topic
stringlengths
3
96
wiki
stringlengths
33
127
url
stringlengths
101
106
action
stringclasses
7 values
sent
stringlengths
34
223
annotation
stringlengths
74
227
logic
stringlengths
207
5.45k
logic_str
stringlengths
37
493
interpret
stringlengths
43
471
num_func
stringclasses
15 values
nid
stringclasses
13 values
g_ids
stringlengths
70
455
g_ids_features
stringlengths
98
670
g_adj
stringlengths
79
515
table_header
stringlengths
40
458
table_cont
large_stringlengths
135
4.41k
h. f. stephens
https://en.wikipedia.org/wiki/H._F._Stephens
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1152298-2.html.csv
comparative
the earl of mount edgcumbe model locomotive that was designed by h. f. stephens was built earlier than the pyramus model .
{'row_1': '5', 'row_2': '7', 'col': '3', 'col_other': '2', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'loco name', 'earl of mount edgcumbe'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose loco name record fuzzily matches to earl of mount edgcumbe .', 'tostr': 'filter_eq { all_rows ; loco name ; earl of mount edgcumbe }'}, 'build date'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; loco name ; earl of mount edgcumbe } ; build date }', 'tointer': 'select the rows whose loco name record fuzzily matches to earl of mount edgcumbe . take the build date record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'loco name', 'pyramus'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose loco name record fuzzily matches to pyramus .', 'tostr': 'filter_eq { all_rows ; loco name ; pyramus }'}, 'build date'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; loco name ; pyramus } ; build date }', 'tointer': 'select the rows whose loco name record fuzzily matches to pyramus . take the build date record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; loco name ; earl of mount edgcumbe } ; build date } ; hop { filter_eq { all_rows ; loco name ; pyramus } ; build date } } = true', 'tointer': 'select the rows whose loco name record fuzzily matches to earl of mount edgcumbe . take the build date record of this row . select the rows whose loco name record fuzzily matches to pyramus . take the build date record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; loco name ; earl of mount edgcumbe } ; build date } ; hop { filter_eq { all_rows ; loco name ; pyramus } ; build date } } = true
select the rows whose loco name record fuzzily matches to earl of mount edgcumbe . take the build date record of this row . select the rows whose loco name record fuzzily matches to pyramus . take the build date record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'loco name_7': 7, 'earl of mount edgcumbe_8': 8, 'build date_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'loco name_11': 11, 'pyramus_12': 12, 'build date_13': 13}
{'less_4': 'less', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'loco name_7': 'loco name', 'earl of mount edgcumbe_8': 'earl of mount edgcumbe', 'build date_9': 'build date', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'loco name_11': 'loco name', 'pyramus_12': 'pyramus', 'build date_13': 'build date'}
{'less_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'loco name_7': [0], 'earl of mount edgcumbe_8': [0], 'build date_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'loco name_11': [1], 'pyramus_12': [1], 'build date_13': [3]}
['railway', 'loco name', 'build date', 'wheels', 'disposal']
[['kesr', 'tenterden', '1900', '2 - 4 - 0 t', 'scrapped 1941'], ['kesr', 'rolvenden', '1900', '2 - 4 - 0 t', 'scrapped 1941'], ['kesr', 'hecate', '1904', '0 - 8 - 0 t', 'to sr and br'], ['pdswjr', 'a s harris', '1907', '0 - 6 - 0 t', 'to sr and br'], ['pdswjr', 'earl of mount edgcumbe', '1907', '0 - 6 - 2 t', 'to sr and br'], ['pdswjr', 'lord st levan', '1907', '0 - 6 - 2t', 'to sr and br'], ['smr', 'pyramus', '1911', '0 - 6 - 2t', 'sold c1916'], ['smr', 'thisbe', '1911', '0 - 6 - 2t', 'sold c1916']]
1997 european judo championships
https://en.wikipedia.org/wiki/1997_European_Judo_Championships
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11755180-3.html.csv
count
seven nations managed to win only one total medal .
{'scope': 'all', 'criterion': 'equal', 'value': '1', 'result': '7', 'col': '6', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'total', '1'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose total record is equal to 1 .', 'tostr': 'filter_eq { all_rows ; total ; 1 }'}], 'result': '7', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; total ; 1 } }', 'tointer': 'select the rows whose total record is equal to 1 . the number of such rows is 7 .'}, '7'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; total ; 1 } } ; 7 } = true', 'tointer': 'select the rows whose total record is equal to 1 . the number of such rows is 7 .'}
eq { count { filter_eq { all_rows ; total ; 1 } } ; 7 } = true
select the rows whose total record is equal to 1 . the number of such rows is 7 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'total_5': 5, '1_6': 6, '7_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'total_5': 'total', '1_6': '1', '7_7': '7'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'total_5': [0], '1_6': [0], '7_7': [2]}
['rank', 'nation', 'gold', 'silver', 'bronze', 'total']
[['1', 'belgium', '6', '0', '3', '9'], ['2 =', 'germany', '2', '2', '2', '7'], ['2 =', 'netherlands', '2', '2', '2', '6'], ['4', 'turkey', '2', '0', '1', '3'], ['5', 'france', '1', '3', '6', '10'], ['6', 'belarus', '1', '2', '1', '4'], ['7', 'georgia', '1', '1', '0', '2'], ['8', 'poland', '1', '0', '4', '5'], ['9', 'great britain', '0', '2', '3', '5'], ['10', 'spain', '0', '2', '1', '3'], ['11', 'austria', '0', '1', '1', '2'], ['12', 'czech republic', '0', '1', '0', '1'], ['13', 'russia', '0', '0', '2', '2'], ['14 =', 'estonia', '0', '0', '1', '1'], ['14 =', 'italy', '0', '0', '1', '1'], ['14 =', 'lithuania', '0', '0', '1', '1'], ['14 =', 'romania', '0', '0', '1', '1'], ['14 =', 'portugal', '0', '0', '1', '1'], ['14 =', 'yugoslavia', '0', '0', '1', '1']]
rowing at the 2008 summer olympics - women 's single sculls
https://en.wikipedia.org/wiki/Rowing_at_the_2008_Summer_Olympics_%E2%80%93_Women%27s_single_sculls
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18662695-9.html.csv
unique
latt shwe zin was the only participant from myanmar in the 2008 summer olympics - women 's single sculls .
{'scope': 'all', 'row': '6', 'col': '3', 'col_other': '2', 'criterion': 'equal', 'value': 'myanmar', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'country', 'myanmar'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose country record fuzzily matches to myanmar .', 'tostr': 'filter_eq { all_rows ; country ; myanmar }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; country ; myanmar } }', 'tointer': 'select the rows whose country record fuzzily matches to myanmar . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'country', 'myanmar'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose country record fuzzily matches to myanmar .', 'tostr': 'filter_eq { all_rows ; country ; myanmar }'}, 'athlete'], 'result': 'latt shwe zin', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; country ; myanmar } ; athlete }'}, 'latt shwe zin'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; country ; myanmar } ; athlete } ; latt shwe zin }', 'tointer': 'the athlete record of this unqiue row is latt shwe zin .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; country ; myanmar } } ; eq { hop { filter_eq { all_rows ; country ; myanmar } ; athlete } ; latt shwe zin } } = true', 'tointer': 'select the rows whose country record fuzzily matches to myanmar . there is only one such row in the table . the athlete record of this unqiue row is latt shwe zin .'}
and { only { filter_eq { all_rows ; country ; myanmar } } ; eq { hop { filter_eq { all_rows ; country ; myanmar } ; athlete } ; latt shwe zin } } = true
select the rows whose country record fuzzily matches to myanmar . there is only one such row in the table . the athlete record of this unqiue row is latt shwe zin .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'country_7': 7, 'myanmar_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'athlete_9': 9, 'latt shwe zin_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'country_7': 'country', 'myanmar_8': 'myanmar', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'athlete_9': 'athlete', 'latt shwe zin_10': 'latt shwe zin'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'country_7': [0], 'myanmar_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'athlete_9': [2], 'latt shwe zin_10': [3]}
['rank', 'athlete', 'country', 'time', 'notes']
[['1', 'miroslava knapková', 'czech republic', '7:30.33', 'sa / b'], ['2', 'sophie balmary', 'france', '7:37.01', 'sa / b'], ['3', 'iva obradović', 'serbia', '7:39.16', 'sa / b'], ['4', 'mayra gonzález', 'cuba', '7:45.75', 'sc / d'], ['5', 'camila vargas', 'el salvador', '8:11.79', 'sc / d'], ['6', 'latt shwe zin', 'myanmar', '8:17.76', 'sc / d']]
german submarine u - 137 ( 1940 )
https://en.wikipedia.org/wiki/German_submarine_U-137_%281940%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18914307-1.html.csv
comparative
in the german submarine u-137 in 1940 , the ashantian weighed 1125 less than the manchester brigade .
{'row_1': '1', 'row_2': '2', 'col': '4', 'col_other': '2', 'relation': 'diff', 'record_mentioned': 'no', 'diff_result': {'diff_value': '1125', 'bigger': 'row2'}}
{'func': 'eq', 'args': [{'func': 'diff', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'ship name', 'ashantian'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose ship name record fuzzily matches to ashantian .', 'tostr': 'filter_eq { all_rows ; ship name ; ashantian }'}, 'tonnage ( grt )'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; ship name ; ashantian } ; tonnage ( grt ) }', 'tointer': 'select the rows whose ship name record fuzzily matches to ashantian . take the tonnage ( grt ) record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'ship name', 'manchester brigade'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose ship name record fuzzily matches to manchester brigade .', 'tostr': 'filter_eq { all_rows ; ship name ; manchester brigade }'}, 'tonnage ( grt )'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; ship name ; manchester brigade } ; tonnage ( grt ) }', 'tointer': 'select the rows whose ship name record fuzzily matches to manchester brigade . take the tonnage ( grt ) record of this row .'}], 'result': '-1125', 'ind': 4, 'tostr': 'diff { hop { filter_eq { all_rows ; ship name ; ashantian } ; tonnage ( grt ) } ; hop { filter_eq { all_rows ; ship name ; manchester brigade } ; tonnage ( grt ) } }'}, '-1125'], 'result': True, 'ind': 5, 'tostr': 'eq { diff { hop { filter_eq { all_rows ; ship name ; ashantian } ; tonnage ( grt ) } ; hop { filter_eq { all_rows ; ship name ; manchester brigade } ; tonnage ( grt ) } } ; -1125 } = true', 'tointer': 'select the rows whose ship name record fuzzily matches to ashantian . take the tonnage ( grt ) record of this row . select the rows whose ship name record fuzzily matches to manchester brigade . take the tonnage ( grt ) record of this row . the second record is 1125 larger than the first record .'}
eq { diff { hop { filter_eq { all_rows ; ship name ; ashantian } ; tonnage ( grt ) } ; hop { filter_eq { all_rows ; ship name ; manchester brigade } ; tonnage ( grt ) } } ; -1125 } = true
select the rows whose ship name record fuzzily matches to ashantian . take the tonnage ( grt ) record of this row . select the rows whose ship name record fuzzily matches to manchester brigade . take the tonnage ( grt ) record of this row . the second record is 1125 larger than the first record .
6
6
{'eq_5': 5, 'result_6': 6, 'diff_4': 4, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_7': 7, 'ship name_8': 8, 'ashantian_9': 9, 'tonnage ( grt )_10': 10, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_11': 11, 'ship name_12': 12, 'manchester brigade_13': 13, 'tonnage ( grt )_14': 14, '-1125_15': 15}
{'eq_5': 'eq', 'result_6': 'true', 'diff_4': 'diff', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_7': 'all_rows', 'ship name_8': 'ship name', 'ashantian_9': 'ashantian', 'tonnage ( grt )_10': 'tonnage ( grt )', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_11': 'all_rows', 'ship name_12': 'ship name', 'manchester brigade_13': 'manchester brigade', 'tonnage ( grt )_14': 'tonnage ( grt )', '-1125_15': '-1125'}
{'eq_5': [6], 'result_6': [], 'diff_4': [5], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_7': [0], 'ship name_8': [0], 'ashantian_9': [0], 'tonnage ( grt )_10': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_11': [1], 'ship name_12': [1], 'manchester brigade_13': [1], 'tonnage ( grt )_14': [3], '-1125_15': [5]}
['date', 'ship name', 'flag', 'tonnage ( grt )', 'fate', 'deaths']
[['26 september 1940', 'ashantian', 'great britain', '4917', 'damaged', '4'], ['26 september 1940', 'manchester brigade', 'great britain', '6042', 'sunk', '56'], ['26 september 1940', 'stratford', 'great britain', '4753', 'sunk', '2'], ['14 october 1940', 'hms cheshire', 'great britain', '10552', 'damaged', '0'], ['13 november 1940', 'cape st andrew', 'great britain', '5094', 'sunk', '15'], ['16 november 1940', 'planter', 'great britain', '5887', 'sunk', '13'], ['17 november 1940', 'saint germain', 'great britain', '1044', 'sunk', '0'], ['17 november 1940', 'veronica', 'sweden', '1316', 'sunk', '17']]
florida collegiate summer league
https://en.wikipedia.org/wiki/Florida_Collegiate_Summer_League
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-18373863-2.html.csv
comparative
alan farina played in the summer league before kent matthes .
{'row_1': '4', 'row_2': '8', 'col': '3', 'col_other': '1', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'player', 'alan farina'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose player record fuzzily matches to alan farina .', 'tostr': 'filter_eq { all_rows ; player ; alan farina }'}, 'years played'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; player ; alan farina } ; years played }', 'tointer': 'select the rows whose player record fuzzily matches to alan farina . take the years played record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'player', 'kent matthes'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose player record fuzzily matches to kent matthes .', 'tostr': 'filter_eq { all_rows ; player ; kent matthes }'}, 'years played'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; player ; kent matthes } ; years played }', 'tointer': 'select the rows whose player record fuzzily matches to kent matthes . take the years played record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; player ; alan farina } ; years played } ; hop { filter_eq { all_rows ; player ; kent matthes } ; years played } } = true', 'tointer': 'select the rows whose player record fuzzily matches to alan farina . take the years played record of this row . select the rows whose player record fuzzily matches to kent matthes . take the years played record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; player ; alan farina } ; years played } ; hop { filter_eq { all_rows ; player ; kent matthes } ; years played } } = true
select the rows whose player record fuzzily matches to alan farina . take the years played record of this row . select the rows whose player record fuzzily matches to kent matthes . take the years played record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'player_7': 7, 'alan farina_8': 8, 'years played_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'player_11': 11, 'kent matthes_12': 12, 'years played_13': 13}
{'less_4': 'less', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'player_7': 'player', 'alan farina_8': 'alan farina', 'years played_9': 'years played', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'player_11': 'player', 'kent matthes_12': 'kent matthes', 'years played_13': 'years played'}
{'less_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'player_7': [0], 'alan farina_8': [0], 'years played_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'player_11': [1], 'kent matthes_12': [1], 'years played_13': [3]}
['player', 'fcsl team', 'years played', 'year drafted', 'round', 'mlb team']
[['mike mcclendon', 'winter park', '2006', '2006', '10th', 'milwaukee brewers'], ['corey brown', 'orlando shockers', '2006', '2007', '1st', 'oakland athletics'], ['jonathan lucroy', 'sanford', '2005 06', '2007', '3rd', 'milwaukee brewers'], ['alan farina', 'orlando shockers', '2005', '2007', '3rd', 'toronto blue jays'], ['jonathan holt', 'leesburg', '2006 - 2007', '2007', '5th', 'cleveland indians'], ['dee gordon', 'belleview', '2008', '2008', '4th', 'los angeles dodgers'], ['mycal jones', 'leesburg', '2007 - 2008', '2009', '4th', 'atlanta braves'], ['kent matthes', 'winter pines', '2008', '2009', '4th', 'colorado rockies'], ['thomas berryhill', 'deland', '2008', '2009', '5th', 'atlanta braves'], ['jimmy nelson', 'deland', '2009', '2010', '2nd', 'milwaukee brewers'], ['dante bichette jr', 'winter park', '2011', '2011', '1st', 'new york yankees'], ["peter o'brien", 'deland', '2010', '2012', '2nd', 'new york yankees'], ['brandon thomas', 'sanford', '2010', '2012', '4th', 'pittsburgh pirates']]
1939 vfl season
https://en.wikipedia.org/wiki/1939_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10806852-7.html.csv
unique
the game at corio oval was the only game with a crowd of less than 10,000 .
{'scope': 'all', 'row': '1', 'col': '6', 'col_other': '5', 'criterion': 'less_than', 'value': '10000', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_less', 'args': ['all_rows', 'crowd', '10000'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose crowd record is less than 10000 .', 'tostr': 'filter_less { all_rows ; crowd ; 10000 }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_less { all_rows ; crowd ; 10000 } }', 'tointer': 'select the rows whose crowd record is less than 10000 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_less', 'args': ['all_rows', 'crowd', '10000'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose crowd record is less than 10000 .', 'tostr': 'filter_less { all_rows ; crowd ; 10000 }'}, 'venue'], 'result': 'corio oval', 'ind': 2, 'tostr': 'hop { filter_less { all_rows ; crowd ; 10000 } ; venue }'}, 'corio oval'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_less { all_rows ; crowd ; 10000 } ; venue } ; corio oval }', 'tointer': 'the venue record of this unqiue row is corio oval .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_less { all_rows ; crowd ; 10000 } } ; eq { hop { filter_less { all_rows ; crowd ; 10000 } ; venue } ; corio oval } } = true', 'tointer': 'select the rows whose crowd record is less than 10000 . there is only one such row in the table . the venue record of this unqiue row is corio oval .'}
and { only { filter_less { all_rows ; crowd ; 10000 } } ; eq { hop { filter_less { all_rows ; crowd ; 10000 } ; venue } ; corio oval } } = true
select the rows whose crowd record is less than 10000 . there is only one such row in the table . the venue record of this unqiue row is corio oval .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_less_0': 0, 'all_rows_6': 6, 'crowd_7': 7, '10000_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'venue_9': 9, 'corio oval_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_less_0': 'filter_less', 'all_rows_6': 'all_rows', 'crowd_7': 'crowd', '10000_8': '10000', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'venue_9': 'venue', 'corio oval_10': 'corio oval'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_less_0': [1, 2], 'all_rows_6': [0], 'crowd_7': [0], '10000_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'venue_9': [2], 'corio oval_10': [3]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['geelong', '17.13 ( 115 )', 'north melbourne', '14.13 ( 97 )', 'corio oval', '8000', '3 june 1939'], ['fitzroy', '14.15 ( 99 )', 'melbourne', '18.14 ( 122 )', 'brunswick street oval', '11000', '3 june 1939'], ['south melbourne', '8.14 ( 62 )', 'st kilda', '13.17 ( 95 )', 'lake oval', '15000', '3 june 1939'], ['hawthorn', '12.15 ( 87 )', 'footscray', '7.23 ( 65 )', 'glenferrie oval', '12500', '3 june 1939'], ['richmond', '6.17 ( 53 )', 'collingwood', '12.17 ( 89 )', 'punt road oval', '40000', '3 june 1939'], ['essendon', '10.12 ( 72 )', 'carlton', '10.18 ( 78 )', 'windy hill', '20000', '3 june 1939']]
1966 u.s. open ( golf )
https://en.wikipedia.org/wiki/1966_U.S._Open_%28golf%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17277136-5.html.csv
ordinal
in the 1966 u.s. open , the second lowest number of strokes was by billy casper .
{'row': '2', 'col': '4', 'order': '2', 'col_other': '2', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'score', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; score ; 2 }'}, 'player'], 'result': 'billy casper', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; score ; 2 } ; player }'}, 'billy casper'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; score ; 2 } ; player } ; billy casper } = true', 'tointer': 'select the row whose score record of all rows is 2nd minimum . the player record of this row is billy casper .'}
eq { hop { nth_argmin { all_rows ; score ; 2 } ; player } ; billy casper } = true
select the row whose score record of all rows is 2nd minimum . the player record of this row is billy casper .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'score_5': 5, '2_6': 6, 'player_7': 7, 'billy casper_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'score_5': 'score', '2_6': '2', 'player_7': 'player', 'billy casper_8': 'billy casper'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'score_5': [0], '2_6': [0], 'player_7': [1], 'billy casper_8': [2]}
['place', 'player', 'country', 'score', 'to par']
[['1', 'arnold palmer', 'united states', '71 + 66 + 70 = 207', '3'], ['2', 'billy casper', 'united states', '69 + 68 + 73 = 210', 'e'], ['3', 'jack nicklaus', 'united states', '71 + 71 + 69 = 211', '+ 1'], ['t4', 'phil rodgers', 'united states', '70 + 70 + 73 = 213', '+ 3'], ['t4', 'dave marr', 'united states', '71 + 74 + 68 = 213', '+ 3'], ['6', 'rives mcbee', 'united states', '76 + 64 + 74 = 214', '+ 2'], ['t7', 'tony lema', 'united states', '71 + 74 + 70 = 215', '+ 5'], ['t7', 'bob goalby', 'united states', '71 + 73 + 71 = 215', '+ 5'], ['t7', 'al mengert', 'united states', '67 + 77 + 71 = 215', '+ 5'], ['10', 'johnny miller ( a )', 'united states', '70 + 72 + 74 = 216', '+ 6']]
chad little
https://en.wikipedia.org/wiki/Chad_Little
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1875157-2.html.csv
count
for 2 straight years , chad little managed to have 26 starts .
{'scope': 'all', 'criterion': 'equal', 'value': '26', 'result': '2', 'col': '2', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'starts', '26'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose starts record is equal to 26 .', 'tostr': 'filter_eq { all_rows ; starts ; 26 }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; starts ; 26 } }', 'tointer': 'select the rows whose starts record is equal to 26 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; starts ; 26 } } ; 2 } = true', 'tointer': 'select the rows whose starts record is equal to 26 . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; starts ; 26 } } ; 2 } = true
select the rows whose starts record is equal to 26 . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'starts_5': 5, '26_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'starts_5': 'starts', '26_6': '26', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'starts_5': [0], '26_6': [0], '2_7': [2]}
['year', 'starts', 'wins', 'top 5', 'top 10', 'poles', 'avg start', 'avg finish', 'winnings', 'position']
[['1992', '1', '0', '0', '0', '0', '29.0', '29.0', '1400', '120th'], ['1993', '12', '0', '2', '3', '0', '22.1', '22.6', '56508', '32nd'], ['1994', '28', '0', '10', '14', '0', '21.0', '11.9', '234022', '3rd'], ['1995', '26', '6', '11', '13', '0', '15.5', '14.5', '529056', '2nd'], ['1996', '26', '0', '2', '7', '1', '15.3', '16.5', '317394', '5th'], ['1998', '1', '0', '0', '0', '0', '6.0', '30.0', '4380', '108th'], ['2000', '4', '0', '0', '1', '0', '24.5', '21.2', '48510', '66th'], ['2001', '33', '0', '2', '6', '0', '24.8', '16.0', '690321', '9th'], ['2002', '3', '0', '0', '0', '0', '25.0', '19.7', '69565', '69th']]
list of notre dame fighting irish starting quarterbacks
https://en.wikipedia.org/wiki/List_of_Notre_Dame_Fighting_Irish_starting_quarterbacks
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14389782-3.html.csv
unique
for notre dame fighting irish starting quarterbacks , of those with over 30 starts , the only one with exactly 17 losses was brady quinn .
{'scope': 'subset', 'row': '2', 'col': '5', 'col_other': '1', 'criterion': 'equal', 'value': '17', 'subset': {'col': '3', 'criterion': 'greater_than', 'value': '30'}}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'starts', '30'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; starts ; 30 }', 'tointer': 'select the rows whose starts record is greater than 30 .'}, 'losses', '17'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose starts record is greater than 30 . among these rows , select the rows whose losses record is equal to 17 .', 'tostr': 'filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 }'}], 'result': True, 'ind': 2, 'tostr': 'only { filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 } }', 'tointer': 'select the rows whose starts record is greater than 30 . among these rows , select the rows whose losses record is equal to 17 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'starts', '30'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; starts ; 30 }', 'tointer': 'select the rows whose starts record is greater than 30 .'}, 'losses', '17'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose starts record is greater than 30 . among these rows , select the rows whose losses record is equal to 17 .', 'tostr': 'filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 }'}, 'name'], 'result': 'brady quinn', 'ind': 3, 'tostr': 'hop { filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 } ; name }'}, 'brady quinn'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 } ; name } ; brady quinn }', 'tointer': 'the name record of this unqiue row is brady quinn .'}], 'result': True, 'ind': 5, 'tostr': 'and { only { filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 } } ; eq { hop { filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 } ; name } ; brady quinn } } = true', 'tointer': 'select the rows whose starts record is greater than 30 . among these rows , select the rows whose losses record is equal to 17 . there is only one such row in the table . the name record of this unqiue row is brady quinn .'}
and { only { filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 } } ; eq { hop { filter_eq { filter_greater { all_rows ; starts ; 30 } ; losses ; 17 } ; name } ; brady quinn } } = true
select the rows whose starts record is greater than 30 . among these rows , select the rows whose losses record is equal to 17 . there is only one such row in the table . the name record of this unqiue row is brady quinn .
8
6
{'and_5': 5, 'result_6': 6, 'only_2': 2, 'filter_eq_1': 1, 'filter_greater_0': 0, 'all_rows_7': 7, 'starts_8': 8, '30_9': 9, 'losses_10': 10, '17_11': 11, 'str_eq_4': 4, 'str_hop_3': 3, 'name_12': 12, 'brady quinn_13': 13}
{'and_5': 'and', 'result_6': 'true', 'only_2': 'only', 'filter_eq_1': 'filter_eq', 'filter_greater_0': 'filter_greater', 'all_rows_7': 'all_rows', 'starts_8': 'starts', '30_9': '30', 'losses_10': 'losses', '17_11': '17', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'name_12': 'name', 'brady quinn_13': 'brady quinn'}
{'and_5': [6], 'result_6': [], 'only_2': [5], 'filter_eq_1': [2, 3], 'filter_greater_0': [1], 'all_rows_7': [0], 'starts_8': [0], '30_9': [0], 'losses_10': [1], '17_11': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'name_12': [3], 'brady quinn_13': [4]}
['name', 'period', 'starts', 'wins', 'losses', 'ties', 'win %']
[['ron powlus', '1994 - 1997', '46', '29', '16', '1', '641'], ['brady quinn', '2003 - 2006', '46', '29', '17', '0', '630'], ['steve beuerlein', '1983 - 1986', '39', '21', '18', '1', '538'], ['rick mirer', '1990 - 1992', '36', '28', '7', '1', '792'], ['tom clements', '1972 - 1974', '34', '29', '5', '0', '853'], ['jimmy clausen', '2007 - 2009', '34', '16', '18', '0', '471'], ['tony rice', '1987 - 1989', '31', '28', '3', '0', '903'], ['blair kiel', '1980 - 1983', '29', '18', '9', '2', '655'], ['tommy rees', '2010 - 2013', '27', '21', '6', '0', '770'], ['terry hanratty', '1966 - 1968', '26', '21', '4', '1', '827'], ['joe theismann', '1968 - 1970', '25', '20', '3', '2', '840'], ['joe montana', '1975 - 1978', '25', '20', '5', '0', '800']]
two miles
https://en.wikipedia.org/wiki/Two_miles
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18390957-5.html.csv
unique
mike ryan was the only athlete to run two miles out of santa clara , california .
{'scope': 'all', 'row': '1', 'col': '4', 'col_other': '2', 'criterion': 'equal', 'value': 'santa clara , california', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'city', 'santa clara , california'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose city record fuzzily matches to santa clara , california .', 'tostr': 'filter_eq { all_rows ; city ; santa clara , california }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; city ; santa clara , california } }', 'tointer': 'select the rows whose city record fuzzily matches to santa clara , california . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'city', 'santa clara , california'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose city record fuzzily matches to santa clara , california .', 'tostr': 'filter_eq { all_rows ; city ; santa clara , california }'}, 'athlete'], 'result': 'mike ryan', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; city ; santa clara , california } ; athlete }'}, 'mike ryan'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; city ; santa clara , california } ; athlete } ; mike ryan }', 'tointer': 'the athlete record of this unqiue row is mike ryan .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; city ; santa clara , california } } ; eq { hop { filter_eq { all_rows ; city ; santa clara , california } ; athlete } ; mike ryan } } = true', 'tointer': 'select the rows whose city record fuzzily matches to santa clara , california . there is only one such row in the table . the athlete record of this unqiue row is mike ryan .'}
and { only { filter_eq { all_rows ; city ; santa clara , california } } ; eq { hop { filter_eq { all_rows ; city ; santa clara , california } ; athlete } ; mike ryan } } = true
select the rows whose city record fuzzily matches to santa clara , california . there is only one such row in the table . the athlete record of this unqiue row is mike ryan .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'city_7': 7, 'santa clara, california_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'athlete_9': 9, 'mike ryan_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'city_7': 'city', 'santa clara, california_8': 'santa clara , california', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'athlete_9': 'athlete', 'mike ryan_10': 'mike ryan'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'city_7': [0], 'santa clara, california_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'athlete_9': [2], 'mike ryan_10': [3]}
['time', 'athlete', 'school', 'city', 'date']
[['8:57.8', 'mike ryan', 'wilcox high school', 'santa clara , california', '1965'], ['8:48.3', 'rick riley', 'ferris high school', 'spokane , washington', 'may 28 , 1966'], ['8:41.5', 'steve prefontaine', 'marshfield high school', 'coos bay , oregon', 'april 25 , 1969'], ['8:40.9', 'craig virgin', 'lebanon high school', 'lebanon , illinois', 'june 9 , 1973'], ['( 8:40.0 i )', 'gerry lindgren', 'rogers high school', 'spokane , washington', 'february 15 , 1964'], ['8:36.3', 'jeff nelson', 'burbank high school', 'burbank , california', 'may 6 , 1979'], ['8:34.23', 'german fernandez', 'riverbank high school', 'riverbank , california', 'june 20 , 2008'], ['8:29.46', 'lukas verzbicas', 'carl sandburg high school', 'orland hills , illinois', 'june 4 , 2011']]
list of the bellflower bunnies episodes
https://en.wikipedia.org/wiki/List_of_The_Bellflower_Bunnies_episodes
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-16425614-3.html.csv
majority
the majority of bellflower bunnies episodes were from a teleplay by valérie baranski .
{'scope': 'all', 'col': '6', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'teleplay by valérie baranski', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'original beechwood bunny tale / source material', 'teleplay by valérie baranski'], 'result': True, 'ind': 0, 'tointer': 'for the original beechwood bunny tale / source material records of all rows , most of them fuzzily match to teleplay by valérie baranski .', 'tostr': 'most_eq { all_rows ; original beechwood bunny tale / source material ; teleplay by valérie baranski } = true'}
most_eq { all_rows ; original beechwood bunny tale / source material ; teleplay by valérie baranski } = true
for the original beechwood bunny tale / source material records of all rows , most of them fuzzily match to teleplay by valérie baranski .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'original beechwood bunny tale / source material_3': 3, 'teleplay by valérie baranski_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'original beechwood bunny tale / source material_3': 'original beechwood bunny tale / source material', 'teleplay by valérie baranski_4': 'teleplay by valérie baranski'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'original beechwood bunny tale / source material_3': [0], 'teleplay by valérie baranski_4': [0]}
['official', 'tf1', 'french title', 'english title', 'air date ( france )', 'original beechwood bunny tale / source material']
[['5', '5', "l'exploit de tante zinia", 'born to be bunnies', '22 september 2004', "l'exploit de tante zinia"], ['6', '8', "les passiflore mènent l'enquête", 'bunnies on a case', '13 october 2004', "les passiflore mènent l'enquête"], ['7', '6', 'les beignets flambés', 'firemen or firewomen', '29 september 2004', 'les beignets flambés'], ['10', '9', "l'invention d'onésime", "papa bramble 's invention", '20 october 2004', "l'invention d'onésime passiflore"], ['12', '12', 'en avant la musique', 'face the music', '17 november 2004', 'en avant , la musique !'], ['14', '26', 'dentdelion et le bébé marmotte', 'dandelion and the baby groundhog', '23 february 2005', 'teleplay by valérie baranski'], ['15', '13', 'la clé du bonheur', 'the key to happiness', '24 november 2004', 'teleplay by valérie baranski'], ['16', '14', 'pirouette sous les feux de la rampe', 'in the limelight', '1 december 2004', 'teleplay by valérie baranski'], ['17', '15', 'coup de foudre aux airelles', 'love at first sight', '8 december 2004', 'teleplay by valérie baranski'], ['18', '22', 'au pays des fantômes', 'weird country', '26 january 2005', 'teleplay by valérie baranski'], ['19', '21', 'dentdelion fait son cinéma', 'the silver screen', '19 january 2005', 'teleplay by valérie baranski'], ['20', '23', 'agaric et le sorcier', 'periwinkle and the witch doctor', '2 february 2005', 'teleplay by valérie baranski'], ['21', '18', 'le pacte du lac', 'the monster of blueberry lake', '29 december 2004', 'teleplay by valérie baranski'], ['22', '16', "le secret d'onésime", "papa bramble 's secret", '15 december 2004', 'teleplay by valérie baranski'], ['23', '19', 'vive les vacances', 'holiday with love', '5 january 2005', 'teleplay by valérie baranski'], ['24', '20', 'chez les petits savants', 'the science academy', '12 january 2005', 'teleplay by valérie baranski'], ['25', '24', 'au cur de la source', 'the heart of the spring', '9 february 2005', 'teleplay by valérie baranski']]
1939 vfl season
https://en.wikipedia.org/wiki/1939_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10806852-13.html.csv
majority
the majority of venues in the 1939 vfl season drew a crowd of over 10000 .
{'scope': 'all', 'col': '6', 'most_or_all': 'most', 'criterion': 'greater_than', 'value': '10000', 'subset': None}
{'func': 'most_greater', 'args': ['all_rows', 'crowd', '10000'], 'result': True, 'ind': 0, 'tointer': 'for the crowd records of all rows , most of them are greater than 10000 .', 'tostr': 'most_greater { all_rows ; crowd ; 10000 } = true'}
most_greater { all_rows ; crowd ; 10000 } = true
for the crowd records of all rows , most of them are greater than 10000 .
1
1
{'most_greater_0': 0, 'result_1': 1, 'all_rows_2': 2, 'crowd_3': 3, '10000_4': 4}
{'most_greater_0': 'most_greater', 'result_1': 'true', 'all_rows_2': 'all_rows', 'crowd_3': 'crowd', '10000_4': '10000'}
{'most_greater_0': [1], 'result_1': [], 'all_rows_2': [0], 'crowd_3': [0], '10000_4': [0]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['footscray', '7.7 ( 49 )', 'richmond', '13.25 ( 103 )', 'western oval', '15000', '15 july 1939'], ['collingwood', '19.11 ( 125 )', 'south melbourne', '8.13 ( 61 )', 'victoria park', '10500', '15 july 1939'], ['carlton', '14.14 ( 98 )', 'geelong', '12.5 ( 77 )', 'princes park', '19000', '15 july 1939'], ['north melbourne', '18.11 ( 119 )', 'hawthorn', '11.16 ( 82 )', 'arden street oval', '8000', '15 july 1939'], ['st kilda', '16.19 ( 115 )', 'fitzroy', '13.6 ( 84 )', 'junction oval', '16500', '15 july 1939'], ['melbourne', '7.18 ( 60 )', 'essendon', '10.17 ( 77 )', 'mcg', '16247', '15 july 1939']]
derek warwick
https://en.wikipedia.org/wiki/Derek_Warwick
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1158017-1.html.csv
aggregation
derek warwick scored a total of eleven points in the nineties .
{'scope': 'subset', 'col': '5', 'type': 'sum', 'result': '11', 'subset': {'col': '1', 'criterion': 'greater_than_eq', 'value': '1990'}}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': [{'func': 'filter_greater_eq', 'args': ['all_rows', 'year', '1990'], 'result': None, 'ind': 0, 'tostr': 'filter_greater_eq { all_rows ; year ; 1990 }', 'tointer': 'select the rows whose year record is greater than or equal to 1990 .'}, 'points'], 'result': '11', 'ind': 1, 'tostr': 'sum { filter_greater_eq { all_rows ; year ; 1990 } ; points }'}, '11'], 'result': True, 'ind': 2, 'tostr': 'round_eq { sum { filter_greater_eq { all_rows ; year ; 1990 } ; points } ; 11 } = true', 'tointer': 'select the rows whose year record is greater than or equal to 1990 . the sum of the points record of these rows is 11 .'}
round_eq { sum { filter_greater_eq { all_rows ; year ; 1990 } ; points } ; 11 } = true
select the rows whose year record is greater than or equal to 1990 . the sum of the points record of these rows is 11 .
3
3
{'eq_2': 2, 'result_3': 3, 'sum_1': 1, 'filter_greater_eq_0': 0, 'all_rows_4': 4, 'year_5': 5, '1990_6': 6, 'points_7': 7, '11_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'sum_1': 'sum', 'filter_greater_eq_0': 'filter_greater_eq', 'all_rows_4': 'all_rows', 'year_5': 'year', '1990_6': '1990', 'points_7': 'points', '11_8': '11'}
{'eq_2': [3], 'result_3': [], 'sum_1': [2], 'filter_greater_eq_0': [1], 'all_rows_4': [0], 'year_5': [0], '1990_6': [0], 'points_7': [1], '11_8': [2]}
['year', 'entrant', 'chassis', 'engine', 'points']
[['1981', 'candy toleman motorsport', 'toleman tg181', 'hart 415t 1.5 l4 t', '0'], ['1982', 'candy toleman motorsport', 'toleman tg181c', 'hart 415t 1.5 l4 t', '0'], ['1982', 'candy toleman motorsport', 'toleman tg183', 'hart 415t 1.5 l4 t', '0'], ['1983', 'candy toleman motorsport', 'toleman tg183b', 'hart 415t 1.5 l4 t', '9'], ['1984', 'equipe renault elf', 'renault re50', 'renault ef4 1.5 v6 t', '23'], ['1985', 'equipe renault elf', 'renault re60', 'renault ef4b 1.5 v6 t', '5'], ['1985', 'equipe renault elf', 'renault re60b', 'renault ef15 1.5 v6 t', '5'], ['1986', 'motor racing developments', 'brabham bt55', 'bmw m12 / 13 / 1 1.5 l4 t', '0'], ['1987', 'usf & g arrows megatron', 'arrows a10', 'megatron m12 / 13 1.5 l4 t', '3'], ['1988', 'usf & g arrows megatron', 'arrows a10b', 'megatron m12 / 13 1.5 l4 t', '17'], ['1989', 'usf & g arrows', 'arrows a11', 'ford cosworth dfr 3.5 v8', '7'], ['1990', 'camel team lotus', 'lotus 102', 'lamborghini 3512 3.5 v12', '3'], ['1993', 'footwork mugen - honda', 'footwork fa13b', 'mugen - honda mf - 351 hb 3.5 v10', '4'], ['1993', 'footwork mugen - honda', 'footwork fa14', 'mugen - honda mf - 351 hb 3.5 v10', '4']]
list of the bellflower bunnies episodes
https://en.wikipedia.org/wiki/List_of_The_Bellflower_Bunnies_episodes
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-16425614-3.html.csv
ordinal
firemen or firewomen was the second earliest aired episode of the bellflower bunnies in france .
{'row': '3', 'col': '5', 'order': '2', 'col_other': '4', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'air date ( france )', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; air date ( france ) ; 2 }'}, 'english title'], 'result': 'firemen or firewomen', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; air date ( france ) ; 2 } ; english title }'}, 'firemen or firewomen'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; air date ( france ) ; 2 } ; english title } ; firemen or firewomen } = true', 'tointer': 'select the row whose air date ( france ) record of all rows is 2nd minimum . the english title record of this row is firemen or firewomen .'}
eq { hop { nth_argmin { all_rows ; air date ( france ) ; 2 } ; english title } ; firemen or firewomen } = true
select the row whose air date ( france ) record of all rows is 2nd minimum . the english title record of this row is firemen or firewomen .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'air date (france)_5': 5, '2_6': 6, 'english title_7': 7, 'firemen or firewomen_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'air date (france)_5': 'air date ( france )', '2_6': '2', 'english title_7': 'english title', 'firemen or firewomen_8': 'firemen or firewomen'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'air date (france)_5': [0], '2_6': [0], 'english title_7': [1], 'firemen or firewomen_8': [2]}
['official', 'tf1', 'french title', 'english title', 'air date ( france )', 'original beechwood bunny tale / source material']
[['5', '5', "l'exploit de tante zinia", 'born to be bunnies', '22 september 2004', "l'exploit de tante zinia"], ['6', '8', "les passiflore mènent l'enquête", 'bunnies on a case', '13 october 2004', "les passiflore mènent l'enquête"], ['7', '6', 'les beignets flambés', 'firemen or firewomen', '29 september 2004', 'les beignets flambés'], ['10', '9', "l'invention d'onésime", "papa bramble 's invention", '20 october 2004', "l'invention d'onésime passiflore"], ['12', '12', 'en avant la musique', 'face the music', '17 november 2004', 'en avant , la musique !'], ['14', '26', 'dentdelion et le bébé marmotte', 'dandelion and the baby groundhog', '23 february 2005', 'teleplay by valérie baranski'], ['15', '13', 'la clé du bonheur', 'the key to happiness', '24 november 2004', 'teleplay by valérie baranski'], ['16', '14', 'pirouette sous les feux de la rampe', 'in the limelight', '1 december 2004', 'teleplay by valérie baranski'], ['17', '15', 'coup de foudre aux airelles', 'love at first sight', '8 december 2004', 'teleplay by valérie baranski'], ['18', '22', 'au pays des fantômes', 'weird country', '26 january 2005', 'teleplay by valérie baranski'], ['19', '21', 'dentdelion fait son cinéma', 'the silver screen', '19 january 2005', 'teleplay by valérie baranski'], ['20', '23', 'agaric et le sorcier', 'periwinkle and the witch doctor', '2 february 2005', 'teleplay by valérie baranski'], ['21', '18', 'le pacte du lac', 'the monster of blueberry lake', '29 december 2004', 'teleplay by valérie baranski'], ['22', '16', "le secret d'onésime", "papa bramble 's secret", '15 december 2004', 'teleplay by valérie baranski'], ['23', '19', 'vive les vacances', 'holiday with love', '5 january 2005', 'teleplay by valérie baranski'], ['24', '20', 'chez les petits savants', 'the science academy', '12 january 2005', 'teleplay by valérie baranski'], ['25', '24', 'au cur de la source', 'the heart of the spring', '9 february 2005', 'teleplay by valérie baranski']]
2001 masters tournament
https://en.wikipedia.org/wiki/2001_Masters_Tournament
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16514667-2.html.csv
aggregation
in the 2001 masters tournament , the average number of strokes to par was -5 .
{'scope': 'all', 'col': '5', 'type': 'average', 'result': '-5', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'to par'], 'result': '-5', 'ind': 0, 'tostr': 'avg { all_rows ; to par }'}, '-5'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; to par } ; -5 } = true', 'tointer': 'the average of the to par record of all rows is -5 .'}
round_eq { avg { all_rows ; to par } ; -5 } = true
the average of the to par record of all rows is -5 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'to par_4': 4, '-5_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'to par_4': 'to par', '-5_5': '-5'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'to par_4': [0], '-5_5': [1]}
['place', 'player', 'country', 'score', 'to par']
[['1', 'chris dimarco', 'united states', '65', '- 7'], ['t2', 'ángel cabrera', 'argentina', '66', '- 6'], ['t2', 'steve stricker', 'united states', '66', '- 6'], ['t4', 'john huston', 'united states', '67', '- 5'], ['t4', 'lee janzen', 'united states', '67', '- 5'], ['t4', 'phil mickelson', 'united states', '67', '- 5'], ['t7', 'james driscoll ( a )', 'united states', '68', '- 4'], ['t7', 'miguel ángel jiménez', 'spain', '68', '- 4'], ['t7', 'chris perry', 'united states', '68', '- 4'], ['t7', 'kirk triplett', 'united states', '68', '- 4']]
2001 st. louis rams season
https://en.wikipedia.org/wiki/2001_St._Louis_Rams_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10659538-3.html.csv
ordinal
the game on october 8th , 2001 , had the 2nd highest attendance .
{'row': '4', 'col': '7', 'order': '2', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'attendance', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; attendance ; 2 }'}, 'date'], 'result': 'october 8 , 2001', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; attendance ; 2 } ; date }'}, 'october 8 , 2001'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; date } ; october 8 , 2001 } = true', 'tointer': 'select the row whose attendance record of all rows is 2nd maximum . the date record of this row is october 8 , 2001 .'}
eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; date } ; october 8 , 2001 } = true
select the row whose attendance record of all rows is 2nd maximum . the date record of this row is october 8 , 2001 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'attendance_5': 5, '2_6': 6, 'date_7': 7, 'october 8 , 2001_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'attendance_5': 'attendance', '2_6': '2', 'date_7': 'date', 'october 8 , 2001_8': 'october 8 , 2001'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'attendance_5': [0], '2_6': [0], 'date_7': [1], 'october 8 , 2001_8': [2]}
['week', 'date', 'opponent', 'result', 'record', 'tv time', 'attendance']
[['1', 'september 9 , 2001', 'philadelphia eagles', 'w 20 - 17 ( ot )', '1 - 0', 'fox 3:15 pm', '66243'], ['2', 'september 23 , 2001', 'san francisco 49ers', 'w 30 - 26', '2 - 0', 'fox 3:15 pm', '67536'], ['3', 'september 30 , 2001', 'miami dolphins', 'w 42 - 10', '3 - 0', 'cbs 12:00 pm', '66046'], ['4', 'october 8 , 2001', 'detroit lions', 'w 35 - 0', '4 - 0', 'abc 8:00 pm', '77765'], ['5', 'october 14 , 2001', 'new york giants', 'w 15 - 14', '5 - 0', 'fox 12:00 pm', '65992'], ['6', 'october 21 , 2001', 'new york jets', 'w 34 - 14', '6 - 0', 'fox 12:00 pm', '78766'], ['7', 'october 28 , 2001', 'new orleans saints', 'l 34 - 31', '6 - 1', 'fox 12:00 pm', '66189'], ['8', '-', '-', '-', '-', '-', ''], ['9', 'november 11 , 2001', 'carolina panthers', 'w 48 - 14', '7 - 1', 'fox 12:00 pm', '66069'], ['10', 'november 18 , 2001', 'new england patriots', 'w 24 - 17', '8 - 1', 'espn 7:30 pm', '60292'], ['11', 'november 26 , 2001', 'tampa bay buccaneers', 'l 24 - 17', '8 - 2', 'abc 8:00 pm', '66198'], ['12', 'december 2 , 2001', 'atlanta falcons', 'w 35 - 6', '9 - 2', 'fox 3:15 pm', '60787'], ['13', 'december 9 , 2001', 'san francisco 49ers', 'w 27 - 14', '10 - 2', 'fox 12:00 pm', '66218'], ['14', 'december 17 , 2001', 'new orleans saints', 'w 34 - 21', '11 - 2', 'abc 8:00 pm', '70332'], ['15', 'december 23 , 2001', 'carolina panthers', 'w 38 - 32', '12 - 2', 'fox 12:00 pm', '72438'], ['16', 'december 30 , 2001', 'indianapolis colts', 'w 42 - 17', '13 - 2', 'cbs 12:00 pm', '66084'], ['17', 'january 6 , 2002', 'atlanta falcons', 'w 31 - 13', '14 - 2', 'fox 3:15 pm', '66033']]
highland railway river class
https://en.wikipedia.org/wiki/Highland_Railway_River_Class
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1886270-1.html.csv
unique
the river garry was the only locomotive in the highland railway river class that was built in december 1915 .
{'scope': 'all', 'row': '5', 'col': '5', 'col_other': '2', 'criterion': 'equal', 'value': '12/1915', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'built', '12/1915'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose built record fuzzily matches to 12/1915 .', 'tostr': 'filter_eq { all_rows ; built ; 12/1915 }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; built ; 12/1915 } }', 'tointer': 'select the rows whose built record fuzzily matches to 12/1915 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'built', '12/1915'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose built record fuzzily matches to 12/1915 .', 'tostr': 'filter_eq { all_rows ; built ; 12/1915 }'}, 'hr name'], 'result': '( river garry )', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; built ; 12/1915 } ; hr name }'}, '( river garry )'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; built ; 12/1915 } ; hr name } ; ( river garry ) }', 'tointer': 'the hr name record of this unqiue row is ( river garry ) .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; built ; 12/1915 } } ; eq { hop { filter_eq { all_rows ; built ; 12/1915 } ; hr name } ; ( river garry ) } } = true', 'tointer': 'select the rows whose built record fuzzily matches to 12/1915 . there is only one such row in the table . the hr name record of this unqiue row is ( river garry ) .'}
and { only { filter_eq { all_rows ; built ; 12/1915 } } ; eq { hop { filter_eq { all_rows ; built ; 12/1915 } ; hr name } ; ( river garry ) } } = true
select the rows whose built record fuzzily matches to 12/1915 . there is only one such row in the table . the hr name record of this unqiue row is ( river garry ) .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'built_7': 7, '12/1915_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'hr name_9': 9, '(river garry)_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'built_7': 'built', '12/1915_8': '12/1915', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'hr name_9': 'hr name', '(river garry)_10': '( river garry )'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'built_7': [0], '12/1915_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'hr name_9': [2], '(river garry)_10': [3]}
['hr no', 'hr name', 'cr no', 'lms no', 'built', 'works', 'withdrawn']
[['70', 'river ness', '938', '14756', '9 / 1915', 'hawthorn leslie 3095', '10 / 1939'], ['71', 'river spey', '939', '14757', '9 / 1915', 'hawthorn leslie 3096', '12 / 1936'], ['( 72 )', '( river tay )', '940', '14758', '11 / 1915', 'hawthorn leslie 3097', '9 / 1945'], ['( 73 )', '( river findhorn )', '941', '14759', '11 / 1915', 'hawthorn leslie 3098', '2 / 1939'], ['( 74 )', '( river garry )', '942', '14760', '12 / 1915', 'hawthorn leslie 3099', '12 / 1946']]
1951 vfl season
https://en.wikipedia.org/wiki/1951_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10701914-6.html.csv
aggregation
in the 1951 vfl season fixtures listed the average crowd was over 19500 .
{'scope': 'all', 'col': '6', 'type': 'average', 'result': '19167', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'crowd'], 'result': '19167', 'ind': 0, 'tostr': 'avg { all_rows ; crowd }'}, '19167'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; crowd } ; 19167 } = true', 'tointer': 'the average of the crowd record of all rows is 19167 .'}
round_eq { avg { all_rows ; crowd } ; 19167 } = true
the average of the crowd record of all rows is 19167 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'crowd_4': 4, '19167_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'crowd_4': 'crowd', '19167_5': '19167'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'crowd_4': [0], '19167_5': [1]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['collingwood', '13.15 ( 93 )', 'south melbourne', '6.10 ( 46 )', 'victoria park', '19000', '2 june 1951'], ['st kilda', '18.9 ( 117 )', 'richmond', '19.12 ( 126 )', 'junction oval', '20000', '2 june 1951'], ['north melbourne', '11.8 ( 74 )', 'geelong', '12.16 ( 88 )', 'arden street oval', '15000', '2 june 1951'], ['hawthorn', '9.16 ( 70 )', 'footscray', '7.17 ( 59 )', 'glenferrie oval', '10000', '2 june 1951'], ['fitzroy', '14.7 ( 91 )', 'essendon', '9.14 ( 68 )', 'brunswick street oval', '24000', '2 june 1951'], ['melbourne', '11.12 ( 78 )', 'carlton', '8.10 ( 58 )', 'mcg', '30000', '2 june 1951']]
2004 centrix financial grand prix of denver
https://en.wikipedia.org/wiki/2004_Centrix_Financial_Grand_Prix_of_Denver
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16789804-1.html.csv
unique
a j allmendinger is the only driver of the 2004 centrix financial grand prix of denver without a qual 1 time .
{'scope': 'all', 'row': '7', 'col': '3', 'col_other': '1', 'criterion': 'equal', 'value': '-', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'qual 1', '-'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose qual 1 record is equal to - .', 'tostr': 'filter_eq { all_rows ; qual 1 ; - }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; qual 1 ; - } }', 'tointer': 'select the rows whose qual 1 record is equal to - . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'qual 1', '-'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose qual 1 record is equal to - .', 'tostr': 'filter_eq { all_rows ; qual 1 ; - }'}, 'name'], 'result': 'a j allmendinger', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; qual 1 ; - } ; name }'}, 'a j allmendinger'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; qual 1 ; - } ; name } ; a j allmendinger }', 'tointer': 'the name record of this unqiue row is a j allmendinger .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; qual 1 ; - } } ; eq { hop { filter_eq { all_rows ; qual 1 ; - } ; name } ; a j allmendinger } } = true', 'tointer': 'select the rows whose qual 1 record is equal to - . there is only one such row in the table . the name record of this unqiue row is a j allmendinger .'}
and { only { filter_eq { all_rows ; qual 1 ; - } } ; eq { hop { filter_eq { all_rows ; qual 1 ; - } ; name } ; a j allmendinger } } = true
select the rows whose qual 1 record is equal to - . there is only one such row in the table . the name record of this unqiue row is a j allmendinger .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_eq_0': 0, 'all_rows_6': 6, 'qual 1_7': 7, '-_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'name_9': 9, 'a j allmendinger_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_eq_0': 'filter_eq', 'all_rows_6': 'all_rows', 'qual 1_7': 'qual 1', '-_8': '-', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'name_9': 'name', 'a j allmendinger_10': 'a j allmendinger'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_eq_0': [1, 2], 'all_rows_6': [0], 'qual 1_7': [0], '-_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'name_9': [2], 'a j allmendinger_10': [3]}
['name', 'team', 'qual 1', 'qual 2', 'best']
[['sébastien bourdais', 'newman / haas racing', '1:00.413', '59.942', '59.942'], ['bruno junqueira', 'newman / haas racing', '1:01.203', '1:00.525', '1:00.525'], ['paul tracy', 'forsythe racing', '1:00.885', '1:00.588', '1:00.588'], ['patrick carpentier', 'forsythe racing', '1:01.416', '1:00.595', '1:00.595'], ['mario domínguez', 'herdez competition', '1:00.721', '-', '1:00.721'], ['oriol servià', 'dale coyne racing', '1:02.046', '1:00.813', '1:00.813'], ['a j allmendinger', 'rusport', '-', '1:00.907', '1:00.907'], ['ryan hunter - reay', 'herdez competition', '1:01.545', '1:01.072', '1:01.072'], ['mario haberfeld', 'walker racing', '1:01.198', '1:01.285', '1:01.198'], ['justin wilson', 'mi - jack conquest racing', '1:01.782', '1:01.265', '1:01.265'], ['alex tagliani', 'rocketsports racing', '1:01.757', '1:01.266', '1:01.266'], ['jimmy vasser', 'pkv racing', '1:01.334', '1:02.090', '1:01.334'], ['michel jourdain , jr', 'rusport', '1:01.447', '1:01.345', '1:01.345'], ['nelson philippe', 'mi - jack conquest racing', '1:02.354', '1:01.522', '1:01.522'], ['rodolfo lavín', 'forsythe racing', '1:02.130', '1:01.794', '1:01.794'], ['guy smith', 'rocketsports racing', '1:02.113', '1:02.137', '1:02.113'], ['gastón mazzacane', 'dale coyne racing', '1:02.412', '-', '1:02.412'], ['roberto gonzález', 'pkv racing', '1:02.604', '1:02.507', '1:02.507']]
los angeles lakers all - time roster
https://en.wikipedia.org/wiki/Los_Angeles_Lakers_all-time_roster
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10560886-17.html.csv
count
there are 2 players with the ' forward / center ' position in the los angeles lakers all - time roster .
{'scope': 'all', 'criterion': 'equal', 'value': 'forward / center', 'result': '2', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'position', 'forward / center'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose position record fuzzily matches to forward / center .', 'tostr': 'filter_eq { all_rows ; position ; forward / center }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; position ; forward / center } }', 'tointer': 'select the rows whose position record fuzzily matches to forward / center . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; position ; forward / center } } ; 2 } = true', 'tointer': 'select the rows whose position record fuzzily matches to forward / center . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; position ; forward / center } } ; 2 } = true
select the rows whose position record fuzzily matches to forward / center . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'position_5': 5, 'forward / center_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'position_5': 'position', 'forward / center_6': 'forward / center', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'position_5': [0], 'forward / center_6': [0], '2_7': [2]}
['player', 'nationality', 'position', 'from', 'school / country']
[['jannero pargo', 'united states', 'guard', '2002', 'arkansas'], ['parker , smush smush parker', 'united states', 'guard', '2005', 'fordham'], ['myles patrick', 'united states', 'forward', '1980', 'auburn'], ['ruben patterson', 'united states', 'guard / forward', '1998', 'cincinnati'], ['jim paxson', 'united states', 'guard / forward', '1956', 'dayton'], ['gary payton', 'united states', 'guard', '2003', 'oregon state'], ['peeler , anthony anthony peeler', 'united states', 'guard', '1992', 'missouri'], ['mike penberthy', 'united states', 'guard', '2000', "the master 's college"], ['sam perkins', 'united states', 'forward / center', '1990', 'north carolina'], ['john pilch', 'united states', 'forward', '1951', 'wyoming'], ['jim pollard', 'united states', 'forward / center', '1949', 'stanford'], ['powell , josh josh powell', 'united states', 'forward', '2008', 'north carolina state'], ['jim price', 'united states', 'guard', '1972 , 1978', 'louisville'], ['laron profit', 'united states', 'guard / forward', '2005', 'maryland']]
list of corporations by market capitalization
https://en.wikipedia.org/wiki/List_of_corporations_by_market_capitalization
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14094649-14.html.csv
majority
the majority of corporations with the greatest market capitalization are headquartered in the united states .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'united states', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'headquarters', 'united states'], 'result': True, 'ind': 0, 'tointer': 'for the headquarters records of all rows , most of them fuzzily match to united states .', 'tostr': 'most_eq { all_rows ; headquarters ; united states } = true'}
most_eq { all_rows ; headquarters ; united states } = true
for the headquarters records of all rows , most of them fuzzily match to united states .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'headquarters_3': 3, 'united states_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'headquarters_3': 'headquarters', 'united states_4': 'united states'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'headquarters_3': [0], 'united states_4': [0]}
['rank', 'name', 'headquarters', 'industry', 'market value ( usd million )']
[['1', 'exxon mobil', 'united states', 'oil and gas', '371631'], ['2', 'general electric', 'united states', 'conglomerate', '362527'], ['3', 'microsoft', 'united states', 'software industry', '281171'], ['4', 'citigroup', 'united states', 'banking', '238935'], ['5', 'bp', 'united kingdom', 'oil and gas', '233260'], ['6', 'bank of america', 'united states', 'banking', '211706'], ['7', 'royal dutch shell', 'the netherlands', 'oil and gas', '211280'], ['8', 'wal - mart', 'united states', 'retail', '196860'], ['9', 'toyota motor corporation', 'japan', 'automotive', '196731'], ['10', 'gazprom', 'russia', 'oil and gas', '196339']]
larry mize
https://en.wikipedia.org/wiki/Larry_Mize
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1584996-5.html.csv
comparative
mize finished in the top 25 in the masters tournament more times than he finished in the top 25 of the pga championship .
{'row_1': '1', 'row_2': '4', 'col': '5', 'col_other': '1', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'tournament', 'masters tournament'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose tournament record fuzzily matches to masters tournament .', 'tostr': 'filter_eq { all_rows ; tournament ; masters tournament }'}, 'top - 25'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; tournament ; masters tournament } ; top - 25 }', 'tointer': 'select the rows whose tournament record fuzzily matches to masters tournament . take the top - 25 record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'tournament', 'pga championship'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose tournament record fuzzily matches to pga championship .', 'tostr': 'filter_eq { all_rows ; tournament ; pga championship }'}, 'top - 25'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; tournament ; pga championship } ; top - 25 }', 'tointer': 'select the rows whose tournament record fuzzily matches to pga championship . take the top - 25 record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; tournament ; masters tournament } ; top - 25 } ; hop { filter_eq { all_rows ; tournament ; pga championship } ; top - 25 } } = true', 'tointer': 'select the rows whose tournament record fuzzily matches to masters tournament . take the top - 25 record of this row . select the rows whose tournament record fuzzily matches to pga championship . take the top - 25 record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; tournament ; masters tournament } ; top - 25 } ; hop { filter_eq { all_rows ; tournament ; pga championship } ; top - 25 } } = true
select the rows whose tournament record fuzzily matches to masters tournament . take the top - 25 record of this row . select the rows whose tournament record fuzzily matches to pga championship . take the top - 25 record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'tournament_7': 7, 'masters tournament_8': 8, 'top - 25_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'tournament_11': 11, 'pga championship_12': 12, 'top - 25_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'tournament_7': 'tournament', 'masters tournament_8': 'masters tournament', 'top - 25_9': 'top - 25', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'tournament_11': 'tournament', 'pga championship_12': 'pga championship', 'top - 25_13': 'top - 25'}
{'greater_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'tournament_7': [0], 'masters tournament_8': [0], 'top - 25_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'tournament_11': [1], 'pga championship_12': [1], 'top - 25_13': [3]}
['tournament', 'wins', 'top - 5', 'top - 10', 'top - 25', 'events', 'cuts made']
[['masters tournament', '1', '2', '3', '11', '30', '17'], ['us open', '0', '1', '1', '4', '18', '10'], ['the open championship', '0', '0', '0', '2', '12', '7'], ['pga championship', '0', '0', '2', '6', '16', '10'], ['totals', '1', '3', '6', '23', '76', '44']]
independent girls ' schools sports association ( south australia )
https://en.wikipedia.org/wiki/Independent_Girls%27_Schools_Sports_Association_%28South_Australia%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-22043925-1.html.csv
majority
the majority of schools in the independent girls ' schools sports association are day & boarding schools .
{'scope': 'all', 'col': '7', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'day & boarding', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'day / boarding', 'day & boarding'], 'result': True, 'ind': 0, 'tointer': 'for the day / boarding records of all rows , most of them fuzzily match to day & boarding .', 'tostr': 'most_eq { all_rows ; day / boarding ; day & boarding } = true'}
most_eq { all_rows ; day / boarding ; day & boarding } = true
for the day / boarding records of all rows , most of them fuzzily match to day & boarding .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'day / boarding_3': 3, 'day & boarding_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'day / boarding_3': 'day / boarding', 'day & boarding_4': 'day & boarding'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'day / boarding_3': [0], 'day & boarding_4': [0]}
['school', 'location', 'enrolment', 'founded', 'denomination', 'boys / girls', 'day / boarding', 'school colors']
[['annesley college', 'wayville', '530', '1902', 'uniting church', 'girls', 'day & boarding', 'maroon & white'], ['concordia college', 'highgate', '700', '1890', 'lutheran', 'boys & girls', 'day', 'blue & gold'], ['immanuel college', 'novar gardens', '800', '1895', 'lutheran', 'boys & girls', 'day & boarding', 'blue , gold & white'], ['pembroke school', 'kensington park', '1545', '1915', 'non - denominational', 'boys & girls', 'day & boarding', 'royal blue , green & gold'], ['pulteney grammar school', 'adelaide', '820', '1847', 'anglican', 'boys & girls', 'day', 'navy blue , white & gold'], ["st peter 's collegiate girls ' school", 'stonyfell', '550', '1894', 'anglican', 'girls', 'day', 'navy blue & white'], ['scotch college', 'mitcham', '850', '1919', 'uniting church', 'boys & girls', 'day & boarding', 'blue & gold'], ['seymour college', 'glen osmond', '765', '1922', 'uniting church', 'girls', 'day & boarding', 'green , navy & white'], ['walford anglican school for girls', 'hyde park', '650', '1893', 'anglican', 'girls', 'day & boarding', 'navy blue , light blue & gold'], ['westminster school', 'marion', '1100', '1961', 'uniting church', 'boys & girls', 'day & boarding', 'green & white']]
list of intel core i7 microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18823880-15.html.csv
majority
in the list of intel core i7 microprocessors , most of the hd graphics 4000 has a 13 cache of 6 mb .
{'scope': 'subset', 'col': '7', 'most_or_all': 'most', 'criterion': 'equal', 'value': '6mb', 'subset': {'col': '8', 'criterion': 'equal', 'value': 'hd graphics 4000'}}
{'func': 'most_str_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'gpu model', 'hd graphics 4000'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; gpu model ; hd graphics 4000 }', 'tointer': 'select the rows whose gpu model record fuzzily matches to hd graphics 4000 .'}, 'l3 cache', '6mb'], 'result': True, 'ind': 1, 'tointer': 'select the rows whose gpu model record fuzzily matches to hd graphics 4000 . for the l3 cache records of these rows , most of them fuzzily match to 6mb .', 'tostr': 'most_eq { filter_eq { all_rows ; gpu model ; hd graphics 4000 } ; l3 cache ; 6mb } = true'}
most_eq { filter_eq { all_rows ; gpu model ; hd graphics 4000 } ; l3 cache ; 6mb } = true
select the rows whose gpu model record fuzzily matches to hd graphics 4000 . for the l3 cache records of these rows , most of them fuzzily match to 6mb .
2
2
{'most_str_eq_1': 1, 'result_2': 2, 'filter_str_eq_0': 0, 'all_rows_3': 3, 'gpu model_4': 4, 'hd graphics 4000_5': 5, 'l3 cache_6': 6, '6mb_7': 7}
{'most_str_eq_1': 'most_str_eq', 'result_2': 'true', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_3': 'all_rows', 'gpu model_4': 'gpu model', 'hd graphics 4000_5': 'hd graphics 4000', 'l3 cache_6': 'l3 cache', '6mb_7': '6mb'}
{'most_str_eq_1': [2], 'result_2': [], 'filter_str_eq_0': [1], 'all_rows_3': [0], 'gpu model_4': [0], 'hd graphics 4000_5': [0], 'l3 cache_6': [1], '6mb_7': [1]}
['model number', 'sspec number', 'cores', 'frequency', 'turbo', 'l2 cache', 'l3 cache', 'gpu model', 'gpu frequency', 'socket', 'i / o bus', 'release date', 'part number ( s )', 'release price ( usd )']
[['standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power', 'standard power'], ['core i7 - 3610qm', 'sr0 mn ( e1 )', '4', '2.3 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1100 mhz', 'socketg2', 'dmi 2.0', 'april 2012', 'aw8063801013511', '378'], ['core i7 - 3615qm', 'sr0 mp ( e1 )', '4', '2.3 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1200 mhz', 'bga - 1224', 'dmi 2.0', 'april 2012', 'av8063801013612', '378'], ['core i7 - 3630qm', 'sr0ux ( e1 )', '4', '2.4 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1150 mhz', 'socket g2', 'dmi 2.0', 'september 2012', 'aw8063801106200', '378'], ['core i7 - 3635qm', 'sr0uy ( e1 )', '4', '2.4 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1200 mhz', 'bga - 1224', 'dmi 2.0', 'september 2012', 'av8063801106500', '378'], ['core i7 - 3720qm', 'sr0 ml ( e1 ) sr0 mm ( e1 )', '4', '2.6 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1250 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'april 2012', 'aw8063801013116av8063801013210', '378'], ['core i7 - 3740qm', 'sr0uv ( e1 ) sr0uw ( e1 )', '4', '2.7 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1300 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'september 2012', 'aw8063801105000bx80638i73740qmav8063801105300', '378'], ['core i7 - 3820qm', 'sr0 mj ( e1 ) sr0 mk ( e1 )', '4', '2.7 ghz', '8 / 8 / 9 / 10', '4 256 kb', '8 mb', 'hd graphics 4000', '650 - 1250 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'april 2012', 'aw8063801012708av8063801012807', '568'], ['core i7 - 3840qm', 'sr0ut ( e1 ) sr0uu ( e1 )', '4', '2.8 ghz', '8 / 8 / 9 / 10', '4 256 kb', '8 mb', 'hd graphics 4000', '650 - 1300 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'september 2012', 'aw8063801103800bx80638i73840qmav8063801104100', '568'], ['core i7 - 3920xm', 'sr0 mh ( e1 ) sr0t2 ( e1 )', '4', '2.9 ghz', '7 / 7 / 8 / 9', '4 256 kb', '8 mb', 'hd graphics 4000', '650 - 1300 mhz', 'socket g2', 'dmi 2.0', 'april 2012', 'aw8063801009606aw8063801009607', '1096'], ['core i7 - 3940xm', 'sr0us ( e1 )', '4', '3 ghz', '7 / 7 / 8 / 9', '4 256 kb', '8 mb', 'hd graphics 4000', '650 - 1350 mhz', 'socket g2', 'dmi 2.0', 'september 2012', 'aw8063801103501', '1096'], ['standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded', 'standard power , embedded'], ['core i7 - 3610qe', 'sr0np ( e1 )', '4', '2.3 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1000 mhz', 'socket g2', 'dmi 2.0', 'april 2012', 'aw8063801118306', '393'], ['core i7 - 3615qe', 'sr0nc ( e1 )', '4', '2.3 ghz', '8 / 8 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1000 mhz', 'bga - 1023', 'dmi 2.0', 'april 2012', 'av8063801117503', '393'], ['low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power', 'low power'], ['core i7 - 3612qm', 'sr0 mq ( e1 ) sr0 mr ( e1 )', '4', '2.1 ghz', '7 / 7 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1100 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'april 2012', 'av8063801130504av8063801130704', '378'], ['core i7 - 3632qm', 'sr0v0 ( e1 ) sr0uz ( e1 )', '4', '2.2 ghz', '7 / 7 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1150 mhz', 'socket g2bga - 1224', 'dmi 2.0', 'october 2012', 'aw8063801152800av8063801152700', '378'], ['low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded', 'low power , embedded'], ['core i7 - 3612qe', 'sr0nd ( e1 )', '4', '2.1 ghz', '7 / 7 / 9 / 10', '4 256 kb', '6 mb', 'hd graphics 4000', '650 - 1000 mhz', 'bga - 1023', 'dmi 2.0', 'april 2012', 'av8063801149203', '426']]
thomas wheatley ( locomotive engineer )
https://en.wikipedia.org/wiki/Thomas_Wheatley_%28locomotive_engineer%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10668727-1.html.csv
count
a total of four locomotives designed by thomas wheatley went extinct in the year 1924 .
{'scope': 'all', 'criterion': 'equal', 'value': '1924', 'result': '4', 'col': '6', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_eq', 'args': ['all_rows', 'extinct', '1924'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose extinct record is equal to 1924 .', 'tostr': 'filter_eq { all_rows ; extinct ; 1924 }'}], 'result': '4', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; extinct ; 1924 } }', 'tointer': 'select the rows whose extinct record is equal to 1924 . the number of such rows is 4 .'}, '4'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; extinct ; 1924 } } ; 4 } = true', 'tointer': 'select the rows whose extinct record is equal to 1924 . the number of such rows is 4 .'}
eq { count { filter_eq { all_rows ; extinct ; 1924 } } ; 4 } = true
select the rows whose extinct record is equal to 1924 . the number of such rows is 4 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_eq_0': 0, 'all_rows_4': 4, 'extinct_5': 5, '1924_6': 6, '4_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_eq_0': 'filter_eq', 'all_rows_4': 'all_rows', 'extinct_5': 'extinct', '1924_6': '1924', '4_7': '4'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_eq_0': [1], 'all_rows_4': [0], 'extinct_5': [0], '1924_6': [0], '4_7': [2]}
['nbr class', 'type', 'introduced', 'driving wheel', 'total', 'extinct']
[['141', '2 - 4 - 0', '1869', 'ft6in ( mm )', '2', '1915'], ['38', '2 - 4 - 0', '1869', 'ft0in ( mm )', '1', '1912'], ['418', '2 - 4 - 0', '1873', 'ft0in ( mm )', '8', '1927'], ['40', '2 - 4 - 0', '1873', 'ft0in ( mm )', '2', '1903'], ['224', '4 - 4 - 0', '1871', 'ft6in ( mm )', '2', '1919'], ['420', '4 - 4 - 0', '1873', 'ft6in ( mm )', '4', '1918'], ['251', '0 - 6 - 0', '1867', 'ft3in ( mm )', '38', '1924'], ['56', '0 - 6 - 0', '1868', 'ft0in ( mm )', '8', '1914'], ['17', '0 - 6 - 0', '1869', 'ft6in ( mm )', '1', '1914'], ['396', '0 - 6 - 0', '1867', 'ft0in ( mm )', '88', '1937'], ['293', '0 - 6 - 0', '1872', 'ft0in ( mm )', '1', '1907'], ['357', '0 - 4 - 0', '1868', 'ft3in ( mm )', '2', '1925'], ['226', '0 - 6 - 0st', '1870', 'ft0in ( mm )', '2', '1924'], ['229', '0 - 6 - 0st', '1871', 'ft0in ( mm )', '15', '1924'], ['112', '0 - 6 - 0st', '1870', 'ft6in ( mm )', '3', '1910'], ['282', '0 - 6 - 0st', '1866', 'ft1in ( mm )', '3', '1921'], ['130', '0 - 6 - 0st', '1870', 'ft3in ( mm )', '10', '1924'], ['32', '0 - 6 - 0st', '1874', 'ft6in ( mm )', '6', '1907'], ['18', '0 - 4 - 0st', '1872', 'ft0in ( mm )', '2', '1906']]
dinamo riga
https://en.wikipedia.org/wiki/Dinamo_Riga
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-20833768-4.html.csv
ordinal
dinamo riga scored their third highest amount of points in the 2010-11 season .
{'row': '3', 'col': '5', 'order': '3', 'col_other': '1', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'pts', '3'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; pts ; 3 }'}, 'season'], 'result': '2010 - 11', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; pts ; 3 } ; season }'}, '2010 - 11'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; pts ; 3 } ; season } ; 2010 - 11 } = true', 'tointer': 'select the row whose pts record of all rows is 3rd maximum . the season record of this row is 2010 - 11 .'}
eq { hop { nth_argmax { all_rows ; pts ; 3 } ; season } ; 2010 - 11 } = true
select the row whose pts record of all rows is 3rd maximum . the season record of this row is 2010 - 11 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'pts_5': 5, '3_6': 6, 'season_7': 7, '2010 - 11_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'pts_5': 'pts', '3_6': '3', 'season_7': 'season', '2010 - 11_8': '2010 - 11'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'pts_5': [0], '3_6': [0], 'season_7': [1], '2010 - 11_8': [2]}
['season', 'gp', 'w ( ot / so )', 'l ( ot / so )', 'pts', 'pts / gp', 'gf - ga', 'rank ( league / conference )', 'top scorer']
[['2008 - 09', '56', '24 ( 3 / 2 )', '23 ( 1 / 3 )', '86', '1.54', '132 - 156', '10th / -', 'marcel hossa ( 44 )'], ['2009 - 10', '56', '23 ( 1 / 3 )', '22 ( 3 / 4 )', '84', '1.50', '174 - 175', '13th / 8th', 'marcel hossa ( 55 )'], ['2010 - 11', '54', '20 ( 2 / 5 )', '20 ( 5 / 2 )', '81', '1.50', '160 - 149', '13th / 7th', 'lauris dārziņš ( 44 )'], ['2011 - 12', '54', '20 ( 2 / 4 )', '21 ( 0 / 7 )', '79', '1.46', '129 - 136', '15th / 7th', 'miķelis rēdlihs ( 44 )'], ['2012 - 13', '52', '11 ( 2 / 2 )', '31 ( 2 / 2 )', '51', '0.98', '109 - 151', '24th / 14th', 'mārtiņš karsums ( 35 )']]
wvtf
https://en.wikipedia.org/wiki/WVTF
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12155786-3.html.csv
majority
of the frequencies for wvtf , all of the licenses were for cities in virginia .
{'scope': 'all', 'col': '3', 'most_or_all': 'all', 'criterion': 'fuzzily_match', 'value': 'virginia', 'subset': None}
{'func': 'all_str_eq', 'args': ['all_rows', 'city of license', 'virginia'], 'result': True, 'ind': 0, 'tointer': 'for the city of license records of all rows , all of them fuzzily match to virginia .', 'tostr': 'all_eq { all_rows ; city of license ; virginia } = true'}
all_eq { all_rows ; city of license ; virginia } = true
for the city of license records of all rows , all of them fuzzily match to virginia .
1
1
{'all_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'city of license_3': 3, 'virginia_4': 4}
{'all_str_eq_0': 'all_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'city of license_3': 'city of license', 'virginia_4': 'virginia'}
{'all_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'city of license_3': [0], 'virginia_4': [0]}
['call sign', 'frequency mhz', 'city of license', 'erp w', 'fcc info']
[['w211bf', '90.1', 'big stone gap , virginia', '8', 'fcc'], ['w212bp', '90.3', 'clintwood , virginia', '1', 'fcc'], ['w211be', '90.1', 'lebanon , virginia', '8.5', 'fcc'], ['w219cj', '91.7', 'norton , virginia', '50', 'fcc'], ['w217bf', '91.3', 'pound , virginia', '1', 'fcc'], ['w215bj', '90.9', 'saint paul , virginia', '1', 'fcc']]
united states house of representatives elections , 1926
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1926
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1342379-20.html.csv
majority
republicans won more of the races than democrats .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'republican', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'party', 'republican'], 'result': True, 'ind': 0, 'tointer': 'for the party records of all rows , most of them fuzzily match to republican .', 'tostr': 'most_eq { all_rows ; party ; republican } = true'}
most_eq { all_rows ; party ; republican } = true
for the party records of all rows , most of them fuzzily match to republican .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'party_3': 3, 'republican_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'party_3': 'party', 'republican_4': 'republican'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'party_3': [0], 'republican_4': [0]}
['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']
[['massachusetts 2', 'henry l bowles', 'republican', '1925', 're - elected', 'henry l bowles ( r ) 64.0 % john hall ( d ) 36.0 %'], ['massachusetts 3', 'frank h foss', 'republican', '1924', 're - elected', 'frank h foss ( r ) 62.8 % joseph e casey ( d ) 37.2 %'], ['massachusetts 6', 'abram andrew', 'republican', '1921', 're - elected', 'abram andrew ( r ) 76.9 % james mcpherson ( d ) 23.1 %'], ['massachusetts 10', 'john j douglass', 'democratic', '1924', 're - elected', 'john j douglass ( d ) unopposed'], ['massachusetts 11', 'george h tinkham', 'republican', '1914', 're - elected', 'george h tinkham ( r ) unopposed'], ['massachusetts 12', 'james a gallivan', 'democratic', '1914', 're - elected', 'james a gallivan ( d ) unopposed']]
somerset county cricket club in 2010
https://en.wikipedia.org/wiki/Somerset_County_Cricket_Club_in_2010
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-28846752-4.html.csv
majority
the majority of team members played in over twenty innings .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'greater_than', 'value': '20', 'subset': None}
{'func': 'most_greater', 'args': ['all_rows', 'innings', '20'], 'result': True, 'ind': 0, 'tointer': 'for the innings records of all rows , most of them are greater than 20 .', 'tostr': 'most_greater { all_rows ; innings ; 20 } = true'}
most_greater { all_rows ; innings ; 20 } = true
for the innings records of all rows , most of them are greater than 20 .
1
1
{'most_greater_0': 0, 'result_1': 1, 'all_rows_2': 2, 'innings_3': 3, '20_4': 4}
{'most_greater_0': 'most_greater', 'result_1': 'true', 'all_rows_2': 'all_rows', 'innings_3': 'innings', '20_4': '20'}
{'most_greater_0': [1], 'result_1': [], 'all_rows_2': [0], 'innings_3': [0], '20_4': [0]}
['player', 'matches', 'innings', 'runs', 'average', 'highest score', '100s', '50s']
[['james hildreth', '16', '23', '1440', '65.45', '151', '7', '5'], ['marcus trescothick', '16', '28', '1397', '58.20', '228', '4', '6'], ['zander de bruyn', '14', '21', '814', '38.76', '95', '0', '5'], ['arul suppiah', '16', '26', '771', '33.52', '125', '1', '4'], ['jos buttler', '13', '20', '569', '33.47', '144', '1', '2'], ['nick compton', '11', '17', '465', '33.21', '72', '0', '2'], ['peter trego', '16', '23', '693', '33.00', '108', '1', '5'], ['craig kieswetter', '12', '18', '467', '27.47', '84', '0', '4']]
1968 - 69 atlanta hawks season
https://en.wikipedia.org/wiki/1968%E2%80%9369_Atlanta_Hawks_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18409087-9.html.csv
count
four of the games of the 1968 - 69 atlanta hawks season were played on the month of april .
{'scope': 'all', 'criterion': 'fuzzily_match', 'value': 'april', 'result': '4', 'col': '2', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'date', 'april'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose date record fuzzily matches to april .', 'tostr': 'filter_eq { all_rows ; date ; april }'}], 'result': '4', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; date ; april } }', 'tointer': 'select the rows whose date record fuzzily matches to april . the number of such rows is 4 .'}, '4'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; date ; april } } ; 4 } = true', 'tointer': 'select the rows whose date record fuzzily matches to april . the number of such rows is 4 .'}
eq { count { filter_eq { all_rows ; date ; april } } ; 4 } = true
select the rows whose date record fuzzily matches to april . the number of such rows is 4 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'date_5': 5, 'april_6': 6, '4_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'date_5': 'date', 'april_6': 'april', '4_7': '4'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'date_5': [0], 'april_6': [0], '4_7': [2]}
['game', 'date', 'opponent', 'score', 'location / attendance', 'series']
[['1', 'march 27', 'san diego', '107 - 98', 'alexander memorial coliseum', '1 - 0'], ['2', 'march 29', 'san diego', '116 - 114', 'alexander memorial coliseum', '2 - 0'], ['3', 'april 1', 'san diego', '97 - 104', 'san diego sports arena', '2 - 1'], ['4', 'april 4', 'san diego', '112 - 114', 'san diego sports arena', '2 - 2'], ['5', 'april 6', 'san diego', '112 - 101', 'alexander memorial coliseum', '3 - 2'], ['6', 'april 7', 'san diego', '108 - 106', 'san diego sports arena', '4 - 2']]
1957 team speedway polish championship
https://en.wikipedia.org/wiki/1957_Team_Speedway_Polish_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15434792-3.html.csv
unique
in the 1957 team speedway polish championship , for the teams that lost more than 1 game , the only one that had 14 points was skra warszawa .
{'scope': 'subset', 'row': '3', 'col': '3', 'col_other': '1', 'criterion': 'equal', 'value': '14', 'subset': {'col': '5', 'criterion': 'greater_than', 'value': '1'}}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'lost', '1'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; lost ; 1 }', 'tointer': 'select the rows whose lost record is greater than 1 .'}, 'points', '14'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose lost record is greater than 1 . among these rows , select the rows whose points record is equal to 14 .', 'tostr': 'filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 }'}], 'result': True, 'ind': 2, 'tostr': 'only { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } }', 'tointer': 'select the rows whose lost record is greater than 1 . among these rows , select the rows whose points record is equal to 14 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_eq', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'lost', '1'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; lost ; 1 }', 'tointer': 'select the rows whose lost record is greater than 1 .'}, 'points', '14'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose lost record is greater than 1 . among these rows , select the rows whose points record is equal to 14 .', 'tostr': 'filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 }'}, 'team'], 'result': 'skra warszawa', 'ind': 3, 'tostr': 'hop { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } ; team }'}, 'skra warszawa'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } ; team } ; skra warszawa }', 'tointer': 'the team record of this unqiue row is skra warszawa .'}], 'result': True, 'ind': 5, 'tostr': 'and { only { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } } ; eq { hop { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } ; team } ; skra warszawa } } = true', 'tointer': 'select the rows whose lost record is greater than 1 . among these rows , select the rows whose points record is equal to 14 . there is only one such row in the table . the team record of this unqiue row is skra warszawa .'}
and { only { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } } ; eq { hop { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } ; team } ; skra warszawa } } = true
select the rows whose lost record is greater than 1 . among these rows , select the rows whose points record is equal to 14 . there is only one such row in the table . the team record of this unqiue row is skra warszawa .
8
6
{'and_5': 5, 'result_6': 6, 'only_2': 2, 'filter_eq_1': 1, 'filter_greater_0': 0, 'all_rows_7': 7, 'lost_8': 8, '1_9': 9, 'points_10': 10, '14_11': 11, 'str_eq_4': 4, 'str_hop_3': 3, 'team_12': 12, 'skra warszawa_13': 13}
{'and_5': 'and', 'result_6': 'true', 'only_2': 'only', 'filter_eq_1': 'filter_eq', 'filter_greater_0': 'filter_greater', 'all_rows_7': 'all_rows', 'lost_8': 'lost', '1_9': '1', 'points_10': 'points', '14_11': '14', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'team_12': 'team', 'skra warszawa_13': 'skra warszawa'}
{'and_5': [6], 'result_6': [], 'only_2': [5], 'filter_eq_1': [2, 3], 'filter_greater_0': [1], 'all_rows_7': [0], 'lost_8': [0], '1_9': [0], 'points_10': [1], '14_11': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'team_12': [3], 'skra warszawa_13': [4]}
['team', 'match', 'points', 'draw', 'lost']
[['stal rzeszów', '12', '22', '0', '1'], ['unia leszno', '12', '22', '0', '1'], ['skra warszawa', '12', '14', '0', '5'], ['gwardia katowice', '12', '8', '0', '8'], ['stal gorzów wlkp', '12', '8', '0', '8'], ['ostrovia ostrów wlkp', '12', '6', '0', '9'], ['lpż lublin', '12', '4', '0', '10']]
operación triunfo ( spain )
https://en.wikipedia.org/wiki/Operaci%C3%B3n_Triunfo_%28Spain%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1149495-1.html.csv
comparative
sergio rivero was the winner of operación triunfo two years after vicente seguí porres .
{'row_1': '4', 'row_2': '3', 'col': '2', 'col_other': '3', 'relation': 'diff', 'record_mentioned': 'no', 'diff_result': {'diff_value': '2 years', 'bigger': 'row1'}}
{'func': 'eq', 'args': [{'func': 'diff', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'sergio rivero'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose winner record fuzzily matches to sergio rivero .', 'tostr': 'filter_eq { all_rows ; winner ; sergio rivero }'}, 'year'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; winner ; sergio rivero } ; year }', 'tointer': 'select the rows whose winner record fuzzily matches to sergio rivero . take the year record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winner', 'vicente seguí porres'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose winner record fuzzily matches to vicente seguí porres .', 'tostr': 'filter_eq { all_rows ; winner ; vicente seguí porres }'}, 'year'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; winner ; vicente seguí porres } ; year }', 'tointer': 'select the rows whose winner record fuzzily matches to vicente seguí porres . take the year record of this row .'}], 'result': '2 years', 'ind': 4, 'tostr': 'diff { hop { filter_eq { all_rows ; winner ; sergio rivero } ; year } ; hop { filter_eq { all_rows ; winner ; vicente seguí porres } ; year } }'}, '2 years'], 'result': True, 'ind': 5, 'tostr': 'eq { diff { hop { filter_eq { all_rows ; winner ; sergio rivero } ; year } ; hop { filter_eq { all_rows ; winner ; vicente seguí porres } ; year } } ; 2 years } = true', 'tointer': 'select the rows whose winner record fuzzily matches to sergio rivero . take the year record of this row . select the rows whose winner record fuzzily matches to vicente seguí porres . take the year record of this row . the first record is 2 years larger than the second record .'}
eq { diff { hop { filter_eq { all_rows ; winner ; sergio rivero } ; year } ; hop { filter_eq { all_rows ; winner ; vicente seguí porres } ; year } } ; 2 years } = true
select the rows whose winner record fuzzily matches to sergio rivero . take the year record of this row . select the rows whose winner record fuzzily matches to vicente seguí porres . take the year record of this row . the first record is 2 years larger than the second record .
6
6
{'str_eq_5': 5, 'result_6': 6, 'diff_4': 4, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_7': 7, 'winner_8': 8, 'sergio rivero_9': 9, 'year_10': 10, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_11': 11, 'winner_12': 12, 'vicente seguí porres_13': 13, 'year_14': 14, '2 years_15': 15}
{'str_eq_5': 'str_eq', 'result_6': 'true', 'diff_4': 'diff', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_7': 'all_rows', 'winner_8': 'winner', 'sergio rivero_9': 'sergio rivero', 'year_10': 'year', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_11': 'all_rows', 'winner_12': 'winner', 'vicente seguí porres_13': 'vicente seguí porres', 'year_14': 'year', '2 years_15': '2 years'}
{'str_eq_5': [6], 'result_6': [], 'diff_4': [5], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_7': [0], 'winner_8': [0], 'sergio rivero_9': [0], 'year_10': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_11': [1], 'winner_12': [1], 'vicente seguí porres_13': [1], 'year_14': [3], '2 years_15': [5]}
['series', 'year', 'winner', 'runner - up', 'third place', 'fourth place', 'fifth place', 'sixth place', 'host']
[['1', '2001 - 2002', 'rosa lópez', 'david bisbal', 'david bustamante', 'chenoa', 'manu tenorio', 'verónica romero', 'carlos lozano'], ['2', '2002 - 2003', 'ainhoa cantalapiedra', 'manuel carrasco', 'beth rodergas', 'miguel nández', 'hugo salazar', 'joan tena', 'carlos lozano'], ['3', '2003', 'vicente seguí porres', 'ramón del castillo', 'miguel cadenas', 'davinia cuevas', 'mario martínez', 'leticia pérez', 'carlos lozano'], ['4', '2005', 'sergio rivero', 'soraya arnelas', 'víctor estévez polo', 'idaira fernandez', 'fran dieli', 'edurne garcía', 'jesús vázquez'], ['5', '2006 - 2007', 'lorena gómez', 'daniel zueras', 'leo segarra sánchez', 'saray ramírez', 'moritz weisskopf', 'jose galisteo', 'jesús vázquez'], ['6', '2008', 'virginia maestro', 'pablo lópez', 'chipper cooke', 'manu castellano', 'sandra criado', 'mimi segura', 'jesús vázquez'], ['7', '2009', 'mario álvarez', 'brenda mau', 'jon allende', 'ángel capel', 'patricia navarro', 'sylvia parejo', 'jesús vázquez'], ['8', '2011', 'nahuel sachak', 'álex forriols', 'mario jefferson', 'alexandra masangkay', 'niccó', 'josh prada', 'pilar rubio']]
us junior open squash championship
https://en.wikipedia.org/wiki/US_Junior_Open_squash_championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-26368963-2.html.csv
count
emily park won the us under 13 squash championship two times .
{'scope': 'all', 'criterion': 'fuzzily_match', 'value': 'emily park', 'result': '2', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'under - 13', 'emily park'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose under - 13 record fuzzily matches to emily park .', 'tostr': 'filter_eq { all_rows ; under - 13 ; emily park }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; under - 13 ; emily park } }', 'tointer': 'select the rows whose under - 13 record fuzzily matches to emily park . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; under - 13 ; emily park } } ; 2 } = true', 'tointer': 'select the rows whose under - 13 record fuzzily matches to emily park . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; under - 13 ; emily park } } ; 2 } = true
select the rows whose under - 13 record fuzzily matches to emily park . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'under - 13_5': 5, 'emily park_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'under - 13_5': 'under - 13', 'emily park_6': 'emily park', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'under - 13_5': [0], 'emily park_6': [0], '2_7': [2]}
['year', 'under - 11', 'under - 13', 'under - 15', 'under - 17', 'under - 19']
[['1999', 'unknown', 'unknown', 'unknown', 'jacqui inward', 'leong siu lynn'], ['2000', 'was not played', 'emery maine', 'lily lorentzen', 'lauren mccrery', 'michelle quibell'], ['2001', 'was not played', 'emily park', 'alisha turner', 'jennifer blumberg', 'ruchika kumar'], ['2002', 'was not played', 'emily park', 'rebecca dudley', 'britt hebden', 'emma beddoes'], ['2003', 'was not played', 'laura gemmell', 'emily park', 'neha kumar', 'lily lorentzen'], ['2004', 'was not played', 'olivia blatchford', 'emily park', 'kristen lange', 'jenna gates'], ['2005', 'was not played', 'skyler bouchard', 'laura gemmell', 'emily park', 'neha kumar'], ['2006', 'was not played', 'amy smedira', 'vidya rajan', 'laura gemmel', 'kristen lange'], ['2007', 'reeham sedky', 'claudia regio', 'amanda sobhy', 'salma nassar', 'laura gemmell'], ['2008', 'helen teegan', 'reeham sedky', 'maria elena ubina', 'amanda sobhy', 'laura gemmell'], ['2009', 'elena wagenmans', 'reeham sedky', 'olivia fiechter', 'maria elena ubina', 'olivia blatchford'], ['2010', 'elena wagenmans', 'helen teegan', 'reeham sedky', 'olivia fiechter', 'amanda sobhy'], ['2011', 'jamila abul enin', 'malak fayed', 'reeham sedky', 'sue ann yong', 'maria elena ubina']]
2001 ansett australia cup
https://en.wikipedia.org/wiki/2001_Ansett_Australia_Cup
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-16388439-2.html.csv
superlative
the biggest crowd showed up the game at which collingwood was playing .
{'scope': 'all', 'col_superlative': '7', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'crowd'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; crowd }'}, 'home team'], 'result': 'collingwood', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; crowd } ; home team }'}, 'collingwood'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; crowd } ; home team } ; collingwood } = true', 'tointer': 'select the row whose crowd record of all rows is maximum . the home team record of this row is collingwood .'}
eq { hop { argmax { all_rows ; crowd } ; home team } ; collingwood } = true
select the row whose crowd record of all rows is maximum . the home team record of this row is collingwood .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'crowd_5': 5, 'home team_6': 6, 'collingwood_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'crowd_5': 'crowd', 'home team_6': 'home team', 'collingwood_7': 'collingwood'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'crowd_5': [0], 'home team_6': [1], 'collingwood_7': [2]}
['home team', 'home team score', 'away team', 'away team score', 'ground', 'date', 'crowd']
[['collingwood', '12.14 ( 86 )', 'st kilda', '10.8 ( 68 )', 'colonial stadium', 'friday , 16 february', '30072'], ['west coast', '6.11 ( 47 )', 'kangaroos', '14.12 ( 96 )', 'subiaco oval', 'friday , 16 february', '16905'], ['kangaroos', '14.12 ( 96 )', 'st kilda', '12.9 ( 81 )', 'manuka oval', 'saturday , 24 february', '8157'], ['west coast', '12.6 ( 78 )', 'collingwood', '12.8 ( 80 )', 'subiaco oval', 'saturday , 24 february', '16090'], ['st kilda', '19.9 ( 123 )', 'west coast', '15.7 ( 97 )', 'colonial stadium', 'friday , 2 march', '8642']]
united states house of representatives elections , 1970
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1970
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1341718-36.html.csv
majority
in the 1970 election for the united states house of representatives , most of the incumbents were from the republican party .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'republican', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'party', 'republican'], 'result': True, 'ind': 0, 'tointer': 'for the party records of all rows , most of them fuzzily match to republican .', 'tostr': 'most_eq { all_rows ; party ; republican } = true'}
most_eq { all_rows ; party ; republican } = true
for the party records of all rows , most of them fuzzily match to republican .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'party_3': 3, 'republican_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'party_3': 'party', 'republican_4': 'republican'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'party_3': [0], 'republican_4': [0]}
['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']
[['ohio 5', 'del latta', 'republican', '1958', 're - elected', 'del latta ( r ) 71.1 % carl g sherer ( d ) 28.9 %'], ['ohio 6', 'bill harsha', 'republican', '1960', 're - elected', 'bill harsha ( r ) 67.8 % raymond h stevens ( d ) 32.2 %'], ['ohio 8', 'jackson edward betts', 'republican', '1950', 're - elected', 'jackson edward betts ( r ) unopposed'], ['ohio 10', 'clarence e miller', 'republican', '1966', 're - elected', 'clarence e miller ( r ) 66.5 % doug arnett ( d ) 33.5 %'], ['ohio 11', 'j william stanton', 'republican', '1964', 're - elected', 'j william stanton ( r ) 68.2 % ralph rudd ( d ) 31.8 %'], ['ohio 16', 'frank t bow', 'republican', '1950', 're - elected', 'frank t bow ( r ) 56.2 % virgil l musser ( d ) 43.8 %'], ['ohio 18', 'wayne l hays', 'democratic', '1948', 're - elected', 'wayne l hays ( d ) 68.3 % robert stewart ( r ) 31.7 %'], ['ohio 21', 'louis stokes', 'democratic', '1968', 're - elected', 'louis stokes ( d ) 77.6 % bill mack ( r ) 22.4 %']]
elvis ' gold records volume 5
https://en.wikipedia.org/wiki/Elvis%27_Gold_Records_Volume_5
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15582798-4.html.csv
superlative
" edge of reality " was elvis 's longest song on his gold records volume five .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '5', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '5', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'time'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; time }'}, 'song title'], 'result': 'edge of reality', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; time } ; song title }'}, 'edge of reality'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; time } ; song title } ; edge of reality } = true', 'tointer': 'select the row whose time record of all rows is maximum . the song title record of this row is edge of reality .'}
eq { hop { argmax { all_rows ; time } ; song title } ; edge of reality } = true
select the row whose time record of all rows is maximum . the song title record of this row is edge of reality .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'time_5': 5, 'song title_6': 6, 'edge of reality_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'time_5': 'time', 'song title_6': 'song title', 'edge of reality_7': 'edge of reality'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'time_5': [0], 'song title_6': [1], 'edge of reality_7': [2]}
['track', 'recorded', 'catalogue', 'release date', 'song title', 'time']
[['1', '9 / 10 / 67', '47 - 9341', '9 / 26 / 67', 'big boss man', '2:50'], ['2', '9 / 10 / 67', '47 - 9425', '1 / 9 / 68', 'guitar man', '2:12'], ['3', '1 / 16 / 68', '47 - 9465', '2 / 28 / 68', 'us male', '2:42'], ['4', '6 / 6 / 70', '47 - 9916', '10 / 6 / 70', "you do n't have to say you love me", '2:30'], ['5', '3 / 7 / 68', '47 - 9670b', '11 / 5 / 68', 'edge of reality', '3:33'], ['6', '6 / 23 / 68', '47 - 9731', '2 / 25 / 69', 'memories', '3:06']]
indra putra mahayuddin
https://en.wikipedia.org/wiki/Indra_Putra_Mahayuddin
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11847478-2.html.csv
superlative
indra putra mahayuddin largest winning score in the games listed was by five goals to zero .
{'scope': 'all', 'col_superlative': '3', 'row_superlative': '1', 'value_mentioned': 'yes', 'max_or_min': 'max', 'other_col': 'n/a', 'subset': None}
{'func': 'eq', 'args': [{'func': 'max', 'args': ['all_rows', 'score'], 'result': '5 - 0', 'ind': 0, 'tostr': 'max { all_rows ; score }', 'tointer': 'the maximum score record of all rows is 5 - 0 .'}, '5 - 0'], 'result': True, 'ind': 1, 'tostr': 'eq { max { all_rows ; score } ; 5 - 0 } = true', 'tointer': 'the maximum score record of all rows is 5 - 0 .'}
eq { max { all_rows ; score } ; 5 - 0 } = true
the maximum score record of all rows is 5 - 0 .
2
2
{'eq_1': 1, 'result_2': 2, 'max_0': 0, 'all_rows_3': 3, 'score_4': 4, '5 - 0_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'max_0': 'max', 'all_rows_3': 'all_rows', 'score_4': 'score', '5 - 0_5': '5 - 0'}
{'eq_1': [2], 'result_2': [], 'max_0': [1], 'all_rows_3': [0], 'score_4': [0], '5 - 0_5': [1]}
['date', 'venue', 'score', 'result', 'competition']
[['december 11 , 2002', 'petaling jaya , malaysia', '5 - 0', 'win', 'friendly'], ['december 18 , 2002', 'singapore , singapore', '0 - 4', 'win', '2002 tiger cup group stage'], ['december 20 , 2002', 'singapore , singapore', '3 - 1', 'win', '2002 tiger cup group stage'], ['december 29 , 2002', 'singapore , singapore', '2 - 1', 'lose', '2002 tiger cup third / fourth place'], ['october 22 , 2003', 'manama , bahrain', '3 - 1', 'lose', '2004 afc asian cup qualification'], ['august 23 , 2006', 'shah alam , malaysia', '1 - 2', 'lose', '2006 merdeka tournament group stage'], ['july 10 , 2007', 'kuala lumpur , malaysia', '1 - 5', 'lose', '2007 afc asian cup group stage'], ['july 22 , 2008', 'hyderabad , india', '1 - 1', 'draw', 'friendly'], ['october 15 , 2008', 'kelana jaya , malaysia', '4 - 0', 'win', '2008 merdeka tournament'], ['october 23 , 2008', 'kuala lumpur , malaysia', '4 - 0', 'win', '2008 merdeka tournament'], ['december 6 , 2008', 'phuket , thailand', '3 - 0', 'win', '2008 aff suzuki cup'], ['december 8 , 2008', 'phuket , thailand', '2 - 3', 'lose', '2008 aff suzuki cup']]
grand slam ( tennis )
https://en.wikipedia.org/wiki/Grand_Slam_%28tennis%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-197638-6.html.csv
majority
the majority of the players listed won their grand slams before their 27th birthday .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'less_than', 'value': '27', 'subset': None}
{'func': 'most_less', 'args': ['all_rows', 'age', '27'], 'result': True, 'ind': 0, 'tointer': 'for the age records of all rows , most of them are less than 27 .', 'tostr': 'most_less { all_rows ; age ; 27 } = true'}
most_less { all_rows ; age ; 27 } = true
for the age records of all rows , most of them are less than 27 .
1
1
{'most_less_0': 0, 'result_1': 1, 'all_rows_2': 2, 'age_3': 3, '27_4': 4}
{'most_less_0': 'most_less', 'result_1': 'true', 'all_rows_2': 'all_rows', 'age_3': 'age', '27_4': '27'}
{'most_less_0': [1], 'result_1': [], 'all_rows_2': [0], 'age_3': [0], '27_4': [0]}
['', 'player', 'age', 'australian open', 'french open', 'wimbledon', 'us open']
[['1', 'fred perry', '26', '1934', '1935', '1934', '1933'], ['2', 'don budge', '23', '1938', '1938', '1937', '1937'], ['3', 'rod laver', '24', '1960', '1962', '1961', '1962'], ['4', 'roy emerson', '27', '1961', '1963', '1964', '1961'], ['5', 'andre agassi', '29', '1995', '1999', '1992', '1994'], ['6', 'roger federer', '27', '2004', '2009', '2003', '2004']]
list of eintracht frankfurt records and statistics
https://en.wikipedia.org/wiki/List_of_Eintracht_Frankfurt_records_and_statistics
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15453888-2.html.csv
superlative
the player jürgen grabowski had the most appearances in games considering the top goalscorers in the history of eintracht frankfurt club .
{'scope': 'all', 'col_superlative': '3', 'row_superlative': '3', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'apps'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; apps }'}, 'name'], 'result': 'jürgen grabowski', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; apps } ; name }'}, 'jürgen grabowski'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; apps } ; name } ; jürgen grabowski } = true', 'tointer': 'select the row whose apps record of all rows is maximum . the name record of this row is jürgen grabowski .'}
eq { hop { argmax { all_rows ; apps } ; name } ; jürgen grabowski } = true
select the row whose apps record of all rows is maximum . the name record of this row is jürgen grabowski .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'apps_5': 5, 'name_6': 6, 'jürgen grabowski_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'apps_5': 'apps', 'name_6': 'name', 'jürgen grabowski_7': 'jürgen grabowski'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'apps_5': [0], 'name_6': [1], 'jürgen grabowski_7': [2]}
['name', 'career', 'apps', 'goals', 'average']
[['bernd hölzenbein', '1967 - 1981', '512', '201', '0.39'], ['bernd nickel', '1967 - 1983', '522', '175', '0.34'], ['jürgen grabowski', '1965 - 1980', '526', '137', '0.26'], ['alfred pfaff', '1949 - 1961', '324', '111', '0.34'], ['erwin stein', '1959 - 1966', '174', '108', '0.62'], ['tony yeboah', '1990 - 1995', '156', '90', '0.58'], ['richard kress', '1953 - 1964', '326', '82', '0.25'], ['willi huberts', '1963 - 1970', '246', '80', '0.33'], ['lothar schämer', '1960 - 1973', '338', '73', '0.22'], ['wolfgang solz', '1959 - 1968', '208', '72', '0.35']]
television in italy
https://en.wikipedia.org/wiki/Television_in_Italy
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15887683-19.html.csv
unique
satisfaction hd is the only television service in italy that provides an hdtv service .
{'scope': 'all', 'row': '14', 'col': '5', 'col_other': '1', 'criterion': 'equal', 'value': 'yes', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'hdtv', 'yes'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose hdtv record fuzzily matches to yes .', 'tostr': 'filter_eq { all_rows ; hdtv ; yes }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; hdtv ; yes } }', 'tointer': 'select the rows whose hdtv record fuzzily matches to yes . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'hdtv', 'yes'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose hdtv record fuzzily matches to yes .', 'tostr': 'filter_eq { all_rows ; hdtv ; yes }'}, 'television service'], 'result': 'satisfaction hd', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; hdtv ; yes } ; television service }'}, 'satisfaction hd'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; hdtv ; yes } ; television service } ; satisfaction hd }', 'tointer': 'the television service record of this unqiue row is satisfaction hd .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; hdtv ; yes } } ; eq { hop { filter_eq { all_rows ; hdtv ; yes } ; television service } ; satisfaction hd } } = true', 'tointer': 'select the rows whose hdtv record fuzzily matches to yes . there is only one such row in the table . the television service record of this unqiue row is satisfaction hd .'}
and { only { filter_eq { all_rows ; hdtv ; yes } } ; eq { hop { filter_eq { all_rows ; hdtv ; yes } ; television service } ; satisfaction hd } } = true
select the rows whose hdtv record fuzzily matches to yes . there is only one such row in the table . the television service record of this unqiue row is satisfaction hd .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'hdtv_7': 7, 'yes_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'television service_9': 9, 'satisfaction hd_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'hdtv_7': 'hdtv', 'yes_8': 'yes', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'television service_9': 'television service', 'satisfaction hd_10': 'satisfaction hd'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'hdtv_7': [0], 'yes_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'television service_9': [2], 'satisfaction hd_10': [3]}
['television service', 'country', 'language', 'content', 'hdtv', 'package / option']
[['contotv 1', 'italy', 'italian', 'general television', 'no', 'qualsiasi'], ['contotv 2', 'italy', 'italian', 'general television', 'no', 'qualsiasi'], ['contotv 3', 'italy', 'italian', 'general television', 'no', 'qualsiasi'], ['contotv 4', 'italy', 'italian', 'programmi per adulti 24h / 24', 'no', 'qualsiasi'], ['contotv 5', 'italy', 'italian', 'programmi per adulti 24h / 24', 'no', 'qualsiasi'], ['teleitalia', 'italy', 'italian', 'general television', 'no', 'qualsiasi ( fta )'], ['teleitalia spot', 'italy', 'italian', 'general television', 'no', 'qualsiasi ( fta )'], ['d - xtv', 'italy', 'italian', 'programmi per adulti 24h / 24', 'no', 'qualsiasi'], ['r - light', 'italy', 'italian', 'programmi per adulti 24h / 24', 'no', 'qualsiasi'], ['sct', 'italy', 'italian', 'programmi per adulti 24h / 24', 'no', 'qualsiasi'], ['boy & boy', 'italy', 'italian', 'programmi per adulti 24h / 24', 'no', 'qualsiasi'], ['privã', 'italy', 'italian', 'programmi per adulti 24h / 24', 'no', 'qualsiasi'], ['themex', 'italy', 'italian', 'programmi per adulti 24h / 24', 'no', 'qualsiasi'], ['satisfaction hd', 'italy', 'italian', 'programmi per adulti 24h / 24', 'yes', 'qualsiasi']]
2010 - 11 süper lig
https://en.wikipedia.org/wiki/2010%E2%80%9311_S%C3%BCper_Lig
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-26998135-2.html.csv
superlative
in the 2010 - 11 süper lig , first outgoing manager that retired was mustafa denizli .
{'scope': 'subset', 'col_superlative': '4', 'row_superlative': '2', 'value_mentioned': 'no', 'max_or_min': 'min', 'other_col': '2,3', 'subset': {'col': '3', 'criterion': 'equal', 'value': 'retired'}}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'manner of departure', 'retired'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; manner of departure ; retired }', 'tointer': 'select the rows whose manner of departure record fuzzily matches to retired .'}, 'date of vacancy'], 'result': None, 'ind': 1, 'tostr': 'argmin { filter_eq { all_rows ; manner of departure ; retired } ; date of vacancy }'}, 'outgoing manager'], 'result': 'mustafa denizli', 'ind': 2, 'tostr': 'hop { argmin { filter_eq { all_rows ; manner of departure ; retired } ; date of vacancy } ; outgoing manager }'}, 'mustafa denizli'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { argmin { filter_eq { all_rows ; manner of departure ; retired } ; date of vacancy } ; outgoing manager } ; mustafa denizli } = true', 'tointer': 'select the rows whose manner of departure record fuzzily matches to retired . select the row whose date of vacancy record of these rows is minimum . the outgoing manager record of this row is mustafa denizli .'}
eq { hop { argmin { filter_eq { all_rows ; manner of departure ; retired } ; date of vacancy } ; outgoing manager } ; mustafa denizli } = true
select the rows whose manner of departure record fuzzily matches to retired . select the row whose date of vacancy record of these rows is minimum . the outgoing manager record of this row is mustafa denizli .
4
4
{'str_eq_3': 3, 'result_4': 4, 'str_hop_2': 2, 'argmin_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'manner of departure_6': 6, 'retired_7': 7, 'date of vacancy_8': 8, 'outgoing manager_9': 9, 'mustafa denizli_10': 10}
{'str_eq_3': 'str_eq', 'result_4': 'true', 'str_hop_2': 'str_hop', 'argmin_1': 'argmin', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'manner of departure_6': 'manner of departure', 'retired_7': 'retired', 'date of vacancy_8': 'date of vacancy', 'outgoing manager_9': 'outgoing manager', 'mustafa denizli_10': 'mustafa denizli'}
{'str_eq_3': [4], 'result_4': [], 'str_hop_2': [3], 'argmin_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'manner of departure_6': [0], 'retired_7': [0], 'date of vacancy_8': [1], 'outgoing manager_9': [2], 'mustafa denizli_10': [3]}
['team', 'outgoing manager', 'manner of departure', 'date of vacancy', 'replaced by', 'date of appointment']
[['mke ankaragücü', 'roger lemerre', 'mutual consent', '23 may 2010', 'ümit özat', '24 may 2010'], ['beşiktaş', 'mustafa denizli', 'retired', '2 june 2010', 'bernd schuster', '10 june 2010'], ['fenerbahçe', 'christoph daum', 'sacked', '25 june 2010', 'aykut kocaman', '26 june 2010'], ['manisaspor', 'hakan kutlu', 'resigned', '12 september 2010', 'hikmet karaman', '13 september 2010'], ['eskişehirspor', 'rıza çalımbay', 'sacked', '27 september 2010', 'bülent uygun', '6 october 2010'], ['bucaspor', 'bülent uygun', 'resigned', '4 october 2010', 'samet aybaba', '7 october 2010'], ['galatasaray sk', 'frank rijkaard', 'mutual consent', '20 october 2010', 'gheorghe hagi', '22 october 2010'], ['gençlerbirliği sk', 'thomas doll', 'mutual consent', '21 october 2010', 'ralf zumdick', '21 october 2010'], ['sivasspor', 'mesut bakkal', 'sacked', '23 october 2010', 'rıza çalımbay', '24 october 2010'], ['kasımpaşa', 'yılmaz vural', 'retired', '27 december 2010', 'fuat çapa', '27 december 2010'], ['konyaspor', 'ziya doğan', 'resigned', '14 february 2011', 'yılmaz vural', '15 february 2011'], ['ankaragücü', 'ümit özat', 'resigned', '26 february 2011', 'mesut bakkal', '28 february 2011'], ['beşiktaş', 'bernd schuster', 'resigned', '15 march 2011', 'tayfur havutçu', '15 march 2011']]
1930 giro d'italia
https://en.wikipedia.org/wiki/1930_Giro_d%27Italia
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12606666-1.html.csv
superlative
the earliest course of the 1930 giro d'italia was from messina to catania .
{'scope': 'all', 'col_superlative': '2', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'min', 'other_col': '3', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmin', 'args': ['all_rows', 'date'], 'result': None, 'ind': 0, 'tostr': 'argmin { all_rows ; date }'}, 'course'], 'result': 'messina to catania', 'ind': 1, 'tostr': 'hop { argmin { all_rows ; date } ; course }'}, 'messina to catania'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmin { all_rows ; date } ; course } ; messina to catania } = true', 'tointer': 'select the row whose date record of all rows is minimum . the course record of this row is messina to catania .'}
eq { hop { argmin { all_rows ; date } ; course } ; messina to catania } = true
select the row whose date record of all rows is minimum . the course record of this row is messina to catania .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmin_0': 0, 'all_rows_4': 4, 'date_5': 5, 'course_6': 6, 'messina to catania_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmin_0': 'argmin', 'all_rows_4': 'all_rows', 'date_5': 'date', 'course_6': 'course', 'messina to catania_7': 'messina to catania'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmin_0': [1], 'all_rows_4': [0], 'date_5': [0], 'course_6': [1], 'messina to catania_7': [2]}
['stage', 'date', 'course', 'distance', 'winner', 'race leader']
[['1', '17 may', 'messina to catania', '-', 'michele mara ( ita )', 'michele mara ( ita )'], ['2', '18 may', 'catania to palermo', '-', 'leonida frascarelli ( ita )', 'antonio negrini ( ita )'], ['3', '20 may', 'palermo to messina', '-', 'luigi marchisio ( ita )', 'luigi marchisio ( ita )'], ['4', '22 may', 'reggio calabria to catanzaro', '-', 'luigi marchisio ( ita )', 'luigi marchisio ( ita )'], ['5', '23 may', 'catanzaro to cosenza', '-', 'domenico piemontesi ( ita )', 'luigi marchisio ( ita )'], ['6', '25 may', 'cosenza to salerno', '-', 'allegro grandi ( ita )', 'luigi marchisio ( ita )'], ['7', '27 may', 'salerno to naples', '-', 'raffaele di paco ( ita )', 'luigi marchisio ( ita )'], ['8', '28 may', 'naples to rome', '-', 'learco guerra ( ita )', 'luigi marchisio ( ita )'], ['9', '30 may', 'rome to teramo', '-', 'michele mara ( ita )', 'luigi marchisio ( ita )'], ['10', '31 may', 'teramo to ancona', '-', 'michele mara ( ita )', 'luigi marchisio ( ita )'], ['11', '2 june', 'ancona to forlì', '-', 'learco guerra ( ita )', 'luigi marchisio ( ita )'], ['12', '3 june', 'forlì to rovigo', '-', 'michele mara ( ita )', 'luigi marchisio ( ita )'], ['13', '5 june', 'rovigo to asiago', '-', 'antonio pesenti ( ita )', 'luigi marchisio ( ita )'], ['14', '6 june', 'asiago to brescia', '-', 'leonida frascarelli ( ita )', 'luigi marchisio ( ita )'], ['15', '8 june', 'brescia to milan', '-', 'michele mara ( ita )', 'luigi marchisio ( ita )'], ['total', 'total', '-', 'km ( mi )', '-', 'km ( mi )']]
alexander kudryavtsev
https://en.wikipedia.org/wiki/Alexander_Kudryavtsev
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18621753-7.html.csv
majority
in most of the tournaments that alexander kudryavtsev participated in , the clay surface was used .
{'scope': 'all', 'col': '3', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'clay', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'surface', 'clay'], 'result': True, 'ind': 0, 'tointer': 'for the surface records of all rows , most of them fuzzily match to clay .', 'tostr': 'most_eq { all_rows ; surface ; clay } = true'}
most_eq { all_rows ; surface ; clay } = true
for the surface records of all rows , most of them fuzzily match to clay .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'surface_3': 3, 'clay_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'surface_3': 'surface', 'clay_4': 'clay'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'surface_3': [0], 'clay_4': [0]}
['date', 'tournament', 'surface', 'partner', 'opponent in final', 'score']
[['11 july 2004', 'oberstaufen , germany', 'clay', 'vadim davletshin', 'valentino pest alexander waske', '4 - 6 , 6 - 3 , 7 - 6'], ['27 may 2006', 'kiev , ukraine', 'clay', 'alexander krasnorutskiy', 'andrei stoliarov aleksandr yarmola', '6 - 3 , 3 - 6 , 6 - 2'], ['4 june 2006', 'cherkasy , ukraine', 'clay', 'alexander krasnorutskiy', 'sergei bubka aleksandr nedovesov', '6 - 3 , 4 - 6 , 6 - 2'], ['25 june 2006', 'minsk , belarus', 'hard', 'alexander krasnorutskiy', 'alexander bury kyril harbatsiuk', '7 - 5 , 6 - 3'], ['27 august 2006', 'poznań , poland', 'clay', 'alexander krasnorutskiy', 'tomasz bednarek maciej dilaj', '2 - 6 , 7 - 5 , 6 - 1'], ['26 november 2006', 'mosrentgen , russia', 'hard', 'alexander krasnorutskiy', 'sarvar ikramov alexey tikhonov', '6 - 1 , 6 - 1'], ['20 august 2011', 'karshi , kazakhstan', 'hard', 'michail elgin', 'konstantin kravchuk denys molchanov', '3 - 6 , 6 - 3 ,'], ['6 november 2011', 'eckental , germany', 'carpet', 'andre begemann', 'james cerretani adil shamasdin', '6 - 3 , 3 - 6 ,']]
list of formula one driver records
https://en.wikipedia.org/wiki/List_of_Formula_One_driver_records
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-13599687-46.html.csv
superlative
rubens barrichello has the most entries in the list of formula one driver records .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '6', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'entries'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; entries }'}, 'driver'], 'result': 'rubens barrichello', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; entries } ; driver }'}, 'rubens barrichello'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; entries } ; driver } ; rubens barrichello } = true', 'tointer': 'select the row whose entries record of all rows is maximum . the driver record of this row is rubens barrichello .'}
eq { hop { argmax { all_rows ; entries } ; driver } ; rubens barrichello } = true
select the row whose entries record of all rows is maximum . the driver record of this row is rubens barrichello .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'entries_5': 5, 'driver_6': 6, 'rubens barrichello_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'entries_5': 'entries', 'driver_6': 'driver', 'rubens barrichello_7': 'rubens barrichello'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'entries_5': [0], 'driver_6': [1], 'rubens barrichello_7': [2]}
['', 'driver', 'seasons', 'entries', 'podiums', 'percentage']
[['1', 'michael schumacher', '1991 - 2006 , 2010 - 2012', '308', '155', '50.32 %'], ['2', 'alain prost', '1980 - 1991 , 1993', '202', '106', '52.47 %'], ['3', 'fernando alonso', '2001 , 2003 - 2013', '215', '94', '43.72 %'], ['4', 'ayrton senna', '1984 - 1994', '162', '80', '49.38 %'], ['5', 'kimi räikkönen', '2001 - 2009 , 2012 - 2013', '194', '77', '39.69 %'], ['6', 'rubens barrichello', '1993 - 2011', '326', '68', '20.85 %'], ['7', 'david coulthard', '1994 - 2008', '247', '62', '25.10 %'], ['8', 'nelson piquet', '1978 - 1991', '207', '60', '28.98 %'], ['8', 'sebastian vettel', '2007 - 2013', '118', '60', '50.85 %']]
list of state leaders in 850s bc
https://en.wikipedia.org/wiki/List_of_state_leaders_in_850s_BC
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17337671-12.html.csv
majority
the most common title among state leaders in 850s bc was duke .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'duke', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'title', 'duke'], 'result': True, 'ind': 0, 'tointer': 'for the title records of all rows , most of them fuzzily match to duke .', 'tostr': 'most_eq { all_rows ; title ; duke } = true'}
most_eq { all_rows ; title ; duke } = true
for the title records of all rows , most of them fuzzily match to duke .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'title_3': 3, 'duke_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'title_3': 'title', 'duke_4': 'duke'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'title_3': [0], 'duke_4': [0]}
['state', 'type', 'name', 'title', 'royal house']
[['cai', 'sovereign', 'wu', 'marquis', 'ji'], ['cao', 'sovereign', 'yi', 'count', '-'], ['chen', 'sovereign', 'you', 'duke', '-'], ['jin', 'sovereign', 'li', 'marquis', 'ji'], ['jin', 'sovereign', 'jing', 'marquis', 'ji'], ['lu', 'sovereign', 'xian', 'duke', 'ji'], ['lu', 'sovereign', 'shen', 'duke', 'ji'], ['qi', 'sovereign', 'xian', 'duke', 'jiang'], ['qi', 'sovereign', 'wu', 'duke', 'jiang'], ['qin', 'sovereign', 'feizi', 'ruler', 'ying'], ['qin', 'sovereign', 'marquis', 'ruler', 'ying'], ['song', 'sovereign', 'li', 'duke', '-'], ['wey', 'sovereign', 'qing', 'marquis', '-'], ['wey', 'sovereign', 'li', 'marquis', '-'], ['yan', 'sovereign', 'hui', 'marquis', '-']]
easyjet
https://en.wikipedia.org/wiki/EasyJet
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-180466-4.html.csv
superlative
the airbus a321 - 200 aircraft has the highest seating capacity of easyjet planes .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '3', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'seating'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; seating }'}, 'aircraft'], 'result': 'airbus a321 - 200', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; seating } ; aircraft }'}, 'airbus a321 - 200'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; seating } ; aircraft } ; airbus a321 - 200 } = true', 'tointer': 'select the row whose seating record of all rows is maximum . the aircraft record of this row is airbus a321 - 200 .'}
eq { hop { argmax { all_rows ; seating } ; aircraft } ; airbus a321 - 200 } = true
select the row whose seating record of all rows is maximum . the aircraft record of this row is airbus a321 - 200 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'seating_5': 5, 'aircraft_6': 6, 'airbus a321 - 200_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'seating_5': 'seating', 'aircraft_6': 'aircraft', 'airbus a321 - 200_7': 'airbus a321 - 200'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'seating_5': [0], 'aircraft_6': [1], 'airbus a321 - 200_7': [2]}
['aircraft', 'introduced', 'retired', 'seating', 'notes']
[['airbus a319 - 100', '2004', '-', '156', 'in service'], ['airbus a320 - 200', '2008', '-', '180', 'in service'], ['airbus a321 - 200', '2008', '2010', '220', 'inherited from gb airways'], ['boeing 737 - 204', '1995', '1996', '115', 'replaced by 737 - 300s'], ['boeing 737 - 300', '1996', '2007', '148 / 9', 'replaced by a319s'], ['boeing 737 - 700', '2000', '2011', '149', 'replaced by a319s and a320s']]
2010 - 11 orlando magic season
https://en.wikipedia.org/wiki/2010%E2%80%9311_Orlando_Magic_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-27700530-13.html.csv
majority
the 2010-11 orlando magic won most of its games when dwight howard was the highest in points .
{'scope': 'subset', 'col': '4', 'most_or_all': 'most', 'criterion': 'fuzzily_match', 'value': 'w', 'subset': {'col': '5', 'criterion': 'fuzzily_match', 'value': 'dwight howard'}}
{'func': 'most_str_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'high points', 'dwight howard'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; high points ; dwight howard }', 'tointer': 'select the rows whose high points record fuzzily matches to dwight howard .'}, 'score', 'w'], 'result': True, 'ind': 1, 'tointer': 'select the rows whose high points record fuzzily matches to dwight howard . for the score records of these rows , most of them fuzzily match to w .', 'tostr': 'most_eq { filter_eq { all_rows ; high points ; dwight howard } ; score ; w } = true'}
most_eq { filter_eq { all_rows ; high points ; dwight howard } ; score ; w } = true
select the rows whose high points record fuzzily matches to dwight howard . for the score records of these rows , most of them fuzzily match to w .
2
2
{'most_str_eq_1': 1, 'result_2': 2, 'filter_str_eq_0': 0, 'all_rows_3': 3, 'high points_4': 4, 'dwight howard_5': 5, 'score_6': 6, 'w_7': 7}
{'most_str_eq_1': 'most_str_eq', 'result_2': 'true', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_3': 'all_rows', 'high points_4': 'high points', 'dwight howard_5': 'dwight howard', 'score_6': 'score', 'w_7': 'w'}
{'most_str_eq_1': [2], 'result_2': [], 'filter_str_eq_0': [1], 'all_rows_3': [0], 'high points_4': [0], 'dwight howard_5': [0], 'score_6': [1], 'w_7': [1]}
['game', 'date', 'team', 'score', 'high points', 'high rebounds', 'high assists', 'location attendance', 'record']
[['61', 'march 1', 'new york', 'w 116 - 110 ( ot )', 'dwight howard ( 30 )', 'dwight howard ( 16 )', 'chris duhon ( 5 )', 'amway center 19131', '39 - 22'], ['62', 'march 3', 'miami', 'w 99 - 96 ( ot )', 'jason richardson ( 24 )', 'dwight howard ( 18 )', 'jameer nelson ( 7 )', 'american airlines arena 19600', '40 - 22'], ['63', 'march 4', 'chicago', 'l 81 - 89 ( ot )', 'dwight howard ( 20 )', 'dwight howard ( 10 )', 'jameer nelson ( 6 )', 'amway center 19207', '40 - 23'], ['64', 'march 7', 'portland', 'l 85 - 89 ( ot )', 'jason richardson ( 22 )', 'earl clark ( 9 )', 'jameer nelson ( 4 )', 'amway center 19001', '40 - 24'], ['65', 'march 9', 'sacramento', 'w 106 - 102 ( ot )', 'jameer nelson ( 26 )', 'dwight howard ( 15 )', 'jameer nelson ( 4 )', 'power balance pavilion 12728', '41 - 24'], ['66', 'march 11', 'golden state', 'l 120 - 123 ( ot )', 'jason richardson ( 30 )', 'dwight howard ( 21 )', 'jameer nelson ( 8 )', 'oracle arena 19596', '41 - 25'], ['67', 'march 13', 'phoenix', 'w 111 - 88 ( ot )', 'dwight howard ( 26 )', 'dwight howard ( 15 )', 'chris duhon ( 4 )', 'us airways center 18091', '42 - 25'], ['68', 'march 14', 'la lakers', 'l 84 - 97 ( ot )', 'dwight howard ( 22 )', 'dwight howard ( 15 )', 'jameer nelson ( 8 )', 'staples center 18997', '42 - 26'], ['69', 'march 16', 'milwaukee', 'w 93 - 89 ( ot )', 'dwight howard ( 31 )', 'dwight howard ( 22 )', 'hedo türkoğlu ( 5 )', 'bradley center 13831', '43 - 26'], ['70', 'march 18', 'denver', 'w 85 - 82 ( ot )', 'dwight howard ( 16 )', 'dwight howard ( 18 )', 'hedo türkoğlu ( 8 )', 'amway center 19113', '44 - 26'], ['71', 'march 21', 'cleveland', 'w 97 - 86 ( ot )', 'dwight howard ( 28 )', 'dwight howard ( 18 )', 'hedo türkoğlu ( 9 )', 'quicken loans arena 19343', '45 - 26'], ['72', 'march 23', 'new york', 'w 111 - 99 ( ot )', 'dwight howard ( 33 )', 'dwight howard , hedo türkoğlu ( 11 )', 'jameer nelson , hedo türkoğlu ( 4 )', 'madison square garden 19763', '46 - 26'], ['73', 'march 25', 'new jersey', 'w 95 - 85 ( ot )', 'dwight howard ( 21 )', 'dwight howard ( 14 )', 'hedo türkoğlu ( 13 )', 'amway center 19087', '47 - 26'], ['74', 'march 28', 'new york', 'l 106 - 113 ( ot )', 'dwight howard ( 29 )', 'dwight howard ( 18 )', 'gilbert arenas ( 5 )', 'madison square garden 19763', '47 - 27']]
wru division five south east
https://en.wikipedia.org/wiki/WRU_Division_Five_South_East
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-17625749-1.html.csv
superlative
st albans rfc was the club that recorded the highest number of points against in the wru division five south east .
{'scope': 'all', 'col_superlative': '7', 'row_superlative': '10', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'points against'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; points against }'}, 'club'], 'result': 'st albans rfc', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; points against } ; club }'}, 'st albans rfc'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; points against } ; club } ; st albans rfc } = true', 'tointer': 'select the row whose points against record of all rows is maximum . the club record of this row is st albans rfc .'}
eq { hop { argmax { all_rows ; points against } ; club } ; st albans rfc } = true
select the row whose points against record of all rows is maximum . the club record of this row is st albans rfc .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'points against_5': 5, 'club_6': 6, 'st albans rfc_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'points against_5': 'points against', 'club_6': 'club', 'st albans rfc_7': 'st albans rfc'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'points against_5': [0], 'club_6': [1], 'st albans rfc_7': [2]}
['club', 'played', 'won', 'drawn', 'lost', 'points for', 'points against', 'tries for', 'tries against', 'try bonus', 'losing bonus', 'points']
[['club', 'played', 'won', 'drawn', 'lost', 'points for', 'points against', 'tries for', 'tries against', 'try bonus', 'losing bonus', 'points'], ['barry rfc', '22', '21', '0', '1', '811', '157', '109', '16', '16', '1', '101'], ['senghenydd rfc', '22', '20', '1', '1', '1013', '148', '150', '19', '17', '1', '100'], ['blackwood stars rfc', '22', '16', '3', '3', '622', '337', '94', '41', '14', '0', '84'], ['penygraig rfc', '22', '16', '0', '6', '595', '296', '88', '37', '13', '0', '77'], ['deri rfc', '22', '10', '1', '11', '548', '583', '80', '72', '9', '0', '51'], ['cefn coed rfc', '22', '9', '1', '12', '338', '445', '45', '55', '3', '4', '45'], ['old penarthians rfc', '22', '7', '2', '13', '329', '523', '35', '74', '3', '3', '38'], ['cilfynydd rfc', '22', '8', '0', '14', '268', '590', '32', '78', '1', '2', '35'], ['st albans rfc', '22', '6', '0', '16', '258', '739', '31', '107', '1', '6', '31'], ['cowbridge rfc', '22', '6', '1', '15', '309', '636', '36', '96', '3', '1', '30'], ['canton rfc', '22', '4', '1', '17', '305', '581', '38', '84', '2', '2', '22'], ['dinas powys rfc', '22', '3', '2', '17', '224', '585', '25', '84', '0', '5', '21']]
emanuele pirro
https://en.wikipedia.org/wiki/Emanuele_Pirro
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1219777-5.html.csv
count
emanuele pirro finished in the top 10 ranking 8 times from 1999 to 2010 .
{'scope': 'all', 'criterion': 'less_than_eq', 'value': '10', 'result': '8', 'col': '7', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_less_eq', 'args': ['all_rows', 'rank', '10'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose rank record is less than or equal to 10 .', 'tostr': 'filter_less_eq { all_rows ; rank ; 10 }'}], 'result': '8', 'ind': 1, 'tostr': 'count { filter_less_eq { all_rows ; rank ; 10 } }', 'tointer': 'select the rows whose rank record is less than or equal to 10 . the number of such rows is 8 .'}, '8'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_less_eq { all_rows ; rank ; 10 } } ; 8 } = true', 'tointer': 'select the rows whose rank record is less than or equal to 10 . the number of such rows is 8 .'}
eq { count { filter_less_eq { all_rows ; rank ; 10 } } ; 8 } = true
select the rows whose rank record is less than or equal to 10 . the number of such rows is 8 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_less_eq_0': 0, 'all_rows_4': 4, 'rank_5': 5, '10_6': 6, '8_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_less_eq_0': 'filter_less_eq', 'all_rows_4': 'all_rows', 'rank_5': 'rank', '10_6': '10', '8_7': '8'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_less_eq_0': [1], 'all_rows_4': [0], 'rank_5': [0], '10_6': [0], '8_7': [2]}
['year', 'entrant', 'class', 'chassis', 'engine', 'tyres', 'rank', 'points']
[['1999', 'audi sport team joest', 'lmp', 'audi r8r', 'audi 3.6 l turbo v8', 'm', '52nd', '20'], ['2000', 'audi sport north america', 'lmp', 'audi r8', 'audi 3.6 l turbo v8', 'm', '3rd', '232'], ['2000', 'audi sport north america', 'lmp', 'audi r8r', 'audi 3.6 l turbo v8', 'm', '3rd', '232'], ['2001', 'audi sport north america', 'lmp900', 'audi r8', 'audi 3.6 l turbo v8', 'm', '1st', '202'], ['2002', 'audi sport north america', 'lmp900', 'audi r8', 'audi 3.6 l turbo v8', 'm', '4th', '206'], ['2003', 'adt champion racing', 'lmp900', 'audi r8', 'audi 3.6 l turbo v8', 'm', '18th', '22'], ['2004', 'adt champion racing', 'lmp1', 'audi r8', 'audi 3.6 l turbo v8', 'm', '13th', '22'], ['2005', 'adt champion racing', 'lmp1', 'audi r8', 'audi 3.6 l turbo v8', 'm', '1st', '182'], ['2006', 'audi sport north america', 'lmp1', 'audi r10 tdi', 'audi 5.5 l turbo v12 ( diesel )', 'm', '5th', '80'], ['2007', 'audi sport north america', 'lmp1', 'audi r10 tdi', 'audi 5.5 l turbo v12 ( diesel )', 'm', '4th', '175'], ['2008', 'audi sport north america', 'lmp1', 'audi r10 tdi', 'audi 5.5 l turbo v12 ( diesel )', 'm', '3rd', '156'], ['2010', 'drayson racing', 'lmp1', 'lola b09 / 60', 'judd gv5 .5 s2 5.5 l v10', 'm', '12th', '46']]
2007 - 08 football league trophy
https://en.wikipedia.org/wiki/2007%E2%80%9308_Football_League_Trophy
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12962079-4.html.csv
ordinal
for the 2007-08 football league trophy , the second largest attendance was when the home team was milton keynes dons .
{'row': '6', 'col': '5', 'order': '2', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'attendance', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; attendance ; 2 }'}, 'home team'], 'result': 'milton keynes dons', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; attendance ; 2 } ; home team }'}, 'milton keynes dons'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; home team } ; milton keynes dons } = true', 'tointer': 'select the row whose attendance record of all rows is 2nd maximum . the home team record of this row is milton keynes dons .'}
eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; home team } ; milton keynes dons } = true
select the row whose attendance record of all rows is 2nd maximum . the home team record of this row is milton keynes dons .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'attendance_5': 5, '2_6': 6, 'home team_7': 7, 'milton keynes dons_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'attendance_5': 'attendance', '2_6': '2', 'home team_7': 'home team', 'milton keynes dons_8': 'milton keynes dons'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'attendance_5': [0], '2_6': [0], 'home team_7': [1], 'milton keynes dons_8': [2]}
['tie no', 'home team', 'score', 'away team', 'attendance']
[['1', 'hereford united', '0 - 0', 'yeovil town', '1859'], ['yeovil town won 4 - 2 on penalties', 'yeovil town won 4 - 2 on penalties', 'yeovil town won 4 - 2 on penalties', 'yeovil town won 4 - 2 on penalties', 'yeovil town won 4 - 2 on penalties'], ['2', 'bristol rovers', '0 - 1', 'bournemouth', '3313'], ['3', 'swindon town', '1 - 3', 'cheltenham town', '3765'], ['4', 'swansea city', '2 - 0', 'wycombe wanderers', '5922'], ['5', 'milton keynes dons', '3 - 1', 'peterborough united', '5087'], ['6', 'brighton & hove albion', '2 - 1', 'barnet', '1995'], ['7', 'leyton orient', '0 - 1', 'dagenham & redbridge', '2397'], ['8', 'gillingham', '4 - 3', 'luton town', '1417']]
world series of snooker
https://en.wikipedia.org/wiki/World_Series_of_Snooker
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18098292-3.html.csv
count
among the tournaments of world series of snooker played in antwerp , one was won by steve davis .
{'scope': 'subset', 'criterion': 'equal', 'value': 'steve davis', 'result': '1', 'col': '4', 'subset': {'col': '3', 'criterion': 'equal', 'value': 'antwerp'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'venue', 'antwerp'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; venue ; antwerp }', 'tointer': 'select the rows whose venue record fuzzily matches to antwerp .'}, 'winner', 'steve davis'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose venue record fuzzily matches to antwerp . among these rows , select the rows whose winner record fuzzily matches to steve davis .', 'tostr': 'filter_eq { filter_eq { all_rows ; venue ; antwerp } ; winner ; steve davis }'}], 'result': '1', 'ind': 2, 'tostr': 'count { filter_eq { filter_eq { all_rows ; venue ; antwerp } ; winner ; steve davis } }', 'tointer': 'select the rows whose venue record fuzzily matches to antwerp . among these rows , select the rows whose winner record fuzzily matches to steve davis . the number of such rows is 1 .'}, '1'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_eq { filter_eq { all_rows ; venue ; antwerp } ; winner ; steve davis } } ; 1 } = true', 'tointer': 'select the rows whose venue record fuzzily matches to antwerp . among these rows , select the rows whose winner record fuzzily matches to steve davis . the number of such rows is 1 .'}
eq { count { filter_eq { filter_eq { all_rows ; venue ; antwerp } ; winner ; steve davis } } ; 1 } = true
select the rows whose venue record fuzzily matches to antwerp . among these rows , select the rows whose winner record fuzzily matches to steve davis . the number of such rows is 1 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_str_eq_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'venue_6': 6, 'antwerp_7': 7, 'winner_8': 8, 'steve davis_9': 9, '1_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_str_eq_1': 'filter_str_eq', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'venue_6': 'venue', 'antwerp_7': 'antwerp', 'winner_8': 'winner', 'steve davis_9': 'steve davis', '1_10': '1'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_str_eq_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'venue_6': [0], 'antwerp_7': [0], 'winner_8': [1], 'steve davis_9': [1], '1_10': [3]}
['date', 'name', 'venue', 'winner', 'runner - up', 'score']
[['1991', 'thailand masters', 'bangkok', 'steve davis', 'stephen hendry', '6 - 3'], ['1991', 'hong kong challenge', 'hong kong', 'stephen hendry', 'james wattana', '9 - 1'], ['1991', 'indian challenge', 'delhi', 'stephen hendry', 'john parrott', '9 - 5'], ['1991', 'scottish masters', 'motherwell', 'mike hallett', 'steve davis', '10 - 6'], ['1991', 'humo masters', 'antwerp', 'mike hallett', 'neal foulds', '9 - 7'], ['1991', 'belgian challenge', 'antwerp', 'steve davis', 'stephen hendry', '10 - 9']]
1970 vfl season
https://en.wikipedia.org/wiki/1970_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1164217-10.html.csv
superlative
the largest crowd occurred at the game that took place at victoria park .
{'scope': 'all', 'col_superlative': '6', 'row_superlative': '3', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '5', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'crowd'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; crowd }'}, 'venue'], 'result': 'victoria park', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; crowd } ; venue }'}, 'victoria park'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; crowd } ; venue } ; victoria park } = true', 'tointer': 'select the row whose crowd record of all rows is maximum . the venue record of this row is victoria park .'}
eq { hop { argmax { all_rows ; crowd } ; venue } ; victoria park } = true
select the row whose crowd record of all rows is maximum . the venue record of this row is victoria park .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'crowd_5': 5, 'venue_6': 6, 'victoria park_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'crowd_5': 'crowd', 'venue_6': 'venue', 'victoria park_7': 'victoria park'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'crowd_5': [0], 'venue_6': [1], 'victoria park_7': [2]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['fitzroy', '14.9 ( 93 )', 'south melbourne', '12.19 ( 91 )', 'junction oval', '16971', '6 june 1970'], ['essendon', '14.13 ( 97 )', 'richmond', '15.14 ( 104 )', 'windy hill', '20650', '6 june 1970'], ['collingwood', '14.23 ( 107 )', 'st kilda', '15.10 ( 100 )', 'victoria park', '30858', '6 june 1970'], ['melbourne', '10.14 ( 74 )', 'geelong', '13.13 ( 91 )', 'mcg', '27665', '6 june 1970'], ['footscray', '15.14 ( 104 )', 'carlton', '14.10 ( 94 )', 'western oval', '22262', '6 june 1970'], ['north melbourne', '9.8 ( 62 )', 'hawthorn', '11.9 ( 75 )', 'vfl park', '14214', '6 june 1970']]
list of former and unopened london underground stations
https://en.wikipedia.org/wiki/List_of_former_and_unopened_London_Underground_stations
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-211615-2.html.csv
majority
the majority of london underground stations were abandoned parts of the northern heights project .
{'scope': 'all', 'col': '6', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'abandoned part of northern heights project', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'details', 'abandoned part of northern heights project'], 'result': True, 'ind': 0, 'tointer': 'for the details records of all rows , most of them fuzzily match to abandoned part of northern heights project .', 'tostr': 'most_eq { all_rows ; details ; abandoned part of northern heights project } = true'}
most_eq { all_rows ; details ; abandoned part of northern heights project } = true
for the details records of all rows , most of them fuzzily match to abandoned part of northern heights project .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'details_3': 3, 'abandoned part of northern heights project_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'details_3': 'details', 'abandoned part of northern heights project_4': 'abandoned part of northern heights project'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'details_3': [0], 'abandoned part of northern heights project_4': [0]}
['station', 'line', 'planned', 'cancelled', 'proposal', 'details']
[['alexandra palace', 'northern', '1935', '1954', 'transfer from lner', 'abandoned part of northern heights project'], ['bushey heath', 'northern', '1936', '1949', 'new station on new route', 'abandoned part of northern heights project'], ['camberwell', 'bakerloo', '1931', '1950', 'new station on new route', 'part of abandoned extension to camberwell'], ['cranley gardens', 'northern', '1935', '1954', 'transfer from lner', 'abandoned part of northern heights project'], ['crouch end', 'northern', '1935', '1954', 'transfer from lner', 'abandoned part of northern heights project'], ['elstree south', 'northern', '1936', '1949', 'new station on new route', 'abandoned part of northern heights project'], ['emlyn road', 'central', '1913', '1919', 'new station on new route', 'abandoned proposal for an extension to richmond'], ['heathfield terrace', 'central', '1913', '1919', 'new station on new route', 'abandoned proposal for an extension to richmond'], ['mill hill ( the hale )', 'northern', '1935', '1954', 'transfer from lner', 'abandoned part of northern heights project'], ['muswell hill', 'northern', '1935', '1954', 'transfer from lner', 'abandoned part of northern heights project'], ['paddenswick road', 'central', '1913', '1919', 'new station on new route', 'abandoned proposal for an extension to richmond'], ['rylett road', 'central', '1913', '1919', 'new station on new route', 'abandoned proposal for an extension to richmond'], ['stroud green', 'northern', '1935', '1954', 'transfer from lner', 'abandoned part of northern heights project'], ['turnham green', 'central', '1913', '1919', 'new station on new route', 'abandoned proposal for an extension to richmond']]
1994 colorado rockies season
https://en.wikipedia.org/wiki/1994_Colorado_Rockies_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11512208-6.html.csv
comparative
the game on august 10th had more people in attendance than the game on august 4th .
{'row_1': '9', 'row_2': '4', 'col': '5', 'col_other': '1', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'date', 'august 10'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose date record fuzzily matches to august 10 .', 'tostr': 'filter_eq { all_rows ; date ; august 10 }'}, 'attendance'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; date ; august 10 } ; attendance }', 'tointer': 'select the rows whose date record fuzzily matches to august 10 . take the attendance record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'date', 'august 4'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose date record fuzzily matches to august 4 .', 'tostr': 'filter_eq { all_rows ; date ; august 4 }'}, 'attendance'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; date ; august 4 } ; attendance }', 'tointer': 'select the rows whose date record fuzzily matches to august 4 . take the attendance record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; date ; august 10 } ; attendance } ; hop { filter_eq { all_rows ; date ; august 4 } ; attendance } } = true', 'tointer': 'select the rows whose date record fuzzily matches to august 10 . take the attendance record of this row . select the rows whose date record fuzzily matches to august 4 . take the attendance record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; date ; august 10 } ; attendance } ; hop { filter_eq { all_rows ; date ; august 4 } ; attendance } } = true
select the rows whose date record fuzzily matches to august 10 . take the attendance record of this row . select the rows whose date record fuzzily matches to august 4 . take the attendance record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'date_7': 7, 'august 10_8': 8, 'attendance_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'date_11': 11, 'august 4_12': 12, 'attendance_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'date_7': 'date', 'august 10_8': 'august 10', 'attendance_9': 'attendance', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'date_11': 'date', 'august 4_12': 'august 4', 'attendance_13': 'attendance'}
{'greater_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'date_7': [0], 'august 10_8': [0], 'attendance_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'date_11': [1], 'august 4_12': [1], 'attendance_13': [3]}
['date', 'opponent', 'score', 'loss', 'attendance', 'record']
[['august 1', 'astros', '8 - 3', 'harnisch ( 7 - 5 )', '22256', '51 - 57'], ['august 2', 'astros', '3 - 1', 'harris ( 3 - 11 )', '22574', '51 - 58'], ['august 3', 'astros', '2 - 1', 'ruffin ( 3 - 5 )', '18320', '51 - 59'], ['august 4', 'astros', '6 - 2', 'ritz ( 4 - 6 )', '30053', '51 - 60'], ['august 5', 'dodgers', '5 - 4', 'leskanic ( 1 - 1 )', '70283', '51 - 61'], ['august 7', 'dodgers', '6 - 2', 'harris ( 3 - 12 )', '70372', '51 - 62'], ['august 8', 'dodgers', '7 - 6', 'worrell ( 6 - 5 )', '52634', '52 - 62'], ['august 9', 'braves', '7 - 4', 'nied ( 9 - 7 )', '61595', '52 - 63'], ['august 10', 'braves', '1 - 0 ( 6 )', 'glavine ( 13 - 9 )', '65157', '53 - 63'], ['august 11', 'braves', '13 - 0', 'painter ( 4 - 6 )', '65043', '53 - 64']]
1935 vfl season
https://en.wikipedia.org/wiki/1935_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10790651-6.html.csv
superlative
the highest away team score for the 1935 vfl season was 22.19 on 1 june 1935 .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '2', 'value_mentioned': 'yes', 'max_or_min': 'max', 'other_col': '7', 'subset': None}
{'func': 'and', 'args': [{'func': 'eq', 'args': [{'func': 'max', 'args': ['all_rows', 'away team score'], 'result': '22.19 ( 151 )', 'ind': 0, 'tostr': 'max { all_rows ; away team score }', 'tointer': 'the maximum away team score record of all rows is 22.19 ( 151 ) .'}, '22.19 ( 151 )'], 'result': True, 'ind': 1, 'tostr': 'eq { max { all_rows ; away team score } ; 22.19 ( 151 ) }', 'tointer': 'the maximum away team score record of all rows is 22.19 ( 151 ) .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'away team score'], 'result': None, 'ind': 2, 'tostr': 'argmax { all_rows ; away team score }'}, 'date'], 'result': '1 june 1935', 'ind': 3, 'tostr': 'hop { argmax { all_rows ; away team score } ; date }'}, '1 june 1935'], 'result': True, 'ind': 4, 'tostr': 'eq { hop { argmax { all_rows ; away team score } ; date } ; 1 june 1935 }', 'tointer': 'the date record of the row with superlative away team score record is 1 june 1935 .'}], 'result': True, 'ind': 5, 'tostr': 'and { eq { max { all_rows ; away team score } ; 22.19 ( 151 ) } ; eq { hop { argmax { all_rows ; away team score } ; date } ; 1 june 1935 } } = true', 'tointer': 'the maximum away team score record of all rows is 22.19 ( 151 ) . the date record of the row with superlative away team score record is 1 june 1935 .'}
and { eq { max { all_rows ; away team score } ; 22.19 ( 151 ) } ; eq { hop { argmax { all_rows ; away team score } ; date } ; 1 june 1935 } } = true
the maximum away team score record of all rows is 22.19 ( 151 ) . the date record of the row with superlative away team score record is 1 june 1935 .
6
6
{'and_5': 5, 'result_6': 6, 'eq_1': 1, 'max_0': 0, 'all_rows_7': 7, 'away team score_8': 8, '22.19 (151)_9': 9, 'str_eq_4': 4, 'str_hop_3': 3, 'argmax_2': 2, 'all_rows_10': 10, 'away team score_11': 11, 'date_12': 12, '1 june 1935_13': 13}
{'and_5': 'and', 'result_6': 'true', 'eq_1': 'eq', 'max_0': 'max', 'all_rows_7': 'all_rows', 'away team score_8': 'away team score', '22.19 (151)_9': '22.19 ( 151 )', 'str_eq_4': 'str_eq', 'str_hop_3': 'str_hop', 'argmax_2': 'argmax', 'all_rows_10': 'all_rows', 'away team score_11': 'away team score', 'date_12': 'date', '1 june 1935_13': '1 june 1935'}
{'and_5': [6], 'result_6': [], 'eq_1': [5], 'max_0': [1], 'all_rows_7': [0], 'away team score_8': [0], '22.19 (151)_9': [1], 'str_eq_4': [5], 'str_hop_3': [4], 'argmax_2': [3], 'all_rows_10': [2], 'away team score_11': [2], 'date_12': [3], '1 june 1935_13': [4]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['collingwood', '23.11 ( 149 )', 'footscray', '14.14 ( 98 )', 'victoria park', '17500', '1 june 1935'], ['hawthorn', '14.9 ( 93 )', 'geelong', '22.19 ( 151 )', 'glenferrie oval', '9500', '1 june 1935'], ['south melbourne', '23.14 ( 152 )', 'fitzroy', '10.11 ( 71 )', 'lake oval', '33000', '1 june 1935'], ['melbourne', '15.13 ( 103 )', 'st kilda', '15.20 ( 110 )', 'mcg', '22711', '3 june 1935'], ['essendon', '12.13 ( 85 )', 'richmond', '13.9 ( 87 )', 'windy hill', '26000', '3 june 1935'], ['carlton', '20.16 ( 136 )', 'north melbourne', '9.14 ( 68 )', 'princes park', '20000', '3 june 1935']]
2008 - 09 s \ xc3 \ xbcper lig
https://en.wikipedia.org/wiki/2008%E2%80%9309_S%C3%BCper_Lig
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17356873-1.html.csv
count
a total of 18 teams participated in the 2008-09 lig .
{'scope': 'all', 'criterion': 'all', 'value': 'n/a', 'result': '18', 'col': '1', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_all', 'args': ['all_rows', 'team'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose team record is arbitrary .', 'tostr': 'filter_all { all_rows ; team }'}], 'result': '18', 'ind': 1, 'tostr': 'count { filter_all { all_rows ; team } }', 'tointer': 'select the rows whose team record is arbitrary . the number of such rows is 18 .'}, '18'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_all { all_rows ; team } } ; 18 } = true', 'tointer': 'select the rows whose team record is arbitrary . the number of such rows is 18 .'}
eq { count { filter_all { all_rows ; team } } ; 18 } = true
select the rows whose team record is arbitrary . the number of such rows is 18 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_all_0': 0, 'all_rows_4': 4, 'team_5': 5, '18_6': 6}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_all_0': 'filter_all', 'all_rows_4': 'all_rows', 'team_5': 'team', '18_6': '18'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_all_0': [1], 'all_rows_4': [0], 'team_5': [0], '18_6': [2]}
['team', 'head coach', 'team captain', 'venue', 'capacity', 'kitmaker', 'shirt sponsor', 'club chairman']
[['ankaragücü', 'hakan kutlu', 'murat erdoğan', 'ankara 19 mayıs stadium', '19209', 'lotto', 'turkcell', 'cemal azmi aydın'], ['ankaraspor', 'aykut kocaman', 'hürriyet güçer', 'yenikent asaş stadium', '19626', 'nike', 'turkcell', 'ruhi kurnaz'], ['antalyaspor', 'mehmet özdilek', 'uğur kavuk', 'antalya atatürk stadium', '11137', 'nike', 'mardan', 'hasan y akıncıoğlu'], ['beşiktaş', 'mustafa denizli', 'matías delgado', 'bjk inönü stadium', '32086', 'umbro', 'cola turka', 'yıldırım demirören'], ['bursaspor', 'ertuğrul sağlam', 'ömer erdoğan', 'bursa atatürk stadium', '18587', 'kappa', 'turkcell', 'ibrahim yazıcı'], ['denizlispor', 'mesut bakkal', 'roman kratochvil', 'denizli atatürk stadium', '15427', 'lescon', 'turkcell', 'ali ipek'], ['eskişehirspor', 'rıza çalımbay', 'emre toraman', 'eskişehir atatürk stadium', '18880', 'nike', 'eti', 'halil ünal'], ['fenerbahçe', 'luis aragonés', 'alex', 'şükrü saracoğlu stadium', '53586', 'adidas', 'avea', 'aziz yıldırım'], ['galatasaray', 'bülent korkmaz', 'ayhan akman', 'ali sami yen stadium', '22800', 'adidas', 'avea', 'adnan polat'], ['gaziantepspor', 'josé couceiro', 'bekir irtegün', 'gaziantep kamil ocak stadium', '16981', 'lescon', 'turkcell', 'ibrahim halil kızıl'], ['gençlerbirliği', 'samet aybaba', 'abdel zaher el saka', 'ankara 19 mayıs stadium', '19209', 'lotto', 'turkcell', 'ilhan cavcav'], ['hacettepe', 'erdoğan arıca', 'orhan şam', 'ankara 19 mayıs stadium', '19209', 'lotto', 'turkcell', 'turgay kalemci'], ['istanbul bb', 'abdullah avcı', 'efe inanç', 'atatürk olympic stadium', '76092', 'lescon', 'kalpen', 'göksel gümüşdağ'], ['kayserispor', 'tolunay kafkas', 'mehmet topuz', 'kadir has stadium 1', '32864', 'adidas', 'turkcell', 'recep mamur'], ['kocaelispor', 'erhan altın', 'serdar topraktepe', 'ismet pasa stadium', '12710', 'umbro', 'erciyas', 'serhan gürkan'], ['konyaspor', 'ünal karaman', 'ömer gündostu', 'konya atatürk stadium', '21968', 'lotto', 'turkcell', 'mehmet ali kuntoğlu'], ['sivasspor', 'bülent uygun', 'mehmet yildiz', 'sivas 4 eylül stadium', '14998', 'adidas', 'turkcell', 'mecnun otyakmaz'], ['trabzonspor', 'ersun yanal', 'hüseyin çimşir', 'hüseyin avni aker stadium', '19649', 'nike', 'avea', 'sadri şener']]
2010 - 11 uae pro - league
https://en.wikipedia.org/wiki/2010%E2%80%9311_UAE_Pro-League
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-27631756-2.html.csv
unique
dubai was the only team in the 2010 - 11 uae pro - league that did not have a shirt sponsor .
{'scope': 'all', 'row': '8', 'col': '6', 'col_other': '1', 'criterion': 'equal', 'value': 'n / a', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'shirt sponsor', 'n / a'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose shirt sponsor record fuzzily matches to n / a .', 'tostr': 'filter_eq { all_rows ; shirt sponsor ; n / a }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; shirt sponsor ; n / a } }', 'tointer': 'select the rows whose shirt sponsor record fuzzily matches to n / a . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'shirt sponsor', 'n / a'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose shirt sponsor record fuzzily matches to n / a .', 'tostr': 'filter_eq { all_rows ; shirt sponsor ; n / a }'}, 'team'], 'result': 'dubai', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; shirt sponsor ; n / a } ; team }'}, 'dubai'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; shirt sponsor ; n / a } ; team } ; dubai }', 'tointer': 'the team record of this unqiue row is dubai .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; shirt sponsor ; n / a } } ; eq { hop { filter_eq { all_rows ; shirt sponsor ; n / a } ; team } ; dubai } } = true', 'tointer': 'select the rows whose shirt sponsor record fuzzily matches to n / a . there is only one such row in the table . the team record of this unqiue row is dubai .'}
and { only { filter_eq { all_rows ; shirt sponsor ; n / a } } ; eq { hop { filter_eq { all_rows ; shirt sponsor ; n / a } ; team } ; dubai } } = true
select the rows whose shirt sponsor record fuzzily matches to n / a . there is only one such row in the table . the team record of this unqiue row is dubai .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'shirt sponsor_7': 7, 'n / a_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'team_9': 9, 'dubai_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'shirt sponsor_7': 'shirt sponsor', 'n / a_8': 'n / a', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'team_9': 'team', 'dubai_10': 'dubai'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'shirt sponsor_7': [0], 'n / a_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'team_9': [2], 'dubai_10': [3]}
['team', 'chairman', 'head coach', 'captain', 'kitmaker', 'shirt sponsor']
[['al ahli', 'abdullah saeed al naboodah', 'abdul hamid al mistaki', 'fabio cannavaro', 'adidas', 'toshiba'], ['al jazira', 'mansour bin zayed al nahyan', 'abel braga', 'ibrahim diaky', 'adidas', 'ipic'], ['al wahda', 'sheikh saeed bin zayed al nahyan', 'josef hickersberger', 'bashir saeed', 'nike', 'emal'], ['al ain', 'hazza bin zayed al nahyan', 'alexandre gallo', 'ali al wehaibi', 'macron', 'first gulf bank'], ['al sharjah', 'abdullah bin mohammed al thani', 'abdul majid', 'abdullah suhail', 'n / a', 'saif - zone'], ['al nasr', 'maktoum bin hasher bin maktoum al maktoum', 'walter zenga', 'abdallah mousa', 'erreà', 'emirates nbd'], ['ittihad kalba', 'saeed bin saqr al qasimi', 'jorvan vieira', 'gregory dufrennes', 'adidas', 'gillett group'], ['dubai', 'sheikh ahmed bin rashed al maktoum', 'junior dos santos', 'ali hassan', 'umbro', 'n / a'], ['bani yas', 'saif bin zayed al nahyan', 'mahdi ali', 'fawzi bashir', 'erreà', 'secure project management'], ['al wasl', 'sheikh ahmed bin rashed al maktoum', 'khalifa mobarak', 'khalid darwish', 'nike', 'saif belhasa group of companies'], ['al shabab', 'hh sh saeed bin maktoum al maktoum', 'paulo bonamigo', 'adeel abdullah', 'erreà', 'emaratech']]
2005 lexmark indy 300
https://en.wikipedia.org/wiki/2005_Lexmark_Indy_300
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15055045-2.html.csv
aggregation
in the 2005 lexmark indy 300 , drivers from forsythe racing scored a total of 8 points .
{'scope': 'subset', 'col': '6', 'type': 'sum', 'result': '8', 'subset': {'col': '2', 'criterion': 'equal', 'value': 'forsythe racing'}}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'team', 'forsythe racing'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; team ; forsythe racing }', 'tointer': 'select the rows whose team record fuzzily matches to forsythe racing .'}, 'points'], 'result': '8', 'ind': 1, 'tostr': 'sum { filter_eq { all_rows ; team ; forsythe racing } ; points }'}, '8'], 'result': True, 'ind': 2, 'tostr': 'round_eq { sum { filter_eq { all_rows ; team ; forsythe racing } ; points } ; 8 } = true', 'tointer': 'select the rows whose team record fuzzily matches to forsythe racing . the sum of the points record of these rows is 8 .'}
round_eq { sum { filter_eq { all_rows ; team ; forsythe racing } ; points } ; 8 } = true
select the rows whose team record fuzzily matches to forsythe racing . the sum of the points record of these rows is 8 .
3
3
{'eq_2': 2, 'result_3': 3, 'sum_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'team_5': 5, 'forsythe racing_6': 6, 'points_7': 7, '8_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'sum_1': 'sum', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'team_5': 'team', 'forsythe racing_6': 'forsythe racing', 'points_7': 'points', '8_8': '8'}
{'eq_2': [3], 'result_3': [], 'sum_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'team_5': [0], 'forsythe racing_6': [0], 'points_7': [1], '8_8': [2]}
['driver', 'team', 'laps', 'time / retired', 'grid', 'points']
[['sébastien bourdais', 'newman / haas racing', '57', '1:39:26.671', '2', '34'], ['a j allmendinger', 'rusport', '57', '+ 9.130 secs', '6', '27'], ['jimmy vasser', 'pkv racing', '57', '+ 31.852 secs', '8', '25'], ['alex tagliani', 'team australia', '57', '+ 36.420 secs', '9', '23'], ['oriol servià', 'newman / haas racing', '57', '+ 43.968 secs', '1', '22'], ['timo glock', 'rocketsports racing', '57', '+ 45.616 secs', '10', '19'], ['justin wilson', 'rusport', '57', '+ 59.630 secs', '7', '17'], ['ronnie bremer', 'dale coyne racing', '57', '+ 65.852 secs', '15', '15'], ['ricardo sperafico', 'dale coyne racing', '57', '+ 76.292 secs', '18', '14'], ['andrew ranger', 'mi - jack conquest racing', '57', '+ 93.488 secs', '17', '11'], ['marcus marshall', 'team australia', '56', '+ 1 lap', '13', '10'], ['michael mcdowell', 'rocketsports racing', '56', '+ 1 lap', '16', '9'], ['rodolfo lavín', 'cte racing - hvm', '53', '+ 4 laps', '12', '8'], ['nelson philippe', 'mi - jack conquest racing', '47', 'off course', '14', '7'], ['will power', 'team australia', '29', 'contact', '11', '6'], ['fabrizio del monte', 'cte racing - hvm', '28', 'contact', '19', '5'], ['paul tracy', 'forsythe racing', '24', 'gearbox', '5', '5'], ['mario domínguez', 'forsythe racing', '1', 'contact', '3', '3'], ['cristiano da matta', 'pkv racing', '0', 'contact', '4', '2']]
2007 - 08 san antonio spurs season
https://en.wikipedia.org/wiki/2007%E2%80%9308_San_Antonio_Spurs_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11963601-12.html.csv
aggregation
in the 2007-08 san antonio spurs season , the average number of points someone had when they had high points was 25 .
{'scope': 'all', 'col': '5', 'type': 'average', 'result': '25', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'high points'], 'result': '25', 'ind': 0, 'tostr': 'avg { all_rows ; high points }'}, '25'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; high points } ; 25 } = true', 'tointer': 'the average of the high points record of all rows is 25 .'}
round_eq { avg { all_rows ; high points } ; 25 } = true
the average of the high points record of all rows is 25 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'high points_4': 4, '25_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'high points_4': 'high points', '25_5': '25'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'high points_4': [0], '25_5': [1]}
['game', 'date', 'team', 'score', 'high points', 'high rebounds', 'high assists', 'location attendance', 'series']
[['1', 'may 21', 'los angeles', '85 - 89', 'duncan ( 30 )', 'duncan ( 18 )', 'parker ( 6 )', 'staples center 18997', '0 - 1'], ['2', 'may 23', 'los angeles', '71 - 101', 'parker ( 13 )', 'duncan ( 16 )', 'duncan ( 4 )', 'staples center 18997', '0 - 2'], ['3', 'may 25', 'los angeles', '103 - 84', 'ginóbili ( 30 )', 'duncan ( 21 )', 'duncan , parker ( 5 )', 'at & t center 18797', '1 - 2'], ['4', 'may 27', 'los angeles', '91 - 93', 'duncan ( 29 )', 'duncan ( 17 )', 'parker ( 9 )', 'at & t center 18797', '1 - 3'], ['5', 'may 29', 'los angeles', '92 - 100', 'parker ( 23 )', 'duncan ( 15 )', 'duncan ( 10 )', 'staples center 18997', '1 - 4']]
gambrinus liga
https://en.wikipedia.org/wiki/Gambrinus_Liga
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-2429942-2.html.csv
unique
the 2004-05 season was the only season of the gambrinus liga in which tomáš jun was the leading scorer .
{'scope': 'all', 'row': '12', 'col': '5', 'col_other': '1', 'criterion': 'fuzzily_match', 'value': 'tomáš jun', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'top goalscorer', 'tomáš jun'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose top goalscorer record fuzzily matches to tomáš jun .', 'tostr': 'filter_eq { all_rows ; top goalscorer ; tomáš jun }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; top goalscorer ; tomáš jun } }', 'tointer': 'select the rows whose top goalscorer record fuzzily matches to tomáš jun . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'top goalscorer', 'tomáš jun'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose top goalscorer record fuzzily matches to tomáš jun .', 'tostr': 'filter_eq { all_rows ; top goalscorer ; tomáš jun }'}, 'season'], 'result': '2004 - 05', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; top goalscorer ; tomáš jun } ; season }'}, '2004 - 05'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; top goalscorer ; tomáš jun } ; season } ; 2004 - 05 }', 'tointer': 'the season record of this unqiue row is 2004 - 05 .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; top goalscorer ; tomáš jun } } ; eq { hop { filter_eq { all_rows ; top goalscorer ; tomáš jun } ; season } ; 2004 - 05 } } = true', 'tointer': 'select the rows whose top goalscorer record fuzzily matches to tomáš jun . there is only one such row in the table . the season record of this unqiue row is 2004 - 05 .'}
and { only { filter_eq { all_rows ; top goalscorer ; tomáš jun } } ; eq { hop { filter_eq { all_rows ; top goalscorer ; tomáš jun } ; season } ; 2004 - 05 } } = true
select the rows whose top goalscorer record fuzzily matches to tomáš jun . there is only one such row in the table . the season record of this unqiue row is 2004 - 05 .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'top goalscorer_7': 7, 'tomáš jun_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'season_9': 9, '2004 - 05_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'top goalscorer_7': 'top goalscorer', 'tomáš jun_8': 'tomáš jun', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'season_9': 'season', '2004 - 05_10': '2004 - 05'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'top goalscorer_7': [0], 'tomáš jun_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'season_9': [2], '2004 - 05_10': [3]}
['season', 'champions', 'runner - up', 'third place', 'top goalscorer', 'club']
[['1993 - 94', 'sparta prague ( 1 )', 'slavia prague', 'baník ostrava', 'horst siegl ( 20 )', 'sparta prague'], ['1994 - 95', 'sparta prague ( 2 )', 'slavia prague', 'fc brno', 'radek drulák ( 15 )', 'drnovice'], ['1995 - 96', 'slavia prague ( 1 )', 'sigma olomouc', 'baumit jablonec', 'radek drulák ( 22 )', 'drnovice'], ['1996 - 97', 'sparta prague ( 3 )', 'slavia prague', 'baumit jablonec', 'horst siegl ( 19 )', 'sparta prague'], ['1997 - 98', 'sparta prague ( 4 )', 'slavia prague', 'sigma olomouc', 'horst siegl ( 13 )', 'sparta prague'], ['1998 - 99', 'sparta prague ( 5 )', 'teplice', 'slavia prague', 'horst siegl ( 18 )', 'sparta prague'], ['1999 - 00', 'sparta prague ( 6 )', 'slavia prague', 'drnovice', 'vratislav lokvenc ( 21 )', 'sparta prague'], ['2000 - 01', 'sparta prague ( 7 )', 'slavia prague', 'sigma olomouc', 'vítězslav tuma ( 15 )', 'drnovice'], ['2001 - 02', 'slovan liberec ( 1 )', 'sparta prague', 'viktoria žižkov', 'jiří štajner ( 15 )', 'slovan liberec'], ['2002 - 03', 'sparta prague ( 8 )', 'slavia prague', 'viktoria žižkov', 'jiří kowalík ( 16 )', '1 . fc synot'], ['2003 - 04', 'baník ostrava ( 1 )', 'sparta prague', 'sigma olomouc', 'marek heinz ( 19 )', 'baník ostrava'], ['2004 - 05', 'sparta prague ( 9 )', 'slavia prague', 'teplice', 'tomáš jun ( 14 )', 'sparta prague'], ['2005 - 06', 'slovan liberec ( 2 )', 'mladá boleslav', 'slavia prague', 'milan ivana ( 11 )', 'fc slovácko'], ['2006 - 07', 'sparta prague ( 10 )', 'slavia prague', 'mladá boleslav', 'luboš pecka ( 16 )', 'mladá boleslav'], ['2007 - 08', 'slavia prague ( 2 )', 'sparta prague', 'baník ostrava', 'václav svěrkoš ( 15 )', 'baník ostrava'], ['2008 - 09', 'slavia prague ( 3 )', 'sparta prague', 'slovan liberec', 'andrej kerić ( 15 )', 'slovan liberec'], ['2009 - 10', 'sparta prague ( 11 )', 'jablonec', 'baník ostrava', 'michal ordoš ( 12 )', 'sigma olomouc'], ['2010 - 11', 'viktoria plzeň ( 1 )', 'sparta prague', 'jablonec', 'david lafata ( 19 )', 'jablonec'], ['2011 - 12', 'slovan liberec ( 3 )', 'sparta prague', 'viktoria plzeň', 'david lafata ( 25 )', 'jablonec']]
2005 rhein fire season
https://en.wikipedia.org/wiki/2005_Rhein_Fire_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-25380472-2.html.csv
majority
the rhein fire lost most of their games in the 2005 season .
{'scope': 'all', 'col': '5', 'most_or_all': 'most', 'criterion': 'fuzzily_match', 'value': 'l', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'final score', 'l'], 'result': True, 'ind': 0, 'tointer': 'for the final score records of all rows , most of them fuzzily match to l .', 'tostr': 'most_eq { all_rows ; final score ; l } = true'}
most_eq { all_rows ; final score ; l } = true
for the final score records of all rows , most of them fuzzily match to l .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'final score_3': 3, 'l_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'final score_3': 'final score', 'l_4': 'l'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'final score_3': [0], 'l_4': [0]}
['week', 'date', 'kickoff', 'opponent', 'final score', 'team record', 'game site', 'attendance']
[['1', 'saturday , april 2', '7:00 pm', 'amsterdam admirals', 'l 14 - 24', '0 - 1', 'amsterdam arena', '10234'], ['2', 'sunday , april 10', '4:00 pm', 'cologne centurions', 'l 10 - 23', '0 - 2', 'ltu arena', '25304'], ['3', 'saturday , april 16', '7:00 pm', 'hamburg sea devils', 'l 24 - 31', '0 - 3', 'aol arena', '19865'], ['4', 'saturday , april 23', '7:00 pm', 'berlin thunder', 'l 28 - 30', '0 - 4', 'ltu arena', '20399'], ['5', 'saturday , april 30', '7:00 pm', 'frankfurt galaxy', 'l 20 - 23', '0 - 5', 'commerzbank - arena', '27439'], ['6', 'saturday , may 7', '7:00 pm', 'hamburg sea devils', 'w 24 - 19', '1 - 5', 'ltu arena', '18632'], ['7', 'saturday , may 14', '6:00 pm', 'berlin thunder', 'l 15 - 24', '1 - 6', 'olympic stadium', '16695'], ['8', 'saturday , may 21', '7:00 pm', 'frankfurt galaxy', 'l 13 - 20', '1 - 7', 'ltu arena', '28124'], ['9', 'sunday , may 29', '4:00 pm', 'cologne centurions', 'w 28 - 16', '2 - 7', 'rheinenergiestadion', '32521']]
islands of the clyde
https://en.wikipedia.org/wiki/Islands_of_the_Clyde
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15252-1.html.csv
superlative
on the islands of the clyde , the highest population was the island of bute .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '3', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'population'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; population }'}, 'island'], 'result': 'bute', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; population } ; island }'}, 'bute'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; population } ; island } ; bute } = true', 'tointer': 'select the row whose population record of all rows is maximum . the island record of this row is bute .'}
eq { hop { argmax { all_rows ; population } ; island } ; bute } = true
select the row whose population record of all rows is maximum . the island record of this row is bute .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'population_5': 5, 'island_6': 6, 'bute_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'population_5': 'population', 'island_6': 'island', 'bute_7': 'bute'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'population_5': [0], 'island_6': [1], 'bute_7': [2]}
['island', 'gaelic name', 'location', 'area ( ha )', 'population', 'last inhabited', 'height ( m )']
[['ailsa craig', 'creag ealasaid', 'south ayrshire', '99', '0', '1980s', '338'], ['arran', 'arainn', 'arran', '43201', '4629', '-', '874'], ['bute', 'bòid', 'bute', '12217', '6498', '-', '278'], ['davaar', 'eilean dà bhàrr', 'kintyre', '52', '0', '-', '115'], ['great cumbrae', 'cumaradh mòr', 'bute', '1168', '1376', '-', '127'], ['holy isle', 'eilean mo laise', 'arran', '253', '31', '-', '314'], ['inchmarnock', 'innis mheàrnaig', 'bute', '253', '0', '1980s', '60'], ['little cumbrae', 'cumaradh beag', 'bute', '313', '0', '1990s', '123'], ['sanda', 'àbhainn', 'kintyre', '127', '0', '-', '123']]
andrei pavel
https://en.wikipedia.org/wiki/Andrei_Pavel
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1723598-5.html.csv
ordinal
the game which took place on september 18 , 2005 is the third newest game that anderi pavel played .
{'row': '3', 'col': '1', 'order': '3', 'col_other': 'n/a', 'max_or_min': 'max_to_min', 'value_mentioned': 'yes', 'scope': 'all', 'subset': None}
{'func': 'eq', 'args': [{'func': 'nth_max', 'args': ['all_rows', 'date', '3'], 'result': 'september 18 , 2005', 'ind': 0, 'tostr': 'nth_max { all_rows ; date ; 3 }', 'tointer': 'the 3rd maximum date record of all rows is september 18 , 2005 .'}, 'september 18 , 2005'], 'result': True, 'ind': 1, 'tostr': 'eq { nth_max { all_rows ; date ; 3 } ; september 18 , 2005 } = true', 'tointer': 'the 3rd maximum date record of all rows is september 18 , 2005 .'}
eq { nth_max { all_rows ; date ; 3 } ; september 18 , 2005 } = true
the 3rd maximum date record of all rows is september 18 , 2005 .
2
2
{'eq_1': 1, 'result_2': 2, 'nth_max_0': 0, 'all_rows_3': 3, 'date_4': 4, '3_5': 5, 'september 18 , 2005_6': 6}
{'eq_1': 'eq', 'result_2': 'true', 'nth_max_0': 'nth_max', 'all_rows_3': 'all_rows', 'date_4': 'date', '3_5': '3', 'september 18 , 2005_6': 'september 18 , 2005'}
{'eq_1': [2], 'result_2': [], 'nth_max_0': [1], 'all_rows_3': [0], 'date_4': [0], '3_5': [0], 'september 18 , 2005_6': [1]}
['date', 'tournament', 'surface', 'partnering', 'opponents in final', 'score in final']
[['february 14 , 1999', 'st petersburg , russia', 'carpet', 'menno oosting', 'jeff tarango daniel vacek', '3 - 6 , 6 - 3 , 7 - 5'], ['january 10 , 2005', 'doha , qatar', 'hard', 'mikhail youzhny', 'albert costa rafael nadal', '6 - 3 , 4 - 6 , 6 - 3'], ['september 18 , 2005', 'bucharest , romania', 'clay', 'victor hănescu', 'josé acasuso sebastián prieto', '6 - 3 , 4 - 6 , 6 - 3'], ['february 25 , 2007', 'rotterdam , netherlands', 'hard', 'alexander waske', 'martin damm leander paes', '6 - 3 , 6 - 7 ( 5 ) , ( 10 - 7 )'], ['may 23 , 2009', 'kitzbühel , austria', 'clay', 'horia tecău', 'marcelo melo andré sá', '6 - 7 ( 9 ) , 6 - 2 , ( 10 - 7 )']]
1956 cleveland browns season
https://en.wikipedia.org/wiki/1956_Cleveland_Browns_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10651573-1.html.csv
majority
the majority of games in the 1956 season ended in losses for the cleveland browns .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'fuzzily_match', 'value': 'l', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'result', 'l'], 'result': True, 'ind': 0, 'tointer': 'for the result records of all rows , most of them fuzzily match to l .', 'tostr': 'most_eq { all_rows ; result ; l } = true'}
most_eq { all_rows ; result ; l } = true
for the result records of all rows , most of them fuzzily match to l .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'result_3': 3, 'l_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'result_3': 'result', 'l_4': 'l'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'result_3': [0], 'l_4': [0]}
['week', 'date', 'opponent', 'result', 'attendance']
[['1', 'august 10 , 1956', 'college all - stars at chicago', 'w 26 - 0', '75000'], ['2', 'august 19 , 1956', 'san francisco 49ers', 'l 28 - 17', '38741'], ['3', 'august 24 , 1956', 'los angeles rams', 'l 17 - 6', '40175'], ['4', 'september 1 , 1956', 'green bay packers', 'l 21 - 20', '15456'], ['5', 'september 7 , 1956', 'detroit lions', 'l 17 - 0', '48105'], ['6', 'september 15 , 1956', 'detroit lions at akron', 'l 31 - 14', '28201'], ['7', 'september 21 , 1956', 'chicago bears', 'w 24 - 14', '56543']]
mannar district
https://en.wikipedia.org/wiki/Mannar_District
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-24574438-1.html.csv
superlative
adampan has a larger area than all other main towns in the mannar district .
{'scope': 'all', 'col_superlative': '4', 'row_superlative': '3', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'area ( km 2 )'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; area ( km 2 ) }'}, 'main town'], 'result': 'adampan', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; area ( km 2 ) } ; main town }'}, 'adampan'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; area ( km 2 ) } ; main town } ; adampan } = true', 'tointer': 'select the row whose area ( km 2 ) record of all rows is maximum . the main town record of this row is adampan .'}
eq { hop { argmax { all_rows ; area ( km 2 ) } ; main town } ; adampan } = true
select the row whose area ( km 2 ) record of all rows is maximum . the main town record of this row is adampan .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'area (km 2 )_5': 5, 'main town_6': 6, 'adampan_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'area (km 2 )_5': 'area ( km 2 )', 'main town_6': 'main town', 'adampan_7': 'adampan'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'area (km 2 )_5': [0], 'main town_6': [1], 'adampan_7': [2]}
['ds division', 'main town', 'gn divisions', 'area ( km 2 )', 'sri lankan tamil', 'sri lankan moors', 'sinhalese', 'indian tamil', 'other', 'total', 'population density ( / km 2 )']
[['madhu', 'madhu', '17', '553', '6793', '559', '273', '5', '1', '7631', '14'], ['mannar', 'mannar', '49', '212', '40865', '8982', '953', '131', '6', '50937', '240'], ['manthai west', 'adampan', '36', '608', '12993', '1123', '337', '177', '0', '14630', '24'], ['musali', 'chilawathurai', '20', '475', '3042', '4818', '147', '2', '0', '8009', '17'], ['nanaddan', 'nanaddan', '31', '148', '16875', '605', '251', '79', '34', '17844', '121']]
1994 fei world equestrian games
https://en.wikipedia.org/wiki/1994_FEI_World_Equestrian_Games
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-11871998-2.html.csv
superlative
in the 1994 fei world equestrian games , germany ranks the highest .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '1', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'total'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; total }'}, 'nation'], 'result': 'germany', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; total } ; nation }'}, 'germany'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; total } ; nation } ; germany } = true', 'tointer': 'select the row whose total record of all rows is maximum . the nation record of this row is germany .'}
eq { hop { argmax { all_rows ; total } ; nation } ; germany } = true
select the row whose total record of all rows is maximum . the nation record of this row is germany .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'total_5': 5, 'nation_6': 6, 'germany_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'total_5': 'total', 'nation_6': 'nation', 'germany_7': 'germany'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'total_5': [0], 'nation_6': [1], 'germany_7': [2]}
['nation', 'gold', 'silver', 'bronze', 'total']
[['germany', '7', '4', '5', '16'], ['france', '1', '4', '1', '6'], ['united states', '1', '2', '1', '4'], ['netherlands', '1', '1', '3', '5'], ['united kingdom', '1', '1', '1', '3'], ['switzerland', '1', '-', '1', '2'], ['denmark', '1', '-', '-', '1'], ['new zealand', '1', '-', '-', '1'], ['belgium', '-', '1', '-', '1'], ['spain', '-', '1', '-', '1'], ['australia', '-', '-', '1', '1'], ['sweden', '-', '-', '1', '1']]
list of england national rugby union team results 2000 - 09
https://en.wikipedia.org/wiki/List_of_England_national_rugby_union_team_results_2000%E2%80%9309
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18178551-1.html.csv
count
there were five occasions where the status of the 2000-09 england national rugby union team was six nations .
{'scope': 'all', 'criterion': 'equal', 'value': 'six nations', 'result': '5', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'status', 'six nations'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose status record fuzzily matches to six nations .', 'tostr': 'filter_eq { all_rows ; status ; six nations }'}], 'result': '5', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; status ; six nations } }', 'tointer': 'select the rows whose status record fuzzily matches to six nations . the number of such rows is 5 .'}, '5'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; status ; six nations } } ; 5 } = true', 'tointer': 'select the rows whose status record fuzzily matches to six nations . the number of such rows is 5 .'}
eq { count { filter_eq { all_rows ; status ; six nations } } ; 5 } = true
select the rows whose status record fuzzily matches to six nations . the number of such rows is 5 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'status_5': 5, 'six nations_6': 6, '5_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'status_5': 'status', 'six nations_6': 'six nations', '5_7': '5'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'status_5': [0], 'six nations_6': [0], '5_7': [2]}
['opposing teams', 'against', 'date', 'venue', 'status']
[['ireland', '18', '05 / 02 / 2000', 'twickenham , london', 'six nations'], ['france', '9', '19 / 02 / 2000', 'stade de france , saint - denis', 'six nations'], ['wales', '12', '04 / 03 / 2000', 'twickenham , london', 'six nations'], ['italy', '12', '18 / 03 / 2000', 'stadio flaminio , rome', 'six nations'], ['scotland', '19', '02 / 04 / 2000', 'murrayfield , edinburgh', 'six nations'], ['south africa', '18', '17 / 06 / 2000', 'loftus versfeld , pretoria', 'first test'], ['south africa', '22', '24 / 06 / 2000', 'vodacom park , bloemfontein', 'second test'], ['australia', '19', '18 / 11 / 2000', 'twickenham , london', 'test match'], ['argentina', '0', '25 / 11 / 2000', 'twickenham , london', 'test match'], ['south africa', '17', '02 / 12 / 2000', 'twickenham , london', 'test match']]
ufc 94
https://en.wikipedia.org/wiki/UFC_94
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16023995-1.html.csv
unique
only a single fight was ended by way of a knockout punch .
{'scope': 'all', 'row': '8', 'col': '5', 'col_other': 'n/a', 'criterion': 'equal', 'value': 'ko ( punch )', 'subset': None}
{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'method', 'ko ( punch )'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose method record fuzzily matches to ko ( punch ) .', 'tostr': 'filter_eq { all_rows ; method ; ko ( punch ) }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; method ; ko ( punch ) } } = true', 'tointer': 'select the rows whose method record fuzzily matches to ko ( punch ) . there is only one such row in the table .'}
only { filter_eq { all_rows ; method ; ko ( punch ) } } = true
select the rows whose method record fuzzily matches to ko ( punch ) . there is only one such row in the table .
2
2
{'only_1': 1, 'result_2': 2, 'filter_str_eq_0': 0, 'all_rows_3': 3, 'method_4': 4, 'ko (punch)_5': 5}
{'only_1': 'only', 'result_2': 'true', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_3': 'all_rows', 'method_4': 'method', 'ko (punch)_5': 'ko ( punch )'}
{'only_1': [2], 'result_2': [], 'filter_str_eq_0': [1], 'all_rows_3': [0], 'method_4': [0], 'ko (punch)_5': [0]}
['card', 'weight class', 'round', 'time', 'method']
[['preliminary', 'welterweight', '3', '5:00', 'decision ( split )'], ['preliminary', 'light heavyweight', '3', '5:00', 'decision ( split )'], ['preliminary', 'lightweight', '3', '5:00', 'decision ( unanimous )'], ['preliminary', 'welterweight', '3', '5:00', 'decision ( unanimous )'], ['main', 'lightweight', '3', '5:00', 'decision ( split )'], ['main', 'welterweight', '3', '5:00', 'no contest'], ['main', 'light heavyweight', '3', '5:00', 'decision ( unanimous )'], ['main', 'light heavyweight', '1', '4:59', 'ko ( punch )'], ['main', 'welterweight', '4', '5:00', 'tko ( doctor stoppage )']]
2008 - 09 bundesliga
https://en.wikipedia.org/wiki/2008%E2%80%9309_Bundesliga
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17182686-3.html.csv
unique
out of all the outgoing managers , thomas doll is the only one to resign .
{'scope': 'all', 'row': '3', 'col': '3', 'col_other': '2', 'criterion': 'equal', 'value': 'resigned', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'manner of departure', 'resigned'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose manner of departure record fuzzily matches to resigned .', 'tostr': 'filter_eq { all_rows ; manner of departure ; resigned }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; manner of departure ; resigned } }', 'tointer': 'select the rows whose manner of departure record fuzzily matches to resigned . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'manner of departure', 'resigned'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose manner of departure record fuzzily matches to resigned .', 'tostr': 'filter_eq { all_rows ; manner of departure ; resigned }'}, 'outgoing manager'], 'result': 'thomas doll', 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; manner of departure ; resigned } ; outgoing manager }'}, 'thomas doll'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_eq { all_rows ; manner of departure ; resigned } ; outgoing manager } ; thomas doll }', 'tointer': 'the outgoing manager record of this unqiue row is thomas doll .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_eq { all_rows ; manner of departure ; resigned } } ; eq { hop { filter_eq { all_rows ; manner of departure ; resigned } ; outgoing manager } ; thomas doll } } = true', 'tointer': 'select the rows whose manner of departure record fuzzily matches to resigned . there is only one such row in the table . the outgoing manager record of this unqiue row is thomas doll .'}
and { only { filter_eq { all_rows ; manner of departure ; resigned } } ; eq { hop { filter_eq { all_rows ; manner of departure ; resigned } ; outgoing manager } ; thomas doll } } = true
select the rows whose manner of departure record fuzzily matches to resigned . there is only one such row in the table . the outgoing manager record of this unqiue row is thomas doll .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'manner of departure_7': 7, 'resigned_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'outgoing manager_9': 9, 'thomas doll_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'manner of departure_7': 'manner of departure', 'resigned_8': 'resigned', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'outgoing manager_9': 'outgoing manager', 'thomas doll_10': 'thomas doll'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_str_eq_0': [1, 2], 'all_rows_6': [0], 'manner of departure_7': [0], 'resigned_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'outgoing manager_9': [2], 'thomas doll_10': [3]}
['team', 'outgoing manager', 'manner of departure', 'date of vacancy', 'replaced by', 'date of appointment', 'position in table']
[['bayer 04 leverkusen', 'michael skibbe', 'sacked', '30 june 2008', 'bruno labbadia', '1 july 2008', 'pre - season'], ['fc bayern munich', 'ottmar hitzfeld', 'end of contract', '30 june 2008', 'jürgen klinsmann', '1 july 2008', 'pre - season'], ['borussia dortmund', 'thomas doll', 'resigned', '30 june 2008', 'jürgen klopp', '1 july 2008', 'pre - season'], ['hamburger sv', 'huub stevens', 'end of contract', '30 june 2008', 'martin jol', '1 july 2008', 'pre - season'], ['fc schalke 04', 'mike büskens & youri mulder', 'stepped down to assistant position', '30 june 2008', 'fred rutten', '1 july 2008', 'pre - season'], ['borussia mönchengladbach', 'jos luhukay', 'sacked', '5 october 2008', 'hans meyer', '18 october 2008', '18th'], ['vfb stuttgart', 'armin veh', 'sacked', '23 november 2008', 'markus babbel', '23 november 2008', '11th'], ['fc schalke 04', 'fred rutten', 'sacked', '26 march 2009', 'mike büskens , youri mulder and oliver reck', '1 april 2009', '8th'], ['fc bayern munich', 'jürgen klinsmann', 'sacked', '27 april 2009', 'jupp heynckes', '27 april 2009', '3rd'], ['arminia bielefeld', 'michael frontzeck', 'sacked', '17 may 2009', 'jörg berger', '19 may 2009', '16th']]
1982 in film
https://en.wikipedia.org/wiki/1982_in_film
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-171649-1.html.csv
superlative
et the extra - terrestrial was the highest grossing film of 1982 .
{'scope': 'all', 'col_superlative': '5', 'row_superlative': '1', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'gross'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; gross }'}, 'title'], 'result': 'et the extra - terrestrial', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; gross } ; title }'}, 'et the extra - terrestrial'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; gross } ; title } ; et the extra - terrestrial } = true', 'tointer': 'select the row whose gross record of all rows is maximum . the title record of this row is et the extra - terrestrial .'}
eq { hop { argmax { all_rows ; gross } ; title } ; et the extra - terrestrial } = true
select the row whose gross record of all rows is maximum . the title record of this row is et the extra - terrestrial .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'gross_5': 5, 'title_6': 6, 'et the extra - terrestrial_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'gross_5': 'gross', 'title_6': 'title', 'et the extra - terrestrial_7': 'et the extra - terrestrial'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'gross_5': [0], 'title_6': [1], 'et the extra - terrestrial_7': [2]}
['rank', 'title', 'studio', 'director', 'gross']
[['1', 'et the extra - terrestrial', 'universal', 'steven spielberg', '435110554'], ['2', 'tootsie', 'columbia', 'sydney pollack', '177200000'], ['3', 'an officer and a gentleman', 'paramount / lorimar', 'taylor hackford', '129795554'], ['4', 'rocky iii', 'united artists', 'sylvester stallone', '125049125'], ['5', "porky 's", '20th century fox', 'bob clark', '109492484'], ['6', 'star trek ii : the wrath of khan', 'paramount', 'nicholas meyer', '79912963'], ['7', '48 hrs', 'paramount', 'walter hill', '78868508'], ['8', 'poltergeist', 'mgm', 'tobe hooper', '76606280'], ['9', 'the best little whorehouse in texas', 'universal / rko', 'colin higgins', '69701637'], ['10', 'annie', 'columbia / rastar', 'john huston', '57059003'], ['11', 'the verdict', '20th century fox', 'sidney lumet', '53977250'], ['12', 'gandhi', 'columbia', 'richard attenborough', '52767889'], ['13', 'first blood', 'orion / carolco', 'ted kotcheff', '47212904'], ['14', 'the toy', 'columbia', 'richard donner', '47118057'], ['15', 'firefox', 'warner bros', 'clint eastwood', '46708276'], ['16', 'the dark crystal', 'universal', 'jim henson and frank oz', '40577001'], ['17', 'conan the barbarian', 'universal', 'john milius', '39565475'], ['18', 'the sword and the sorcerer', 'group 1', 'albert pyun', '39103425'], ['19', 'best friends', 'warner bros', 'norman jewison', '36821203'], ['20', 'richard pryor : live on the sunset strip', 'columbia', 'joe layton', '36299720']]
wpxn - tv
https://en.wikipedia.org/wiki/WPXN-TV
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-188003-1.html.csv
majority
the majority of the wpxn - tv channels have a video resolution of 480i .
{'scope': 'all', 'col': '2', 'most_or_all': 'most', 'criterion': 'equal', 'value': '480i', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'video', '480i'], 'result': True, 'ind': 0, 'tointer': 'for the video records of all rows , most of them fuzzily match to 480i .', 'tostr': 'most_eq { all_rows ; video ; 480i } = true'}
most_eq { all_rows ; video ; 480i } = true
for the video records of all rows , most of them fuzzily match to 480i .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'video_3': 3, '480i_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'video_3': 'video', '480i_4': '480i'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'video_3': [0], '480i_4': [0]}
['channel', 'video', 'aspect', 'psip short name', 'network']
[['31.1', '720p', '16:9', 'ion', 'ion television'], ['31.2', '480i', '4:3', 'qubo', 'qubo'], ['31.3', '480i', '4:3', 'ionlife', 'ion life'], ['31.4', '480i', '4:3', 'shop', 'ion shop'], ['31.5', '480i', '4:3', 'qvc', 'qvc']]
2007 pga championship
https://en.wikipedia.org/wiki/2007_PGA_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-12333215-2.html.csv
comparative
of the past champions in the 2007 pga championship , bob tway previously won earlier than phil mickelson .
{'row_1': '6', 'row_2': '4', 'col': '3', 'col_other': '1', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'player', 'bob tway'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose player record fuzzily matches to bob tway .', 'tostr': 'filter_eq { all_rows ; player ; bob tway }'}, 'year ( s ) won'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; player ; bob tway } ; year ( s ) won }', 'tointer': 'select the rows whose player record fuzzily matches to bob tway . take the year ( s ) won record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'player', 'phil mickelson'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose player record fuzzily matches to phil mickelson .', 'tostr': 'filter_eq { all_rows ; player ; phil mickelson }'}, 'year ( s ) won'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; player ; phil mickelson } ; year ( s ) won }', 'tointer': 'select the rows whose player record fuzzily matches to phil mickelson . take the year ( s ) won record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; player ; bob tway } ; year ( s ) won } ; hop { filter_eq { all_rows ; player ; phil mickelson } ; year ( s ) won } } = true', 'tointer': 'select the rows whose player record fuzzily matches to bob tway . take the year ( s ) won record of this row . select the rows whose player record fuzzily matches to phil mickelson . take the year ( s ) won record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; player ; bob tway } ; year ( s ) won } ; hop { filter_eq { all_rows ; player ; phil mickelson } ; year ( s ) won } } = true
select the rows whose player record fuzzily matches to bob tway . take the year ( s ) won record of this row . select the rows whose player record fuzzily matches to phil mickelson . take the year ( s ) won record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'player_7': 7, 'bob tway_8': 8, 'year (s) won_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'player_11': 11, 'phil mickelson_12': 12, 'year (s) won_13': 13}
{'less_4': 'less', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'player_7': 'player', 'bob tway_8': 'bob tway', 'year (s) won_9': 'year ( s ) won', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'player_11': 'player', 'phil mickelson_12': 'phil mickelson', 'year (s) won_13': 'year ( s ) won'}
{'less_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'player_7': [0], 'bob tway_8': [0], 'year (s) won_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'player_11': [1], 'phil mickelson_12': [1], 'year (s) won_13': [3]}
['player', 'country', 'year ( s ) won', 'total', 'to par', 'finish']
[['tiger woods', 'united states', '1999 , 2000 , 2006', '272', '8', '1'], ['john daly', 'united states', '1991', '286', '+ 6', 't32'], ['shaun micheel', 'united states', '2003', '286', '+ 6', 't32'], ['phil mickelson', 'united states', '2005', '286', '+ 6', 't32'], ['david toms', 'united states', '2001', '288', '+ 8', 't42'], ['bob tway', 'united states', '1986', '289', '+ 9', 't50']]
1987 - 88 coupe de france
https://en.wikipedia.org/wiki/1987%E2%80%9388_Coupe_de_France
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17747000-1.html.csv
comparative
stade quimperois scored more goals on their opponent in the tournament than rc lens did .
{'row_1': '7', 'row_2': '6', 'col': '2', 'col_other': '3', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'team 2', 'stade quimpérois ( d2 )'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose team 2 record fuzzily matches to stade quimpérois ( d2 ) .', 'tostr': 'filter_eq { all_rows ; team 2 ; stade quimpérois ( d2 ) }'}, 'score'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; team 2 ; stade quimpérois ( d2 ) } ; score }', 'tointer': 'select the rows whose team 2 record fuzzily matches to stade quimpérois ( d2 ) . take the score record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'team 2', 'rc lens ( d1 )'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose team 2 record fuzzily matches to rc lens ( d1 ) .', 'tostr': 'filter_eq { all_rows ; team 2 ; rc lens ( d1 ) }'}, 'score'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; team 2 ; rc lens ( d1 ) } ; score }', 'tointer': 'select the rows whose team 2 record fuzzily matches to rc lens ( d1 ) . take the score record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; team 2 ; stade quimpérois ( d2 ) } ; score } ; hop { filter_eq { all_rows ; team 2 ; rc lens ( d1 ) } ; score } } = true', 'tointer': 'select the rows whose team 2 record fuzzily matches to stade quimpérois ( d2 ) . take the score record of this row . select the rows whose team 2 record fuzzily matches to rc lens ( d1 ) . take the score record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; team 2 ; stade quimpérois ( d2 ) } ; score } ; hop { filter_eq { all_rows ; team 2 ; rc lens ( d1 ) } ; score } } = true
select the rows whose team 2 record fuzzily matches to stade quimpérois ( d2 ) . take the score record of this row . select the rows whose team 2 record fuzzily matches to rc lens ( d1 ) . take the score record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'team 2_7': 7, 'stade quimpérois (d2)_8': 8, 'score_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'team 2_11': 11, 'rc lens (d1)_12': 12, 'score_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'team 2_7': 'team 2', 'stade quimpérois (d2)_8': 'stade quimpérois ( d2 )', 'score_9': 'score', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'team 2_11': 'team 2', 'rc lens (d1)_12': 'rc lens ( d1 )', 'score_13': 'score'}
{'greater_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'team 2_7': [0], 'stade quimpérois (d2)_8': [0], 'score_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'team 2_11': [1], 'rc lens (d1)_12': [1], 'score_13': [3]}
['team 1', 'score', 'team 2', '1st round', '2nd round']
[['toulouse fc ( d1 )', '2 - 2', 'ogc nice ( d1 )', '1 - 1', '1 - 1'], ['lille osc ( d1 )', '2 - 2', 'aj auxerre ( d1 )', '1 - 0', '1 - 2'], ['montpellier hsc ( d1 )', '2 - 3', 'fc sochaux - montbéliard ( d2 )', '2 - 2', '0 - 1'], ['stade de reims ( d2 )', '2 - 1', 'le havre ac ( d1 )', '2 - 0', '0 - 1'], ['fc metz ( d1 )', '3 - 0', 'fc mulhouse ( d2 )', '1 - 0', '2 - 0'], ['fc sète ( d2 )', '0 - 1', 'rc lens ( d1 )', '0 - 0', '0 - 1'], ['aep bourg sous la roche ( d2 )', '3 - 5', 'stade quimpérois ( d2 )', '1 - 3', '2 - 2'], ['so chtellerault ( d2 )', '0 - 0', 'us créteil ( d3 )', '0 - 0', '0 - 0']]
doves discography
https://en.wikipedia.org/wiki/Doves_discography
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10537807-4.html.csv
majority
most of the songs from doves discography come in a vinyl format .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'fuzzily_match', 'value': 'vinyl', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'formats', 'vinyl'], 'result': True, 'ind': 0, 'tointer': 'for the formats records of all rows , most of them fuzzily match to vinyl .', 'tostr': 'most_eq { all_rows ; formats ; vinyl } = true'}
most_eq { all_rows ; formats ; vinyl } = true
for the formats records of all rows , most of them fuzzily match to vinyl .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'formats_3': 3, 'vinyl_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'formats_3': 'formats', 'vinyl_4': 'vinyl'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'formats_3': [0], 'vinyl_4': [0]}
['song', 'release date', 'release info', 'formats', 'album']
[['here it comes', '2 august 1999', 'casino ( chip003 )', 'cd , 10 vinyl', 'here it comes ep'], ['the cedar room', '20 march 2000', 'heavenly ( hvn95 )', 'cd , 10 vinyl', 'lost souls'], ['catch the sun', '29 may 2000', 'heavenly ( hvn96 )', 'cd1 , cd2 , 10 vinyl', 'lost souls'], ['the man who told everything', '30 october 2000', 'heavenly ( hvn98 )', 'cd1 , cd2 , 7 vinyl', 'lost souls'], ['there goes the fear', '15 april 2002', 'heavenly ( hvn111 )', 'cd , 10 vinyl', 'the last broadcast'], ['pounding', '22 july 2002', 'heavenly ( hvn116 )', 'cd , dvd , 10 vinyl', 'the last broadcast'], ['caught by the river', '14 october 2002', 'heavenly ( hvn126 )', 'ecd , cd , 10 vinyl', 'the last broadcast'], ['black and white town', '7 february 2005', 'heavenly ( hvn145 )', 'cd1 , cd2 , 7 vinyl', 'some cities'], ['snowden', '9 may 2005', 'heavenly ( hvn150 )', 'cd1 , cd2 , 7 vinyl', 'some cities'], ['sky starts falling', '12 september 2005', 'heavenly ( hvn152 )', 'cd , dvd , 7 vinyl', 'some cities'], ['kingdom of rust', '30 march 2009', 'heavenly ( hvn189 )', 'cd , 7 vinyl , 3 x 12 vinyl', 'kingdom of rust'], ['winter hill', '20 july 2009', 'heavenly ( hvn192 )', '7 vinyl , 3 x 12 vinyl', 'kingdom of rust'], ['andalucia', '5 april 2010', 'heavenly ( hvn201 )', 'dl', 'the places between : the best of doves'], ['- denotes a release that did not chart', '- denotes a release that did not chart', '- denotes a release that did not chart', '- denotes a release that did not chart', '- denotes a release that did not chart']]
list of oldenburg locomotives and railbuses
https://en.wikipedia.org/wiki/List_of_Oldenburg_locomotives_and_railbuses
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18842985-3.html.csv
count
there were three passenger and express train oldenburg locomotives that were manufactured between the years 1896 and 1914 with an axle arrangement 2 ' b n2v .
{'scope': 'subset', 'criterion': 'equal', 'value': '2 ′ b n2v', 'result': '3', 'col': '6', 'subset': {'col': '6', 'criterion': 'equal', 'value': '2 ′ b n2v'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'axle arrangement', '2 ′ b n2v'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; axle arrangement ; 2 ′ b n2v }', 'tointer': 'select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v .'}, 'axle arrangement', '2 ′ b n2v'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v . among these rows , select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v .', 'tostr': 'filter_eq { filter_eq { all_rows ; axle arrangement ; 2 ′ b n2v } ; axle arrangement ; 2 ′ b n2v }'}], 'result': '3', 'ind': 2, 'tostr': 'count { filter_eq { filter_eq { all_rows ; axle arrangement ; 2 ′ b n2v } ; axle arrangement ; 2 ′ b n2v } }', 'tointer': 'select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v . among these rows , select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v . the number of such rows is 3 .'}, '3'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_eq { filter_eq { all_rows ; axle arrangement ; 2 ′ b n2v } ; axle arrangement ; 2 ′ b n2v } } ; 3 } = true', 'tointer': 'select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v . among these rows , select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v . the number of such rows is 3 .'}
eq { count { filter_eq { filter_eq { all_rows ; axle arrangement ; 2 ′ b n2v } ; axle arrangement ; 2 ′ b n2v } } ; 3 } = true
select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v . among these rows , select the rows whose axle arrangement record fuzzily matches to 2 ′ b n2v . the number of such rows is 3 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_str_eq_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'axle arrangement_6': 6, '2′b n2v_7': 7, 'axle arrangement_8': 8, '2′b n2v_9': 9, '3_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_str_eq_1': 'filter_str_eq', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'axle arrangement_6': 'axle arrangement', '2′b n2v_7': '2 ′ b n2v', 'axle arrangement_8': 'axle arrangement', '2′b n2v_9': '2 ′ b n2v', '3_10': '3'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_str_eq_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'axle arrangement_6': [0], '2′b n2v_7': [0], 'axle arrangement_8': [1], '2′b n2v_9': [1], '3_10': [3]}
['class', 'railway number ( s )', 'drg number ( s )', 'quantity', 'year ( s ) of manufacture', 'axle arrangement']
[['p 4 1', '107 - 111 , 116 , 129 - 134 , 139 - 144 , 150', '36 1201 - 1219', '19', '1896 - 1902', '2 ′ b n2'], ['p 4 2', '174 - 178 , 188 - 190', '36 1251 - 1258', '8', '1907 - 1909', '2 ′ b n2v'], ['p 8', '290 - 294', '38 3390 - 3394', '5', '1922', '2 ′ c h2'], ['s 3', '151 - 154 , 160 - 161', '13 1801 - 1806', '6', '1903 - 1904', '2 ′ b n2v'], ['s 5 2', '205 - 206 , 209 - 211 , 223 - 225 , 248 - 250', '13 1851 - 1861', '11', '1909 - 1913', '2 ′ b n2v'], ['s 10', '266 - 268', '16 001 - 003', '3', '1916', '1 ′ c1 ′ h2']]
1934 vfl season
https://en.wikipedia.org/wiki/1934_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10790510-12.html.csv
ordinal
the third largest crowd in the 1934 vfl season was 13805 .
{'row': '1', 'col': '6', 'order': '3', 'col_other': 'n/a', 'max_or_min': 'max_to_min', 'value_mentioned': 'yes', 'scope': 'all', 'subset': None}
{'func': 'eq', 'args': [{'func': 'nth_max', 'args': ['all_rows', 'crowd', '3'], 'result': '13805', 'ind': 0, 'tostr': 'nth_max { all_rows ; crowd ; 3 }', 'tointer': 'the 3rd maximum crowd record of all rows is 13805 .'}, '13805'], 'result': True, 'ind': 1, 'tostr': 'eq { nth_max { all_rows ; crowd ; 3 } ; 13805 } = true', 'tointer': 'the 3rd maximum crowd record of all rows is 13805 .'}
eq { nth_max { all_rows ; crowd ; 3 } ; 13805 } = true
the 3rd maximum crowd record of all rows is 13805 .
2
2
{'eq_1': 1, 'result_2': 2, 'nth_max_0': 0, 'all_rows_3': 3, 'crowd_4': 4, '3_5': 5, '13805_6': 6}
{'eq_1': 'eq', 'result_2': 'true', 'nth_max_0': 'nth_max', 'all_rows_3': 'all_rows', 'crowd_4': 'crowd', '3_5': '3', '13805_6': '13805'}
{'eq_1': [2], 'result_2': [], 'nth_max_0': [1], 'all_rows_3': [0], 'crowd_4': [0], '3_5': [0], '13805_6': [1]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['melbourne', '13.23 ( 101 )', 'richmond', '14.11 ( 95 )', 'mcg', '13805', '28 july 1934'], ['collingwood', '13.19 ( 97 )', 'south melbourne', '21.19 ( 145 )', 'victoria park', '28000', '28 july 1934'], ['carlton', '22.13 ( 145 )', 'hawthorn', '10.6 ( 66 )', 'princes park', '12000', '28 july 1934'], ['st kilda', '13.6 ( 84 )', 'geelong', '16.18 ( 114 )', 'junction oval', '17000', '28 july 1934'], ['north melbourne', '15.8 ( 98 )', 'fitzroy', '21.16 ( 142 )', 'arden street oval', '10000', '28 july 1934'], ['footscray', '15.9 ( 99 )', 'essendon', '8.9 ( 57 )', 'western oval', '13000', '28 july 1934']]
henri leconte
https://en.wikipedia.org/wiki/Henri_Leconte
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1171445-6.html.csv
count
yannick noah was henri leconte 's doubles partner for 6 tournaments .
{'scope': 'all', 'criterion': 'equal', 'value': 'yannick noah', 'result': '6', 'col': '5', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'partner', 'yannick noah'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose partner record fuzzily matches to yannick noah .', 'tostr': 'filter_eq { all_rows ; partner ; yannick noah }'}], 'result': '6', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; partner ; yannick noah } }', 'tointer': 'select the rows whose partner record fuzzily matches to yannick noah . the number of such rows is 6 .'}, '6'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; partner ; yannick noah } } ; 6 } = true', 'tointer': 'select the rows whose partner record fuzzily matches to yannick noah . the number of such rows is 6 .'}
eq { count { filter_eq { all_rows ; partner ; yannick noah } } ; 6 } = true
select the rows whose partner record fuzzily matches to yannick noah . the number of such rows is 6 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'partner_5': 5, 'yannick noah_6': 6, '6_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'partner_5': 'partner', 'yannick noah_6': 'yannick noah', '6_7': '6'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'partner_5': [0], 'yannick noah_6': [0], '6_7': [2]}
['outcome', 'date', 'tournament', 'surface', 'partner', 'opponents in the final', 'score in the final']
[['winner', '1981', 'bologna , italy', 'carpet', 'sammy giammalva jr', 'tomáš šmíd balázs taróczy', '7 - 6 , 6 - 4'], ['winner', '1982', 'nice , france', 'clay', 'yannick noah', 'paul mcnamee balázs taróczy', '5 - 7 , 6 - 4 , 6 - 3'], ['runner - up', '1982', 'bournemouth , england', 'clay', 'ilie năstase', 'paul mcnamee buster mottram', '6 - 3 , 6 - 7 , 3 - 6'], ['winner', '1982', 'basel , switzerland', 'hard ( i )', 'yannick noah', 'fritz buehning pavel složil', '6 - 2 , 6 - 2'], ['winner', '1982', 'vienna , austria', 'carpet', 'pavel složil', 'mark dickson terry moor', '6 - 1 , 7 - 6'], ['runner - up', '1983', 'monte carlo , monaco', 'clay', 'yannick noah', 'heinz günthardt balázs taróczy', '2 - 6 , 4 - 6'], ['winner', '1983', 'aix - en - provence , france', 'clay', 'gilles moretton', 'ivan camus sergio casal', '2 - 6 , 6 - 1 , 6 - 2'], ['runner - up', '1984', 'philadelphia , us', 'carpet', 'yannick noah', 'peter fleming john mcenroe', '2 - 6 , 3 - 6'], ['winner', '1984', 'french open , paris', 'clay', 'yannick noah', 'pavel složil tomáš šmíd', '6 - 4 , 2 - 6 , 3 - 6 , 6 - 3 , 6 - 2'], ['winner', '1984', 'kitzbühel , austria', 'clay', 'pascal portes', 'colin dowdeswell wojtek fibak', '2 - 6 , 7 - 6 , 7 - 6'], ['winner', '1984', 'stockholm , sweden', 'hard ( i )', 'tomáš šmíd', 'vijay amritraj ilie năstase', '3 - 6 , 7 - 6 , 6 - 4'], ['runner - up', '1985', 'us open , new york', 'hard', 'yannick noah', 'ken flach robert seguso', '7 - 6 , 6 - 7 , 6 - 7 , 0 - 6'], ['winner', '1988', 'nice , france', 'clay', 'guy forget', 'heinz günthardt diego nargiso', '4 - 6 , 6 - 3 , 6 - 4'], ['runner - up', '1988', 'monte carlo , monaco', 'clay', 'ivan lendl', 'sergio casal emilio sánchez', '0 - 6 , 3 - 6'], ['runner - up', '1990', "london / queen 's club , england", 'grass', 'ivan lendl', 'jeremy bates kevin curren', '2 - 6 , 6 - 7'], ['runner - up', '1991', 'indian wells , us', 'hard', 'guy forget', 'jim courier javier sánchez', '6 - 7 , 6 - 3 , 3 - 6'], ['runner - up', '1992', 'toulouse , france', 'hard ( i )', 'guy forget', 'brad pearce byron talbot', '1 - 6 , 6 - 3 , 3 - 6'], ['winner', '1993', 'indian wells , us', 'hard', 'guy forget', 'luke jensen scott melville', '6 - 4 , 7 - 5'], ['runner - up', '1994', 'halle , germany', 'grass', 'gary muller', 'olivier delaître guy forget', '4 - 6 , 7 - 6 , 4 - 6']]
wru division four east
https://en.wikipedia.org/wiki/WRU_Division_Four_East
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-13741576-4.html.csv
aggregation
for the four east , wru division , the total number of matches won was 128 .
{'scope': 'all', 'col': '3', 'type': 'sum', 'result': '128', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': ['all_rows', 'won'], 'result': '128', 'ind': 0, 'tostr': 'sum { all_rows ; won }'}, '128'], 'result': True, 'ind': 1, 'tostr': 'round_eq { sum { all_rows ; won } ; 128 } = true', 'tointer': 'the sum of the won record of all rows is 128 .'}
round_eq { sum { all_rows ; won } ; 128 } = true
the sum of the won record of all rows is 128 .
2
2
{'eq_1': 1, 'result_2': 2, 'sum_0': 0, 'all_rows_3': 3, 'won_4': 4, '128_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'sum_0': 'sum', 'all_rows_3': 'all_rows', 'won_4': 'won', '128_5': '128'}
{'eq_1': [2], 'result_2': [], 'sum_0': [1], 'all_rows_3': [0], 'won_4': [0], '128_5': [1]}
['club', 'played', 'won', 'drawn', 'lost', 'points for', 'points against', 'tries for', 'tries against', 'try bonus', 'losing bonus', 'points']
[['club', 'played', 'won', 'drawn', 'lost', 'points for', 'points against', 'tries for', 'tries against', 'try bonus', 'losing bonus', 'points'], ['llandaff rfc', '22', '19', '0', '3', '529', '212', '81', '26', '9', '3', '88'], ['tredegar ironsides rfc', '22', '18', '1', '3', '726', '196', '107', '18', '10', '1', '85'], ['nantyglo rfc', '22', '15', '0', '7', '493', '382', '67', '45', '8', '5', '73'], ['risca rfc', '22', '12', '1', '9', '462', '344', '53', '41', '8', '4', '62'], ['rhiwbina rfc', '21', '11', '0', '10', '431', '307', '62', '38', '8', '8', '60'], ['crumlin rfc', '22', '12', '2', '8', '415', '370', '55', '47', '4', '3', '59'], ['machen rfc', '22', '11', '1', '10', '533', '454', '63', '61', '5', '3', '50'], ["st joseph 's rfc", '22', '10', '0', '12', '353', '371', '38', '43', '3', '3', '46'], ['monmouth rfc', '22', '8', '2', '12', '365', '437', '45', '61', '4', '4', '44'], ['chepstow rfc', '22', '5', '1', '16', '371', '507', '49', '70', '2', '6', '30'], ['brynithel rfc', '22', '5', '0', '17', '201', '526', '24', '71', '1', '3', '24'], ['pontllanfraith rfc', '21', '1', '0', '20', '91', '864', '11', '134', '0', '1', '5']]
1955 - 56 segunda división
https://en.wikipedia.org/wiki/1955%E2%80%9356_Segunda_Divisi%C3%B3n
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17608926-2.html.csv
ordinal
club sestao was the football club that had the second most losses in the 1955 - 56 segunda división .
{'row': '15', 'col': '7', 'order': '2', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'losses', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; losses ; 2 }'}, 'club'], 'result': 'club sestao', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; losses ; 2 } ; club }'}, 'club sestao'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; losses ; 2 } ; club } ; club sestao } = true', 'tointer': 'select the row whose losses record of all rows is 2nd maximum . the club record of this row is club sestao .'}
eq { hop { nth_argmax { all_rows ; losses ; 2 } ; club } ; club sestao } = true
select the row whose losses record of all rows is 2nd maximum . the club record of this row is club sestao .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'losses_5': 5, '2_6': 6, 'club_7': 7, 'club sestao_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'losses_5': 'losses', '2_6': '2', 'club_7': 'club', 'club sestao_8': 'club sestao'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'losses_5': [0], '2_6': [0], 'club_7': [1], 'club sestao_8': [2]}
['position', 'club', 'played', 'points', 'wins', 'draws', 'losses', 'goals for', 'goals against', 'goal difference']
[['1', 'ca osasuna', '30', '42', '17', '8', '5', '76', '33', '+ 43'], ['2', 'real oviedo', '30', '41', '18', '5', '7', '78', '33', '+ 45'], ['3', 'real zaragoza', '30', '40', '18', '4', '8', '57', '27', '+ 30'], ['4', 'caudal deportivo', '30', '34', '13', '8', '9', '49', '37', '+ 12'], ['5', 'cd sabadell cf', '30', '33', '13', '7', '10', '50', '44', '+ 6'], ['6', 'club ferrol', '30', '32', '11', '10', '9', '44', '47', '- 3'], ['7', 'real gijón cf', '30', '32', '14', '4', '12', '51', '46', '+ 5'], ['8', 'sd indauchu', '30', '30', '12', '6', '12', '53', '50', '+ 3'], ['9', 'cd tarrasa', '30', '28', '10', '8', '12', '46', '59', '- 13'], ['10', 'baracaldo ah', '30', '28', '10', '8', '12', '45', '54', '- 9'], ['11', 'real santander', '30', '28', '12', '4', '14', '47', '47', '0'], ['12', 'ud lérida', '30', '26', '11', '4', '15', '53', '63', '- 10'], ['13', 'cp la felguera', '30', '26', '10', '6', '14', '35', '57', '- 22'], ['14', 'sd eibar', '30', '25', '9', '7', '14', '40', '55', '- 15'], ['15', 'club sestao', '30', '19', '6', '7', '17', '24', '58', '- 34'], ['16', 'cd logroñés', '30', '16', '4', '8', '18', '38', '76', '- 38']]
malta in the eurovision song contest 2008
https://en.wikipedia.org/wiki/Malta_in_the_Eurovision_Song_Contest_2008
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-14417482-1.html.csv
aggregation
morena camilleri had an average of third place for malta in the eurovision song contest 2008 .
{'scope': 'subset', 'col': '7', 'type': 'average', 'result': '3', 'subset': {'col': '2', 'criterion': 'equal', 'value': 'morena camilleri'}}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'artist', 'morena camilleri'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; artist ; morena camilleri }', 'tointer': 'select the rows whose artist record fuzzily matches to morena camilleri .'}, 'place'], 'result': '3', 'ind': 1, 'tostr': 'avg { filter_eq { all_rows ; artist ; morena camilleri } ; place }'}, '3'], 'result': True, 'ind': 2, 'tostr': 'round_eq { avg { filter_eq { all_rows ; artist ; morena camilleri } ; place } ; 3 } = true', 'tointer': 'select the rows whose artist record fuzzily matches to morena camilleri . the average of the place record of these rows is 3 .'}
round_eq { avg { filter_eq { all_rows ; artist ; morena camilleri } ; place } ; 3 } = true
select the rows whose artist record fuzzily matches to morena camilleri . the average of the place record of these rows is 3 .
3
3
{'eq_2': 2, 'result_3': 3, 'avg_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'artist_5': 5, 'morena camilleri_6': 6, 'place_7': 7, '3_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'avg_1': 'avg', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'artist_5': 'artist', 'morena camilleri_6': 'morena camilleri', 'place_7': 'place', '3_8': '3'}
{'eq_2': [3], 'result_3': [], 'avg_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'artist_5': [0], 'morena camilleri_6': [0], 'place_7': [1], '3_8': [2]}
['draw', 'artist', 'song', 'jury', 'televote', 'total', 'place']
[['1', 'eleonor cassar', 'give me a chance', '49', '3821', '50', '4'], ['2', 'claudia faniello', 'caravaggio', '49', '12714', '68', '2'], ['3', 'petra zammit', 'street car of desire', '39', '3421', '28', '6'], ['4', 'morena camilleri', 'casanova', '40', '3607', '38', '5'], ['5', 'klinsmann coleiro', 'go', '43', '3299', '24', '7'], ['6', 'claudia faniello', 'sunrise', '71', '4518', '64', '3'], ['7', 'rosman pace', 'love is just the way', '36', '3253', '10', '8'], ['8', 'morena camilleri', 'vodka', '49', '16979', '78', '1']]
united states house of representatives elections , 1970
https://en.wikipedia.org/wiki/United_States_House_of_Representatives_elections%2C_1970
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-1341718-34.html.csv
aggregation
the average percent of re-elected candidates is 58.3 % .
{'scope': 'all', 'col': '6', 'type': 'average', 'result': '58.3', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'candidates'], 'result': '58.3', 'ind': 0, 'tostr': 'avg { all_rows ; candidates }'}, '58.3'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; candidates } ; 58.3 } = true', 'tointer': 'the average of the candidates record of all rows is 58.3 .'}
round_eq { avg { all_rows ; candidates } ; 58.3 } = true
the average of the candidates record of all rows is 58.3 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'candidates_4': 4, '58.3_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'candidates_4': 'candidates', '58.3_5': '58.3'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'candidates_4': [0], '58.3_5': [1]}
['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']
[['north carolina 2', 'lawrence h fountain', 'democratic', '1952', 're - elected', 'lawrence h fountain ( d ) unopposed'], ['north carolina 4', 'nick galifianakis', 'democratic', '1966', 're - elected', 'nick galifianakis ( d ) 52.4 % jack hawke ( r ) 47.6 %'], ['north carolina 5', 'wilmer mizell', 'republican', '1968', 're - elected', 'wilmer mizell ( r ) 58.1 % james g white ( d ) 41.9 %'], ['north carolina 8', 'earl b ruth', 'republican', '1968', 're - elected', 'earl b ruth ( r ) 56.1 % h clifton blue ( d ) 43.9 %'], ['north carolina 9', 'charles r jonas', 'republican', '1952', 're - elected', 'charles r jonas ( r ) 66.6 % cy n bahakel ( d ) 33.4 %']]
2010 - 11 buffalo sabres season
https://en.wikipedia.org/wiki/2010%E2%80%9311_Buffalo_Sabres_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-27537870-3.html.csv
count
the buffalo sabres played against the chicago blackhawks two times .
{'scope': 'all', 'criterion': 'equal', 'value': 'chicago blackhawks', 'result': '2', 'col': '3', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'opponent', 'chicago blackhawks'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose opponent record fuzzily matches to chicago blackhawks .', 'tostr': 'filter_eq { all_rows ; opponent ; chicago blackhawks }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; opponent ; chicago blackhawks } }', 'tointer': 'select the rows whose opponent record fuzzily matches to chicago blackhawks . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; opponent ; chicago blackhawks } } ; 2 } = true', 'tointer': 'select the rows whose opponent record fuzzily matches to chicago blackhawks . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; opponent ; chicago blackhawks } } ; 2 } = true
select the rows whose opponent record fuzzily matches to chicago blackhawks . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'opponent_5': 5, 'chicago blackhawks_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'opponent_5': 'opponent', 'chicago blackhawks_6': 'chicago blackhawks', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'opponent_5': [0], 'chicago blackhawks_6': [0], '2_7': [2]}
['game', 'october', 'opponent', 'score', 'decision', 'location / attendance', 'record']
[['1', '8', 'ottawa senators', '2 - 1', 'miller', 'scotiabank place / 19350', '1 - 0 - 0'], ['2', '9', 'new york rangers', '3 - 6', 'miller', 'hsbc arena / 18690', '1 - 1 - 0'], ['3', '11', 'chicago blackhawks', '3 - 4', 'miller', 'hsbc arena / 17896', '1 - 2 - 0'], ['4', '13', 'new jersey devils', '0 - 1 ( ot )', 'miller', 'hsbc arena / 18690', '1 - 2 - 1'], ['5', '15', 'montreal canadiens', '1 - 2', 'miller', 'hsbc arena / 17264', '1 - 3 - 1'], ['6', '16', 'chicago blackhawks', '3 - 4', 'lalime', 'united center / 21293', '1 - 4 - 1'], ['7', '20', 'atlanta thrashers', '4 - 1', 'miller', 'philips arena / 8820', '2 - 4 - 1'], ['8', '22', 'ottawa senators', '2 - 4', 'miller', 'hsbc arena / 18009', '2 - 5 - 1'], ['9', '23', 'new jersey devils', '6 - 1', 'miller', 'prudential center / 14228', '3 - 5 - 1'], ['10', '26', 'philadelphia flyers', '3 - 6', 'miller', 'wells fargo center / 19361', '3 - 6 - 1'], ['11', '29', 'atlanta thrashers', '3 - 4 ( ot )', 'miller', 'philips arena / 10172', '3 - 6 - 2']]
2005 cologne centurions season
https://en.wikipedia.org/wiki/2005_Cologne_Centurions_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-27764201-2.html.csv
superlative
sunday , may 29 was the only game in the 2005 season where there were more than 30000 fans at the game .
{'scope': 'all', 'col_superlative': '8', 'row_superlative': '9', 'value_mentioned': 'no', 'max_or_min': 'max', 'other_col': '2', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'argmax', 'args': ['all_rows', 'attendance'], 'result': None, 'ind': 0, 'tostr': 'argmax { all_rows ; attendance }'}, 'date'], 'result': 'sunday , may 29', 'ind': 1, 'tostr': 'hop { argmax { all_rows ; attendance } ; date }'}, 'sunday , may 29'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { argmax { all_rows ; attendance } ; date } ; sunday , may 29 } = true', 'tointer': 'select the row whose attendance record of all rows is maximum . the date record of this row is sunday , may 29 .'}
eq { hop { argmax { all_rows ; attendance } ; date } ; sunday , may 29 } = true
select the row whose attendance record of all rows is maximum . the date record of this row is sunday , may 29 .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'argmax_0': 0, 'all_rows_4': 4, 'attendance_5': 5, 'date_6': 6, 'sunday , may 29_7': 7}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'argmax_0': 'argmax', 'all_rows_4': 'all_rows', 'attendance_5': 'attendance', 'date_6': 'date', 'sunday , may 29_7': 'sunday , may 29'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'argmax_0': [1], 'all_rows_4': [0], 'attendance_5': [0], 'date_6': [1], 'sunday , may 29_7': [2]}
['week', 'date', 'kickoff', 'opponent', 'final score', 'team record', 'game site', 'attendance']
[['1', 'saturday , april 2', '6:00 pm', 'hamburg sea devils', 'w 24 - 23', '1 - 0', 'rheinenergiestadion', '9468'], ['2', 'sunday , april 10', '4:00 pm', 'rhein fire', 'w 23 - 10', '2 - 0', 'ltu arena', '25304'], ['3', 'saturday , april 16', '6:00 pm', 'frankfurt galaxy', 'w 23 - 14', '3 - 0', 'rheinenergiestadion', '10821'], ['4', 'saturday , april 23', '6:00 pm', 'amsterdam admirals', 'l 24 - 37', '3 - 1', 'rheinenergiestadion', '8863'], ['5', 'saturday , april 30', '7:00 pm', 'hamburg sea devils', 'l 6 - 23', '3 - 2', 'aol arena', '15228'], ['6', 'sunday , may 8', '4:00 pm', 'berlin thunder', 'w 23 - 17', '4 - 2', 'rheinenergiestadion', '9485'], ['7', 'saturday , may 14', '7:00 pm', 'frankfurt galaxy', 'w 20 - 17 ot', '5 - 2', 'commerzbank - arena', '25347'], ['8', 'monday , may 23', '8:00 pm', 'amsterdam admirals', 'l 12 - 30', '5 - 3', 'amsterdam arena', '14423'], ['9', 'sunday , may 29', '4:00 pm', 'rhein fire', 'l 16 - 28', '5 - 4', 'rheinenergiestadion', '32521']]
2008 australian carrera cup championship
https://en.wikipedia.org/wiki/2008_Australian_Carrera_Cup_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18333905-2.html.csv
count
in the 2008 australian carrera cup championship , among the curcuits won by craig baird , 2 of them were located in melbourne , victoria .
{'scope': 'subset', 'criterion': 'equal', 'value': 'melbourne , victoria', 'result': '2', 'col': '4', 'subset': {'col': '5', 'criterion': 'equal', 'value': 'craig baird'}}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'winning driver', 'craig baird'], 'result': None, 'ind': 0, 'tostr': 'filter_eq { all_rows ; winning driver ; craig baird }', 'tointer': 'select the rows whose winning driver record fuzzily matches to craig baird .'}, 'location', 'melbourne , victoria'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose winning driver record fuzzily matches to craig baird . among these rows , select the rows whose location record fuzzily matches to melbourne , victoria .', 'tostr': 'filter_eq { filter_eq { all_rows ; winning driver ; craig baird } ; location ; melbourne , victoria }'}], 'result': '2', 'ind': 2, 'tostr': 'count { filter_eq { filter_eq { all_rows ; winning driver ; craig baird } ; location ; melbourne , victoria } }', 'tointer': 'select the rows whose winning driver record fuzzily matches to craig baird . among these rows , select the rows whose location record fuzzily matches to melbourne , victoria . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 3, 'tostr': 'eq { count { filter_eq { filter_eq { all_rows ; winning driver ; craig baird } ; location ; melbourne , victoria } } ; 2 } = true', 'tointer': 'select the rows whose winning driver record fuzzily matches to craig baird . among these rows , select the rows whose location record fuzzily matches to melbourne , victoria . the number of such rows is 2 .'}
eq { count { filter_eq { filter_eq { all_rows ; winning driver ; craig baird } ; location ; melbourne , victoria } } ; 2 } = true
select the rows whose winning driver record fuzzily matches to craig baird . among these rows , select the rows whose location record fuzzily matches to melbourne , victoria . the number of such rows is 2 .
4
4
{'eq_3': 3, 'result_4': 4, 'count_2': 2, 'filter_str_eq_1': 1, 'filter_str_eq_0': 0, 'all_rows_5': 5, 'winning driver_6': 6, 'craig baird_7': 7, 'location_8': 8, 'melbourne , victoria_9': 9, '2_10': 10}
{'eq_3': 'eq', 'result_4': 'true', 'count_2': 'count', 'filter_str_eq_1': 'filter_str_eq', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_5': 'all_rows', 'winning driver_6': 'winning driver', 'craig baird_7': 'craig baird', 'location_8': 'location', 'melbourne , victoria_9': 'melbourne , victoria', '2_10': '2'}
{'eq_3': [4], 'result_4': [], 'count_2': [3], 'filter_str_eq_1': [2], 'filter_str_eq_0': [1], 'all_rows_5': [0], 'winning driver_6': [0], 'craig baird_7': [0], 'location_8': [1], 'melbourne , victoria_9': [1], '2_10': [3]}
['round', 'date', 'circuit', 'location', 'winning driver']
[['1', '21 - 24 february', 'adelaide street circuit', 'adelaide , south australia', 'craig baird'], ['2', '13 - 16 march', 'albert park street circuit', 'melbourne , victoria', 'craig baird'], ['3', '4 - 6 april', 'wakefield park', 'goulburn , new south wales', 'aaron caratti'], ['4', '9 - 11 may', 'barbagallo raceway', 'perth , western australia', 'craig baird'], ['5', '7 - 9 june', 'sandown raceway', 'melbourne , victoria', 'craig baird'], ['6', '4 - 6 july', 'queensland raceway', 'ipswich , queensland', 'craig baird'], ['7', '12 - 14 september', 'phillip island grand prix circuit', 'phillip island , victoria', 'craig baird'], ['8', '9 - 12 october', 'mount panorama circuit', 'bathurst , new south wales', 'dean fiore'], ['9', '23 - 26 october', 'surfers paradise street circuit', 'surfers paradise , queensland', 'james moffat']]
1974 vfl season
https://en.wikipedia.org/wiki/1974_VFL_season
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-10869646-12.html.csv
comparative
north melbourne had a higher home team score than essendon in the 1974 vfl season .
{'row_1': '1', 'row_2': '4', 'col': '2', 'col_other': '1', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'home team', 'north melbourne'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose home team record fuzzily matches to north melbourne .', 'tostr': 'filter_eq { all_rows ; home team ; north melbourne }'}, 'home team score'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; home team ; north melbourne } ; home team score }', 'tointer': 'select the rows whose home team record fuzzily matches to north melbourne . take the home team score record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'home team', 'essendon'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose home team record fuzzily matches to essendon .', 'tostr': 'filter_eq { all_rows ; home team ; essendon }'}, 'home team score'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; home team ; essendon } ; home team score }', 'tointer': 'select the rows whose home team record fuzzily matches to essendon . take the home team score record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; home team ; north melbourne } ; home team score } ; hop { filter_eq { all_rows ; home team ; essendon } ; home team score } } = true', 'tointer': 'select the rows whose home team record fuzzily matches to north melbourne . take the home team score record of this row . select the rows whose home team record fuzzily matches to essendon . take the home team score record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; home team ; north melbourne } ; home team score } ; hop { filter_eq { all_rows ; home team ; essendon } ; home team score } } = true
select the rows whose home team record fuzzily matches to north melbourne . take the home team score record of this row . select the rows whose home team record fuzzily matches to essendon . take the home team score record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'home team_7': 7, 'north melbourne_8': 8, 'home team score_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'home team_11': 11, 'essendon_12': 12, 'home team score_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'home team_7': 'home team', 'north melbourne_8': 'north melbourne', 'home team score_9': 'home team score', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'home team_11': 'home team', 'essendon_12': 'essendon', 'home team score_13': 'home team score'}
{'greater_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'home team_7': [0], 'north melbourne_8': [0], 'home team score_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'home team_11': [1], 'essendon_12': [1], 'home team score_13': [3]}
['home team', 'home team score', 'away team', 'away team score', 'venue', 'crowd', 'date']
[['north melbourne', '28.17 ( 185 )', 'south melbourne', '12.7 ( 79 )', 'arden street oval', '9016', '22 june 1974'], ['hawthorn', '19.17 ( 131 )', 'richmond', '15.18 ( 108 )', 'princes park', '15710', '22 june 1974'], ['fitzroy', '13.14 ( 92 )', 'st kilda', '12.15 ( 87 )', 'junction oval', '12519', '22 june 1974'], ['essendon', '13.12 ( 90 )', 'collingwood', '19.9 ( 123 )', 'windy hill', '25867', '22 june 1974'], ['melbourne', '11.13 ( 79 )', 'carlton', '15.18 ( 108 )', 'mcg', '23336', '22 june 1974'], ['geelong', '13.14 ( 92 )', 'footscray', '8.10 ( 58 )', 'vfl park', '16320', '22 june 1974']]
greater antilles
https://en.wikipedia.org/wiki/Greater_Antilles
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-298550-1.html.csv
majority
all of the countries of the greater antilles have a population density larger than 100 per km square .
{'scope': 'all', 'col': '4', 'most_or_all': 'all', 'criterion': 'greater_than', 'value': '100', 'subset': None}
{'func': 'all_greater', 'args': ['all_rows', 'population density ( per km square )', '100'], 'result': True, 'ind': 0, 'tointer': 'for the population density ( per km square ) records of all rows , all of them are greater than 100 .', 'tostr': 'all_greater { all_rows ; population density ( per km square ) ; 100 } = true'}
all_greater { all_rows ; population density ( per km square ) ; 100 } = true
for the population density ( per km square ) records of all rows , all of them are greater than 100 .
1
1
{'all_greater_0': 0, 'result_1': 1, 'all_rows_2': 2, 'population density (per km square)_3': 3, '100_4': 4}
{'all_greater_0': 'all_greater', 'result_1': 'true', 'all_rows_2': 'all_rows', 'population density (per km square)_3': 'population density ( per km square )', '100_4': '100'}
{'all_greater_0': [1], 'result_1': [], 'all_rows_2': [0], 'population density (per km square)_3': [0], '100_4': [0]}
['country with flag', 'area ( km square )', 'population ( 1 july 2005 est )', 'population density ( per km square )', 'capital']
[['cuba', '110860', '11346670', '102.4', 'havana'], ['cayman islands ( uk )', '264', '54878', '207.9', 'george town'], ['dominican republic', '48730', '8950034', '183.7', 'santo domingo'], ['haiti', '27750', '8121622', '292.7', 'port - au - prince'], ['jamaica', '10991', '2731832', '248.6', 'kingston'], ['puerto rico ( usa )', '9104', '3916632', '430.2', 'san juan']]
fiji national rugby union team
https://en.wikipedia.org/wiki/Fiji_national_rugby_union_team
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1074616-7.html.csv
count
10 players are listed in the fiji national rugby union team .
{'scope': 'all', 'criterion': 'all', 'value': 'n/a', 'result': '10', 'col': '1', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_all', 'args': ['all_rows', 'player'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose player record is arbitrary .', 'tostr': 'filter_all { all_rows ; player }'}], 'result': '10', 'ind': 1, 'tostr': 'count { filter_all { all_rows ; player } }', 'tointer': 'select the rows whose player record is arbitrary . the number of such rows is 10 .'}, '10'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_all { all_rows ; player } } ; 10 } = true', 'tointer': 'select the rows whose player record is arbitrary . the number of such rows is 10 .'}
eq { count { filter_all { all_rows ; player } } ; 10 } = true
select the rows whose player record is arbitrary . the number of such rows is 10 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_all_0': 0, 'all_rows_4': 4, 'player_5': 5, '10_6': 6}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_all_0': 'filter_all', 'all_rows_4': 'all_rows', 'player_5': 'player', '10_6': '10'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_all_0': [1], 'all_rows_4': [0], 'player_5': [0], '10_6': [2]}
['player', 'span', 'start', 'tries', 'conv', 'pens', 'drop']
[['nicky little', '1996 - 2011', '60', '2', '117', '140', '2'], ['seremaia bai', '2000 -', '44', '4', '47', '51', '1'], ['severo koroduadua waqanibau', '1982 - 1991', '27', '0', '56', '47', '5'], ['waisale serevi', '1989 - 2003', '23', '11', '40', '27', '3'], ['taniela rawaqa', '2007 - 2011', '12', '4', '19', '15', '0'], ['fero lasagavibau', '1997 - 2002', '20', '16', '0', '0', '0'], ['sanivalati laulau', '1980 - 1985', '32', '20', '0', '0', '0'], ['norman ligairi', '2000 - 2010', '39', '16', '0', '0', '0'], ['viliame satala', '1999 - 2005', '27', '16', '0', '0', '0'], ['niki goneva', '2007 -', '24', '14', '0', '0', '0']]
list of luxembourgish submissions for the academy award for best foreign language film
https://en.wikipedia.org/wiki/List_of_Luxembourgish_submissions_for_the_Academy_Award_for_Best_Foreign_Language_Film
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-22073745-1.html.csv
comparative
back in trouble was submitted for the luxembourgish academy award earlier than the renart the fox film .
{'row_1': '2', 'row_2': '4', 'col': '1', 'col_other': '2', 'relation': 'less', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'less', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'film title used in nomination', 'back in trouble'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose film title used in nomination record fuzzily matches to back in trouble .', 'tostr': 'filter_eq { all_rows ; film title used in nomination ; back in trouble }'}, 'year ( ceremony )'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; film title used in nomination ; back in trouble } ; year ( ceremony ) }', 'tointer': 'select the rows whose film title used in nomination record fuzzily matches to back in trouble . take the year ( ceremony ) record of this row .'}, {'func': 'str_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'film title used in nomination', 'renart the fox'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose film title used in nomination record fuzzily matches to renart the fox .', 'tostr': 'filter_eq { all_rows ; film title used in nomination ; renart the fox }'}, 'year ( ceremony )'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; film title used in nomination ; renart the fox } ; year ( ceremony ) }', 'tointer': 'select the rows whose film title used in nomination record fuzzily matches to renart the fox . take the year ( ceremony ) record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'less { hop { filter_eq { all_rows ; film title used in nomination ; back in trouble } ; year ( ceremony ) } ; hop { filter_eq { all_rows ; film title used in nomination ; renart the fox } ; year ( ceremony ) } } = true', 'tointer': 'select the rows whose film title used in nomination record fuzzily matches to back in trouble . take the year ( ceremony ) record of this row . select the rows whose film title used in nomination record fuzzily matches to renart the fox . take the year ( ceremony ) record of this row . the first record is less than the second record .'}
less { hop { filter_eq { all_rows ; film title used in nomination ; back in trouble } ; year ( ceremony ) } ; hop { filter_eq { all_rows ; film title used in nomination ; renart the fox } ; year ( ceremony ) } } = true
select the rows whose film title used in nomination record fuzzily matches to back in trouble . take the year ( ceremony ) record of this row . select the rows whose film title used in nomination record fuzzily matches to renart the fox . take the year ( ceremony ) record of this row . the first record is less than the second record .
5
5
{'less_4': 4, 'result_5': 5, 'str_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'film title used in nomination_7': 7, 'back in trouble_8': 8, 'year (ceremony)_9': 9, 'str_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'film title used in nomination_11': 11, 'renart the fox_12': 12, 'year (ceremony)_13': 13}
{'less_4': 'less', 'result_5': 'true', 'str_hop_2': 'str_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'film title used in nomination_7': 'film title used in nomination', 'back in trouble_8': 'back in trouble', 'year (ceremony)_9': 'year ( ceremony )', 'str_hop_3': 'str_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'film title used in nomination_11': 'film title used in nomination', 'renart the fox_12': 'renart the fox', 'year (ceremony)_13': 'year ( ceremony )'}
{'less_4': [5], 'result_5': [], 'str_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'film title used in nomination_7': [0], 'back in trouble_8': [0], 'year (ceremony)_9': [2], 'str_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'film title used in nomination_11': [1], 'renart the fox_12': [1], 'year (ceremony)_13': [3]}
['year ( ceremony )', 'film title used in nomination', 'original title', 'languages', 'director', 'result']
[['1997 ( 70th )', 'elles', 'elles', 'french , portuguese', 'luís galvão teles', 'not nominated'], ['1998 ( 71st )', 'back in trouble', 'back in trouble', 'lëtzebuergesch , german', 'andy bausch', 'not nominated'], ['2003 ( 76th )', 'i always wanted to be a saint', "j' ai toujours voulu être une sainte", 'french', 'geneviève mersch', 'not nominated'], ['2005 ( 78th )', 'renart the fox', 'le roman de renart', 'french', 'thierry schiel', 'not nominated'], ['2006 ( 79th )', 'your name is justine', 'your name is justine', 'polish , english', 'franco de pena', 'disqualified'], ['2007 ( 80th )', 'little secrets', 'perl oder pica', 'lëtzebuergesch', 'pol cruchten', 'not nominated'], ['2008 ( 81st )', "nuits d'arabie", "nuits d'arabie", 'french , arabic', 'paul kieffer', 'not nominated'], ['2009 ( 82nd )', 'refractaire', 'réfractaire', 'french', 'nicolas steil', 'not nominated']]
damage to major ships at the battle of jutland
https://en.wikipedia.org/wiki/Damage_to_major_ships_at_the_Battle_of_Jutland
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15968208-6.html.csv
comparative
the german ship lützow sustained a higher number of total damages compared to seydlitz ship in the battle of jutland .
{'row_1': '1', 'row_2': '3', 'col': '5', 'col_other': '1', 'relation': 'greater', 'record_mentioned': 'no', 'diff_result': None}
{'func': 'greater', 'args': [{'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'ship', 'lützow'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose ship record fuzzily matches to lützow .', 'tostr': 'filter_eq { all_rows ; ship ; lützow }'}, 'total'], 'result': None, 'ind': 2, 'tostr': 'hop { filter_eq { all_rows ; ship ; lützow } ; total }', 'tointer': 'select the rows whose ship record fuzzily matches to lützow . take the total record of this row .'}, {'func': 'num_hop', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'ship', 'seydlitz'], 'result': None, 'ind': 1, 'tointer': 'select the rows whose ship record fuzzily matches to seydlitz .', 'tostr': 'filter_eq { all_rows ; ship ; seydlitz }'}, 'total'], 'result': None, 'ind': 3, 'tostr': 'hop { filter_eq { all_rows ; ship ; seydlitz } ; total }', 'tointer': 'select the rows whose ship record fuzzily matches to seydlitz . take the total record of this row .'}], 'result': True, 'ind': 4, 'tostr': 'greater { hop { filter_eq { all_rows ; ship ; lützow } ; total } ; hop { filter_eq { all_rows ; ship ; seydlitz } ; total } } = true', 'tointer': 'select the rows whose ship record fuzzily matches to lützow . take the total record of this row . select the rows whose ship record fuzzily matches to seydlitz . take the total record of this row . the first record is greater than the second record .'}
greater { hop { filter_eq { all_rows ; ship ; lützow } ; total } ; hop { filter_eq { all_rows ; ship ; seydlitz } ; total } } = true
select the rows whose ship record fuzzily matches to lützow . take the total record of this row . select the rows whose ship record fuzzily matches to seydlitz . take the total record of this row . the first record is greater than the second record .
5
5
{'greater_4': 4, 'result_5': 5, 'num_hop_2': 2, 'filter_str_eq_0': 0, 'all_rows_6': 6, 'ship_7': 7, 'lützow_8': 8, 'total_9': 9, 'num_hop_3': 3, 'filter_str_eq_1': 1, 'all_rows_10': 10, 'ship_11': 11, 'seydlitz_12': 12, 'total_13': 13}
{'greater_4': 'greater', 'result_5': 'true', 'num_hop_2': 'num_hop', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_6': 'all_rows', 'ship_7': 'ship', 'lützow_8': 'lützow', 'total_9': 'total', 'num_hop_3': 'num_hop', 'filter_str_eq_1': 'filter_str_eq', 'all_rows_10': 'all_rows', 'ship_11': 'ship', 'seydlitz_12': 'seydlitz', 'total_13': 'total'}
{'greater_4': [5], 'result_5': [], 'num_hop_2': [4], 'filter_str_eq_0': [2], 'all_rows_6': [0], 'ship_7': [0], 'lützow_8': [0], 'total_9': [2], 'num_hop_3': [4], 'filter_str_eq_1': [3], 'all_rows_10': [1], 'ship_11': [1], 'seydlitz_12': [1], 'total_13': [3]}
['ship', '13.5 - inch / 1400lb', '13.5 - inch / 1250lb', '12 - inch', 'total']
[['lützow', '0', '2', '8', '10'], ['derfflinger', '0', '0', '3', '3'], ['seydlitz', '0', '0', '1', '1'], ['könig', '7', '1', '0', '8'], ['markgraf', '0', '1', '0', '1'], ['total', '7', '4', '12', '23']]
list of england national rugby union team results 1990 - 99
https://en.wikipedia.org/wiki/List_of_England_national_rugby_union_team_results_1990%E2%80%9399
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-18178534-3.html.csv
unique
only one match was played in january of 1992 .
{'scope': 'all', 'row': '2', 'col': '3', 'col_other': 'n/a', 'criterion': 'equal', 'value': '01/1992', 'subset': None}
{'func': 'only', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'date', '01/1992'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose date record fuzzily matches to 01/1992 .', 'tostr': 'filter_eq { all_rows ; date ; 01/1992 }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_eq { all_rows ; date ; 01/1992 } } = true', 'tointer': 'select the rows whose date record fuzzily matches to 01/1992 . there is only one such row in the table .'}
only { filter_eq { all_rows ; date ; 01/1992 } } = true
select the rows whose date record fuzzily matches to 01/1992 . there is only one such row in the table .
2
2
{'only_1': 1, 'result_2': 2, 'filter_str_eq_0': 0, 'all_rows_3': 3, 'date_4': 4, '01/1992_5': 5}
{'only_1': 'only', 'result_2': 'true', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_3': 'all_rows', 'date_4': 'date', '01/1992_5': '01/1992'}
{'only_1': [2], 'result_2': [], 'filter_str_eq_0': [1], 'all_rows_3': [0], 'date_4': [0], '01/1992_5': [0]}
['opposing teams', 'against', 'date', 'venue', 'status']
[['scotland', '7', '18 / 01 / 1992', 'murrayfield , edinburgh', 'five nations'], ['ireland', '9', '01 / 02 / 1992', 'twickenham , london', 'five nations'], ['france', '13', '15 / 02 / 1992', 'parc des princes , paris', 'five nations'], ['wales', '0', '07 / 03 / 1992', 'twickenham , london', 'five nations'], ['canada', '13', '17 / 10 / 1992', 'wembley stadium , london', 'test match'], ['south africa', '16', '14 / 11 / 1992', 'twickenham , london', 'test match']]
list of birmingham city f.c. records and statistics
https://en.wikipedia.org/wiki/List_of_Birmingham_City_F.C._records_and_statistics
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-15702100-2.html.csv
count
two players played for birmingham city f. c. in the 1920s .
{'scope': 'all', 'criterion': 'fuzzily_match', 'value': '192', 'result': '2', 'col': '2', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_str_eq', 'args': ['all_rows', 'years', '192'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose years record fuzzily matches to 192 .', 'tostr': 'filter_eq { all_rows ; years ; 192 }'}], 'result': '2', 'ind': 1, 'tostr': 'count { filter_eq { all_rows ; years ; 192 } }', 'tointer': 'select the rows whose years record fuzzily matches to 192 . the number of such rows is 2 .'}, '2'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_eq { all_rows ; years ; 192 } } ; 2 } = true', 'tointer': 'select the rows whose years record fuzzily matches to 192 . the number of such rows is 2 .'}
eq { count { filter_eq { all_rows ; years ; 192 } } ; 2 } = true
select the rows whose years record fuzzily matches to 192 . the number of such rows is 2 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_str_eq_0': 0, 'all_rows_4': 4, 'years_5': 5, '192_6': 6, '2_7': 7}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_str_eq_0': 'filter_str_eq', 'all_rows_4': 'all_rows', 'years_5': 'years', '192_6': '192', '2_7': '2'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_str_eq_0': [1], 'all_rows_4': [0], 'years_5': [0], '192_6': [0], '2_7': [2]}
['name', 'years', 'league a', 'fa cup', 'league cup', 'other b', 'total']
[['joe bradford', '1920 - 1935', '249 ( 414 )', '18 ( 31 )', '0 ( 0 )', '0 ( 0 )', '267 ( 445 )'], ['trevor francis', '1970 - 1979', '119 ( 280 )', '6 ( 20 )', '4 ( 19 )', '4 ( 10 )', '133 ( 329 )'], ['peter murphy', '1952 - 1960', '107 ( 245 )', '16 ( 24 )', '0 ( 0 )', '4 ( 9 )', '127 ( 278 )'], ['fred wheldon', '1890 - 1896', '99 ( 155 )', '12 ( 13 )', '0 ( 0 )', '5 ( 7 )', '116 ( 175 )'], ['george briggs', '1924 - 1933', '98 ( 298 )', '9 ( 26 )', '0 ( 0 )', '0 ( 0 )', '107 ( 324 )'], ['billy jones', '1901 - 1909 1912 - 1913', '99 ( 236 )', '3 ( 17 )', '0 ( 0 )', '0 ( 0 )', '102 ( 253 )'], ['geoff vowden', '1964 - 1970', '79 ( 221 )', '8 ( 16 )', '7 ( 16 )', '0 ( 0 )', '94 ( 253 )'], ['eddy brown', '1954 - 1958', '74 ( 158 )', '13 ( 18 )', '0 ( 0 )', '3 ( 9 )', '90 ( 185 )'], ['bob latchford', '1969 - 1974', '68 ( 160 )', '6 ( 12 )', '6 ( 16 )', '4 ( 6 )', '84 ( 193 )'], ['bob mcroberts', '1898 - 1905', '70 ( 173 )', '12 ( 14 )', '0 ( 0 )', '0 ( 0 )', '82 ( 187 )']]
kleshas ( buddhism )
https://en.wikipedia.org/wiki/Kleshas_%28Buddhism%29
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1782201-1.html.csv
count
there are five kinds of poisons in mahayana buddhism .
{'scope': 'all', 'criterion': 'all', 'value': 'n/a', 'result': '5', 'col': '1', 'subset': None}
{'func': 'eq', 'args': [{'func': 'count', 'args': [{'func': 'filter_all', 'args': ['all_rows', 'poison / klesha'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose poison / klesha record is arbitrary .', 'tostr': 'filter_all { all_rows ; poison / klesha }'}], 'result': '5', 'ind': 1, 'tostr': 'count { filter_all { all_rows ; poison / klesha } }', 'tointer': 'select the rows whose poison / klesha record is arbitrary . the number of such rows is 5 .'}, '5'], 'result': True, 'ind': 2, 'tostr': 'eq { count { filter_all { all_rows ; poison / klesha } } ; 5 } = true', 'tointer': 'select the rows whose poison / klesha record is arbitrary . the number of such rows is 5 .'}
eq { count { filter_all { all_rows ; poison / klesha } } ; 5 } = true
select the rows whose poison / klesha record is arbitrary . the number of such rows is 5 .
3
3
{'eq_2': 2, 'result_3': 3, 'count_1': 1, 'filter_all_0': 0, 'all_rows_4': 4, 'poison / klesha_5': 5, '5_6': 6}
{'eq_2': 'eq', 'result_3': 'true', 'count_1': 'count', 'filter_all_0': 'filter_all', 'all_rows_4': 'all_rows', 'poison / klesha_5': 'poison / klesha', '5_6': '5'}
{'eq_2': [3], 'result_3': [], 'count_1': [2], 'filter_all_0': [1], 'all_rows_4': [0], 'poison / klesha_5': [0], '5_6': [2]}
['poison / klesha', 'sanskrit', 'pali', 'tibetan', 'alternate translations']
[['ignorance', 'moha avidya', 'moha avijja', 'gti mug ma rig pa', 'confusion , bewilderment , delusion'], ['attachment', 'r훮ga', 'lobha', "' dod chags", 'desire , passion'], ['aversion', 'dvesha', 'dosa', 'zhe sdang', 'anger , hatred'], ['pride', 'm훮na', 'm훮na', 'nga rgyal', 'arrogance , conceit'], ['jealousy', 'irshya', 'iss훮', 'phrag dog', 'envy']]
deputy minister handicap
https://en.wikipedia.org/wiki/Deputy_Minister_Handicap
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16828302-1.html.csv
ordinal
native heir recorded the fastest time in the deputy minister handicap race .
{'row': '5', 'col': '6', 'order': '1', 'col_other': '2', 'max_or_min': 'min_to_max', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmin', 'args': ['all_rows', 'time', '1'], 'result': None, 'ind': 0, 'tostr': 'nth_argmin { all_rows ; time ; 1 }'}, 'winner'], 'result': 'native heir', 'ind': 1, 'tostr': 'hop { nth_argmin { all_rows ; time ; 1 } ; winner }'}, 'native heir'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmin { all_rows ; time ; 1 } ; winner } ; native heir } = true', 'tointer': 'select the row whose time record of all rows is 1st minimum . the winner record of this row is native heir .'}
eq { hop { nth_argmin { all_rows ; time ; 1 } ; winner } ; native heir } = true
select the row whose time record of all rows is 1st minimum . the winner record of this row is native heir .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmin_0': 0, 'all_rows_4': 4, 'time_5': 5, '1_6': 6, 'winner_7': 7, 'native heir_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmin_0': 'nth_argmin', 'all_rows_4': 'all_rows', 'time_5': 'time', '1_6': '1', 'winner_7': 'winner', 'native heir_8': 'native heir'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmin_0': [1], 'all_rows_4': [0], 'time_5': [0], '1_6': [0], 'winner_7': [1], 'native heir_8': [2]}
['year', 'winner', 'jockey', 'trainer', 'owner', 'time']
[['2007', 'keyed entry', 'john velazquez', 'anthony j sciametta , jr', 'starlight stable et al', '1:15:72'], ['2006', 'universal form', 'manoel cruz', 'elliston rolle', 'universal xperience', '1:16.48'], ['2005', 'medallist', 'jose santos', 'h allen jerkens', 'robert clay', '1:15.62'], ['2004', 'alke', 'john velazquez', 'todd a pletcher', 'k d english / a braun', '1:15.80'], ['2003', 'native heir', 'cornelio velasquez', 'mark shuman', 'michael gill', '1:15.17'], ['2002', 'fappies notebook', 'jorge chavez', 'manny tortora', 'irving & marjorie cowan', '1:16.19'], ['2001', 'istintaj', 'jerry bailey', 'mark hennig', 'shadwell racing', '1:16.08'], ['2000', 'deep gold', 'john velazquez', 'bernie flint', 'n chowhan & j l millan', '1:15.89']]
tatyana chernova
https://en.wikipedia.org/wiki/Tatyana_Chernova
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-16165314-1.html.csv
majority
tatyana chernova ended in 1st place more than any other position between 2005 and 2013 .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'equal', 'value': '1st', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'position', '1st'], 'result': True, 'ind': 0, 'tointer': 'for the position records of all rows , most of them fuzzily match to 1st .', 'tostr': 'most_eq { all_rows ; position ; 1st } = true'}
most_eq { all_rows ; position ; 1st } = true
for the position records of all rows , most of them fuzzily match to 1st .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'position_3': 3, '1st_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'position_3': 'position', '1st_4': '1st'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'position_3': [0], '1st_4': [0]}
['year', 'competition', 'venue', 'position', 'notes']
[['2005', 'world youth championships', 'marrakech , morocco', '1st', 'heptathlon'], ['2006', 'world junior championships', 'beijing , pr china', '1st', 'heptathlon , 6227 = pb'], ['2007', 'world championships', 'osaka , japan', 'dnf', 'heptathlon'], ['2008', 'world indoor championships', 'valencia , spain', '7th', 'pentathlon'], ['2008', 'hypo - meeting', 'götzis , austria', '1st', 'heptathlon , 6618 = pb'], ['2008', 'olympic games', 'beijing , pr china', '3rd', 'heptathlon'], ['2009', 'hypo - meeting', 'götzis , austria', '7th', 'heptathlon'], ['2009', 'world championships', 'berlin , germany', '8th', 'heptathlon'], ['2010', 'world indoor championships', 'doha , qatar', '3rd', 'pentathlon'], ['2010', 'european championships', 'barcelona , spain', '4th', 'heptathlon'], ['2011', 'world championships', 'daegu , south korea', '1st', 'heptathlon , 6880 = pb'], ['2012', 'olympic games', 'london , united kingdom', '3rd', 'heptathlon'], ['2013', 'universiade', 'kazan , russia', '1st', 'heptathlon']]
peaches & herb
https://en.wikipedia.org/wiki/Peaches_%26_Herb
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1862179-1.html.csv
majority
the majority of releases by the duo peaches & herb were in the country of the usa .
{'scope': 'all', 'col': '4', 'most_or_all': 'most', 'criterion': 'equal', 'value': 'usa', 'subset': None}
{'func': 'most_str_eq', 'args': ['all_rows', 'country of release', 'usa'], 'result': True, 'ind': 0, 'tointer': 'for the country of release records of all rows , most of them fuzzily match to usa .', 'tostr': 'most_eq { all_rows ; country of release ; usa } = true'}
most_eq { all_rows ; country of release ; usa } = true
for the country of release records of all rows , most of them fuzzily match to usa .
1
1
{'most_str_eq_0': 0, 'result_1': 1, 'all_rows_2': 2, 'country of release_3': 3, 'usa_4': 4}
{'most_str_eq_0': 'most_str_eq', 'result_1': 'true', 'all_rows_2': 'all_rows', 'country of release_3': 'country of release', 'usa_4': 'usa'}
{'most_str_eq_0': [1], 'result_1': [], 'all_rows_2': [0], 'country of release_3': [0], 'usa_4': [0]}
['title', 'label', 'year of release', 'country of release', 'peaches :']
[['for your love', 'date', '1967', 'usa', 'francine barker'], ["let 's fall in love", 'date', '1967', 'usa', 'francine barker'], ['peaches & herb', 'mca', '1977', 'usa', 'linda greene'], ['2 hot', 'mvp / polydor', '1978', 'usa', 'linda greene'], ['twice the fire', 'mvp / polydor', '1979', 'usa', 'linda greene'], ['demasiado candente', 'mvp / polydor', '1979', 'argentina', 'linda greene'], ['worth the wait', 'mvp / polydor', '1980', 'usa', 'linda greene'], ["sayin ' something", 'mvp / polydor', '1981', 'usa', 'linda greene'], ['remember', 'the entertainment co / columbia', '1983', 'usa', 'linda greene'], ['colors of love', 'imagen', '2009', 'usa', 'meritxell negre']]
magnus larsson
https://en.wikipedia.org/wiki/Magnus_Larsson
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1728546-3.html.csv
unique
2004 was the only year that magnus larsson failed to have a top 1000 year end ranking .
{'scope': 'all', 'row': '20', 'col': '18', 'col_other': '1', 'criterion': 'greater_than', 'value': '1000', 'subset': None}
{'func': 'and', 'args': [{'func': 'only', 'args': [{'func': 'filter_greater', 'args': ['all_rows', '2004', '1000'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose 2004 record is greater than 1000 .', 'tostr': 'filter_greater { all_rows ; 2004 ; 1000 }'}], 'result': True, 'ind': 1, 'tostr': 'only { filter_greater { all_rows ; 2004 ; 1000 } }', 'tointer': 'select the rows whose 2004 record is greater than 1000 . there is only one such row in the table .'}, {'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'filter_greater', 'args': ['all_rows', '2004', '1000'], 'result': None, 'ind': 0, 'tointer': 'select the rows whose 2004 record is greater than 1000 .', 'tostr': 'filter_greater { all_rows ; 2004 ; 1000 }'}, 'tournament'], 'result': 'year end ranking', 'ind': 2, 'tostr': 'hop { filter_greater { all_rows ; 2004 ; 1000 } ; tournament }'}, 'year end ranking'], 'result': True, 'ind': 3, 'tostr': 'eq { hop { filter_greater { all_rows ; 2004 ; 1000 } ; tournament } ; year end ranking }', 'tointer': 'the tournament record of this unqiue row is year end ranking .'}], 'result': True, 'ind': 4, 'tostr': 'and { only { filter_greater { all_rows ; 2004 ; 1000 } } ; eq { hop { filter_greater { all_rows ; 2004 ; 1000 } ; tournament } ; year end ranking } } = true', 'tointer': 'select the rows whose 2004 record is greater than 1000 . there is only one such row in the table . the tournament record of this unqiue row is year end ranking .'}
and { only { filter_greater { all_rows ; 2004 ; 1000 } } ; eq { hop { filter_greater { all_rows ; 2004 ; 1000 } ; tournament } ; year end ranking } } = true
select the rows whose 2004 record is greater than 1000 . there is only one such row in the table . the tournament record of this unqiue row is year end ranking .
6
5
{'and_4': 4, 'result_5': 5, 'only_1': 1, 'filter_greater_0': 0, 'all_rows_6': 6, '2004_7': 7, '1000_8': 8, 'str_eq_3': 3, 'str_hop_2': 2, 'tournament_9': 9, 'year end ranking_10': 10}
{'and_4': 'and', 'result_5': 'true', 'only_1': 'only', 'filter_greater_0': 'filter_greater', 'all_rows_6': 'all_rows', '2004_7': '2004', '1000_8': '1000', 'str_eq_3': 'str_eq', 'str_hop_2': 'str_hop', 'tournament_9': 'tournament', 'year end ranking_10': 'year end ranking'}
{'and_4': [5], 'result_5': [], 'only_1': [4], 'filter_greater_0': [1, 2], 'all_rows_6': [0], '2004_7': [0], '1000_8': [0], 'str_eq_3': [4], 'str_hop_2': [3], 'tournament_9': [2], 'year end ranking_10': [3]}
['tournament', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', 'career sr', 'career win - loss']
[['grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams', 'grand slams'], ['australian open', 'a', '1r', '2r', '1r', '1r', '2r', '1r', '4r', '3r', '2r', '1r', 'a', 'a', 'a', 'a', '1r', 'a', '0 / 11', '7 - 11'], ['french open', 'a', 'a', 'a', '3r', '3r', '3r', 'sf', '4r', '1r', '3r', '1r', '2r', 'a', '3r', 'lq', 'a', 'a', '0 / 10', '19 - 10'], ['wimbledon', 'a', 'a', '1r', '2r', '3r', '2r', '1r', 'a', '2r', 'a', '4r', '1r', 'a', '3r', '1r', 'a', 'a', '0 / 10', '10 - 10'], ['us open', 'a', 'a', 'a', '3r', '2r', 'qf', '1r', 'a', '1r', 'qf', 'qf', '3r', 'a', '1r', 'lq', 'a', 'a', '0 / 9', '17 - 9'], ['grand slam sr', '0 / 0', '0 / 1', '0 / 2', '0 / 4', '0 / 4', '0 / 4', '0 / 4', '0 / 2', '0 / 4', '0 / 3', '0 / 4', '0 / 3', '0 / 0', '0 / 3', '0 / 1', '0 / 1', '0 / 0', '0 / 40', 'n / a'], ['annual win - loss', '0 - 0', '0 - 1', '1 - 2', '5 - 4', '5 - 4', '8 - 4', '5 - 4', '5 - 2', '3 - 4', '7 - 3', '7 - 4', '3 - 3', '0 - 0', '4 - 3', '0 - 1', '0 - 1', '0 - 0', 'n / a', '53 - 40'], ['atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series', 'atp masters series'], ['indian wells', 'nme', 'nme', 'a', 'a', 'a', 'a', 'a', 'qf', '1r', '3r', '1r', 'a', 'a', 'a', 'a', 'a', 'a', '0 / 4', '5 - 4'], ['miami', 'nme', 'nme', 'a', 'a', 'a', '2r', 'a', 'sf', '2r', '4r', '2r', 'a', '1r', 'a', 'lq', 'lq', 'a', '0 / 6', '7 - 6'], ['monte carlo', 'nme', 'nme', 'a', '3r', '3r', '3r', '1r', '2r', '1r', 'qf', 'a', 'a', '1r', 'a', 'lq', 'a', 'a', '0 / 7', '9 - 7'], ['rome', 'nme', 'nme', 'a', '1r', '1r', '1r', 'a', 'a', 'a', '3r', 'a', 'a', 'a', 'a', 'lq', 'a', 'a', '0 / 4', '2 - 4'], ['hamburg', 'nme', 'nme', 'a', '2r', 'a', '1r', '2r', 'a', 'qf', '1r', 'a', 'a', 'a', 'a', 'lq', 'a', 'a', '0 / 5', '5 - 5'], ['canada', 'nme', 'nme', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', '1r', 'a', 'a', 'a', 'a', 'a', '0 / 1', '0 - 1'], ['cincinnati', 'nme', 'nme', 'a', 'a', 'a', 'a', 'a', 'a', '2r', '1r', 'sf', '2r', 'a', 'lq', 'a', 'a', 'a', '0 / 4', '6 - 4'], ['madrid ( stuttgart )', 'nme', 'nme', '2r', '2r', '2r', '2r', 'qf', 'a', 'a', 'qf', 'a', '2r', 'a', 'a', 'a', 'a', 'a', '0 / 7', '11 - 6'], ['paris', 'nme', 'nme', 'a', 'a', '2r', '2r', '3r', '3r', '2r', '1r', 'a', 'a', 'a', 'lq', 'a', 'a', 'a', '0 / 6', '6 - 6'], ['masters series sr', '0 / 0', '0 / 0', '0 / 1', '0 / 4', '0 / 4', '0 / 6', '0 / 4', '0 / 4', '0 / 6', '0 / 8', '0 / 3', '0 / 3', '0 / 2', '0 / 0', '0 / 0', '0 / 0', '0 / 0', '0 / 44', 'n / a'], ['annual win - loss', 'n / a', 'n / a', '1 - 1', '4 - 4', '4 - 4', '4 - 6', '6 - 4', '8 - 4', '5 - 6', '13 - 8', '4 - 3', '2 - 2', '0 - 2', '0 - 0', '0 - 0', '0 - 0', '0 - 0', 'n / a', '51 - 43'], ['year end ranking', '381', '145', '56', '61', '34', '39', '19', '17', '46', '25', '43', '96', '75', '136', '152', '507', '1422', 'n / a', 'n / a']]
kansas collegiate athletic conference
https://en.wikipedia.org/wiki/Kansas_Collegiate_Athletic_Conference
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-262527-1.html.csv
aggregation
kansas collegiate athletic conference schools founded after 1884 had a total enrollment of 7,500 .
{'scope': 'subset', 'col': '5', 'type': 'sum', 'result': '7,500', 'subset': {'col': '3', 'criterion': 'greater_than', 'value': '1884'}}
{'func': 'round_eq', 'args': [{'func': 'sum', 'args': [{'func': 'filter_greater', 'args': ['all_rows', 'founded', '1884'], 'result': None, 'ind': 0, 'tostr': 'filter_greater { all_rows ; founded ; 1884 }', 'tointer': 'select the rows whose founded record is greater than 1884 .'}, 'enrollment'], 'result': '7,500', 'ind': 1, 'tostr': 'sum { filter_greater { all_rows ; founded ; 1884 } ; enrollment }'}, '7,500'], 'result': True, 'ind': 2, 'tostr': 'round_eq { sum { filter_greater { all_rows ; founded ; 1884 } ; enrollment } ; 7,500 } = true', 'tointer': 'select the rows whose founded record is greater than 1884 . the sum of the enrollment record of these rows is 7,500 .'}
round_eq { sum { filter_greater { all_rows ; founded ; 1884 } ; enrollment } ; 7,500 } = true
select the rows whose founded record is greater than 1884 . the sum of the enrollment record of these rows is 7,500 .
3
3
{'eq_2': 2, 'result_3': 3, 'sum_1': 1, 'filter_greater_0': 0, 'all_rows_4': 4, 'founded_5': 5, '1884_6': 6, 'enrollment_7': 7, '7,500_8': 8}
{'eq_2': 'eq', 'result_3': 'true', 'sum_1': 'sum', 'filter_greater_0': 'filter_greater', 'all_rows_4': 'all_rows', 'founded_5': 'founded', '1884_6': '1884', 'enrollment_7': 'enrollment', '7,500_8': '7,500'}
{'eq_2': [3], 'result_3': [], 'sum_1': [2], 'filter_greater_0': [1], 'all_rows_4': [0], 'founded_5': [0], '1884_6': [0], 'enrollment_7': [1], '7,500_8': [2]}
['institution', 'location', 'founded', 'type', 'enrollment', 'nickname', 'joined']
[['bethany college', 'lindsborg , kansas', '1881', 'private', '500', 'swedes', '1902'], ['bethel college', 'north newton , kansas', '1887', 'private', '500', 'threshers', '1902 1'], ['friends university', 'wichita , kansas', '1898', 'private', '3000', 'falcons', '1902 2'], ['kansas wesleyan university', 'salina , kansas', '1886', 'private', '1000', 'coyotes', '1902'], ['mcpherson college', 'mcpherson , kansas', '1887', 'private', '600', 'bulldogs', '1902'], ['ottawa university', 'ottawa , kansas', '1865', 'private', '726', 'braves', '1902 3'], ['university of saint mary', 'leavenworth , kansas', '1859', 'private', '750', 'spires', '1999'], ['southwestern college', 'winfield , kansas', '1885', 'private', '1650', 'moundbuilders', '1902 4'], ['sterling college', 'sterling , kansas', '1887', 'private', '750', 'warriors', '1902 5']]
2008 world men 's curling championship
https://en.wikipedia.org/wiki/2008_World_Men%27s_Curling_Championship
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-1644857-2.html.csv
ordinal
david murdoch had the 2nd highest shot % in the 2008 world men 's curling championship .
{'row': '2', 'col': '7', 'order': '2', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'shot %', '2'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; shot % ; 2 }'}, 'skip'], 'result': 'david murdoch', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; shot % ; 2 } ; skip }'}, 'david murdoch'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; shot % ; 2 } ; skip } ; david murdoch } = true', 'tointer': 'select the row whose shot % record of all rows is 2nd maximum . the skip record of this row is david murdoch .'}
eq { hop { nth_argmax { all_rows ; shot % ; 2 } ; skip } ; david murdoch } = true
select the row whose shot % record of all rows is 2nd maximum . the skip record of this row is david murdoch .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'shot %_5': 5, '2_6': 6, 'skip_7': 7, 'david murdoch_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'shot %_5': 'shot %', '2_6': '2', 'skip_7': 'skip', 'david murdoch_8': 'david murdoch'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'shot %_5': [0], '2_6': [0], 'skip_7': [1], 'david murdoch_8': [2]}
['country', 'skip', 'ends won', 'ends lost', 'blank ends', 'stolen ends', 'shot %']
[['canada', 'kevin martin', '49', '37', '10', '14', '87'], ['scotland', 'david murdoch', '46', '38', '20', '10', '85'], ['china', 'wang fengchun', '43', '43', '18', '9', '81'], ['norway', 'thomas ulsrud', '52', '47', '10', '11', '84'], ['france', 'thomas dufour', '42', '35', '18', '11', '78'], ['australia', 'hugh millikin', '42', '45', '20', '8', '78'], ['united states', 'craig brown', '40', '44', '13', '6', '81'], ['germany', 'andy kapp', '47', '43', '17', '14', '80'], ['denmark', 'johnny frederiksen', '45', '50', '6', '11', '78'], ['sweden', 'anders kraupp', '38', '49', '17', '4', '79'], ['switzerland', 'claudio pescia', '42', '49', '15', '7', '78'], ['czech republic', 'jiří snítil', '43', '48', '10', '7', '75']]
1967 syracuse orangemen football team
https://en.wikipedia.org/wiki/1967_Syracuse_Orangemen_football_team
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/1-20850339-1.html.csv
aggregation
the average score of the 1967 syracuse orangemen football team was 19.77 .
{'scope': 'all', 'col': '5', 'type': 'average', 'result': '19.77', 'subset': None}
{'func': 'round_eq', 'args': [{'func': 'avg', 'args': ['all_rows', 'orangemen points'], 'result': '19.77', 'ind': 0, 'tostr': 'avg { all_rows ; orangemen points }'}, '19.77'], 'result': True, 'ind': 1, 'tostr': 'round_eq { avg { all_rows ; orangemen points } ; 19.77 } = true', 'tointer': 'the average of the orangemen points record of all rows is 19.77 .'}
round_eq { avg { all_rows ; orangemen points } ; 19.77 } = true
the average of the orangemen points record of all rows is 19.77 .
2
2
{'eq_1': 1, 'result_2': 2, 'avg_0': 0, 'all_rows_3': 3, 'orangemen points_4': 4, '19.77_5': 5}
{'eq_1': 'eq', 'result_2': 'true', 'avg_0': 'avg', 'all_rows_3': 'all_rows', 'orangemen points_4': 'orangemen points', '19.77_5': '19.77'}
{'eq_1': [2], 'result_2': [], 'avg_0': [1], 'all_rows_3': [0], 'orangemen points_4': [0], '19.77_5': [1]}
['game', 'date', 'opponent', 'result', 'orangemen points', 'opponents', 'record']
[['1', 'sept 23', 'baylor', 'win', '7', '0', '1 - 0'], ['2', 'sept 30', 'west virginia', 'win', '23', '6', '2 - 0'], ['3', 'oct 7', 'maryland', 'win', '7', '3', '3 - 0'], ['4', 'oct 14', 'navy', 'loss', '14', '27', '3 - 1'], ['5', 'oct 21', 'california', 'win', '20', '14', '4 - 1'], ['6', 'oct 28', 'penn state', 'loss', '20', '29', '4 - 2'], ['7', 'nov 4', 'pittsburgh', 'win', '14', '7', '5 - 2'], ['8', 'nov 11', 'holy cross', 'win', '41', '7', '6 - 2'], ['9', 'nov 18', 'boston college', 'win', '32', '20', '7 - 2']]
2008 asian judo championships
https://en.wikipedia.org/wiki/2008_Asian_Judo_Championships
https://raw.githubusercontent.com/wenhuchen/Table-Fact-Checking/master/data/all_csv/2-17179903-3.html.csv
ordinal
mongolia won the third largest number of medals at the 2008 asian judo championships .
{'row': '8', 'col': '6', 'order': '3', 'col_other': '2', 'max_or_min': 'max_to_min', 'value_mentioned': 'no', 'scope': 'all', 'subset': None}
{'func': 'str_eq', 'args': [{'func': 'str_hop', 'args': [{'func': 'nth_argmax', 'args': ['all_rows', 'total', '3'], 'result': None, 'ind': 0, 'tostr': 'nth_argmax { all_rows ; total ; 3 }'}, 'nation'], 'result': 'mongolia', 'ind': 1, 'tostr': 'hop { nth_argmax { all_rows ; total ; 3 } ; nation }'}, 'mongolia'], 'result': True, 'ind': 2, 'tostr': 'eq { hop { nth_argmax { all_rows ; total ; 3 } ; nation } ; mongolia } = true', 'tointer': 'select the row whose total record of all rows is 3rd maximum . the nation record of this row is mongolia .'}
eq { hop { nth_argmax { all_rows ; total ; 3 } ; nation } ; mongolia } = true
select the row whose total record of all rows is 3rd maximum . the nation record of this row is mongolia .
3
3
{'str_eq_2': 2, 'result_3': 3, 'str_hop_1': 1, 'nth_argmax_0': 0, 'all_rows_4': 4, 'total_5': 5, '3_6': 6, 'nation_7': 7, 'mongolia_8': 8}
{'str_eq_2': 'str_eq', 'result_3': 'true', 'str_hop_1': 'str_hop', 'nth_argmax_0': 'nth_argmax', 'all_rows_4': 'all_rows', 'total_5': 'total', '3_6': '3', 'nation_7': 'nation', 'mongolia_8': 'mongolia'}
{'str_eq_2': [3], 'result_3': [], 'str_hop_1': [2], 'nth_argmax_0': [1], 'all_rows_4': [0], 'total_5': [0], '3_6': [0], 'nation_7': [1], 'mongolia_8': [2]}
['rank', 'nation', 'gold', 'silver', 'bronze', 'total']
[['1', 'japan', '8', '0', '5', '13'], ['2', 'south korea', '2', '6', '4', '12'], ['3', 'iran', '2', '4', '1', '7'], ['4', 'uzbekistan', '1', '2', '3', '6'], ['5', 'kazakhstan', '1', '1', '4', '6'], ['6', 'north korea', '1', '1', '3', '5'], ['7', 'china', '1', '0', '2', '3'], ['8', 'mongolia', '0', '2', '8', '10'], ['9', 'chinese taipei', '0', '0', '1', '1'], ['9', 'lebanon', '0', '0', '1', '1'], ['total', 'total', '16', '16', '32', '64']]