text
stringlengths 89
104k
| code_tokens
list | avg_line_len
float64 7.91
980
| score
float64 0
630
|
---|---|---|---|
def xpathNextDescendantOrSelf(self, cur):
"""Traversal function for the "descendant-or-self" direction
the descendant-or-self axis contains the context node and
the descendants of the context node in document order; thus
the context node is the first node on the axis, and the
first child of the context node is the second node on the
axis """
if cur is None: cur__o = None
else: cur__o = cur._o
ret = libxml2mod.xmlXPathNextDescendantOrSelf(self._o, cur__o)
if ret is None:raise xpathError('xmlXPathNextDescendantOrSelf() failed')
__tmp = xmlNode(_obj=ret)
return __tmp
|
[
"def",
"xpathNextDescendantOrSelf",
"(",
"self",
",",
"cur",
")",
":",
"if",
"cur",
"is",
"None",
":",
"cur__o",
"=",
"None",
"else",
":",
"cur__o",
"=",
"cur",
".",
"_o",
"ret",
"=",
"libxml2mod",
".",
"xmlXPathNextDescendantOrSelf",
"(",
"self",
".",
"_o",
",",
"cur__o",
")",
"if",
"ret",
"is",
"None",
":",
"raise",
"xpathError",
"(",
"'xmlXPathNextDescendantOrSelf() failed'",
")",
"__tmp",
"=",
"xmlNode",
"(",
"_obj",
"=",
"ret",
")",
"return",
"__tmp"
] | 51.153846 | 16.923077 |
def y_grid(self, grid=None):
"""The vertical lines that run accross the chart from the y-ticks.
If a boolean value is given, these gridlines will be turned on or off.
Otherwise, the method will return their current state.
:param bool grid: Turns the gridlines on or off.
:rtype: ``bool``"""
if grid is None:
return self._y_grid
else:
if not isinstance(grid, bool):
raise TypeError("grid must be boolean, not '%s'" % grid)
self._y_grid = grid
|
[
"def",
"y_grid",
"(",
"self",
",",
"grid",
"=",
"None",
")",
":",
"if",
"grid",
"is",
"None",
":",
"return",
"self",
".",
"_y_grid",
"else",
":",
"if",
"not",
"isinstance",
"(",
"grid",
",",
"bool",
")",
":",
"raise",
"TypeError",
"(",
"\"grid must be boolean, not '%s'\"",
"%",
"grid",
")",
"self",
".",
"_y_grid",
"=",
"grid"
] | 35.866667 | 20.2 |
def dict_hist(item_list, weight_list=None, ordered=False, labels=None):
r"""
Builds a histogram of items in item_list
Args:
item_list (list): list with hashable items (usually containing duplicates)
Returns:
dict : dictionary where the keys are items in item_list, and the values
are the number of times the item appears in item_list.
CommandLine:
python -m utool.util_dict --test-dict_hist
Example:
>>> # ENABLE_DOCTEST
>>> from utool.util_dict import * # NOQA
>>> import utool as ut
>>> item_list = [1, 2, 39, 900, 1232, 900, 1232, 2, 2, 2, 900]
>>> hist_ = dict_hist(item_list)
>>> result = ut.repr2(hist_)
>>> print(result)
{1: 1, 2: 4, 39: 1, 900: 3, 1232: 2}
"""
if labels is None:
# hist_ = defaultdict(lambda: 0)
hist_ = defaultdict(int)
else:
hist_ = {k: 0 for k in labels}
if weight_list is None:
# weight_list = it.repeat(1)
for item in item_list:
hist_[item] += 1
else:
for item, weight in zip(item_list, weight_list):
hist_[item] += weight
# hist_ = dict(hist_)
if ordered:
# import utool as ut
# key_order = ut.sortedby(list(hist_.keys()), list(hist_.values()))
getval = op.itemgetter(1)
key_order = [key for (key, value) in sorted(hist_.items(), key=getval)]
hist_ = order_dict_by(hist_, key_order)
return hist_
|
[
"def",
"dict_hist",
"(",
"item_list",
",",
"weight_list",
"=",
"None",
",",
"ordered",
"=",
"False",
",",
"labels",
"=",
"None",
")",
":",
"if",
"labels",
"is",
"None",
":",
"# hist_ = defaultdict(lambda: 0)",
"hist_",
"=",
"defaultdict",
"(",
"int",
")",
"else",
":",
"hist_",
"=",
"{",
"k",
":",
"0",
"for",
"k",
"in",
"labels",
"}",
"if",
"weight_list",
"is",
"None",
":",
"# weight_list = it.repeat(1)",
"for",
"item",
"in",
"item_list",
":",
"hist_",
"[",
"item",
"]",
"+=",
"1",
"else",
":",
"for",
"item",
",",
"weight",
"in",
"zip",
"(",
"item_list",
",",
"weight_list",
")",
":",
"hist_",
"[",
"item",
"]",
"+=",
"weight",
"# hist_ = dict(hist_)",
"if",
"ordered",
":",
"# import utool as ut",
"# key_order = ut.sortedby(list(hist_.keys()), list(hist_.values()))",
"getval",
"=",
"op",
".",
"itemgetter",
"(",
"1",
")",
"key_order",
"=",
"[",
"key",
"for",
"(",
"key",
",",
"value",
")",
"in",
"sorted",
"(",
"hist_",
".",
"items",
"(",
")",
",",
"key",
"=",
"getval",
")",
"]",
"hist_",
"=",
"order_dict_by",
"(",
"hist_",
",",
"key_order",
")",
"return",
"hist_"
] | 33.045455 | 18.659091 |
def _chorder(self):
"""Add <interleave> if child order is arbitrary."""
if (self.interleave and
len([ c for c in self.children if ":" not in c.name ]) > 1):
return "<interleave>%s</interleave>"
return "%s"
|
[
"def",
"_chorder",
"(",
"self",
")",
":",
"if",
"(",
"self",
".",
"interleave",
"and",
"len",
"(",
"[",
"c",
"for",
"c",
"in",
"self",
".",
"children",
"if",
"\":\"",
"not",
"in",
"c",
".",
"name",
"]",
")",
">",
"1",
")",
":",
"return",
"\"<interleave>%s</interleave>\"",
"return",
"\"%s\""
] | 41.333333 | 15.166667 |
def get_limits_for_pool(self, pool):
"""
meterer.get_limits_for_pool(pool) -> dict
Returns the limits for the given pool. If the pool does not have limits
set, {} is returned.
The resulting dict has the following format. Each item is optional and
indicates no limit for the specified time period.
{
"year": int,
"month": int,
"week": int,
"day": int,
"hour": int,
}
"""
pool_limits = self.cache.get("LIMIT:%s" % pool)
if pool_limits is None:
return {}
return json_loads(pool_limits)
|
[
"def",
"get_limits_for_pool",
"(",
"self",
",",
"pool",
")",
":",
"pool_limits",
"=",
"self",
".",
"cache",
".",
"get",
"(",
"\"LIMIT:%s\"",
"%",
"pool",
")",
"if",
"pool_limits",
"is",
"None",
":",
"return",
"{",
"}",
"return",
"json_loads",
"(",
"pool_limits",
")"
] | 28.727273 | 19.363636 |
def _update(self):
'''
Given degree, minute, and second information, clean up the variables and make them
consistent (for example, if minutes > 60, add extra to degrees, or if degrees is
a decimal, add extra to minutes).
'''
self.decimal_degree = self._calc_decimaldegree(self.degree, self.minute, self.second)
self.degree, self.minute, self.decimal_minute, self.second = self._calc_degreeminutes(self.decimal_degree)
|
[
"def",
"_update",
"(",
"self",
")",
":",
"self",
".",
"decimal_degree",
"=",
"self",
".",
"_calc_decimaldegree",
"(",
"self",
".",
"degree",
",",
"self",
".",
"minute",
",",
"self",
".",
"second",
")",
"self",
".",
"degree",
",",
"self",
".",
"minute",
",",
"self",
".",
"decimal_minute",
",",
"self",
".",
"second",
"=",
"self",
".",
"_calc_degreeminutes",
"(",
"self",
".",
"decimal_degree",
")"
] | 58.25 | 38.25 |
def create_serv_obj(self, tenant_id):
"""Creates and stores the service object associated with a tenant. """
self.service_attr[tenant_id] = ServiceIpSegTenantMap()
self.store_tenant_obj(tenant_id, self.service_attr[tenant_id])
|
[
"def",
"create_serv_obj",
"(",
"self",
",",
"tenant_id",
")",
":",
"self",
".",
"service_attr",
"[",
"tenant_id",
"]",
"=",
"ServiceIpSegTenantMap",
"(",
")",
"self",
".",
"store_tenant_obj",
"(",
"tenant_id",
",",
"self",
".",
"service_attr",
"[",
"tenant_id",
"]",
")"
] | 61.75 | 13.75 |
def simulate(self, ts_length, init=None, num_reps=None, random_state=None):
"""
Simulate time series of state transitions, where the states are
annotated with their values (if `state_values` is not None).
Parameters
----------
ts_length : scalar(int)
Length of each simulation.
init : scalar or array_like, optional(default=None)
Initial state values(s). If None, the initial state is
randomly drawn.
num_reps : scalar(int), optional(default=None)
Number of repetitions of simulation.
random_state : int or np.random.RandomState, optional
Random seed (integer) or np.random.RandomState instance to
set the initial state of the random number generator for
reproducibility. If None, a randomly initialized RandomState
is used.
Returns
-------
X : ndarray(ndim=1 or 2)
Array containing the sample path(s), of shape (ts_length,)
if init is a scalar (integer) or None and num_reps is None;
of shape (k, ts_length) otherwise, where k = len(init) if
(init, num_reps) = (array, None), k = num_reps if (init,
num_reps) = (int or None, int), and k = len(init)*num_reps
if (init, num_reps) = (array, int).
"""
if init is not None:
init_idx = self.get_index(init)
else:
init_idx = None
X = self.simulate_indices(ts_length, init=init_idx, num_reps=num_reps,
random_state=random_state)
# Annotate states
if self.state_values is not None:
X = self.state_values[X]
return X
|
[
"def",
"simulate",
"(",
"self",
",",
"ts_length",
",",
"init",
"=",
"None",
",",
"num_reps",
"=",
"None",
",",
"random_state",
"=",
"None",
")",
":",
"if",
"init",
"is",
"not",
"None",
":",
"init_idx",
"=",
"self",
".",
"get_index",
"(",
"init",
")",
"else",
":",
"init_idx",
"=",
"None",
"X",
"=",
"self",
".",
"simulate_indices",
"(",
"ts_length",
",",
"init",
"=",
"init_idx",
",",
"num_reps",
"=",
"num_reps",
",",
"random_state",
"=",
"random_state",
")",
"# Annotate states",
"if",
"self",
".",
"state_values",
"is",
"not",
"None",
":",
"X",
"=",
"self",
".",
"state_values",
"[",
"X",
"]",
"return",
"X"
] | 37.173913 | 22.826087 |
def is_up_url(url, allow_redirects=False, timeout=5):
r""" Check URL to see if it is a valid web page, return the redirected location if it is
Returns:
None if ConnectionError
False if url is invalid (any HTTP error code)
cleaned up URL (following redirects and possibly adding HTTP schema "http://")
>>> is_up_url("duckduckgo.com") # a more private, less manipulative search engine
'https://duckduckgo.com/'
>>> urlisup = is_up_url("totalgood.org")
>>> not urlisup or str(urlisup).startswith('http')
True
>>> urlisup = is_up_url("wikipedia.org")
>>> str(urlisup).startswith('http')
True
>>> 'wikipedia.org' in str(urlisup)
True
>>> bool(is_up_url('8158989668202919656'))
False
>>> is_up_url('invalidurlwithoutadomain')
False
"""
if not isinstance(url, basestring) or '.' not in url:
return False
normalized_url = prepend_http(url)
session = requests.Session()
session.mount(url, HTTPAdapter(max_retries=2))
try:
resp = session.get(normalized_url, allow_redirects=allow_redirects, timeout=timeout)
except ConnectionError:
return None
except:
return None
if resp.status_code in (301, 302, 307) or resp.headers.get('location', None):
return resp.headers.get('location', None) # return redirected URL
elif 100 <= resp.status_code < 400:
return normalized_url # return the original URL that was requested/visited
else:
return False
|
[
"def",
"is_up_url",
"(",
"url",
",",
"allow_redirects",
"=",
"False",
",",
"timeout",
"=",
"5",
")",
":",
"if",
"not",
"isinstance",
"(",
"url",
",",
"basestring",
")",
"or",
"'.'",
"not",
"in",
"url",
":",
"return",
"False",
"normalized_url",
"=",
"prepend_http",
"(",
"url",
")",
"session",
"=",
"requests",
".",
"Session",
"(",
")",
"session",
".",
"mount",
"(",
"url",
",",
"HTTPAdapter",
"(",
"max_retries",
"=",
"2",
")",
")",
"try",
":",
"resp",
"=",
"session",
".",
"get",
"(",
"normalized_url",
",",
"allow_redirects",
"=",
"allow_redirects",
",",
"timeout",
"=",
"timeout",
")",
"except",
"ConnectionError",
":",
"return",
"None",
"except",
":",
"return",
"None",
"if",
"resp",
".",
"status_code",
"in",
"(",
"301",
",",
"302",
",",
"307",
")",
"or",
"resp",
".",
"headers",
".",
"get",
"(",
"'location'",
",",
"None",
")",
":",
"return",
"resp",
".",
"headers",
".",
"get",
"(",
"'location'",
",",
"None",
")",
"# return redirected URL",
"elif",
"100",
"<=",
"resp",
".",
"status_code",
"<",
"400",
":",
"return",
"normalized_url",
"# return the original URL that was requested/visited",
"else",
":",
"return",
"False"
] | 36.875 | 20.8 |
def format_command(
command_args, # type: List[str]
command_output, # type: str
):
# type: (...) -> str
"""
Format command information for logging.
"""
text = 'Command arguments: {}\n'.format(command_args)
if not command_output:
text += 'Command output: None'
elif logger.getEffectiveLevel() > logging.DEBUG:
text += 'Command output: [use --verbose to show]'
else:
if not command_output.endswith('\n'):
command_output += '\n'
text += (
'Command output:\n{}'
'-----------------------------------------'
).format(command_output)
return text
|
[
"def",
"format_command",
"(",
"command_args",
",",
"# type: List[str]",
"command_output",
",",
"# type: str",
")",
":",
"# type: (...) -> str",
"text",
"=",
"'Command arguments: {}\\n'",
".",
"format",
"(",
"command_args",
")",
"if",
"not",
"command_output",
":",
"text",
"+=",
"'Command output: None'",
"elif",
"logger",
".",
"getEffectiveLevel",
"(",
")",
">",
"logging",
".",
"DEBUG",
":",
"text",
"+=",
"'Command output: [use --verbose to show]'",
"else",
":",
"if",
"not",
"command_output",
".",
"endswith",
"(",
"'\\n'",
")",
":",
"command_output",
"+=",
"'\\n'",
"text",
"+=",
"(",
"'Command output:\\n{}'",
"'-----------------------------------------'",
")",
".",
"format",
"(",
"command_output",
")",
"return",
"text"
] | 27.826087 | 15.304348 |
def model(self, inputs, mode='train'):
"""Build a simple convnet (BN before ReLU).
Args:
inputs: a tensor of size [batch_size, height, width, channels]
mode: string in ['train', 'test']
Returns:
the last op containing the predictions
Note:
Best score
Step: 7015 - Epoch: 18/20 - best batch acc: 0.8984 - loss: 1.5656
Worst score
Step: 7523 - Epoch: 20/20 - best batch acc: 0.7734 - loss: 1.6874
"""
# Extract features
training = (mode == 'train')
with tf.variable_scope('conv1') as scope:
conv = tf.layers.conv2d(inputs=inputs, filters=16, kernel_size=[3, 3], padding='SAME')
bn = tf.layers.batch_normalization(inputs=conv, training=training)
bn = tf.nn.relu(bn)
conv = tf.layers.conv2d(inputs=bn, filters=16, kernel_size=[3, 3], padding='SAME')
bn = tf.layers.batch_normalization(inputs=conv, training=training)
bn = tf.nn.relu(bn)
pool = tf.layers.max_pooling2d(bn, pool_size=[2, 2], strides=2, padding='SAME', name=scope.name)
with tf.variable_scope('conv2') as scope:
conv = tf.layers.conv2d(inputs=pool, filters=32, kernel_size=[3, 3], padding='SAME')
bn = tf.layers.batch_normalization(inputs=conv, training=training)
bn = tf.nn.relu(bn)
conv = tf.layers.conv2d(inputs=bn, filters=32, kernel_size=[3, 3], padding='SAME')
bn = tf.layers.batch_normalization(inputs=conv, training=training)
bn = tf.nn.relu(bn)
pool = tf.layers.max_pooling2d(bn, pool_size=[2, 2], strides=2, padding='SAME', name=scope.name)
with tf.variable_scope('conv3') as scope:
conv = tf.layers.conv2d(inputs=pool, filters=32, kernel_size=[3, 3], padding='SAME')
bn = tf.layers.batch_normalization(inputs=conv, training=training)
bn = tf.nn.relu(bn)
conv = tf.layers.conv2d(inputs=bn, filters=32, kernel_size=[3, 3], padding='SAME')
bn = tf.layers.batch_normalization(inputs=conv, training=training)
bn = tf.nn.relu(bn)
pool = tf.layers.max_pooling2d(bn, pool_size=[2, 2], strides=2, padding='SAME', name=scope.name)
# Classify
with tf.variable_scope('fc') as scope:
flat = tf.layers.flatten(pool)
fc = tf.layers.dense(inputs=flat, units=32, activation=tf.nn.relu)
softmax = tf.layers.dense(inputs=fc, units=self.num_classes, activation=tf.nn.softmax)
return softmax
|
[
"def",
"model",
"(",
"self",
",",
"inputs",
",",
"mode",
"=",
"'train'",
")",
":",
"# Extract features",
"training",
"=",
"(",
"mode",
"==",
"'train'",
")",
"with",
"tf",
".",
"variable_scope",
"(",
"'conv1'",
")",
"as",
"scope",
":",
"conv",
"=",
"tf",
".",
"layers",
".",
"conv2d",
"(",
"inputs",
"=",
"inputs",
",",
"filters",
"=",
"16",
",",
"kernel_size",
"=",
"[",
"3",
",",
"3",
"]",
",",
"padding",
"=",
"'SAME'",
")",
"bn",
"=",
"tf",
".",
"layers",
".",
"batch_normalization",
"(",
"inputs",
"=",
"conv",
",",
"training",
"=",
"training",
")",
"bn",
"=",
"tf",
".",
"nn",
".",
"relu",
"(",
"bn",
")",
"conv",
"=",
"tf",
".",
"layers",
".",
"conv2d",
"(",
"inputs",
"=",
"bn",
",",
"filters",
"=",
"16",
",",
"kernel_size",
"=",
"[",
"3",
",",
"3",
"]",
",",
"padding",
"=",
"'SAME'",
")",
"bn",
"=",
"tf",
".",
"layers",
".",
"batch_normalization",
"(",
"inputs",
"=",
"conv",
",",
"training",
"=",
"training",
")",
"bn",
"=",
"tf",
".",
"nn",
".",
"relu",
"(",
"bn",
")",
"pool",
"=",
"tf",
".",
"layers",
".",
"max_pooling2d",
"(",
"bn",
",",
"pool_size",
"=",
"[",
"2",
",",
"2",
"]",
",",
"strides",
"=",
"2",
",",
"padding",
"=",
"'SAME'",
",",
"name",
"=",
"scope",
".",
"name",
")",
"with",
"tf",
".",
"variable_scope",
"(",
"'conv2'",
")",
"as",
"scope",
":",
"conv",
"=",
"tf",
".",
"layers",
".",
"conv2d",
"(",
"inputs",
"=",
"pool",
",",
"filters",
"=",
"32",
",",
"kernel_size",
"=",
"[",
"3",
",",
"3",
"]",
",",
"padding",
"=",
"'SAME'",
")",
"bn",
"=",
"tf",
".",
"layers",
".",
"batch_normalization",
"(",
"inputs",
"=",
"conv",
",",
"training",
"=",
"training",
")",
"bn",
"=",
"tf",
".",
"nn",
".",
"relu",
"(",
"bn",
")",
"conv",
"=",
"tf",
".",
"layers",
".",
"conv2d",
"(",
"inputs",
"=",
"bn",
",",
"filters",
"=",
"32",
",",
"kernel_size",
"=",
"[",
"3",
",",
"3",
"]",
",",
"padding",
"=",
"'SAME'",
")",
"bn",
"=",
"tf",
".",
"layers",
".",
"batch_normalization",
"(",
"inputs",
"=",
"conv",
",",
"training",
"=",
"training",
")",
"bn",
"=",
"tf",
".",
"nn",
".",
"relu",
"(",
"bn",
")",
"pool",
"=",
"tf",
".",
"layers",
".",
"max_pooling2d",
"(",
"bn",
",",
"pool_size",
"=",
"[",
"2",
",",
"2",
"]",
",",
"strides",
"=",
"2",
",",
"padding",
"=",
"'SAME'",
",",
"name",
"=",
"scope",
".",
"name",
")",
"with",
"tf",
".",
"variable_scope",
"(",
"'conv3'",
")",
"as",
"scope",
":",
"conv",
"=",
"tf",
".",
"layers",
".",
"conv2d",
"(",
"inputs",
"=",
"pool",
",",
"filters",
"=",
"32",
",",
"kernel_size",
"=",
"[",
"3",
",",
"3",
"]",
",",
"padding",
"=",
"'SAME'",
")",
"bn",
"=",
"tf",
".",
"layers",
".",
"batch_normalization",
"(",
"inputs",
"=",
"conv",
",",
"training",
"=",
"training",
")",
"bn",
"=",
"tf",
".",
"nn",
".",
"relu",
"(",
"bn",
")",
"conv",
"=",
"tf",
".",
"layers",
".",
"conv2d",
"(",
"inputs",
"=",
"bn",
",",
"filters",
"=",
"32",
",",
"kernel_size",
"=",
"[",
"3",
",",
"3",
"]",
",",
"padding",
"=",
"'SAME'",
")",
"bn",
"=",
"tf",
".",
"layers",
".",
"batch_normalization",
"(",
"inputs",
"=",
"conv",
",",
"training",
"=",
"training",
")",
"bn",
"=",
"tf",
".",
"nn",
".",
"relu",
"(",
"bn",
")",
"pool",
"=",
"tf",
".",
"layers",
".",
"max_pooling2d",
"(",
"bn",
",",
"pool_size",
"=",
"[",
"2",
",",
"2",
"]",
",",
"strides",
"=",
"2",
",",
"padding",
"=",
"'SAME'",
",",
"name",
"=",
"scope",
".",
"name",
")",
"# Classify",
"with",
"tf",
".",
"variable_scope",
"(",
"'fc'",
")",
"as",
"scope",
":",
"flat",
"=",
"tf",
".",
"layers",
".",
"flatten",
"(",
"pool",
")",
"fc",
"=",
"tf",
".",
"layers",
".",
"dense",
"(",
"inputs",
"=",
"flat",
",",
"units",
"=",
"32",
",",
"activation",
"=",
"tf",
".",
"nn",
".",
"relu",
")",
"softmax",
"=",
"tf",
".",
"layers",
".",
"dense",
"(",
"inputs",
"=",
"fc",
",",
"units",
"=",
"self",
".",
"num_classes",
",",
"activation",
"=",
"tf",
".",
"nn",
".",
"softmax",
")",
"return",
"softmax"
] | 52.55102 | 28.714286 |
def plfit_lsq(x,y):
"""
Returns A and B in y=Ax^B
http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
"""
n = len(x)
btop = n * (log(x)*log(y)).sum() - (log(x)).sum()*(log(y)).sum()
bbottom = n*(log(x)**2).sum() - (log(x).sum())**2
b = btop / bbottom
a = ( log(y).sum() - b * log(x).sum() ) / n
A = exp(a)
return A,b
|
[
"def",
"plfit_lsq",
"(",
"x",
",",
"y",
")",
":",
"n",
"=",
"len",
"(",
"x",
")",
"btop",
"=",
"n",
"*",
"(",
"log",
"(",
"x",
")",
"*",
"log",
"(",
"y",
")",
")",
".",
"sum",
"(",
")",
"-",
"(",
"log",
"(",
"x",
")",
")",
".",
"sum",
"(",
")",
"*",
"(",
"log",
"(",
"y",
")",
")",
".",
"sum",
"(",
")",
"bbottom",
"=",
"n",
"*",
"(",
"log",
"(",
"x",
")",
"**",
"2",
")",
".",
"sum",
"(",
")",
"-",
"(",
"log",
"(",
"x",
")",
".",
"sum",
"(",
")",
")",
"**",
"2",
"b",
"=",
"btop",
"/",
"bbottom",
"a",
"=",
"(",
"log",
"(",
"y",
")",
".",
"sum",
"(",
")",
"-",
"b",
"*",
"log",
"(",
"x",
")",
".",
"sum",
"(",
")",
")",
"/",
"n",
"A",
"=",
"exp",
"(",
"a",
")",
"return",
"A",
",",
"b"
] | 27.615385 | 18.538462 |
def _get_encrypted_masterpassword(self):
""" Obtain the encrypted masterkey
.. note:: The encrypted masterkey is checksummed, so that we can
figure out that a provided password is correct or not. The
checksum is only 4 bytes long!
"""
if not self.unlocked():
raise WalletLocked
aes = AESCipher(self.password)
return "{}${}".format(
self._derive_checksum(self.masterkey), aes.encrypt(self.masterkey)
)
|
[
"def",
"_get_encrypted_masterpassword",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"unlocked",
"(",
")",
":",
"raise",
"WalletLocked",
"aes",
"=",
"AESCipher",
"(",
"self",
".",
"password",
")",
"return",
"\"{}${}\"",
".",
"format",
"(",
"self",
".",
"_derive_checksum",
"(",
"self",
".",
"masterkey",
")",
",",
"aes",
".",
"encrypt",
"(",
"self",
".",
"masterkey",
")",
")"
] | 38.846154 | 16.615385 |
def echo_event(data):
"""Echo a json dump of an object using click"""
return click.echo(json.dumps(data, sort_keys=True, indent=2))
|
[
"def",
"echo_event",
"(",
"data",
")",
":",
"return",
"click",
".",
"echo",
"(",
"json",
".",
"dumps",
"(",
"data",
",",
"sort_keys",
"=",
"True",
",",
"indent",
"=",
"2",
")",
")"
] | 45.666667 | 14.666667 |
def create_refobj(self, ):
"""Create and return a new reftrack node
:returns: the new reftrack node
:rtype: str
:raises: None
"""
n = cmds.createNode("jb_reftrack")
cmds.lockNode(n, lock=True)
return n
|
[
"def",
"create_refobj",
"(",
"self",
",",
")",
":",
"n",
"=",
"cmds",
".",
"createNode",
"(",
"\"jb_reftrack\"",
")",
"cmds",
".",
"lockNode",
"(",
"n",
",",
"lock",
"=",
"True",
")",
"return",
"n"
] | 25.7 | 12.6 |
def _extract_actions_unique_topics(self, movement_counts, max_movements, cluster_topology, max_movement_size):
"""Extract actions limiting to given max value such that
the resultant has the minimum possible number of duplicate topics.
Algorithm:
1. Group actions by by topic-name: {topic: action-list}
2. Iterate through the dictionary in circular fashion and keep
extracting actions with until max_partition_movements
are reached.
:param movement_counts: list of tuple ((topic, partition), movement count)
:param max_movements: max number of movements to extract
:param cluster_topology: cluster topology containing the new proposed assignment for the cluster
:param max_movement_size: maximum size of data to move at a time in extracted actions
:return: list of tuple (topic, partitions) to include in the reduced plan
"""
# Group actions by topic
topic_actions = defaultdict(list)
for t_p, replica_change_cnt in movement_counts:
topic_actions[t_p[0]].append((t_p, replica_change_cnt))
# Create reduced assignment minimizing duplication of topics
extracted_actions = []
curr_movements = 0
curr_size = 0
action_available = True
while curr_movements < max_movements and curr_size <= max_movement_size and action_available:
action_available = False
for topic, actions in six.iteritems(topic_actions):
for action in actions:
action_size = cluster_topology.partitions[action[0]].size
if curr_movements + action[1] > max_movements or curr_size + action_size > max_movement_size:
# Remove action since it won't be possible to use it
actions.remove(action)
else:
# Append (topic, partition) to the list of movements
action_available = True
extracted_actions.append(action[0])
curr_movements += action[1]
curr_size += action_size
actions.remove(action)
break
return extracted_actions
|
[
"def",
"_extract_actions_unique_topics",
"(",
"self",
",",
"movement_counts",
",",
"max_movements",
",",
"cluster_topology",
",",
"max_movement_size",
")",
":",
"# Group actions by topic",
"topic_actions",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"t_p",
",",
"replica_change_cnt",
"in",
"movement_counts",
":",
"topic_actions",
"[",
"t_p",
"[",
"0",
"]",
"]",
".",
"append",
"(",
"(",
"t_p",
",",
"replica_change_cnt",
")",
")",
"# Create reduced assignment minimizing duplication of topics",
"extracted_actions",
"=",
"[",
"]",
"curr_movements",
"=",
"0",
"curr_size",
"=",
"0",
"action_available",
"=",
"True",
"while",
"curr_movements",
"<",
"max_movements",
"and",
"curr_size",
"<=",
"max_movement_size",
"and",
"action_available",
":",
"action_available",
"=",
"False",
"for",
"topic",
",",
"actions",
"in",
"six",
".",
"iteritems",
"(",
"topic_actions",
")",
":",
"for",
"action",
"in",
"actions",
":",
"action_size",
"=",
"cluster_topology",
".",
"partitions",
"[",
"action",
"[",
"0",
"]",
"]",
".",
"size",
"if",
"curr_movements",
"+",
"action",
"[",
"1",
"]",
">",
"max_movements",
"or",
"curr_size",
"+",
"action_size",
">",
"max_movement_size",
":",
"# Remove action since it won't be possible to use it",
"actions",
".",
"remove",
"(",
"action",
")",
"else",
":",
"# Append (topic, partition) to the list of movements",
"action_available",
"=",
"True",
"extracted_actions",
".",
"append",
"(",
"action",
"[",
"0",
"]",
")",
"curr_movements",
"+=",
"action",
"[",
"1",
"]",
"curr_size",
"+=",
"action_size",
"actions",
".",
"remove",
"(",
"action",
")",
"break",
"return",
"extracted_actions"
] | 54.47619 | 24.738095 |
def Emulation_setCPUThrottlingRate(self, rate):
"""
Function path: Emulation.setCPUThrottlingRate
Domain: Emulation
Method name: setCPUThrottlingRate
WARNING: This function is marked 'Experimental'!
Parameters:
Required arguments:
'rate' (type: number) -> Throttling rate as a slowdown factor (1 is no throttle, 2 is 2x slowdown, etc).
No return value.
Description: Enables CPU throttling to emulate slow CPUs.
"""
assert isinstance(rate, (float, int)
), "Argument 'rate' must be of type '['float', 'int']'. Received type: '%s'" % type(
rate)
subdom_funcs = self.synchronous_command('Emulation.setCPUThrottlingRate',
rate=rate)
return subdom_funcs
|
[
"def",
"Emulation_setCPUThrottlingRate",
"(",
"self",
",",
"rate",
")",
":",
"assert",
"isinstance",
"(",
"rate",
",",
"(",
"float",
",",
"int",
")",
")",
",",
"\"Argument 'rate' must be of type '['float', 'int']'. Received type: '%s'\"",
"%",
"type",
"(",
"rate",
")",
"subdom_funcs",
"=",
"self",
".",
"synchronous_command",
"(",
"'Emulation.setCPUThrottlingRate'",
",",
"rate",
"=",
"rate",
")",
"return",
"subdom_funcs"
] | 33 | 22.619048 |
def fetch_items(self, category, **kwargs):
"""Fetch the pages
:param category: the category of items to fetch
:param kwargs: backend arguments
:returns: a generator of items
"""
from_date = kwargs['from_date']
reviews_api = kwargs['reviews_api']
mediawiki_version = self.client.get_version()
logger.info("MediaWiki version: %s", mediawiki_version)
if reviews_api:
if ((mediawiki_version[0] == 1 and mediawiki_version[1] >= 27) or mediawiki_version[0] > 1):
fetcher = self.__fetch_1_27(from_date)
else:
logger.warning("Reviews API only available in MediaWiki >= 1.27")
logger.warning("Using the Pages API instead")
fetcher = self.__fetch_pre1_27(from_date)
else:
fetcher = self.__fetch_pre1_27(from_date)
for page_reviews in fetcher:
yield page_reviews
|
[
"def",
"fetch_items",
"(",
"self",
",",
"category",
",",
"*",
"*",
"kwargs",
")",
":",
"from_date",
"=",
"kwargs",
"[",
"'from_date'",
"]",
"reviews_api",
"=",
"kwargs",
"[",
"'reviews_api'",
"]",
"mediawiki_version",
"=",
"self",
".",
"client",
".",
"get_version",
"(",
")",
"logger",
".",
"info",
"(",
"\"MediaWiki version: %s\"",
",",
"mediawiki_version",
")",
"if",
"reviews_api",
":",
"if",
"(",
"(",
"mediawiki_version",
"[",
"0",
"]",
"==",
"1",
"and",
"mediawiki_version",
"[",
"1",
"]",
">=",
"27",
")",
"or",
"mediawiki_version",
"[",
"0",
"]",
">",
"1",
")",
":",
"fetcher",
"=",
"self",
".",
"__fetch_1_27",
"(",
"from_date",
")",
"else",
":",
"logger",
".",
"warning",
"(",
"\"Reviews API only available in MediaWiki >= 1.27\"",
")",
"logger",
".",
"warning",
"(",
"\"Using the Pages API instead\"",
")",
"fetcher",
"=",
"self",
".",
"__fetch_pre1_27",
"(",
"from_date",
")",
"else",
":",
"fetcher",
"=",
"self",
".",
"__fetch_pre1_27",
"(",
"from_date",
")",
"for",
"page_reviews",
"in",
"fetcher",
":",
"yield",
"page_reviews"
] | 36.115385 | 19.615385 |
def actuator_off(self, service_location_id, actuator_id, duration=None):
"""
Turn actuator off
Parameters
----------
service_location_id : int
actuator_id : int
duration : int, optional
300,900,1800 or 3600 , specifying the time in seconds the actuator
should be turned on. Any other value results in turning on for an
undetermined period of time.
Returns
-------
requests.Response
"""
return self._actuator_on_off(
on_off='off', service_location_id=service_location_id,
actuator_id=actuator_id, duration=duration)
|
[
"def",
"actuator_off",
"(",
"self",
",",
"service_location_id",
",",
"actuator_id",
",",
"duration",
"=",
"None",
")",
":",
"return",
"self",
".",
"_actuator_on_off",
"(",
"on_off",
"=",
"'off'",
",",
"service_location_id",
"=",
"service_location_id",
",",
"actuator_id",
"=",
"actuator_id",
",",
"duration",
"=",
"duration",
")"
] | 32.65 | 19.25 |
def get_name(self):
"""Return client name"""
if self.given_name is None:
# Name according to host
if self.hostname is None:
name = _("Console")
else:
name = self.hostname
# Adding id to name
client_id = self.id_['int_id'] + u'/' + self.id_['str_id']
name = name + u' ' + client_id
elif self.given_name in ["Pylab", "SymPy", "Cython"]:
client_id = self.id_['int_id'] + u'/' + self.id_['str_id']
name = self.given_name + u' ' + client_id
else:
name = self.given_name + u'/' + self.id_['str_id']
return name
|
[
"def",
"get_name",
"(",
"self",
")",
":",
"if",
"self",
".",
"given_name",
"is",
"None",
":",
"# Name according to host\r",
"if",
"self",
".",
"hostname",
"is",
"None",
":",
"name",
"=",
"_",
"(",
"\"Console\"",
")",
"else",
":",
"name",
"=",
"self",
".",
"hostname",
"# Adding id to name\r",
"client_id",
"=",
"self",
".",
"id_",
"[",
"'int_id'",
"]",
"+",
"u'/'",
"+",
"self",
".",
"id_",
"[",
"'str_id'",
"]",
"name",
"=",
"name",
"+",
"u' '",
"+",
"client_id",
"elif",
"self",
".",
"given_name",
"in",
"[",
"\"Pylab\"",
",",
"\"SymPy\"",
",",
"\"Cython\"",
"]",
":",
"client_id",
"=",
"self",
".",
"id_",
"[",
"'int_id'",
"]",
"+",
"u'/'",
"+",
"self",
".",
"id_",
"[",
"'str_id'",
"]",
"name",
"=",
"self",
".",
"given_name",
"+",
"u' '",
"+",
"client_id",
"else",
":",
"name",
"=",
"self",
".",
"given_name",
"+",
"u'/'",
"+",
"self",
".",
"id_",
"[",
"'str_id'",
"]",
"return",
"name"
] | 40.235294 | 13.941176 |
def sun_ra_dec(utc_time):
"""Right ascension and declination of the sun at *utc_time*.
"""
jdate = jdays2000(utc_time) / 36525.0
eps = np.deg2rad(23.0 + 26.0 / 60.0 + 21.448 / 3600.0 -
(46.8150 * jdate + 0.00059 * jdate * jdate -
0.001813 * jdate * jdate * jdate) / 3600)
eclon = sun_ecliptic_longitude(utc_time)
x__ = np.cos(eclon)
y__ = np.cos(eps) * np.sin(eclon)
z__ = np.sin(eps) * np.sin(eclon)
r__ = np.sqrt(1.0 - z__ * z__)
# sun declination
declination = np.arctan2(z__, r__)
# right ascension
right_ascension = 2 * np.arctan2(y__, (x__ + r__))
return right_ascension, declination
|
[
"def",
"sun_ra_dec",
"(",
"utc_time",
")",
":",
"jdate",
"=",
"jdays2000",
"(",
"utc_time",
")",
"/",
"36525.0",
"eps",
"=",
"np",
".",
"deg2rad",
"(",
"23.0",
"+",
"26.0",
"/",
"60.0",
"+",
"21.448",
"/",
"3600.0",
"-",
"(",
"46.8150",
"*",
"jdate",
"+",
"0.00059",
"*",
"jdate",
"*",
"jdate",
"-",
"0.001813",
"*",
"jdate",
"*",
"jdate",
"*",
"jdate",
")",
"/",
"3600",
")",
"eclon",
"=",
"sun_ecliptic_longitude",
"(",
"utc_time",
")",
"x__",
"=",
"np",
".",
"cos",
"(",
"eclon",
")",
"y__",
"=",
"np",
".",
"cos",
"(",
"eps",
")",
"*",
"np",
".",
"sin",
"(",
"eclon",
")",
"z__",
"=",
"np",
".",
"sin",
"(",
"eps",
")",
"*",
"np",
".",
"sin",
"(",
"eclon",
")",
"r__",
"=",
"np",
".",
"sqrt",
"(",
"1.0",
"-",
"z__",
"*",
"z__",
")",
"# sun declination",
"declination",
"=",
"np",
".",
"arctan2",
"(",
"z__",
",",
"r__",
")",
"# right ascension",
"right_ascension",
"=",
"2",
"*",
"np",
".",
"arctan2",
"(",
"y__",
",",
"(",
"x__",
"+",
"r__",
")",
")",
"return",
"right_ascension",
",",
"declination"
] | 39.529412 | 10.058824 |
def is_valid_short_number_for_region(short_numobj, region_dialing_from):
"""Tests whether a short number matches a valid pattern in a region.
Note that this doesn't verify the number is actually in use, which is
impossible to tell by just looking at the number itself.
Arguments:
short_numobj -- the short number to check as a PhoneNumber object.
region_dialing_from -- the region from which the number is dialed
Return whether the short number matches a valid pattern
"""
if not _region_dialing_from_matches_number(short_numobj, region_dialing_from):
return False
metadata = PhoneMetadata.short_metadata_for_region(region_dialing_from)
if metadata is None: # pragma no cover
return False
short_number = national_significant_number(short_numobj)
general_desc = metadata.general_desc
if not _matches_possible_number_and_national_number(short_number, general_desc):
return False
short_number_desc = metadata.short_code
if short_number_desc.national_number_pattern is None: # pragma no cover
return False
return _matches_possible_number_and_national_number(short_number, short_number_desc)
|
[
"def",
"is_valid_short_number_for_region",
"(",
"short_numobj",
",",
"region_dialing_from",
")",
":",
"if",
"not",
"_region_dialing_from_matches_number",
"(",
"short_numobj",
",",
"region_dialing_from",
")",
":",
"return",
"False",
"metadata",
"=",
"PhoneMetadata",
".",
"short_metadata_for_region",
"(",
"region_dialing_from",
")",
"if",
"metadata",
"is",
"None",
":",
"# pragma no cover",
"return",
"False",
"short_number",
"=",
"national_significant_number",
"(",
"short_numobj",
")",
"general_desc",
"=",
"metadata",
".",
"general_desc",
"if",
"not",
"_matches_possible_number_and_national_number",
"(",
"short_number",
",",
"general_desc",
")",
":",
"return",
"False",
"short_number_desc",
"=",
"metadata",
".",
"short_code",
"if",
"short_number_desc",
".",
"national_number_pattern",
"is",
"None",
":",
"# pragma no cover",
"return",
"False",
"return",
"_matches_possible_number_and_national_number",
"(",
"short_number",
",",
"short_number_desc",
")"
] | 46.68 | 24.8 |
def get_tag_users(self, tag_id, first_user_id=None):
"""
获取标签下粉丝列表
:param tag_id: 标签 ID
:param first_user_id: 可选。第一个拉取的 OPENID,不填默认从头开始拉取
:return: 返回的 JSON 数据包
"""
data = {
'tagid': tag_id,
}
if first_user_id:
data['next_openid'] = first_user_id
return self._post(
'user/tag/get',
data=data
)
|
[
"def",
"get_tag_users",
"(",
"self",
",",
"tag_id",
",",
"first_user_id",
"=",
"None",
")",
":",
"data",
"=",
"{",
"'tagid'",
":",
"tag_id",
",",
"}",
"if",
"first_user_id",
":",
"data",
"[",
"'next_openid'",
"]",
"=",
"first_user_id",
"return",
"self",
".",
"_post",
"(",
"'user/tag/get'",
",",
"data",
"=",
"data",
")"
] | 24.294118 | 16.529412 |
def resample_nn_1d(a, centers):
"""Return one-dimensional nearest-neighbor indexes based on user-specified centers.
Parameters
----------
a : array-like
1-dimensional array of numeric values from which to
extract indexes of nearest-neighbors
centers : array-like
1-dimensional array of numeric values representing a subset of values to approximate
Returns
-------
An array of indexes representing values closest to given array values
"""
ix = []
for center in centers:
index = (np.abs(a - center)).argmin()
if index not in ix:
ix.append(index)
return ix
|
[
"def",
"resample_nn_1d",
"(",
"a",
",",
"centers",
")",
":",
"ix",
"=",
"[",
"]",
"for",
"center",
"in",
"centers",
":",
"index",
"=",
"(",
"np",
".",
"abs",
"(",
"a",
"-",
"center",
")",
")",
".",
"argmin",
"(",
")",
"if",
"index",
"not",
"in",
"ix",
":",
"ix",
".",
"append",
"(",
"index",
")",
"return",
"ix"
] | 29.045455 | 22.227273 |
def insert_many(self, it):
"""Inserts a collection of objects into the table."""
unique_indexes = self._uniqueIndexes # [ind for ind in self._indexes.values() if ind.is_unique]
NO_SUCH_ATTR = object()
new_objs = list(it)
if unique_indexes:
for ind in unique_indexes:
ind_attr = ind.attr
new_keys = dict((getattr(obj, ind_attr, NO_SUCH_ATTR), obj) for obj in new_objs)
if not ind.accept_none and (None in new_keys or NO_SUCH_ATTR in new_keys):
raise KeyError("unique key cannot be None or blank for index %s" % ind_attr,
[ob for ob in new_objs if getattr(ob, ind_attr, NO_SUCH_ATTR) is None])
if len(new_keys) < len(new_objs):
raise KeyError("given sequence contains duplicate keys for index %s" % ind_attr)
for key in new_keys:
if key in ind:
obj = new_keys[key]
raise KeyError("duplicate unique key value '%s' for index %s" % (getattr(obj, ind_attr), ind_attr),
new_keys[key])
for obj in new_objs:
self.obs.append(obj)
for attr, ind in self._indexes.items():
obval = getattr(obj, attr)
ind[obval] = obj
return self
|
[
"def",
"insert_many",
"(",
"self",
",",
"it",
")",
":",
"unique_indexes",
"=",
"self",
".",
"_uniqueIndexes",
"# [ind for ind in self._indexes.values() if ind.is_unique]",
"NO_SUCH_ATTR",
"=",
"object",
"(",
")",
"new_objs",
"=",
"list",
"(",
"it",
")",
"if",
"unique_indexes",
":",
"for",
"ind",
"in",
"unique_indexes",
":",
"ind_attr",
"=",
"ind",
".",
"attr",
"new_keys",
"=",
"dict",
"(",
"(",
"getattr",
"(",
"obj",
",",
"ind_attr",
",",
"NO_SUCH_ATTR",
")",
",",
"obj",
")",
"for",
"obj",
"in",
"new_objs",
")",
"if",
"not",
"ind",
".",
"accept_none",
"and",
"(",
"None",
"in",
"new_keys",
"or",
"NO_SUCH_ATTR",
"in",
"new_keys",
")",
":",
"raise",
"KeyError",
"(",
"\"unique key cannot be None or blank for index %s\"",
"%",
"ind_attr",
",",
"[",
"ob",
"for",
"ob",
"in",
"new_objs",
"if",
"getattr",
"(",
"ob",
",",
"ind_attr",
",",
"NO_SUCH_ATTR",
")",
"is",
"None",
"]",
")",
"if",
"len",
"(",
"new_keys",
")",
"<",
"len",
"(",
"new_objs",
")",
":",
"raise",
"KeyError",
"(",
"\"given sequence contains duplicate keys for index %s\"",
"%",
"ind_attr",
")",
"for",
"key",
"in",
"new_keys",
":",
"if",
"key",
"in",
"ind",
":",
"obj",
"=",
"new_keys",
"[",
"key",
"]",
"raise",
"KeyError",
"(",
"\"duplicate unique key value '%s' for index %s\"",
"%",
"(",
"getattr",
"(",
"obj",
",",
"ind_attr",
")",
",",
"ind_attr",
")",
",",
"new_keys",
"[",
"key",
"]",
")",
"for",
"obj",
"in",
"new_objs",
":",
"self",
".",
"obs",
".",
"append",
"(",
"obj",
")",
"for",
"attr",
",",
"ind",
"in",
"self",
".",
"_indexes",
".",
"items",
"(",
")",
":",
"obval",
"=",
"getattr",
"(",
"obj",
",",
"attr",
")",
"ind",
"[",
"obval",
"]",
"=",
"obj",
"return",
"self"
] | 51.888889 | 24.148148 |
def get_hierarchy_traversal_session_for_hierarchy(self, hierarchy_id, proxy):
"""Gets the ``OsidSession`` associated with the hierarchy traversal service for the given hierarchy.
arg: hierarchy_id (osid.id.Id): the ``Id`` of the hierarchy
arg: proxy (osid.proxy.Proxy): a proxy
return: (osid.hierarchy.HierarchyTraversalSession) - a
``HierarchyTraversalSession``
raise: NotFound - ``hierarchyid`` not found
raise: NullArgument - ``hierarchy_id`` or ``proxy`` is ``null``
raise: OperationFailed - ``unable to complete request``
raise: Unimplemented - ``supports_hierarchy_traversal()`` or
``supports_visible_federation()`` is ``false``
*compliance: optional -- This method must be implemented if
``supports_hierarchy_traversal()`` and
``supports_visible_federation()`` are ``true``.*
"""
if not self.supports_hierarchy_traversal():
raise errors.Unimplemented()
##
# Also include check to see if the catalog Id is found otherwise raise errors.NotFound
##
# pylint: disable=no-member
return sessions.HierarchyTraversalSession(hierarchy_id, proxy, self._runtime)
|
[
"def",
"get_hierarchy_traversal_session_for_hierarchy",
"(",
"self",
",",
"hierarchy_id",
",",
"proxy",
")",
":",
"if",
"not",
"self",
".",
"supports_hierarchy_traversal",
"(",
")",
":",
"raise",
"errors",
".",
"Unimplemented",
"(",
")",
"##",
"# Also include check to see if the catalog Id is found otherwise raise errors.NotFound",
"##",
"# pylint: disable=no-member",
"return",
"sessions",
".",
"HierarchyTraversalSession",
"(",
"hierarchy_id",
",",
"proxy",
",",
"self",
".",
"_runtime",
")"
] | 51.458333 | 21.916667 |
def parse_exponent(source, start):
"""returns end of exponential, raises SyntaxError if failed"""
if not source[start] in {'e', 'E'}:
if source[start] in IDENTIFIER_PART:
raise SyntaxError('Invalid number literal!')
return start
start += 1
if source[start] in {'-', '+'}:
start += 1
FOUND = False
# we need at least one dig after exponent
while source[start] in NUMS:
FOUND = True
start += 1
if not FOUND or source[start] in IDENTIFIER_PART:
raise SyntaxError('Invalid number literal!')
return start
|
[
"def",
"parse_exponent",
"(",
"source",
",",
"start",
")",
":",
"if",
"not",
"source",
"[",
"start",
"]",
"in",
"{",
"'e'",
",",
"'E'",
"}",
":",
"if",
"source",
"[",
"start",
"]",
"in",
"IDENTIFIER_PART",
":",
"raise",
"SyntaxError",
"(",
"'Invalid number literal!'",
")",
"return",
"start",
"start",
"+=",
"1",
"if",
"source",
"[",
"start",
"]",
"in",
"{",
"'-'",
",",
"'+'",
"}",
":",
"start",
"+=",
"1",
"FOUND",
"=",
"False",
"# we need at least one dig after exponent",
"while",
"source",
"[",
"start",
"]",
"in",
"NUMS",
":",
"FOUND",
"=",
"True",
"start",
"+=",
"1",
"if",
"not",
"FOUND",
"or",
"source",
"[",
"start",
"]",
"in",
"IDENTIFIER_PART",
":",
"raise",
"SyntaxError",
"(",
"'Invalid number literal!'",
")",
"return",
"start"
] | 34.058824 | 13.352941 |
def container_unfreeze(name, remote_addr=None,
cert=None, key=None, verify_cert=True):
'''
Unfreeze a container
name :
Name of the container to unfreeze
remote_addr :
An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!
Examples:
https://myserver.lan:8443
/var/lib/mysocket.sock
cert :
PEM Formatted SSL Certificate.
Examples:
~/.config/lxc/client.crt
key :
PEM Formatted SSL Key.
Examples:
~/.config/lxc/client.key
verify_cert : True
Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normaly uses self-signed certificates.
'''
container = container_get(
name, remote_addr, cert, key, verify_cert, _raw=True
)
container.unfreeze(wait=True)
return _pylxd_model_to_dict(container)
|
[
"def",
"container_unfreeze",
"(",
"name",
",",
"remote_addr",
"=",
"None",
",",
"cert",
"=",
"None",
",",
"key",
"=",
"None",
",",
"verify_cert",
"=",
"True",
")",
":",
"container",
"=",
"container_get",
"(",
"name",
",",
"remote_addr",
",",
"cert",
",",
"key",
",",
"verify_cert",
",",
"_raw",
"=",
"True",
")",
"container",
".",
"unfreeze",
"(",
"wait",
"=",
"True",
")",
"return",
"_pylxd_model_to_dict",
"(",
"container",
")"
] | 25.736842 | 21.736842 |
def get_hosting_device_driver(self, context, id):
"""Returns device driver for hosting device template with <id>."""
if id is None:
return
try:
return self._hosting_device_drivers[id]
except KeyError:
try:
template = self._get_hosting_device_template(context, id)
self._hosting_device_drivers[id] = importutils.import_object(
template['device_driver'])
except (ImportError, TypeError, n_exc.NeutronException):
LOG.exception("Error loading hosting device driver for "
"hosting device template %s", id)
return self._hosting_device_drivers.get(id)
|
[
"def",
"get_hosting_device_driver",
"(",
"self",
",",
"context",
",",
"id",
")",
":",
"if",
"id",
"is",
"None",
":",
"return",
"try",
":",
"return",
"self",
".",
"_hosting_device_drivers",
"[",
"id",
"]",
"except",
"KeyError",
":",
"try",
":",
"template",
"=",
"self",
".",
"_get_hosting_device_template",
"(",
"context",
",",
"id",
")",
"self",
".",
"_hosting_device_drivers",
"[",
"id",
"]",
"=",
"importutils",
".",
"import_object",
"(",
"template",
"[",
"'device_driver'",
"]",
")",
"except",
"(",
"ImportError",
",",
"TypeError",
",",
"n_exc",
".",
"NeutronException",
")",
":",
"LOG",
".",
"exception",
"(",
"\"Error loading hosting device driver for \"",
"\"hosting device template %s\"",
",",
"id",
")",
"return",
"self",
".",
"_hosting_device_drivers",
".",
"get",
"(",
"id",
")"
] | 48 | 20.133333 |
def next(self):
"""
Return the next row of a query result set, respecting if cursor was
closed.
"""
if self.rows is None:
raise ProgrammingError(
"No result available. " +
"execute() or executemany() must be called first."
)
elif not self._closed:
return next(self.rows)
else:
raise ProgrammingError("Cursor closed")
|
[
"def",
"next",
"(",
"self",
")",
":",
"if",
"self",
".",
"rows",
"is",
"None",
":",
"raise",
"ProgrammingError",
"(",
"\"No result available. \"",
"+",
"\"execute() or executemany() must be called first.\"",
")",
"elif",
"not",
"self",
".",
"_closed",
":",
"return",
"next",
"(",
"self",
".",
"rows",
")",
"else",
":",
"raise",
"ProgrammingError",
"(",
"\"Cursor closed\"",
")"
] | 31.357143 | 14.928571 |
def read_line(csv_contents, options, prop_indices, mol, ensemble_list=None):
"""
read csv line
"""
if not ensemble_list:
score_field = options.score_field
status_field = options.status_field
active_label = options.active_label
decoy_label = options.decoy_label
# do the active/decoy labels have appropriate values?
active_value_matcher = re.compile(active_label)
decoy_value_matcher = re.compile(decoy_label)
status_label_index = prop_indices[status_field]
if not active_value_matcher.match(csv_contents[status_label_index]) and not decoy_value_matcher.match(
csv_contents[status_label_index]):
print("\n molecule lacks appropriate status label")
return 1
# are the score field values defined?
score_field_indices = []
if ensemble_list:
queryList = ensemble_list
else:
queryList = [x for x in prop_indices.keys() if score_field in x]
for query in queryList:
score_field_indices.append(prop_indices[query])
for value in [csv_contents[x] for x in score_field_indices]:
if value in ('', 'n/a', 'N/A', None):
print("\n molecule lacks appropriate score field value")
return 1
# loop over property values
for label in prop_indices.keys():
# get property value
value_index = prop_indices[label]
value = csv_contents[value_index]
# set corresponding molecule attribute
if label in queryList:
mol.SetProp(label, value, 'score')
else:
mol.SetProp(label, value)
# return mol
return mol
|
[
"def",
"read_line",
"(",
"csv_contents",
",",
"options",
",",
"prop_indices",
",",
"mol",
",",
"ensemble_list",
"=",
"None",
")",
":",
"if",
"not",
"ensemble_list",
":",
"score_field",
"=",
"options",
".",
"score_field",
"status_field",
"=",
"options",
".",
"status_field",
"active_label",
"=",
"options",
".",
"active_label",
"decoy_label",
"=",
"options",
".",
"decoy_label",
"# do the active/decoy labels have appropriate values?",
"active_value_matcher",
"=",
"re",
".",
"compile",
"(",
"active_label",
")",
"decoy_value_matcher",
"=",
"re",
".",
"compile",
"(",
"decoy_label",
")",
"status_label_index",
"=",
"prop_indices",
"[",
"status_field",
"]",
"if",
"not",
"active_value_matcher",
".",
"match",
"(",
"csv_contents",
"[",
"status_label_index",
"]",
")",
"and",
"not",
"decoy_value_matcher",
".",
"match",
"(",
"csv_contents",
"[",
"status_label_index",
"]",
")",
":",
"print",
"(",
"\"\\n molecule lacks appropriate status label\"",
")",
"return",
"1",
"# are the score field values defined?",
"score_field_indices",
"=",
"[",
"]",
"if",
"ensemble_list",
":",
"queryList",
"=",
"ensemble_list",
"else",
":",
"queryList",
"=",
"[",
"x",
"for",
"x",
"in",
"prop_indices",
".",
"keys",
"(",
")",
"if",
"score_field",
"in",
"x",
"]",
"for",
"query",
"in",
"queryList",
":",
"score_field_indices",
".",
"append",
"(",
"prop_indices",
"[",
"query",
"]",
")",
"for",
"value",
"in",
"[",
"csv_contents",
"[",
"x",
"]",
"for",
"x",
"in",
"score_field_indices",
"]",
":",
"if",
"value",
"in",
"(",
"''",
",",
"'n/a'",
",",
"'N/A'",
",",
"None",
")",
":",
"print",
"(",
"\"\\n molecule lacks appropriate score field value\"",
")",
"return",
"1",
"# loop over property values",
"for",
"label",
"in",
"prop_indices",
".",
"keys",
"(",
")",
":",
"# get property value",
"value_index",
"=",
"prop_indices",
"[",
"label",
"]",
"value",
"=",
"csv_contents",
"[",
"value_index",
"]",
"# set corresponding molecule attribute",
"if",
"label",
"in",
"queryList",
":",
"mol",
".",
"SetProp",
"(",
"label",
",",
"value",
",",
"'score'",
")",
"else",
":",
"mol",
".",
"SetProp",
"(",
"label",
",",
"value",
")",
"# return mol",
"return",
"mol"
] | 32.916667 | 17.9375 |
def create_hit(self, hit_type=None, question=None,
lifetime=datetime.timedelta(days=7),
max_assignments=1,
title=None, description=None, keywords=None,
reward=None, duration=datetime.timedelta(days=7),
approval_delay=None, annotation=None,
questions=None, qualifications=None,
response_groups=None):
"""
Creates a new HIT.
Returns a ResultSet
See: http://docs.amazonwebservices.com/AWSMechanicalTurkRequester/2006-10-31/ApiReference_CreateHITOperation.html
"""
# handle single or multiple questions
neither = question is None and questions is None
both = question is not None and questions is not None
if neither or both:
raise ValueError("Must specify either question (single Question instance) or questions (list or QuestionForm instance), but not both")
if question:
questions = [question]
question_param = QuestionForm(questions)
if isinstance(question, QuestionForm):
question_param = question
elif isinstance(question, ExternalQuestion):
question_param = question
# Handle basic required arguments and set up params dict
params = {'Question': question_param.get_as_xml(),
'LifetimeInSeconds' :
self.duration_as_seconds(lifetime),
'MaxAssignments' : max_assignments,
}
# if hit type specified then add it
# else add the additional required parameters
if hit_type:
params['HITTypeId'] = hit_type
else:
# Handle keywords
final_keywords = MTurkConnection.get_keywords_as_string(keywords)
# Handle price argument
final_price = MTurkConnection.get_price_as_price(reward)
final_duration = self.duration_as_seconds(duration)
additional_params = dict(
Title=title,
Description=description,
Keywords=final_keywords,
AssignmentDurationInSeconds=final_duration,
)
additional_params.update(final_price.get_as_params('Reward'))
if approval_delay is not None:
d = self.duration_as_seconds(approval_delay)
additional_params['AutoApprovalDelayInSeconds'] = d
# add these params to the others
params.update(additional_params)
# add the annotation if specified
if annotation is not None:
params['RequesterAnnotation'] = annotation
# Add the Qualifications if specified
if qualifications is not None:
params.update(qualifications.get_as_params())
# Handle optional response groups argument
if response_groups:
self.build_list_params(params, response_groups, 'ResponseGroup')
# Submit
return self._process_request('CreateHIT', params, [('HIT', HIT),])
|
[
"def",
"create_hit",
"(",
"self",
",",
"hit_type",
"=",
"None",
",",
"question",
"=",
"None",
",",
"lifetime",
"=",
"datetime",
".",
"timedelta",
"(",
"days",
"=",
"7",
")",
",",
"max_assignments",
"=",
"1",
",",
"title",
"=",
"None",
",",
"description",
"=",
"None",
",",
"keywords",
"=",
"None",
",",
"reward",
"=",
"None",
",",
"duration",
"=",
"datetime",
".",
"timedelta",
"(",
"days",
"=",
"7",
")",
",",
"approval_delay",
"=",
"None",
",",
"annotation",
"=",
"None",
",",
"questions",
"=",
"None",
",",
"qualifications",
"=",
"None",
",",
"response_groups",
"=",
"None",
")",
":",
"# handle single or multiple questions",
"neither",
"=",
"question",
"is",
"None",
"and",
"questions",
"is",
"None",
"both",
"=",
"question",
"is",
"not",
"None",
"and",
"questions",
"is",
"not",
"None",
"if",
"neither",
"or",
"both",
":",
"raise",
"ValueError",
"(",
"\"Must specify either question (single Question instance) or questions (list or QuestionForm instance), but not both\"",
")",
"if",
"question",
":",
"questions",
"=",
"[",
"question",
"]",
"question_param",
"=",
"QuestionForm",
"(",
"questions",
")",
"if",
"isinstance",
"(",
"question",
",",
"QuestionForm",
")",
":",
"question_param",
"=",
"question",
"elif",
"isinstance",
"(",
"question",
",",
"ExternalQuestion",
")",
":",
"question_param",
"=",
"question",
"# Handle basic required arguments and set up params dict",
"params",
"=",
"{",
"'Question'",
":",
"question_param",
".",
"get_as_xml",
"(",
")",
",",
"'LifetimeInSeconds'",
":",
"self",
".",
"duration_as_seconds",
"(",
"lifetime",
")",
",",
"'MaxAssignments'",
":",
"max_assignments",
",",
"}",
"# if hit type specified then add it",
"# else add the additional required parameters",
"if",
"hit_type",
":",
"params",
"[",
"'HITTypeId'",
"]",
"=",
"hit_type",
"else",
":",
"# Handle keywords",
"final_keywords",
"=",
"MTurkConnection",
".",
"get_keywords_as_string",
"(",
"keywords",
")",
"# Handle price argument",
"final_price",
"=",
"MTurkConnection",
".",
"get_price_as_price",
"(",
"reward",
")",
"final_duration",
"=",
"self",
".",
"duration_as_seconds",
"(",
"duration",
")",
"additional_params",
"=",
"dict",
"(",
"Title",
"=",
"title",
",",
"Description",
"=",
"description",
",",
"Keywords",
"=",
"final_keywords",
",",
"AssignmentDurationInSeconds",
"=",
"final_duration",
",",
")",
"additional_params",
".",
"update",
"(",
"final_price",
".",
"get_as_params",
"(",
"'Reward'",
")",
")",
"if",
"approval_delay",
"is",
"not",
"None",
":",
"d",
"=",
"self",
".",
"duration_as_seconds",
"(",
"approval_delay",
")",
"additional_params",
"[",
"'AutoApprovalDelayInSeconds'",
"]",
"=",
"d",
"# add these params to the others",
"params",
".",
"update",
"(",
"additional_params",
")",
"# add the annotation if specified",
"if",
"annotation",
"is",
"not",
"None",
":",
"params",
"[",
"'RequesterAnnotation'",
"]",
"=",
"annotation",
"# Add the Qualifications if specified",
"if",
"qualifications",
"is",
"not",
"None",
":",
"params",
".",
"update",
"(",
"qualifications",
".",
"get_as_params",
"(",
")",
")",
"# Handle optional response groups argument",
"if",
"response_groups",
":",
"self",
".",
"build_list_params",
"(",
"params",
",",
"response_groups",
",",
"'ResponseGroup'",
")",
"# Submit",
"return",
"self",
".",
"_process_request",
"(",
"'CreateHIT'",
",",
"params",
",",
"[",
"(",
"'HIT'",
",",
"HIT",
")",
",",
"]",
")"
] | 40.233766 | 18.935065 |
def queue(self, name, value, quality=None, timestamp=None,
attributes=None):
"""
To reduce network traffic, you can buffer datapoints and
then flush() anything in the queue.
:param name: the name / label / tag for sensor data
:param value: the sensor reading or value to record
:param quality: the quality value, use the constants BAD, GOOD, etc.
(optional and defaults to UNCERTAIN)
:param timestamp: the time the reading was recorded in epoch
milliseconds (optional and defaults to now)
:param attributes: dictionary for any key-value pairs to store with the
reading (optional)
"""
# Get timestamp first in case delay opening websocket connection
# and it must have millisecond accuracy
if not timestamp:
timestamp = int(round(time.time() * 1000))
else:
# Coerce datetime objects to epoch
if isinstance(timestamp, datetime.datetime):
timestamp = int(round(int(timestamp.strftime('%s')) * 1000))
# Only specific quality values supported
if quality not in [self.BAD, self.GOOD, self.NA, self.UNCERTAIN]:
quality = self.UNCERTAIN
# Check if adding to queue of an existing tag and add second datapoint
for point in self._queue:
if point['name'] == name:
point['datapoints'].append([timestamp, value, quality])
return
# If adding new tag, initialize and set any attributes
datapoint = {
"name": name,
"datapoints": [[timestamp, value, quality]]
}
# Attributes are extra details for a datapoint
if attributes is not None:
if not isinstance(attributes, dict):
raise ValueError("Attributes are expected to be a dictionary.")
# Validate rules for attribute keys to provide guidance.
invalid_value = ':;= '
has_invalid_value = re.compile(r'[%s]' % (invalid_value)).search
has_valid_key = re.compile(r'^[\w\.\/\-]+$').search
for (key, val) in list(attributes.items()):
# Values cannot be empty
if (val == '') or (val is None):
raise ValueError("Attribute (%s) must have a non-empty value." % (key))
# Values should be treated as a string for regex validation
val = str(val)
# Values cannot contain certain arbitrary characters
if bool(has_invalid_value(val)):
raise ValueError("Attribute (%s) cannot contain (%s)." %
(key, invalid_value))
# Attributes have to be alphanumeric-ish
if not bool(has_valid_key):
raise ValueError("Key (%s) not alphanumeric-ish." % (key))
datapoint['attributes'] = attributes
self._queue.append(datapoint)
logging.debug("QUEUE: " + str(len(self._queue)))
|
[
"def",
"queue",
"(",
"self",
",",
"name",
",",
"value",
",",
"quality",
"=",
"None",
",",
"timestamp",
"=",
"None",
",",
"attributes",
"=",
"None",
")",
":",
"# Get timestamp first in case delay opening websocket connection",
"# and it must have millisecond accuracy",
"if",
"not",
"timestamp",
":",
"timestamp",
"=",
"int",
"(",
"round",
"(",
"time",
".",
"time",
"(",
")",
"*",
"1000",
")",
")",
"else",
":",
"# Coerce datetime objects to epoch",
"if",
"isinstance",
"(",
"timestamp",
",",
"datetime",
".",
"datetime",
")",
":",
"timestamp",
"=",
"int",
"(",
"round",
"(",
"int",
"(",
"timestamp",
".",
"strftime",
"(",
"'%s'",
")",
")",
"*",
"1000",
")",
")",
"# Only specific quality values supported",
"if",
"quality",
"not",
"in",
"[",
"self",
".",
"BAD",
",",
"self",
".",
"GOOD",
",",
"self",
".",
"NA",
",",
"self",
".",
"UNCERTAIN",
"]",
":",
"quality",
"=",
"self",
".",
"UNCERTAIN",
"# Check if adding to queue of an existing tag and add second datapoint",
"for",
"point",
"in",
"self",
".",
"_queue",
":",
"if",
"point",
"[",
"'name'",
"]",
"==",
"name",
":",
"point",
"[",
"'datapoints'",
"]",
".",
"append",
"(",
"[",
"timestamp",
",",
"value",
",",
"quality",
"]",
")",
"return",
"# If adding new tag, initialize and set any attributes",
"datapoint",
"=",
"{",
"\"name\"",
":",
"name",
",",
"\"datapoints\"",
":",
"[",
"[",
"timestamp",
",",
"value",
",",
"quality",
"]",
"]",
"}",
"# Attributes are extra details for a datapoint",
"if",
"attributes",
"is",
"not",
"None",
":",
"if",
"not",
"isinstance",
"(",
"attributes",
",",
"dict",
")",
":",
"raise",
"ValueError",
"(",
"\"Attributes are expected to be a dictionary.\"",
")",
"# Validate rules for attribute keys to provide guidance.",
"invalid_value",
"=",
"':;= '",
"has_invalid_value",
"=",
"re",
".",
"compile",
"(",
"r'[%s]'",
"%",
"(",
"invalid_value",
")",
")",
".",
"search",
"has_valid_key",
"=",
"re",
".",
"compile",
"(",
"r'^[\\w\\.\\/\\-]+$'",
")",
".",
"search",
"for",
"(",
"key",
",",
"val",
")",
"in",
"list",
"(",
"attributes",
".",
"items",
"(",
")",
")",
":",
"# Values cannot be empty",
"if",
"(",
"val",
"==",
"''",
")",
"or",
"(",
"val",
"is",
"None",
")",
":",
"raise",
"ValueError",
"(",
"\"Attribute (%s) must have a non-empty value.\"",
"%",
"(",
"key",
")",
")",
"# Values should be treated as a string for regex validation",
"val",
"=",
"str",
"(",
"val",
")",
"# Values cannot contain certain arbitrary characters",
"if",
"bool",
"(",
"has_invalid_value",
"(",
"val",
")",
")",
":",
"raise",
"ValueError",
"(",
"\"Attribute (%s) cannot contain (%s).\"",
"%",
"(",
"key",
",",
"invalid_value",
")",
")",
"# Attributes have to be alphanumeric-ish",
"if",
"not",
"bool",
"(",
"has_valid_key",
")",
":",
"raise",
"ValueError",
"(",
"\"Key (%s) not alphanumeric-ish.\"",
"%",
"(",
"key",
")",
")",
"datapoint",
"[",
"'attributes'",
"]",
"=",
"attributes",
"self",
".",
"_queue",
".",
"append",
"(",
"datapoint",
")",
"logging",
".",
"debug",
"(",
"\"QUEUE: \"",
"+",
"str",
"(",
"len",
"(",
"self",
".",
"_queue",
")",
")",
")"
] | 39 | 23.25974 |
def _Main(self):
"""The main loop."""
# We need a resolver context per process to prevent multi processing
# issues with file objects stored in images.
resolver_context = context.Context()
for credential_configuration in self._processing_configuration.credentials:
resolver.Resolver.key_chain.SetCredential(
credential_configuration.path_spec,
credential_configuration.credential_type,
credential_configuration.credential_data)
self._parser_mediator = parsers_mediator.ParserMediator(
None, self._knowledge_base,
artifacts_filter_helper=self._artifacts_filter_helper,
preferred_year=self._processing_configuration.preferred_year,
resolver_context=resolver_context,
temporary_directory=self._processing_configuration.temporary_directory)
self._parser_mediator.SetEventExtractionConfiguration(
self._processing_configuration.event_extraction)
self._parser_mediator.SetInputSourceConfiguration(
self._processing_configuration.input_source)
# We need to initialize the parser and hasher objects after the process
# has forked otherwise on Windows the "fork" will fail with
# a PickleError for Python modules that cannot be pickled.
self._extraction_worker = worker.EventExtractionWorker(
parser_filter_expression=(
self._processing_configuration.parser_filter_expression))
self._extraction_worker.SetExtractionConfiguration(
self._processing_configuration.extraction)
self._parser_mediator.StartProfiling(
self._processing_configuration.profiling, self._name,
self._process_information)
self._StartProfiling(self._processing_configuration.profiling)
if self._processing_profiler:
self._extraction_worker.SetProcessingProfiler(self._processing_profiler)
if self._serializers_profiler:
self._storage_writer.SetSerializersProfiler(self._serializers_profiler)
if self._storage_profiler:
self._storage_writer.SetStorageProfiler(self._storage_profiler)
logger.debug('Worker: {0!s} (PID: {1:d}) started.'.format(
self._name, self._pid))
self._status = definitions.STATUS_INDICATOR_RUNNING
try:
logger.debug('{0!s} (PID: {1:d}) started monitoring task queue.'.format(
self._name, self._pid))
while not self._abort:
try:
task = self._task_queue.PopItem()
except (errors.QueueClose, errors.QueueEmpty) as exception:
logger.debug('ConsumeItems exiting with exception {0:s}.'.format(
type(exception)))
break
if isinstance(task, plaso_queue.QueueAbort):
logger.debug('ConsumeItems exiting, dequeued QueueAbort object.')
break
self._ProcessTask(task)
logger.debug('{0!s} (PID: {1:d}) stopped monitoring task queue.'.format(
self._name, self._pid))
# All exceptions need to be caught here to prevent the process
# from being killed by an uncaught exception.
except Exception as exception: # pylint: disable=broad-except
logger.warning(
'Unhandled exception in process: {0!s} (PID: {1:d}).'.format(
self._name, self._pid))
logger.exception(exception)
self._abort = True
if self._processing_profiler:
self._extraction_worker.SetProcessingProfiler(None)
if self._serializers_profiler:
self._storage_writer.SetSerializersProfiler(None)
if self._storage_profiler:
self._storage_writer.SetStorageProfiler(None)
self._StopProfiling()
self._parser_mediator.StopProfiling()
self._extraction_worker = None
self._parser_mediator = None
self._storage_writer = None
if self._abort:
self._status = definitions.STATUS_INDICATOR_ABORTED
else:
self._status = definitions.STATUS_INDICATOR_COMPLETED
logger.debug('Worker: {0!s} (PID: {1:d}) stopped.'.format(
self._name, self._pid))
try:
self._task_queue.Close(abort=self._abort)
except errors.QueueAlreadyClosed:
logger.error('Queue for {0:s} was already closed.'.format(self.name))
|
[
"def",
"_Main",
"(",
"self",
")",
":",
"# We need a resolver context per process to prevent multi processing",
"# issues with file objects stored in images.",
"resolver_context",
"=",
"context",
".",
"Context",
"(",
")",
"for",
"credential_configuration",
"in",
"self",
".",
"_processing_configuration",
".",
"credentials",
":",
"resolver",
".",
"Resolver",
".",
"key_chain",
".",
"SetCredential",
"(",
"credential_configuration",
".",
"path_spec",
",",
"credential_configuration",
".",
"credential_type",
",",
"credential_configuration",
".",
"credential_data",
")",
"self",
".",
"_parser_mediator",
"=",
"parsers_mediator",
".",
"ParserMediator",
"(",
"None",
",",
"self",
".",
"_knowledge_base",
",",
"artifacts_filter_helper",
"=",
"self",
".",
"_artifacts_filter_helper",
",",
"preferred_year",
"=",
"self",
".",
"_processing_configuration",
".",
"preferred_year",
",",
"resolver_context",
"=",
"resolver_context",
",",
"temporary_directory",
"=",
"self",
".",
"_processing_configuration",
".",
"temporary_directory",
")",
"self",
".",
"_parser_mediator",
".",
"SetEventExtractionConfiguration",
"(",
"self",
".",
"_processing_configuration",
".",
"event_extraction",
")",
"self",
".",
"_parser_mediator",
".",
"SetInputSourceConfiguration",
"(",
"self",
".",
"_processing_configuration",
".",
"input_source",
")",
"# We need to initialize the parser and hasher objects after the process",
"# has forked otherwise on Windows the \"fork\" will fail with",
"# a PickleError for Python modules that cannot be pickled.",
"self",
".",
"_extraction_worker",
"=",
"worker",
".",
"EventExtractionWorker",
"(",
"parser_filter_expression",
"=",
"(",
"self",
".",
"_processing_configuration",
".",
"parser_filter_expression",
")",
")",
"self",
".",
"_extraction_worker",
".",
"SetExtractionConfiguration",
"(",
"self",
".",
"_processing_configuration",
".",
"extraction",
")",
"self",
".",
"_parser_mediator",
".",
"StartProfiling",
"(",
"self",
".",
"_processing_configuration",
".",
"profiling",
",",
"self",
".",
"_name",
",",
"self",
".",
"_process_information",
")",
"self",
".",
"_StartProfiling",
"(",
"self",
".",
"_processing_configuration",
".",
"profiling",
")",
"if",
"self",
".",
"_processing_profiler",
":",
"self",
".",
"_extraction_worker",
".",
"SetProcessingProfiler",
"(",
"self",
".",
"_processing_profiler",
")",
"if",
"self",
".",
"_serializers_profiler",
":",
"self",
".",
"_storage_writer",
".",
"SetSerializersProfiler",
"(",
"self",
".",
"_serializers_profiler",
")",
"if",
"self",
".",
"_storage_profiler",
":",
"self",
".",
"_storage_writer",
".",
"SetStorageProfiler",
"(",
"self",
".",
"_storage_profiler",
")",
"logger",
".",
"debug",
"(",
"'Worker: {0!s} (PID: {1:d}) started.'",
".",
"format",
"(",
"self",
".",
"_name",
",",
"self",
".",
"_pid",
")",
")",
"self",
".",
"_status",
"=",
"definitions",
".",
"STATUS_INDICATOR_RUNNING",
"try",
":",
"logger",
".",
"debug",
"(",
"'{0!s} (PID: {1:d}) started monitoring task queue.'",
".",
"format",
"(",
"self",
".",
"_name",
",",
"self",
".",
"_pid",
")",
")",
"while",
"not",
"self",
".",
"_abort",
":",
"try",
":",
"task",
"=",
"self",
".",
"_task_queue",
".",
"PopItem",
"(",
")",
"except",
"(",
"errors",
".",
"QueueClose",
",",
"errors",
".",
"QueueEmpty",
")",
"as",
"exception",
":",
"logger",
".",
"debug",
"(",
"'ConsumeItems exiting with exception {0:s}.'",
".",
"format",
"(",
"type",
"(",
"exception",
")",
")",
")",
"break",
"if",
"isinstance",
"(",
"task",
",",
"plaso_queue",
".",
"QueueAbort",
")",
":",
"logger",
".",
"debug",
"(",
"'ConsumeItems exiting, dequeued QueueAbort object.'",
")",
"break",
"self",
".",
"_ProcessTask",
"(",
"task",
")",
"logger",
".",
"debug",
"(",
"'{0!s} (PID: {1:d}) stopped monitoring task queue.'",
".",
"format",
"(",
"self",
".",
"_name",
",",
"self",
".",
"_pid",
")",
")",
"# All exceptions need to be caught here to prevent the process",
"# from being killed by an uncaught exception.",
"except",
"Exception",
"as",
"exception",
":",
"# pylint: disable=broad-except",
"logger",
".",
"warning",
"(",
"'Unhandled exception in process: {0!s} (PID: {1:d}).'",
".",
"format",
"(",
"self",
".",
"_name",
",",
"self",
".",
"_pid",
")",
")",
"logger",
".",
"exception",
"(",
"exception",
")",
"self",
".",
"_abort",
"=",
"True",
"if",
"self",
".",
"_processing_profiler",
":",
"self",
".",
"_extraction_worker",
".",
"SetProcessingProfiler",
"(",
"None",
")",
"if",
"self",
".",
"_serializers_profiler",
":",
"self",
".",
"_storage_writer",
".",
"SetSerializersProfiler",
"(",
"None",
")",
"if",
"self",
".",
"_storage_profiler",
":",
"self",
".",
"_storage_writer",
".",
"SetStorageProfiler",
"(",
"None",
")",
"self",
".",
"_StopProfiling",
"(",
")",
"self",
".",
"_parser_mediator",
".",
"StopProfiling",
"(",
")",
"self",
".",
"_extraction_worker",
"=",
"None",
"self",
".",
"_parser_mediator",
"=",
"None",
"self",
".",
"_storage_writer",
"=",
"None",
"if",
"self",
".",
"_abort",
":",
"self",
".",
"_status",
"=",
"definitions",
".",
"STATUS_INDICATOR_ABORTED",
"else",
":",
"self",
".",
"_status",
"=",
"definitions",
".",
"STATUS_INDICATOR_COMPLETED",
"logger",
".",
"debug",
"(",
"'Worker: {0!s} (PID: {1:d}) stopped.'",
".",
"format",
"(",
"self",
".",
"_name",
",",
"self",
".",
"_pid",
")",
")",
"try",
":",
"self",
".",
"_task_queue",
".",
"Close",
"(",
"abort",
"=",
"self",
".",
"_abort",
")",
"except",
"errors",
".",
"QueueAlreadyClosed",
":",
"logger",
".",
"error",
"(",
"'Queue for {0:s} was already closed.'",
".",
"format",
"(",
"self",
".",
"name",
")",
")"
] | 35.814159 | 22.663717 |
def set_conn(self, **kwargs):
""" takes a connection and creates the connection """
# log = logging.getLogger("%s.%s" % (self.log, inspect.stack()[0][3]))
log.setLevel(kwargs.get('log_level',self.log_level))
conn_name = kwargs.get("name")
if not conn_name:
raise NameError("a connection requires a 'name': %s" % kwargs)
elif self.conns.get(conn_name):
raise KeyError("connection '%s' has already been set" % conn_name)
if not kwargs.get("active", True):
log.warning("Connection '%s' is set as inactive" % conn_name)
return
conn_type = kwargs.get("conn_type")
if not conn_type or conn_type not in self.conn_mapping.nested:
err_msg = ["a connection requires a valid 'conn_type':\n",
"%s"]
raise NameError("".join(err_msg) % (list(self.conn_mapping.nested)))
log.info("Setting '%s' connection", conn_name)
if conn_type == "triplestore":
conn = make_tstore_conn(kwargs)
else:
conn = RdfwConnections[conn_type][kwargs['vendor']](**kwargs)
self.conns[conn_name] = conn
self.__is_initialized__ = True
|
[
"def",
"set_conn",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"# log = logging.getLogger(\"%s.%s\" % (self.log, inspect.stack()[0][3]))",
"log",
".",
"setLevel",
"(",
"kwargs",
".",
"get",
"(",
"'log_level'",
",",
"self",
".",
"log_level",
")",
")",
"conn_name",
"=",
"kwargs",
".",
"get",
"(",
"\"name\"",
")",
"if",
"not",
"conn_name",
":",
"raise",
"NameError",
"(",
"\"a connection requires a 'name': %s\"",
"%",
"kwargs",
")",
"elif",
"self",
".",
"conns",
".",
"get",
"(",
"conn_name",
")",
":",
"raise",
"KeyError",
"(",
"\"connection '%s' has already been set\"",
"%",
"conn_name",
")",
"if",
"not",
"kwargs",
".",
"get",
"(",
"\"active\"",
",",
"True",
")",
":",
"log",
".",
"warning",
"(",
"\"Connection '%s' is set as inactive\"",
"%",
"conn_name",
")",
"return",
"conn_type",
"=",
"kwargs",
".",
"get",
"(",
"\"conn_type\"",
")",
"if",
"not",
"conn_type",
"or",
"conn_type",
"not",
"in",
"self",
".",
"conn_mapping",
".",
"nested",
":",
"err_msg",
"=",
"[",
"\"a connection requires a valid 'conn_type':\\n\"",
",",
"\"%s\"",
"]",
"raise",
"NameError",
"(",
"\"\"",
".",
"join",
"(",
"err_msg",
")",
"%",
"(",
"list",
"(",
"self",
".",
"conn_mapping",
".",
"nested",
")",
")",
")",
"log",
".",
"info",
"(",
"\"Setting '%s' connection\"",
",",
"conn_name",
")",
"if",
"conn_type",
"==",
"\"triplestore\"",
":",
"conn",
"=",
"make_tstore_conn",
"(",
"kwargs",
")",
"else",
":",
"conn",
"=",
"RdfwConnections",
"[",
"conn_type",
"]",
"[",
"kwargs",
"[",
"'vendor'",
"]",
"]",
"(",
"*",
"*",
"kwargs",
")",
"self",
".",
"conns",
"[",
"conn_name",
"]",
"=",
"conn",
"self",
".",
"__is_initialized__",
"=",
"True"
] | 44.481481 | 19.851852 |
def print_build_help(build_path, default_build_path):
"""
Print help text after configuration step is done.
"""
print(' configure step is done')
print(' now you need to compile the sources:')
if (build_path == default_build_path):
print(' $ cd build')
else:
print(' $ cd ' + build_path)
print(' $ make')
|
[
"def",
"print_build_help",
"(",
"build_path",
",",
"default_build_path",
")",
":",
"print",
"(",
"' configure step is done'",
")",
"print",
"(",
"' now you need to compile the sources:'",
")",
"if",
"(",
"build_path",
"==",
"default_build_path",
")",
":",
"print",
"(",
"' $ cd build'",
")",
"else",
":",
"print",
"(",
"' $ cd '",
"+",
"build_path",
")",
"print",
"(",
"' $ make'",
")"
] | 31.909091 | 9.363636 |
async def _playnow(self, ctx, *, query: str):
""" Plays immediately a song. """
player = self.bot.lavalink.players.get(ctx.guild.id)
if not player.queue and not player.is_playing:
return await ctx.invoke(self._play, query=query)
query = query.strip('<>')
if not url_rx.match(query):
query = f'ytsearch:{query}'
results = await self.bot.lavalink.get_tracks(query)
if not results or not results['tracks']:
return await ctx.send('Nothing found!')
tracks = results['tracks']
track = tracks.pop(0)
if results['loadType'] == 'PLAYLIST_LOADED':
for _track in tracks:
player.add(requester=ctx.author.id, track=_track)
await player.play_now(requester=ctx.author.id, track=track)
|
[
"async",
"def",
"_playnow",
"(",
"self",
",",
"ctx",
",",
"*",
",",
"query",
":",
"str",
")",
":",
"player",
"=",
"self",
".",
"bot",
".",
"lavalink",
".",
"players",
".",
"get",
"(",
"ctx",
".",
"guild",
".",
"id",
")",
"if",
"not",
"player",
".",
"queue",
"and",
"not",
"player",
".",
"is_playing",
":",
"return",
"await",
"ctx",
".",
"invoke",
"(",
"self",
".",
"_play",
",",
"query",
"=",
"query",
")",
"query",
"=",
"query",
".",
"strip",
"(",
"'<>'",
")",
"if",
"not",
"url_rx",
".",
"match",
"(",
"query",
")",
":",
"query",
"=",
"f'ytsearch:{query}'",
"results",
"=",
"await",
"self",
".",
"bot",
".",
"lavalink",
".",
"get_tracks",
"(",
"query",
")",
"if",
"not",
"results",
"or",
"not",
"results",
"[",
"'tracks'",
"]",
":",
"return",
"await",
"ctx",
".",
"send",
"(",
"'Nothing found!'",
")",
"tracks",
"=",
"results",
"[",
"'tracks'",
"]",
"track",
"=",
"tracks",
".",
"pop",
"(",
"0",
")",
"if",
"results",
"[",
"'loadType'",
"]",
"==",
"'PLAYLIST_LOADED'",
":",
"for",
"_track",
"in",
"tracks",
":",
"player",
".",
"add",
"(",
"requester",
"=",
"ctx",
".",
"author",
".",
"id",
",",
"track",
"=",
"_track",
")",
"await",
"player",
".",
"play_now",
"(",
"requester",
"=",
"ctx",
".",
"author",
".",
"id",
",",
"track",
"=",
"track",
")"
] | 33.16 | 20.52 |
def _sin_to_angle(result, deriv, side=1):
"""Convert a sine and its derivatives to an angle and its derivatives"""
v = np.arcsin(np.clip(result[0], -1, 1))
sign = side
if sign == -1:
if v < 0:
offset = -np.pi
else:
offset = np.pi
else:
offset = 0.0
if deriv == 0:
return v*sign + offset,
if abs(result[0]) >= 1:
factor1 = 0
else:
factor1 = 1.0/np.sqrt(1-result[0]**2)
d = factor1*result[1]
if deriv == 1:
return v*sign + offset, d*sign
factor2 = result[0]*factor1**3
dd = factor2*np.outer(result[1], result[1]) + factor1*result[2]
if deriv == 2:
return v*sign + offset, d*sign, dd*sign
raise ValueError("deriv must be 0, 1 or 2.")
|
[
"def",
"_sin_to_angle",
"(",
"result",
",",
"deriv",
",",
"side",
"=",
"1",
")",
":",
"v",
"=",
"np",
".",
"arcsin",
"(",
"np",
".",
"clip",
"(",
"result",
"[",
"0",
"]",
",",
"-",
"1",
",",
"1",
")",
")",
"sign",
"=",
"side",
"if",
"sign",
"==",
"-",
"1",
":",
"if",
"v",
"<",
"0",
":",
"offset",
"=",
"-",
"np",
".",
"pi",
"else",
":",
"offset",
"=",
"np",
".",
"pi",
"else",
":",
"offset",
"=",
"0.0",
"if",
"deriv",
"==",
"0",
":",
"return",
"v",
"*",
"sign",
"+",
"offset",
",",
"if",
"abs",
"(",
"result",
"[",
"0",
"]",
")",
">=",
"1",
":",
"factor1",
"=",
"0",
"else",
":",
"factor1",
"=",
"1.0",
"/",
"np",
".",
"sqrt",
"(",
"1",
"-",
"result",
"[",
"0",
"]",
"**",
"2",
")",
"d",
"=",
"factor1",
"*",
"result",
"[",
"1",
"]",
"if",
"deriv",
"==",
"1",
":",
"return",
"v",
"*",
"sign",
"+",
"offset",
",",
"d",
"*",
"sign",
"factor2",
"=",
"result",
"[",
"0",
"]",
"*",
"factor1",
"**",
"3",
"dd",
"=",
"factor2",
"*",
"np",
".",
"outer",
"(",
"result",
"[",
"1",
"]",
",",
"result",
"[",
"1",
"]",
")",
"+",
"factor1",
"*",
"result",
"[",
"2",
"]",
"if",
"deriv",
"==",
"2",
":",
"return",
"v",
"*",
"sign",
"+",
"offset",
",",
"d",
"*",
"sign",
",",
"dd",
"*",
"sign",
"raise",
"ValueError",
"(",
"\"deriv must be 0, 1 or 2.\"",
")"
] | 30 | 15.6 |
def from_dict(data, ctx):
"""
Instantiate a new ClientConfigureTransaction from a dict (generally
from loading a JSON response). The data used to instantiate the
ClientConfigureTransaction is a shallow copy of the dict passed in,
with any complex child types instantiated appropriately.
"""
data = data.copy()
if data.get('marginRate') is not None:
data['marginRate'] = ctx.convert_decimal_number(
data.get('marginRate')
)
return ClientConfigureTransaction(**data)
|
[
"def",
"from_dict",
"(",
"data",
",",
"ctx",
")",
":",
"data",
"=",
"data",
".",
"copy",
"(",
")",
"if",
"data",
".",
"get",
"(",
"'marginRate'",
")",
"is",
"not",
"None",
":",
"data",
"[",
"'marginRate'",
"]",
"=",
"ctx",
".",
"convert_decimal_number",
"(",
"data",
".",
"get",
"(",
"'marginRate'",
")",
")",
"return",
"ClientConfigureTransaction",
"(",
"*",
"*",
"data",
")"
] | 35.25 | 21.125 |
def f_lock_parameters(self):
"""Locks all non-empty parameters"""
for par in self._parameters.values():
if not par.f_is_empty():
par.f_lock()
|
[
"def",
"f_lock_parameters",
"(",
"self",
")",
":",
"for",
"par",
"in",
"self",
".",
"_parameters",
".",
"values",
"(",
")",
":",
"if",
"not",
"par",
".",
"f_is_empty",
"(",
")",
":",
"par",
".",
"f_lock",
"(",
")"
] | 36.2 | 6.6 |
def fit(self, df, duration_col, event_col=None, weights_col=None, show_progress=False):
"""
Parameters
----------
Fit the Aalen Additive model to a dataset.
Parameters
----------
df: DataFrame
a Pandas DataFrame with necessary columns `duration_col` and
`event_col` (see below), covariates columns, and special columns (weights).
`duration_col` refers to
the lifetimes of the subjects. `event_col` refers to whether
the 'death' events was observed: 1 if observed, 0 else (censored).
duration_col: string
the name of the column in DataFrame that contains the subjects'
lifetimes.
event_col: string, optional
the name of the column in DataFrame that contains the subjects' death
observation. If left as None, assume all individuals are uncensored.
weights_col: string, optional
an optional column in the DataFrame, df, that denotes the weight per subject.
This column is expelled and not used as a covariate, but as a weight in the
final regression. Default weight is 1.
This can be used for case-weights. For example, a weight of 2 means there were two subjects with
identical observations.
This can be used for sampling weights.
show_progress: boolean, optional (default=False)
Since the fitter is iterative, show iteration number.
Returns
-------
self: AalenAdditiveFitter
self with additional new properties: ``cumulative_hazards_``, etc.
Examples
--------
>>> from lifelines import AalenAdditiveFitter
>>>
>>> df = pd.DataFrame({
>>> 'T': [5, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7],
>>> 'E': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0],
>>> 'var': [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2],
>>> 'age': [4, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7],
>>> })
>>>
>>> aaf = AalenAdditiveFitter()
>>> aaf.fit(df, 'T', 'E')
>>> aaf.predict_median(df)
>>> aaf.print_summary()
"""
self._time_fit_was_called = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") + " UTC"
self._censoring_type = CensoringType.RIGHT
df = df.copy()
self.duration_col = duration_col
self.event_col = event_col
self.weights_col = weights_col
self._n_examples = df.shape[0]
X, T, E, weights = self._preprocess_dataframe(df)
self.durations = T.copy()
self.event_observed = E.copy()
self.weights = weights.copy()
self._norm_std = X.std(0)
# if we included an intercept, we need to fix not divide by zero.
if self.fit_intercept:
self._norm_std["_intercept"] = 1.0
else:
# a _intercept was provided
self._norm_std[self._norm_std < 1e-8] = 1.0
self.hazards_, self.cumulative_hazards_, self.cumulative_variance_ = self._fit_model(
normalize(X, 0, self._norm_std), T, E, weights, show_progress
)
self.hazards_ /= self._norm_std
self.cumulative_hazards_ /= self._norm_std
self.cumulative_variance_ /= self._norm_std
self.confidence_intervals_ = self._compute_confidence_intervals()
self._index = self.hazards_.index
self._predicted_hazards_ = self.predict_cumulative_hazard(X).iloc[-1].values.ravel()
return self
|
[
"def",
"fit",
"(",
"self",
",",
"df",
",",
"duration_col",
",",
"event_col",
"=",
"None",
",",
"weights_col",
"=",
"None",
",",
"show_progress",
"=",
"False",
")",
":",
"self",
".",
"_time_fit_was_called",
"=",
"datetime",
".",
"utcnow",
"(",
")",
".",
"strftime",
"(",
"\"%Y-%m-%d %H:%M:%S\"",
")",
"+",
"\" UTC\"",
"self",
".",
"_censoring_type",
"=",
"CensoringType",
".",
"RIGHT",
"df",
"=",
"df",
".",
"copy",
"(",
")",
"self",
".",
"duration_col",
"=",
"duration_col",
"self",
".",
"event_col",
"=",
"event_col",
"self",
".",
"weights_col",
"=",
"weights_col",
"self",
".",
"_n_examples",
"=",
"df",
".",
"shape",
"[",
"0",
"]",
"X",
",",
"T",
",",
"E",
",",
"weights",
"=",
"self",
".",
"_preprocess_dataframe",
"(",
"df",
")",
"self",
".",
"durations",
"=",
"T",
".",
"copy",
"(",
")",
"self",
".",
"event_observed",
"=",
"E",
".",
"copy",
"(",
")",
"self",
".",
"weights",
"=",
"weights",
".",
"copy",
"(",
")",
"self",
".",
"_norm_std",
"=",
"X",
".",
"std",
"(",
"0",
")",
"# if we included an intercept, we need to fix not divide by zero.",
"if",
"self",
".",
"fit_intercept",
":",
"self",
".",
"_norm_std",
"[",
"\"_intercept\"",
"]",
"=",
"1.0",
"else",
":",
"# a _intercept was provided",
"self",
".",
"_norm_std",
"[",
"self",
".",
"_norm_std",
"<",
"1e-8",
"]",
"=",
"1.0",
"self",
".",
"hazards_",
",",
"self",
".",
"cumulative_hazards_",
",",
"self",
".",
"cumulative_variance_",
"=",
"self",
".",
"_fit_model",
"(",
"normalize",
"(",
"X",
",",
"0",
",",
"self",
".",
"_norm_std",
")",
",",
"T",
",",
"E",
",",
"weights",
",",
"show_progress",
")",
"self",
".",
"hazards_",
"/=",
"self",
".",
"_norm_std",
"self",
".",
"cumulative_hazards_",
"/=",
"self",
".",
"_norm_std",
"self",
".",
"cumulative_variance_",
"/=",
"self",
".",
"_norm_std",
"self",
".",
"confidence_intervals_",
"=",
"self",
".",
"_compute_confidence_intervals",
"(",
")",
"self",
".",
"_index",
"=",
"self",
".",
"hazards_",
".",
"index",
"self",
".",
"_predicted_hazards_",
"=",
"self",
".",
"predict_cumulative_hazard",
"(",
"X",
")",
".",
"iloc",
"[",
"-",
"1",
"]",
".",
"values",
".",
"ravel",
"(",
")",
"return",
"self"
] | 36.526316 | 23.936842 |
def expand(fn, col, inputtype=pd.DataFrame):
"""
Wrap a function applying to a single column to make a function
applying to a multi-dimensional dataframe or ndarray
Parameters
----------
fn : function
Function that applies to a series or vector.
col : str or int
Index of column to which to apply `fn`.
inputtype : class or type
Type of input to be expected by the wrapped function.
Normally pd.DataFrame or np.ndarray. Defaults to pd.DataFrame.
Returns
----------
wrapped : function
Function that takes an input of type `inputtype` and applies
`fn` to the specified `col`.
"""
if inputtype == pd.DataFrame:
if isinstance(col, int):
def _wrapper(*args, **kwargs):
return fn(args[0].iloc[:, col], *args[1:], **kwargs)
return _wrapper
def _wrapper(*args, **kwargs):
return fn(args[0].loc[:, col], *args[1:], **kwargs)
return _wrapper
elif inputtype == np.ndarray:
def _wrapper(*args, **kwargs):
return fn(args[0][:, col], *args[1:], **kwargs)
return _wrapper
raise TypeError("invalid input type")
|
[
"def",
"expand",
"(",
"fn",
",",
"col",
",",
"inputtype",
"=",
"pd",
".",
"DataFrame",
")",
":",
"if",
"inputtype",
"==",
"pd",
".",
"DataFrame",
":",
"if",
"isinstance",
"(",
"col",
",",
"int",
")",
":",
"def",
"_wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"fn",
"(",
"args",
"[",
"0",
"]",
".",
"iloc",
"[",
":",
",",
"col",
"]",
",",
"*",
"args",
"[",
"1",
":",
"]",
",",
"*",
"*",
"kwargs",
")",
"return",
"_wrapper",
"def",
"_wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"fn",
"(",
"args",
"[",
"0",
"]",
".",
"loc",
"[",
":",
",",
"col",
"]",
",",
"*",
"args",
"[",
"1",
":",
"]",
",",
"*",
"*",
"kwargs",
")",
"return",
"_wrapper",
"elif",
"inputtype",
"==",
"np",
".",
"ndarray",
":",
"def",
"_wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"fn",
"(",
"args",
"[",
"0",
"]",
"[",
":",
",",
"col",
"]",
",",
"*",
"args",
"[",
"1",
":",
"]",
",",
"*",
"*",
"kwargs",
")",
"return",
"_wrapper",
"raise",
"TypeError",
"(",
"\"invalid input type\"",
")"
] | 32.638889 | 17.583333 |
def _CaptureExpression(self, frame, expression):
"""Evalutes the expression and captures it into a Variable object.
Args:
frame: evaluation context.
expression: watched expression to compile and evaluate.
Returns:
Variable object (which will have error status if the expression fails
to evaluate).
"""
rc, value = _EvaluateExpression(frame, expression)
if not rc:
return {'name': expression, 'status': value}
return self.CaptureNamedVariable(expression, value, 0,
self.expression_capture_limits)
|
[
"def",
"_CaptureExpression",
"(",
"self",
",",
"frame",
",",
"expression",
")",
":",
"rc",
",",
"value",
"=",
"_EvaluateExpression",
"(",
"frame",
",",
"expression",
")",
"if",
"not",
"rc",
":",
"return",
"{",
"'name'",
":",
"expression",
",",
"'status'",
":",
"value",
"}",
"return",
"self",
".",
"CaptureNamedVariable",
"(",
"expression",
",",
"value",
",",
"0",
",",
"self",
".",
"expression_capture_limits",
")"
] | 33.941176 | 21.647059 |
def expandvars(text, environ=None):
"""Expand shell variables of form $var and ${var}.
Unknown variables are left unchanged.
Args:
text (str): String to expand.
environ (dict): Environ dict to use for expansions, defaults to
os.environ.
Returns:
The expanded string.
"""
if '$' not in text:
return text
i = 0
if environ is None:
environ = os.environ
while True:
m = ENV_VAR_REGEX.search(text, i)
if not m:
break
i, j = m.span(0)
name = m.group(1)
if name.startswith('{') and name.endswith('}'):
name = name[1:-1]
if name in environ:
tail = text[j:]
text = text[:i] + environ[name]
i = len(text)
text += tail
else:
i = j
return text
|
[
"def",
"expandvars",
"(",
"text",
",",
"environ",
"=",
"None",
")",
":",
"if",
"'$'",
"not",
"in",
"text",
":",
"return",
"text",
"i",
"=",
"0",
"if",
"environ",
"is",
"None",
":",
"environ",
"=",
"os",
".",
"environ",
"while",
"True",
":",
"m",
"=",
"ENV_VAR_REGEX",
".",
"search",
"(",
"text",
",",
"i",
")",
"if",
"not",
"m",
":",
"break",
"i",
",",
"j",
"=",
"m",
".",
"span",
"(",
"0",
")",
"name",
"=",
"m",
".",
"group",
"(",
"1",
")",
"if",
"name",
".",
"startswith",
"(",
"'{'",
")",
"and",
"name",
".",
"endswith",
"(",
"'}'",
")",
":",
"name",
"=",
"name",
"[",
"1",
":",
"-",
"1",
"]",
"if",
"name",
"in",
"environ",
":",
"tail",
"=",
"text",
"[",
"j",
":",
"]",
"text",
"=",
"text",
"[",
":",
"i",
"]",
"+",
"environ",
"[",
"name",
"]",
"i",
"=",
"len",
"(",
"text",
")",
"text",
"+=",
"tail",
"else",
":",
"i",
"=",
"j",
"return",
"text"
] | 23.138889 | 19.166667 |
def to_output_script(address):
'''
str -> bytes
There's probably a better way to do this
'''
parsed = parse(address)
parsed_hash = b''
try:
if (parsed.find(riemann.network.P2WPKH_PREFIX) == 0
and len(parsed) == 22):
return parsed
except TypeError:
pass
try:
if (parsed.find(riemann.network.P2WSH_PREFIX) == 0
and len(parsed) == 34):
return parsed
except TypeError:
pass
try:
if (parsed.find(riemann.network.CASHADDR_P2SH) == 0
and len(parsed) == len(riemann.network.CASHADDR_P2SH) + 20):
prefix = b'\xa9\x14' # OP_HASH160 PUSH14
parsed_hash = parsed[len(riemann.network.P2SH_PREFIX):]
suffix = b'\x87' # OP_EQUAL
except TypeError:
pass
try:
if (parsed.find(riemann.network.CASHADDR_P2PKH) == 0
and len(parsed) == len(riemann.network.CASHADDR_P2PKH) + 20):
prefix = b'\x76\xa9\x14' # OP_DUP OP_HASH160 PUSH14
parsed_hash = parsed[len(riemann.network.P2PKH_PREFIX):]
suffix = b'\x88\xac' # OP_EQUALVERIFY OP_CHECKSIG
except TypeError:
pass
if (parsed.find(riemann.network.P2PKH_PREFIX) == 0
and len(parsed) == len(riemann.network.P2PKH_PREFIX) + 20):
prefix = b'\x76\xa9\x14' # OP_DUP OP_HASH160 PUSH14
parsed_hash = parsed[len(riemann.network.P2PKH_PREFIX):]
suffix = b'\x88\xac' # OP_EQUALVERIFY OP_CHECKSIG
if (parsed.find(riemann.network.P2SH_PREFIX) == 0
and len(parsed) == len(riemann.network.P2SH_PREFIX) + 20):
prefix = b'\xa9\x14' # OP_HASH160 PUSH14
parsed_hash = parsed[len(riemann.network.P2SH_PREFIX):]
suffix = b'\x87' # OP_EQUAL
if parsed_hash == b'':
raise ValueError('Cannot parse output script from address.')
output_script = prefix + parsed_hash + suffix
return output_script
|
[
"def",
"to_output_script",
"(",
"address",
")",
":",
"parsed",
"=",
"parse",
"(",
"address",
")",
"parsed_hash",
"=",
"b''",
"try",
":",
"if",
"(",
"parsed",
".",
"find",
"(",
"riemann",
".",
"network",
".",
"P2WPKH_PREFIX",
")",
"==",
"0",
"and",
"len",
"(",
"parsed",
")",
"==",
"22",
")",
":",
"return",
"parsed",
"except",
"TypeError",
":",
"pass",
"try",
":",
"if",
"(",
"parsed",
".",
"find",
"(",
"riemann",
".",
"network",
".",
"P2WSH_PREFIX",
")",
"==",
"0",
"and",
"len",
"(",
"parsed",
")",
"==",
"34",
")",
":",
"return",
"parsed",
"except",
"TypeError",
":",
"pass",
"try",
":",
"if",
"(",
"parsed",
".",
"find",
"(",
"riemann",
".",
"network",
".",
"CASHADDR_P2SH",
")",
"==",
"0",
"and",
"len",
"(",
"parsed",
")",
"==",
"len",
"(",
"riemann",
".",
"network",
".",
"CASHADDR_P2SH",
")",
"+",
"20",
")",
":",
"prefix",
"=",
"b'\\xa9\\x14'",
"# OP_HASH160 PUSH14",
"parsed_hash",
"=",
"parsed",
"[",
"len",
"(",
"riemann",
".",
"network",
".",
"P2SH_PREFIX",
")",
":",
"]",
"suffix",
"=",
"b'\\x87'",
"# OP_EQUAL",
"except",
"TypeError",
":",
"pass",
"try",
":",
"if",
"(",
"parsed",
".",
"find",
"(",
"riemann",
".",
"network",
".",
"CASHADDR_P2PKH",
")",
"==",
"0",
"and",
"len",
"(",
"parsed",
")",
"==",
"len",
"(",
"riemann",
".",
"network",
".",
"CASHADDR_P2PKH",
")",
"+",
"20",
")",
":",
"prefix",
"=",
"b'\\x76\\xa9\\x14'",
"# OP_DUP OP_HASH160 PUSH14",
"parsed_hash",
"=",
"parsed",
"[",
"len",
"(",
"riemann",
".",
"network",
".",
"P2PKH_PREFIX",
")",
":",
"]",
"suffix",
"=",
"b'\\x88\\xac'",
"# OP_EQUALVERIFY OP_CHECKSIG",
"except",
"TypeError",
":",
"pass",
"if",
"(",
"parsed",
".",
"find",
"(",
"riemann",
".",
"network",
".",
"P2PKH_PREFIX",
")",
"==",
"0",
"and",
"len",
"(",
"parsed",
")",
"==",
"len",
"(",
"riemann",
".",
"network",
".",
"P2PKH_PREFIX",
")",
"+",
"20",
")",
":",
"prefix",
"=",
"b'\\x76\\xa9\\x14'",
"# OP_DUP OP_HASH160 PUSH14",
"parsed_hash",
"=",
"parsed",
"[",
"len",
"(",
"riemann",
".",
"network",
".",
"P2PKH_PREFIX",
")",
":",
"]",
"suffix",
"=",
"b'\\x88\\xac'",
"# OP_EQUALVERIFY OP_CHECKSIG",
"if",
"(",
"parsed",
".",
"find",
"(",
"riemann",
".",
"network",
".",
"P2SH_PREFIX",
")",
"==",
"0",
"and",
"len",
"(",
"parsed",
")",
"==",
"len",
"(",
"riemann",
".",
"network",
".",
"P2SH_PREFIX",
")",
"+",
"20",
")",
":",
"prefix",
"=",
"b'\\xa9\\x14'",
"# OP_HASH160 PUSH14",
"parsed_hash",
"=",
"parsed",
"[",
"len",
"(",
"riemann",
".",
"network",
".",
"P2SH_PREFIX",
")",
":",
"]",
"suffix",
"=",
"b'\\x87'",
"# OP_EQUAL",
"if",
"parsed_hash",
"==",
"b''",
":",
"raise",
"ValueError",
"(",
"'Cannot parse output script from address.'",
")",
"output_script",
"=",
"prefix",
"+",
"parsed_hash",
"+",
"suffix",
"return",
"output_script"
] | 33.894737 | 23.157895 |
def get(self, action, version=None):
"""Get the method class handing the given action and version."""
by_version = self._by_action[action]
if version in by_version:
return by_version[version]
else:
return by_version[None]
|
[
"def",
"get",
"(",
"self",
",",
"action",
",",
"version",
"=",
"None",
")",
":",
"by_version",
"=",
"self",
".",
"_by_action",
"[",
"action",
"]",
"if",
"version",
"in",
"by_version",
":",
"return",
"by_version",
"[",
"version",
"]",
"else",
":",
"return",
"by_version",
"[",
"None",
"]"
] | 38.714286 | 7 |
def delta_stoichiometry( reactants, products ):
"""
Calculate the change in stoichiometry for reactants --> products.
Args:
reactants (list(vasppy.Calculation): A list of vasppy.Calculation objects. The initial state.
products (list(vasppy.Calculation): A list of vasppy.Calculation objects. The final state.
Returns:
(Counter): The change in stoichiometry.
"""
totals = Counter()
for r in reactants:
totals.update( ( r * -1.0 ).stoichiometry )
for p in products:
totals.update( p.stoichiometry )
to_return = {}
for c in totals:
if totals[c] != 0:
to_return[c] = totals[c]
return to_return
|
[
"def",
"delta_stoichiometry",
"(",
"reactants",
",",
"products",
")",
":",
"totals",
"=",
"Counter",
"(",
")",
"for",
"r",
"in",
"reactants",
":",
"totals",
".",
"update",
"(",
"(",
"r",
"*",
"-",
"1.0",
")",
".",
"stoichiometry",
")",
"for",
"p",
"in",
"products",
":",
"totals",
".",
"update",
"(",
"p",
".",
"stoichiometry",
")",
"to_return",
"=",
"{",
"}",
"for",
"c",
"in",
"totals",
":",
"if",
"totals",
"[",
"c",
"]",
"!=",
"0",
":",
"to_return",
"[",
"c",
"]",
"=",
"totals",
"[",
"c",
"]",
"return",
"to_return"
] | 32.238095 | 21.238095 |
def create(self, **kwargs):
"""Create a new instance of this resource type.
As a general rule, the identifier should have been provided, but in
some subclasses the identifier is server-side-generated. Those classes
have to overload this method to deal with that scenario.
"""
self.method = 'post'
if self.primary_key in kwargs:
del kwargs[self.primary_key]
data = self._generate_input_dict(**kwargs)
self.load(self.client.post(self.url, data=data))
return self
|
[
"def",
"create",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
".",
"method",
"=",
"'post'",
"if",
"self",
".",
"primary_key",
"in",
"kwargs",
":",
"del",
"kwargs",
"[",
"self",
".",
"primary_key",
"]",
"data",
"=",
"self",
".",
"_generate_input_dict",
"(",
"*",
"*",
"kwargs",
")",
"self",
".",
"load",
"(",
"self",
".",
"client",
".",
"post",
"(",
"self",
".",
"url",
",",
"data",
"=",
"data",
")",
")",
"return",
"self"
] | 41.692308 | 16.307692 |
def signed_to_float(hex: str) -> float:
"""Convert signed hexadecimal to floating value."""
if int(hex, 16) & 0x8000:
return -(int(hex, 16) & 0x7FFF) / 10
else:
return int(hex, 16) / 10
|
[
"def",
"signed_to_float",
"(",
"hex",
":",
"str",
")",
"->",
"float",
":",
"if",
"int",
"(",
"hex",
",",
"16",
")",
"&",
"0x8000",
":",
"return",
"-",
"(",
"int",
"(",
"hex",
",",
"16",
")",
"&",
"0x7FFF",
")",
"/",
"10",
"else",
":",
"return",
"int",
"(",
"hex",
",",
"16",
")",
"/",
"10"
] | 34.666667 | 9.166667 |
def merge_in_place(self, others):
"""
Add the models present other predictors into the current predictor.
Parameters
----------
others : list of Class1AffinityPredictor
Other predictors to merge into the current predictor.
Returns
-------
list of string : names of newly added models
"""
new_model_names = []
for predictor in others:
for model in predictor.class1_pan_allele_models:
model_name = self.model_name(
"pan-class1",
len(self.class1_pan_allele_models))
self.class1_pan_allele_models.append(model)
row = pandas.Series(collections.OrderedDict([
("model_name", model_name),
("allele", "pan-class1"),
("config_json", json.dumps(model.get_config())),
("model", model),
])).to_frame().T
self._manifest_df = pandas.concat(
[self.manifest_df, row], ignore_index=True)
new_model_names.append(model_name)
for allele in predictor.allele_to_allele_specific_models:
if allele not in self.allele_to_allele_specific_models:
self.allele_to_allele_specific_models[allele] = []
current_models = self.allele_to_allele_specific_models[allele]
for model in predictor.allele_to_allele_specific_models[allele]:
model_name = self.model_name(allele, len(current_models))
row = pandas.Series(collections.OrderedDict([
("model_name", model_name),
("allele", allele),
("config_json", json.dumps(model.get_config())),
("model", model),
])).to_frame().T
self._manifest_df = pandas.concat(
[self.manifest_df, row], ignore_index=True)
current_models.append(model)
new_model_names.append(model_name)
self.clear_cache()
return new_model_names
|
[
"def",
"merge_in_place",
"(",
"self",
",",
"others",
")",
":",
"new_model_names",
"=",
"[",
"]",
"for",
"predictor",
"in",
"others",
":",
"for",
"model",
"in",
"predictor",
".",
"class1_pan_allele_models",
":",
"model_name",
"=",
"self",
".",
"model_name",
"(",
"\"pan-class1\"",
",",
"len",
"(",
"self",
".",
"class1_pan_allele_models",
")",
")",
"self",
".",
"class1_pan_allele_models",
".",
"append",
"(",
"model",
")",
"row",
"=",
"pandas",
".",
"Series",
"(",
"collections",
".",
"OrderedDict",
"(",
"[",
"(",
"\"model_name\"",
",",
"model_name",
")",
",",
"(",
"\"allele\"",
",",
"\"pan-class1\"",
")",
",",
"(",
"\"config_json\"",
",",
"json",
".",
"dumps",
"(",
"model",
".",
"get_config",
"(",
")",
")",
")",
",",
"(",
"\"model\"",
",",
"model",
")",
",",
"]",
")",
")",
".",
"to_frame",
"(",
")",
".",
"T",
"self",
".",
"_manifest_df",
"=",
"pandas",
".",
"concat",
"(",
"[",
"self",
".",
"manifest_df",
",",
"row",
"]",
",",
"ignore_index",
"=",
"True",
")",
"new_model_names",
".",
"append",
"(",
"model_name",
")",
"for",
"allele",
"in",
"predictor",
".",
"allele_to_allele_specific_models",
":",
"if",
"allele",
"not",
"in",
"self",
".",
"allele_to_allele_specific_models",
":",
"self",
".",
"allele_to_allele_specific_models",
"[",
"allele",
"]",
"=",
"[",
"]",
"current_models",
"=",
"self",
".",
"allele_to_allele_specific_models",
"[",
"allele",
"]",
"for",
"model",
"in",
"predictor",
".",
"allele_to_allele_specific_models",
"[",
"allele",
"]",
":",
"model_name",
"=",
"self",
".",
"model_name",
"(",
"allele",
",",
"len",
"(",
"current_models",
")",
")",
"row",
"=",
"pandas",
".",
"Series",
"(",
"collections",
".",
"OrderedDict",
"(",
"[",
"(",
"\"model_name\"",
",",
"model_name",
")",
",",
"(",
"\"allele\"",
",",
"allele",
")",
",",
"(",
"\"config_json\"",
",",
"json",
".",
"dumps",
"(",
"model",
".",
"get_config",
"(",
")",
")",
")",
",",
"(",
"\"model\"",
",",
"model",
")",
",",
"]",
")",
")",
".",
"to_frame",
"(",
")",
".",
"T",
"self",
".",
"_manifest_df",
"=",
"pandas",
".",
"concat",
"(",
"[",
"self",
".",
"manifest_df",
",",
"row",
"]",
",",
"ignore_index",
"=",
"True",
")",
"current_models",
".",
"append",
"(",
"model",
")",
"new_model_names",
".",
"append",
"(",
"model_name",
")",
"self",
".",
"clear_cache",
"(",
")",
"return",
"new_model_names"
] | 43.16 | 19 |
def dlogpdf_df(self, f, y, Y_metadata=None):
"""
Evaluates the link function link(f) then computes the derivative of log likelihood using it
Uses the Faa di Bruno's formula for the chain rule
.. math::
\\frac{d\\log p(y|\\lambda(f))}{df} = \\frac{d\\log p(y|\\lambda(f))}{d\\lambda(f)}\\frac{d\\lambda(f)}{df}
:param f: latent variables f
:type f: Nx1 array
:param y: data
:type y: Nx1 array
:param Y_metadata: Y_metadata which is not used in student t distribution - not used
:returns: derivative of log likelihood evaluated for this point
:rtype: 1xN array
"""
if isinstance(self.gp_link, link_functions.Identity):
return self.dlogpdf_dlink(f, y, Y_metadata=Y_metadata)
else:
inv_link_f = self.gp_link.transf(f)
dlogpdf_dlink = self.dlogpdf_dlink(inv_link_f, y, Y_metadata=Y_metadata)
dlink_df = self.gp_link.dtransf_df(f)
return chain_1(dlogpdf_dlink, dlink_df)
|
[
"def",
"dlogpdf_df",
"(",
"self",
",",
"f",
",",
"y",
",",
"Y_metadata",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"self",
".",
"gp_link",
",",
"link_functions",
".",
"Identity",
")",
":",
"return",
"self",
".",
"dlogpdf_dlink",
"(",
"f",
",",
"y",
",",
"Y_metadata",
"=",
"Y_metadata",
")",
"else",
":",
"inv_link_f",
"=",
"self",
".",
"gp_link",
".",
"transf",
"(",
"f",
")",
"dlogpdf_dlink",
"=",
"self",
".",
"dlogpdf_dlink",
"(",
"inv_link_f",
",",
"y",
",",
"Y_metadata",
"=",
"Y_metadata",
")",
"dlink_df",
"=",
"self",
".",
"gp_link",
".",
"dtransf_df",
"(",
"f",
")",
"return",
"chain_1",
"(",
"dlogpdf_dlink",
",",
"dlink_df",
")"
] | 44.695652 | 24.173913 |
def randomSplit(self, weights, seed=None):
"""
Randomly splits this RDD with the provided weights.
:param weights: weights for splits, will be normalized if they don't sum to 1
:param seed: random seed
:return: split RDDs in a list
>>> rdd = sc.parallelize(range(500), 1)
>>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17)
>>> len(rdd1.collect() + rdd2.collect())
500
>>> 150 < rdd1.count() < 250
True
>>> 250 < rdd2.count() < 350
True
"""
s = float(sum(weights))
cweights = [0.0]
for w in weights:
cweights.append(cweights[-1] + w / s)
if seed is None:
seed = random.randint(0, 2 ** 32 - 1)
return [self.mapPartitionsWithIndex(RDDRangeSampler(lb, ub, seed).func, True)
for lb, ub in zip(cweights, cweights[1:])]
|
[
"def",
"randomSplit",
"(",
"self",
",",
"weights",
",",
"seed",
"=",
"None",
")",
":",
"s",
"=",
"float",
"(",
"sum",
"(",
"weights",
")",
")",
"cweights",
"=",
"[",
"0.0",
"]",
"for",
"w",
"in",
"weights",
":",
"cweights",
".",
"append",
"(",
"cweights",
"[",
"-",
"1",
"]",
"+",
"w",
"/",
"s",
")",
"if",
"seed",
"is",
"None",
":",
"seed",
"=",
"random",
".",
"randint",
"(",
"0",
",",
"2",
"**",
"32",
"-",
"1",
")",
"return",
"[",
"self",
".",
"mapPartitionsWithIndex",
"(",
"RDDRangeSampler",
"(",
"lb",
",",
"ub",
",",
"seed",
")",
".",
"func",
",",
"True",
")",
"for",
"lb",
",",
"ub",
"in",
"zip",
"(",
"cweights",
",",
"cweights",
"[",
"1",
":",
"]",
")",
"]"
] | 35.04 | 16.56 |
def company(self, **kwargs):
"""
Search for companies by name.
Args:
query: CGI escpaed string.
page: (optional) Minimum value of 1. Expected value is an integer.
Returns:
A dict respresentation of the JSON returned from the API.
"""
path = self._get_path('company')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response
|
[
"def",
"company",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"path",
"=",
"self",
".",
"_get_path",
"(",
"'company'",
")",
"response",
"=",
"self",
".",
"_GET",
"(",
"path",
",",
"kwargs",
")",
"self",
".",
"_set_attrs_to_values",
"(",
"response",
")",
"return",
"response"
] | 28.0625 | 17.3125 |
def config_string(self):
"""
See the class documentation.
"""
# Note: _write_to_conf is determined when the value is calculated. This
# is a hidden function call due to property magic.
val = self.str_value
if not self._write_to_conf:
return ""
if self.orig_type in _BOOL_TRISTATE:
return "{}{}={}\n" \
.format(self.kconfig.config_prefix, self.name, val) \
if val != "n" else \
"# {}{} is not set\n" \
.format(self.kconfig.config_prefix, self.name)
if self.orig_type in _INT_HEX:
return "{}{}={}\n" \
.format(self.kconfig.config_prefix, self.name, val)
# sym.orig_type is STRING
return '{}{}="{}"\n' \
.format(self.kconfig.config_prefix, self.name, escape(val))
|
[
"def",
"config_string",
"(",
"self",
")",
":",
"# Note: _write_to_conf is determined when the value is calculated. This",
"# is a hidden function call due to property magic.",
"val",
"=",
"self",
".",
"str_value",
"if",
"not",
"self",
".",
"_write_to_conf",
":",
"return",
"\"\"",
"if",
"self",
".",
"orig_type",
"in",
"_BOOL_TRISTATE",
":",
"return",
"\"{}{}={}\\n\"",
".",
"format",
"(",
"self",
".",
"kconfig",
".",
"config_prefix",
",",
"self",
".",
"name",
",",
"val",
")",
"if",
"val",
"!=",
"\"n\"",
"else",
"\"# {}{} is not set\\n\"",
".",
"format",
"(",
"self",
".",
"kconfig",
".",
"config_prefix",
",",
"self",
".",
"name",
")",
"if",
"self",
".",
"orig_type",
"in",
"_INT_HEX",
":",
"return",
"\"{}{}={}\\n\"",
".",
"format",
"(",
"self",
".",
"kconfig",
".",
"config_prefix",
",",
"self",
".",
"name",
",",
"val",
")",
"# sym.orig_type is STRING",
"return",
"'{}{}=\"{}\"\\n'",
".",
"format",
"(",
"self",
".",
"kconfig",
".",
"config_prefix",
",",
"self",
".",
"name",
",",
"escape",
"(",
"val",
")",
")"
] | 36.416667 | 16.5 |
def check_hex_chain(chain):
"""Verify a merkle chain, with hashes hex encoded, to see if the Merkle root can be reproduced.
"""
return codecs.encode(check_chain([(codecs.decode(i[0], 'hex_codec'), i[1]) for i in chain]), 'hex_codec')
|
[
"def",
"check_hex_chain",
"(",
"chain",
")",
":",
"return",
"codecs",
".",
"encode",
"(",
"check_chain",
"(",
"[",
"(",
"codecs",
".",
"decode",
"(",
"i",
"[",
"0",
"]",
",",
"'hex_codec'",
")",
",",
"i",
"[",
"1",
"]",
")",
"for",
"i",
"in",
"chain",
"]",
")",
",",
"'hex_codec'",
")"
] | 60.5 | 20.5 |
def create_position(self, params={}):
"""
Creates a position
http://dev.wheniwork.com/#create-update-position
"""
url = "/2/positions/"
body = params
data = self._post_resource(url, body)
return self.position_from_json(data["position"])
|
[
"def",
"create_position",
"(",
"self",
",",
"params",
"=",
"{",
"}",
")",
":",
"url",
"=",
"\"/2/positions/\"",
"body",
"=",
"params",
"data",
"=",
"self",
".",
"_post_resource",
"(",
"url",
",",
"body",
")",
"return",
"self",
".",
"position_from_json",
"(",
"data",
"[",
"\"position\"",
"]",
")"
] | 26.545455 | 14.909091 |
def add_service_certificate(kwargs=None, conn=None, call=None):
'''
.. versionadded:: 2015.8.0
Add a new service certificate
CLI Example:
.. code-block:: bash
salt-cloud -f add_service_certificate my-azure name=my_service_certificate \\
data='...CERT_DATA...' certificate_format=sha1 password=verybadpass
'''
if call != 'function':
raise SaltCloudSystemExit(
'The add_service_certificate function must be called with -f or --function.'
)
if not conn:
conn = get_conn()
if kwargs is None:
kwargs = {}
if 'name' not in kwargs:
raise SaltCloudSystemExit('A name must be specified as "name"')
if 'data' not in kwargs:
raise SaltCloudSystemExit('Certificate data must be specified as "data"')
if 'certificate_format' not in kwargs:
raise SaltCloudSystemExit('A certificate_format must be specified as "certificate_format"')
if 'password' not in kwargs:
raise SaltCloudSystemExit('A password must be specified as "password"')
try:
data = conn.add_service_certificate(
kwargs['name'],
kwargs['data'],
kwargs['certificate_format'],
kwargs['password'],
)
return {'Success': 'The service certificate was successfully added'}
except AzureConflictHttpError:
raise SaltCloudSystemExit('There was a conflict. This usually means that the '
'service certificate already exists.')
|
[
"def",
"add_service_certificate",
"(",
"kwargs",
"=",
"None",
",",
"conn",
"=",
"None",
",",
"call",
"=",
"None",
")",
":",
"if",
"call",
"!=",
"'function'",
":",
"raise",
"SaltCloudSystemExit",
"(",
"'The add_service_certificate function must be called with -f or --function.'",
")",
"if",
"not",
"conn",
":",
"conn",
"=",
"get_conn",
"(",
")",
"if",
"kwargs",
"is",
"None",
":",
"kwargs",
"=",
"{",
"}",
"if",
"'name'",
"not",
"in",
"kwargs",
":",
"raise",
"SaltCloudSystemExit",
"(",
"'A name must be specified as \"name\"'",
")",
"if",
"'data'",
"not",
"in",
"kwargs",
":",
"raise",
"SaltCloudSystemExit",
"(",
"'Certificate data must be specified as \"data\"'",
")",
"if",
"'certificate_format'",
"not",
"in",
"kwargs",
":",
"raise",
"SaltCloudSystemExit",
"(",
"'A certificate_format must be specified as \"certificate_format\"'",
")",
"if",
"'password'",
"not",
"in",
"kwargs",
":",
"raise",
"SaltCloudSystemExit",
"(",
"'A password must be specified as \"password\"'",
")",
"try",
":",
"data",
"=",
"conn",
".",
"add_service_certificate",
"(",
"kwargs",
"[",
"'name'",
"]",
",",
"kwargs",
"[",
"'data'",
"]",
",",
"kwargs",
"[",
"'certificate_format'",
"]",
",",
"kwargs",
"[",
"'password'",
"]",
",",
")",
"return",
"{",
"'Success'",
":",
"'The service certificate was successfully added'",
"}",
"except",
"AzureConflictHttpError",
":",
"raise",
"SaltCloudSystemExit",
"(",
"'There was a conflict. This usually means that the '",
"'service certificate already exists.'",
")"
] | 31.87234 | 27.106383 |
def connect_rds(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
"""
:type aws_access_key_id: string
:param aws_access_key_id: Your AWS Access Key ID
:type aws_secret_access_key: string
:param aws_secret_access_key: Your AWS Secret Access Key
:rtype: :class:`boto.rds.RDSConnection`
:return: A connection to RDS
"""
from boto.rds import RDSConnection
return RDSConnection(aws_access_key_id, aws_secret_access_key, **kwargs)
|
[
"def",
"connect_rds",
"(",
"aws_access_key_id",
"=",
"None",
",",
"aws_secret_access_key",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"boto",
".",
"rds",
"import",
"RDSConnection",
"return",
"RDSConnection",
"(",
"aws_access_key_id",
",",
"aws_secret_access_key",
",",
"*",
"*",
"kwargs",
")"
] | 35.923077 | 15.769231 |
def event_first_of(*events: _AbstractLinkable) -> Event:
""" Waits until one of `events` is set.
The event returned is /not/ cleared with any of the `events`, this value
must not be reused if the clearing behavior is used.
"""
first_finished = Event()
if not all(isinstance(e, _AbstractLinkable) for e in events):
raise ValueError('all events must be linkable')
for event in events:
event.rawlink(lambda _: first_finished.set())
return first_finished
|
[
"def",
"event_first_of",
"(",
"*",
"events",
":",
"_AbstractLinkable",
")",
"->",
"Event",
":",
"first_finished",
"=",
"Event",
"(",
")",
"if",
"not",
"all",
"(",
"isinstance",
"(",
"e",
",",
"_AbstractLinkable",
")",
"for",
"e",
"in",
"events",
")",
":",
"raise",
"ValueError",
"(",
"'all events must be linkable'",
")",
"for",
"event",
"in",
"events",
":",
"event",
".",
"rawlink",
"(",
"lambda",
"_",
":",
"first_finished",
".",
"set",
"(",
")",
")",
"return",
"first_finished"
] | 32.533333 | 21.6 |
def setup(cls, configuration=None, **kwargs):
# type: (Optional['Configuration'], Any) -> None
"""
Set up the HDX configuration
Args:
configuration (Optional[Configuration]): Configuration instance. Defaults to setting one up from passed arguments.
**kwargs: See below
user_agent (str): User agent string. HDXPythonLibrary/X.X.X- is prefixed. Must be supplied if remoteckan is not.
user_agent_config_yaml (str): Path to YAML user agent configuration. Ignored if user_agent supplied. Defaults to ~/.useragent.yml.
user_agent_lookup (str): Lookup key for YAML. Ignored if user_agent supplied.
hdx_url (str): HDX url to use. Overrides hdx_site.
hdx_site (str): HDX site to use eg. prod, test.
hdx_read_only (bool): Whether to access HDX in read only mode. Defaults to False.
hdx_key (str): Your HDX key. Ignored if hdx_read_only = True.
hdx_config_dict (dict): HDX configuration dictionary to use instead of above 3 parameters OR
hdx_config_json (str): Path to JSON HDX configuration OR
hdx_config_yaml (str): Path to YAML HDX configuration
project_config_dict (dict): Project configuration dictionary OR
project_config_json (str): Path to JSON Project configuration OR
project_config_yaml (str): Path to YAML Project configuration
hdx_base_config_dict (dict): HDX base configuration dictionary OR
hdx_base_config_json (str): Path to JSON HDX base configuration OR
hdx_base_config_yaml (str): Path to YAML HDX base configuration. Defaults to library's internal hdx_base_configuration.yml.
Returns:
None
"""
if configuration is None:
cls._configuration = Configuration(**kwargs)
else:
cls._configuration = configuration
|
[
"def",
"setup",
"(",
"cls",
",",
"configuration",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"# type: (Optional['Configuration'], Any) -> None",
"if",
"configuration",
"is",
"None",
":",
"cls",
".",
"_configuration",
"=",
"Configuration",
"(",
"*",
"*",
"kwargs",
")",
"else",
":",
"cls",
".",
"_configuration",
"=",
"configuration"
] | 57.636364 | 34.060606 |
def is_name_expired( self, name, block_number ):
"""
Given a name and block number, determine if it is expired at that block.
* names in revealed but not ready namespaces are never expired, unless the namespace itself is expired;
* names in ready namespaces expire once max(ready_block, renew_block) + lifetime blocks passes
Return True if so
Return False if not, or if the name doesn't exist
"""
cur = self.db.cursor()
return namedb_get_name( cur, name, block_number ) is None
|
[
"def",
"is_name_expired",
"(",
"self",
",",
"name",
",",
"block_number",
")",
":",
"cur",
"=",
"self",
".",
"db",
".",
"cursor",
"(",
")",
"return",
"namedb_get_name",
"(",
"cur",
",",
"name",
",",
"block_number",
")",
"is",
"None"
] | 49.090909 | 26.181818 |
def conflicting_events(self):
"""
conflicting_events()
This will return a list of conflicting events.
**Example**::
event = service.calendar().get_event(id='<event_id>')
for conflict in event.conflicting_events():
print conflict.subject
"""
if not self.conflicting_event_ids:
return []
body = soap_request.get_item(exchange_id=self.conflicting_event_ids, format="AllProperties")
response_xml = self.service.send(body)
items = response_xml.xpath(u'//m:GetItemResponseMessage/m:Items', namespaces=soap_request.NAMESPACES)
events = []
for item in items:
event = Exchange2010CalendarEvent(service=self.service, xml=deepcopy(item))
if event.id:
events.append(event)
return events
|
[
"def",
"conflicting_events",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"conflicting_event_ids",
":",
"return",
"[",
"]",
"body",
"=",
"soap_request",
".",
"get_item",
"(",
"exchange_id",
"=",
"self",
".",
"conflicting_event_ids",
",",
"format",
"=",
"\"AllProperties\"",
")",
"response_xml",
"=",
"self",
".",
"service",
".",
"send",
"(",
"body",
")",
"items",
"=",
"response_xml",
".",
"xpath",
"(",
"u'//m:GetItemResponseMessage/m:Items'",
",",
"namespaces",
"=",
"soap_request",
".",
"NAMESPACES",
")",
"events",
"=",
"[",
"]",
"for",
"item",
"in",
"items",
":",
"event",
"=",
"Exchange2010CalendarEvent",
"(",
"service",
"=",
"self",
".",
"service",
",",
"xml",
"=",
"deepcopy",
"(",
"item",
")",
")",
"if",
"event",
".",
"id",
":",
"events",
".",
"append",
"(",
"event",
")",
"return",
"events"
] | 27.178571 | 25.321429 |
def rolling_max(self, window_start, window_end, min_observations=None):
"""
Calculate a new SArray of the maximum value of different subsets over
this SArray.
The subset that the maximum is calculated over is defined as an
inclusive range relative to the position to each value in the SArray,
using `window_start` and `window_end`. For a better understanding of
this, see the examples below.
Parameters
----------
window_start : int
The start of the subset to calculate the maximum relative to the
current value.
window_end : int
The end of the subset to calculate the maximum relative to the current
value. Must be greater than `window_start`.
min_observations : int
Minimum number of non-missing observations in window required to
calculate the maximum (otherwise result is None). None signifies that
the entire window must not include a missing value. A negative
number throws an error.
Returns
-------
out : SArray
Examples
--------
>>> import pandas
>>> sa = SArray([1,2,3,4,5])
>>> series = pandas.Series([1,2,3,4,5])
A rolling max with a window including the previous 2 entries including
the current:
>>> sa.rolling_max(-2,0)
dtype: int
Rows: 5
[None, None, 3, 4, 5]
Pandas equivalent:
>>> pandas.rolling_max(series, 3)
0 NaN
1 NaN
2 3
3 4
4 5
dtype: float64
Same rolling max operation, but 2 minimum observations:
>>> sa.rolling_max(-2,0,min_observations=2)
dtype: int
Rows: 5
[None, 2, 3, 4, 5]
Pandas equivalent:
>>> pandas.rolling_max(series, 3, min_periods=2)
0 NaN
1 2
2 3
3 4
4 5
dtype: float64
A rolling max with a size of 3, centered around the current:
>>> sa.rolling_max(-1,1)
dtype: int
Rows: 5
[None, 3, 4, 5, None]
Pandas equivalent:
>>> pandas.rolling_max(series, 3, center=True)
0 NaN
1 3
2 4
3 5
4 NaN
dtype: float64
A rolling max with a window including the current and the 2 entries
following:
>>> sa.rolling_max(0,2)
dtype: int
Rows: 5
[3, 4, 5, None, None]
A rolling max with a window including the previous 2 entries NOT
including the current:
>>> sa.rolling_max(-2,-1)
dtype: int
Rows: 5
[None, None, 2, 3, 4]
"""
min_observations = self.__check_min_observations(min_observations)
agg_op = '__builtin__max__'
return SArray(_proxy=self.__proxy__.builtin_rolling_apply(agg_op, window_start, window_end, min_observations))
|
[
"def",
"rolling_max",
"(",
"self",
",",
"window_start",
",",
"window_end",
",",
"min_observations",
"=",
"None",
")",
":",
"min_observations",
"=",
"self",
".",
"__check_min_observations",
"(",
"min_observations",
")",
"agg_op",
"=",
"'__builtin__max__'",
"return",
"SArray",
"(",
"_proxy",
"=",
"self",
".",
"__proxy__",
".",
"builtin_rolling_apply",
"(",
"agg_op",
",",
"window_start",
",",
"window_end",
",",
"min_observations",
")",
")"
] | 29.535354 | 23.878788 |
def __yield_handlers(self, event_type):
"""
Yield all the handlers registered for the given event type.
"""
if event_type not in self.event_types:
raise ValueError("%r not found in %r.event_types == %r" % (event_type, self, self.event_types))
# Search handler stack for matching event handlers
for frame in list(self._event_stack):
if event_type in frame:
yield frame[event_type]
# Check instance for an event handler
if hasattr(self, event_type):
yield getattr(self, event_type)
|
[
"def",
"__yield_handlers",
"(",
"self",
",",
"event_type",
")",
":",
"if",
"event_type",
"not",
"in",
"self",
".",
"event_types",
":",
"raise",
"ValueError",
"(",
"\"%r not found in %r.event_types == %r\"",
"%",
"(",
"event_type",
",",
"self",
",",
"self",
".",
"event_types",
")",
")",
"# Search handler stack for matching event handlers",
"for",
"frame",
"in",
"list",
"(",
"self",
".",
"_event_stack",
")",
":",
"if",
"event_type",
"in",
"frame",
":",
"yield",
"frame",
"[",
"event_type",
"]",
"# Check instance for an event handler",
"if",
"hasattr",
"(",
"self",
",",
"event_type",
")",
":",
"yield",
"getattr",
"(",
"self",
",",
"event_type",
")"
] | 38.866667 | 14.733333 |
def l(*members, meta=None) -> List:
"""Creates a new list from members."""
return List( # pylint: disable=abstract-class-instantiated
plist(iterable=members), meta=meta
)
|
[
"def",
"l",
"(",
"*",
"members",
",",
"meta",
"=",
"None",
")",
"->",
"List",
":",
"return",
"List",
"(",
"# pylint: disable=abstract-class-instantiated",
"plist",
"(",
"iterable",
"=",
"members",
")",
",",
"meta",
"=",
"meta",
")"
] | 37.4 | 13 |
def _init_map(self):
"""call these all manually because non-cooperative"""
DecimalValuesFormRecord._init_map(self)
IntegerValuesFormRecord._init_map(self)
TextAnswerFormRecord._init_map(self)
FilesAnswerFormRecord._init_map(self)
FeedbackAnswerFormRecord._init_map(self)
super(CalculationInteractionFeedbackAndFilesAnswerFormRecord, self)._init_map()
self.my_osid_object_form._my_map['toleranceMode'] = \
self._tolerance_mode_metadata['default_string_values'][0]
|
[
"def",
"_init_map",
"(",
"self",
")",
":",
"DecimalValuesFormRecord",
".",
"_init_map",
"(",
"self",
")",
"IntegerValuesFormRecord",
".",
"_init_map",
"(",
"self",
")",
"TextAnswerFormRecord",
".",
"_init_map",
"(",
"self",
")",
"FilesAnswerFormRecord",
".",
"_init_map",
"(",
"self",
")",
"FeedbackAnswerFormRecord",
".",
"_init_map",
"(",
"self",
")",
"super",
"(",
"CalculationInteractionFeedbackAndFilesAnswerFormRecord",
",",
"self",
")",
".",
"_init_map",
"(",
")",
"self",
".",
"my_osid_object_form",
".",
"_my_map",
"[",
"'toleranceMode'",
"]",
"=",
"self",
".",
"_tolerance_mode_metadata",
"[",
"'default_string_values'",
"]",
"[",
"0",
"]"
] | 52.9 | 14.8 |
def position(parser, token):
"""
Render a given position for category.
If some position is not defined for first category, position from its parent
category is used unless nofallback is specified.
Syntax::
{% position POSITION_NAME for CATEGORY [nofallback] %}{% endposition %}
{% position POSITION_NAME for CATEGORY using BOX_TYPE [nofallback] %}{% endposition %}
Example usage::
{% position top_left for category %}{% endposition %}
"""
bits = token.split_contents()
nodelist = parser.parse(('end' + bits[0],))
parser.delete_first_token()
return _parse_position_tag(bits, nodelist)
|
[
"def",
"position",
"(",
"parser",
",",
"token",
")",
":",
"bits",
"=",
"token",
".",
"split_contents",
"(",
")",
"nodelist",
"=",
"parser",
".",
"parse",
"(",
"(",
"'end'",
"+",
"bits",
"[",
"0",
"]",
",",
")",
")",
"parser",
".",
"delete_first_token",
"(",
")",
"return",
"_parse_position_tag",
"(",
"bits",
",",
"nodelist",
")"
] | 33.526316 | 21.947368 |
def scan(self, match="*", count=1000, cursor=0):
""" :see::meth:RedisMap.scan """
cursor, results = self._client.hscan(
self.key_prefix, cursor=cursor, match=match, count=count)
return (cursor, list(map(self._decode, results)))
|
[
"def",
"scan",
"(",
"self",
",",
"match",
"=",
"\"*\"",
",",
"count",
"=",
"1000",
",",
"cursor",
"=",
"0",
")",
":",
"cursor",
",",
"results",
"=",
"self",
".",
"_client",
".",
"hscan",
"(",
"self",
".",
"key_prefix",
",",
"cursor",
"=",
"cursor",
",",
"match",
"=",
"match",
",",
"count",
"=",
"count",
")",
"return",
"(",
"cursor",
",",
"list",
"(",
"map",
"(",
"self",
".",
"_decode",
",",
"results",
")",
")",
")"
] | 51.8 | 11.8 |
def get_recipe_env(self, arch, with_flags_in_cc=True):
"""
Adds openssl recipe to include and library path.
"""
env = super(ScryptRecipe, self).get_recipe_env(arch, with_flags_in_cc)
openssl_recipe = self.get_recipe('openssl', self.ctx)
env['CFLAGS'] += openssl_recipe.include_flags(arch)
env['LDFLAGS'] += ' -L{}'.format(self.ctx.get_libs_dir(arch.arch))
env['LDFLAGS'] += ' -L{}'.format(self.ctx.libs_dir)
env['LDFLAGS'] += openssl_recipe.link_dirs_flags(arch)
env['LIBS'] = env.get('LIBS', '') + openssl_recipe.link_libs_flags()
return env
|
[
"def",
"get_recipe_env",
"(",
"self",
",",
"arch",
",",
"with_flags_in_cc",
"=",
"True",
")",
":",
"env",
"=",
"super",
"(",
"ScryptRecipe",
",",
"self",
")",
".",
"get_recipe_env",
"(",
"arch",
",",
"with_flags_in_cc",
")",
"openssl_recipe",
"=",
"self",
".",
"get_recipe",
"(",
"'openssl'",
",",
"self",
".",
"ctx",
")",
"env",
"[",
"'CFLAGS'",
"]",
"+=",
"openssl_recipe",
".",
"include_flags",
"(",
"arch",
")",
"env",
"[",
"'LDFLAGS'",
"]",
"+=",
"' -L{}'",
".",
"format",
"(",
"self",
".",
"ctx",
".",
"get_libs_dir",
"(",
"arch",
".",
"arch",
")",
")",
"env",
"[",
"'LDFLAGS'",
"]",
"+=",
"' -L{}'",
".",
"format",
"(",
"self",
".",
"ctx",
".",
"libs_dir",
")",
"env",
"[",
"'LDFLAGS'",
"]",
"+=",
"openssl_recipe",
".",
"link_dirs_flags",
"(",
"arch",
")",
"env",
"[",
"'LIBS'",
"]",
"=",
"env",
".",
"get",
"(",
"'LIBS'",
",",
"''",
")",
"+",
"openssl_recipe",
".",
"link_libs_flags",
"(",
")",
"return",
"env"
] | 51.583333 | 20.083333 |
def predict(self, X, raw_score=False, num_iteration=None,
pred_leaf=False, pred_contrib=False, **kwargs):
"""Return the predicted value for each sample.
Parameters
----------
X : array-like or sparse matrix of shape = [n_samples, n_features]
Input features matrix.
raw_score : bool, optional (default=False)
Whether to predict raw scores.
num_iteration : int or None, optional (default=None)
Limit number of iterations in the prediction.
If None, if the best iteration exists, it is used; otherwise, all trees are used.
If <= 0, all trees are used (no limits).
pred_leaf : bool, optional (default=False)
Whether to predict leaf index.
pred_contrib : bool, optional (default=False)
Whether to predict feature contributions.
Note
----
If you want to get more explanations for your model's predictions using SHAP values,
like SHAP interaction values,
you can install the shap package (https://github.com/slundberg/shap).
Note that unlike the shap package, with ``pred_contrib`` we return a matrix with an extra
column, where the last column is the expected value.
**kwargs
Other parameters for the prediction.
Returns
-------
predicted_result : array-like of shape = [n_samples] or shape = [n_samples, n_classes]
The predicted values.
X_leaves : array-like of shape = [n_samples, n_trees] or shape = [n_samples, n_trees * n_classes]
If ``pred_leaf=True``, the predicted leaf of every tree for each sample.
X_SHAP_values : array-like of shape = [n_samples, n_features + 1] or shape = [n_samples, (n_features + 1) * n_classes]
If ``pred_contrib=True``, the feature contributions for each sample.
"""
if self._n_features is None:
raise LGBMNotFittedError("Estimator not fitted, call `fit` before exploiting the model.")
if not isinstance(X, (DataFrame, DataTable)):
X = _LGBMCheckArray(X, accept_sparse=True, force_all_finite=False)
n_features = X.shape[1]
if self._n_features != n_features:
raise ValueError("Number of features of the model must "
"match the input. Model n_features_ is %s and "
"input n_features is %s "
% (self._n_features, n_features))
return self.booster_.predict(X, raw_score=raw_score, num_iteration=num_iteration,
pred_leaf=pred_leaf, pred_contrib=pred_contrib, **kwargs)
|
[
"def",
"predict",
"(",
"self",
",",
"X",
",",
"raw_score",
"=",
"False",
",",
"num_iteration",
"=",
"None",
",",
"pred_leaf",
"=",
"False",
",",
"pred_contrib",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"self",
".",
"_n_features",
"is",
"None",
":",
"raise",
"LGBMNotFittedError",
"(",
"\"Estimator not fitted, call `fit` before exploiting the model.\"",
")",
"if",
"not",
"isinstance",
"(",
"X",
",",
"(",
"DataFrame",
",",
"DataTable",
")",
")",
":",
"X",
"=",
"_LGBMCheckArray",
"(",
"X",
",",
"accept_sparse",
"=",
"True",
",",
"force_all_finite",
"=",
"False",
")",
"n_features",
"=",
"X",
".",
"shape",
"[",
"1",
"]",
"if",
"self",
".",
"_n_features",
"!=",
"n_features",
":",
"raise",
"ValueError",
"(",
"\"Number of features of the model must \"",
"\"match the input. Model n_features_ is %s and \"",
"\"input n_features is %s \"",
"%",
"(",
"self",
".",
"_n_features",
",",
"n_features",
")",
")",
"return",
"self",
".",
"booster_",
".",
"predict",
"(",
"X",
",",
"raw_score",
"=",
"raw_score",
",",
"num_iteration",
"=",
"num_iteration",
",",
"pred_leaf",
"=",
"pred_leaf",
",",
"pred_contrib",
"=",
"pred_contrib",
",",
"*",
"*",
"kwargs",
")"
] | 52.862745 | 26.960784 |
def run_steps(node: Node, pipeline: RenderingPipeline, **args):
"""Runs instance node rendering steps"""
for step in pipeline.steps:
result = step(node, pipeline=pipeline, **args)
if isinstance(result, dict):
args = {**args, **result}
|
[
"def",
"run_steps",
"(",
"node",
":",
"Node",
",",
"pipeline",
":",
"RenderingPipeline",
",",
"*",
"*",
"args",
")",
":",
"for",
"step",
"in",
"pipeline",
".",
"steps",
":",
"result",
"=",
"step",
"(",
"node",
",",
"pipeline",
"=",
"pipeline",
",",
"*",
"*",
"args",
")",
"if",
"isinstance",
"(",
"result",
",",
"dict",
")",
":",
"args",
"=",
"{",
"*",
"*",
"args",
",",
"*",
"*",
"result",
"}"
] | 44.166667 | 8.833333 |
def get_or_create_shared_key(cls, force_new=False):
"""
Create a shared public/private key pair for certificate pushing,
if the settings allow.
"""
if force_new:
with transaction.atomic():
SharedKey.objects.filter(current=True).update(current=False)
key = Key()
return SharedKey.objects.create(public_key=key,
private_key=key,
current=True)
# create a new shared key if one doesn't exist
try:
return SharedKey.objects.get(current=True)
except SharedKey.DoesNotExist:
key = Key()
return SharedKey.objects.create(public_key=key,
private_key=key,
current=True)
|
[
"def",
"get_or_create_shared_key",
"(",
"cls",
",",
"force_new",
"=",
"False",
")",
":",
"if",
"force_new",
":",
"with",
"transaction",
".",
"atomic",
"(",
")",
":",
"SharedKey",
".",
"objects",
".",
"filter",
"(",
"current",
"=",
"True",
")",
".",
"update",
"(",
"current",
"=",
"False",
")",
"key",
"=",
"Key",
"(",
")",
"return",
"SharedKey",
".",
"objects",
".",
"create",
"(",
"public_key",
"=",
"key",
",",
"private_key",
"=",
"key",
",",
"current",
"=",
"True",
")",
"# create a new shared key if one doesn't exist",
"try",
":",
"return",
"SharedKey",
".",
"objects",
".",
"get",
"(",
"current",
"=",
"True",
")",
"except",
"SharedKey",
".",
"DoesNotExist",
":",
"key",
"=",
"Key",
"(",
")",
"return",
"SharedKey",
".",
"objects",
".",
"create",
"(",
"public_key",
"=",
"key",
",",
"private_key",
"=",
"key",
",",
"current",
"=",
"True",
")"
] | 44.1 | 16.1 |
def makeCubicxFunc(self,mLvl,pLvl,MedShk,xLvl):
'''
Constructs the (unconstrained) expenditure function for this period using
bilinear interpolation (over permanent income and the medical shock) among
an array of cubic interpolations over market resources.
Parameters
----------
mLvl : np.array
Corresponding market resource points for interpolation.
pLvl : np.array
Corresponding permanent income level points for interpolation.
MedShk : np.array
Corresponding medical need shocks for interpolation.
xLvl : np.array
Expenditure points for interpolation, corresponding to those in mLvl,
pLvl, and MedShk.
Returns
-------
xFuncUnc : BilinearInterpOnInterp1D
Unconstrained total expenditure function for this period.
'''
# Get state dimensions
pCount = mLvl.shape[1]
MedCount = mLvl.shape[0]
# Calculate the MPC and MPM at each gridpoint
EndOfPrdvPP = self.DiscFacEff*self.Rfree*self.Rfree*np.sum(self.vPPfuncNext(self.mLvlNext,\
self.pLvlNext)*self.ShkPrbs_temp,axis=0)
EndOfPrdvPP = np.tile(np.reshape(EndOfPrdvPP,(1,pCount,EndOfPrdvPP.shape[1])),(MedCount,1,1))
dcda = EndOfPrdvPP/self.uPP(np.array(self.cLvlNow))
dMedda = EndOfPrdvPP/(self.MedShkVals_tiled*self.uMedPP(self.MedLvlNow))
dMedda[0,:,:] = 0.0 # dMedda goes crazy when MedShk=0
MPC = dcda/(1.0 + dcda + self.MedPrice*dMedda)
MPM = dMedda/(1.0 + dcda + self.MedPrice*dMedda)
# Convert to marginal propensity to spend
MPX = MPC + self.MedPrice*MPM
MPX = np.concatenate((np.reshape(MPX[:,:,0],(MedCount,pCount,1)),MPX),axis=2) # NEED TO CALCULATE MPM AT NATURAL BORROWING CONSTRAINT
MPX[0,:,0] = self.MPCmaxNow
# Loop over each permanent income level and medical shock and make a cubic xFunc
xFunc_by_pLvl_and_MedShk = [] # Initialize the empty list of lists of 1D xFuncs
for i in range(pCount):
temp_list = []
pLvl_i = pLvl[0,i,0]
mLvlMin_i = self.BoroCnstNat(pLvl_i)
for j in range(MedCount):
m_temp = mLvl[j,i,:] - mLvlMin_i
x_temp = xLvl[j,i,:]
MPX_temp = MPX[j,i,:]
temp_list.append(CubicInterp(m_temp,x_temp,MPX_temp))
xFunc_by_pLvl_and_MedShk.append(deepcopy(temp_list))
# Combine the nested list of cubic xFuncs into a single function
pLvl_temp = pLvl[0,:,0]
MedShk_temp = MedShk[:,0,0]
xFuncUncBase = BilinearInterpOnInterp1D(xFunc_by_pLvl_and_MedShk,pLvl_temp,MedShk_temp)
xFuncUnc = VariableLowerBoundFunc3D(xFuncUncBase,self.BoroCnstNat)
return xFuncUnc
|
[
"def",
"makeCubicxFunc",
"(",
"self",
",",
"mLvl",
",",
"pLvl",
",",
"MedShk",
",",
"xLvl",
")",
":",
"# Get state dimensions",
"pCount",
"=",
"mLvl",
".",
"shape",
"[",
"1",
"]",
"MedCount",
"=",
"mLvl",
".",
"shape",
"[",
"0",
"]",
"# Calculate the MPC and MPM at each gridpoint",
"EndOfPrdvPP",
"=",
"self",
".",
"DiscFacEff",
"*",
"self",
".",
"Rfree",
"*",
"self",
".",
"Rfree",
"*",
"np",
".",
"sum",
"(",
"self",
".",
"vPPfuncNext",
"(",
"self",
".",
"mLvlNext",
",",
"self",
".",
"pLvlNext",
")",
"*",
"self",
".",
"ShkPrbs_temp",
",",
"axis",
"=",
"0",
")",
"EndOfPrdvPP",
"=",
"np",
".",
"tile",
"(",
"np",
".",
"reshape",
"(",
"EndOfPrdvPP",
",",
"(",
"1",
",",
"pCount",
",",
"EndOfPrdvPP",
".",
"shape",
"[",
"1",
"]",
")",
")",
",",
"(",
"MedCount",
",",
"1",
",",
"1",
")",
")",
"dcda",
"=",
"EndOfPrdvPP",
"/",
"self",
".",
"uPP",
"(",
"np",
".",
"array",
"(",
"self",
".",
"cLvlNow",
")",
")",
"dMedda",
"=",
"EndOfPrdvPP",
"/",
"(",
"self",
".",
"MedShkVals_tiled",
"*",
"self",
".",
"uMedPP",
"(",
"self",
".",
"MedLvlNow",
")",
")",
"dMedda",
"[",
"0",
",",
":",
",",
":",
"]",
"=",
"0.0",
"# dMedda goes crazy when MedShk=0",
"MPC",
"=",
"dcda",
"/",
"(",
"1.0",
"+",
"dcda",
"+",
"self",
".",
"MedPrice",
"*",
"dMedda",
")",
"MPM",
"=",
"dMedda",
"/",
"(",
"1.0",
"+",
"dcda",
"+",
"self",
".",
"MedPrice",
"*",
"dMedda",
")",
"# Convert to marginal propensity to spend",
"MPX",
"=",
"MPC",
"+",
"self",
".",
"MedPrice",
"*",
"MPM",
"MPX",
"=",
"np",
".",
"concatenate",
"(",
"(",
"np",
".",
"reshape",
"(",
"MPX",
"[",
":",
",",
":",
",",
"0",
"]",
",",
"(",
"MedCount",
",",
"pCount",
",",
"1",
")",
")",
",",
"MPX",
")",
",",
"axis",
"=",
"2",
")",
"# NEED TO CALCULATE MPM AT NATURAL BORROWING CONSTRAINT",
"MPX",
"[",
"0",
",",
":",
",",
"0",
"]",
"=",
"self",
".",
"MPCmaxNow",
"# Loop over each permanent income level and medical shock and make a cubic xFunc",
"xFunc_by_pLvl_and_MedShk",
"=",
"[",
"]",
"# Initialize the empty list of lists of 1D xFuncs",
"for",
"i",
"in",
"range",
"(",
"pCount",
")",
":",
"temp_list",
"=",
"[",
"]",
"pLvl_i",
"=",
"pLvl",
"[",
"0",
",",
"i",
",",
"0",
"]",
"mLvlMin_i",
"=",
"self",
".",
"BoroCnstNat",
"(",
"pLvl_i",
")",
"for",
"j",
"in",
"range",
"(",
"MedCount",
")",
":",
"m_temp",
"=",
"mLvl",
"[",
"j",
",",
"i",
",",
":",
"]",
"-",
"mLvlMin_i",
"x_temp",
"=",
"xLvl",
"[",
"j",
",",
"i",
",",
":",
"]",
"MPX_temp",
"=",
"MPX",
"[",
"j",
",",
"i",
",",
":",
"]",
"temp_list",
".",
"append",
"(",
"CubicInterp",
"(",
"m_temp",
",",
"x_temp",
",",
"MPX_temp",
")",
")",
"xFunc_by_pLvl_and_MedShk",
".",
"append",
"(",
"deepcopy",
"(",
"temp_list",
")",
")",
"# Combine the nested list of cubic xFuncs into a single function",
"pLvl_temp",
"=",
"pLvl",
"[",
"0",
",",
":",
",",
"0",
"]",
"MedShk_temp",
"=",
"MedShk",
"[",
":",
",",
"0",
",",
"0",
"]",
"xFuncUncBase",
"=",
"BilinearInterpOnInterp1D",
"(",
"xFunc_by_pLvl_and_MedShk",
",",
"pLvl_temp",
",",
"MedShk_temp",
")",
"xFuncUnc",
"=",
"VariableLowerBoundFunc3D",
"(",
"xFuncUncBase",
",",
"self",
".",
"BoroCnstNat",
")",
"return",
"xFuncUnc"
] | 46.262295 | 25.180328 |
def associate_interface_environments(self, int_env_map):
"""
Method to add an interface.
:param int_env_map: List containing interfaces and environments ids desired to be associates.
:return: Id.
"""
data = {'interface_environments': int_env_map}
return super(ApiInterfaceRequest, self).post('api/v3/interface/environments/', data)
|
[
"def",
"associate_interface_environments",
"(",
"self",
",",
"int_env_map",
")",
":",
"data",
"=",
"{",
"'interface_environments'",
":",
"int_env_map",
"}",
"return",
"super",
"(",
"ApiInterfaceRequest",
",",
"self",
")",
".",
"post",
"(",
"'api/v3/interface/environments/'",
",",
"data",
")"
] | 42.222222 | 23.111111 |
def td_type():
'''get type of the tomodir (complex or dc and whether fpi)
'''
cfg = np.genfromtxt('exe/crtomo.cfg',
skip_header=15,
dtype='str',
usecols=([0]))
is_complex = False
if cfg[0] == 'F':
is_complex = True
is_fpi = False
if cfg[2] == 'T':
is_fpi = True
return is_complex, is_fpi
|
[
"def",
"td_type",
"(",
")",
":",
"cfg",
"=",
"np",
".",
"genfromtxt",
"(",
"'exe/crtomo.cfg'",
",",
"skip_header",
"=",
"15",
",",
"dtype",
"=",
"'str'",
",",
"usecols",
"=",
"(",
"[",
"0",
"]",
")",
")",
"is_complex",
"=",
"False",
"if",
"cfg",
"[",
"0",
"]",
"==",
"'F'",
":",
"is_complex",
"=",
"True",
"is_fpi",
"=",
"False",
"if",
"cfg",
"[",
"2",
"]",
"==",
"'T'",
":",
"is_fpi",
"=",
"True",
"return",
"is_complex",
",",
"is_fpi"
] | 26.266667 | 16.8 |
def setInverted(self, state):
"""
Sets whether or not to invert the check state for collapsing.
:param state | <bool>
"""
collapsed = self.isCollapsed()
self._inverted = state
if self.isCollapsible():
self.setCollapsed(collapsed)
|
[
"def",
"setInverted",
"(",
"self",
",",
"state",
")",
":",
"collapsed",
"=",
"self",
".",
"isCollapsed",
"(",
")",
"self",
".",
"_inverted",
"=",
"state",
"if",
"self",
".",
"isCollapsible",
"(",
")",
":",
"self",
".",
"setCollapsed",
"(",
"collapsed",
")"
] | 31.1 | 9.3 |
def get_data_file_names_from_scan_base(scan_base, filter_str=['_analyzed.h5', '_interpreted.h5', '_cut.h5', '_result.h5', '_hists.h5'], sort_by_time=True, meta_data_v2=True):
"""
Generate a list of .h5 files which have a similar file name.
Parameters
----------
scan_base : list, string
List of string or string of the scan base names. The scan_base will be used to search for files containing the string. The .h5 file extension will be added automatically.
filter : list, string
List of string or string which are used to filter the returned filenames. File names containing filter_str in the file name will not be returned. Use None to disable filter.
sort_by_time : bool
If True, return file name list sorted from oldest to newest. The time from meta table will be used to sort the files.
meta_data_v2 : bool
True for new (v2) meta data format, False for the old (v1) format.
Returns
-------
data_files : list
List of file names matching the obove conditions.
"""
data_files = []
if scan_base is None:
return data_files
if isinstance(scan_base, basestring):
scan_base = [scan_base]
for scan_base_str in scan_base:
if '.h5' == os.path.splitext(scan_base_str)[1]:
data_files.append(scan_base_str)
else:
data_files.extend(glob.glob(scan_base_str + '*.h5'))
if filter_str:
if isinstance(filter_str, basestring):
filter_str = [filter_str]
data_files = filter(lambda data_file: not any([(True if x in data_file else False) for x in filter_str]), data_files)
if sort_by_time and len(data_files) > 1:
f_list = {}
for data_file in data_files:
with tb.open_file(data_file, mode="r") as h5_file:
try:
meta_data = h5_file.root.meta_data
except tb.NoSuchNodeError:
logging.warning("File %s is missing meta_data" % h5_file.filename)
else:
try:
if meta_data_v2:
timestamp = meta_data[0]["timestamp_start"]
else:
timestamp = meta_data[0]["timestamp"]
except IndexError:
logging.info("File %s has empty meta_data" % h5_file.filename)
else:
f_list[data_file] = timestamp
data_files = list(sorted(f_list, key=f_list.__getitem__, reverse=False))
return data_files
|
[
"def",
"get_data_file_names_from_scan_base",
"(",
"scan_base",
",",
"filter_str",
"=",
"[",
"'_analyzed.h5'",
",",
"'_interpreted.h5'",
",",
"'_cut.h5'",
",",
"'_result.h5'",
",",
"'_hists.h5'",
"]",
",",
"sort_by_time",
"=",
"True",
",",
"meta_data_v2",
"=",
"True",
")",
":",
"data_files",
"=",
"[",
"]",
"if",
"scan_base",
"is",
"None",
":",
"return",
"data_files",
"if",
"isinstance",
"(",
"scan_base",
",",
"basestring",
")",
":",
"scan_base",
"=",
"[",
"scan_base",
"]",
"for",
"scan_base_str",
"in",
"scan_base",
":",
"if",
"'.h5'",
"==",
"os",
".",
"path",
".",
"splitext",
"(",
"scan_base_str",
")",
"[",
"1",
"]",
":",
"data_files",
".",
"append",
"(",
"scan_base_str",
")",
"else",
":",
"data_files",
".",
"extend",
"(",
"glob",
".",
"glob",
"(",
"scan_base_str",
"+",
"'*.h5'",
")",
")",
"if",
"filter_str",
":",
"if",
"isinstance",
"(",
"filter_str",
",",
"basestring",
")",
":",
"filter_str",
"=",
"[",
"filter_str",
"]",
"data_files",
"=",
"filter",
"(",
"lambda",
"data_file",
":",
"not",
"any",
"(",
"[",
"(",
"True",
"if",
"x",
"in",
"data_file",
"else",
"False",
")",
"for",
"x",
"in",
"filter_str",
"]",
")",
",",
"data_files",
")",
"if",
"sort_by_time",
"and",
"len",
"(",
"data_files",
")",
">",
"1",
":",
"f_list",
"=",
"{",
"}",
"for",
"data_file",
"in",
"data_files",
":",
"with",
"tb",
".",
"open_file",
"(",
"data_file",
",",
"mode",
"=",
"\"r\"",
")",
"as",
"h5_file",
":",
"try",
":",
"meta_data",
"=",
"h5_file",
".",
"root",
".",
"meta_data",
"except",
"tb",
".",
"NoSuchNodeError",
":",
"logging",
".",
"warning",
"(",
"\"File %s is missing meta_data\"",
"%",
"h5_file",
".",
"filename",
")",
"else",
":",
"try",
":",
"if",
"meta_data_v2",
":",
"timestamp",
"=",
"meta_data",
"[",
"0",
"]",
"[",
"\"timestamp_start\"",
"]",
"else",
":",
"timestamp",
"=",
"meta_data",
"[",
"0",
"]",
"[",
"\"timestamp\"",
"]",
"except",
"IndexError",
":",
"logging",
".",
"info",
"(",
"\"File %s has empty meta_data\"",
"%",
"h5_file",
".",
"filename",
")",
"else",
":",
"f_list",
"[",
"data_file",
"]",
"=",
"timestamp",
"data_files",
"=",
"list",
"(",
"sorted",
"(",
"f_list",
",",
"key",
"=",
"f_list",
".",
"__getitem__",
",",
"reverse",
"=",
"False",
")",
")",
"return",
"data_files"
] | 45.196429 | 27.589286 |
def persistent_write(self, address, byte, refresh_config=False):
'''
Write a single byte to an address in persistent memory.
Parameters
----------
address : int
Address in persistent memory (e.g., EEPROM).
byte : int
Value to write to address.
refresh_config : bool, optional
Is ``True``, :meth:`load_config()` is called afterward to refresh
the configuration settings.
'''
self._persistent_write(address, byte)
if refresh_config:
self.load_config(False)
|
[
"def",
"persistent_write",
"(",
"self",
",",
"address",
",",
"byte",
",",
"refresh_config",
"=",
"False",
")",
":",
"self",
".",
"_persistent_write",
"(",
"address",
",",
"byte",
")",
"if",
"refresh_config",
":",
"self",
".",
"load_config",
"(",
"False",
")"
] | 34.058824 | 18.294118 |
def _project_perturbation(perturbation, epsilon, input_image, clip_min=None,
clip_max=None):
"""Project `perturbation` onto L-infinity ball of radius `epsilon`.
Also project into hypercube such that the resulting adversarial example
is between clip_min and clip_max, if applicable.
"""
if clip_min is None or clip_max is None:
raise NotImplementedError("_project_perturbation currently has clipping "
"hard-coded in.")
# Ensure inputs are in the correct range
with tf.control_dependencies([
utils_tf.assert_less_equal(input_image,
tf.cast(clip_max, input_image.dtype)),
utils_tf.assert_greater_equal(input_image,
tf.cast(clip_min, input_image.dtype))
]):
clipped_perturbation = utils_tf.clip_by_value(
perturbation, -epsilon, epsilon)
new_image = utils_tf.clip_by_value(
input_image + clipped_perturbation, clip_min, clip_max)
return new_image - input_image
|
[
"def",
"_project_perturbation",
"(",
"perturbation",
",",
"epsilon",
",",
"input_image",
",",
"clip_min",
"=",
"None",
",",
"clip_max",
"=",
"None",
")",
":",
"if",
"clip_min",
"is",
"None",
"or",
"clip_max",
"is",
"None",
":",
"raise",
"NotImplementedError",
"(",
"\"_project_perturbation currently has clipping \"",
"\"hard-coded in.\"",
")",
"# Ensure inputs are in the correct range",
"with",
"tf",
".",
"control_dependencies",
"(",
"[",
"utils_tf",
".",
"assert_less_equal",
"(",
"input_image",
",",
"tf",
".",
"cast",
"(",
"clip_max",
",",
"input_image",
".",
"dtype",
")",
")",
",",
"utils_tf",
".",
"assert_greater_equal",
"(",
"input_image",
",",
"tf",
".",
"cast",
"(",
"clip_min",
",",
"input_image",
".",
"dtype",
")",
")",
"]",
")",
":",
"clipped_perturbation",
"=",
"utils_tf",
".",
"clip_by_value",
"(",
"perturbation",
",",
"-",
"epsilon",
",",
"epsilon",
")",
"new_image",
"=",
"utils_tf",
".",
"clip_by_value",
"(",
"input_image",
"+",
"clipped_perturbation",
",",
"clip_min",
",",
"clip_max",
")",
"return",
"new_image",
"-",
"input_image"
] | 44.434783 | 16 |
def _create_attach_record(self, id, timed):
"""
Create a new pivot attachement record.
"""
record = {}
record[self._foreign_key] = self._parent.get_key()
record[self._other_key] = id
if timed:
record = self._set_timestamps_on_attach(record)
return record
|
[
"def",
"_create_attach_record",
"(",
"self",
",",
"id",
",",
"timed",
")",
":",
"record",
"=",
"{",
"}",
"record",
"[",
"self",
".",
"_foreign_key",
"]",
"=",
"self",
".",
"_parent",
".",
"get_key",
"(",
")",
"record",
"[",
"self",
".",
"_other_key",
"]",
"=",
"id",
"if",
"timed",
":",
"record",
"=",
"self",
".",
"_set_timestamps_on_attach",
"(",
"record",
")",
"return",
"record"
] | 22.928571 | 19.5 |
def rotation(f, line = 'fast'):
""" Find rotation of the survey
Find the clock-wise rotation and origin of `line` as ``(rot, cdpx, cdpy)``
The clock-wise rotation is defined as the angle in radians between line
given by the first and last trace of the first line and the axis that gives
increasing CDP-Y, in the direction that gives increasing CDP-X.
By default, the first line is the 'fast' direction, which is inlines if the
file is inline sorted, and crossline if it's crossline sorted.
Parameters
----------
f : SegyFile
line : { 'fast', 'slow', 'iline', 'xline' }
Returns
-------
rotation : float
cdpx : int
cdpy : int
Notes
-----
.. versionadded:: 1.2
"""
if f.unstructured:
raise ValueError("Rotation requires a structured file")
lines = { 'fast': f.fast,
'slow': f.slow,
'iline': f.iline,
'xline': f.xline,
}
if line not in lines:
error = "Unknown line {}".format(line)
solution = "Must be any of: {}".format(' '.join(lines.keys()))
raise ValueError('{} {}'.format(error, solution))
l = lines[line]
origin = f.header[0][segyio.su.cdpx, segyio.su.cdpy]
cdpx, cdpy = origin[segyio.su.cdpx], origin[segyio.su.cdpy]
rot = f.xfd.rotation( len(l),
l.stride,
len(f.offsets),
np.fromiter(l.keys(), dtype = np.intc) )
return rot, cdpx, cdpy
|
[
"def",
"rotation",
"(",
"f",
",",
"line",
"=",
"'fast'",
")",
":",
"if",
"f",
".",
"unstructured",
":",
"raise",
"ValueError",
"(",
"\"Rotation requires a structured file\"",
")",
"lines",
"=",
"{",
"'fast'",
":",
"f",
".",
"fast",
",",
"'slow'",
":",
"f",
".",
"slow",
",",
"'iline'",
":",
"f",
".",
"iline",
",",
"'xline'",
":",
"f",
".",
"xline",
",",
"}",
"if",
"line",
"not",
"in",
"lines",
":",
"error",
"=",
"\"Unknown line {}\"",
".",
"format",
"(",
"line",
")",
"solution",
"=",
"\"Must be any of: {}\"",
".",
"format",
"(",
"' '",
".",
"join",
"(",
"lines",
".",
"keys",
"(",
")",
")",
")",
"raise",
"ValueError",
"(",
"'{} {}'",
".",
"format",
"(",
"error",
",",
"solution",
")",
")",
"l",
"=",
"lines",
"[",
"line",
"]",
"origin",
"=",
"f",
".",
"header",
"[",
"0",
"]",
"[",
"segyio",
".",
"su",
".",
"cdpx",
",",
"segyio",
".",
"su",
".",
"cdpy",
"]",
"cdpx",
",",
"cdpy",
"=",
"origin",
"[",
"segyio",
".",
"su",
".",
"cdpx",
"]",
",",
"origin",
"[",
"segyio",
".",
"su",
".",
"cdpy",
"]",
"rot",
"=",
"f",
".",
"xfd",
".",
"rotation",
"(",
"len",
"(",
"l",
")",
",",
"l",
".",
"stride",
",",
"len",
"(",
"f",
".",
"offsets",
")",
",",
"np",
".",
"fromiter",
"(",
"l",
".",
"keys",
"(",
")",
",",
"dtype",
"=",
"np",
".",
"intc",
")",
")",
"return",
"rot",
",",
"cdpx",
",",
"cdpy"
] | 25.894737 | 25.824561 |
def post(self, url, data, headers={}):
"""
POST request for creating new objects.
data should be a dictionary.
"""
response = self._run_method('POST', url, data=data, headers=headers)
return self._handle_response(url, response)
|
[
"def",
"post",
"(",
"self",
",",
"url",
",",
"data",
",",
"headers",
"=",
"{",
"}",
")",
":",
"response",
"=",
"self",
".",
"_run_method",
"(",
"'POST'",
",",
"url",
",",
"data",
"=",
"data",
",",
"headers",
"=",
"headers",
")",
"return",
"self",
".",
"_handle_response",
"(",
"url",
",",
"response",
")"
] | 38.428571 | 8.428571 |
def subclass(cls, vt_code, vt_args):
"""Return a dynamic subclass that has the extra parameters built in"""
from geoid import get_class
import geoid.census
parser = get_class(geoid.census, vt_args.strip('/')).parse
cls = type(vt_code.replace('/', '_'), (cls,), {'vt_code': vt_code, 'parser': parser})
globals()[cls.__name__] = cls
assert cls.parser
return cls
|
[
"def",
"subclass",
"(",
"cls",
",",
"vt_code",
",",
"vt_args",
")",
":",
"from",
"geoid",
"import",
"get_class",
"import",
"geoid",
".",
"census",
"parser",
"=",
"get_class",
"(",
"geoid",
".",
"census",
",",
"vt_args",
".",
"strip",
"(",
"'/'",
")",
")",
".",
"parse",
"cls",
"=",
"type",
"(",
"vt_code",
".",
"replace",
"(",
"'/'",
",",
"'_'",
")",
",",
"(",
"cls",
",",
")",
",",
"{",
"'vt_code'",
":",
"vt_code",
",",
"'parser'",
":",
"parser",
"}",
")",
"globals",
"(",
")",
"[",
"cls",
".",
"__name__",
"]",
"=",
"cls",
"assert",
"cls",
".",
"parser",
"return",
"cls"
] | 34.583333 | 21.75 |
def deprecated(*args):
""" Deprecation warning decorator. Takes optional deprecation message,
otherwise will use a generic warning. """
def wrap(func):
def wrapped_func(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return func(*args, **kwargs)
return wrapped_func
if len(args) == 1 and callable(args[0]):
msg = "Function '%s' will be deprecated in future versions of " \
"Neurosynth." % args[0].__name__
return wrap(args[0])
else:
msg = args[0]
return wrap
|
[
"def",
"deprecated",
"(",
"*",
"args",
")",
":",
"def",
"wrap",
"(",
"func",
")",
":",
"def",
"wrapped_func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"warnings",
".",
"warn",
"(",
"msg",
",",
"category",
"=",
"DeprecationWarning",
")",
"return",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"wrapped_func",
"if",
"len",
"(",
"args",
")",
"==",
"1",
"and",
"callable",
"(",
"args",
"[",
"0",
"]",
")",
":",
"msg",
"=",
"\"Function '%s' will be deprecated in future versions of \"",
"\"Neurosynth.\"",
"%",
"args",
"[",
"0",
"]",
".",
"__name__",
"return",
"wrap",
"(",
"args",
"[",
"0",
"]",
")",
"else",
":",
"msg",
"=",
"args",
"[",
"0",
"]",
"return",
"wrap"
] | 35.375 | 14.8125 |
def _traverse(self, start_paths, traversal_path):
"""
Traverse a multi-hop traversal path from a list of start instance
paths, and return the resulting list of instance paths.
Parameters:
start_paths (list of CIMInstanceName): Instance paths to start
traversal from.
traversal_path (list of string): Traversal hops, where the list
contains pairs of items: association class name, far end class
name. Example: a 2-hop traversal is represented as
`['A1', 'C1', 'A2', 'C2']`.
Returns:
List of CIMInstanceName: Instances at the far end of the traversal.
"""
assert len(traversal_path) >= 2
assoc_class = traversal_path[0]
far_class = traversal_path[1]
total_next_paths = []
for path in start_paths:
next_paths = self._conn.AssociatorNames(
ObjectName=path,
AssocClass=assoc_class,
ResultClass=far_class)
total_next_paths.extend(next_paths)
traversal_path = traversal_path[2:]
if traversal_path:
total_next_paths = self._traverse(total_next_paths, traversal_path)
return total_next_paths
|
[
"def",
"_traverse",
"(",
"self",
",",
"start_paths",
",",
"traversal_path",
")",
":",
"assert",
"len",
"(",
"traversal_path",
")",
">=",
"2",
"assoc_class",
"=",
"traversal_path",
"[",
"0",
"]",
"far_class",
"=",
"traversal_path",
"[",
"1",
"]",
"total_next_paths",
"=",
"[",
"]",
"for",
"path",
"in",
"start_paths",
":",
"next_paths",
"=",
"self",
".",
"_conn",
".",
"AssociatorNames",
"(",
"ObjectName",
"=",
"path",
",",
"AssocClass",
"=",
"assoc_class",
",",
"ResultClass",
"=",
"far_class",
")",
"total_next_paths",
".",
"extend",
"(",
"next_paths",
")",
"traversal_path",
"=",
"traversal_path",
"[",
"2",
":",
"]",
"if",
"traversal_path",
":",
"total_next_paths",
"=",
"self",
".",
"_traverse",
"(",
"total_next_paths",
",",
"traversal_path",
")",
"return",
"total_next_paths"
] | 40.966667 | 16.033333 |
def delete_probes(probes, test=False, commit=True, **kwargs): # pylint: disable=unused-argument
'''
Removes RPM/SLA probes from the network device.
Calls the configuration template 'delete_probes' from the NAPALM library,
providing as input a rich formatted dictionary with the configuration details of the probes to be removed
from the configuration of the device.
:param probes: Dictionary with a similar format as the output dictionary of
the function config(), where the details are not necessary.
:param test: Dry run? If set as True, will apply the config, discard and
return the changes. Default: False
:param commit: Commit? (default: True) Sometimes it is not needed to commit
the config immediately after loading the changes. E.g.: a state loads a
couple of parts (add / remove / update) and would not be optimal to
commit after each operation. Also, from the CLI when the user needs to
apply the similar changes before committing, can specify commit=False
and will not discard the config.
:raise MergeConfigException: If there is an error on the configuration sent.
:return: A dictionary having the following keys:
- result (bool): if the config was applied successfully. It is `False` only
in case of failure. In case there are no changes to be applied and
successfully performs all operations it is still `True` and so will be
the `already_configured` flag (example below)
- comment (str): a message for the user
- already_configured (bool): flag to check if there were no changes applied
- diff (str): returns the config changes applied
Input example:
.. code-block:: python
probes = {
'existing_probe':{
'existing_test1': {},
'existing_test2': {}
}
}
'''
return __salt__['net.load_template']('delete_probes',
probes=probes,
test=test,
commit=commit,
inherit_napalm_device=napalm_device)
|
[
"def",
"delete_probes",
"(",
"probes",
",",
"test",
"=",
"False",
",",
"commit",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"# pylint: disable=unused-argument",
"return",
"__salt__",
"[",
"'net.load_template'",
"]",
"(",
"'delete_probes'",
",",
"probes",
"=",
"probes",
",",
"test",
"=",
"test",
",",
"commit",
"=",
"commit",
",",
"inherit_napalm_device",
"=",
"napalm_device",
")"
] | 44.729167 | 28.020833 |
def clone(self):
"""Creates a clone of this aggregator."""
return type(self)(self.__cmp, self.__key, self.__reverse, name = self.name, dataFormat = self._dataFormat)
|
[
"def",
"clone",
"(",
"self",
")",
":",
"return",
"type",
"(",
"self",
")",
"(",
"self",
".",
"__cmp",
",",
"self",
".",
"__key",
",",
"self",
".",
"__reverse",
",",
"name",
"=",
"self",
".",
"name",
",",
"dataFormat",
"=",
"self",
".",
"_dataFormat",
")"
] | 57 | 31.333333 |
def _rule_id(self, id: int) -> str:
"""
Convert an integer into a gorule key id.
"""
if id is None or id == 0 or id >= 10000000:
return "other"
return "gorule-{:0>7}".format(id)
|
[
"def",
"_rule_id",
"(",
"self",
",",
"id",
":",
"int",
")",
"->",
"str",
":",
"if",
"id",
"is",
"None",
"or",
"id",
"==",
"0",
"or",
"id",
">=",
"10000000",
":",
"return",
"\"other\"",
"return",
"\"gorule-{:0>7}\"",
".",
"format",
"(",
"id",
")"
] | 27.875 | 9.875 |
def _cli_check_role(role):
'''Checks that a basis set role exists and if not, raises a helpful exception'''
if role is None:
return None
role = role.lower()
if not role in api.get_roles():
errstr = "Role format '" + role + "' does not exist.\n"
errstr += "For a complete list of roles, use the 'bse list-roles' command"
raise RuntimeError(errstr)
return role
|
[
"def",
"_cli_check_role",
"(",
"role",
")",
":",
"if",
"role",
"is",
"None",
":",
"return",
"None",
"role",
"=",
"role",
".",
"lower",
"(",
")",
"if",
"not",
"role",
"in",
"api",
".",
"get_roles",
"(",
")",
":",
"errstr",
"=",
"\"Role format '\"",
"+",
"role",
"+",
"\"' does not exist.\\n\"",
"errstr",
"+=",
"\"For a complete list of roles, use the 'bse list-roles' command\"",
"raise",
"RuntimeError",
"(",
"errstr",
")",
"return",
"role"
] | 30.846154 | 25.923077 |
def _get_min_distance_to_volcanic_front(lons, lats):
"""
Compute and return minimum distance between volcanic front and points
specified by 'lon' and 'lat'.
Distance is negative if point is located east of the volcanic front,
positive otherwise.
The method uses the same approach as :meth:`_get_min_distance_to_sub_trench`
but final distance is returned without taking the absolute value.
"""
vf = _construct_surface(VOLCANIC_FRONT_LONS, VOLCANIC_FRONT_LATS, 0., 10.)
sites = Mesh(lons, lats, None)
return vf.get_rx_distance(sites)
|
[
"def",
"_get_min_distance_to_volcanic_front",
"(",
"lons",
",",
"lats",
")",
":",
"vf",
"=",
"_construct_surface",
"(",
"VOLCANIC_FRONT_LONS",
",",
"VOLCANIC_FRONT_LATS",
",",
"0.",
",",
"10.",
")",
"sites",
"=",
"Mesh",
"(",
"lons",
",",
"lats",
",",
"None",
")",
"return",
"vf",
".",
"get_rx_distance",
"(",
"sites",
")"
] | 40.285714 | 21.285714 |
def segwit_address(self):
"""The public segwit nested in P2SH address you share with others to
receive funds."""
# Only make segwit address if public key is compressed
if self._segwit_address is None and self.is_compressed():
self._segwit_address = public_key_to_segwit_address(
self._public_key, version=self.version)
return self._segwit_address
|
[
"def",
"segwit_address",
"(",
"self",
")",
":",
"# Only make segwit address if public key is compressed",
"if",
"self",
".",
"_segwit_address",
"is",
"None",
"and",
"self",
".",
"is_compressed",
"(",
")",
":",
"self",
".",
"_segwit_address",
"=",
"public_key_to_segwit_address",
"(",
"self",
".",
"_public_key",
",",
"version",
"=",
"self",
".",
"version",
")",
"return",
"self",
".",
"_segwit_address"
] | 50.875 | 13.25 |
def show_zoning_enabled_configuration_input_request_type_get_next_request_last_rcvd_zone_name(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
show_zoning_enabled_configuration = ET.Element("show_zoning_enabled_configuration")
config = show_zoning_enabled_configuration
input = ET.SubElement(show_zoning_enabled_configuration, "input")
request_type = ET.SubElement(input, "request-type")
get_next_request = ET.SubElement(request_type, "get-next-request")
last_rcvd_zone_name = ET.SubElement(get_next_request, "last-rcvd-zone-name")
last_rcvd_zone_name.text = kwargs.pop('last_rcvd_zone_name')
callback = kwargs.pop('callback', self._callback)
return callback(config)
|
[
"def",
"show_zoning_enabled_configuration_input_request_type_get_next_request_last_rcvd_zone_name",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"ET",
".",
"Element",
"(",
"\"config\"",
")",
"show_zoning_enabled_configuration",
"=",
"ET",
".",
"Element",
"(",
"\"show_zoning_enabled_configuration\"",
")",
"config",
"=",
"show_zoning_enabled_configuration",
"input",
"=",
"ET",
".",
"SubElement",
"(",
"show_zoning_enabled_configuration",
",",
"\"input\"",
")",
"request_type",
"=",
"ET",
".",
"SubElement",
"(",
"input",
",",
"\"request-type\"",
")",
"get_next_request",
"=",
"ET",
".",
"SubElement",
"(",
"request_type",
",",
"\"get-next-request\"",
")",
"last_rcvd_zone_name",
"=",
"ET",
".",
"SubElement",
"(",
"get_next_request",
",",
"\"last-rcvd-zone-name\"",
")",
"last_rcvd_zone_name",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'last_rcvd_zone_name'",
")",
"callback",
"=",
"kwargs",
".",
"pop",
"(",
"'callback'",
",",
"self",
".",
"_callback",
")",
"return",
"callback",
"(",
"config",
")"
] | 55.357143 | 25.571429 |
def subscribe(
self,
plan,
charge_immediately=True,
application_fee_percent=None,
coupon=None,
quantity=None,
metadata=None,
tax_percent=None,
billing_cycle_anchor=None,
trial_end=None,
trial_from_plan=None,
trial_period_days=None,
):
"""
Subscribes this customer to a plan.
:param plan: The plan to which to subscribe the customer.
:type plan: Plan or string (plan ID)
:param application_fee_percent: This represents the percentage of the subscription invoice subtotal
that will be transferred to the application owner's Stripe account.
The request must be made with an OAuth key in order to set an
application fee percentage.
:type application_fee_percent: Decimal. Precision is 2; anything more will be ignored. A positive
decimal between 1 and 100.
:param coupon: The code of the coupon to apply to this subscription. A coupon applied to a subscription
will only affect invoices created for that particular subscription.
:type coupon: string
:param quantity: The quantity applied to this subscription. Default is 1.
:type quantity: integer
:param metadata: A set of key/value pairs useful for storing additional information.
:type metadata: dict
:param tax_percent: This represents the percentage of the subscription invoice subtotal that will
be calculated and added as tax to the final amount each billing period.
:type tax_percent: Decimal. Precision is 2; anything more will be ignored. A positive decimal
between 1 and 100.
:param billing_cycle_anchor: A future timestamp to anchor the subscription’s billing cycle.
This is used to determine the date of the first full invoice, and,
for plans with month or year intervals, the day of the month for
subsequent invoices.
:type billing_cycle_anchor: datetime
:param trial_end: The end datetime of the trial period the customer will get before being charged for
the first time. If set, this will override the default trial period of the plan the
customer is being subscribed to. The special value ``now`` can be provided to end
the customer's trial immediately.
:type trial_end: datetime
:param charge_immediately: Whether or not to charge for the subscription upon creation. If False, an
invoice will be created at the end of this period.
:type charge_immediately: boolean
:param trial_from_plan: Indicates if a plan’s trial_period_days should be applied to the subscription.
Setting trial_end per subscription is preferred, and this defaults to false.
Setting this flag to true together with trial_end is not allowed.
:type trial_from_plan: boolean
:param trial_period_days: Integer representing the number of trial period days before the customer is
charged for the first time. This will always overwrite any trials that might
apply via a subscribed plan.
:type trial_period_days: integer
.. Notes:
.. ``charge_immediately`` is only available on ``Customer.subscribe()``
.. if you're using ``Customer.subscribe()`` instead of ``Customer.subscribe()``, ``plan`` \
can only be a string
"""
from .billing import Subscription
# Convert Plan to id
if isinstance(plan, StripeModel):
plan = plan.id
stripe_subscription = Subscription._api_create(
plan=plan,
customer=self.id,
application_fee_percent=application_fee_percent,
coupon=coupon,
quantity=quantity,
metadata=metadata,
billing_cycle_anchor=billing_cycle_anchor,
tax_percent=tax_percent,
trial_end=trial_end,
trial_from_plan=trial_from_plan,
trial_period_days=trial_period_days,
)
if charge_immediately:
self.send_invoice()
return Subscription.sync_from_stripe_data(stripe_subscription)
|
[
"def",
"subscribe",
"(",
"self",
",",
"plan",
",",
"charge_immediately",
"=",
"True",
",",
"application_fee_percent",
"=",
"None",
",",
"coupon",
"=",
"None",
",",
"quantity",
"=",
"None",
",",
"metadata",
"=",
"None",
",",
"tax_percent",
"=",
"None",
",",
"billing_cycle_anchor",
"=",
"None",
",",
"trial_end",
"=",
"None",
",",
"trial_from_plan",
"=",
"None",
",",
"trial_period_days",
"=",
"None",
",",
")",
":",
"from",
".",
"billing",
"import",
"Subscription",
"# Convert Plan to id",
"if",
"isinstance",
"(",
"plan",
",",
"StripeModel",
")",
":",
"plan",
"=",
"plan",
".",
"id",
"stripe_subscription",
"=",
"Subscription",
".",
"_api_create",
"(",
"plan",
"=",
"plan",
",",
"customer",
"=",
"self",
".",
"id",
",",
"application_fee_percent",
"=",
"application_fee_percent",
",",
"coupon",
"=",
"coupon",
",",
"quantity",
"=",
"quantity",
",",
"metadata",
"=",
"metadata",
",",
"billing_cycle_anchor",
"=",
"billing_cycle_anchor",
",",
"tax_percent",
"=",
"tax_percent",
",",
"trial_end",
"=",
"trial_end",
",",
"trial_from_plan",
"=",
"trial_from_plan",
",",
"trial_period_days",
"=",
"trial_period_days",
",",
")",
"if",
"charge_immediately",
":",
"self",
".",
"send_invoice",
"(",
")",
"return",
"Subscription",
".",
"sync_from_stripe_data",
"(",
"stripe_subscription",
")"
] | 41.436782 | 25.850575 |
def ystep(self):
r"""Minimise Augmented Lagrangian with respect to
:math:`\mathbf{y}`."""
AXU = self.AX + self.U
self.Y[..., 0:-1] = sp.prox_l2(AXU[..., 0:-1], self.mu/self.rho)
self.Y[..., -1] = sp.prox_l1(AXU[..., -1],
(self.lmbda/self.rho) * self.Wl1)
|
[
"def",
"ystep",
"(",
"self",
")",
":",
"AXU",
"=",
"self",
".",
"AX",
"+",
"self",
".",
"U",
"self",
".",
"Y",
"[",
"...",
",",
"0",
":",
"-",
"1",
"]",
"=",
"sp",
".",
"prox_l2",
"(",
"AXU",
"[",
"...",
",",
"0",
":",
"-",
"1",
"]",
",",
"self",
".",
"mu",
"/",
"self",
".",
"rho",
")",
"self",
".",
"Y",
"[",
"...",
",",
"-",
"1",
"]",
"=",
"sp",
".",
"prox_l1",
"(",
"AXU",
"[",
"...",
",",
"-",
"1",
"]",
",",
"(",
"self",
".",
"lmbda",
"/",
"self",
".",
"rho",
")",
"*",
"self",
".",
"Wl1",
")"
] | 40.625 | 18.25 |
def maybe_download_and_extract():
"""Download and extract the tarball from Alex's website."""
dest_directory = "/tmp/cifar"
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
|
[
"def",
"maybe_download_and_extract",
"(",
")",
":",
"dest_directory",
"=",
"\"/tmp/cifar\"",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"dest_directory",
")",
":",
"os",
".",
"makedirs",
"(",
"dest_directory",
")",
"filename",
"=",
"DATA_URL",
".",
"split",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
"filepath",
"=",
"os",
".",
"path",
".",
"join",
"(",
"dest_directory",
",",
"filename",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"filepath",
")",
":",
"def",
"_progress",
"(",
"count",
",",
"block_size",
",",
"total_size",
")",
":",
"sys",
".",
"stdout",
".",
"write",
"(",
"'\\r>> Downloading %s %.1f%%'",
"%",
"(",
"filename",
",",
"float",
"(",
"count",
"*",
"block_size",
")",
"/",
"float",
"(",
"total_size",
")",
"*",
"100.0",
")",
")",
"sys",
".",
"stdout",
".",
"flush",
"(",
")",
"filepath",
",",
"_",
"=",
"urllib",
".",
"request",
".",
"urlretrieve",
"(",
"DATA_URL",
",",
"filepath",
",",
"_progress",
")",
"print",
"(",
")",
"statinfo",
"=",
"os",
".",
"stat",
"(",
"filepath",
")",
"print",
"(",
"'Successfully downloaded'",
",",
"filename",
",",
"statinfo",
".",
"st_size",
",",
"'bytes.'",
")",
"tarfile",
".",
"open",
"(",
"filepath",
",",
"'r:gz'",
")",
".",
"extractall",
"(",
"dest_directory",
")"
] | 45.411765 | 14.529412 |
def open_filezip(file_path, find_str):
"""
Open the wrapped file.
Read directly from the zip without extracting its content.
"""
if zipfile.is_zipfile(file_path):
zipf = zipfile.ZipFile(file_path)
interesting_files = [f for f in zipf.infolist() if find_str in f]
for inside_file in interesting_files:
yield zipf.open(inside_file)
|
[
"def",
"open_filezip",
"(",
"file_path",
",",
"find_str",
")",
":",
"if",
"zipfile",
".",
"is_zipfile",
"(",
"file_path",
")",
":",
"zipf",
"=",
"zipfile",
".",
"ZipFile",
"(",
"file_path",
")",
"interesting_files",
"=",
"[",
"f",
"for",
"f",
"in",
"zipf",
".",
"infolist",
"(",
")",
"if",
"find_str",
"in",
"f",
"]",
"for",
"inside_file",
"in",
"interesting_files",
":",
"yield",
"zipf",
".",
"open",
"(",
"inside_file",
")"
] | 34.181818 | 10.909091 |
def convergence_criteria_small_relative_norm_weights_change(
tolerance=1e-5,
norm_order=2):
"""Returns Python `callable` which indicates fitting procedure has converged.
Writing old, new `model_coefficients` as `w0`, `w1`, this function
defines convergence as,
```python
relative_euclidean_norm = (tf.norm(w0 - w1, ord=2, axis=-1) /
(1. + tf.norm(w0, ord=2, axis=-1)))
reduce_all(relative_euclidean_norm < tolerance)
```
where `tf.norm(x, ord=2)` denotes the [Euclidean norm](
https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm) of `x`.
Args:
tolerance: `float`-like `Tensor` indicating convergence, i.e., when
max relative Euclidean norm weights difference < tolerance`.
Default value: `1e-5`.
norm_order: Order of the norm. Default value: `2` (i.e., "Euclidean norm".)
Returns:
convergence_criteria_fn: Python `callable` which returns `bool` `Tensor`
indicated fitting procedure has converged. (See inner function
specification for argument signature.)
Default value: `1e-5`.
"""
def convergence_criteria_fn(
is_converged_previous, # pylint: disable=unused-argument
iter_,
model_coefficients_previous,
predicted_linear_response_previous, # pylint: disable=unused-argument
model_coefficients_next,
predicted_linear_response_next, # pylint: disable=unused-argument
response, # pylint: disable=unused-argument
model, # pylint: disable=unused-argument
dispersion): # pylint: disable=unused-argument
"""Returns `bool` `Tensor` indicating if fitting procedure has converged.
Args:
is_converged_previous: "old" convergence results.
iter_: Iteration number.
model_coefficients_previous: "old" `model_coefficients`.
predicted_linear_response_previous: "old" `predicted_linear_response`.
model_coefficients_next: "new" `model_coefficients`.
predicted_linear_response_next: "new: `predicted_linear_response`.
response: (Batch of) vector-shaped `Tensor` where each element represents
a sample's observed response (to the corresponding row of features).
Must have same `dtype` as `model_matrix`.
model: `tfp.glm.ExponentialFamily`-like instance used to construct the
negative log-likelihood loss, gradient, and expected Hessian (i.e., the
Fisher information matrix).
dispersion: `Tensor` representing `response` dispersion, i.e., as in:
`p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast
with rows of `model_matrix`.
Default value: `None` (i.e., "no dispersion").
Returns:
is_converged: `bool` `Tensor`.
"""
relative_euclidean_norm = (
tf.norm(
tensor=model_coefficients_previous - model_coefficients_next,
ord=norm_order,
axis=-1) /
(1. +
tf.norm(tensor=model_coefficients_previous, ord=norm_order, axis=-1)))
return (iter_ > 0) & tf.reduce_all(
input_tensor=relative_euclidean_norm < tolerance)
return convergence_criteria_fn
|
[
"def",
"convergence_criteria_small_relative_norm_weights_change",
"(",
"tolerance",
"=",
"1e-5",
",",
"norm_order",
"=",
"2",
")",
":",
"def",
"convergence_criteria_fn",
"(",
"is_converged_previous",
",",
"# pylint: disable=unused-argument",
"iter_",
",",
"model_coefficients_previous",
",",
"predicted_linear_response_previous",
",",
"# pylint: disable=unused-argument",
"model_coefficients_next",
",",
"predicted_linear_response_next",
",",
"# pylint: disable=unused-argument",
"response",
",",
"# pylint: disable=unused-argument",
"model",
",",
"# pylint: disable=unused-argument",
"dispersion",
")",
":",
"# pylint: disable=unused-argument",
"\"\"\"Returns `bool` `Tensor` indicating if fitting procedure has converged.\n\n Args:\n is_converged_previous: \"old\" convergence results.\n iter_: Iteration number.\n model_coefficients_previous: \"old\" `model_coefficients`.\n predicted_linear_response_previous: \"old\" `predicted_linear_response`.\n model_coefficients_next: \"new\" `model_coefficients`.\n predicted_linear_response_next: \"new: `predicted_linear_response`.\n response: (Batch of) vector-shaped `Tensor` where each element represents\n a sample's observed response (to the corresponding row of features).\n Must have same `dtype` as `model_matrix`.\n model: `tfp.glm.ExponentialFamily`-like instance used to construct the\n negative log-likelihood loss, gradient, and expected Hessian (i.e., the\n Fisher information matrix).\n dispersion: `Tensor` representing `response` dispersion, i.e., as in:\n `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast\n with rows of `model_matrix`.\n Default value: `None` (i.e., \"no dispersion\").\n\n Returns:\n is_converged: `bool` `Tensor`.\n \"\"\"",
"relative_euclidean_norm",
"=",
"(",
"tf",
".",
"norm",
"(",
"tensor",
"=",
"model_coefficients_previous",
"-",
"model_coefficients_next",
",",
"ord",
"=",
"norm_order",
",",
"axis",
"=",
"-",
"1",
")",
"/",
"(",
"1.",
"+",
"tf",
".",
"norm",
"(",
"tensor",
"=",
"model_coefficients_previous",
",",
"ord",
"=",
"norm_order",
",",
"axis",
"=",
"-",
"1",
")",
")",
")",
"return",
"(",
"iter_",
">",
"0",
")",
"&",
"tf",
".",
"reduce_all",
"(",
"input_tensor",
"=",
"relative_euclidean_norm",
"<",
"tolerance",
")",
"return",
"convergence_criteria_fn"
] | 41.931507 | 22.780822 |
def imap_unordered_async(self, func, iterable, chunksize=None, callback=None):
"""A variant of the imap_unordered() method which returns an
ApplyResult object that provides an iterator (next
method(timeout) available).
If callback is specified then it should be a callable which
accepts a single argument. When the resulting iterator becomes
ready, callback is applied to it (unless the call
failed). callback should complete immediately since otherwise
the thread which handles the results will get blocked."""
apply_result = ApplyResult(callback=callback)
collector = UnorderedResultCollector(apply_result)
self._create_sequences(func, iterable, chunksize, collector)
return apply_result
|
[
"def",
"imap_unordered_async",
"(",
"self",
",",
"func",
",",
"iterable",
",",
"chunksize",
"=",
"None",
",",
"callback",
"=",
"None",
")",
":",
"apply_result",
"=",
"ApplyResult",
"(",
"callback",
"=",
"callback",
")",
"collector",
"=",
"UnorderedResultCollector",
"(",
"apply_result",
")",
"self",
".",
"_create_sequences",
"(",
"func",
",",
"iterable",
",",
"chunksize",
",",
"collector",
")",
"return",
"apply_result"
] | 55.214286 | 19.714286 |
def extract(dset, *d_slices):
"""
:param dset: a D-dimensional dataset or array
:param d_slices: D slice objects (or similar)
:returns: a reduced D-dimensional array
>>> a = numpy.array([[1, 2, 3], [4, 5, 6]]) # shape (2, 3)
>>> extract(a, slice(None), 1)
array([[2],
[5]])
>>> extract(a, [0, 1], slice(1, 3))
array([[2, 3],
[5, 6]])
"""
shp = list(dset.shape)
if len(shp) != len(d_slices):
raise ValueError('Array with %d dimensions but %d slices' %
(len(shp), len(d_slices)))
sizes = []
slices = []
for i, slc in enumerate(d_slices):
if slc == slice(None):
size = shp[i]
slices.append([slice(None)])
elif hasattr(slc, 'start'):
size = slc.stop - slc.start
slices.append([slice(slc.start, slc.stop, 0)])
elif isinstance(slc, list):
size = len(slc)
slices.append([slice(s, s + 1, j) for j, s in enumerate(slc)])
elif isinstance(slc, Number):
size = 1
slices.append([slice(slc, slc + 1, 0)])
else:
size = shp[i]
slices.append([slc])
sizes.append(size)
array = numpy.zeros(sizes, dset.dtype)
for tup in itertools.product(*slices):
aidx = tuple(s if s.step is None
else slice(s.step, s.step + s.stop - s.start)
for s in tup)
sel = tuple(s if s.step is None else slice(s.start, s.stop)
for s in tup)
array[aidx] = dset[sel]
return array
|
[
"def",
"extract",
"(",
"dset",
",",
"*",
"d_slices",
")",
":",
"shp",
"=",
"list",
"(",
"dset",
".",
"shape",
")",
"if",
"len",
"(",
"shp",
")",
"!=",
"len",
"(",
"d_slices",
")",
":",
"raise",
"ValueError",
"(",
"'Array with %d dimensions but %d slices'",
"%",
"(",
"len",
"(",
"shp",
")",
",",
"len",
"(",
"d_slices",
")",
")",
")",
"sizes",
"=",
"[",
"]",
"slices",
"=",
"[",
"]",
"for",
"i",
",",
"slc",
"in",
"enumerate",
"(",
"d_slices",
")",
":",
"if",
"slc",
"==",
"slice",
"(",
"None",
")",
":",
"size",
"=",
"shp",
"[",
"i",
"]",
"slices",
".",
"append",
"(",
"[",
"slice",
"(",
"None",
")",
"]",
")",
"elif",
"hasattr",
"(",
"slc",
",",
"'start'",
")",
":",
"size",
"=",
"slc",
".",
"stop",
"-",
"slc",
".",
"start",
"slices",
".",
"append",
"(",
"[",
"slice",
"(",
"slc",
".",
"start",
",",
"slc",
".",
"stop",
",",
"0",
")",
"]",
")",
"elif",
"isinstance",
"(",
"slc",
",",
"list",
")",
":",
"size",
"=",
"len",
"(",
"slc",
")",
"slices",
".",
"append",
"(",
"[",
"slice",
"(",
"s",
",",
"s",
"+",
"1",
",",
"j",
")",
"for",
"j",
",",
"s",
"in",
"enumerate",
"(",
"slc",
")",
"]",
")",
"elif",
"isinstance",
"(",
"slc",
",",
"Number",
")",
":",
"size",
"=",
"1",
"slices",
".",
"append",
"(",
"[",
"slice",
"(",
"slc",
",",
"slc",
"+",
"1",
",",
"0",
")",
"]",
")",
"else",
":",
"size",
"=",
"shp",
"[",
"i",
"]",
"slices",
".",
"append",
"(",
"[",
"slc",
"]",
")",
"sizes",
".",
"append",
"(",
"size",
")",
"array",
"=",
"numpy",
".",
"zeros",
"(",
"sizes",
",",
"dset",
".",
"dtype",
")",
"for",
"tup",
"in",
"itertools",
".",
"product",
"(",
"*",
"slices",
")",
":",
"aidx",
"=",
"tuple",
"(",
"s",
"if",
"s",
".",
"step",
"is",
"None",
"else",
"slice",
"(",
"s",
".",
"step",
",",
"s",
".",
"step",
"+",
"s",
".",
"stop",
"-",
"s",
".",
"start",
")",
"for",
"s",
"in",
"tup",
")",
"sel",
"=",
"tuple",
"(",
"s",
"if",
"s",
".",
"step",
"is",
"None",
"else",
"slice",
"(",
"s",
".",
"start",
",",
"s",
".",
"stop",
")",
"for",
"s",
"in",
"tup",
")",
"array",
"[",
"aidx",
"]",
"=",
"dset",
"[",
"sel",
"]",
"return",
"array"
] | 34.130435 | 13.217391 |
def _set_return(self):
"""Sets the return parameter with description and rtype if any"""
# TODO: manage return retrieved from element code (external)
# TODO: manage different in/out styles
if type(self.docs['in']['return']) is list and self.dst.style['out'] not in ['groups', 'numpydoc', 'google']:
# TODO: manage return names
# manage not setting return if not mandatory for numpy
lst = self.docs['in']['return']
if lst:
if lst[0][0] is not None:
self.docs['out']['return'] = "%s-> %s" % (lst[0][0], lst[0][1])
else:
self.docs['out']['return'] = lst[0][1]
self.docs['out']['rtype'] = lst[0][2]
else:
self.docs['out']['return'] = self.docs['in']['return']
self.docs['out']['rtype'] = self.docs['in']['rtype']
|
[
"def",
"_set_return",
"(",
"self",
")",
":",
"# TODO: manage return retrieved from element code (external)",
"# TODO: manage different in/out styles",
"if",
"type",
"(",
"self",
".",
"docs",
"[",
"'in'",
"]",
"[",
"'return'",
"]",
")",
"is",
"list",
"and",
"self",
".",
"dst",
".",
"style",
"[",
"'out'",
"]",
"not",
"in",
"[",
"'groups'",
",",
"'numpydoc'",
",",
"'google'",
"]",
":",
"# TODO: manage return names",
"# manage not setting return if not mandatory for numpy",
"lst",
"=",
"self",
".",
"docs",
"[",
"'in'",
"]",
"[",
"'return'",
"]",
"if",
"lst",
":",
"if",
"lst",
"[",
"0",
"]",
"[",
"0",
"]",
"is",
"not",
"None",
":",
"self",
".",
"docs",
"[",
"'out'",
"]",
"[",
"'return'",
"]",
"=",
"\"%s-> %s\"",
"%",
"(",
"lst",
"[",
"0",
"]",
"[",
"0",
"]",
",",
"lst",
"[",
"0",
"]",
"[",
"1",
"]",
")",
"else",
":",
"self",
".",
"docs",
"[",
"'out'",
"]",
"[",
"'return'",
"]",
"=",
"lst",
"[",
"0",
"]",
"[",
"1",
"]",
"self",
".",
"docs",
"[",
"'out'",
"]",
"[",
"'rtype'",
"]",
"=",
"lst",
"[",
"0",
"]",
"[",
"2",
"]",
"else",
":",
"self",
".",
"docs",
"[",
"'out'",
"]",
"[",
"'return'",
"]",
"=",
"self",
".",
"docs",
"[",
"'in'",
"]",
"[",
"'return'",
"]",
"self",
".",
"docs",
"[",
"'out'",
"]",
"[",
"'rtype'",
"]",
"=",
"self",
".",
"docs",
"[",
"'in'",
"]",
"[",
"'rtype'",
"]"
] | 52.470588 | 20.647059 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.