kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
4,143,339
folds_average_lgbm.fit(lgb_params, train_x, train_y )<compute_test_metric>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
4,143,339
np.sqrt(mean_squared_error(df_train.target, folds_average_lgbm.oof_preds))<predict_on_test>
adam = keras.optimizers.Adam(lr=0.0005, beta_1=0.9, beta_2=0.999, epsilon=1e-08) model.compile( loss=keras.losses.categorical_crossentropy, optimizer= adam, metrics=['accuracy'] )
Digit Recognizer
4,143,339
y_pred = folds_average_lgbm.predict(test_x )<save_to_csv>
callbacks=myCallback() history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=128), epochs = 80, validation_data =(X_val,Y_val), callbacks=[callbacks] )
Digit Recognizer
4,143,339
sub = df_sample.copy() sub["target"] = y_pred sub.to_csv("submission_optuna_lgbm_ohe_v2.csv", index=False) sub.head()<import_modules>
num_images=test_data.shape[0] test_as_array = test_data.values[:,:] test_shaped_array = test_as_array.reshape(num_images, img_rows, img_cols, 1) out_test= test_shaped_array / 255 y_pred=model.predict_classes(out_test )
Digit Recognizer
4,143,339
import lightgbm as lgb import optuna.integration.lightgbm as oplgb from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error from tqdm.notebook import tqdm import matplotlib.pyplot as plt import category_encoders as ce import seaborn as sns<load_from_csv>
submission = pd.DataFrame({"ImageId": np.arange(1, len(test_data)+1), "Label": y_pred}) submission.to_csv('submission.csv', index=False )
Digit Recognizer
4,564,916
df_train = pd.read_csv("/kaggle/input/tabular-playground-series-feb-2021/train.csv") df_test = pd.read_csv("/kaggle/input/tabular-playground-series-feb-2021/test.csv") df_sample = pd.read_csv("/kaggle/input/tabular-playground-series-feb-2021/sample_submission.csv" )<drop_column>
print(os.listdir(".. /input")) print(os.getcwd()) X_data = pd.read_csv(".. /input/train.csv") T_df = pd.read_csv(".. /input/test.csv") Y_df = X_data["label"] X_df = X_data.drop("label", axis=1) X = X_df.values X = X/255 Y = Y_df.values np.random.seed(100) X_train, X_test, Y_train, Y_test = train_test_split(X, Y) Y_train_r = np.ravel(Y_train) Y_test_r = np.ravel(Y_test) Y_train_c = np_utils.to_categorical(Y_train, 10) Y_test_c = np_utils.to_categorical(Y_test, 10 )
Digit Recognizer
4,564,916
train_id = df_train["id"] test_id = df_test["id"] df_train.drop("id", axis=1, inplace=True) df_test.drop("id", axis=1, inplace=True )<define_variables>
KNN = KNeighborsClassifier(n_neighbors=1) KNN.fit(X_train,Y_train) KNN.score(X_test, Y_test)
Digit Recognizer
4,564,916
cat_features = [f"cat{i}" for i in range(9 + 1)]<categorify>
KNN_2 = KNeighborsClassifier(n_neighbors=2) KNN_2.fit(X_train,Y_train) KNN_2.score(X_test, Y_test )
Digit Recognizer
4,564,916
onehot_encoder = ce.one_hot.OneHotEncoder() onehot_encoder.fit(pd.concat([df_train[cat_features], df_test[cat_features]], axis=0)) train_ohe = onehot_encoder.transform(df_train[cat_features]) test_ohe = onehot_encoder.transform(df_test[cat_features]) train_ohe.columns = [f"OHE_{col}" for col in train_ohe] test_ohe.columns = [f"OHE_{col}" for col in test_ohe]<define_variables>
svclassifier = SVC(kernel="linear") svclassifier.fit(X_train, Y_train) Y_pred = svclassifier.predict(X_test) accuracy_score(Y_test, Y_pred )
Digit Recognizer
4,564,916
numerical_features = [f"cont{i}" for i in range(13 + 1)]<concatenate>
svclassifier_rbf = SVC(kernel="rbf", gamma = "auto") svclassifier_rbf.fit(X_train, Y_train) Y_pred = svclassifier_rbf.predict(X_test) accuracy_score(Y_test, Y_pred )
Digit Recognizer
4,564,916
train_x = pd.concat([ df_train[numerical_features], train_ohe ], axis=1 )<concatenate>
Lreg = list() for i in range(-3,4): c = 10**i dummy = LogisticRegression(multi_class="multinomial",solver="lbfgs", max_iter = 4000, C=c) Lreg.append(dummy.fit(X_train,Y_train_r)) Lreg_scores = list() for i in range(0,6): Lreg_scores.append(Lreg[i].score(X_test, Y_test)) print(Lreg_scores )
Digit Recognizer
4,564,916
test_x = pd.concat([ df_test[numerical_features], test_ohe ], axis=1 )<prepare_x_and_y>
neural1 = Sequential() neural1.add(Dense(16, input_dim=784 , activation='relu')) neural1.add(Dense(10, activation='softmax')) neural2 = Sequential() neural2.add(Dense(32, input_dim=784 , activation='relu')) neural2.add(Dense(10, activation='softmax')) neural3 = Sequential() neural3.add(Dense(64, input_dim=784 , activation='relu')) neural3.add(Dense(10, activation='softmax')) neural4 = Sequential() neural4.add(Dense(128, input_dim=784 , activation='relu')) neural4.add(Dense(10, activation='softmax')) neural5 = Sequential() neural5.add(Dense(256, input_dim=784 , activation='relu')) neural5.add(Dense(10, activation='softmax')) neural6 = Sequential() neural6.add(Dense(512, input_dim=784 , activation='relu')) neural6.add(Dense(10, activation='softmax')) neural7 = Sequential() neural7.add(Dense(1024, input_dim=784 , activation='relu')) neural7.add(Dense(10, activation='softmax')) neural8 = Sequential() neural8.add(Dense(2048, input_dim=784 , activation='relu')) neural8.add(Dense(10, activation='softmax')) neural1.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) neural2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) neural3.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) neural4.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) neural5.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) neural6.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) neural7.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) neural8.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) neural1.fit(X_train, Y_train_c, epochs=50, batch_size=200) neural2.fit(X_train, Y_train_c, epochs=50, batch_size=200) neural3.fit(X_train, Y_train_c, epochs=50, batch_size=200) neural4.fit(X_train, Y_train_c, epochs=50, batch_size=200) neural5.fit(X_train, Y_train_c, epochs=50, batch_size=200) neural6.fit(X_train, Y_train_c, epochs=50, batch_size=200) neural7.fit(X_train, Y_train_c, epochs=50, batch_size=200) neural8.fit(X_train, Y_train_c, epochs=50, batch_size=200) scores1 = neural1.evaluate(X_test, Y_test_c) scores2 = neural2.evaluate(X_test, Y_test_c) scores3 = neural3.evaluate(X_test, Y_test_c) scores4 = neural4.evaluate(X_test, Y_test_c) scores5 = neural5.evaluate(X_test, Y_test_c) scores6 = neural6.evaluate(X_test, Y_test_c) scores7 = neural7.evaluate(X_test, Y_test_c) scores8 = neural8.evaluate(X_test, Y_test_c) plt.plot([1,2,3,4,5,6,7,8], [scores1[0],scores2[0],scores3[0],scores4[0],scores5[0],scores6[0], scores7[0],scores8[0]],'-o' )
Digit Recognizer
4,564,916
train_y = df_train["target"]<create_dataframe>
X_train_2d = X_train.reshape(X_train.shape[0], 28, 28,1) X_train_2d.shape X_test_2d = X_test.reshape(X_test.shape[0], 28, 28,1) X_test_2d.shape model_1= Sequential() model_1.add(Conv2D(filters = 32, kernel_size =(5,5),activation ='relu', input_shape=(28,28,1))) model_1.add(MaxPooling2D(pool_size=(2, 2))) model_1.add(Flatten()) model_1.add(Dense(512, activation='relu')) model_1.add(Dense(10, activation='softmax')) model_2= Sequential() model_2.add(Conv2D(filters = 32, kernel_size =(5,5),activation ='relu', input_shape=(28,28,1))) model_2.add(MaxPooling2D(pool_size=(2, 2))) model_2.add(Conv2D(filters = 64, kernel_size =(5,5),activation ='relu')) model_2.add(MaxPooling2D(pool_size=(2, 2))) model_2.add(Flatten()) model_2.add(Dense(512, activation='relu')) model_2.add(Dense(10, activation='softmax')) model_3= Sequential() model_3.add(Conv2D(filters = 32, kernel_size =(5,5),activation ='relu', input_shape=(28,28,1))) model_3.add(MaxPooling2D(pool_size=(2, 2))) model_3.add(Conv2D(filters = 64, kernel_size =(5,5),activation ='relu')) model_3.add(MaxPooling2D(pool_size=(2, 2))) model_3.add(Conv2D(filters = 128, kernel_size =(3,3),activation ='relu')) model_3.add(MaxPooling2D(pool_size=(2, 2))) model_3.add(Flatten()) model_3.add(Dense(512, activation='relu')) model_3.add(Dense(10, activation='softmax')) model_1.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model_1.fit(X_train_2d, Y_train_c, epochs=30, batch_size=200) model_2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model_2.fit(X_train_2d, Y_train_c, epochs=30, batch_size=200) model_3.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model_3.fit(X_train_2d, Y_train_c, epochs=30, batch_size=200) scores1 = model_1.evaluate(X_test_2d, Y_test_c) scores2 = model_2.evaluate(X_test_2d, Y_test_c) scores3 = model_3.evaluate(X_test_2d, Y_test_c)
Digit Recognizer
4,564,916
oplgb_train_data = oplgb.Dataset(train_x, train_y )<init_hyperparams>
model_2= Sequential() model_2.add(Conv2D(filters = 32, kernel_size =(5,5),activation ='relu', input_shape=(28,28,1))) model_2.add(MaxPooling2D(pool_size=(2, 2))) model_2.add(Dropout(0.4)) model_2.add(Conv2D(filters = 64, kernel_size =(5,5),activation ='relu')) model_2.add(MaxPooling2D(pool_size=(2, 2))) model_2.add(Dropout(0.4)) model_2.add(Flatten()) model_2.add(Dense(128, activation='relu')) model_2.add(Dropout(0.4)) model_2.add(Dense(10, activation='softmax')) model_2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model_2.fit(X_train_2d, Y_train_c, epochs=30, batch_size=200 )
Digit Recognizer
4,564,916
oplgb_params = { "objective": "regression", "metric": "root_mean_squared_error", "verbosity": -1, "learning_rate": 0.01 }<choose_model_class>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train_2d )
Digit Recognizer
4,564,916
folds = KFold(n_splits=5, shuffle=True, random_state=2021 )<choose_model_class>
history = model_2.fit_generator(datagen.flow(X_train_2d,Y_train_c, batch_size=200), epochs = 25, validation_data =(X_test_2d,Y_test_c), verbose = 2, steps_per_epoch=X_train.shape[0]/200)
Digit Recognizer
4,564,916
tuner_cv = oplgb.LightGBMTunerCV(oplgb_params, oplgb_train_data, num_boost_round=1000, early_stopping_rounds=100, folds=folds, verbose_eval=100, time_budget=21600) tuner_cv.run()<find_best_params>
scores2 = model_2.evaluate(X_test_2d, Y_test_c) print(scores2)
Digit Recognizer
4,564,916
<train_model><EOS>
T = T_df.values T = T/255 T = T.reshape(T.shape[0], 28, 28,1) results = model_2.predict(T) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission_kaggle_2D.csv",index=False )
Digit Recognizer
5,512,742
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<init_hyperparams>
warnings.filterwarnings("ignore") sns.set(style='white', context='notebook', palette='deep') def binary_pred_stats(ytrue, ypred, threshold=0.5): one_correct = np.sum(( ytrue==1)*(ypred > threshold)) zero_correct = np.sum(( ytrue==0)*(ypred <= threshold)) sensitivity = one_correct / np.sum(ytrue==1) specificity = zero_correct / np.sum(ytrue==0) accuracy =(one_correct + zero_correct)/ len(ytrue) return sensitivity, specificity, accuracy def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float')/ cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])) : plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label' )
Digit Recognizer
5,512,742
lgb_params = dict(tuner_cv.best_params) lgb_params["learning_rate"] = 0.005 lgb_params["early_stopping_round"] = 200 lgb_params["num_iterations"] = 20000<statistical_test>
df_train = pd.read_csv(".. /input/digit-recognizer/train.csv") df_test = pd.read_csv(".. /input/digit-recognizer/test.csv")
Digit Recognizer
5,512,742
folds_average_lgbm = FoldsAverageLGBM(folds )<train_model>
df_train.info() df_train.head() Y_train = df_train['label'] X_train = df_train.drop(labels = ["label"],axis = 1) X_test = df_test Y_train.hist() Y_train.value_counts() X_train = X_train.values.reshape(-1,28,28,1) X_test = X_test.values.reshape(-1,28,28,1) input_shape =(28,28,1) X_train = X_train / 255.0 X_test = X_test / 255.0 Y_train = to_categorical(Y_train, num_classes = 10) X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.15, random_state = 3) plt.figure() g = plt.imshow(X_train[10][:,:,0]) print(Y_train[10])
Digit Recognizer
5,512,742
folds_average_lgbm.fit(lgb_params, train_x, train_y )<compute_test_metric>
model = Sequential() model.add(Conv2D(filters = 128, kernel_size=(5, 5), activation='relu', padding='same', input_shape = input_shape)) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size=(5, 5), activation='relu', padding='same', input_shape = input_shape)) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size=(3, 3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size=(3, 3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(64, kernel_size=(3, 3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(10, activation='softmax')) optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.summary()
Digit Recognizer
5,512,742
np.sqrt(mean_squared_error(df_train.target, folds_average_lgbm.oof_preds))<predict_on_test>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) epochs = 50 batch_size = 128 datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.10, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train)
Digit Recognizer
5,512,742
y_pred = folds_average_lgbm.predict(test_x )<save_to_csv>
%%time estimator = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction])
Digit Recognizer
5,512,742
sub = df_sample.copy() sub["target"] = y_pred sub.to_csv("submission_optuna_lgbm_ohe_v1.csv", index=False) sub.head()<set_options>
predtrain = model.predict(X_train) sensitivity, specificity, accuracy = binary_pred_stats(Y_train, predtrain) print("train set:", sensitivity, specificity, accuracy) predtest = model.predict(X_val) sensitivity, specificity, accuracy = binary_pred_stats(Y_val, predtest) print("test set: ", sensitivity, specificity, accuracy )
Digit Recognizer
5,512,742
warnings.filterwarnings("ignore" )<load_from_csv>
results = model.predict(X_test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_with_datagen.csv",index=False )
Digit Recognizer
6,487,634
train_data = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2021/train.csv') test_data = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2021/test.csv') print(train_data.head() , " ") print(test_data.head() )<import_modules>
import random import keras import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import matplotlib.patches as mpatches from skimage.filters import threshold_otsu from skimage.segmentation import clear_border from skimage.measure import label, regionprops from skimage.morphology import closing, square from skimage.color import label2rgb from math import sqrt from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools from keras.utils.np_utils import to_categorical from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, Input, BatchNormalization from keras.optimizers import RMSprop, Adam from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau from keras.callbacks import LearningRateScheduler from keras.callbacks import ModelCheckpoint
Digit Recognizer
6,487,634
import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns<define_variables>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv')
Digit Recognizer
6,487,634
cat_features = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] numerical_features = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5','cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']<filter>
y_train = train['label'] X = train.drop(['label'],axis=1)
Digit Recognizer
6,487,634
outlier = train_data.loc[train_data.target < 1.0] print(outlier, " ") print(outlier.index )<drop_column>
labels =[] frequencies = [] for i in range(len(y_train)) : lab, freq = str(y_train[i]), len([n for n in X.values[i] if n > 0]) labels.append(lab) frequencies.append(freq) data = {'Labels':labels, 'Frequencies':frequencies} df = pd.DataFrame(data )
Digit Recognizer
6,487,634
train_data.drop([99682], inplace = True )<prepare_x_and_y>
df.groupby('Labels' ).mean()
Digit Recognizer
6,487,634
categorical_features = cat_features y_train = train_data["target"] train_data.drop(columns = ['target'], inplace = True) test_data_backup = test_data.copy() train_data.drop(columns = ["id"], inplace = True) test_data.drop(columns = ["id"], inplace = True )<choose_model_class>
test_y = df['Labels'] test_x = df test_x.drop('Labels', axis =1, inplace = True)
Digit Recognizer
6,487,634
model_ctb = CatBoostRegressor(iterations = 3000, learning_rate = 0.02, od_type = 'Iter', loss_function = 'RMSE', grow_policy = 'SymmetricTree', subsample = 0.8, verbose = 3, random_seed = 17) model_ctb.fit(train_data, y_train, cat_features=categorical_features) y_pred = model_ctb.predict(test_data) print(y_pred )<save_to_csv>
X_train1, X_val1, y_train1, y_val1 = train_test_split(test_x, test_y, test_size=0.1, random_state=1337 )
Digit Recognizer
6,487,634
solution = pd.DataFrame({"id":test_data_backup.id, "target":y_pred}) solution.to_csv("solution.csv", index = False) print("saved successful!" )<set_options>
clf_rfc = RandomForestClassifier(n_estimators = 100) clf_rfc.fit(X_train1,y_train1 )
Digit Recognizer
6,487,634
%matplotlib inline <install_modules>
accuracy_score(clf_rfc.predict(X_val1), y_val1 )
Digit Recognizer
6,487,634
!pip install --upgrade xgboost xgb.__version__<set_options>
clf_knn = KNeighborsClassifier() clf_knn.fit(X_train1,y_train1) accuracy_score(clf_knn.predict(X_val1), y_val1 )
Digit Recognizer
6,487,634
shap.initjs()<load_from_csv>
imaginary_data_pca = pca.transform(imaginary_data) print("original shape: ", imaginary_data.shape) print("transformed shape:", imaginary_data_pca.shape )
Digit Recognizer
6,487,634
train = pd.read_csv('.. /input/tabular-playground-series-feb-2021/train.csv') test = pd.read_csv('.. /input/tabular-playground-series-feb-2021/test.csv') sub = pd.read_csv('.. /input/tabular-playground-series-feb-2021/sample_submission.csv') <prepare_x_and_y>
pca = PCA(n_components=2) pca.fit(imaginary_data) imaginary_data_pca = pca.transform(imaginary_data)
Digit Recognizer
6,487,634
target = train['target'].values<categorify>
imaginary_data_pca_new = pca.inverse_transform(imaginary_data_pca)
Digit Recognizer
6,487,634
for feature in cat_features: le = LabelEncoder() le.fit(train[feature]) train[feature] = le.transform(train[feature]) test[feature] = le.transform(test[feature] )<define_variables>
data = {'Labels':labels, 'diagonals':diags, 'widths':widths, 'heights':heights, 'Area':frequencies, 'PC1':principalComponents[:, 0],'PC2':principalComponents[:, 1]} df = pd.DataFrame(data) df
Digit Recognizer
6,487,634
train_oof = np.zeros(( 300000,)) test_preds = 0 train_oof.shape<init_hyperparams>
test_y = df['Labels'] test_x = df test_x.drop('Labels', axis =1, inplace = True) X_train1, X_val1, y_train1, y_val1 = train_test_split(test_x, test_y, test_size=0.1, random_state=1337) clf_knn = KNeighborsClassifier() clf_knn.fit(X_train1,y_train1) accuracy_score(clf_knn.predict(X_val1), y_val1 )
Digit Recognizer
6,487,634
xgb_params= { "objective": "reg:squarederror", "max_depth": 6, "learning_rate": 0.01, "colsample_bytree": 0.4, "subsample": 0.6, "reg_alpha" : 6, "min_child_weight": 100, "n_jobs": 2, "seed": 2001, 'tree_method': "gpu_hist", "gpu_id": 0, 'predictor': 'gpu_predictor' }<prepare_x_and_y>
mbdl = MiniBatchDictionaryLearning(n_components = 2) mbdl.fit(X )
Digit Recognizer
6,487,634
test = xgb.DMatrix(test[columns] )<train_model>
comps = mbdl.transform(X )
Digit Recognizer
6,487,634
NUM_FOLDS = 10 kf = KFold(n_splits=NUM_FOLDS, shuffle=True, random_state=0) for f,(train_ind, val_ind)in tqdm(enumerate(kf.split(train, target))): train_df, val_df = train.iloc[train_ind][columns], train.iloc[val_ind][columns] train_target, val_target = target[train_ind], target[val_ind] train_df = xgb.DMatrix(train_df, label=train_target) val_df = xgb.DMatrix(val_df, label=val_target) model = xgb.train(xgb_params, train_df, 3800) temp_oof = model.predict(val_df) temp_test = model.predict(test) train_oof[val_ind] = temp_oof test_preds += temp_test/NUM_FOLDS print(mean_squared_error(temp_oof, val_target, squared=False))<compute_test_metric>
def test_model(d1,d1_lab, d2, d2_lab,data): data = {'Labels':labels, 'diagonals':diags, 'widths':widths, 'heights':heights, 'Area':frequencies, 'PC1':principalComponents[:, 0],'PC2':principalComponents[:, 1]} data[d1_lab] = d1 data[d2_lab] = d2 df = pd.DataFrame(data) print(df.columns) test_y = df['Labels'] test_x = df test_x.drop('Labels', axis =1, inplace = True) X_train1, X_val1, y_train1, y_val1 = train_test_split(test_x, test_y, test_size=0.1, random_state=1337) clf_knn = KNeighborsClassifier() clf_knn.fit(X_train1,y_train1) return accuracy_score(clf_knn.predict(X_val1), y_val1) test_model(comps[:, 0],'d1', comps[:, 1],'d2', data )
Digit Recognizer
6,487,634
mean_squared_error(train_oof, target, squared=False) <save_model>
lda = LinearDiscriminantAnalysis(n_components = 2,) comps = lda.fit_transform(X,y_train.values )
Digit Recognizer
6,487,634
np.save('train_oof', train_oof) np.save('test_preds', test_preds )<predict_on_test>
test_model(comps[:, 0],'lda1', comps[:, 1],'lda2', data )
Digit Recognizer
6,487,634
%%time shap_preds = model.predict(test, pred_contribs=True )<load_from_csv>
X = X / 255.0 test = test / 255.0
Digit Recognizer
6,487,634
train = pd.read_csv('.. /input/tabular-playground-series-feb-2021/train.csv') test = pd.read_csv('.. /input/tabular-playground-series-feb-2021/test.csv') for feature in cat_features: le = LabelEncoder() le.fit(train[feature]) train[feature] = le.transform(train[feature]) test[feature] = le.transform(test[feature] )<predict_on_test>
X = X.values.reshape(X.shape[0], 28, 28,1) test = test.values.reshape(test.shape[0], 28, 28,1)
Digit Recognizer
6,487,634
%%time shap_interactions = model.predict(xgb.DMatrix(test[columns]), pred_interactions=True )<feature_engineering>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) valid_datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
6,487,634
train['cont8_cont0'] = train['cont8']*train['cont0'] train['cont9_cont0'] = train['cont9']*train['cont0'] train['cont9_cont5'] = train['cont9']*train['cont5'] train['cont8_cont5'] = train['cont8']*train['cont5'] test['cont8_cont0'] = test['cont8']*test['cont0'] test['cont9_cont0'] = test['cont9']*test['cont0'] test['cont9_cont5'] = test['cont9']*test['cont5'] test['cont8_cont5'] = test['cont8']*test['cont5'] <set_options>
y_train = to_categorical(y_train,num_classes=10)
Digit Recognizer
6,487,634
del shap_interactions, shap_preds gc.collect() gc.collect()<prepare_x_and_y>
learning_rate_reduction = ReduceLROnPlateau(monitor='accuracy', patience=3, verbose=10, factor=0.5, min_lr=0.00001)
Digit Recognizer
6,487,634
test = xgb.DMatrix(test[columns] )<init_hyperparams>
def build_model(input_shape=(28, 28, 1), classes = 10): activation = 'relu' padding = 'same' gamma_initializer = 'uniform' input_layer = Input(shape=input_shape) hidden=Conv2D(32,(3,3), padding=padding,activation = activation, name="conv1" )(input_layer) hidden=BatchNormalization(name="batch1" )(hidden) hidden=Conv2D(32,(3,3), padding=padding,activation = activation, name="conv2" )(hidden) hidden=BatchNormalization(name="batch2" )(hidden) hidden=Conv2D(32,(5,5), padding=padding,activation = activation, name="conv3" )(hidden) hidden=BatchNormalization(name="batch3" )(hidden) hidden=MaxPool2D(pool_size=2, padding=padding, name="max1" )(hidden) hidden=Dropout(0.4 )(hidden) hidden=Conv2D(64,(3,3), padding =padding, activation = activation, name="conv4" )(hidden) hidden=BatchNormalization(name = 'batch4' )(hidden) hidden=Conv2D(64,(3,3), padding =padding, activation = activation, name="conv45" )(hidden) hidden=BatchNormalization(name = 'batch5' )(hidden) hidden=Conv2D(64,(5,5), padding =padding, activation = activation, name="conv6" )(hidden) hidden=BatchNormalization(name = 'batch6' )(hidden) hidden=MaxPool2D(pool_size=2, padding="same", name="max2" )(hidden) hidden=Dropout(0.4 )(hidden) hidden=Flatten()(hidden) hidden=Dense(264,activation = activation, name="Dense1" )(hidden) hidden=Dropout(0.3 )(hidden) output = Dense(classes, activation = "softmax" )(hidden) model = Model(inputs=input_layer, outputs=output) return model
Digit Recognizer
6,487,634
xgb_params= { "objective": "reg:squarederror", "max_depth": 6, "learning_rate": 0.01, "colsample_bytree": 0.4, "subsample": 0.6, "reg_alpha" : 6, "min_child_weight": 100, "n_jobs": 2, "seed": 2001, 'tree_method': "gpu_hist", "gpu_id": 0, 'predictor': 'gpu_predictor' }<train_model>
epochs = 50 initial_learningrate=2e-3 batch_size = 264
Digit Recognizer
6,487,634
NUM_FOLDS = 10 kf = KFold(n_splits=NUM_FOLDS, shuffle=True, random_state=0) for f,(train_ind, val_ind)in tqdm(enumerate(kf.split(train, target))): train_df, val_df = train.iloc[train_ind][columns], train.iloc[val_ind][columns] train_target, val_target = target[train_ind], target[val_ind] train_df = xgb.DMatrix(train_df, label=train_target) val_df = xgb.DMatrix(val_df, label=val_target) model = xgb.train(xgb_params, train_df, 3800) temp_oof = model.predict(val_df) temp_test = model.predict(test) train_oof_2[val_ind] = temp_oof test_preds_2 += temp_test/NUM_FOLDS print(mean_squared_error(temp_oof, val_target, squared=False))<compute_test_metric>
optimizer = Adam(learning_rate=initial_learningrate) model = build_model(input_shape=(28, 28, 1), classes = 10) model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
Digit Recognizer
6,487,634
mean_squared_error(train_oof_2, target, squared=False) <compute_test_metric>
X_train, X_val, y_train, y_val = train_test_split(X, y_train, test_size=0.1, random_state=1337) datagen.fit(X_train) valid_datagen.fit(X_val)
Digit Recognizer
6,487,634
mean_squared_error(0.5*train_oof+0.5*train_oof_2, target, squared=False) <save_model>
callbacks = [learning_rate_reduction] history = model.fit_generator(datagen.flow(X_train,y_train), epochs = epochs, validation_data=valid_datagen.flow(X_val,y_val), verbose = 1, callbacks = callbacks)
Digit Recognizer
6,487,634
np.save('train_oof_2', train_oof_2) np.save('test_preds_2', test_preds_2 )<predict_on_test>
y_pre_test=model.predict(X_val) y_pre_test=np.argmax(y_pre_test,axis=1) y_test=np.argmax(y_val,axis=1) conf=confusion_matrix(y_test,y_pre_test) conf=pd.DataFrame(conf,index=range(0,10),columns=range(0,10))
Digit Recognizer
6,487,634
%%time shap_preds = model.predict(test, pred_contribs=True )<load_from_csv>
print('out of {} samples, we got {} incorrect'.format(len(X_train), round(len(X_train)- history.history['accuracy'][-1] * len(X_train))))
Digit Recognizer
6,487,634
train = pd.read_csv('.. /input/tabular-playground-series-feb-2021/train.csv') test = pd.read_csv('.. /input/tabular-playground-series-feb-2021/test.csv') for feature in cat_features: le = LabelEncoder() le.fit(train[feature]) train[feature] = le.transform(train[feature]) test[feature] = le.transform(test[feature]) train['cont8_cont0'] = train['cont8']*train['cont0'] train['cont9_cont0'] = train['cont9']*train['cont0'] train['cont9_cont5'] = train['cont9']*train['cont5'] train['cont8_cont5'] = train['cont8']*train['cont5'] test['cont8_cont0'] = test['cont8']*test['cont0'] test['cont9_cont0'] = test['cont9']*test['cont0'] test['cont9_cont5'] = test['cont9']*test['cont5'] test['cont8_cont5'] = test['cont8']*test['cont5'] columns = test.columns[1:]<save_to_csv>
predictions = model.predict(test )
Digit Recognizer
6,487,634
sub['target'] = test_preds sub.to_csv('submission.csv', index=False )<save_to_csv>
predictions = predictions.argmax(axis = -1) predictions
Digit Recognizer
6,487,634
sub['target'] = test_preds_2 sub.to_csv('submission_2.csv', index=False )<save_to_csv>
submission['Label'] = predictions
Digit Recognizer
6,487,634
sub['target'] = 1.1*test_preds-0.1*test_preds_2 sub.to_csv('submission_average_0.csv', index=False )<save_to_csv>
submission.to_csv('submission.csv',index=False )
Digit Recognizer
6,762,101
sub['target'] = 1.2*test_preds-0.2*test_preds_2 sub.to_csv('submission_average_1.csv', index=False )<save_to_csv>
train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") submission = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv" )
Digit Recognizer
6,762,101
sub['target'] = 1.3*test_preds-0.3*test_preds_2 sub.to_csv('submission_average_2.csv', index=False )<load_from_csv>
X = train.drop(['label'], axis = 1 ).values/255 Y = train['label'].values X_valid = test.values/255 X = X.reshape(X.shape[0],28,28,1) X_valid = X_valid.reshape(X_valid.shape[0],28,28,1)
Digit Recognizer
6,762,101
input_dir = os.path.join('.. ', 'input', 'tabular-playground-series-feb-2021') sample_submission_csv_path = os.path.join(input_dir, 'sample_submission.csv') test_csv_path = os.path.join(input_dir, 'test.csv') train_csv_path = os.path.join(input_dir, 'train.csv') train_df = pd.read_csv(train_csv_path) y = train_df[['target']] x = train_df.drop(columns=['id', 'target']) cat_features = list(range(0, 10)) train_pool = Pool(x, y, cat_features=cat_features) model = CatBoostRegressor(random_seed=1) model.fit(train_pool) test_df = pd.read_csv(test_csv_path) x_id = test_df[['id']] x_test = test_df.drop(columns=['id']) test_pool = Pool(x_test, cat_features=cat_features) target = model.predict(test_pool) submission = pd.read_csv(sample_submission_csv_path) submission[['target']] = target submission.to_csv('submission.csv', index=False) <import_modules>
X_train, X_dev, Y_train,Y_dev = train_test_split(X,Y,test_size = 0.2 )
Digit Recognizer
6,762,101
import lightgbm as lgb import optuna.integration.lightgbm as oplgb from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error from tqdm.notebook import tqdm import matplotlib.pyplot as plt import category_encoders as ce import seaborn as sns<load_from_csv>
f = 2 model = tf.keras.Sequential([ tf.keras.layers.Conv2D(f*16,kernel_size =(3,3), padding = 'same',activation='relu', kernel_initializer='he_uniform', input_shape =(28,28,1)) , tf.keras.layers.Conv2D(f*16,(3,3), activation = "relu", padding = 'same'), tf.keras.layers.BatchNormalization() , tf.keras.layers.MaxPooling2D() , tf.keras.layers.Conv2D(f*32, kernel_size =(3,3), padding = 'same',activation='relu'), tf.keras.layers.Conv2D(f*32,(3,3), activation = "relu", padding = 'same'), tf.keras.layers.BatchNormalization() , tf.keras.layers.MaxPooling2D() , tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(f*64, kernel_size =(3,3), padding = 'same',activation='relu'), tf.keras.layers.Conv2D(f*64,(3,3), activation = "relu", padding = 'same'), tf.keras.layers.BatchNormalization() , tf.keras.layers.MaxPooling2D() , tf.keras.layers.Dropout(0.125), keras.layers.Flatten() , keras.layers.Dense(512, activation = 'relu'), keras.layers.Dense(128, activation = 'relu'), keras.layers.Dense(10, activation='softmax') ]) model.summary()
Digit Recognizer
6,762,101
df_train = pd.read_csv("/kaggle/input/tabular-playground-series-feb-2021/train.csv") df_test = pd.read_csv("/kaggle/input/tabular-playground-series-feb-2021/test.csv") df_sample = pd.read_csv("/kaggle/input/tabular-playground-series-feb-2021/sample_submission.csv" )<drop_column>
from keras.utils import plot_model
Digit Recognizer
6,762,101
train_id = df_train["id"] test_id = df_test["id"] df_train.drop("id", axis=1, inplace=True) df_test.drop("id", axis=1, inplace=True )<define_variables>
model.compile(optimizer=Adam(learning_rate=0.0003), loss = 'sparse_categorical_crossentropy', metrics = ['accuracy'] )
Digit Recognizer
6,762,101
cat_features = [f"cat{i}" for i in range(9 + 1)]<categorify>
train_datagen = ImageDataGenerator(rotation_range=10, width_shift_range=0.15, height_shift_range=0.15, shear_range=0.05, zoom_range=0.15, horizontal_flip=False) valid_datagen = ImageDataGenerator(horizontal_flip=False, ) callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5) def lr_decay(epoch, initial_learningrate = 0.0003): return initial_learningrate * 0.99 ** epoch learning_rate_reduction = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_acc', patience=300, verbose=1, factor=0.5, min_lr=0.00001) batchsize = 512*2 epoch = 45 history = model.fit_generator(train_datagen.flow(X, Y, batch_size = batchsize), steps_per_epoch = 100, epochs = epoch, callbacks=[ LearningRateScheduler(lr_decay), callback], validation_data=valid_datagen.flow(X_dev, Y_dev), validation_steps=50, )
Digit Recognizer
6,762,101
<categorify><EOS>
yhat = model.predict_classes(X_valid) submission['Label']=pd.Series(yhat) submission.to_csv('submission.csv',index=False )
Digit Recognizer
4,636,846
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, roc_curve, auc, roc_auc_score from sklearn.preprocessing import label_binarize from sklearn.svm import SVC from itertools import cycle from scipy import interp from keras.optimizers import Adam from keras.callbacks import Callback, EarlyStopping, ModelCheckpoint from keras import backend as K from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Input, Dropout, Flatten from keras.models import Model, load_model from keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
4,636,846
numerical_features = [f"cont{i}" for i in range(13 + 1)]<concatenate>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
4,636,846
train_x = pd.concat([ df_train[numerical_features], train_ohe, train_or ], axis=1 )<concatenate>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
4,636,846
test_x = pd.concat([ df_test[numerical_features], test_ohe, test_or ], axis=1 )<prepare_x_and_y>
X_train, X_valid, y_train, y_valid = train_test_split(train.drop(['label'], axis=1), train['label'], random_state = 0 )
Digit Recognizer
4,636,846
train_y = df_train["target"]<create_dataframe>
X_train = X_train.values.reshape(-1,28,28,1) X_valid = X_valid.values.reshape(-1,28,28,1) y_train = label_binarize(y_train, classes=range(10)) y_valid = label_binarize(y_valid, classes=range(10))
Digit Recognizer
4,636,846
oplgb_train_data = oplgb.Dataset(train_x, train_y )<init_hyperparams>
class RocAucEvaluation(Callback): def __init__(self, validation_data=() , interval=1): super(Callback, self ).__init__() self.interval = interval self.X_val, self.y_val = validation_data def on_epoch_end(self, epoch, logs={}): if epoch % self.interval == 0: y_pred = self.model.predict(self.X_val, verbose=0) score = roc_auc_score(self.y_val, y_pred) print(" ROC-AUC - epoch: {:d} - score: {:.6f}".format(epoch+1, score))
Digit Recognizer
4,636,846
oplgb_params = { "objective": "regression", "metric": "root_mean_squared_error", "verbosity": -1, "learning_rate": 0.01 }<choose_model_class>
class CNN: def __init__(self): self.arguments = { 'batch_size': 64, 'epochs': 100, 'learning_rate': 1e-3, 'learning_rate_decay': 0, 'units': 128, 'drop_out_rate': 0.2, 'checkpoint_path': 'best_bilstm_model.hdf5', 'early_stop_patience': 10, } print('Building CNN Models...') print(self.arguments) def fit(self, X_train, y_train, X_valid, y_valid): file_path = self.arguments['checkpoint_path'] check_point = ModelCheckpoint(file_path, monitor = "val_loss", verbose = 1, save_best_only = True, mode = "min") ra_val = RocAucEvaluation(validation_data=(X_valid, y_valid), interval = 1) early_stop = EarlyStopping(monitor = "val_loss", mode = "min", patience = self.arguments['early_stop_patience']) inp = Input(shape=(28,28,1)) x = Conv2D(filters=20, kernel_size =(5, 5), activation="relu" )(inp) max_pool_x = MaxPooling2D(pool_size=(2,2))(x) y = Conv2D(filters=20, kernel_size =(5, 5), activation="relu" )(max_pool_x) max_pool_y = MaxPooling2D(pool_size=(2,2))(y) flat = Flatten()(max_pool_y) z = Dense(100, activation="relu" )(flat) z = Dropout(rate = self.arguments['drop_out_rate'] )(z) z = Dense(100, activation="relu" )(z) z = Dropout(rate = self.arguments['drop_out_rate'] )(z) output = Dense(10, activation="softmax" )(z) self.model = Model(inputs = inp, outputs = output) self.model.compile(loss = "categorical_crossentropy", optimizer = Adam(lr = self.arguments['learning_rate'], decay = self.arguments['learning_rate_decay']), metrics = ["accuracy"]) history = self.model.fit(X_train, y_train, batch_size = self.arguments['batch_size'], epochs = self.arguments['epochs'], validation_data =(X_valid, y_valid), verbose = 1, callbacks = [ra_val, check_point, early_stop]) self.model = load_model(file_path) print('Finished Building CNN Model as class attribute class.model') return self def predict(self, X, batch_size, verbose): return self.model.predict(X, batch_size = batch_size, verbose = verbose )
Digit Recognizer
4,636,846
folds = KFold(n_splits=5, shuffle=True, random_state=2021 )<choose_model_class>
cnn = CNN() cnn.fit(X_train, y_train, X_valid, y_valid) cnn_pred = cnn.predict(X_valid, batch_size = cnn.arguments['batch_size'], verbose = 1 )
Digit Recognizer
4,636,846
tuner_cv = oplgb.LightGBMTunerCV(oplgb_params, oplgb_train_data, num_boost_round=1000, early_stopping_rounds=100, folds=folds, verbose_eval=100, time_budget=21600) tuner_cv.run()<find_best_params>
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, )
Digit Recognizer
4,636,846
tuner_cv.best_params<train_model>
train_gen = datagen.flow(X_train, y_train, batch_size=64) valid_gen = datagen.flow(X_valid, y_valid, batch_size=64 )
Digit Recognizer
4,636,846
class FoldsAverageLGBM: def __init__(self, folds): self.folds = folds self.models = [] def fit(self, lgb_params, train_x, train_y): oof_preds = np.zeros_like(train_y) self.train_x = train_x self.train_y = train_y.values for tr_idx, va_idx in tqdm(folds.split(train_x)) : tr_x, va_x = self.train_x.iloc[tr_idx], self.train_x.iloc[va_idx] tr_y, va_y = self.train_y[tr_idx], self.train_y[va_idx] lgb_train_dataset = lgb.Dataset(tr_x, tr_y) lgb_valid_dataset = lgb.Dataset(va_x, va_y) model = lgb.train(lgb_params, lgb_train_dataset, valid_sets=[lgb_valid_dataset], verbose_eval=100) self.models.append(model) oof_pred = model.predict(va_x) oof_preds[va_idx] = oof_pred self.oof_preds = oof_preds def predict(self, test_x): preds = [] for model in tqdm(self.models): pred = model.predict(test_x) preds.append(pred) preds = np.mean(preds, axis=0) return preds def get_feature_importance(self, importance_type="gain"): feature_names = self.models[0].feature_name() feature_importances_list = [model.feature_importance(importance_type)for model in self.models] out_df = pd.DataFrame() for i, name in enumerate(feature_names): out_df[name] = [v[i] for v in feature_importances_list] return out_df<init_hyperparams>
class CNN_Generator: def __init__(self): self.arguments = { 'batch_size': 64, 'epochs': 100, 'learning_rate': 1e-3, 'learning_rate_decay': 0, 'units': 128, 'drop_out_rate': 0.2, 'checkpoint_path': 'best_bilstm_model.hdf5', 'early_stop_patience': 10, } print('Building CNN_Generator Models...') print(self.arguments) def fit(self, train_gen, valid_gen): file_path = self.arguments['checkpoint_path'] check_point = ModelCheckpoint(file_path, monitor = "val_loss", verbose = 1, save_best_only = True, mode = "min") ra_val = RocAucEvaluation(validation_data=(X_valid, y_valid), interval = 1) early_stop = EarlyStopping(monitor = "val_loss", mode = "min", patience = self.arguments['early_stop_patience']) inp = Input(shape=(28,28,1)) x = Conv2D(filters=20, kernel_size =(5, 5), activation="relu" )(inp) max_pool_x = MaxPooling2D(pool_size=(2,2))(x) y = Conv2D(filters=20, kernel_size =(5, 5), activation="relu" )(max_pool_x) max_pool_y = MaxPooling2D(pool_size=(2,2))(y) flat = Flatten()(max_pool_y) z = Dense(100, activation="relu" )(flat) z = Dropout(rate = self.arguments['drop_out_rate'] )(z) z = Dense(100, activation="relu" )(z) z = Dropout(rate = self.arguments['drop_out_rate'] )(z) output = Dense(10, activation="softmax" )(z) self.model = Model(inputs = inp, outputs = output) self.model.compile(loss = "categorical_crossentropy", optimizer = Adam(lr = self.arguments['learning_rate'], decay = self.arguments['learning_rate_decay']), metrics = ["accuracy"]) history = self.model.fit_generator(train_gen, epochs = self.arguments['epochs'], steps_per_epoch = X_train.shape[0] // self.arguments['batch_size'], validation_steps = X_train.shape[0] // self.arguments['batch_size'], validation_data = valid_gen, verbose = 1, callbacks = [ra_val, check_point, early_stop]) self.model = load_model(file_path) print('Finished Building CNN Model as class attribute class.model') return self def predict(self, X, batch_size, verbose): return self.model.predict(X, batch_size = batch_size, verbose = verbose )
Digit Recognizer
4,636,846
lgb_params = dict(tuner_cv.best_params) lgb_params["learning_rate"] = 0.001 lgb_params["early_stopping_round"] = 1000 lgb_params["num_iterations"] = 20000<statistical_test>
cnn_gen = CNN_Generator() cnn_gen.fit(train_gen, valid_gen) cnn_gen_pred = cnn_gen.predict(X_valid, batch_size = cnn.arguments['batch_size'], verbose = 1 )
Digit Recognizer
4,636,846
folds_average_lgbm = FoldsAverageLGBM(folds )<train_model>
train_predictions = [] valid_predictions = [] test_predictions = [] for i in range(5): cnn = CNN_Generator() cnn.fit(train_gen, valid_gen) train_predictions += [cnn.predict(X_train, batch_size = cnn.arguments['batch_size'], verbose = 0)] valid_predictions += [cnn.predict(X_valid, batch_size = cnn.arguments['batch_size'], verbose = 1)] test_predictions += [cnn.predict(test.values.reshape(-1,28,28,1), batch_size = cnn.arguments['batch_size'], verbose = 1)]
Digit Recognizer
4,636,846
folds_average_lgbm.fit(lgb_params, train_x, train_y )<compute_test_metric>
train_pred = np.concatenate(train_predictions, axis=1) valid_pred = np.concatenate(valid_predictions, axis=1) test_pred = np.concatenate(test_predictions, axis=1) svm = SVC(probability=True, gamma='scale' ).fit(train_pred, np.argmax(y_train, axis=1)) pred = svm.predict(valid_pred) print("val_acc: ", round(np.sum(pred == np.argmax(y_valid, axis=1)) /y_valid.shape[0], 4)) print("val_ROC-AUC: ", round(roc_auc_score(y_valid, svm.predict_proba(valid_pred)) , 6))
Digit Recognizer
4,636,846
<predict_on_test><EOS>
sample_submission = pd.read_csv(".. /input/sample_submission.csv") sample_submission['Label'] = svm.predict(test_pred) sample_submission.head() sample_submission.to_csv('submission.csv', index=False )
Digit Recognizer
2,617,477
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<save_to_csv>
MaxPool2D, ReLU) %matplotlib inline
Digit Recognizer
2,617,477
sub = df_sample.copy() sub["target"] = y_pred sub.to_csv("submission_optuna_lgbm_ohe_or_v1.csv", index=False) sub.head()<import_modules>
print("Loading...") data_train = pd.read_csv(".. /input/train.csv") data_test = pd.read_csv(".. /input/test.csv") print("Done!" )
Digit Recognizer
2,617,477
import os import numpy as np import pandas as pd<load_from_csv>
print("Training data: {} rows, {} columns.".format(data_train.shape[0], data_train.shape[1])) print("Test data: {} rows, {} columns.".format(data_test.shape[0], data_test.shape[1]))
Digit Recognizer
2,617,477
pred1 = pd.read_csv(".. /input/tps-feb-submission-ensemble/submission_pseudo_lgb.csv") pred2 = pd.read_csv(".. /input/tps-feb-submission-ensemble/submission_pseudo_lgb_4.csv") pred3 = pd.read_csv(".. /input/tps-feb-submission-ensemble/submission_pseudo_lgb_5.csv") pred4 = pd.read_csv(".. /input/tps-feb-submission-ensemble/pseudo_lgb_1.csv" )<compute_test_metric>
x_train = data_train.values[:, 1:] y_train = data_train.values[:, 0]
Digit Recognizer
2,617,477
pred =(pred1.target + pred2.target + pred3.target + pred4.target)/ 4 pred<load_from_csv>
def convert_2d(x): if len(x.shape)== 1: m = 1 height = width = int(np.sqrt(x.shape[0])) else: m = x.shape[0] height = width = int(np.sqrt(x.shape[1])) x_2d = np.reshape(x,(m, height, width, 1)) return x_2d
Digit Recognizer
2,617,477
submission = pd.read_csv(".. /input/tabular-playground-series-feb-2021/sample_submission.csv") submission.target = pred submission<save_to_csv>
def translate(x, y, dist): images = convert_2d(x) m, height, width, channel = images.shape anchors = [] anchors.append(( 0, height, int(dist * width), width, 0, height, 0, width - int(dist * width))) anchors.append(( 0, height, 0, width - int(dist * width), 0, height, int(dist * width), width)) anchors.append(( int(dist * height), height, 0, width, 0, height - int(dist * height), 0, width)) anchors.append(( 0, height - int(dist * height), 0, width, int(dist * height), height, 0, width)) new_images = np.zeros(( 4, m, height, width, channel)) for i in range(4): top, bottom, left, right, new_top, new_bottom, new_left, new_right = anchors[i] new_images[i, :, new_top:new_bottom, new_left:new_right, :] = images[:, top:bottom, left:right, :] new_images = np.reshape(new_images,(4 * m, -1)) y = np.tile(y,(4, 1)).reshape(( -1, 1)) new_images = np.concatenate(( y, new_images), axis=1 ).astype(int) return new_images
Digit Recognizer
2,617,477
submission.to_csv("ensemble.csv", index=False )<install_modules>
def add_noise(x, y, noise_lvl): m, n = x.shape noise_num = int(noise_lvl * n) for i in range(m): noise_idx = np.random.randint(0, n, n ).argsort() [:noise_num] x[i, noise_idx] = np.random.randint(0, 255, noise_num) noisy_data = np.concatenate(( y.reshape(( -1, 1)) , x), axis=1 ).astype("int") return noisy_data
Digit Recognizer
2,617,477
!pip install -q transformers ekphrasis keras-tuner<import_modules>
start = time.clock() print("Augment the data...") cropped_imgs = crop_image(x_train, y_train, 0.9) translated_imgs = translate(x_train, y_train, 0.1) noisy_imgs = add_noise(x_train, y_train, 0.1) rotated_imgs = rotate_image(x_train, y_train, 10) data_train = np.vstack(( data_train, cropped_imgs, translated_imgs, noisy_imgs, rotated_imgs)) np.random.shuffle(data_train) print("Done!") time_used = int(time.clock() - start) print("Time used: {}s.".format(time_used))
Digit Recognizer
2,617,477
Input, Dense, Embedding, Flatten, Dropout, GlobalMaxPooling1D, GRU, concatenate, ) DistilBertTokenizerFast, TFDistilBertModel, DistilBertConfig, ) <compute_train_metric>
x_train = data_train[:, 1:] y_train = data_train[:, 0] x_test = data_test.values print("Augmented training data: {} rows, {} columns.".format(data_train.shape[0], data_train.shape[1]))
Digit Recognizer
2,617,477
def print_metrics(model, x_train, y_train, x_val, y_val): train_acc = dict(model.evaluate(x_train, y_train, verbose=0, return_dict=True)) [ "accuracy" ] val_acc = dict(model.evaluate(x_val, y_val, verbose=0, return_dict=True)) [ "accuracy" ] val_preds = model.predict(x_val) val_preds_bool = val_preds >= 0.5 print("") print(f"Training Accuracy: {train_acc:.2%}") print(f"Validation Accuracy: {val_acc:.2%}") print("") print(f"Validation f1 score: {sklearn.metrics.f1_score(val_preds_bool, y_val):.2%}" )<load_pretrained>
x_train = convert_2d(x_train) x_test = convert_2d(x_test )
Digit Recognizer
2,617,477
model_class, tokenizer_class, pretrained_weights =(TFDistilBertModel, DistilBertTokenizerFast, 'distilbert-base-uncased') pretrained_bert_tokenizer = tokenizer_class.from_pretrained(pretrained_weights) def get_pretrained_bert_model(config=pretrained_weights): if not config: config = DistilBertConfig(num_labels=2) return model_class.from_pretrained(pretrained_weights, config=config) <load_from_csv>
num_classes = 10 y_train = keras.utils.to_categorical(y_train, num_classes )
Digit Recognizer
2,617,477
train_df = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test_df = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv" )<count_values>
x_train = x_train / 255 x_test = x_test / 255
Digit Recognizer
2,617,477
print("label counts:") train_df.target.value_counts()<count_missing_values>
seed = np.random.randint(1, 100) x_train, x_dev, y_train, y_dev = train_test_split(x_train, y_train, test_size=0.1, random_state=seed )
Digit Recognizer
2,617,477
print("train precentage of nulls:") print(round(train_df.isnull().sum() / train_df.count() * 100, 2))<count_missing_values>
del data_train del data_test gc.collect()
Digit Recognizer
2,617,477
print("test precentage of nulls:") print(round(test_df.isnull().sum() / test_df.count() * 100, 2))<categorify>
filters =(32, 32, 64, 64) kernel =(5, 5) drop_prob = 0.2 model = keras.models.Sequential() model.add(Conv2D(filters[0], kernel, padding="same", input_shape=(28, 28, 1), kernel_initializer=keras.initializers.he_normal())) model.add(BatchNormalization()) model.add(ReLU()) model.add(Conv2D(filters[0], kernel, padding="same", kernel_initializer=keras.initializers.he_normal())) model.add(BatchNormalization()) model.add(ReLU()) model.add(MaxPool2D()) model.add(Dropout(drop_prob)) model.add(Conv2D(filters[1], kernel, padding="same", kernel_initializer=keras.initializers.he_normal())) model.add(BatchNormalization()) model.add(ReLU()) model.add(MaxPool2D()) model.add(Dropout(drop_prob)) model.add(Conv2D(filters[2], kernel, padding="same", kernel_initializer=keras.initializers.he_normal())) model.add(BatchNormalization()) model.add(ReLU()) model.add(MaxPool2D()) model.add(Dropout(drop_prob)) model.add(Conv2D(filters[3], kernel, padding="same", kernel_initializer=keras.initializers.he_normal())) model.add(BatchNormalization()) model.add(ReLU()) model.add(MaxPool2D()) model.add(Dropout(drop_prob)) model.add(Flatten()) model.add(Dropout(drop_prob)) model.add(Dense(128, activation="relu")) model.add(Dropout(drop_prob)) model.add(Dense(num_classes, activation="softmax")) model.compile(keras.optimizers.Adam() , "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer