repo
stringlengths
7
55
path
stringlengths
4
223
url
stringlengths
87
315
code
stringlengths
75
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
avg_line_len
float64
7.91
980
manns/pyspread
pyspread/src/gui/_main_window.py
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/gui/_main_window.py#L832-L905
def OnOpen(self, event): """File open event handler""" # If changes have taken place save of old grid if undo.stack().haschanged(): save_choice = self.interfaces.get_save_request_from_user() if save_choice is None: # Cancelled close operation return elif save_choice: # User wants to save content post_command_event(self.main_window, self.main_window.SaveMsg) # Get filepath from user f2w = get_filetypes2wildcards( ["pys", "pysu", "xls", "xlsx", "ods", "all"]) filetypes = f2w.keys() wildcards = f2w.values() wildcard = "|".join(wildcards) message = _("Choose file to open.") style = wx.OPEN default_filetype = config["default_open_filetype"] try: default_filterindex = filetypes.index(default_filetype) except ValueError: # Be graceful if the user has entered an unkown filetype default_filterindex = 0 get_fp_fidx = self.interfaces.get_filepath_findex_from_user filepath, filterindex = get_fp_fidx(wildcard, message, style, filterindex=default_filterindex) if filepath is None: return filetype = filetypes[filterindex] # Change the main window filepath state self.main_window.filepath = filepath # Load file into grid post_command_event(self.main_window, self.main_window.GridActionOpenMsg, attr={"filepath": filepath, "filetype": filetype}) # Set Window title to new filepath title_text = filepath.split("/")[-1] + " - pyspread" post_command_event(self.main_window, self.main_window.TitleMsg, text=title_text) self.main_window.grid.ForceRefresh() if is_gtk(): try: wx.Yield() except: pass # Update savepoint and clear the undo stack undo.stack().clear() undo.stack().savepoint() # Update content changed state try: post_command_event(self.main_window, self.ContentChangedMsg) except TypeError: # The main window does not exist any more pass
[ "def", "OnOpen", "(", "self", ",", "event", ")", ":", "# If changes have taken place save of old grid", "if", "undo", ".", "stack", "(", ")", ".", "haschanged", "(", ")", ":", "save_choice", "=", "self", ".", "interfaces", ".", "get_save_request_from_user", "(", ")", "if", "save_choice", "is", "None", ":", "# Cancelled close operation", "return", "elif", "save_choice", ":", "# User wants to save content", "post_command_event", "(", "self", ".", "main_window", ",", "self", ".", "main_window", ".", "SaveMsg", ")", "# Get filepath from user", "f2w", "=", "get_filetypes2wildcards", "(", "[", "\"pys\"", ",", "\"pysu\"", ",", "\"xls\"", ",", "\"xlsx\"", ",", "\"ods\"", ",", "\"all\"", "]", ")", "filetypes", "=", "f2w", ".", "keys", "(", ")", "wildcards", "=", "f2w", ".", "values", "(", ")", "wildcard", "=", "\"|\"", ".", "join", "(", "wildcards", ")", "message", "=", "_", "(", "\"Choose file to open.\"", ")", "style", "=", "wx", ".", "OPEN", "default_filetype", "=", "config", "[", "\"default_open_filetype\"", "]", "try", ":", "default_filterindex", "=", "filetypes", ".", "index", "(", "default_filetype", ")", "except", "ValueError", ":", "# Be graceful if the user has entered an unkown filetype", "default_filterindex", "=", "0", "get_fp_fidx", "=", "self", ".", "interfaces", ".", "get_filepath_findex_from_user", "filepath", ",", "filterindex", "=", "get_fp_fidx", "(", "wildcard", ",", "message", ",", "style", ",", "filterindex", "=", "default_filterindex", ")", "if", "filepath", "is", "None", ":", "return", "filetype", "=", "filetypes", "[", "filterindex", "]", "# Change the main window filepath state", "self", ".", "main_window", ".", "filepath", "=", "filepath", "# Load file into grid", "post_command_event", "(", "self", ".", "main_window", ",", "self", ".", "main_window", ".", "GridActionOpenMsg", ",", "attr", "=", "{", "\"filepath\"", ":", "filepath", ",", "\"filetype\"", ":", "filetype", "}", ")", "# Set Window title to new filepath", "title_text", "=", "filepath", ".", "split", "(", "\"/\"", ")", "[", "-", "1", "]", "+", "\" - pyspread\"", "post_command_event", "(", "self", ".", "main_window", ",", "self", ".", "main_window", ".", "TitleMsg", ",", "text", "=", "title_text", ")", "self", ".", "main_window", ".", "grid", ".", "ForceRefresh", "(", ")", "if", "is_gtk", "(", ")", ":", "try", ":", "wx", ".", "Yield", "(", ")", "except", ":", "pass", "# Update savepoint and clear the undo stack", "undo", ".", "stack", "(", ")", ".", "clear", "(", ")", "undo", ".", "stack", "(", ")", ".", "savepoint", "(", ")", "# Update content changed state", "try", ":", "post_command_event", "(", "self", ".", "main_window", ",", "self", ".", "ContentChangedMsg", ")", "except", "TypeError", ":", "# The main window does not exist any more", "pass" ]
File open event handler
[ "File", "open", "event", "handler" ]
python
train
31.378378
openfisca/openfisca-france-indirect-taxation
openfisca_france_indirect_taxation/param/preprocessing.py
https://github.com/openfisca/openfisca-france-indirect-taxation/blob/b4bc7da90a1126ebfc3af2c3ec61de5a2b70bb2e/openfisca_france_indirect_taxation/param/preprocessing.py#L29-L475
def preprocess_legislation(legislation_json): ''' Preprocess the legislation parameters to add prices and amounts from national accounts ''' import os import pkg_resources import pandas as pd # Add fuel prices to the tree default_config_files_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location) prix_annuel_carburants = pd.read_csv( os.path.join( default_config_files_directory, 'openfisca_france_indirect_taxation', 'assets', 'prix', 'prix_annuel_carburants.csv' ), sep =';' ) prix_annuel_carburants['Date'] = prix_annuel_carburants['Date'].astype(int) prix_annuel_carburants = prix_annuel_carburants.set_index('Date') all_values = {} prix_carburants = { "@type": "Node", "description": "prix des carburants en euros par hectolitre", "children": {}, } # For super_95_e10, we need to use the price of super_95 between 2009 and 2012 included, # because we don't have the data. We use super_95 because it is very close and won't affect the results too much prix_annuel = prix_annuel_carburants['super_95_e10_ttc'] all_values['super_95_e10_ttc'] = [] for year in range(1990, 2009): values1 = dict() values1['start'] = u'{}-01-01'.format(year) values1['stop'] = u'{}-12-31'.format(year) values1['value'] = prix_annuel.loc[year] * 100 all_values['super_95_e10_ttc'].append(values1) prix_annuel = prix_annuel_carburants['super_95_ttc'] for year in range(2009, 2013): values2 = dict() values2['start'] = u'{}-01-01'.format(year) values2['stop'] = u'{}-12-31'.format(year) values2['value'] = prix_annuel.loc[year] * 100 all_values['super_95_e10_ttc'].append(values2) prix_annuel = prix_annuel_carburants['super_95_e10_ttc'] for year in range(2013, 2015): values3 = dict() values3['start'] = u'{}-01-01'.format(year) values3['stop'] = u'{}-12-31'.format(year) values3['value'] = prix_annuel.loc[year] * 100 all_values['super_95_e10_ttc'].append(values3) prix_carburants['children']['super_95_e10_ttc'] = { "@type": "Parameter", "description": 'super_95_e10_ttc'.replace('_', ' '), "format": "float", "values": all_values['super_95_e10_ttc'] } for element in ['diesel_ht', 'diesel_ttc', 'super_95_ht', 'super_95_ttc', 'super_98_ht', 'super_98_ttc', 'super_95_e10_ht', 'gplc_ht', 'gplc_ttc', 'super_plombe_ht', 'super_plombe_ttc']: assert element in prix_annuel_carburants.columns prix_annuel = prix_annuel_carburants[element] all_values[element] = [] for year in range(1990, 2015): values = dict() values['start'] = u'{}-01-01'.format(year) values['stop'] = u'{}-12-31'.format(year) values['value'] = prix_annuel.loc[year] * 100 all_values[element].append(values) prix_carburants['children'][element] = { "@type": "Parameter", "description": element.replace('_', ' '), "format": "float", "values": all_values[element] } legislation_json['children']['imposition_indirecte']['children']['prix_carburants'] = prix_carburants # Add the number of vehicle in circulation to the tree default_config_files_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location) parc_annuel_moyen_vp = pd.read_csv( os.path.join( default_config_files_directory, 'openfisca_france_indirect_taxation', 'assets', 'quantites', 'parc_annuel_moyen_vp.csv' ), sep =';' ) parc_annuel_moyen_vp = parc_annuel_moyen_vp.set_index('Unnamed: 0') values_parc = {} parc_vp = { "@type": "Node", "description": "taille moyenne du parc automobile en France métropolitaine en milliers de véhicules", "children": {}, } for element in ['diesel', 'essence']: taille_parc = parc_annuel_moyen_vp[element] values_parc[element] = [] for year in range(1990, 2014): values = dict() values['start'] = u'{}-01-01'.format(year) values['stop'] = u'{}-12-31'.format(year) values['value'] = taille_parc.loc[year] values_parc[element].append(values) parc_vp['children'][element] = { "@type": "Parameter", "description": "nombre de véhicules particuliers immatriculés en France à motorisation " + element, "format": "float", "values": values_parc[element] } legislation_json['children']['imposition_indirecte']['children']['parc_vp'] = parc_vp # Add the total quantity of fuel consumed per year to the tree default_config_files_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location) quantite_carbu_vp_france = pd.read_csv( os.path.join( default_config_files_directory, 'openfisca_france_indirect_taxation', 'assets', 'quantites', 'quantite_carbu_vp_france.csv' ), sep =';' ) quantite_carbu_vp_france = quantite_carbu_vp_france.set_index('Unnamed: 0') values_quantite = {} quantite_carbu_vp = { "@type": "Node", "description": "quantite de carburants consommés en France métropolitaine", "children": {}, } for element in ['diesel', 'essence']: quantite_carburants = quantite_carbu_vp_france[element] values_quantite[element] = [] for year in range(1990, 2014): values = dict() values['start'] = u'{}-01-01'.format(year) values['stop'] = u'{}-12-31'.format(year) values['value'] = quantite_carburants.loc[year] values_quantite[element].append(values) quantite_carbu_vp['children'][element] = { "@type": "Parameter", "description": "consommation totale de " + element + " en France", "format": "float", "values": values_quantite[element] } legislation_json['children']['imposition_indirecte']['children']['quantite_carbu_vp'] = quantite_carbu_vp # Add the shares of each type of supercabrurant (SP95, SP98, E10, etc.) among supercarburants default_config_files_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location) part_des_types_de_supercarburants = pd.read_csv( os.path.join( default_config_files_directory, 'openfisca_france_indirect_taxation', 'assets', 'part_des_types_de_supercarburants.csv' ), sep =';' ) del part_des_types_de_supercarburants['Source'] part_des_types_de_supercarburants = \ part_des_types_de_supercarburants[part_des_types_de_supercarburants['annee'] > 0].copy() part_des_types_de_supercarburants['annee'] = part_des_types_de_supercarburants['annee'].astype(int) part_des_types_de_supercarburants = part_des_types_de_supercarburants.set_index('annee') # delete share of e_85 because we have no data for its price # When the sum of all shares is not one, need to multiply each share by the same coefficient cols = part_des_types_de_supercarburants.columns for element in cols: part_des_types_de_supercarburants[element] = ( part_des_types_de_supercarburants[element] / (part_des_types_de_supercarburants['somme'] - part_des_types_de_supercarburants['sp_e85']) ) del part_des_types_de_supercarburants['sp_e85'] del part_des_types_de_supercarburants['somme'] cols = part_des_types_de_supercarburants.columns part_des_types_de_supercarburants['somme'] = 0 for element in cols: part_des_types_de_supercarburants['somme'] += part_des_types_de_supercarburants[element] assert (part_des_types_de_supercarburants['somme'] == 1).any(), "The weighting of the shares did not work" values_part_supercarburants = {} part_type_supercaburant = { "@type": "Node", "description": "part de la consommation totale d'essence de chaque type supercarburant", "children": {}, } for element in ['super_plombe', 'sp_95', 'sp_98', 'sp_e10']: part_par_carburant = part_des_types_de_supercarburants[element] values_part_supercarburants[element] = [] for year in range(2000, 2015): values = dict() values['start'] = u'{}-01-01'.format(year) values['stop'] = u'{}-12-31'.format(year) values['value'] = part_par_carburant.loc[year] values_part_supercarburants[element].append(values) part_type_supercaburant['children'][element] = { "@type": "Parameter", "description": "part de " + element + " dans la consommation totale d'essences", "format": "float", "values": values_part_supercarburants[element] } legislation_json['children']['imposition_indirecte']['children']['part_type_supercarburants'] = \ part_type_supercaburant # Add data from comptabilite national about alcohol alcool_conso_et_vin = { "@type": "Node", "description": "alcools", "children": {}, } alcool_conso_et_vin['children']['vin'] = { "@type": "Node", "description": "Pour calculer le taux de taxation implicite sur le vin", "children": { "droit_cn_vin": { "@type": "Parameter", "description": u"Masse droit vin, vin mousseux, cidres et poirés selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 129}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 130}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 129}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 132}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 133}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 127}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 127}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 127}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 127}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 125}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 117}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 119}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 117}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 114}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 117}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 119}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 118}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 120}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 122}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, "masse_conso_cn_vin": { "@type": "Parameter", "description": u"Masse consommation vin, vin mousseux, cidres et poirés selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 7191}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 7419}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 7636}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 8025}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 8451}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 8854}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 9168}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 9476}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 9695}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 9985}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 9933}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 10002}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 10345}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 10461}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 10728}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 11002}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 11387}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 11407}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 11515}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, }, } alcool_conso_et_vin['children']['biere'] = { "@type": "Node", "description": "Pour calculer le taux de taxation implicite sur la bière", "children": { "droit_cn_biere": { "@type": "Parameter", "description": "Masse droit biere selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 361}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 366}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 364}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 365}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 380}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 359}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 364}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 361}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 370}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 378}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 364}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 396}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 382}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 375}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 376}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 375}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 393}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 783}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 897}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, "masse_conso_cn_biere": { "@type": "Parameter", "description": u"Masse consommation biere selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 2111}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 2144}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 2186}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 2291}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 2334}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 2290}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 2327}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 2405}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 2554}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 2484}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 2466}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 2486}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 2458}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 2287}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 2375}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 2461}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 2769}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 2868}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 3321}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, }, } alcool_conso_et_vin['children']['alcools_forts'] = { "@type": "Node", "description": "Pour calculer le taux de taxation implicite sur alcools forts", "children": { "droit_cn_alcools": { "@type": "Parameter", "description": "Masse droit alcool selon comptabilité nationale sans droits sur les produits intermediaires et cotisation spéciale alcool fort", "format": "float", "values": [ {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 1872}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 1957}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 1932}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 1891}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 1908}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 1842}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 1954}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 1990}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 2005}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 2031}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 2111}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 2150}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 2225}, # TODO: Problème pour les alcools forts chiffres différents entre les deux bases excel ! ], }, "droit_cn_alcools_total": { "@type": "Parameter", "description": u"Masse droit alcool selon comptabilité nationale avec les differents droits", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 2337}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 2350}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 2366}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 2369}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 2385}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 2416}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 2514}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 2503}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 2453}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 2409}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 2352}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 2477}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 2516}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 2528}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 2629}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 2734}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 3078}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 2718}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 3022}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, "masse_conso_cn_alcools": { "@type": "Parameter", "description": u"Masse consommation alcool selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 4893}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 5075}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 5065}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 5123}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 5234}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 5558}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 5721}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 5932}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 5895}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 5967}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 5960}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 6106}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 6142}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 6147}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 6342}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 6618}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 6680}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 6996}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 7022}, ], }, }, } legislation_json['children']['imposition_indirecte']['children']['alcool_conso_et_vin'] = alcool_conso_et_vin # Make the change from francs to euros for excise taxes in ticpe keys_ticpe = legislation_json['children']['imposition_indirecte']['children']['ticpe']['children'].keys() for element in keys_ticpe: get_values = \ legislation_json['children']['imposition_indirecte']['children']['ticpe']['children'][element]['values'] for each_value in get_values: get_character = '{}'.format(each_value['start']) year = int(get_character[:4]) if year < 2002: each_value['value'] = each_value['value'] / 6.55957 else: each_value['value'] = each_value['value'] return legislation_json
[ "def", "preprocess_legislation", "(", "legislation_json", ")", ":", "import", "os", "import", "pkg_resources", "import", "pandas", "as", "pd", "# Add fuel prices to the tree", "default_config_files_directory", "=", "os", ".", "path", ".", "join", "(", "pkg_resources", ".", "get_distribution", "(", "'openfisca_france_indirect_taxation'", ")", ".", "location", ")", "prix_annuel_carburants", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "default_config_files_directory", ",", "'openfisca_france_indirect_taxation'", ",", "'assets'", ",", "'prix'", ",", "'prix_annuel_carburants.csv'", ")", ",", "sep", "=", "';'", ")", "prix_annuel_carburants", "[", "'Date'", "]", "=", "prix_annuel_carburants", "[", "'Date'", "]", ".", "astype", "(", "int", ")", "prix_annuel_carburants", "=", "prix_annuel_carburants", ".", "set_index", "(", "'Date'", ")", "all_values", "=", "{", "}", "prix_carburants", "=", "{", "\"@type\"", ":", "\"Node\"", ",", "\"description\"", ":", "\"prix des carburants en euros par hectolitre\"", ",", "\"children\"", ":", "{", "}", ",", "}", "# For super_95_e10, we need to use the price of super_95 between 2009 and 2012 included,", "# because we don't have the data. We use super_95 because it is very close and won't affect the results too much", "prix_annuel", "=", "prix_annuel_carburants", "[", "'super_95_e10_ttc'", "]", "all_values", "[", "'super_95_e10_ttc'", "]", "=", "[", "]", "for", "year", "in", "range", "(", "1990", ",", "2009", ")", ":", "values1", "=", "dict", "(", ")", "values1", "[", "'start'", "]", "=", "u'{}-01-01'", ".", "format", "(", "year", ")", "values1", "[", "'stop'", "]", "=", "u'{}-12-31'", ".", "format", "(", "year", ")", "values1", "[", "'value'", "]", "=", "prix_annuel", ".", "loc", "[", "year", "]", "*", "100", "all_values", "[", "'super_95_e10_ttc'", "]", ".", "append", "(", "values1", ")", "prix_annuel", "=", "prix_annuel_carburants", "[", "'super_95_ttc'", "]", "for", "year", "in", "range", "(", "2009", ",", "2013", ")", ":", "values2", "=", "dict", "(", ")", "values2", "[", "'start'", "]", "=", "u'{}-01-01'", ".", "format", "(", "year", ")", "values2", "[", "'stop'", "]", "=", "u'{}-12-31'", ".", "format", "(", "year", ")", "values2", "[", "'value'", "]", "=", "prix_annuel", ".", "loc", "[", "year", "]", "*", "100", "all_values", "[", "'super_95_e10_ttc'", "]", ".", "append", "(", "values2", ")", "prix_annuel", "=", "prix_annuel_carburants", "[", "'super_95_e10_ttc'", "]", "for", "year", "in", "range", "(", "2013", ",", "2015", ")", ":", "values3", "=", "dict", "(", ")", "values3", "[", "'start'", "]", "=", "u'{}-01-01'", ".", "format", "(", "year", ")", "values3", "[", "'stop'", "]", "=", "u'{}-12-31'", ".", "format", "(", "year", ")", "values3", "[", "'value'", "]", "=", "prix_annuel", ".", "loc", "[", "year", "]", "*", "100", "all_values", "[", "'super_95_e10_ttc'", "]", ".", "append", "(", "values3", ")", "prix_carburants", "[", "'children'", "]", "[", "'super_95_e10_ttc'", "]", "=", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "'super_95_e10_ttc'", ".", "replace", "(", "'_'", ",", "' '", ")", ",", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "all_values", "[", "'super_95_e10_ttc'", "]", "}", "for", "element", "in", "[", "'diesel_ht'", ",", "'diesel_ttc'", ",", "'super_95_ht'", ",", "'super_95_ttc'", ",", "'super_98_ht'", ",", "'super_98_ttc'", ",", "'super_95_e10_ht'", ",", "'gplc_ht'", ",", "'gplc_ttc'", ",", "'super_plombe_ht'", ",", "'super_plombe_ttc'", "]", ":", "assert", "element", "in", "prix_annuel_carburants", ".", "columns", "prix_annuel", "=", "prix_annuel_carburants", "[", "element", "]", "all_values", "[", "element", "]", "=", "[", "]", "for", "year", "in", "range", "(", "1990", ",", "2015", ")", ":", "values", "=", "dict", "(", ")", "values", "[", "'start'", "]", "=", "u'{}-01-01'", ".", "format", "(", "year", ")", "values", "[", "'stop'", "]", "=", "u'{}-12-31'", ".", "format", "(", "year", ")", "values", "[", "'value'", "]", "=", "prix_annuel", ".", "loc", "[", "year", "]", "*", "100", "all_values", "[", "element", "]", ".", "append", "(", "values", ")", "prix_carburants", "[", "'children'", "]", "[", "element", "]", "=", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "element", ".", "replace", "(", "'_'", ",", "' '", ")", ",", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "all_values", "[", "element", "]", "}", "legislation_json", "[", "'children'", "]", "[", "'imposition_indirecte'", "]", "[", "'children'", "]", "[", "'prix_carburants'", "]", "=", "prix_carburants", "# Add the number of vehicle in circulation to the tree", "default_config_files_directory", "=", "os", ".", "path", ".", "join", "(", "pkg_resources", ".", "get_distribution", "(", "'openfisca_france_indirect_taxation'", ")", ".", "location", ")", "parc_annuel_moyen_vp", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "default_config_files_directory", ",", "'openfisca_france_indirect_taxation'", ",", "'assets'", ",", "'quantites'", ",", "'parc_annuel_moyen_vp.csv'", ")", ",", "sep", "=", "';'", ")", "parc_annuel_moyen_vp", "=", "parc_annuel_moyen_vp", ".", "set_index", "(", "'Unnamed: 0'", ")", "values_parc", "=", "{", "}", "parc_vp", "=", "{", "\"@type\"", ":", "\"Node\"", ",", "\"description\"", ":", "\"taille moyenne du parc automobile en France métropolitaine en milliers de véhicules\",", "", "\"children\"", ":", "{", "}", ",", "}", "for", "element", "in", "[", "'diesel'", ",", "'essence'", "]", ":", "taille_parc", "=", "parc_annuel_moyen_vp", "[", "element", "]", "values_parc", "[", "element", "]", "=", "[", "]", "for", "year", "in", "range", "(", "1990", ",", "2014", ")", ":", "values", "=", "dict", "(", ")", "values", "[", "'start'", "]", "=", "u'{}-01-01'", ".", "format", "(", "year", ")", "values", "[", "'stop'", "]", "=", "u'{}-12-31'", ".", "format", "(", "year", ")", "values", "[", "'value'", "]", "=", "taille_parc", ".", "loc", "[", "year", "]", "values_parc", "[", "element", "]", ".", "append", "(", "values", ")", "parc_vp", "[", "'children'", "]", "[", "element", "]", "=", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "\"nombre de véhicules particuliers immatriculés en France à motorisation \" + ", "l", "ment,", "", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "values_parc", "[", "element", "]", "}", "legislation_json", "[", "'children'", "]", "[", "'imposition_indirecte'", "]", "[", "'children'", "]", "[", "'parc_vp'", "]", "=", "parc_vp", "# Add the total quantity of fuel consumed per year to the tree", "default_config_files_directory", "=", "os", ".", "path", ".", "join", "(", "pkg_resources", ".", "get_distribution", "(", "'openfisca_france_indirect_taxation'", ")", ".", "location", ")", "quantite_carbu_vp_france", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "default_config_files_directory", ",", "'openfisca_france_indirect_taxation'", ",", "'assets'", ",", "'quantites'", ",", "'quantite_carbu_vp_france.csv'", ")", ",", "sep", "=", "';'", ")", "quantite_carbu_vp_france", "=", "quantite_carbu_vp_france", ".", "set_index", "(", "'Unnamed: 0'", ")", "values_quantite", "=", "{", "}", "quantite_carbu_vp", "=", "{", "\"@type\"", ":", "\"Node\"", ",", "\"description\"", ":", "\"quantite de carburants consommés en France métropolitaine\",", "", "\"children\"", ":", "{", "}", ",", "}", "for", "element", "in", "[", "'diesel'", ",", "'essence'", "]", ":", "quantite_carburants", "=", "quantite_carbu_vp_france", "[", "element", "]", "values_quantite", "[", "element", "]", "=", "[", "]", "for", "year", "in", "range", "(", "1990", ",", "2014", ")", ":", "values", "=", "dict", "(", ")", "values", "[", "'start'", "]", "=", "u'{}-01-01'", ".", "format", "(", "year", ")", "values", "[", "'stop'", "]", "=", "u'{}-12-31'", ".", "format", "(", "year", ")", "values", "[", "'value'", "]", "=", "quantite_carburants", ".", "loc", "[", "year", "]", "values_quantite", "[", "element", "]", ".", "append", "(", "values", ")", "quantite_carbu_vp", "[", "'children'", "]", "[", "element", "]", "=", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "\"consommation totale de \"", "+", "element", "+", "\" en France\"", ",", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "values_quantite", "[", "element", "]", "}", "legislation_json", "[", "'children'", "]", "[", "'imposition_indirecte'", "]", "[", "'children'", "]", "[", "'quantite_carbu_vp'", "]", "=", "quantite_carbu_vp", "# Add the shares of each type of supercabrurant (SP95, SP98, E10, etc.) among supercarburants", "default_config_files_directory", "=", "os", ".", "path", ".", "join", "(", "pkg_resources", ".", "get_distribution", "(", "'openfisca_france_indirect_taxation'", ")", ".", "location", ")", "part_des_types_de_supercarburants", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "default_config_files_directory", ",", "'openfisca_france_indirect_taxation'", ",", "'assets'", ",", "'part_des_types_de_supercarburants.csv'", ")", ",", "sep", "=", "';'", ")", "del", "part_des_types_de_supercarburants", "[", "'Source'", "]", "part_des_types_de_supercarburants", "=", "part_des_types_de_supercarburants", "[", "part_des_types_de_supercarburants", "[", "'annee'", "]", ">", "0", "]", ".", "copy", "(", ")", "part_des_types_de_supercarburants", "[", "'annee'", "]", "=", "part_des_types_de_supercarburants", "[", "'annee'", "]", ".", "astype", "(", "int", ")", "part_des_types_de_supercarburants", "=", "part_des_types_de_supercarburants", ".", "set_index", "(", "'annee'", ")", "# delete share of e_85 because we have no data for its price", "# When the sum of all shares is not one, need to multiply each share by the same coefficient", "cols", "=", "part_des_types_de_supercarburants", ".", "columns", "for", "element", "in", "cols", ":", "part_des_types_de_supercarburants", "[", "element", "]", "=", "(", "part_des_types_de_supercarburants", "[", "element", "]", "/", "(", "part_des_types_de_supercarburants", "[", "'somme'", "]", "-", "part_des_types_de_supercarburants", "[", "'sp_e85'", "]", ")", ")", "del", "part_des_types_de_supercarburants", "[", "'sp_e85'", "]", "del", "part_des_types_de_supercarburants", "[", "'somme'", "]", "cols", "=", "part_des_types_de_supercarburants", ".", "columns", "part_des_types_de_supercarburants", "[", "'somme'", "]", "=", "0", "for", "element", "in", "cols", ":", "part_des_types_de_supercarburants", "[", "'somme'", "]", "+=", "part_des_types_de_supercarburants", "[", "element", "]", "assert", "(", "part_des_types_de_supercarburants", "[", "'somme'", "]", "==", "1", ")", ".", "any", "(", ")", ",", "\"The weighting of the shares did not work\"", "values_part_supercarburants", "=", "{", "}", "part_type_supercaburant", "=", "{", "\"@type\"", ":", "\"Node\"", ",", "\"description\"", ":", "\"part de la consommation totale d'essence de chaque type supercarburant\"", ",", "\"children\"", ":", "{", "}", ",", "}", "for", "element", "in", "[", "'super_plombe'", ",", "'sp_95'", ",", "'sp_98'", ",", "'sp_e10'", "]", ":", "part_par_carburant", "=", "part_des_types_de_supercarburants", "[", "element", "]", "values_part_supercarburants", "[", "element", "]", "=", "[", "]", "for", "year", "in", "range", "(", "2000", ",", "2015", ")", ":", "values", "=", "dict", "(", ")", "values", "[", "'start'", "]", "=", "u'{}-01-01'", ".", "format", "(", "year", ")", "values", "[", "'stop'", "]", "=", "u'{}-12-31'", ".", "format", "(", "year", ")", "values", "[", "'value'", "]", "=", "part_par_carburant", ".", "loc", "[", "year", "]", "values_part_supercarburants", "[", "element", "]", ".", "append", "(", "values", ")", "part_type_supercaburant", "[", "'children'", "]", "[", "element", "]", "=", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "\"part de \"", "+", "element", "+", "\" dans la consommation totale d'essences\"", ",", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "values_part_supercarburants", "[", "element", "]", "}", "legislation_json", "[", "'children'", "]", "[", "'imposition_indirecte'", "]", "[", "'children'", "]", "[", "'part_type_supercarburants'", "]", "=", "part_type_supercaburant", "# Add data from comptabilite national about alcohol", "alcool_conso_et_vin", "=", "{", "\"@type\"", ":", "\"Node\"", ",", "\"description\"", ":", "\"alcools\"", ",", "\"children\"", ":", "{", "}", ",", "}", "alcool_conso_et_vin", "[", "'children'", "]", "[", "'vin'", "]", "=", "{", "\"@type\"", ":", "\"Node\"", ",", "\"description\"", ":", "\"Pour calculer le taux de taxation implicite sur le vin\"", ",", "\"children\"", ":", "{", "\"droit_cn_vin\"", ":", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "u\"Masse droit vin, vin mousseux, cidres et poirés selon comptabilité nationale\",", "", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "[", "{", "'start'", ":", "u'1995-01-01'", ",", "'stop'", ":", "u'1995-12-31'", ",", "'value'", ":", "129", "}", ",", "{", "'start'", ":", "u'1996-01-01'", ",", "'stop'", ":", "u'1996-12-31'", ",", "'value'", ":", "130", "}", ",", "{", "'start'", ":", "u'1997-01-01'", ",", "'stop'", ":", "u'1997-12-31'", ",", "'value'", ":", "129", "}", ",", "{", "'start'", ":", "u'1998-01-01'", ",", "'stop'", ":", "u'1998-12-31'", ",", "'value'", ":", "132", "}", ",", "{", "'start'", ":", "u'1999-01-01'", ",", "'stop'", ":", "u'1999-12-31'", ",", "'value'", ":", "133", "}", ",", "{", "'start'", ":", "u'2000-01-01'", ",", "'stop'", ":", "u'2000-12-31'", ",", "'value'", ":", "127", "}", ",", "{", "'start'", ":", "u'2001-01-01'", ",", "'stop'", ":", "u'2001-12-31'", ",", "'value'", ":", "127", "}", ",", "{", "'start'", ":", "u'2002-01-01'", ",", "'stop'", ":", "u'2002-12-31'", ",", "'value'", ":", "127", "}", ",", "{", "'start'", ":", "u'2003-01-01'", ",", "'stop'", ":", "u'2003-12-31'", ",", "'value'", ":", "127", "}", ",", "{", "'start'", ":", "u'2004-01-01'", ",", "'stop'", ":", "u'2004-12-31'", ",", "'value'", ":", "125", "}", ",", "{", "'start'", ":", "u'2005-01-01'", ",", "'stop'", ":", "u'2005-12-31'", ",", "'value'", ":", "117", "}", ",", "{", "'start'", ":", "u'2006-01-01'", ",", "'stop'", ":", "u'2006-12-31'", ",", "'value'", ":", "119", "}", ",", "{", "'start'", ":", "u'2007-01-01'", ",", "'stop'", ":", "u'2007-12-31'", ",", "'value'", ":", "117", "}", ",", "{", "'start'", ":", "u'2008-01-01'", ",", "'stop'", ":", "u'2008-12-31'", ",", "'value'", ":", "114", "}", ",", "{", "'start'", ":", "u'2009-01-01'", ",", "'stop'", ":", "u'2009-12-31'", ",", "'value'", ":", "117", "}", ",", "{", "'start'", ":", "u'2010-01-01'", ",", "'stop'", ":", "u'2010-12-31'", ",", "'value'", ":", "119", "}", ",", "{", "'start'", ":", "u'2011-01-01'", ",", "'stop'", ":", "u'2011-12-31'", ",", "'value'", ":", "118", "}", ",", "{", "'start'", ":", "u'2012-01-01'", ",", "'stop'", ":", "u'2012-12-31'", ",", "'value'", ":", "120", "}", ",", "{", "'start'", ":", "u'2013-01-01'", ",", "'stop'", ":", "u'2013-12-31'", ",", "'value'", ":", "122", "}", ",", "# {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': },", "]", ",", "}", ",", "\"masse_conso_cn_vin\"", ":", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "u\"Masse consommation vin, vin mousseux, cidres et poirés selon comptabilité nationale\",", "", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "[", "{", "'start'", ":", "u'1995-01-01'", ",", "'stop'", ":", "u'1995-12-31'", ",", "'value'", ":", "7191", "}", ",", "{", "'start'", ":", "u'1996-01-01'", ",", "'stop'", ":", "u'1996-12-31'", ",", "'value'", ":", "7419", "}", ",", "{", "'start'", ":", "u'1997-01-01'", ",", "'stop'", ":", "u'1997-12-31'", ",", "'value'", ":", "7636", "}", ",", "{", "'start'", ":", "u'1998-01-01'", ",", "'stop'", ":", "u'1998-12-31'", ",", "'value'", ":", "8025", "}", ",", "{", "'start'", ":", "u'1999-01-01'", ",", "'stop'", ":", "u'1999-12-31'", ",", "'value'", ":", "8451", "}", ",", "{", "'start'", ":", "u'2000-01-01'", ",", "'stop'", ":", "u'2000-12-31'", ",", "'value'", ":", "8854", "}", ",", "{", "'start'", ":", "u'2001-01-01'", ",", "'stop'", ":", "u'2001-12-31'", ",", "'value'", ":", "9168", "}", ",", "{", "'start'", ":", "u'2002-01-01'", ",", "'stop'", ":", "u'2002-12-31'", ",", "'value'", ":", "9476", "}", ",", "{", "'start'", ":", "u'2003-01-01'", ",", "'stop'", ":", "u'2003-12-31'", ",", "'value'", ":", "9695", "}", ",", "{", "'start'", ":", "u'2004-01-01'", ",", "'stop'", ":", "u'2004-12-31'", ",", "'value'", ":", "9985", "}", ",", "{", "'start'", ":", "u'2005-01-01'", ",", "'stop'", ":", "u'2005-12-31'", ",", "'value'", ":", "9933", "}", ",", "{", "'start'", ":", "u'2006-01-01'", ",", "'stop'", ":", "u'2006-12-31'", ",", "'value'", ":", "10002", "}", ",", "{", "'start'", ":", "u'2007-01-01'", ",", "'stop'", ":", "u'2007-12-31'", ",", "'value'", ":", "10345", "}", ",", "{", "'start'", ":", "u'2008-01-01'", ",", "'stop'", ":", "u'2008-12-31'", ",", "'value'", ":", "10461", "}", ",", "{", "'start'", ":", "u'2009-01-01'", ",", "'stop'", ":", "u'2009-12-31'", ",", "'value'", ":", "10728", "}", ",", "{", "'start'", ":", "u'2010-01-01'", ",", "'stop'", ":", "u'2010-12-31'", ",", "'value'", ":", "11002", "}", ",", "{", "'start'", ":", "u'2011-01-01'", ",", "'stop'", ":", "u'2011-12-31'", ",", "'value'", ":", "11387", "}", ",", "{", "'start'", ":", "u'2012-01-01'", ",", "'stop'", ":", "u'2012-12-31'", ",", "'value'", ":", "11407", "}", ",", "{", "'start'", ":", "u'2013-01-01'", ",", "'stop'", ":", "u'2013-12-31'", ",", "'value'", ":", "11515", "}", ",", "# {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': },", "]", ",", "}", ",", "}", ",", "}", "alcool_conso_et_vin", "[", "'children'", "]", "[", "'biere'", "]", "=", "{", "\"@type\"", ":", "\"Node\"", ",", "\"description\"", ":", "\"Pour calculer le taux de taxation implicite sur la bière\",", "", "\"children\"", ":", "{", "\"droit_cn_biere\"", ":", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "\"Masse droit biere selon comptabilité nationale\",", "", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "[", "{", "'start'", ":", "u'1995-01-01'", ",", "'stop'", ":", "u'1995-12-31'", ",", "'value'", ":", "361", "}", ",", "{", "'start'", ":", "u'1996-01-01'", ",", "'stop'", ":", "u'1996-12-31'", ",", "'value'", ":", "366", "}", ",", "{", "'start'", ":", "u'1997-01-01'", ",", "'stop'", ":", "u'1997-12-31'", ",", "'value'", ":", "364", "}", ",", "{", "'start'", ":", "u'1998-01-01'", ",", "'stop'", ":", "u'1998-12-31'", ",", "'value'", ":", "365", "}", ",", "{", "'start'", ":", "u'1999-01-01'", ",", "'stop'", ":", "u'1999-12-31'", ",", "'value'", ":", "380", "}", ",", "{", "'start'", ":", "u'2000-01-01'", ",", "'stop'", ":", "u'2000-12-31'", ",", "'value'", ":", "359", "}", ",", "{", "'start'", ":", "u'2001-01-01'", ",", "'stop'", ":", "u'2001-12-31'", ",", "'value'", ":", "364", "}", ",", "{", "'start'", ":", "u'2002-01-01'", ",", "'stop'", ":", "u'2002-12-31'", ",", "'value'", ":", "361", "}", ",", "{", "'start'", ":", "u'2003-01-01'", ",", "'stop'", ":", "u'2003-12-31'", ",", "'value'", ":", "370", "}", ",", "{", "'start'", ":", "u'2004-01-01'", ",", "'stop'", ":", "u'2004-12-31'", ",", "'value'", ":", "378", "}", ",", "{", "'start'", ":", "u'2005-01-01'", ",", "'stop'", ":", "u'2005-12-31'", ",", "'value'", ":", "364", "}", ",", "{", "'start'", ":", "u'2006-01-01'", ",", "'stop'", ":", "u'2006-12-31'", ",", "'value'", ":", "396", "}", ",", "{", "'start'", ":", "u'2007-01-01'", ",", "'stop'", ":", "u'2007-12-31'", ",", "'value'", ":", "382", "}", ",", "{", "'start'", ":", "u'2008-01-01'", ",", "'stop'", ":", "u'2008-12-31'", ",", "'value'", ":", "375", "}", ",", "{", "'start'", ":", "u'2009-01-01'", ",", "'stop'", ":", "u'2009-12-31'", ",", "'value'", ":", "376", "}", ",", "{", "'start'", ":", "u'2010-01-01'", ",", "'stop'", ":", "u'2010-12-31'", ",", "'value'", ":", "375", "}", ",", "{", "'start'", ":", "u'2011-01-01'", ",", "'stop'", ":", "u'2011-12-31'", ",", "'value'", ":", "393", "}", ",", "{", "'start'", ":", "u'2012-01-01'", ",", "'stop'", ":", "u'2012-12-31'", ",", "'value'", ":", "783", "}", ",", "{", "'start'", ":", "u'2013-01-01'", ",", "'stop'", ":", "u'2013-12-31'", ",", "'value'", ":", "897", "}", ",", "# {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': },", "]", ",", "}", ",", "\"masse_conso_cn_biere\"", ":", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "u\"Masse consommation biere selon comptabilité nationale\",", "", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "[", "{", "'start'", ":", "u'1995-01-01'", ",", "'stop'", ":", "u'1995-12-31'", ",", "'value'", ":", "2111", "}", ",", "{", "'start'", ":", "u'1996-01-01'", ",", "'stop'", ":", "u'1996-12-31'", ",", "'value'", ":", "2144", "}", ",", "{", "'start'", ":", "u'1997-01-01'", ",", "'stop'", ":", "u'1997-12-31'", ",", "'value'", ":", "2186", "}", ",", "{", "'start'", ":", "u'1998-01-01'", ",", "'stop'", ":", "u'1998-12-31'", ",", "'value'", ":", "2291", "}", ",", "{", "'start'", ":", "u'1999-01-01'", ",", "'stop'", ":", "u'1999-12-31'", ",", "'value'", ":", "2334", "}", ",", "{", "'start'", ":", "u'2000-01-01'", ",", "'stop'", ":", "u'2000-12-31'", ",", "'value'", ":", "2290", "}", ",", "{", "'start'", ":", "u'2001-01-01'", ",", "'stop'", ":", "u'2001-12-31'", ",", "'value'", ":", "2327", "}", ",", "{", "'start'", ":", "u'2002-01-01'", ",", "'stop'", ":", "u'2002-12-31'", ",", "'value'", ":", "2405", "}", ",", "{", "'start'", ":", "u'2003-01-01'", ",", "'stop'", ":", "u'2003-12-31'", ",", "'value'", ":", "2554", "}", ",", "{", "'start'", ":", "u'2004-01-01'", ",", "'stop'", ":", "u'2004-12-31'", ",", "'value'", ":", "2484", "}", ",", "{", "'start'", ":", "u'2005-01-01'", ",", "'stop'", ":", "u'2005-12-31'", ",", "'value'", ":", "2466", "}", ",", "{", "'start'", ":", "u'2006-01-01'", ",", "'stop'", ":", "u'2006-12-31'", ",", "'value'", ":", "2486", "}", ",", "{", "'start'", ":", "u'2007-01-01'", ",", "'stop'", ":", "u'2007-12-31'", ",", "'value'", ":", "2458", "}", ",", "{", "'start'", ":", "u'2008-01-01'", ",", "'stop'", ":", "u'2008-12-31'", ",", "'value'", ":", "2287", "}", ",", "{", "'start'", ":", "u'2009-01-01'", ",", "'stop'", ":", "u'2009-12-31'", ",", "'value'", ":", "2375", "}", ",", "{", "'start'", ":", "u'2010-01-01'", ",", "'stop'", ":", "u'2010-12-31'", ",", "'value'", ":", "2461", "}", ",", "{", "'start'", ":", "u'2011-01-01'", ",", "'stop'", ":", "u'2011-12-31'", ",", "'value'", ":", "2769", "}", ",", "{", "'start'", ":", "u'2012-01-01'", ",", "'stop'", ":", "u'2012-12-31'", ",", "'value'", ":", "2868", "}", ",", "{", "'start'", ":", "u'2013-01-01'", ",", "'stop'", ":", "u'2013-12-31'", ",", "'value'", ":", "3321", "}", ",", "# {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': },", "]", ",", "}", ",", "}", ",", "}", "alcool_conso_et_vin", "[", "'children'", "]", "[", "'alcools_forts'", "]", "=", "{", "\"@type\"", ":", "\"Node\"", ",", "\"description\"", ":", "\"Pour calculer le taux de taxation implicite sur alcools forts\"", ",", "\"children\"", ":", "{", "\"droit_cn_alcools\"", ":", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "\"Masse droit alcool selon comptabilité nationale sans droits sur les produits intermediaires et cotisation spéciale alcool fort\",", "", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "[", "{", "'start'", ":", "u'2000-01-01'", ",", "'stop'", ":", "u'2000-12-31'", ",", "'value'", ":", "1872", "}", ",", "{", "'start'", ":", "u'2001-01-01'", ",", "'stop'", ":", "u'2001-12-31'", ",", "'value'", ":", "1957", "}", ",", "{", "'start'", ":", "u'2002-01-01'", ",", "'stop'", ":", "u'2002-12-31'", ",", "'value'", ":", "1932", "}", ",", "{", "'start'", ":", "u'2003-01-01'", ",", "'stop'", ":", "u'2003-12-31'", ",", "'value'", ":", "1891", "}", ",", "{", "'start'", ":", "u'2004-01-01'", ",", "'stop'", ":", "u'2004-12-31'", ",", "'value'", ":", "1908", "}", ",", "{", "'start'", ":", "u'2005-01-01'", ",", "'stop'", ":", "u'2005-12-31'", ",", "'value'", ":", "1842", "}", ",", "{", "'start'", ":", "u'2006-01-01'", ",", "'stop'", ":", "u'2006-12-31'", ",", "'value'", ":", "1954", "}", ",", "{", "'start'", ":", "u'2007-01-01'", ",", "'stop'", ":", "u'2007-12-31'", ",", "'value'", ":", "1990", "}", ",", "{", "'start'", ":", "u'2008-01-01'", ",", "'stop'", ":", "u'2008-12-31'", ",", "'value'", ":", "2005", "}", ",", "{", "'start'", ":", "u'2009-01-01'", ",", "'stop'", ":", "u'2009-12-31'", ",", "'value'", ":", "2031", "}", ",", "{", "'start'", ":", "u'2010-01-01'", ",", "'stop'", ":", "u'2010-12-31'", ",", "'value'", ":", "2111", "}", ",", "{", "'start'", ":", "u'2011-01-01'", ",", "'stop'", ":", "u'2011-12-31'", ",", "'value'", ":", "2150", "}", ",", "{", "'start'", ":", "u'2012-01-01'", ",", "'stop'", ":", "u'2012-12-31'", ",", "'value'", ":", "2225", "}", ",", "# TODO: Problème pour les alcools forts chiffres différents entre les deux bases excel !", "]", ",", "}", ",", "\"droit_cn_alcools_total\"", ":", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "u\"Masse droit alcool selon comptabilité nationale avec les differents droits\",", "", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "[", "{", "'start'", ":", "u'1995-01-01'", ",", "'stop'", ":", "u'1995-12-31'", ",", "'value'", ":", "2337", "}", ",", "{", "'start'", ":", "u'1996-01-01'", ",", "'stop'", ":", "u'1996-12-31'", ",", "'value'", ":", "2350", "}", ",", "{", "'start'", ":", "u'1997-01-01'", ",", "'stop'", ":", "u'1997-12-31'", ",", "'value'", ":", "2366", "}", ",", "{", "'start'", ":", "u'1998-01-01'", ",", "'stop'", ":", "u'1998-12-31'", ",", "'value'", ":", "2369", "}", ",", "{", "'start'", ":", "u'1999-01-01'", ",", "'stop'", ":", "u'1999-12-31'", ",", "'value'", ":", "2385", "}", ",", "{", "'start'", ":", "u'2000-01-01'", ",", "'stop'", ":", "u'2000-12-31'", ",", "'value'", ":", "2416", "}", ",", "{", "'start'", ":", "u'2001-01-01'", ",", "'stop'", ":", "u'2001-12-31'", ",", "'value'", ":", "2514", "}", ",", "{", "'start'", ":", "u'2002-01-01'", ",", "'stop'", ":", "u'2002-12-31'", ",", "'value'", ":", "2503", "}", ",", "{", "'start'", ":", "u'2003-01-01'", ",", "'stop'", ":", "u'2003-12-31'", ",", "'value'", ":", "2453", "}", ",", "{", "'start'", ":", "u'2004-01-01'", ",", "'stop'", ":", "u'2004-12-31'", ",", "'value'", ":", "2409", "}", ",", "{", "'start'", ":", "u'2005-01-01'", ",", "'stop'", ":", "u'2005-12-31'", ",", "'value'", ":", "2352", "}", ",", "{", "'start'", ":", "u'2006-01-01'", ",", "'stop'", ":", "u'2006-12-31'", ",", "'value'", ":", "2477", "}", ",", "{", "'start'", ":", "u'2007-01-01'", ",", "'stop'", ":", "u'2007-12-31'", ",", "'value'", ":", "2516", "}", ",", "{", "'start'", ":", "u'2008-01-01'", ",", "'stop'", ":", "u'2008-12-31'", ",", "'value'", ":", "2528", "}", ",", "{", "'start'", ":", "u'2009-01-01'", ",", "'stop'", ":", "u'2009-12-31'", ",", "'value'", ":", "2629", "}", ",", "{", "'start'", ":", "u'2010-01-01'", ",", "'stop'", ":", "u'2010-12-31'", ",", "'value'", ":", "2734", "}", ",", "{", "'start'", ":", "u'2011-01-01'", ",", "'stop'", ":", "u'2011-12-31'", ",", "'value'", ":", "3078", "}", ",", "{", "'start'", ":", "u'2012-01-01'", ",", "'stop'", ":", "u'2012-12-31'", ",", "'value'", ":", "2718", "}", ",", "{", "'start'", ":", "u'2013-01-01'", ",", "'stop'", ":", "u'2013-12-31'", ",", "'value'", ":", "3022", "}", ",", "# {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': },", "]", ",", "}", ",", "\"masse_conso_cn_alcools\"", ":", "{", "\"@type\"", ":", "\"Parameter\"", ",", "\"description\"", ":", "u\"Masse consommation alcool selon comptabilité nationale\",", "", "\"format\"", ":", "\"float\"", ",", "\"values\"", ":", "[", "{", "'start'", ":", "u'1995-01-01'", ",", "'stop'", ":", "u'1995-12-31'", ",", "'value'", ":", "4893", "}", ",", "{", "'start'", ":", "u'1996-01-01'", ",", "'stop'", ":", "u'1996-12-31'", ",", "'value'", ":", "5075", "}", ",", "{", "'start'", ":", "u'1997-01-01'", ",", "'stop'", ":", "u'1997-12-31'", ",", "'value'", ":", "5065", "}", ",", "{", "'start'", ":", "u'1998-01-01'", ",", "'stop'", ":", "u'1998-12-31'", ",", "'value'", ":", "5123", "}", ",", "{", "'start'", ":", "u'1999-01-01'", ",", "'stop'", ":", "u'1999-12-31'", ",", "'value'", ":", "5234", "}", ",", "{", "'start'", ":", "u'2000-01-01'", ",", "'stop'", ":", "u'2000-12-31'", ",", "'value'", ":", "5558", "}", ",", "{", "'start'", ":", "u'2001-01-01'", ",", "'stop'", ":", "u'2001-12-31'", ",", "'value'", ":", "5721", "}", ",", "{", "'start'", ":", "u'2002-01-01'", ",", "'stop'", ":", "u'2002-12-31'", ",", "'value'", ":", "5932", "}", ",", "{", "'start'", ":", "u'2003-01-01'", ",", "'stop'", ":", "u'2003-12-31'", ",", "'value'", ":", "5895", "}", ",", "{", "'start'", ":", "u'2004-01-01'", ",", "'stop'", ":", "u'2004-12-31'", ",", "'value'", ":", "5967", "}", ",", "{", "'start'", ":", "u'2005-01-01'", ",", "'stop'", ":", "u'2005-12-31'", ",", "'value'", ":", "5960", "}", ",", "{", "'start'", ":", "u'2006-01-01'", ",", "'stop'", ":", "u'2006-12-31'", ",", "'value'", ":", "6106", "}", ",", "{", "'start'", ":", "u'2007-01-01'", ",", "'stop'", ":", "u'2007-12-31'", ",", "'value'", ":", "6142", "}", ",", "{", "'start'", ":", "u'2008-01-01'", ",", "'stop'", ":", "u'2008-12-31'", ",", "'value'", ":", "6147", "}", ",", "{", "'start'", ":", "u'2009-01-01'", ",", "'stop'", ":", "u'2009-12-31'", ",", "'value'", ":", "6342", "}", ",", "{", "'start'", ":", "u'2010-01-01'", ",", "'stop'", ":", "u'2010-12-31'", ",", "'value'", ":", "6618", "}", ",", "{", "'start'", ":", "u'2011-01-01'", ",", "'stop'", ":", "u'2011-12-31'", ",", "'value'", ":", "6680", "}", ",", "{", "'start'", ":", "u'2012-01-01'", ",", "'stop'", ":", "u'2012-12-31'", ",", "'value'", ":", "6996", "}", ",", "{", "'start'", ":", "u'2013-01-01'", ",", "'stop'", ":", "u'2013-12-31'", ",", "'value'", ":", "7022", "}", ",", "]", ",", "}", ",", "}", ",", "}", "legislation_json", "[", "'children'", "]", "[", "'imposition_indirecte'", "]", "[", "'children'", "]", "[", "'alcool_conso_et_vin'", "]", "=", "alcool_conso_et_vin", "# Make the change from francs to euros for excise taxes in ticpe", "keys_ticpe", "=", "legislation_json", "[", "'children'", "]", "[", "'imposition_indirecte'", "]", "[", "'children'", "]", "[", "'ticpe'", "]", "[", "'children'", "]", ".", "keys", "(", ")", "for", "element", "in", "keys_ticpe", ":", "get_values", "=", "legislation_json", "[", "'children'", "]", "[", "'imposition_indirecte'", "]", "[", "'children'", "]", "[", "'ticpe'", "]", "[", "'children'", "]", "[", "element", "]", "[", "'values'", "]", "for", "each_value", "in", "get_values", ":", "get_character", "=", "'{}'", ".", "format", "(", "each_value", "[", "'start'", "]", ")", "year", "=", "int", "(", "get_character", "[", ":", "4", "]", ")", "if", "year", "<", "2002", ":", "each_value", "[", "'value'", "]", "=", "each_value", "[", "'value'", "]", "/", "6.55957", "else", ":", "each_value", "[", "'value'", "]", "=", "each_value", "[", "'value'", "]", "return", "legislation_json" ]
Preprocess the legislation parameters to add prices and amounts from national accounts
[ "Preprocess", "the", "legislation", "parameters", "to", "add", "prices", "and", "amounts", "from", "national", "accounts" ]
python
train
53.340045
angr/angr
angr/storage/paged_memory.py
https://github.com/angr/angr/blob/4e2f97d56af5419ee73bdb30482c8dd8ff5f3e40/angr/storage/paged_memory.py#L601-L613
def contains_no_backer(self, addr): """ Tests if the address is contained in any page of paged memory, without considering memory backers. :param int addr: The address to test. :return: True if the address is included in one of the pages, False otherwise. :rtype: bool """ for i, p in self._pages.items(): if i * self._page_size <= addr < (i + 1) * self._page_size: return addr - (i * self._page_size) in p.keys() return False
[ "def", "contains_no_backer", "(", "self", ",", "addr", ")", ":", "for", "i", ",", "p", "in", "self", ".", "_pages", ".", "items", "(", ")", ":", "if", "i", "*", "self", ".", "_page_size", "<=", "addr", "<", "(", "i", "+", "1", ")", "*", "self", ".", "_page_size", ":", "return", "addr", "-", "(", "i", "*", "self", ".", "_page_size", ")", "in", "p", ".", "keys", "(", ")", "return", "False" ]
Tests if the address is contained in any page of paged memory, without considering memory backers. :param int addr: The address to test. :return: True if the address is included in one of the pages, False otherwise. :rtype: bool
[ "Tests", "if", "the", "address", "is", "contained", "in", "any", "page", "of", "paged", "memory", "without", "considering", "memory", "backers", "." ]
python
train
39.076923
google-research/batch-ppo
agents/algorithms/ppo/utility.py
https://github.com/google-research/batch-ppo/blob/3d09705977bae4e7c3eb20339a3b384d2a5531e4/agents/algorithms/ppo/utility.py#L94-L105
def lambda_return(reward, value, length, discount, lambda_): """TD-lambda returns.""" timestep = tf.range(reward.shape[1].value) mask = tf.cast(timestep[None, :] < length[:, None], tf.float32) sequence = mask * reward + discount * value * (1 - lambda_) discount = mask * discount * lambda_ sequence = tf.stack([sequence, discount], 2) return_ = tf.reverse(tf.transpose(tf.scan( lambda agg, cur: cur[0] + cur[1] * agg, tf.transpose(tf.reverse(sequence, [1]), [1, 2, 0]), tf.zeros_like(value[:, -1]), 1, False), [1, 0]), [1]) return tf.check_numerics(tf.stop_gradient(return_), 'return')
[ "def", "lambda_return", "(", "reward", ",", "value", ",", "length", ",", "discount", ",", "lambda_", ")", ":", "timestep", "=", "tf", ".", "range", "(", "reward", ".", "shape", "[", "1", "]", ".", "value", ")", "mask", "=", "tf", ".", "cast", "(", "timestep", "[", "None", ",", ":", "]", "<", "length", "[", ":", ",", "None", "]", ",", "tf", ".", "float32", ")", "sequence", "=", "mask", "*", "reward", "+", "discount", "*", "value", "*", "(", "1", "-", "lambda_", ")", "discount", "=", "mask", "*", "discount", "*", "lambda_", "sequence", "=", "tf", ".", "stack", "(", "[", "sequence", ",", "discount", "]", ",", "2", ")", "return_", "=", "tf", ".", "reverse", "(", "tf", ".", "transpose", "(", "tf", ".", "scan", "(", "lambda", "agg", ",", "cur", ":", "cur", "[", "0", "]", "+", "cur", "[", "1", "]", "*", "agg", ",", "tf", ".", "transpose", "(", "tf", ".", "reverse", "(", "sequence", ",", "[", "1", "]", ")", ",", "[", "1", ",", "2", ",", "0", "]", ")", ",", "tf", ".", "zeros_like", "(", "value", "[", ":", ",", "-", "1", "]", ")", ",", "1", ",", "False", ")", ",", "[", "1", ",", "0", "]", ")", ",", "[", "1", "]", ")", "return", "tf", ".", "check_numerics", "(", "tf", ".", "stop_gradient", "(", "return_", ")", ",", "'return'", ")" ]
TD-lambda returns.
[ "TD", "-", "lambda", "returns", "." ]
python
train
50.666667
saltstack/salt
salt/modules/azurearm_compute.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/azurearm_compute.py#L512-L537
def virtual_machines_list_all(**kwargs): ''' .. versionadded:: 2019.2.0 List all virtual machines within a subscription. CLI Example: .. code-block:: bash salt-call azurearm_compute.virtual_machines_list_all ''' result = {} compconn = __utils__['azurearm.get_client']('compute', **kwargs) try: vms = __utils__['azurearm.paged_object_to_list']( compconn.virtual_machines.list_all() ) for vm in vms: # pylint: disable=invalid-name result[vm['name']] = vm except CloudError as exc: __utils__['azurearm.log_cloud_error']('compute', str(exc), **kwargs) result = {'error': str(exc)} return result
[ "def", "virtual_machines_list_all", "(", "*", "*", "kwargs", ")", ":", "result", "=", "{", "}", "compconn", "=", "__utils__", "[", "'azurearm.get_client'", "]", "(", "'compute'", ",", "*", "*", "kwargs", ")", "try", ":", "vms", "=", "__utils__", "[", "'azurearm.paged_object_to_list'", "]", "(", "compconn", ".", "virtual_machines", ".", "list_all", "(", ")", ")", "for", "vm", "in", "vms", ":", "# pylint: disable=invalid-name", "result", "[", "vm", "[", "'name'", "]", "]", "=", "vm", "except", "CloudError", "as", "exc", ":", "__utils__", "[", "'azurearm.log_cloud_error'", "]", "(", "'compute'", ",", "str", "(", "exc", ")", ",", "*", "*", "kwargs", ")", "result", "=", "{", "'error'", ":", "str", "(", "exc", ")", "}", "return", "result" ]
.. versionadded:: 2019.2.0 List all virtual machines within a subscription. CLI Example: .. code-block:: bash salt-call azurearm_compute.virtual_machines_list_all
[ "..", "versionadded", "::", "2019", ".", "2", ".", "0" ]
python
train
26.461538
facebook/watchman
python/pywatchman/capabilities.py
https://github.com/facebook/watchman/blob/d416c249dd8f463dc69fc2691d0f890598c045a9/python/pywatchman/capabilities.py#L59-L77
def synthesize(vers, opts): """ Synthesize a capability enabled version response This is a very limited emulation for relatively recent feature sets """ parsed_version = parse_version(vers["version"]) vers["capabilities"] = {} for name in opts["optional"]: vers["capabilities"][name] = check(parsed_version, name) failed = False # noqa: F841 T25377293 Grandfathered in for name in opts["required"]: have = check(parsed_version, name) vers["capabilities"][name] = have if not have: vers["error"] = ( "client required capability `" + name + "` is not supported by this server" ) return vers
[ "def", "synthesize", "(", "vers", ",", "opts", ")", ":", "parsed_version", "=", "parse_version", "(", "vers", "[", "\"version\"", "]", ")", "vers", "[", "\"capabilities\"", "]", "=", "{", "}", "for", "name", "in", "opts", "[", "\"optional\"", "]", ":", "vers", "[", "\"capabilities\"", "]", "[", "name", "]", "=", "check", "(", "parsed_version", ",", "name", ")", "failed", "=", "False", "# noqa: F841 T25377293 Grandfathered in", "for", "name", "in", "opts", "[", "\"required\"", "]", ":", "have", "=", "check", "(", "parsed_version", ",", "name", ")", "vers", "[", "\"capabilities\"", "]", "[", "name", "]", "=", "have", "if", "not", "have", ":", "vers", "[", "\"error\"", "]", "=", "(", "\"client required capability `\"", "+", "name", "+", "\"` is not supported by this server\"", ")", "return", "vers" ]
Synthesize a capability enabled version response This is a very limited emulation for relatively recent feature sets
[ "Synthesize", "a", "capability", "enabled", "version", "response", "This", "is", "a", "very", "limited", "emulation", "for", "relatively", "recent", "feature", "sets" ]
python
train
37.631579
mjirik/imtools
imtools/datasets.py
https://github.com/mjirik/imtools/blob/eb29fa59df0e0684d8334eb3bc5ef36ea46d1d3a/imtools/datasets.py#L14-L47
def sliver_reader(filename_end_mask="*[0-9].mhd", sliver_reference_dir="~/data/medical/orig/sliver07/training/", read_orig=True, read_seg=False): """ Generator for reading sliver data from directory structure. :param filename_end_mask: file selection can be controlled with this parameter :param sliver_reference_dir: directory with sliver .mhd and .raw files :param read_orig: read image data if is set True :param read_seg: read segmentation data if is set True :return: numeric_label, vs_mm, oname, orig_data, rname, ref_data """ sliver_reference_dir = op.expanduser(sliver_reference_dir) orig_fnames = glob.glob(sliver_reference_dir + "*orig" + filename_end_mask) ref_fnames = glob.glob(sliver_reference_dir + "*seg"+ filename_end_mask) orig_fnames.sort() ref_fnames.sort() output = [] for i in range(0, len(orig_fnames)): oname = orig_fnames[i] rname = ref_fnames[i] vs_mm = None ref_data= None orig_data = None if read_orig: orig_data, metadata = io3d.datareader.read(oname) vs_mm = metadata['voxelsize_mm'] if read_seg: ref_data, metadata = io3d.datareader.read(rname) vs_mm = metadata['voxelsize_mm'] import re numeric_label = re.search(".*g(\d+)", oname).group(1) out = (numeric_label, vs_mm, oname, orig_data, rname, ref_data) yield out
[ "def", "sliver_reader", "(", "filename_end_mask", "=", "\"*[0-9].mhd\"", ",", "sliver_reference_dir", "=", "\"~/data/medical/orig/sliver07/training/\"", ",", "read_orig", "=", "True", ",", "read_seg", "=", "False", ")", ":", "sliver_reference_dir", "=", "op", ".", "expanduser", "(", "sliver_reference_dir", ")", "orig_fnames", "=", "glob", ".", "glob", "(", "sliver_reference_dir", "+", "\"*orig\"", "+", "filename_end_mask", ")", "ref_fnames", "=", "glob", ".", "glob", "(", "sliver_reference_dir", "+", "\"*seg\"", "+", "filename_end_mask", ")", "orig_fnames", ".", "sort", "(", ")", "ref_fnames", ".", "sort", "(", ")", "output", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "len", "(", "orig_fnames", ")", ")", ":", "oname", "=", "orig_fnames", "[", "i", "]", "rname", "=", "ref_fnames", "[", "i", "]", "vs_mm", "=", "None", "ref_data", "=", "None", "orig_data", "=", "None", "if", "read_orig", ":", "orig_data", ",", "metadata", "=", "io3d", ".", "datareader", ".", "read", "(", "oname", ")", "vs_mm", "=", "metadata", "[", "'voxelsize_mm'", "]", "if", "read_seg", ":", "ref_data", ",", "metadata", "=", "io3d", ".", "datareader", ".", "read", "(", "rname", ")", "vs_mm", "=", "metadata", "[", "'voxelsize_mm'", "]", "import", "re", "numeric_label", "=", "re", ".", "search", "(", "\".*g(\\d+)\"", ",", "oname", ")", ".", "group", "(", "1", ")", "out", "=", "(", "numeric_label", ",", "vs_mm", ",", "oname", ",", "orig_data", ",", "rname", ",", "ref_data", ")", "yield", "out" ]
Generator for reading sliver data from directory structure. :param filename_end_mask: file selection can be controlled with this parameter :param sliver_reference_dir: directory with sliver .mhd and .raw files :param read_orig: read image data if is set True :param read_seg: read segmentation data if is set True :return: numeric_label, vs_mm, oname, orig_data, rname, ref_data
[ "Generator", "for", "reading", "sliver", "data", "from", "directory", "structure", "." ]
python
train
41.558824
blockstack/blockstack-core
api/search/substring_search.py
https://github.com/blockstack/blockstack-core/blob/1dcfdd39b152d29ce13e736a6a1a0981401a0505/api/search/substring_search.py#L41-L50
def anyword_substring_search_inner(query_word, target_words): """ return True if ANY target_word matches a query_word """ for target_word in target_words: if(target_word.startswith(query_word)): return query_word return False
[ "def", "anyword_substring_search_inner", "(", "query_word", ",", "target_words", ")", ":", "for", "target_word", "in", "target_words", ":", "if", "(", "target_word", ".", "startswith", "(", "query_word", ")", ")", ":", "return", "query_word", "return", "False" ]
return True if ANY target_word matches a query_word
[ "return", "True", "if", "ANY", "target_word", "matches", "a", "query_word" ]
python
train
25.5
anuragkumarak95/wordnet
wordnet/tf_idf_generator.py
https://github.com/anuragkumarak95/wordnet/blob/7aba239ddebb0971e9e76124890373b60a2573c8/wordnet/tf_idf_generator.py#L35-L89
def find_tf_idf(file_names=['./../test/testdata'],prev_file_path=None, dump_path=None): '''Function to create a TF-IDF list of dictionaries for a corpus of docs. If you opt for dumping the data, you can provide a file_path with .tfidfpkl extension(standard made for better understanding) and also re-generate a new tfidf list which overrides over an old one by mentioning its path. @Args: -- file_names : paths of files to be processed on, these files are created using twitter_streaming module. prev_file_path : path of old .tfidfpkl file, if available. (default=None) dump_path : directory-path where to dump generated lists.(default=None) @returns: -- df : a dict of unique words in corpus,with their document frequency as values. tf_idf : the generated tf-idf list of dictionaries for mentioned docs. ''' tf_idf = [] # will hold a dict of word_count for every doc(line in a doc in this case) df = defaultdict(int) # this statement is useful for altering existant tf-idf file and adding new docs in itself.(## memory is now the biggest issue) if prev_file_path: print(TAG,'modifying over exising file.. @',prev_file_path) df,tf_idf = pickle.load(open(prev_file_path,'rb')) prev_doc_count = len(df) prev_corpus_length = len(tf_idf) for f in file_names: # never use 'rb' for textual data, it creates something like, {b'line-inside-the-doc'} with open(f,'r') as file1: #create word_count dict for all docs for line in file1: wdict = defaultdict(int) #find the amount of doc a word is in for word in set(line.split()): df[word] +=1 #find the count of all words in every doc for word in line.split(): wdict[word] += 1 tf_idf.append(wdict) #calculating final TF-IDF values for all words in all docs(line is a doc in this case) for doc in tf_idf: for key in doc: true_idf = math.log(len(tf_idf)/df[key]) true_tf = doc[key]/float(len(doc)) doc[key] = true_tf * true_idf print(TAG,'Total number of unique words in corpus',len(df),'( '+paint('++'+str(len(df)-prev_doc_count),'g')+' )' if prev_file_path else '') print(TAG,'Total number of docs in corpus:',len(tf_idf),'( '+paint('++'+str(len(tf_idf)-prev_corpus_length),'g')+' )' if prev_file_path else '') # dump if a dir-path is given if dump_path: if dump_path[-8:] == 'tfidfpkl': pickle.dump((df,tf_idf),open(dump_path,'wb'),protocol=pickle.HIGHEST_PROTOCOL) print(TAG,'Dumping TF-IDF vars @',dump_path) return df,tf_idf
[ "def", "find_tf_idf", "(", "file_names", "=", "[", "'./../test/testdata'", "]", ",", "prev_file_path", "=", "None", ",", "dump_path", "=", "None", ")", ":", "tf_idf", "=", "[", "]", "# will hold a dict of word_count for every doc(line in a doc in this case)", "df", "=", "defaultdict", "(", "int", ")", "# this statement is useful for altering existant tf-idf file and adding new docs in itself.(## memory is now the biggest issue)", "if", "prev_file_path", ":", "print", "(", "TAG", ",", "'modifying over exising file.. @'", ",", "prev_file_path", ")", "df", ",", "tf_idf", "=", "pickle", ".", "load", "(", "open", "(", "prev_file_path", ",", "'rb'", ")", ")", "prev_doc_count", "=", "len", "(", "df", ")", "prev_corpus_length", "=", "len", "(", "tf_idf", ")", "for", "f", "in", "file_names", ":", "# never use 'rb' for textual data, it creates something like, {b'line-inside-the-doc'}", "with", "open", "(", "f", ",", "'r'", ")", "as", "file1", ":", "#create word_count dict for all docs", "for", "line", "in", "file1", ":", "wdict", "=", "defaultdict", "(", "int", ")", "#find the amount of doc a word is in", "for", "word", "in", "set", "(", "line", ".", "split", "(", ")", ")", ":", "df", "[", "word", "]", "+=", "1", "#find the count of all words in every doc", "for", "word", "in", "line", ".", "split", "(", ")", ":", "wdict", "[", "word", "]", "+=", "1", "tf_idf", ".", "append", "(", "wdict", ")", "#calculating final TF-IDF values for all words in all docs(line is a doc in this case)", "for", "doc", "in", "tf_idf", ":", "for", "key", "in", "doc", ":", "true_idf", "=", "math", ".", "log", "(", "len", "(", "tf_idf", ")", "/", "df", "[", "key", "]", ")", "true_tf", "=", "doc", "[", "key", "]", "/", "float", "(", "len", "(", "doc", ")", ")", "doc", "[", "key", "]", "=", "true_tf", "*", "true_idf", "print", "(", "TAG", ",", "'Total number of unique words in corpus'", ",", "len", "(", "df", ")", ",", "'( '", "+", "paint", "(", "'++'", "+", "str", "(", "len", "(", "df", ")", "-", "prev_doc_count", ")", ",", "'g'", ")", "+", "' )'", "if", "prev_file_path", "else", "''", ")", "print", "(", "TAG", ",", "'Total number of docs in corpus:'", ",", "len", "(", "tf_idf", ")", ",", "'( '", "+", "paint", "(", "'++'", "+", "str", "(", "len", "(", "tf_idf", ")", "-", "prev_corpus_length", ")", ",", "'g'", ")", "+", "' )'", "if", "prev_file_path", "else", "''", ")", "# dump if a dir-path is given", "if", "dump_path", ":", "if", "dump_path", "[", "-", "8", ":", "]", "==", "'tfidfpkl'", ":", "pickle", ".", "dump", "(", "(", "df", ",", "tf_idf", ")", ",", "open", "(", "dump_path", ",", "'wb'", ")", ",", "protocol", "=", "pickle", ".", "HIGHEST_PROTOCOL", ")", "print", "(", "TAG", ",", "'Dumping TF-IDF vars @'", ",", "dump_path", ")", "return", "df", ",", "tf_idf" ]
Function to create a TF-IDF list of dictionaries for a corpus of docs. If you opt for dumping the data, you can provide a file_path with .tfidfpkl extension(standard made for better understanding) and also re-generate a new tfidf list which overrides over an old one by mentioning its path. @Args: -- file_names : paths of files to be processed on, these files are created using twitter_streaming module. prev_file_path : path of old .tfidfpkl file, if available. (default=None) dump_path : directory-path where to dump generated lists.(default=None) @returns: -- df : a dict of unique words in corpus,with their document frequency as values. tf_idf : the generated tf-idf list of dictionaries for mentioned docs.
[ "Function", "to", "create", "a", "TF", "-", "IDF", "list", "of", "dictionaries", "for", "a", "corpus", "of", "docs", ".", "If", "you", "opt", "for", "dumping", "the", "data", "you", "can", "provide", "a", "file_path", "with", ".", "tfidfpkl", "extension", "(", "standard", "made", "for", "better", "understanding", ")", "and", "also", "re", "-", "generate", "a", "new", "tfidf", "list", "which", "overrides", "over", "an", "old", "one", "by", "mentioning", "its", "path", "." ]
python
train
49.563636
bwohlberg/sporco
sporco/dictlrn/prlcnscdl.py
https://github.com/bwohlberg/sporco/blob/8946a04331106f4e39904fbdf2dc7351900baa04/sporco/dictlrn/prlcnscdl.py#L687-L700
def cbpdnmd_ystep(k): """Do the Y step of the cbpdn stage. The only parameter is the slice index `k` and there are no return values; all inputs and outputs are from and to global variables. """ if mp_W.shape[0] > 1: W = mp_W[k] else: W = mp_W AXU0 = mp_DX[k] - mp_S[k] + mp_Z_U0[k] AXU1 = mp_Z_X[k] + mp_Z_U1[k] mp_Z_Y0[k] = mp_xrho*AXU0 / (W**2 + mp_xrho) mp_Z_Y1[k] = sp.prox_l1(AXU1, (mp_lmbda/mp_xrho))
[ "def", "cbpdnmd_ystep", "(", "k", ")", ":", "if", "mp_W", ".", "shape", "[", "0", "]", ">", "1", ":", "W", "=", "mp_W", "[", "k", "]", "else", ":", "W", "=", "mp_W", "AXU0", "=", "mp_DX", "[", "k", "]", "-", "mp_S", "[", "k", "]", "+", "mp_Z_U0", "[", "k", "]", "AXU1", "=", "mp_Z_X", "[", "k", "]", "+", "mp_Z_U1", "[", "k", "]", "mp_Z_Y0", "[", "k", "]", "=", "mp_xrho", "*", "AXU0", "/", "(", "W", "**", "2", "+", "mp_xrho", ")", "mp_Z_Y1", "[", "k", "]", "=", "sp", ".", "prox_l1", "(", "AXU1", ",", "(", "mp_lmbda", "/", "mp_xrho", ")", ")" ]
Do the Y step of the cbpdn stage. The only parameter is the slice index `k` and there are no return values; all inputs and outputs are from and to global variables.
[ "Do", "the", "Y", "step", "of", "the", "cbpdn", "stage", ".", "The", "only", "parameter", "is", "the", "slice", "index", "k", "and", "there", "are", "no", "return", "values", ";", "all", "inputs", "and", "outputs", "are", "from", "and", "to", "global", "variables", "." ]
python
train
32.142857
twilio/twilio-python
twilio/rest/proxy/v1/service/session/__init__.py
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/proxy/v1/service/session/__init__.py#L154-L163
def get(self, sid): """ Constructs a SessionContext :param sid: The unique string that identifies the resource :returns: twilio.rest.proxy.v1.service.session.SessionContext :rtype: twilio.rest.proxy.v1.service.session.SessionContext """ return SessionContext(self._version, service_sid=self._solution['service_sid'], sid=sid, )
[ "def", "get", "(", "self", ",", "sid", ")", ":", "return", "SessionContext", "(", "self", ".", "_version", ",", "service_sid", "=", "self", ".", "_solution", "[", "'service_sid'", "]", ",", "sid", "=", "sid", ",", ")" ]
Constructs a SessionContext :param sid: The unique string that identifies the resource :returns: twilio.rest.proxy.v1.service.session.SessionContext :rtype: twilio.rest.proxy.v1.service.session.SessionContext
[ "Constructs", "a", "SessionContext" ]
python
train
37.6
autokey/autokey
lib/autokey/scripting.py
https://github.com/autokey/autokey/blob/35decb72f286ce68cd2a1f09ace8891a520b58d1/lib/autokey/scripting.py#L700-L715
def choose_colour(self, title="Select Colour", **kwargs): """ Show a Colour Chooser dialog Usage: C{dialog.choose_colour(title="Select Colour")} @param title: window title for the dialog @return: @rtype: C{DialogData(int, Optional[ColourData])} """ return_data = self._run_zenity(title, ["--color-selection"], kwargs) if return_data.successful: converted_colour = ColourData.from_zenity_tuple_str(return_data.data) return DialogData(return_data.return_code, converted_colour) else: return DialogData(return_data.return_code, None)
[ "def", "choose_colour", "(", "self", ",", "title", "=", "\"Select Colour\"", ",", "*", "*", "kwargs", ")", ":", "return_data", "=", "self", ".", "_run_zenity", "(", "title", ",", "[", "\"--color-selection\"", "]", ",", "kwargs", ")", "if", "return_data", ".", "successful", ":", "converted_colour", "=", "ColourData", ".", "from_zenity_tuple_str", "(", "return_data", ".", "data", ")", "return", "DialogData", "(", "return_data", ".", "return_code", ",", "converted_colour", ")", "else", ":", "return", "DialogData", "(", "return_data", ".", "return_code", ",", "None", ")" ]
Show a Colour Chooser dialog Usage: C{dialog.choose_colour(title="Select Colour")} @param title: window title for the dialog @return: @rtype: C{DialogData(int, Optional[ColourData])}
[ "Show", "a", "Colour", "Chooser", "dialog", "Usage", ":", "C", "{", "dialog", ".", "choose_colour", "(", "title", "=", "Select", "Colour", ")", "}" ]
python
train
40.5625
textbook/aslack
aslack/slack_bot/bot.py
https://github.com/textbook/aslack/blob/9ac6a44e4464180109fa4be130ad7a980a9d1acc/aslack/slack_bot/bot.py#L267-L285
def _validate_first_message(cls, msg): """Check the first message matches the expected handshake. Note: The handshake is provided as :py:attr:`RTM_HANDSHAKE`. Arguments: msg (:py:class:`aiohttp.Message`): The message to validate. Raises: :py:class:`SlackApiError`: If the data doesn't match the expected handshake. """ data = cls._unpack_message(msg) logger.debug(data) if data != cls.RTM_HANDSHAKE: raise SlackApiError('Unexpected response: {!r}'.format(data)) logger.info('Joined real-time messaging.')
[ "def", "_validate_first_message", "(", "cls", ",", "msg", ")", ":", "data", "=", "cls", ".", "_unpack_message", "(", "msg", ")", "logger", ".", "debug", "(", "data", ")", "if", "data", "!=", "cls", ".", "RTM_HANDSHAKE", ":", "raise", "SlackApiError", "(", "'Unexpected response: {!r}'", ".", "format", "(", "data", ")", ")", "logger", ".", "info", "(", "'Joined real-time messaging.'", ")" ]
Check the first message matches the expected handshake. Note: The handshake is provided as :py:attr:`RTM_HANDSHAKE`. Arguments: msg (:py:class:`aiohttp.Message`): The message to validate. Raises: :py:class:`SlackApiError`: If the data doesn't match the expected handshake.
[ "Check", "the", "first", "message", "matches", "the", "expected", "handshake", "." ]
python
valid
32.421053
ARMmbed/yotta
yotta/lib/cmakegen.py
https://github.com/ARMmbed/yotta/blob/56bc1e56c602fa20307b23fe27518e9cd6c11af1/yotta/lib/cmakegen.py#L175-L200
def _validateListedSubdirsExist(self, component): ''' Return true if all the subdirectories which this component lists in its module.json file exist (although their validity is otherwise not checked). If they don't, warning messages are printed. ''' lib_subdirs = component.getLibs(explicit_only=True) bin_subdirs = component.getBinaries() ok = True for d in lib_subdirs: if not os.path.exists(os.path.join(component.path, d)): logger.warning( "lib directory \"%s\" doesn't exist but is listed in the module.json file of %s", d, component ) ok = False for d in bin_subdirs: if not os.path.exists(os.path.join(component.path, d)): logger.warning( "bin directory \"%s\" doesn't exist but is listed in the module.json file of %s", d, component ) ok = False return ok
[ "def", "_validateListedSubdirsExist", "(", "self", ",", "component", ")", ":", "lib_subdirs", "=", "component", ".", "getLibs", "(", "explicit_only", "=", "True", ")", "bin_subdirs", "=", "component", ".", "getBinaries", "(", ")", "ok", "=", "True", "for", "d", "in", "lib_subdirs", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "component", ".", "path", ",", "d", ")", ")", ":", "logger", ".", "warning", "(", "\"lib directory \\\"%s\\\" doesn't exist but is listed in the module.json file of %s\"", ",", "d", ",", "component", ")", "ok", "=", "False", "for", "d", "in", "bin_subdirs", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "component", ".", "path", ",", "d", ")", ")", ":", "logger", ".", "warning", "(", "\"bin directory \\\"%s\\\" doesn't exist but is listed in the module.json file of %s\"", ",", "d", ",", "component", ")", "ok", "=", "False", "return", "ok" ]
Return true if all the subdirectories which this component lists in its module.json file exist (although their validity is otherwise not checked). If they don't, warning messages are printed.
[ "Return", "true", "if", "all", "the", "subdirectories", "which", "this", "component", "lists", "in", "its", "module", ".", "json", "file", "exist", "(", "although", "their", "validity", "is", "otherwise", "not", "checked", ")", "." ]
python
valid
38.538462
istresearch/scrapy-cluster
crawler/crawling/log_retry_middleware.py
https://github.com/istresearch/scrapy-cluster/blob/13aaed2349af5d792d6bcbfcadc5563158aeb599/crawler/crawling/log_retry_middleware.py#L149-L161
def _increment_504_stat(self, request): ''' Increments the 504 stat counters @param request: The scrapy request in the spider ''' for key in self.stats_dict: if key == 'lifetime': unique = request.url + str(time.time()) self.stats_dict[key].increment(unique) else: self.stats_dict[key].increment() self.logger.debug("Incremented status_code '504' stats")
[ "def", "_increment_504_stat", "(", "self", ",", "request", ")", ":", "for", "key", "in", "self", ".", "stats_dict", ":", "if", "key", "==", "'lifetime'", ":", "unique", "=", "request", ".", "url", "+", "str", "(", "time", ".", "time", "(", ")", ")", "self", ".", "stats_dict", "[", "key", "]", ".", "increment", "(", "unique", ")", "else", ":", "self", ".", "stats_dict", "[", "key", "]", ".", "increment", "(", ")", "self", ".", "logger", ".", "debug", "(", "\"Incremented status_code '504' stats\"", ")" ]
Increments the 504 stat counters @param request: The scrapy request in the spider
[ "Increments", "the", "504", "stat", "counters" ]
python
train
35.615385
inasafe/inasafe
safe/datastore/folder.py
https://github.com/inasafe/inasafe/blob/831d60abba919f6d481dc94a8d988cc205130724/safe/datastore/folder.py#L125-L144
def layer_uri(self, layer_name): """Get layer URI. :param layer_name: The name of the layer to fetch. :type layer_name: str :return: The URI to the layer. :rtype: str .. versionadded:: 4.0 """ layers = self.layers() for layer, extension in product(layers, EXTENSIONS): one_file = QFileInfo( self.uri.filePath(layer + '.' + extension)) if one_file.exists(): if one_file.baseName() == layer_name: return one_file.absoluteFilePath() else: return None
[ "def", "layer_uri", "(", "self", ",", "layer_name", ")", ":", "layers", "=", "self", ".", "layers", "(", ")", "for", "layer", ",", "extension", "in", "product", "(", "layers", ",", "EXTENSIONS", ")", ":", "one_file", "=", "QFileInfo", "(", "self", ".", "uri", ".", "filePath", "(", "layer", "+", "'.'", "+", "extension", ")", ")", "if", "one_file", ".", "exists", "(", ")", ":", "if", "one_file", ".", "baseName", "(", ")", "==", "layer_name", ":", "return", "one_file", ".", "absoluteFilePath", "(", ")", "else", ":", "return", "None" ]
Get layer URI. :param layer_name: The name of the layer to fetch. :type layer_name: str :return: The URI to the layer. :rtype: str .. versionadded:: 4.0
[ "Get", "layer", "URI", "." ]
python
train
29.95
waqasbhatti/astrobase
astrobase/lcproc/varthreshold.py
https://github.com/waqasbhatti/astrobase/blob/2922a14619d183fb28005fa7d02027ac436f2265/astrobase/lcproc/varthreshold.py#L96-L699
def variability_threshold(featuresdir, outfile, magbins=DEFAULT_MAGBINS, maxobjects=None, timecols=None, magcols=None, errcols=None, lcformat='hat-sql', lcformatdir=None, min_lcmad_stdev=5.0, min_stetj_stdev=2.0, min_iqr_stdev=2.0, min_inveta_stdev=2.0, verbose=True): '''This generates a list of objects with stetson J, IQR, and 1.0/eta above some threshold value to select them as potential variable stars. Use this to pare down the objects to review and put through period-finding. This does the thresholding per magnitude bin; this should be better than one single cut through the entire magnitude range. Set the magnitude bins using the magbins kwarg. FIXME: implement a voting classifier here. this will choose variables based on the thresholds in IQR, stetson, and inveta based on weighting carried over from the variability recovery sims. Parameters ---------- featuresdir : str This is the directory containing variability feature pickles created by :py:func:`astrobase.lcproc.lcpfeatures.parallel_varfeatures` or similar. outfile : str This is the output pickle file that will contain all the threshold information. magbins : np.array of floats This sets the magnitude bins to use for calculating thresholds. maxobjects : int or None This is the number of objects to process. If None, all objects with feature pickles in `featuresdir` will be processed. timecols : list of str or None The timecol keys to use from the lcdict in calculating the thresholds. magcols : list of str or None The magcol keys to use from the lcdict in calculating the thresholds. errcols : list of str or None The errcol keys to use from the lcdict in calculating the thresholds. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. min_lcmad_stdev,min_stetj_stdev,min_iqr_stdev,min_inveta_stdev : float or np.array These are all the standard deviation multiplier for the distributions of light curve standard deviation, Stetson J variability index, the light curve interquartile range, and 1/eta variability index respectively. These multipliers set the minimum values of these measures to use for selecting variable stars. If provided as floats, the same value will be used for all magbins. If provided as np.arrays of `size = magbins.size - 1`, will be used to apply possibly different sigma cuts for each magbin. verbose : bool If True, will report progress and warn about any problems. Returns ------- dict Contains all of the variability threshold information along with indices into the array of the object IDs chosen as variables. ''' try: formatinfo = get_lcformat(lcformat, use_lcformat_dir=lcformatdir) if formatinfo: (dfileglob, readerfunc, dtimecols, dmagcols, derrcols, magsarefluxes, normfunc) = formatinfo else: LOGERROR("can't figure out the light curve format") return None except Exception as e: LOGEXCEPTION("can't figure out the light curve format") return None # override the default timecols, magcols, and errcols # using the ones provided to the function if timecols is None: timecols = dtimecols if magcols is None: magcols = dmagcols if errcols is None: errcols = derrcols # list of input pickles generated by varfeatures functions above pklist = glob.glob(os.path.join(featuresdir, 'varfeatures-*.pkl')) if maxobjects: pklist = pklist[:maxobjects] allobjects = {} for magcol in magcols: # keep local copies of these so we can fix them independently in case of # nans if (isinstance(min_stetj_stdev, list) or isinstance(min_stetj_stdev, np.ndarray)): magcol_min_stetj_stdev = min_stetj_stdev[::] else: magcol_min_stetj_stdev = min_stetj_stdev if (isinstance(min_iqr_stdev, list) or isinstance(min_iqr_stdev, np.ndarray)): magcol_min_iqr_stdev = min_iqr_stdev[::] else: magcol_min_iqr_stdev = min_iqr_stdev if (isinstance(min_inveta_stdev, list) or isinstance(min_inveta_stdev, np.ndarray)): magcol_min_inveta_stdev = min_inveta_stdev[::] else: magcol_min_inveta_stdev = min_inveta_stdev LOGINFO('getting all object sdssr, LC MAD, stet J, IQR, eta...') # we'll calculate the sigma per magnitude bin, so get the mags as well allobjects[magcol] = { 'objectid':[], 'sdssr':[], 'lcmad':[], 'stetsonj':[], 'iqr':[], 'eta':[] } # fancy progress bar with tqdm if present if TQDM and verbose: listiterator = tqdm(pklist) else: listiterator = pklist for pkl in listiterator: with open(pkl,'rb') as infd: thisfeatures = pickle.load(infd) objectid = thisfeatures['objectid'] # the object magnitude if ('info' in thisfeatures and thisfeatures['info'] and 'sdssr' in thisfeatures['info']): if (thisfeatures['info']['sdssr'] and thisfeatures['info']['sdssr'] > 3.0): sdssr = thisfeatures['info']['sdssr'] elif (magcol in thisfeatures and thisfeatures[magcol] and 'median' in thisfeatures[magcol] and thisfeatures[magcol]['median'] > 3.0): sdssr = thisfeatures[magcol]['median'] elif (thisfeatures['info']['jmag'] and thisfeatures['info']['hmag'] and thisfeatures['info']['kmag']): sdssr = jhk_to_sdssr(thisfeatures['info']['jmag'], thisfeatures['info']['hmag'], thisfeatures['info']['kmag']) else: sdssr = np.nan else: sdssr = np.nan # the MAD of the light curve if (magcol in thisfeatures and thisfeatures[magcol] and thisfeatures[magcol]['mad']): lcmad = thisfeatures[magcol]['mad'] else: lcmad = np.nan # stetson index if (magcol in thisfeatures and thisfeatures[magcol] and thisfeatures[magcol]['stetsonj']): stetsonj = thisfeatures[magcol]['stetsonj'] else: stetsonj = np.nan # IQR if (magcol in thisfeatures and thisfeatures[magcol] and thisfeatures[magcol]['mag_iqr']): iqr = thisfeatures[magcol]['mag_iqr'] else: iqr = np.nan # eta if (magcol in thisfeatures and thisfeatures[magcol] and thisfeatures[magcol]['eta_normal']): eta = thisfeatures[magcol]['eta_normal'] else: eta = np.nan allobjects[magcol]['objectid'].append(objectid) allobjects[magcol]['sdssr'].append(sdssr) allobjects[magcol]['lcmad'].append(lcmad) allobjects[magcol]['stetsonj'].append(stetsonj) allobjects[magcol]['iqr'].append(iqr) allobjects[magcol]['eta'].append(eta) # # done with collection of info # LOGINFO('finding objects above thresholds per magbin...') # turn the info into arrays allobjects[magcol]['objectid'] = np.ravel(np.array( allobjects[magcol]['objectid'] )) allobjects[magcol]['sdssr'] = np.ravel(np.array( allobjects[magcol]['sdssr'] )) allobjects[magcol]['lcmad'] = np.ravel(np.array( allobjects[magcol]['lcmad'] )) allobjects[magcol]['stetsonj'] = np.ravel(np.array( allobjects[magcol]['stetsonj'] )) allobjects[magcol]['iqr'] = np.ravel(np.array( allobjects[magcol]['iqr'] )) allobjects[magcol]['eta'] = np.ravel(np.array( allobjects[magcol]['eta'] )) # only get finite elements everywhere thisfinind = ( np.isfinite(allobjects[magcol]['sdssr']) & np.isfinite(allobjects[magcol]['lcmad']) & np.isfinite(allobjects[magcol]['stetsonj']) & np.isfinite(allobjects[magcol]['iqr']) & np.isfinite(allobjects[magcol]['eta']) ) allobjects[magcol]['objectid'] = allobjects[magcol]['objectid'][ thisfinind ] allobjects[magcol]['sdssr'] = allobjects[magcol]['sdssr'][thisfinind] allobjects[magcol]['lcmad'] = allobjects[magcol]['lcmad'][thisfinind] allobjects[magcol]['stetsonj'] = allobjects[magcol]['stetsonj'][ thisfinind ] allobjects[magcol]['iqr'] = allobjects[magcol]['iqr'][thisfinind] allobjects[magcol]['eta'] = allobjects[magcol]['eta'][thisfinind] # invert eta so we can threshold the same way as the others allobjects[magcol]['inveta'] = 1.0/allobjects[magcol]['eta'] # do the thresholding by magnitude bin magbininds = np.digitize(allobjects[magcol]['sdssr'], magbins) binned_objectids = [] binned_sdssr = [] binned_sdssr_median = [] binned_lcmad = [] binned_stetsonj = [] binned_iqr = [] binned_inveta = [] binned_count = [] binned_objectids_thresh_stetsonj = [] binned_objectids_thresh_iqr = [] binned_objectids_thresh_inveta = [] binned_objectids_thresh_all = [] binned_lcmad_median = [] binned_lcmad_stdev = [] binned_stetsonj_median = [] binned_stetsonj_stdev = [] binned_inveta_median = [] binned_inveta_stdev = [] binned_iqr_median = [] binned_iqr_stdev = [] # go through all the mag bins and get the thresholds for J, inveta, IQR for mbinind, magi in zip(np.unique(magbininds), range(len(magbins)-1)): thisbinind = np.where(magbininds == mbinind) thisbin_sdssr_median = (magbins[magi] + magbins[magi+1])/2.0 binned_sdssr_median.append(thisbin_sdssr_median) thisbin_objectids = allobjects[magcol]['objectid'][thisbinind] thisbin_sdssr = allobjects[magcol]['sdssr'][thisbinind] thisbin_lcmad = allobjects[magcol]['lcmad'][thisbinind] thisbin_stetsonj = allobjects[magcol]['stetsonj'][thisbinind] thisbin_iqr = allobjects[magcol]['iqr'][thisbinind] thisbin_inveta = allobjects[magcol]['inveta'][thisbinind] thisbin_count = thisbin_objectids.size if thisbin_count > 4: thisbin_lcmad_median = np.median(thisbin_lcmad) thisbin_lcmad_stdev = np.median( np.abs(thisbin_lcmad - thisbin_lcmad_median) ) * 1.483 binned_lcmad_median.append(thisbin_lcmad_median) binned_lcmad_stdev.append(thisbin_lcmad_stdev) thisbin_stetsonj_median = np.median(thisbin_stetsonj) thisbin_stetsonj_stdev = np.median( np.abs(thisbin_stetsonj - thisbin_stetsonj_median) ) * 1.483 binned_stetsonj_median.append(thisbin_stetsonj_median) binned_stetsonj_stdev.append(thisbin_stetsonj_stdev) # now get the objects above the required stdev threshold if isinstance(magcol_min_stetj_stdev, float): thisbin_objectids_thresh_stetsonj = thisbin_objectids[ thisbin_stetsonj > ( thisbin_stetsonj_median + magcol_min_stetj_stdev*thisbin_stetsonj_stdev ) ] elif (isinstance(magcol_min_stetj_stdev, np.ndarray) or isinstance(magcol_min_stetj_stdev, list)): thisbin_min_stetj_stdev = magcol_min_stetj_stdev[magi] if not np.isfinite(thisbin_min_stetj_stdev): LOGWARNING('provided threshold stetson J stdev ' 'for magbin: %.3f is nan, using 2.0' % thisbin_sdssr_median) thisbin_min_stetj_stdev = 2.0 # update the input list/array as well, since we'll be # saving it to the output dict and using it to plot the # variability thresholds magcol_min_stetj_stdev[magi] = 2.0 thisbin_objectids_thresh_stetsonj = thisbin_objectids[ thisbin_stetsonj > ( thisbin_stetsonj_median + thisbin_min_stetj_stdev*thisbin_stetsonj_stdev ) ] thisbin_iqr_median = np.median(thisbin_iqr) thisbin_iqr_stdev = np.median( np.abs(thisbin_iqr - thisbin_iqr_median) ) * 1.483 binned_iqr_median.append(thisbin_iqr_median) binned_iqr_stdev.append(thisbin_iqr_stdev) # get the objects above the required stdev threshold if isinstance(magcol_min_iqr_stdev, float): thisbin_objectids_thresh_iqr = thisbin_objectids[ thisbin_iqr > (thisbin_iqr_median + magcol_min_iqr_stdev*thisbin_iqr_stdev) ] elif (isinstance(magcol_min_iqr_stdev, np.ndarray) or isinstance(magcol_min_iqr_stdev, list)): thisbin_min_iqr_stdev = magcol_min_iqr_stdev[magi] if not np.isfinite(thisbin_min_iqr_stdev): LOGWARNING('provided threshold IQR stdev ' 'for magbin: %.3f is nan, using 2.0' % thisbin_sdssr_median) thisbin_min_iqr_stdev = 2.0 # update the input list/array as well, since we'll be # saving it to the output dict and using it to plot the # variability thresholds magcol_min_iqr_stdev[magi] = 2.0 thisbin_objectids_thresh_iqr = thisbin_objectids[ thisbin_iqr > (thisbin_iqr_median + thisbin_min_iqr_stdev*thisbin_iqr_stdev) ] thisbin_inveta_median = np.median(thisbin_inveta) thisbin_inveta_stdev = np.median( np.abs(thisbin_inveta - thisbin_inveta_median) ) * 1.483 binned_inveta_median.append(thisbin_inveta_median) binned_inveta_stdev.append(thisbin_inveta_stdev) if isinstance(magcol_min_inveta_stdev, float): thisbin_objectids_thresh_inveta = thisbin_objectids[ thisbin_inveta > ( thisbin_inveta_median + magcol_min_inveta_stdev*thisbin_inveta_stdev ) ] elif (isinstance(magcol_min_inveta_stdev, np.ndarray) or isinstance(magcol_min_inveta_stdev, list)): thisbin_min_inveta_stdev = magcol_min_inveta_stdev[magi] if not np.isfinite(thisbin_min_inveta_stdev): LOGWARNING('provided threshold inveta stdev ' 'for magbin: %.3f is nan, using 2.0' % thisbin_sdssr_median) thisbin_min_inveta_stdev = 2.0 # update the input list/array as well, since we'll be # saving it to the output dict and using it to plot the # variability thresholds magcol_min_inveta_stdev[magi] = 2.0 thisbin_objectids_thresh_inveta = thisbin_objectids[ thisbin_inveta > ( thisbin_inveta_median + thisbin_min_inveta_stdev*thisbin_inveta_stdev ) ] else: thisbin_objectids_thresh_stetsonj = ( np.array([],dtype=np.unicode_) ) thisbin_objectids_thresh_iqr = ( np.array([],dtype=np.unicode_) ) thisbin_objectids_thresh_inveta = ( np.array([],dtype=np.unicode_) ) # # done with check for enough objects in the bin # # get the intersection of all threshold objects to get objects that # lie above the threshold for all variable indices thisbin_objectids_thresh_all = reduce( np.intersect1d, (thisbin_objectids_thresh_stetsonj, thisbin_objectids_thresh_iqr, thisbin_objectids_thresh_inveta) ) binned_objectids.append(thisbin_objectids) binned_sdssr.append(thisbin_sdssr) binned_lcmad.append(thisbin_lcmad) binned_stetsonj.append(thisbin_stetsonj) binned_iqr.append(thisbin_iqr) binned_inveta.append(thisbin_inveta) binned_count.append(thisbin_objectids.size) binned_objectids_thresh_stetsonj.append( thisbin_objectids_thresh_stetsonj ) binned_objectids_thresh_iqr.append( thisbin_objectids_thresh_iqr ) binned_objectids_thresh_inveta.append( thisbin_objectids_thresh_inveta ) binned_objectids_thresh_all.append( thisbin_objectids_thresh_all ) # # done with magbins # # update the output dict for this magcol allobjects[magcol]['magbins'] = magbins allobjects[magcol]['binned_objectids'] = binned_objectids allobjects[magcol]['binned_sdssr_median'] = binned_sdssr_median allobjects[magcol]['binned_sdssr'] = binned_sdssr allobjects[magcol]['binned_count'] = binned_count allobjects[magcol]['binned_lcmad'] = binned_lcmad allobjects[magcol]['binned_lcmad_median'] = binned_lcmad_median allobjects[magcol]['binned_lcmad_stdev'] = binned_lcmad_stdev allobjects[magcol]['binned_stetsonj'] = binned_stetsonj allobjects[magcol]['binned_stetsonj_median'] = binned_stetsonj_median allobjects[magcol]['binned_stetsonj_stdev'] = binned_stetsonj_stdev allobjects[magcol]['binned_iqr'] = binned_iqr allobjects[magcol]['binned_iqr_median'] = binned_iqr_median allobjects[magcol]['binned_iqr_stdev'] = binned_iqr_stdev allobjects[magcol]['binned_inveta'] = binned_inveta allobjects[magcol]['binned_inveta_median'] = binned_inveta_median allobjects[magcol]['binned_inveta_stdev'] = binned_inveta_stdev allobjects[magcol]['binned_objectids_thresh_stetsonj'] = ( binned_objectids_thresh_stetsonj ) allobjects[magcol]['binned_objectids_thresh_iqr'] = ( binned_objectids_thresh_iqr ) allobjects[magcol]['binned_objectids_thresh_inveta'] = ( binned_objectids_thresh_inveta ) allobjects[magcol]['binned_objectids_thresh_all'] = ( binned_objectids_thresh_all ) # get the common selected objects thru all measures try: allobjects[magcol]['objectids_all_thresh_all_magbins'] = np.unique( np.concatenate( allobjects[magcol]['binned_objectids_thresh_all'] ) ) except ValueError: LOGWARNING('not enough variable objects matching all thresholds') allobjects[magcol]['objectids_all_thresh_all_magbins'] = ( np.array([]) ) allobjects[magcol]['objectids_stetsonj_thresh_all_magbins'] = np.unique( np.concatenate( allobjects[magcol]['binned_objectids_thresh_stetsonj'] ) ) allobjects[magcol]['objectids_inveta_thresh_all_magbins'] = np.unique( np.concatenate(allobjects[magcol]['binned_objectids_thresh_inveta']) ) allobjects[magcol]['objectids_iqr_thresh_all_magbins'] = np.unique( np.concatenate(allobjects[magcol]['binned_objectids_thresh_iqr']) ) # turn these into np.arrays for easier plotting if they're lists if isinstance(min_stetj_stdev, list): allobjects[magcol]['min_stetj_stdev'] = np.array( magcol_min_stetj_stdev ) else: allobjects[magcol]['min_stetj_stdev'] = magcol_min_stetj_stdev if isinstance(min_iqr_stdev, list): allobjects[magcol]['min_iqr_stdev'] = np.array( magcol_min_iqr_stdev ) else: allobjects[magcol]['min_iqr_stdev'] = magcol_min_iqr_stdev if isinstance(min_inveta_stdev, list): allobjects[magcol]['min_inveta_stdev'] = np.array( magcol_min_inveta_stdev ) else: allobjects[magcol]['min_inveta_stdev'] = magcol_min_inveta_stdev # this one doesn't get touched (for now) allobjects[magcol]['min_lcmad_stdev'] = min_lcmad_stdev # # done with all magcols # allobjects['magbins'] = magbins with open(outfile,'wb') as outfd: pickle.dump(allobjects, outfd, protocol=pickle.HIGHEST_PROTOCOL) return allobjects
[ "def", "variability_threshold", "(", "featuresdir", ",", "outfile", ",", "magbins", "=", "DEFAULT_MAGBINS", ",", "maxobjects", "=", "None", ",", "timecols", "=", "None", ",", "magcols", "=", "None", ",", "errcols", "=", "None", ",", "lcformat", "=", "'hat-sql'", ",", "lcformatdir", "=", "None", ",", "min_lcmad_stdev", "=", "5.0", ",", "min_stetj_stdev", "=", "2.0", ",", "min_iqr_stdev", "=", "2.0", ",", "min_inveta_stdev", "=", "2.0", ",", "verbose", "=", "True", ")", ":", "try", ":", "formatinfo", "=", "get_lcformat", "(", "lcformat", ",", "use_lcformat_dir", "=", "lcformatdir", ")", "if", "formatinfo", ":", "(", "dfileglob", ",", "readerfunc", ",", "dtimecols", ",", "dmagcols", ",", "derrcols", ",", "magsarefluxes", ",", "normfunc", ")", "=", "formatinfo", "else", ":", "LOGERROR", "(", "\"can't figure out the light curve format\"", ")", "return", "None", "except", "Exception", "as", "e", ":", "LOGEXCEPTION", "(", "\"can't figure out the light curve format\"", ")", "return", "None", "# override the default timecols, magcols, and errcols", "# using the ones provided to the function", "if", "timecols", "is", "None", ":", "timecols", "=", "dtimecols", "if", "magcols", "is", "None", ":", "magcols", "=", "dmagcols", "if", "errcols", "is", "None", ":", "errcols", "=", "derrcols", "# list of input pickles generated by varfeatures functions above", "pklist", "=", "glob", ".", "glob", "(", "os", ".", "path", ".", "join", "(", "featuresdir", ",", "'varfeatures-*.pkl'", ")", ")", "if", "maxobjects", ":", "pklist", "=", "pklist", "[", ":", "maxobjects", "]", "allobjects", "=", "{", "}", "for", "magcol", "in", "magcols", ":", "# keep local copies of these so we can fix them independently in case of", "# nans", "if", "(", "isinstance", "(", "min_stetj_stdev", ",", "list", ")", "or", "isinstance", "(", "min_stetj_stdev", ",", "np", ".", "ndarray", ")", ")", ":", "magcol_min_stetj_stdev", "=", "min_stetj_stdev", "[", ":", ":", "]", "else", ":", "magcol_min_stetj_stdev", "=", "min_stetj_stdev", "if", "(", "isinstance", "(", "min_iqr_stdev", ",", "list", ")", "or", "isinstance", "(", "min_iqr_stdev", ",", "np", ".", "ndarray", ")", ")", ":", "magcol_min_iqr_stdev", "=", "min_iqr_stdev", "[", ":", ":", "]", "else", ":", "magcol_min_iqr_stdev", "=", "min_iqr_stdev", "if", "(", "isinstance", "(", "min_inveta_stdev", ",", "list", ")", "or", "isinstance", "(", "min_inveta_stdev", ",", "np", ".", "ndarray", ")", ")", ":", "magcol_min_inveta_stdev", "=", "min_inveta_stdev", "[", ":", ":", "]", "else", ":", "magcol_min_inveta_stdev", "=", "min_inveta_stdev", "LOGINFO", "(", "'getting all object sdssr, LC MAD, stet J, IQR, eta...'", ")", "# we'll calculate the sigma per magnitude bin, so get the mags as well", "allobjects", "[", "magcol", "]", "=", "{", "'objectid'", ":", "[", "]", ",", "'sdssr'", ":", "[", "]", ",", "'lcmad'", ":", "[", "]", ",", "'stetsonj'", ":", "[", "]", ",", "'iqr'", ":", "[", "]", ",", "'eta'", ":", "[", "]", "}", "# fancy progress bar with tqdm if present", "if", "TQDM", "and", "verbose", ":", "listiterator", "=", "tqdm", "(", "pklist", ")", "else", ":", "listiterator", "=", "pklist", "for", "pkl", "in", "listiterator", ":", "with", "open", "(", "pkl", ",", "'rb'", ")", "as", "infd", ":", "thisfeatures", "=", "pickle", ".", "load", "(", "infd", ")", "objectid", "=", "thisfeatures", "[", "'objectid'", "]", "# the object magnitude", "if", "(", "'info'", "in", "thisfeatures", "and", "thisfeatures", "[", "'info'", "]", "and", "'sdssr'", "in", "thisfeatures", "[", "'info'", "]", ")", ":", "if", "(", "thisfeatures", "[", "'info'", "]", "[", "'sdssr'", "]", "and", "thisfeatures", "[", "'info'", "]", "[", "'sdssr'", "]", ">", "3.0", ")", ":", "sdssr", "=", "thisfeatures", "[", "'info'", "]", "[", "'sdssr'", "]", "elif", "(", "magcol", "in", "thisfeatures", "and", "thisfeatures", "[", "magcol", "]", "and", "'median'", "in", "thisfeatures", "[", "magcol", "]", "and", "thisfeatures", "[", "magcol", "]", "[", "'median'", "]", ">", "3.0", ")", ":", "sdssr", "=", "thisfeatures", "[", "magcol", "]", "[", "'median'", "]", "elif", "(", "thisfeatures", "[", "'info'", "]", "[", "'jmag'", "]", "and", "thisfeatures", "[", "'info'", "]", "[", "'hmag'", "]", "and", "thisfeatures", "[", "'info'", "]", "[", "'kmag'", "]", ")", ":", "sdssr", "=", "jhk_to_sdssr", "(", "thisfeatures", "[", "'info'", "]", "[", "'jmag'", "]", ",", "thisfeatures", "[", "'info'", "]", "[", "'hmag'", "]", ",", "thisfeatures", "[", "'info'", "]", "[", "'kmag'", "]", ")", "else", ":", "sdssr", "=", "np", ".", "nan", "else", ":", "sdssr", "=", "np", ".", "nan", "# the MAD of the light curve", "if", "(", "magcol", "in", "thisfeatures", "and", "thisfeatures", "[", "magcol", "]", "and", "thisfeatures", "[", "magcol", "]", "[", "'mad'", "]", ")", ":", "lcmad", "=", "thisfeatures", "[", "magcol", "]", "[", "'mad'", "]", "else", ":", "lcmad", "=", "np", ".", "nan", "# stetson index", "if", "(", "magcol", "in", "thisfeatures", "and", "thisfeatures", "[", "magcol", "]", "and", "thisfeatures", "[", "magcol", "]", "[", "'stetsonj'", "]", ")", ":", "stetsonj", "=", "thisfeatures", "[", "magcol", "]", "[", "'stetsonj'", "]", "else", ":", "stetsonj", "=", "np", ".", "nan", "# IQR", "if", "(", "magcol", "in", "thisfeatures", "and", "thisfeatures", "[", "magcol", "]", "and", "thisfeatures", "[", "magcol", "]", "[", "'mag_iqr'", "]", ")", ":", "iqr", "=", "thisfeatures", "[", "magcol", "]", "[", "'mag_iqr'", "]", "else", ":", "iqr", "=", "np", ".", "nan", "# eta", "if", "(", "magcol", "in", "thisfeatures", "and", "thisfeatures", "[", "magcol", "]", "and", "thisfeatures", "[", "magcol", "]", "[", "'eta_normal'", "]", ")", ":", "eta", "=", "thisfeatures", "[", "magcol", "]", "[", "'eta_normal'", "]", "else", ":", "eta", "=", "np", ".", "nan", "allobjects", "[", "magcol", "]", "[", "'objectid'", "]", ".", "append", "(", "objectid", ")", "allobjects", "[", "magcol", "]", "[", "'sdssr'", "]", ".", "append", "(", "sdssr", ")", "allobjects", "[", "magcol", "]", "[", "'lcmad'", "]", ".", "append", "(", "lcmad", ")", "allobjects", "[", "magcol", "]", "[", "'stetsonj'", "]", ".", "append", "(", "stetsonj", ")", "allobjects", "[", "magcol", "]", "[", "'iqr'", "]", ".", "append", "(", "iqr", ")", "allobjects", "[", "magcol", "]", "[", "'eta'", "]", ".", "append", "(", "eta", ")", "#", "# done with collection of info", "#", "LOGINFO", "(", "'finding objects above thresholds per magbin...'", ")", "# turn the info into arrays", "allobjects", "[", "magcol", "]", "[", "'objectid'", "]", "=", "np", ".", "ravel", "(", "np", ".", "array", "(", "allobjects", "[", "magcol", "]", "[", "'objectid'", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'sdssr'", "]", "=", "np", ".", "ravel", "(", "np", ".", "array", "(", "allobjects", "[", "magcol", "]", "[", "'sdssr'", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'lcmad'", "]", "=", "np", ".", "ravel", "(", "np", ".", "array", "(", "allobjects", "[", "magcol", "]", "[", "'lcmad'", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'stetsonj'", "]", "=", "np", ".", "ravel", "(", "np", ".", "array", "(", "allobjects", "[", "magcol", "]", "[", "'stetsonj'", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'iqr'", "]", "=", "np", ".", "ravel", "(", "np", ".", "array", "(", "allobjects", "[", "magcol", "]", "[", "'iqr'", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'eta'", "]", "=", "np", ".", "ravel", "(", "np", ".", "array", "(", "allobjects", "[", "magcol", "]", "[", "'eta'", "]", ")", ")", "# only get finite elements everywhere", "thisfinind", "=", "(", "np", ".", "isfinite", "(", "allobjects", "[", "magcol", "]", "[", "'sdssr'", "]", ")", "&", "np", ".", "isfinite", "(", "allobjects", "[", "magcol", "]", "[", "'lcmad'", "]", ")", "&", "np", ".", "isfinite", "(", "allobjects", "[", "magcol", "]", "[", "'stetsonj'", "]", ")", "&", "np", ".", "isfinite", "(", "allobjects", "[", "magcol", "]", "[", "'iqr'", "]", ")", "&", "np", ".", "isfinite", "(", "allobjects", "[", "magcol", "]", "[", "'eta'", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'objectid'", "]", "=", "allobjects", "[", "magcol", "]", "[", "'objectid'", "]", "[", "thisfinind", "]", "allobjects", "[", "magcol", "]", "[", "'sdssr'", "]", "=", "allobjects", "[", "magcol", "]", "[", "'sdssr'", "]", "[", "thisfinind", "]", "allobjects", "[", "magcol", "]", "[", "'lcmad'", "]", "=", "allobjects", "[", "magcol", "]", "[", "'lcmad'", "]", "[", "thisfinind", "]", "allobjects", "[", "magcol", "]", "[", "'stetsonj'", "]", "=", "allobjects", "[", "magcol", "]", "[", "'stetsonj'", "]", "[", "thisfinind", "]", "allobjects", "[", "magcol", "]", "[", "'iqr'", "]", "=", "allobjects", "[", "magcol", "]", "[", "'iqr'", "]", "[", "thisfinind", "]", "allobjects", "[", "magcol", "]", "[", "'eta'", "]", "=", "allobjects", "[", "magcol", "]", "[", "'eta'", "]", "[", "thisfinind", "]", "# invert eta so we can threshold the same way as the others", "allobjects", "[", "magcol", "]", "[", "'inveta'", "]", "=", "1.0", "/", "allobjects", "[", "magcol", "]", "[", "'eta'", "]", "# do the thresholding by magnitude bin", "magbininds", "=", "np", ".", "digitize", "(", "allobjects", "[", "magcol", "]", "[", "'sdssr'", "]", ",", "magbins", ")", "binned_objectids", "=", "[", "]", "binned_sdssr", "=", "[", "]", "binned_sdssr_median", "=", "[", "]", "binned_lcmad", "=", "[", "]", "binned_stetsonj", "=", "[", "]", "binned_iqr", "=", "[", "]", "binned_inveta", "=", "[", "]", "binned_count", "=", "[", "]", "binned_objectids_thresh_stetsonj", "=", "[", "]", "binned_objectids_thresh_iqr", "=", "[", "]", "binned_objectids_thresh_inveta", "=", "[", "]", "binned_objectids_thresh_all", "=", "[", "]", "binned_lcmad_median", "=", "[", "]", "binned_lcmad_stdev", "=", "[", "]", "binned_stetsonj_median", "=", "[", "]", "binned_stetsonj_stdev", "=", "[", "]", "binned_inveta_median", "=", "[", "]", "binned_inveta_stdev", "=", "[", "]", "binned_iqr_median", "=", "[", "]", "binned_iqr_stdev", "=", "[", "]", "# go through all the mag bins and get the thresholds for J, inveta, IQR", "for", "mbinind", ",", "magi", "in", "zip", "(", "np", ".", "unique", "(", "magbininds", ")", ",", "range", "(", "len", "(", "magbins", ")", "-", "1", ")", ")", ":", "thisbinind", "=", "np", ".", "where", "(", "magbininds", "==", "mbinind", ")", "thisbin_sdssr_median", "=", "(", "magbins", "[", "magi", "]", "+", "magbins", "[", "magi", "+", "1", "]", ")", "/", "2.0", "binned_sdssr_median", ".", "append", "(", "thisbin_sdssr_median", ")", "thisbin_objectids", "=", "allobjects", "[", "magcol", "]", "[", "'objectid'", "]", "[", "thisbinind", "]", "thisbin_sdssr", "=", "allobjects", "[", "magcol", "]", "[", "'sdssr'", "]", "[", "thisbinind", "]", "thisbin_lcmad", "=", "allobjects", "[", "magcol", "]", "[", "'lcmad'", "]", "[", "thisbinind", "]", "thisbin_stetsonj", "=", "allobjects", "[", "magcol", "]", "[", "'stetsonj'", "]", "[", "thisbinind", "]", "thisbin_iqr", "=", "allobjects", "[", "magcol", "]", "[", "'iqr'", "]", "[", "thisbinind", "]", "thisbin_inveta", "=", "allobjects", "[", "magcol", "]", "[", "'inveta'", "]", "[", "thisbinind", "]", "thisbin_count", "=", "thisbin_objectids", ".", "size", "if", "thisbin_count", ">", "4", ":", "thisbin_lcmad_median", "=", "np", ".", "median", "(", "thisbin_lcmad", ")", "thisbin_lcmad_stdev", "=", "np", ".", "median", "(", "np", ".", "abs", "(", "thisbin_lcmad", "-", "thisbin_lcmad_median", ")", ")", "*", "1.483", "binned_lcmad_median", ".", "append", "(", "thisbin_lcmad_median", ")", "binned_lcmad_stdev", ".", "append", "(", "thisbin_lcmad_stdev", ")", "thisbin_stetsonj_median", "=", "np", ".", "median", "(", "thisbin_stetsonj", ")", "thisbin_stetsonj_stdev", "=", "np", ".", "median", "(", "np", ".", "abs", "(", "thisbin_stetsonj", "-", "thisbin_stetsonj_median", ")", ")", "*", "1.483", "binned_stetsonj_median", ".", "append", "(", "thisbin_stetsonj_median", ")", "binned_stetsonj_stdev", ".", "append", "(", "thisbin_stetsonj_stdev", ")", "# now get the objects above the required stdev threshold", "if", "isinstance", "(", "magcol_min_stetj_stdev", ",", "float", ")", ":", "thisbin_objectids_thresh_stetsonj", "=", "thisbin_objectids", "[", "thisbin_stetsonj", ">", "(", "thisbin_stetsonj_median", "+", "magcol_min_stetj_stdev", "*", "thisbin_stetsonj_stdev", ")", "]", "elif", "(", "isinstance", "(", "magcol_min_stetj_stdev", ",", "np", ".", "ndarray", ")", "or", "isinstance", "(", "magcol_min_stetj_stdev", ",", "list", ")", ")", ":", "thisbin_min_stetj_stdev", "=", "magcol_min_stetj_stdev", "[", "magi", "]", "if", "not", "np", ".", "isfinite", "(", "thisbin_min_stetj_stdev", ")", ":", "LOGWARNING", "(", "'provided threshold stetson J stdev '", "'for magbin: %.3f is nan, using 2.0'", "%", "thisbin_sdssr_median", ")", "thisbin_min_stetj_stdev", "=", "2.0", "# update the input list/array as well, since we'll be", "# saving it to the output dict and using it to plot the", "# variability thresholds", "magcol_min_stetj_stdev", "[", "magi", "]", "=", "2.0", "thisbin_objectids_thresh_stetsonj", "=", "thisbin_objectids", "[", "thisbin_stetsonj", ">", "(", "thisbin_stetsonj_median", "+", "thisbin_min_stetj_stdev", "*", "thisbin_stetsonj_stdev", ")", "]", "thisbin_iqr_median", "=", "np", ".", "median", "(", "thisbin_iqr", ")", "thisbin_iqr_stdev", "=", "np", ".", "median", "(", "np", ".", "abs", "(", "thisbin_iqr", "-", "thisbin_iqr_median", ")", ")", "*", "1.483", "binned_iqr_median", ".", "append", "(", "thisbin_iqr_median", ")", "binned_iqr_stdev", ".", "append", "(", "thisbin_iqr_stdev", ")", "# get the objects above the required stdev threshold", "if", "isinstance", "(", "magcol_min_iqr_stdev", ",", "float", ")", ":", "thisbin_objectids_thresh_iqr", "=", "thisbin_objectids", "[", "thisbin_iqr", ">", "(", "thisbin_iqr_median", "+", "magcol_min_iqr_stdev", "*", "thisbin_iqr_stdev", ")", "]", "elif", "(", "isinstance", "(", "magcol_min_iqr_stdev", ",", "np", ".", "ndarray", ")", "or", "isinstance", "(", "magcol_min_iqr_stdev", ",", "list", ")", ")", ":", "thisbin_min_iqr_stdev", "=", "magcol_min_iqr_stdev", "[", "magi", "]", "if", "not", "np", ".", "isfinite", "(", "thisbin_min_iqr_stdev", ")", ":", "LOGWARNING", "(", "'provided threshold IQR stdev '", "'for magbin: %.3f is nan, using 2.0'", "%", "thisbin_sdssr_median", ")", "thisbin_min_iqr_stdev", "=", "2.0", "# update the input list/array as well, since we'll be", "# saving it to the output dict and using it to plot the", "# variability thresholds", "magcol_min_iqr_stdev", "[", "magi", "]", "=", "2.0", "thisbin_objectids_thresh_iqr", "=", "thisbin_objectids", "[", "thisbin_iqr", ">", "(", "thisbin_iqr_median", "+", "thisbin_min_iqr_stdev", "*", "thisbin_iqr_stdev", ")", "]", "thisbin_inveta_median", "=", "np", ".", "median", "(", "thisbin_inveta", ")", "thisbin_inveta_stdev", "=", "np", ".", "median", "(", "np", ".", "abs", "(", "thisbin_inveta", "-", "thisbin_inveta_median", ")", ")", "*", "1.483", "binned_inveta_median", ".", "append", "(", "thisbin_inveta_median", ")", "binned_inveta_stdev", ".", "append", "(", "thisbin_inveta_stdev", ")", "if", "isinstance", "(", "magcol_min_inveta_stdev", ",", "float", ")", ":", "thisbin_objectids_thresh_inveta", "=", "thisbin_objectids", "[", "thisbin_inveta", ">", "(", "thisbin_inveta_median", "+", "magcol_min_inveta_stdev", "*", "thisbin_inveta_stdev", ")", "]", "elif", "(", "isinstance", "(", "magcol_min_inveta_stdev", ",", "np", ".", "ndarray", ")", "or", "isinstance", "(", "magcol_min_inveta_stdev", ",", "list", ")", ")", ":", "thisbin_min_inveta_stdev", "=", "magcol_min_inveta_stdev", "[", "magi", "]", "if", "not", "np", ".", "isfinite", "(", "thisbin_min_inveta_stdev", ")", ":", "LOGWARNING", "(", "'provided threshold inveta stdev '", "'for magbin: %.3f is nan, using 2.0'", "%", "thisbin_sdssr_median", ")", "thisbin_min_inveta_stdev", "=", "2.0", "# update the input list/array as well, since we'll be", "# saving it to the output dict and using it to plot the", "# variability thresholds", "magcol_min_inveta_stdev", "[", "magi", "]", "=", "2.0", "thisbin_objectids_thresh_inveta", "=", "thisbin_objectids", "[", "thisbin_inveta", ">", "(", "thisbin_inveta_median", "+", "thisbin_min_inveta_stdev", "*", "thisbin_inveta_stdev", ")", "]", "else", ":", "thisbin_objectids_thresh_stetsonj", "=", "(", "np", ".", "array", "(", "[", "]", ",", "dtype", "=", "np", ".", "unicode_", ")", ")", "thisbin_objectids_thresh_iqr", "=", "(", "np", ".", "array", "(", "[", "]", ",", "dtype", "=", "np", ".", "unicode_", ")", ")", "thisbin_objectids_thresh_inveta", "=", "(", "np", ".", "array", "(", "[", "]", ",", "dtype", "=", "np", ".", "unicode_", ")", ")", "#", "# done with check for enough objects in the bin", "#", "# get the intersection of all threshold objects to get objects that", "# lie above the threshold for all variable indices", "thisbin_objectids_thresh_all", "=", "reduce", "(", "np", ".", "intersect1d", ",", "(", "thisbin_objectids_thresh_stetsonj", ",", "thisbin_objectids_thresh_iqr", ",", "thisbin_objectids_thresh_inveta", ")", ")", "binned_objectids", ".", "append", "(", "thisbin_objectids", ")", "binned_sdssr", ".", "append", "(", "thisbin_sdssr", ")", "binned_lcmad", ".", "append", "(", "thisbin_lcmad", ")", "binned_stetsonj", ".", "append", "(", "thisbin_stetsonj", ")", "binned_iqr", ".", "append", "(", "thisbin_iqr", ")", "binned_inveta", ".", "append", "(", "thisbin_inveta", ")", "binned_count", ".", "append", "(", "thisbin_objectids", ".", "size", ")", "binned_objectids_thresh_stetsonj", ".", "append", "(", "thisbin_objectids_thresh_stetsonj", ")", "binned_objectids_thresh_iqr", ".", "append", "(", "thisbin_objectids_thresh_iqr", ")", "binned_objectids_thresh_inveta", ".", "append", "(", "thisbin_objectids_thresh_inveta", ")", "binned_objectids_thresh_all", ".", "append", "(", "thisbin_objectids_thresh_all", ")", "#", "# done with magbins", "#", "# update the output dict for this magcol", "allobjects", "[", "magcol", "]", "[", "'magbins'", "]", "=", "magbins", "allobjects", "[", "magcol", "]", "[", "'binned_objectids'", "]", "=", "binned_objectids", "allobjects", "[", "magcol", "]", "[", "'binned_sdssr_median'", "]", "=", "binned_sdssr_median", "allobjects", "[", "magcol", "]", "[", "'binned_sdssr'", "]", "=", "binned_sdssr", "allobjects", "[", "magcol", "]", "[", "'binned_count'", "]", "=", "binned_count", "allobjects", "[", "magcol", "]", "[", "'binned_lcmad'", "]", "=", "binned_lcmad", "allobjects", "[", "magcol", "]", "[", "'binned_lcmad_median'", "]", "=", "binned_lcmad_median", "allobjects", "[", "magcol", "]", "[", "'binned_lcmad_stdev'", "]", "=", "binned_lcmad_stdev", "allobjects", "[", "magcol", "]", "[", "'binned_stetsonj'", "]", "=", "binned_stetsonj", "allobjects", "[", "magcol", "]", "[", "'binned_stetsonj_median'", "]", "=", "binned_stetsonj_median", "allobjects", "[", "magcol", "]", "[", "'binned_stetsonj_stdev'", "]", "=", "binned_stetsonj_stdev", "allobjects", "[", "magcol", "]", "[", "'binned_iqr'", "]", "=", "binned_iqr", "allobjects", "[", "magcol", "]", "[", "'binned_iqr_median'", "]", "=", "binned_iqr_median", "allobjects", "[", "magcol", "]", "[", "'binned_iqr_stdev'", "]", "=", "binned_iqr_stdev", "allobjects", "[", "magcol", "]", "[", "'binned_inveta'", "]", "=", "binned_inveta", "allobjects", "[", "magcol", "]", "[", "'binned_inveta_median'", "]", "=", "binned_inveta_median", "allobjects", "[", "magcol", "]", "[", "'binned_inveta_stdev'", "]", "=", "binned_inveta_stdev", "allobjects", "[", "magcol", "]", "[", "'binned_objectids_thresh_stetsonj'", "]", "=", "(", "binned_objectids_thresh_stetsonj", ")", "allobjects", "[", "magcol", "]", "[", "'binned_objectids_thresh_iqr'", "]", "=", "(", "binned_objectids_thresh_iqr", ")", "allobjects", "[", "magcol", "]", "[", "'binned_objectids_thresh_inveta'", "]", "=", "(", "binned_objectids_thresh_inveta", ")", "allobjects", "[", "magcol", "]", "[", "'binned_objectids_thresh_all'", "]", "=", "(", "binned_objectids_thresh_all", ")", "# get the common selected objects thru all measures", "try", ":", "allobjects", "[", "magcol", "]", "[", "'objectids_all_thresh_all_magbins'", "]", "=", "np", ".", "unique", "(", "np", ".", "concatenate", "(", "allobjects", "[", "magcol", "]", "[", "'binned_objectids_thresh_all'", "]", ")", ")", "except", "ValueError", ":", "LOGWARNING", "(", "'not enough variable objects matching all thresholds'", ")", "allobjects", "[", "magcol", "]", "[", "'objectids_all_thresh_all_magbins'", "]", "=", "(", "np", ".", "array", "(", "[", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'objectids_stetsonj_thresh_all_magbins'", "]", "=", "np", ".", "unique", "(", "np", ".", "concatenate", "(", "allobjects", "[", "magcol", "]", "[", "'binned_objectids_thresh_stetsonj'", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'objectids_inveta_thresh_all_magbins'", "]", "=", "np", ".", "unique", "(", "np", ".", "concatenate", "(", "allobjects", "[", "magcol", "]", "[", "'binned_objectids_thresh_inveta'", "]", ")", ")", "allobjects", "[", "magcol", "]", "[", "'objectids_iqr_thresh_all_magbins'", "]", "=", "np", ".", "unique", "(", "np", ".", "concatenate", "(", "allobjects", "[", "magcol", "]", "[", "'binned_objectids_thresh_iqr'", "]", ")", ")", "# turn these into np.arrays for easier plotting if they're lists", "if", "isinstance", "(", "min_stetj_stdev", ",", "list", ")", ":", "allobjects", "[", "magcol", "]", "[", "'min_stetj_stdev'", "]", "=", "np", ".", "array", "(", "magcol_min_stetj_stdev", ")", "else", ":", "allobjects", "[", "magcol", "]", "[", "'min_stetj_stdev'", "]", "=", "magcol_min_stetj_stdev", "if", "isinstance", "(", "min_iqr_stdev", ",", "list", ")", ":", "allobjects", "[", "magcol", "]", "[", "'min_iqr_stdev'", "]", "=", "np", ".", "array", "(", "magcol_min_iqr_stdev", ")", "else", ":", "allobjects", "[", "magcol", "]", "[", "'min_iqr_stdev'", "]", "=", "magcol_min_iqr_stdev", "if", "isinstance", "(", "min_inveta_stdev", ",", "list", ")", ":", "allobjects", "[", "magcol", "]", "[", "'min_inveta_stdev'", "]", "=", "np", ".", "array", "(", "magcol_min_inveta_stdev", ")", "else", ":", "allobjects", "[", "magcol", "]", "[", "'min_inveta_stdev'", "]", "=", "magcol_min_inveta_stdev", "# this one doesn't get touched (for now)", "allobjects", "[", "magcol", "]", "[", "'min_lcmad_stdev'", "]", "=", "min_lcmad_stdev", "#", "# done with all magcols", "#", "allobjects", "[", "'magbins'", "]", "=", "magbins", "with", "open", "(", "outfile", ",", "'wb'", ")", "as", "outfd", ":", "pickle", ".", "dump", "(", "allobjects", ",", "outfd", ",", "protocol", "=", "pickle", ".", "HIGHEST_PROTOCOL", ")", "return", "allobjects" ]
This generates a list of objects with stetson J, IQR, and 1.0/eta above some threshold value to select them as potential variable stars. Use this to pare down the objects to review and put through period-finding. This does the thresholding per magnitude bin; this should be better than one single cut through the entire magnitude range. Set the magnitude bins using the magbins kwarg. FIXME: implement a voting classifier here. this will choose variables based on the thresholds in IQR, stetson, and inveta based on weighting carried over from the variability recovery sims. Parameters ---------- featuresdir : str This is the directory containing variability feature pickles created by :py:func:`astrobase.lcproc.lcpfeatures.parallel_varfeatures` or similar. outfile : str This is the output pickle file that will contain all the threshold information. magbins : np.array of floats This sets the magnitude bins to use for calculating thresholds. maxobjects : int or None This is the number of objects to process. If None, all objects with feature pickles in `featuresdir` will be processed. timecols : list of str or None The timecol keys to use from the lcdict in calculating the thresholds. magcols : list of str or None The magcol keys to use from the lcdict in calculating the thresholds. errcols : list of str or None The errcol keys to use from the lcdict in calculating the thresholds. lcformat : str This is the `formatkey` associated with your light curve format, which you previously passed in to the `lcproc.register_lcformat` function. This will be used to look up how to find and read the light curves specified in `basedir` or `use_list_of_filenames`. lcformatdir : str or None If this is provided, gives the path to a directory when you've stored your lcformat description JSONs, other than the usual directories lcproc knows to search for them in. Use this along with `lcformat` to specify an LC format JSON file that's not currently registered with lcproc. min_lcmad_stdev,min_stetj_stdev,min_iqr_stdev,min_inveta_stdev : float or np.array These are all the standard deviation multiplier for the distributions of light curve standard deviation, Stetson J variability index, the light curve interquartile range, and 1/eta variability index respectively. These multipliers set the minimum values of these measures to use for selecting variable stars. If provided as floats, the same value will be used for all magbins. If provided as np.arrays of `size = magbins.size - 1`, will be used to apply possibly different sigma cuts for each magbin. verbose : bool If True, will report progress and warn about any problems. Returns ------- dict Contains all of the variability threshold information along with indices into the array of the object IDs chosen as variables.
[ "This", "generates", "a", "list", "of", "objects", "with", "stetson", "J", "IQR", "and", "1", ".", "0", "/", "eta", "above", "some", "threshold", "value", "to", "select", "them", "as", "potential", "variable", "stars", "." ]
python
valid
37.875828
abusque/qng
qng/generator.py
https://github.com/abusque/qng/blob/93d2efd637b2a6bba7d3872fb9ff2bb3fc5c979d/qng/generator.py#L83-L91
def _get_names(self): """Get the list of first names. :return: A list of first name entries. """ names = self._read_name_file('names.json') names = self._compute_weights(names) return names
[ "def", "_get_names", "(", "self", ")", ":", "names", "=", "self", ".", "_read_name_file", "(", "'names.json'", ")", "names", "=", "self", ".", "_compute_weights", "(", "names", ")", "return", "names" ]
Get the list of first names. :return: A list of first name entries.
[ "Get", "the", "list", "of", "first", "names", "." ]
python
train
25.666667
pywbem/pywbem
examples/enuminstances.py
https://github.com/pywbem/pywbem/blob/e54ecb82c2211e289a268567443d60fdd489f1e4/examples/enuminstances.py#L74-L100
def main(): """ Get arguments and call the execution function""" if len(sys.argv) < 6: print("Usage: %s server_url username password namespace' \ ' classname" % sys.argv[0]) print('Using internal defaults') server_url = SERVER_URL namespace = TEST_NAMESPACE username = USERNAME password = PASSWORD classname = TEST_CLASS else: print('Get from input') server_url = sys.argv[1] namespace = sys.argv[2] username = sys.argv[3] password = sys.argv[4] classname = sys.argv[5] # create the credentials tuple for WBEMConnection creds = (username, password) # call the method to execute the request and display results execute_request(server_url, creds, namespace, classname) return 0
[ "def", "main", "(", ")", ":", "if", "len", "(", "sys", ".", "argv", ")", "<", "6", ":", "print", "(", "\"Usage: %s server_url username password namespace' \\\n ' classname\"", "%", "sys", ".", "argv", "[", "0", "]", ")", "print", "(", "'Using internal defaults'", ")", "server_url", "=", "SERVER_URL", "namespace", "=", "TEST_NAMESPACE", "username", "=", "USERNAME", "password", "=", "PASSWORD", "classname", "=", "TEST_CLASS", "else", ":", "print", "(", "'Get from input'", ")", "server_url", "=", "sys", ".", "argv", "[", "1", "]", "namespace", "=", "sys", ".", "argv", "[", "2", "]", "username", "=", "sys", ".", "argv", "[", "3", "]", "password", "=", "sys", ".", "argv", "[", "4", "]", "classname", "=", "sys", ".", "argv", "[", "5", "]", "# create the credentials tuple for WBEMConnection", "creds", "=", "(", "username", ",", "password", ")", "# call the method to execute the request and display results", "execute_request", "(", "server_url", ",", "creds", ",", "namespace", ",", "classname", ")", "return", "0" ]
Get arguments and call the execution function
[ "Get", "arguments", "and", "call", "the", "execution", "function" ]
python
train
29.777778
saltstack/salt
salt/utils/dictdiffer.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/utils/dictdiffer.py#L247-L269
def added(self): ''' Returns all keys that have been added. If the keys are in child dictionaries they will be represented with . notation ''' def _added(diffs, prefix): keys = [] for key in diffs.keys(): if isinstance(diffs[key], dict) and 'old' not in diffs[key]: keys.extend(_added(diffs[key], prefix='{0}{1}.'.format(prefix, key))) elif diffs[key]['old'] == self.NONE_VALUE: if isinstance(diffs[key]['new'], dict): keys.extend( _added(diffs[key]['new'], prefix='{0}{1}.'.format(prefix, key))) else: keys.append('{0}{1}'.format(prefix, key)) return keys return sorted(_added(self._diffs, prefix=''))
[ "def", "added", "(", "self", ")", ":", "def", "_added", "(", "diffs", ",", "prefix", ")", ":", "keys", "=", "[", "]", "for", "key", "in", "diffs", ".", "keys", "(", ")", ":", "if", "isinstance", "(", "diffs", "[", "key", "]", ",", "dict", ")", "and", "'old'", "not", "in", "diffs", "[", "key", "]", ":", "keys", ".", "extend", "(", "_added", "(", "diffs", "[", "key", "]", ",", "prefix", "=", "'{0}{1}.'", ".", "format", "(", "prefix", ",", "key", ")", ")", ")", "elif", "diffs", "[", "key", "]", "[", "'old'", "]", "==", "self", ".", "NONE_VALUE", ":", "if", "isinstance", "(", "diffs", "[", "key", "]", "[", "'new'", "]", ",", "dict", ")", ":", "keys", ".", "extend", "(", "_added", "(", "diffs", "[", "key", "]", "[", "'new'", "]", ",", "prefix", "=", "'{0}{1}.'", ".", "format", "(", "prefix", ",", "key", ")", ")", ")", "else", ":", "keys", ".", "append", "(", "'{0}{1}'", ".", "format", "(", "prefix", ",", "key", ")", ")", "return", "keys", "return", "sorted", "(", "_added", "(", "self", ".", "_diffs", ",", "prefix", "=", "''", ")", ")" ]
Returns all keys that have been added. If the keys are in child dictionaries they will be represented with . notation
[ "Returns", "all", "keys", "that", "have", "been", "added", "." ]
python
train
39.826087
couchbase/couchbase-python-client
couchbase/subdocument.py
https://github.com/couchbase/couchbase-python-client/blob/a7bada167785bf79a29c39f820d932a433a6a535/couchbase/subdocument.py#L132-L141
def replace(path, value, **kwargs): """ Replace an existing path. This works on any valid path if the path already exists. Valid only in :cb_bmeth:`mutate_in` :param path: The path to replace :param value: The new value """ return _gen_4spec(LCB_SDCMD_REPLACE, path, value, create_path=False, **kwargs)
[ "def", "replace", "(", "path", ",", "value", ",", "*", "*", "kwargs", ")", ":", "return", "_gen_4spec", "(", "LCB_SDCMD_REPLACE", ",", "path", ",", "value", ",", "create_path", "=", "False", ",", "*", "*", "kwargs", ")" ]
Replace an existing path. This works on any valid path if the path already exists. Valid only in :cb_bmeth:`mutate_in` :param path: The path to replace :param value: The new value
[ "Replace", "an", "existing", "path", ".", "This", "works", "on", "any", "valid", "path", "if", "the", "path", "already", "exists", ".", "Valid", "only", "in", ":", "cb_bmeth", ":", "mutate_in" ]
python
train
34.4
mottosso/Qt.py
examples/loadUi/baseinstance2.py
https://github.com/mottosso/Qt.py/blob/d88a0c1762ad90d1965008cc14c53504bbcc0061/examples/loadUi/baseinstance2.py#L54-L89
def pyside_load_ui(uifile, base_instance=None): """Provide PyQt4.uic.loadUi functionality to PySide Args: uifile (str): Absolute path to .ui file base_instance (QWidget): The widget into which UI widgets are loaded Note: pysideuic is required for this to work with PySide. This seems to work correctly in Maya as well as outside of it as opposed to other implementations which involve overriding QUiLoader. Returns: QWidget: the base instance """ form_class, base_class = load_ui_type(uifile) if not base_instance: typeName = form_class.__name__ finalType = type(typeName, (form_class, base_class), {}) base_instance = finalType() else: if not isinstance(base_instance, base_class): raise RuntimeError( 'The base_instance passed to loadUi does not inherit from' ' needed base type (%s)' % type(base_class)) typeName = type(base_instance).__name__ base_instance.__class__ = type(typeName, (form_class, type(base_instance)), {}) base_instance.setupUi(base_instance) return base_instance
[ "def", "pyside_load_ui", "(", "uifile", ",", "base_instance", "=", "None", ")", ":", "form_class", ",", "base_class", "=", "load_ui_type", "(", "uifile", ")", "if", "not", "base_instance", ":", "typeName", "=", "form_class", ".", "__name__", "finalType", "=", "type", "(", "typeName", ",", "(", "form_class", ",", "base_class", ")", ",", "{", "}", ")", "base_instance", "=", "finalType", "(", ")", "else", ":", "if", "not", "isinstance", "(", "base_instance", ",", "base_class", ")", ":", "raise", "RuntimeError", "(", "'The base_instance passed to loadUi does not inherit from'", "' needed base type (%s)'", "%", "type", "(", "base_class", ")", ")", "typeName", "=", "type", "(", "base_instance", ")", ".", "__name__", "base_instance", ".", "__class__", "=", "type", "(", "typeName", ",", "(", "form_class", ",", "type", "(", "base_instance", ")", ")", ",", "{", "}", ")", "base_instance", ".", "setupUi", "(", "base_instance", ")", "return", "base_instance" ]
Provide PyQt4.uic.loadUi functionality to PySide Args: uifile (str): Absolute path to .ui file base_instance (QWidget): The widget into which UI widgets are loaded Note: pysideuic is required for this to work with PySide. This seems to work correctly in Maya as well as outside of it as opposed to other implementations which involve overriding QUiLoader. Returns: QWidget: the base instance
[ "Provide", "PyQt4", ".", "uic", ".", "loadUi", "functionality", "to", "PySide" ]
python
train
35.083333
gwpy/gwpy
gwpy/io/datafind.py
https://github.com/gwpy/gwpy/blob/7a92b917e7dd2d99b15895293a1fa1d66cdb210a/gwpy/io/datafind.py#L615-L626
def find_types(observatory, match=None, trend=None, connection=None, **connection_kw): """Find the available data types for a given observatory. See also -------- gwdatafind.http.HTTPConnection.find_types FflConnection.find_types for details on the underlying method(s) """ return sorted(connection.find_types(observatory, match=match), key=lambda x: _type_priority(observatory, x, trend=trend))
[ "def", "find_types", "(", "observatory", ",", "match", "=", "None", ",", "trend", "=", "None", ",", "connection", "=", "None", ",", "*", "*", "connection_kw", ")", ":", "return", "sorted", "(", "connection", ".", "find_types", "(", "observatory", ",", "match", "=", "match", ")", ",", "key", "=", "lambda", "x", ":", "_type_priority", "(", "observatory", ",", "x", ",", "trend", "=", "trend", ")", ")" ]
Find the available data types for a given observatory. See also -------- gwdatafind.http.HTTPConnection.find_types FflConnection.find_types for details on the underlying method(s)
[ "Find", "the", "available", "data", "types", "for", "a", "given", "observatory", "." ]
python
train
37.833333
O365/python-o365
O365/connection.py
https://github.com/O365/python-o365/blob/02a71cf3775cc6a3c042e003365d6a07c8c75a73/O365/connection.py#L140-L165
def get_scopes_for(self, user_provided_scopes): """ Returns a list of scopes needed for each of the scope_helpers provided, by adding the prefix to them if required :param user_provided_scopes: a list of scopes or scope helpers :type user_provided_scopes: list or tuple or str :return: scopes with url prefix added :rtype: list :raises ValueError: if unexpected datatype of scopes are passed """ if user_provided_scopes is None: # return all available scopes user_provided_scopes = [app_part for app_part in self._oauth_scopes] elif isinstance(user_provided_scopes, str): user_provided_scopes = [user_provided_scopes] if not isinstance(user_provided_scopes, (list, tuple)): raise ValueError( "'user_provided_scopes' must be a list or a tuple of strings") scopes = set() for app_part in user_provided_scopes: for scope in self._oauth_scopes.get(app_part, [(app_part,)]): scopes.add(self._prefix_scope(scope)) return list(scopes)
[ "def", "get_scopes_for", "(", "self", ",", "user_provided_scopes", ")", ":", "if", "user_provided_scopes", "is", "None", ":", "# return all available scopes", "user_provided_scopes", "=", "[", "app_part", "for", "app_part", "in", "self", ".", "_oauth_scopes", "]", "elif", "isinstance", "(", "user_provided_scopes", ",", "str", ")", ":", "user_provided_scopes", "=", "[", "user_provided_scopes", "]", "if", "not", "isinstance", "(", "user_provided_scopes", ",", "(", "list", ",", "tuple", ")", ")", ":", "raise", "ValueError", "(", "\"'user_provided_scopes' must be a list or a tuple of strings\"", ")", "scopes", "=", "set", "(", ")", "for", "app_part", "in", "user_provided_scopes", ":", "for", "scope", "in", "self", ".", "_oauth_scopes", ".", "get", "(", "app_part", ",", "[", "(", "app_part", ",", ")", "]", ")", ":", "scopes", ".", "add", "(", "self", ".", "_prefix_scope", "(", "scope", ")", ")", "return", "list", "(", "scopes", ")" ]
Returns a list of scopes needed for each of the scope_helpers provided, by adding the prefix to them if required :param user_provided_scopes: a list of scopes or scope helpers :type user_provided_scopes: list or tuple or str :return: scopes with url prefix added :rtype: list :raises ValueError: if unexpected datatype of scopes are passed
[ "Returns", "a", "list", "of", "scopes", "needed", "for", "each", "of", "the", "scope_helpers", "provided", "by", "adding", "the", "prefix", "to", "them", "if", "required" ]
python
train
42.692308
ramses-tech/ramses
ramses/utils.py
https://github.com/ramses-tech/ramses/blob/ea2e1e896325b7256cdf5902309e05fd98e0c14c/ramses/utils.py#L345-L354
def get_route_name(resource_uri): """ Get route name from RAML resource URI. :param resource_uri: String representing RAML resource URI. :returns string: String with route name, which is :resource_uri: stripped of non-word characters. """ resource_uri = resource_uri.strip('/') resource_uri = re.sub('\W', '', resource_uri) return resource_uri
[ "def", "get_route_name", "(", "resource_uri", ")", ":", "resource_uri", "=", "resource_uri", ".", "strip", "(", "'/'", ")", "resource_uri", "=", "re", ".", "sub", "(", "'\\W'", ",", "''", ",", "resource_uri", ")", "return", "resource_uri" ]
Get route name from RAML resource URI. :param resource_uri: String representing RAML resource URI. :returns string: String with route name, which is :resource_uri: stripped of non-word characters.
[ "Get", "route", "name", "from", "RAML", "resource", "URI", "." ]
python
train
37.1
biosignalsnotebooks/biosignalsnotebooks
biosignalsnotebooks/build/lib/biosignalsnotebooks/extract.py
https://github.com/biosignalsnotebooks/biosignalsnotebooks/blob/aaa01d4125180b3a34f1e26e0d3ff08c23f666d3/biosignalsnotebooks/build/lib/biosignalsnotebooks/extract.py#L268-L315
def psd(tachogram_time, tachogram_data): """ ----- Brief ----- Determination of the Power Spectral Density Function (Fourier Domain) ----------- Description ----------- The Power Spectral Density Function allows to perceive the behavior of a given signal in terms of its frequency. This procedure costs the time resolution of the signal but may be important to extract features in a different domain appart from the time domain. This function constructs the Power Spectral Density Function in the frequency domain. ---------- Parameters ---------- tachogram_time : list X Axis of tachogram. tachogram_data : list Y Axis of tachogram. Returns ------- out : list, list Frequency and power axis. """ init_time = tachogram_time[0] fin_time = tachogram_time[-1] tck = interpol.splrep(tachogram_time, tachogram_data) interpolation_rate = 4 nn_time_even = numpy.linspace(init_time, fin_time, (fin_time - init_time) * interpolation_rate) nn_tachogram_even = interpol.splev(nn_time_even, tck) freq_axis, power_axis = scisignal.welch(nn_tachogram_even, interpolation_rate, window=scisignal.get_window("hanning", min(len(nn_tachogram_even), 1000)), nperseg=min(len(nn_tachogram_even), 1000)) freqs = [round(val, 3) for val in freq_axis if val < 0.5] power = [round(val, 4) for val, freq in zip(power_axis, freq_axis) if freq < 0.5] return freqs, power
[ "def", "psd", "(", "tachogram_time", ",", "tachogram_data", ")", ":", "init_time", "=", "tachogram_time", "[", "0", "]", "fin_time", "=", "tachogram_time", "[", "-", "1", "]", "tck", "=", "interpol", ".", "splrep", "(", "tachogram_time", ",", "tachogram_data", ")", "interpolation_rate", "=", "4", "nn_time_even", "=", "numpy", ".", "linspace", "(", "init_time", ",", "fin_time", ",", "(", "fin_time", "-", "init_time", ")", "*", "interpolation_rate", ")", "nn_tachogram_even", "=", "interpol", ".", "splev", "(", "nn_time_even", ",", "tck", ")", "freq_axis", ",", "power_axis", "=", "scisignal", ".", "welch", "(", "nn_tachogram_even", ",", "interpolation_rate", ",", "window", "=", "scisignal", ".", "get_window", "(", "\"hanning\"", ",", "min", "(", "len", "(", "nn_tachogram_even", ")", ",", "1000", ")", ")", ",", "nperseg", "=", "min", "(", "len", "(", "nn_tachogram_even", ")", ",", "1000", ")", ")", "freqs", "=", "[", "round", "(", "val", ",", "3", ")", "for", "val", "in", "freq_axis", "if", "val", "<", "0.5", "]", "power", "=", "[", "round", "(", "val", ",", "4", ")", "for", "val", ",", "freq", "in", "zip", "(", "power_axis", ",", "freq_axis", ")", "if", "freq", "<", "0.5", "]", "return", "freqs", ",", "power" ]
----- Brief ----- Determination of the Power Spectral Density Function (Fourier Domain) ----------- Description ----------- The Power Spectral Density Function allows to perceive the behavior of a given signal in terms of its frequency. This procedure costs the time resolution of the signal but may be important to extract features in a different domain appart from the time domain. This function constructs the Power Spectral Density Function in the frequency domain. ---------- Parameters ---------- tachogram_time : list X Axis of tachogram. tachogram_data : list Y Axis of tachogram. Returns ------- out : list, list Frequency and power axis.
[ "-----", "Brief", "-----", "Determination", "of", "the", "Power", "Spectral", "Density", "Function", "(", "Fourier", "Domain", ")" ]
python
train
35.125
pkgw/pwkit
pwkit/astutil.py
https://github.com/pkgw/pwkit/blob/d40957a1c3d2ea34e7ceac2267ee9635135f2793/pwkit/astutil.py#L338-L354
def parsedeglat (latstr): """Parse a latitude formatted as sexagesimal degrees into an angle. This function converts a textual representation of a latitude, measured in degrees, into a floating point value measured in radians. The format of *latstr* is very limited: it may not have leading or trailing whitespace, and the components of the sexagesimal representation must be separated by colons. The input must therefore resemble something like ``"-00:12:34.5"``. A :exc:`ValueError` will be raised if the input does not resemble this template. Latitudes greater than 90 or less than -90 degrees are not allowed. """ deg = _parsesexagesimal (latstr, 'latitude', True) if abs (deg) > 90: raise ValueError ('illegal latitude specification: ' + latstr) return deg * D2R
[ "def", "parsedeglat", "(", "latstr", ")", ":", "deg", "=", "_parsesexagesimal", "(", "latstr", ",", "'latitude'", ",", "True", ")", "if", "abs", "(", "deg", ")", ">", "90", ":", "raise", "ValueError", "(", "'illegal latitude specification: '", "+", "latstr", ")", "return", "deg", "*", "D2R" ]
Parse a latitude formatted as sexagesimal degrees into an angle. This function converts a textual representation of a latitude, measured in degrees, into a floating point value measured in radians. The format of *latstr* is very limited: it may not have leading or trailing whitespace, and the components of the sexagesimal representation must be separated by colons. The input must therefore resemble something like ``"-00:12:34.5"``. A :exc:`ValueError` will be raised if the input does not resemble this template. Latitudes greater than 90 or less than -90 degrees are not allowed.
[ "Parse", "a", "latitude", "formatted", "as", "sexagesimal", "degrees", "into", "an", "angle", "." ]
python
train
47.823529
saltstack/salt
salt/modules/lxd.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/lxd.py#L804-L850
def container_rename(name, newname, remote_addr=None, cert=None, key=None, verify_cert=True): ''' Rename a container name : Name of the container to Rename newname : The new name of the contianer remote_addr : An URL to a remote Server, you also have to give cert and key if you provide remote_addr and its a TCP Address! Examples: https://myserver.lan:8443 /var/lib/mysocket.sock cert : PEM Formatted SSL Certificate. Examples: ~/.config/lxc/client.crt key : PEM Formatted SSL Key. Examples: ~/.config/lxc/client.key verify_cert : True Wherever to verify the cert, this is by default True but in the most cases you want to set it off as LXD normaly uses self-signed certificates. ''' container = container_get( name, remote_addr, cert, key, verify_cert, _raw=True ) if container.status_code == CONTAINER_STATUS_RUNNING: raise SaltInvocationError( "Can't rename the running container '{0}'.".format(name) ) container.rename(newname, wait=True) return _pylxd_model_to_dict(container)
[ "def", "container_rename", "(", "name", ",", "newname", ",", "remote_addr", "=", "None", ",", "cert", "=", "None", ",", "key", "=", "None", ",", "verify_cert", "=", "True", ")", ":", "container", "=", "container_get", "(", "name", ",", "remote_addr", ",", "cert", ",", "key", ",", "verify_cert", ",", "_raw", "=", "True", ")", "if", "container", ".", "status_code", "==", "CONTAINER_STATUS_RUNNING", ":", "raise", "SaltInvocationError", "(", "\"Can't rename the running container '{0}'.\"", ".", "format", "(", "name", ")", ")", "container", ".", "rename", "(", "newname", ",", "wait", "=", "True", ")", "return", "_pylxd_model_to_dict", "(", "container", ")" ]
Rename a container name : Name of the container to Rename newname : The new name of the contianer remote_addr : An URL to a remote Server, you also have to give cert and key if you provide remote_addr and its a TCP Address! Examples: https://myserver.lan:8443 /var/lib/mysocket.sock cert : PEM Formatted SSL Certificate. Examples: ~/.config/lxc/client.crt key : PEM Formatted SSL Key. Examples: ~/.config/lxc/client.key verify_cert : True Wherever to verify the cert, this is by default True but in the most cases you want to set it off as LXD normaly uses self-signed certificates.
[ "Rename", "a", "container" ]
python
train
25.617021
Capitains/MyCapytain
MyCapytain/resources/texts/local/capitains/cts.py
https://github.com/Capitains/MyCapytain/blob/b11bbf6b6ae141fc02be70471e3fbf6907be6593/MyCapytain/resources/texts/local/capitains/cts.py#L672-L676
def next(self): """ Next CapitainsCtsPassage (Interactive CapitainsCtsPassage) """ if self.nextId is not None: return super(CapitainsCtsPassage, self).getTextualNode(subreference=self.nextId)
[ "def", "next", "(", "self", ")", ":", "if", "self", ".", "nextId", "is", "not", "None", ":", "return", "super", "(", "CapitainsCtsPassage", ",", "self", ")", ".", "getTextualNode", "(", "subreference", "=", "self", ".", "nextId", ")" ]
Next CapitainsCtsPassage (Interactive CapitainsCtsPassage)
[ "Next", "CapitainsCtsPassage", "(", "Interactive", "CapitainsCtsPassage", ")" ]
python
train
44.6
aboSamoor/polyglot
polyglot/load.py
https://github.com/aboSamoor/polyglot/blob/d0d2aa8d06cec4e03bd96618ae960030f7069a17/polyglot/load.py#L107-L117
def load_pos_model(lang="en", version="2"): """Return a part of speech tagger parameters for `lang` and of version `version` Args: lang (string): language code. version (string): version of the parameters to be used. """ src_dir = "pos{}".format(version) p = locate_resource(src_dir, lang) fh = _open(p) return dict(np.load(fh))
[ "def", "load_pos_model", "(", "lang", "=", "\"en\"", ",", "version", "=", "\"2\"", ")", ":", "src_dir", "=", "\"pos{}\"", ".", "format", "(", "version", ")", "p", "=", "locate_resource", "(", "src_dir", ",", "lang", ")", "fh", "=", "_open", "(", "p", ")", "return", "dict", "(", "np", ".", "load", "(", "fh", ")", ")" ]
Return a part of speech tagger parameters for `lang` and of version `version` Args: lang (string): language code. version (string): version of the parameters to be used.
[ "Return", "a", "part", "of", "speech", "tagger", "parameters", "for", "lang", "and", "of", "version", "version" ]
python
train
31
sethmlarson/virtualbox-python
virtualbox/library.py
https://github.com/sethmlarson/virtualbox-python/blob/706c8e3f6e3aee17eb06458e73cbb4bc2d37878b/virtualbox/library.py#L25044-L25075
def set_visible_region(self, rectangles, count): """Suggests a new visible region to this frame buffer. This region represents the area of the VM display which is a union of regions of all top-level windows of the guest operating system running inside the VM (if the Guest Additions for this system support this functionality). This information may be used by the frontends to implement the seamless desktop integration feature. The address of the provided array must be in the process space of this IFramebuffer object. The IFramebuffer implementation must make a copy of the provided array of rectangles. Method not yet implemented. in rectangles of type str Pointer to the @c RTRECT array. in count of type int Number of @c RTRECT elements in the @a rectangles array. """ if not isinstance(rectangles, basestring): raise TypeError("rectangles can only be an instance of type basestring") if not isinstance(count, baseinteger): raise TypeError("count can only be an instance of type baseinteger") self._call("setVisibleRegion", in_p=[rectangles, count])
[ "def", "set_visible_region", "(", "self", ",", "rectangles", ",", "count", ")", ":", "if", "not", "isinstance", "(", "rectangles", ",", "basestring", ")", ":", "raise", "TypeError", "(", "\"rectangles can only be an instance of type basestring\"", ")", "if", "not", "isinstance", "(", "count", ",", "baseinteger", ")", ":", "raise", "TypeError", "(", "\"count can only be an instance of type baseinteger\"", ")", "self", ".", "_call", "(", "\"setVisibleRegion\"", ",", "in_p", "=", "[", "rectangles", ",", "count", "]", ")" ]
Suggests a new visible region to this frame buffer. This region represents the area of the VM display which is a union of regions of all top-level windows of the guest operating system running inside the VM (if the Guest Additions for this system support this functionality). This information may be used by the frontends to implement the seamless desktop integration feature. The address of the provided array must be in the process space of this IFramebuffer object. The IFramebuffer implementation must make a copy of the provided array of rectangles. Method not yet implemented. in rectangles of type str Pointer to the @c RTRECT array. in count of type int Number of @c RTRECT elements in the @a rectangles array.
[ "Suggests", "a", "new", "visible", "region", "to", "this", "frame", "buffer", ".", "This", "region", "represents", "the", "area", "of", "the", "VM", "display", "which", "is", "a", "union", "of", "regions", "of", "all", "top", "-", "level", "windows", "of", "the", "guest", "operating", "system", "running", "inside", "the", "VM", "(", "if", "the", "Guest", "Additions", "for", "this", "system", "support", "this", "functionality", ")", ".", "This", "information", "may", "be", "used", "by", "the", "frontends", "to", "implement", "the", "seamless", "desktop", "integration", "feature", ".", "The", "address", "of", "the", "provided", "array", "must", "be", "in", "the", "process", "space", "of", "this", "IFramebuffer", "object", ".", "The", "IFramebuffer", "implementation", "must", "make", "a", "copy", "of", "the", "provided", "array", "of", "rectangles", ".", "Method", "not", "yet", "implemented", "." ]
python
train
40.1875
MSchnei/pyprf_feature
pyprf_feature/analysis/save_fit_tc_nii.py
https://github.com/MSchnei/pyprf_feature/blob/49004ede7ae1ddee07a30afe9ce3e2776750805c/pyprf_feature/analysis/save_fit_tc_nii.py#L39-L292
def save_tc_to_nii(strCsvCnfg, lgcTest=False, lstRat=None, lgcMdlRsp=False, strPathHrf=None, lgcSaveRam=False): """ Save empirical and fitted time courses to nii file format. Parameters ---------- strCsvCnfg : str Absolute file path of config file used for pRF fitting. lgcTest : boolean Whether this is a test (pytest). If yes, absolute path of pyprf libary will be prepended to config file paths. lstRat : None or list Ratio of size of center to size of suppressive surround. lgcMdlRsp : boolean Should the aperture responses for the winner model also be saved? strPathHrf : str or None: Path to npy file with custom hrf parameters. If None, defaults parameters were used. lgcSaveRam : boolean Whether to also save a nii file that uses little RAM. Notes ----- This function does not return any arguments but, instead, saves nii files to disk. """ # %% Load configuration settings that were used for fitting # Load config parameters from csv file into dictionary: dicCnfg = load_config(strCsvCnfg, lgcTest=lgcTest) # Load config parameters from dictionary into namespace: cfg = cls_set_config(dicCnfg) # if fitting was done with custom hrf, make sure to retrieve results with # '_hrf' appendix if strPathHrf is not None: cfg.strPathOut = cfg.strPathOut + '_hrf' # If suppressive surround flag is on, make sure to retrieve results with # '_supsur' appendix if lstRat is not None: cfg.strPathOut = cfg.strPathOut + '_supsur' cfg.strPathMdl = cfg.strPathMdl + '_supsur' # Append 1.0 as the first entry, which is the key for fitting without # surround (only centre) lstRat.insert(0, 1.0) # %% Load previous pRF fitting results # Derive paths to the x, y, sigma winner parameters from pyprf_feature lstWnrPrm = [cfg.strPathOut + '_x_pos.nii.gz', cfg.strPathOut + '_y_pos.nii.gz', cfg.strPathOut + '_SD.nii.gz'] # Check if fitting has been performed, i.e. whether parameter files exist # Throw error message if they do not exist. errorMsg = 'Files that should have resulted from fitting do not exist. \ \nPlease perform pRF fitting first, calling e.g.: \ \npyprf_feature -config /path/to/my_config_file.csv' assert os.path.isfile(lstWnrPrm[0]), errorMsg assert os.path.isfile(lstWnrPrm[1]), errorMsg assert os.path.isfile(lstWnrPrm[2]), errorMsg # Load the x, y, sigma winner parameters from pyprf_feature aryIntGssPrm = load_res_prm(lstWnrPrm, lstFlsMsk=[cfg.strPathNiiMask])[0][0] # Load beta parameters estimates, aka weights for time courses lstPathBeta = [cfg.strPathOut + '_Betas.nii.gz'] aryBetas = load_res_prm(lstPathBeta, lstFlsMsk=[cfg.strPathNiiMask])[0][0] assert os.path.isfile(lstPathBeta[0]), errorMsg # Load ratio image, if fitting was obtained with suppressive surround if lstRat is not None: lstPathRatio = [cfg.strPathOut + '_Ratios.nii.gz'] aryRatio = load_res_prm(lstPathRatio, lstFlsMsk=[cfg.strPathNiiMask])[0][0] assert os.path.isfile(lstPathRatio[0]), errorMsg # Some voxels were excluded because they did not have sufficient mean # and/or variance - exclude their initial parameters, too # Get inclusion mask and nii header aryLgcMsk, aryLgcVar, hdrMsk, aryAff, aryFunc, tplNiiShp = prep_func( cfg.strPathNiiMask, cfg.lstPathNiiFunc, varAvgThr=-100) # Apply inclusion mask aryIntGssPrm = aryIntGssPrm[aryLgcVar, :] aryBetas = aryBetas[aryLgcVar, :] if lstRat is not None: aryRatio = aryRatio[aryLgcVar, :] # Get array with model parameters that were fitted on a grid # [x positions, y positions, sigmas] aryMdlParams = crt_mdl_prms((int(cfg.varVslSpcSzeX), int(cfg.varVslSpcSzeY)), cfg.varNum1, cfg.varExtXmin, cfg.varExtXmax, cfg.varNum2, cfg.varExtYmin, cfg.varExtYmax, cfg.varNumPrfSizes, cfg.varPrfStdMin, cfg.varPrfStdMax, kwUnt='deg', kwCrd=cfg.strKwCrd) # Load logical for parameter exclusion in unstimulated area lgcMdlInc = np.load(cfg.strPathMdl + '_lgcMdlInc.npy') # Apply logical aryMdlParams = aryMdlParams[lgcMdlInc, :] # Get corresponding pRF model time courses aryPrfTc = np.load(cfg.strPathMdl + '.npy') # The model time courses will be preprocessed such that they are smoothed # (temporally) with same factor as the data and that they will be z-scored: aryPrfTc = prep_models(aryPrfTc, varSdSmthTmp=cfg.varSdSmthTmp) if lgcMdlRsp: aryMdlRsp = np.load(cfg.strPathMdl + '_mdlRsp.npy') # %% Derive fitted time course models for all voxels # Initialize array that will collect the fitted time courses aryFitTc = np.zeros((aryFunc.shape), dtype=np.float32) # If desired, initiliaze array that will collect model responses underlying # the fitted time course if lgcMdlRsp: if lstRat is not None: aryFitMdlRsp = np.zeros((aryIntGssPrm.shape[0], aryMdlRsp.shape[1], aryMdlRsp.shape[3]), dtype=np.float32) else: aryFitMdlRsp = np.zeros((aryIntGssPrm.shape[0], aryMdlRsp.shape[1]), dtype=np.float32) # create vector that allows to check whether every voxel is visited # exactly once vecVxlTst = np.zeros(aryIntGssPrm.shape[0]) # Find unique rows of fitted model parameters aryUnqRows, aryUnqInd = fnd_unq_rws(aryIntGssPrm, return_index=False, return_inverse=True) # Loop over all best-fitting model parameter combinations found print('---Assign models to voxels') for indRow, vecPrm in enumerate(aryUnqRows): # Get logical for voxels for which this prm combi was the best lgcVxl = [aryUnqInd == indRow][0] if np.all(np.invert(lgcVxl)): print('---No voxel found') # Mark those voxels that were visited vecVxlTst[lgcVxl] += 1 # Get logical index for the model number # This can only be 1 index, so we directly get 1st entry of array lgcMdl = np.where(np.isclose(aryMdlParams, vecPrm, atol=0.01).all(axis=1))[0][0] # Tell user if no model was found if lgcMdl is None: print('---No model found') # Get model time courses aryMdlTc = aryPrfTc[lgcMdl, ...] # Get beta parameter estimates aryWeights = aryBetas[lgcVxl, :] # If fitting was done with surround suppression, find ratios for voxels # and the indices of these ratios in lstRat if lstRat is not None: aryVxlRatio = aryRatio[lgcVxl, :] indRat = [ind for ind, rat1 in enumerate(lstRat) for rat2 in aryVxlRatio[:, 0] if np.isclose(rat1, rat2)] indVxl = range(len(indRat)) # Combine model time courses and weights to yield fitted time course if lstRat is not None: aryFitTcTmp = np.tensordot(aryWeights, aryMdlTc, axes=([1], [0])) aryFitTc[lgcVxl, :] = aryFitTcTmp[indVxl, indRat, :] else: aryFitTc[lgcVxl, :] = np.dot(aryWeights, aryMdlTc) # If desired by user, also save the model responses per voxels if lgcMdlRsp: # If desired also save the model responses that won if lstRat is not None: aryFitMdlRsp[lgcVxl, :] = aryMdlRsp[lgcMdl, :, indRat, :] else: aryFitMdlRsp[lgcVxl, :] = aryMdlRsp[lgcMdl, :] # check that every voxel was visited exactly once errMsg = 'At least one voxel visited more than once for tc recreation' assert len(vecVxlTst) == np.sum(vecVxlTst), errMsg # %% Export preprocessed voxel time courses as nii # List with name suffices of output images: lstNiiNames = ['_EmpTc'] # Create full path names from nii file names and output path lstNiiNames = [cfg.strPathOut + strNii + '.nii.gz' for strNii in lstNiiNames] # export aryFunc as a single 4D nii file print('---Save empirical time courses') export_nii(aryFunc, lstNiiNames, aryLgcMsk, aryLgcVar, tplNiiShp, aryAff, hdrMsk, outFormat='4D') print('------Done.') # If desired by user, also save RAM-saving version of nii if lgcSaveRam: strPthRamOut = cfg.strPathOut + '_EmpTc_saveRAM' + '.nii.gz' imgNii = nb.Nifti1Image(np.expand_dims(np.expand_dims(aryFunc, axis=1), axis=1), affine=np.eye(4)) nb.save(imgNii, strPthRamOut) # %% Export fitted time courses and, if desired, model responses as nii # List with name suffices of output images: lstNiiNames = ['_FitTc'] # Create full path names from nii file names and output path lstNiiNames = [cfg.strPathOut + strNii + '.nii.gz' for strNii in lstNiiNames] # export aryFitTc as a single 4D nii file print('---Save fitted time courses') export_nii(aryFitTc, lstNiiNames, aryLgcMsk, aryLgcVar, tplNiiShp, aryAff, hdrMsk, outFormat='4D') print('------Done.') if lgcMdlRsp: # Create full path name strNpyName = cfg.strPathOut + '_FitMdlRsp' + '.npy' # Save aryFitMdlRsp as npy file print('---Save fitted model responses') np.save(strNpyName, aryFitMdlRsp) print('------Done.') # Save the mask so we know which voxels these parameters belonged to strNpyMskName = cfg.strPathOut + '_FitMdlRsp_Mask' + '.npy' aryLgcMsk[aryLgcMsk] = aryLgcVar print('---Save mask for fitted model responses') np.save(strNpyMskName, aryLgcMsk) print('------Done.') # If desired by user, also save RAM-saving version of nii if lgcSaveRam: strPthRamOut = cfg.strPathOut + '_FitTc_saveRAM' + '.nii.gz' imgNii = nb.Nifti1Image(np.expand_dims(np.expand_dims(aryFitTc, axis=1), axis=1), affine=np.eye(4)) nb.save(imgNii, strPthRamOut)
[ "def", "save_tc_to_nii", "(", "strCsvCnfg", ",", "lgcTest", "=", "False", ",", "lstRat", "=", "None", ",", "lgcMdlRsp", "=", "False", ",", "strPathHrf", "=", "None", ",", "lgcSaveRam", "=", "False", ")", ":", "# %% Load configuration settings that were used for fitting", "# Load config parameters from csv file into dictionary:", "dicCnfg", "=", "load_config", "(", "strCsvCnfg", ",", "lgcTest", "=", "lgcTest", ")", "# Load config parameters from dictionary into namespace:", "cfg", "=", "cls_set_config", "(", "dicCnfg", ")", "# if fitting was done with custom hrf, make sure to retrieve results with", "# '_hrf' appendix", "if", "strPathHrf", "is", "not", "None", ":", "cfg", ".", "strPathOut", "=", "cfg", ".", "strPathOut", "+", "'_hrf'", "# If suppressive surround flag is on, make sure to retrieve results with", "# '_supsur' appendix", "if", "lstRat", "is", "not", "None", ":", "cfg", ".", "strPathOut", "=", "cfg", ".", "strPathOut", "+", "'_supsur'", "cfg", ".", "strPathMdl", "=", "cfg", ".", "strPathMdl", "+", "'_supsur'", "# Append 1.0 as the first entry, which is the key for fitting without", "# surround (only centre)", "lstRat", ".", "insert", "(", "0", ",", "1.0", ")", "# %% Load previous pRF fitting results", "# Derive paths to the x, y, sigma winner parameters from pyprf_feature", "lstWnrPrm", "=", "[", "cfg", ".", "strPathOut", "+", "'_x_pos.nii.gz'", ",", "cfg", ".", "strPathOut", "+", "'_y_pos.nii.gz'", ",", "cfg", ".", "strPathOut", "+", "'_SD.nii.gz'", "]", "# Check if fitting has been performed, i.e. whether parameter files exist", "# Throw error message if they do not exist.", "errorMsg", "=", "'Files that should have resulted from fitting do not exist. \\\n \\nPlease perform pRF fitting first, calling e.g.: \\\n \\npyprf_feature -config /path/to/my_config_file.csv'", "assert", "os", ".", "path", ".", "isfile", "(", "lstWnrPrm", "[", "0", "]", ")", ",", "errorMsg", "assert", "os", ".", "path", ".", "isfile", "(", "lstWnrPrm", "[", "1", "]", ")", ",", "errorMsg", "assert", "os", ".", "path", ".", "isfile", "(", "lstWnrPrm", "[", "2", "]", ")", ",", "errorMsg", "# Load the x, y, sigma winner parameters from pyprf_feature", "aryIntGssPrm", "=", "load_res_prm", "(", "lstWnrPrm", ",", "lstFlsMsk", "=", "[", "cfg", ".", "strPathNiiMask", "]", ")", "[", "0", "]", "[", "0", "]", "# Load beta parameters estimates, aka weights for time courses", "lstPathBeta", "=", "[", "cfg", ".", "strPathOut", "+", "'_Betas.nii.gz'", "]", "aryBetas", "=", "load_res_prm", "(", "lstPathBeta", ",", "lstFlsMsk", "=", "[", "cfg", ".", "strPathNiiMask", "]", ")", "[", "0", "]", "[", "0", "]", "assert", "os", ".", "path", ".", "isfile", "(", "lstPathBeta", "[", "0", "]", ")", ",", "errorMsg", "# Load ratio image, if fitting was obtained with suppressive surround", "if", "lstRat", "is", "not", "None", ":", "lstPathRatio", "=", "[", "cfg", ".", "strPathOut", "+", "'_Ratios.nii.gz'", "]", "aryRatio", "=", "load_res_prm", "(", "lstPathRatio", ",", "lstFlsMsk", "=", "[", "cfg", ".", "strPathNiiMask", "]", ")", "[", "0", "]", "[", "0", "]", "assert", "os", ".", "path", ".", "isfile", "(", "lstPathRatio", "[", "0", "]", ")", ",", "errorMsg", "# Some voxels were excluded because they did not have sufficient mean", "# and/or variance - exclude their initial parameters, too", "# Get inclusion mask and nii header", "aryLgcMsk", ",", "aryLgcVar", ",", "hdrMsk", ",", "aryAff", ",", "aryFunc", ",", "tplNiiShp", "=", "prep_func", "(", "cfg", ".", "strPathNiiMask", ",", "cfg", ".", "lstPathNiiFunc", ",", "varAvgThr", "=", "-", "100", ")", "# Apply inclusion mask", "aryIntGssPrm", "=", "aryIntGssPrm", "[", "aryLgcVar", ",", ":", "]", "aryBetas", "=", "aryBetas", "[", "aryLgcVar", ",", ":", "]", "if", "lstRat", "is", "not", "None", ":", "aryRatio", "=", "aryRatio", "[", "aryLgcVar", ",", ":", "]", "# Get array with model parameters that were fitted on a grid", "# [x positions, y positions, sigmas]", "aryMdlParams", "=", "crt_mdl_prms", "(", "(", "int", "(", "cfg", ".", "varVslSpcSzeX", ")", ",", "int", "(", "cfg", ".", "varVslSpcSzeY", ")", ")", ",", "cfg", ".", "varNum1", ",", "cfg", ".", "varExtXmin", ",", "cfg", ".", "varExtXmax", ",", "cfg", ".", "varNum2", ",", "cfg", ".", "varExtYmin", ",", "cfg", ".", "varExtYmax", ",", "cfg", ".", "varNumPrfSizes", ",", "cfg", ".", "varPrfStdMin", ",", "cfg", ".", "varPrfStdMax", ",", "kwUnt", "=", "'deg'", ",", "kwCrd", "=", "cfg", ".", "strKwCrd", ")", "# Load logical for parameter exclusion in unstimulated area", "lgcMdlInc", "=", "np", ".", "load", "(", "cfg", ".", "strPathMdl", "+", "'_lgcMdlInc.npy'", ")", "# Apply logical", "aryMdlParams", "=", "aryMdlParams", "[", "lgcMdlInc", ",", ":", "]", "# Get corresponding pRF model time courses", "aryPrfTc", "=", "np", ".", "load", "(", "cfg", ".", "strPathMdl", "+", "'.npy'", ")", "# The model time courses will be preprocessed such that they are smoothed", "# (temporally) with same factor as the data and that they will be z-scored:", "aryPrfTc", "=", "prep_models", "(", "aryPrfTc", ",", "varSdSmthTmp", "=", "cfg", ".", "varSdSmthTmp", ")", "if", "lgcMdlRsp", ":", "aryMdlRsp", "=", "np", ".", "load", "(", "cfg", ".", "strPathMdl", "+", "'_mdlRsp.npy'", ")", "# %% Derive fitted time course models for all voxels", "# Initialize array that will collect the fitted time courses", "aryFitTc", "=", "np", ".", "zeros", "(", "(", "aryFunc", ".", "shape", ")", ",", "dtype", "=", "np", ".", "float32", ")", "# If desired, initiliaze array that will collect model responses underlying", "# the fitted time course", "if", "lgcMdlRsp", ":", "if", "lstRat", "is", "not", "None", ":", "aryFitMdlRsp", "=", "np", ".", "zeros", "(", "(", "aryIntGssPrm", ".", "shape", "[", "0", "]", ",", "aryMdlRsp", ".", "shape", "[", "1", "]", ",", "aryMdlRsp", ".", "shape", "[", "3", "]", ")", ",", "dtype", "=", "np", ".", "float32", ")", "else", ":", "aryFitMdlRsp", "=", "np", ".", "zeros", "(", "(", "aryIntGssPrm", ".", "shape", "[", "0", "]", ",", "aryMdlRsp", ".", "shape", "[", "1", "]", ")", ",", "dtype", "=", "np", ".", "float32", ")", "# create vector that allows to check whether every voxel is visited", "# exactly once", "vecVxlTst", "=", "np", ".", "zeros", "(", "aryIntGssPrm", ".", "shape", "[", "0", "]", ")", "# Find unique rows of fitted model parameters", "aryUnqRows", ",", "aryUnqInd", "=", "fnd_unq_rws", "(", "aryIntGssPrm", ",", "return_index", "=", "False", ",", "return_inverse", "=", "True", ")", "# Loop over all best-fitting model parameter combinations found", "print", "(", "'---Assign models to voxels'", ")", "for", "indRow", ",", "vecPrm", "in", "enumerate", "(", "aryUnqRows", ")", ":", "# Get logical for voxels for which this prm combi was the best", "lgcVxl", "=", "[", "aryUnqInd", "==", "indRow", "]", "[", "0", "]", "if", "np", ".", "all", "(", "np", ".", "invert", "(", "lgcVxl", ")", ")", ":", "print", "(", "'---No voxel found'", ")", "# Mark those voxels that were visited", "vecVxlTst", "[", "lgcVxl", "]", "+=", "1", "# Get logical index for the model number", "# This can only be 1 index, so we directly get 1st entry of array", "lgcMdl", "=", "np", ".", "where", "(", "np", ".", "isclose", "(", "aryMdlParams", ",", "vecPrm", ",", "atol", "=", "0.01", ")", ".", "all", "(", "axis", "=", "1", ")", ")", "[", "0", "]", "[", "0", "]", "# Tell user if no model was found", "if", "lgcMdl", "is", "None", ":", "print", "(", "'---No model found'", ")", "# Get model time courses", "aryMdlTc", "=", "aryPrfTc", "[", "lgcMdl", ",", "...", "]", "# Get beta parameter estimates", "aryWeights", "=", "aryBetas", "[", "lgcVxl", ",", ":", "]", "# If fitting was done with surround suppression, find ratios for voxels", "# and the indices of these ratios in lstRat", "if", "lstRat", "is", "not", "None", ":", "aryVxlRatio", "=", "aryRatio", "[", "lgcVxl", ",", ":", "]", "indRat", "=", "[", "ind", "for", "ind", ",", "rat1", "in", "enumerate", "(", "lstRat", ")", "for", "rat2", "in", "aryVxlRatio", "[", ":", ",", "0", "]", "if", "np", ".", "isclose", "(", "rat1", ",", "rat2", ")", "]", "indVxl", "=", "range", "(", "len", "(", "indRat", ")", ")", "# Combine model time courses and weights to yield fitted time course", "if", "lstRat", "is", "not", "None", ":", "aryFitTcTmp", "=", "np", ".", "tensordot", "(", "aryWeights", ",", "aryMdlTc", ",", "axes", "=", "(", "[", "1", "]", ",", "[", "0", "]", ")", ")", "aryFitTc", "[", "lgcVxl", ",", ":", "]", "=", "aryFitTcTmp", "[", "indVxl", ",", "indRat", ",", ":", "]", "else", ":", "aryFitTc", "[", "lgcVxl", ",", ":", "]", "=", "np", ".", "dot", "(", "aryWeights", ",", "aryMdlTc", ")", "# If desired by user, also save the model responses per voxels", "if", "lgcMdlRsp", ":", "# If desired also save the model responses that won", "if", "lstRat", "is", "not", "None", ":", "aryFitMdlRsp", "[", "lgcVxl", ",", ":", "]", "=", "aryMdlRsp", "[", "lgcMdl", ",", ":", ",", "indRat", ",", ":", "]", "else", ":", "aryFitMdlRsp", "[", "lgcVxl", ",", ":", "]", "=", "aryMdlRsp", "[", "lgcMdl", ",", ":", "]", "# check that every voxel was visited exactly once", "errMsg", "=", "'At least one voxel visited more than once for tc recreation'", "assert", "len", "(", "vecVxlTst", ")", "==", "np", ".", "sum", "(", "vecVxlTst", ")", ",", "errMsg", "# %% Export preprocessed voxel time courses as nii", "# List with name suffices of output images:", "lstNiiNames", "=", "[", "'_EmpTc'", "]", "# Create full path names from nii file names and output path", "lstNiiNames", "=", "[", "cfg", ".", "strPathOut", "+", "strNii", "+", "'.nii.gz'", "for", "strNii", "in", "lstNiiNames", "]", "# export aryFunc as a single 4D nii file", "print", "(", "'---Save empirical time courses'", ")", "export_nii", "(", "aryFunc", ",", "lstNiiNames", ",", "aryLgcMsk", ",", "aryLgcVar", ",", "tplNiiShp", ",", "aryAff", ",", "hdrMsk", ",", "outFormat", "=", "'4D'", ")", "print", "(", "'------Done.'", ")", "# If desired by user, also save RAM-saving version of nii", "if", "lgcSaveRam", ":", "strPthRamOut", "=", "cfg", ".", "strPathOut", "+", "'_EmpTc_saveRAM'", "+", "'.nii.gz'", "imgNii", "=", "nb", ".", "Nifti1Image", "(", "np", ".", "expand_dims", "(", "np", ".", "expand_dims", "(", "aryFunc", ",", "axis", "=", "1", ")", ",", "axis", "=", "1", ")", ",", "affine", "=", "np", ".", "eye", "(", "4", ")", ")", "nb", ".", "save", "(", "imgNii", ",", "strPthRamOut", ")", "# %% Export fitted time courses and, if desired, model responses as nii", "# List with name suffices of output images:", "lstNiiNames", "=", "[", "'_FitTc'", "]", "# Create full path names from nii file names and output path", "lstNiiNames", "=", "[", "cfg", ".", "strPathOut", "+", "strNii", "+", "'.nii.gz'", "for", "strNii", "in", "lstNiiNames", "]", "# export aryFitTc as a single 4D nii file", "print", "(", "'---Save fitted time courses'", ")", "export_nii", "(", "aryFitTc", ",", "lstNiiNames", ",", "aryLgcMsk", ",", "aryLgcVar", ",", "tplNiiShp", ",", "aryAff", ",", "hdrMsk", ",", "outFormat", "=", "'4D'", ")", "print", "(", "'------Done.'", ")", "if", "lgcMdlRsp", ":", "# Create full path name", "strNpyName", "=", "cfg", ".", "strPathOut", "+", "'_FitMdlRsp'", "+", "'.npy'", "# Save aryFitMdlRsp as npy file", "print", "(", "'---Save fitted model responses'", ")", "np", ".", "save", "(", "strNpyName", ",", "aryFitMdlRsp", ")", "print", "(", "'------Done.'", ")", "# Save the mask so we know which voxels these parameters belonged to", "strNpyMskName", "=", "cfg", ".", "strPathOut", "+", "'_FitMdlRsp_Mask'", "+", "'.npy'", "aryLgcMsk", "[", "aryLgcMsk", "]", "=", "aryLgcVar", "print", "(", "'---Save mask for fitted model responses'", ")", "np", ".", "save", "(", "strNpyMskName", ",", "aryLgcMsk", ")", "print", "(", "'------Done.'", ")", "# If desired by user, also save RAM-saving version of nii", "if", "lgcSaveRam", ":", "strPthRamOut", "=", "cfg", ".", "strPathOut", "+", "'_FitTc_saveRAM'", "+", "'.nii.gz'", "imgNii", "=", "nb", ".", "Nifti1Image", "(", "np", ".", "expand_dims", "(", "np", ".", "expand_dims", "(", "aryFitTc", ",", "axis", "=", "1", ")", ",", "axis", "=", "1", ")", ",", "affine", "=", "np", ".", "eye", "(", "4", ")", ")", "nb", ".", "save", "(", "imgNii", ",", "strPthRamOut", ")" ]
Save empirical and fitted time courses to nii file format. Parameters ---------- strCsvCnfg : str Absolute file path of config file used for pRF fitting. lgcTest : boolean Whether this is a test (pytest). If yes, absolute path of pyprf libary will be prepended to config file paths. lstRat : None or list Ratio of size of center to size of suppressive surround. lgcMdlRsp : boolean Should the aperture responses for the winner model also be saved? strPathHrf : str or None: Path to npy file with custom hrf parameters. If None, defaults parameters were used. lgcSaveRam : boolean Whether to also save a nii file that uses little RAM. Notes ----- This function does not return any arguments but, instead, saves nii files to disk.
[ "Save", "empirical", "and", "fitted", "time", "courses", "to", "nii", "file", "format", "." ]
python
train
41.066929
elastic/elasticsearch-py
elasticsearch/client/indices.py
https://github.com/elastic/elasticsearch-py/blob/2aab285c8f506f3863cbdaba3c90a685c510ba00/elasticsearch/client/indices.py#L478-L496
def delete_alias(self, index, name, params=None): """ Delete specific alias. `<http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html>`_ :arg index: A comma-separated list of index names (supports wildcards); use `_all` for all indices :arg name: A comma-separated list of aliases to delete (supports wildcards); use `_all` to delete all aliases for the specified indices. :arg master_timeout: Specify timeout for connection to master :arg request_timeout: Explicit timeout for the operation """ for param in (index, name): if param in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument.") return self.transport.perform_request( "DELETE", _make_path(index, "_alias", name), params=params )
[ "def", "delete_alias", "(", "self", ",", "index", ",", "name", ",", "params", "=", "None", ")", ":", "for", "param", "in", "(", "index", ",", "name", ")", ":", "if", "param", "in", "SKIP_IN_PATH", ":", "raise", "ValueError", "(", "\"Empty value passed for a required argument.\"", ")", "return", "self", ".", "transport", ".", "perform_request", "(", "\"DELETE\"", ",", "_make_path", "(", "index", ",", "\"_alias\"", ",", "name", ")", ",", "params", "=", "params", ")" ]
Delete specific alias. `<http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html>`_ :arg index: A comma-separated list of index names (supports wildcards); use `_all` for all indices :arg name: A comma-separated list of aliases to delete (supports wildcards); use `_all` to delete all aliases for the specified indices. :arg master_timeout: Specify timeout for connection to master :arg request_timeout: Explicit timeout for the operation
[ "Delete", "specific", "alias", ".", "<http", ":", "//", "www", ".", "elastic", ".", "co", "/", "guide", "/", "en", "/", "elasticsearch", "/", "reference", "/", "current", "/", "indices", "-", "aliases", ".", "html", ">", "_" ]
python
train
46.789474
sprockets/sprockets.mixins.mediatype
sprockets/mixins/mediatype/content.py
https://github.com/sprockets/sprockets.mixins.mediatype/blob/c034e04f674201487a8d6ce9f8ce36f3f5de07d8/sprockets/mixins/mediatype/content.py#L344-L359
def send_response(self, body, set_content_type=True): """ Serialize and send ``body`` in the response. :param dict body: the body to serialize :param bool set_content_type: should the :http:header:`Content-Type` header be set? Defaults to :data:`True` """ settings = get_settings(self.application, force_instance=True) handler = settings[self.get_response_content_type()] content_type, data_bytes = handler.to_bytes(body) if set_content_type: self.set_header('Content-Type', content_type) self.add_header('Vary', 'Accept') self.write(data_bytes)
[ "def", "send_response", "(", "self", ",", "body", ",", "set_content_type", "=", "True", ")", ":", "settings", "=", "get_settings", "(", "self", ".", "application", ",", "force_instance", "=", "True", ")", "handler", "=", "settings", "[", "self", ".", "get_response_content_type", "(", ")", "]", "content_type", ",", "data_bytes", "=", "handler", ".", "to_bytes", "(", "body", ")", "if", "set_content_type", ":", "self", ".", "set_header", "(", "'Content-Type'", ",", "content_type", ")", "self", ".", "add_header", "(", "'Vary'", ",", "'Accept'", ")", "self", ".", "write", "(", "data_bytes", ")" ]
Serialize and send ``body`` in the response. :param dict body: the body to serialize :param bool set_content_type: should the :http:header:`Content-Type` header be set? Defaults to :data:`True`
[ "Serialize", "and", "send", "body", "in", "the", "response", "." ]
python
train
40.5625
scot-dev/scot
scot/matfiles.py
https://github.com/scot-dev/scot/blob/48598b79d4400dad893b134cd2194715511facda/scot/matfiles.py#L25-L33
def _check_keys(dictionary): """ checks if entries in dictionary are mat-objects. If yes todict is called to change them to nested dictionaries """ for key in dictionary: if isinstance(dictionary[key], matlab.mio5_params.mat_struct): dictionary[key] = _todict(dictionary[key]) return dictionary
[ "def", "_check_keys", "(", "dictionary", ")", ":", "for", "key", "in", "dictionary", ":", "if", "isinstance", "(", "dictionary", "[", "key", "]", ",", "matlab", ".", "mio5_params", ".", "mat_struct", ")", ":", "dictionary", "[", "key", "]", "=", "_todict", "(", "dictionary", "[", "key", "]", ")", "return", "dictionary" ]
checks if entries in dictionary are mat-objects. If yes todict is called to change them to nested dictionaries
[ "checks", "if", "entries", "in", "dictionary", "are", "mat", "-", "objects", ".", "If", "yes", "todict", "is", "called", "to", "change", "them", "to", "nested", "dictionaries" ]
python
train
36.666667
astrocatalogs/astrocats
astrocats/catalog/spectrum.py
https://github.com/astrocatalogs/astrocats/blob/11abc3131c6366ecd23964369e55ff264add7805/astrocats/catalog/spectrum.py#L135-L158
def is_duplicate_of(self, other): """Check if spectrum is duplicate of another.""" if super(Spectrum, self).is_duplicate_of(other): return True row_matches = 0 for ri, row in enumerate(self.get(self._KEYS.DATA, [])): lambda1, flux1 = tuple(row[0:2]) if (self._KEYS.DATA not in other or ri > len(other[self._KEYS.DATA])): break lambda2, flux2 = tuple(other[self._KEYS.DATA][ri][0:2]) minlambdalen = min(len(lambda1), len(lambda2)) minfluxlen = min(len(flux1), len(flux2)) if (lambda1[:minlambdalen + 1] == lambda2[:minlambdalen + 1] and flux1[:minfluxlen + 1] == flux2[:minfluxlen + 1] and float(flux1[:minfluxlen + 1]) != 0.0): row_matches += 1 # Five row matches should be enough to be sure spectrum is a dupe. if row_matches >= 5: return True # Matches need to happen in the first 10 rows. if ri >= 10: break return False
[ "def", "is_duplicate_of", "(", "self", ",", "other", ")", ":", "if", "super", "(", "Spectrum", ",", "self", ")", ".", "is_duplicate_of", "(", "other", ")", ":", "return", "True", "row_matches", "=", "0", "for", "ri", ",", "row", "in", "enumerate", "(", "self", ".", "get", "(", "self", ".", "_KEYS", ".", "DATA", ",", "[", "]", ")", ")", ":", "lambda1", ",", "flux1", "=", "tuple", "(", "row", "[", "0", ":", "2", "]", ")", "if", "(", "self", ".", "_KEYS", ".", "DATA", "not", "in", "other", "or", "ri", ">", "len", "(", "other", "[", "self", ".", "_KEYS", ".", "DATA", "]", ")", ")", ":", "break", "lambda2", ",", "flux2", "=", "tuple", "(", "other", "[", "self", ".", "_KEYS", ".", "DATA", "]", "[", "ri", "]", "[", "0", ":", "2", "]", ")", "minlambdalen", "=", "min", "(", "len", "(", "lambda1", ")", ",", "len", "(", "lambda2", ")", ")", "minfluxlen", "=", "min", "(", "len", "(", "flux1", ")", ",", "len", "(", "flux2", ")", ")", "if", "(", "lambda1", "[", ":", "minlambdalen", "+", "1", "]", "==", "lambda2", "[", ":", "minlambdalen", "+", "1", "]", "and", "flux1", "[", ":", "minfluxlen", "+", "1", "]", "==", "flux2", "[", ":", "minfluxlen", "+", "1", "]", "and", "float", "(", "flux1", "[", ":", "minfluxlen", "+", "1", "]", ")", "!=", "0.0", ")", ":", "row_matches", "+=", "1", "# Five row matches should be enough to be sure spectrum is a dupe.", "if", "row_matches", ">=", "5", ":", "return", "True", "# Matches need to happen in the first 10 rows.", "if", "ri", ">=", "10", ":", "break", "return", "False" ]
Check if spectrum is duplicate of another.
[ "Check", "if", "spectrum", "is", "duplicate", "of", "another", "." ]
python
train
45.666667
pndurette/gTTS
gtts/tts.py
https://github.com/pndurette/gTTS/blob/b01ac4eb22d40c6241202e202d0418ccf4f98460/gtts/tts.py#L238-L250
def save(self, savefile): """Do the TTS API request and write result to file. Args: savefile (string): The path and file name to save the ``mp3`` to. Raises: :class:`gTTSError`: When there's an error with the API request. """ with open(str(savefile), 'wb') as f: self.write_to_fp(f) log.debug("Saved to %s", savefile)
[ "def", "save", "(", "self", ",", "savefile", ")", ":", "with", "open", "(", "str", "(", "savefile", ")", ",", "'wb'", ")", "as", "f", ":", "self", ".", "write_to_fp", "(", "f", ")", "log", ".", "debug", "(", "\"Saved to %s\"", ",", "savefile", ")" ]
Do the TTS API request and write result to file. Args: savefile (string): The path and file name to save the ``mp3`` to. Raises: :class:`gTTSError`: When there's an error with the API request.
[ "Do", "the", "TTS", "API", "request", "and", "write", "result", "to", "file", "." ]
python
train
30.461538
peri-source/peri
peri/runner.py
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/runner.py#L583-L617
def _pick_state_im_name(state_name, im_name, use_full_path=False): """ If state_name or im_name is None, picks them interactively through Tk, and then sets with or without the full path. Parameters ---------- state_name : {string, None} The name of the state. If None, selected through Tk. im_name : {string, None} The name of the image. If None, selected through Tk. use_full_path : Bool, optional Set to True to return the names as full paths rather than relative paths. Default is False (relative path). """ initial_dir = os.getcwd() if (state_name is None) or (im_name is None): wid = tk.Tk() wid.withdraw() if state_name is None: state_name = tkfd.askopenfilename( initialdir=initial_dir, title='Select pre-featured state') os.chdir(os.path.dirname(state_name)) if im_name is None: im_name = tkfd.askopenfilename( initialdir=initial_dir, title='Select new image') if (not use_full_path) and (os.path.dirname(im_name) != ''): im_path = os.path.dirname(im_name) os.chdir(im_path) im_name = os.path.basename(im_name) else: os.chdir(initial_dir) return state_name, im_name
[ "def", "_pick_state_im_name", "(", "state_name", ",", "im_name", ",", "use_full_path", "=", "False", ")", ":", "initial_dir", "=", "os", ".", "getcwd", "(", ")", "if", "(", "state_name", "is", "None", ")", "or", "(", "im_name", "is", "None", ")", ":", "wid", "=", "tk", ".", "Tk", "(", ")", "wid", ".", "withdraw", "(", ")", "if", "state_name", "is", "None", ":", "state_name", "=", "tkfd", ".", "askopenfilename", "(", "initialdir", "=", "initial_dir", ",", "title", "=", "'Select pre-featured state'", ")", "os", ".", "chdir", "(", "os", ".", "path", ".", "dirname", "(", "state_name", ")", ")", "if", "im_name", "is", "None", ":", "im_name", "=", "tkfd", ".", "askopenfilename", "(", "initialdir", "=", "initial_dir", ",", "title", "=", "'Select new image'", ")", "if", "(", "not", "use_full_path", ")", "and", "(", "os", ".", "path", ".", "dirname", "(", "im_name", ")", "!=", "''", ")", ":", "im_path", "=", "os", ".", "path", ".", "dirname", "(", "im_name", ")", "os", ".", "chdir", "(", "im_path", ")", "im_name", "=", "os", ".", "path", ".", "basename", "(", "im_name", ")", "else", ":", "os", ".", "chdir", "(", "initial_dir", ")", "return", "state_name", ",", "im_name" ]
If state_name or im_name is None, picks them interactively through Tk, and then sets with or without the full path. Parameters ---------- state_name : {string, None} The name of the state. If None, selected through Tk. im_name : {string, None} The name of the image. If None, selected through Tk. use_full_path : Bool, optional Set to True to return the names as full paths rather than relative paths. Default is False (relative path).
[ "If", "state_name", "or", "im_name", "is", "None", "picks", "them", "interactively", "through", "Tk", "and", "then", "sets", "with", "or", "without", "the", "full", "path", "." ]
python
valid
36.285714
Baguage/django-auth-pubtkt
django_auth_pubtkt/auth_pubtkt.py
https://github.com/Baguage/django-auth-pubtkt/blob/d3f4284212ffbfdc3588929a31e36a4cc7f39786/django_auth_pubtkt/auth_pubtkt.py#L45-L73
def verify_ticket_signature(self, data, sig): """Verify ticket signature. """ try: signature = base64.b64decode(sig) except TypeError as e: if hasattr(self, "debug"): print("Exception in function base64.b64decode. File %s" % (__file__)) print("%s" % e) return False if six.PY3: # To avoid "TypeError: Unicode-objects must be encoded before hashing' data = data.encode('utf-8') digest = hashlib.sha1(data).digest() if isinstance(self.pub_key, RSA.RSA_pub): try: self.pub_key.verify(digest, signature, 'sha1') except RSA.RSAError: return False return True if isinstance(self.pub_key, DSA.DSA_pub): try: return self.pub_key.verify_asn1(digest, signature) except DSA.DSAError as e: if hasattr(self, "debug"): print("Exception in function self.pub_key.verify_asn1(digest, signature). File %s" % (__file__)) print("%s" % e) return False # Unknown key type return False
[ "def", "verify_ticket_signature", "(", "self", ",", "data", ",", "sig", ")", ":", "try", ":", "signature", "=", "base64", ".", "b64decode", "(", "sig", ")", "except", "TypeError", "as", "e", ":", "if", "hasattr", "(", "self", ",", "\"debug\"", ")", ":", "print", "(", "\"Exception in function base64.b64decode. File %s\"", "%", "(", "__file__", ")", ")", "print", "(", "\"%s\"", "%", "e", ")", "return", "False", "if", "six", ".", "PY3", ":", "# To avoid \"TypeError: Unicode-objects must be encoded before hashing'", "data", "=", "data", ".", "encode", "(", "'utf-8'", ")", "digest", "=", "hashlib", ".", "sha1", "(", "data", ")", ".", "digest", "(", ")", "if", "isinstance", "(", "self", ".", "pub_key", ",", "RSA", ".", "RSA_pub", ")", ":", "try", ":", "self", ".", "pub_key", ".", "verify", "(", "digest", ",", "signature", ",", "'sha1'", ")", "except", "RSA", ".", "RSAError", ":", "return", "False", "return", "True", "if", "isinstance", "(", "self", ".", "pub_key", ",", "DSA", ".", "DSA_pub", ")", ":", "try", ":", "return", "self", ".", "pub_key", ".", "verify_asn1", "(", "digest", ",", "signature", ")", "except", "DSA", ".", "DSAError", "as", "e", ":", "if", "hasattr", "(", "self", ",", "\"debug\"", ")", ":", "print", "(", "\"Exception in function self.pub_key.verify_asn1(digest, signature). File %s\"", "%", "(", "__file__", ")", ")", "print", "(", "\"%s\"", "%", "e", ")", "return", "False", "# Unknown key type", "return", "False" ]
Verify ticket signature.
[ "Verify", "ticket", "signature", "." ]
python
train
40.896552
xapple/plumbing
plumbing/databases/sqlite_database.py
https://github.com/xapple/plumbing/blob/4a7706c7722f5996d0ca366f191aff9ac145880a/plumbing/databases/sqlite_database.py#L134-L140
def new_connection(self): """Make a new connection.""" if not self.prepared: self.prepare() con = sqlite3.connect(self.path, isolation_level=self.isolation) con.row_factory = self.factory if self.text_fact: con.text_factory = self.text_fact return con
[ "def", "new_connection", "(", "self", ")", ":", "if", "not", "self", ".", "prepared", ":", "self", ".", "prepare", "(", ")", "con", "=", "sqlite3", ".", "connect", "(", "self", ".", "path", ",", "isolation_level", "=", "self", ".", "isolation", ")", "con", ".", "row_factory", "=", "self", ".", "factory", "if", "self", ".", "text_fact", ":", "con", ".", "text_factory", "=", "self", ".", "text_fact", "return", "con" ]
Make a new connection.
[ "Make", "a", "new", "connection", "." ]
python
train
41.857143
fastai/fastai
fastai/vision/image.py
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/vision/image.py#L547-L556
def _affine_mult(c:FlowField,m:AffineMatrix)->FlowField: "Multiply `c` by `m` - can adjust for rectangular shaped `c`." if m is None: return c size = c.flow.size() h,w = c.size m[0,1] *= h/w m[1,0] *= w/h c.flow = c.flow.view(-1,2) c.flow = torch.addmm(m[:2,2], c.flow, m[:2,:2].t()).view(size) return c
[ "def", "_affine_mult", "(", "c", ":", "FlowField", ",", "m", ":", "AffineMatrix", ")", "->", "FlowField", ":", "if", "m", "is", "None", ":", "return", "c", "size", "=", "c", ".", "flow", ".", "size", "(", ")", "h", ",", "w", "=", "c", ".", "size", "m", "[", "0", ",", "1", "]", "*=", "h", "/", "w", "m", "[", "1", ",", "0", "]", "*=", "w", "/", "h", "c", ".", "flow", "=", "c", ".", "flow", ".", "view", "(", "-", "1", ",", "2", ")", "c", ".", "flow", "=", "torch", ".", "addmm", "(", "m", "[", ":", "2", ",", "2", "]", ",", "c", ".", "flow", ",", "m", "[", ":", "2", ",", ":", "2", "]", ".", "t", "(", ")", ")", ".", "view", "(", "size", ")", "return", "c" ]
Multiply `c` by `m` - can adjust for rectangular shaped `c`.
[ "Multiply", "c", "by", "m", "-", "can", "adjust", "for", "rectangular", "shaped", "c", "." ]
python
train
33.1
saltstack/salt
salt/renderers/aws_kms.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/renderers/aws_kms.py#L125-L151
def _session(): ''' Return the boto3 session to use for the KMS client. If aws_kms:profile_name is set in the salt configuration, use that profile. Otherwise, fall back on the default aws profile. We use the boto3 profile system to avoid having to duplicate individual boto3 configuration settings in salt configuration. ''' profile_name = _cfg('profile_name') if profile_name: log.info('Using the "%s" aws profile.', profile_name) else: log.info('aws_kms:profile_name is not set in salt. Falling back on default profile.') try: return boto3.Session(profile_name=profile_name) except botocore.exceptions.ProfileNotFound as orig_exc: err_msg = 'Boto3 could not find the "{}" profile configured in Salt.'.format( profile_name or 'default') config_error = salt.exceptions.SaltConfigurationError(err_msg) six.raise_from(config_error, orig_exc) except botocore.exceptions.NoRegionError as orig_exc: err_msg = ('Boto3 was unable to determine the AWS ' 'endpoint region using the {} profile.').format(profile_name or 'default') config_error = salt.exceptions.SaltConfigurationError(err_msg) six.raise_from(config_error, orig_exc)
[ "def", "_session", "(", ")", ":", "profile_name", "=", "_cfg", "(", "'profile_name'", ")", "if", "profile_name", ":", "log", ".", "info", "(", "'Using the \"%s\" aws profile.'", ",", "profile_name", ")", "else", ":", "log", ".", "info", "(", "'aws_kms:profile_name is not set in salt. Falling back on default profile.'", ")", "try", ":", "return", "boto3", ".", "Session", "(", "profile_name", "=", "profile_name", ")", "except", "botocore", ".", "exceptions", ".", "ProfileNotFound", "as", "orig_exc", ":", "err_msg", "=", "'Boto3 could not find the \"{}\" profile configured in Salt.'", ".", "format", "(", "profile_name", "or", "'default'", ")", "config_error", "=", "salt", ".", "exceptions", ".", "SaltConfigurationError", "(", "err_msg", ")", "six", ".", "raise_from", "(", "config_error", ",", "orig_exc", ")", "except", "botocore", ".", "exceptions", ".", "NoRegionError", "as", "orig_exc", ":", "err_msg", "=", "(", "'Boto3 was unable to determine the AWS '", "'endpoint region using the {} profile.'", ")", ".", "format", "(", "profile_name", "or", "'default'", ")", "config_error", "=", "salt", ".", "exceptions", ".", "SaltConfigurationError", "(", "err_msg", ")", "six", ".", "raise_from", "(", "config_error", ",", "orig_exc", ")" ]
Return the boto3 session to use for the KMS client. If aws_kms:profile_name is set in the salt configuration, use that profile. Otherwise, fall back on the default aws profile. We use the boto3 profile system to avoid having to duplicate individual boto3 configuration settings in salt configuration.
[ "Return", "the", "boto3", "session", "to", "use", "for", "the", "KMS", "client", "." ]
python
train
46.555556
cozy/python_cozy_management
cozy_management/couchdb.py
https://github.com/cozy/python_cozy_management/blob/820cea58458ae3e067fa8cc2da38edbda4681dac/cozy_management/couchdb.py#L62-L81
def curl_couchdb(url, method='GET', base_url=BASE_URL, data=None): ''' Launch a curl on CouchDB instance ''' (username, password) = get_admin() if username is None: auth = None else: auth = (username, password) if method == 'PUT': req = requests.put('{}{}'.format(base_url, url), auth=auth, data=data) elif method == 'DELETE': req = requests.delete('{}{}'.format(base_url, url), auth=auth) else: req = requests.get('{}{}'.format(base_url, url), auth=auth) if req.status_code not in [200, 201]: raise HTTPError('{}: {}'.format(req.status_code, req.text)) return req
[ "def", "curl_couchdb", "(", "url", ",", "method", "=", "'GET'", ",", "base_url", "=", "BASE_URL", ",", "data", "=", "None", ")", ":", "(", "username", ",", "password", ")", "=", "get_admin", "(", ")", "if", "username", "is", "None", ":", "auth", "=", "None", "else", ":", "auth", "=", "(", "username", ",", "password", ")", "if", "method", "==", "'PUT'", ":", "req", "=", "requests", ".", "put", "(", "'{}{}'", ".", "format", "(", "base_url", ",", "url", ")", ",", "auth", "=", "auth", ",", "data", "=", "data", ")", "elif", "method", "==", "'DELETE'", ":", "req", "=", "requests", ".", "delete", "(", "'{}{}'", ".", "format", "(", "base_url", ",", "url", ")", ",", "auth", "=", "auth", ")", "else", ":", "req", "=", "requests", ".", "get", "(", "'{}{}'", ".", "format", "(", "base_url", ",", "url", ")", ",", "auth", "=", "auth", ")", "if", "req", ".", "status_code", "not", "in", "[", "200", ",", "201", "]", ":", "raise", "HTTPError", "(", "'{}: {}'", ".", "format", "(", "req", ".", "status_code", ",", "req", ".", "text", ")", ")", "return", "req" ]
Launch a curl on CouchDB instance
[ "Launch", "a", "curl", "on", "CouchDB", "instance" ]
python
train
32.15
mozilla/socorrolib
socorrolib/app/fetch_transform_save_app.py
https://github.com/mozilla/socorrolib/blob/4ec08c6a4ee2c8a69150268afdd324f5f22b90c8/socorrolib/app/fetch_transform_save_app.py#L188-L200
def _infinite_iterator(self): """this iterator wraps the "_basic_iterator" when the configuration specifies that the "number_of_submissions" is set to "forever". Whenever the "_basic_iterator" is exhausted, it is called again to restart the iteration. It is up to the implementation of the innermost iterator to define what starting over means. Some iterators may repeat exactly what they did before, while others may iterate over new values""" while True: for crash_id in self._basic_iterator(): if self._filter_disallowed_values(crash_id): continue yield crash_id
[ "def", "_infinite_iterator", "(", "self", ")", ":", "while", "True", ":", "for", "crash_id", "in", "self", ".", "_basic_iterator", "(", ")", ":", "if", "self", ".", "_filter_disallowed_values", "(", "crash_id", ")", ":", "continue", "yield", "crash_id" ]
this iterator wraps the "_basic_iterator" when the configuration specifies that the "number_of_submissions" is set to "forever". Whenever the "_basic_iterator" is exhausted, it is called again to restart the iteration. It is up to the implementation of the innermost iterator to define what starting over means. Some iterators may repeat exactly what they did before, while others may iterate over new values
[ "this", "iterator", "wraps", "the", "_basic_iterator", "when", "the", "configuration", "specifies", "that", "the", "number_of_submissions", "is", "set", "to", "forever", ".", "Whenever", "the", "_basic_iterator", "is", "exhausted", "it", "is", "called", "again", "to", "restart", "the", "iteration", ".", "It", "is", "up", "to", "the", "implementation", "of", "the", "innermost", "iterator", "to", "define", "what", "starting", "over", "means", ".", "Some", "iterators", "may", "repeat", "exactly", "what", "they", "did", "before", "while", "others", "may", "iterate", "over", "new", "values" ]
python
train
52.538462
Richienb/quilt
src/quilt_lang/__init__.py
https://github.com/Richienb/quilt/blob/4a659cac66f5286ad046d54a12fd850be5606643/src/quilt_lang/__init__.py#L200-L235
def binboolflip(item): """ Convert 0 or 1 to False or True (or vice versa). The converter works as follows: - 0 > False - False > 0 - 1 > True - True > 1 :type item: integer or boolean :param item: The item to convert. >>> binboolflip(0) False >>> binboolflip(False) 0 >>> binboolflip(1) True >>> binboolflip(True) 1 >>> binboolflip("foo") Traceback (most recent call last): ... ValueError: Invalid item specified. """ if item in [0, False, 1, True]: return int(item) if isinstance(item, bool) else bool(item) # Raise a warning raise ValueError("Invalid item specified.")
[ "def", "binboolflip", "(", "item", ")", ":", "if", "item", "in", "[", "0", ",", "False", ",", "1", ",", "True", "]", ":", "return", "int", "(", "item", ")", "if", "isinstance", "(", "item", ",", "bool", ")", "else", "bool", "(", "item", ")", "# Raise a warning", "raise", "ValueError", "(", "\"Invalid item specified.\"", ")" ]
Convert 0 or 1 to False or True (or vice versa). The converter works as follows: - 0 > False - False > 0 - 1 > True - True > 1 :type item: integer or boolean :param item: The item to convert. >>> binboolflip(0) False >>> binboolflip(False) 0 >>> binboolflip(1) True >>> binboolflip(True) 1 >>> binboolflip("foo") Traceback (most recent call last): ... ValueError: Invalid item specified.
[ "Convert", "0", "or", "1", "to", "False", "or", "True", "(", "or", "vice", "versa", ")", ".", "The", "converter", "works", "as", "follows", ":" ]
python
train
18.194444
saltstack/salt
salt/modules/glusterfs.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/glusterfs.py#L442-L472
def start_volume(name, force=False): ''' Start a gluster volume name Volume name force Force the volume start even if the volume is started .. versionadded:: 2015.8.4 CLI Example: .. code-block:: bash salt '*' glusterfs.start mycluster ''' cmd = 'volume start {0}'.format(name) if force: cmd = '{0} force'.format(cmd) volinfo = info(name) if name not in volinfo: log.error("Cannot start non-existing volume %s", name) return False if not force and volinfo[name]['status'] == '1': log.info("Volume %s already started", name) return True return _gluster(cmd)
[ "def", "start_volume", "(", "name", ",", "force", "=", "False", ")", ":", "cmd", "=", "'volume start {0}'", ".", "format", "(", "name", ")", "if", "force", ":", "cmd", "=", "'{0} force'", ".", "format", "(", "cmd", ")", "volinfo", "=", "info", "(", "name", ")", "if", "name", "not", "in", "volinfo", ":", "log", ".", "error", "(", "\"Cannot start non-existing volume %s\"", ",", "name", ")", "return", "False", "if", "not", "force", "and", "volinfo", "[", "name", "]", "[", "'status'", "]", "==", "'1'", ":", "log", ".", "info", "(", "\"Volume %s already started\"", ",", "name", ")", "return", "True", "return", "_gluster", "(", "cmd", ")" ]
Start a gluster volume name Volume name force Force the volume start even if the volume is started .. versionadded:: 2015.8.4 CLI Example: .. code-block:: bash salt '*' glusterfs.start mycluster
[ "Start", "a", "gluster", "volume" ]
python
train
21.225806
tensorflow/tensor2tensor
tensor2tensor/utils/expert_utils.py
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/utils/expert_utils.py#L405-L434
def _my_top_k(x, k): """GPU-compatible version of top-k that works for very small constant k. Calls argmax repeatedly. tf.nn.top_k is implemented for GPU, but the gradient, sparse_to_dense, seems not to be, so if we use tf.nn.top_k, then both the top_k and its gradient go on cpu. Once this is not an issue, this function becomes obsolete and should be replaced by tf.nn.top_k. Args: x: a 2d Tensor. k: a small integer. Returns: values: a Tensor of shape [batch_size, k] indices: a int32 Tensor of shape [batch_size, k] """ if k > 10: return tf.nn.top_k(x, k) values = [] indices = [] depth = tf.shape(x)[1] for i in range(k): values.append(tf.reduce_max(x, 1)) argmax = tf.argmax(x, 1) indices.append(argmax) if i + 1 < k: x += tf.one_hot(argmax, depth, -1e9) return tf.stack(values, axis=1), tf.to_int32(tf.stack(indices, axis=1))
[ "def", "_my_top_k", "(", "x", ",", "k", ")", ":", "if", "k", ">", "10", ":", "return", "tf", ".", "nn", ".", "top_k", "(", "x", ",", "k", ")", "values", "=", "[", "]", "indices", "=", "[", "]", "depth", "=", "tf", ".", "shape", "(", "x", ")", "[", "1", "]", "for", "i", "in", "range", "(", "k", ")", ":", "values", ".", "append", "(", "tf", ".", "reduce_max", "(", "x", ",", "1", ")", ")", "argmax", "=", "tf", ".", "argmax", "(", "x", ",", "1", ")", "indices", ".", "append", "(", "argmax", ")", "if", "i", "+", "1", "<", "k", ":", "x", "+=", "tf", ".", "one_hot", "(", "argmax", ",", "depth", ",", "-", "1e9", ")", "return", "tf", ".", "stack", "(", "values", ",", "axis", "=", "1", ")", ",", "tf", ".", "to_int32", "(", "tf", ".", "stack", "(", "indices", ",", "axis", "=", "1", ")", ")" ]
GPU-compatible version of top-k that works for very small constant k. Calls argmax repeatedly. tf.nn.top_k is implemented for GPU, but the gradient, sparse_to_dense, seems not to be, so if we use tf.nn.top_k, then both the top_k and its gradient go on cpu. Once this is not an issue, this function becomes obsolete and should be replaced by tf.nn.top_k. Args: x: a 2d Tensor. k: a small integer. Returns: values: a Tensor of shape [batch_size, k] indices: a int32 Tensor of shape [batch_size, k]
[ "GPU", "-", "compatible", "version", "of", "top", "-", "k", "that", "works", "for", "very", "small", "constant", "k", "." ]
python
train
29.333333
klen/makesite
makesite/main.py
https://github.com/klen/makesite/blob/f6f77a43a04a256189e8fffbeac1ffd63f35a10c/makesite/main.py#L161-L168
def shell(args): " A helper command to be used for shell integration " print print "# Makesite integration " print "# ==================== " print "export MAKESITE_HOME=%s" % args.path print "source %s" % op.join(settings.BASEDIR, 'shell.sh') print
[ "def", "shell", "(", "args", ")", ":", "print", "print", "\"# Makesite integration \"", "print", "\"# ==================== \"", "print", "\"export MAKESITE_HOME=%s\"", "%", "args", ".", "path", "print", "\"source %s\"", "%", "op", ".", "join", "(", "settings", ".", "BASEDIR", ",", "'shell.sh'", ")", "print" ]
A helper command to be used for shell integration
[ "A", "helper", "command", "to", "be", "used", "for", "shell", "integration" ]
python
train
33.625
Garee/pytodoist
pytodoist/todoist.py
https://github.com/Garee/pytodoist/blob/3359cbff485ebdbbb4ffbd58d71e21a817874dd7/pytodoist/todoist.py#L625-L639
def get_label(self, label_name): """Return the user's label that has a given name. :param label_name: The name to search for. :type label_name: str :return: A label that has a matching name or ``None`` if not found. :rtype: :class:`pytodoist.todoist.Label` >>> from pytodoist import todoist >>> user = todoist.login('[email protected]', 'password') >>> label = user.get_label('family') """ for label in self.get_labels(): if label.name == label_name: return label
[ "def", "get_label", "(", "self", ",", "label_name", ")", ":", "for", "label", "in", "self", ".", "get_labels", "(", ")", ":", "if", "label", ".", "name", "==", "label_name", ":", "return", "label" ]
Return the user's label that has a given name. :param label_name: The name to search for. :type label_name: str :return: A label that has a matching name or ``None`` if not found. :rtype: :class:`pytodoist.todoist.Label` >>> from pytodoist import todoist >>> user = todoist.login('[email protected]', 'password') >>> label = user.get_label('family')
[ "Return", "the", "user", "s", "label", "that", "has", "a", "given", "name", "." ]
python
train
37.333333
omza/azurestoragewrap
azurestoragewrap/blob.py
https://github.com/omza/azurestoragewrap/blob/976878e95d82ff0f7d8a00a5e4a7a3fb6268ab08/azurestoragewrap/blob.py#L449-L473
def download(self, storagemodel:object, modeldefinition = None): """ load blob from storage into StorageBlobModelInstance """ if (storagemodel.name is None): # No content to download raise AzureStorageWrapException(storagemodel, "StorageBlobModel does not contain content nor content settings") else: container_name = modeldefinition['container'] blob_name = storagemodel.name try: if modeldefinition['blobservice'].exists(container_name, blob_name): """ download blob """ blob = modeldefinition['blobservice'].get_blob_to_bytes( container_name=modeldefinition['container'], blob_name=storagemodel.name ) storagemodel.__mergeblob__(blob) except Exception as e: msg = 'can not load blob from container {} because {!s}'.format(storagemodel._containername, e) raise AzureStorageWrapException(storagemodel, msg=msg) return storagemodel
[ "def", "download", "(", "self", ",", "storagemodel", ":", "object", ",", "modeldefinition", "=", "None", ")", ":", "if", "(", "storagemodel", ".", "name", "is", "None", ")", ":", "# No content to download", "raise", "AzureStorageWrapException", "(", "storagemodel", ",", "\"StorageBlobModel does not contain content nor content settings\"", ")", "else", ":", "container_name", "=", "modeldefinition", "[", "'container'", "]", "blob_name", "=", "storagemodel", ".", "name", "try", ":", "if", "modeldefinition", "[", "'blobservice'", "]", ".", "exists", "(", "container_name", ",", "blob_name", ")", ":", "\"\"\" download blob \"\"\"", "blob", "=", "modeldefinition", "[", "'blobservice'", "]", ".", "get_blob_to_bytes", "(", "container_name", "=", "modeldefinition", "[", "'container'", "]", ",", "blob_name", "=", "storagemodel", ".", "name", ")", "storagemodel", ".", "__mergeblob__", "(", "blob", ")", "except", "Exception", "as", "e", ":", "msg", "=", "'can not load blob from container {} because {!s}'", ".", "format", "(", "storagemodel", ".", "_containername", ",", "e", ")", "raise", "AzureStorageWrapException", "(", "storagemodel", ",", "msg", "=", "msg", ")", "return", "storagemodel" ]
load blob from storage into StorageBlobModelInstance
[ "load", "blob", "from", "storage", "into", "StorageBlobModelInstance" ]
python
train
45.32
slackapi/python-slackclient
slack/web/client.py
https://github.com/slackapi/python-slackclient/blob/901341c0284fd81e6d2719d6a0502308760d83e4/slack/web/client.py#L591-L598
def files_info(self, *, id: str, **kwargs) -> SlackResponse: """Gets information about a team file. Args: id (str): The file id. e.g. 'F1234467890' """ kwargs.update({"id": id}) return self.api_call("files.info", http_verb="GET", params=kwargs)
[ "def", "files_info", "(", "self", ",", "*", ",", "id", ":", "str", ",", "*", "*", "kwargs", ")", "->", "SlackResponse", ":", "kwargs", ".", "update", "(", "{", "\"id\"", ":", "id", "}", ")", "return", "self", ".", "api_call", "(", "\"files.info\"", ",", "http_verb", "=", "\"GET\"", ",", "params", "=", "kwargs", ")" ]
Gets information about a team file. Args: id (str): The file id. e.g. 'F1234467890'
[ "Gets", "information", "about", "a", "team", "file", "." ]
python
train
36.25
edx/edx-enterprise
integrated_channels/sap_success_factors/exporters/utils.py
https://github.com/edx/edx-enterprise/blob/aea91379ab0a87cd3bc798961fce28b60ee49a80/integrated_channels/sap_success_factors/exporters/utils.py#L29-L47
def transform_language_code(code): """ Transform ISO language code (e.g. en-us) to the language name expected by SAPSF. """ if code is None: return 'English' components = code.split('-', 2) language_code = components[0] try: country_code = components[1] except IndexError: country_code = '_' language_family = SUCCESSFACTORS_OCN_LANGUAGE_CODES.get(language_code) if not language_family: return 'English' return language_family.get(country_code, language_family['_'])
[ "def", "transform_language_code", "(", "code", ")", ":", "if", "code", "is", "None", ":", "return", "'English'", "components", "=", "code", ".", "split", "(", "'-'", ",", "2", ")", "language_code", "=", "components", "[", "0", "]", "try", ":", "country_code", "=", "components", "[", "1", "]", "except", "IndexError", ":", "country_code", "=", "'_'", "language_family", "=", "SUCCESSFACTORS_OCN_LANGUAGE_CODES", ".", "get", "(", "language_code", ")", "if", "not", "language_family", ":", "return", "'English'", "return", "language_family", ".", "get", "(", "country_code", ",", "language_family", "[", "'_'", "]", ")" ]
Transform ISO language code (e.g. en-us) to the language name expected by SAPSF.
[ "Transform", "ISO", "language", "code", "(", "e", ".", "g", ".", "en", "-", "us", ")", "to", "the", "language", "name", "expected", "by", "SAPSF", "." ]
python
valid
27.736842
saltstack/salt
salt/modules/bluecoat_sslv.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/bluecoat_sslv.py#L101-L121
def add_distinguished_name_list(list_name): ''' Add a list of policy distinguished names. list_name(str): The name of the specific policy distinguished name list to add. CLI Example: .. code-block:: bash salt '*' bluecoat_sslv.add_distinguished_name_list MyDistinguishedList ''' payload = {"jsonrpc": "2.0", "id": "ID0", "method": "add_policy_distinguished_names_list", "params": [{"list_name": list_name}]} response = __proxy__['bluecoat_sslv.call'](payload, True) return _validate_change_result(response)
[ "def", "add_distinguished_name_list", "(", "list_name", ")", ":", "payload", "=", "{", "\"jsonrpc\"", ":", "\"2.0\"", ",", "\"id\"", ":", "\"ID0\"", ",", "\"method\"", ":", "\"add_policy_distinguished_names_list\"", ",", "\"params\"", ":", "[", "{", "\"list_name\"", ":", "list_name", "}", "]", "}", "response", "=", "__proxy__", "[", "'bluecoat_sslv.call'", "]", "(", "payload", ",", "True", ")", "return", "_validate_change_result", "(", "response", ")" ]
Add a list of policy distinguished names. list_name(str): The name of the specific policy distinguished name list to add. CLI Example: .. code-block:: bash salt '*' bluecoat_sslv.add_distinguished_name_list MyDistinguishedList
[ "Add", "a", "list", "of", "policy", "distinguished", "names", "." ]
python
train
27.714286
mediawiki-utilities/python-mwreverts
mwreverts/historical_dict.py
https://github.com/mediawiki-utilities/python-mwreverts/blob/d379ac941e14e235ad82a48bd445a3dfa6cc022e/mwreverts/historical_dict.py#L28-L52
def insert(self, key, value): '''Adds a new key-value pair. Returns any discarded values.''' # Add to history and catch expectorate if len(self.history) == self.maxsize: expectorate = self.history[0] else: expectorate = None self.history.append((key, value)) # Add to the appropriate list of values if key in self: super().__getitem__(key).append(value) else: super().__setitem__(key, [value]) # Clean up old values if expectorate is not None: old_key, old_value = expectorate super().__getitem__(old_key).pop(0) if len(super().__getitem__(old_key)) == 0: super().__delitem__(old_key) return (old_key, old_value)
[ "def", "insert", "(", "self", ",", "key", ",", "value", ")", ":", "# Add to history and catch expectorate", "if", "len", "(", "self", ".", "history", ")", "==", "self", ".", "maxsize", ":", "expectorate", "=", "self", ".", "history", "[", "0", "]", "else", ":", "expectorate", "=", "None", "self", ".", "history", ".", "append", "(", "(", "key", ",", "value", ")", ")", "# Add to the appropriate list of values", "if", "key", "in", "self", ":", "super", "(", ")", ".", "__getitem__", "(", "key", ")", ".", "append", "(", "value", ")", "else", ":", "super", "(", ")", ".", "__setitem__", "(", "key", ",", "[", "value", "]", ")", "# Clean up old values", "if", "expectorate", "is", "not", "None", ":", "old_key", ",", "old_value", "=", "expectorate", "super", "(", ")", ".", "__getitem__", "(", "old_key", ")", ".", "pop", "(", "0", ")", "if", "len", "(", "super", "(", ")", ".", "__getitem__", "(", "old_key", ")", ")", "==", "0", ":", "super", "(", ")", ".", "__delitem__", "(", "old_key", ")", "return", "(", "old_key", ",", "old_value", ")" ]
Adds a new key-value pair. Returns any discarded values.
[ "Adds", "a", "new", "key", "-", "value", "pair", ".", "Returns", "any", "discarded", "values", "." ]
python
train
31.4
mattja/nsim
nsim/timeseries.py
https://github.com/mattja/nsim/blob/ed62c41cd56b918fd97e09f7ad73c12c76a8c3e0/nsim/timeseries.py#L448-L455
def absolute(self): """Calculate the absolute value element-wise. Returns: absolute (Timeseries): Absolute value. For complex input (a + b*j) gives sqrt(a**a + b**2) """ return Timeseries(np.absolute(self), self.tspan, self.labels)
[ "def", "absolute", "(", "self", ")", ":", "return", "Timeseries", "(", "np", ".", "absolute", "(", "self", ")", ",", "self", ".", "tspan", ",", "self", ".", "labels", ")" ]
Calculate the absolute value element-wise. Returns: absolute (Timeseries): Absolute value. For complex input (a + b*j) gives sqrt(a**a + b**2)
[ "Calculate", "the", "absolute", "value", "element", "-", "wise", "." ]
python
train
34.875
obriencj/python-javatools
javatools/report.py
https://github.com/obriencj/python-javatools/blob/9e2332b452ddc508bed0615937dddcb2cf051557/javatools/report.py#L123-L143
def setup(self): """ instantiates all report formats that have been added to this reporter, and calls their setup methods. """ if self._formats: # setup has been run already. return basedir = self.basedir options = self.options crumbs = self.get_relative_breadcrumbs() fmts = list() for fmt_class in self.formats: fmt = fmt_class(basedir, options, crumbs) fmt.setup() fmts.append(fmt) self._formats = fmts
[ "def", "setup", "(", "self", ")", ":", "if", "self", ".", "_formats", ":", "# setup has been run already.", "return", "basedir", "=", "self", ".", "basedir", "options", "=", "self", ".", "options", "crumbs", "=", "self", ".", "get_relative_breadcrumbs", "(", ")", "fmts", "=", "list", "(", ")", "for", "fmt_class", "in", "self", ".", "formats", ":", "fmt", "=", "fmt_class", "(", "basedir", ",", "options", ",", "crumbs", ")", "fmt", ".", "setup", "(", ")", "fmts", ".", "append", "(", "fmt", ")", "self", ".", "_formats", "=", "fmts" ]
instantiates all report formats that have been added to this reporter, and calls their setup methods.
[ "instantiates", "all", "report", "formats", "that", "have", "been", "added", "to", "this", "reporter", "and", "calls", "their", "setup", "methods", "." ]
python
train
25.571429
pmacosta/peng
peng/functions.py
https://github.com/pmacosta/peng/blob/976935377adaa3de26fc5677aceb2cdfbd6f93a7/peng/functions.py#L700-L761
def remove_extra_delims(expr, ldelim="(", rdelim=")"): r""" Remove unnecessary delimiters in mathematical expressions. Delimiters (parenthesis, brackets, etc.) may be removed either because there are multiple consecutive delimiters enclosing a single expressions or because the delimiters are implied by operator precedence rules. Function names must start with a letter and then can contain alphanumeric characters and a maximum of one underscore :param expr: Mathematical expression :type expr: string :param ldelim: Single character left delimiter :type ldelim: string :param rdelim: Single character right delimiter :type rdelim: string :rtype: string :raises: * RuntimeError (Argument \`expr\` is not valid) * RuntimeError (Argument \`ldelim\` is not valid) * RuntimeError (Argument \`rdelim\` is not valid) * RuntimeError (Function name `*[function_name]*` is not valid) * RuntimeError (Mismatched delimiters) """ op_group = "" for item1 in _OP_PREC: if isinstance(item1, list): for item2 in item1: op_group += item2 else: op_group += item1 iobj = zip([expr, ldelim, rdelim], ["expr", "ldelim", "rdelim"]) for item, desc in iobj: if not isinstance(item, str): raise RuntimeError("Argument `{0}` is not valid".format(desc)) if (len(ldelim) != 1) or ((len(ldelim) == 1) and (ldelim in op_group)): raise RuntimeError("Argument `ldelim` is not valid") if (len(rdelim) != 1) or ((len(rdelim) == 1) and (rdelim in op_group)): raise RuntimeError("Argument `rdelim` is not valid") if expr.count(ldelim) != expr.count(rdelim): raise RuntimeError("Mismatched delimiters") if not expr: return expr vchars = ( "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" ".0123456789" r"_()[]\{\}" + rdelim + ldelim + op_group ) if any([item not in vchars for item in expr]) or ("__" in expr): raise RuntimeError("Argument `expr` is not valid") expr = _remove_consecutive_delims(expr, ldelim=ldelim, rdelim=rdelim) expr = expr.replace(ldelim + rdelim, "") return _remove_extra_delims(expr, ldelim=ldelim, rdelim=rdelim)
[ "def", "remove_extra_delims", "(", "expr", ",", "ldelim", "=", "\"(\"", ",", "rdelim", "=", "\")\"", ")", ":", "op_group", "=", "\"\"", "for", "item1", "in", "_OP_PREC", ":", "if", "isinstance", "(", "item1", ",", "list", ")", ":", "for", "item2", "in", "item1", ":", "op_group", "+=", "item2", "else", ":", "op_group", "+=", "item1", "iobj", "=", "zip", "(", "[", "expr", ",", "ldelim", ",", "rdelim", "]", ",", "[", "\"expr\"", ",", "\"ldelim\"", ",", "\"rdelim\"", "]", ")", "for", "item", ",", "desc", "in", "iobj", ":", "if", "not", "isinstance", "(", "item", ",", "str", ")", ":", "raise", "RuntimeError", "(", "\"Argument `{0}` is not valid\"", ".", "format", "(", "desc", ")", ")", "if", "(", "len", "(", "ldelim", ")", "!=", "1", ")", "or", "(", "(", "len", "(", "ldelim", ")", "==", "1", ")", "and", "(", "ldelim", "in", "op_group", ")", ")", ":", "raise", "RuntimeError", "(", "\"Argument `ldelim` is not valid\"", ")", "if", "(", "len", "(", "rdelim", ")", "!=", "1", ")", "or", "(", "(", "len", "(", "rdelim", ")", "==", "1", ")", "and", "(", "rdelim", "in", "op_group", ")", ")", ":", "raise", "RuntimeError", "(", "\"Argument `rdelim` is not valid\"", ")", "if", "expr", ".", "count", "(", "ldelim", ")", "!=", "expr", ".", "count", "(", "rdelim", ")", ":", "raise", "RuntimeError", "(", "\"Mismatched delimiters\"", ")", "if", "not", "expr", ":", "return", "expr", "vchars", "=", "(", "\"abcdefghijklmnopqrstuvwxyz\"", "\"ABCDEFGHIJKLMNOPQRSTUVWXYZ\"", "\".0123456789\"", "r\"_()[]\\{\\}\"", "+", "rdelim", "+", "ldelim", "+", "op_group", ")", "if", "any", "(", "[", "item", "not", "in", "vchars", "for", "item", "in", "expr", "]", ")", "or", "(", "\"__\"", "in", "expr", ")", ":", "raise", "RuntimeError", "(", "\"Argument `expr` is not valid\"", ")", "expr", "=", "_remove_consecutive_delims", "(", "expr", ",", "ldelim", "=", "ldelim", ",", "rdelim", "=", "rdelim", ")", "expr", "=", "expr", ".", "replace", "(", "ldelim", "+", "rdelim", ",", "\"\"", ")", "return", "_remove_extra_delims", "(", "expr", ",", "ldelim", "=", "ldelim", ",", "rdelim", "=", "rdelim", ")" ]
r""" Remove unnecessary delimiters in mathematical expressions. Delimiters (parenthesis, brackets, etc.) may be removed either because there are multiple consecutive delimiters enclosing a single expressions or because the delimiters are implied by operator precedence rules. Function names must start with a letter and then can contain alphanumeric characters and a maximum of one underscore :param expr: Mathematical expression :type expr: string :param ldelim: Single character left delimiter :type ldelim: string :param rdelim: Single character right delimiter :type rdelim: string :rtype: string :raises: * RuntimeError (Argument \`expr\` is not valid) * RuntimeError (Argument \`ldelim\` is not valid) * RuntimeError (Argument \`rdelim\` is not valid) * RuntimeError (Function name `*[function_name]*` is not valid) * RuntimeError (Mismatched delimiters)
[ "r", "Remove", "unnecessary", "delimiters", "in", "mathematical", "expressions", "." ]
python
test
36.370968
bitesofcode/projexui
projexui/widgets/xnodewidget/xnode.py
https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xnodewidget/xnode.py#L1922-L1930
def setPalette(self, palette): """ Sets the palette for this node to the inputed palette. If None is provided, then the scene's palette will be used for this node. :param palette | <XNodePalette> || None """ self._palette = XNodePalette(palette) if palette is not None else None self.setDirty()
[ "def", "setPalette", "(", "self", ",", "palette", ")", ":", "self", ".", "_palette", "=", "XNodePalette", "(", "palette", ")", "if", "palette", "is", "not", "None", "else", "None", "self", ".", "setDirty", "(", ")" ]
Sets the palette for this node to the inputed palette. If None is provided, then the scene's palette will be used for this node. :param palette | <XNodePalette> || None
[ "Sets", "the", "palette", "for", "this", "node", "to", "the", "inputed", "palette", ".", "If", "None", "is", "provided", "then", "the", "scene", "s", "palette", "will", "be", "used", "for", "this", "node", ".", ":", "param", "palette", "|", "<XNodePalette", ">", "||", "None" ]
python
train
39.666667
googleapis/google-cloud-python
storage/google/cloud/storage/batch.py
https://github.com/googleapis/google-cloud-python/blob/85e80125a59cb10f8cb105f25ecc099e4b940b50/storage/google/cloud/storage/batch.py#L304-L335
def _unpack_batch_response(response): """Convert requests.Response -> [(headers, payload)]. Creates a generator of tuples of emulating the responses to :meth:`requests.Session.request`. :type response: :class:`requests.Response` :param response: HTTP response / headers from a request. """ parser = Parser() message = _generate_faux_mime_message(parser, response) if not isinstance(message._payload, list): raise ValueError("Bad response: not multi-part") for subrequest in message._payload: status_line, rest = subrequest._payload.split("\n", 1) _, status, _ = status_line.split(" ", 2) sub_message = parser.parsestr(rest) payload = sub_message._payload msg_headers = dict(sub_message._headers) content_id = msg_headers.get("Content-ID") subresponse = requests.Response() subresponse.request = requests.Request( method="BATCH", url="contentid://{}".format(content_id) ).prepare() subresponse.status_code = int(status) subresponse.headers.update(msg_headers) subresponse._content = payload.encode("utf-8") yield subresponse
[ "def", "_unpack_batch_response", "(", "response", ")", ":", "parser", "=", "Parser", "(", ")", "message", "=", "_generate_faux_mime_message", "(", "parser", ",", "response", ")", "if", "not", "isinstance", "(", "message", ".", "_payload", ",", "list", ")", ":", "raise", "ValueError", "(", "\"Bad response: not multi-part\"", ")", "for", "subrequest", "in", "message", ".", "_payload", ":", "status_line", ",", "rest", "=", "subrequest", ".", "_payload", ".", "split", "(", "\"\\n\"", ",", "1", ")", "_", ",", "status", ",", "_", "=", "status_line", ".", "split", "(", "\" \"", ",", "2", ")", "sub_message", "=", "parser", ".", "parsestr", "(", "rest", ")", "payload", "=", "sub_message", ".", "_payload", "msg_headers", "=", "dict", "(", "sub_message", ".", "_headers", ")", "content_id", "=", "msg_headers", ".", "get", "(", "\"Content-ID\"", ")", "subresponse", "=", "requests", ".", "Response", "(", ")", "subresponse", ".", "request", "=", "requests", ".", "Request", "(", "method", "=", "\"BATCH\"", ",", "url", "=", "\"contentid://{}\"", ".", "format", "(", "content_id", ")", ")", ".", "prepare", "(", ")", "subresponse", ".", "status_code", "=", "int", "(", "status", ")", "subresponse", ".", "headers", ".", "update", "(", "msg_headers", ")", "subresponse", ".", "_content", "=", "payload", ".", "encode", "(", "\"utf-8\"", ")", "yield", "subresponse" ]
Convert requests.Response -> [(headers, payload)]. Creates a generator of tuples of emulating the responses to :meth:`requests.Session.request`. :type response: :class:`requests.Response` :param response: HTTP response / headers from a request.
[ "Convert", "requests", ".", "Response", "-", ">", "[", "(", "headers", "payload", ")", "]", "." ]
python
train
36.34375
gem/oq-engine
openquake/calculators/getters.py
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/calculators/getters.py#L433-L460
def gen_rupture_getters(dstore, slc=slice(None), concurrent_tasks=1, hdf5cache=None): """ :yields: RuptureGetters """ if dstore.parent: dstore = dstore.parent csm_info = dstore['csm_info'] trt_by_grp = csm_info.grp_by("trt") samples = csm_info.get_samples_by_grp() rlzs_by_gsim = csm_info.get_rlzs_by_gsim_grp() rup_array = dstore['ruptures'][slc] maxweight = numpy.ceil(len(rup_array) / (concurrent_tasks or 1)) nr, ne = 0, 0 for grp_id, arr in general.group_array(rup_array, 'grp_id').items(): if not rlzs_by_gsim[grp_id]: # this may happen if a source model has no sources, like # in event_based_risk/case_3 continue for block in general.block_splitter(arr, maxweight): rgetter = RuptureGetter( hdf5cache or dstore.filename, numpy.array(block), grp_id, trt_by_grp[grp_id], samples[grp_id], rlzs_by_gsim[grp_id]) rgetter.weight = getattr(block, 'weight', len(block)) yield rgetter nr += len(block) ne += rgetter.num_events logging.info('Read %d ruptures and %d events', nr, ne)
[ "def", "gen_rupture_getters", "(", "dstore", ",", "slc", "=", "slice", "(", "None", ")", ",", "concurrent_tasks", "=", "1", ",", "hdf5cache", "=", "None", ")", ":", "if", "dstore", ".", "parent", ":", "dstore", "=", "dstore", ".", "parent", "csm_info", "=", "dstore", "[", "'csm_info'", "]", "trt_by_grp", "=", "csm_info", ".", "grp_by", "(", "\"trt\"", ")", "samples", "=", "csm_info", ".", "get_samples_by_grp", "(", ")", "rlzs_by_gsim", "=", "csm_info", ".", "get_rlzs_by_gsim_grp", "(", ")", "rup_array", "=", "dstore", "[", "'ruptures'", "]", "[", "slc", "]", "maxweight", "=", "numpy", ".", "ceil", "(", "len", "(", "rup_array", ")", "/", "(", "concurrent_tasks", "or", "1", ")", ")", "nr", ",", "ne", "=", "0", ",", "0", "for", "grp_id", ",", "arr", "in", "general", ".", "group_array", "(", "rup_array", ",", "'grp_id'", ")", ".", "items", "(", ")", ":", "if", "not", "rlzs_by_gsim", "[", "grp_id", "]", ":", "# this may happen if a source model has no sources, like", "# in event_based_risk/case_3", "continue", "for", "block", "in", "general", ".", "block_splitter", "(", "arr", ",", "maxweight", ")", ":", "rgetter", "=", "RuptureGetter", "(", "hdf5cache", "or", "dstore", ".", "filename", ",", "numpy", ".", "array", "(", "block", ")", ",", "grp_id", ",", "trt_by_grp", "[", "grp_id", "]", ",", "samples", "[", "grp_id", "]", ",", "rlzs_by_gsim", "[", "grp_id", "]", ")", "rgetter", ".", "weight", "=", "getattr", "(", "block", ",", "'weight'", ",", "len", "(", "block", ")", ")", "yield", "rgetter", "nr", "+=", "len", "(", "block", ")", "ne", "+=", "rgetter", ".", "num_events", "logging", ".", "info", "(", "'Read %d ruptures and %d events'", ",", "nr", ",", "ne", ")" ]
:yields: RuptureGetters
[ ":", "yields", ":", "RuptureGetters" ]
python
train
42.142857
twilio/authy-python
authy/api/resources.py
https://github.com/twilio/authy-python/blob/7a0073b39a56bac495b10e4b4fca3f09982de6ed/authy/api/resources.py#L543-L582
def __make_http_query(self, params, topkey=''): """ Function to covert params into url encoded query string :param dict params: Json string sent by Authy. :param string topkey: params key :return string: url encoded Query. """ if len(params) == 0: return "" result = "" # is a dictionary? if type(params) is dict: for key in params.keys(): newkey = quote(key) if topkey != '': newkey = topkey + quote('[' + key + ']') if type(params[key]) is dict: result += self.__make_http_query(params[key], newkey) elif type(params[key]) is list: i = 0 for val in params[key]: if type(val) is dict: result += self.__make_http_query( val, newkey + quote('['+str(i)+']')) else: result += newkey + \ quote('['+str(i)+']') + "=" + \ quote(str(val)) + "&" i = i + 1 # boolean should have special treatment as well elif type(params[key]) is bool: result += newkey + "=" + \ quote(str(params[key]).lower()) + "&" # assume string (integers and floats work well) else: result += newkey + "=" + quote(str(params[key])) + "&" # remove the last '&' if (result) and (topkey == '') and (result[-1] == '&'): result = result[:-1] return result
[ "def", "__make_http_query", "(", "self", ",", "params", ",", "topkey", "=", "''", ")", ":", "if", "len", "(", "params", ")", "==", "0", ":", "return", "\"\"", "result", "=", "\"\"", "# is a dictionary?", "if", "type", "(", "params", ")", "is", "dict", ":", "for", "key", "in", "params", ".", "keys", "(", ")", ":", "newkey", "=", "quote", "(", "key", ")", "if", "topkey", "!=", "''", ":", "newkey", "=", "topkey", "+", "quote", "(", "'['", "+", "key", "+", "']'", ")", "if", "type", "(", "params", "[", "key", "]", ")", "is", "dict", ":", "result", "+=", "self", ".", "__make_http_query", "(", "params", "[", "key", "]", ",", "newkey", ")", "elif", "type", "(", "params", "[", "key", "]", ")", "is", "list", ":", "i", "=", "0", "for", "val", "in", "params", "[", "key", "]", ":", "if", "type", "(", "val", ")", "is", "dict", ":", "result", "+=", "self", ".", "__make_http_query", "(", "val", ",", "newkey", "+", "quote", "(", "'['", "+", "str", "(", "i", ")", "+", "']'", ")", ")", "else", ":", "result", "+=", "newkey", "+", "quote", "(", "'['", "+", "str", "(", "i", ")", "+", "']'", ")", "+", "\"=\"", "+", "quote", "(", "str", "(", "val", ")", ")", "+", "\"&\"", "i", "=", "i", "+", "1", "# boolean should have special treatment as well", "elif", "type", "(", "params", "[", "key", "]", ")", "is", "bool", ":", "result", "+=", "newkey", "+", "\"=\"", "+", "quote", "(", "str", "(", "params", "[", "key", "]", ")", ".", "lower", "(", ")", ")", "+", "\"&\"", "# assume string (integers and floats work well)", "else", ":", "result", "+=", "newkey", "+", "\"=\"", "+", "quote", "(", "str", "(", "params", "[", "key", "]", ")", ")", "+", "\"&\"", "# remove the last '&'", "if", "(", "result", ")", "and", "(", "topkey", "==", "''", ")", "and", "(", "result", "[", "-", "1", "]", "==", "'&'", ")", ":", "result", "=", "result", "[", ":", "-", "1", "]", "return", "result" ]
Function to covert params into url encoded query string :param dict params: Json string sent by Authy. :param string topkey: params key :return string: url encoded Query.
[ "Function", "to", "covert", "params", "into", "url", "encoded", "query", "string", ":", "param", "dict", "params", ":", "Json", "string", "sent", "by", "Authy", ".", ":", "param", "string", "topkey", ":", "params", "key", ":", "return", "string", ":", "url", "encoded", "Query", "." ]
python
train
42.8
synw/dataswim
dataswim/data/clean.py
https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/data/clean.py#L52-L68
def zero_nan(self, *cols): """ Converts zero values to nan values in selected columns :param \*cols: names of the colums :type \*cols: str, at least one :example: ``ds.zero_nan("mycol1", "mycol2")`` """ if len(cols) == 0: self.warning("Can not nan zero values if a column name " "is not provided") df = self._zero_nan(*cols) if df is None: self.err("Can not fill zero values with nan") return self.df = df
[ "def", "zero_nan", "(", "self", ",", "*", "cols", ")", ":", "if", "len", "(", "cols", ")", "==", "0", ":", "self", ".", "warning", "(", "\"Can not nan zero values if a column name \"", "\"is not provided\"", ")", "df", "=", "self", ".", "_zero_nan", "(", "*", "cols", ")", "if", "df", "is", "None", ":", "self", ".", "err", "(", "\"Can not fill zero values with nan\"", ")", "return", "self", ".", "df", "=", "df" ]
Converts zero values to nan values in selected columns :param \*cols: names of the colums :type \*cols: str, at least one :example: ``ds.zero_nan("mycol1", "mycol2")``
[ "Converts", "zero", "values", "to", "nan", "values", "in", "selected", "columns" ]
python
train
31.294118
taxpon/pymesh
pymesh/base.py
https://github.com/taxpon/pymesh/blob/a90b3b2ed1408d793f3b5208dd8087b08fb7c92e/pymesh/base.py#L193-L206
def __calc_signed_volume(triangle): """ Calculate signed volume of given triangle :param list of list triangle: :rtype float """ v321 = triangle[2][0] * triangle[1][1] * triangle[0][2] v231 = triangle[1][0] * triangle[2][1] * triangle[0][2] v312 = triangle[2][0] * triangle[0][1] * triangle[1][2] v132 = triangle[0][0] * triangle[2][1] * triangle[1][2] v213 = triangle[1][0] * triangle[0][1] * triangle[2][2] v123 = triangle[0][0] * triangle[1][1] * triangle[2][2] signed_volume = (-v321 + v231 + v312 - v132 - v213 + v123) / 6.0 return signed_volume
[ "def", "__calc_signed_volume", "(", "triangle", ")", ":", "v321", "=", "triangle", "[", "2", "]", "[", "0", "]", "*", "triangle", "[", "1", "]", "[", "1", "]", "*", "triangle", "[", "0", "]", "[", "2", "]", "v231", "=", "triangle", "[", "1", "]", "[", "0", "]", "*", "triangle", "[", "2", "]", "[", "1", "]", "*", "triangle", "[", "0", "]", "[", "2", "]", "v312", "=", "triangle", "[", "2", "]", "[", "0", "]", "*", "triangle", "[", "0", "]", "[", "1", "]", "*", "triangle", "[", "1", "]", "[", "2", "]", "v132", "=", "triangle", "[", "0", "]", "[", "0", "]", "*", "triangle", "[", "2", "]", "[", "1", "]", "*", "triangle", "[", "1", "]", "[", "2", "]", "v213", "=", "triangle", "[", "1", "]", "[", "0", "]", "*", "triangle", "[", "0", "]", "[", "1", "]", "*", "triangle", "[", "2", "]", "[", "2", "]", "v123", "=", "triangle", "[", "0", "]", "[", "0", "]", "*", "triangle", "[", "1", "]", "[", "1", "]", "*", "triangle", "[", "2", "]", "[", "2", "]", "signed_volume", "=", "(", "-", "v321", "+", "v231", "+", "v312", "-", "v132", "-", "v213", "+", "v123", ")", "/", "6.0", "return", "signed_volume" ]
Calculate signed volume of given triangle :param list of list triangle: :rtype float
[ "Calculate", "signed", "volume", "of", "given", "triangle", ":", "param", "list", "of", "list", "triangle", ":", ":", "rtype", "float" ]
python
train
45.285714
aouyar/PyMunin
pysysinfo/diskio.py
https://github.com/aouyar/PyMunin/blob/4f58a64b6b37c85a84cc7e1e07aafaa0321b249d/pysysinfo/diskio.py#L418-L430
def getSwapStats(self, dev): """Returns I/O stats for swap partition. @param dev: Device name for swap partition. @return: Dict of stats. """ if self._swapList is None: self._initSwapInfo() if dev in self._swapList: return self.getDevStats(dev) else: return None
[ "def", "getSwapStats", "(", "self", ",", "dev", ")", ":", "if", "self", ".", "_swapList", "is", "None", ":", "self", ".", "_initSwapInfo", "(", ")", "if", "dev", "in", "self", ".", "_swapList", ":", "return", "self", ".", "getDevStats", "(", "dev", ")", "else", ":", "return", "None" ]
Returns I/O stats for swap partition. @param dev: Device name for swap partition. @return: Dict of stats.
[ "Returns", "I", "/", "O", "stats", "for", "swap", "partition", "." ]
python
train
27.692308
bkabrda/flask-whooshee
flask_whooshee.py
https://github.com/bkabrda/flask-whooshee/blob/773fc51ed53043bd5e92c65eadef5663845ae8c4/flask_whooshee.py#L138-L163
def search(cls, search_string, values_of='', group=whoosh.qparser.OrGroup, match_substrings=True, limit=None): """Searches the fields for given search_string. Returns the found records if 'values_of' is left empty, else the values of the given columns. :param search_string: The string to search for. :param values_of: If given, the method will not return the whole records, but only values of given column. Defaults to returning whole records. :param group: The whoosh group to use for searching. Defaults to :class:`whoosh.qparser.OrGroup` which searches for all words in all columns. :param match_substrings: ``True`` if you want to match substrings, ``False`` otherwise. :param limit: The number of the top records to be returned. Defaults to ``None`` and returns all records. """ index = Whooshee.get_or_create_index(_get_app(cls), cls) prepped_string = cls.prep_search_string(search_string, match_substrings) with index.searcher() as searcher: parser = whoosh.qparser.MultifieldParser(cls.schema.names(), index.schema, group=group) query = parser.parse(prepped_string) results = searcher.search(query, limit=limit) if values_of: return [x[values_of] for x in results] return results
[ "def", "search", "(", "cls", ",", "search_string", ",", "values_of", "=", "''", ",", "group", "=", "whoosh", ".", "qparser", ".", "OrGroup", ",", "match_substrings", "=", "True", ",", "limit", "=", "None", ")", ":", "index", "=", "Whooshee", ".", "get_or_create_index", "(", "_get_app", "(", "cls", ")", ",", "cls", ")", "prepped_string", "=", "cls", ".", "prep_search_string", "(", "search_string", ",", "match_substrings", ")", "with", "index", ".", "searcher", "(", ")", "as", "searcher", ":", "parser", "=", "whoosh", ".", "qparser", ".", "MultifieldParser", "(", "cls", ".", "schema", ".", "names", "(", ")", ",", "index", ".", "schema", ",", "group", "=", "group", ")", "query", "=", "parser", ".", "parse", "(", "prepped_string", ")", "results", "=", "searcher", ".", "search", "(", "query", ",", "limit", "=", "limit", ")", "if", "values_of", ":", "return", "[", "x", "[", "values_of", "]", "for", "x", "in", "results", "]", "return", "results" ]
Searches the fields for given search_string. Returns the found records if 'values_of' is left empty, else the values of the given columns. :param search_string: The string to search for. :param values_of: If given, the method will not return the whole records, but only values of given column. Defaults to returning whole records. :param group: The whoosh group to use for searching. Defaults to :class:`whoosh.qparser.OrGroup` which searches for all words in all columns. :param match_substrings: ``True`` if you want to match substrings, ``False`` otherwise. :param limit: The number of the top records to be returned. Defaults to ``None`` and returns all records.
[ "Searches", "the", "fields", "for", "given", "search_string", ".", "Returns", "the", "found", "records", "if", "values_of", "is", "left", "empty", "else", "the", "values", "of", "the", "given", "columns", "." ]
python
train
57.192308
hhromic/python-oslom-runner
oslom/runner.py
https://github.com/hhromic/python-oslom-runner/blob/f5991bd5014c65d0a9852641d51cbc344407d6a2/oslom/runner.py#L66-L70
def store_mapping(self, path): """Store the current Id mappings into a TSV file.""" with open(path, "w") as writer: for key, value in self.mapping.iteritems(): writer.write("{}\t{}\n".format(key, value))
[ "def", "store_mapping", "(", "self", ",", "path", ")", ":", "with", "open", "(", "path", ",", "\"w\"", ")", "as", "writer", ":", "for", "key", ",", "value", "in", "self", ".", "mapping", ".", "iteritems", "(", ")", ":", "writer", ".", "write", "(", "\"{}\\t{}\\n\"", ".", "format", "(", "key", ",", "value", ")", ")" ]
Store the current Id mappings into a TSV file.
[ "Store", "the", "current", "Id", "mappings", "into", "a", "TSV", "file", "." ]
python
train
48.6
divio/django-filer
filer/admin/folderadmin.py
https://github.com/divio/django-filer/blob/946629087943d41eff290f07bfdf240b8853dd88/filer/admin/folderadmin.py#L697-L792
def delete_files_or_folders(self, request, files_queryset, folders_queryset): """ Action which deletes the selected files and/or folders. This action first displays a confirmation page whichs shows all the deleteable files and/or folders, or, if the user has no permission on one of the related childs (foreignkeys), a "permission denied" message. Next, it deletes all selected files and/or folders and redirects back to the folder. """ opts = self.model._meta app_label = opts.app_label # Check that the user has delete permission for the actual model if not self.has_delete_permission(request): raise PermissionDenied current_folder = self._get_current_action_folder( request, files_queryset, folders_queryset) all_protected = [] # Populate deletable_objects, a data structure of all related objects # that will also be deleted. Hopefully this also checks for necessary # permissions. # TODO: Check if permissions are really verified using = router.db_for_write(self.model) deletable_files, model_count_files, perms_needed_files, protected_files = get_deleted_objects(files_queryset, files_queryset.model._meta, request.user, self.admin_site, using) deletable_folders, model_count_folder, perms_needed_folders, protected_folders = get_deleted_objects(folders_queryset, folders_queryset.model._meta, request.user, self.admin_site, using) all_protected.extend(protected_files) all_protected.extend(protected_folders) all_deletable_objects = [deletable_files, deletable_folders] all_perms_needed = perms_needed_files.union(perms_needed_folders) # The user has already confirmed the deletion. Do the deletion and # return a None to display the change list view again. if request.POST.get('post'): if all_perms_needed: raise PermissionDenied n = files_queryset.count() + folders_queryset.count() if n: # delete all explicitly selected files for f in files_queryset: self.log_deletion(request, f, force_text(f)) f.delete() # delete all files in all selected folders and their children # This would happen automatically by ways of the delete # cascade, but then the individual .delete() methods won't be # called and the files won't be deleted from the filesystem. folder_ids = set() for folder in folders_queryset: folder_ids.add(folder.id) folder_ids.update( folder.get_descendants().values_list('id', flat=True)) for f in File.objects.filter(folder__in=folder_ids): self.log_deletion(request, f, force_text(f)) f.delete() # delete all folders for f in folders_queryset: self.log_deletion(request, f, force_text(f)) f.delete() self.message_user(request, _("Successfully deleted %(count)d files and/or folders.") % {"count": n, }) # Return None to display the change list page again. return None if all_perms_needed or all_protected: title = _("Cannot delete files and/or folders") else: title = _("Are you sure?") context = self.admin_site.each_context(request) context.update({ "title": title, "instance": current_folder, "breadcrumbs_action": _("Delete files and/or folders"), "deletable_objects": all_deletable_objects, "files_queryset": files_queryset, "folders_queryset": folders_queryset, "perms_lacking": all_perms_needed, "protected": all_protected, "opts": opts, 'is_popup': popup_status(request), 'filer_admin_context': AdminContext(request), "root_path": reverse('admin:index'), "app_label": app_label, "action_checkbox_name": helpers.ACTION_CHECKBOX_NAME, }) # Display the destination folder selection page return render( request, "admin/filer/delete_selected_files_confirmation.html", context )
[ "def", "delete_files_or_folders", "(", "self", ",", "request", ",", "files_queryset", ",", "folders_queryset", ")", ":", "opts", "=", "self", ".", "model", ".", "_meta", "app_label", "=", "opts", ".", "app_label", "# Check that the user has delete permission for the actual model", "if", "not", "self", ".", "has_delete_permission", "(", "request", ")", ":", "raise", "PermissionDenied", "current_folder", "=", "self", ".", "_get_current_action_folder", "(", "request", ",", "files_queryset", ",", "folders_queryset", ")", "all_protected", "=", "[", "]", "# Populate deletable_objects, a data structure of all related objects", "# that will also be deleted. Hopefully this also checks for necessary", "# permissions.", "# TODO: Check if permissions are really verified", "using", "=", "router", ".", "db_for_write", "(", "self", ".", "model", ")", "deletable_files", ",", "model_count_files", ",", "perms_needed_files", ",", "protected_files", "=", "get_deleted_objects", "(", "files_queryset", ",", "files_queryset", ".", "model", ".", "_meta", ",", "request", ".", "user", ",", "self", ".", "admin_site", ",", "using", ")", "deletable_folders", ",", "model_count_folder", ",", "perms_needed_folders", ",", "protected_folders", "=", "get_deleted_objects", "(", "folders_queryset", ",", "folders_queryset", ".", "model", ".", "_meta", ",", "request", ".", "user", ",", "self", ".", "admin_site", ",", "using", ")", "all_protected", ".", "extend", "(", "protected_files", ")", "all_protected", ".", "extend", "(", "protected_folders", ")", "all_deletable_objects", "=", "[", "deletable_files", ",", "deletable_folders", "]", "all_perms_needed", "=", "perms_needed_files", ".", "union", "(", "perms_needed_folders", ")", "# The user has already confirmed the deletion. Do the deletion and", "# return a None to display the change list view again.", "if", "request", ".", "POST", ".", "get", "(", "'post'", ")", ":", "if", "all_perms_needed", ":", "raise", "PermissionDenied", "n", "=", "files_queryset", ".", "count", "(", ")", "+", "folders_queryset", ".", "count", "(", ")", "if", "n", ":", "# delete all explicitly selected files", "for", "f", "in", "files_queryset", ":", "self", ".", "log_deletion", "(", "request", ",", "f", ",", "force_text", "(", "f", ")", ")", "f", ".", "delete", "(", ")", "# delete all files in all selected folders and their children", "# This would happen automatically by ways of the delete", "# cascade, but then the individual .delete() methods won't be", "# called and the files won't be deleted from the filesystem.", "folder_ids", "=", "set", "(", ")", "for", "folder", "in", "folders_queryset", ":", "folder_ids", ".", "add", "(", "folder", ".", "id", ")", "folder_ids", ".", "update", "(", "folder", ".", "get_descendants", "(", ")", ".", "values_list", "(", "'id'", ",", "flat", "=", "True", ")", ")", "for", "f", "in", "File", ".", "objects", ".", "filter", "(", "folder__in", "=", "folder_ids", ")", ":", "self", ".", "log_deletion", "(", "request", ",", "f", ",", "force_text", "(", "f", ")", ")", "f", ".", "delete", "(", ")", "# delete all folders", "for", "f", "in", "folders_queryset", ":", "self", ".", "log_deletion", "(", "request", ",", "f", ",", "force_text", "(", "f", ")", ")", "f", ".", "delete", "(", ")", "self", ".", "message_user", "(", "request", ",", "_", "(", "\"Successfully deleted %(count)d files and/or folders.\"", ")", "%", "{", "\"count\"", ":", "n", ",", "}", ")", "# Return None to display the change list page again.", "return", "None", "if", "all_perms_needed", "or", "all_protected", ":", "title", "=", "_", "(", "\"Cannot delete files and/or folders\"", ")", "else", ":", "title", "=", "_", "(", "\"Are you sure?\"", ")", "context", "=", "self", ".", "admin_site", ".", "each_context", "(", "request", ")", "context", ".", "update", "(", "{", "\"title\"", ":", "title", ",", "\"instance\"", ":", "current_folder", ",", "\"breadcrumbs_action\"", ":", "_", "(", "\"Delete files and/or folders\"", ")", ",", "\"deletable_objects\"", ":", "all_deletable_objects", ",", "\"files_queryset\"", ":", "files_queryset", ",", "\"folders_queryset\"", ":", "folders_queryset", ",", "\"perms_lacking\"", ":", "all_perms_needed", ",", "\"protected\"", ":", "all_protected", ",", "\"opts\"", ":", "opts", ",", "'is_popup'", ":", "popup_status", "(", "request", ")", ",", "'filer_admin_context'", ":", "AdminContext", "(", "request", ")", ",", "\"root_path\"", ":", "reverse", "(", "'admin:index'", ")", ",", "\"app_label\"", ":", "app_label", ",", "\"action_checkbox_name\"", ":", "helpers", ".", "ACTION_CHECKBOX_NAME", ",", "}", ")", "# Display the destination folder selection page", "return", "render", "(", "request", ",", "\"admin/filer/delete_selected_files_confirmation.html\"", ",", "context", ")" ]
Action which deletes the selected files and/or folders. This action first displays a confirmation page whichs shows all the deleteable files and/or folders, or, if the user has no permission on one of the related childs (foreignkeys), a "permission denied" message. Next, it deletes all selected files and/or folders and redirects back to the folder.
[ "Action", "which", "deletes", "the", "selected", "files", "and", "/", "or", "folders", "." ]
python
train
45.958333
pyca/pyopenssl
src/OpenSSL/crypto.py
https://github.com/pyca/pyopenssl/blob/1fbe064c50fd030948141d7d630673761525b0d0/src/OpenSSL/crypto.py#L2569-L2579
def b64_encode(self): """ Generate a base64 encoded representation of this SPKI object. :return: The base64 encoded string. :rtype: :py:class:`bytes` """ encoded = _lib.NETSCAPE_SPKI_b64_encode(self._spki) result = _ffi.string(encoded) _lib.OPENSSL_free(encoded) return result
[ "def", "b64_encode", "(", "self", ")", ":", "encoded", "=", "_lib", ".", "NETSCAPE_SPKI_b64_encode", "(", "self", ".", "_spki", ")", "result", "=", "_ffi", ".", "string", "(", "encoded", ")", "_lib", ".", "OPENSSL_free", "(", "encoded", ")", "return", "result" ]
Generate a base64 encoded representation of this SPKI object. :return: The base64 encoded string. :rtype: :py:class:`bytes`
[ "Generate", "a", "base64", "encoded", "representation", "of", "this", "SPKI", "object", "." ]
python
test
30.818182
mathiasertl/xmpp-backends
xmpp_backends/django/models.py
https://github.com/mathiasertl/xmpp-backends/blob/214ef0664dbf90fa300c2483b9b3416559e5d171/xmpp_backends/django/models.py#L39-L47
def set_password(self, raw_password): """Calls :py:func:`~xmpp_backends.base.XmppBackendBase.set_password` for the user. If password is ``None``, calls :py:func:`~xmpp_backends.base.XmppBackendBase.set_unusable_password`. """ if raw_password is None: self.set_unusable_password() else: xmpp_backend.set_password(self.node, self.domain, raw_password)
[ "def", "set_password", "(", "self", ",", "raw_password", ")", ":", "if", "raw_password", "is", "None", ":", "self", ".", "set_unusable_password", "(", ")", "else", ":", "xmpp_backend", ".", "set_password", "(", "self", ".", "node", ",", "self", ".", "domain", ",", "raw_password", ")" ]
Calls :py:func:`~xmpp_backends.base.XmppBackendBase.set_password` for the user. If password is ``None``, calls :py:func:`~xmpp_backends.base.XmppBackendBase.set_unusable_password`.
[ "Calls", ":", "py", ":", "func", ":", "~xmpp_backends", ".", "base", ".", "XmppBackendBase", ".", "set_password", "for", "the", "user", "." ]
python
train
45.111111
zsimic/runez
src/runez/logsetup.py
https://github.com/zsimic/runez/blob/14363b719a1aae1528859a501a22d075ce0abfcc/src/runez/logsetup.py#L383-L401
def enable_faulthandler(cls, signum=signal.SIGUSR1): """ Enable dumping thread stack traces when specified signals are received, similar to java's handling of SIGQUIT Note: this must be called from the surviving process in case of daemonization. Note that SIGQUIT does not work in all environments with a python process. :param int|None signum: Signal number to register for full thread stack dump (use None to disable) """ with cls._lock: if not signum: cls._disable_faulthandler() return if not cls.file_handler or faulthandler is None: return cls.faulthandler_signum = signum dump_file = cls.file_handler.stream faulthandler.enable(file=dump_file, all_threads=True) faulthandler.register(signum, file=dump_file, all_threads=True, chain=False)
[ "def", "enable_faulthandler", "(", "cls", ",", "signum", "=", "signal", ".", "SIGUSR1", ")", ":", "with", "cls", ".", "_lock", ":", "if", "not", "signum", ":", "cls", ".", "_disable_faulthandler", "(", ")", "return", "if", "not", "cls", ".", "file_handler", "or", "faulthandler", "is", "None", ":", "return", "cls", ".", "faulthandler_signum", "=", "signum", "dump_file", "=", "cls", ".", "file_handler", ".", "stream", "faulthandler", ".", "enable", "(", "file", "=", "dump_file", ",", "all_threads", "=", "True", ")", "faulthandler", ".", "register", "(", "signum", ",", "file", "=", "dump_file", ",", "all_threads", "=", "True", ",", "chain", "=", "False", ")" ]
Enable dumping thread stack traces when specified signals are received, similar to java's handling of SIGQUIT Note: this must be called from the surviving process in case of daemonization. Note that SIGQUIT does not work in all environments with a python process. :param int|None signum: Signal number to register for full thread stack dump (use None to disable)
[ "Enable", "dumping", "thread", "stack", "traces", "when", "specified", "signals", "are", "received", "similar", "to", "java", "s", "handling", "of", "SIGQUIT" ]
python
train
47.631579
mdgoldberg/sportsref
sportsref/nfl/teams.py
https://github.com/mdgoldberg/sportsref/blob/09f11ac856a23c96d666d1d510bb35d6f050b5c3/sportsref/nfl/teams.py#L337-L349
def def_alignment(self, year): """Returns the name of the defensive alignment the team ran in the given year. :year: Int representing the season year. :returns: A string representing the defensive alignment. """ scheme_text = self._year_info_pq(year, 'Defensive Alignment').text() m = re.search(r'Defensive Alignment[:\s]*(.+)\s*', scheme_text, re.I) if m: return m.group(1) else: return None
[ "def", "def_alignment", "(", "self", ",", "year", ")", ":", "scheme_text", "=", "self", ".", "_year_info_pq", "(", "year", ",", "'Defensive Alignment'", ")", ".", "text", "(", ")", "m", "=", "re", ".", "search", "(", "r'Defensive Alignment[:\\s]*(.+)\\s*'", ",", "scheme_text", ",", "re", ".", "I", ")", "if", "m", ":", "return", "m", ".", "group", "(", "1", ")", "else", ":", "return", "None" ]
Returns the name of the defensive alignment the team ran in the given year. :year: Int representing the season year. :returns: A string representing the defensive alignment.
[ "Returns", "the", "name", "of", "the", "defensive", "alignment", "the", "team", "ran", "in", "the", "given", "year", "." ]
python
test
36.692308
GPflow/GPflow
gpflow/training/natgrad_optimizer.py
https://github.com/GPflow/GPflow/blob/549394f0b1b0696c7b521a065e49bdae6e7acf27/gpflow/training/natgrad_optimizer.py#L386-L398
def _inverse_lower_triangular(M): """ Take inverse of lower triangular (e.g. Cholesky) matrix. This function broadcasts over the first index. :param M: Tensor with lower triangular structure of shape DxNxN :return: The inverse of the Cholesky decomposition. Same shape as input. """ if M.get_shape().ndims != 3: # pragma: no cover raise ValueError("Number of dimensions for input is required to be 3.") D, N = tf.shape(M)[0], tf.shape(M)[1] I_DNN = tf.eye(N, dtype=M.dtype)[None, :, :] * tf.ones((D, 1, 1), dtype=M.dtype) return tf.matrix_triangular_solve(M, I_DNN)
[ "def", "_inverse_lower_triangular", "(", "M", ")", ":", "if", "M", ".", "get_shape", "(", ")", ".", "ndims", "!=", "3", ":", "# pragma: no cover", "raise", "ValueError", "(", "\"Number of dimensions for input is required to be 3.\"", ")", "D", ",", "N", "=", "tf", ".", "shape", "(", "M", ")", "[", "0", "]", ",", "tf", ".", "shape", "(", "M", ")", "[", "1", "]", "I_DNN", "=", "tf", ".", "eye", "(", "N", ",", "dtype", "=", "M", ".", "dtype", ")", "[", "None", ",", ":", ",", ":", "]", "*", "tf", ".", "ones", "(", "(", "D", ",", "1", ",", "1", ")", ",", "dtype", "=", "M", ".", "dtype", ")", "return", "tf", ".", "matrix_triangular_solve", "(", "M", ",", "I_DNN", ")" ]
Take inverse of lower triangular (e.g. Cholesky) matrix. This function broadcasts over the first index. :param M: Tensor with lower triangular structure of shape DxNxN :return: The inverse of the Cholesky decomposition. Same shape as input.
[ "Take", "inverse", "of", "lower", "triangular", "(", "e", ".", "g", ".", "Cholesky", ")", "matrix", ".", "This", "function", "broadcasts", "over", "the", "first", "index", "." ]
python
train
46.384615
benoitkugler/abstractDataLibrary
pyDLib/Core/groups.py
https://github.com/benoitkugler/abstractDataLibrary/blob/16be28e99837e40287a63803bbfdf67ac1806b7b/pyDLib/Core/groups.py#L135-L143
def extend(self, collection): """Merges collections. Ensure uniqueness of ids""" l_ids = set([a.Id for a in self]) for acces in collection: if not acces.Id in l_ids: list.append(self,acces) info = collection.get_info(Id=acces.Id) if info: self.infos[acces.Id] = info
[ "def", "extend", "(", "self", ",", "collection", ")", ":", "l_ids", "=", "set", "(", "[", "a", ".", "Id", "for", "a", "in", "self", "]", ")", "for", "acces", "in", "collection", ":", "if", "not", "acces", ".", "Id", "in", "l_ids", ":", "list", ".", "append", "(", "self", ",", "acces", ")", "info", "=", "collection", ".", "get_info", "(", "Id", "=", "acces", ".", "Id", ")", "if", "info", ":", "self", ".", "infos", "[", "acces", ".", "Id", "]", "=", "info" ]
Merges collections. Ensure uniqueness of ids
[ "Merges", "collections", ".", "Ensure", "uniqueness", "of", "ids" ]
python
train
40.222222
mwgielen/jackal
jackal/utils.py
https://github.com/mwgielen/jackal/blob/7fe62732eb5194b7246215d5277fb37c398097bf/jackal/utils.py#L85-L189
def draw_interface(objects, callback, callback_text): """ Draws a ncurses interface. Based on the given object list, every object should have a "string" key, this is whats displayed on the screen, callback is called with the selected object. Rest of the code is modified from: https://stackoverflow.com/a/30834868 """ screen = curses.initscr() height, width = screen.getmaxyx() curses.noecho() curses.cbreak() curses.start_color() screen.keypad( 1 ) curses.init_pair(1,curses.COLOR_BLACK, curses.COLOR_CYAN) highlightText = curses.color_pair( 1 ) normalText = curses.A_NORMAL screen.border( 0 ) curses.curs_set( 0 ) max_row = height - 15 # max number of rows box = curses.newwin( max_row + 2, int(width - 2), 1, 1 ) box.box() fmt = PartialFormatter() row_num = len( objects ) pages = int( ceil( row_num / max_row ) ) position = 1 page = 1 for i in range( 1, max_row + 1 ): if row_num == 0: box.addstr( 1, 1, "There aren't strings", highlightText ) else: if (i == position): box.addstr( i, 2, str( i ) + " - " + objects[ i - 1 ]['string'], highlightText ) else: box.addstr( i, 2, str( i ) + " - " + objects[ i - 1 ]['string'], normalText ) if i == row_num: break screen.refresh() box.refresh() x = screen.getch() while x != 27: if x == curses.KEY_DOWN: if page == 1: if position < i: position = position + 1 else: if pages > 1: page = page + 1 position = 1 + ( max_row * ( page - 1 ) ) elif page == pages: if position < row_num: position = position + 1 else: if position < max_row + ( max_row * ( page - 1 ) ): position = position + 1 else: page = page + 1 position = 1 + ( max_row * ( page - 1 ) ) if x == curses.KEY_UP: if page == 1: if position > 1: position = position - 1 else: if position > ( 1 + ( max_row * ( page - 1 ) ) ): position = position - 1 else: page = page - 1 position = max_row + ( max_row * ( page - 1 ) ) screen.erase() if x == ord( "\n" ) and row_num != 0: screen.erase() screen.border( 0 ) service = objects[position -1] text = fmt.format(callback_text, **service) screen.addstr( max_row + 4, 3, text) text = callback(service) count = 0 for line in text: screen.addstr( max_row + 5 + count, 3, line) count += 1 box.erase() screen.border( 0 ) box.border( 0 ) for i in range( 1 + ( max_row * ( page - 1 ) ), max_row + 1 + ( max_row * ( page - 1 ) ) ): if row_num == 0: box.addstr( 1, 1, "There aren't strings", highlightText ) else: if ( i + ( max_row * ( page - 1 ) ) == position + ( max_row * ( page - 1 ) ) ): box.addstr( i - ( max_row * ( page - 1 ) ), 2, str( i ) + " - " + objects[ i - 1 ]['string'], highlightText ) else: box.addstr( i - ( max_row * ( page - 1 ) ), 2, str( i ) + " - " + objects[ i - 1 ]['string'], normalText ) if i == row_num: break screen.refresh() box.refresh() x = screen.getch() curses.endwin() exit()
[ "def", "draw_interface", "(", "objects", ",", "callback", ",", "callback_text", ")", ":", "screen", "=", "curses", ".", "initscr", "(", ")", "height", ",", "width", "=", "screen", ".", "getmaxyx", "(", ")", "curses", ".", "noecho", "(", ")", "curses", ".", "cbreak", "(", ")", "curses", ".", "start_color", "(", ")", "screen", ".", "keypad", "(", "1", ")", "curses", ".", "init_pair", "(", "1", ",", "curses", ".", "COLOR_BLACK", ",", "curses", ".", "COLOR_CYAN", ")", "highlightText", "=", "curses", ".", "color_pair", "(", "1", ")", "normalText", "=", "curses", ".", "A_NORMAL", "screen", ".", "border", "(", "0", ")", "curses", ".", "curs_set", "(", "0", ")", "max_row", "=", "height", "-", "15", "# max number of rows", "box", "=", "curses", ".", "newwin", "(", "max_row", "+", "2", ",", "int", "(", "width", "-", "2", ")", ",", "1", ",", "1", ")", "box", ".", "box", "(", ")", "fmt", "=", "PartialFormatter", "(", ")", "row_num", "=", "len", "(", "objects", ")", "pages", "=", "int", "(", "ceil", "(", "row_num", "/", "max_row", ")", ")", "position", "=", "1", "page", "=", "1", "for", "i", "in", "range", "(", "1", ",", "max_row", "+", "1", ")", ":", "if", "row_num", "==", "0", ":", "box", ".", "addstr", "(", "1", ",", "1", ",", "\"There aren't strings\"", ",", "highlightText", ")", "else", ":", "if", "(", "i", "==", "position", ")", ":", "box", ".", "addstr", "(", "i", ",", "2", ",", "str", "(", "i", ")", "+", "\" - \"", "+", "objects", "[", "i", "-", "1", "]", "[", "'string'", "]", ",", "highlightText", ")", "else", ":", "box", ".", "addstr", "(", "i", ",", "2", ",", "str", "(", "i", ")", "+", "\" - \"", "+", "objects", "[", "i", "-", "1", "]", "[", "'string'", "]", ",", "normalText", ")", "if", "i", "==", "row_num", ":", "break", "screen", ".", "refresh", "(", ")", "box", ".", "refresh", "(", ")", "x", "=", "screen", ".", "getch", "(", ")", "while", "x", "!=", "27", ":", "if", "x", "==", "curses", ".", "KEY_DOWN", ":", "if", "page", "==", "1", ":", "if", "position", "<", "i", ":", "position", "=", "position", "+", "1", "else", ":", "if", "pages", ">", "1", ":", "page", "=", "page", "+", "1", "position", "=", "1", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", "elif", "page", "==", "pages", ":", "if", "position", "<", "row_num", ":", "position", "=", "position", "+", "1", "else", ":", "if", "position", "<", "max_row", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", ":", "position", "=", "position", "+", "1", "else", ":", "page", "=", "page", "+", "1", "position", "=", "1", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", "if", "x", "==", "curses", ".", "KEY_UP", ":", "if", "page", "==", "1", ":", "if", "position", ">", "1", ":", "position", "=", "position", "-", "1", "else", ":", "if", "position", ">", "(", "1", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", ")", ":", "position", "=", "position", "-", "1", "else", ":", "page", "=", "page", "-", "1", "position", "=", "max_row", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", "screen", ".", "erase", "(", ")", "if", "x", "==", "ord", "(", "\"\\n\"", ")", "and", "row_num", "!=", "0", ":", "screen", ".", "erase", "(", ")", "screen", ".", "border", "(", "0", ")", "service", "=", "objects", "[", "position", "-", "1", "]", "text", "=", "fmt", ".", "format", "(", "callback_text", ",", "*", "*", "service", ")", "screen", ".", "addstr", "(", "max_row", "+", "4", ",", "3", ",", "text", ")", "text", "=", "callback", "(", "service", ")", "count", "=", "0", "for", "line", "in", "text", ":", "screen", ".", "addstr", "(", "max_row", "+", "5", "+", "count", ",", "3", ",", "line", ")", "count", "+=", "1", "box", ".", "erase", "(", ")", "screen", ".", "border", "(", "0", ")", "box", ".", "border", "(", "0", ")", "for", "i", "in", "range", "(", "1", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", ",", "max_row", "+", "1", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", ")", ":", "if", "row_num", "==", "0", ":", "box", ".", "addstr", "(", "1", ",", "1", ",", "\"There aren't strings\"", ",", "highlightText", ")", "else", ":", "if", "(", "i", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", "==", "position", "+", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", ")", ":", "box", ".", "addstr", "(", "i", "-", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", ",", "2", ",", "str", "(", "i", ")", "+", "\" - \"", "+", "objects", "[", "i", "-", "1", "]", "[", "'string'", "]", ",", "highlightText", ")", "else", ":", "box", ".", "addstr", "(", "i", "-", "(", "max_row", "*", "(", "page", "-", "1", ")", ")", ",", "2", ",", "str", "(", "i", ")", "+", "\" - \"", "+", "objects", "[", "i", "-", "1", "]", "[", "'string'", "]", ",", "normalText", ")", "if", "i", "==", "row_num", ":", "break", "screen", ".", "refresh", "(", ")", "box", ".", "refresh", "(", ")", "x", "=", "screen", ".", "getch", "(", ")", "curses", ".", "endwin", "(", ")", "exit", "(", ")" ]
Draws a ncurses interface. Based on the given object list, every object should have a "string" key, this is whats displayed on the screen, callback is called with the selected object. Rest of the code is modified from: https://stackoverflow.com/a/30834868
[ "Draws", "a", "ncurses", "interface", ".", "Based", "on", "the", "given", "object", "list", "every", "object", "should", "have", "a", "string", "key", "this", "is", "whats", "displayed", "on", "the", "screen", "callback", "is", "called", "with", "the", "selected", "object", ".", "Rest", "of", "the", "code", "is", "modified", "from", ":", "https", ":", "//", "stackoverflow", ".", "com", "/", "a", "/", "30834868" ]
python
valid
35.304762
rochacbruno/flask_simplelogin
example/manage.py
https://github.com/rochacbruno/flask_simplelogin/blob/5b319977053649352daa87a6b0632949eee0643c/example/manage.py#L23-L41
def create_user(**data): """Creates user with encrypted password""" if 'username' not in data or 'password' not in data: raise ValueError('username and password are required.') # Hash the user password data['password'] = generate_password_hash( data.pop('password'), method='pbkdf2:sha256' ) # Here you insert the `data` in your users database # for this simple example we are recording in a json file db_users = json.load(open('users.json')) # add the new created user to json db_users[data['username']] = data # commit changes to database json.dump(db_users, open('users.json', 'w')) return data
[ "def", "create_user", "(", "*", "*", "data", ")", ":", "if", "'username'", "not", "in", "data", "or", "'password'", "not", "in", "data", ":", "raise", "ValueError", "(", "'username and password are required.'", ")", "# Hash the user password", "data", "[", "'password'", "]", "=", "generate_password_hash", "(", "data", ".", "pop", "(", "'password'", ")", ",", "method", "=", "'pbkdf2:sha256'", ")", "# Here you insert the `data` in your users database", "# for this simple example we are recording in a json file", "db_users", "=", "json", ".", "load", "(", "open", "(", "'users.json'", ")", ")", "# add the new created user to json", "db_users", "[", "data", "[", "'username'", "]", "]", "=", "data", "# commit changes to database", "json", ".", "dump", "(", "db_users", ",", "open", "(", "'users.json'", ",", "'w'", ")", ")", "return", "data" ]
Creates user with encrypted password
[ "Creates", "user", "with", "encrypted", "password" ]
python
train
34.578947
edoburu/django-tag-parser
tag_parser/basetags.py
https://github.com/edoburu/django-tag-parser/blob/c24256cfdd0248434f2e3df3444ed9f945d4181f/tag_parser/basetags.py#L272-L299
def get_context(self, parent_context, data): """ Wrap the context data in a :class:`~django.template.Context` object. :param parent_context: The context of the parent template. :type parent_context: :class:`~django.template.Context` :param data: The result from :func:`get_context_data` :type data: dict :return: Context data. :rtype: :class:`~django.template.Context` """ if django.VERSION >= (1, 8): new_context = parent_context.new(data) else: settings = { 'autoescape': parent_context.autoescape, 'current_app': parent_context.current_app, 'use_l10n': parent_context.use_l10n, 'use_tz': parent_context.use_tz, } new_context = Context(data, **settings) # Pass CSRF token for same reasons as @register.inclusion_tag does. csrf_token = parent_context.get('csrf_token', None) if csrf_token is not None: new_context['csrf_token'] = csrf_token return new_context
[ "def", "get_context", "(", "self", ",", "parent_context", ",", "data", ")", ":", "if", "django", ".", "VERSION", ">=", "(", "1", ",", "8", ")", ":", "new_context", "=", "parent_context", ".", "new", "(", "data", ")", "else", ":", "settings", "=", "{", "'autoescape'", ":", "parent_context", ".", "autoescape", ",", "'current_app'", ":", "parent_context", ".", "current_app", ",", "'use_l10n'", ":", "parent_context", ".", "use_l10n", ",", "'use_tz'", ":", "parent_context", ".", "use_tz", ",", "}", "new_context", "=", "Context", "(", "data", ",", "*", "*", "settings", ")", "# Pass CSRF token for same reasons as @register.inclusion_tag does.", "csrf_token", "=", "parent_context", ".", "get", "(", "'csrf_token'", ",", "None", ")", "if", "csrf_token", "is", "not", "None", ":", "new_context", "[", "'csrf_token'", "]", "=", "csrf_token", "return", "new_context" ]
Wrap the context data in a :class:`~django.template.Context` object. :param parent_context: The context of the parent template. :type parent_context: :class:`~django.template.Context` :param data: The result from :func:`get_context_data` :type data: dict :return: Context data. :rtype: :class:`~django.template.Context`
[ "Wrap", "the", "context", "data", "in", "a", ":", "class", ":", "~django", ".", "template", ".", "Context", "object", "." ]
python
test
38.571429
jd/tenacity
tenacity/compat.py
https://github.com/jd/tenacity/blob/354c40b7dc8e728c438668100dd020b65c84dfc6/tenacity/compat.py#L120-L136
def stop_func_accept_retry_state(stop_func): """Wrap "stop" function to accept "retry_state" parameter.""" if not six.callable(stop_func): return stop_func if func_takes_retry_state(stop_func): return stop_func @_utils.wraps(stop_func) def wrapped_stop_func(retry_state): warn_about_non_retry_state_deprecation( 'stop', stop_func, stacklevel=4) return stop_func( retry_state.attempt_number, retry_state.seconds_since_start, ) return wrapped_stop_func
[ "def", "stop_func_accept_retry_state", "(", "stop_func", ")", ":", "if", "not", "six", ".", "callable", "(", "stop_func", ")", ":", "return", "stop_func", "if", "func_takes_retry_state", "(", "stop_func", ")", ":", "return", "stop_func", "@", "_utils", ".", "wraps", "(", "stop_func", ")", "def", "wrapped_stop_func", "(", "retry_state", ")", ":", "warn_about_non_retry_state_deprecation", "(", "'stop'", ",", "stop_func", ",", "stacklevel", "=", "4", ")", "return", "stop_func", "(", "retry_state", ".", "attempt_number", ",", "retry_state", ".", "seconds_since_start", ",", ")", "return", "wrapped_stop_func" ]
Wrap "stop" function to accept "retry_state" parameter.
[ "Wrap", "stop", "function", "to", "accept", "retry_state", "parameter", "." ]
python
train
31.529412
Falkonry/falkonry-python-client
falkonryclient/service/http.py
https://github.com/Falkonry/falkonry-python-client/blob/0aeb2b00293ee94944f1634e9667401b03da29c1/falkonryclient/service/http.py#L197-L215
def delete(self, url): """ To make a DELETE request to Falkonry API server :param url: string """ response = requests.delete( self.host + url, headers={ 'Authorization': 'Bearer ' + self.token, 'x-falkonry-source':self.sourceHeader }, verify=False ) if response.status_code == 204: return None elif response.status_code == 401: raise Exception(json.dumps({'message':'Unauthorized Access'})) else: raise Exception(response.content)
[ "def", "delete", "(", "self", ",", "url", ")", ":", "response", "=", "requests", ".", "delete", "(", "self", ".", "host", "+", "url", ",", "headers", "=", "{", "'Authorization'", ":", "'Bearer '", "+", "self", ".", "token", ",", "'x-falkonry-source'", ":", "self", ".", "sourceHeader", "}", ",", "verify", "=", "False", ")", "if", "response", ".", "status_code", "==", "204", ":", "return", "None", "elif", "response", ".", "status_code", "==", "401", ":", "raise", "Exception", "(", "json", ".", "dumps", "(", "{", "'message'", ":", "'Unauthorized Access'", "}", ")", ")", "else", ":", "raise", "Exception", "(", "response", ".", "content", ")" ]
To make a DELETE request to Falkonry API server :param url: string
[ "To", "make", "a", "DELETE", "request", "to", "Falkonry", "API", "server", ":", "param", "url", ":", "string" ]
python
train
31.368421
angr/claripy
claripy/vsa/strided_interval.py
https://github.com/angr/claripy/blob/4ed61924880af1ea8fb778047d896ec0156412a6/claripy/vsa/strided_interval.py#L507-L542
def _nsplit(self): """ Split `self` at the north pole, which is the same as in signed arithmetic. :return: A list of split StridedIntervals """ north_pole_left = self.max_int(self.bits - 1) # 01111...1 north_pole_right = 2 ** (self.bits - 1) # 1000...0 # Is `self` straddling the north pole? straddling = False if self.upper_bound >= north_pole_right: if self.lower_bound > self.upper_bound: # Yes it does! straddling = True elif self.lower_bound <= north_pole_left: straddling = True else: if self.lower_bound > self.upper_bound and self.lower_bound <= north_pole_left: straddling = True if straddling: a_upper_bound = north_pole_left - ((north_pole_left - self.lower_bound) % self.stride) a = StridedInterval(bits=self.bits, stride=self.stride, lower_bound=self.lower_bound, upper_bound=a_upper_bound, uninitialized=self.uninitialized) b_lower_bound = a_upper_bound + self.stride b = StridedInterval(bits=self.bits, stride=self.stride, lower_bound=b_lower_bound, upper_bound=self.upper_bound, uninitialized=self.uninitialized) return [ a, b ] else: return [ self.copy() ]
[ "def", "_nsplit", "(", "self", ")", ":", "north_pole_left", "=", "self", ".", "max_int", "(", "self", ".", "bits", "-", "1", ")", "# 01111...1", "north_pole_right", "=", "2", "**", "(", "self", ".", "bits", "-", "1", ")", "# 1000...0", "# Is `self` straddling the north pole?", "straddling", "=", "False", "if", "self", ".", "upper_bound", ">=", "north_pole_right", ":", "if", "self", ".", "lower_bound", ">", "self", ".", "upper_bound", ":", "# Yes it does!", "straddling", "=", "True", "elif", "self", ".", "lower_bound", "<=", "north_pole_left", ":", "straddling", "=", "True", "else", ":", "if", "self", ".", "lower_bound", ">", "self", ".", "upper_bound", "and", "self", ".", "lower_bound", "<=", "north_pole_left", ":", "straddling", "=", "True", "if", "straddling", ":", "a_upper_bound", "=", "north_pole_left", "-", "(", "(", "north_pole_left", "-", "self", ".", "lower_bound", ")", "%", "self", ".", "stride", ")", "a", "=", "StridedInterval", "(", "bits", "=", "self", ".", "bits", ",", "stride", "=", "self", ".", "stride", ",", "lower_bound", "=", "self", ".", "lower_bound", ",", "upper_bound", "=", "a_upper_bound", ",", "uninitialized", "=", "self", ".", "uninitialized", ")", "b_lower_bound", "=", "a_upper_bound", "+", "self", ".", "stride", "b", "=", "StridedInterval", "(", "bits", "=", "self", ".", "bits", ",", "stride", "=", "self", ".", "stride", ",", "lower_bound", "=", "b_lower_bound", ",", "upper_bound", "=", "self", ".", "upper_bound", ",", "uninitialized", "=", "self", ".", "uninitialized", ")", "return", "[", "a", ",", "b", "]", "else", ":", "return", "[", "self", ".", "copy", "(", ")", "]" ]
Split `self` at the north pole, which is the same as in signed arithmetic. :return: A list of split StridedIntervals
[ "Split", "self", "at", "the", "north", "pole", "which", "is", "the", "same", "as", "in", "signed", "arithmetic", "." ]
python
train
38.277778
SmokinCaterpillar/pypet
pypet/pypetlogging.py
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/pypetlogging.py#L375-L393
def show_progress(self, n, total_runs): """Displays a progressbar""" if self.report_progress: percentage, logger_name, log_level = self.report_progress if logger_name == 'print': logger = 'print' else: logger = logging.getLogger(logger_name) if n == -1: # Compute the number of digits and avoid log10(0) digits = int(math.log10(total_runs + 0.1)) + 1 self._format_string = 'PROGRESS: Finished %' + '%d' % digits + 'd/%d runs ' fmt_string = self._format_string % (n + 1, total_runs) + '%s' reprint = log_level == 0 progressbar(n, total_runs, percentage_step=percentage, logger=logger, log_level=log_level, fmt_string=fmt_string, reprint=reprint)
[ "def", "show_progress", "(", "self", ",", "n", ",", "total_runs", ")", ":", "if", "self", ".", "report_progress", ":", "percentage", ",", "logger_name", ",", "log_level", "=", "self", ".", "report_progress", "if", "logger_name", "==", "'print'", ":", "logger", "=", "'print'", "else", ":", "logger", "=", "logging", ".", "getLogger", "(", "logger_name", ")", "if", "n", "==", "-", "1", ":", "# Compute the number of digits and avoid log10(0)", "digits", "=", "int", "(", "math", ".", "log10", "(", "total_runs", "+", "0.1", ")", ")", "+", "1", "self", ".", "_format_string", "=", "'PROGRESS: Finished %'", "+", "'%d'", "%", "digits", "+", "'d/%d runs '", "fmt_string", "=", "self", ".", "_format_string", "%", "(", "n", "+", "1", ",", "total_runs", ")", "+", "'%s'", "reprint", "=", "log_level", "==", "0", "progressbar", "(", "n", ",", "total_runs", ",", "percentage_step", "=", "percentage", ",", "logger", "=", "logger", ",", "log_level", "=", "log_level", ",", "fmt_string", "=", "fmt_string", ",", "reprint", "=", "reprint", ")" ]
Displays a progressbar
[ "Displays", "a", "progressbar" ]
python
test
45.052632
senaite/senaite.core
bika/lims/content/batch.py
https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/content/batch.py#L355-L362
def getAnalysisRequestsBrains(self, **kwargs): """Return all the Analysis Requests brains linked to the Batch kargs are passed directly to the catalog. """ kwargs['getBatchUID'] = self.UID() catalog = getToolByName(self, CATALOG_ANALYSIS_REQUEST_LISTING) brains = catalog(kwargs) return brains
[ "def", "getAnalysisRequestsBrains", "(", "self", ",", "*", "*", "kwargs", ")", ":", "kwargs", "[", "'getBatchUID'", "]", "=", "self", ".", "UID", "(", ")", "catalog", "=", "getToolByName", "(", "self", ",", "CATALOG_ANALYSIS_REQUEST_LISTING", ")", "brains", "=", "catalog", "(", "kwargs", ")", "return", "brains" ]
Return all the Analysis Requests brains linked to the Batch kargs are passed directly to the catalog.
[ "Return", "all", "the", "Analysis", "Requests", "brains", "linked", "to", "the", "Batch", "kargs", "are", "passed", "directly", "to", "the", "catalog", "." ]
python
train
42.75
senaite/senaite.core
bika/lims/utils/analysis.py
https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/utils/analysis.py#L303-L373
def format_numeric_result(analysis, result, decimalmark='.', sciformat=1): """ Returns the formatted number part of a results value. This is responsible for deciding the precision, and notation of numeric values in accordance to the uncertainty. If a non-numeric result value is given, the value will be returned unchanged. The following rules apply: If the "Calculate precision from uncertainties" is enabled in the Analysis service, and a) If the non-decimal number of digits of the result is above the service's ExponentialFormatPrecision, the result will be formatted in scientific notation. Example: Given an Analysis with an uncertainty of 37 for a range of results between 30000 and 40000, with an ExponentialFormatPrecision equal to 4 and a result of 32092, this method will return 3.2092E+04 b) If the number of digits of the integer part of the result is below the ExponentialFormatPrecision, the result will be formatted as decimal notation and the resulta will be rounded in accordance to the precision (calculated from the uncertainty) Example: Given an Analysis with an uncertainty of 0.22 for a range of results between 1 and 10 with an ExponentialFormatPrecision equal to 4 and a result of 5.234, this method will return 5.2 If the "Calculate precision from Uncertainties" is disabled in the analysis service, the same rules described above applies, but the precision used for rounding the result is not calculated from the uncertainty. The fixed length precision is used instead. For further details, visit https://jira.bikalabs.com/browse/LIMS-1334 The default decimal mark '.' will be replaced by the decimalmark specified. :param analysis: the analysis from which the uncertainty, precision and other additional info have to be retrieved :param result: result to be formatted. :param decimalmark: decimal mark to use. By default '.' :param sciformat: 1. The sci notation has to be formatted as aE^+b 2. The sci notation has to be formatted as ax10^b 3. As 2, but with super html entity for exp 4. The sci notation has to be formatted as a·10^b 5. As 4, but with super html entity for exp By default 1 :result: should be a string to preserve the decimal precision. :returns: the formatted result as string """ try: result = float(result) except ValueError: return result # continuing with 'nan' result will cause formatting to fail. if math.isnan(result): return result # Scientific notation? # Get the default precision for scientific notation threshold = analysis.getExponentialFormatPrecision() precision = analysis.getPrecision(result) formatted = _format_decimal_or_sci(result, precision, threshold, sciformat) return formatDecimalMark(formatted, decimalmark)
[ "def", "format_numeric_result", "(", "analysis", ",", "result", ",", "decimalmark", "=", "'.'", ",", "sciformat", "=", "1", ")", ":", "try", ":", "result", "=", "float", "(", "result", ")", "except", "ValueError", ":", "return", "result", "# continuing with 'nan' result will cause formatting to fail.", "if", "math", ".", "isnan", "(", "result", ")", ":", "return", "result", "# Scientific notation?", "# Get the default precision for scientific notation", "threshold", "=", "analysis", ".", "getExponentialFormatPrecision", "(", ")", "precision", "=", "analysis", ".", "getPrecision", "(", "result", ")", "formatted", "=", "_format_decimal_or_sci", "(", "result", ",", "precision", ",", "threshold", ",", "sciformat", ")", "return", "formatDecimalMark", "(", "formatted", ",", "decimalmark", ")" ]
Returns the formatted number part of a results value. This is responsible for deciding the precision, and notation of numeric values in accordance to the uncertainty. If a non-numeric result value is given, the value will be returned unchanged. The following rules apply: If the "Calculate precision from uncertainties" is enabled in the Analysis service, and a) If the non-decimal number of digits of the result is above the service's ExponentialFormatPrecision, the result will be formatted in scientific notation. Example: Given an Analysis with an uncertainty of 37 for a range of results between 30000 and 40000, with an ExponentialFormatPrecision equal to 4 and a result of 32092, this method will return 3.2092E+04 b) If the number of digits of the integer part of the result is below the ExponentialFormatPrecision, the result will be formatted as decimal notation and the resulta will be rounded in accordance to the precision (calculated from the uncertainty) Example: Given an Analysis with an uncertainty of 0.22 for a range of results between 1 and 10 with an ExponentialFormatPrecision equal to 4 and a result of 5.234, this method will return 5.2 If the "Calculate precision from Uncertainties" is disabled in the analysis service, the same rules described above applies, but the precision used for rounding the result is not calculated from the uncertainty. The fixed length precision is used instead. For further details, visit https://jira.bikalabs.com/browse/LIMS-1334 The default decimal mark '.' will be replaced by the decimalmark specified. :param analysis: the analysis from which the uncertainty, precision and other additional info have to be retrieved :param result: result to be formatted. :param decimalmark: decimal mark to use. By default '.' :param sciformat: 1. The sci notation has to be formatted as aE^+b 2. The sci notation has to be formatted as ax10^b 3. As 2, but with super html entity for exp 4. The sci notation has to be formatted as a·10^b 5. As 4, but with super html entity for exp By default 1 :result: should be a string to preserve the decimal precision. :returns: the formatted result as string
[ "Returns", "the", "formatted", "number", "part", "of", "a", "results", "value", ".", "This", "is", "responsible", "for", "deciding", "the", "precision", "and", "notation", "of", "numeric", "values", "in", "accordance", "to", "the", "uncertainty", ".", "If", "a", "non", "-", "numeric", "result", "value", "is", "given", "the", "value", "will", "be", "returned", "unchanged", "." ]
python
train
42.521127
inveniosoftware/invenio-github
invenio_github/api.py
https://github.com/inveniosoftware/invenio-github/blob/ec42fd6a06079310dcbe2c46d9fd79d5197bbe26/invenio_github/api.py#L133-L185
def sync(self, hooks=True, async_hooks=True): """Synchronize user repositories. :param bool hooks: True for syncing hooks. :param bool async_hooks: True for sending of an asynchronous task to sync hooks. .. note:: Syncing happens from GitHub's direction only. This means that we consider the information on GitHub as valid, and we overwrite our own state based on this information. """ active_repos = {} github_repos = {repo.id: repo for repo in self.api.repositories() if repo.permissions['admin']} for gh_repo_id, gh_repo in github_repos.items(): active_repos[gh_repo_id] = { 'id': gh_repo_id, 'full_name': gh_repo.full_name, 'description': gh_repo.description, } if hooks: self._sync_hooks(list(active_repos.keys()), asynchronous=async_hooks) # Update changed names for repositories stored in DB db_repos = Repository.query.filter( Repository.user_id == self.user_id, Repository.github_id.in_(github_repos.keys()) ) for repo in db_repos: gh_repo = github_repos.get(repo.github_id) if gh_repo and repo.name != gh_repo.full_name: repo.name = gh_repo.full_name db.session.add(repo) # Remove ownership from repositories that the user has no longer # 'admin' permissions, or have been deleted. Repository.query.filter( Repository.user_id == self.user_id, ~Repository.github_id.in_(github_repos.keys()) ).update(dict(user_id=None, hook=None), synchronize_session=False) # Update repos and last sync self.account.extra_data.update(dict( repos=active_repos, last_sync=iso_utcnow(), )) self.account.extra_data.changed() db.session.add(self.account)
[ "def", "sync", "(", "self", ",", "hooks", "=", "True", ",", "async_hooks", "=", "True", ")", ":", "active_repos", "=", "{", "}", "github_repos", "=", "{", "repo", ".", "id", ":", "repo", "for", "repo", "in", "self", ".", "api", ".", "repositories", "(", ")", "if", "repo", ".", "permissions", "[", "'admin'", "]", "}", "for", "gh_repo_id", ",", "gh_repo", "in", "github_repos", ".", "items", "(", ")", ":", "active_repos", "[", "gh_repo_id", "]", "=", "{", "'id'", ":", "gh_repo_id", ",", "'full_name'", ":", "gh_repo", ".", "full_name", ",", "'description'", ":", "gh_repo", ".", "description", ",", "}", "if", "hooks", ":", "self", ".", "_sync_hooks", "(", "list", "(", "active_repos", ".", "keys", "(", ")", ")", ",", "asynchronous", "=", "async_hooks", ")", "# Update changed names for repositories stored in DB", "db_repos", "=", "Repository", ".", "query", ".", "filter", "(", "Repository", ".", "user_id", "==", "self", ".", "user_id", ",", "Repository", ".", "github_id", ".", "in_", "(", "github_repos", ".", "keys", "(", ")", ")", ")", "for", "repo", "in", "db_repos", ":", "gh_repo", "=", "github_repos", ".", "get", "(", "repo", ".", "github_id", ")", "if", "gh_repo", "and", "repo", ".", "name", "!=", "gh_repo", ".", "full_name", ":", "repo", ".", "name", "=", "gh_repo", ".", "full_name", "db", ".", "session", ".", "add", "(", "repo", ")", "# Remove ownership from repositories that the user has no longer", "# 'admin' permissions, or have been deleted.", "Repository", ".", "query", ".", "filter", "(", "Repository", ".", "user_id", "==", "self", ".", "user_id", ",", "~", "Repository", ".", "github_id", ".", "in_", "(", "github_repos", ".", "keys", "(", ")", ")", ")", ".", "update", "(", "dict", "(", "user_id", "=", "None", ",", "hook", "=", "None", ")", ",", "synchronize_session", "=", "False", ")", "# Update repos and last sync", "self", ".", "account", ".", "extra_data", ".", "update", "(", "dict", "(", "repos", "=", "active_repos", ",", "last_sync", "=", "iso_utcnow", "(", ")", ",", ")", ")", "self", ".", "account", ".", "extra_data", ".", "changed", "(", ")", "db", ".", "session", ".", "add", "(", "self", ".", "account", ")" ]
Synchronize user repositories. :param bool hooks: True for syncing hooks. :param bool async_hooks: True for sending of an asynchronous task to sync hooks. .. note:: Syncing happens from GitHub's direction only. This means that we consider the information on GitHub as valid, and we overwrite our own state based on this information.
[ "Synchronize", "user", "repositories", "." ]
python
train
37.886792
HydraChain/hydrachain
hydrachain/examples/native/fungible/fungible_contract.py
https://github.com/HydraChain/hydrachain/blob/6c0919b0575dc8aa481f3a8c703e1a7f0575ecc3/hydrachain/examples/native/fungible/fungible_contract.py#L49-L60
def transfer(ctx, _to='address', _value='uint256', returns=STATUS): """ Standardized Contract API: function transfer(address _to, uint256 _value) returns (bool _success) """ log.DEV('In Fungible.transfer') if ctx.accounts[ctx.msg_sender] >= _value: ctx.accounts[ctx.msg_sender] -= _value ctx.accounts[_to] += _value ctx.Transfer(ctx.msg_sender, _to, _value) return OK else: return INSUFFICIENTFUNDS
[ "def", "transfer", "(", "ctx", ",", "_to", "=", "'address'", ",", "_value", "=", "'uint256'", ",", "returns", "=", "STATUS", ")", ":", "log", ".", "DEV", "(", "'In Fungible.transfer'", ")", "if", "ctx", ".", "accounts", "[", "ctx", ".", "msg_sender", "]", ">=", "_value", ":", "ctx", ".", "accounts", "[", "ctx", ".", "msg_sender", "]", "-=", "_value", "ctx", ".", "accounts", "[", "_to", "]", "+=", "_value", "ctx", ".", "Transfer", "(", "ctx", ".", "msg_sender", ",", "_to", ",", "_value", ")", "return", "OK", "else", ":", "return", "INSUFFICIENTFUNDS" ]
Standardized Contract API: function transfer(address _to, uint256 _value) returns (bool _success)
[ "Standardized", "Contract", "API", ":", "function", "transfer", "(", "address", "_to", "uint256", "_value", ")", "returns", "(", "bool", "_success", ")" ]
python
test
41.25
elliterate/capybara.py
capybara/node/matchers.py
https://github.com/elliterate/capybara.py/blob/0c6ae449cc37e4445ec3cd6af95674533beedc6c/capybara/node/matchers.py#L784-L798
def has_unchecked_field(self, locator, **kwargs): """ Checks if the page or current node has a radio button or checkbox with the given label, value, or id, that is currently unchecked. Args: locator (str): The label, name, or id of an unchecked field. **kwargs: Arbitrary keyword arguments for :class:`SelectorQuery`. Returns: bool: Whether it exists. """ kwargs["checked"] = False return self.has_selector("field", locator, **kwargs)
[ "def", "has_unchecked_field", "(", "self", ",", "locator", ",", "*", "*", "kwargs", ")", ":", "kwargs", "[", "\"checked\"", "]", "=", "False", "return", "self", ".", "has_selector", "(", "\"field\"", ",", "locator", ",", "*", "*", "kwargs", ")" ]
Checks if the page or current node has a radio button or checkbox with the given label, value, or id, that is currently unchecked. Args: locator (str): The label, name, or id of an unchecked field. **kwargs: Arbitrary keyword arguments for :class:`SelectorQuery`. Returns: bool: Whether it exists.
[ "Checks", "if", "the", "page", "or", "current", "node", "has", "a", "radio", "button", "or", "checkbox", "with", "the", "given", "label", "value", "or", "id", "that", "is", "currently", "unchecked", "." ]
python
test
34.866667
tyarkoni/pliers
pliers/diagnostics/diagnostics.py
https://github.com/tyarkoni/pliers/blob/5b3385960ebd8c6ef1e86dd5e1be0080b2cb7f2b/pliers/diagnostics/diagnostics.py#L49-L60
def variance_inflation_factors(df): ''' Computes the variance inflation factor (VIF) for each column in the df. Returns a pandas Series of VIFs Args: df: pandas DataFrame with columns to run diagnostics on ''' corr = np.corrcoef(df, rowvar=0) corr_inv = np.linalg.inv(corr) vifs = np.diagonal(corr_inv) return pd.Series(vifs, df.columns, name='VIF')
[ "def", "variance_inflation_factors", "(", "df", ")", ":", "corr", "=", "np", ".", "corrcoef", "(", "df", ",", "rowvar", "=", "0", ")", "corr_inv", "=", "np", ".", "linalg", ".", "inv", "(", "corr", ")", "vifs", "=", "np", ".", "diagonal", "(", "corr_inv", ")", "return", "pd", ".", "Series", "(", "vifs", ",", "df", ".", "columns", ",", "name", "=", "'VIF'", ")" ]
Computes the variance inflation factor (VIF) for each column in the df. Returns a pandas Series of VIFs Args: df: pandas DataFrame with columns to run diagnostics on
[ "Computes", "the", "variance", "inflation", "factor", "(", "VIF", ")", "for", "each", "column", "in", "the", "df", ".", "Returns", "a", "pandas", "Series", "of", "VIFs" ]
python
train
31.916667
log2timeline/plaso
plaso/parsers/systemd_journal.py
https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/parsers/systemd_journal.py#L131-L164
def _ParseEntryArrayObject(self, file_object, file_offset): """Parses an entry array object. Args: file_object (dfvfs.FileIO): a file-like object. file_offset (int): offset of the entry array object relative to the start of the file-like object. Returns: systemd_journal_entry_array_object: entry array object. Raises: ParseError: if the entry array object cannot be parsed. """ entry_array_object_map = self._GetDataTypeMap( 'systemd_journal_entry_array_object') try: entry_array_object, _ = self._ReadStructureFromFileObject( file_object, file_offset, entry_array_object_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError(( 'Unable to parse entry array object at offset: 0x{0:08x} with error: ' '{1!s}').format(file_offset, exception)) if entry_array_object.object_type != self._OBJECT_TYPE_ENTRY_ARRAY: raise errors.ParseError('Unsupported object type: {0:d}.'.format( entry_array_object.object_type)) if entry_array_object.object_flags != 0: raise errors.ParseError('Unsupported object flags: 0x{0:02x}.'.format( entry_array_object.object_flags)) return entry_array_object
[ "def", "_ParseEntryArrayObject", "(", "self", ",", "file_object", ",", "file_offset", ")", ":", "entry_array_object_map", "=", "self", ".", "_GetDataTypeMap", "(", "'systemd_journal_entry_array_object'", ")", "try", ":", "entry_array_object", ",", "_", "=", "self", ".", "_ReadStructureFromFileObject", "(", "file_object", ",", "file_offset", ",", "entry_array_object_map", ")", "except", "(", "ValueError", ",", "errors", ".", "ParseError", ")", "as", "exception", ":", "raise", "errors", ".", "ParseError", "(", "(", "'Unable to parse entry array object at offset: 0x{0:08x} with error: '", "'{1!s}'", ")", ".", "format", "(", "file_offset", ",", "exception", ")", ")", "if", "entry_array_object", ".", "object_type", "!=", "self", ".", "_OBJECT_TYPE_ENTRY_ARRAY", ":", "raise", "errors", ".", "ParseError", "(", "'Unsupported object type: {0:d}.'", ".", "format", "(", "entry_array_object", ".", "object_type", ")", ")", "if", "entry_array_object", ".", "object_flags", "!=", "0", ":", "raise", "errors", ".", "ParseError", "(", "'Unsupported object flags: 0x{0:02x}.'", ".", "format", "(", "entry_array_object", ".", "object_flags", ")", ")", "return", "entry_array_object" ]
Parses an entry array object. Args: file_object (dfvfs.FileIO): a file-like object. file_offset (int): offset of the entry array object relative to the start of the file-like object. Returns: systemd_journal_entry_array_object: entry array object. Raises: ParseError: if the entry array object cannot be parsed.
[ "Parses", "an", "entry", "array", "object", "." ]
python
train
36.5
Crunch-io/crunch-cube
src/cr/cube/crunch_cube.py
https://github.com/Crunch-io/crunch-cube/blob/a837840755690eb14b2ec8e8d93b4104e01c854f/src/cr/cube/crunch_cube.py#L1445-L1449
def weighted_n(self): """float count of returned rows adjusted for weighting.""" if not self.is_weighted: return float(self.unweighted_n) return float(sum(self._cube_dict["result"]["measures"]["count"]["data"]))
[ "def", "weighted_n", "(", "self", ")", ":", "if", "not", "self", ".", "is_weighted", ":", "return", "float", "(", "self", ".", "unweighted_n", ")", "return", "float", "(", "sum", "(", "self", ".", "_cube_dict", "[", "\"result\"", "]", "[", "\"measures\"", "]", "[", "\"count\"", "]", "[", "\"data\"", "]", ")", ")" ]
float count of returned rows adjusted for weighting.
[ "float", "count", "of", "returned", "rows", "adjusted", "for", "weighting", "." ]
python
train
48.6
ray-project/ray
python/ray/function_manager.py
https://github.com/ray-project/ray/blob/4eade036a0505e244c976f36aaa2d64386b5129b/python/ray/function_manager.py#L455-L489
def get_execution_info(self, driver_id, function_descriptor): """Get the FunctionExecutionInfo of a remote function. Args: driver_id: ID of the driver that the function belongs to. function_descriptor: The FunctionDescriptor of the function to get. Returns: A FunctionExecutionInfo object. """ if self._worker.load_code_from_local: # Load function from local code. # Currently, we don't support isolating code by drivers, # thus always set driver ID to NIL here. driver_id = ray.DriverID.nil() if not function_descriptor.is_actor_method(): self._load_function_from_local(driver_id, function_descriptor) else: # Load function from GCS. # Wait until the function to be executed has actually been # registered on this worker. We will push warnings to the user if # we spend too long in this loop. # The driver function may not be found in sys.path. Try to load # the function from GCS. with profiling.profile("wait_for_function"): self._wait_for_function(function_descriptor, driver_id) try: function_id = function_descriptor.function_id info = self._function_execution_info[driver_id][function_id] except KeyError as e: message = ("Error occurs in get_execution_info: " "driver_id: %s, function_descriptor: %s. Message: %s" % (driver_id, function_descriptor, e)) raise KeyError(message) return info
[ "def", "get_execution_info", "(", "self", ",", "driver_id", ",", "function_descriptor", ")", ":", "if", "self", ".", "_worker", ".", "load_code_from_local", ":", "# Load function from local code.", "# Currently, we don't support isolating code by drivers,", "# thus always set driver ID to NIL here.", "driver_id", "=", "ray", ".", "DriverID", ".", "nil", "(", ")", "if", "not", "function_descriptor", ".", "is_actor_method", "(", ")", ":", "self", ".", "_load_function_from_local", "(", "driver_id", ",", "function_descriptor", ")", "else", ":", "# Load function from GCS.", "# Wait until the function to be executed has actually been", "# registered on this worker. We will push warnings to the user if", "# we spend too long in this loop.", "# The driver function may not be found in sys.path. Try to load", "# the function from GCS.", "with", "profiling", ".", "profile", "(", "\"wait_for_function\"", ")", ":", "self", ".", "_wait_for_function", "(", "function_descriptor", ",", "driver_id", ")", "try", ":", "function_id", "=", "function_descriptor", ".", "function_id", "info", "=", "self", ".", "_function_execution_info", "[", "driver_id", "]", "[", "function_id", "]", "except", "KeyError", "as", "e", ":", "message", "=", "(", "\"Error occurs in get_execution_info: \"", "\"driver_id: %s, function_descriptor: %s. Message: %s\"", "%", "(", "driver_id", ",", "function_descriptor", ",", "e", ")", ")", "raise", "KeyError", "(", "message", ")", "return", "info" ]
Get the FunctionExecutionInfo of a remote function. Args: driver_id: ID of the driver that the function belongs to. function_descriptor: The FunctionDescriptor of the function to get. Returns: A FunctionExecutionInfo object.
[ "Get", "the", "FunctionExecutionInfo", "of", "a", "remote", "function", "." ]
python
train
46.914286
tarzanjw/python-mysql-binlog-to-blinker
mysqlbinlog2blinker/__init__.py
https://github.com/tarzanjw/python-mysql-binlog-to-blinker/blob/d61ab5962345377e142a225b16f731ab4196fc26/mysqlbinlog2blinker/__init__.py#L56-L90
def start_replication(mysql_settings, binlog_pos_memory=(None, 2), **kwargs): """ Start replication on server specified by *mysql_settings* Args: mysql_settings (dict): mysql settings that is used to connect to mysql via pymysql binlog_pos_memory (_bpm.BaseBinlogPosMemory): Binlog Position Memory, it should be an instance of subclass of :py:class:`_bpm.BaseBinlogPosMemory`. If a tuple (str, float) is passed, it will be initialize parameters for default :py:class:`_bpm.FileBasedBinlogPosMemory`. It the file- name is None, it will be *`cwd`\mysqlbinlog2blinker.binlog.pos* **kwargs: any arguments that are accepted by :py:class:`pymysqlreplication.BinLogStreamReader`'s constructor """ if not isinstance(binlog_pos_memory, _bpm.BaseBinlogPosMemory): if not isinstance(binlog_pos_memory, (tuple, list)): raise ValueError('Invalid binlog position memory: %s' % binlog_pos_memory) binlog_pos_memory = _bpm.FileBasedBinlogPosMemory(*binlog_pos_memory) mysql_settings.setdefault('connect_timeout', 5) kwargs.setdefault('blocking', True) kwargs.setdefault('resume_stream', True) with binlog_pos_memory: kwargs.setdefault('log_file', binlog_pos_memory.log_file) kwargs.setdefault('log_pos', binlog_pos_memory.log_pos) _logger.info('Start replication from %s with:\n%s' % (mysql_settings, kwargs)) start_publishing(mysql_settings, **kwargs)
[ "def", "start_replication", "(", "mysql_settings", ",", "binlog_pos_memory", "=", "(", "None", ",", "2", ")", ",", "*", "*", "kwargs", ")", ":", "if", "not", "isinstance", "(", "binlog_pos_memory", ",", "_bpm", ".", "BaseBinlogPosMemory", ")", ":", "if", "not", "isinstance", "(", "binlog_pos_memory", ",", "(", "tuple", ",", "list", ")", ")", ":", "raise", "ValueError", "(", "'Invalid binlog position memory: %s'", "%", "binlog_pos_memory", ")", "binlog_pos_memory", "=", "_bpm", ".", "FileBasedBinlogPosMemory", "(", "*", "binlog_pos_memory", ")", "mysql_settings", ".", "setdefault", "(", "'connect_timeout'", ",", "5", ")", "kwargs", ".", "setdefault", "(", "'blocking'", ",", "True", ")", "kwargs", ".", "setdefault", "(", "'resume_stream'", ",", "True", ")", "with", "binlog_pos_memory", ":", "kwargs", ".", "setdefault", "(", "'log_file'", ",", "binlog_pos_memory", ".", "log_file", ")", "kwargs", ".", "setdefault", "(", "'log_pos'", ",", "binlog_pos_memory", ".", "log_pos", ")", "_logger", ".", "info", "(", "'Start replication from %s with:\\n%s'", "%", "(", "mysql_settings", ",", "kwargs", ")", ")", "start_publishing", "(", "mysql_settings", ",", "*", "*", "kwargs", ")" ]
Start replication on server specified by *mysql_settings* Args: mysql_settings (dict): mysql settings that is used to connect to mysql via pymysql binlog_pos_memory (_bpm.BaseBinlogPosMemory): Binlog Position Memory, it should be an instance of subclass of :py:class:`_bpm.BaseBinlogPosMemory`. If a tuple (str, float) is passed, it will be initialize parameters for default :py:class:`_bpm.FileBasedBinlogPosMemory`. It the file- name is None, it will be *`cwd`\mysqlbinlog2blinker.binlog.pos* **kwargs: any arguments that are accepted by :py:class:`pymysqlreplication.BinLogStreamReader`'s constructor
[ "Start", "replication", "on", "server", "specified", "by", "*", "mysql_settings", "*" ]
python
train
46.342857
tableau/document-api-python
tableaudocumentapi/xfile.py
https://github.com/tableau/document-api-python/blob/9097a5b351622c5dd2653fa94624bc012316d8a4/tableaudocumentapi/xfile.py#L58-L74
def find_file_in_zip(zip_file): '''Returns the twb/tds file from a Tableau packaged file format. Packaged files can contain cache entries which are also valid XML, so only look for files with a .tds or .twb extension. ''' candidate_files = filter(lambda x: x.split('.')[-1] in ('twb', 'tds'), zip_file.namelist()) for filename in candidate_files: with zip_file.open(filename) as xml_candidate: try: ET.parse(xml_candidate) return filename except ET.ParseError: # That's not an XML file by gosh pass
[ "def", "find_file_in_zip", "(", "zip_file", ")", ":", "candidate_files", "=", "filter", "(", "lambda", "x", ":", "x", ".", "split", "(", "'.'", ")", "[", "-", "1", "]", "in", "(", "'twb'", ",", "'tds'", ")", ",", "zip_file", ".", "namelist", "(", ")", ")", "for", "filename", "in", "candidate_files", ":", "with", "zip_file", ".", "open", "(", "filename", ")", "as", "xml_candidate", ":", "try", ":", "ET", ".", "parse", "(", "xml_candidate", ")", "return", "filename", "except", "ET", ".", "ParseError", ":", "# That's not an XML file by gosh", "pass" ]
Returns the twb/tds file from a Tableau packaged file format. Packaged files can contain cache entries which are also valid XML, so only look for files with a .tds or .twb extension.
[ "Returns", "the", "twb", "/", "tds", "file", "from", "a", "Tableau", "packaged", "file", "format", ".", "Packaged", "files", "can", "contain", "cache", "entries", "which", "are", "also", "valid", "XML", "so", "only", "look", "for", "files", "with", "a", ".", "tds", "or", ".", "twb", "extension", "." ]
python
train
37.235294
awslabs/aws-sam-cli
samcli/local/lambdafn/runtime.py
https://github.com/awslabs/aws-sam-cli/blob/c05af5e7378c6f05f7d82ad3f0bca17204177db6/samcli/local/lambdafn/runtime.py#L118-L149
def _configure_interrupt(self, function_name, timeout, container, is_debugging): """ When a Lambda function is executing, we setup certain interrupt handlers to stop the execution. Usually, we setup a function timeout interrupt to kill the container after timeout expires. If debugging though, we don't enforce a timeout. But we setup a SIGINT interrupt to catch Ctrl+C and terminate the container. :param string function_name: Name of the function we are running :param integer timeout: Timeout in seconds :param samcli.local.docker.container.Container container: Instance of a container to terminate :param bool is_debugging: Are we debugging? :return threading.Timer: Timer object, if we setup a timer. None otherwise """ def timer_handler(): # NOTE: This handler runs in a separate thread. So don't try to mutate any non-thread-safe data structures LOG.info("Function '%s' timed out after %d seconds", function_name, timeout) self._container_manager.stop(container) def signal_handler(sig, frame): # NOTE: This handler runs in a separate thread. So don't try to mutate any non-thread-safe data structures LOG.info("Execution of function %s was interrupted", function_name) self._container_manager.stop(container) if is_debugging: LOG.debug("Setting up SIGTERM interrupt handler") signal.signal(signal.SIGTERM, signal_handler) else: # Start a timer, we'll use this to abort the function if it runs beyond the specified timeout LOG.debug("Starting a timer for %s seconds for function '%s'", timeout, function_name) timer = threading.Timer(timeout, timer_handler, ()) timer.start() return timer
[ "def", "_configure_interrupt", "(", "self", ",", "function_name", ",", "timeout", ",", "container", ",", "is_debugging", ")", ":", "def", "timer_handler", "(", ")", ":", "# NOTE: This handler runs in a separate thread. So don't try to mutate any non-thread-safe data structures", "LOG", ".", "info", "(", "\"Function '%s' timed out after %d seconds\"", ",", "function_name", ",", "timeout", ")", "self", ".", "_container_manager", ".", "stop", "(", "container", ")", "def", "signal_handler", "(", "sig", ",", "frame", ")", ":", "# NOTE: This handler runs in a separate thread. So don't try to mutate any non-thread-safe data structures", "LOG", ".", "info", "(", "\"Execution of function %s was interrupted\"", ",", "function_name", ")", "self", ".", "_container_manager", ".", "stop", "(", "container", ")", "if", "is_debugging", ":", "LOG", ".", "debug", "(", "\"Setting up SIGTERM interrupt handler\"", ")", "signal", ".", "signal", "(", "signal", ".", "SIGTERM", ",", "signal_handler", ")", "else", ":", "# Start a timer, we'll use this to abort the function if it runs beyond the specified timeout", "LOG", ".", "debug", "(", "\"Starting a timer for %s seconds for function '%s'\"", ",", "timeout", ",", "function_name", ")", "timer", "=", "threading", ".", "Timer", "(", "timeout", ",", "timer_handler", ",", "(", ")", ")", "timer", ".", "start", "(", ")", "return", "timer" ]
When a Lambda function is executing, we setup certain interrupt handlers to stop the execution. Usually, we setup a function timeout interrupt to kill the container after timeout expires. If debugging though, we don't enforce a timeout. But we setup a SIGINT interrupt to catch Ctrl+C and terminate the container. :param string function_name: Name of the function we are running :param integer timeout: Timeout in seconds :param samcli.local.docker.container.Container container: Instance of a container to terminate :param bool is_debugging: Are we debugging? :return threading.Timer: Timer object, if we setup a timer. None otherwise
[ "When", "a", "Lambda", "function", "is", "executing", "we", "setup", "certain", "interrupt", "handlers", "to", "stop", "the", "execution", ".", "Usually", "we", "setup", "a", "function", "timeout", "interrupt", "to", "kill", "the", "container", "after", "timeout", "expires", ".", "If", "debugging", "though", "we", "don", "t", "enforce", "a", "timeout", ".", "But", "we", "setup", "a", "SIGINT", "interrupt", "to", "catch", "Ctrl", "+", "C", "and", "terminate", "the", "container", "." ]
python
train
57.375
rigetti/pyquil
pyquil/device.py
https://github.com/rigetti/pyquil/blob/ec98e453084b0037d69d8c3245f6822a5422593d/pyquil/device.py#L255-L263
def fCPHASEs(self): """ Get a dictionary of CPHASE fidelities (normalized to unity) from the specs, keyed by targets (qubit-qubit pairs). :return: A dictionary of CPHASE fidelities, normalized to unity. :rtype: Dict[tuple(int, int), float] """ return {tuple(es.targets): es.fCPHASE for es in self.edges_specs}
[ "def", "fCPHASEs", "(", "self", ")", ":", "return", "{", "tuple", "(", "es", ".", "targets", ")", ":", "es", ".", "fCPHASE", "for", "es", "in", "self", ".", "edges_specs", "}" ]
Get a dictionary of CPHASE fidelities (normalized to unity) from the specs, keyed by targets (qubit-qubit pairs). :return: A dictionary of CPHASE fidelities, normalized to unity. :rtype: Dict[tuple(int, int), float]
[ "Get", "a", "dictionary", "of", "CPHASE", "fidelities", "(", "normalized", "to", "unity", ")", "from", "the", "specs", "keyed", "by", "targets", "(", "qubit", "-", "qubit", "pairs", ")", "." ]
python
train
39.777778
ThreatConnect-Inc/tcex
tcex/tcex.py
https://github.com/ThreatConnect-Inc/tcex/blob/dd4d7a1ef723af1561687120191886b9a2fd4b47/tcex/tcex.py#L427-L433
def error_codes(self): """ThreatConnect error codes.""" if self._error_codes is None: from .tcex_error_codes import TcExErrorCodes self._error_codes = TcExErrorCodes() return self._error_codes
[ "def", "error_codes", "(", "self", ")", ":", "if", "self", ".", "_error_codes", "is", "None", ":", "from", ".", "tcex_error_codes", "import", "TcExErrorCodes", "self", ".", "_error_codes", "=", "TcExErrorCodes", "(", ")", "return", "self", ".", "_error_codes" ]
ThreatConnect error codes.
[ "ThreatConnect", "error", "codes", "." ]
python
train
33.571429
apache/airflow
airflow/contrib/operators/cassandra_to_gcs.py
https://github.com/apache/airflow/blob/b69c686ad8a0c89b9136bb4b31767257eb7b2597/airflow/contrib/operators/cassandra_to_gcs.py#L258-L266
def convert_tuple_type(cls, name, value): """ Converts a tuple to RECORD that contains n fields, each will be converted to its corresponding data type in bq and will be named 'field_<index>', where index is determined by the order of the tuple elements defined in cassandra. """ names = ['field_' + str(i) for i in range(len(value))] values = [cls.convert_value(name, value) for name, value in zip(names, value)] return cls.generate_data_dict(names, values)
[ "def", "convert_tuple_type", "(", "cls", ",", "name", ",", "value", ")", ":", "names", "=", "[", "'field_'", "+", "str", "(", "i", ")", "for", "i", "in", "range", "(", "len", "(", "value", ")", ")", "]", "values", "=", "[", "cls", ".", "convert_value", "(", "name", ",", "value", ")", "for", "name", ",", "value", "in", "zip", "(", "names", ",", "value", ")", "]", "return", "cls", ".", "generate_data_dict", "(", "names", ",", "values", ")" ]
Converts a tuple to RECORD that contains n fields, each will be converted to its corresponding data type in bq and will be named 'field_<index>', where index is determined by the order of the tuple elements defined in cassandra.
[ "Converts", "a", "tuple", "to", "RECORD", "that", "contains", "n", "fields", "each", "will", "be", "converted", "to", "its", "corresponding", "data", "type", "in", "bq", "and", "will", "be", "named", "field_<index", ">", "where", "index", "is", "determined", "by", "the", "order", "of", "the", "tuple", "elements", "defined", "in", "cassandra", "." ]
python
test
57
GNS3/gns3-server
gns3server/compute/vmware/__init__.py
https://github.com/GNS3/gns3-server/blob/a221678448fb5d24e977ef562f81d56aacc89ab1/gns3server/compute/vmware/__init__.py#L144-L164
def _check_vmware_player_requirements(self, player_version): """ Check minimum requirements to use VMware Player. VIX 1.13 was the release for Player 6. VIX 1.14 was the release for Player 7. VIX 1.15 was the release for Workstation Player 12. :param player_version: VMware Player major version. """ player_version = int(player_version) if player_version < 6: raise VMwareError("Using VMware Player requires version 6 or above") elif player_version == 6: yield from self.check_vmrun_version(minimum_required_version="1.13.0") elif player_version == 7: yield from self.check_vmrun_version(minimum_required_version="1.14.0") elif player_version >= 12: yield from self.check_vmrun_version(minimum_required_version="1.15.0") self._host_type = "player"
[ "def", "_check_vmware_player_requirements", "(", "self", ",", "player_version", ")", ":", "player_version", "=", "int", "(", "player_version", ")", "if", "player_version", "<", "6", ":", "raise", "VMwareError", "(", "\"Using VMware Player requires version 6 or above\"", ")", "elif", "player_version", "==", "6", ":", "yield", "from", "self", ".", "check_vmrun_version", "(", "minimum_required_version", "=", "\"1.13.0\"", ")", "elif", "player_version", "==", "7", ":", "yield", "from", "self", ".", "check_vmrun_version", "(", "minimum_required_version", "=", "\"1.14.0\"", ")", "elif", "player_version", ">=", "12", ":", "yield", "from", "self", ".", "check_vmrun_version", "(", "minimum_required_version", "=", "\"1.15.0\"", ")", "self", ".", "_host_type", "=", "\"player\"" ]
Check minimum requirements to use VMware Player. VIX 1.13 was the release for Player 6. VIX 1.14 was the release for Player 7. VIX 1.15 was the release for Workstation Player 12. :param player_version: VMware Player major version.
[ "Check", "minimum", "requirements", "to", "use", "VMware", "Player", "." ]
python
train
42
ellmetha/django-machina
machina/apps/forum_moderation/views.py
https://github.com/ellmetha/django-machina/blob/89ac083c1eaf1cfdeae6686ee094cc86362e8c69/machina/apps/forum_moderation/views.py#L454-L456
def post(self, request, *args, **kwargs): """ Handles POST requests. """ return self.disapprove(request, *args, **kwargs)
[ "def", "post", "(", "self", ",", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "disapprove", "(", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Handles POST requests.
[ "Handles", "POST", "requests", "." ]
python
train
45
noirbizarre/django.js
setup.py
https://github.com/noirbizarre/django.js/blob/65b267b04ffc0f969b9f8e2f8ce2f922397c8af1/setup.py#L22-L32
def rst(filename): ''' Load rst file and sanitize it for PyPI. Remove unsupported github tags: - code-block directive - travis ci build badge ''' content = codecs.open(filename, encoding='utf-8').read() for regex, replacement in PYPI_RST_FILTERS: content = re.sub(regex, replacement, content) return content
[ "def", "rst", "(", "filename", ")", ":", "content", "=", "codecs", ".", "open", "(", "filename", ",", "encoding", "=", "'utf-8'", ")", ".", "read", "(", ")", "for", "regex", ",", "replacement", "in", "PYPI_RST_FILTERS", ":", "content", "=", "re", ".", "sub", "(", "regex", ",", "replacement", ",", "content", ")", "return", "content" ]
Load rst file and sanitize it for PyPI. Remove unsupported github tags: - code-block directive - travis ci build badge
[ "Load", "rst", "file", "and", "sanitize", "it", "for", "PyPI", ".", "Remove", "unsupported", "github", "tags", ":", "-", "code", "-", "block", "directive", "-", "travis", "ci", "build", "badge" ]
python
train
31.181818
assamite/creamas
creamas/mp.py
https://github.com/assamite/creamas/blob/54dc3e31c97a3f938e58272f8ab80b6bcafeff58/creamas/mp.py#L692-L702
async def _get_smallest_env(self): """Get address of the slave environment manager with the smallest number of agents. """ async def slave_task(mgr_addr): r_manager = await self.env.connect(mgr_addr, timeout=TIMEOUT) ret = await r_manager.get_agents(addr=True) return mgr_addr, len(ret) sizes = await create_tasks(slave_task, self.addrs, flatten=False) return sorted(sizes, key=lambda x: x[1])[0][0]
[ "async", "def", "_get_smallest_env", "(", "self", ")", ":", "async", "def", "slave_task", "(", "mgr_addr", ")", ":", "r_manager", "=", "await", "self", ".", "env", ".", "connect", "(", "mgr_addr", ",", "timeout", "=", "TIMEOUT", ")", "ret", "=", "await", "r_manager", ".", "get_agents", "(", "addr", "=", "True", ")", "return", "mgr_addr", ",", "len", "(", "ret", ")", "sizes", "=", "await", "create_tasks", "(", "slave_task", ",", "self", ".", "addrs", ",", "flatten", "=", "False", ")", "return", "sorted", "(", "sizes", ",", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ")", "[", "0", "]", "[", "0", "]" ]
Get address of the slave environment manager with the smallest number of agents.
[ "Get", "address", "of", "the", "slave", "environment", "manager", "with", "the", "smallest", "number", "of", "agents", "." ]
python
train
43.090909
nad2000/W3C-Validator
w3c_validator/validator.py
https://github.com/nad2000/W3C-Validator/blob/81eb35ef9c1fa87c82731b335c46f873e97a4dea/w3c_validator/validator.py#L69-L128
def main(): """Parser the command line and run the validator.""" parser = argparse.ArgumentParser( description="[v" + __version__ + "] " + __doc__, prog="w3c_validator", ) parser.add_argument( "--log", default="INFO", help=("log level: DEBUG, INFO or INFO " "(default: INFO)")) parser.add_argument( "--version", action="version", version="%(prog)s " + __version__) parser.add_argument( "--verbose", help="increase output verbosity", action="store_true") parser.add_argument( "source", metavar="F", type=str, nargs="+", help="file or URL") args = parser.parse_args() logging.basicConfig(level=getattr(logging, args.log)) LOGGER.info("Files to validate: \n {0}".format("\n ".join(args.source))) LOGGER.info("Number of files: {0}".format(len(args.source))) errors = 0 warnings = 0 for f in args.source: LOGGER.info("validating: %s ..." % f) retrys = 0 while retrys < 2: result = validate(f, verbose=args.verbose) if result: break time.sleep(2) retrys += 1 LOGGER.info("retrying: %s ..." % f) else: LOGGER.info("failed: %s" % f) errors += 1 continue # import pdb; pdb.set_trace() if f.endswith(".css"): errorcount = result["cssvalidation"]["result"]["errorcount"] warningcount = result["cssvalidation"]["result"]["warningcount"] errors += errorcount warnings += warningcount if errorcount > 0: LOGGER.info("errors: %d" % errorcount) if warningcount > 0: LOGGER.info("warnings: %d" % warningcount) else: for msg in result["messages"]: print_msg(msg) if msg["type"] == "error": errors += 1 else: warnings += 1 sys.exit(min(errors, 255))
[ "def", "main", "(", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "\"[v\"", "+", "__version__", "+", "\"] \"", "+", "__doc__", ",", "prog", "=", "\"w3c_validator\"", ",", ")", "parser", ".", "add_argument", "(", "\"--log\"", ",", "default", "=", "\"INFO\"", ",", "help", "=", "(", "\"log level: DEBUG, INFO or INFO \"", "\"(default: INFO)\"", ")", ")", "parser", ".", "add_argument", "(", "\"--version\"", ",", "action", "=", "\"version\"", ",", "version", "=", "\"%(prog)s \"", "+", "__version__", ")", "parser", ".", "add_argument", "(", "\"--verbose\"", ",", "help", "=", "\"increase output verbosity\"", ",", "action", "=", "\"store_true\"", ")", "parser", ".", "add_argument", "(", "\"source\"", ",", "metavar", "=", "\"F\"", ",", "type", "=", "str", ",", "nargs", "=", "\"+\"", ",", "help", "=", "\"file or URL\"", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "logging", ".", "basicConfig", "(", "level", "=", "getattr", "(", "logging", ",", "args", ".", "log", ")", ")", "LOGGER", ".", "info", "(", "\"Files to validate: \\n {0}\"", ".", "format", "(", "\"\\n \"", ".", "join", "(", "args", ".", "source", ")", ")", ")", "LOGGER", ".", "info", "(", "\"Number of files: {0}\"", ".", "format", "(", "len", "(", "args", ".", "source", ")", ")", ")", "errors", "=", "0", "warnings", "=", "0", "for", "f", "in", "args", ".", "source", ":", "LOGGER", ".", "info", "(", "\"validating: %s ...\"", "%", "f", ")", "retrys", "=", "0", "while", "retrys", "<", "2", ":", "result", "=", "validate", "(", "f", ",", "verbose", "=", "args", ".", "verbose", ")", "if", "result", ":", "break", "time", ".", "sleep", "(", "2", ")", "retrys", "+=", "1", "LOGGER", ".", "info", "(", "\"retrying: %s ...\"", "%", "f", ")", "else", ":", "LOGGER", ".", "info", "(", "\"failed: %s\"", "%", "f", ")", "errors", "+=", "1", "continue", "# import pdb; pdb.set_trace()", "if", "f", ".", "endswith", "(", "\".css\"", ")", ":", "errorcount", "=", "result", "[", "\"cssvalidation\"", "]", "[", "\"result\"", "]", "[", "\"errorcount\"", "]", "warningcount", "=", "result", "[", "\"cssvalidation\"", "]", "[", "\"result\"", "]", "[", "\"warningcount\"", "]", "errors", "+=", "errorcount", "warnings", "+=", "warningcount", "if", "errorcount", ">", "0", ":", "LOGGER", ".", "info", "(", "\"errors: %d\"", "%", "errorcount", ")", "if", "warningcount", ">", "0", ":", "LOGGER", ".", "info", "(", "\"warnings: %d\"", "%", "warningcount", ")", "else", ":", "for", "msg", "in", "result", "[", "\"messages\"", "]", ":", "print_msg", "(", "msg", ")", "if", "msg", "[", "\"type\"", "]", "==", "\"error\"", ":", "errors", "+=", "1", "else", ":", "warnings", "+=", "1", "sys", ".", "exit", "(", "min", "(", "errors", ",", "255", ")", ")" ]
Parser the command line and run the validator.
[ "Parser", "the", "command", "line", "and", "run", "the", "validator", "." ]
python
train
33.133333