kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
11,104,798
all_data = pd.concat(( train, test)).reset_index(drop = True) all_data.drop(['SalePrice'], axis = 1, inplace = True )<count_missing_values>
submission.to_csv("submission1.csv", index = False)
Contradictory, My Dear Watson
11,104,798
missing_percentage(all_data )<define_variables>
train = pd.read_csv("/kaggle/input/contradictory-my-dear-watson/train.csv") train.head()
Contradictory, My Dear Watson
11,104,798
missing_val_col = ["Alley", "PoolQC", "MiscFeature", "Fence", "FireplaceQu", "GarageType", "GarageFinish", "GarageQual", "GarageCond", 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'MasVnrType'] for i in missing_val_col: all_data[i] = all_data[i].fillna('None' )<define_variables>
tokenizer = AutoTokenizer.from_pretrained('jplu/tf-xlm-roberta-large' )
Contradictory, My Dear Watson
11,104,798
missing_val_col2 = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'GarageYrBlt', 'GarageArea', 'GarageCars', 'MasVnrArea'] for i in missing_val_col2: all_data[i] = all_data[i].fillna(0) all_data['LotFrontage'] = all_data.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.mean()))<data_type_conversions>
def encode_sentence(s): tokens = list(tokenizer.tokenize(s)) tokens.append('[SEP]') return tokenizer.convert_tokens_to_ids(tokens)
Contradictory, My Dear Watson
11,104,798
all_data['MSSubClass'] = all_data['MSSubClass'].astype(str) all_data['MSZoning'] = all_data.groupby('MSSubClass')['MSZoning'].transform(lambda x: x.fillna(x.mode() [0])) all_data['YrSold'] = all_data['YrSold'].astype(str) all_data['MoSold'] = all_data['MoSold'].astype(str )<data_type_conversions>
s = "I love machine learning" encode_sentence(s )
Contradictory, My Dear Watson
11,104,798
all_data['Functional'] = all_data['Functional'].fillna('Typ') all_data['Utilities'] = all_data['Utilities'].fillna('AllPub') all_data['Exterior1st'] = all_data['Exterior1st'].fillna(all_data['Exterior1st'].mode() [0]) all_data['Exterior2nd'] = all_data['Exterior2nd'].fillna(all_data['Exterior2nd'].mode() [0]) all_data['KitchenQual'] = all_data['KitchenQual'].fillna("TA") all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode() [0]) all_data['Electrical'] = all_data['Electrical'].fillna("SBrkr") <count_missing_values>
def data_translate(source_data,dest_language): translator = Translator() if dest_language == 'zh': dest_language = 'zh-cn' dest_data = translator.translate(source_data, dest = dest_language ).text return dest_data
Contradictory, My Dear Watson
11,104,798
missing_percentage(all_data )<sort_values>
def translation_augment(source_data, languages, fraction): new_df = pd.DataFrame() for lang in languages: print(lang) sampled_rows = source_data.sample(frac=fraction, replace = False) prem_bag = bag.from_sequence(sampled_rows['premise'].tolist() ).map(data_translate, lang) hypothesis_bag = bag.from_sequence(sampled_rows['hypothesis'].tolist() ).map(data_translate, lang) with diagnostics.ProgressBar() : prems = prem_bag.compute() hyps = hypothesis_bag.compute() aug_df = pd.DataFrame({'id': pd.Series([None]*len(sampled_rows)) , 'premise': pd.Series(prems), 'hypothesis': pd.Series(hyps), 'lang_abv': pd.Series([lang]*len(sampled_rows)) , 'language': pd.Series([None]*len(sampled_rows)) , 'label': pd.Series(sampled_rows['label'].values) }) new_df = new_df.append(aug_df) new_df = shuffle(new_df) return new_df
Contradictory, My Dear Watson
11,104,798
numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x)).sort_values(ascending=False) skewed_feats<sort_values>
def data_augment(train_df, fraction): english_df = train.loc[train.lang_abv == 'en'] languages = list(set(train.lang_abv.values)) languages.remove('en') print(languages) translated_df = translation_augment(english_df,languages, fraction) train_df = train_df.append(translated_df) train_df = shuffle(train_df) return train_df
Contradictory, My Dear Watson
11,104,798
def fixing_skewness(df): numeric_feats = df.dtypes[df.dtypes != "object"].index skewed_feats = df[numeric_feats].apply(lambda x: skew(x)).sort_values(ascending=False) high_skew = skewed_feats[abs(skewed_feats)> 0.5] skewed_features = high_skew.index for feat in skewed_features: df[feat] = boxcox1p(df[feat], boxcox_normmax(df[feat] + 1)) fixing_skewness(all_data )<feature_engineering>
train = pd.read_csv('/kaggle/input/augment-data20/augmented_data_20percent.csv') train.head() len(train )
Contradictory, My Dear Watson
11,104,798
all_data['TotalSF'] =(all_data['TotalBsmtSF'] + all_data['1stFlrSF'] + all_data['2ndFlrSF']) all_data['YrBltAndRemod'] = all_data['YearBuilt'] + all_data['YearRemodAdd'] all_data['Total_sqr_footage'] =(all_data['BsmtFinSF1'] + all_data['BsmtFinSF2'] + all_data['1stFlrSF'] + all_data['2ndFlrSF'] ) all_data['Total_Bathrooms'] =(all_data['FullBath'] +(0.5 * all_data['HalfBath']) + all_data['BsmtFullBath'] +(0.5 * all_data['BsmtHalfBath']) ) all_data['Total_porch_sf'] =(all_data['OpenPorchSF'] + all_data['3SsnPorch'] + all_data['EnclosedPorch'] + all_data['ScreenPorch'] + all_data['WoodDeckSF'] ) <feature_engineering>
def bert_encode(premises, hypotheses, tokenizer): num_examples = len(premises) sen1 = tf.ragged.constant([encode_sentence(s)for s in np.array(premises)]) sen2 = tf.ragged.constant([encode_sentence(s)for s in np.array(hypotheses)]) cls = [tokenizer.convert_tokens_to_ids(['CLS'])]*sen1.shape[0] input_word_ids = tf.concat([cls, sen1, sen2], axis = -1) input_mask = tf.ones_like(input_word_ids ).to_tensor() type_cls = tf.zeros_like(cls) type_sen1 = tf.zeros_like(sen1) type_sen2 = tf.ones_like(sen2) input_type_ids = tf.concat([type_cls, type_sen1, type_sen2], axis = -1 ).to_tensor() inputs = { 'input_word_ids' : input_word_ids.to_tensor() , 'input_mask': input_mask, 'input_type_ids': input_type_ids } return inputs
Contradictory, My Dear Watson
11,104,798
all_data['haspool'] = all_data['PoolArea'].apply(lambda x: 1 if x > 0 else 0) all_data['has2ndfloor'] = all_data['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0) all_data['hasgarage'] = all_data['GarageArea'].apply(lambda x: 1 if x > 0 else 0) all_data['hasbsmt'] = all_data['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0) all_data['hasfireplace'] = all_data['Fireplaces'].apply(lambda x: 1 if x > 0 else 0 )<drop_column>
train_input = bert_encode(train.premise.values, train.hypothesis.values, tokenizer )
Contradictory, My Dear Watson
11,104,798
all_data = all_data.drop(['Utilities', 'Street', 'PoolQC',], axis=1 )<categorify>
max_len = 80 def build_model() : bert_encoder = TFRobertaModel.from_pretrained('jplu/tf-xlm-roberta-large') input_word_ids = tf.keras.Input(shape =(max_len,), dtype =tf.int32, name = "input_word_ids") input_mask = tf.keras.Input(shape =(max_len,), dtype= tf.int32, name = "input_mask") input_type_ids = tf.keras.Input(shape=(max_len,), dtype= tf.int32, name="input_type_ids") embedding = bert_encoder([input_word_ids, input_mask, input_type_ids])[0] output = tf.keras.layers.Dense(3, activation = 'softmax' )(embedding[:,0,:]) model = tf.keras.Model(inputs= [input_word_ids, input_mask, input_type_ids], outputs=output) model.compile(tf.keras.optimizers.Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics = 'accuracy') return model
Contradictory, My Dear Watson
11,104,798
final_features = pd.get_dummies(all_data ).reset_index(drop=True) final_features.shape<prepare_x_and_y>
model.fit(train_input, train.label.values, epochs=3, verbose=1, batch_size=16, validation_split=0.2 )
Contradictory, My Dear Watson
11,104,798
X = final_features.iloc[:len(y), :] X_sub = final_features.iloc[len(y):, :]<drop_column>
model.save_weights('RoBertamodel_augmented_data_20_percent_adam_sparse_categorical_entropy.h5' )
Contradictory, My Dear Watson
11,104,798
outliers = [30, 88, 462, 631, 1322] X = X.drop(X.index[outliers]) y = y.drop(y.index[outliers] )<count_values>
test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv') test.head()
Contradictory, My Dear Watson
11,104,798
counts = X.BsmtUnfSF.value_counts()<count_values>
test_input = bert_encode(test.premise.values, test.hypothesis.values, tokenizer )
Contradictory, My Dear Watson
11,104,798
counts.iloc[0]<count_values>
predictions = [np.argmax(i)for i in model.predict(test_input)]
Contradictory, My Dear Watson
11,104,798
for i in X.columns: counts = X[i].value_counts() print(counts )<train_model>
submission = test.id.copy().to_frame() submission.head()
Contradictory, My Dear Watson
11,104,798
def overfit_reducer(df): overfit = [] for i in df.columns: counts = df[i].value_counts() zeros = counts.iloc[0] if zeros / len(df)* 100 > 99.94: overfit.append(i) overfit = list(overfit) return overfit overfitted_features = overfit_reducer(X) X = X.drop(overfitted_features, axis=1) X_sub = X_sub.drop(overfitted_features, axis=1 )<split>
submission['prediction'] = predictions
Contradictory, My Dear Watson
11,104,798
<feature_engineering><EOS>
submission.to_csv("submission.csv", index = False)
Contradictory, My Dear Watson
11,062,246
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<feature_engineering>
!pip install -q transformers==3.0.2
Contradictory, My Dear Watson
11,062,246
sample_train['Linear_Yhat'] = beta_0 + beta_1*sample_train['GrLivArea']<compute_test_metric>
train = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/train.csv') train
Contradictory, My Dear Watson
11,062,246
print("Mean Squared Error(MSE)for regression line is : {}".format(np.square(sample_train['SalePrice'] - sample_train['Linear_Yhat'] ).mean()))<compute_test_metric>
test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv') test
Contradictory, My Dear Watson
11,062,246
mean_squared_error(sample_train['SalePrice'], sample_train.Linear_Yhat )<train_model>
sub = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv') sub
Contradictory, My Dear Watson
11,062,246
lin_reg = LinearRegression(normalize=True, n_jobs=-1) lin_reg.fit(X_train, y_train) y_pred = lin_reg.predict(X_test )<compute_test_metric>
model_name = 'jplu/tf-xlm-roberta-large' epochs = 4 maxlen = 80 AUTO = tf.data.experimental.AUTOTUNE
Contradictory, My Dear Watson
11,062,246
print('%.2f'%mean_squared_error(y_test, y_pred))<import_modules>
tokenizer = AutoTokenizer.from_pretrained(model_name )
Contradictory, My Dear Watson
11,062,246
lin_reg = LinearRegression() cv = KFold(shuffle=True, random_state=2, n_splits=10) scores = cross_val_score(lin_reg, X,y,cv = cv, scoring = 'neg_mean_absolute_error' )<train_model>
def get_training_dataset(idx, df = train, is_train = True): text = df[['premise', 'hypothesis']].values[idx].tolist() text_enc = tokenizer.batch_encode_plus( text, pad_to_max_length = True, max_length = maxlen ) dataset = tf.data.Dataset.from_tensor_slices(( text_enc['input_ids'], df['label'][idx].values)) dataset = dataset.repeat() dataset = dataset.shuffle(2020) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(AUTO) return dataset def get_valid_dataset(idx, df = train, is_train = False): text = df[['premise', 'hypothesis']].values[idx].tolist() text_enc = tokenizer.batch_encode_plus( text, pad_to_max_length = True, max_length = maxlen ) dataset = tf.data.Dataset.from_tensor_slices(( text_enc['input_ids'], df['label'][idx].values)) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(df = test, is_train = False): text = df[['premise', 'hypothesis']].values.tolist() text_enc = tokenizer.batch_encode_plus( text, pad_to_max_length = True, max_length = maxlen ) dataset = tf.data.Dataset.from_tensor_slices(text_enc['input_ids']) dataset = dataset.batch(batch_size) return dataset
Contradictory, My Dear Watson
11,062,246
alpha_ridge = [-3,-2,-1,1e-15, 1e-10, 1e-8,1e-5,1e-4, 1e-3,1e-2,0.5,1,1.5, 2,3,4, 5, 10, 20, 30, 40] temp_rss = {} temp_mse = {} for i in alpha_ridge: ridge = Ridge(alpha= i, normalize=True) ridge.fit(X_train, y_train) y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) rss = sum(( y_pred-y_test)**2) temp_mse[i] = mse temp_rss[i] = rss<sort_values>
def build_model(maxlen, model_name): with strategy.scope() : base_model = TFAutoModel.from_pretrained(model_name) input_word_ids = tf.keras.Input(shape =(maxlen,), dtype = tf.int32, name = "input_word_ids") embedding = base_model(input_word_ids)[0] out_tokens = embedding[:, 0, :] output = tf.keras.layers.Dense(3, activation = 'softmax' )(out_tokens) model = tf.keras.Model(inputs = input_word_ids, outputs = output) model.compile(tf.keras.optimizers.Adam(lr = 1e-5), loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) return model
Contradictory, My Dear Watson
11,062,246
for key, value in sorted(temp_mse.items() , key=lambda item: item[1]): print("%s: %s" %(key, value))<sort_values>
folds = 3 kf = KFold(n_splits = folds, shuffle = True, random_state = 777) models = [] histories = [] predictions = np.zeros(( test.shape[0], 3)) for fold,(trn_idx, val_idx)in enumerate(kf.split(np.arange(train['label'].shape[0]))): print(' ') print('-'*50) print(f'Training fold {fold + 1}') train_dataset = get_training_dataset(trn_idx, df = train, is_train = True) valid_dataset = get_valid_dataset(val_idx, df = train, is_train = False) K.clear_session() model = build_model(maxlen, model_name) checkpoint = tf.keras.callbacks.ModelCheckpoint( 'XLM-R_fold-%i.h5'%fold, monitor = 'val_loss', verbose = 1, save_best_only = True, save_weights_only = True, mode = 'min', save_freq = 'epoch' ) print('Model Training.....') STEPS_PER_EPOCH = len(trn_idx)// batch_size history = model.fit( train_dataset, epochs = epochs, verbose = 1, steps_per_epoch = STEPS_PER_EPOCH, batch_size = batch_size, validation_data = valid_dataset ) display_training_curves( history.history['loss'], history.history['val_loss'], 'loss', 311 ) display_training_curves( history.history['accuracy'], history.history['val_accuracy'], 'accuracy', 312 ) histories.append(history) models.append(model) print('Prediting on test data.. ') test_dataset = get_test_dataset(test, is_train = False) pred = model.predict(test_dataset, verbose = 1) predictions += pred / folds del history, train_dataset, valid_dataset, model gc.collect() print(' ') print('-'*50 )
Contradictory, My Dear Watson
11,062,246
for key, value in sorted(temp_rss.items() , key=lambda item: item[1]): print("%s: %s" %(key, value))<predict_on_test>
sub['prediction'] = np.argmax(predictions, axis = 1 )
Contradictory, My Dear Watson
11,062,246
<sort_values><EOS>
sub.to_csv('./submission.csv', index = False) sub
Contradictory, My Dear Watson
11,053,603
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<sort_values>
os.environ["WANDB_API_KEY"] = "0"
Contradictory, My Dear Watson
11,053,603
for key, value in sorted(temp_rss.items() , key=lambda item: item[1]): print("%s: %s" %(key, value))<find_best_model_class>
SEED = 42 EPOCHS = 10 MAX_LEN = 96 NUM_SPLITS = 3 LR = 3e-5 BATCH_SIZE = 16
Contradictory, My Dear Watson
11,053,603
temp_rss = {} temp_mse = {} for i in alpha_ridge: lasso_reg = ElasticNet(alpha= i, normalize=True) lasso_reg.fit(X_train, y_train) y_pred = lasso_reg.predict(X_test) mse = mean_squared_error(y_test, y_pred) rss = sum(( y_pred-y_test)**2) temp_mse[i] = mse temp_rss[i] = rss<sort_values>
os.environ['PYTHONHASHSEED']=str(SEED) random.seed(SEED) np.random.seed(SEED) tf.random.set_seed(SEED )
Contradictory, My Dear Watson
11,053,603
for key, value in sorted(temp_mse.items() , key=lambda item: item[1]): print("%s: %s" %(key, value))<sort_values>
train = pd.read_csv(".. /input/contradictory-my-dear-watson-translated-dataset/train_augmented.csv", index_col=["id"]) test = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv", index_col=["id"]) test["label"] = -1
Contradictory, My Dear Watson
11,053,603
for key, value in sorted(temp_rss.items() , key=lambda item: item[1]): print("%s: %s" %(key, value))<compute_train_metric>
df = pd.concat([train, test]) df.loc[df["label"]!=-1, "type"] = "train" df.loc[df["label"]==-1, "type"] = "test"
Contradictory, My Dear Watson
11,053,603
kfolds = KFold(n_splits=10, shuffle=True, random_state=42) def rmsle(y, y_pred): return np.sqrt(mean_squared_error(y, y_pred)) def cv_rmse(model, X=X): rmse = np.sqrt(-cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=kfolds)) return(rmse )<define_search_space>
del df gc.collect()
Contradictory, My Dear Watson
11,053,603
alphas_alt = [14.5, 14.6, 14.7, 14.8, 14.9, 15, 15.1, 15.2, 15.3, 15.4, 15.5] alphas2 = [5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008] e_alphas = [0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007] e_l1ratio = [0.8, 0.85, 0.9, 0.95, 0.99, 1]<define_search_model>
strategy = tf.distribute.experimental.TPUStrategy(tpu )
Contradictory, My Dear Watson
11,053,603
ridge = make_pipeline(RobustScaler() , RidgeCV(alphas=alphas_alt, cv=kfolds)) lasso = make_pipeline(RobustScaler() , LassoCV(max_iter=1e7, alphas=alphas2, random_state=42, cv=kfolds)) elasticnet = make_pipeline(RobustScaler() , ElasticNetCV(max_iter=1e7, alphas=e_alphas, cv=kfolds, l1_ratio=e_l1ratio)) svr = make_pipeline(RobustScaler() , SVR(C= 20, epsilon= 0.008, gamma=0.0003,))<choose_model_class>
BATCH_SIZE = BATCH_SIZE*strategy.num_replicas_in_sync
Contradictory, My Dear Watson
11,053,603
gbr = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05, max_depth=4, max_features='sqrt', min_samples_leaf=15, min_samples_split=10, loss='huber', random_state =42 )<choose_model_class>
MODEL = 'jplu/tf-xlm-roberta-large' TOKENIZER = AutoTokenizer.from_pretrained(MODEL )
Contradictory, My Dear Watson
11,053,603
lightgbm = LGBMRegressor(objective='regression', num_leaves=4, learning_rate=0.01, n_estimators=5000, max_bin=200, bagging_fraction=0.75, bagging_freq=5, bagging_seed=7, feature_fraction=0.2, feature_fraction_seed=7, verbose=-1, )<choose_model_class>
def fast_encode(df): text = df[['premise', 'hypothesis']].values.tolist() encoded = TOKENIZER.batch_encode_plus( text, pad_to_max_length=True, max_length=MAX_LEN ) return np.array(encoded["input_ids"] )
Contradictory, My Dear Watson
11,053,603
xgboost = XGBRegressor(learning_rate=0.01,n_estimators=3460, max_depth=3, min_child_weight=0, gamma=0, subsample=0.7, colsample_bytree=0.7, objective='reg:linear', nthread=-1, scale_pos_weight=1, seed=27, reg_alpha=0.00006 )<choose_model_class>
test_encoded = fast_encode(test) test_dataset =( tf.data.Dataset .from_tensor_slices(test_encoded) .batch(BATCH_SIZE) )
Contradictory, My Dear Watson
11,053,603
stack_gen = StackingCVRegressor(regressors=(ridge, lasso, elasticnet, xgboost, lightgbm), meta_regressor=xgboost, use_features_in_secondary=True )<compute_test_metric>
def mish(x): return x*tanh(softplus(x)) get_custom_objects() ["mish"] = Activation(mish )
Contradictory, My Dear Watson
11,053,603
score = cv_rmse(ridge) print("Ridge: {:.4f}({:.4f}) ".format(score.mean() , score.std()), datetime.now() ,) score = cv_rmse(lasso) print("LASSO: {:.4f}({:.4f}) ".format(score.mean() , score.std()), datetime.now() ,) score = cv_rmse(elasticnet) print("elastic net: {:.4f}({:.4f}) ".format(score.mean() , score.std()), datetime.now() ,) score = cv_rmse(svr) print("SVR: {:.4f}({:.4f}) ".format(score.mean() , score.std()), datetime.now() ,) score = cv_rmse(lightgbm) print("lightgbm: {:.4f}({:.4f}) ".format(score.mean() , score.std()), datetime.now() ,) ".format(score.mean() , score.std()), datetime.now() ,) score = cv_rmse(xgboost) print("xgboost: {:.4f}({:.4f}) ".format(score.mean() , score.std()), datetime.now() , )<train_model>
def create_model(transformer): input_ids = Input(shape=(MAX_LEN,), dtype=tf.int32) sequence_output = transformer(input_ids)[0] cls_token = sequence_output[:, 0, :] cls_token = Dropout(0.3 )(cls_token) cls_token = Dense(32, activation='mish' )(cls_token) cls_token = Dense(16, activation='mish' )(cls_token) out = Dense(3, activation='softmax' )(cls_token) optimizer = RectifiedAdam(lr=LR) model = Model(inputs=input_ids, outputs=out) model.compile( optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) return model
Contradictory, My Dear Watson
11,053,603
print('START Fit') print('stack_gen') stack_gen_model = stack_gen.fit(np.array(X), np.array(y)) print('elasticnet') elastic_model_full_data = elasticnet.fit(X, y) print('Lasso') lasso_model_full_data = lasso.fit(X, y) print('Ridge') ridge_model_full_data = ridge.fit(X, y) print('Svr') svr_model_full_data = svr.fit(X, y) print('xgboost') xgb_model_full_data = xgboost.fit(X, y) print('lightgbm') lgb_model_full_data = lightgbm.fit(X, y )<predict_on_test>
kfold = StratifiedKFold(n_splits=NUM_SPLITS, shuffle=True, random_state=SEED )
Contradictory, My Dear Watson
11,053,603
1.0 * elastic_model_full_data.predict(X )<predict_on_test>
eas = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=3, verbose=1, mode='min', baseline=None, restore_best_weights=True )
Contradictory, My Dear Watson
11,053,603
def blend_models_predict(X): return(( 0.1 * elastic_model_full_data.predict(X)) + \ (0.05 * lasso_model_full_data.predict(X)) + \ (0.2 * ridge_model_full_data.predict(X)) + \ (0.1 * svr_model_full_data.predict(X)) + \ (0.15 * xgb_model_full_data.predict(X)) + \ (0.1 * lgb_model_full_data.predict(X)) + \ (0.3 * stack_gen_model.predict(np.array(X))))<compute_test_metric>
oof_preds = np.zeros(( len(train))) test_preds = np.zeros(( len(test), 3))
Contradictory, My Dear Watson
11,053,603
print('RMSLE score on train data:') print(rmsle(y, blend_models_predict(X)) )<load_from_csv>
for fold,(train_index, valid_index)in enumerate(kfold.split(train, train['label'])) : tf.tpu.experimental.initialize_tpu_system(tpu) print("*"*60) print("*"+" "*26+f"FOLD {fold+1}"+" "*26+"*") print("*"*60, end=" ") X_train = train.iloc[train_index, :].reset_index(drop=True) X_valid = train.iloc[valid_index, :].reset_index(drop=True) y_train = X_train['label'].values y_valid = X_valid['label'].values train_encoded = fast_encode(X_train) valid_encoded = fast_encode(X_valid) train_dataset = tf.data.Dataset.from_tensor_slices(( train_encoded, y_train)) train_dataset = train_dataset.repeat() train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=True) train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE) valid_dataset = tf.data.Dataset.from_tensor_slices(( valid_encoded, y_valid)) valid_dataset = valid_dataset.batch(BATCH_SIZE) valid_dataset = valid_dataset.prefetch(tf.data.experimental.AUTOTUNE) num_steps = len(X_train)//BATCH_SIZE with strategy.scope() : transformer_layer = TFXLMRobertaModel.from_pretrained(MODEL) model = create_model(transformer_layer) history = model.fit( train_dataset, steps_per_epoch=num_steps, validation_data=valid_dataset, epochs=EPOCHS, callbacks=[eas] ) valid_preds = model.predict(valid_dataset) oof_preds[valid_index] = valid_preds.argmax(axis=1) preds = model.predict(test_dataset) test_preds += preds/NUM_SPLITS
Contradictory, My Dear Watson
11,053,603
print('Predict submission') submission = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/sample_submission.csv") submission.iloc[:,1] = np.floor(np.expm1(blend_models_predict(X_sub)) )<load_from_csv>
print(f"Accuracy: {accuracy_score(train['label'], oof_preds)}" )
Contradictory, My Dear Watson
11,053,603
<save_to_csv><EOS>
submission = pd.read_csv(".. /input/contradictory-my-dear-watson/sample_submission.csv") submission['prediction'] = np.argmax(test_preds, axis=1) submission.to_csv("submission.csv", index=False )
Contradictory, My Dear Watson
10,971,620
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<import_modules>
plt.style.use('fivethirtyeight') warnings.filterwarnings('ignore')
Contradictory, My Dear Watson
10,971,620
sns.__version__<load_from_csv>
df_train=pd.read_csv(os.path.join(path,"train.csv")) df_test=pd.read_csv(os.path.join(path,"test.csv"))
Contradictory, My Dear Watson
10,971,620
df_train = pd.read_csv(".. /input/train.csv") df_test = pd.read_csv(".. /input/test.csv") <groupby>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print('Running on TPU ', tpu.master()) except ValueError: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Contradictory, My Dear Watson
10,971,620
df_train.groupby(['Survived','Sex'])['Survived'].count()<count_values>
MODEL = 'jplu/tf-xlm-roberta-large' EPOCHS = 10 MAX_LEN = 96 BATCH_SIZE= 16 * strategy.num_replicas_in_sync AUTO = tf.data.experimental.AUTOTUNE tokenizer = AutoTokenizer.from_pretrained(MODEL )
Contradictory, My Dear Watson
10,971,620
print("% of women survived: " , df_train[df_train.Sex == 'female'].Survived.sum() /df_train[df_train.Sex == 'female'].Survived.count()) print("% of men survived: " , df_train[df_train.Sex == 'male'].Survived.sum() /df_train[df_train.Sex == 'male'].Survived.count() )<save_to_csv>
def quick_encode(df,maxlen=100): values = df[['premise','hypothesis']].values.tolist() tokens=tokenizer.batch_encode_plus(values,max_length=maxlen,pad_to_max_length=True) return np.array(tokens['input_ids']) x_train = quick_encode(df_train) x_test = quick_encode(df_test) y_train = df_train.label.values
Contradictory, My Dear Watson
10,971,620
<count_values>
def create_dist_dataset(X, y,val,batch_size= BATCH_SIZE): dataset = tf.data.Dataset.from_tensor_slices(( X,y)).shuffle(len(X)) if not val: dataset = dataset.repeat().batch(batch_size ).prefetch(AUTO) else: dataset = dataset.batch(batch_size ).prefetch(AUTO) return dataset test_dataset =( tf.data.Dataset .from_tensor_slices(( x_test)) .batch(BATCH_SIZE) )
Contradictory, My Dear Watson
10,971,620
print("% of survivals in") print("Pclass=1 : ", df_train.Survived[df_train.Pclass == 1].sum() /df_train[df_train.Pclass == 1].Survived.count()) print("Pclass=2 : ", df_train.Survived[df_train.Pclass == 2].sum() /df_train[df_train.Pclass == 2].Survived.count()) print("Pclass=3 : ", df_train.Survived[df_train.Pclass == 3].sum() /df_train[df_train.Pclass == 3].Survived.count() )<save_to_csv>
def build_model(transformer,max_len): input_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_ids") sequence_output = transformer(input_ids)[0] cls_token = sequence_output[:, 0, :] cls_token = Dropout(0.2 )(cls_token) cls_token = Dense(32,activation='relu' )(cls_token) out = Dense(3, activation='softmax' )(cls_token) model = Model(inputs=input_ids, outputs=out) model.compile( Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) return model
Contradictory, My Dear Watson
10,971,620
df_test['Survived'] = 0 df_test.loc[(df_test.Sex == 'female'), 'Survived'] = 1 df_test.loc[(df_test.Sex == 'female')&(df_test.Pclass == 3)&(df_test.Embarked == 'S'), 'Survived'] = 0 <feature_engineering>
def build_lrfn(lr_start=0.00001, lr_max=0.00003, lr_min=0.000001, lr_rampup_epochs=3, lr_sustain_epochs=0, lr_exp_decay=.6): lr_max = lr_max * strategy.num_replicas_in_sync def lrfn(epoch): if epoch < lr_rampup_epochs: lr =(lr_max - lr_start)/ lr_rampup_epochs * epoch + lr_start elif epoch < lr_rampup_epochs + lr_sustain_epochs: lr = lr_max else: lr =(lr_max - lr_min)* lr_exp_decay**(epoch - lr_rampup_epochs - lr_sustain_epochs)+ lr_min return lr return lrfn
Contradictory, My Dear Watson
10,971,620
for df in [df_train, df_test]: df['Age_bin']=np.nan for i in range(8,0,-1): df.loc[ df['Age'] <= i*10, 'Age_bin'] = i<feature_engineering>
lrfn = build_lrfn() lr_schedule = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=1 )
Contradictory, My Dear Watson
10,971,620
df_test.loc[(df_test.Sex == 'male')&(df_test.Pclass == 1)&(df_test.Age_bin == 1), 'Survived'] = 1 df_test.loc[(df_test.Sex == 'male')&(df_test.Pclass == 2)&(df_test.Age_bin == 1), 'Survived'] = 1<feature_engineering>
skf = StratifiedKFold(n_splits=5,shuffle=True,random_state=777) val_score=[] history=[] for fold,(train_ind,valid_ind)in enumerate(skf.split(x_train,y_train)) : if fold < 4: print("fold",fold+1) tf.tpu.experimental.initialize_tpu_system(tpu) train_data = create_dist_dataset(x_train[train_ind],y_train[train_ind],val=False) valid_data = create_dist_dataset(x_train[valid_ind],y_train[valid_ind],val=True) Checkpoint=tf.keras.callbacks.ModelCheckpoint(f"roberta_base.h5", monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='min') with strategy.scope() : transformer_layer = TFAutoModel.from_pretrained(MODEL) model = build_model(transformer_layer, max_len=MAX_LEN) n_steps = len(train_ind)//BATCH_SIZE print("training model {} ".format(fold+1)) train_history = model.fit( train_data, steps_per_epoch=n_steps, validation_data=valid_data, epochs=EPOCHS,callbacks=[Checkpoint],verbose=1) print("Loading model...") model.load_weights(f"roberta_base.h5") print("fold {} validation accuracy {}".format(fold+1,np.mean(train_history.history['val_accuracy']))) print("fold {} validation loss {}".format(fold+1,np.mean(train_history.history['val_loss']))) val_score.append(train_history.history['val_accuracy']) history.append(train_history) val_score.append(np.mean(train_history.history['val_accuracy'])) print('predict on test.... ') preds=model.predict(test_dataset,verbose=1) pred_test+=preds/4 print("Mean Validation accuracy : ",np.mean(val_score))
Contradictory, My Dear Watson
10,971,620
df_test.loc[(df_test.Sex == 'female')&(df_test.SibSp > 7), 'Survived'] = 0<feature_engineering>
submission = pd.read_csv(os.path.join(path,'sample_submission.csv')) submission['prediction'] = np.argmax(pred_test,axis=1) submission.head()
Contradictory, My Dear Watson
10,971,620
<feature_engineering><EOS>
submission.to_csv('submission.csv',index=False )
Contradictory, My Dear Watson
10,963,423
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<feature_engineering>
!pip install git+https://github.com/ssut/py-googletrans.git
Contradictory, My Dear Watson
10,963,423
df_test.loc[(df_test.Sex == 'male')&(df_test.Fare_bin == 11), 'Survived'] = 1<save_to_csv>
import numpy as np import pandas as pd from googletrans import Translator from dask import bag, diagnostics
Contradictory, My Dear Watson
10,963,423
<drop_column>
train = pd.read_csv('.. /input/contradictory-my-dear-watson/train.csv', index_col=['id']) display(train, train.lang_abv.value_counts() )
Contradictory, My Dear Watson
10,963,423
df_test.drop(['Survived'],axis=1,inplace=True )<create_dataframe>
def translate(words, dest): dest_choices = ['zh-cn', 'ar', 'fr', 'sw', 'ur', 'vi', 'ru', 'hi', 'el', 'th', 'es', 'de', 'tr', 'bg' ] if not dest: dest = np.random.choice(dest_choices) translator = Translator() decoded = translator.translate(words, dest=dest ).text return decoded def trans_parallel(df, dest): premise_bag = bag.from_sequence(df.premise.tolist() ).map(translate, dest) hypo_bag = bag.from_sequence(df.hypothesis.tolist() ).map(translate, dest) with diagnostics.ProgressBar() : premises = premise_bag.compute() hypos = hypo_bag.compute() df[['premise', 'hypothesis']] = list(zip(premises, hypos)) return df eng = train.loc[train.lang_abv == "en"].copy() \ .pipe(trans_parallel, dest=None) non_eng = train.loc[train.lang_abv != "en"].copy() \ .pipe(trans_parallel, dest='en') train = train.append([eng, non_eng]) train.shape
Contradictory, My Dear Watson
10,963,423
df_train_ml = df_train.copy() df_test_ml = df_test.copy()<categorify>
test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv', index_col=['id']) submission = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv', index_col=['id'] )
Contradictory, My Dear Watson
10,963,423
df_train_ml = pd.get_dummies(df_train_ml, columns=['Sex', 'Embarked', 'Pclass'], drop_first=True) df_train_ml.drop(['PassengerId','Name','Ticket', 'Cabin', 'Age_bin', 'Fare_bin'],axis=1,inplace=True) df_train_ml.dropna(inplace=True )<categorify>
from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow.keras.layers import Dense, Input from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model import transformers from transformers import TFAutoModel, AutoTokenizer
Contradictory, My Dear Watson
10,963,423
passenger_id = df_test_ml['PassengerId'] df_test_ml = pd.get_dummies(df_test_ml, columns=['Sex', 'Embarked', 'Pclass'], drop_first=True) df_test_ml.drop(['PassengerId','Name','Ticket', 'Cabin', 'Age_bin', 'Fare_bin'],axis=1,inplace=True )<normalization>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print('Running on TPU ', tpu.master()) except ValueError: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Contradictory, My Dear Watson
10,963,423
scaler = StandardScaler() scaler.fit(df_train_ml.drop('Survived',axis=1)) scaled_features = scaler.transform(df_train_ml.drop('Survived',axis=1)) df_train_ml_sc = pd.DataFrame(scaled_features, columns=df_train_ml.columns[:-1]) df_test_ml.fillna(df_test_ml.mean() , inplace=True) scaled_features = scaler.transform(df_test_ml) df_test_ml_sc = pd.DataFrame(scaled_features, columns=df_test_ml.columns )<split>
model_name = 'jplu/tf-xlm-roberta-large' n_epochs = 8 max_len = 80 batch_size = 16 * strategy.num_replicas_in_sync
Contradictory, My Dear Watson
10,963,423
X_train, X_test, y_train, y_test = train_test_split(df_train_ml.drop('Survived',axis=1), df_train_ml['Survived'], test_size=0.30, random_state=101) X_train_sc, X_test_sc, y_train_sc, y_test_sc = train_test_split(df_train_ml_sc, df_train_ml['Survived'], test_size=0.30, random_state=101 )<prepare_x_and_y>
tokenizer = AutoTokenizer.from_pretrained(model_name) train_text = train[['premise', 'hypothesis']].values.tolist() test_text = test[['premise', 'hypothesis']].values.tolist() train_encoded = tokenizer.batch_encode_plus( train_text, pad_to_max_length=True, max_length=max_len ) test_encoded = tokenizer.batch_encode_plus( test_text, pad_to_max_length=True, max_length=max_len ) x_train, x_valid, y_train, y_valid = train_test_split( train_encoded['input_ids'], train.label.values, test_size=0.2, random_state=2020 ) x_test = test_encoded['input_ids']
Contradictory, My Dear Watson
10,963,423
X_train_all = df_train_ml.drop('Survived',axis=1) y_train_all = df_train_ml['Survived'] X_test_all = df_test_ml X_train_all_sc = df_train_ml_sc y_train_all_sc = df_train_ml['Survived'] X_test_all_sc = df_test_ml_sc<correct_missing_values>
auto = tf.data.experimental.AUTOTUNE train_dataset =( tf.data.Dataset .from_tensor_slices(( x_train, y_train)) .repeat() .shuffle(2048) .batch(batch_size) .prefetch(auto) ) valid_dataset =( tf.data.Dataset .from_tensor_slices(( x_valid, y_valid)) .batch(batch_size) .cache() .prefetch(auto) ) test_dataset =( tf.data.Dataset .from_tensor_slices(x_test) .batch(batch_size) )
Contradictory, My Dear Watson
10,963,423
X_test_all.fillna(X_test_all.mean() , inplace=True) print("*" )<import_modules>
with strategy.scope() : transformer_encoder = TFAutoModel.from_pretrained(model_name) input_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_ids") sequence_output = transformer_encoder(input_ids)[0] cls_token = sequence_output[:, 0, :] out = Dense(3, activation='softmax' )(cls_token) model = Model(inputs=input_ids, outputs=out) model.compile( Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
Contradictory, My Dear Watson
10,963,423
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix<compute_train_metric>
n_steps = len(x_train)// batch_size train_history = model.fit( train_dataset, steps_per_epoch=n_steps, validation_data=valid_dataset, epochs=n_epochs )
Contradictory, My Dear Watson
10,963,423
logreg = LogisticRegression() logreg.fit(X_train,y_train) pred_logreg = logreg.predict(X_test) print(confusion_matrix(y_test, pred_logreg)) print(classification_report(y_test, pred_logreg)) print(accuracy_score(y_test, pred_logreg))<predict_on_test>
train_history = model.fit( train_dataset, steps_per_epoch=n_steps, validation_data=valid_dataset, epochs=1 )
Contradictory, My Dear Watson
10,963,423
logreg.fit(X_train_all, y_train_all) pred_all_logreg = logreg.predict(X_test_all )<create_dataframe>
test_preds = model.predict(test_dataset, verbose=1) submission['prediction'] = test_preds.argmax(axis=1) submission.to_csv("submission.csv" )
Contradictory, My Dear Watson
14,631,065
sub_logreg = pd.DataFrame() sub_logreg['PassengerId'] = df_test['PassengerId'] sub_logreg['Survived'] = pred_all_logreg <compute_train_metric>
os.environ["WANDB_API_KEY"] = "0" np.random.seed(0 )
Contradictory, My Dear Watson
14,631,065
gnb=GaussianNB() gnb.fit(X_train,y_train) pred_gnb = gnb.predict(X_test) print(confusion_matrix(y_test, pred_gnb)) print(classification_report(y_test, pred_gnb)) print(accuracy_score(y_test, pred_gnb))<train_model>
train = pd.read_csv(".. /input/contradictory-my-dear-watson/train.csv") test = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv") train.head()
Contradictory, My Dear Watson
14,631,065
knn = KNeighborsClassifier(n_neighbors=20) knn.fit(X_train_sc,y_train_sc )<predict_on_test>
missing_values_count = train.isnull().sum() print("Number of missing data points per column: ") print(missing_values_count )
Contradictory, My Dear Watson
14,631,065
pred_knn = knn.predict(X_test) print(confusion_matrix(y_test, pred_knn)) print(classification_report(y_test, pred_knn)) print(accuracy_score(y_test, pred_knn))<predict_on_test>
print("Number of training data rows: {} ".format(train.shape[0])) print("Number of training data columns: {} ".format(train.shape[1]))
Contradictory, My Dear Watson
14,631,065
knn.fit(X_train_all, y_train_all) pred_all_knn = knn.predict(X_test_all )<create_dataframe>
train.language.unique() train.language.value_counts()
Contradictory, My Dear Watson
14,631,065
sub_knn = pd.DataFrame() sub_knn['PassengerId'] = df_test['PassengerId'] sub_knn['Survived'] = pred_all_knn <train_model>
train, validation = train_test_split(train, stratify=train.label.values, random_state=42, test_size=0.2, shuffle=True )
Contradictory, My Dear Watson
14,631,065
dtree = DecisionTreeClassifier() dtree.fit(X_train,y_train )<predict_on_test>
print("Train data: {} ".format(train.shape)) print("Validation data: {} ".format(validation.shape))
Contradictory, My Dear Watson
14,631,065
pred_dtree = dtree.predict(X_test) print(classification_report(y_test,pred_dtree)) print(accuracy_score(y_test, pred_dtree))<predict_on_test>
model_name = 'bert-base-multilingual-cased' tokenizer = BertTokenizer.from_pretrained(model_name) save_path = '.' if not os.path.exists(save_path): os.makedirs(save_path) tokenizer.save_pretrained(save_path) tokenizer = BertWordPieceTokenizer("vocab.txt", lowercase=False, strip_accents=False) tokenizer
Contradictory, My Dear Watson
14,631,065
dtree_2 = DecisionTreeClassifier(max_features=7 , max_depth=6, min_samples_split=8) dtree_2.fit(X_train,y_train) pred_dtree_2 = dtree_2.predict(X_test) print(classification_report(y_test, pred_dtree_2)) print(accuracy_score(y_test, pred_dtree_2))<predict_on_test>
tokenized_premise = tokenizer.encode_batch(train.premise.values.tolist()) train['premise_seq_length'] = [len(encoding.tokens)for encoding in tokenized_premise] tokenized_hypothesis = tokenizer.encode_batch(train.hypothesis.values.tolist()) train['hypothesis_seq_length'] = [len(encoding.tokens)for encoding in tokenized_hypothesis] info_per_lang = train.groupby('language' ).agg({'premise_seq_length': ['mean', 'max', 'count'], 'hypothesis_seq_length': ['mean', 'max', 'count']}) print(info_per_lang )
Contradictory, My Dear Watson
14,631,065
dtree_2.fit(X_train_all, y_train_all) pred_all_dtree2 = dtree_2.predict(X_test_all )<train_model>
EPOCHS = 3 BATCH_SIZE = 64 MAX_LEN = 100 PATIENCE = 1 LEARNING_RATE = 1e-5
Contradictory, My Dear Watson
14,631,065
rfc = RandomForestClassifier(max_depth=6, max_features=7) rfc.fit(X_train, y_train )<predict_on_test>
def encode(df, tokenizer, max_len=50): pairs = df[['premise','hypothesis']].values.tolist() tokenizer.enable_truncation(max_len) tokenizer.enable_padding() print("Encoding...") enc_list = tokenizer.encode_batch(pairs) print("Complete") input_word_ids = tf.ragged.constant([enc.ids for enc in enc_list], dtype=tf.int32) input_mask = tf.ragged.constant([enc.attention_mask for enc in enc_list], dtype=tf.int32) input_type_ids = tf.ragged.constant([enc.type_ids for enc in enc_list], dtype=tf.int32) inputs = { 'input_word_ids': input_word_ids.to_tensor() , 'input_mask': input_mask.to_tensor() , 'input_type_ids': input_type_ids.to_tensor() } return inputs
Contradictory, My Dear Watson
14,631,065
pred_rfc = rfc.predict(X_test) print(confusion_matrix(y_test, pred_rfc)) print(classification_report(y_test, pred_rfc)) print(accuracy_score(y_test, pred_rfc))<predict_on_test>
train_input = encode(train, tokenizer=tokenizer, max_len=MAX_LEN )
Contradictory, My Dear Watson
14,631,065
rfc.fit(X_train_all, y_train_all) pred_all_rfc = rfc.predict(X_test_all )<save_to_csv>
validation_input = encode(validation, tokenizer=tokenizer, max_len=MAX_LEN )
Contradictory, My Dear Watson
14,631,065
sub_rfc = pd.DataFrame() sub_rfc['PassengerId'] = df_test['PassengerId'] sub_rfc['Survived'] = pred_all_rfc <train_model>
def build_model(model_name, max_len=50): tf.random.set_seed(1234) bert_encoder = TFBertModel.from_pretrained(model_name) input_word_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_mask") input_type_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_type_ids") embedding = bert_encoder([input_word_ids, input_mask, input_type_ids])[0] cls_vector = embedding[:,0,:] output = tf.keras.layers.Dense(3, activation='softmax' )(cls_vector) model = tf.keras.Model(inputs=[input_word_ids, input_mask, input_type_ids], outputs=output) model.compile(tf.keras.optimizers.Adam(lr=LEARNING_RATE), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model
Contradictory, My Dear Watson
14,631,065
svc = SVC(gamma = 0.01, C = 100) svc.fit(X_train_sc, y_train_sc )<predict_on_test>
checkpoint_filepath='bert_best_checkpoint.hdf5' callbacks = [EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=PATIENCE), ModelCheckpoint(filepath=checkpoint_filepath, save_best_only=True, save_weights_only=True, monitor='val_accuracy', mode='max', verbose=1)] train_history = model.fit(x=train_input, y=train.label.values, validation_data=(validation_input, validation.label.values), epochs=EPOCHS, verbose=1, batch_size=BATCH_SIZE, callbacks=callbacks )
Contradictory, My Dear Watson
14,631,065
pred_svc = svc.predict(X_test_sc) print(confusion_matrix(y_test_sc, pred_svc)) print(classification_report(y_test_sc, pred_svc)) print(accuracy_score(y_test_sc, pred_svc))<save_to_csv>
del model
Contradictory, My Dear Watson
14,631,065
svc.fit(X_train_all_sc, y_train_all_sc) pred_all_svc = svc.predict(X_test_all_sc) sub_svc = pd.DataFrame() sub_svc['PassengerId'] = df_test['PassengerId'] sub_svc['Survived'] = pred_all_svc sub_svc.to_csv('svc.csv',index=False )<import_modules>
K.clear_session()
Contradictory, My Dear Watson
14,631,065
from sklearn.model_selection import cross_val_score<compute_train_metric>
PRETRAINED_MODEL_TYPES = { 'xlmroberta':(XLMRobertaConfig, TFXLMRobertaModel, XLMRobertaTokenizer, 'jplu/tf-xlm-roberta-large') } config_class, model_class, tokenizer_class, model_name = PRETRAINED_MODEL_TYPES['xlmroberta'] tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer
Contradictory, My Dear Watson
14,631,065
scores_svc = cross_val_score(svc, X_train_all_sc, y_train_all_sc, cv=10, scoring='accuracy') print(scores_svc) print(scores_svc.mean() )<compute_train_metric>
def encode(df, tokenizer, max_len=50): pairs = df[['premise','hypothesis']].values.tolist() print("Encoding...") encoded_dict = tokenizer.batch_encode_plus(pairs, max_length=max_len, padding=True, truncation=True, add_special_tokens=True, return_attention_mask=True) print("Complete") input_word_ids = tf.convert_to_tensor(encoded_dict['input_ids'], dtype=tf.int32) input_mask = tf.convert_to_tensor(encoded_dict['attention_mask'], dtype=tf.int32) inputs = { 'input_word_ids': input_word_ids, 'input_mask': input_mask} return inputs
Contradictory, My Dear Watson
14,631,065
scores_rfc = cross_val_score(rfc, X_train_all_sc, y_train_all_sc, cv=10, scoring='accuracy') print(scores_rfc) print(scores_rfc.mean() )<compute_train_metric>
train_input = encode(train, tokenizer=tokenizer, max_len=MAX_LEN )
Contradictory, My Dear Watson
14,631,065
scores_dtree_2 = cross_val_score(dtree_2, X_train_all_sc, y_train_all_sc, cv=10, scoring='accuracy') print(scores_dtree_2) print(scores_dtree_2.mean() )<compute_test_metric>
validation_input = encode(validation, tokenizer=tokenizer, max_len=MAX_LEN )
Contradictory, My Dear Watson
14,631,065
print("dtree_2 : " , scores_dtree_2.mean()) print("rfc : " , scores_rfc.mean()) print("svc : " , scores_svc.mean() )<import_modules>
def build_model(max_len=50): tf.random.set_seed(1234) encoder = model_class.from_pretrained(model_name) input_word_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_mask") embedding = encoder([input_word_ids, input_mask])[0] sequence_output = embedding[:,0,:] output = tf.keras.layers.Dense(3, activation="softmax" )(sequence_output) model = tf.keras.Model(inputs=[input_word_ids, input_mask], outputs=output) model.compile(tf.keras.optimizers.Adam(lr=LEARNING_RATE), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model
Contradictory, My Dear Watson
14,631,065
import numpy as np import pandas as pd import time from datetime import datetime from sklearn.model_selection import train_test_split from google.cloud import storage from google.cloud import automl_v1beta1 as automl from google.api_core.gapic_v1.client_info import ClientInfo from automlwrapper import AutoMLWrapper<choose_model_class>
checkpoint_filepath='xlmroberta_best_checkpoint.hdf5' callbacks = [EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=PATIENCE), ModelCheckpoint(filepath=checkpoint_filepath, save_best_only=True, save_weights_only=True, monitor='val_accuracy', mode='max', verbose=1)] train_history = model.fit(x=train_input, y=train.label.values, validation_data=(validation_input, validation.label.values), epochs=EPOCHS, verbose=1, batch_size=BATCH_SIZE, callbacks=callbacks )
Contradictory, My Dear Watson
14,631,065
PROJECT_ID = 'cloudml-demo' bucket_name = 'cloudml-demo-lcm' region = 'us-central1' dataset_display_name = 'kaggle_tweets' model_display_name = 'kaggle_starter_model1' storage_client = storage.Client(project=PROJECT_ID) client = automl.AutoMlClient(client_info=ClientInfo()) print(f'Starting AutoML notebook at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}' )<load_from_csv>
def accuracy(x): return round(float(x[2]/x[1]), 2)*100 validation['predictions'] = validation_predictions lang_counts = validation.language.value_counts().sort_index() tp_per_lang = validation[validation['label'] == validation['predictions']].groupby('language' ).agg({'language': ['count']} ).sort_index() lang_names = lang_counts.index.tolist() lang_tuples = list(zip(lang_names, lang_counts.values.tolist() , tp_per_lang.iloc[:, 0].values.tolist())) acc = map(accuracy, lang_tuples) for i, score in enumerate(acc): print("Accuracy of {} is {} ".format(lang_tuples[i][0], score))
Contradictory, My Dear Watson