kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
10,029,170
class Regressor(pl.LightningModule): def __init__(self, input_size, output_size, params, model_path='models/'): super(Regressor, self ).__init__() dim_1 = params['dim_1'] dim_2 = params['dim_2'] dim_3 = params['dim_3'] dim_4 = params['dim_4'] self.dropout_prob = params['dropout'] self.lr = params['lr'] self.activation = params['activation'] self.input_size = input_size self.output_size = output_size self.loss = nn.BCEWithLogitsLoss() self.weight_decay = params['weight_decay'] self.amsgrad = params['amsgrad'] self.label_smoothing = params['label_smoothing'] self.model_path = model_path self.encoder = nn.Sequential( nn.BatchNorm1d(input_size), nn.Linear(input_size, dim_1, bias=False), nn.BatchNorm1d(dim_1), self.activation() , nn.Dropout(p=self.dropout_prob), nn.Linear(dim_1, dim_2, bias=False), nn.BatchNorm1d(dim_2), self.activation() , nn.Dropout(p=self.dropout_prob), nn.Linear(dim_2, dim_3, bias=False), nn.BatchNorm1d(dim_3), self.activation() , nn.Dropout(p=self.dropout_prob), nn.Linear(dim_3, dim_4, bias=False), nn.BatchNorm1d(dim_4), self.activation() , nn.Dropout(p=self.dropout_prob), nn.Linear(dim_4, self.output_size, bias=False) ) def forward(self, x): out = self.encoder(x) return out def training_step(self, batch, batch_idx): x, y = batch['data'], batch['target'] x = x.view(x.size(1), -1) y = y.view(y.size(1), -1) logits = self(x) loss = self.loss(input=logits, target=y) logits = torch.sigmoid(logits) auc_metric = roc_auc_score(y_true=y.cpu().numpy() , y_score=logits.cpu().detach().numpy()) self.log('train_auc', auc_metric, on_step=False, on_epoch=True, prog_bar=True) self.log('train_loss', loss, prog_bar=True) return {'loss': loss} def validation_step(self, batch, batch_idx): x, y = batch['data'], batch['target'] x = x.view(x.size(1), -1) y = y.view(y.size(1), -1) logits = self(x) loss = self.loss(input=logits, target=y) logits = torch.sigmoid(logits) auc = roc_auc_score(y_true=y.cpu().numpy() , y_score=logits.cpu().detach().numpy()) return {'loss': loss, 'y': y, 'logits': logits, 'auc': auc} def validation_epoch_end(self, val_step_outputs): epoch_loss = torch.tensor([x['loss'] for x in val_step_outputs] ).mean() epoch_auc = torch.tensor([x['auc'] for x in val_step_outputs] ).mean() self.log('val_loss', epoch_loss, prog_bar=True) self.log('val_auc', epoch_auc, prog_bar=True) def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def test_epoch_end(self, outputs): epoch_loss = torch.tensor([x['loss'] for x in outputs] ).mean() epoch_auc = torch.tensor([x['auc'] for x in outputs] ).mean() self.log('test_loss', epoch_loss) self.log('test_auc', epoch_auc) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters() , lr=self.lr, amsgrad=self.amsgrad) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, patience=5, factor=0.1, min_lr=1e-7, eps=1e-08 ) return {'optimizer': optimizer, 'lr_scheduler': scheduler, 'monitor': 'val_auc'} def init_weights(m, func): if type(m)== nn.Linear: nn.init.xavier_normal_(m.weight, nn.init.calculate_gain(func)) def cross_val(p)-> object: data_ = load_data(root_dir='./data/', mode='train') data_, target_, features, date = preprocess_data( data_, nn=True, action='multi') input_size = data_.shape[-1] output_size = target_.shape[-1] gts = PurgedGroupTimeSeriesSplit(n_splits=5, group_gap=5) models = [] tb_logger = pl_loggers.TensorBoardLogger('logs/multiclass_') for i,(train_idx, val_idx)in enumerate(gts.split(data_, groups=date)) : idx = np.concatenate([train_idx, val_idx]) data = copy.deepcopy(data_[idx]) target = copy.deepcopy(target_[idx]) checkpoint_callback = pl.callbacks.ModelCheckpoint( os.path.join('models/', 'multi_class_fold_{}'.format(i)) , monitor='val_auc', save_top_k=1, period=10, mode='max' ) model = Regressor(input_size, output_size, p) if p['activation'] == nn.ReLU: model.apply(lambda m: init_weights(m, 'relu')) elif p['activation'] == nn.LeakyReLU: model.apply(lambda m: init_weights(m, 'leaky_relu')) train_idx = [i for i in range(0, max(train_idx)+ 1)] val_idx = [i for i in range(len(train_idx), len(idx)) ] data[train_idx] = calc_data_mean( data[train_idx], './cache', train=True, mode='mean') data[val_idx] = calc_data_mean( data[val_idx], './cache', train=False, mode='mean') dataset = FinData(data=data, target=target, date=date, multi=True) dataloaders = create_dataloaders( dataset, indexes={'train': train_idx, 'val': val_idx}, batch_size=p['batch_size']) es = EarlyStopping(monitor='val_auc', patience=10, min_delta=0.0005, mode='max') trainer = pl.Trainer(logger=tb_logger, max_epochs=1, gpus=1, callbacks=[checkpoint_callback, es], precision=16) trainer.fit( model, train_dataloader=dataloaders['train'], val_dataloaders=dataloaders['val']) torch.save(model.state_dict() , f'models/fold_{i}_state_dict.pth') models.append(model) return models, features<load_from_csv>
mnist_train.isna().any().any()
Digit Recognizer
10,029,170
def final_train(p, load=False): data_ = load_data(root_dir='./data/', mode='train',overide='/kaggle/input/jane-street-market-prediction/train.csv') data, target, features, date = preprocess_data(data_, nn=True) dataset = FinData(data=data, target=target, date=date) input_size = data.shape[-1] output_size = 1 train_idx, val_idx = date[date <= 498].index.values.tolist() , date[date > 498].index.values.tolist() data[train_idx] = calc_data_mean(data[train_idx], './cache', train=True) data[val_idx] = calc_data_mean(data[val_idx], './cache', train=False) checkpoint_callback = pl.callbacks.ModelCheckpoint(filepath='./cache/full_train', monitor="val_auc", mode='max', save_top_k=1, period=10) model = Regressor(input_size=input_size, output_size=output_size, params=p) if p['activation'] == nn.ReLU: model.apply(lambda m: init_weights(m, 'relu')) elif p['activation'] == nn.LeakyReLU: model.apply(lambda m: init_weights(m, 'leaky_relu')) dataset = FinData(data, target, date) dataloaders = create_dataloaders(dataset, indexes={'train': train_idx, 'val': val_idx}, batch_size=p['batch_size']) es = EarlyStopping(monitor='val_auc', patience=10, min_delta=0.0005, mode='max') trainer = pl.Trainer(max_epochs=25, gpus=1, callbacks=[checkpoint_callback, es], precision=16) trainer.fit(model, train_dataloader=dataloaders['train'], val_dataloaders=dataloaders['val']) torch.save(model.state_dict() , './cache/final_train.pth') return model, features<categorify>
mnist_train_data = mnist_train.loc[:, "pixel0":] mnist_train_label = mnist_train.loc[:, "label"] mnist_train_data = mnist_train_data/255.0 mnist_test = mnist_test/255.0
Digit Recognizer
10,029,170
def fillna_npwhere(array, values): if np.isnan(array.sum()): array = np.nan_to_num(array)+ np.isnan(array)* values return array def test_model(models, features, cache_dir='cache'): env = janestreet.make_env() iter_test = env.iter_test() if type(models)== list: models = [model.eval() for model in models] else: models.eval() f_mean = np.load(f'{cache_dir}/f_mean.npy') for(test_df, sample_prediction_df)in tqdm(iter_test): if test_df['weight'].item() > 0: vals = torch.FloatTensor( fillna_npwhere(test_df[features].values, f_mean)) if type(models)== list: preds = [torch.sigmoid(model.forward(vals.view(1, -1)) ).detach().numpy() for model in models] pred = np.mean(np.mean(preds, axis=1)) else: pred = torch.sigmoid(models.forward(vals.view(1, -1)) ).item() sample_prediction_df.action = np.where( pred > 0.502, 1, 0 ).astype(int ).item() else: sample_prediction_df.action = 0 env.predict(sample_prediction_df )<init_hyperparams>
standardized_scalar = StandardScaler() standardized_data = standardized_scalar.fit_transform(mnist_train_data) standardized_data.shape
Digit Recognizer
10,029,170
def main(train=True): p = {'dim_1': 167, 'dim_2': 454, 'dim_3': 371, 'dim_4': 369, 'dim_5': 155, 'activation': nn.LeakyReLU, 'dropout': 0.21062362698532755, 'lr': 0.0022252024054478523, 'label_smoothing': 0.05564974140461841, 'weight_decay': 0.04106097088288333, 'amsgrad': True, 'batch_size': 10072} if train: models, features = final_train(p, load=False) else: data_ = load_data(root_dir='./data/', mode='train',overide='/kaggle/input/jane-street-market-prediction/train.csv') data_, target_, features, date = preprocess_data(data_, nn=True) model_path = '/kaggle/input/model-states' f_mean = calc_data_mean(data_, 'cache') models = load_model(model_path, data_.shape[-1], 5, p, False) test_model(models, features) return models <define_variables>
cov_matrix = np.matmul(standardized_data.T, standardized_data) cov_matrix.shape
Digit Recognizer
10,029,170
pca_components = 60<choose_model_class>
lambdas, vectors = eigh(cov_matrix, eigvals=(782, 783)) vectors.shape
Digit Recognizer
10,029,170
e_size = 64 fc_input = pca_components h_dims = [512,512,256,128] dropout_rate = 0.5 epochs = 200 minibatch_size = 100000 class MarketPredictor(nn.Module): def __init__(self): super(MarketPredictor, self ).__init__() self.e = nn.Embedding(2,e_size) self.deep = nn.Sequential( nn.Linear(fc_input,h_dims[0]), nn.BatchNorm1d(h_dims[0]), nn.LeakyReLU() , nn.Dropout(dropout_rate), nn.Linear(h_dims[0],h_dims[1]), nn.BatchNorm1d(h_dims[1]), nn.LeakyReLU() , nn.Dropout(dropout_rate), nn.Linear(h_dims[1],h_dims[2]), nn.BatchNorm1d(h_dims[2]), nn.LeakyReLU() , nn.Dropout(dropout_rate), nn.Linear(h_dims[2],h_dims[3]), nn.BatchNorm1d(h_dims[3]), nn.LeakyReLU() , nn.Dropout(dropout_rate), nn.Linear(h_dims[3],e_size), nn.BatchNorm1d(e_size), nn.LeakyReLU() , nn.Dropout(dropout_rate) ) self.reduce = nn.utils.weight_norm(nn.Linear(e_size,5)) def forward(self,xi,xf): e_out = self.e(xi) f_out = self.deep(xf) ef_out = self.reduce(e_out+f_out) return ef_out <load_pretrained>
new_coordinates = np.matmul(vectors, standardized_data.T) print(new_coordinates.shape) new_coordinates = np.vstack(( new_coordinates, mnist_train_label)).T
Digit Recognizer
10,029,170
epochs = 200 path = '/kaggle/input/pytorch-nn-model-more-feature-engineering/marketpredictor_state_dict_'+str(epochs)+'epochs.pt' model = MarketPredictor() model.load_state_dict(torch.load(path,map_location=dev)) model.to(dev) model.eval()<load_pretrained>
df_new = pd.DataFrame(new_coordinates, columns=["f1", "f2", "labels"]) df_new.head()
Digit Recognizer
10,029,170
with open('/kaggle/input/pytorch-nn-model-more-feature-engineering/feature_processing.pkl', 'rb')as f: sc, pca, maxindex, fill_val, remove_names= pickle.load(f )<define_variables>
pca = decomposition.PCA() pca.n_components = 2 pca_data = pca.fit_transform(standardized_data) pca_data.shape
Digit Recognizer
10,029,170
feature_names = ['feature_'+str(i)for i in range(1,130)] exclude = np.where([maxindex[i,1] > 100 and maxindex [i,2] > 1 for i in range(129)])[0] keep = np.where([(feature_names[i] != remove_names ).all() for i in range(129)])[0]<split>
pca_data = np.vstack(( pca_data.T, mnist_train_label)).T
Digit Recognizer
10,029,170
env = janestreet.make_env() iter_test = env.iter_test()<data_type_conversions>
df_PCA = pd.DataFrame(new_coordinates, columns=["f1", "f2", "labels"]) df_PCA.head()
Digit Recognizer
10,029,170
for(test_df, sample_prediction_df)in iter_test: if test_df['weight'].item() == 0: sample_prediction_df.action = 0 else: test_df_features = test_df[feature_names].to_numpy() for i in exclude: if test_df_features[0,i] == maxindex[i,0]: test_df_features[0,i] = fill_val[i] test_df_int_features = test_df['feature_0'].to_numpy() nans = np.isnan(test_df_features) for i in range(129): if nans[0,i]: test_df_features[0,i] = fill_val[i] test_df_features = test_df_features[:,keep] test_df_features_scaled = sc.transform(test_df_features) test_df_features_pca=pca.transform(test_df_features_scaled) itensor = torch.tensor(( test_df_int_features+1)//2,dtype=torch.long,device=dev) ftensor = torch.tensor(test_df_features_pca,dtype=torch.float,device=dev) s = model(itensor,ftensor)[0,0].item() sample_prediction_df.action = int(np.round(1/(1+np.exp(-s)))) env.predict(sample_prediction_df) <choose_model_class>
mnist_train_data = np.array(mnist_train_data) mnist_train_label = np.array(mnist_train_label )
Digit Recognizer
10,029,170
e_size = 64 fc_input = 130 h_dims = [512,512,256,128] dropout_rate = 0.5 epochs = 2000 minibatch_size = 100000 class MarketPredictor(nn.Module): def __init__(self): super(MarketPredictor, self ).__init__() self.deep = nn.Sequential( nn.Linear(fc_input,h_dims[0]), nn.BatchNorm1d(h_dims[0]), nn.LeakyReLU() , nn.Dropout(dropout_rate), nn.Linear(h_dims[0],h_dims[1]), nn.BatchNorm1d(h_dims[1]), nn.LeakyReLU() , nn.Dropout(dropout_rate), nn.Linear(h_dims[1],h_dims[2]), nn.BatchNorm1d(h_dims[2]), nn.LeakyReLU() , nn.Dropout(dropout_rate), nn.Linear(h_dims[2],h_dims[3]), nn.BatchNorm1d(h_dims[3]), nn.LeakyReLU() , nn.Dropout(dropout_rate), nn.Linear(h_dims[3],e_size), nn.BatchNorm1d(e_size), nn.LeakyReLU() , nn.Dropout(dropout_rate) ) self.reduce = nn.utils.weight_norm(nn.Linear(e_size,5)) def forward(self,xf): f_out = self.deep(xf) ef_out = self.reduce(f_out) return ef_out <load_pretrained>
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Lambda, Flatten, BatchNormalization from tensorflow.keras.layers import Conv2D, MaxPool2D, AvgPool2D from tensorflow.keras.optimizers import Adadelta from keras.utils.np_utils import to_categorical from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ReduceLROnPlateau from tensorflow.keras.callbacks import LearningRateScheduler
Digit Recognizer
10,029,170
path = '/kaggle/input/pytorch-nn-model-w-o-feature-reduction/marketpredictor_state_dict_'+str(epochs)+'epochs.pt' model = MarketPredictor() model.load_state_dict(torch.load(path,map_location=dev)) model.to(dev) model.eval()<load_pretrained>
nclasses = mnist_train_label.max() - mnist_train_label.min() + 1 mnist_train_label = to_categorical(mnist_train_label, num_classes = nclasses) print("Shape of ytrain after encoding: ", mnist_train_label.shape )
Digit Recognizer
10,029,170
with open('/kaggle/input/pytorch-nn-model-w-o-feature-reduction/feature_processing.pkl', 'rb')as f: sc, maxindex, fill_val = pickle.load(f )<define_variables>
def build_model(input_shape=(28, 28, 1)) : model = Sequential() model.add(Conv2D(32, kernel_size = 3, activation='relu', input_shape = input_shape)) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(128, kernel_size = 4, activation='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) return model def compile_model(model, optimizer='adam', loss='categorical_crossentropy'): model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"]) def train_model(model, train, test, epochs, split): history = model.fit(train, test, shuffle=True, epochs=epochs, validation_split=split) return history
Digit Recognizer
10,029,170
feature_names = ['feature_'+str(i)for i in range(130)] exclude = np.where([maxindex[i,1] > 100 and maxindex [i,2] > 1 for i in range(129)])[0]<split>
cnn_model = build_model(( 28, 28, 1)) compile_model(cnn_model, 'adam', 'categorical_crossentropy') model_history = train_model(cnn_model, mnist_train_data, mnist_train_label, 80, 0.2 )
Digit Recognizer
10,029,170
env = janestreet.make_env() iter_test = env.iter_test()<data_type_conversions>
predictions = cnn_model.predict(mnist_test_arr )
Digit Recognizer
10,029,170
for(test_df, sample_prediction_df)in iter_test: if test_df['weight'].item() == 0: sample_prediction_df.action = 0 else: test_df_features = test_df[feature_names].to_numpy() for i in exclude: if test_df_features[0,i+1] == maxindex[i,0]: test_df_features[0,i+1] = fill_val[i] nans = np.isnan(test_df_features) for i in range(130): if nans[0,i]: test_df_features[0,i] = fill_val[i] test_df_features = sc.transform(test_df_features) ftensor = torch.tensor(test_df_features,dtype=torch.float,device=dev) s = model(ftensor)[0,0].item() sample_prediction_df.action = int(np.round(1/(1+np.exp(-s)))) env.predict(sample_prediction_df )<import_modules>
predictions_test = [] for i in predictions: predictions_test.append(np.argmax(i))
Digit Recognizer
10,029,170
from tensorflow.keras.layers import Input, Dense, BatchNormalization, Dropout, Concatenate, Lambda, GaussianNoise, Activation from tensorflow.keras.models import Model, Sequential from tensorflow.keras.losses import BinaryCrossentropy from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers.experimental.preprocessing import Normalization from keras.callbacks import ModelCheckpoint import tensorflow as tf import numpy as np import pandas as pd from tqdm import tqdm from random import choices import dask.dataframe as dd from glob import glob import os<choose_model_class>
submission = pd.DataFrame({ "ImageId": mnist_test.index+1, "Label": predictions_test }) submission.to_csv('my_submission.csv', index=False )
Digit Recognizer
8,460,609
def create_mlp( num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate ): inp = tf.keras.layers.Input(shape=(num_columns,)) x = tf.keras.layers.BatchNormalization()(inp) x = tf.keras.layers.Dropout(dropout_rates[0] )(x) for i in range(len(hidden_units)) : x = tf.keras.layers.Dense(hidden_units[i] )(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Activation(tf.keras.activations.swish )(x) x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x) x = tf.keras.layers.Dense(num_labels )(x) out = tf.keras.layers.Activation("sigmoid" )(x) model = tf.keras.models.Model(inputs=inp, outputs=out) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing), metrics=tf.keras.metrics.AUC(name="AUC"), ) return model<prepare_x_and_y>
train_df = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test_df = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") submission_df = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv" )
Digit Recognizer
8,460,609
data = dd.read_parquet('.. /input/janestreetparquetdata/date*.parquet') features = ['feature_{}'.format(i)for i in range(130)] resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4'] train = data.compute() train = train.query('date > 85' ).reset_index(drop = True) train = train[train['weight'] != 0] f_mean = train[features].mean().values train = train.dropna() X_train = train[features].values y_train =(train[resp_cols]> 0 ).astype(int ).values<init_hyperparams>
X_train = train_df.iloc[:, 1:].values y_train = train_df.iloc[:, 0].values X_test = test_df.values print(f"X_train shape: {X_train.shape}") print(f"y_train shape: {y_train.shape}") print(f"X_test shape: {X_test.shape}" )
Digit Recognizer
8,460,609
SEED = 1111 tf.random.set_seed(SEED) np.random.seed(SEED) hidden_units = [150, 150, 150] dropout_rates = [0.2, 0.2, 0.2, 0.2] label_smoothing = 1e-2 learning_rate = 1e-3 epochs = 250 batch_size = 5000 save_every_n_epochs = 10 save_freq =(len(X_train)//batch_size)*save_every_n_epochs clf = create_mlp( len(features), len(resp_cols), hidden_units, dropout_rates, label_smoothing, learning_rate ) checkpoint_path = "./cp-{epoch:04d}.ckpt" checkpoint = ModelCheckpoint(checkpoint_path,save_weights_only=True,save_freq=save_freq) clf.fit(X_train, y_train, epochs=epochs, batch_size=batch_size,callbacks=[checkpoint]) clf.save_weights('./SimpleMLP.ckpt' )<define_search_space>
X_train_combined = np.r_[X_train, X_train_add] y_train_combined = np.r_[y_train, y_train_add] del X_train del X_train_add del y_train del y_train_add print(f"X_train_combined shape: {X_train_combined.shape}") print(f"y_train_combined shape: {y_train_combined.shape}" )
Digit Recognizer
8,460,609
class TrainData(Dataset): def __init__(self,file_name,root_dir,predict=False): self.file_name = file_name self.root_dir = root_dir self.feature = ['feature_{}'.format(i)for i in range(130)] self.resp = ['resp_{}'.format(i)for i in range(1,5)]+['resp'] self.prediction = predict def __len__(self): return len(glob(os.path.join(self.root_dir,'*.parquet'))) def __getitem__(self, idx): data = pd.read_parquet(os.path.join(self.root_dir,self.file_name+'_{}.parquet'.format(idx))) X = data[self.feature].values W = data['weight'].values R = data['resp'].values return X,W,R<categorify>
class ImageReshaper(BaseEstimator, TransformerMixin): def __init__(self, shape): self.shape = shape def fit(self, X, y=None): return self def transform(self, X, y=None): return X.reshape(self.shape )
Digit Recognizer
8,460,609
dataset = TrainData('date','.. /input/janestreetparquetdata/',predict = True) weight_path = glob('./*.ckpt.index') weight_path = [os.path.basename(each ).split('.')[0] for each in weight_path] weight_path.sort() for path in weight_path: clf.load_weights('./{}.ckpt'.format(path)) p = [] for i in range(len(dataset)) : net_input,weight,resp= dataset[i] net_input = np.nan_to_num(net_input)+f_mean*(np.isnan(net_input ).astype(int)) net_prediction = clf.predict(net_input) pre =(np.median(net_prediction,axis=1)>0.5 ).astype(int) p.append(( weight*resp*pre ).sum()) result = pd.DataFrame(data={'p':p}) result ['p2'] = result['p']**2 t =(result['p'].sum() /np.sqrt(result['p2'].sum())) *(np.sqrt(250/len(dataset))) print(path,min(max(t,0),6)*result['p'].sum() )<load_pretrained>
def build_lenet5_model() : model = Sequential() model.add(Conv2D(6, kernel_size=5, activation='relu', input_shape=(28,28,1))) model.add(MaxPooling2D()) model.add(Conv2D(16, kernel_size=5, activation='relu')) model.add(MaxPooling2D()) model.add(Flatten()) model.add(Dense(400, activation='relu')) model.add(Dense(120, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
Digit Recognizer
8,460,609
selection = 'cp-0200' clf.load_weights('./{}.ckpt'.format(selection))<predict_on_test>
def build_custom_lenet5_model() : model = Sequential() model.add(Conv2D(32,kernel_size=3,activation='relu',input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(32,kernel_size=3,activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32,kernel_size=5,strides=2,padding='same',activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64,kernel_size=3,activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64,kernel_size=3,activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64,kernel_size=5,strides=2,padding='same',activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
Digit Recognizer
8,460,609
env = janestreet.make_env() th = 0.5 for(test_df, pred_df)in tqdm(env.iter_test()): if test_df['weight'].item() > 0: x_tt = test_df.loc[:, features].values x_tt = np.nan_to_num(x_tt)+f_mean*(np.isnan(x_tt ).astype(int)) pred = np.median(clf(x_tt, training=False)) pred_df.action = np.where(pred >= th, 1, 0 ).astype(int) else: pred_df.action = 0 env.predict(pred_df )<load_pretrained>
stratified_fold = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) for fold, indices in enumerate(stratified_fold.split(X_train_combined, y_train_combined)) : X_train_, y_train_ = X_train_combined[indices[0]], y_train_combined[indices[0]] X_test_, y_test_ = X_train_combined[indices[1]], y_train_combined[indices[1]] model_pipeline = Pipeline([ ('min_max_scaler', MinMaxScaler()), ('image_reshaper', ImageReshaper(shape=(-1, 28, 28, 1))), ('model', KerasClassifier(build_lenet5_model, epochs=5, batch_size=32)) ]) model_pipeline.fit(X_train_, y_train_) predictions = model_pipeline.predict(X_test_) print(f"Classification report for Fold {fold + 1}:") print(classification_report(y_test_, predictions, digits=3), end=" ") print(f"Confusion Matrix for Fold {fold + 1}:") print(confusion_matrix(y_test_, predictions), end=" ") del X_train_ del X_test_ del y_train_ del y_test_
Digit Recognizer
8,460,609
SEED = 1111 inference = False cv = False tf.random.set_seed(SEED) np.random.seed(SEED) train_pickle_file = '/kaggle/input/pickling/train.csv.pandas.pickle' train = pickle.load(open(train_pickle_file, 'rb')) train = train.query('date > 85' ).reset_index(drop = True) train = train[train['weight'] != 0] train.fillna(train.mean() ,inplace=True) train['action'] =(( train['resp'].values)> 0 ).astype(int) train['bias'] = 1 features = [c for c in train.columns if "feature" in c]<normalization>
lenet5_model = Pipeline([ ('min_max_scaler', MinMaxScaler()), ('image_reshaper', ImageReshaper(shape=(-1, 28, 28, 1))), ('model', KerasClassifier(build_lenet5_model, epochs=5, batch_size=32)) ]) custom_lenet5_model = Pipeline([ ('min_max_scaler', MinMaxScaler()), ('image_reshaper', ImageReshaper(shape=(-1, 28, 28, 1))), ('model', KerasClassifier(build_custom_lenet5_model, epochs=20, batch_size=32)) ]) lenet5_model.fit(X_train_combined, y_train_combined) lenet5_model_predictions = lenet5_model.predict_proba(X_test) custom_lenet5_model.fit(X_train_combined, y_train_combined) custom_lenet5_model_predictions = custom_lenet5_model.predict_proba(X_test )
Digit Recognizer
8,460,609
def build_neutralizer(train, features, proportion, return_neut=False): neutralizer = {} neutralized_features = np.zeros(( train.shape[0], len(features))) target = train[['resp', 'bias']].values for i, f in enumerate(features): feature = train[f].values.reshape(-1, 1) coeffs = np.linalg.lstsq(target, feature)[0] neutralized_features[:, i] =(feature -(proportion * target.dot(coeffs)) ).squeeze() neutralizer = np.linalg.lstsq(train[features+['bias']].values, neutralized_features)[0] if return_neut: return neutralized_features, neutralizer else: return neutralizer def neutralize_array(array, neutralizer): neutralized_array = array.dot(neutralizer) return neutralized_array def test_neutralization() : dummy_train = train.loc[:100000, :] proportion = 1.0 neutralized_features, neutralizer = build_neutralizer(dummy_train, features, proportion, True) dummy_neut_train = neutralize_array(dummy_train[features+['bias']].values, neutralizer) print(neutralized_features[0, :10], dummy_neut_train[0, :10]) test_neutralization()<feature_engineering>
predictions = lenet5_model_predictions + custom_lenet5_model_predictions predictions = np.argmax(predictions, axis=1 )
Digit Recognizer
8,460,609
<prepare_x_and_y><EOS>
submission_df["Label"] = predictions submission_df.to_csv('submissions.csv', index=False) FileLink('submissions.csv' )
Digit Recognizer
1,425,655
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
%matplotlib inline
Digit Recognizer
1,425,655
def create_mlp( num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate ): inp = tf.keras.layers.Input(shape=(num_columns,)) x = tf.keras.layers.BatchNormalization()(inp) x = tf.keras.layers.Dropout(dropout_rates[0] )(x) for i in range(len(hidden_units)) : x = tf.keras.layers.Dense(hidden_units[i] )(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Activation(tf.keras.activations.swish )(x) x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x) x = tf.keras.layers.Dense(num_labels )(x) out = tf.keras.layers.Activation("sigmoid" )(x) model = tf.keras.models.Model(inputs=inp, outputs=out) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing), metrics=tf.keras.metrics.AUC(name="AUC"), ) return model batch_size = 5000 hidden_units = [150, 150, 150] dropout_rates = [0.2, 0.2, 0.2, 0.2] label_smoothing = 1e-2 learning_rate = 1e-3 epochs = 200 clf = create_mlp( len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate ) if inference: clf = keras.models.load_model('keras_nn') else: clf.fit(X, y, epochs=epochs, batch_size=5000) clf.save('keras_nn') models = [] models.append(clf) th = 0.5000 f = np.median models = models[-3:] <split>
IMG_ROWS = 28 IMG_COLS = 28 NUM_CLASSES = 10 TEST_SIZE = 0.1 RANDOM_STATE = 2018 NO_EPOCHS = 150 PATIENCE = 20 VERBOSE = 1 BATCH_SIZE = 128 IS_LOCAL = False if(IS_LOCAL): PATH=".. /input/digit-recognizer/" else: PATH=".. /input/" print(os.listdir(PATH))
Digit Recognizer
1,425,655
if cv: oof_probas = np.zeros(y.shape) val_idx_all = [] N_SPLITS = 5 gkf = GroupKFold(n_splits=N_SPLITS) for fold,(train_idx, val_idx)in enumerate(gkf.split(train.action.values, groups=train.date.values)) : X_train, X_val = X.iloc[train_idx], X.iloc[val_idx].values y_train, y_val = y[train_idx], y[val_idx] clf.fit(X_train, y_train, epochs=epochs, batch_size=5000) oof_probas[val_idx] += clf(X_val, training=False ).numpy() score = roc_auc_score(y_val, oof_probas[val_idx]) print(f'FOLD {fold} ROC AUC:\t {score}') del X_train, X_val, y_train, y_val gc.collect() val_idx_all.append(val_idx) val_idx = np.concatenate(val_idx_all) <compute_test_metric>
train_file = PATH+"train.csv" test_file = PATH+"test.csv" train_df = pd.read_csv(train_file) test_df = pd.read_csv(test_file )
Digit Recognizer
1,425,655
if cv: auc_oof = roc_auc_score(y[val_idx], oof_probas[val_idx]) print(auc_oof )<compute_test_metric>
print("MNIST train - rows:",train_df.shape[0]," columns:", train_df.shape[1]) print("MNIST test - rows:",test_df.shape[0]," columns:", test_df.shape[1] )
Digit Recognizer
1,425,655
def determine_action(df, thresh): action =(df.weight * df.resp > thresh ).astype(int) return action def date_weighted_resp(df): cols = ['weight', 'resp', 'action'] weighted_resp = np.prod(df[cols], axis=1) return weighted_resp.sum() def calculate_t(dates_p): e_1 = dates_p.sum() / np.sqrt(( dates_p**2 ).sum()) e_2 = np.sqrt(250/np.abs(len(dates_p))) return e_1 * e_2 def calculate_u(df, thresh): df = df.copy() dates_p = df.groupby('date' ).apply(date_weighted_resp) t = calculate_t(dates_p) return t, min(max(t, 0), 6)* dates_p.sum() def plot_roc_curve(fpr, tpr, label=None): plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, linewidth=2, label=label) plt.plot([0, 1], [0, 1], 'k--', label='Random') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc='lower right') plt.grid() def plot_precision_recall_curve(precisions, recalls, thresholds): plt.figure(figsize=(8, 6)) plt.plot(thresholds, precisions[:-1], 'b--', label='Precision') plt.plot(thresholds, recalls[:-1], 'g-', label='Recall') plt.xlabel('Thresholds') plt.legend(loc='lower left') plt.grid() def plot_thresh_u_t(df, oof): threshs = np.linspace(0, 1, 1000) ts = [] us = [] for thresh in threshs: df['action'] = np.where(oof >= thresh, 1, 0) t, u = calculate_u(df, thresh) ts.append(t) us.append(u) ts = np.array(ts) us = np.array(us) ts = np.where(np.isnan(ts), 0.0, ts) us = np.where(np.isnan(us), 0.0, us) tmax = np.argmax(ts) umax = np.argmax(us) print(f'Max Utility Score: {us[umax]}') fig, axes = plt.subplots(1, 2, figsize=(14, 4)) axes[0].plot(threshs, ts) axes[0].set_title('Different t scores by threshold') axes[0].set_xlabel('Threshold') axes[0].axvline(threshs[tmax]) axes[1].plot(threshs, us) axes[1].set_title('Different u scores by threshold') axes[1].set_xlabel('Threshold') axes[1].axvline(threshs[umax], color='r', linestyle='--', linewidth=1.2) print(f'Optimal Threshold: {threshs[umax]}') return threshs[umax] <feature_engineering>
def get_classes_distribution(data): label_counts = data["label"].value_counts() total_samples = len(data) for i in range(len(label_counts)) : label = label_counts.index[i] count = label_counts.values[i] percent =(count / total_samples)* 100 print("{}: {} or {}%".format(label, count, percent)) get_classes_distribution(train_df )
Digit Recognizer
1,425,655
env = janestreet.make_env() for(test_df, pred_df)in tqdm(env.iter_test()): if test_df['weight'].item() > 0: x_tt = test_df.loc[:, features].values if np.isnan(x_tt[:, 1:].sum()): x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean x_tt = np.append(x_tt, [[1]], axis=1) x_tt = neutralize_array(x_tt, neutralizer) pred = np.mean([model(x_tt, training = False ).numpy() for model in models],axis=0) pred = f(pred) pred_df.action = np.where(pred >= opt_thresh, 1, 0 ).astype(int) else: pred_df.action = 0 env.predict(pred_df )<install_modules>
def sample_images_data(data, hasLabel=True): sample_images = [] sample_labels = [] if(hasLabel): for k in range(0,10): samples = data[data["label"] == k].head(4) for j, s in enumerate(samples.values): img = np.array(samples.iloc[j, 1:] ).reshape(IMG_ROWS,IMG_COLS) sample_images.append(img) sample_labels.append(samples.iloc[j, 0]) else: samples = data.iloc[random.sample(range(1, 10000), 40),] for j, s in enumerate(samples.values): img = np.array(samples.iloc[j, 0:] ).reshape(IMG_ROWS,IMG_COLS) sample_images.append(img) sample_labels.append(-1) print("Total number of sample images to plot: ", len(sample_images)) return sample_images, sample_labels train_sample_images, train_sample_labels = sample_images_data(train_df )
Digit Recognizer
1,425,655
def install(package): subprocess.check_call([sys.executable, "-m", "pip","install",package]) install(".. /input/fastremap/fastremap-1.10.2-cp37-cp37m-manylinux1_x86_64.whl") install(".. /input/fillvoids/fill_voids-2.0.0-cp37-cp37m-manylinux1_x86_64.whl") install(".. /input/finalmask") install("pydicom" )<set_options>
def data_preprocessing(raw, hasLabel=True): start_pixel = 0 if(hasLabel): start_pixel = 1 if(hasLabel): out_y = keras.utils.to_categorical(raw.label, NUM_CLASSES) else: out_y = None num_images = raw.shape[0] x_as_array = raw.values[:,start_pixel:] x_shaped_array = x_as_array.reshape(num_images, IMG_ROWS, IMG_COLS, 1) out_x = x_shaped_array / 255 return out_x, out_y
Digit Recognizer
1,425,655
sns.set(style="whitegrid") sns.set_context("paper") <define_variables>
X, y = data_preprocessing(train_df) X_test, y_test = data_preprocessing(test_df,hasLabel=False )
Digit Recognizer
1,425,655
def seed_everything(seed=2020): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed) seed_everything(42 )<load_from_csv>
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=TEST_SIZE, random_state=RANDOM_STATE )
Digit Recognizer
1,425,655
ROOT = ".. /input/osic-pulmonary-fibrosis-progression" train=pd.read_csv(f"{ROOT}/train.csv") train.head()<load_from_csv>
print("MNIST train - rows:",X_train.shape[0]," columns:", X_train.shape[1:4]) print("MNIST valid - rows:",X_val.shape[0]," columns:", X_val.shape[1:4]) print("MNIST test - rows:",X_test.shape[0]," columns:", X_test.shape[1:4] )
Digit Recognizer
1,425,655
sample_submission=pd.read_csv(f"{ROOT}/sample_submission.csv") test=pd.read_csv(f"{ROOT}/test.csv") test.head()<merge>
model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3),activation='relu', padding="same", kernel_initializer='he_normal',input_shape=(IMG_ROWS, IMG_COLS, 1))) model.add(BatchNormalization()) model.add(Conv2D(32,kernel_size=(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32,kernel_size=5,strides=2,padding='same',activation='relu')) model.add(MaxPooling2D(( 2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64, kernel_size=(3, 3), strides=2,padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size=(3, 3), strides=2,padding='same', activation='relu')) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(NUM_CLASSES, activation='softmax'))
Digit Recognizer
1,425,655
train['Patient_Week']=train['Patient']+'_'+train['Weeks'].astype(str) lists=train['Patient_Week'][train.duplicated(['Patient_Week'], keep=False)].unique().tolist() for patient_week in lists: new_row=train.loc[train['Patient_Week']==patient_week].groupby(['Patient','Weeks','Age','Sex','SmokingStatus','Patient_Week'] ).mean().copy() train=train[train['Patient_Week']!=patient_week] train=train.append(new_row.reset_index()) add=train.copy() add.rename(columns={'Weeks':'base_weeks','FVC':'base_fvc'},inplace=True) final=train.merge(add,on='Patient') final.drop(['Patient_Week_x','Age_y','Sex_y','SmokingStatus_y','Percent_y'],axis=1,inplace=True) final.rename(columns={'Weeks':'base_week','FVC':'base_fvc','base_fvc':'FVC','Percent_x':'base_percent','Patient_Week_y':'Patient_Week','Age_x':'Age','Sex_x':'sex','SmokingStatus_x':'smokingstatus','base_weeks':'predict_week'},inplace=True) final['weeks_passed']=final['predict_week']-final['base_week'] cols=['Patient','Patient_Week', 'base_week', 'base_fvc', 'base_percent', 'Age', 'sex','smokingstatus','predict_week','weeks_passed', 'FVC'] final=final[cols] final=final.loc[final['weeks_passed']!=0] final.reset_index(drop=True,inplace=True) final.head() <feature_engineering>
model.compile(loss = "categorical_crossentropy", optimizer="adam", metrics=["accuracy"] )
Digit Recognizer
1,425,655
test.rename(columns={'Weeks': 'base_Week', 'FVC': 'base_FVC', 'Percent': 'base_Percent', 'Age': 'base_Age'},inplace=True) Week=sample_submission['Patient_Week'].apply(lambda x : x.split('_')[1] ).unique() Week=np.tile(Week, len(test['Patient'])) test=test.loc[test.index.repeat(146)].reset_index(drop=True) test['predict_week']=Week test['Patient_Week']=test['Patient']+'_'+test['predict_week'] test['weeks_passed']=test['predict_week'].astype(int)-test['base_Week'].astype(int) test.rename(columns={'base_Week':'base_week','base_FVC':'base_fvc','base_Percent':'base_percent','base_Age':'Age','Sex':'sex','SmokingStatus':'smokingstatus'},inplace=True) cols=['Patient','Patient_Week','base_week','base_fvc','base_percent','Age','sex','smokingstatus','predict_week','weeks_passed'] test=test[cols] print(test.shape) test.head()<load_pretrained>
plot_model(model, to_file='model.png') SVG(model_to_dot(model ).create(prog='dot', format='svg'))
Digit Recognizer
1,425,655
file_path= '.. /input/osic-pulmonary-fibrosis-progression/train/ID00007637202177411956430/10.dcm' dataset = pydicom.dcmread(file_path) <compute_test_metric>
NO_EPOCHS = 10
Digit Recognizer
1,425,655
def score(y_true, y_pred): tf.dtypes.cast(y_true, tf.float32) tf.dtypes.cast(y_pred, tf.float32) sigma = abs(y_pred[:,2] - y_pred[:,0]) fvc_pred = y_pred[:,1] sigma_clip = tf.maximum(sigma, 70) delta = tf.abs(y_true[:, 0] - fvc_pred) delta = tf.minimum(delta, 1000) sq2 = tf.sqrt(tf.dtypes.cast(2, dtype=tf.float32)) metric =(delta / sigma_clip)*sq2 + tf.math.log(sigma_clip* sq2) return metric def qloss(y_true, y_pred): qs = [0.8,0.5,0.2] q = tf.constant(np.array([qs]), dtype=tf.float32) e = y_true - y_pred v = tf.maximum(q*e,(q-1)*e) return kb.mean(v) def mloss(_lambda): def loss(y_true, y_pred): return _lambda * qloss(y_true, y_pred)+(1 - _lambda)*score(y_true, y_pred) return loss<load_pretrained>
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE) checkpointer = ModelCheckpoint('best_model.h5', monitor='val_acc', verbose=VERBOSE, save_best_only=True, save_weights_only=True) history = model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=NO_EPOCHS, verbose=1, validation_data=(X_val, y_val), callbacks=[earlystopper, checkpointer] )
Digit Recognizer
1,425,655
input_image = sitk.ReadImage('.. /input/osic-pulmonary-fibrosis-progression/train/ID00007637202177411956430/12.dcm') segmentation = mask.apply(input_image) plt.figure(figsize=(10,10)) plt.imshow(segmentation[0] )<load_from_csv>
print("run model - predict validation set") score = model.evaluate(X_val, y_val, verbose=0) print(f'Last validation loss: {score[0]}, accuracy: {score[1]}') model_optimal = model model_optimal.load_weights('best_model.h5') score = model_optimal.evaluate(X_val, y_val, verbose=0) print(f'Best validation loss: {score[0]}, accuracy: {score[1]}' )
Digit Recognizer
1,425,655
atten=pd.read_csv('.. /input/attent-1/atten(1 ).csv') patients=os.listdir(f"{ROOT}/{how}") avg_atten_test=[] for patient in patients: try: mid=mid_image_test(patient,True,True) postives=mid>mid.min() mid[postives].mean() avg_atten_test.append(mid[postives].mean()) except: avg_atten_test.append(np.nan) continue<prepare_x_and_y>
def predict_show_classes(model, X_val, y_val): predicted_classes = model.predict_classes(X_val) y_true = np.argmax(y_val,axis=1) correct = np.nonzero(predicted_classes==y_true)[0] incorrect = np.nonzero(predicted_classes!=y_true)[0] print("Correct predicted classes:",correct.shape[0]) print("Incorrect predicted classes:",incorrect.shape[0]) target_names = ["Class {}:".format(i)for i in range(NUM_CLASSES)] print(classification_report(y_true, predicted_classes, target_names=target_names)) return correct, incorrect
Digit Recognizer
1,425,655
final1=final.copy() final1=final1.merge(atten,on='Patient') X1=final1[['base_fvc','base_percent','Age','sex','smokingstatus','weeks_passed','avg_atten','base_week']].copy() y1=final1.FVC.copy()<categorify>
correct, incorrect = predict_show_classes(model, X_val, y_val )
Digit Recognizer
1,425,655
enc = OneHotEncoder(handle_unknown='ignore') enc.fit(X1[['sex','smokingstatus']]) encoded=pd.DataFrame(enc.transform(X1[['sex','smokingstatus']] ).toarray()) X1=X1.join(encoded) X1.drop(['smokingstatus','sex'],axis=1,inplace=True) scaler=preprocessing.MinMaxScaler().fit(X1) X1=pd.DataFrame(scaler.transform(X1)) X1.head()<categorify>
correct, incorrect = predict_show_classes(model_optimal, X_val, y_val )
Digit Recognizer
1,425,655
atten_test=pd.DataFrame({'Patient':patients,'avg_atten':avg_atten_test}) atten_test['avg_atten']=atten_test['avg_atten'].fillna(atten["avg_atten"].mean()) X_test=test.merge(atten_test,on='Patient') X_test=X_test[['base_fvc','base_percent','Age','sex','smokingstatus','weeks_passed','avg_atten','base_week']].copy() encoded=pd.DataFrame(enc.transform(X_test[['sex','smokingstatus']] ).toarray()) X_test=X_test.join(encoded) X_test.drop(['smokingstatus','sex'],axis=1,inplace=True) X_test=pd.DataFrame(scaler.transform(X_test)) X1=X1.astype(np.float32) y1=y1.astype(np.float32 )<choose_model_class>
y_cat = model.predict(X_test, batch_size=64 )
Digit Recognizer
1,425,655
inputs= keras.Input(shape=[11]) dense = layers.Dense(100, activation="relu") x = dense(inputs) x = layers.Dense(100, activation="relu" )(x) output1 = layers.Dense(3,activation='linear' )(x) model = keras.Model(inputs=inputs, outputs=output1) model.summary()<train_model>
y_pred = np.argmax(y_cat,axis=1 )
Digit Recognizer
1,425,655
model.compile(loss=mloss(0.8),optimizer='adam',metrics=score) model.fit(X1, y1,batch_size=512,epochs=130 )<predict_on_test>
output_file = "submission.csv" with open(output_file, 'w')as f : f.write('ImageId,Label ') for i in range(len(y_pred)) : f.write("".join([str(i+1),',',str(y_pred[i]),' ']))
Digit Recognizer
1,425,655
preds_high=model.predict(X_test)[:,0] preds_low=model.predict(X_test)[:,2] preds=model.predict(X_test)[:,1]<prepare_output>
y_cat = model_optimal.predict(X_test, batch_size=64) y_pred = np.argmax(y_cat,axis=1) output_file = "submission_optimal.csv" with open(output_file, 'w')as f : f.write('ImageId,Label ') for i in range(len(y_pred)) : f.write("".join([str(i+1),',',str(y_pred[i]),' ']))
Digit Recognizer
2,712,650
preds_set=pd.DataFrame({'preds_high':preds_high}) preds_set['preds']=preds preds_set['preds_low']=preds_low preds_set['sigma_pred']=abs(preds_set['preds_high']-preds_set['preds_low']) preds_set.reset_index(inplace=True,drop=True) preds_set<save_to_csv>
print(K.image_data_format() )
Digit Recognizer
2,712,650
submission=pd.DataFrame({'Patient_Week':test['Patient_Week'],'FVC': preds_set['preds'],'Confidence':preds_set['sigma_pred']}) submission['FVC']=submission['FVC'].apply(lambda x: round(x, 4)) /1 submission['Confidence']=submission['Confidence'].apply(lambda x: round(x, 4)) submission.to_csv('submission.csv',index=False) submission.head()<load_pretrained>
( x_train, y_train),(x_test, y_test)= mnist.load_data()
Digit Recognizer
2,712,650
train_arc = zipfile.ZipFile('/kaggle/input/whats-cooking/train.json.zip','r') train_data = pd.read_json(train_arc.read('train.json')) train_data.head()<load_pretrained>
y_train = to_categorical(y_train, num_classes = 10) y_test = to_categorical(y_test, num_classes=10 )
Digit Recognizer
2,712,650
test_arc = zipfile.ZipFile('/kaggle/input/whats-cooking/test.json.zip','r') test_data = pd.read_json(test_arc.read('test.json')) test_data.head()<count_values>
x_train.astype('float32') x_test.astype('float32' )
Digit Recognizer
2,712,650
train_data['cuisine'].value_counts()<feature_engineering>
x_train = x_train/255 x_test = x_test/255
Digit Recognizer
2,712,650
train_ingredients_count = {} for i in range(len(train_data)) : for j in train_data['ingredients'][i]: if j in train_ingredients_count.keys() : train_ingredients_count[j]+=1 else: train_ingredients_count[j] = 1<count_values>
input_shape =(28,28,1) model = Sequential() model.add(Conv2D(96,(3, 3), padding='Same', activation='relu', input_shape=input_shape)) model.add(BatchNormalization()) model.add(Conv2D(96,(3, 3), padding='Same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(192,(3,3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(256,(3,3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Conv2D(256,(3,3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(256,(3,3), activation='relu', padding='same')) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(units=10, activation='softmax'))
Digit Recognizer
2,712,650
train_ingredients_count['romaine lettuce']<feature_engineering>
call_back = keras.callbacks.EarlyStopping(monitor='val_acc', min_delta=0, patience=5, verbose=0, restore_best_weights=True) reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', factor=0.25, verbose=1, patience=2, min_lr=0.000001 )
Digit Recognizer
2,712,650
test_ingredients_count = {} for i in range(len(test_data)) : for j in test_data['ingredients'][i]: if j in test_ingredients_count.keys() : test_ingredients_count[j]+=1 else: test_ingredients_count[j] = 1<define_variables>
model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(lr=0.001), metrics=['accuracy']) train_datagen = ImageDataGenerator(shear_range=0.2, zoom_range=0.2, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, height_shift_range=.1, rotation_range=10, width_shift_range=.1) train_datagen.fit(x_train) history = model.fit_generator( train_datagen.flow(x_train,y_train, batch_size=128), steps_per_epoch=x_train.shape[0] // 128, epochs=32, validation_data=(x_test,y_test),callbacks=[call_back, reduce_lr] )
Digit Recognizer
2,712,650
train_ingred_miss = [] for i in test_ingredients_count.keys() : if i not in train_ingredients_count.keys() : train_ingred_miss.append(i )<feature_engineering>
xtest = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
2,712,650
<define_variables><EOS>
submission = model.predict(xtest) submission = np.argmax(submission, axis = 1) submission = pd.Series(submission,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),submission],axis = 1) submission.to_csv("submission.csv",index=False )
Digit Recognizer
2,188,530
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering>
tf.set_random_seed(42 )
Digit Recognizer
2,188,530
for i in test_ingred_miss: test_ingredients_count[i] = 0 len(test_ingredients_count )<feature_engineering>
train_path = os.path.join('.. ', 'input', 'train.csv') test_path = os.path.join('.. ', 'input', 'test.csv') size = 28 lr = 0.001 num_classes = 10 epochs = 30 batch_size = 128
Digit Recognizer
2,188,530
for i in train_ingredients_count.keys() : train_data[i] = np.zeros(len(train_data))<feature_engineering>
raw_train_df = pd.read_csv(train_path) raw_test_df = pd.read_csv(test_path )
Digit Recognizer
2,188,530
for i in test_ingredients_count.keys() : test_data[i] = np.zeros(len(test_data))<feature_engineering>
def parse_train_df(_train_df): labels = _train_df.iloc[:,0].values imgs = _train_df.iloc[:,1:].values imgs_2d = np.array([[[[float(imgs[index][i*28 + j])/ 255] for j in range(28)] for i in range(28)] for index in range(len(imgs)) ]) processed_labels = [[0 for _ in range(10)] for i in range(len(labels)) ] for i in range(len(labels)) : processed_labels[i][labels[i]] = 1 return np.array(processed_labels), imgs_2d def parse_test_df(test_df): imgs = test_df.iloc[:, 0:].values imgs_2d = np.array([[[[float(imgs[index][i * 28 + j])/ 255] for j in range(28)] for i in range(28)] for index in range(len(imgs)) ]) return imgs_2d
Digit Recognizer
2,188,530
for i in range(len(train_data)) : for j in train_data['ingredients'][i]: train_data[j].iloc[i] = 1<feature_engineering>
y_train_set, x_train_set = parse_train_df(raw_train_df) x_test = parse_test_df(raw_test_df) x_train, x_val, y_train, y_val = train_test_split(x_train_set, y_train_set, test_size=0.20, random_state=42 )
Digit Recognizer
2,188,530
for i in range(len(test_data)) : for j in test_data['ingredients'][i]: test_data[j].iloc[i] = 1<drop_column>
print("Number of 1: {}".format(len(raw_train_df[raw_train_df['label'] == 1]))) print("Number of 5: {}".format(len(raw_train_df[raw_train_df['label'] == 5])) )
Digit Recognizer
2,188,530
test_data=test_data[train_data.drop('cuisine',axis=1 ).columns]<import_modules>
model = keras.Sequential() model.add(Conv2D(32, kernel_size=(3, 3), strides=(1, 1), activation='relu', input_shape=(size, size, 1))) model.add(Conv2D(32,(3, 3), activation='relu', strides=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Conv2D(64,(3, 3), activation='relu')) model.add(Conv2D(64,(3, 3), activation='relu', strides=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Conv2D(128,(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=Adam(lr), metrics=['accuracy']) checkpoint = ModelCheckpoint('model_ckpt.{epoch:02d}.hdf5', save_best_only=True, save_weights_only=True) lr_reducer = ReduceLROnPlateau(monitor='val_acc', factor=0.5, patience=3, mode='max', cooldown=3, verbose=1) callback_list = [checkpoint, lr_reducer]
Digit Recognizer
2,188,530
from sklearn.linear_model import LogisticRegression from sklearn import preprocessing<prepare_x_and_y>
training_history = model.fit( x_train, y_train, epochs=epochs, verbose=1, validation_data=(x_val, y_val), callbacks=callback_list )
Digit Recognizer
2,188,530
X = train_data.drop(['id','cuisine','ingredients'],axis =1) Y = train_data['cuisine']<split>
image_generator = ImageDataGenerator( rotation_range=15, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1 ) image_generator.fit(x_train )
Digit Recognizer
2,188,530
X_train,X_val,y_train,y_val = train_test_split(X,Y,random_state =42 )<train_model>
model_augmented = keras.Sequential() model_augmented.add(Conv2D(32, kernel_size=(3, 3), strides=(1, 1), activation='relu', input_shape=(size, size, 1))) model_augmented.add(Conv2D(32,(3, 3), activation='relu', strides=(2, 2))) model_augmented.add(BatchNormalization()) model_augmented.add(Dropout(0.3)) model_augmented.add(Conv2D(64,(3, 3), activation='relu')) model_augmented.add(Conv2D(64,(3, 3), activation='relu', strides=(2, 2))) model_augmented.add(BatchNormalization()) model_augmented.add(Dropout(0.3)) model_augmented.add(Conv2D(128,(3, 3), activation='relu')) model_augmented.add(BatchNormalization()) model_augmented.add(Flatten()) model_augmented.add(Dense(256, activation='relu')) model_augmented.add(Dropout(0.25)) model_augmented.add(Dense(128, activation='relu')) model_augmented.add(Dense(num_classes, activation='softmax')) model_augmented.compile(loss=keras.losses.categorical_crossentropy, optimizer=RMSprop(0.001), metrics=['accuracy']) aug_result = model_augmented.fit_generator( image_generator.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, steps_per_epoch=len(x_train)// batch_size, verbose=1, validation_data=(x_val, y_val), callbacks=callback_list ) model_augmented.save('mnist_model.h5' )
Digit Recognizer
2,188,530
lr = LogisticRegression(solver='liblinear') lr.fit(X_train,y_train )<compute_test_metric>
pred = model.predict(x_test) pred_aug = model_augmented.predict(x_test )
Digit Recognizer
2,188,530
<predict_on_test><EOS>
def convert_prediction_result(model_result): result = [] for i in range(len(model_result)) : result += [np.argmax(model_result[i])] return result def write_submission(_submission_path, result_arr): f_out = open(_submission_path, 'w') f_out.write("ImageId,Label ") for i in range(len(result_arr)) : f_out.write("{},{} ".format(i+1, result_arr[i])) f_out.close() write_submission('submission_base.csv', convert_prediction_result(pred)) write_submission('submission_aug.csv', convert_prediction_result(pred))
Digit Recognizer
5,811,807
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_output>
np.random.seed(92)
Digit Recognizer
5,811,807
Submission=test_data[['id','cuisine']] Submission.set_index('id',inplace=True )<save_to_csv>
train_data = '/kaggle/input/digit-recognizer/train.csv' test_data = '/kaggle/input/digit-recognizer/test.csv'
Digit Recognizer
5,811,807
Submission.to_csv('Submission.csv' )<load_pretrained>
train_df = pd.read_csv(train_data) print(train_df.shape) train_df.head()
Digit Recognizer
5,811,807
archive_train=zipfile.ZipFile('/kaggle/input/whats-cooking/train.json.zip','r') train_data=pd.read_json(archive_train.read('train.json')) train_data.head()<load_pretrained>
test_df = pd.read_csv(test_data) print(test_df.shape) test_df.head()
Digit Recognizer
5,811,807
archive_test=zipfile.ZipFile('/kaggle/input/whats-cooking/test.json.zip','r') test_data=pd.read_json(archive_test.read('test.json')) test_data.head()<count_values>
if 'label' in train_df.columns: y_train = train_df['label'].values.astype('int32') train_df = train_df.drop('label', axis = 1) else: pass x_train = train_df.values.astype('float32') x_test = test_df.values.astype('float32' )
Digit Recognizer
5,811,807
train_data['cuisine'].value_counts()<count_missing_values>
train_max = np.max(x_train) train_min = np.min(x_train) test_max = np.max(x_test) test_min = np.min(x_test)
Digit Recognizer
5,811,807
train_data.isna().sum()<count_missing_values>
x_train = x_train/255.0 x_test = x_test/255.0
Digit Recognizer
5,811,807
test_data.isna().sum()<define_variables>
norm_train_max = np.max(x_train) norm_train_min = np.min(x_train) norm_test_max = np.max(x_test) norm_test_min = np.min(x_test )
Digit Recognizer
5,811,807
train_ingredients_count={} for i in range(len(train_data)) : for j in train_data['ingredients'][i]: if j in train_ingredients_count.keys() : train_ingredients_count[j]+=1 else: train_ingredients_count[j]=1<define_variables>
y_train= to_categorical(y_train) num_classes = y_train.shape[1] num_classes
Digit Recognizer
5,811,807
test_ingredients_count={} for i in range(len(test_data)) : for j in test_data['ingredients'][i]: if j in test_ingredients_count.keys() : test_ingredients_count[j]+=1 else: test_ingredients_count[j]=1<define_variables>
model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16,(5,5),activation='relu', input_shape=(28,28,1)) , tf.keras.layers.Conv2D(16,(5,5), activation= 'relu'), tf.keras.layers.Conv2D(16,(5,5), activation= 'relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(32,(3,3), activation= 'relu'), tf.keras.layers.Conv2D(32,(3,3), activation= 'relu'), tf.keras.layers.Conv2D(32,(3,3), activation = 'relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.25), tf.keras.layers.BatchNormalization() , tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.50), tf.keras.layers.Flatten() , tf.keras.layers.Dense(256, activation = 'relu'), tf.keras.layers.Dropout(0.25), tf.keras.layers.Dense(10, activation='softmax') ]) print('input shape :', model.input_shape) print('output shape :', model.output_shape )
Digit Recognizer
5,811,807
ingredients_missing_train=[] for i in test_ingredients_count.keys() : if i not in train_ingredients_count.keys() : ingredients_missing_train.append(i) print(len(ingredients_missing_train))<define_variables>
Digit Recognizer
5,811,807
for i in ingredients_missing_train: train_ingredients_count[i]=0 print(len(train_ingredients_count))<define_variables>
Digit Recognizer
5,811,807
ingredients_missing=[] for i in train_ingredients_count.keys() : if i not in test_ingredients_count.keys() : ingredients_missing.append(i) print(len(ingredients_missing))<define_variables>
Digit Recognizer
5,811,807
for i in ingredients_missing: test_ingredients_count[i]=0 print(len(test_ingredients_count))<feature_engineering>
model.compile(loss = 'categorical_crossentropy', optimizer= RMSprop(lr=0.003), metrics = ['acc'] )
Digit Recognizer
5,811,807
for i in train_ingredients_count.keys() : train_data[i]=np.zeros(len(train_data)) for i in test_ingredients_count.keys() : test_data[i]=np.zeros(len(test_data))<filter>
train_generator = image.ImageDataGenerator()
Digit Recognizer
5,811,807
for i in range(len(train_data)) : for j in train_data['ingredients'][i]: train_data[j].iloc[i]=1<filter>
X = x_train Y = y_train X_train, X_val, Y_train , Y_val = train_test_split(x_train,y_train, test_size= 0.05, random_state = 92) print(X_train.shape) batches = train_generator.flow(X_train, Y_train, batch_size=32) val_batches = train_generator.flow(X_val, Y_val, batch_size=32 )
Digit Recognizer
5,811,807
for i in range(len(test_data)) : for j in test_data['ingredients'][i]: test_data[j].iloc[i]=1<drop_column>
history = model.fit_generator( generator=batches, steps_per_epoch=batches.n, epochs=20, validation_data=val_batches, validation_steps=val_batches.n, )
Digit Recognizer
5,811,807
test_data=test_data[train_data.drop('cuisine',axis=1 ).columns]<prepare_x_and_y>
predictions = model.predict_classes(x_test, verbose=0)
Digit Recognizer
5,811,807
<split><EOS>
submissions=pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label": predictions}) submissions.to_csv("DR.csv", index=False, header=True )
Digit Recognizer
2,619,265
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_model>
%matplotlib inline keras_version = keras.__version__ tf_version = K.tensorflow_backend.tf.VERSION print("keras version:", keras_version) print(K.backend() , "version:", tf_version )
Digit Recognizer
2,619,265
lr=LogisticRegression() lr.fit(X_train,y_train) lr.score(X_val,y_val )<predict_on_test>
rawdata = np.loadtxt('.. /input/train.csv', dtype=int, delimiter=',', skiprows=1 )
Digit Recognizer
2,619,265
test_data['cuisine']=lr.predict(test_data.drop(['id','ingredients'],axis=1))<prepare_output>
y_oh = to_categorical(y, num_classes) X_scaled = X / 127.5 - 1 X_scaled = np.expand_dims(X_scaled, -1) num_val = int(y.shape[0] * 0.1) validation_mask = np.zeros(y.shape[0], np.bool) np.random.seed(1) for c in range(num_classes): idxs = np.random.choice(np.flatnonzero(y == c), num_val // 10, replace=False) validation_mask[idxs] = 1 np.random.seed(None) X_train = X_scaled[~validation_mask] X_val = X_scaled[validation_mask] print("Train/val pixel shapes:", X_train.shape, X_val.shape) y_train = y_oh[~validation_mask] y_val = y_oh[validation_mask] print("Train/val label shapes:", y_train.shape, y_val.shape) print("Validation Set Class Distribution:", np.bincount(y[validation_mask]))
Digit Recognizer
2,619,265
Submission=test_data[['id','cuisine']] Submission.set_index('id',inplace=True )<save_to_csv>
def conv2D_bn_relu(x, filters, kernel_size, strides, padding='valid', kernel_initializer='glorot_uniform', name=None): x = layers.Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=kernel_initializer, name=name, use_bias=False )(x) x = layers.BatchNormalization(scale=False )(x) return layers.Activation('relu' )(x) def inception_module_A(x, filters=None, kernel_initializer='glorot_uniform'): if filters is None: filters = int(x.shape[-1]) branch_filters = filters // 4 b1 = conv2D_bn_relu(x, filters=(branch_filters // 3)* 2, kernel_size=1, strides=1, kernel_initializer=kernel_initializer) b1 = conv2D_bn_relu(b1, filters=branch_filters, kernel_size=3, strides=1, padding='same', kernel_initializer=kernel_initializer) b2 = conv2D_bn_relu(x, filters=(branch_filters // 3)* 2, kernel_size=1, strides=1, kernel_initializer=kernel_initializer) b2 = conv2D_bn_relu(b2, filters=branch_filters, kernel_size=3, strides=1, padding='same', kernel_initializer=kernel_initializer) b2 = conv2D_bn_relu(b2, filters=branch_filters, kernel_size=3, strides=1, padding='same', kernel_initializer=kernel_initializer) b3 = conv2D_bn_relu(x, filters=branch_filters, kernel_size=1, strides=1, kernel_initializer=kernel_initializer) pool = layers.AveragePooling2D(pool_size=(3, 3), strides=1, padding='same' )(x) pool = conv2D_bn_relu(pool, filters=branch_filters, kernel_size=1, strides=1, kernel_initializer=kernel_initializer) return layers.concatenate([b1, b2, b3, pool]) def inception_module_C(x, filters=None, kernel_initializer='glorot_uniform'): if filters is None: filters = int(x.shape[-1]) branch_filters = filters // 6 b1 = conv2D_bn_relu(x, filters=(branch_filters // 2)* 3, kernel_size=1, strides=1, kernel_initializer=kernel_initializer) b1a = conv2D_bn_relu(b1, filters=branch_filters, kernel_size=(1, 3), strides=1, padding='same', kernel_initializer=kernel_initializer) b1b = conv2D_bn_relu(b1, filters=branch_filters, kernel_size=(3, 1), strides=1, padding='same', kernel_initializer=kernel_initializer) b2 = conv2D_bn_relu(x, filters=(branch_filters // 2)* 3, kernel_size=1, strides=1, kernel_initializer=kernel_initializer) b2 = conv2D_bn_relu(b2, filters=(branch_filters // 4)* 7, kernel_size=(1, 3), strides=1, padding='same', kernel_initializer=kernel_initializer) b2 = conv2D_bn_relu(b2, filters=branch_filters * 2, kernel_size=(3, 1), strides=1, padding='same', kernel_initializer=kernel_initializer) b2a = conv2D_bn_relu(b2, filters=branch_filters, kernel_size=(1, 3), strides=1, padding='same', kernel_initializer=kernel_initializer) b2b = conv2D_bn_relu(b2, branch_filters, kernel_size=(3, 1), strides=1, padding='same', kernel_initializer=kernel_initializer) b3 = conv2D_bn_relu(x, filters=branch_filters, kernel_size=1, strides=1, kernel_initializer=kernel_initializer) pool = layers.AveragePooling2D(pool_size=(3, 3), strides=1, padding='same' )(x) pool = conv2D_bn_relu(pool, filters=branch_filters, kernel_size=1, strides=1, kernel_initializer=kernel_initializer) return layers.concatenate([b1a, b1b, b2a, b2b, b3, pool] )
Digit Recognizer
2,619,265
Submission.to_csv('Submission.csv' )<import_modules>
K.clear_session() stem_width = 64 inputs = layers.Input(shape=X_scaled.shape[1:]) x = conv2D_bn_relu(inputs, filters=stem_width, kernel_size=5, strides=2, padding='valid', name='conv_1') x = inception_module_A(x, filters=int(1.5*stem_width)) x = layers.SpatialDropout2D(0.2 )(x) x = inception_module_A(x, filters=int(1.5*stem_width)) x = layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same' )(x) x = layers.SpatialDropout2D(0.2 )(x) x = inception_module_C(x, filters=int(2.25*stem_width)) x = layers.GlobalAveragePooling2D()(x) x = layers.Dropout(0.3 )(x) x = layers.Dense(num_classes, name='logits' )(x) x = layers.Activation('softmax', name='softmax' )(x) model = Model(inputs=inputs, outputs=x) model.summary()
Digit Recognizer
2,619,265
import xgboost as xgb import numpy as np import pandas as pd import random import optuna from sklearn.model_selection import KFold, train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error<load_from_csv>
epsilon = 0.001 y_train_smooth = y_train *(1 - epsilon)+ epsilon / 10 print(y_train_smooth )
Digit Recognizer
2,619,265
train = pd.read_csv(".. /input/tabular-playground-series-feb-2021/train.csv") test = pd.read_csv(".. /input/tabular-playground-series-feb-2021/test.csv" )<categorify>
def elastic_transform(image, alpha_range, sigma, random_state=None): if random_state is None: random_state = np.random.RandomState(None) if np.isscalar(alpha_range): alpha = alpha_range else: alpha = np.random.uniform(low=alpha_range[0], high=alpha_range[1]) shape = image.shape dx = gaussian_filter(( random_state.rand(*shape)* 2 - 1), sigma)* alpha dy = gaussian_filter(( random_state.rand(*shape)* 2 - 1), sigma)* alpha x, y, z = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]), indexing='ij') indices = np.reshape(x+dx,(-1, 1)) , np.reshape(y+dy,(-1, 1)) , np.reshape(z,(-1, 1)) return map_coordinates(image, indices, order=1, mode='reflect' ).reshape(shape )
Digit Recognizer
2,619,265
df=train for c in df.columns: if df[c].dtype=='object': lbl = LabelEncoder() df[c]=df[c].fillna('N') lbl.fit(list(df[c].values)) df[c] = lbl.transform(df[c].values) train=df<categorify>
class CosineAnneal(keras.callbacks.Callback): def __init__(self, max_lr, min_lr, T, T_mul=1, decay_rate=1.0): self.max_lr = max_lr self.min_lr = min_lr self.decay_rate = decay_rate self.T = T self.T_cur = 0 self.T_mul = T_mul self.step = 0 def on_batch_begin(self, batch, logs=None): if self.T <= self.T_cur: self.max_lr *= self.decay_rate self.min_lr *= self.decay_rate self.T *= self.T_mul self.T_cur = 0 self.step = 0 lr = self.min_lr + 0.5 *(self.max_lr - self.min_lr)*(1 + np.cos(self.T_cur * np.pi / self.T)) K.set_value(self.model.optimizer.lr, lr) self.step += 1 self.T_cur = self.step / self.params['steps'] def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr )
Digit Recognizer