville jaguars .
{'scope': 'all', 'row': '4', 'col': '5', 'col_other': '4', 'criterion': 'equal', 'value': 'running back', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'position', 'running back'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose position record fuzzily matches to running back .', 'tostr': 'filter_eq { all_rows ; position ; running back }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; position ; running back } }', 'tointer': 'select the rows whose position record fuzzily matches to running back . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'position', 'running back'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose position record fuzzily matches to running back .', 'tostr': 'filter_eq { all_rows ; position ; running back }'}, 'name'], 'result': 'alvin pearman', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; position ; running back } ; name }'}, 'alvin pearman'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; position ; running back } ; name } ; alvin pearman }', 'tointer': 'the name record of this unqiue row is alvin pearman .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; position ; running back } } ; eq { hop { filter_eq { all_rows ; position ; running back } ; name } ; alvin pearman } } = true', 'tointer': 'select the rows whose position record fuzzily matches to running back . there is only one such row in the table . the name record of this unqiue row is alvin pearman .'}
and { only { filter_eq { all_rows ; position ; running back } } ; eq { hop { filter_eq { all_rows ; position ; running back } ; name } ; alvin pearman } } = true
select the rows whose position record fuzzily matches to running back . there is only one such row in the table . the name record of this unqiue row is alvin pearman .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'position_7': 7, 'running back_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'name_9': 9, 'alvin pearman_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'position_7': 'position', 'running back_8': 'running back', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'name_9': 'name', 'alvin pearman_10': 'alvin pearman'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'position_7': [0], 'running back_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'name_9': [2], 'alvin pearman_10': [3]}
['round', 'pick', 'overall', 'name', 'position', 'college']
[['1', '21', '21', 'matt jones', 'wide receiver', 'arkansas'], ['2', '20', '52', 'khalif barnes', 'offensive tackle', 'washington'], ['3', '23', '87', 'scott starks', 'cornerback', 'wisconsin'], ['4', '26', '127', 'alvin pearman', 'running back', 'virginia'], ['5', '21', '157', 'gerald sensabaugh', 'safety', 'north carolina'], ['6', '11', '185', 'chad owens', 'wide receiver', 'hawaii'], ['6', '20', '194', 'pat thomas', 'linebacker', 'north carolina state'], ['7', '23', '237', 'chris roberson', 'cornerback', 'eastern michigan']]
2007 detroit lions season
https://en.wikipedia.org/wiki/2007_Detroit_Lions_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10147486-2.html.csv
ordinal
the fourth game of the detroit lions 2007 season was against the chicago bears .
{'row': '4', 'col': '1', 'order': '4', 'col_other': '3', 'max_or_min': 'min_to_max', 'value_mentioned': 'yes', 'scope': 'all', 'subset': None}
{'func': 'and', 'args': [{'func': 'eq', 'args': [{'func': 'nth_min', 'args': ['all_rows', 'week', '4'], 'result': '4', 'ind': 0, 'tostr': 'nth_min { all_rows ; week ; 4 }', 'tointer': 'the 4th minimum week record of all rows is 4 .'}, '4'], 'result': True, 'ind': 1, 'tostr': 'eq { nth_min { all_rows ; week ; 4 } ; 4 }', 'tointer': 'the 4th minimum week record of all rows is 4 .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'week', '4'], 'result': None, 'ind': 2, 'tostr': 'nth_argmin { all_rows ; week ; 4 }'}, 'opponent'], 'result': 'chicago bears', 'ind': 3, 'tostr': 'hop { nth_argmin { all_rows ; week ; 4 } ; opponent }'}, 'chicago bears'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { nth_argmin { all_rows ; week ; 4 } ; opponent } ; chicago bears }', 'tointer': 'the opponent record of the row with 4th minimum week record is chicago bears .'}], 'result': True, 'ind': 5, 'tostr': 'and { eq { nth_min { all_rows ; week ; 4 } ; 4 } ; eq { hop { nth_argmin { all_rows ; week ; 4 } ; opponent } ; chicago bears } } = true', 'tointer': 'the 4th minimum week record of all rows is 4 . the opponent record of the row with 4th minimum week record is chicago bears .'}
and { eq { nth_min { all_rows ; week ; 4 } ; 4 } ; eq { hop { nth_argmin { all_rows ; week ; 4 } ; opponent } ; chicago bears } } = true
the 4th minimum week record of all rows is 4 . the opponent record of the row with 4th minimum week record is chicago bears .
6
6
{'and_5': 5, 'result_6': 6, 'eq_1': 1, 'nth_min_0': 0, 'all_rows_7': 7, 'week_8': 8, '4_9': 9, '4_10': 10, 'str_eq_4': 4, 'str_hop_3': 3, 'nth_argmin_2': 2, 'all_rows_11': 11, 'week_12': 12, '4_13': 13, 'opponent_14': 14, 'chicago bears_15': 15}
{'and_5': 'and', 'result_6': 'true', 'eq_1': 'eq', 'nth_min_0': 'nth_min', 'all_rows_7': 'all_rows', 'week_8': 'week', '4_9': '4', '4_10': '4', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'nth_argmin_2': 'nth_argmin', 'all_rows_11': 'all_rows', 'week_12': 'week', '4_13': '4', 'opponent_14': 'opponent', 'chicago bears_15': 'chicago bears'}
{'and_5': [6], 'result_6': [], 'eq_1': [5], 'nth_min_0': [1], 'all_rows_7': [0], 'week_8': [0], '4_9': [0], '4_10': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'nth_argmin_2': [3], 'all_rows_11': [2], 'week_12': [2], '4_13': [2], 'opponent_14': [3], 'chicago bears_15': [4]}
['week', 'date', 'opponent', 'result', 'attendance']
[['1', 'september 9 , 2007', 'oakland raiders', 'w 36 - 21', '61547'], ['2', 'september 16 , 2007', 'minnesota vikings', 'w 20 - 17 ( ot )', '61771'], ['3', 'september 23 , 2007', 'philadelphia eagles', 'l 21 - 56', '67570'], ['4', 'september 30 , 2007', 'chicago bears', 'w 37 - 27', '60811'], ['5', 'october 7 , 2007', 'washington redskins', 'l 3 - 34', '88944'], ['7', 'october 21 , 2007', 'tampa bay buccaneers', 'w 23 - 16', '60442'], ['8', 'october 28 , 2007', 'chicago bears', 'w 16 - 7', '62171'], ['9', 'november 4 , 2007', 'denver broncos', 'w 44 - 7', '60783'], ['10', 'november 11 , 2007', 'arizona cardinals', 'l 21 - 31', '64753'], ['11', 'november 18 , 2007', 'new york giants', 'l 10 - 16', '60675'], ['12', 'november 22 , 2007', 'green bay packers', 'l 26 - 37', '63257'], ['13', 'december 2 , 2007', 'minnesota vikings', 'l 10 - 42', '62996'], ['14', 'december 9 , 2007', 'dallas cowboys', 'l 27 - 28', '62759'], ['15', 'december 16 , 2007', 'san diego chargers', 'l 14 - 51', '66505'], ['16', 'december 23 , 2007', 'kansas city chiefs', 'w 25 - 20', '59938'], ['17', 'december 30 , 2007', 'green bay packers', 'l 13 - 34', '70869']]
kentucky intercollegiate athletic conference
https://en.wikipedia.org/wiki/Kentucky_Intercollegiate_Athletic_Conference
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-10581768-2.html.csv
count
there are 11 institutions which participated in the kentucky intercollegiate athletic conference .
{'scope': 'all', 'criterion': 'all', 'value': 'n/a', 'result': '11', 'col': '1', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_all', 'args': ['all_rows', 'institution'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose institution record is arbitrary .', 'tostr': 'filter_all { all_rows ; institution }'}], 'result': '11', 'ind': 1, 'tostr': 'count { filter_all { all_rows ; institution } }', 'tointer': 'select the rows whose institution record is arbitrary . the number of such rows is 11 .'}, '11'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_all { all_rows ; institution } } ; 11 } = true', 'tointer': 'select the rows whose institution record is arbitrary . the number of such rows is 11 .'}
eq { count { filter_all { all_rows ; institution } } ; 11 } = true
select the rows whose institution record is arbitrary . the number of such rows is 11 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_all_0': 0, 'all_rows_4': 4, 'institution_5': 5, '11_6': 6}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_all_0': 'filter_all', 'all_rows_4': 'all_rows', 'institution_5': 'institution', '11_6': '11'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_all_0': [1], 'all_rows_4': [0], 'institution_5': [0], '11_6': [2]}
['institution', 'nickname', 'location', 'founded', 'type', 'enrollment']
[['alice lloyd college', 'eagles', 'pippa passes , kentucky', '1923', 'private', '600'], ['asbury university', 'eagles', 'wilmore , kentucky', '1890', 'private', '1300'], ['berea college', 'mountaineers', 'berea , kentucky', '1855', 'private', '1514'], ['brescia university', 'bearcats', 'owensboro , kentucky', '1950', 'private', '750'], ['carlow university 1', 'celtics', 'pittsburgh , pennsylvania', '1929', 'private', '2400'], ['cincinnati christian university', 'eagles', 'cincinnati , ohio', '1924', 'private', '1100'], ['indiana university east', 'red wolves', 'richmond , indiana', '1971', 'public', '2700'], ['indiana university kokomo', 'cougars', 'kokomo , indiana', '1945', 'public', '3719'], ['indiana university southeast', 'grenadiers', 'new albany , indiana', '1941', 'public', '6840'], ['midway college 1', 'eagles', 'midway , kentucky', '1847', 'private', '1800'], ['point park university', 'pioneers', 'pittsburgh , pennsylvania', '1960', 'private', '3376']]
urea cycle disorder
https://en.wikipedia.org/wiki/Urea_cycle_disorder
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1089254-1.html.csv
unique
arginase deficiency or argininemia is the only urea cycle disorder that is measured with arginine .
{'scope': 'all', 'row': '6', 'col': '5', 'col_other': '4', 'criterion': 'equal', 'value': 'arginine', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'measurements', 'arginine'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose measurements record fuzzily matches to arginine .', 'tostr': 'filter_eq { all_rows ; measurements ; arginine }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; measurements ; arginine } }', 'tointer': 'select the rows whose measurements record fuzzily matches to arginine . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'measurements', 'arginine'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose measurements record fuzzily matches to arginine .', 'tostr': 'filter_eq { all_rows ; measurements ; arginine }'}, 'disorder'], 'result': 'arginase deficiency or argininemia', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; measurements ; arginine } ; disorder }'}, 'arginase deficiency or argininemia'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; measurements ; arginine } ; disorder } ; arginase deficiency or argininemia }', 'tointer': 'the disorder record of this unqiue row is arginase deficiency or argininemia .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; measurements ; arginine } } ; eq { hop { filter_eq { all_rows ; measurements ; arginine } ; disorder } ; arginase deficiency or argininemia } } = true', 'tointer': 'select the rows whose measurements record fuzzily matches to arginine . there is only one such row in the table . the disorder record of this unqiue row is arginase deficiency or argininemia .'}
and { only { filter_eq { all_rows ; measurements ; arginine } } ; eq { hop { filter_eq { all_rows ; measurements ; arginine } ; disorder } ; arginase deficiency or argininemia } } = true
select the rows whose measurements record fuzzily matches to arginine . there is only one such row in the table . the disorder record of this unqiue row is arginase deficiency or argininemia .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'measurements_7': 7, 'arginine_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'disorder_9': 9, 'arginase deficiency or argininemia_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'measurements_7': 'measurements', 'arginine_8': 'arginine', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'disorder_9': 'disorder', 'arginase deficiency or argininemia_10': 'arginase deficiency or argininemia'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'measurements_7': [0], 'arginine_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'disorder_9': [2], 'arginase deficiency or argininemia_10': [3]}
['location', 'abb', 'enzyme', 'disorder', 'measurements']
[['mitochondria', 'nags', 'n - acetylglutamate synthetase', 'n - acetylglutamate synthase deficiency', '+ ammonia'], ['mitochondria', 'cps1', 'carbamoyl phosphate synthetase i', 'carbamoyl phosphate synthetase i deficiency', '+ ammonia'], ['mitochondria', 'otc', 'ornithine transcarbamylase', 'ornithine transcarbamylase deficiency', '+ ornithine , + uracil , + orotic acid'], ['cytosol', 'ass', 'argininosuccinic acid synthetase', 'as deficiency or citrullinemia', '+ citrulline'], ['cytosol', 'asl', 'argininosuccinase acid lyase', 'al deficiency or argininosuccinic aciduria ( asa )', '+ citrulline , + argininosuccinic acid'], ['cytosol', 'arg', 'arginase', 'arginase deficiency or argininemia', '+ arginine']]
1965 wyoming cowboys football team
https://en.wikipedia.org/wiki/1965_Wyoming_Cowboys_football_team
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-22801331-1.html.csv
aggregation
in their 1965 season , wyoming cowboys scored a total of 154 points between the games they won .
{'scope': 'subset', 'col': '5', 'type': 'sum', 'result': '154', 'subset': {'col': '4', 'criterion': 'equal', 'value': 'win'}}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'result', 'win'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; result ; win }', 'tointer': 'select the rows whose result record fuzzily matches to win .'}, 'cowboys points'], 'result': '154', 'ind': 1, 'tostr': 'sum { filter_eq { all_rows ; result ; win } ; cowboys points }'}, '154'], 'result': True, 'ind': 2, 'tostr': 'round_eq { sum { filter_eq { all_rows ; result ; win } ; cowboys points } ; 154 } = true', 'tointer': 'select the rows whose result record fuzzily matches to win . the sum of the cowboys points record of these rows is 154 .'}
round_eq { sum { filter_eq { all_rows ; result ; win } ; cowboys points } ; 154 } = true
select the rows whose result record fuzzily matches to win . the sum of the cowboys points record of these rows is 154 .
3
3
{'eq_2': 2, 'result_3': 3, 'sum_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'result_5': 5, 'win_6': 6, 'cowboys points_7': 7, '154_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'sum_1': 'sum', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'result_5': 'result', 'win_6': 'win', 'cowboys points_7': 'cowboys points', '154_8': '154'}
{'eq_2': [3], 'result_3': [], 'sum_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'result_5': [0], 'win_6': [0], 'cowboys points_7': [1], '154_8': [2]}
['game', 'date', 'opponent', 'result', 'cowboys points', 'opponents', 'record']
[['1', 'sept 18', 'air force', 'win', '13', '0', '1 - 0'], ['2', 'sept 25', 'colorado state', 'win', '23', '6', '2 - 0'], ['3', 'oct 2', 'arizona', 'win', '36', '6', '3 - 0'], ['4', 'oct 9', 'utah', 'loss', '3', '42', '3 - 1'], ['5', 'oct 16', 'texas el - paso', 'win', '37', '7', '4 - 1'], ['6', 'oct 23', 'brigham young', 'win', '35', '10', '5 - 1'], ['7', 'nov 6', 'new mexico', 'win', '10', '12', '6 - 1'], ['8', 'nov 13', 'army', 'loss', '0', '13', '6 - 2'], ['9', 'nov 20', 'arizona state', 'loss', '31', '7', '6 - 3']]
inbee park
https://en.wikipedia.org/wiki/Inbee_Park
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18198579-2.html.csv
aggregation
inbee park won an average amount of 363889 in winnings per tournament .
{'scope': 'all', 'col': '7', 'type': 'average', 'result': '363889', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', "winner 's share"], 'result': '363889', 'ind': 0, 'tostr': "avg { all_rows ; winner 's share }"}, '363889'], 'result': True, 'ind': 1, 'tostr': "round_eq { avg { all_rows ; winner 's share } ; 363889 } = true", 'tointer': "the average of the winner 's share record of all rows is 363889 ."}
round_eq { avg { all_rows ; winner 's share } ; 363889 } = true
the average of the winner 's share record of all rows is 363889 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, "winner 's share_4": 4, '363889_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', "winner 's share_4": "winner 's share", '363889_5': '363889'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], "winner 's share_4": [0], '363889_5': [1]}
['date', 'tournament', 'winning score', 'to par', 'margin of victory', 'runner ( s ) - up', "winner 's share"]
[['29 jun 2008', "us women 's open", '72 + 69 + 71 + 71 = 283', '- 9', '4 strokes', 'helen alfredsson', '560000'], ['29 jul 2012', 'evian masters', '71 + 64 + 70 + 66 = 271', '- 17', '2 strokes', 'karrie webb stacy lewis', '487500'], ['14 oct 2012', 'sime darby lpga malaysia', '69 + 68 + 65 + 67 = 269', '- 15', '2 strokes', 'choi na - yeon', '285000'], ['24 feb 2013', 'honda lpga thailand', '67 + 71 + 71 + 67 = 276', '- 12', '1 stroke', 'ariya jutanugarn', '225000'], ['7 apr 2013', 'kraft nabisco championship', '70 + 67 + 67 + 69 = 273', '- 15', '4 strokes', 'ryu so - yeon', '300000'], ['28 apr 2013', 'north texas lpga shootout', '67 + 70 + 67 + 67 = 271', '- 13', '1 stroke', 'carlota ciganda', '195000'], ['9 jun 2013', 'lpga championship', '72 + 68 + 68 + 75 = 283', '- 5', 'playoff', 'catriona matthew', '337500'], ['23 jun 2013', 'walmart nw arkansas championship', '69 + 65 + 67 = 201', '- 12', 'playoff', 'ryu so - yeon', '300000'], ['30 jun 2013', "us women 's open", '67 + 68 + 71 + 74 = 280', '- 8', '4 strokes', 'in - kyung kim', '585000']]
united states house of representatives elections , 1956
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1956
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1341973-3.html.csv
count
six of the incumbent representatives in the 1956 election are from the democratic party .
{'scope': 'all', 'criterion': 'all', 'value': 'n/a', 'result': '6', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_all', 'args': ['all_rows', 'party'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose party record is arbitrary .', 'tostr': 'filter_all { all_rows ; party }'}], 'result': '6', 'ind': 1, 'tostr': 'count { filter_all { all_rows ; party } }', 'tointer': 'select the rows whose party record is arbitrary . the number of such rows is 6 .'}, '6'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_all { all_rows ; party } } ; 6 } = true', 'tointer': 'select the rows whose party record is arbitrary . the number of such rows is 6 .'}
eq { count { filter_all { all_rows ; party } } ; 6 } = true
select the rows whose party record is arbitrary . the number of such rows is 6 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_all_0': 0, 'all_rows_4': 4, 'party_5': 5, '6_6': 6}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_all_0': 'filter_all', 'all_rows_4': 'all_rows', 'party_5': 'party', '6_6': '6'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_all_0': [1], 'all_rows_4': [0], 'party_5': [0], '6_6': [2]}
['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']
[['alabama 1', 'frank w boykin', 'democratic', '1935', 're - elected', 'frank w boykin ( d ) unopposed'], ['alabama 2', 'george m grant', 'democratic', '1938', 're - elected', 'george m grant ( d ) unopposed'], ['alabama 3', 'george w andrews', 'democratic', '1944', 're - elected', 'george w andrews ( d ) unopposed'], ['alabama 4', 'kenneth a roberts', 'democratic', '1950', 're - elected', 'kenneth a roberts ( d ) 73.4 % roy banks ( r ) 26.6 %'], ['alabama 5', 'albert rains', 'democratic', '1944', 're - elected', 'albert rains ( d ) unopposed'], ['alabama 6', 'armistead i selden , jr', 'democratic', '1952', 're - elected', 'armistead i selden , jr ( d ) unopposed']]
rural community
https://en.wikipedia.org/wiki/Rural_community
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-26321719-1.html.csv
superlative
of the rural communities located in new brunswick , beaubassin east has the highest population in 2011 .
{'scope': 'all', 'col_superlative': '2', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'population ( 2011 )'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; population ( 2011 ) }'}, 'name'], 'result': 'beaubassin east', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; population ( 2011 ) } ; name }'}, 'beaubassin east'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; population ( 2011 ) } ; name } ; beaubassin east } = true', 'tointer': 'select the row whose population ( 2011 ) record of all rows is maximum . the name record of this row is beaubassin east .'}
eq { hop { argmax { all_rows ; population ( 2011 ) } ; name } ; beaubassin east } = true
select the row whose population ( 2011 ) record of all rows is maximum . the name record of this row is beaubassin east .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'population (2011)_5': 5, 'name_6': 6, 'beaubassin east_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'population (2011)_5': 'population ( 2011 )', 'name_6': 'name', 'beaubassin east_7': 'beaubassin east'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'population (2011)_5': [0], 'name_6': [1], 'beaubassin east_7': [2]}
['name', 'population ( 2011 )', 'population ( 2006 )', 'change ( % )', 'area ( km square )', 'population density']
[['beaubassin east', '6200', '6429', '- 3.6', '291.12', '21.3'], ['campobello island', '925', '1056', '- 12.4', '39.67', '23.3'], ['kedgwick', '993', '1146', '- 13.4', '4.28', '232.2'], ['saint - andré', '819', '868', '- 5.6', '8.12', '100.8'], ['upper miramichi', '2373', '2414', '- 1.7', '1835.01', '1.3']]
6th united states congress
https://en.wikipedia.org/wiki/6th_United_States_Congress
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-224840-4.html.csv
unique
jonathan havens was the only 6th us congress vacator from a new york district .
{'scope': 'all', 'row': '1', 'col': '1', 'col_other': '2', 'criterion': 'equal', 'value': 'new york', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'district', 'new york'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose district record fuzzily matches to new york .', 'tostr': 'filter_eq { all_rows ; district ; new york }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; district ; new york } }', 'tointer': 'select the rows whose district record fuzzily matches to new york . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'district', 'new york'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose district record fuzzily matches to new york .', 'tostr': 'filter_eq { all_rows ; district ; new york }'}, 'vacator'], 'result': 'jonathan havens ( dr )', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; district ; new york } ; vacator }'}, 'jonathan havens ( dr )'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; district ; new york } ; vacator } ; jonathan havens ( dr ) }', 'tointer': 'the vacator record of this unqiue row is jonathan havens ( dr ) .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; district ; new york } } ; eq { hop { filter_eq { all_rows ; district ; new york } ; vacator } ; jonathan havens ( dr ) } } = true', 'tointer': 'select the rows whose district record fuzzily matches to new york . there is only one such row in the table . the vacator record of this unqiue row is jonathan havens ( dr ) .'}
and { only { filter_eq { all_rows ; district ; new york } } ; eq { hop { filter_eq { all_rows ; district ; new york } ; vacator } ; jonathan havens ( dr ) } } = true
select the rows whose district record fuzzily matches to new york . there is only one such row in the table . the vacator record of this unqiue row is jonathan havens ( dr ) .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'district_7': 7, 'new york_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'vacator_9': 9, 'jonathan havens (dr)_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'district_7': 'district', 'new york_8': 'new york', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'vacator_9': 'vacator', 'jonathan havens (dr)_10': 'jonathan havens ( dr )'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'district_7': [0], 'new york_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'vacator_9': [2], 'jonathan havens (dr)_10': [3]}
['district', 'vacator', 'reason for change', 'successor', 'date successor seated']
[['new york 1st', 'jonathan havens ( dr )', 'died october 25 , 1799', 'john smith ( dr )', 'february 27 , 1800'], ['connecticut at - large', 'jonathan brace ( f )', 'resigned sometime in 1800', 'john cotton smith ( f )', 'november 17 , 1800'], ['virginia 13th', 'john marshall ( f )', 'resigned june 7 , 1800 to become secretary of state', 'littleton w tazewell ( dr )', 'november 26 , 1800'], ['massachusetts 3rd', 'samuel lyman ( f )', 'resigned november 6 , 1800', 'ebenezer mattoon ( f )', 'february 2 , 1801'], ['pennsylvania 8th', 'thomas hartley ( f )', 'died december 21 , 1800', 'john stewart ( dr )', 'february 3 , 1801']]
1965 buffalo bills season
https://en.wikipedia.org/wiki/1965_Buffalo_Bills_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16008156-2.html.csv
aggregation
the average crowd attendance for games in the 1965 buffalo bills season was 36859 .
{'scope': 'all', 'col': '5', 'type': 'average', 'result': '36859', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'attendance'], 'result': '36859', 'ind': 0, 'tostr': 'avg { all_rows ; attendance }'}, '36859'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; attendance } ; 36859 } = true', 'tointer': 'the average of the attendance record of all rows is 36859 .'}
round_eq { avg { all_rows ; attendance } ; 36859 } = true
the average of the attendance record of all rows is 36859 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'attendance_4': 4, '36859_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'attendance_4': 'attendance', '36859_5': '36859'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'attendance_4': [0], '36859_5': [1]}
['week', 'date', 'opponent', 'result', 'attendance']
[['1', 'september 11 , 1965', 'boston patriots', 'w 24 - 7', '45502'], ['2', 'september 19 , 1965', 'denver broncos', 'w 30 - 15', '30682'], ['3', 'september 26 , 1965', 'new york jets', 'w 33 - 21', '45056'], ['4', 'october 3 , 1965', 'oakland raiders', 'w 17 - 12', '41256'], ['5', 'october 10 , 1965', 'san diego chargers', 'l 34 - 3', '45260'], ['6', 'october 17 , 1965', 'kansas city chiefs', 'w 23 - 7', '26941'], ['7', 'october 24 , 1965', 'denver broncos', 'w 31 - 13', '45046'], ['8', 'october 31 , 1965', 'houston oilers', 'l 19 - 17', '44267'], ['9', 'november 7 , 1965', 'boston patriots', 'w 23 - 7', '24415'], ['10', 'november 14 , 1965', 'oakland raiders', 'w 17 - 14', '19352'], ['12', 'november 25 , 1965', 'san diego chargers', 't 20 - 20', '27473'], ['13', 'december 5 , 1965', 'houston oilers', 'w 29 - 18', '23087'], ['14', 'december 12 , 1965', 'kansas city chiefs', 'w 34 - 25', '40298'], ['15', 'december 19 , 1965', 'new york jets', 'l 14 - 12', '57396']]
cyrille diabaté
https://en.wikipedia.org/wiki/Cyrille_Diabat%C3%A9
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18722380-1.html.csv
comparative
cyrille diabaté 's fight against alexey ignashov went more rounds than his fight against lee hasdell .
{'row_1': '3', 'row_2': '6', 'col': '5', 'col_other': '2', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'alexey ignashov'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose opponent record fuzzily matches to alexey ignashov .', 'tostr': 'filter_eq { all_rows ; opponent ; alexey ignashov }'}, 'round'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; opponent ; alexey ignashov } ; round }', 'tointer': 'select the rows whose opponent record fuzzily matches to alexey ignashov . take the round record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'lee hasdell'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose opponent record fuzzily matches to lee hasdell .', 'tostr': 'filter_eq { all_rows ; opponent ; lee hasdell }'}, 'round'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; opponent ; lee hasdell } ; round }', 'tointer': 'select the rows whose opponent record fuzzily matches to lee hasdell . take the round record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; opponent ; alexey ignashov } ; round } ; hop { filter_eq { all_rows ; opponent ; lee hasdell } ; round } } = true', 'tointer': 'select the rows whose opponent record fuzzily matches to alexey ignashov . take the round record of this row . select the rows whose opponent record fuzzily matches to lee hasdell . take the round record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; opponent ; alexey ignashov } ; round } ; hop { filter_eq { all_rows ; opponent ; lee hasdell } ; round } } = true
select the rows whose opponent record fuzzily matches to alexey ignashov . take the round record of this row . select the rows whose opponent record fuzzily matches to lee hasdell . take the round record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'opponent_7': 7, 'alexey ignashov_8': 8, 'round_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'opponent_11': 11, 'lee hasdell_12': 12, 'round_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'opponent_7': 'opponent', 'alexey ignashov_8': 'alexey ignashov', 'round_9': 'round', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'opponent_11': 'opponent', 'lee hasdell_12': 'lee hasdell', 'round_13': 'round'}
{'greater_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'opponent_7': [0], 'alexey ignashov_8': [0], 'round_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'opponent_11': [1], 'lee hasdell_12': [1], 'round_13': [3]}
['result', 'opponent', 'method', 'event', 'round', 'location']
[['win', 'michael bisping', 'decision ( unanimous )', 'cwfc : strike force 1', '4', 'coventry , west midlands , england'], ['loss', 'aleksandr pitchkounov', 'decision ( unanimous )', 'ichigeki paris 2005', '5', 'paris , france'], ['loss', 'alexey ignashov', 'decision', 'mt one', '5', 'saint - pierre , réunion'], ['loss', 'petar majstorović', 'decision ( unanimous )', 'k - 1 spain grand prix 2003 in barcelona', '3', 'barcelona , spain'], ['win', 'damián garcía', 'ko', 'k - 1 spain grand prix 2003 in barcelona', '1', 'barcelona , spain'], ['win', 'lee hasdell', 'tko ( doctor stoppage )', 'shoot boxing : s volume 1', '4', 'tokyo , japan'], ['win', 'rick roufus', 'tko ( doctor stoppage )', 'iska championship', '3', 'las vegas , nevada , united states']]
xavier malisse
https://en.wikipedia.org/wiki/Xavier_Malisse
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1551805-6.html.csv
count
7 games that xavier malisse competed in were played on a hard surface .
{'scope': 'all', 'criterion': 'equal', 'value': 'hard', 'result': '7', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'surface', 'hard'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose surface record fuzzily matches to hard .', 'tostr': 'filter_eq { all_rows ; surface ; hard }'}], 'result': '7', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; surface ; hard } }', 'tointer': 'select the rows whose surface record fuzzily matches to hard . the number of such rows is 7 .'}, '7'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; surface ; hard } } ; 7 } = true', 'tointer': 'select the rows whose surface record fuzzily matches to hard . the number of such rows is 7 .'}
eq { count { filter_eq { all_rows ; surface ; hard } } ; 7 } = true
select the rows whose surface record fuzzily matches to hard . the number of such rows is 7 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'surface_5': 5, 'hard_6': 6, '7_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'surface_5': 'surface', 'hard_6': 'hard', '7_7': '7'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'surface_5': [0], 'hard_6': [0], '7_7': [2]}
['outcome', 'year', 'surface', 'opponent', 'score']
[['runner - up', '2 november 1998', 'clay', 'jiří novák', '3 - 6 , 3 - 6'], ['runner - up', '10 may 1999', 'clay', 'lleyton hewitt', '4 - 6 , 7 - 6 ( 7 - 2 ) , 1 - 6'], ['runner - up', '12 march 2001', 'hard', 'jan - michael gambill', '5 - 7 , 4 - 6'], ['runner - up', '30 april 2001', 'clay', 'andy roddick', '2 - 6 , 4 - 6'], ['runner - up', '24 may 2004', 'clay', 'filippo volandri', '1 - 6 , 4 - 6'], ['runner - up', '11 october 2004', 'carpet', 'robin söderling', '2 - 6 , 6 - 3 , 4 - 6'], ['winner', '31 january 2005', 'hard', 'jiří novák', '7 - 6 ( 8 - 6 ) , 6 - 2'], ['runner - up', '9 january 2006', 'hard', 'florent serra', '3 - 6 , 4 - 6'], ['runner - up', '6 february 2006', 'hard', 'tommy haas', '3 - 6 , 6 - 3 , 6 - 7 ( 5 - 7 )'], ['winner', '1 january 2007', 'hard', 'stefan koubek', '6 - 1 , 6 - 3'], ['winner', '28 january 2007', 'hard', 'james blake', '5 - 7 , 6 - 4 , 6 - 4'], ['runner - up', '11 january 2011', 'hard', 'stanislas wawrinka', '5 - 7 , 6 - 4 , 1 - 6']]
2007 - 08 new orleans hornets season
https://en.wikipedia.org/wiki/2007%E2%80%9308_New_Orleans_Hornets_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11963536-8.html.csv
superlative
the match on 16 march 2008 had the highest attendance of all the matches .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '8', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'attendance'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; attendance }'}, 'date'], 'result': '16 march 2008', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; attendance } ; date }'}, '16 march 2008'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; attendance } ; date } ; 16 march 2008 } = true', 'tointer': 'select the row whose attendance record of all rows is maximum . the date record of this row is 16 march 2008 .'}
eq { hop { argmax { all_rows ; attendance } ; date } ; 16 march 2008 } = true
select the row whose attendance record of all rows is maximum . the date record of this row is 16 march 2008 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'attendance_5': 5, 'date_6': 6, '16 march 2008_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'attendance_5': 'attendance', 'date_6': 'date', '16 march 2008_7': '16 march 2008'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'attendance_5': [0], 'date_6': [1], '16 march 2008_7': [2]}
['date', 'visitor', 'score', 'home', 'leading scorer', 'attendance', 'record']
[['2 march 2008', 'hornets', 'l 84 - 101 ( ot )', 'wizards', 'peja stojakovic ( 17 )', '20173', '39 - 19'], ['3 march 2008', 'hornets', 'w 100 - 88 ( ot )', 'knicks', 'chris paul ( 27 )', '18467', '40 - 19'], ['5 march 2008', 'hawks', 'w 116 - 101 ( ot )', 'hornets', 'peja stojakovic ( 29 )', '17430', '41 - 19'], ['7 march 2008', 'nets', 'w 107 - 96 ( ot )', 'hornets', 'chris paul ( 25 )', '17225', '42 - 19'], ['8 march 2008', 'hornets', 'l 96 - 106 ( ot )', 'rockets', 'chris paul ( 37 )', '18279', '42 - 20'], ['12 march 2008', 'spurs', 'w 100 - 75 ( ot )', 'hornets', 'david west ( 29 )', '17419', '43 - 20'], ['14 march 2008', 'lakers', 'w 108 - 98 ( ot )', 'hornets', 'chris paul ( 27 )', '18299', '44 - 20'], ['16 march 2008', 'hornets', 'l 84 - 105 ( ot )', 'pistons', 'peja stojakovic ( 21 )', '22076', '44 - 21'], ['17 march 2008', 'bulls', 'w 108 - 97 ( ot )', 'hornets', 'chris paul ( 37 )', '17337', '45 - 21'], ['19 march 2008', 'rockets', 'w 90 - 69 ( ot )', 'hornets', 'bonzi wells ( 25 )', '18056', '46 - 21'], ['22 march 2008', 'celtics', 'w 113 - 106 ( ot )', 'hornets', 'david west ( 37 )', '18380', '47 - 21'], ['25 march 2008', 'hornets', 'w 114 - 106 ( ot )', 'pacers', 'david west ( 35 )', '10829', '48 - 21'], ['26 march 2008', 'hornets', 'w 100 - 99 ( ot )', 'cavaliers', 'peja stojakovic ( 25 )', '20562', '49 - 21'], ['28 march 2008', 'hornets', 'l 92 - 112 ( ot )', 'celtics', 'chris paul ( 22 )', '18624', '49 - 22'], ['30 march 2008', 'hornets', 'w 118 - 111 ( ot )', 'raptors', 'david west ( 32 )', '19800', '50 - 22']]
list of indycar series teams
https://en.wikipedia.org/wiki/List_of_IndyCar_Series_teams
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-2503102-2.html.csv
ordinal
rahal letterman lanigan racing is the team with the second lowest team number in the indycar series .
{'row': '6', 'col': '2', 'order': '2', 'col_other': '1', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', '-', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; - ; 2 }'}, 'team'], 'result': 'rahal letterman lanigan racing', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; - ; 2 } ; team }'}, 'rahal letterman lanigan racing'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; - ; 2 } ; team } ; rahal letterman lanigan racing } = true', 'tointer': 'select the row whose - record of all rows is 2nd minimum . the team record of this row is rahal letterman lanigan racing .'}
eq { hop { nth_argmin { all_rows ; - ; 2 } ; team } ; rahal letterman lanigan racing } = true
select the row whose - record of all rows is 2nd minimum . the team record of this row is rahal letterman lanigan racing .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, '-_5': 5, '2_6': 6, 'team_7': 7, 'rahal letterman lanigan racing_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', '-_5': '-', '2_6': '2', 'team_7': 'team', 'rahal letterman lanigan racing_8': 'rahal letterman lanigan racing'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], '-_5': [0], '2_6': [0], 'team_7': [1], 'rahal letterman lanigan racing_8': [2]}
['team', '-', 'primary sponsor', 'driver ( s )', 'listed owner ( s )', 'engine', 'chassis']
[['a j foyt enterprises', '41', 'abc supply', 'conor daly', 'a j foyt', 'honda', 'dallara'], ['andretti autosport', '26', 'electric energy straws', 'carlos muã ± oz', 'michael andretti', 'chevrolet', 'dallara'], ['chip ganassi racing', '8', 'ntt data', 'ryan briscoe', 'chip ganassi', 'honda', 'dallara'], ['dale coyne racing', '63', 'cyclops gear', 'pippa mann', 'dale coyne', 'honda', 'dallara'], ['lazier partners racing', '91', 'advance auto parts', 'buddy lazier', 'bob lazier corbet krause', 'chevrolet', 'dallara'], ['rahal letterman lanigan racing', '17', 'blu e - cigs', 'mike conway', 'mike lanigan david letterman bobby rahal', 'honda', 'dallara'], ['sam schmidt motorsports', '81', "angie 's list", 'katherine legge', 'sam schmidt ric peterson', 'honda', 'dallara'], ['sarah fisher hartman racing', '97', 'rotondo weirich / muscle milk', 'lucas luhr', "sarah fisher andy o'gara steve weirich", 'honda', 'dallara']]
the bachelorette
https://en.wikipedia.org/wiki/The_Bachelorette
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-174953-1.html.csv
comparative
ryan sutter won the bachelorette before jesse csincsak won the show .
{'row_1': '1', 'row_2': '4', 'col': '2', 'col_other': '5', 'relation': 'less', 'record_mentioned': 'yes', 'diff_result': None}
{'func': 'and', 'args': [{'func': 'less', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'ryan sutter'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose winner record fuzzily matches to ryan sutter .', 'tostr': 'filter_eq { all_rows ; winner ; ryan sutter }'}, 'premiered'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered }', 'tointer': 'select the rows whose winner record fuzzily matches to ryan sutter . take the premiered record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'jesse csincsak'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose winner record fuzzily matches to jesse csincsak .', 'tostr': 'filter_eq { all_rows ; winner ; jesse csincsak }'}, 'premiered'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered }', 'tointer': 'select the rows whose winner record fuzzily matches to jesse csincsak . take the premiered record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } }', 'tointer': 'select the rows whose winner record fuzzily matches to ryan sutter . take the premiered record of this row . select the rows whose winner record fuzzily matches to jesse csincsak . take the premiered record of this row . the first record is less than the second record .'}, {'func': 'and', 'args': [{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'ryan sutter'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose winner record fuzzily matches to ryan sutter .', 'tostr': 'filter_eq { all_rows ; winner ; ryan sutter }'}, 'premiered'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered }', 'tointer': 'select the rows whose winner record fuzzily matches to ryan sutter . take the premiered record of this row .'}, 'january 8 , 2003'], 'result': True, 'ind': 5, 'tostr': 'eq { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; january 8 , 2003 }', 'tointer': 'the premiered record of the first row is january 8 , 2003 .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'jesse csincsak'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose winner record fuzzily matches to jesse csincsak .', 'tostr': 'filter_eq { all_rows ; winner ; jesse csincsak }'}, 'premiered'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered }', 'tointer': 'select the rows whose winner record fuzzily matches to jesse csincsak . take the premiered record of this row .'}, 'may 19 , 2008'], 'result': True, 'ind': 6, 'tostr': 'eq { hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } ; may 19 , 2008 }', 'tointer': 'the premiered record of the second row is may 19 , 2008 .'}], 'result': True, 'ind': 7, 'tostr': 'and { eq { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; january 8 , 2003 } ; eq { hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } ; may 19 , 2008 } }', 'tointer': 'the premiered record of the first row is january 8 , 2003 . the premiered record of the second row is may 19 , 2008 .'}], 'result': True, 'ind': 8, 'tostr': 'and { less { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } } ; and { eq { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; january 8 , 2003 } ; eq { hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } ; may 19 , 2008 } } } = true', 'tointer': 'select the rows whose winner record fuzzily matches to ryan sutter . take the premiered record of this row . select the rows whose winner record fuzzily matches to jesse csincsak . take the premiered record of this row . the first record is less than the second record . the premiered record of the first row is january 8 , 2003 . the premiered record of the second row is may 19 , 2008 .'}
and { less { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } } ; and { eq { hop { filter_eq { all_rows ; winner ; ryan sutter } ; premiered } ; january 8 , 2003 } ; eq { hop { filter_eq { all_rows ; winner ; jesse csincsak } ; premiered } ; may 19 , 2008 } } } = true
select the rows whose winner record fuzzily matches to ryan sutter . take the premiered record of this row . select the rows whose winner record fuzzily matches to jesse csincsak . take the premiered record of this row . the first record is less than the second record . the premiered record of the first row is january 8 , 2003 . the premiered record of the second row is may 19 , 2008 .
13
9
{'and_8': 8, 'result_9': 9, 'less_4': 4, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_10': 10, 'winner_11': 11, 'ryan sutter_12': 12, 'premiered_13': 13, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_14': 14, 'winner_15': 15, 'jesse csincsak_16': 16, 'premiered_17': 17, 'and_7': 7, 'str_eq_5': 5, 'january 8 , 2003_18': 18, 'str_eq_6': 6, 'may 19 , 2008_19': 19}
{'and_8': 'and', 'result_9': 'true', 'less_4': 'less', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_10': 'all_rows', 'winner_11': 'winner', 'ryan sutter_12': 'ryan sutter', 'premiered_13': 'premiered', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_14': 'all_rows', 'winner_15': 'winner', 'jesse csincsak_16': 'jesse csincsak', 'premiered_17': 'premiered', 'and_7': 'and', 'str_eq_5': 'str_eq', 'january 8 , 2003_18': 'january 8 , 2003', 'str_eq_6': 'str_eq', 'may 19 , 2008_19': 'may 19 , 2008'}
{'and_8': [9], 'result_9': [], 'less_4': [8], 'str_hop_2': [4, 5], 'filter_str_eq_0': [2], 'all_rows_10': [0], 'winner_11': [0], 'ryan sutter_12': [0], 'premiered_13': [2], 'str_hop_3': [4, 6], 'filter_str_eq_1': [3], 'all_rows_14': [1], 'winner_15': [1], 'jesse csincsak_16': [1], 'premiered_17': [3], 'and_7': [8], 'str_eq_5': [7], 'january 8 , 2003_18': [5], 'str_eq_6': [7], 'may 19 , 2008_19': [6]}
['season', 'premiered', 'bachelorette', 'profile', 'winner', 'runner ( s ) - up', 'proposal']
[['1', 'january 8 , 2003', 'trista rehn', 'physical therapist', 'ryan sutter', 'charlie maher', 'yes'], ['2', 'january 14 , 2004', 'meredith phillips', 'makeup artist', 'ian mckee', 'matthew hickl', 'yes'], ['3', 'january 10 , 2005', 'jennifer schefft', 'publicist', 'none', 'jerry ferris and john paul merritt', 'no'], ['4', 'may 19 , 2008', 'deanna pappas', 'real estate agent', 'jesse csincsak', 'jason mesnick', 'yes'], ['5', 'may 18 , 2009', 'jillian harris', 'interior designer', 'ed swiderski', 'kiptyn locke', 'yes'], ['6', 'may 24 , 2010', 'ali fedotowsky', 'advertising account manager', 'roberto martinez', 'chris lambton', 'yes'], ['7', 'may 23 , 2011', 'ashley hebert', 'dental student', 'jp rosenbaum', 'ben flajnik', 'yes'], ['8', 'may 14 , 2012', 'emily maynard', "children 's hospital event planner", 'jef holm', 'arie luyendyk , jr', 'yes'], ['9', 'may 27 , 2013', 'desiree hartsock', 'bridal stylist', 'chris siegfried', 'drew kenney', 'yes']]
2006 - 07 macedonian cup
https://en.wikipedia.org/wiki/2006%E2%80%9307_Macedonian_Cup
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17065288-2.html.csv
count
in the ' 06 - '07 macedonian cup , 2 of the games have a 2nd . leg score of 0 - 1 or 1 - 0 .
{'scope': 'all', 'criterion': 'equal', 'value': '1 - 0', 'result': '2', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', '2nd leg', '1 - 0'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose 2nd leg record fuzzily matches to 1 - 0 .', 'tostr': 'filter_eq { all_rows ; 2nd leg ; 1 - 0 }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; 2nd leg ; 1 - 0 } }', 'tointer': 'select the rows whose 2nd leg record fuzzily matches to 1 - 0 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; 2nd leg ; 1 - 0 } } ; 2 } = true', 'tointer': 'select the rows whose 2nd leg record fuzzily matches to 1 - 0 . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; 2nd leg ; 1 - 0 } } ; 2 } = true
select the rows whose 2nd leg record fuzzily matches to 1 - 0 . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, '2nd leg_5': 5, '1 - 0_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', '2nd leg_5': '2nd leg', '1 - 0_6': '1 - 0', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], '2nd leg_5': [0], '1 - 0_6': [0], '2_7': [2]}
['team 1', 'agg', 'team 2', '1st leg', '2nd leg']
[['pobeda', '3 - 0', 'shkëndija 79', '2 - 0', '1 - 0'], ['vardar', '5 - 1', 'metalurg', '4 - 1', '1 - 0'], ['drita', '4 - 2', 'bregalnica kraun', '3 - 0', '1 - 2'], ['gostivar', '3 - 6', 'renova', '1 - 4', '2 - 2'], ['milano', '4 - 3', 'baškimi', '2 - 1', '2 - 2'], ['rabotnički', '5 - 4', 'ilinden', '4 - 0', '1 - 4'], ['makedonija', '0 - 2', 'meridian fcu', '0 - 2', '0 - 0'], ['madžari solidarnost', '2 - 4', 'pelister', '2 - 2', '0 - 2']]
luke donald
https://en.wikipedia.org/wiki/Luke_Donald
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1590652-7.html.csv
superlative
luke donald places in the top - 10 more times in the masters tournament than any other tournament .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'top - 10'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; top - 10 }'}, 'tournament'], 'result': 'masters tournament', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; top - 10 } ; tournament }'}, 'masters tournament'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; top - 10 } ; tournament } ; masters tournament } = true', 'tointer': 'select the row whose top - 10 record of all rows is maximum . the tournament record of this row is masters tournament .'}
eq { hop { argmax { all_rows ; top - 10 } ; tournament } ; masters tournament } = true
select the row whose top - 10 record of all rows is maximum . the tournament record of this row is masters tournament .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'top - 10_5': 5, 'tournament_6': 6, 'masters tournament_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'top - 10_5': 'top - 10', 'tournament_6': 'tournament', 'masters tournament_7': 'masters tournament'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'top - 10_5': [0], 'tournament_6': [1], 'masters tournament_7': [2]}
['tournament', 'wins', 'top - 5', 'top - 10', 'top - 25', 'events', 'cuts made']
[['masters tournament', '0', '2', '3', '4', '9', '7'], ['us open', '0', '0', '1', '3', '9', '6'], ['the open championship', '0', '2', '2', '3', '13', '6'], ['pga championship', '0', '1', '2', '5', '10', '8'], ['totals', '0', '5', '8', '15', '41', '27']]
european parliament election , 1984 ( ireland )
https://en.wikipedia.org/wiki/European_Parliament_election%2C_1984_%28Ireland%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-13564562-2.html.csv
ordinal
the connachtulster constituency recorded the 2nd highest quota during the 1984 european parliament election ( ireland ) .
{'row': '1', 'col': '6', 'order': '2', 'col_other': '1', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'quota', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; quota ; 2 }'}, 'constituency'], 'result': 'connachtulster', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; quota ; 2 } ; constituency }'}, 'connachtulster'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; quota ; 2 } ; constituency } ; connachtulster } = true', 'tointer': 'select the row whose quota record of all rows is 2nd maximum . the constituency record of this row is connachtulster .'}
eq { hop { nth_argmax { all_rows ; quota ; 2 } ; constituency } ; connachtulster } = true
select the row whose quota record of all rows is 2nd maximum . the constituency record of this row is connachtulster .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'quota_5': 5, '2_6': 6, 'constituency_7': 7, 'connachtulster_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'quota_5': 'quota', '2_6': '2', 'constituency_7': 'constituency', 'connachtulster_8': 'connachtulster'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'quota_5': [0], '2_6': [0], 'constituency_7': [1], 'connachtulster_8': [2]}
['constituency', 'electorate', 'turnout', 'spoilt', 'valid poll', 'quota', 'seats', 'candidates']
[['connachtulster', '471577', '241244 ( 51.2 % )', '5763 ( 2.4 % )', '235481', '58871', '3', '11'], ['dublin', '704873', '288831 ( 40.9 % )', '6153 ( 2.1 % )', '282678', '56536', '4', '12'], ['leinster', '545878', '268491 ( 49.2 % )', '9197 ( 3.4 % )', '259294', '64824', '3', '9'], ['munster', '691076', '349179 ( 50.5 % )', '6216 ( 1.8 % )', '342963', '57161', '5', '9'], ['total', '2413404', '1147745 ( 47.6 % )', '27329 ( 2.4 % )', '1120416', 'n / a', '15', '41']]
canton railroad
https://en.wikipedia.org/wiki/Canton_Railroad
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15441362-1.html.csv
majority
a majority of trains on the canton railroad were switchers .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'switcher', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'type', 'switcher'], 'result': True, 'ind': 0, 'tointer': 'for the type records of all rows , most of them fuzzily match to switcher .', 'tostr': 'most_eq { all_rows ; type ; switcher } = true'}
most_eq { all_rows ; type ; switcher } = true
for the type records of all rows , most of them fuzzily match to switcher .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'type_3': 3, 'switcher_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'type_3': 'type', 'switcher_4': 'switcher'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'type_3': [0], 'switcher_4': [0]}
['locomotive number', 'model', 'type', 'propulsion', 'manufacturer']
[['ctn 32', 'vo - 1000', 'switcher', 'diesel - electric', 'baldwin locomotive works'], ['ctn 46', 'emd sw900', 'switcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 50', 'emd sw9', 'switcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 51', 'emd sw9', 'switcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 1201', 'emd sw1200', 'switcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 1203', 'emd sw1200', 'switcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 1204', 'emd sw1200rs', 'switcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 1307', 'emd gp7 u', 'four - axle roadswitcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 1364', 'emd gp7u', 'four - axle roadswitcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 1501', 'emd sw1500', 'switcher', 'diesel - electric', 'gm electro - motive div'], ['ctn 1502', 'emd sw1500', 'switcher', 'diesel - electric', 'gm electro - motive div']]
yuriko kobayashi
https://en.wikipedia.org/wiki/Yuriko_Kobayashi
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17889598-1.html.csv
count
yuriko kobayashi participated in a total of four race competitions that were 1500 meters long .
{'scope': 'all', 'criterion': 'equal', 'value': '1500 m', 'result': '4', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'notes', '1500 m'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose notes record fuzzily matches to 1500 m .', 'tostr': 'filter_eq { all_rows ; notes ; 1500 m }'}], 'result': '4', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; notes ; 1500 m } }', 'tointer': 'select the rows whose notes record fuzzily matches to 1500 m . the number of such rows is 4 .'}, '4'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; notes ; 1500 m } } ; 4 } = true', 'tointer': 'select the rows whose notes record fuzzily matches to 1500 m . the number of such rows is 4 .'}
eq { count { filter_eq { all_rows ; notes ; 1500 m } } ; 4 } = true
select the rows whose notes record fuzzily matches to 1500 m . the number of such rows is 4 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'notes_5': 5, '1500 m_6': 6, '4_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'notes_5': 'notes', '1500 m_6': '1500 m', '4_7': '4'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'notes_5': [0], '1500 m_6': [0], '4_7': [2]}
['year', 'competition', 'venue', 'position', 'notes']
[['2004', 'world junior championships', 'grosseto , italy', '4th ( heats )', '800 m'], ['2005', 'world youth championships', 'marrakech , morocco', '2nd', '1500 m'], ['2005', 'asian championships', 'incheon , south korea', '3rd', '1500 m'], ['2006', 'world cross country championships', 'fukuoka , japan', '11th', 'team competition'], ['2006', 'world junior championships', 'beijing , china', '3rd', '1500 m'], ['2006', 'asian games', 'doha , qatar', '2nd', '1500 m'], ['2008', 'summer olympics', 'beijing , china', '7th ( heats )', '5000 m'], ['2009', 'world championships', 'berlin , germany', '11th', '5000 m'], ['2009', 'east asian games', 'hong kong , china', '1st', '5000 m']]
1979 detroit lions season
https://en.wikipedia.org/wiki/1979_Detroit_Lions_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18733329-2.html.csv
aggregation
the average crowd attendance during the 1979 detroit lions season was 60644 .
{'scope': 'all', 'col': '5', 'type': 'average', 'result': '60644', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'attendance'], 'result': '60644', 'ind': 0, 'tostr': 'avg { all_rows ; attendance }'}, '60644'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; attendance } ; 60644 } = true', 'tointer': 'the average of the attendance record of all rows is 60644 .'}
round_eq { avg { all_rows ; attendance } ; 60644 } = true
the average of the attendance record of all rows is 60644 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'attendance_4': 4, '60644_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'attendance_4': 'attendance', '60644_5': '60644'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'attendance_4': [0], '60644_5': [1]}
['week', 'date', 'opponent', 'result', 'attendance']
[['1', 'september 1 , 1979', 'tampa bay buccaneers', 'l 31 - 16', '68225'], ['2', 'september 9 , 1979', 'washington redskins', 'l 27 - 24', '54991'], ['3', 'september 16 , 1979', 'new york jets', 'l 31 - 10', '49612'], ['4', 'september 23 , 1979', 'atlanta falcons', 'w 24 - 23', '56249'], ['5', 'september 30 , 1979', 'minnesota vikings', 'l 13 - 10', '75295'], ['6', 'october 7 , 1979', 'new england patriots', 'l 24 - 17', '60629'], ['7', 'october 14 , 1979', 'green bay packers', 'l 24 - 16', '53930'], ['8', 'october 21 , 1979', 'new orleans saints', 'l 17 - 7', '57428'], ['9', 'october 28 , 1979', 'buffalo bills', 'l 20 - 17', '61911'], ['10', 'november 4 , 1979', 'chicago bears', 'l 35 - 7', '50108'], ['11', 'november 11 , 1979', 'tampa bay buccaneers', 'l 16 - 14', '70461'], ['12', 'november 18 , 1979', 'minnesota vikings', 'l 14 - 7', '43650'], ['13', 'november 22 , 1979', 'chicago bears', 'w 20 - 0', '66219'], ['14', 'december 2 , 1979', 'philadelphia eagles', 'l 44 - 7', '66128'], ['15', 'december 9 , 1979', 'miami dolphins', 'l 28 - 10', '78087'], ['16', 'december 15 , 1979', 'green bay packers', 'l 18 - 13', '57376']]
longyan
https://en.wikipedia.org/wiki/Longyan
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1204998-2.html.csv
superlative
zhangping city has the lowest population density with 81 people per square km .
{'scope': 'all', 'col_superlative': '7', 'row_superlative': '2', 'value_mentioned': 'no', 'max_or_min': 'min', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': ['all_rows', 'population'], 'result': None, 'ind': 0, 'tostr': 'argmin { all_rows ; population }'}, 'english name'], 'result': 'zhangping city', 'ind': 1, 'tostr': 'hop { argmin { all_rows ; population } ; english name }'}, 'zhangping city'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmin { all_rows ; population } ; english name } ; zhangping city } = true', 'tointer': 'select the row whose population record of all rows is minimum . the english name record of this row is zhangping city .'}
eq { hop { argmin { all_rows ; population } ; english name } ; zhangping city } = true
select the row whose population record of all rows is minimum . the english name record of this row is zhangping city .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmin_0': 0, 'all_rows_4': 4, 'population_5': 5, 'english name_6': 6, 'zhangping city_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmin_0': 'argmin', 'all_rows_4': 'all_rows', 'population_5': 'population', 'english name_6': 'english name', 'zhangping city_7': 'zhangping city'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmin_0': [1], 'all_rows_4': [0], 'population_5': [0], 'english name_6': [1], 'zhangping city_7': [2]}
['english name', 'simplified', 'traditional', 'pinyin', 'hakka', 'area', 'population', 'density']
[['xinluo district', '新罗区', '新羅區', 'xīnluó qū', 'sîn - lò - khî', '2685', '662429', '247'], ['zhangping city', '漳平市', '漳平市', 'zhāngpíng shì', 'chông - phìn - sṳ', '2975', '240194', '81'], ['changting county', '长汀县', '長汀縣', 'chángtīng xiàn', 'tshòng - tin - yen', '3099', '393390', '127'], ['yongding county', '永定县', '永定縣', 'yǒngdìng xiàn', 'yún - thin - yen', '2216', '362658', '164'], ['shanghang county', '上杭县', '上杭縣', 'shàngháng xiàn', 'sông - hông - yen', '2879', '374047', '130'], ['wuping county', '武平县', '武平縣', 'wǔpíng xiàn', 'vú - phìn - yen', '2630', '278182', '106']]
avc club volleyball championship
https://en.wikipedia.org/wiki/AVC_Club_Volleyball_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14841421-2.html.csv
majority
all of the countries competing in the avc club volleyball championship won at least one medal .
{'scope': 'all', 'col': '6', 'most_or_all': 'all', 'criterion': 'greater_than_eq', 'value': '1', 'subset': None}
{'func': 'all_greater_eq', 'args': ['all_rows', 'total', '1'], 'result': True, 'ind': 0, 'tointer': 'for the total records of all rows , all of them are greater than or equal to 1 .', 'tostr': 'all_greater_eq { all_rows ; total ; 1 } = true'}
all_greater_eq { all_rows ; total ; 1 } = true
for the total records of all rows , all of them are greater than or equal to 1 .
1
1
{'all_greater_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'total_3': 3, '1_4': 4}
{'all_greater_eq_0': 'all_greater_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'total_3': 'total', '1_4': '1'}
{'all_greater_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'total_3': [0], '1_4': [0]}
['rank', 'nation', 'gold', 'silver', 'bronze', 'total']
[['1', 'iran', '9', '4', '2', '15'], ['2', 'south korea', '2', '1', '0', '3'], ['3', 'kazakhstan', '1', '3', '2', '6'], ['4', 'qatar', '1', '2', '2', '5'], ['5', 'china', '1', '1', '4', '6'], ['6', 'saudi arabia', '0', '2', '0', '2'], ['7', 'japan', '0', '1', '2', '3'], ['8', 'chinese taipei', '0', '0', '1', '1'], ['8', 'indonesia', '0', '0', '1', '1'], ['total', 'total', '14', '14', '14', '42']]
massachusetts route 139
https://en.wikipedia.org/wiki/Massachusetts_Route_139
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-10568553-1.html.csv
ordinal
the western terminus rockland location has the third highest milepost value of these locations .
{'row': '3', 'col': '4', 'order': '3', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'milepost', '3'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; milepost ; 3 }'}, 'location'], 'result': 'rockland', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; milepost ; 3 } ; location }'}, 'rockland'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; milepost ; 3 } ; location } ; rockland } = true', 'tointer': 'select the row whose milepost record of all rows is 3rd maximum . the location record of this row is rockland .'}
eq { hop { nth_argmax { all_rows ; milepost ; 3 } ; location } ; rockland } = true
select the row whose milepost record of all rows is 3rd maximum . the location record of this row is rockland .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'milepost_5': 5, '3_6': 6, 'location_7': 7, 'rockland_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'milepost_5': 'milepost', '3_6': '3', 'location_7': 'location', 'rockland_8': 'rockland'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'milepost_5': [0], '3_6': [0], 'location_7': [1], 'rockland_8': [2]}
['county', 'location', 'street names', 'milepost', 'roads intersected', 'notes']
[['norfolk', 'stoughton', 'pleasant street turnpike street lindelof avenue', '3.0', 'route 24', 'route 24 exit 20'], ['norfolk', 'weymouth', 'anne street', '( no major junctions )', '( no major junctions )', '( no major junctions )'], ['plymouth', 'rockland', 'north avenue plain street market street', '12.2', 'route 123', 'western terminus of route 123 / 139 concurrency'], ['plymouth', 'rockland', 'north avenue plain street market street', '12.8', 'route 123', 'eastern terminus of route 123 / 139 concurrency'], ['plymouth', 'hanover', 'hanover street rockland street columbia road', '17.9', 'route 53', 'northern terminus of route 53 / 139 concurrency']]
canoeing at the 2008 summer olympics - men 's k - 1 500 metres
https://en.wikipedia.org/wiki/Canoeing_at_the_2008_Summer_Olympics_%E2%80%93_Men%27s_K-1_500_metres
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18646681-3.html.csv
unique
for canoeing at the 2008 summer olympics , in the men 's k - 1 500 metres , when the time is under 1:40 , the only athlete from canada is adam van koeverden .
{'scope': 'subset', 'row': '1', 'col': '3', 'col_other': '2', 'criterion': 'equal', 'value': 'canada', 'subset': {'col': '4', 'criterion': 'less_than', 'value': '1:40'}}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_less', 'args': ['all_rows', 'time', '1:40'], 'result': None, 'ind': 0, 'tostr': 'filter_less { all_rows ; time ; 1:40 }', 'tointer': 'select the rows whose time record is less than 1:40 .'}, 'country', 'canada'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose time record is less than 1:40 . among these rows , select the rows whose country record fuzzily matches to canada .', 'tostr': 'filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada }'}], 'result': True, 'ind': 2, 'tostr': 'only { filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada } }', 'tointer': 'select the rows whose time record is less than 1:40 . among these rows , select the rows whose country record fuzzily matches to canada . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_less', 'args': ['all_rows', 'time', '1:40'], 'result': None, 'ind': 0, 'tostr': 'filter_less { all_rows ; time ; 1:40 }', 'tointer': 'select the rows whose time record is less than 1:40 .'}, 'country', 'canada'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose time record is less than 1:40 . among these rows , select the rows whose country record fuzzily matches to canada .', 'tostr': 'filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada }'}, 'athletes'], 'result': 'adam van koeverden', 'ind': 3, 'tostr': 'hop { filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada } ; athletes }'}, 'adam van koeverden'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada } ; athletes } ; adam van koeverden }', 'tointer': 'the athletes record of this unqiue row is adam van koeverden .'}], 'result': True, 'ind': 5, 'tostr': 'and { only { filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada } } ; eq { hop { filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada } ; athletes } ; adam van koeverden } } = true', 'tointer': 'select the rows whose time record is less than 1:40 . among these rows , select the rows whose country record fuzzily matches to canada . there is only one such row in the table . the athletes record of this unqiue row is adam van koeverden .'}
and { only { filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada } } ; eq { hop { filter_eq { filter_less { all_rows ; time ; 1:40 } ; country ; canada } ; athletes } ; adam van koeverden } } = true
select the rows whose time record is less than 1:40 . among these rows , select the rows whose country record fuzzily matches to canada . there is only one such row in the table . the athletes record of this unqiue row is adam van koeverden .
8
6
{'and_5': 5, 'result_6': 6, 'only_2': 2, 'filter_str_eq_1': 1, 'filter_less_0': 0, 'all_rows_7': 7, 'time_8': 8, '1:40_9': 9, 'country_10': 10, 'canada_11': 11, 'str_eq_4': 4, 'str_hop_3': 3, 'athletes_12': 12, 'adam van koeverden_13': 13}
{'and_5': 'and', 'result_6': 'true', 'only_2': 'only', 'filter_str_eq_1': 'filter_str_eq', 'filter_less_0': 'filter_less', 'all_rows_7': 'all_rows', 'time_8': 'time', '1:40_9': '1:40', 'country_10': 'country', 'canada_11': 'canada', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'athletes_12': 'athletes', 'adam van koeverden_13': 'adam van koeverden'}
{'and_5': [6], 'result_6': [], 'only_2': [5], 'filter_str_eq_1': [2, 3], 'filter_less_0': [1], 'all_rows_7': [0], 'time_8': [0], '1:40_9': [0], 'country_10': [1], 'canada_11': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'athletes_12': [3], 'adam van koeverden_13': [4]}
['rank', 'athletes', 'country', 'time', 'notes']
[['1', 'adam van koeverden', 'canada', '1:35.554 wb', 'qs'], ['2', 'eirik verãs larsen', 'norway', '1:36.439', 'qs'], ['3', 'michele zerial', 'italy', '1:36.950', 'qs'], ['4', 'steven ferguson', 'new zealand', '1:37.538', 'qs'], ['5', 'shaun rubenstein', 'south africa', '1:37.687', 'qs'], ['6', 'dmitriy torlopov', 'kazakhstan', '1:39.892', 'qs'], ['7', 'jorge garcia', 'cuba', '1:42.803', 'qs'], ['8', 'rudolph berking - williams', 'samoa', '1:47.839', 'qs']]
eisbären berlin
https://en.wikipedia.org/wiki/Eisb%C3%A4ren_Berlin
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1790061-7.html.csv
ordinal
for eisbären berlin , when the season is in the 1990s , the 2nd highest number of games was for thomas graul .
{'scope': 'subset', 'row': '5', 'col': '3', 'order': '2', 'col_other': '1', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'subset': {'col': '2', 'criterion': 'fuzzily_match', 'value': '199'}}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'season', '199'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; season ; 199 }', 'tointer': 'select the rows whose season record fuzzily matches to 199 .'}, 'games', '2'], 'result': None, 'ind': 1, 'tostr': 'nth_argmax { filter_eq { all_rows ; season ; 199 } ; games ; 2 }'}, 'name'], 'result': 'thomas graul', 'ind': 2, 'tostr': 'hop { nth_argmax { filter_eq { all_rows ; season ; 199 } ; games ; 2 } ; name }'}, 'thomas graul'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { nth_argmax { filter_eq { all_rows ; season ; 199 } ; games ; 2 } ; name } ; thomas graul } = true', 'tointer': 'select the rows whose season record fuzzily matches to 199 . select the row whose games record of these rows is 2nd maximum . the name record of this row is thomas graul .'}
eq { hop { nth_argmax { filter_eq { all_rows ; season ; 199 } ; games ; 2 } ; name } ; thomas graul } = true
select the rows whose season record fuzzily matches to 199 . select the row whose games record of these rows is 2nd maximum . the name record of this row is thomas graul .
4
4
{'str_eq_3': 3, 'result_4': 4, 'str_hop_2': 2, 'nth_argmax_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'season_6': 6, '199_7': 7, 'games_8': 8, '2_9': 9, 'name_10': 10, 'thomas graul_11': 11}
{'str_eq_3': 'str_eq', 'result_4': 'true', 'str_hop_2': 'str_hop', 'nth_argmax_1': 'nth_argmax', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'season_6': 'season', '199_7': '199', 'games_8': 'games', '2_9': '2', 'name_10': 'name', 'thomas graul_11': 'thomas graul'}
{'str_eq_3': [4], 'result_4': [], 'str_hop_2': [3], 'nth_argmax_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'season_6': [0], '199_7': [0], 'games_8': [1], '2_9': [1], 'name_10': [2], 'thomas graul_11': [3]}
['name', 'season', 'games', 'goals', 'assists', 'points']
[['name', 'season', 'games', 'goals', 'assists', 'points'], ['mark jooris', '1991 - 1992', '50', '54', '69', '123'], ['steve walker', '2007 - 2008', '53', '27', '58', '85'], ['jiří dopita', '1994 - 1995', '42', '28', '40', '68'], ['thomas graul', '1991 - 1992', '47', '28', '32', '60'], ['alex hicks', '2000 - 2001', '56', '27', '31', '58']]
1930 vfl season
https://en.wikipedia.org/wiki/1930_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10767641-15.html.csv
ordinal
mcg venue recorded the highest crowd participation during the 1930 vfl season .
{'row': '6', 'col': '6', 'order': '1', 'col_other': '5', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'crowd', '1'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; crowd ; 1 }'}, 'venue'], 'result': 'mcg', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; crowd ; 1 } ; venue }'}, 'mcg'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; crowd ; 1 } ; venue } ; mcg } = true', 'tointer': 'select the row whose crowd record of all rows is 1st maximum . the venue record of this row is mcg .'}
eq { hop { nth_argmax { all_rows ; crowd ; 1 } ; venue } ; mcg } = true
select the row whose crowd record of all rows is 1st maximum . the venue record of this row is mcg .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'crowd_5': 5, '1_6': 6, 'venue_7': 7, 'mcg_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'crowd_5': 'crowd', '1_6': '1', 'venue_7': 'venue', 'mcg_8': 'mcg'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'crowd_5': [0], '1_6': [0], 'venue_7': [1], 'mcg_8': [2]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['geelong', '18.17 ( 125 )', 'hawthorn', '6.7 ( 43 )', 'corio oval', '9000', '23 august 1930'], ['footscray', '8.18 ( 66 )', 'south melbourne', '11.18 ( 84 )', 'western oval', '12500', '23 august 1930'], ['fitzroy', '11.5 ( 71 )', 'richmond', '8.12 ( 60 )', 'brunswick street oval', '14000', '23 august 1930'], ['north melbourne', '6.12 ( 48 )', 'essendon', '14.11 ( 95 )', 'arden street oval', '8000', '23 august 1930'], ['st kilda', '14.7 ( 91 )', 'collingwood', '17.13 ( 115 )', 'junction oval', '16000', '23 august 1930'], ['melbourne', '12.11 ( 83 )', 'carlton', '11.11 ( 77 )', 'mcg', '31481', '23 august 1930']]
2006 latvian first league
https://en.wikipedia.org/wiki/2006_Latvian_First_League
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18017936-2.html.csv
aggregation
on average , the number of losses that teams playing in the 2006 latvian first league had was around 13 losses .
{'scope': 'all', 'col': '6', 'type': 'average', 'result': '13', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'losses'], 'result': '13', 'ind': 0, 'tostr': 'avg { all_rows ; losses }'}, '13'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; losses } ; 13 } = true', 'tointer': 'the average of the losses record of all rows is 13 .'}
round_eq { avg { all_rows ; losses } ; 13 } = true
the average of the losses record of all rows is 13 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'losses_4': 4, '13_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'losses_4': 'losses', '13_5': '13'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'losses_4': [0], '13_5': [1]}
['position', 'club', 'played', 'wins', 'draws', 'losses', 'goals for', 'goals against', 'points', 'goal difference']
[['1', 'jfk olimps r카ga', '30', '26', '2', '2', '111', '15', '80', '+ 96'], ['2', 'fc ditton - 2 daugavpils', '30', '21', '7', '2', '88', '24', '70', '+ 64'], ['3', 'skonto - 2 riga', '30', '20', '5', '5', '78', '23', '65', '+ 55'], ['4', 'ventspils - 2', '30', '20', '4', '6', '108', '25', '64', '+ 83'], ['5', 'r카ga - 2', '30', '17', '3', '10', '74', '44', '54', '+ 30'], ['6', 'dinaburg - zemessardze daugavpils', '30', '16', '3', '17', '60', '51', '51', '+ 9'], ['7', 'fk valmiera', '30', '13', '7', '10', '50', '53', '46', '- 3'], ['8', 'liepajas metalurgs - 2', '30', '13', '6', '11', '68', '47', '45', '+ 21'], ['9', 'fk jelgava', '30', '12', '6', '12', '53', '49', '42', '+ 4'], ['10', 'eirobaltija riga', '30', '11', '7', '12', '50', '40', '40', '+ 10'], ['11', 'j큰rmala - 2', '30', '10', '5', '15', '86', '74', '35', '+ 12'], ['12', 'tranz카ts ventspils', '30', '8', '4', '18', '37', '88', '28', '- 51'], ['13', 'multibanka riga', '30', '7', '6', '17', '34', '58', '27', '- 24'], ['14', 'fk auda kekava', '30', '5', '2', '23', '28', '79', '17', '- 51'], ['15', 'alberts riga', '30', '4', '4', '22', '32', '114', '16', '- 82'], ['16', 'abuls smiltene', '30', '1', '1', '28', '18', '191', '4', '- 173']]
2008 - 09 los angeles clippers season
https://en.wikipedia.org/wiki/2008%E2%80%9309_Los_Angeles_Clippers_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17323529-7.html.csv
superlative
the game played by the los angeles clippers on january 30 drew the highest attendance number .
{'scope': 'all', 'col_superlative': '8', 'row_superlative': '15', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'location attendance'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; location attendance }'}, 'date'], 'result': 'january 30', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; location attendance } ; date }'}, 'january 30'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; location attendance } ; date } ; january 30 } = true', 'tointer': 'select the row whose location attendance record of all rows is maximum . the date record of this row is january 30 .'}
eq { hop { argmax { all_rows ; location attendance } ; date } ; january 30 } = true
select the row whose location attendance record of all rows is maximum . the date record of this row is january 30 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'location attendance_5': 5, 'date_6': 6, 'january 30_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'location attendance_5': 'location attendance', 'date_6': 'date', 'january 30_7': 'january 30'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'location attendance_5': [0], 'date_6': [1], 'january 30_7': [2]}
['game', 'date', 'team', 'score', 'high points', 'high rebounds', 'high assists', 'location attendance', 'record']
[['32', 'january 2', 'phoenix', 'l 98 - 106 ( ot )', 'eric gordon ( 21 )', 'marcus camby ( 23 )', 'fred jones , marcus camby ( 4 )', 'us airways center 18422', '8 - 24'], ['33', 'january 4', 'detroit', 'l 87 - 88 ( ot )', 'eric gordon ( 31 )', 'marcus camby ( 20 )', 'mardy collins ( 12 )', 'staples center 17968', '8 - 25'], ['34', 'january 6', 'dallas', 'l 102 - 107 ( ot )', 'eric gordon ( 32 )', 'marcus camby ( 19 )', 'eric gordon ( 6 )', 'american airlines center 19794', '8 - 26'], ['35', 'january 8', 'san antonio', 'l 84 - 106 ( ot )', 'al thornton , eric gordon ( 21 )', 'marcus camby ( 9 )', 'jason hart ( 4 )', 'at & t center 17873', '8 - 27'], ['36', 'january 9', 'new orleans', 'l 80 - 107 ( ot )', 'eric gordon , mardy collins ( 15 )', 'marcus camby ( 17 )', 'mardy collins ( 6 )', 'new orleans arena 17815', '8 - 28'], ['37', 'january 11', 'phoenix', 'l 103 - 109 ( ot )', 'al thornton ( 23 )', 'marcus camby ( 18 )', 'fred jones ( 10 )', 'staples center 17307', '8 - 29'], ['38', 'january 14', 'atlanta', 'l 80 - 97 ( ot )', 'al thornton ( 25 )', 'marcus camby ( 18 )', 'mardy collins ( 8 )', 'staples center 15901', '8 - 30'], ['39', 'january 17', 'milwaukee', 'w 101 - 92 ( ot )', 'brian skinner , marcus camby ( 18 )', 'marcus camby ( 11 )', 'mardy collins ( 11 )', 'staples center 16448', '9 - 30'], ['40', 'january 19', 'minnesota', 'l 86 - 94 ( ot )', 'eric gordon ( 25 )', 'deandre jordan ( 10 )', 'mardy collins ( 8 )', 'staples center 14399', '9 - 31'], ['41', 'january 21', 'la lakers', 'l 97 - 108 ( ot )', 'deandre jordan ( 23 )', 'deandre jordan ( 12 )', 'eric gordon ( 6 )', 'staples center 19627', '9 - 32'], ['42', 'january 23', 'oklahoma city', 'w 107 - 104 ( ot )', 'eric gordon ( 41 )', 'cheikh samb ( 8 )', 'ricky davis ( 11 )', 'staples center 14913', '10 - 32'], ['43', 'january 25', 'golden state', 'l 92 - 107 ( ot )', 'eric gordon ( 21 )', 'deandre jordan ( 20 )', 'ricky davis ( 7 )', 'oracle arena 17746', '10 - 33'], ['44', 'january 26', 'portland', 'l 88 - 113 ( ot )', 'al thornton ( 23 )', 'brian skinner ( 10 )', 'fred jones , eric gordon ( 7 )', 'staples center 16570', '10 - 34'], ['45', 'january 28', 'chicago', 'l 75 - 95 ( ot )', 'eric gordon ( 19 )', 'al thornton , deandre jordan , marcus camby ( 6 )', 'eric gordon ( 7 )', 'staples center 15637', '10 - 35'], ['46', 'january 30', 'cleveland', 'l 95 - 112 ( ot )', 'eric gordon ( 27 )', 'eric gordon , baron davis ( 7 )', 'fred jones ( 9 )', 'quicken loans arena 20562', '10 - 36'], ['47', 'january 31', 'washington', 'l 94 - 106 ( ot )', 'eric gordon ( 25 )', 'brian skinner ( 10 )', 'baron davis , fred jones ( 6 )', 'verizon center 18227', '10 - 37']]
who do you think you are ? ( canadian tv series )
https://en.wikipedia.org/wiki/Who_Do_You_Think_You_Are%3F_%28Canadian_TV_series%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-11642945-1.html.csv
comparative
out of who do you think you are ? episodes , the one directed by david langer has an air date that 's earlier than that of the one directed by matt gallagher .
{'row_1': '3', 'row_2': '7', 'col': '4', 'col_other': '3', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'director', 'david langer'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose director record fuzzily matches to david langer .', 'tostr': 'filter_eq { all_rows ; director ; david langer }'}, 'original air date'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; director ; david langer } ; original air date }', 'tointer': 'select the rows whose director record fuzzily matches to david langer . take the original air date record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'director', 'matt gallagher'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose director record fuzzily matches to matt gallagher .', 'tostr': 'filter_eq { all_rows ; director ; matt gallagher }'}, 'original air date'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; director ; matt gallagher } ; original air date }', 'tointer': 'select the rows whose director record fuzzily matches to matt gallagher . take the original air date record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; director ; david langer } ; original air date } ; hop { filter_eq { all_rows ; director ; matt gallagher } ; original air date } } = true', 'tointer': 'select the rows whose director record fuzzily matches to david langer . take the original air date record of this row . select the rows whose director record fuzzily matches to matt gallagher . take the original air date record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; director ; david langer } ; original air date } ; hop { filter_eq { all_rows ; director ; matt gallagher } ; original air date } } = true
select the rows whose director record fuzzily matches to david langer . take the original air date record of this row . select the rows whose director record fuzzily matches to matt gallagher . take the original air date record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'director_7': 7, 'david langer_8': 8, 'original air date_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'director_11': 11, 'matt gallagher_12': 12, 'original air date_13': 13}
{'less_4': 'less', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'director_7': 'director', 'david langer_8': 'david langer', 'original air date_9': 'original air date', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'director_11': 'director', 'matt gallagher_12': 'matt gallagher', 'original air date_13': 'original air date'}
{'less_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'director_7': [0], 'david langer_8': [0], 'original air date_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'director_11': [1], 'matt gallagher_12': [1], 'original air date_13': [3]}
['total no', 'celebrity', 'director', 'original air date', 'viewers']
[['1', 'shaun majumder', 'scott harper', '11 october 2007', 'n / a'], ['2', 'margot kidder', 'margaret slaght', '18 october 2007', 'n / a'], ['3', 'steven page', 'david langer', '25 october 2007', 'n / a'], ['4', 'sonja smits', 'karen pinker', '1 november 2007', 'n / a'], ['5', 'chantal kreviazuk', 'nadine schwartz', '8 november 2007', 'n / a'], ['6', 'major - general lewis mackenzie', 'richard martyn', '15 november 2007', 'n / a'], ['7', 'mary walsh', 'matt gallagher', '22 november 2007', 'n / a'], ['8', 'randy bachman', 'margaret slaght', '29 november 2007', 'n / a'], ['9', 'scott thompson', 'scott harper', '6 december 2007', 'n / a'], ['10', 'don cherry', 'richard martyn', '10 january 2008', 'n / a'], ['11', 'measha brueggergosman', 'karen pinker', '17 january 2008', 'n / a'], ['12', 'margaret trudeau', 'peter findlay', '24 january 2008', 'n / a']]
statistics relating to enlargement of the european union
https://en.wikipedia.org/wiki/Statistics_relating_to_enlargement_of_the_European_Union
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1307842-7.html.csv
superlative
existing members ( 2004 ) of the european union account for the most gdp ( billion us ) .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '13', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'gdp ( billion us )'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; gdp ( billion us ) }'}, 'member countries'], 'result': 'eu25 ( 2004 )', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; gdp ( billion us ) } ; member countries }'}, 'eu25 ( 2004 )'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; gdp ( billion us ) } ; member countries } ; eu25 ( 2004 ) } = true', 'tointer': 'select the row whose gdp ( billion us ) record of all rows is maximum . the member countries record of this row is eu25 ( 2004 ) .'}
eq { hop { argmax { all_rows ; gdp ( billion us ) } ; member countries } ; eu25 ( 2004 ) } = true
select the row whose gdp ( billion us ) record of all rows is maximum . the member countries record of this row is eu25 ( 2004 ) .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'gdp (billion us)_5': 5, 'member countries_6': 6, 'eu25 (2004)_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'gdp (billion us)_5': 'gdp ( billion us )', 'member countries_6': 'member countries', 'eu25 (2004)_7': 'eu25 ( 2004 )'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'gdp (billion us)_5': [0], 'member countries_6': [1], 'eu25 (2004)_7': [2]}
['member countries', 'population', 'area ( km square )', 'gdp ( billion us )', 'gdp per capita ( us )']
[['cyprus', '775927', '9250', '11.681', '15054'], ['czech republic', '10246178', '78866', '105.248', '10272'], ['estonia', '1341664', '45226', '22.384', '16684'], ['hungary', '10032375', '93030', '102183', '10185'], ['latvia', '2306306', '64589', '24.826', '10764'], ['lithuania', '3607899', '65200', '31.971', '8861'], ['malta', '396851', '316', '5.097', '12843'], ['poland', '38580445', '311904', '316.438', '8202'], ['slovakia', '5423567', '49036', '42.800', '7810'], ['slovenia', '2011473', '20273', '29.633', '14732'], ['accession countries', '74722685', '737690', '685.123', '9169'], ['existing members ( 2004 )', '381781620', '3367154', '7711.871', '20200'], ['eu25 ( 2004 )', '456504305 ( + 19.57 % )', '4104844 ( + 17.97 % )', '8396994 ( + 8.88 % )', '18394 ( 8.94 % )']]
2002 belarusian premier league
https://en.wikipedia.org/wiki/2002_Belarusian_Premier_League
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14747981-1.html.csv
aggregation
the average capacity for all venues in the 2002 belarusian premier league is just over 9900 .
{'scope': 'all', 'col': '4', 'type': 'average', 'result': '9900', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'capacity'], 'result': '9900', 'ind': 0, 'tostr': 'avg { all_rows ; capacity }'}, '9900'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; capacity } ; 9900 } = true', 'tointer': 'the average of the capacity record of all rows is 9900 .'}
round_eq { avg { all_rows ; capacity } ; 9900 } = true
the average of the capacity record of all rows is 9900 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'capacity_4': 4, '9900_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'capacity_4': 'capacity', '9900_5': '9900'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'capacity_4': [0], '9900_5': [1]}
['team', 'location', 'venue', 'capacity', 'position in 2001']
[['belshina', 'bobruisk', 'spartak , bobruisk', '3550', '1'], ['dinamo minsk', 'minsk', 'dinamo , minsk', '41040', '2'], ['bate', 'borisov', 'city stadium , borisov', '5500', '3'], ['neman', 'grodno', 'neman', '6300', '4'], ['shakhtyor', 'soligorsk', 'stroitel', '5000', '5'], ['gomel', 'gomel', 'central , gomel', '11800', '6'], ['slavia', 'mozyr', 'yunost', '5500', '7'], ['torpedo - maz', 'minsk', 'torpedo , minsk', '5200', '8'], ['dnepr - transmash', 'mogilev', 'spartak , mogilev', '11200', '9'], ['molodechno - 2000', 'molodechno', 'city stadium , molodechno', '5500', '10'], ['dinamo brest', 'brest', 'osk brestskiy', '10080', '11'], ['lokomotiv - 96', 'vitebsk', 'central , vitebsk', '8300', '12'], ['torpedo', 'zhodino', 'torpedo , zhodino', '3020', 'first league , 1'], ['zvezda - va - bgu', 'minsk', 'traktor', '17600', 'first league , 2']]
sterling marlin
https://en.wikipedia.org/wiki/Sterling_Marlin
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1708014-2.html.csv
aggregation
of the races sterling martin participated in , his average number of wins was .12 .
{'scope': 'all', 'col': '3', 'type': 'average', 'result': '.12', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'wins'], 'result': '.12', 'ind': 0, 'tostr': 'avg { all_rows ; wins }'}, '.12'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; wins } ; .12 } = true', 'tointer': 'the average of the wins record of all rows is .12 .'}
round_eq { avg { all_rows ; wins } ; .12 } = true
the average of the wins record of all rows is .12 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'wins_4': 4, '.12_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'wins_4': 'wins', '.12_5': '.12'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'wins_4': [0], '.12_5': [1]}
['year', 'starts', 'wins', 'top 5', 'top 10', 'poles', 'avg start', 'avg finish', 'winnings', 'position', 'team ( s )']
[['1986', '1', '0', '0', '0', '0', '29.0', '29.0', '830', '133rd', '69 hagan racing'], ['1988', '4', '0', '0', '0', '0', '19.2', '17.2', '6406', '46th', '44 hagan racing'], ['1989', '2', '0', '0', '0', '0', '17.5', '32.0', '12475', '77th', '48 hagan racing'], ['1990', '5', '1', '2', '2', '0', '16.8', '14.6', '81690', '48th', '48 fred turner racing'], ['1992', '2', '0', '1', '1', '0', '15.0', '21.5', '13169', '73rd', '10 fred turner racing'], ['1993', '8', '0', '1', '2', '0', '28.1', '18.8', '36493', '41st', '48 fred turner racing'], ['1994', '9', '0', '1', '3', '0', '21.9', '25.0', '49680', '44th', '4 fred turner racing'], ['1995', '1', '0', '0', '0', '0', '7.0', '36.0', '2085', '106th', '22 fred turner racing'], ['1996', '2', '0', '1', '1', '1', '8.5', '12.5', '31285', '60th', '22 fred turner racing 92 martin racing'], ['1997', '3', '0', '0', '0', '0', '27.0', '22.7', '17020', '69th', '92 martin racing 4 phoenix racing'], ['1998', '5', '0', '0', '2', '0', '25.0', '22.0', '35649', '58th', '1 sterling marlin racing'], ['1999', '7', '0', '1', '3', '0', '9.4', '18.7', '67565', '54th', '42 joe gibbs racing 14 sterling marlin racing'], ['2000', '4', '1', '2', '3', '0', '15.0', '14.0', '56575', '62nd', '82 / 01 team sabco'], ['2004', '2', '0', '0', '0', '0', '28.5', '29.0', '36458', '102nd', '1 phoenix racing'], ['2005', '19', '0', '3', '5', '0', '23.6', '20.5', '408295', '29th', '40 / 12 fitzbradshaw racing'], ['2007', '2', '0', '0', '0', '0', '13.5', '20.5', '39605', '106th', '1 phoenix racing'], ['2008', '1', '0', '0', '0', '0', '20.0', '22.0', '25284', '118th', '1 phoenix racing']]
matthew shepard and james byrd , jr. hate crimes prevention act
https://en.wikipedia.org/wiki/Matthew_Shepard_and_James_Byrd%2C_Jr._Hate_Crimes_Prevention_Act
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11045469-1.html.csv
count
for the matthew shepard and james byrd , jr. hate crimes prevention act , during the 111th congress , there were two times it was introduced in april .
{'scope': 'subset', 'criterion': 'fuzzily_match', 'value': 'april', 'result': '2', 'col': '3', 'subset': {'col': '1', 'criterion': 'equal', 'value': '111th congress'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'congress', '111th congress'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; congress ; 111th congress }', 'tointer': 'select the rows whose congress record fuzzily matches to 111th congress .'}, 'date introduced', 'april'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose congress record fuzzily matches to 111th congress . among these rows , select the rows whose date introduced record fuzzily matches to april .', 'tostr': 'filter_eq { filter_eq { all_rows ; congress ; 111th congress } ; date introduced ; april }'}], 'result': '2', 'ind': 2, 'tostr': 'count { filter_eq { filter_eq { all_rows ; congress ; 111th congress } ; date introduced ; april } }', 'tointer': 'select the rows whose congress record fuzzily matches to 111th congress . among these rows , select the rows whose date introduced record fuzzily matches to april . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_eq { filter_eq { all_rows ; congress ; 111th congress } ; date introduced ; april } } ; 2 } = true', 'tointer': 'select the rows whose congress record fuzzily matches to 111th congress . among these rows , select the rows whose date introduced record fuzzily matches to april . the number of such rows is 2 .'}
eq { count { filter_eq { filter_eq { all_rows ; congress ; 111th congress } ; date introduced ; april } } ; 2 } = true
select the rows whose congress record fuzzily matches to 111th congress . among these rows , select the rows whose date introduced record fuzzily matches to april . the number of such rows is 2 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_str_eq_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'congress_6': 6, '111th congress_7': 7, 'date introduced_8': 8, 'april_9': 9, '2_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_str_eq_1': 'filter_str_eq', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'congress_6': 'congress', '111th congress_7': '111th congress', 'date introduced_8': 'date introduced', 'april_9': 'april', '2_10': '2'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_str_eq_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'congress_6': [0], '111th congress_7': [0], 'date introduced_8': [1], 'april_9': [1], '2_10': [3]}
['congress', 'bill number', 'date introduced', 'sponsor', 'of cosponsors']
[['107th congress', 'hr 1343', 'april 3 , 2001', 'rep john conyers ( d - mi )', '208'], ['107th congress', 's 625', 'march 27 , 2001', 'sen ted kennedy ( d - ma )', '50'], ['108th congress', 'hr 4204', 'april 22 , 2004', 'rep john conyers ( d - mi )', '178'], ['108th congress', 'samdt 3183 to s 2400', 'june 14 , 2004', 'sen gordon h smith ( r - or )', '4'], ['109th congress', 'hr 2662', 'may 26 , 2005', 'rep john conyers ( d - mi )', '159'], ['109th congress', 's 1145', 'may 26 , 2005', 'sen ted kennedy ( d - ma )', '45'], ['110th congress', 'hr 1592', 'march 30 , 2007', 'rep john conyers ( d - mi )', '171'], ['110th congress', 's 1105', 'april 12 , 2007', 'sen ted kennedy ( d - ma )', '44'], ['111th congress', 'hr 1913', 'april 2 , 2009', 'rep john conyers ( d - mi )', '120'], ['111th congress', 's 909', 'april 28 , 2009', 'sen ted kennedy ( d - ma )', '45'], ['111th congress', 'samdt 1511 to s 1390', 'july 15 , 2009', 'sen patrick leahy ( d - vt )', '37']]
2004 baltimore ravens season
https://en.wikipedia.org/wiki/2004_Baltimore_Ravens_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18731638-1.html.csv
superlative
during the 2004 baltimore ravens season , the game with the highest attendance against a team from pennsylvania was on september 19th .
{'scope': 'subset', 'col_superlative': '7', 'row_superlative': '2', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': {'col': '3', 'criterion': 'equal', 'value': 'pittsburgh steelers'}}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'pittsburgh steelers'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; opponent ; pittsburgh steelers }', 'tointer': 'select the rows whose opponent record fuzzily matches to pittsburgh steelers .'}, 'attendance'], 'result': None, 'ind': 1, 'tostr': 'argmax { filter_eq { all_rows ; opponent ; pittsburgh steelers } ; attendance }'}, 'date'], 'result': 'september 19 , 2004', 'ind': 2, 'tostr': 'hop { argmax { filter_eq { all_rows ; opponent ; pittsburgh steelers } ; attendance } ; date }'}, 'september 19 , 2004'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { argmax { filter_eq { all_rows ; opponent ; pittsburgh steelers } ; attendance } ; date } ; september 19 , 2004 } = true', 'tointer': 'select the rows whose opponent record fuzzily matches to pittsburgh steelers . select the row whose attendance record of these rows is maximum . the date record of this row is september 19 , 2004 .'}
eq { hop { argmax { filter_eq { all_rows ; opponent ; pittsburgh steelers } ; attendance } ; date } ; september 19 , 2004 } = true
select the rows whose opponent record fuzzily matches to pittsburgh steelers . select the row whose attendance record of these rows is maximum . the date record of this row is september 19 , 2004 .
4
4
{'str_eq_3': 3, 'result_4': 4, 'str_hop_2': 2, 'argmax_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'opponent_6': 6, 'pittsburgh steelers_7': 7, 'attendance_8': 8, 'date_9': 9, 'september 19 , 2004_10': 10}
{'str_eq_3': 'str_eq', 'result_4': 'true', 'str_hop_2': 'str_hop', 'argmax_1': 'argmax', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'opponent_6': 'opponent', 'pittsburgh steelers_7': 'pittsburgh steelers', 'attendance_8': 'attendance', 'date_9': 'date', 'september 19 , 2004_10': 'september 19 , 2004'}
{'str_eq_3': [4], 'result_4': [], 'str_hop_2': [3], 'argmax_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'opponent_6': [0], 'pittsburgh steelers_7': [0], 'attendance_8': [1], 'date_9': [2], 'september 19 , 2004_10': [3]}
['week', 'date', 'opponent', 'result', 'record', 'tv time', 'attendance']
[['1', 'september 12 , 2004', 'cleveland browns', 'l 20 - 3', '0 - 1 - 0', 'cbs 1:00 pm', '73068'], ['2', 'september 19 , 2004', 'pittsburgh steelers', 'w 30 - 13', '1 - 1 - 0', 'cbs 1:00 pm', '69859'], ['3', 'september 26 , 2004', 'cincinnati bengals', 'w 23 - 9', '2 - 1 - 0', 'cbs 1:00 pm', '65575'], ['4', 'october 4 , 2004', 'kansas city chiefs', 'l 27 - 24', '2 - 2 - 0', 'abc 9:00 pm', '69827'], ['5', 'october 10 , 2004', 'washington redskins', 'w 17 - 10', '3 - 2 - 0', 'espn 8:30 pm', '90287'], ['6', '-', '-', '-', '-', '-', ''], ['7', 'october 24 , 2004', 'buffalo bills', 'w 20 - 6', '4 - 2 - 0', 'cbs 1:00 pm', '69809'], ['8', 'october 31 , 2004', 'philadelphia eagles', 'l 15 - 10', '4 - 3 - 0', 'cbs 1:00 pm', '67715'], ['9', 'november 7 , 2004', 'cleveland browns', 'w 27 - 13', '5 - 3 - 0', 'espn 8:30 pm', '69781'], ['10', 'november 14 , 2004', 'new york jets', 'w 20 - 17 ot', '6 - 3 - 0', 'cbs 1:00 pm', '77826'], ['11', 'november 21 , 2004', 'dallas cowboys', 'w 30 - 10', '7 - 3 - 0', 'fox 1:00 pm', '69924'], ['12', 'november 28 , 2004', 'new england patriots', 'l 24 - 3', '7 - 4 - 0', 'cbs 4:15 pm', '68756'], ['13', 'december 5 , 2004', 'cincinnati bengals', 'l 27 - 26', '7 - 5 - 0', 'cbs 1:00 pm', '69695'], ['14', 'december 12 , 2004', 'new york giants', 'w 37 - 14', '8 - 5 - 0', 'fox 1:00 pm', '69856'], ['15', 'december 19 , 2004', 'indianapolis colts', 'l 20 - 10', '8 - 6 - 0', 'espn 8:30 pm', '57240'], ['16', 'december 26 , 2004', 'pittsburgh steelers', 'l 20 - 7', '8 - 7 - 0', 'cbs 1:00 pm', '64227'], ['17', 'january 2 , 2005', 'miami dolphins', 'w 30 - 23', '9 - 7 - 0', 'cbs 1:00 pm', '69843']]
2008 - 09 toronto raptors season
https://en.wikipedia.org/wiki/2008%E2%80%9309_Toronto_Raptors_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-17323092-7.html.csv
unique
in february of the 2008 - 09 toronto raptors season , their game against new orleans was the only one in which jermaine o'neal was the highest point scorer .
{'scope': 'all', 'row': '4', 'col': '5', 'col_other': '3', 'criterion': 'fuzzily_match', 'value': "jermaine o'neal", 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'high points', "jermaine o'neal"], 'result': None, 'ind': 0, 'tointer': "select the rows whose high points record fuzzily matches to jermaine o'neal .", 'tostr': "filter_eq { all_rows ; high points ; jermaine o'neal }"}], 'result': True, 'ind': 1, 'tostr': "only { filter_eq { all_rows ; high points ; jermaine o'neal } }", 'tointer': "select the rows whose high points record fuzzily matches to jermaine o'neal . there is only one such row in the table ."}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'high points', "jermaine o'neal"], 'result': None, 'ind': 0, 'tointer': "select the rows whose high points record fuzzily matches to jermaine o'neal .", 'tostr': "filter_eq { all_rows ; high points ; jermaine o'neal }"}, 'team'], 'result': 'new orleans', 'ind': 2, 'tostr': "hop { filter_eq { all_rows ; high points ; jermaine o'neal } ; team }"}, 'new orleans'], 'result': True, 'ind': 3, 'tostr': "eq { hop { filter_eq { all_rows ; high points ; jermaine o'neal } ; team } ; new orleans }", 'tointer': 'the team record of this unqiue row is new orleans .'}], 'result': True, 'ind': 4, 'tostr': "and { only { filter_eq { all_rows ; high points ; jermaine o'neal } } ; eq { hop { filter_eq { all_rows ; high points ; jermaine o'neal } ; team } ; new orleans } } = true", 'tointer': "select the rows whose high points record fuzzily matches to jermaine o'neal . there is only one such row in the table . the team record of this unqiue row is new orleans ."}
and { only { filter_eq { all_rows ; high points ; jermaine o'neal } } ; eq { hop { filter_eq { all_rows ; high points ; jermaine o'neal } ; team } ; new orleans } } = true
select the rows whose high points record fuzzily matches to jermaine o'neal . there is only one such row in the table . the team record of this unqiue row is new orleans .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'high points_7': 7, "jermaine o'neal_8": 8, 'str_eq_3': 3, 'str_hop_2': 2, 'team_9': 9, 'new orleans_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'high points_7': 'high points', "jermaine o'neal_8": "jermaine o'neal", 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'team_9': 'team', 'new orleans_10': 'new orleans'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'high points_7': [0], "jermaine o'neal_8": [0], 'str_eq_3': [4], 'str_hop_2': [3], 'team_9': [2], 'new orleans_10': [3]}
['game', 'date', 'team', 'score', 'high points', 'high rebounds', 'high assists', 'location attendance', 'record']
[['49', 'february 1', 'orlando', 'l 90 - 113 ( ot )', 'josé calderón ( 16 )', 'joey graham ( 12 )', 'josé calderón , will solomon ( 5 )', 'air canada centre 19800', '19 - 30'], ['50', 'february 3', 'cleveland', 'l 83 - 101 ( ot )', 'chris bosh ( 29 )', 'andrea bargnani ( 10 )', 'anthony parker ( 8 )', 'quicken loans arena 20562', '19 - 31'], ['51', 'february 4', 'la lakers', 'l 107 - 115 ( ot )', 'joey graham ( 24 )', "andrea bargnani , jermaine o'neal ( 9 )", 'anthony parker ( 9 )', 'air canada centre 19800', '19 - 32'], ['52', 'february 6', 'new orleans', 'l 92 - 101 ( ot )', "jermaine o'neal ( 24 )", 'jamario moon ( 7 )', 'josé calderón ( 9 )', 'new orleans arena 17319', '19 - 33'], ['53', 'february 7', 'memphis', 'l 70 - 78 ( ot )', 'josé calderón ( 18 )', 'andrea bargnani , jamario moon ( 9 )', 'josé calderón ( 5 )', 'fedexforum 11498', '19 - 34'], ['54', 'february 10', 'minnesota', 'w 110 - 102 ( ot )', 'joey graham ( 24 )', 'jamario moon ( 9 )', 'josé calderón ( 9 )', 'target center 12722', '20 - 34'], ['55', 'february 11', 'san antonio', 'w 91 - 89 ( ot )', 'andrea bargnani ( 23 )', "jermaine o'neal ( 10 )", 'anthony parker ( 4 )', 'air canada centre 18909', '21 - 34'], ['56', 'february 18', 'cleveland', 'l 76 - 93 ( ot )', 'joey graham ( 15 )', 'anthony parker ( 7 )', 'shawn marion ( 6 )', 'air canada centre 19800', '21 - 35'], ['57', 'february 20', 'new york', 'l 97 - 127 ( ot )', 'joey graham ( 19 )', 'shawn marion ( 12 )', 'josé calderón ( 10 )', 'madison square garden 19763', '21 - 36'], ['58', 'february 22', 'new york', 'w 111 - 100 ( ot )', 'andrea bargnani ( 28 )', 'shawn marion ( 15 )', 'josé calderón ( 11 )', 'air canada centre 19800', '22 - 36'], ['59', 'february 24', 'minnesota', 'w 118 - 110 ( ot )', 'andrea bargnani , chris bosh ( 26 )', 'shawn marion ( 8 )', 'josé calderón ( 13 )', 'air canada centre 17457', '23 - 36']]
2009 grand prix motorcycle racing season
https://en.wikipedia.org/wiki/2009_Grand_Prix_motorcycle_racing_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-15299235-1.html.csv
unique
the only race andrea dovizioso won in the 2009 season was in round 10 .
{'scope': 'all', 'row': '10', 'col': '7', 'col_other': '1', 'criterion': 'equal', 'value': 'andrea dovizioso', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'motogp winner', 'andrea dovizioso'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose motogp winner record fuzzily matches to andrea dovizioso .', 'tostr': 'filter_eq { all_rows ; motogp winner ; andrea dovizioso }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; motogp winner ; andrea dovizioso } }', 'tointer': 'select the rows whose motogp winner record fuzzily matches to andrea dovizioso . there is only one such row in the table .'}, {'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'motogp winner', 'andrea dovizioso'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose motogp winner record fuzzily matches to andrea dovizioso .', 'tostr': 'filter_eq { all_rows ; motogp winner ; andrea dovizioso }'}, 'round'], 'result': '10', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; motogp winner ; andrea dovizioso } ; round }'}, '10'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; motogp winner ; andrea dovizioso } ; round } ; 10 }', 'tointer': 'the round record of this unqiue row is 10 .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; motogp winner ; andrea dovizioso } } ; eq { hop { filter_eq { all_rows ; motogp winner ; andrea dovizioso } ; round } ; 10 } } = true', 'tointer': 'select the rows whose motogp winner record fuzzily matches to andrea dovizioso . there is only one such row in the table . the round record of this unqiue row is 10 .'}
and { only { filter_eq { all_rows ; motogp winner ; andrea dovizioso } } ; eq { hop { filter_eq { all_rows ; motogp winner ; andrea dovizioso } ; round } ; 10 } } = true
select the rows whose motogp winner record fuzzily matches to andrea dovizioso . there is only one such row in the table . the round record of this unqiue row is 10 .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'motogp winner_7': 7, 'andrea dovizioso_8': 8, 'eq_3': 3, 'num_hop_2': 2, 'round_9': 9, '10_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'motogp winner_7': 'motogp winner', 'andrea dovizioso_8': 'andrea dovizioso', 'eq_3': 'eq', 'num_hop_2': 'num_hop', 'round_9': 'round', '10_10': '10'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'motogp winner_7': [0], 'andrea dovizioso_8': [0], 'eq_3': [4], 'num_hop_2': [3], 'round_9': [2], '10_10': [3]}
['round', 'date', 'grand prix', 'circuit', '125cc winner', '250cc winner', 'motogp winner', 'report']
[['1', '12 - 13 april', 'qatar grand prix', 'losail', 'andrea iannone', 'héctor barberá', 'casey stoner', 'report'], ['2', '26 april', 'japanese grand prix', 'motegi', 'andrea iannone', 'álvaro bautista', 'jorge lorenzo', 'report'], ['3', '3 may', 'spanish grand prix', 'jerez', 'bradley smith', 'hiroshi aoyama', 'valentino rossi', 'report'], ['4', '17 may', 'french grand prix', 'le mans', 'julián simón', 'marco simoncelli', 'jorge lorenzo', 'report'], ['5', '31 may', 'italian grand prix', 'mugello', 'bradley smith', 'mattia pasini', 'casey stoner', 'report'], ['6', '14 june', 'catalan grand prix', 'catalunya', 'andrea iannone', 'álvaro bautista', 'valentino rossi', 'report'], ['7', '27 june', 'dutch tt', 'assen', 'sergio gadea', 'hiroshi aoyama', 'valentino rossi', 'report'], ['8', '5 july', 'united states grand prix', 'laguna seca', 'no 125cc and 250cc race', 'no 125cc and 250cc race', 'dani pedrosa', 'report'], ['9', '19 july', 'german grand prix', 'sachsenring', 'julián simón', 'marco simoncelli', 'valentino rossi', 'report'], ['10', '26 july', 'british grand prix', 'donington', 'julián simón', 'hiroshi aoyama', 'andrea dovizioso', 'report'], ['11', '16 august', 'czech republic grand prix', 'brno', 'nicolás terol', 'marco simoncelli', 'valentino rossi', 'report'], ['12', '30 august', 'indianapolis grand prix', 'indianapolis', 'pol espargaró', 'marco simoncelli', 'jorge lorenzo', 'report'], ['13', '6 september', 'san marino grand prix', 'misano', 'julián simón', 'héctor barberá', 'valentino rossi', 'report'], ['14', '4 october', 'portuguese grand prix', 'estoril', 'pol espargaró', 'marco simoncelli', 'jorge lorenzo', 'report'], ['15', '18 october', 'australian grand prix', 'phillip island', 'julián simón', 'marco simoncelli', 'casey stoner', 'report'], ['16', '25 october', 'malaysian grand prix', 'sepang', 'julián simón', 'hiroshi aoyama', 'casey stoner', 'report']]
1990 - 91 segunda división
https://en.wikipedia.org/wiki/1990%E2%80%9391_Segunda_Divisi%C3%B3n
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12103836-2.html.csv
ordinal
in the 1990-91 segunda división , the real murica club had the third highest goal difference .
{'row': '3', 'col': '10', 'order': '3', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'goal difference', '3'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; goal difference ; 3 }'}, 'club'], 'result': 'real murcia', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; goal difference ; 3 } ; club }'}, 'real murcia'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; goal difference ; 3 } ; club } ; real murcia } = true', 'tointer': 'select the row whose goal difference record of all rows is 3rd maximum . the club record of this row is real murcia .'}
eq { hop { nth_argmax { all_rows ; goal difference ; 3 } ; club } ; real murcia } = true
select the row whose goal difference record of all rows is 3rd maximum . the club record of this row is real murcia .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'goal difference_5': 5, '3_6': 6, 'club_7': 7, 'real murcia_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'goal difference_5': 'goal difference', '3_6': '3', 'club_7': 'club', 'real murcia_8': 'real murcia'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'goal difference_5': [0], '3_6': [0], 'club_7': [1], 'real murcia_8': [2]}
['position', 'club', 'played', 'points', 'wins', 'draws', 'losses', 'goals for', 'goals against', 'goal difference']
[['1', 'albacete bp', '38', '49 + 11', '18', '13', '7', '56', '31', '+ 25'], ['2', 'deportivo de la coruña', '38', '48 + 10', '20', '8', '10', '60', '32', '+ 28'], ['3', 'real murcia', '38', '48 + 10', '18', '12', '8', '56', '36', '+ 20'], ['4', 'cd málaga', '38', '46 + 8', '16', '14', '8', '52', '35', '+ 17'], ['5', 'orihuela deportiva 1', '38', '43 + 5', '12', '19', '7', '46', '39', '+ 7'], ['6', 'ue lleida', '38', '43 + 5', '16', '11', '11', '41', '36', '+ 5'], ['7', 'ue figueres', '38', '39 + 1', '14', '11', '13', '44', '42', '+ 2'], ['8', 'sestao', '38', '38', '9', '20', '9', '29', '27', '+ 2'], ['9', 'real avilés', '38', '38', '10', '18', '10', '35', '37', '- 2'], ['10', 'sd eibar', '38', '37 - 1', '9', '19', '10', '35', '34', '+ 1'], ['11', 'rayo vallecano', '38', '36 - 2', '8', '20', '10', '44', '50', '- 6'], ['12', 'ce sabadell fc', '38', '36 - 2', '11', '14', '13', '32', '45', '- 13'], ['13', 'bilbao athletic', '38', '36 - 2', '11', '14', '13', '35', '43', '- 8'], ['14', 'celta de vigo', '38', '36 - 2', '8', '20', '10', '31', '38', '- 7'], ['15', 'ud las palmas', '38', '36 - 2', '10', '16', '12', '38', '43', '- 5'], ['16', 'palamós cf', '38', '35 - 3', '9', '17', '12', '33', '46', '- 13'], ['17', 'elche cf', '38', '34 - 4', '12', '10', '16', '39', '45', '- 9'], ['18', 'ud salamanca', '38', '31 - 7', '9', '13', '16', '41', '40', '+ 1'], ['19', 'levante ud', '38', '27 - 11', '6', '15', '17', '27', '51', '- 24'], ['20', 'xerez cd', '38', '24 - 14', '6', '12', '20', '37', '61', '- 24']]
wayne gardner
https://en.wikipedia.org/wiki/Wayne_Gardner
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1861430-3.html.csv
aggregation
wayne gardner 's total number of wins from the years 1983-1992 is 18 .
{'scope': 'all', 'col': '6', 'type': 'sum', 'result': '18', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': ['all_rows', 'wins'], 'result': '18', 'ind': 0, 'tostr': 'sum { all_rows ; wins }'}, '18'], 'result': True, 'ind': 1, 'tostr': 'round_eq { sum { all_rows ; wins } ; 18 } = true', 'tointer': 'the sum of the wins record of all rows is 18 .'}
round_eq { sum { all_rows ; wins } ; 18 } = true
the sum of the wins record of all rows is 18 .
2
2
{'eq_1': 1, 'result_2': 2, 'sum_0': 0, 'all_rows_3': 3, 'wins_4': 4, '18_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'sum_0': 'sum', 'all_rows_3': 'all_rows', 'wins_4': 'wins', '18_5': '18'}
{'eq_1': [2], 'result_2': [], 'sum_0': [1], 'all_rows_3': [0], 'wins_4': [0], '18_5': [1]}
['year', 'class', 'team', 'machine', 'points', 'wins']
[['1983', '500cc', 'honda britain', 'ns500', '0', '0'], ['1984', '500cc', 'honda britain', 'ns500', '33', '0'], ['1985', '500cc', 'rothmans honda', 'nsr500', '73', '0'], ['1986', '500cc', 'rothmans honda', 'nsr500', '117', '3'], ['1987', '500cc', 'rothmans honda', 'nsr500', '178', '7'], ['1988', '500cc', 'rothmans honda', 'nsr500', '229', '4'], ['1989', '500cc', 'rothmans honda', 'nsr500', '67', '1'], ['1990', '500cc', 'rothmans honda', 'nsr500', '138', '2'], ['1991', '500cc', 'rothmans honda', 'nsr500', '161', '0'], ['1992', '500cc', 'rothmans honda', 'nsr500', '78', '1']]
chung kyung - ho
https://en.wikipedia.org/wiki/Chung_Kyung-Ho
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1385043-2.html.csv
count
chung kyung - ho competed three times in the 2004 afc asian cup qualification .
{'scope': 'all', 'criterion': 'equal', 'value': '2004 afc asian cup qualification', 'result': '3', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'competition', '2004 afc asian cup qualification'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose competition record fuzzily matches to 2004 afc asian cup qualification .', 'tostr': 'filter_eq { all_rows ; competition ; 2004 afc asian cup qualification }'}], 'result': '3', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; competition ; 2004 afc asian cup qualification } }', 'tointer': 'select the rows whose competition record fuzzily matches to 2004 afc asian cup qualification . the number of such rows is 3 .'}, '3'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; competition ; 2004 afc asian cup qualification } } ; 3 } = true', 'tointer': 'select the rows whose competition record fuzzily matches to 2004 afc asian cup qualification . the number of such rows is 3 .'}
eq { count { filter_eq { all_rows ; competition ; 2004 afc asian cup qualification } } ; 3 } = true
select the rows whose competition record fuzzily matches to 2004 afc asian cup qualification . the number of such rows is 3 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'competition_5': 5, '2004 afc asian cup qualification_6': 6, '3_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'competition_5': 'competition', '2004 afc asian cup qualification_6': '2004 afc asian cup qualification', '3_7': '3'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'competition_5': [0], '2004 afc asian cup qualification_6': [0], '3_7': [2]}
['date', 'venue', 'score', 'result', 'competition']
[['september 29 , 2003', 'incheon', '1 goal', '16 - 0', '2004 afc asian cup qualification'], ['october 21 , 2003', 'muscat', '1 goal', '1 - 3', '2004 afc asian cup qualification'], ['october 24 , 2003', 'muscat', '1 goal', '7 - 0', '2004 afc asian cup qualification'], ['january 15 , 2005', 'los angeles', '1 goal', '1 - 2', 'friendly match'], ['january 22 , 2005', 'carson', '1 goal', '1 - 1', 'friendly match'], ['june 8 , 2005', 'kuwait city', '1 goal', '4 - 0', '2006 fifa world cup qualification']]
salyut 7
https://en.wikipedia.org/wiki/Salyut_7
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-245801-1.html.csv
superlative
the expedition with the highest duration of days is salyut 7 - eo - 3 .
{'scope': 'all', 'col_superlative': '7', 'row_superlative': '3', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'duration ( days )'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; duration ( days ) }'}, 'expedition'], 'result': 'salyut 7 - eo - 3', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; duration ( days ) } ; expedition }'}, 'salyut 7 - eo - 3'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; duration ( days ) } ; expedition } ; salyut 7 - eo - 3 } = true', 'tointer': 'select the row whose duration ( days ) record of all rows is maximum . the expedition record of this row is salyut 7 - eo - 3 .'}
eq { hop { argmax { all_rows ; duration ( days ) } ; expedition } ; salyut 7 - eo - 3 } = true
select the row whose duration ( days ) record of all rows is maximum . the expedition record of this row is salyut 7 - eo - 3 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'duration (days)_5': 5, 'expedition_6': 6, 'salyut 7 - eo - 3_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'duration (days)_5': 'duration ( days )', 'expedition_6': 'expedition', 'salyut 7 - eo - 3_7': 'salyut 7 - eo - 3'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'duration (days)_5': [0], 'expedition_6': [1], 'salyut 7 - eo - 3_7': [2]}
['expedition', 'crew', 'launch date', 'flight up', 'landing date', 'flight down', 'duration ( days )']
[['salyut 7 - eo - 1', 'anatoli berezovoy , valentin lebedev', '13 may 1982 09:58:05 utc', 'soyuz t - 5', '10 december 1982 19:02:36 utc', 'soyuz t - 7', '211.38'], ['salyut 7 - eo - 2', 'vladimir lyakhov , aleksandr pavlovich aleksandrov', '27 june 1983 09:12:00 utc', 'soyuz t - 9', '23 november 1983 19:58:00 utc', 'soyuz t - 9', '149.45'], ['salyut 7 - eo - 3', 'leonid kizim , vladimir solovyov , oleg atkov', '8 february 1984 12:07:26 utc', 'soyuz t - 10', '2 october 1984 10:57:00 utc', 'soyuz t - 11', '236.95'], ['salyut 7 - eo - 4 - 1a', 'viktor savinykh', '6 june 1985 06:39:52 utc', 'soyuz t - 13', '21 november 1985 10:31:00 utc', 'soyuz t - 14', '168.16'], ['salyut 7 - eo - 4 - 1b', 'vladimir dzhanibekov', '6 june 1985 06:39:52 utc', 'soyuz t - 13', '26 september 1985 09:51:58 utc', 'soyuz t - 13', '112.13'], ['salyut 7 - ep - 5', 'georgi grechko', '17 september 1985 12:38:52 utc', 'soyuz t - 14', '26 september 1985 09:51:58 utc', 'soyuz t - 13', '8.88'], ['salyut 7 - eo - 4 - 2', 'vladimir vasyutin , alexander volkov', '17 september 1985 12:38:52 utc', 'soyuz t - 14', '21 november 1985 10:31:00 utc', 'soyuz t - 14', '64.91']]
list of world records in canoeing
https://en.wikipedia.org/wiki/List_of_world_records_in_canoeing
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14884844-1.html.csv
count
german nationals hold a total of two world records in canoeing .
{'scope': 'all', 'criterion': 'equal', 'value': 'germany', 'result': '2', 'col': '4', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'nationality', 'germany'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose nationality record fuzzily matches to germany .', 'tostr': 'filter_eq { all_rows ; nationality ; germany }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; nationality ; germany } }', 'tointer': 'select the rows whose nationality record fuzzily matches to germany . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; nationality ; germany } } ; 2 } = true', 'tointer': 'select the rows whose nationality record fuzzily matches to germany . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; nationality ; germany } } ; 2 } = true
select the rows whose nationality record fuzzily matches to germany . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'nationality_5': 5, 'germany_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'nationality_5': 'nationality', 'germany_6': 'germany', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'nationality_5': [0], 'germany_6': [0], '2_7': [2]}
['distance', 'event', 'record', 'nationality', 'year', 'location']
[['200 m', 'k1', '33.8 s', 'canada', '2012', 'montreal , canada'], ['200 m', 'k2', '30.962 s', 'russia', '2012', 'duisburg , germany'], ['200 m', 'k4', '29.023 s', 'hungary', '1997', 'plovdiv , bulgaria'], ['500 m', 'k1', '1:35.554 s', 'canada', '2008', 'beijing , china'], ['500 m', 'k2', '1:26.873 s', 'belarus', '2008', 'poznan , poland'], ['500 m', 'k4', '1:19.650 s', 'slovakia', '2002', 'szeged , hungary'], ['1000 m', 'k1', '3:22.485 s', 'germany', '2011', 'belgrade , serbia'], ['1000 m', 'k2', '3:09.190 s', 'italy', '1996', 'atlanta , usa'], ['1000 m', 'k4', '2:47.734 s', 'germany', '2011', 'szeged , hungary']]
edmonton radial railway society
https://en.wikipedia.org/wiki/Edmonton_Radial_Railway_Society
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-22481967-1.html.csv
majority
the majority of models in the edmonton radial railway society are of the streetcar type .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'streetcar', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'type', 'streetcar'], 'result': True, 'ind': 0, 'tointer': 'for the type records of all rows , most of them fuzzily match to streetcar .', 'tostr': 'most_eq { all_rows ; type ; streetcar } = true'}
most_eq { all_rows ; type ; streetcar } = true
for the type records of all rows , most of them fuzzily match to streetcar .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'type_3': 3, 'streetcar_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'type_3': 'type', 'streetcar_4': 'streetcar'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'type_3': [0], 'streetcar_4': [0]}
['date', 'builder', 'type', 'operator', 'number', 'withdrawn', 'status']
[['1907', 'occ', 'combination sweeper / overhead line car', 'saskatoon municipal railway', '200', '1951', 'stored'], ['1908', 'occ', 'streetcar', 'edmonton radial railway', '1', '1951', 'display only'], ['1912', 'stl', 'streetcar', 'edmonton radial railway', '33', '1951', 'stored'], ['1912', 'stl', 'streetcar', 'edmonton radial railway', '42', '1951', 'fort edmonton park line'], ['1914', 'preston', 'streetcar', 'toronto suburban railway', '24 , ( later cnr 15702 )', '1960s', 'fort edmonton park line'], ['1921', 'u / s', 'tram', 'nankai electric railway ( osaka , japan )', '247', '1990', 'high level bridge line'], ['ca 1920s', 'cc & f', 'streetcar', 'regina municipal railway', '42', '1950', 'closed to viewing'], ['1930', 'occ', 'streetcar', 'edmonton radial railway', '80', '1951', 'fort edmonton park line'], ['1947', 'ptc', 'w6 class tram', 'melbourne and metropolitan tramways board', '930', '1997', 'high level bridge line'], ['1951', 'cc & f', 'pcc streetcar', 'toronto transit commission', '4612', '1995', 'fort edmonton park line']]
united states house of representatives elections , 1926
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1926
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1342379-41.html.csv
ordinal
finis j. garrett was the first person in the house of representatives in 1926 to have served a term .
{'row': '8', 'col': '4', 'order': '1', 'col_other': '2', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'first elected', '1'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; first elected ; 1 }'}, 'incumbent'], 'result': 'finis j garrett', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; first elected ; 1 } ; incumbent }'}, 'finis j garrett'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; first elected ; 1 } ; incumbent } ; finis j garrett } = true', 'tointer': 'select the row whose first elected record of all rows is 1st minimum . the incumbent record of this row is finis j garrett .'}
eq { hop { nth_argmin { all_rows ; first elected ; 1 } ; incumbent } ; finis j garrett } = true
select the row whose first elected record of all rows is 1st minimum . the incumbent record of this row is finis j garrett .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'first elected_5': 5, '1_6': 6, 'incumbent_7': 7, 'finis j garrett_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'first elected_5': 'first elected', '1_6': '1', 'incumbent_7': 'incumbent', 'finis j garrett_8': 'finis j garrett'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'first elected_5': [0], '1_6': [0], 'incumbent_7': [1], 'finis j garrett_8': [2]}
['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']
[['tennessee 1', 'b carroll reece', 'republican', '1920', 're - elected', 'b carroll reece ( r ) 88.0 % w i giles ( d ) 12.0 %'], ['tennessee 2', 'j will taylor', 'republican', '1918', 're - elected', 'j will taylor ( r ) 99.8 % r l swann ( d ) 0.2 %'], ['tennessee 4', 'cordell hull', 'democratic', '1922', 're - elected', 'cordell hull ( d ) 71.4 % w thompson ( r ) 28.6 %'], ['tennessee 5', 'ewin l davis', 'democratic', '1918', 're - elected', 'ewin l davis ( d ) unopposed'], ['tennessee 6', 'joseph w byrns , sr', 'democratic', '1908', 're - elected', 'joseph w byrns , sr ( d ) unopposed'], ['tennessee 7', 'edward everett eslick', 'democratic', '1924', 're - elected', 'edward everett eslick ( d ) unopposed'], ['tennessee 8', 'gordon browning', 'democratic', '1922', 're - elected', 'gordon browning ( d ) unopposed'], ['tennessee 9', 'finis j garrett', 'democratic', '1904', 're - elected', 'finis j garrett ( d ) unopposed']]
1984 - 85 fa cup
https://en.wikipedia.org/wiki/1984%E2%80%9385_FA_Cup
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17438338-4.html.csv
count
there were a total of two replays in the 1984 - 85 fa cup .
{'scope': 'all', 'criterion': 'equal', 'value': 'replay', 'result': '2', 'col': '1', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'tie no', 'replay'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose tie no record fuzzily matches to replay .', 'tostr': 'filter_eq { all_rows ; tie no ; replay }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; tie no ; replay } }', 'tointer': 'select the rows whose tie no record fuzzily matches to replay . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; tie no ; replay } } ; 2 } = true', 'tointer': 'select the rows whose tie no record fuzzily matches to replay . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; tie no ; replay } } ; 2 } = true
select the rows whose tie no record fuzzily matches to replay . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'tie no_5': 5, 'replay_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'tie no_5': 'tie no', 'replay_6': 'replay', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'tie no_5': [0], 'replay_6': [0], '2_7': [2]}
['tie no', 'home team', 'score', 'away team', 'date']
[['1', 'darlington', '1 - 1', 'telford united', '29 january 1985'], ['replay', 'telford united', '3 - 0', 'darlington', '4 february 1985'], ['2', 'liverpool', '1 - 0', 'tottenham hotspur', '27 january 1985'], ['3', 'leicester city', '1 - 0', 'carlisle united', '26 january 1985'], ['4', 'nottingham forest', '0 - 0', 'wimbledon', '26 january 1985'], ['replay', 'wimbledon', '1 - 0', 'nottingham forest', '30 january 1985'], ['5', 'sheffield wednesday', '5 - 1', 'oldham athletic', '26 january 1985'], ['6', 'grimsby town', '1 - 3', 'watford', '26 january 1985'], ['7', 'luton town', '2 - 0', 'huddersfield town', '26 january 1985'], ['8', 'everton', '2 - 0', 'doncaster rovers', '26 january 1985'], ['9', 'ipswich town', '3 - 2', 'gillingham', '26 january 1985'], ['10', 'barnsley', '2 - 1', 'brighton & hove albion', '26 january 1985'], ['11', 'west ham united', '2 - 1', 'norwich city', '4 february 1985'], ['12', 'manchester united', '2 - 1', 'coventry city', '26 january 1985'], ['13', 'chelsea', '2 - 3', 'millwall', '4 february 1985'], ['14', 'york city', '1 - 0', 'arsenal', '26 january 1985'], ['15', 'oxford united', '0 - 1', 'blackburn rovers', '30 january 1985'], ['16', 'orient', '0 - 2', 'southampton', '26 january 1985']]
2008 - 09 football league two
https://en.wikipedia.org/wiki/2008%E2%80%9309_Football_League_Two
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-18795125-6.html.csv
unique
lee sinnott is the only manager who left due to mutual consent .
{'scope': 'all', 'row': '3', 'col': '3', 'col_other': '2', 'criterion': 'equal', 'value': 'mutual consent', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'manner of departure', 'mutual consent'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose manner of departure record fuzzily matches to mutual consent .', 'tostr': 'filter_eq { all_rows ; manner of departure ; mutual consent }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; manner of departure ; mutual consent } }', 'tointer': 'select the rows whose manner of departure record fuzzily matches to mutual consent . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'manner of departure', 'mutual consent'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose manner of departure record fuzzily matches to mutual consent .', 'tostr': 'filter_eq { all_rows ; manner of departure ; mutual consent }'}, 'outgoing manager'], 'result': 'lee sinnott', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; manner of departure ; mutual consent } ; outgoing manager }'}, 'lee sinnott'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; manner of departure ; mutual consent } ; outgoing manager } ; lee sinnott }', 'tointer': 'the outgoing manager record of this unqiue row is lee sinnott .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; manner of departure ; mutual consent } } ; eq { hop { filter_eq { all_rows ; manner of departure ; mutual consent } ; outgoing manager } ; lee sinnott } } = true', 'tointer': 'select the rows whose manner of departure record fuzzily matches to mutual consent . there is only one such row in the table . the outgoing manager record of this unqiue row is lee sinnott .'}
and { only { filter_eq { all_rows ; manner of departure ; mutual consent } } ; eq { hop { filter_eq { all_rows ; manner of departure ; mutual consent } ; outgoing manager } ; lee sinnott } } = true
select the rows whose manner of departure record fuzzily matches to mutual consent . there is only one such row in the table . the outgoing manager record of this unqiue row is lee sinnott .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'manner of departure_7': 7, 'mutual consent_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'outgoing manager_9': 9, 'lee sinnott_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'manner of departure_7': 'manner of departure', 'mutual consent_8': 'mutual consent', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'outgoing manager_9': 'outgoing manager', 'lee sinnott_10': 'lee sinnott'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'manner of departure_7': [0], 'mutual consent_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'outgoing manager_9': [2], 'lee sinnott_10': [3]}
['team', 'outgoing manager', 'manner of departure', 'date of vacancy', 'replaced by', 'date of appointment', 'position in table']
[['bournemouth', 'kevin bond', 'contract terminated', '1 september 2008', 'jimmy quinn', '2 september 2008', '23rd'], ['grimsby town', 'alan buckley', 'contract terminated', '15 september 2008', 'mike newell', '6 october 2008', '20th'], ['port vale', 'lee sinnott', 'mutual consent', '22 september 2008', 'dean glover', '6 october 2008', '16th'], ['chester city', 'simon davies', 'contract terminated', '11 november 2008', 'mark wright', '14 november 2008', '19th'], ['barnet', 'paul fairclough', 'resigned', '28 december 2008', 'ian hendon', '21 april 2009', '16th']]
1991 - 92 seattle supersonics season
https://en.wikipedia.org/wiki/1991%E2%80%9392_Seattle_SuperSonics_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-27902171-5.html.csv
majority
all games of 1991 - 92 seattle supersonics season was scheduled for december .
{'scope': 'all', 'col': '2', 'most_or_all': 'all', 'criterion': 'equal', 'value': 'december', 'subset': None}
{'func': 'all_str_eq', 'args': ['all_rows', 'date', 'december'], 'result': True, 'ind': 0, 'tointer': 'for the date records of all rows , all of them fuzzily match to december .', 'tostr': 'all_eq { all_rows ; date ; december } = true'}
all_eq { all_rows ; date ; december } = true
for the date records of all rows , all of them fuzzily match to december .
1
1
{'all_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'date_3': 3, 'december_4': 4}
{'all_str_eq_0': 'all_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'date_3': 'date', 'december_4': 'december'}
{'all_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'date_3': [0], 'december_4': [0]}
['game', 'date', 'team', 'score', 'high points', 'high rebounds', 'high assists', 'location attendance', 'record']
[['16', 'december 3', 'washington bullets', 'w 91 - 90', 'r pierce ( 26 )', 's kemp ( 12 )', 'g payton ( 5 )', 'seattle center coliseum 10957', '9 - 7'], ['17', 'december 6', 'minnesota timberwolves', 'w 96 - 94', 'r pierce ( 29 )', 'm cage ( 23 )', 'g payton , r pierce ( 5 )', 'seattle center coliseum 9796', '10 - 7'], ['18', 'december 7', 'dallas mavericks', 'w 104 - 101', 'r pierce ( 27 )', 'm cage ( 14 )', 'n mcmillan ( 6 )', 'seattle center coliseum 12313', '11 - 7'], ['19', 'december 10', 'chicago bulls', 'l 103 - 108', 'r pierce ( 30 )', 'm cage ( 13 )', 's kemp , g payton ( 5 )', 'chicago stadium 18061', '11 - 8'], ['20', 'december 11', 'new york knicks', 'l 87 - 96', 'r pierce ( 25 )', 'b benjamin , s kemp ( 9 )', 'r pierce ( 7 )', 'madison square garden 14934', '11 - 9'], ['21', 'december 13', 'boston celtics', 'l 97 - 117', 'r pierce ( 21 )', 'b benjamin ( 8 )', 'n mcmillan ( 8 )', 'boston garden 14890', '11 - 10'], ['22', 'december 14', 'philadelphia 76ers', 'l 95 - 104', 'b benjamin ( 23 )', 'b benjamin ( 9 )', 'n mcmillan ( 8 )', 'the spectrum 12395', '11 - 11'], ['23', 'december 17', 'los angeles clippers', 'w 116 - 99', 'b benjamin ( 20 )', 'm cage ( 13 )', 'n mcmillan ( 6 )', 'seattle center coliseum 10357', '12 - 11'], ['24', 'december 19', 'denver nuggets', 'w 119 - 106', 'r pierce ( 29 )', 'm cage ( 15 )', 'd mckey , n mcmillan , g payton ( 4 )', 'seattle center coliseum 10663', '13 - 11'], ['25', 'december 21', 'golden state warriors', 'w 120 - 112', 'r pierce ( 34 )', 'g payton ( 11 )', 'g payton ( 12 )', 'seattle center coliseum 14180', '14 - 11'], ['26', 'december 22', 'portland trail blazers', 'l 87 - 96', 'b benjamin ( 18 )', 'm cage ( 9 )', 'b kofoed , g payton ( 5 )', 'memorial coliseum 12888', '14 - 12'], ['27', 'december 26', 'sacramento kings', 'w 115 - 106 ( ot )', 'r pierce ( 27 )', 'b benjamin ( 13 )', 'g payton ( 5 )', 'arco arena 17014', '15 - 12']]
2005 open championship
https://en.wikipedia.org/wiki/2005_Open_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16225902-7.html.csv
count
six of the players earned 122100 dollars in money .
{'scope': 'all', 'criterion': 'equal', 'value': '122100', 'result': '6', 'col': '6', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'money', '122100'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose money record is equal to 122100 .', 'tostr': 'filter_eq { all_rows ; money ; 122100 }'}], 'result': '6', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; money ; 122100 } }', 'tointer': 'select the rows whose money record is equal to 122100 . the number of such rows is 6 .'}, '6'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; money ; 122100 } } ; 6 } = true', 'tointer': 'select the rows whose money record is equal to 122100 . the number of such rows is 6 .'}
eq { count { filter_eq { all_rows ; money ; 122100 } } ; 6 } = true
select the rows whose money record is equal to 122100 . the number of such rows is 6 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'money_5': 5, '122100_6': 6, '6_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'money_5': 'money', '122100_6': '122100', '6_7': '6'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'money_5': [0], '122100_6': [0], '6_7': [2]}
['place', 'player', 'country', 'score', 'to par', 'money']
[['1', 'tiger woods', 'united states', '66 + 67 + 71 + 70 = 274', '14', '720000'], ['2', 'colin montgomerie', 'scotland', '71 + 66 + 70 + 72 = 279', '9', '430000'], ['t3', 'fred couples', 'united states', '68 + 71 + 73 + 68 = 280', '8', '242350'], ['t3', 'josé maría olazábal', 'spain', '68 + 70 + 68 + 74 = 280', '8', '242350'], ['t5', 'michael campbell', 'new zealand', '69 + 72 + 68 + 72 = 281', '7', '122100'], ['t5', 'sergio garcía', 'spain', '70 + 69 + 69 + 73 = 281', '7', '122100'], ['t5', 'retief goosen', 'south africa', '68 + 73 + 66 + 74 = 281', '7', '122100'], ['t5', 'bernhard langer', 'germany', '71 + 69 + 70 + 71 = 281', '7', '122100'], ['t5', 'geoff ogilvy', 'australia', '71 + 74 + 67 + 69 = 281', '7', '122100'], ['t5', 'vijay singh', 'fiji', '69 + 69 + 71 + 72 = 281', '7', '122100']]
weightlifting at the 1999 pan american games
https://en.wikipedia.org/wiki/Weightlifting_at_the_1999_Pan_American_Games
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11279593-14.html.csv
majority
at the 1999 pan american games , most of the people had a bodyweight of at least 70 .
{'scope': 'all', 'col': '2', 'most_or_all': 'most', 'criterion': 'greater_than_eq', 'value': '70', 'subset': None}
{'func': 'most_greater_eq', 'args': ['all_rows', 'bodyweight', '70'], 'result': True, 'ind': 0, 'tointer': 'for the bodyweight records of all rows , most of them are greater than or equal to 70 .', 'tostr': 'most_greater_eq { all_rows ; bodyweight ; 70 } = true'}
most_greater_eq { all_rows ; bodyweight ; 70 } = true
for the bodyweight records of all rows , most of them are greater than or equal to 70 .
1
1
{'most_greater_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'bodyweight_3': 3, '70_4': 4}
{'most_greater_eq_0': 'most_greater_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'bodyweight_3': 'bodyweight', '70_4': '70'}
{'most_greater_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'bodyweight_3': [0], '70_4': [0]}
['name', 'bodyweight', 'snatch', 'clean & jerk', 'total ( kg )']
[['wanda rijo ( dom )', '73.68', '100.0', '120.0', '220.0'], ['cara heads ( usa )', '73.26', '97.5', '120.0', '217.5'], ['jean lassen ( can )', '73.73', '92.5', '117.5', '210.0'], ['theresa brick ( can )', '74.80', '95.0', '115.0', '210.0'], ['mayra martínez ( ven )', '73.60', '87.5', '112.5', '200.0'], ['maría ruiz obando ( nca )', '73.28', '75.0', '107.5', '182.5'], ['nelly rivera ( dom )', '69.73', '70.0', '82.5', '152.5']]
united states house of representatives elections in georgia , 1996
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections_in_Georgia%2C_1996
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-27487712-1.html.csv
ordinal
in the 1996 elections for united states house of representatives in georgia , the republican candidate who received the second highest percentage of votes was mac collins .
{'row': '2', 'col': '6', 'order': '2', 'col_other': '6', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'result', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; result ; 2 }'}, 'result'], 'result': 'mac collins ( r ) 61.11 % jim chafin ( d ) 38.89 %', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; result ; 2 } ; result }'}, 'mac collins ( r ) 61.11 % jim chafin ( d ) 38.89 %'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; result ; 2 } ; result } ; mac collins ( r ) 61.11 % jim chafin ( d ) 38.89 % } = true', 'tointer': 'select the row whose result record of all rows is 2nd maximum . the result record of this row is mac collins ( r ) 61.11 % jim chafin ( d ) 38.89 % .'}
eq { hop { nth_argmax { all_rows ; result ; 2 } ; result } ; mac collins ( r ) 61.11 % jim chafin ( d ) 38.89 % } = true
select the row whose result record of all rows is 2nd maximum . the result record of this row is mac collins ( r ) 61.11 % jim chafin ( d ) 38.89 % .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'result_5': 5, '2_6': 6, 'result_7': 7, 'mac collins (r) 61.11% jim chafin (d) 38.89%_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'result_5': 'result', '2_6': '2', 'result_7': 'result', 'mac collins (r) 61.11% jim chafin (d) 38.89%_8': 'mac collins ( r ) 61.11 % jim chafin ( d ) 38.89 %'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'result_5': [0], '2_6': [0], 'result_7': [1], 'mac collins (r) 61.11% jim chafin (d) 38.89%_8': [2]}
['district', 'incumbent', 'party', 'elected', 'status', 'result']
[["georgia 's 2nd", 'sanford bishop', 'democratic', '1992', 're - elected', 'sanford bishop ( d ) 53.97 % darrel ealum ( r ) 46.03 %'], ["georgia 's 3rd", 'mac collins', 'republican', '1992', 're - elected', 'mac collins ( r ) 61.11 % jim chafin ( d ) 38.89 %'], ["georgia 's 5th", 'john lewis', 'democratic', '1986', 're - elected', 'john lewis ( d ) unopposed'], ["georgia 's 6th", 'newt gingrich', 'republican', '1978', 're - elected', 'newt gingrich ( r ) 57.80 % michael coles ( d ) 42.20 %'], ["georgia 's 7th", 'bob barr', 'republican', '1994', 're - elected', 'bob barr ( r ) 57.80 % charlie watts ( d ) 42.20 %'], ["georgia 's 8th", 'saxby chambliss', 'republican', '1994', 're - elected', 'saxby chambliss ( r ) 52.56 % jim wiggins ( d ) 47.44 %'], ["georgia 's 9th", 'nathan deal', 'republican', '1992', 're - elected', 'nathan deal ( r ) 65.55 % ken poston ( d ) 34.45 %'], ["georgia 's 10th", 'charlie norwood', 'republican', '1994', 're - elected', 'charlie norwood ( r ) 52.34 % david bell ( d ) 47.65 %']]
1989 senior pga tour
https://en.wikipedia.org/wiki/1989_Senior_PGA_Tour
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11622496-4.html.csv
count
2 players in the 1989 senior pga tour were from the united states .
{'scope': 'all', 'criterion': 'equal', 'value': 'united states', 'result': '2', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'country', 'united states'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose country record fuzzily matches to united states .', 'tostr': 'filter_eq { all_rows ; country ; united states }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; country ; united states } }', 'tointer': 'select the rows whose country record fuzzily matches to united states . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; country ; united states } } ; 2 } = true', 'tointer': 'select the rows whose country record fuzzily matches to united states . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; country ; united states } } ; 2 } = true
select the rows whose country record fuzzily matches to united states . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'country_5': 5, 'united states_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'country_5': 'country', 'united states_6': 'united states', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'country_5': [0], 'united states_6': [0], '2_7': [2]}
['rank', 'player', 'country', 'earnings', 'wins']
[['1', 'miller barber', 'united states', '2214603', '24'], ['2', 'bob charles', 'new zealand', '1910413', '13'], ['3', 'orville moody', 'united states', '1862956', '9'], ['4', 'bruce crampton', 'australia', '1682961', '15'], ['5', 'gary player', 'south africa', '1604659', '14']]
1997 european judo championships
https://en.wikipedia.org/wiki/1997_European_Judo_Championships
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11755180-3.html.csv
superlative
france had the highest amount of total medals out of all the nations at the championship .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '5', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'total'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; total }'}, 'nation'], 'result': 'france', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; total } ; nation }'}, 'france'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; total } ; nation } ; france } = true', 'tointer': 'select the row whose total record of all rows is maximum . the nation record of this row is france .'}
eq { hop { argmax { all_rows ; total } ; nation } ; france } = true
select the row whose total record of all rows is maximum . the nation record of this row is france .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'total_5': 5, 'nation_6': 6, 'france_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'total_5': 'total', 'nation_6': 'nation', 'france_7': 'france'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'total_5': [0], 'nation_6': [1], 'france_7': [2]}
['rank', 'nation', 'gold', 'silver', 'bronze', 'total']
[['1', 'belgium', '6', '0', '3', '9'], ['2 =', 'germany', '2', '2', '2', '7'], ['2 =', 'netherlands', '2', '2', '2', '6'], ['4', 'turkey', '2', '0', '1', '3'], ['5', 'france', '1', '3', '6', '10'], ['6', 'belarus', '1', '2', '1', '4'], ['7', 'georgia', '1', '1', '0', '2'], ['8', 'poland', '1', '0', '4', '5'], ['9', 'great britain', '0', '2', '3', '5'], ['10', 'spain', '0', '2', '1', '3'], ['11', 'austria', '0', '1', '1', '2'], ['12', 'czech republic', '0', '1', '0', '1'], ['13', 'russia', '0', '0', '2', '2'], ['14 =', 'estonia', '0', '0', '1', '1'], ['14 =', 'italy', '0', '0', '1', '1'], ['14 =', 'lithuania', '0', '0', '1', '1'], ['14 =', 'romania', '0', '0', '1', '1'], ['14 =', 'portugal', '0', '0', '1', '1'], ['14 =', 'yugoslavia', '0', '0', '1', '1']]
2008 in paleontology
https://en.wikipedia.org/wiki/2008_in_paleontology
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15688561-8.html.csv
majority
in 2008 in paleontology , all the ones whose location is china have valid status .
{'scope': 'subset', 'col': '2', 'most_or_all': 'all', 'criterion': 'equal', 'value': 'valid', 'subset': {'col': '4', 'criterion': 'equal', 'value': 'china'}}
{'func': 'all_str_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'location', 'china'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; location ; china }', 'tointer': 'select the rows whose location record fuzzily matches to china .'}, 'status', 'valid'], 'result': True, 'ind': 1, 'tointer': 'select the rows whose location record fuzzily matches to china . for the status records of these rows , all of them fuzzily match to valid .', 'tostr': 'all_eq { filter_eq { all_rows ; location ; china } ; status ; valid } = true'}
all_eq { filter_eq { all_rows ; location ; china } ; status ; valid } = true
select the rows whose location record fuzzily matches to china . for the status records of these rows , all of them fuzzily match to valid .
2
2
{'all_str_eq_1': 1, 'result_2': 2, 'filter_str_eq_0': 0, 'all_rows_3': 3, 'location_4': 4, 'china_5': 5, 'status_6': 6, 'valid_7': 7}
{'all_str_eq_1': 'all_str_eq', 'result_2': 'true', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_3': 'all_rows', 'location_4': 'location', 'china_5': 'china', 'status_6': 'status', 'valid_7': 'valid'}
{'all_str_eq_1': [2], 'result_2': [], 'filter_str_eq_0': [1], 'all_rows_3': [0], 'location_4': [0], 'china_5': [0], 'status_6': [1], 'valid_7': [1]}
['name', 'status', 'authors', 'location', 'notes']
[['caracara tellustris', 'valid', 'olson', 'jamaica', 'a species of caracara'], ['didactylornis', 'valid', 'yuan', 'china', 'basal n pygostylia'], ['enantiophoenix', 'valid', 'cau arduini', 'lebanon', 'an enantiornithine'], ['eoconfuciusornis', 'valid', 'zhang zhou benton', 'china', 'primitive confuciusornithid'], ['pengornis', 'valid', 'zhou clarke zhang', 'china', 'an enantiornithine'], ['zhongornis', 'valid', "gao chiappe meng o'connor wang cheng liu", 'china', 'basal bird']]
awards and decorations of the united states coast guard
https://en.wikipedia.org/wiki/Awards_and_decorations_of_the_United_States_Coast_Guard
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-2104176-1.html.csv
count
there are 2 awards or decorations for coast guard members that are lifesaving medals .
{'scope': 'all', 'criterion': 'fuzzily_match', 'value': 'lifesaving medal', 'result': '2', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'air force cross', 'lifesaving medal'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose air force cross record fuzzily matches to lifesaving medal .', 'tostr': 'filter_eq { all_rows ; air force cross ; lifesaving medal }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; air force cross ; lifesaving medal } }', 'tointer': 'select the rows whose air force cross record fuzzily matches to lifesaving medal . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; air force cross ; lifesaving medal } } ; 2 } = true', 'tointer': 'select the rows whose air force cross record fuzzily matches to lifesaving medal . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; air force cross ; lifesaving medal } } ; 2 } = true
select the rows whose air force cross record fuzzily matches to lifesaving medal . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'air force cross_5': 5, 'lifesaving medal_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'air force cross_5': 'air force cross', 'lifesaving medal_6': 'lifesaving medal', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'air force cross_5': [0], 'lifesaving medal_6': [0], '2_7': [2]}
['medal of honor', 'coast guard cross', 'navy cross', 'distinguished service cross', 'air force cross', 'homeland security distinguished service medal']
[['transportation distinguished service medal', 'defense distinguished service medal', 'coast guard distinguished service medal', 'navy distinguished service medal', 'army distinguished service medal', 'air force distinguished service medal'], ['silver star', "dot 's secretary award for outstanding achievement", 'defense superior service medal', 'guardian medal', 'legion of merit', 'distinguished flying cross'], ['coast guard medal', 'navy and marine corps medal', "soldier 's medal", "airman 's medal", 'gold lifesaving medal', 'bronze star'], ['purple heart', 'defense meritorious service medal', 'meritorious service medal', 'air medal', 'silver lifesaving medal', 'aerial achievement medal'], ["dot 's secretary award for meritorious achievement", 'joint service commendation medal', 'coast guard commendation medal', 'navy and marine corps commendation medal', 'army commendation medal', 'air force commendation medal'], ["dot 's secretary award for superior achievement", 'joint service achievement medal', 'transportation 9 - 11 medal', 'coast guard achievement medal', 'navy and marine corps achievement medal', 'army achievement medal']]
supernatural ( season 4 )
https://en.wikipedia.org/wiki/Supernatural_%28season_4%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-19396259-1.html.csv
ordinal
the second episode in the fourth season of supernatural was written by jeremy carver .
{'row': '2', 'col': '2', 'order': '2', 'col_other': '5', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'no in season', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; no in season ; 2 }'}, 'written by'], 'result': 'jeremy carver', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; no in season ; 2 } ; written by }'}, 'jeremy carver'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; no in season ; 2 } ; written by } ; jeremy carver } = true', 'tointer': 'select the row whose no in season record of all rows is 2nd minimum . the written by record of this row is jeremy carver .'}
eq { hop { nth_argmin { all_rows ; no in season ; 2 } ; written by } ; jeremy carver } = true
select the row whose no in season record of all rows is 2nd minimum . the written by record of this row is jeremy carver .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'no in season_5': 5, '2_6': 6, 'written by_7': 7, 'jeremy carver_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'no in season_5': 'no in season', '2_6': '2', 'written by_7': 'written by', 'jeremy carver_8': 'jeremy carver'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'no in season_5': [0], '2_6': [0], 'written by_7': [1], 'jeremy carver_8': [2]}
['no in series', 'no in season', 'title', 'directed by', 'written by', 'original air date', 'production code', 'us viewers ( million )']
[['61', '1', 'lazarus rising', 'kim manners', 'eric kripke', 'september 18 , 2008', '3t7501', '3.96'], ['63', '3', 'in the beginning', 'steve boyum', 'jeremy carver', 'october 2 , 2008', '3t7504', '3.51'], ['64', '4', 'metamorphosis', 'kim manners', 'cathryn humphris', 'october 9 , 2008', '3t7505', '3.15'], ['65', '5', 'monster movie', 'robert singer', 'ben edlund', 'october 16 , 2008', '3t7503', '3.06'], ['66', '6', 'yellow fever', 'phil sgriccia', 'andrew dabb & daniel loflin', 'october 23 , 2008', '3t7506', '3.25'], ['67', '7', "it 's the great pumpkin , sam winchester", 'charles beeson', 'julie siege', 'october 30 , 2008', '3t7507', '3.55'], ['69', '9', 'i know what you did last summer', 'charles beeson', 'sera gamble', 'november 13 , 2008', '3t7509', '2.94'], ['70', '10', 'heaven and hell', 'j miller tobin', 'story by : trevor sands teleplay by : eric kripke', 'november 20 , 2008', '3t7510', '3.34'], ['71', '11', 'family remains', 'phil sgriccia', 'jeremy carver', 'january 15 , 2009', '3t7511', '2.98'], ['72', '12', 'criss angel is a douchebag', 'robert singer', 'julie siege', 'january 22 , 2009', '3t7512', '3.06'], ['73', '13', 'after school special', 'adam kane', 'andrew dabb & daniel loflin', 'january 29 , 2009', '3t7513', '3.56'], ['74', '14', 'sex and violence', 'charles beeson', 'cathryn humphris', 'february 5 , 2009', '3t7514', '3.37'], ['75', '15', 'death takes a holiday', 'steve boyum', 'jeremy carver', 'march 12 , 2009', '3t7515', '2.84'], ['76', '16', 'on the head of a pin', 'mike rohl', 'ben edlund', 'march 19 , 2009', '3t7516', '3.37'], ['77', '17', "it 's a terrible life", 'james l conway', 'sera gamble', 'march 26 , 2009', '3t7517', '3.13'], ['79', '19', 'jump the shark', 'phil sgriccia', 'andrew dabb & daniel loflin', 'april 23 , 2009', '3t7519', '2.70'], ['80', '20', 'the rapture', 'charles beeson', 'jeremy carver', 'april 30 , 2009', '3t7520', '2.95'], ['81', '21', 'when the levee breaks', 'robert singer', 'sera gamble', 'may 7 , 2009', '3t7521', '2.79']]
northern pacific railway locomotives
https://en.wikipedia.org/wiki/Northern_Pacific_Railway_locomotives
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18620528-14.html.csv
superlative
the oldest nothern pacific railway locomotive made is class a.
{'scope': 'all', 'col_superlative': '9', 'row_superlative': '2', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'year ( s ) retired'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; year ( s ) retired }'}, 'class'], 'result': 'a', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; year ( s ) retired } ; class }'}, 'a'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; year ( s ) retired } ; class } ; a } = true', 'tointer': 'select the row whose year ( s ) retired record of all rows is maximum . the class record of this row is a .'}
eq { hop { argmax { all_rows ; year ( s ) retired } ; class } ; a } = true
select the row whose year ( s ) retired record of all rows is maximum . the class record of this row is a .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'year (s) retired_5': 5, 'class_6': 6, 'a_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'year (s) retired_5': 'year ( s ) retired', 'class_6': 'class', 'a_7': 'a'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'year (s) retired_5': [0], 'class_6': [1], 'a_7': [2]}
['class', 'wheel arrangement', 'fleet number ( s )', 'manufacturer', 'serial numbers', 'year made', 'quantity made', 'quantity preserved', 'year ( s ) retired']
[['4 - 8 - 4 - oooooooo - northern', '4 - 8 - 4 - oooooooo - northern', '4 - 8 - 4 - oooooooo - northern', '4 - 8 - 4 - oooooooo - northern', '4 - 8 - 4 - oooooooo - northern', '4 - 8 - 4 - oooooooo - northern', '4 - 8 - 4 - oooooooo - northern', '4 - 8 - 4 - oooooooo - northern', '4 - 8 - 4 - oooooooo - northern'], ['a', '4 - 8 - 4', '2600 - 2611', 'alco', '67010 - 67021', '1926', '12', '0', '1949 - 1959'], ['a - 1', '4 - 8 - 4', '2626', 'alco', '68056', '1930', '1', '0', '1955'], ['a - 2', '4 - 8 - 4', '2650 - 2659', 'baldwin', '61771 - 61780', '1934 - 1935', '10', '0', '1953 - 1958'], ['a - 3', '4 - 8 - 4', '2660 - 2667', 'baldwin', '62163 - 62170', '1938', '8', '0', '1954 - 1958'], ['a - 4', '4 - 8 - 4', '2670 - 2677', 'baldwin', '64155 - 64162', '1941', '8', '0', '1954 - 1958'], ['a - 5', '4 - 8 - 4', '2680 - 2689', 'baldwin', '64667 - 64676', '1943', '10', '0', '1957 - 1959']]
usa today all - usa high school football team
https://en.wikipedia.org/wiki/USA_Today_All-USA_high_school_football_team
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-11677691-3.html.csv
count
two of the players on the usa today all - usa high school football team play the wide receiver position .
{'scope': 'all', 'criterion': 'equal', 'value': 'wide receiver', 'result': '2', 'col': '2', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'position', 'wide receiver'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose position record fuzzily matches to wide receiver .', 'tostr': 'filter_eq { all_rows ; position ; wide receiver }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; position ; wide receiver } }', 'tointer': 'select the rows whose position record fuzzily matches to wide receiver . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; position ; wide receiver } } ; 2 } = true', 'tointer': 'select the rows whose position record fuzzily matches to wide receiver . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; position ; wide receiver } } ; 2 } = true
select the rows whose position record fuzzily matches to wide receiver . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'position_5': 5, 'wide receiver_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'position_5': 'position', 'wide receiver_6': 'wide receiver', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'position_5': [0], 'wide receiver_6': [0], '2_7': [2]}
['player', 'position', 'school', 'hometown', 'college']
[['cody kessler', 'quarterback', 'centennial high school', 'bakersfield , california', 'southern california'], ['mike bellamy', 'running back', 'charlotte high school', 'punta gorda , florida', 'clemson'], ['aaron green', 'running back', 'madison high school', 'san antonio , texas', 'nebraska'], ["nick o'leary", 'tight end', 'dwyer high school', 'west palm beach , florida', 'florida state'], ['trey metoyer', 'wide receiver', 'whitehouse high school', 'whitehouse , texas', 'oklahoma'], ['charone peake', 'wide receiver', 'dorman high school', 'roebuck , south carolina', 'clemson'], ['matt freeman', 'offensive line', 'cooper high school', 'abilene , texas', 'texas state'], ['ryne reeves', 'offensive line', 'crete high school', 'crete , nebraska', 'nebraska'], ['kiaro holts', 'offensive line', 'warren central high school', 'indianapolis , indiana', 'north carolina'], ['brey cook', 'offensive line', 'har - ber high school', 'springdale , arkansas', 'arkansas'], ['michael bennett', 'offensive line', 'centerville high school', 'centerville , ohio', 'ohio state']]
lee janzen
https://en.wikipedia.org/wiki/Lee_Janzen
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1507431-4.html.csv
superlative
the highest number of top 10s for lee janzen was at the us open .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '2', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'top - 10'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; top - 10 }'}, 'tournament'], 'result': 'us open', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; top - 10 } ; tournament }'}, 'us open'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; top - 10 } ; tournament } ; us open } = true', 'tointer': 'select the row whose top - 10 record of all rows is maximum . the tournament record of this row is us open .'}
eq { hop { argmax { all_rows ; top - 10 } ; tournament } ; us open } = true
select the row whose top - 10 record of all rows is maximum . the tournament record of this row is us open .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'top - 10_5': 5, 'tournament_6': 6, 'us open_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'top - 10_5': 'top - 10', 'tournament_6': 'tournament', 'us open_7': 'us open'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'top - 10_5': [0], 'tournament_6': [1], 'us open_7': [2]}
['tournament', 'wins', 'top - 5', 'top - 10', 'top - 25', 'events', 'cuts made']
[['masters tournament', '0', '0', '0', '3', '12', '9'], ['us open', '2', '2', '3', '6', '19', '11'], ['the open championship', '0', '0', '0', '4', '11', '7'], ['pga championship', '0', '1', '2', '6', '13', '9'], ['totals', '2', '2', '5', '19', '55', '36']]
sagarika ghatge
https://en.wikipedia.org/wiki/Sagarika_Ghatge
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12807043-1.html.csv
majority
most of the roles that sagarika ghatge had were in the hindi language .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'hindi', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'language', 'hindi'], 'result': True, 'ind': 0, 'tointer': 'for the language records of all rows , most of them fuzzily match to hindi .', 'tostr': 'most_eq { all_rows ; language ; hindi } = true'}
most_eq { all_rows ; language ; hindi } = true
for the language records of all rows , most of them fuzzily match to hindi .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'language_3': 3, 'hindi_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'language_3': 'language', 'hindi_4': 'hindi'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'language_3': [0], 'hindi_4': [0]}
['year', 'title', 'role', 'language', 'notes']
[['2007', 'chak de ! india', 'preeti sabarwal', 'hindi', 'supporting role'], ['2009', 'fox', 'urvashi mathur', 'hindi', 'small role'], ['2011', 'miley naa miley hum', 'kamiah', 'hindi', 'supporting role'], ['2012', 'rush', 'ahana sharma', 'hindi', 'released on october 24 , 2012'], ['2013', 'premachi goshta', 'sonal', 'marathi', 'lead role , movie directed by satish rajwade']]
2008 - 09 supersport series
https://en.wikipedia.org/wiki/2008%E2%80%9309_Supersport_Series
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-19662262-6.html.csv
aggregation
the five cricketers from the 2008 - 09 supersport series took a total of 90 wickets .
{'scope': 'all', 'col': '5', 'type': 'sum', 'result': '90', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': ['all_rows', 'wickets'], 'result': '90', 'ind': 0, 'tostr': 'sum { all_rows ; wickets }'}, '90'], 'result': True, 'ind': 1, 'tostr': 'round_eq { sum { all_rows ; wickets } ; 90 } = true', 'tointer': 'the sum of the wickets record of all rows is 90 .'}
round_eq { sum { all_rows ; wickets } ; 90 } = true
the sum of the wickets record of all rows is 90 .
2
2
{'eq_1': 1, 'result_2': 2, 'sum_0': 0, 'all_rows_3': 3, 'wickets_4': 4, '90_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'sum_0': 'sum', 'all_rows_3': 'all_rows', 'wickets_4': 'wickets', '90_5': '90'}
{'eq_1': [2], 'result_2': [], 'sum_0': [1], 'all_rows_3': [0], 'wickets_4': [0], '90_5': [1]}
['player', 'team', 'matches', 'overs', 'wickets', 'economy rate', 'average', 'strike rate', 'bbi', 'bbm']
[['makhaya ntini', 'warriors', '4', '152.4', '24', '2.18', '13.91', '38.1', '6 / 85', '9 / 109'], ['lonwabo tsotsobe', 'warriors', '4', '127.5', '16', '2.26', '18.12', '47.9', '4 / 3', '5 / 98'], ['juan theron', 'warriors', '4', '133.4', '19', '2.71', '19.10', '42.2', '7 / 46', '7 / 56'], ['mornã morkel', 'titans', '3', '92.2', '17', '3.51', '19.17', '32.7', '6 / 47', '11 / 56'], ['paul harris', 'titans', '3', '126.0', '14', '2.74', '22.28', '54.0', '7 / 94', '12 / 180']]
1990 indianapolis colts season
https://en.wikipedia.org/wiki/1990_Indianapolis_Colts_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14876127-2.html.csv
count
in the 1990 indianapolis colts season , for games in december , there were two games at the hoosier dome .
{'scope': 'subset', 'criterion': 'fuzzily_match', 'value': 'hoosier dome', 'result': '2', 'col': '6', 'subset': {'col': '2', 'criterion': 'fuzzily_match', 'value': 'december'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'date', 'december'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; date ; december }', 'tointer': 'select the rows whose date record fuzzily matches to december .'}, 'game site', 'hoosier dome'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose date record fuzzily matches to december . among these rows , select the rows whose game site record fuzzily matches to hoosier dome .', 'tostr': 'filter_eq { filter_eq { all_rows ; date ; december } ; game site ; hoosier dome }'}], 'result': '2', 'ind': 2, 'tostr': 'count { filter_eq { filter_eq { all_rows ; date ; december } ; game site ; hoosier dome } }', 'tointer': 'select the rows whose date record fuzzily matches to december . among these rows , select the rows whose game site record fuzzily matches to hoosier dome . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_eq { filter_eq { all_rows ; date ; december } ; game site ; hoosier dome } } ; 2 } = true', 'tointer': 'select the rows whose date record fuzzily matches to december . among these rows , select the rows whose game site record fuzzily matches to hoosier dome . the number of such rows is 2 .'}
eq { count { filter_eq { filter_eq { all_rows ; date ; december } ; game site ; hoosier dome } } ; 2 } = true
select the rows whose date record fuzzily matches to december . among these rows , select the rows whose game site record fuzzily matches to hoosier dome . the number of such rows is 2 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_str_eq_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'date_6': 6, 'december_7': 7, 'game site_8': 8, 'hoosier dome_9': 9, '2_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_str_eq_1': 'filter_str_eq', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'date_6': 'date', 'december_7': 'december', 'game site_8': 'game site', 'hoosier dome_9': 'hoosier dome', '2_10': '2'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_str_eq_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'date_6': [0], 'december_7': [0], 'game site_8': [1], 'hoosier dome_9': [1], '2_10': [3]}
['week', 'date', 'opponent', 'result', 'record', 'game site', 'attendance']
[['1', 'september 9 , 1990', 'buffalo bills', 'l 10 - 26', '0 - 1', 'ralph wilson stadium', '78899'], ['2', 'september 16 , 1990', 'new england patriots', 'l 14 - 16', '0 - 2', 'hoosier dome', '49256'], ['3', 'september 23 , 1990', 'houston oilers', 'l 10 - 24', '0 - 3', 'astrodome', '50093'], ['4', 'september 30 , 1990', 'philadelphia eagles', 'w 24 - 23', '1 - 3', 'veterans stadium', '62067'], ['5', 'october 7 , 1990', 'kansas city chiefs', 'w 23 - 19', '2 - 3', 'hoosier dome', '54950'], ['6', '-', '-', '-', '-', '-', ''], ['7', 'october 21 , 1990', 'denver broncos', 'l 17 - 24', '2 - 4', 'hoosier dome', '59850'], ['8', 'october 28 , 1990', 'miami dolphins', 'l 7 - 27', '2 - 5', 'hoosier dome', '59213'], ['9', 'november 5 , 1990', 'new york giants', 'l 7 - 24', '2 - 6', 'hoosier dome', '58688'], ['10', 'november 11 , 1990', 'new england patriots', 'w 13 - 10', '3 - 6', 'foxboro stadium', '28924'], ['11', 'november 18 , 1990', 'new york jets', 'w 17 - 14', '4 - 6', 'hoosier dome', '47283'], ['12', 'november 25 , 1990', 'cincinnati bengals', 'w 34 - 20', '5 - 6', 'riverfront stadium', '60051'], ['13', 'december 2 , 1990', 'phoenix cardinals', 'l 17 - 20', '5 - 7', 'sun devil stadium', '38043'], ['14', 'december 9 , 1990', 'buffalo bills', 'l 7 - 31', '5 - 8', 'hoosier dome', '53268'], ['15', 'december 16 , 1990', 'new york jets', 'w 29 - 21', '6 - 8', 'giants stadium', '41423'], ['16', 'december 22 , 1990', 'washington redskins', 'w 35 - 28', '7 - 8', 'hoosier dome', '58173'], ['17', 'december 30 , 1990', 'miami dolphins', 'l 17 - 23', '7 - 9', 'joe robbie stadium', '59547']]
imvic
https://en.wikipedia.org/wiki/IMViC
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16083989-1.html.csv
majority
the majority of the bacteria species show negative results on the indole test .
{'scope': 'all', 'col': '2', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'negative', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'indole', 'negative'], 'result': True, 'ind': 0, 'tointer': 'for the indole records of all rows , most of them fuzzily match to negative .', 'tostr': 'most_eq { all_rows ; indole ; negative } = true'}
most_eq { all_rows ; indole ; negative } = true
for the indole records of all rows , most of them fuzzily match to negative .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'indole_3': 3, 'negative_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'indole_3': 'indole', 'negative_4': 'negative'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'indole_3': [0], 'negative_4': [0]}
['species', 'indole', 'methyl red', 'voges - proskauer', 'citrate']
[['escherichia coli', 'positive', 'positive', 'negative', 'negative'], ['shigella spp', 'negative', 'positive', 'negative', 'negative'], ['salmonella spp', 'negative', 'positive', 'negative', 'positive'], ['klebsiella spp', 'negative', 'negative', 'positive', 'positive'], ['proteus vulgaris', 'positive', 'positive', 'negative', 'negative'], ['proteus mirabilis', 'negative', 'positive', 'negative', 'positive'], ['enterobacter aerogenes', 'negative', 'negative', 'positive', 'positive']]
chris van der drift
https://en.wikipedia.org/wiki/Chris_van_der_Drift
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16864452-1.html.csv
superlative
the highest number of points chris van der drift had was when he was with the olympiacos cfp team .
{'scope': 'all', 'col_superlative': '9', 'row_superlative': '10', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '3', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'points'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; points }'}, 'team'], 'result': 'olympiacos cfp', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; points } ; team }'}, 'olympiacos cfp'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; points } ; team } ; olympiacos cfp } = true', 'tointer': 'select the row whose points record of all rows is maximum . the team record of this row is olympiacos cfp .'}
eq { hop { argmax { all_rows ; points } ; team } ; olympiacos cfp } = true
select the row whose points record of all rows is maximum . the team record of this row is olympiacos cfp .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'points_5': 5, 'team_6': 6, 'olympiacos cfp_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'points_5': 'points', 'team_6': 'team', 'olympiacos cfp_7': 'olympiacos cfp'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'points_5': [0], 'team_6': [1], 'olympiacos cfp_7': [2]}
['season', 'series', 'team', 'races', 'wins', 'poles', 'f / laps', 'podiums', 'points', 'position']
[['2004', 'formula bmw adac', 'team rosberg', '20', '0', '0', '0', '8', '168', '4th'], ['2005', 'formula bmw adac', 'team rosberg', '20', '1', '0', '1', '5', '149', '4th'], ['2006', 'formula renault 2.0 eurocup', 'jd motorsport', '14', '2', '2', '1', '6', '91', '2nd'], ['2006', 'formula renault 2.0 nec', 'jd motorsport', '14', '4', '7', '4', '7', '267', '2nd'], ['2007', 'international formula master', 'jd motorsport', '16', '2', '1', '2', '7', '65', '2nd'], ['2008', 'international formula master', 'jd motorsport', '16', '6', '6', '8', '10', '101', '1st'], ['2008 - 09', 'gp2 asia series', 'trident racing', '3', '0', '0', '0', '0', '5', '18th'], ['2008 - 09', 'a1 grand prix', 'new zealand', '4', '0', '0', '0', '0', '36', '7th'], ['2009', 'formula renault 3.5 series', 'epsilon euskadi', '17', '0', '0', '0', '1', '41', '11th'], ['2010', 'superleague formula', 'olympiacos cfp', '18', '4', '2', '3', '10', '653', '4th'], ['2010', 'superleague formula', 'galatasaray', '3', '0', '0', '0', '0', '358', '13th'], ['2011', 'superleague formula', 'new zealand', '3', '0', '0', '0', '0', '116', '7th'], ['2011', 'formula renault 3.5 series', 'mofaz racing', '7', '0', '0', '0', '1', '43', '12th'], ['2012', 'auto gp world series', 'manor mp motorsport', '12', '1', '0', '0', '4', '127', '4th']]
salvatore bettiol
https://en.wikipedia.org/wiki/Salvatore_Bettiol
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15671752-1.html.csv
majority
most of salvatore bettiol 's competitions took place in the 1990 's .
{'scope': 'all', 'col': '1', 'most_or_all': 'most', 'criterion': 'greater_than_eq', 'value': '1990', 'subset': None}
{'func': 'most_greater_eq', 'args': ['all_rows', 'year', '1990'], 'result': True, 'ind': 0, 'tointer': 'for the year records of all rows , most of them are greater than or equal to 1990 .', 'tostr': 'most_greater_eq { all_rows ; year ; 1990 } = true'}
most_greater_eq { all_rows ; year ; 1990 } = true
for the year records of all rows , most of them are greater than or equal to 1990 .
1
1
{'most_greater_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'year_3': 3, '1990_4': 4}
{'most_greater_eq_0': 'most_greater_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'year_3': 'year', '1990_4': '1990'}
{'most_greater_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'year_3': [0], '1990_4': [0]}
['year', 'competition', 'venue', 'position', 'event', 'notes']
[['1986', 'venice marathon', 'venice , italy', '1st', 'marathon', '2:18:44'], ['1987', 'world championships', 'rome , italy', '13th', 'marathon', '2:17:45'], ['1987', 'venice marathon', 'venice , italy', '1st', 'marathon', '2:10:01'], ['1990', 'european championships', 'split , fr yugoslavia', '4th', 'marathon', '2:17:45'], ['1991', 'world championships', 'tokyo , japan', '6th', 'marathon', '2:15:58'], ['1992', 'olympic games', 'barcelona , spain', '5th', 'marathon', '2:14:15'], ['1993', 'world championships', 'stuttgart , germany', 'n / a', 'marathon', 'dnf'], ['1996', 'olympic games', 'atlanta , united states', '20th', 'marathon', '2:17:27']]
thai solar calendar
https://en.wikipedia.org/wiki/Thai_solar_calendar
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-180802-2.html.csv
unique
the thai transcription of the equivalent month to january is the only one with two distinct transcriptions .
{'scope': 'all', 'row': '1', 'col': '4', 'col_other': '1', 'criterion': 'fuzzily_match', 'value': ',', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'transcription', ','], 'result': None, 'ind': 0, 'tointer': 'select the rows whose transcription record fuzzily matches to , .', 'tostr': 'filter_eq { all_rows ; transcription ; , }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; transcription ; , } }', 'tointer': 'select the rows whose transcription record fuzzily matches to , . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'transcription', ','], 'result': None, 'ind': 0, 'tointer': 'select the rows whose transcription record fuzzily matches to , .', 'tostr': 'filter_eq { all_rows ; transcription ; , }'}, 'english name'], 'result': 'january', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; transcription ; , } ; english name }'}, 'january'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; transcription ; , } ; english name } ; january }', 'tointer': 'the english name record of this unqiue row is january .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; transcription ; , } } ; eq { hop { filter_eq { all_rows ; transcription ; , } ; english name } ; january } } = true', 'tointer': 'select the rows whose transcription record fuzzily matches to , . there is only one such row in the table . the english name record of this unqiue row is january .'}
and { only { filter_eq { all_rows ; transcription ; , } } ; eq { hop { filter_eq { all_rows ; transcription ; , } ; english name } ; january } } = true
select the rows whose transcription record fuzzily matches to , . there is only one such row in the table . the english name record of this unqiue row is january .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'transcription_7': 7, ',_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'english name_9': 9, 'january_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'transcription_7': 'transcription', ',_8': ',', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'english name_9': 'english name', 'january_10': 'january'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'transcription_7': [0], ',_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'english name_9': [2], 'january_10': [3]}
['english name', 'thai name', 'abbr', 'transcription', 'sanskrit word', 'zodiac sign']
[['january', 'มกราคม', 'มค', 'makarakhom , mokkarakhom', 'makara sea - monster', 'capricorn'], ['february', 'กุมภาพันธ์', 'กพ', 'kumphaphan', 'kumbha pitcher , water - pot', 'aquarius'], ['march', 'มีนาคม', 'มีค', 'minakhom', 'mīna ( a specific kind of ) fish', 'pisces'], ['april', 'เมษายน', 'เมย', 'mesayon', 'meṣa ram', 'aries'], ['may', 'พฤษภาคม', 'พค', 'phruetsaphakhom', 'vṛṣabha bull', 'taurus'], ['june', 'มิถุนายน', 'มิย', 'mithunayon', 'mithuna a pair', 'gemini'], ['july', 'กรกฎาคม', 'กค', 'karakadakhom', 'karkaṭa crab', 'cancer'], ['august', 'สิงหาคม', 'สค', 'singhakhom', 'sinha lion', 'leo'], ['september', 'กันยายน', 'กย', 'kanyayon', 'kanyā girl', 'virgo'], ['october', 'ตุลาคม', 'ตค', 'tulakhom', 'tulā balance', 'libra'], ['november', 'พฤศจิกายน', 'พย', 'phruetsachikayon', 'vṛścika scorpion', 'scorpio'], ['december', 'ธันวาคม', 'ธค', 'thanwakhom', 'dhanu bow , arc', 'sagittarius']]
muhsin corbbrey
https://en.wikipedia.org/wiki/Muhsin_Corbbrey
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17624865-1.html.csv
comparative
muhsin corbbrey 's fight against troy nelson lasted more rounds than his fight against shelton barnes .
{'row_1': '1', 'row_2': '4', 'col': '7', 'col_other': '3', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'troy nelson'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose opponent record fuzzily matches to troy nelson .', 'tostr': 'filter_eq { all_rows ; opponent ; troy nelson }'}, 'round'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; opponent ; troy nelson } ; round }', 'tointer': 'select the rows whose opponent record fuzzily matches to troy nelson . take the round record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'shelton barnes'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose opponent record fuzzily matches to shelton barnes .', 'tostr': 'filter_eq { all_rows ; opponent ; shelton barnes }'}, 'round'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; opponent ; shelton barnes } ; round }', 'tointer': 'select the rows whose opponent record fuzzily matches to shelton barnes . take the round record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; opponent ; troy nelson } ; round } ; hop { filter_eq { all_rows ; opponent ; shelton barnes } ; round } } = true', 'tointer': 'select the rows whose opponent record fuzzily matches to troy nelson . take the round record of this row . select the rows whose opponent record fuzzily matches to shelton barnes . take the round record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; opponent ; troy nelson } ; round } ; hop { filter_eq { all_rows ; opponent ; shelton barnes } ; round } } = true
select the rows whose opponent record fuzzily matches to troy nelson . take the round record of this row . select the rows whose opponent record fuzzily matches to shelton barnes . take the round record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'opponent_7': 7, 'troy nelson_8': 8, 'round_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'opponent_11': 11, 'shelton barnes_12': 12, 'round_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'opponent_7': 'opponent', 'troy nelson_8': 'troy nelson', 'round_9': 'round', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'opponent_11': 'opponent', 'shelton barnes_12': 'shelton barnes', 'round_13': 'round'}
{'greater_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'opponent_7': [0], 'troy nelson_8': [0], 'round_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'opponent_11': [1], 'shelton barnes_12': [1], 'round_13': [3]}
['date', 'result', 'opponent', 'venue', 'location', 'method', 'round', 'time', 'record']
[['2009 - 02 - 28', 'win', 'troy nelson', 'shoreline ball room', 'hilton head , south carolina , usa', 'decision', '6', '3:00', '6 - 2 - 1'], ['2006 - 09 - 15', 'win', 'ryan rayonec', 'omar shrine temple', 'mount pleasant , south carolina , usa', 'tko', '4', '0:54', '5 - 2 - 1'], ['2006 - 06 - 15', 'loss', 'tim coleman', "michael 's eighth avenue", 'glen burnie , maryland , usa', 'decision ( unanimous )', '6', '3:00', '4 - 2 - 1'], ['2006 - 04 - 21', 'win', 'shelton barnes', 'omar shrine temple', 'mount pleasant , south carolina , usa', 'tko', '1', '2:43', '4 - 1 - 1'], ['2006 - 03 - 09', 'win', 'kareem robinson', "michael 's eighth avenue", 'glen burnie , maryland , usa', 'decision ( unanimous )', '4', '3:00', '3 - 1 - 1'], ['2006 - 01 - 26', 'win', 'anthony abrams', "michael 's eighth avenue", 'glen burnie , maryland , usa', 'decision ( unanimous )', '4', '3:00', '2 - 1 - 1'], ['2005 - 11 - 26', 'win', 'ben lock', 'show place arena', 'upper marlboro , maryland , usa', 'decision ( unanimous )', '4', '3:00', '1 - 1 - 1'], ['2005 - 04 - 26', 'loss', 'emanuel gonzã ¡ lez', 'radisson hotel', 'miami , florida , usa', 'decision ( unanimous )', '4', '3:00', '0 - 1 - 1'], ['2005 - 04 - 08', 'draw', 'ricardo planter', 'club med sandpiper', 'port st lucie , florida , usa', 'draw ( majority )', '4', '3:00', '0 - 0 - 1']]
royal canadian mint numismatic coins ( 2000s )
https://en.wikipedia.org/wiki/Royal_Canadian_Mint_numismatic_coins_%282000s%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11916083-40.html.csv
count
two of the designs of the royal canadian mint numismatic coins had an issue price of 79.95 .
{'scope': 'all', 'criterion': 'equal', 'value': '79.95', 'result': '2', 'col': '6', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'issue price', '79.95'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose issue price record is equal to 79.95 .', 'tostr': 'filter_eq { all_rows ; issue price ; 79.95 }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; issue price ; 79.95 } }', 'tointer': 'select the rows whose issue price record is equal to 79.95 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; issue price ; 79.95 } } ; 2 } = true', 'tointer': 'select the rows whose issue price record is equal to 79.95 . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; issue price ; 79.95 } } ; 2 } = true
select the rows whose issue price record is equal to 79.95 . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'issue price_5': 5, '79.95_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'issue price_5': 'issue price', '79.95_6': '79.95', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'issue price_5': [0], '79.95_6': [0], '2_7': [2]}
['year', 'design', 'issue', 'artist', 'mintage', 'issue price']
[['2003', 'niagara falls', 'hologram', 'gary corcoran', '29967', '79.95'], ['2003', 'rocky mountains', 'colorized', 'josé osio', '28793', '69.95'], ['2004', 'iceberg', 'hologram', 'josé osio', '24879', '69.95'], ['2004', 'northern lights', 'double image hologram', 'gary corcoran', '34135', '79.95'], ['2004', 'hopewell rocks', 'selectively gold plated', 'josé osio', '16918', '69.95'], ['2005', 'diamonds', 'double image hologram', 'josé osio', '35000', '69.95']]
list of star wars : the clone wars episodes
https://en.wikipedia.org/wiki/List_of_Star_Wars%3A_The_Clone_Wars_episodes
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-19229713-6.html.csv
superlative
of the star wars : the clone wars episodes , the one with the highest number of viewers was titled " to catch a jedi " .
{'scope': 'all', 'col_superlative': '8', 'row_superlative': '19', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '3', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'us viewers ( million )'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; us viewers ( million ) }'}, 'title'], 'result': 'to catch a jedi', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; us viewers ( million ) } ; title }'}, 'to catch a jedi'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; us viewers ( million ) } ; title } ; to catch a jedi } = true', 'tointer': 'select the row whose us viewers ( million ) record of all rows is maximum . the title record of this row is to catch a jedi .'}
eq { hop { argmax { all_rows ; us viewers ( million ) } ; title } ; to catch a jedi } = true
select the row whose us viewers ( million ) record of all rows is maximum . the title record of this row is to catch a jedi .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'us viewers (million)_5': 5, 'title_6': 6, 'to catch a jedi_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'us viewers (million)_5': 'us viewers ( million )', 'title_6': 'title', 'to catch a jedi_7': 'to catch a jedi'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'us viewers (million)_5': [0], 'title_6': [1], 'to catch a jedi_7': [2]}
['no', '-', 'title', 'directed by', 'written by', 'original air date', 'production code', 'us viewers ( million )']
[['89', '1', 'revival', 'steward lee', 'chris collins', 'september 29 , 2012', '4.26', '1.94'], ['90', '2', 'a war on two fronts', 'dave filoni', 'chris collins', 'october 6 , 2012', '4.15', '1.71'], ['91', '3', 'front runners', 'steward lee', 'chris collins', 'october 13 , 2012', '4.16', '1.75'], ['92', '4', 'the soft war', 'kyle dunlevy', 'chris collins', 'october 20 , 2012', '4.17', '1.57'], ['93', '5', 'tipping points', 'bosco ng', 'chris collins', 'october 27 , 2012', '4.18', '1.42'], ['94', '6', 'the gathering', 'kyle dunlevy', 'christian taylor', 'november 3 , 2012', '4.22', '1.66'], ['95', '7', 'a test of strength', 'bosco ng', 'christian taylor', 'november 10 , 2012', '4.23', '1.74'], ['96', '8', 'bound for rescue', "brian kalin o'connell", 'christian taylor', 'november 17 , 2012', '4.24', '1.96'], ['97', '9', 'a necessary bond', 'danny keller', 'christian taylor', 'november 24 , 2012', '4.25', '1.39'], ['98', '10', 'secret weapons', 'danny keller', 'brent friedman', 'december 1 , 2012', '5.04', '1.46'], ['99', '11', 'a sunny day in the void', 'kyle dunlevy', 'brent friedman', 'december 8 , 2012', '5.05', '1.43'], ['100', '12', 'missing in action', 'steward lee', 'brent friedman', 'january 5 , 2013', '5.06', '1.74'], ['101', '13', 'point of no return', 'bosco ng', 'brent friedman', 'january 12 , 2013', '5.07', '1.47'], ['102', '14', 'eminence', 'kyle dunlevy', 'chris collins', 'january 19 , 2013', '5.01', '1.85'], ['103', '15', 'shades of reason', 'bosco ng', 'chris collins', 'january 26 , 2013', '5.02', '1.83'], ['104', '16', 'the lawless', "brian kalin o'connell", 'chris collins', 'february 2 , 2013', '5.03', '1.86'], ['105', '17', 'sabotage', "brian kalin o'connell", 'charles murray', 'february 9 , 2013', '5.08', '2.02'], ['106', '18', 'the jedi who knew too much', 'danny keller', 'charles murray', 'february 16 , 2013', '5.09', '1.64'], ['107', '19', 'to catch a jedi', 'kyle dunlevy', 'charles murray', 'february 23 , 2013', '5.10', '2.06']]
art competitions at the 1924 summer olympics
https://en.wikipedia.org/wiki/Art_competitions_at_the_1924_Summer_Olympics
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16581439-2.html.csv
superlative
france ( fra ) had the most bronze in art competitions at the 1924 summer olympics .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '2', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'bronze'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; bronze }'}, 'nation'], 'result': 'france ( fra )', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; bronze } ; nation }'}, 'france ( fra )'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; bronze } ; nation } ; france ( fra ) } = true', 'tointer': 'select the row whose bronze record of all rows is maximum . the nation record of this row is france ( fra ) .'}
eq { hop { argmax { all_rows ; bronze } ; nation } ; france ( fra ) } = true
select the row whose bronze record of all rows is maximum . the nation record of this row is france ( fra ) .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'bronze_5': 5, 'nation_6': 6, 'france (fra)_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'bronze_5': 'bronze', 'nation_6': 'nation', 'france (fra)_7': 'france ( fra )'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'bronze_5': [0], 'nation_6': [1], 'france (fra)_7': [2]}
['rank', 'nation', 'gold', 'silver', 'bronze', 'total']
[['1', 'luxembourg ( lux )', '1', '1', '0', '2'], ['2', 'france ( fra )', '1', '0', '2', '3'], ['3', 'greece ( gre )', '1', '0', '0', '1'], ['4', 'denmark ( den )', '0', '1', '1', '2'], ['4', 'ireland ( irl )', '0', '1', '1', '2'], ['6', 'great britain ( gbr )', '0', '1', '0', '1'], ['6', 'hungary ( hun )', '0', '1', '0', '1'], ['8', 'monaco ( mon )', '0', '0', '1', '1'], ['8', 'netherlands ( ned )', '0', '0', '1', '1']]
european film award for best short film
https://en.wikipedia.org/wiki/European_Film_Award_for_Best_Short_Film
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12152327-4.html.csv
majority
all of the films were nominated in the short film 2005 prix uip category .
{'scope': 'all', 'col': '1', 'most_or_all': 'all', 'criterion': 'equal', 'value': 'short film 2005 prix uip', 'subset': None}
{'func': 'all_str_eq', 'args': ['all_rows', 'category', 'short film 2005 prix uip'], 'result': True, 'ind': 0, 'tointer': 'for the category records of all rows , all of them fuzzily match to short film 2005 prix uip .', 'tostr': 'all_eq { all_rows ; category ; short film 2005 prix uip } = true'}
all_eq { all_rows ; category ; short film 2005 prix uip } = true
for the category records of all rows , all of them fuzzily match to short film 2005 prix uip .
1
1
{'all_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'category_3': 3, 'short film 2005 prix uip_4': 4}
{'all_str_eq_0': 'all_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'category_3': 'category', 'short film 2005 prix uip_4': 'short film 2005 prix uip'}
{'all_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'category_3': [0], 'short film 2005 prix uip_4': [0]}
['category', 'film', 'director ( s )', 'country', 'nominating festival']
[['short film 2005 prix uip', 'undressing my mother', 'ken wardrop', 'ireland', 'prix uip tampere'], ['short film 2005 prix uip', 'little terrorist', 'ashvin kumar', 'united kingdom', 'prix uip ghent'], ['short film 2005 prix uip', 'rendevú', 'ferenc cakó', 'hungary', 'prix uip valladolid'], ['short film 2005 prix uip', 'rain is falling', 'holger ernst', 'germany', 'prix uip valladolid'], ['short film 2005 prix uip', 'flatlife', 'jonas geirnaert', 'belgium', 'prix uip angers'], ['short film 2005 prix uip', 'hoi maya', 'claudia lorenz', 'switzerland', 'prix uip berlin'], ['short film 2005 prix uip', 'toz ( dust )', 'halit fatih kizilgok', 'turkey', 'prix uip cracow'], ['short film 2005 prix uip', 'bawke', 'hisham zaman', 'norway', 'prix uip grimstad'], ['short film 2005 prix uip', 'a serpente', 'sandro aguilar', 'portugal', 'prix uip vila do conde'], ['short film 2005 prix uip', 'scen nr 6882 ur mitt liv', 'ruben östlund', 'sweden', 'prix uip edinburgh'], ['short film 2005 prix uip', 'prva plata', 'alen drljević', 'bosnia and herzegovina', 'prix uip sarajevo'], ['short film 2005 prix uip', 'butterflies', 'max jacoby', 'luxembourg', 'prix uip venezia'], ['short film 2005 prix uip', 'minotauromaquia , pablo en el laberinto', 'juan pablo etcheverry', 'spain', 'prix uip drama']]
list of mountains of the british isles by relative height
https://en.wikipedia.org/wiki/List_of_mountains_of_the_British_Isles_by_relative_height
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1456056-1.html.csv
aggregation
there are a total of 119 mountains over 2000 ft in the british isles .
{'scope': 'all', 'col': '2', 'type': 'sum', 'result': '119', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': ['all_rows', 'total'], 'result': '119', 'ind': 0, 'tostr': 'sum { all_rows ; total }'}, '119'], 'result': True, 'ind': 1, 'tostr': 'round_eq { sum { all_rows ; total } ; 119 } = true', 'tointer': 'the sum of the total record of all rows is 119 .'}
round_eq { sum { all_rows ; total } ; 119 } = true
the sum of the total record of all rows is 119 .
2
2
{'eq_1': 1, 'result_2': 2, 'sum_0': 0, 'all_rows_3': 3, 'total_4': 4, '119_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'sum_0': 'sum', 'all_rows_3': 'all_rows', 'total_4': 'total', '119_5': '119'}
{'eq_1': [2], 'result_2': [], 'sum_0': [1], 'all_rows_3': [0], 'total_4': [0], '119_5': [1]}
['country', 'total', '4000ft +', '3500 - 4000ft', '3000 - 3500ft', '2500 - 3000ft', '2000 - 2500ft']
[['scotland', '82', '2', '21', '31', '21', '7'], ['ireland', '24', '0', '0', '4', '8', '12'], ['wales', '7', '0', '1', '2', '4', '0'], ['england', '4', '0', '0', '3', '1', '0'], ['northern ireland', '1', '0', '0', '0', '1', '0'], ['isle of man', '1', '0', '0', '0', '0', '1']]
2008 twenty20 cup
https://en.wikipedia.org/wiki/2008_Twenty20_Cup
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17900317-4.html.csv
comparative
joe denly scored a higher amount of runs than phil mustard in the 2008 twenty20 cup .
{'row_1': '1', 'row_2': '10', 'col': '5', 'col_other': '1', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'player', 'joe denly'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose player record fuzzily matches to joe denly .', 'tostr': 'filter_eq { all_rows ; player ; joe denly }'}, 'runs'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; player ; joe denly } ; runs }', 'tointer': 'select the rows whose player record fuzzily matches to joe denly . take the runs record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'player', 'phil mustard'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose player record fuzzily matches to phil mustard .', 'tostr': 'filter_eq { all_rows ; player ; phil mustard }'}, 'runs'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; player ; phil mustard } ; runs }', 'tointer': 'select the rows whose player record fuzzily matches to phil mustard . take the runs record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; player ; joe denly } ; runs } ; hop { filter_eq { all_rows ; player ; phil mustard } ; runs } } = true', 'tointer': 'select the rows whose player record fuzzily matches to joe denly . take the runs record of this row . select the rows whose player record fuzzily matches to phil mustard . take the runs record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; player ; joe denly } ; runs } ; hop { filter_eq { all_rows ; player ; phil mustard } ; runs } } = true
select the rows whose player record fuzzily matches to joe denly . take the runs record of this row . select the rows whose player record fuzzily matches to phil mustard . take the runs record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'player_7': 7, 'joe denly_8': 8, 'runs_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'player_11': 11, 'phil mustard_12': 12, 'runs_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'player_7': 'player', 'joe denly_8': 'joe denly', 'runs_9': 'runs', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'player_11': 'player', 'phil mustard_12': 'phil mustard', 'runs_13': 'runs'}
{'greater_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'player_7': [0], 'joe denly_8': [0], 'runs_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'player_11': [1], 'phil mustard_12': [1], 'runs_13': [3]}
['player', 'team', 'matches', 'inns', 'runs', 'balls', 's / rate', '100s', 'average']
[['joe denly', 'kent spitfires', '13', '13', '451', '379', '118.99', '0', '34.69'], ['anthony mcgrath', 'yorkshire carnegie', '9', '9', '392', '296', '132.43', '0', '56.00'], ['murray goodwin', 'sussex sharks', '10', '10', '345', '273', '126.37', '0', '43.13'], ['robert key', 'kent spitfires', '13', '13', '345', '258', '133.72', '0', '26.53'], ['michael carberry', 'hampshire hawks', '10', '10', '334', '268', '124.62', '0', '37.11'], ['graham napier', 'essex eagles', '12', '11', '326', '167', '195.20', '1', '32.60'], ['michael lumb', 'hampshire hawks', '10', '10', '315', '209', '150.71', '0', '31.50'], ['marcus trescothick', 'somerset sabres', '8', '8', '306', '185', '165.40', '1', '38.25'], ['dawid malan', 'middlesex crusaders', '12', '10', '306', '220', '139.09', '1', '61.20'], ['phil mustard', 'durham dynamos', '11', '11', '303', '224', '135.26', '0', '27.54']]
lloyd ruby
https://en.wikipedia.org/wiki/Lloyd_Ruby
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1235044-1.html.csv
count
there were six occasions where lloyd ruby finished two hundred laps .
{'scope': 'all', 'criterion': 'equal', 'value': '200', 'result': '6', 'col': '6', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'laps', '200'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose laps record is equal to 200 .', 'tostr': 'filter_eq { all_rows ; laps ; 200 }'}], 'result': '6', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; laps ; 200 } }', 'tointer': 'select the rows whose laps record is equal to 200 . the number of such rows is 6 .'}, '6'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; laps ; 200 } } ; 6 } = true', 'tointer': 'select the rows whose laps record is equal to 200 . the number of such rows is 6 .'}
eq { count { filter_eq { all_rows ; laps ; 200 } } ; 6 } = true
select the rows whose laps record is equal to 200 . the number of such rows is 6 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'laps_5': 5, '200_6': 6, '6_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'laps_5': 'laps', '200_6': '200', '6_7': '6'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'laps_5': [0], '200_6': [0], '6_7': [2]}
['year', 'start', 'qual', 'rank', 'finish', 'laps']
[['1960', '12', '144.208', '15', '7', '200'], ['1961', '25', '146.909', '2', '8', '200'], ['1962', '24', '146.520', '24', '8', '200'], ['1963', '19', '149.123', '15', '13', '200'], ['1964', '7', '153.932', '8', '3', '200'], ['1965', '9', '157.246', '9', '11', '184'], ['1966', '5', '162.433', '5', '11', '166'], ['1967', '7', '165.229', '8', '33', '3'], ['1968', '5', '167.613', '5', '5', '200'], ['1969', '20', '166.428', '20', '20', '105'], ['1970', '25', '168.895', '6', '27', '54'], ['1971', '7', '173.821', '7', '11', '174'], ['1972', '11', '181.415', '20', '6', '196'], ['1973', '15', '191.622', '18', '27', '21'], ['1974', '18', '181.699', '20', '9', '187'], ['1975', '6', '186.984', '7', '32', '7'], ['1976', '30', '186.480', '7', '11', '100'], ['1977', '19', '190.840', '11', '27', '34']]
travis parrott
https://en.wikipedia.org/wiki/Travis_Parrott
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18149740-3.html.csv
majority
the majority of travis parrott 's tournaments were played in the united states .
{'scope': 'all', 'col': '2', 'most_or_all': 'most', 'criterion': 'fuzzily_match', 'value': 'us', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'tournament', 'us'], 'result': True, 'ind': 0, 'tointer': 'for the tournament records of all rows , most of them fuzzily match to us .', 'tostr': 'most_eq { all_rows ; tournament ; us } = true'}
most_eq { all_rows ; tournament ; us } = true
for the tournament records of all rows , most of them fuzzily match to us .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'tournament_3': 3, 'us_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'tournament_3': 'tournament', 'us_4': 'us'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'tournament_3': [0], 'us_4': [0]}
['date', 'tournament', 'surface', 'partnering', 'opponent in the final', 'score']
[['august 16 , 2004', 'washington , dc , united states', 'hard', 'dmitry tursunov', 'chris haggard robbie koenig', '7 - 6 3 , 6 - 1'], ['july 4 , 2005', 'newport , us', 'grass', 'graydon oliver', 'jordan kerr jim thomas', '7 - 6 5 , 7 - 6 5'], ['april 14 , 2008', 'valencia , spain', 'clay', 'filip polášek', 'máximo gonzález juan mónaco', '7 - 5 , 7 - 5'], ['august 4 , 2008', 'los angeles , us', 'hard', 'dušan vemić', 'rohan bopanna eric butorac', '7 - 6 5 , 7 - 6 5'], ['february 22 , 2009', 'memphis , tennessee , us', 'hard', 'filip polášek', 'mardy fish mark knowles', '7 - 6 7 , 6 - 1'], ['june 19 , 2009', 'eastbourne , united kingdom', 'grass', 'filip polášek', 'mariusz fyrstenberg marcin matkowski', '6 - 4 , 6 - 4']]
1970 isle of man tt
https://en.wikipedia.org/wiki/1970_Isle_of_Man_TT
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10301911-3.html.csv
comparative
stan woods finished the race with a better time than tom loughridge .
{'row_1': '3', 'row_2': '7', 'col': '5', 'col_other': '2', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'rider', 'stan woods'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose rider record fuzzily matches to stan woods .', 'tostr': 'filter_eq { all_rows ; rider ; stan woods }'}, 'time'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; rider ; stan woods } ; time }', 'tointer': 'select the rows whose rider record fuzzily matches to stan woods . take the time record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'rider', 'tom loughridge'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose rider record fuzzily matches to tom loughridge .', 'tostr': 'filter_eq { all_rows ; rider ; tom loughridge }'}, 'time'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; rider ; tom loughridge } ; time }', 'tointer': 'select the rows whose rider record fuzzily matches to tom loughridge . take the time record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; rider ; stan woods } ; time } ; hop { filter_eq { all_rows ; rider ; tom loughridge } ; time } } = true', 'tointer': 'select the rows whose rider record fuzzily matches to stan woods . take the time record of this row . select the rows whose rider record fuzzily matches to tom loughridge . take the time record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; rider ; stan woods } ; time } ; hop { filter_eq { all_rows ; rider ; tom loughridge } ; time } } = true
select the rows whose rider record fuzzily matches to stan woods . take the time record of this row . select the rows whose rider record fuzzily matches to tom loughridge . take the time record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'rider_7': 7, 'stan woods_8': 8, 'time_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'rider_11': 11, 'tom loughridge_12': 12, 'time_13': 13}
{'less_4': 'less', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'rider_7': 'rider', 'stan woods_8': 'stan woods', 'time_9': 'time', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'rider_11': 'rider', 'tom loughridge_12': 'tom loughridge', 'time_13': 'time'}
{'less_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'rider_7': [0], 'stan woods_8': [0], 'time_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'rider_11': [1], 'tom loughridge_12': [1], 'time_13': [3]}
['rank', 'rider', 'team', 'speed', 'time']
[['1', 'chas mortimer', 'ducati', '84.87 mph', '2:13.23.4'], ['2', 'john williams', 'honda', '84.80 mph', '2:13.29.0'], ['3', 'stan woods', 'suzuki', '84.06 mph', '2:14.40.6'], ['4', 'ghunter', 'ducati', '83.94 mph', '2:14.52.4'], ['5', 'roy boughley', 'honda', '82.26 mph', '2:17.37.6'], ['6', 'raymond ashcroft', 'suzuki', '76.59 mph', '2:27.48.8'], ['7', 'tom loughridge', 'suzuki', '76.32 mph', '2:28.19.0'], ['8', 'cluton', 'ducati', '72.50 mph', '2:36.08.0']]
list of cities , towns and villages in vojvodina
https://en.wikipedia.org/wiki/List_of_cities%2C_towns_and_villages_in_Vojvodina
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-2562572-37.html.csv
count
considering the towns and villages in vojvodina , 3 cities have the orthodox christianity as their dominant religion .
{'scope': 'all', 'criterion': 'equal', 'value': 'orthodox christianity', 'result': '3', 'col': '6', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'dominant religion ( 2002 )', 'orthodox christianity'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose dominant religion ( 2002 ) record fuzzily matches to orthodox christianity .', 'tostr': 'filter_eq { all_rows ; dominant religion ( 2002 ) ; orthodox christianity }'}], 'result': '3', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; dominant religion ( 2002 ) ; orthodox christianity } }', 'tointer': 'select the rows whose dominant religion ( 2002 ) record fuzzily matches to orthodox christianity . the number of such rows is 3 .'}, '3'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; dominant religion ( 2002 ) ; orthodox christianity } } ; 3 } = true', 'tointer': 'select the rows whose dominant religion ( 2002 ) record fuzzily matches to orthodox christianity . the number of such rows is 3 .'}
eq { count { filter_eq { all_rows ; dominant religion ( 2002 ) ; orthodox christianity } } ; 3 } = true
select the rows whose dominant religion ( 2002 ) record fuzzily matches to orthodox christianity . the number of such rows is 3 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'dominant religion (2002)_5': 5, 'Orthodox Christianity_6': 6, '3_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'dominant religion (2002)_5': 'dominant religion ( 2002 )', 'Orthodox Christianity_6': 'orthodox christianity', '3_7': '3'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'dominant religion (2002)_5': [0], 'Orthodox Christianity_6': [0], '3_7': [2]}
['settlement', 'cyrillic name other names', 'type', 'population ( 2011 )', 'largest ethnic group ( 2002 )', 'dominant religion ( 2002 )']
[['nova crnja', 'нова црња ( hungarian : magyarcsernye )', 'village', '1509', 'hungarians', 'catholic christianity'], ['aleksandrovo', 'александрово', 'village', '2130', 'serbs', 'orthodox christianity'], ['radojevo', 'радојево', 'village', '1056', 'serbs', 'orthodox christianity'], ['srpska crnja', 'српска црња', 'village', '3685', 'serbs', 'orthodox christianity'], ['toba', 'тоба ( hungarian : tóba )', 'village', '518', 'hungarians', 'catholic christianity']]
roman catholic archdiocese of boston
https://en.wikipedia.org/wiki/Roman_Catholic_Archdiocese_of_Boston
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1692165-1.html.csv
count
in the roman catholic archdiocese of boston , when there are over 60 parishes , there were two regions that had under 5 high schools .
{'scope': 'subset', 'criterion': 'less_than', 'value': '5', 'result': '2', 'col': '4', 'subset': {'col': '3', 'criterion': 'greater_than', 'value': '60'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_less', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'parishes', '60'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; parishes ; 60 }', 'tointer': 'select the rows whose parishes record is greater than 60 .'}, 'high schools', '5'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose parishes record is greater than 60 . among these rows , select the rows whose high schools record is less than 5 .', 'tostr': 'filter_less { filter_greater { all_rows ; parishes ; 60 } ; high schools ; 5 }'}], 'result': '2', 'ind': 2, 'tostr': 'count { filter_less { filter_greater { all_rows ; parishes ; 60 } ; high schools ; 5 } }', 'tointer': 'select the rows whose parishes record is greater than 60 . among these rows , select the rows whose high schools record is less than 5 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_less { filter_greater { all_rows ; parishes ; 60 } ; high schools ; 5 } } ; 2 } = true', 'tointer': 'select the rows whose parishes record is greater than 60 . among these rows , select the rows whose high schools record is less than 5 . the number of such rows is 2 .'}
eq { count { filter_less { filter_greater { all_rows ; parishes ; 60 } ; high schools ; 5 } } ; 2 } = true
select the rows whose parishes record is greater than 60 . among these rows , select the rows whose high schools record is less than 5 . the number of such rows is 2 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_less_1': 1, 'filter_greater_0': 0, 'all_rows_5': 5, 'parishes_6': 6, '60_7': 7, 'high schools_8': 8, '5_9': 9, '2_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_less_1': 'filter_less', 'filter_greater_0': 'filter_greater', 'all_rows_5': 'all_rows', 'parishes_6': 'parishes', '60_7': '60', 'high schools_8': 'high schools', '5_9': '5', '2_10': '2'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_less_1': [2], 'filter_greater_0': [1], 'all_rows_5': [0], 'parishes_6': [0], '60_7': [0], 'high schools_8': [1], '5_9': [1], '2_10': [3]}
['pastoral region', 'episcopal vicar', 'parishes', 'high schools', 'elementary schools', 'cemeteries']
[['central', 'robert francis hennessey', '64', '6', '29', '8'], ['merrimack', 'currently vacant', '49', '3', '( tbd )', '4'], ['north', 'peter john uglietto', '64', '4', '6', '11'], ['south', 'john anthony dooher', '59', '3', '( tbd )', '3'], ['west', 'walter james edyvean', '67', '3', '11', '7']]
locomotives of the southern railway
https://en.wikipedia.org/wiki/Locomotives_of_the_Southern_Railway
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1169552-12.html.csv
aggregation
from 1900 to 1914 , the southern railway build a total of 910 locomotives .
{'scope': 'subset', 'col': '5', 'type': 'sum', 'result': '910', 'subset': {'col': '3', 'criterion': 'less_than', 'value': '1914'}}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': [{'func': 'filter_less', 'args': ['all_rows', 'date', '1914'], 'result': None, 'ind': 0, 'tostr': 'filter_less { all_rows ; date ; 1914 }', 'tointer': 'select the rows whose date record is less than 1914 .'}, 'no built'], 'result': '910', 'ind': 1, 'tostr': 'sum { filter_less { all_rows ; date ; 1914 } ; no built }'}, '910'], 'result': True, 'ind': 2, 'tostr': 'round_eq { sum { filter_less { all_rows ; date ; 1914 } ; no built } ; 910 } = true', 'tointer': 'select the rows whose date record is less than 1914 . the sum of the no built record of these rows is 910 .'}
round_eq { sum { filter_less { all_rows ; date ; 1914 } ; no built } ; 910 } = true
select the rows whose date record is less than 1914 . the sum of the no built record of these rows is 910 .
3
3
{'eq_2': 2, 'result_3': 3, 'sum_1': 1, 'filter_less_0': 0, 'all_rows_4': 4, 'date_5': 5, '1914_6': 6, 'no built_7': 7, '910_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'sum_1': 'sum', 'filter_less_0': 'filter_less', 'all_rows_4': 'all_rows', 'date_5': 'date', '1914_6': '1914', 'no built_7': 'no built', '910_8': '910'}
{'eq_2': [3], 'result_3': [], 'sum_1': [2], 'filter_less_0': [1], 'all_rows_4': [0], 'date_5': [0], '1914_6': [0], 'no built_7': [1], '910_8': [2]}
['class', 'wheels', 'date', 'builder', 'no built']
[['g', '4 - 4 - 0', '1900', 'neilson', '5'], ['c', '0 - 6 - 0', '1900 - 4', 'secr ashford ( 70 )', '109'], ['c', '0 - 6 - 0', '1901 - 4', 'lcdr longhedge ( 9 )', '109'], ['c', '0 - 6 - 0', '1900', 'neilson ( 15 )', '109'], ['c', '0 - 6 - 0', '1900', 'sharp stewart ( 15 )', '109'], ['r1', '0 - 4 - 4t', '1900', 'sharp stewart', '15'], ['h', '0 - 4 - 4t', '1904 - 15', 'secr ashford', '66'], ['d', '4 - 4 - 0', '1901', 'sharp stewart ( 10 )', '51'], ['d', '4 - 4 - 0', '1903', 'stephenson ( 5 )', '51'], ['d', '4 - 4 - 0', '1903', 'vulcan foundry ( 5 )', '51'], ['d', '4 - 4 - 0', '1903', 'dã ¼ bs ( 10 )', '51'], ['d', '4 - 4 - 0', '1901 - 7', 'secr ashford ( 21 )', '51'], ['terrier', '0 - 6 - 0t', '1875', 'lbscr brighton', '50'], ['e', '4 - 4 - 0', '1905 - 10', 'secr ashford', '26'], ['p', '0 - 6 - 0t', '1909 - 10', 'secr ashford', '8'], ['j', '0 - 6 - 4t', '1913', 'secr ashford', '5'], ['l', '4 - 4 - 0', '1914', 'borsig ( 10 )', '22'], ['l', '4 - 4 - 0', '1914', 'beyer - peacock ( 12 )', '22']]
madawaska county , new brunswick
https://en.wikipedia.org/wiki/Madawaska_County%2C_New_Brunswick
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-171250-2.html.csv
majority
most of the parishes of madawaska county , new brunswick , have a population over 200 .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'greater_than', 'value': '200', 'subset': None}
{'func': 'most_greater', 'args': ['all_rows', 'population', '200'], 'result': True, 'ind': 0, 'tointer': 'for the population records of all rows , most of them are greater than 200 .', 'tostr': 'most_greater { all_rows ; population ; 200 } = true'}
most_greater { all_rows ; population ; 200 } = true
for the population records of all rows , most of them are greater than 200 .
1
1
{'most_greater_0': 0, 'result_1': 1, 'all_rows_2': 2, 'population_3': 3, '200_4': 4}
{'most_greater_0': 'most_greater', 'result_1': 'true', 'all_rows_2': 'all_rows', 'population_3': 'population', '200_4': '200'}
{'most_greater_0': [1], 'result_1': [], 'all_rows_2': [0], 'population_3': [0], '200_4': [0]}
['official name', 'status', 'area km 2', 'population', 'census ranking']
[['saint - joseph', 'parish', '321.87', '1696', '1472 of 5008'], ['saint - jacques', 'parish', '298.82', '1607', '1531 of 5008'], ['sainte - anne', 'parish', '369.25', '1081', '1942 of 5008'], ['saint - léonard', 'parish', '343.95', '1039', '2011 of 5008'], ['saint - basile', 'parish', '129.73', '799', '2364 of 5008'], ['rivière - verte', 'parish', '715.58', '791', '2384 of 5008'], ['saint - françois', 'parish', '344.70', '754', '2458 of 5008'], ['lac - baker', 'parish', '57.38', '566', '2847 of 5008'], ['saint - hilaire', 'parish', '41.55', '531', '2928 of 5008'], ['notre - dame - de - lourdes', 'parish', '188.63', '284', '3729 of 5008'], ['clair', 'parish', '44.29', '282', '3737 of 5008'], ['baker brook', 'parish', '125.69', '177', '4103 of 5008'], ['madawaska', 'parish', '173.32', '10', '4889 of 5008']]
2008 - 09 cardiff city f.c. season
https://en.wikipedia.org/wiki/2008%E2%80%9309_Cardiff_City_F.C._season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-17596418-5.html.csv
majority
most of the start sources of the 2008-09 cardiff city f.c. season were bbc sport .
{'scope': 'all', 'col': '9', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'bbc sport', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'start source', 'bbc sport'], 'result': True, 'ind': 0, 'tointer': 'for the start source records of all rows , most of them fuzzily match to bbc sport .', 'tostr': 'most_eq { all_rows ; start source ; bbc sport } = true'}
most_eq { all_rows ; start source ; bbc sport } = true
for the start source records of all rows , most of them fuzzily match to bbc sport .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'start source_3': 3, 'bbc sport_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'start source_3': 'start source', 'bbc sport_4': 'bbc sport'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'start source_3': [0], 'bbc sport_4': [0]}
['no', 'p', 'name', 'country', 'age', 'loan club', 'started', 'ended', 'start source', 'end source']
[['13', 'gk', 'heaton', 'eng', '23', 'manchester united', '5 may', '30 june', 'bbc sport', 'south wales echo'], ['9', 'fw', 'e johnson', 'usa', '25', 'fulham', '22 august', '30 june', 'bbc sport', 'south wales echo'], ['18', 'fw', 'chopra', 'eng', '25', 'sunderland', '6 november', '30 december', 'bbc sport', 'bbc sport'], ['14', 'mf', 'routledge', 'eng', '23', 'aston villa', '20 november', '2 january', 'cardiff city', 'bbc sport'], ['14', 'mf', 'owusu - abeyie', 'ghana', '23', 'spartak moscow', '31 january', '30 june', 'bbc sport', 'south wales echo'], ['18', 'fw', 'chopra', 'eng', '25', 'sunderland', '2 february', '30 june', 'bbc sport', 'south wales echo'], ['22', 'gk', 'konstantopoulos', 'gre', '30', 'coventry city', '9 february', '30 june', 'bbc sport', 'south wales echo']]
european orienteering championships
https://en.wikipedia.org/wiki/European_Orienteering_Championships
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17760670-3.html.csv
unique
the year 2000 is the only year that brigitte wolf won the silver medal in the european orienteering championships .
{'scope': 'all', 'row': '3', 'col': '3', 'col_other': '1', 'criterion': 'equal', 'value': 'brigitte wolf', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'silver', 'brigitte wolf'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose silver record fuzzily matches to brigitte wolf .', 'tostr': 'filter_eq { all_rows ; silver ; brigitte wolf }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; silver ; brigitte wolf } }', 'tointer': 'select the rows whose silver record fuzzily matches to brigitte wolf . there is only one such row in the table .'}, {'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'silver', 'brigitte wolf'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose silver record fuzzily matches to brigitte wolf .', 'tostr': 'filter_eq { all_rows ; silver ; brigitte wolf }'}, 'year'], 'result': '2000', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; silver ; brigitte wolf } ; year }'}, '2000'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; silver ; brigitte wolf } ; year } ; 2000 }', 'tointer': 'the year record of this unqiue row is 2000 .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; silver ; brigitte wolf } } ; eq { hop { filter_eq { all_rows ; silver ; brigitte wolf } ; year } ; 2000 } } = true', 'tointer': 'select the rows whose silver record fuzzily matches to brigitte wolf . there is only one such row in the table . the year record of this unqiue row is 2000 .'}
and { only { filter_eq { all_rows ; silver ; brigitte wolf } } ; eq { hop { filter_eq { all_rows ; silver ; brigitte wolf } ; year } ; 2000 } } = true
select the rows whose silver record fuzzily matches to brigitte wolf . there is only one such row in the table . the year record of this unqiue row is 2000 .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'silver_7': 7, 'brigitte wolf_8': 8, 'eq_3': 3, 'num_hop_2': 2, 'year_9': 9, '2000_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'silver_7': 'silver', 'brigitte wolf_8': 'brigitte wolf', 'eq_3': 'eq', 'num_hop_2': 'num_hop', 'year_9': 'year', '2000_10': '2000'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'silver_7': [0], 'brigitte wolf_8': [0], 'eq_3': [4], 'num_hop_2': [3], 'year_9': [2], '2000_10': [3]}
['year', 'gold', 'silver', 'bronze', 'notes']
[['1962', 'ulla lindkvist', 'marit ãkern', 'emy gauffin', '7.5 km , 7controls ( individual event )'], ['1964', 'margrit thommen', 'ann - marie wallsten', 'ulla lindkvist', '8.1 km , 10controls ( individual event )'], ['2000', 'hanne staff', 'brigitte wolf', 'yvette baker', 'classic distance'], ['2002', 'simone niggli - luder', 'hanne staff', 'birgitte husebye', '6.7 km , 17controls'], ['2004', 'simone niggli - luder', 'emma engstrand', 'tatiana ryabkina', '9.6 km , 21controls'], ['2006', 'simone niggli - luder', 'heli jukkola', 'minna kauppi', '10.93 km , 25controls'], ['2008', 'anne margrethe hausken', 'tatiana ryabkina', 'emma engstrand', '11.0 km , 24controls'], ['2010', 'simone niggli - luder', 'dana brozkova', 'helena jansson', '11.0 km , 26controls'], ['2012', 'simone niggli - luder', 'tatiana ryabkina', 'minna kauppi', '9.76 km , 24controls']]
economy of south america
https://en.wikipedia.org/wiki/Economy_of_South_America
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1222653-10.html.csv
aggregation
the economy of south america has a total of 8429.43027 usd .
{'scope': 'all', 'col': '4', 'type': 'sum', 'result': '8429.43027', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': ['all_rows', '1 usd ='], 'result': '8429.43027', 'ind': 0, 'tostr': 'sum { all_rows ; 1 usd = }'}, '8429.43027'], 'result': True, 'ind': 1, 'tostr': 'round_eq { sum { all_rows ; 1 usd = } ; 8429.43027 } = true', 'tointer': 'the sum of the 1 usd = record of all rows is 8429.43027 .'}
round_eq { sum { all_rows ; 1 usd = } ; 8429.43027 } = true
the sum of the 1 usd = record of all rows is 8429.43027 .
2
2
{'eq_1': 1, 'result_2': 2, 'sum_0': 0, 'all_rows_3': 3, '1 usd =_4': 4, '8429.43027_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'sum_0': 'sum', 'all_rows_3': 'all_rows', '1 usd =_4': '1 usd =', '8429.43027_5': '8429.43027'}
{'eq_1': [2], 'result_2': [], 'sum_0': [1], 'all_rows_3': [0], '1 usd =_4': [0], '8429.43027_5': [1]}
['country', 'currency', '1 euro =', '1 usd =', 'central bank']
[['argentina', 'argentine peso ( ars )', '5.72079', '4.34950', 'central bank of argentina'], ['bolivia', 'bolivian boliviano ( bob )', '9.02081', '6.86000', 'central bank of bolivia'], ['brazil', 'brazilian real ( brl )', '2.25592', '1.71577', 'central bank of brazil'], ['chile', 'chilean peso ( clp )', '635.134', '483.050', 'central bank of chile'], ['colombia', 'colombian peso ( cop )', '2353.40', '1790.00', 'bank of the republic'], ['ecuador', 'us dollar ( usd )', '1.46611', '1', 'federal reserve'], ['guyana', 'guyanese dollar ( gyd )', '264.192', '200.950', 'bank of guyana'], ['paraguay', 'paraguayan guaranã\xad ( pyg )', '4500.00', '5916.27', 'central bank of paraguay'], ['peru', 'peruvian nuevo sol ( pen )', '3.53004', '2.68500', 'central reserve bank of peru'], ['suriname', 'surinamese dollar ( srd )', '4.27296', '3.25000', 'central bank of suriname'], ['uruguay', 'uruguayan peso ( uyu )', '25.3797', '19.3000', 'central bank of uruguay']]
robby gordon
https://en.wikipedia.org/wiki/Robby_Gordon
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1507423-4.html.csv
count
robby gordon had top five placings in ten different years .
{'scope': 'all', 'criterion': 'not_equal', 'value': '0', 'result': '10', 'col': '4', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_not_eq', 'args': ['all_rows', 'top 5', '0'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose top 5 record is not equal to 0 .', 'tostr': 'filter_not_eq { all_rows ; top 5 ; 0 }'}], 'result': '10', 'ind': 1, 'tostr': 'count { filter_not_eq { all_rows ; top 5 ; 0 } }', 'tointer': 'select the rows whose top 5 record is not equal to 0 . the number of such rows is 10 .'}, '10'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_not_eq { all_rows ; top 5 ; 0 } } ; 10 } = true', 'tointer': 'select the rows whose top 5 record is not equal to 0 . the number of such rows is 10 .'}
eq { count { filter_not_eq { all_rows ; top 5 ; 0 } } ; 10 } = true
select the rows whose top 5 record is not equal to 0 . the number of such rows is 10 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_not_eq_0': 0, 'all_rows_4': 4, 'top 5_5': 5, '0_6': 6, '10_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_not_eq_0': 'filter_not_eq', 'all_rows_4': 'all_rows', 'top 5_5': 'top 5', '0_6': '0', '10_7': '10'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_not_eq_0': [1], 'all_rows_4': [0], 'top 5_5': [0], '0_6': [0], '10_7': [2]}
['year', 'starts', 'wins', 'top 5', 'top 10', 'poles', 'avg start', 'avg finish', 'winnings', 'position', 'team ( s )']
[['1991', '2', '0', '0', '0', '0', '35.0', '22.0', '27625', '55th', '90 donlavey racing'], ['1993', '1', '0', '0', '0', '0', '14.0', '42.0', '17665', '93rd', '28 robert yates racing'], ['1994', '1', '0', '0', '0', '0', '38.0', '38.0', '7965', '76th', '07 kranefuss - haas racing'], ['1996', '3', '0', '0', '0', '0', '17.3', '40.7', '33915', '57th', '14 dale earnhardt inc 40 team sabco'], ['1997', '20', '0', '1', '1', '1', '25.3', '29.6', '622439', '40th', '40 team sabco'], ['1998', '1', '0', '0', '0', '0', '18.0', '37.0', '24765', '67th', '96 american equipment racing'], ['2000', '17', '0', '1', '2', '0', '29.9', '29.2', '620781', '43rd', '13 team menard'], ['2002', '36', '0', '1', '5', '0', '18.4', '21.1', '3342703', '20th', '31 richard childress racing'], ['2003', '36', '2', '4', '10', '0', '23.1', '19.7', '4157064', '16th', '31 richard childress racing'], ['2004', '36', '0', '2', '6', '0', '23.2', '21.2', '4225719', '23rd', '31 richard childress racing'], ['2005', '29', '0', '1', '2', '0', '27.0', '30.1', '2271313', '37th', '7 robby gordon motorsports'], ['2006', '36', '0', '1', '3', '0', '27.5', '25.3', '3143787', '30th', '7 robby gordon motorsports'], ['2007', '35', '0', '1', '2', '0', '33.9', '25.8', '3090004', '26th', '7 robby gordon motorsports'], ['2008', '36', '0', '0', '3', '0', '30.9', '29.0', '3816362', '33rd', '7 robby gordon motorsports'], ['2009', '35', '0', '1', '1', '0', '30.1', '28.5', '3860582', '34th', '7 robby gordon motorsports'], ['2010', '27', '0', '1', '1', '0', '33.8', '29.1', '2913816', '34th', '7 / 07 robby gordon motorsports'], ['2011', '25', '0', '0', '0', '0', '36.5', '33.4', '2271891', '34th', '7 robby gordon motorsports']]
2007 new orleans voodoo season
https://en.wikipedia.org/wiki/2007_New_Orleans_VooDoo_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11783481-3.html.csv
aggregation
the total combined amount of yards by players in the 2007 new orleans voodoo season was 178 .
{'scope': 'all', 'col': '3', 'type': 'sum', 'result': '178', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': ['all_rows', 'yards'], 'result': '178', 'ind': 0, 'tostr': 'sum { all_rows ; yards }'}, '178'], 'result': True, 'ind': 1, 'tostr': 'round_eq { sum { all_rows ; yards } ; 178 } = true', 'tointer': 'the sum of the yards record of all rows is 178 .'}
round_eq { sum { all_rows ; yards } ; 178 } = true
the sum of the yards record of all rows is 178 .
2
2
{'eq_1': 1, 'result_2': 2, 'sum_0': 0, 'all_rows_3': 3, 'yards_4': 4, '178_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'sum_0': 'sum', 'all_rows_3': 'all_rows', 'yards_4': 'yards', '178_5': '178'}
{'eq_1': [2], 'result_2': [], 'sum_0': [1], 'all_rows_3': [0], 'yards_4': [0], '178_5': [1]}
['player', 'car', 'yards', 'avg', "td 's", 'long']
[['dan curran', '27', '60', '2.2', '3', '13'], ['steve bellisari', '30', '54', '1.8', '7', '20'], ['james lynch', '26', '47', '1.8', '5', '15'], ['henry bryant', '14', '8', '0.6', '1', '2'], ['kenny henderson', '5', '7', '1.4', '2', '6'], ['andy kelly', '5', '0', '0', '0', '0'], ['wendall williams', '1', '2', '2', '0', '2']]
2008 national league 1
https://en.wikipedia.org/wiki/2008_National_League_1
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-19179465-1.html.csv
majority
all teams which participated in the 2008 national league 1 season games each played 18 matches .
{'scope': 'all', 'col': '3', 'most_or_all': 'all', 'criterion': 'equal', 'value': '18', 'subset': None}
{'func': 'all_eq', 'args': ['all_rows', 'played', '18'], 'result': True, 'ind': 0, 'tointer': 'for the played records of all rows , all of them are equal to 18 .', 'tostr': 'all_eq { all_rows ; played ; 18 } = true'}
all_eq { all_rows ; played ; 18 } = true
for the played records of all rows , all of them are equal to 18 .
1
1
{'all_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'played_3': 3, '18_4': 4}
{'all_eq_0': 'all_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'played_3': 'played', '18_4': '18'}
{'all_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'played_3': [0], '18_4': [0]}
['position', 'club', 'played', 'won', 'drawn', 'lost', 'pts for', 'pts agst', 'pts diff', 'bp', 'points']
[['1', 'salford city reds', '18', '12', '3', '3', '614', '302', '312', '3', '45'], ['2', 'celtic crusaders', '18', '12', '0', '6', '511', '391', '120', '4', '40'], ['3', 'halifax', '18', '11', '1', '6', '634', '514', '120', '3', '38'], ['4', 'leigh centurions', '18', '10', '0', '8', '448', '448', '0', '4', '34'], ['5', 'whitehaven', '18', '10', '0', '8', '420', '399', '21', '2', '32'], ['6', 'widnes vikings', '18', '10', '2', '6', '453', '410', '43', '5', '30'], ['7', 'sheffield eagles', '18', '8', '1', '9', '425', '530', '- 105', '3', '29'], ['8', 'featherstone rovers', '18', '6', '1', '11', '452', '515', '- 63', '6', '26'], ['9', 'batley bulldogs', '18', '5', '0', '13', '387', '538', '- 151', '8', '23']]
canoeing at the 2008 summer olympics - men 's c - 1 1000 metres
https://en.wikipedia.org/wiki/Canoeing_at_the_2008_Summer_Olympics_%E2%80%93_Men%27s_C-1_1000_metres
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18646220-4.html.csv
comparative
the competitor from france was faster than the one from russia in the men 's 1000 meter canoeing event in the 2008 olympics .
{'row_1': '2', 'row_2': '5', 'col': '4', 'col_other': '3', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'country', 'france'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose country record fuzzily matches to france .', 'tostr': 'filter_eq { all_rows ; country ; france }'}, 'time'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; country ; france } ; time }', 'tointer': 'select the rows whose country record fuzzily matches to france . take the time record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'country', 'russia'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose country record fuzzily matches to russia .', 'tostr': 'filter_eq { all_rows ; country ; russia }'}, 'time'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; country ; russia } ; time }', 'tointer': 'select the rows whose country record fuzzily matches to russia . take the time record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; country ; france } ; time } ; hop { filter_eq { all_rows ; country ; russia } ; time } } = true', 'tointer': 'select the rows whose country record fuzzily matches to france . take the time record of this row . select the rows whose country record fuzzily matches to russia . take the time record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; country ; france } ; time } ; hop { filter_eq { all_rows ; country ; russia } ; time } } = true
select the rows whose country record fuzzily matches to france . take the time record of this row . select the rows whose country record fuzzily matches to russia . take the time record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'country_7': 7, 'france_8': 8, 'time_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'country_11': 11, 'russia_12': 12, 'time_13': 13}
{'less_4': 'less', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'country_7': 'country', 'france_8': 'france', 'time_9': 'time', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'country_11': 'country', 'russia_12': 'russia', 'time_13': 'time'}
{'less_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'country_7': [0], 'france_8': [0], 'time_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'country_11': [1], 'russia_12': [1], 'time_13': [3]}
['rank', 'athletes', 'country', 'time', 'notes']
[['1', 'vadim menkov', 'uzbekistan', '3:56.793', 'qf'], ['2', 'mathieu goubel', 'france', '3:56.972', 'qs'], ['3', 'marián ostrčil', 'slovakia', '4:00.191', 'qs'], ['4', 'aliaksandr zhukouski', 'belarus', '4:01.380', 'qs'], ['5', 'viktor melantiev', 'russia', '4:03.316', 'qs'], ['6', 'nivalter santos', 'brazil', '4:17.407', 'qs'], ['7', 'mikhail yemelyanov', 'kazakhstan', '4:19.259', 'qs']]
1985 los angeles rams season
https://en.wikipedia.org/wiki/1985_Los_Angeles_Rams_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11157122-2.html.csv
ordinal
the attendance at the third game the los angeles rams lost was 29960 .
{'scope': 'subset', 'row': '11', 'col': '2', 'order': '3', 'col_other': '4,9', 'max_or_min': 'min_to_max', 'value_mentioned': 'yes', 'subset': {'col': '4', 'criterion': 'equal', 'value': 'l'}}
{'func': 'and', 'args': [{'func': 'eq', 'args': [{'func': 'nth_min', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'result', 'l'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; result ; l }', 'tointer': 'select the rows whose result record fuzzily matches to l .'}, 'date', '3'], 'result': 'november 17 , 1985', 'ind': 1, 'tostr': 'nth_min { filter_eq { all_rows ; result ; l } ; date ; 3 }', 'tointer': 'select the rows whose result record fuzzily matches to l . the 3rd minimum date record of these rows is november 17 , 1985 .'}, 'november 17 , 1985'], 'result': True, 'ind': 2, 'tostr': 'eq { nth_min { filter_eq { all_rows ; result ; l } ; date ; 3 } ; november 17 , 1985 }', 'tointer': 'select the rows whose result record fuzzily matches to l . the 3rd minimum date record of these rows is november 17 , 1985 .'}, {'func': 'eq', 'args': [{'func': 'num_hop', 'args': [{'func': 'nth_argmin', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'result', 'l'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; result ; l }', 'tointer': 'select the rows whose result record fuzzily matches to l .'}, 'date', '3'], 'result': None, 'ind': 3, 'tostr': 'nth_argmin { filter_eq { all_rows ; result ; l } ; date ; 3 }'}, 'attendance'], 'result': '29960', 'ind': 4, 'tostr': 'hop { nth_argmin { filter_eq { all_rows ; result ; l } ; date ; 3 } ; attendance }'}, '29960'], 'result': True, 'ind': 5, 'tostr': 'eq { hop { nth_argmin { filter_eq { all_rows ; result ; l } ; date ; 3 } ; attendance } ; 29960 }', 'tointer': 'the attendance record of the row with 3rd minimum date record is 29960 .'}], 'result': True, 'ind': 6, 'tostr': 'and { eq { nth_min { filter_eq { all_rows ; result ; l } ; date ; 3 } ; november 17 , 1985 } ; eq { hop { nth_argmin { filter_eq { all_rows ; result ; l } ; date ; 3 } ; attendance } ; 29960 } } = true', 'tointer': 'select the rows whose result record fuzzily matches to l . the 3rd minimum date record of these rows is november 17 , 1985 . the attendance record of the row with 3rd minimum date record is 29960 .'}
and { eq { nth_min { filter_eq { all_rows ; result ; l } ; date ; 3 } ; november 17 , 1985 } ; eq { hop { nth_argmin { filter_eq { all_rows ; result ; l } ; date ; 3 } ; attendance } ; 29960 } } = true
select the rows whose result record fuzzily matches to l . the 3rd minimum date record of these rows is november 17 , 1985 . the attendance record of the row with 3rd minimum date record is 29960 .
8
7
{'and_6': 6, 'result_7': 7, 'eq_2': 2, 'nth_min_1': 1, 'filter_str_eq_0': 0, 'all_rows_8': 8, 'result_9': 9, 'l_10': 10, 'date_11': 11, '3_12': 12, 'november 17 , 1985_13': 13, 'eq_5': 5, 'num_hop_4': 4, 'nth_argmin_3': 3, 'date_14': 14, '3_15': 15, 'attendance_16': 16, '29960_17': 17}
{'and_6': 'and', 'result_7': 'true', 'eq_2': 'eq', 'nth_min_1': 'nth_min', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_8': 'all_rows', 'result_9': 'result', 'l_10': 'l', 'date_11': 'date', '3_12': '3', 'november 17 , 1985_13': 'november 17 , 1985', 'eq_5': 'eq', 'num_hop_4': 'num_hop', 'nth_argmin_3': 'nth_argmin', 'date_14': 'date', '3_15': '3', 'attendance_16': 'attendance', '29960_17': '29960'}
{'and_6': [7], 'result_7': [], 'eq_2': [6], 'nth_min_1': [2], 'filter_str_eq_0': [1, 3], 'all_rows_8': [0], 'result_9': [0], 'l_10': [0], 'date_11': [1], '3_12': [1], 'november 17 , 1985_13': [2], 'eq_5': [6], 'num_hop_4': [5], 'nth_argmin_3': [4], 'date_14': [3], '3_15': [3], 'attendance_16': [4], '29960_17': [5]}
['game', 'date', 'opponent', 'result', 'rams points', 'opponents', 'record', 'venue', 'attendance']
[['1', 'september 8 , 1985', 'denver broncos', 'w', '20', '16', '1 - 0', 'anaheim stadium', '52522'], ['2', 'september 15 , 1985', 'philadelphia eagles', 'w', '17', '6', '2 - 0', 'veterans stadium', '60920'], ['3', 'september 23 , 1985', 'seattle seahawks', 'w', '35', '24', '3 - 0', 'kingdome', '63292'], ['4', 'september 29 , 1985', 'atlanta falcons', 'w', '17', '6', '4 - 0', 'anaheim stadium', '49870'], ['5', 'october 6 , 1985', 'minnesota vikings', 'w', '13', '10', '5 - 0', 'anaheim stadium', '61139'], ['6', 'october 13 , 1985', 'tampa bay buccaneers', 'w', '31', '27', '6 - 0', 'tampa stadium', '39607'], ['7', 'october 20 , 1985', 'kansas city chiefs', 'w', '16', '0', '7 - 0', 'arrowhead stadium', '64474'], ['8', 'october 27 , 1985', 'san francisco 49ers', 'l', '14', '28', '7 - 1', 'anaheim stadium', '65939'], ['9', 'november 3 , 1985', 'new orleans saints', 'w', '28', '10', '8 - 1', 'anaheim stadium', '49030'], ['10', 'november 10 , 1985', 'new york giants', 'l', '19', '24', '8 - 2', 'giants stadium', '74663'], ['11', 'november 17 , 1985', 'atlanta falcons', 'l', '14', '30', '8 - 3', 'atlanta - fulton county stadium', '29960'], ['12', 'november 24 , 1985', 'green bay packers', 'w', '34', '17', '9 - 3', 'anaheim stadium', '52710'], ['13', 'december 1 , 1985', 'new orleans saints', 'l', '3', '29', '9 - 4', 'louisiana superdome', '44122'], ['14', 'december 9 , 1985', 'san francisco 49ers', 'w', '27', '20', '10 - 4', 'candlestick park', '60581'], ['15', 'december 15 , 1985', 'st louis cardinals', 'w', '46', '14', '11 - 4', 'anaheim stadium', '52052'], ['16', 'december 23 , 1985', 'los angeles raiders', 'l', '6', '16', '11 - 5', 'anaheim stadium', '66676'], ['divisional playoff', 'january 4 , 1986', 'dallas cowboys', 'w', '20', '0', '12 - 5', 'anaheim stadium', '66351'], ['conference championship', 'january 12 , 1986', 'chicago bears', 'l', '0', '24', '12 - 6', 'soldier field', '65522']]