kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
12,294,222
for i in range(0,num): X_train_np = trains[i][features].values.astype(np.float32) X_valid_np = valids[i][features].values.astype(np.float32) tr_data = lgb.Dataset(X_train_np, label=trains[i][target], feature_name=list(features)) va_data = lgb.Dataset(X_valid_np, label=valids[i][target], feature_name=list(features)) del trains del valids del X_train_np del X_valid_np gc.collect() model = lgb.train( params, tr_data, num_boost_round=5000, valid_sets=[tr_data, va_data], early_stopping_rounds=50, feature_name=features, categorical_feature=categorical_columns, verbose_eval=50 ) clfs.append(model) fig,ax = plt.subplots(figsize=(15,15)) lgb.plot_importance(model, ax=ax,importance_type='gain',max_num_features=50) plt.show() del tr_data del va_data gc.collect() <choose_model_class>
y = to_categorical(y, num_classes = 10) y[0]
Digit Recognizer
12,294,222
MAX_SEQ = 100 class FFN(nn.Module): def __init__(self, state_size=200): super(FFN, self ).__init__() self.state_size = state_size self.lr1 = nn.Linear(state_size, state_size) self.relu = nn.ReLU() self.lr2 = nn.Linear(state_size, state_size) self.dropout = nn.Dropout(0.2) def forward(self, x): x = self.lr1(x) x = self.relu(x) x = self.lr2(x) return self.dropout(x) def future_mask(seq_length): future_mask = np.triu(np.ones(( seq_length, seq_length)) , k=1 ).astype('bool') return torch.from_numpy(future_mask) class SAKTModel(nn.Module): def __init__(self, n_skill, max_seq=MAX_SEQ, embed_dim=128): super(SAKTModel, self ).__init__() self.n_skill = n_skill self.embed_dim = embed_dim self.embedding = nn.Embedding(2*n_skill+1, embed_dim) self.pos_embedding = nn.Embedding(max_seq-1, embed_dim) self.e_embedding = nn.Embedding(n_skill+1, embed_dim) self.multi_att = nn.MultiheadAttention(embed_dim=embed_dim, num_heads=8, dropout=0.2) self.dropout = nn.Dropout(0.2) self.layer_normal = nn.LayerNorm(embed_dim) self.ffn = FFN(embed_dim) self.pred = nn.Linear(embed_dim, 1) def forward(self, x, question_ids): device = x.device x = self.embedding(x) pos_id = torch.arange(x.size(1)).unsqueeze(0 ).to(device) pos_x = self.pos_embedding(pos_id) x = x + pos_x e = self.e_embedding(question_ids) x = x.permute(1, 0, 2) e = e.permute(1, 0, 2) att_mask = future_mask(x.size(0)).to(device) att_output, att_weight = self.multi_att(e, x, x, attn_mask=att_mask) att_output = self.layer_normal(att_output + e) att_output = att_output.permute(1, 0, 2) x = self.ffn(att_output) x = self.layer_normal(x + att_output) x = self.pred(x) return x.squeeze(-1), att_weight skills = joblib.load("/kaggle/input/riiid-sakt-model-dataset-public/skills.pkl.zip") n_skill = len(skills) group = joblib.load("/kaggle/input/riiid-sakt-model-dataset-public/group.pkl.zip") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") nn_model = SAKTModel(n_skill, embed_dim=128) try: nn_model.load_state_dict(torch.load("/kaggle/input/riiid-sakt-model-dataset-public/sakt_model.pt")) except: nn_model.load_state_dict(torch.load("/kaggle/input/riiid-sakt-model-dataset-public/sakt_model.pt", map_location='cpu')) nn_model.to(device) nn_model.eval() <data_type_conversions>
train = train.values.reshape(train.shape[0], 28, 28, 1) test = test.values.reshape(test.shape[0], 28, 28, 1) print('Reshaped Train set: ',train.shape, " & Reshaped Test Set", test.shape )
Digit Recognizer
12,294,222
user_sum_dict = user_agg['sum'].astype('int16' ).to_dict(defaultdict(int)) user_count_dict = user_agg['count'].astype('int16' ).to_dict(defaultdict(int)) <data_type_conversions>
train = train.astype("float32")/255.0 test = test.astype("float32")/255.0
Digit Recognizer
12,294,222
del user_agg gc.collect() task_container_sum_dict = task_container_agg['sum'].astype('int32' ).to_dict(defaultdict(int)) task_container_count_dict = task_container_agg['count'].astype('int32' ).to_dict(defaultdict(int)) task_container_std_dict = task_container_agg['var'].astype('float16' ).to_dict(defaultdict(int)) explanation_sum_dict = explanation_agg['sum'].astype('int16' ).to_dict(defaultdict(int)) explanation_count_dict = explanation_agg['count'].astype('int16' ).to_dict(defaultdict(int)) del task_container_agg del explanation_agg gc.collect()<data_type_conversions>
X_train, X_val, y_train, y_val = train_test_split(train, y, test_size=0.25, random_state=0) print("Number of samples in Training set :", X_train.shape[0]) print("Number of samples in Validation set :", X_val.shape[0] )
Digit Recognizer
12,294,222
user_lecture_sum_dict = user_lecture_agg['sum'].astype('int16' ).to_dict(defaultdict(int)) user_lecture_count_dict = user_lecture_agg['count'].astype('int16' ).to_dict(defaultdict(int)) del user_lecture_agg gc.collect()<categorify>
train_datagen = ImageDataGenerator(rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1 ) training_set = train_datagen.flow(X_train, y_train, batch_size=64 ) val_datagen = ImageDataGenerator() val_set = val_datagen.flow(X_val, y_val, batch_size=64 )
Digit Recognizer
12,294,222
max_timestamp_u_dict=max_timestamp_u.set_index('user_id' ).to_dict() max_timestamp_u_dict2=max_timestamp_u2.set_index('user_id' ).to_dict() max_timestamp_u_dict3=max_timestamp_u3.set_index('user_id' ).to_dict() user_prior_question_elapsed_time_dict=user_prior_question_elapsed_time.set_index('user_id' ).to_dict() del max_timestamp_u del max_timestamp_u2 del max_timestamp_u3 del user_prior_question_elapsed_time gc.collect()<categorify>
model = tf.keras.models.Sequential() model.add(Conv2D(64, kernel_size=(5,5), padding='same', activation='relu', input_shape=(28,28,1))) model.add(Conv2D(64, kernel_size=(5,5), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Conv2D(128, kernel_size=(3,3), activation='relu', padding='same')) model.add(Conv2D(128, kernel_size=(3,3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(256, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) model.summary()
Digit Recognizer
12,294,222
attempt_no_sum_dict = attempt_no_agg['sum'].to_dict(defaultdict(int)) del attempt_no_agg gc.collect()<feature_engineering>
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=4, verbose=1, min_delta=0.0001 )
Digit Recognizer
12,294,222
def get_max_attempt(user_id,content_id): k =(user_id,content_id) if k in attempt_no_sum_dict.keys() : attempt_no_sum_dict[k]+=1 return attempt_no_sum_dict[k] attempt_no_sum_dict[k] = 1 return attempt_no_sum_dict[k]<feature_engineering>
steps_per_epoch = training_set.n // training_set.batch_size validation_steps = val_set.n // val_set.batch_size hist = model.fit(x=training_set, validation_data=val_set, epochs=35, callbacks=[reduce_lr], steps_per_epoch=steps_per_epoch, validation_steps=validation_steps )
Digit Recognizer
12,294,222
<define_variables>
_, acc_val = model.evaluate(val_set) _, acc_tr = model.evaluate(val_set) print(" Final Accuracy on training set : {:.2f}% & accuracy on validation is set: {:.2f}%".format(acc_tr*100, acc_val*100))
Digit Recognizer
12,294,222
iter_test = env.iter_test() prior_test_df = None prev_test_df1 = None<define_search_space>
pred = model.predict(test) res = np.argmax(pred, axis=1) submission = pd.DataFrame({"ImageId":[i+1 for i in range(len(test)) ], "Label": res}) submission.head(10 )
Digit Recognizer
12,294,222
N=[0.4,0.6]<feature_engineering>
submission.to_csv("submission.csv", index=False )
Digit Recognizer
12,294,222
<import_modules><EOS>
submission.to_csv("submission.csv", index=False )
Digit Recognizer
12,110,917
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<import_modules>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, BatchNormalization, Dropout from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools
Digit Recognizer
12,110,917
class Predictor(object): def __init__(self, model, model_metadata, ohe_categorical_index_vocab, mhe_categorical_index_vocab): self._model = model self._model_metadata = model_metadata self._ohe_categorical_index_vocab = ohe_categorical_index_vocab self._mhe_categorical_index_vocab = mhe_categorical_index_vocab self._model_type = None self._label_col = None self._feature_name_to_index_map = {} self._feature_names = [] self._class_names = [] def _extract_model_metadata(self): if 'model_type' not in self._model_metadata or self._model_metadata[ 'model_type'] not in [ 'boosted_tree_regressor', 'boosted_tree_classifier' ]: raise ValueError('Invalid model_type in model_metadata') self._model_type = self._model_metadata['model_type'] if 'label_col' not in self._model_metadata: raise ValueError('label_col not found in model_metadata') self._label_col = self._model_metadata['label_col'] if not self._model_metadata['features']: raise ValueError('No feature found in model_metadata') self._feature_names = self._model_metadata['feature_names'] if self._model_type == 'boosted_tree_classifier': if 'class_names' not in self._model_metadata or not self._model_metadata[ 'class_names']: raise ValueError('No class_names found in model_metadata') self._class_names = self._model_metadata['class_names'] for feature_index in range(len(self._feature_names)) : feature_name = self._feature_names[feature_index] self._feature_name_to_index_map[feature_name] = feature_index feature_metadata = self._model_metadata['features'][feature_name] if 'encode_type' not in feature_metadata or not feature_metadata[ 'encode_type']: continue elif feature_metadata['encode_type'] == 'ohe': if feature_index not in self._ohe_categorical_index_vocab: raise ValueError( 'feature_index %d missing in _ohe_categorical_index_vocab' % feature_index) elif feature_metadata['encode_type'] == 'mhe': if feature_index not in self._mhe_categorical_index_vocab: raise ValueError( 'feature_index %d missing in _mhe_categorical_index_vocab' % feature_index) else: raise ValueError('Invalid encode_type %s for feature %s' % (feature_metadata['encode_type'], feature_name)) def _preprocess(self, data): self._extract_model_metadata() preprocessed_data = [] for row_index in range(len(data)) : row = data[row_index] sorted_data_feature_names = sorted(row.keys()) sorted_model_feature_names = sorted(self._feature_names) if sorted_data_feature_names != sorted_model_feature_names: raise ValueError( 'Row %d has different features %s than the model features %s' % (row_index, ','.join(sorted_data_feature_names), ','.join(sorted_model_feature_names))) encoded_row = [] for feature_name in self._feature_names: col = row[feature_name] feature_index = self._feature_name_to_index_map[feature_name] if feature_index in self._ohe_categorical_index_vocab: vocab = self._ohe_categorical_index_vocab[feature_index] col_value = str(col) if col_value in vocab: encoded_row.append(float(vocab.index(col_value))) else: encoded_row.append(None) elif feature_index in self._mhe_categorical_index_vocab: vocab = self._mhe_categorical_index_vocab[feature_index] mhe_list = [0.0] * len(vocab) try: for item in col: item_value = str(item) if item_value in vocab: mhe_list[vocab.index(item_value)] = 1.0 encoded_row.extend(mhe_list) except ValueError: raise ValueError('The feature %s in row %d is not an array' % (feature_name, row_index)) else: try: encoded_row.append(float(col)) except ValueError: raise ValueError( 'The feature %s in row %d cannot be converted to float' % (feature_name, row_index)) preprocessed_data.append(encoded_row) return preprocessed_data def predict(self, instances, **kwargs): del kwargs encoded = self._preprocess(instances) prediction_input = xgb.DMatrix( np.array(encoded ).reshape(( len(instances), -1)) , missing=None) if self._model_type == 'boosted_tree_classifier': outputs = self._model.predict(prediction_input) final_outputs = [] for np_output in outputs: output = np_output.tolist() final_output = {} final_output['predicted_{}'.format( self._label_col)] = self._class_names[output.index(max(output)) ] final_output['{}_values'.format(self._label_col)] = self._class_names final_output['{}_probs'.format(self._label_col)] = output final_outputs.append(final_output) return final_outputs else: return { 'predicted_' + self._label_col: self._model.predict(prediction_input ).tolist() } @classmethod def from_path(cls, model_dir, model_name="model.bst", meta_name="model_metadata.json"): model_path = os.path.join(model_dir, model_name) model = xgb.Booster(model_file=model_path) assets_path = model_dir model_metadata_path = os.path.join(assets_path, meta_name) with open(model_metadata_path)as f: model_metadata = json.load(f) txt_list = glob.glob(assets_path + '/*.txt') ohe_categorical_index_vocab = {} mhe_categorical_index_vocab = {} for txt_file in txt_list: ohe_feature_found = re.search(r'(\d+ ).txt', txt_file) mhe_feature_found = re.search(r'(\d+)_array.txt', txt_file) if ohe_feature_found: feature_index = int(ohe_feature_found.group(1)) with open(txt_file)as f: ohe_categorical_index_vocab[feature_index] = f.read().splitlines() elif mhe_feature_found: feature_index = int(mhe_feature_found.group(1)) with open(txt_file)as f: mhe_categorical_index_vocab[feature_index] = f.read().splitlines() return cls(model, model_metadata, ohe_categorical_index_vocab, mhe_categorical_index_vocab )<feature_engineering>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
12,110,917
class Iter_Valid(object): def __init__(self, df, max_user=1000): df = df.reset_index(drop=True) self.df = df self.user_answer = df['user_answer'].astype(str ).values self.answered_correctly = df['answered_correctly'].astype(str ).values df['prior_group_responses'] = "[]" df['prior_group_answers_correct'] = "[]" self.sample_df = df[df['content_type_id'] == 0][['row_id']] self.sample_df['answered_correctly'] = 0 self.len = len(df) self.user_id = df.user_id.values self.task_container_id = df.task_container_id.values self.content_type_id = df.content_type_id.values self.max_user = max_user self.current = 0 self.pre_user_answer_list = [] self.pre_answered_correctly_list = [] def __iter__(self): return self def fix_df(self, user_answer_list, answered_correctly_list, pre_start): df= self.df[pre_start:self.current].copy() sample_df = self.sample_df[pre_start:self.current].copy() df.loc[pre_start,'prior_group_responses'] = '[' + ",".join(self.pre_user_answer_list)+ ']' df.loc[pre_start,'prior_group_answers_correct'] = '[' + ",".join(self.pre_answered_correctly_list)+ ']' self.pre_user_answer_list = user_answer_list self.pre_answered_correctly_list = answered_correctly_list return df, sample_df def __next__(self): added_user = set() pre_start = self.current pre_added_user = -1 pre_task_container_id = -1 pre_content_type_id = -1 user_answer_list = [] answered_correctly_list = [] while self.current < self.len: crr_user_id = self.user_id[self.current] crr_task_container_id = self.task_container_id[self.current] crr_content_type_id = self.content_type_id[self.current] if crr_user_id in added_user and(crr_user_id != pre_added_user or(crr_task_container_id != pre_task_container_id and crr_content_type_id == 0 and pre_content_type_id == 0)) : return self.fix_df(user_answer_list, answered_correctly_list, pre_start) if len(added_user)== self.max_user: if crr_user_id == pre_added_user and(crr_task_container_id == pre_task_container_id or crr_content_type_id == 1): user_answer_list.append(self.user_answer[self.current]) answered_correctly_list.append(self.answered_correctly[self.current]) self.current += 1 continue else: return self.fix_df(user_answer_list, answered_correctly_list, pre_start) added_user.add(crr_user_id) pre_added_user = crr_user_id pre_task_container_id = crr_task_container_id pre_content_type_id = crr_content_type_id user_answer_list.append(self.user_answer[self.current]) answered_correctly_list.append(self.answered_correctly[self.current]) self.current += 1 if pre_start < self.current: return self.fix_df(user_answer_list, answered_correctly_list, pre_start) else: raise StopIteration()<choose_model_class>
X_train = train.iloc[:,1:] y_train = train.iloc[:,0]
Digit Recognizer
12,110,917
MAX_SEQ = 240 ACCEPTED_USER_CONTENT_SIZE = 2 EMBED_SIZE = 256 BATCH_SIZE = 64+32 DROPOUT = 0.1 class FFN(nn.Module): def __init__(self, state_size = 200, forward_expansion = 1, bn_size = MAX_SEQ - 1, dropout=0.2): super(FFN, self ).__init__() self.state_size = state_size self.lr1 = nn.Linear(state_size, forward_expansion * state_size) self.relu = nn.ReLU() self.bn = nn.BatchNorm1d(bn_size) self.lr2 = nn.Linear(forward_expansion * state_size, state_size) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.relu(self.lr1(x)) x = self.bn(x) x = self.lr2(x) return self.dropout(x) class FFN0(nn.Module): def __init__(self, state_size = 200, forward_expansion = 1, bn_size = MAX_SEQ - 1, dropout=0.2): super(FFN0, self ).__init__() self.state_size = state_size self.lr1 = nn.Linear(state_size, forward_expansion * state_size) self.relu = nn.ReLU() self.lr2 = nn.Linear(forward_expansion * state_size, state_size) self.layer_normal = nn.LayerNorm(state_size) self.dropout = nn.Dropout(0.2) def forward(self, x): x = self.lr1(x) x = self.relu(x) x = self.lr2(x) x=self.layer_normal(x) return self.dropout(x) def future_mask(seq_length): future_mask =(np.triu(np.ones([seq_length, seq_length]), k = 1)).astype('bool') return torch.from_numpy(future_mask) class TransformerBlock(nn.Module): def __init__(self, embed_dim, heads = 8, dropout = DROPOUT, forward_expansion = 1): super(TransformerBlock, self ).__init__() self.multi_att = nn.MultiheadAttention(embed_dim=embed_dim, num_heads=heads, dropout=dropout) self.dropout = nn.Dropout(dropout) self.layer_normal = nn.LayerNorm(embed_dim) self.ffn = FFN(embed_dim, forward_expansion = forward_expansion, dropout=dropout) self.ffn0 = FFN0(embed_dim, forward_expansion = forward_expansion, dropout=dropout) self.layer_normal_2 = nn.LayerNorm(embed_dim) def forward(self, value, key, query, att_mask): att_output, att_weight = self.multi_att(value, key, query, attn_mask=att_mask) att_output = self.dropout(self.layer_normal(att_output + value)) att_output = att_output.permute(1, 0, 2) x = self.ffn(att_output) x1 = self.ffn0(att_output) x = self.dropout(self.layer_normal_2(x + x1 + att_output)) return x.squeeze(-1), att_weight class Encoder(nn.Module): def __init__(self, n_skill, max_seq=100, embed_dim=128, dropout = DROPOUT, forward_expansion = 1, num_layers=1, heads = 8): super(Encoder, self ).__init__() self.n_skill, self.embed_dim = n_skill, embed_dim self.embedding = nn.Embedding(2 * n_skill + 1, embed_dim) self.pos_embedding = nn.Embedding(max_seq - 1, embed_dim) self.e_embedding = nn.Embedding(n_skill+1, embed_dim) self.layers = nn.ModuleList([TransformerBlock(embed_dim, forward_expansion = forward_expansion)for _ in range(num_layers)]) self.dropout = nn.Dropout(dropout) def forward(self, x, question_ids): device = x.device x = self.embedding(x) pos_id = torch.arange(x.size(1)).unsqueeze(0 ).to(device) pos_x = self.pos_embedding(pos_id) x = self.dropout(x + pos_x) x = x.permute(1, 0, 2) e = self.e_embedding(question_ids) e = e.permute(1, 0, 2) for layer in self.layers: att_mask = future_mask(e.size(0)).to(device) x, att_weight = layer(e, x, x, att_mask=att_mask) x = x.permute(1, 0, 2) x = x.permute(1, 0, 2) return x, att_weight class SAKTModel(nn.Module): def __init__(self, n_skill, max_seq=100, embed_dim=128, dropout = DROPOUT, forward_expansion = 1, enc_layers=1, heads = 8): super(SAKTModel, self ).__init__() self.encoder = Encoder(n_skill, max_seq, embed_dim, dropout, forward_expansion, num_layers=enc_layers) self.pred = nn.Linear(embed_dim, 1) def forward(self, x, question_ids): x, att_weight = self.encoder(x, question_ids) x = self.pred(x) return x.squeeze(-1), att_weight class TestDataset(Dataset): def __init__(self, samples, test_df, n_skill, max_seq=100): super(TestDataset, self ).__init__() self.samples, self.user_ids, self.test_df = samples, [x for x in test_df["user_id"].unique() ], test_df self.n_skill, self.max_seq = n_skill, max_seq def __len__(self): return self.test_df.shape[0] def __getitem__(self, index): test_info = self.test_df.iloc[index] user_id = test_info['user_id'] target_id = test_info['content_id'] content_id_seq = np.zeros(self.max_seq, dtype=int) answered_correctly_seq = np.zeros(self.max_seq, dtype=int) if user_id in self.samples.index: content_id, answered_correctly = self.samples[user_id] seq_len = len(content_id) if seq_len >= self.max_seq: content_id_seq = content_id[-self.max_seq:] answered_correctly_seq = answered_correctly[-self.max_seq:] else: content_id_seq[-seq_len:] = content_id answered_correctly_seq[-seq_len:] = answered_correctly x = content_id_seq[1:].copy() x +=(answered_correctly_seq[1:] == 1)* self.n_skill questions = np.append(content_id_seq[2:], [target_id]) return x, questions <define_variables>
X_train = X_train.values.reshape(-1, 28, 28, 1)/255. test = test.values.reshape(-1, 28, 28, 1)/255. y_train = to_categorical(y_train, 10 )
Digit Recognizer
12,110,917
class config: FOLD = 0 ROOT_PATH = "/kaggle/input/riiid-xgboost-model-and-features" MODEL_NAME = "xgb_v17_06_f0" validaten_flg = False DDOF = 1<load_pretrained>
random_seed = 0 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=random_seed )
Digit Recognizer
12,110,917
model_path = f"{config.ROOT_PATH}/{config.MODEL_NAME}/{config.MODEL_NAME}" model_name = f"{config.MODEL_NAME}_model.bst" model_meta = f"{config.MODEL_NAME}_assets_model_metadata.json" model = Predictor.from_path(model_path, model_name=model_name, meta_name=model_meta) model._extract_model_metadata() feature_names = model._feature_names categorical_features = [feature_names[i] for i in model._ohe_categorical_index_vocab.keys() ] print("features:", len(feature_names)) categorical_features print(model._mhe_categorical_index_vocab) assert len(model._mhe_categorical_index_vocab)== 0<load_pretrained>
datagen = ImageDataGenerator( rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1 )
Digit Recognizer
12,110,917
group = joblib.load("/kaggle/input/riiid-sakt-model/group.pkl.zip") n_skill = joblib.load("/kaggle/input/riiid-sakt-model/skills.pkl.zip") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def create_model() : return SAKTModel(n_skill, max_seq=MAX_SEQ, embed_dim=EMBED_SIZE, forward_expansion=1, enc_layers=1, heads=4, dropout=0.1) sakt_model = create_model() sakt_model.load_state_dict(torch.load("/kaggle/input/riiid-sakt-model/sakt_model.pt")) sakt_model.to(device) sakt_model.eval() sakt_model_b = create_model() sakt_model_b.load_state_dict(torch.load("/kaggle/input/riiid-sakt-model/best_sakt_model_1.pt")) sakt_model_b.to(device) sakt_model_b.eval() print("all model loaded" )<load_from_csv>
model = Sequential() model.add(Conv2D(32,(5,5), padding='same', input_shape=X_train.shape[1:], activation='relu')) model.add(Conv2D(32,(5,5), padding='same', activation='relu')) model.add(MaxPool2D(2,2)) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(MaxPool2D(2,2)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.summary()
Digit Recognizer
12,110,917
content_agg_feats = pd.read_csv(f"{config.ROOT_PATH}/content_agg_feats.csv") question_tags_ohe = pd.read_csv(f"{config.ROOT_PATH}/question_tags_ohe.csv") lecture_tags_ohe = pd.read_csv(f"{config.ROOT_PATH}/lecture_tags_ohe.csv") questions = pd.read_csv("/kaggle/input/riiid-test-answer-prediction/questions.csv") question_tags_ohe = question_tags_ohe.rename(columns={'question_id':'content_id'}) lecture_tags_ohe = lecture_tags_ohe.rename(columns={'lecture_id':'content_id'}) questions = questions.rename(columns={'question_id':'content_id'} ).drop(["bundle_id", "correct_answer", "tags"], axis=1) content_agg_feats = content_agg_feats.merge(question_tags_ohe, how="left", on="content_id") content_agg_feats = content_agg_feats.merge(questions, how="left", on="content_id") content_agg_feats = content_agg_feats.merge(lecture_tags_ohe, how="outer", on="content_id") content_agg_feats = content_agg_feats.fillna(0) content_agg_feats_v = content_agg_feats.values content_agg_feats_c = content_agg_feats.columns.values[1:] q_ohe_dic = {i: v for i, v in enumerate(question_tags_ohe.set_index("content_id" ).values)} l_ohe_dic = {i: row.values for i, row in lecture_tags_ohe.drop("type_of", axis=1 ).set_index("content_id" ).iterrows() } del lecture_tags_ohe, question_tags_ohe, questions, content_agg_feats gc.collect()<load_from_csv>
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
12,110,917
user_agg_feats_even = pd.read_csv(f"{config.ROOT_PATH}/user_agg_feat_even.csv") user_agg_feats_odd = pd.read_csv(f"{config.ROOT_PATH}/user_agg_feat_odd.csv") user_agg_feats_df = pd.concat([user_agg_feats_even, user_agg_feats_odd]) user_agg_feats_v = user_agg_feats_df.values del user_agg_feats_df, user_agg_feats_even, user_agg_feats_odd gc.collect()<load_from_csv>
EPOCHS = 30 BATCH_SIZE = 20 callback_list = [ ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=1), EarlyStopping(monitor='val_loss', min_delta=0.0005, patience=4) ] history = model.fit(datagen.flow(X_train, y_train, batch_size=BATCH_SIZE), epochs=EPOCHS, callbacks=callback_list, validation_data=(X_val, y_val), steps_per_epoch=X_train.shape[0] // BATCH_SIZE )
Digit Recognizer
12,110,917
user_last_timestamp = pd.read_csv(f"{config.ROOT_PATH}/user_last_timestamp.csv") last_timestamp_dic = {k: v for k, v in user_last_timestamp.values} del user_last_timestamp gc.collect()<load_pretrained>
results = model.predict(test) results = np.argmax(results, axis=1) results = pd.Series(results, name='Label') submission = pd.concat([pd.Series(range(1,28001), name='ImageID'), results], axis=1) submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,858,028
WINDOW = config.ROOT_PATH with open(f"{WINDOW}/user_all_count.pkl", "rb")as f: user_all_count = pickle.load(f) with open(f"{WINDOW}/user_correct_window_200.pkl", "rb")as f: user_correct_window_200 = pickle.load(f) with open(f"{WINDOW}/prior_question_elapsed_time_window_dict.pkl", "rb")as f: prior_question_elapsed_time_window_dict = pickle.load(f) with open(f"{WINDOW}/prior_question_had_explanation_count.pkl", "rb")as f: prior_question_had_explanation_count = pickle.load(f) with open(f"{WINDOW}/prior_question_had_explanation_window_dict.pkl", "rb")as f: prior_question_had_explanation_window_dict = pickle.load(f) with open(f"{WINDOW}/timediff_window_dict.pkl", "rb")as f: timediff_window_dict = pickle.load(f )<define_variables>
train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
11,858,028
col1 = [f"work_q_tag_{i}_v3" for i in range(188)] col2 = [f"cumsum_q_tag_{i}_v3" for i in range(188)] col3 = [f"work_l_tag_{i}_v2" for i in range(188)] user_agg_feats_c = col1 + col2 + col3 rate_col = [f"correct_rate_q_tag_{i}" for i in range(188)]<feature_engineering>
X = train.drop('label',axis = 1) y = train.label
Digit Recognizer
11,858,028
def get_content_feature(_content_id): idx = np.where(content_agg_feats_v[:,0] == _content_id)[0][0] v = content_agg_feats_v[idx, 1:] return v.tolist() def get_user_feature(_user_id): idx = np.where(user_agg_feats_v[:,0] == _user_id)[0] if len(idx)== 0: return np.zeros(user_agg_feats_v.shape[1] - 1) else: idx = idx[0] v = user_agg_feats_v[idx, 1:] return v.tolist() def get_timediff(row): _timestamp = row["timestamp"] _user_id = row["user_id"] try: return _timestamp - last_timestamp_dic[_user_id] except KeyError: return 0 def get_lgbm_window_feat(_user_id): try: v = prior_question_elapsed_time_window_dict[_user_id] v = np.array(v)[~np.isnan(v)] prior_question_elapsed_time_std_w200 = v.std(ddof=config.DDOF) prior_question_elapsed_time_avg_w200 = v.mean() prior_question_had_explanation_std_w200 = np.std(prior_question_had_explanation_window_dict[_user_id], ddof=config.DDOF) prior_question_had_explanation_avg_w200 = np.mean(prior_question_had_explanation_window_dict[_user_id]) timediff_std_w200 = np.std(timediff_window_dict[_user_id], ddof=config.DDOF) timediff_avg_w200 = np.mean(timediff_window_dict[_user_id]) _prior_question_had_explanation_count = prior_question_had_explanation_count[_user_id] except KeyError: prior_question_elapsed_time_std_w200 = 0 prior_question_elapsed_time_avg_w200 = 0 prior_question_had_explanation_std_w200 = 0 prior_question_had_explanation_avg_w200 = 0 timediff_std_w200 = 0 timediff_avg_w200 = 0 _prior_question_had_explanation_count = 0 return [ prior_question_elapsed_time_std_w200, prior_question_elapsed_time_avg_w200, prior_question_had_explanation_std_w200, prior_question_had_explanation_avg_w200, timediff_std_w200, timediff_avg_w200, _prior_question_had_explanation_count, ]<prepare_x_and_y>
y = to_categorical(y )
Digit Recognizer
11,858,028
def update_infomation(row): global user_agg_feats_v _user_id = row["user_id"] _timestamp = row["timestamp"] _content_id = row["content_id"] _answered_correctly = row["answered_correctly"] _content_type_id = row["content_type_id"] try: _prior_question_had_explanation = int(row["prior_question_had_explanation"]) except TypeError: _prior_question_had_explanation = 0 try: _prior_question_elapsed_time = float(row["prior_question_elapsed_time"]) except TypeError: _prior_question_elapsed_time = 0 try: _timediff = _timestamp - last_timestamp_dic[_user_id] except KeyError: _timediff = 0 last_timestamp_dic[_user_id] = _timestamp if _content_type_id == 0: n_work = q_ohe_dic[_content_id] n_correct = n_work * _answered_correctly n_lecture = np.zeros(188) else: n_work = np.zeros(188) n_correct = np.zeros(188) n_lecture = l_ohe_dic[_content_id] tag_feats = np.hstack([n_work, n_correct, n_lecture]) idx = np.where(user_agg_feats_v[:,0] == _user_id)[0] if len(idx)== 0: append_v = np.hstack([_user_id, tag_feats] ).astype(int) user_agg_feats_v = np.vstack([user_agg_feats_v, append_v]) else: idx = idx[0] user_agg_feats_v[idx, 1:] += tag_feats.astype(int) try: prior_question_had_explanation_count[_user_id] += _prior_question_had_explanation user_all_count[_user_id][0] += 1 user_all_count[_user_id][1] += int(_answered_correctly == 1) except KeyError: prior_question_had_explanation_count[_user_id] = _prior_question_had_explanation user_all_count[_user_id] = [1, int(_answered_correctly == 1)] try: if len(user_correct_window_200[_user_id])== 201: user_correct_window_200[_user_id].pop(0) prior_question_elapsed_time_window_dict[_user_id].pop(0) prior_question_had_explanation_window_dict[_user_id].pop(0) timediff_window_dict[_user_id].pop(0) user_correct_window_200[_user_id].append(int(_answered_correctly == 1)) prior_question_elapsed_time_window_dict[_user_id].append(_prior_question_elapsed_time) prior_question_had_explanation_window_dict[_user_id].append(_prior_question_had_explanation) timediff_window_dict[_user_id].append(_timediff) except KeyError: user_correct_window_200[_user_id] = [int(_answered_correctly == 1)] prior_question_elapsed_time_window_dict[_user_id] = [_prior_question_elapsed_time] prior_question_had_explanation_window_dict[_user_id] = [_prior_question_had_explanation] timediff_window_dict[_user_id] = [_timediff]<load_pretrained>
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.25,random_state = 123 )
Digit Recognizer
11,858,028
if config.validaten_flg: target_df = pd.read_pickle('.. /input/riiid-cross-validation-files/cv1_valid.pickle') iter_test = Iter_Valid(target_df, max_user=1000) predicted = [] def set_predict(df): predicted.append(df) user_agg_feats_v = user_agg_feats_v[:10000] last_timestamp_dic = {k: last_timestamp_dic[k] for k in user_agg_feats_v[:, 0]} user_correct_window_200 = {k: user_correct_window_200[k] for k in user_agg_feats_v[:, 0]} user_all_count = {k: user_all_count[k] for k in user_agg_feats_v[:, 0]} prior_question_had_explanation_count = {k: prior_question_had_explanation_count[k] for k in user_agg_feats_v[:, 0]} user_correct_window_200 = {k: user_correct_window_200[k] for k in user_agg_feats_v[:, 0]} prior_question_elapsed_time_window_dict = {k: prior_question_elapsed_time_window_dict[k] for k in user_agg_feats_v[:, 0]} prior_question_had_explanation_window_dict = {k: prior_question_had_explanation_window_dict[k] for k in user_agg_feats_v[:, 0]} timediff_window_dict = {k: timediff_window_dict[k] for k in user_agg_feats_v[:, 0]} else: env = riiideducation.make_env() iter_test = env.iter_test() set_predict = env.predict<set_options>
model = Sequential() model.add(Conv2D(32,kernel_size =(3,3),activation = 'relu',input_shape =(28,28,1))) model.add(Conv2D(64,kernel_size =(3,3),activation = 'relu')) model.add(Flatten()) model.add(Dense(10,activation = 'softmax'))
Digit Recognizer
11,858,028
print(psutil.virtual_memory().percent )<install_modules>
model.compile(optimizer = 'adam',loss = 'categorical_crossentropy',metrics = ['accuracy'] )
Digit Recognizer
11,858,028
!pip install.. /input/lgbm-inference-db-full-data/pickle5-0.0.11/<import_modules>
history = model.fit(X_train,y_train,validation_data =(X_test,y_test),epochs = 20 )
Digit Recognizer
11,858,028
import pandas as pd import numpy as np import gc from sklearn.metrics import roc_auc_score from collections import defaultdict from tqdm.notebook import tqdm import lightgbm as lgb import pickle5 as pickle from numba import jit<categorify>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
11,858,028
@contextmanager def timer(name): t0 = time.time() yield print(' [{}] done in {} Minutes '.format(name, round(( time.time() - t0)/ 60, 2)) )<define_variables>
model.compile(optimizer = 'Adam' , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
11,858,028
train_pickle = '.. /input/lgbm-inference-db-full-data/train_df.pickle' question_file = '.. /input/lgbm-inference-db-full-data/question_features.csv' ms_in_a_day = 8.64 * 10 ** 7 prior_question_elapsed_time_mean = 25439.41<compute_train_metric>
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
11,858,028
left_asymptote = 0.25 @jit(nopython=True) def get_new_theta(is_good_answer, beta, left_asymptote, theta, nb_previous_answers): return theta + learning_rate_theta(nb_previous_answers)*( is_good_answer - probability_of_good_answer(theta, beta, left_asymptote)) @jit(nopython=True) def learning_rate_theta(nb_answers): return max(0.3 /(1 + 0.01 * nb_answers), 0.04) @jit(nopython=True) def probability_of_good_answer(theta, beta, left_asymptote): return left_asymptote +(1 - left_asymptote)* sigmoid(theta - beta) @jit(nopython=True) def sigmoid(x): return 1 /(1 + np.exp(-x))<categorify>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) batch_size = 256 history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batch_size), epochs = 30, validation_data =(X_test,y_test), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction] )
Digit Recognizer
11,858,028
def calc_user_feats_test(df, bundle_count, temp_values): attempt_no_array = np.zeros(len(df), dtype=np.int32) last_lecture_time_array = np.zeros(len(df), dtype=np.float64) last_incorrect_time_array = np.zeros(len(df), dtype=np.float64) acsu = np.zeros(len(df), dtype=np.int32) acsu_part = np.zeros(len(df), dtype=np.int32) cu = np.zeros(len(df), dtype=np.int32) cu_part = np.zeros(len(df), dtype=np.int32) tu_part = np.zeros(len(df), dtype=np.int32) lag_time_array = np.zeros(len(df), dtype=np.int64) wait_time_array = np.zeros(len(df), dtype=np.float64) theta_array = np.zeros(len(df), dtype=np.float32) beta_array = np.zeros(len(df), dtype=np.float32) difficulty_correct_array = np.zeros(len(df), dtype=np.float64) difficulty_incorrect_array = np.zeros(len(df), dtype=np.float64) feature_cols = ['user_id', 'prior_question_elapsed_time', 'timestamp', 'content_id', 'content_type_id', 'part', 'bundle_id', 'mean_content_accuracy_sm'] for cnt, row in enumerate(df[feature_cols].values): if row[2] == 0: lag_time_array[cnt] = 0 prior_question_lag_time[row[0]] = np.nan wait_time_array[cnt] = np.nan elif row[2] == user_last_timestamp[row[0]]: wait_time_array[cnt] = temp_values[5] lag_time_array[cnt] = row[2] - user_last_timestamp_traceback[row[0]] else: lag_time_array[cnt] = row[2] - user_last_timestamp[row[0]] if(lag_time_array[cnt] == 0)|(lag_time_array[cnt] == row[2])|(len(prior_bundle_count[row[0]])!= 2): wait_time_array[cnt] = np.nan else: wait_time_array[cnt] = prior_question_lag_time[row[0]] - prior_bundle_count[row[0]][1] * row[1] user_last_timestamp_traceback[row[0]] = user_last_timestamp[ row[0]] user_last_timestamp[row[0]] = row[2] if row[4] == 1: last_lecture_time[row[0]] = row[3] else: if row[6] in bundles: if len(prior_bundle_count[row[0]])== 2: if row[6] == prior_bundle_count[row[0]][0]: bundle_count += 1 bundle_flg = True save_temp_value_flg = False else: bundle_count = 1 bundle_flg = False save_temp_value_flg = True else: bundle_count = 1 bundle_flg = False save_temp_value_flg = True else: bundle_count = 1 bundle_flg = False save_temp_value_flg = False prior_question_lag_time[row[0]] = lag_time_array[cnt] if save_temp_value_flg: temp_values[0] = answered_correctly_sum_user_dict['total'][row[0]] temp_values[1] = answered_correctly_sum_user_dict[int(row[5])][row[0]] temp_values[2] = question_count_dict['total'][row[0]] temp_values[3] = question_count_dict[int(row[5])][row[0]] temp_values[4] = last_incorrect_time[row[0]] temp_values[5] = wait_time_array[cnt] temp_values[6] = beta_dict[row[3]] temp_values[7] = theta_dict[row[0]] temp_values[8] = difficulty_dict[row[0]]['correct'] temp_values[9] = difficulty_dict[row[0]]['incorrect'] if bundle_flg: acsu[cnt] = temp_values[0] cu[cnt] = temp_values[2] difficulty_correct_array[cnt] = temp_values[8] difficulty_incorrect_array[cnt] = temp_values[9] acsu_part[cnt] = temp_values[1] cu_part[cnt] = temp_values[3] theta_array[cnt] = temp_values[7] beta_array[cnt] = temp_values[6] if row[2] == 0: last_incorrect_time_array[cnt] = np.nan else: last_incorrect_time_array[cnt] = row[2] - temp_values[4] else: acsu[cnt] = answered_correctly_sum_user_dict['total'][row[0]] cu[cnt] = question_count_dict['total'][row[0]] difficulty_correct_array[cnt] = difficulty_dict[row[0]]['correct'] difficulty_incorrect_array[cnt] = difficulty_dict[row[0]]['incorrect'] acsu_part[cnt] = answered_correctly_sum_user_dict[int(row[5])][row[0]] cu_part[cnt] = question_count_dict[int(row[5])][row[0]] if row[2] == 0: last_incorrect_time_array[cnt] = np.nan else: last_incorrect_time_array[cnt] = row[2] - last_incorrect_time[row[0]] beta_array[cnt] = beta_dict[row[3]] theta_array[cnt] = theta_dict[row[0]] tu_part[cnt] = user_time_dict[int(row[5])][row[0]] if bundle_count == 1: attempt_dict[row[0]][row[6]] += 1 attempt_no_array[cnt] = attempt_dict[row[0]][row[6]] if last_lecture_time[row[0]] == 0: last_lecture_time_array[cnt] = np.nan else: last_lecture_time_array[cnt] = row[2] - last_lecture_time[row[0]] if np.isnan(row[1]): user_time_dict[int(row[5])][row[0]] += 0 else: user_time_dict[int(row[5])][row[0]] += row[1] prior_bundle_count[row[0]] =(row[6], bundle_count) df['attempt_no'] = attempt_no_array df['last_lecture_time'] = last_lecture_time_array df['last_incorrect_time'] = last_incorrect_time_array df['lag_time'] = lag_time_array df['prior_question_wait_time'] = wait_time_array df['theta'] = theta_array df['beta'] = beta_array user_feats_df = pd.DataFrame({'answered_correctly_sum_user': acsu, 'answered_count': cu, 'answered_correctly_sum_user_part': acsu_part, 'answered_count_part': cu_part, 'total_time_spent_user_part': tu_part, 'difficulty_correct_count': difficulty_correct_array, 'difficulty_incorrect_count': difficulty_incorrect_array }) user_feats_df['mean_user_accuracy'] = user_feats_df['answered_correctly_sum_user'] / user_feats_df['answered_count'] user_feats_df['mean_user_accuracy_part'] = user_feats_df['answered_correctly_sum_user_part'] / user_feats_df[ 'answered_count_part'] user_feats_df['mean_user_spent_time_part'] = user_feats_df['total_time_spent_user_part'] / user_feats_df[ 'answered_count_part'] user_feats_df.loc[user_feats_df['answered_count_part'] == 0, 'mean_user_spent_time_part'] = np.nan user_feats_df['difficulty_correct'] = user_feats_df['difficulty_correct_count'] / user_feats_df['answered_correctly_sum_user'] user_feats_df['difficulty_incorrect'] = user_feats_df['difficulty_incorrect_count'] / \ (user_feats_df['answered_count'] - user_feats_df['answered_correctly_sum_user']) user_feats_df['difficulty_diff'] = user_feats_df['difficulty_correct'] - user_feats_df['difficulty_incorrect'] user_feats_df.drop(columns=['difficulty_correct_count', 'difficulty_incorrect_count', 'difficulty_correct'], inplace=True) feats_cols = user_feats_df.columns for col in feats_cols: df[col] = user_feats_df[col].values df['hmean_user_content_accuracy'] = 2 *(df['mean_user_accuracy'] * df['mean_content_accuracy_sm'])/ \ (df['mean_user_accuracy'] + df['mean_content_accuracy_sm']) df.loc[df['prior_question_wait_time'] < 0, 'prior_question_wait_time'] = 0 return df, bundle_count, temp_values <define_variables>
predictions = model.predict_classes(test, verbose=1 )
Digit Recognizer
11,858,028
def update_user_feats(df): bundle_count = 1 for row in df[['user_id', 'answered_correctly', 'content_type_id', 'timestamp', 'part', 'content_id', 'answered_count', 'mean_content_accuracy_sm']].values: if row[2] == 0: answered_correctly_sum_user_dict['total'][row[0]] += row[1] answered_correctly_sum_user_dict[int(row[4])][row[0]] += row[1] question_count_dict['total'][row[0]] += 1 question_count_dict[int(row[4])][row[0]] += 1 theta = theta_dict[row[0]] beta = beta_dict[row[5]] theta_dict[row[0]] = get_new_theta(row[1], beta, left_asymptote, theta, row[6]) if row[1] == 0: last_incorrect_time[row[0]] = row[3] difficulty_dict[row[0]]['incorrect'] += row[7] else: difficulty_dict[row[0]]['correct'] += row[7]<load_pretrained>
prediction = pd.DataFrame({"ImageId":list(range(1,len(predictions)+1)) ,"Label":predictions} )
Digit Recognizer
11,858,028
with open(train_pickle, 'rb')as file: df = pickle.load(file )<categorify>
prediction.to_csv('kaggle_submission.csv',index=False,header=True) prediction
Digit Recognizer
11,858,028
def multi_level_dict() : return defaultdict(int) attempt_dict = defaultdict(multi_level_dict )<categorify>
model = Sequential() model.add(Conv2D(64,(3,3),activation='relu',input_shape=(28,28,1))) model.add(Conv2D(64,(3,3),activation='relu')) model.add(MaxPooling2D(2,2)) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(128,(3,3),activation='relu')) model.add(Conv2D(128,(3,3),activation='relu')) model.add(MaxPooling2D(2,2)) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(256,activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(128,activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(64,activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(10,activation='softmax'))
Digit Recognizer
11,858,028
def multi_level_float_dict() : return defaultdict(float )<data_type_conversions>
model.compile(RMSprop(lr=0.001,rho=0.9),loss='categorical_crossentropy',metrics=['accuracy'] )
Digit Recognizer
11,858,028
with timer("counting"): keys = np.sort(df['user_id'].unique()) total = len(keys) user_bundle = df.groupby('user_id')['bundle_id'].apply(np.array ).apply(np.sort ).apply(np.unique) user_attempts = df.groupby(['user_id', 'bundle_id'])['bundle_id'].count().astype(np.uint8 ).groupby('user_id' ).apply(np.array) for user_id, bundle, attempt in tqdm(zip(keys, user_bundle, user_attempts), total=total): attempt_dict[user_id] = defaultdict(int, zip(bundle, attempt)) del user_bundle, user_attempts, df, bundle, attempt gc.collect()<load_from_csv>
train_datagen = ImageDataGenerator(rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=False, fill_mode='nearest') train_datagen.fit(X_train) train_generator = train_datagen.flow(X_train,y_train,batch_size=128)
Digit Recognizer
11,858,028
<load_from_csv><EOS>
earlystop = EarlyStopping(monitor='val_loss',patience=2,verbose=1) learning_reduce = ReduceLROnPlateau(patience=2,monitor="val_acc",verbose=1,min_lr=0.00001,factor=0.5) callbacks = [learning_reduce] history = model.fit_generator(train_generator,epochs=30,verbose=1,validation_data=(X_test,y_test),callbacks=callbacks )
Digit Recognizer
11,949,480
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables>
BATCH_SIZE = 64 VALID_BATCH_SIZE = 100 TEST_BATCH_SIZE = 100 EPOCHS = 5 NUM_CLASSES = 10 SEED = 42 EARLY_STOPPING = 25 OUTPUT_DIR = '/kaggle/working/' MODEL_NAME = 'efficientnet-b0'
Digit Recognizer
11,949,480
TARGET = 'answered_correctly' FEATS_1 = ['mean_user_accuracy', 'answered_count', 'mean_content_accuracy_sm', 'prior_question_elapsed_time', 'last_incorrect_time', 'prior_question_wait_time', 'content_freq_encoding', 'lag_time', 'attempt_no', 'last_lecture_time', 'mean_user_spent_time_part', 'answered_correctly_sum_user_part', 'mean_user_accuracy_part', 'part', 'theta', 'beta', 'question_avg_explanation_sm', 'question_avg_elapsed_time_sm', 'tags_lsi', 'difficulty_incorrect', 'difficulty_diff' ] categorical_features = ['part', 'tags_lsi']<define_variables>
!pip install efficientnet-pytorch
Digit Recognizer
11,949,480
FEATS_2 = ['mean_user_accuracy', 'answered_correctly_sum_user', 'answered_count', 'mean_content_accuracy_sm', 'prior_question_elapsed_time', 'hmean_user_content_accuracy', 'last_incorrect_time', 'prior_question_wait_time', 'content_freq_encoding', 'lag_time', 'attempt_no', 'last_lecture_time', 'mean_user_spent_time_part', 'answered_correctly_sum_user_part', 'mean_user_accuracy_part', 'part', 'theta', 'beta', 'question_avg_explanation_sm', 'question_avg_elapsed_time_sm', 'tags_lsi', 'difficulty_incorrect', ]<define_variables>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torch.autograd import Variable from torch.utils.data import DataLoader, Dataset from sklearn.metrics import accuracy_score from PIL import Image, ImageOps, ImageEnhance from efficientnet_pytorch import EfficientNet
Digit Recognizer
11,949,480
model_1 = lgb.Booster(model_file='.. /input/lgbm-inference-db-full-data/lightgbm_v11.5.txt' )<define_variables>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') print('Shape of the training data: ', train.shape) print('Shape of the test data: ', test.shape )
Digit Recognizer
11,949,480
model_2 = lgb.Booster(model_file='.. /input/lgbm-inference-db-full-data/lightgbm_v11.6.txt' )<predict_on_test>
train_df, valid_df = train_test_split(train, test_size = 0.2, random_state=SEED,stratify=train['label'] )
Digit Recognizer
11,949,480
env = riiideducation.make_env() iter_test = env.iter_test() set_predict = env.predict<concatenate>
n_pixels = len(train_df.columns)- 1 class MNIST_Dataset(Dataset): def __init__(self, df ): if len(df.columns)== n_pixels: self.X = df.values.reshape(( -1,28,28)).astype(np.uint8)[:,:,:,None] self.y = None self.X3 = np.full(( self.X.shape[0], 3, 28, 28), 0.0) for i, s in enumerate(self.X): self.X3[i] = np.moveaxis(cv2.cvtColor(s, cv2.COLOR_GRAY2RGB), -1, 0) else: self.X = df.iloc[:,1:].values.reshape(( -1,28,28)).astype(np.uint8)[:,:,:,None] self.y = torch.from_numpy(df.iloc[:,0].values) self.X3 = np.full(( self.X.shape[0], 3, 28, 28), 0.0) for i, s in enumerate(self.X): self.X3[i] = np.moveaxis(cv2.cvtColor(s, cv2.COLOR_GRAY2RGB), -1, 0) def __len__(self): return len(self.X3) def __getitem__(self, idx): if self.y is not None: return self.X3[idx] , self.y[idx] else: return self.X3[idx]
Digit Recognizer
11,949,480
previous_test_df = None for(test_df, sample_prediction_df)in iter_test: test_df = pd.concat([test_df.reset_index(drop=True), questions_df.reindex(test_df['content_id'].values ).reset_index(drop=True)], axis=1) test_df = pd.concat([test_df.reset_index(drop=True), part_df.reindex(test_df['part'].values ).reset_index(drop=True)], axis=1) if previous_test_df is not None: previous_test_df[TARGET] = eval(test_df["prior_group_answers_correct"].iloc[0]) update_user_feats(previous_test_df) else: bundle_count = 1 temp_values = np.empty(10)* np.nan test_df, bundle_count, temp_values = calc_user_feats_test(test_df, bundle_count, temp_values) previous_test_df = test_df.copy() test_df = test_df[test_df['content_type_id'] == 0].reset_index(drop=True) test_df['prior_question_had_explanation'] = test_df.prior_question_had_explanation.fillna(False ).astype('int8') test_df['part'] = test_df.part.fillna(False ).astype('int8') test_df['prior_question_elapsed_time'] = test_df.prior_question_elapsed_time.fillna(prior_question_elapsed_time_mean) for col in categorical_features: test_df[col] = test_df[col].astype('category') test_df[TARGET] = model_1.predict(test_df[FEATS_1])* 0.5 + model_2.predict(test_df[FEATS_2])* 0.5 set_predict(test_df[['row_id', TARGET]] )<split>
train_dataset = MNIST_Dataset(train_df) valid_dataset = MNIST_Dataset(valid_df) test_dataset = MNIST_Dataset(test) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) valid_loader = torch.utils.data.DataLoader(dataset=valid_dataset, batch_size=VALID_BATCH_SIZE, shuffle=False) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=TEST_BATCH_SIZE, shuffle=False )
Digit Recognizer
11,949,480
env = riiideducation.make_env() iter_test = env.iter_test()<import_modules>
def get_model(model_name='efficientnet-b0'): model = EfficientNet.from_pretrained(model_name) del model._fc model._fc = nn.Linear(1280, NUM_CLASSES) return model
Digit Recognizer
11,949,480
import sys import numpy as np<set_options>
def set_seed(seed: int = 42): random.seed(seed) np.random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed )
Digit Recognizer
11,949,480
warnings.filterwarnings("ignore") <set_options>
set_seed(SEED) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') output_dir = OUTPUT_DIR model = get_model(MODEL_NAME) model = model.to(device) optimizer = optim.Adam(model.parameters() , lr=0.001) scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=10) loss_func = nn.CrossEntropyLoss() if torch.cuda.is_available() : model = model.cuda() loss_func = loss_func.cuda() best_val_accuracy = 0 min_val_loss = np.inf best_epoch = 0 batches = 0 epochs_no_improve = 0 n_epochs_stop = EARLY_STOPPING for epoch in range(EPOCHS): running_loss = 0.0 targets = torch.empty(size=(BATCH_SIZE,)).to(device) outputs = torch.empty(size=(BATCH_SIZE,)).to(device) model.train() for batch_idx,(data, target)in enumerate(train_loader): batches += 1 data, target = Variable(data), Variable(target) if torch.cuda.is_available() : data = data.type(torch.FloatTensor ).cuda() target = target.cuda() targets = torch.cat(( targets, target), 0) optimizer.zero_grad() output = model(data) loss = loss_func(output, target) output = torch.argmax(torch.softmax(output, dim=1), dim=1) outputs = torch.cat(( outputs, output), 0) running_loss += loss.item() loss.backward() optimizer.step() scheduler.step() print('train/loss on EPOCH {}: {}'.format(epoch, running_loss/batches)) train_acc = accuracy_score(targets.cpu().detach().numpy().astype(int), outputs.cpu().detach().numpy().astype(int)) print('train/accuracy: {} for epoch {}'.format(train_acc, epoch)) model.eval() running_loss = 0.0 batches = 0 targets = torch.empty(size=(BATCH_SIZE,)).to(device) outputs = torch.empty(size=(BATCH_SIZE,)).to(device) for batch_idx,(data, target)in enumerate(valid_loader): batches += 1 data, target = Variable(data, volatile=True), Variable(target) if torch.cuda.is_available() : data = data.type(torch.FloatTensor ).cuda() target = target.cuda() with torch.no_grad() : targets = torch.cat(( targets, target), 0) output = model(data) loss = loss_func(output, target) output = torch.argmax(torch.softmax(output, dim=1), dim=1) outputs = torch.cat(( outputs, output), 0) running_loss += loss.item() val_loss = running_loss/batches print('val/loss: {}'.format(val_loss)) val_acc = accuracy_score(targets.cpu().detach().numpy().astype(int), outputs.cpu().detach().numpy().astype(int)) print('val/accuracy: {} for epoch {}'.format(val_acc, epoch)) if val_acc > best_val_accuracy: best_val_accuracy = val_acc min_val_loss = val_loss print('Best val/acc: {} for epoch {}, saving model---->'.format(val_acc, epoch)) torch.save(model.state_dict() , "{}/snapshot_epoch_{}.pth".format(output_dir, epoch)) best_epoch = epoch epochs_no_improve = 0 else: epochs_no_improve += 1 if epochs_no_improve == n_epochs_stop: print('Early stopping!') break
Digit Recognizer
11,949,480
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') q_pad = 13523 a_pad = 3 start_token = 2<load_pretrained>
def prediction(model, data_loader): model.eval() test_pred = torch.LongTensor() for i, data in enumerate(data_loader): data = Variable(data, volatile=True) if torch.cuda.is_available() : data = data.type(torch.FloatTensor ).cuda() output = model(data) pred = output.cpu().data.max(1, keepdim=True)[1] test_pred = torch.cat(( test_pred, pred), dim=0) return test_pred
Digit Recognizer
11,949,480
group = pd.read_pickle(".. /input/groups/group.pandas" )<categorify>
model.load_state_dict(torch.load("snapshot_epoch_{}.pth".format(best_epoch))) test_pred = prediction(model, test_loader) submission = pd.DataFrame(np.c_[np.arange(1, len(test_dataset)+1)[:,None], test_pred.numpy() ], columns=['ImageId', 'Label'])
Digit Recognizer
11,949,480
features_1_path = '.. /input/get-features-1/' que_data = pd.read_pickle(features_1_path + "que_data.pickle") difficulty =(np.round(que_data.que_correct_per, 1)*10 ).astype("int8" ).values difficulty = torch.Tensor(difficulty ).long().to(device) unique_tags = pd.concat([que_data.tags1,que_data.tags2, que_data.tags3, que_data.tags4,que_data.tags5,que_data.tags6] ).unique() tags_n = len(unique_tags) unk_tag = tags_n-1 que_data = que_data.replace(-1, unk_tag) part_valus = torch.from_numpy(que_data.part.values ).long().to(device) que_data = que_data.to_dict("index") que_arr = np.zeros(( np.array(list(que_data.keys())).shape[0], 6)) for i in que_data: a = que_data[i] que_arr[i] = [a['tags1'],a['tags2'],a['tags3'],a['tags4'],a['tags5'],a['tags6']] with open('.. /input/hashtable/user_info', 'rb')as handle: user_info = pickle.load(handle )<drop_column>
submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,949,480
st_user_info = {} for i in user_info: st_user_info[i] = {"timestamp_ms":user_info[i]["first_timestamp"]} del user_info<categorify>
submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,953,506
class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self ).__init__() self.dropout = nn.Dropout(p=dropout) self.scale = nn.Parameter(torch.ones(1)) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float ).unsqueeze(1) div_term = torch.exp(torch.arange( 0, d_model, 2 ).float() *(-math.log(10000.0)/ d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0 ).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.scale * self.pe[:x.size(0), :] return self.dropout(x )<categorify>
import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import tensorflow as tf from keras.utils import to_categorical from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import EarlyStopping
Digit Recognizer
11,953,506
class EmbedTag(nn.Module): def __init__(self, d_model, que_arr, tags_n): super(EmbedTag, self ).__init__() self.que_arr = torch.LongTensor(que_arr ).to(device) self.embedding = nn.Embedding(tags_n, d_model) def forward(self, x): x = self.que_arr[x, :] x = self.embedding(x) return torch.sum(x, dim=-2 )<categorify>
train_data = pd.read_csv('.. /input/digit-recognizer/train.csv') test_data = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
11,953,506
class TransformerModel(nn.Module): def __init__(self, intoken, outtoken, hidden, que_arr, part_arr, difficulty, enc_layers=4, dec_layers=4, dropout=0.1, ts_unique=70, prior_unique=50): super(TransformerModel, self ).__init__() nhead = hidden//64 self.encoder = nn.Embedding(intoken, hidden) self.pos_encoder = PositionalEncoding(hidden, dropout) self.decoder = nn.Embedding(outtoken, hidden) self.pos_decoder = PositionalEncoding(hidden, dropout) self.tagsEmbedder = EmbedTag(hidden, que_arr, tags_n) self.transformer = nn.Transformer(d_model=hidden, nhead=nhead, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, dim_feedforward=hidden*4, dropout=dropout, activation='relu') self.fc_out = nn.Linear(hidden, 1) self.src_mask = None self.trg_mask = None self.memory_mask = None self.part_embedding = nn.Embedding(7,hidden) self.part_arr = part_arr self.ts_embedding = nn.Embedding(ts_unique, hidden) self.prior_embedding = nn.Embedding(prior_unique, hidden) self.task_container_embedding = nn.Embedding(10000, hidden) self.user_answer_embedding = nn.Embedding(5, hidden) self.difficulty = difficulty self.difficulty_embedding = nn.Embedding(11, hidden) self.dropout_7 = nn.Dropout(dropout) self.dropout_1 = nn.Dropout(dropout) self.dropout_2 = nn.Dropout(dropout) self.dropout_3 = nn.Dropout(dropout) self.dropout_4 = nn.Dropout(dropout) self.dropout_5 = nn.Dropout(dropout) self.dropout_6 = nn.Dropout(dropout) self.explan_embedding = nn.Embedding(3, hidden) self.dropout_9 = nn.Dropout(dropout) def generate_square_subsequent_mask(self, sz, sz1=None): if sz1 == None: mask = torch.triu(torch.ones(sz, sz), 1) else: mask = torch.triu(torch.ones(sz, sz1), 1) return mask.masked_fill(mask==1, float('-inf')) def make_len_mask_a(self, inp): return(inp == a_pad ).transpose(0, 1) def make_len_mask_q(self, inp): return(inp == q_pad ).transpose(0, 1) def forward(self, src, trg, ts, prior, task_container, user_answer, explan): if self.trg_mask is None or self.trg_mask.size(0)!= len(trg): self.trg_mask = self.generate_square_subsequent_mask(len(trg)).to(trg.device) if self.src_mask is None or self.src_mask.size(0)!= len(src): self.src_mask = self.generate_square_subsequent_mask(len(src)).to(trg.device) if self.memory_mask is None or self.memory_mask.size(0)!= len(trg)or self.memory_mask.size(1)!= len(src): self.memory_mask = self.generate_square_subsequent_mask(len(trg),len(src)).to(trg.device) src_pad_mask = self.make_len_mask_q(src) trg_pad_mask = self.make_len_mask_a(trg) part_emb = self.dropout_1(self.part_embedding(self.part_arr[src]-1)) ts_emb = self.dropout_3(self.ts_embedding(ts)) user_answer_emb = self.dropout_5(self.user_answer_embedding(user_answer)) src = self.encoder(src) src = torch.add(src, part_emb) src = torch.add(src, ts_emb) src = self.pos_encoder(src) trg = self.decoder(trg) trg = torch.add(trg, user_answer_emb) trg = self.pos_decoder(trg) output = self.transformer(src, trg, src_mask=self.src_mask, tgt_mask=self.trg_mask, memory_mask=self.memory_mask, src_key_padding_mask=src_pad_mask, tgt_key_padding_mask=trg_pad_mask, memory_key_padding_mask=src_pad_mask) output = self.fc_out(output) return output<load_pretrained>
X_train = train_data.drop(labels = ["label"],axis = 1) Y_train = train_data["label"] Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
11,953,506
d_model = 128 INPUT_DIM = q_pad+1 OUTPUT_DIM = 4 model_saint = TransformerModel(INPUT_DIM, OUTPUT_DIM, hidden=d_model, que_arr=que_arr,part_arr=part_valus, difficulty=difficulty ).to(device) weights = torch.load(".. /input/last-saint/last.torch", map_location=torch.device(device)) model_saint.load_state_dict(weights) model_saint.to(device) model_saint.eval()<define_variables>
X_train, X_test, Y_train, Y_test = train_test_split(X_train, Y_train, test_size = 0.2, random_state = 42 )
Digit Recognizer
11,953,506
def pred_users(vals): eval_batch = vals.shape[0] tensor_question = np.zeros(( eval_batch, 100), dtype=np.long) tensor_answers = np.zeros(( eval_batch, 100), dtype=np.long) tensor_ts = np.zeros(( eval_batch, 100), dtype=np.long) tensor_user_answer = np.zeros(( eval_batch, 100), dtype=np.long) val_len = [] preds = [] group_index = group.index for i, line in enumerate(vals): if line[2] == True: val_len.append(0) continue user_id = line[0] question_id = line[1] timestamp = get_timestamp(line[4], user_id) prior = get_prior(line[5]) task_container_id = line[3] que_history = np.array([], dtype=np.int32) answers_history = np.array([], dtype=np.int32) ts_history = np.array([], dtype=np.int32) user_answer_history = np.array([], dtype=np.int32) if user_id in group_index: cap = 99 que_history, answers_history, ts_history, user_answer_history = group[user_id] que_history = que_history[-cap:] answers_history = answers_history[-cap:] ts_history = ts_history[-cap:] user_answer_history = user_answer_history[-cap:] a_token = 2 user_a_token = 4 answers_history = np.concatenate(( [a_token],answers_history)) user_answer_history = np.concatenate(( [user_a_token],user_answer_history)) que_history = np.concatenate(( que_history, [question_id])) ts_history = np.concatenate(( ts_history, [timestamp])) tensor_question[i][:len(que_history)] = que_history tensor_answers[i][:len(que_history)] = answers_history tensor_ts[i][:len(que_history)] = ts_history tensor_user_answer[i][:len(que_history)] = user_answer_history val_len.append(len(que_history)) tensor_question = torch.from_numpy(tensor_question ).long().T.to(device) tensor_answers = torch.from_numpy(tensor_answers ).long().T.to(device) tensor_ts = torch.from_numpy(tensor_ts ).long().T.to(device) tensor_user_answer = torch.from_numpy(tensor_user_answer ).long().T.to(device) with torch.no_grad() : out = F.sigmoid(model_saint(tensor_question, tensor_answers, tensor_ts, None, None, tensor_user_answer,2)).squeeze(dim=-1 ).T for j in range(len(val_len)) : preds.append(out[j][val_len[j]-1].item()) return preds<string_transform>
train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2 )
Digit Recognizer
11,953,506
def split_preds(preds): if preds.shape[0] > 1000: ret = [] for i in np.array_split(preds, preds.shape[0]//1000): ret.extend(pred_users(i)) return ret else: return pred_users(preds )<prepare_x_and_y>
test_datagen = ImageDataGenerator(rescale = 1./255 )
Digit Recognizer
11,953,506
def update_group_var(vals): global group for i, line in enumerate(vals): user_id = line[0] question_id = line[1] content_type_id = line[2] ts = get_timestamp(line[4], user_id) correct = line[6] user_answer = line[7] if content_type_id == True: continue if st_user_info.get(user_id, -1)== -1: st_user_info[user_id] = {"timestamp_ms":0} else: st_user_info[user_id]["timestamp_ms"] = line[4] if user_id in group.index: questions= np.append(group[user_id][0],[question_id]) answers= np.append(group[user_id][1],[correct]) ts= np.append(group[user_id][2],[ts]) user_answer= np.append(group[user_id][3],[user_answer]) group[user_id] =(questions, answers, ts, user_answer) else: group[user_id] =(np.array([question_id], dtype=np.int32), np.array([correct], dtype=np.int32), np.array([ts], dtype=np.int32) ,np.array([user_answer], dtype=np.int32))<define_variables>
train = train_datagen.flow(X_train, Y_train, batch_size = 128 )
Digit Recognizer
11,953,506
ordinal_enc = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14, 15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20, 30: 21, 40: 22, 50: 23, 60: 24, 70: 25, 80: 26, 90: 27, 100: 28, 110: 29, 120: 30, 130: 31, 140: 32, 150: 33, 160: 34, 170: 35, 180: 36, 190: 37, 200: 38, 210: 39, 220: 40, 230: 41, 240: 42, 250: 43, 260: 44, 270: 45, 280: 46, 290: 47, 300: 48} boundaries = [120,600,1800,3600,10800,43200,86400,259200,604800] def get_prior(prior): if prior != prior: return 0 prior /= 1000 if prior > 20: prior = np.round(prior, decimals=-1) return ordinal_enc.get(round(prior),0) def get_timestamp(ts, user_id): if st_user_info.get(user_id, -1)== -1: return 0 diff =(ts - st_user_info[user_id]["timestamp_ms"])/1000 if diff < 0: return 0 if diff <= 60: return int(diff) for i, boundary in enumerate(boundaries): if boundary > diff: break if i == len(boundaries)- 1: return 60+i+1 return 60+i<define_variables>
test = test_datagen.flow(X_test, Y_test, batch_size = 128 )
Digit Recognizer
11,953,506
prior_part_mean_dict = {1: 22166.159642501425, 2: 18714.69673913695, 3: 23620.317746179924, 4: 23762.753651169547, 5: 25094.620302855932, 6: 32417.37918735745, 7: 47444.16407400242}<load_pretrained>
callback = EarlyStopping(monitor='loss', patience=8, restore_best_weights=True )
Digit Recognizer
11,953,506
with open('.. /input/lgbm-test/repeated_que_count', 'rb')as handle: repeated_que_count = pickle.load(handle) with open('.. /input/lgbm-test/user_info', 'rb')as handle: user_info = pickle.load(handle) with open('.. /input/lgbm-test/watched_tags', 'rb')as handle: watched_tags = pickle.load(handle) with open('.. /input/lgbm-test/containers_mean', 'rb')as handle: containers_mean = pickle.load(handle) with open('.. /input/lgbm-test/hardest', 'rb')as handle: hard_questions = pickle.load(handle) with open('.. /input/lgbm-test/easiest', 'rb')as handle: easy_questions = pickle.load(handle) with open('.. /input/lgbm-test/que_2_k', 'rb')as handle: que_2_k = pickle.load(handle) gc.collect() <feature_engineering>
cnn = tf.keras.models.Sequential()
Digit Recognizer
11,953,506
for u in user_info: user_info[u]["count_2"] = user_info[u]["count"] user_info[u]["part_count_2"] = user_info[u]["part_count"].copy() user_info[u]["last_part"] = 1<init_hyperparams>
cnn.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = 5, padding = 'same', activation = 'relu', input_shape = [28, 28, 1]))
Digit Recognizer
11,953,506
groups = pd.read_pickle(".. /input/lgbm-test/groups") def numpy_ewma_vectorized_v2(data, window): alpha = 2 /(window + 1.0) alpha_rev = 1-alpha n = data.shape[0] pows = alpha_rev**(np.arange(n+1)) scale_arr = 1/pows[:-1] offset = data[0]*pows[1:] pw0 = alpha*alpha_rev**(n-1) mult = data*pw0*scale_arr cumsums = mult.cumsum() out = offset + cumsums*scale_arr[::-1] return out<categorify>
cnn.add(tf.keras.layers.MaxPool2D(pool_size = 2, strides = 2, padding = 'valid'))
Digit Recognizer
11,953,506
features_1_path = '.. /input/get-features-1/' que_data = pd.read_pickle(features_1_path + "que_data.pickle") questions = que_data.drop(columns=["options_number","correctness_number", "correct_answer","tags6","tags5", "tags4"] ).to_dict("index") questions1 = que_data[["tags1", "tags2", "tags3","tags4","tags5", "tags6"]].to_dict("index") parts = que_data.part.to_dict()<load_from_csv>
cnn.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = 3, padding = 'same')) cnn.add(tf.keras.layers.MaxPool2D(pool_size = 2, strides = 2, padding='valid'))
Digit Recognizer
11,953,506
lec_data = pd.read_csv(".. /input/riiid-test-answer-prediction/lectures.csv") lec_dict = lec_data[["lecture_id", "tag"]].set_index("lecture_id" ).tag.to_dict() features = [ 'task_container_id', "ts_diff_shifted", "watched","ts_diff_shifted_2", 'content_id', "k", "k_acc", "el_avg", "wut", 'prior_question_elapsed_time', "time_diff2", "rolling_mean_5", "rolling_mean_10", "rolling_mean_15", "prior_question_had_explanation_u_part_avg", 'prior_question_had_explanation', "hard_ratio_opp", "easy_ratio_opp", "correct_recency", "prior_question_elapsed_time_u_part_avg", "ewm_mean_10", "rolling_mean_5_prior_question", 'last_lecture', "part_mean", "opp_mean", "mean_pause", "timestamp", "prior_part_mean", "container_mean", "lecs_per", "hard_ratio", "easy_ratio", 'que_count_user', 'question_repeated', "rolling_mean","time_diff3", "time_diff4", 'user_mean', "time_diff1", "time_diff", "sessions", "session_count", "prior_question_had_explanation_ratio" ] + que_data.columns.tolist() [:-1] features.remove("options_number") features.remove("correct_answer") features.remove("tags6") features.remove("tags5") features.remove("tags4") test_cols = ['row_id','timestamp','user_id','content_id','content_type_id','task_container_id','prior_question_elapsed_time', 'prior_question_had_explanation','prior_group_answers_correct','prior_group_responses'] <define_variables>
cnn.add(tf.keras.layers.MaxPool2D(pool_size = 2, strides = 2, padding='valid')) cnn.add(Droupout(0.5))
Digit Recognizer
11,953,506
stack_features = [ 'task_container_id', "ts_diff_shifted", "watched","ts_diff_shifted_2", 'content_id', "k", "k_acc", "el_avg", "wut", "lgb_preds", "st_preds", 'prior_question_elapsed_time', "time_diff2", "rolling_mean_5", "rolling_mean_10", "rolling_mean_15", "prior_question_had_explanation_u_part_avg", 'prior_question_had_explanation', "hard_ratio_opp", "easy_ratio_opp", "correct_recency", "prior_question_elapsed_time_u_part_avg", "ewm_mean_10", "rolling_mean_5_prior_question", 'last_lecture', "part_mean", "opp_mean", "mean_pause", "timestamp", "prior_part_mean", "container_mean", "lecs_per", "hard_ratio", "easy_ratio", 'que_count_user', 'question_repeated', "rolling_mean","time_diff3", "time_diff4", 'user_mean', "time_diff1", "time_diff", "sessions", "session_count", "prior_question_had_explanation_ratio" ] + que_data.columns.tolist() [:-1] stack_features.remove("options_number") stack_features.remove("correct_answer") stack_features.remove("tags6") stack_features.remove("tags5") stack_features.remove("tags4") lgb_preds_idx = stack_features.index("lgb_preds") st_preds_idx = stack_features.index("st_preds" )<define_variables>
cnn.add(tf.keras.layers.Flatten() )
Digit Recognizer
11,953,506
k_size = 20 cols = {test_cols[k]:k for k in range(len(test_cols)) } features_dict = {features[k]:k for k in range(len(features)) }<init_hyperparams>
cnn.add(tf.keras.layers.Dense(units=256, activation='relu'))
Digit Recognizer
11,953,506
new_user = {'count': 0, 'mean_acc':0.5, 'correct_count': 0, 'last_lec':0, 'tmp':0,"first_timestamp":0, "second_timestamp":0, "third_timestamp":0, "fourth_timestamp":0, "fifth_timestamp":0, "lecs_n":0,"interaction_n":0, "ts_diff_shifted":0., "part_corr":np.zeros(( 7), dtype=np.uint16), "part_count":np.zeros(( 7), dtype=np.uint16), "hard_ct":0, "hard_cr":0, "easy_ct":0, "easy_cr":0, "sessions":0, "session_count":0, "sum_pauses":0., "had_exp":0, "el_sum":0, "part_et": np.zeros(( 7), dtype=np.float), "part_explan": np.zeros(( 7), dtype=np.uint16), "k_count": np.zeros(( k_size), dtype=np.uint16), "k_corr": np.zeros(( k_size), dtype=np.uint16), "recent_corr":0, "priors_5": [], "ts_diff_shifted_2":0., "count_2":0, "part_count_2":np.zeros(( 7), dtype=np.uint16), "last_part":1}<define_variables>
cnn.add(tf.keras.layers.Dense(units=10, activation='softmax'))
Digit Recognizer
11,953,506
def get_meta_data(data_1): user_id = data_1[cols['user_id']] content_type_id = data_1[cols['content_type_id']] content_id = data_1[cols['content_id']] prior_group_answers_correct = data_1[cols['prior_group_answers_correct']] timestamp = data_1[cols['timestamp']] task_container_id = data_1[cols['task_container_id']] prior_question_had_explanation = data_1[cols['prior_question_had_explanation']] elapsed = data_1[cols['prior_question_elapsed_time']] return user_id, content_type_id, content_id, prior_group_answers_correct, timestamp,task_container_id,prior_question_had_explanation, elapsed<feature_engineering>
cnn.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'] )
Digit Recognizer
11,953,506
def add_user(user_id): user_info[user_id] = copy.deepcopy(new_user) repeated_que_count[user_id] = {} groups[user_id] = []<feature_engineering>
model = cnn.fit_generator(train, epochs = 100, validation_data = test, callbacks = [callback] )
Digit Recognizer
11,953,506
def update_user_part_acc(user_id, question, answered_correctly, elapsed, explan): part = parts.get(question, -1) user_info[user_id]["part_count"][part-1] += 1 user_info[user_id]["part_corr"][part-1] += answered_correctly if not isinstance(explan, pd._libs.missing.NAType)and explan == explan: user_info[user_id]["had_exp"] += explan<feature_engineering>
cnn.evaluate(X_test,Y_test,verbose=2 )
Digit Recognizer
11,953,506
def update_user(user_id, had_exp, elapsed, content_id ,answered_correctly, timestamp): user_info[user_id]['count'] += 1 if repeated_que_count[user_id].get(content_id, -1)== -1: repeated_que_count[user_id][content_id] = 1 else: repeated_que_count[user_id][content_id] += 1 if answered_correctly: user_info[user_id]['correct_count'] += 1 user_info[user_id]['mean_acc'] = user_info[user_id]['correct_count']/user_info[user_id]['count'] update_user_part_acc(user_id, content_id, answered_correctly, elapsed, had_exp) if hard_questions.get(content_id, False): user_info[user_id]["hard_ct"] += 1 user_info[user_id]["hard_cr"] += answered_correctly if easy_questions.get(content_id, False): user_info[user_id]["easy_ct"] += 1 user_info[user_id]["easy_cr"] += answered_correctly k = que_2_k[content_id] user_info[user_id]["k_count"][k] += 1 user_info[user_id]["k_corr"][k] += answered_correctly if answered_correctly: user_info[user_id]["recent_corr"] = timestamp<feature_engineering>
test_data /= 256 test_data = test_data.values.reshape(-1,28,28,1) results = cnn.predict(test_data )
Digit Recognizer
11,953,506
def update_lec_data(user_id, content_id): if watched_tags.get(str(user_id), -1)== -1: watched_tags[str(user_id)] = {} if user_info.get(user_id, -1)== -1: add_user(user_id) user_info[user_id]["lecs_n"] += 1 lec_tag = lec_dict[content_id] watched_tags[str(user_id)][str(lec_tag)] = 1 user_info[user_id]['last_lec'] = content_id<feature_engineering>
submission = pd.concat([pd.Series(range(1,28001),name = 'ImageId'),results],axis = 1 )
Digit Recognizer
11,953,506
def non_lag_update(user_id, timestamp, elapsed, explan, lec): timestamp = timestamp/8.64e+7 diff_timestamp_1 = timestamp - user_info[user_id]["first_timestamp"] diff_timestamp_2 = timestamp - user_info[user_id]["second_timestamp"] diff_timestamp_3 = timestamp - user_info[user_id]["third_timestamp"] diff_timestamp_4 = timestamp - user_info[user_id]["fourth_timestamp"] diff_timestamp_5 = timestamp - user_info[user_id]["fifth_timestamp"] user_info[user_id]["fifth_timestamp"] = user_info[user_id]["fourth_timestamp"] user_info[user_id]["fourth_timestamp"] = user_info[user_id]["third_timestamp"] user_info[user_id]["third_timestamp"] = user_info[user_id]["second_timestamp"] user_info[user_id]["second_timestamp"] = user_info[user_id]["first_timestamp"] user_info[user_id]["first_timestamp"] = timestamp if(user_info[user_id]["second_timestamp"] - user_info[user_id]["third_timestamp"])!= 0: user_info[user_id]["ts_diff_shifted"] = user_info[user_id]["second_timestamp"]*8.64e+7 - user_info[user_id]["third_timestamp"]*8.64e+7 if(user_info[user_id]["second_timestamp"] - user_info[user_id]["fourth_timestamp"])!= 0: user_info[user_id]["ts_diff_shifted_2"] = user_info[user_id]["second_timestamp"]*8.64e+7 - user_info[user_id]["fourth_timestamp"]*8.64e+7 if not isinstance(explan, pd._libs.missing.NAType)and explan == explan and not lec: user_info[user_id]["priors_5"].append(explan) if diff_timestamp_1 > 0.083: user_info[user_id]["sessions"] += 1 user_info[user_id]["session_count"] = 0 user_info[user_id]["sum_pauses"] += diff_timestamp_1 user_info[user_id]["session_count"] += 1 return diff_timestamp_1, diff_timestamp_2, diff_timestamp_3, diff_timestamp_4, diff_timestamp_5<prepare_x_and_y>
submission.to_csv('./submission.csv',index = False )
Digit Recognizer
11,914,085
def update_data(prior_group_answers_correct): global tmp_data arr = np.array(ast.literal_eval(prior_group_answers_correct)) for i, line in enumerate(tmp_data): user_id = line[cols['user_id']] content_type_id = line[cols['content_type_id']] content_id = line[cols['content_id']] timestamp = line[cols['timestamp']] task_container_id = line[cols['task_container_id']] explan = line[cols['prior_question_had_explanation']] if isinstance(explan, pd._libs.missing.NAType)or explan == explan: explan = 0 elapsed = line[cols['prior_question_elapsed_time']] if isinstance(elapsed, pd._libs.missing.NAType)or elapsed == elapsed: elapsed = 0 answered_correctly = arr[i] user_arr = groups[user_id] user_arr.insert(len(user_arr), answered_correctly) groups[user_id] = user_arr if content_type_id == False: if user_info.get(user_id, -1)== -1: add_user(user_id) update_user(user_id, explan, elapsed, content_id, answered_correctly, timestamp) tmp_data = []<define_variables>
train=pd.read_csv("/kaggle/input/digit-recognizer/train.csv" )
Digit Recognizer
11,914,085
tmp_data = []<define_variables>
test=pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
11,914,085
def preprocess_1(chunk): data_1 = chunk.values out = np.zeros(( data_1.shape[0], len(features))) batch_counts = data_1[:, [cols["user_id"],cols["content_type_id"]]] batch_counts = Counter(batch_counts[batch_counts[:, 1] == False][:, 0]) global tmp_data for i in range(data_1.shape[0]): user_id, content_type_id, content_id ,prior_group_answers_correct, timestamp, task_container_id, explan, elapsed = get_meta_data(data_1[i]) part = parts.get(content_id, -1) task_count = batch_counts[user_id] if prior_group_answers_correct == prior_group_answers_correct and prior_group_answers_correct != '[]': update_data(prior_group_answers_correct) tmp_data.append(data_1[i].tolist()) if content_type_id: update_lec_data(user_id, content_id) if user_info.get(user_id, -1)== -1: add_user(user_id) user_info[user_id]["interaction_n"] += 1 _ = non_lag_update(user_id, timestamp, elapsed, explan, content_type_id) diff_timestamp_1, diff_timestamp_2, diff_timestamp_3, diff_timestamp_4, diff_timestamp_5 = _ if not content_type_id: if not isinstance(elapsed, pd._libs.missing.NAType)and elapsed == elapsed: user_info[user_id]["el_sum"] += elapsed else: elapsed = 0 if isinstance(explan, pd._libs.missing.NAType)or explan != explan: explan = 0 if user_info[user_id]["count_2"] != 0: last_part = user_info[user_id]["last_part"] user_info[user_id]["part_et"][last_part-1] += elapsed user_info[user_id]["part_explan"][last_part-1] += explan user_info[user_id]["last_part"] = part user_info[user_id]["part_count_2"][part-1] += 1 user_info[user_id]["count_2"] += 1 out[i, features_dict['content_id']] = content_id out[i, features_dict['task_container_id']] = data_1[i, cols['task_container_id']] out[i, features_dict['prior_question_elapsed_time']] = elapsed out[i, features_dict['el_avg']] =(user_info[user_id]["el_sum"]/(user_info[user_id]["count_2"])) /1000 out[i, features_dict['prior_question_elapsed_time_u_part_avg']] =(user_info[user_id]["part_et"][part-1])/(user_info[user_id]["part_count_2"][part-1]) out[i, features_dict['prior_question_had_explanation']] = explan out[i, features_dict['prior_question_had_explanation_u_part_avg']] = user_info[user_id]["part_explan"][part-1]/(user_info[user_id]["part_count_2"][part-1]+1) out[i, features_dict['bundle_id']:] = np.array(list(questions.get(content_id ).values())) out[i, features_dict['que_count_user']] = user_info.get(user_id, {} ).get('count',0) out[i, features_dict['question_repeated']] = repeated_que_count.get(user_id, {} ).get(content_id, 0)+ 1 m = user_info.get(user_id, {} ).get('mean_acc', 0) if m == 0: out[i, features_dict['user_mean']] = 0.55 else: out[i, features_dict['user_mean']] = m out[i, features_dict['opp_mean']] = 1 - out[i, features_dict['user_mean']] out[i, features_dict['last_lecture']] = user_info.get(user_id, {} ).get('last_lec',0) out[i, features_dict['time_diff']] = diff_timestamp_1 out[i, features_dict['time_diff1']] = diff_timestamp_2 out[i, features_dict['time_diff2']] = diff_timestamp_3 out[i, features_dict['time_diff3']] = diff_timestamp_4 out[i, features_dict['time_diff4']] = diff_timestamp_5 out[i, features_dict['timestamp']] = timestamp/8.64e+7 out[i, features_dict['correct_recency']] =(timestamp - user_info[user_id]["recent_corr"])/8.64e+7 kk = user_info[user_id]["priors_5"][-5:] if len(kk)!= 0: out[i, features_dict['rolling_mean_5_prior_question']] = np.array(kk ).mean() out[i, features_dict['ts_diff_shifted']] = user_info[user_id]["ts_diff_shifted"] out[i, features_dict['ts_diff_shifted_2']] = user_info[user_id]["ts_diff_shifted_2"] out[i, features_dict['container_mean']] = containers_mean[task_container_id] out[i, features_dict['lecs_per']] = user_info[user_id]["lecs_n"]/user_info[user_id]["interaction_n"]*100 out[i, features_dict['sessions']] = user_info[user_id]["sessions"] out[i, features_dict['session_count']] = user_info[user_id]["session_count"] if user_info[user_id]["count"] != 0: out[i, features_dict['prior_question_had_explanation_ratio']] = user_info[user_id]["had_exp"]/user_info[user_id]["count"] if user_info[user_id]["sessions"] != 0: out[i, features_dict['mean_pause']] = user_info[user_id]["sum_pauses"]/user_info[user_id]["sessions"] nn = user_info.get(user_id, {} ).get('easy_ct',0) if nn != 0: out[i, features_dict['easy_ratio']] = user_info.get(user_id, {} ).get('easy_cr',0)/nn out[i, features_dict['easy_ratio_opp']] = 1 - out[i, features_dict['easy_ratio']] nn = user_info.get(user_id, {} ).get('hard_ct',0) if nn != 0: out[i, features_dict['hard_ratio']] = user_info.get(user_id, {} ).get('hard_cr',0)/nn out[i, features_dict['hard_ratio_opp']] = 1 - out[i, features_dict['hard_ratio']] nn = user_info.get(user_id, {} ).get('part_count',[]) if nn != []: part = int(out[i, features_dict['part']] - 1) ct = nn[part] cr = user_info[user_id]['part_corr'][part] if ct != 0: out[i, features_dict['part_mean']] = cr/ct if groups.get(user_id, -1)!= -1 and groups[user_id] != []: last_arr = np.array(groups[user_id][-40:]) out[i, features_dict['rolling_mean']] = numpy_ewma_vectorized_v2(np.array(last_arr[-30:]),5)[-1] last_arr = last_arr[last_arr != -1] out[i, features_dict['ewm_mean_10']] = numpy_ewma_vectorized_v2(np.array(last_arr[-30:]),5)[-1] out[i, features_dict['rolling_mean_10']] = np.array(last_arr[-10:] ).mean() out[i, features_dict['rolling_mean_15']] = np.array(last_arr[-15:] ).mean() out[i, features_dict['rolling_mean_5']] = np.array(last_arr[-5:] ).mean() out[i, features_dict['prior_part_mean']] = prior_part_mean_dict[int(out[i, features_dict['part']])] k = que_2_k[content_id] out[i, features_dict['k']] = k if user_info[user_id]["k_count"][k] != 0: out[i, features_dict['k_acc']] = user_info[user_id]["k_corr"][k]/user_info[user_id]["k_count"][k] out[i, features_dict['wut']] = user_info[user_id]["ts_diff_shifted"] - elapsed*task_count if out[i, features_dict['wut']] < 0: out[i, features_dict['wut']] = 0 usr = watched_tags.get(str(user_id), -1) if usr != -1: nn = 0 for k in range(6): nn += usr.get(str(int(questions1[content_id]["tags"+str(k+1)])) , 0) out[i, features_dict['watched']] = nn return out <define_variables>
label=train["label"].values
Digit Recognizer
11,914,085
model_lgbm = lgb.Booster(model_file='.. /input/lgbm-test/lgb_classifier.txt') stack_lgbm = lgb.Booster(model_file='.. /input/lgbm-test/lgb_stack.txt' )<define_variables>
train.drop("label",axis=1,inplace=True )
Digit Recognizer
11,914,085
vals = 0<split>
t=train.values ttest=test.values
Digit Recognizer
11,914,085
%%time for(test_data,sample_prediction_df)in iter_test: if not isinstance(vals, int): if test_data.iloc[0].prior_group_answers_correct == test_data.iloc[0].prior_group_answers_correct: past_vals = np.array(ast.literal_eval(test_data.iloc[0].prior_group_answers_correct)) past_answers = np.array(ast.literal_eval(test_data.iloc[0].prior_group_responses)) past_vals = np.concatenate(( vals, past_vals.reshape(len(past_vals),1)) , axis=1) past_vals = np.concatenate(( past_vals, past_answers.reshape(len(past_answers),1)) , axis=1) update_group_var(past_vals) vals = test_data[["user_id","content_id", "content_type_id", "task_container_id","timestamp","prior_question_elapsed_time"]].values test_transform = preprocess_1(test_data) lgbm_predic = model_lgbm.predict(test_transform) st_predic = np.array(split_preds(vals)) test_data['answered_correctly'] =(lgbm_predic*0.85 + 1.15*st_predic)/2 env.predict(test_data.loc[test_data['content_type_id'] == 0, ['row_id', 'answered_correctly']] )<categorify>
t=t.astype('float32') ttest=ttest.astype('float32' )
Digit Recognizer
11,914,085
dicts_path = '/kaggle/input/agg-riiid/agg_riiid/' user_content_id_agg = pd.read_pickle(dicts_path + 'user_content_id_agg.pkl.gzip') user_content_id_agg['count'] = user_content_id_agg['count'].astype('int16' )<data_type_conversions>
t/=255 ttest/=255
Digit Recognizer
11,914,085
user_content_id_count_dict = user_content_id_agg['count'].astype('int16' ).to_dict(defaultdict(int))<set_options>
tl = keras.utils.to_categorical(label, 10)
Digit Recognizer
11,914,085
del user_content_id_agg gc.collect()<import_modules>
input_shape =(28, 28, 1 )
Digit Recognizer
11,914,085
import numpy as np import lightgbm as lgb import pickle import riiideducation import joblib<define_variables>
model = Sequential() model.add(Conv2D(32,(3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=input_shape)) model.add(MaxPooling2D(( 2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(64,(3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(MaxPooling2D(( 2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(128,(3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(MaxPooling2D(( 2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(256,(3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(MaxPooling2D(( 2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(128, activation='relu', kernel_initializer='he_uniform')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
11,914,085
target = 'answered_correctly'<define_variables>
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] )
Digit Recognizer
11,914,085
features = [ 'content_id', 'prior_question_elapsed_time', 'prior_question_had_explanation', 'user_correctness', 'user_correctness_window_10_mean', 'part', 'content_count', 'content_sum', 'content_id_correctness_total', 'repeated_times', 'user_count_questions', 'explanation_mean_user', 'timestamp', 'timestamp_diff_last', 'user_count_lectures', 'last_lecture_tag', 'prior_questions_mean_time', 'last_correct', 'task_container_id', 'first_tag', 'second_tag', 'repeated_times_tag', 'user_tag_correctness', 'timestamp_diff_last_window_10_mean', 'user_count_lectures_mean' ]<categorify>
np.random.seed(1234) (x_train,x_test,y_train,y_test)= train_test_split(t,tl, train_size=0.75, random_state=1 )
Digit Recognizer
11,914,085
dicts_path = '/kaggle/input/agg-riiid/agg_riiid/' user_agg = pd.read_pickle(dicts_path + 'user_agg.pkl.gzip') user_sum_dict = user_agg['sum'].astype('int32' ).to_dict(defaultdict(int)) user_count_dict = user_agg['count'].astype('int32' ).to_dict(defaultdict(int)) del user_agg gc.collect() content_agg = pd.read_pickle(dicts_path + 'content_agg.pkl.gzip') content_sum_dict = content_agg['sum'].astype('int32' ).to_dict(defaultdict(int)) content_count_dict = content_agg['count'].astype('int32' ).to_dict(defaultdict(int)) del content_agg gc.collect() user_target_window_10 = pd.read_pickle(dicts_path + 'user_target_window_10.pkl.gzip') user_target_window_10_dict = user_target_window_10.astype('int8' ).to_dict(defaultdict(int)) del user_target_window_10 gc.collect() user_target_next_out_window_10_dict = defaultdict(int) timestamp_diff_window_10 = pd.read_pickle(dicts_path + 'timestamp_diff_window_10.pkl.gzip') timestamp_diff_window_10_dict = timestamp_diff_window_10.astype('int32' ).to_dict(defaultdict(int)) del timestamp_diff_window_10 gc.collect() timestamp_diff_next_window_10_dict = defaultdict(int) explanation_agg = pd.read_pickle(dicts_path + 'explanation_agg.pkl.gzip') explanation_sum_dict = explanation_agg['sum'].astype('int32' ).to_dict(defaultdict(int)) explanation_count_dict = explanation_agg['count'].astype('int32' ).to_dict(defaultdict(int)) del explanation_agg gc.collect() user_lectures_agg = pd.read_pickle(dicts_path + 'user_lectures_agg.pkl.gzip') user_lectures_count_dict = user_lectures_agg['sum'].astype('int16' ).to_dict(defaultdict(int)) del user_lectures_agg gc.collect() last_lecture_agg = pd.read_pickle(dicts_path + 'last_lecture_agg.pkl.gzip') last_lecture_tag_dict = last_lecture_agg.astype('int16' ).to_dict(defaultdict(int)) del last_lecture_agg gc.collect() prior_questions_time_agg = pd.read_pickle(dicts_path + 'prior_questions_time_agg.pkl.gzip') prior_questions_time_sum_dict = prior_questions_time_agg['sum'].astype('int32' ).to_dict(defaultdict(float)) prior_questions_time_count_dict = prior_questions_time_agg['count'].astype('int32' ).to_dict(defaultdict(int)) del prior_questions_time_agg gc.collect() last_correct_agg = pd.read_pickle(dicts_path + 'last_correct_agg.pkl.gzip') last_correct_dict = last_correct_agg.astype('int8' ).to_dict(defaultdict(int)) del last_correct_agg gc.collect() user_tag_agg = pd.read_pickle(dicts_path + 'user_tag_agg.pkl.gzip') user_tag_agg_sum_dict = user_tag_agg['sum'].astype('int16' ).to_dict(defaultdict(int)) user_tag_agg_count_dict = user_tag_agg['count'].astype('int16' ).to_dict(defaultdict(int)) del user_tag_agg gc.collect() last_timestamp_agg = pd.read_pickle(dicts_path + 'last_timestamp_agg.pkl.gzip') last_timestamp_dict = last_timestamp_agg.astype('int32' ).to_dict(defaultdict(int)) del last_timestamp_agg gc.collect()<load_pretrained>
model.fit(x_train, y_train, batch_size=100, epochs=400, verbose=2, validation_data=(x_test, y_test))
Digit Recognizer
11,914,085
model_path = '/kaggle/input/trained-model/' file = model_path + 'trained_model.pkl' model = pickle.load(open(file, 'rb')) print('Trained LGB model was loaded!' )<load_from_csv>
y_pred=model.predict(ttest,verbose=0 )
Digit Recognizer
11,914,085
home_path = '/kaggle/input/riiid-test-answer-prediction/' questions_df = pd.read_csv(home_path + 'questions.csv', usecols=[0, 3, 4], dtype={'question_id': 'int16', 'part': 'int8'} )<data_type_conversions>
sample=pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
11,914,085
questions_df['tags'].fillna('92', inplace=True) questions_df['first_tag'] = questions_df['tags'].apply(lambda x: x.split() [0]) questions_df['first_tag'] = questions_df['first_tag'].astype('int16') questions_df['second_tag'] = questions_df['tags'].apply(lambda x: x.split() [1] if len(x.split())> 1 else -1) questions_df['second_tag'] = questions_df['second_tag'].astype('int16') questions_df.drop('tags',axis=1,inplace=True )<load_from_csv>
pred = np.argmax(y_pred, axis = 1 )
Digit Recognizer
11,914,085
lectures_df = pd.read_csv(home_path + 'lectures.csv', dtype={'tag': 'int16', 'part': 'int8'} ) type_of_dict = {'intention': 1, 'concept': 2, 'solving question': 3, 'starter': 4} lectures_df['type_of'] = lectures_df['type_of'].map(type_of_dict )<import_modules>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),r],axis = 1 )
Digit Recognizer
11,914,085
import random from tqdm.notebook import tqdm import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader<load_pretrained>
submission.to_csv("mnist4.csv",index=False )
Digit Recognizer
11,650,794
skills = joblib.load("/kaggle/input/skills-pkl/skills.pkl.zip") n_skill = len(skills) group = joblib.load("/kaggle/input/group-pkl/group.pkl.zip") del joblib gc.collect()<define_variables>
np.random.seed(1)
Digit Recognizer
11,650,794
MAX_SEQ = 180 ACCEPTED_USER_CONTENT_SIZE = 4 EMBED_SIZE = 128 BATCH_SIZE = 64 DROPOUT = 0.1<choose_model_class>
X_train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') X_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') print('Shape of the training data: ', X_train.shape) print('Shape of the test data: ', X_test.shape )
Digit Recognizer
11,650,794
class FFN(nn.Module): def __init__(self, state_size = 200, forward_expansion = 1, bn_size=MAX_SEQ - 1, dropout=0.2): super(FFN, self ).__init__() self.state_size = state_size self.lr1 = nn.Linear(state_size, forward_expansion * state_size) self.relu = nn.ReLU() self.bn = nn.BatchNorm1d(bn_size) self.lr2 = nn.Linear(forward_expansion * state_size, state_size) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.relu(self.lr1(x)) x = self.bn(x) x = self.lr2(x) return self.dropout(x) FFN()<categorify>
y_train = X_train['label'] X_train.drop(labels = ['label'], axis=1, inplace=True )
Digit Recognizer
11,650,794
def future_mask(seq_length): future_mask =(np.triu(np.ones([seq_length, seq_length]), k = 1)).astype('bool') return torch.from_numpy(future_mask) future_mask(5 )<choose_model_class>
y_train = to_categorical(y_train, num_classes=10) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1 )
Digit Recognizer
11,650,794
class TransformerBlock(nn.Module): def __init__(self, embed_dim, heads = 8, dropout = DROPOUT, forward_expansion = 1): super(TransformerBlock, self ).__init__() self.multi_att = nn.MultiheadAttention(embed_dim=embed_dim, num_heads=heads, dropout=dropout) self.dropout = nn.Dropout(dropout) self.layer_normal = nn.LayerNorm(embed_dim) self.ffn = FFN(embed_dim, forward_expansion = forward_expansion, dropout=dropout) self.layer_normal_2 = nn.LayerNorm(embed_dim) def forward(self, value, key, query, att_mask): att_output, att_weight = self.multi_att(value, key, query, attn_mask=att_mask) att_output = self.dropout(self.layer_normal(att_output + value)) att_output = att_output.permute(1, 0, 2) x = self.ffn(att_output) x = self.dropout(self.layer_normal_2(x + att_output)) return x.squeeze(-1), att_weight class Encoder(nn.Module): def __init__(self, n_skill, max_seq=100, embed_dim=128, dropout = DROPOUT, forward_expansion = 1, num_layers=1, heads = 8): super(Encoder, self ).__init__() self.n_skill, self.embed_dim = n_skill, embed_dim self.embedding = nn.Embedding(2 * n_skill + 1, embed_dim) self.pos_embedding = nn.Embedding(max_seq - 1, embed_dim) self.e_embedding = nn.Embedding(n_skill+1, embed_dim) self.layers = nn.ModuleList([TransformerBlock(embed_dim, forward_expansion = forward_expansion)for _ in range(num_layers)]) self.dropout = nn.Dropout(dropout) def forward(self, x, question_ids): device = x.device x = self.embedding(x) pos_id = torch.arange(x.size(1)).unsqueeze(0 ).to(device) pos_x = self.pos_embedding(pos_id) x = self.dropout(x + pos_x) x = x.permute(1, 0, 2) e = self.e_embedding(question_ids) e = e.permute(1, 0, 2) for layer in self.layers: att_mask = future_mask(e.size(0)).to(device) x, att_weight = layer(e, x, x, att_mask=att_mask) x = x.permute(1, 0, 2) x = x.permute(1, 0, 2) return x, att_weight class SAKTModel(nn.Module): def __init__(self, n_skill, max_seq=100, embed_dim=128, dropout = DROPOUT, forward_expansion = 1, enc_layers=1, heads = 8): super(SAKTModel, self ).__init__() self.encoder = Encoder(n_skill, max_seq, embed_dim, dropout, forward_expansion, num_layers=enc_layers) self.pred = nn.Linear(embed_dim, 1) def forward(self, x, question_ids): x, att_weight = self.encoder(x, question_ids) x = self.pred(x) return x.squeeze(-1), att_weight<set_options>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 256, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax")) model.summary()
Digit Recognizer