repo
stringlengths
7
55
path
stringlengths
4
223
url
stringlengths
87
315
code
stringlengths
75
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
avg_line_len
float64
7.91
980
smarie/python-parsyfiles
parsyfiles/parsing_registries.py
https://github.com/smarie/python-parsyfiles/blob/344b37e1151e8d4e7c2ee49ae09d6568715ae64e/parsyfiles/parsing_registries.py#L835-L862
def create(att_name: str, parsed_att: S, attribute_type: Type[T], caught_exec: Dict[Converter[S, T], Exception]): """ Helper method provided because we actually can't put that in the constructor, it creates a bug in Nose tests https://github.com/nose-devs/nose/issues/725 :param att_name: :param parsed_att: :param attribute_type: :param caught_exec: :return: """ base_msg = "Error while trying to convert value for attribute '{a}' to type <{t}>:\n" \ " - parsed value is : '{v}' of type <{tv}>\n" \ "".format(a=str(att_name), t=get_pretty_type_str(attribute_type), v=parsed_att, tv=get_pretty_type_str(type(parsed_att))) msg = StringIO() if len(list(caught_exec.keys())) > 0: msg.writelines(' - converters tried are : \n * ') msg.writelines('\n * '.join([str(converter) for converter in caught_exec.keys()])) msg.writelines(' \n Caught the following exceptions: \n') for converter, err in caught_exec.items(): msg.writelines('--------------- From ' + str(converter) + ' caught: \n') print_error_to_io_stream(err, msg) msg.write('\n') return AttrConversionException(base_msg + msg.getvalue())
[ "def", "create", "(", "att_name", ":", "str", ",", "parsed_att", ":", "S", ",", "attribute_type", ":", "Type", "[", "T", "]", ",", "caught_exec", ":", "Dict", "[", "Converter", "[", "S", ",", "T", "]", ",", "Exception", "]", ")", ":", "base_msg", "=", "\"Error while trying to convert value for attribute '{a}' to type <{t}>:\\n\"", "\" - parsed value is : '{v}' of type <{tv}>\\n\"", "\"\"", ".", "format", "(", "a", "=", "str", "(", "att_name", ")", ",", "t", "=", "get_pretty_type_str", "(", "attribute_type", ")", ",", "v", "=", "parsed_att", ",", "tv", "=", "get_pretty_type_str", "(", "type", "(", "parsed_att", ")", ")", ")", "msg", "=", "StringIO", "(", ")", "if", "len", "(", "list", "(", "caught_exec", ".", "keys", "(", ")", ")", ")", ">", "0", ":", "msg", ".", "writelines", "(", "' - converters tried are : \\n * '", ")", "msg", ".", "writelines", "(", "'\\n * '", ".", "join", "(", "[", "str", "(", "converter", ")", "for", "converter", "in", "caught_exec", ".", "keys", "(", ")", "]", ")", ")", "msg", ".", "writelines", "(", "' \\n Caught the following exceptions: \\n'", ")", "for", "converter", ",", "err", "in", "caught_exec", ".", "items", "(", ")", ":", "msg", ".", "writelines", "(", "'--------------- From '", "+", "str", "(", "converter", ")", "+", "' caught: \\n'", ")", "print_error_to_io_stream", "(", "err", ",", "msg", ")", "msg", ".", "write", "(", "'\\n'", ")", "return", "AttrConversionException", "(", "base_msg", "+", "msg", ".", "getvalue", "(", ")", ")" ]
Helper method provided because we actually can't put that in the constructor, it creates a bug in Nose tests https://github.com/nose-devs/nose/issues/725 :param att_name: :param parsed_att: :param attribute_type: :param caught_exec: :return:
[ "Helper", "method", "provided", "because", "we", "actually", "can", "t", "put", "that", "in", "the", "constructor", "it", "creates", "a", "bug", "in", "Nose", "tests", "https", ":", "//", "github", ".", "com", "/", "nose", "-", "devs", "/", "nose", "/", "issues", "/", "725" ]
python
train
48.214286
DataDog/integrations-core
openstack/datadog_checks/openstack/openstack.py
https://github.com/DataDog/integrations-core/blob/ebd41c873cf9f97a8c51bf9459bc6a7536af8acd/openstack/datadog_checks/openstack/openstack.py#L1374-L1383
def get_my_hostname(self, split_hostname_on_first_period=False): """ Returns a best guess for the hostname registered with OpenStack for this host """ hostname = self.init_config.get("os_host") or self.hostname if split_hostname_on_first_period: hostname = hostname.split('.')[0] return hostname
[ "def", "get_my_hostname", "(", "self", ",", "split_hostname_on_first_period", "=", "False", ")", ":", "hostname", "=", "self", ".", "init_config", ".", "get", "(", "\"os_host\"", ")", "or", "self", ".", "hostname", "if", "split_hostname_on_first_period", ":", "hostname", "=", "hostname", ".", "split", "(", "'.'", ")", "[", "0", "]", "return", "hostname" ]
Returns a best guess for the hostname registered with OpenStack for this host
[ "Returns", "a", "best", "guess", "for", "the", "hostname", "registered", "with", "OpenStack", "for", "this", "host" ]
python
train
34.8
Hackerfleet/hfos
hfos/ui/configurator.py
https://github.com/Hackerfleet/hfos/blob/b6df14eacaffb6be5c844108873ff8763ec7f0c9/hfos/ui/configurator.py#L152-L176
def get(self, event): """Get a stored configuration""" try: comp = event.data['uuid'] except KeyError: comp = None if not comp: self.log('Invalid get request without schema or component', lvl=error) return self.log("Config data get request for ", event.data, "from", event.user) component = model_factory(Schema).find_one({ 'uuid': comp }) response = { 'component': 'hfos.ui.configurator', 'action': 'get', 'data': component.serializablefields() } self.fireEvent(send(event.client.uuid, response))
[ "def", "get", "(", "self", ",", "event", ")", ":", "try", ":", "comp", "=", "event", ".", "data", "[", "'uuid'", "]", "except", "KeyError", ":", "comp", "=", "None", "if", "not", "comp", ":", "self", ".", "log", "(", "'Invalid get request without schema or component'", ",", "lvl", "=", "error", ")", "return", "self", ".", "log", "(", "\"Config data get request for \"", ",", "event", ".", "data", ",", "\"from\"", ",", "event", ".", "user", ")", "component", "=", "model_factory", "(", "Schema", ")", ".", "find_one", "(", "{", "'uuid'", ":", "comp", "}", ")", "response", "=", "{", "'component'", ":", "'hfos.ui.configurator'", ",", "'action'", ":", "'get'", ",", "'data'", ":", "component", ".", "serializablefields", "(", ")", "}", "self", ".", "fireEvent", "(", "send", "(", "event", ".", "client", ".", "uuid", ",", "response", ")", ")" ]
Get a stored configuration
[ "Get", "a", "stored", "configuration" ]
python
train
27.68
eyurtsev/FlowCytometryTools
FlowCytometryTools/core/graph.py
https://github.com/eyurtsev/FlowCytometryTools/blob/4355632508b875273d68c7e2972c17668bcf7b40/FlowCytometryTools/core/graph.py#L23-L101
def plotFCM(data, channel_names, kind='histogram', ax=None, autolabel=True, xlabel_kwargs={}, ylabel_kwargs={}, colorbar=False, grid=False, **kwargs): """ Plots the sample on the current axis. Follow with a call to matplotlibs show() in order to see the plot. Parameters ---------- data : DataFrame {graph_plotFCM_pars} {common_plot_ax} Returns ------- The output of the plot command used """ if ax == None: ax = pl.gca() xlabel_kwargs.setdefault('size', 16) ylabel_kwargs.setdefault('size', 16) channel_names = to_list(channel_names) if len(channel_names) == 1: # 1D so histogram plot kwargs.setdefault('color', 'gray') kwargs.setdefault('histtype', 'stepfilled') kwargs.setdefault('bins', 200) # Do not move above x = data[channel_names[0]].values if len(x) >= 1: if (len(x) == 1) and isinstance(kwargs['bins'], int): # Only needed for hist (not hist2d) due to hist function doing # excessive input checking warnings.warn("One of the data sets only has a single event. " "This event won't be plotted unless the bin locations" " are explicitly provided to the plotting function. ") return None plot_output = ax.hist(x, **kwargs) else: return None elif len(channel_names) == 2: x = data[channel_names[0]].values # value of first channel y = data[channel_names[1]].values # value of second channel if len(x) == 0: # Don't draw a plot if there's no data return None if kind == 'scatter': kwargs.setdefault('edgecolor', 'none') plot_output = ax.scatter(x, y, **kwargs) elif kind == 'histogram': kwargs.setdefault('bins', 200) # Do not move above kwargs.setdefault('cmin', 1) kwargs.setdefault('cmap', pl.cm.copper) kwargs.setdefault('norm', matplotlib.colors.LogNorm()) plot_output = ax.hist2d(x, y, **kwargs) mappable = plot_output[-1] if colorbar: pl.colorbar(mappable, ax=ax) else: raise ValueError("Not a valid plot type. Must be 'scatter', 'histogram'") else: raise ValueError('Received an unexpected number of channels: "{}"'.format(channel_names)) pl.grid(grid) if autolabel: y_label_text = 'Counts' if len(channel_names) == 1 else channel_names[1] ax.set_xlabel(channel_names[0], **xlabel_kwargs) ax.set_ylabel(y_label_text, **ylabel_kwargs) return plot_output
[ "def", "plotFCM", "(", "data", ",", "channel_names", ",", "kind", "=", "'histogram'", ",", "ax", "=", "None", ",", "autolabel", "=", "True", ",", "xlabel_kwargs", "=", "{", "}", ",", "ylabel_kwargs", "=", "{", "}", ",", "colorbar", "=", "False", ",", "grid", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "ax", "==", "None", ":", "ax", "=", "pl", ".", "gca", "(", ")", "xlabel_kwargs", ".", "setdefault", "(", "'size'", ",", "16", ")", "ylabel_kwargs", ".", "setdefault", "(", "'size'", ",", "16", ")", "channel_names", "=", "to_list", "(", "channel_names", ")", "if", "len", "(", "channel_names", ")", "==", "1", ":", "# 1D so histogram plot", "kwargs", ".", "setdefault", "(", "'color'", ",", "'gray'", ")", "kwargs", ".", "setdefault", "(", "'histtype'", ",", "'stepfilled'", ")", "kwargs", ".", "setdefault", "(", "'bins'", ",", "200", ")", "# Do not move above", "x", "=", "data", "[", "channel_names", "[", "0", "]", "]", ".", "values", "if", "len", "(", "x", ")", ">=", "1", ":", "if", "(", "len", "(", "x", ")", "==", "1", ")", "and", "isinstance", "(", "kwargs", "[", "'bins'", "]", ",", "int", ")", ":", "# Only needed for hist (not hist2d) due to hist function doing", "# excessive input checking", "warnings", ".", "warn", "(", "\"One of the data sets only has a single event. \"", "\"This event won't be plotted unless the bin locations\"", "\" are explicitly provided to the plotting function. \"", ")", "return", "None", "plot_output", "=", "ax", ".", "hist", "(", "x", ",", "*", "*", "kwargs", ")", "else", ":", "return", "None", "elif", "len", "(", "channel_names", ")", "==", "2", ":", "x", "=", "data", "[", "channel_names", "[", "0", "]", "]", ".", "values", "# value of first channel", "y", "=", "data", "[", "channel_names", "[", "1", "]", "]", ".", "values", "# value of second channel", "if", "len", "(", "x", ")", "==", "0", ":", "# Don't draw a plot if there's no data", "return", "None", "if", "kind", "==", "'scatter'", ":", "kwargs", ".", "setdefault", "(", "'edgecolor'", ",", "'none'", ")", "plot_output", "=", "ax", ".", "scatter", "(", "x", ",", "y", ",", "*", "*", "kwargs", ")", "elif", "kind", "==", "'histogram'", ":", "kwargs", ".", "setdefault", "(", "'bins'", ",", "200", ")", "# Do not move above", "kwargs", ".", "setdefault", "(", "'cmin'", ",", "1", ")", "kwargs", ".", "setdefault", "(", "'cmap'", ",", "pl", ".", "cm", ".", "copper", ")", "kwargs", ".", "setdefault", "(", "'norm'", ",", "matplotlib", ".", "colors", ".", "LogNorm", "(", ")", ")", "plot_output", "=", "ax", ".", "hist2d", "(", "x", ",", "y", ",", "*", "*", "kwargs", ")", "mappable", "=", "plot_output", "[", "-", "1", "]", "if", "colorbar", ":", "pl", ".", "colorbar", "(", "mappable", ",", "ax", "=", "ax", ")", "else", ":", "raise", "ValueError", "(", "\"Not a valid plot type. Must be 'scatter', 'histogram'\"", ")", "else", ":", "raise", "ValueError", "(", "'Received an unexpected number of channels: \"{}\"'", ".", "format", "(", "channel_names", ")", ")", "pl", ".", "grid", "(", "grid", ")", "if", "autolabel", ":", "y_label_text", "=", "'Counts'", "if", "len", "(", "channel_names", ")", "==", "1", "else", "channel_names", "[", "1", "]", "ax", ".", "set_xlabel", "(", "channel_names", "[", "0", "]", ",", "*", "*", "xlabel_kwargs", ")", "ax", ".", "set_ylabel", "(", "y_label_text", ",", "*", "*", "ylabel_kwargs", ")", "return", "plot_output" ]
Plots the sample on the current axis. Follow with a call to matplotlibs show() in order to see the plot. Parameters ---------- data : DataFrame {graph_plotFCM_pars} {common_plot_ax} Returns ------- The output of the plot command used
[ "Plots", "the", "sample", "on", "the", "current", "axis", "." ]
python
train
33.987342
cloud9ers/gurumate
environment/lib/python2.7/site-packages/IPython/extensions/sympyprinting.py
https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/lib/python2.7/site-packages/IPython/extensions/sympyprinting.py#L54-L64
def print_png(o): """ A function to display sympy expression using inline style LaTeX in PNG. """ s = latex(o, mode='inline') # mathtext does not understand certain latex flags, so we try to replace # them with suitable subs. s = s.replace('\\operatorname','') s = s.replace('\\overline', '\\bar') png = latex_to_png(s) return png
[ "def", "print_png", "(", "o", ")", ":", "s", "=", "latex", "(", "o", ",", "mode", "=", "'inline'", ")", "# mathtext does not understand certain latex flags, so we try to replace", "# them with suitable subs.", "s", "=", "s", ".", "replace", "(", "'\\\\operatorname'", ",", "''", ")", "s", "=", "s", ".", "replace", "(", "'\\\\overline'", ",", "'\\\\bar'", ")", "png", "=", "latex_to_png", "(", "s", ")", "return", "png" ]
A function to display sympy expression using inline style LaTeX in PNG.
[ "A", "function", "to", "display", "sympy", "expression", "using", "inline", "style", "LaTeX", "in", "PNG", "." ]
python
test
32.727273
zkbt/the-friendly-stars
thefriendlystars/constellations/gaia.py
https://github.com/zkbt/the-friendly-stars/blob/50d3f979e79e63c66629065c75595696dc79802e/thefriendlystars/constellations/gaia.py#L85-L121
def from_sky(cls, distancelimit=15, magnitudelimit=18): ''' Create a Constellation from a criteria search of the whole sky. Parameters ---------- distancelimit : float Maximum distance (parsecs). magnitudelimit : float Maximum magnitude (for Gaia G). ''' # define a query for cone search surrounding this center criteria = [] if distancelimit is not None: criteria.append('parallax >= {}'.format(1000.0/distancelimit)) if magnitudelimit is not None: criteria.append('phot_g_mean_mag <= {}'.format(magnitudelimit)) allskyquery = """{} WHERE {}""".format(cls.basequery, ' and '.join(criteria)) print(allskyquery) # run the query print('querying Gaia DR2, for distance<{} and G<{}'.format(distancelimit, magnitudelimit)) table = query(allskyquery) # store the search parameters in this object c = cls(cls.standardize_table(table)) c.standardized.meta['query'] = allskyquery c.standardized.meta['magnitudelimit'] = magnitudelimit c.standardized.meta['distancelimit'] = distancelimit #c.distancelimit = distancelimit #c.magnitudelimit = magnitudelimit or c.magnitudelimit return c
[ "def", "from_sky", "(", "cls", ",", "distancelimit", "=", "15", ",", "magnitudelimit", "=", "18", ")", ":", "# define a query for cone search surrounding this center", "criteria", "=", "[", "]", "if", "distancelimit", "is", "not", "None", ":", "criteria", ".", "append", "(", "'parallax >= {}'", ".", "format", "(", "1000.0", "/", "distancelimit", ")", ")", "if", "magnitudelimit", "is", "not", "None", ":", "criteria", ".", "append", "(", "'phot_g_mean_mag <= {}'", ".", "format", "(", "magnitudelimit", ")", ")", "allskyquery", "=", "\"\"\"{} WHERE {}\"\"\"", ".", "format", "(", "cls", ".", "basequery", ",", "' and '", ".", "join", "(", "criteria", ")", ")", "print", "(", "allskyquery", ")", "# run the query", "print", "(", "'querying Gaia DR2, for distance<{} and G<{}'", ".", "format", "(", "distancelimit", ",", "magnitudelimit", ")", ")", "table", "=", "query", "(", "allskyquery", ")", "# store the search parameters in this object", "c", "=", "cls", "(", "cls", ".", "standardize_table", "(", "table", ")", ")", "c", ".", "standardized", ".", "meta", "[", "'query'", "]", "=", "allskyquery", "c", ".", "standardized", ".", "meta", "[", "'magnitudelimit'", "]", "=", "magnitudelimit", "c", ".", "standardized", ".", "meta", "[", "'distancelimit'", "]", "=", "distancelimit", "#c.distancelimit = distancelimit", "#c.magnitudelimit = magnitudelimit or c.magnitudelimit", "return", "c" ]
Create a Constellation from a criteria search of the whole sky. Parameters ---------- distancelimit : float Maximum distance (parsecs). magnitudelimit : float Maximum magnitude (for Gaia G).
[ "Create", "a", "Constellation", "from", "a", "criteria", "search", "of", "the", "whole", "sky", "." ]
python
train
34.783784
numenta/htmresearch
projects/sdr_paper/pytorch_experiments/analyze_experiment.py
https://github.com/numenta/htmresearch/blob/70c096b09a577ea0432c3f3bfff4442d4871b7aa/projects/sdr_paper/pytorch_experiments/analyze_experiment.py#L31-L62
def analyzeParameters(expName, suite): """ Analyze the impact of each list parameter in this experiment """ print("\n================",expName,"=====================") try: expParams = suite.get_params(expName) pprint.pprint(expParams) for p in ["boost_strength", "k", "learning_rate", "weight_sparsity", "k_inference_factor", "boost_strength_factor", "c1_out_channels", "c1_k", "learning_rate_factor", "batches_in_epoch", ]: if p in expParams and type(expParams[p]) == list: print("\n",p) for v1 in expParams[p]: # Retrieve the last totalCorrect from each experiment # Print them sorted from best to worst values, params = suite.get_values_fix_params( expName, 0, "testerror", "last", **{p:v1}) v = np.array(values) try: print("Average/min/max for", p, v1, "=", v.mean(), v.min(), v.max()) # sortedIndices = v.argsort() # for i in sortedIndices[::-1]: # print(v[i],params[i]["name"]) except: print("Can't compute stats for",p) except: print("Couldn't load experiment",expName)
[ "def", "analyzeParameters", "(", "expName", ",", "suite", ")", ":", "print", "(", "\"\\n================\"", ",", "expName", ",", "\"=====================\"", ")", "try", ":", "expParams", "=", "suite", ".", "get_params", "(", "expName", ")", "pprint", ".", "pprint", "(", "expParams", ")", "for", "p", "in", "[", "\"boost_strength\"", ",", "\"k\"", ",", "\"learning_rate\"", ",", "\"weight_sparsity\"", ",", "\"k_inference_factor\"", ",", "\"boost_strength_factor\"", ",", "\"c1_out_channels\"", ",", "\"c1_k\"", ",", "\"learning_rate_factor\"", ",", "\"batches_in_epoch\"", ",", "]", ":", "if", "p", "in", "expParams", "and", "type", "(", "expParams", "[", "p", "]", ")", "==", "list", ":", "print", "(", "\"\\n\"", ",", "p", ")", "for", "v1", "in", "expParams", "[", "p", "]", ":", "# Retrieve the last totalCorrect from each experiment", "# Print them sorted from best to worst", "values", ",", "params", "=", "suite", ".", "get_values_fix_params", "(", "expName", ",", "0", ",", "\"testerror\"", ",", "\"last\"", ",", "*", "*", "{", "p", ":", "v1", "}", ")", "v", "=", "np", ".", "array", "(", "values", ")", "try", ":", "print", "(", "\"Average/min/max for\"", ",", "p", ",", "v1", ",", "\"=\"", ",", "v", ".", "mean", "(", ")", ",", "v", ".", "min", "(", ")", ",", "v", ".", "max", "(", ")", ")", "# sortedIndices = v.argsort()", "# for i in sortedIndices[::-1]:", "# print(v[i],params[i][\"name\"])", "except", ":", "print", "(", "\"Can't compute stats for\"", ",", "p", ")", "except", ":", "print", "(", "\"Couldn't load experiment\"", ",", "expName", ")" ]
Analyze the impact of each list parameter in this experiment
[ "Analyze", "the", "impact", "of", "each", "list", "parameter", "in", "this", "experiment" ]
python
train
37.125
Locu/chronology
kronos/kronos/utils/uuid.py
https://github.com/Locu/chronology/blob/0edf3ee3286c76e242cbf92436ffa9c836b428e2/kronos/kronos/utils/uuid.py#L14-L20
def uuid_from_kronos_time(time, _type=UUIDType.RANDOM): """ Generate a UUID with the specified time. If `lowest` is true, return the lexicographically first UUID for the specified time. """ return timeuuid_from_time(int(time) + UUID_TIME_OFFSET, type=_type)
[ "def", "uuid_from_kronos_time", "(", "time", ",", "_type", "=", "UUIDType", ".", "RANDOM", ")", ":", "return", "timeuuid_from_time", "(", "int", "(", "time", ")", "+", "UUID_TIME_OFFSET", ",", "type", "=", "_type", ")" ]
Generate a UUID with the specified time. If `lowest` is true, return the lexicographically first UUID for the specified time.
[ "Generate", "a", "UUID", "with", "the", "specified", "time", ".", "If", "lowest", "is", "true", "return", "the", "lexicographically", "first", "UUID", "for", "the", "specified", "time", "." ]
python
train
37.571429
brocade/pynos
pynos/versions/ver_6/ver_6_0_1/yang/brocade_firmware_ext.py
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_firmware_ext.py#L211-L225
def show_firmware_version_output_show_firmware_version_node_info_firmware_version_info_application_name(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") show_firmware_version = ET.Element("show_firmware_version") config = show_firmware_version output = ET.SubElement(show_firmware_version, "output") show_firmware_version = ET.SubElement(output, "show-firmware-version") node_info = ET.SubElement(show_firmware_version, "node-info") firmware_version_info = ET.SubElement(node_info, "firmware-version-info") application_name = ET.SubElement(firmware_version_info, "application-name") application_name.text = kwargs.pop('application_name') callback = kwargs.pop('callback', self._callback) return callback(config)
[ "def", "show_firmware_version_output_show_firmware_version_node_info_firmware_version_info_application_name", "(", "self", ",", "*", "*", "kwargs", ")", ":", "config", "=", "ET", ".", "Element", "(", "\"config\"", ")", "show_firmware_version", "=", "ET", ".", "Element", "(", "\"show_firmware_version\"", ")", "config", "=", "show_firmware_version", "output", "=", "ET", ".", "SubElement", "(", "show_firmware_version", ",", "\"output\"", ")", "show_firmware_version", "=", "ET", ".", "SubElement", "(", "output", ",", "\"show-firmware-version\"", ")", "node_info", "=", "ET", ".", "SubElement", "(", "show_firmware_version", ",", "\"node-info\"", ")", "firmware_version_info", "=", "ET", ".", "SubElement", "(", "node_info", ",", "\"firmware-version-info\"", ")", "application_name", "=", "ET", ".", "SubElement", "(", "firmware_version_info", ",", "\"application-name\"", ")", "application_name", ".", "text", "=", "kwargs", ".", "pop", "(", "'application_name'", ")", "callback", "=", "kwargs", ".", "pop", "(", "'callback'", ",", "self", ".", "_callback", ")", "return", "callback", "(", "config", ")" ]
Auto Generated Code
[ "Auto", "Generated", "Code" ]
python
train
55.133333
themartorana/python-postmark
postmark/core.py
https://github.com/themartorana/python-postmark/blob/3087f6894ec2790e295fd59eba9c57da9de78d1c/postmark/core.py#L472-L552
def send(self, test=None): ''' Send the email through the Postmark system. Pass test=True to just print out the resulting JSON message being sent to Postmark ''' self._check_values() # Set up message dictionary json_message = self.to_json_message() # if (self.__html_body and not self.__text_body) and self.__multipart: # # TODO: Set up regex to strip html # pass # If test is not specified, attempt to read the Django setting if test is None: try: from django.conf import settings as django_settings test = getattr(django_settings, "POSTMARK_TEST_MODE", None) except ImportError: pass # If this is a test, just print the message if test: print('JSON message is:\n%s' % json.dumps(json_message, cls=PMJSONEncoder)) return if self.__template_id: endpoint_url = __POSTMARK_URL__ + 'email/withTemplate/' else: endpoint_url = __POSTMARK_URL__ + 'email' # Set up the url Request req = Request( endpoint_url, json.dumps(json_message, cls=PMJSONEncoder).encode('utf8'), { 'Accept': 'application/json', 'Content-Type': 'application/json', 'X-Postmark-Server-Token': self.__api_key, 'User-agent': self.__user_agent } ) # Attempt send try: # print 'sending request to postmark: %s' % json_message result = urlopen(req) jsontxt = result.read().decode('utf8') result.close() if result.code == 200: self.message_id = json.loads(jsontxt).get('MessageID', None) return True else: raise PMMailSendException('Return code %d: %s' % (result.code, result.msg)) except HTTPError as err: if err.code == 401: raise PMMailUnauthorizedException('Sending Unauthorized - incorrect API key.', err) elif err.code == 422: try: jsontxt = err.read().decode('utf8') jsonobj = json.loads(jsontxt) desc = jsonobj['Message'] error_code = jsonobj['ErrorCode'] except KeyError: raise PMMailUnprocessableEntityException('Unprocessable Entity: Description not given') if error_code == 406: raise PMMailInactiveRecipientException('You tried to send email to a recipient that has been marked as inactive.') raise PMMailUnprocessableEntityException('Unprocessable Entity: %s' % desc) elif err.code == 500: raise PMMailServerErrorException('Internal server error at Postmark. Admins have been alerted.', err) except URLError as err: if hasattr(err, 'reason'): raise PMMailURLException('URLError: Failed to reach the server: %s (See "inner_exception" for details)' % err.reason, err) elif hasattr(err, 'code'): raise PMMailURLException('URLError: %d: The server couldn\'t fufill the request. (See "inner_exception" for details)' % err.code, err) else: raise PMMailURLException('URLError: The server couldn\'t fufill the request. (See "inner_exception" for details)', err)
[ "def", "send", "(", "self", ",", "test", "=", "None", ")", ":", "self", ".", "_check_values", "(", ")", "# Set up message dictionary", "json_message", "=", "self", ".", "to_json_message", "(", ")", "# if (self.__html_body and not self.__text_body) and self.__multipart:", "# # TODO: Set up regex to strip html", "# pass", "# If test is not specified, attempt to read the Django setting", "if", "test", "is", "None", ":", "try", ":", "from", "django", ".", "conf", "import", "settings", "as", "django_settings", "test", "=", "getattr", "(", "django_settings", ",", "\"POSTMARK_TEST_MODE\"", ",", "None", ")", "except", "ImportError", ":", "pass", "# If this is a test, just print the message", "if", "test", ":", "print", "(", "'JSON message is:\\n%s'", "%", "json", ".", "dumps", "(", "json_message", ",", "cls", "=", "PMJSONEncoder", ")", ")", "return", "if", "self", ".", "__template_id", ":", "endpoint_url", "=", "__POSTMARK_URL__", "+", "'email/withTemplate/'", "else", ":", "endpoint_url", "=", "__POSTMARK_URL__", "+", "'email'", "# Set up the url Request", "req", "=", "Request", "(", "endpoint_url", ",", "json", ".", "dumps", "(", "json_message", ",", "cls", "=", "PMJSONEncoder", ")", ".", "encode", "(", "'utf8'", ")", ",", "{", "'Accept'", ":", "'application/json'", ",", "'Content-Type'", ":", "'application/json'", ",", "'X-Postmark-Server-Token'", ":", "self", ".", "__api_key", ",", "'User-agent'", ":", "self", ".", "__user_agent", "}", ")", "# Attempt send", "try", ":", "# print 'sending request to postmark: %s' % json_message", "result", "=", "urlopen", "(", "req", ")", "jsontxt", "=", "result", ".", "read", "(", ")", ".", "decode", "(", "'utf8'", ")", "result", ".", "close", "(", ")", "if", "result", ".", "code", "==", "200", ":", "self", ".", "message_id", "=", "json", ".", "loads", "(", "jsontxt", ")", ".", "get", "(", "'MessageID'", ",", "None", ")", "return", "True", "else", ":", "raise", "PMMailSendException", "(", "'Return code %d: %s'", "%", "(", "result", ".", "code", ",", "result", ".", "msg", ")", ")", "except", "HTTPError", "as", "err", ":", "if", "err", ".", "code", "==", "401", ":", "raise", "PMMailUnauthorizedException", "(", "'Sending Unauthorized - incorrect API key.'", ",", "err", ")", "elif", "err", ".", "code", "==", "422", ":", "try", ":", "jsontxt", "=", "err", ".", "read", "(", ")", ".", "decode", "(", "'utf8'", ")", "jsonobj", "=", "json", ".", "loads", "(", "jsontxt", ")", "desc", "=", "jsonobj", "[", "'Message'", "]", "error_code", "=", "jsonobj", "[", "'ErrorCode'", "]", "except", "KeyError", ":", "raise", "PMMailUnprocessableEntityException", "(", "'Unprocessable Entity: Description not given'", ")", "if", "error_code", "==", "406", ":", "raise", "PMMailInactiveRecipientException", "(", "'You tried to send email to a recipient that has been marked as inactive.'", ")", "raise", "PMMailUnprocessableEntityException", "(", "'Unprocessable Entity: %s'", "%", "desc", ")", "elif", "err", ".", "code", "==", "500", ":", "raise", "PMMailServerErrorException", "(", "'Internal server error at Postmark. Admins have been alerted.'", ",", "err", ")", "except", "URLError", "as", "err", ":", "if", "hasattr", "(", "err", ",", "'reason'", ")", ":", "raise", "PMMailURLException", "(", "'URLError: Failed to reach the server: %s (See \"inner_exception\" for details)'", "%", "err", ".", "reason", ",", "err", ")", "elif", "hasattr", "(", "err", ",", "'code'", ")", ":", "raise", "PMMailURLException", "(", "'URLError: %d: The server couldn\\'t fufill the request. (See \"inner_exception\" for details)'", "%", "err", ".", "code", ",", "err", ")", "else", ":", "raise", "PMMailURLException", "(", "'URLError: The server couldn\\'t fufill the request. (See \"inner_exception\" for details)'", ",", "err", ")" ]
Send the email through the Postmark system. Pass test=True to just print out the resulting JSON message being sent to Postmark
[ "Send", "the", "email", "through", "the", "Postmark", "system", ".", "Pass", "test", "=", "True", "to", "just", "print", "out", "the", "resulting", "JSON", "message", "being", "sent", "to", "Postmark" ]
python
train
42.506173
saltstack/salt
salt/spm/__init__.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/spm/__init__.py#L995-L1013
def _list_files(self, args): ''' List files for an installed package ''' if len(args) < 2: raise SPMInvocationError('A package name must be specified') package = args[-1] files = self._pkgdb_fun('list_files', package, self.db_conn) if files is None: raise SPMPackageError('package {0} not installed'.format(package)) else: for file_ in files: if self.opts['verbose']: status_msg = ','.join(file_) else: status_msg = file_[0] self.ui.status(status_msg)
[ "def", "_list_files", "(", "self", ",", "args", ")", ":", "if", "len", "(", "args", ")", "<", "2", ":", "raise", "SPMInvocationError", "(", "'A package name must be specified'", ")", "package", "=", "args", "[", "-", "1", "]", "files", "=", "self", ".", "_pkgdb_fun", "(", "'list_files'", ",", "package", ",", "self", ".", "db_conn", ")", "if", "files", "is", "None", ":", "raise", "SPMPackageError", "(", "'package {0} not installed'", ".", "format", "(", "package", ")", ")", "else", ":", "for", "file_", "in", "files", ":", "if", "self", ".", "opts", "[", "'verbose'", "]", ":", "status_msg", "=", "','", ".", "join", "(", "file_", ")", "else", ":", "status_msg", "=", "file_", "[", "0", "]", "self", ".", "ui", ".", "status", "(", "status_msg", ")" ]
List files for an installed package
[ "List", "files", "for", "an", "installed", "package" ]
python
train
32.789474
stitchfix/pyxley
pyxley/charts/mg/line_chart.py
https://github.com/stitchfix/pyxley/blob/2dab00022d977d986169cd8a629b3a2f91be893f/pyxley/charts/mg/line_chart.py#L58-L67
def to_json(df, x, y, timeseries=False): """Format output for json response.""" values = {k: [] for k in y} for i, row in df.iterrows(): for yy in y: values[yy].append({ "x": row[x], "y": row[yy] }) return {"result": [values[k] for k in y], "date": timeseries}
[ "def", "to_json", "(", "df", ",", "x", ",", "y", ",", "timeseries", "=", "False", ")", ":", "values", "=", "{", "k", ":", "[", "]", "for", "k", "in", "y", "}", "for", "i", ",", "row", "in", "df", ".", "iterrows", "(", ")", ":", "for", "yy", "in", "y", ":", "values", "[", "yy", "]", ".", "append", "(", "{", "\"x\"", ":", "row", "[", "x", "]", ",", "\"y\"", ":", "row", "[", "yy", "]", "}", ")", "return", "{", "\"result\"", ":", "[", "values", "[", "k", "]", "for", "k", "in", "y", "]", ",", "\"date\"", ":", "timeseries", "}" ]
Format output for json response.
[ "Format", "output", "for", "json", "response", "." ]
python
train
37.2
libtcod/python-tcod
tcod/libtcodpy.py
https://github.com/libtcod/python-tcod/blob/8ba10c5cfb813eaf3e834de971ba2d6acb7838e4/tcod/libtcodpy.py#L2775-L2791
def heightmap_get_normal( hm: np.ndarray, x: float, y: float, waterLevel: float ) -> Tuple[float, float, float]: """Return the map normal at given coordinates. Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. x (float): The x coordinate. y (float): The y coordinate. waterLevel (float): The heightmap is considered flat below this value. Returns: Tuple[float, float, float]: An (x, y, z) vector normal. """ cn = ffi.new("float[3]") lib.TCOD_heightmap_get_normal(_heightmap_cdata(hm), x, y, cn, waterLevel) return tuple(cn)
[ "def", "heightmap_get_normal", "(", "hm", ":", "np", ".", "ndarray", ",", "x", ":", "float", ",", "y", ":", "float", ",", "waterLevel", ":", "float", ")", "->", "Tuple", "[", "float", ",", "float", ",", "float", "]", ":", "cn", "=", "ffi", ".", "new", "(", "\"float[3]\"", ")", "lib", ".", "TCOD_heightmap_get_normal", "(", "_heightmap_cdata", "(", "hm", ")", ",", "x", ",", "y", ",", "cn", ",", "waterLevel", ")", "return", "tuple", "(", "cn", ")" ]
Return the map normal at given coordinates. Args: hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions. x (float): The x coordinate. y (float): The y coordinate. waterLevel (float): The heightmap is considered flat below this value. Returns: Tuple[float, float, float]: An (x, y, z) vector normal.
[ "Return", "the", "map", "normal", "at", "given", "coordinates", "." ]
python
train
35.764706
a1ezzz/wasp-general
wasp_general/crypto/aes.py
https://github.com/a1ezzz/wasp-general/blob/1029839d33eb663f8dec76c1c46754d53c1de4a9/wasp_general/crypto/aes.py#L491-L498
def cipher(self): """ Generate AES-cipher :return: Crypto.Cipher.AES.AESCipher """ #cipher = pyAES.new(*self.mode().aes_args(), **self.mode().aes_kwargs()) cipher = Cipher(*self.mode().aes_args(), **self.mode().aes_kwargs()) return WAES.WAESCipher(cipher)
[ "def", "cipher", "(", "self", ")", ":", "#cipher = pyAES.new(*self.mode().aes_args(), **self.mode().aes_kwargs())", "cipher", "=", "Cipher", "(", "*", "self", ".", "mode", "(", ")", ".", "aes_args", "(", ")", ",", "*", "*", "self", ".", "mode", "(", ")", ".", "aes_kwargs", "(", ")", ")", "return", "WAES", ".", "WAESCipher", "(", "cipher", ")" ]
Generate AES-cipher :return: Crypto.Cipher.AES.AESCipher
[ "Generate", "AES", "-", "cipher" ]
python
train
32.625
hyperledger/indy-sdk
vcx/wrappers/python3/vcx/api/utils.py
https://github.com/hyperledger/indy-sdk/blob/55240dc170308d7883c48f03f308130a6d077be6/vcx/wrappers/python3/vcx/api/utils.py#L6-L37
async def vcx_agent_provision(config: str) -> None: """ Provision an agent in the agency, populate configuration and wallet for this agent. Example: import json enterprise_config = { 'agency_url': 'http://localhost:8080', 'agency_did': 'VsKV7grR1BUE29mG2Fm2kX', 'agency_verkey': "Hezce2UWMZ3wUhVkh2LfKSs8nDzWwzs2Win7EzNN3YaR", 'wallet_name': 'LIBVCX_SDK_WALLET', 'agent_seed': '00000000000000000000000001234561', 'enterprise_seed': '000000000000000000000000Trustee1', 'wallet_key': '1234' } vcx_config = await vcx_agent_provision(json.dumps(enterprise_config)) :param config: JSON configuration :return: Configuration for vcx_init call. """ logger = logging.getLogger(__name__) if not hasattr(vcx_agent_provision, "cb"): logger.debug("vcx_agent_provision: Creating callback") vcx_agent_provision.cb = create_cb(CFUNCTYPE(None, c_uint32, c_uint32, c_char_p)) c_config = c_char_p(config.encode('utf-8')) result = await do_call('vcx_agent_provision_async', c_config, vcx_agent_provision.cb) logger.debug("vcx_agent_provision completed") return result.decode()
[ "async", "def", "vcx_agent_provision", "(", "config", ":", "str", ")", "->", "None", ":", "logger", "=", "logging", ".", "getLogger", "(", "__name__", ")", "if", "not", "hasattr", "(", "vcx_agent_provision", ",", "\"cb\"", ")", ":", "logger", ".", "debug", "(", "\"vcx_agent_provision: Creating callback\"", ")", "vcx_agent_provision", ".", "cb", "=", "create_cb", "(", "CFUNCTYPE", "(", "None", ",", "c_uint32", ",", "c_uint32", ",", "c_char_p", ")", ")", "c_config", "=", "c_char_p", "(", "config", ".", "encode", "(", "'utf-8'", ")", ")", "result", "=", "await", "do_call", "(", "'vcx_agent_provision_async'", ",", "c_config", ",", "vcx_agent_provision", ".", "cb", ")", "logger", ".", "debug", "(", "\"vcx_agent_provision completed\"", ")", "return", "result", ".", "decode", "(", ")" ]
Provision an agent in the agency, populate configuration and wallet for this agent. Example: import json enterprise_config = { 'agency_url': 'http://localhost:8080', 'agency_did': 'VsKV7grR1BUE29mG2Fm2kX', 'agency_verkey': "Hezce2UWMZ3wUhVkh2LfKSs8nDzWwzs2Win7EzNN3YaR", 'wallet_name': 'LIBVCX_SDK_WALLET', 'agent_seed': '00000000000000000000000001234561', 'enterprise_seed': '000000000000000000000000Trustee1', 'wallet_key': '1234' } vcx_config = await vcx_agent_provision(json.dumps(enterprise_config)) :param config: JSON configuration :return: Configuration for vcx_init call.
[ "Provision", "an", "agent", "in", "the", "agency", "populate", "configuration", "and", "wallet", "for", "this", "agent", ".", "Example", ":", "import", "json", "enterprise_config", "=", "{", "agency_url", ":", "http", ":", "//", "localhost", ":", "8080", "agency_did", ":", "VsKV7grR1BUE29mG2Fm2kX", "agency_verkey", ":", "Hezce2UWMZ3wUhVkh2LfKSs8nDzWwzs2Win7EzNN3YaR", "wallet_name", ":", "LIBVCX_SDK_WALLET", "agent_seed", ":", "00000000000000000000000001234561", "enterprise_seed", ":", "000000000000000000000000Trustee1", "wallet_key", ":", "1234", "}", "vcx_config", "=", "await", "vcx_agent_provision", "(", "json", ".", "dumps", "(", "enterprise_config", "))", ":", "param", "config", ":", "JSON", "configuration", ":", "return", ":", "Configuration", "for", "vcx_init", "call", "." ]
python
train
38.09375
crs4/pydoop
pydoop/hdfs/path.py
https://github.com/crs4/pydoop/blob/f375be2a06f9c67eaae3ce6f605195dbca143b2b/pydoop/hdfs/path.py#L304-L312
def exists(hdfs_path, user=None): """ Return :obj:`True` if ``hdfs_path`` exists in the default HDFS. """ hostname, port, path = split(hdfs_path, user=user) fs = hdfs_fs.hdfs(hostname, port) retval = fs.exists(path) fs.close() return retval
[ "def", "exists", "(", "hdfs_path", ",", "user", "=", "None", ")", ":", "hostname", ",", "port", ",", "path", "=", "split", "(", "hdfs_path", ",", "user", "=", "user", ")", "fs", "=", "hdfs_fs", ".", "hdfs", "(", "hostname", ",", "port", ")", "retval", "=", "fs", ".", "exists", "(", "path", ")", "fs", ".", "close", "(", ")", "return", "retval" ]
Return :obj:`True` if ``hdfs_path`` exists in the default HDFS.
[ "Return", ":", "obj", ":", "True", "if", "hdfs_path", "exists", "in", "the", "default", "HDFS", "." ]
python
train
29.333333
5j9/wikitextparser
wikitextparser/_wikitext.py
https://github.com/5j9/wikitextparser/blob/1347425814361d7955342c53212edbb27f0ff4b5/wikitextparser/_wikitext.py#L696-L702
def parser_functions(self) -> List['ParserFunction']: """Return a list of parser function objects.""" _lststr = self._lststr _type_to_spans = self._type_to_spans return [ ParserFunction(_lststr, _type_to_spans, span, 'ParserFunction') for span in self._subspans('ParserFunction')]
[ "def", "parser_functions", "(", "self", ")", "->", "List", "[", "'ParserFunction'", "]", ":", "_lststr", "=", "self", ".", "_lststr", "_type_to_spans", "=", "self", ".", "_type_to_spans", "return", "[", "ParserFunction", "(", "_lststr", ",", "_type_to_spans", ",", "span", ",", "'ParserFunction'", ")", "for", "span", "in", "self", ".", "_subspans", "(", "'ParserFunction'", ")", "]" ]
Return a list of parser function objects.
[ "Return", "a", "list", "of", "parser", "function", "objects", "." ]
python
test
47.142857
ucbvislab/radiotool
radiotool/composer/track.py
https://github.com/ucbvislab/radiotool/blob/01c9d878a811cf400b1482896d641d9c95e83ded/radiotool/composer/track.py#L165-L182
def loudest_time(self, start=0, duration=0): """Find the loudest time in the window given by start and duration Returns frame number in context of entire track, not just the window. :param integer start: Start frame :param integer duration: Number of frames to consider from start :returns: Frame number of loudest frame :rtype: integer """ if duration == 0: duration = self.sound.nframes self.current_frame = start arr = self.read_frames(duration) # get the frame of the maximum amplitude # different names for the same thing... # max_amp_sample = a.argmax(axis=0)[a.max(axis=0).argmax()] max_amp_sample = int(np.floor(arr.argmax()/2)) + start return max_amp_sample
[ "def", "loudest_time", "(", "self", ",", "start", "=", "0", ",", "duration", "=", "0", ")", ":", "if", "duration", "==", "0", ":", "duration", "=", "self", ".", "sound", ".", "nframes", "self", ".", "current_frame", "=", "start", "arr", "=", "self", ".", "read_frames", "(", "duration", ")", "# get the frame of the maximum amplitude", "# different names for the same thing...", "# max_amp_sample = a.argmax(axis=0)[a.max(axis=0).argmax()]", "max_amp_sample", "=", "int", "(", "np", ".", "floor", "(", "arr", ".", "argmax", "(", ")", "/", "2", ")", ")", "+", "start", "return", "max_amp_sample" ]
Find the loudest time in the window given by start and duration Returns frame number in context of entire track, not just the window. :param integer start: Start frame :param integer duration: Number of frames to consider from start :returns: Frame number of loudest frame :rtype: integer
[ "Find", "the", "loudest", "time", "in", "the", "window", "given", "by", "start", "and", "duration", "Returns", "frame", "number", "in", "context", "of", "entire", "track", "not", "just", "the", "window", "." ]
python
train
43.444444
clalancette/pycdlib
pycdlib/rockridge.py
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/rockridge.py#L421-L476
def parse(self, rrstr): # type: (bytes) -> int ''' Parse a Rock Ridge POSIX File Attributes record out of a string. Parameters: rrstr - The string to parse the record out of. Returns: A string representing the RR version, either 1.09 or 1.12. ''' if self._initialized: raise pycdlibexception.PyCdlibInternalError('PX record already initialized!') (su_len, su_entry_version_unused, posix_file_mode_le, posix_file_mode_be, posix_file_links_le, posix_file_links_be, posix_file_user_id_le, posix_file_user_id_be, posix_file_group_id_le, posix_file_group_id_be) = struct.unpack_from('=BBLLLLLLLL', rrstr[:38], 2) # We assume that the caller has already checked the su_entry_version, # so we don't bother. if posix_file_mode_le != utils.swab_32bit(posix_file_mode_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file mode do not agree') if posix_file_links_le != utils.swab_32bit(posix_file_links_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file links do not agree') if posix_file_user_id_le != utils.swab_32bit(posix_file_user_id_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file user ID do not agree') if posix_file_group_id_le != utils.swab_32bit(posix_file_group_id_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file group ID do not agree') # In Rock Ridge 1.09 and 1.10, there is no serial number so the su_len # is 36, while in Rock Ridge 1.12, there is an 8-byte serial number so # su_len is 44. if su_len == 36: posix_file_serial_number_le = 0 elif su_len == 44: (posix_file_serial_number_le, posix_file_serial_number_be) = struct.unpack_from('=LL', rrstr[:44], 36) if posix_file_serial_number_le != utils.swab_32bit(posix_file_serial_number_be): raise pycdlibexception.PyCdlibInvalidISO('PX record big and little-endian file serial number do not agree') else: raise pycdlibexception.PyCdlibInvalidISO('Invalid length on Rock Ridge PX record') self.posix_file_mode = posix_file_mode_le self.posix_file_links = posix_file_links_le self.posix_user_id = posix_file_user_id_le self.posix_group_id = posix_file_group_id_le self.posix_serial_number = posix_file_serial_number_le self._initialized = True return su_len
[ "def", "parse", "(", "self", ",", "rrstr", ")", ":", "# type: (bytes) -> int", "if", "self", ".", "_initialized", ":", "raise", "pycdlibexception", ".", "PyCdlibInternalError", "(", "'PX record already initialized!'", ")", "(", "su_len", ",", "su_entry_version_unused", ",", "posix_file_mode_le", ",", "posix_file_mode_be", ",", "posix_file_links_le", ",", "posix_file_links_be", ",", "posix_file_user_id_le", ",", "posix_file_user_id_be", ",", "posix_file_group_id_le", ",", "posix_file_group_id_be", ")", "=", "struct", ".", "unpack_from", "(", "'=BBLLLLLLLL'", ",", "rrstr", "[", ":", "38", "]", ",", "2", ")", "# We assume that the caller has already checked the su_entry_version,", "# so we don't bother.", "if", "posix_file_mode_le", "!=", "utils", ".", "swab_32bit", "(", "posix_file_mode_be", ")", ":", "raise", "pycdlibexception", ".", "PyCdlibInvalidISO", "(", "'PX record big and little-endian file mode do not agree'", ")", "if", "posix_file_links_le", "!=", "utils", ".", "swab_32bit", "(", "posix_file_links_be", ")", ":", "raise", "pycdlibexception", ".", "PyCdlibInvalidISO", "(", "'PX record big and little-endian file links do not agree'", ")", "if", "posix_file_user_id_le", "!=", "utils", ".", "swab_32bit", "(", "posix_file_user_id_be", ")", ":", "raise", "pycdlibexception", ".", "PyCdlibInvalidISO", "(", "'PX record big and little-endian file user ID do not agree'", ")", "if", "posix_file_group_id_le", "!=", "utils", ".", "swab_32bit", "(", "posix_file_group_id_be", ")", ":", "raise", "pycdlibexception", ".", "PyCdlibInvalidISO", "(", "'PX record big and little-endian file group ID do not agree'", ")", "# In Rock Ridge 1.09 and 1.10, there is no serial number so the su_len", "# is 36, while in Rock Ridge 1.12, there is an 8-byte serial number so", "# su_len is 44.", "if", "su_len", "==", "36", ":", "posix_file_serial_number_le", "=", "0", "elif", "su_len", "==", "44", ":", "(", "posix_file_serial_number_le", ",", "posix_file_serial_number_be", ")", "=", "struct", ".", "unpack_from", "(", "'=LL'", ",", "rrstr", "[", ":", "44", "]", ",", "36", ")", "if", "posix_file_serial_number_le", "!=", "utils", ".", "swab_32bit", "(", "posix_file_serial_number_be", ")", ":", "raise", "pycdlibexception", ".", "PyCdlibInvalidISO", "(", "'PX record big and little-endian file serial number do not agree'", ")", "else", ":", "raise", "pycdlibexception", ".", "PyCdlibInvalidISO", "(", "'Invalid length on Rock Ridge PX record'", ")", "self", ".", "posix_file_mode", "=", "posix_file_mode_le", "self", ".", "posix_file_links", "=", "posix_file_links_le", "self", ".", "posix_user_id", "=", "posix_file_user_id_le", "self", ".", "posix_group_id", "=", "posix_file_group_id_le", "self", ".", "posix_serial_number", "=", "posix_file_serial_number_le", "self", ".", "_initialized", "=", "True", "return", "su_len" ]
Parse a Rock Ridge POSIX File Attributes record out of a string. Parameters: rrstr - The string to parse the record out of. Returns: A string representing the RR version, either 1.09 or 1.12.
[ "Parse", "a", "Rock", "Ridge", "POSIX", "File", "Attributes", "record", "out", "of", "a", "string", "." ]
python
train
47.553571
jeffh/sniffer
sniffer/scanner/base.py
https://github.com/jeffh/sniffer/blob/8e4c3e77743aef08109ea0225b4a6536d4e60270/sniffer/scanner/base.py#L179-L192
def observe(self, event_name, func): """ event_name := {'created', 'modified', 'deleted'}, list, tuple Attaches a function to run to a particular event. The function must be unique to be removed cleanly. Alternatively, event_name can be an list/ tuple if any of the string possibilities to be added on multiple events """ if isinstance(event_name, list) or isinstance(event_name, tuple): for name in event_name: self.observe(name, func) return self.log(func.__name__, "attached to", event_name) self._modify_event(event_name, 'append', func)
[ "def", "observe", "(", "self", ",", "event_name", ",", "func", ")", ":", "if", "isinstance", "(", "event_name", ",", "list", ")", "or", "isinstance", "(", "event_name", ",", "tuple", ")", ":", "for", "name", "in", "event_name", ":", "self", ".", "observe", "(", "name", ",", "func", ")", "return", "self", ".", "log", "(", "func", ".", "__name__", ",", "\"attached to\"", ",", "event_name", ")", "self", ".", "_modify_event", "(", "event_name", ",", "'append'", ",", "func", ")" ]
event_name := {'created', 'modified', 'deleted'}, list, tuple Attaches a function to run to a particular event. The function must be unique to be removed cleanly. Alternatively, event_name can be an list/ tuple if any of the string possibilities to be added on multiple events
[ "event_name", ":", "=", "{", "created", "modified", "deleted", "}", "list", "tuple" ]
python
train
45.785714
redcap-tools/PyCap
redcap/project.py
https://github.com/redcap-tools/PyCap/blob/f44c9b62a4f62675aa609c06608663f37e12097e/redcap/project.py#L114-L123
def is_longitudinal(self): """ Returns ------- boolean : longitudinal status of this project """ return len(self.events) > 0 and \ len(self.arm_nums) > 0 and \ len(self.arm_names) > 0
[ "def", "is_longitudinal", "(", "self", ")", ":", "return", "len", "(", "self", ".", "events", ")", ">", "0", "and", "len", "(", "self", ".", "arm_nums", ")", ">", "0", "and", "len", "(", "self", ".", "arm_names", ")", ">", "0" ]
Returns ------- boolean : longitudinal status of this project
[ "Returns", "-------", "boolean", ":", "longitudinal", "status", "of", "this", "project" ]
python
train
25.8
MartinThoma/hwrt
hwrt/features.py
https://github.com/MartinThoma/hwrt/blob/725c21a3d0f5a30b8492cbc184b3688ceb364e1c/hwrt/features.py#L34-L61
def get_features(model_description_features): """Get features from a list of dictionaries Parameters ---------- model_description_features : list of dictionaries Examples -------- >>> l = [{'StrokeCount': None}, \ {'ConstantPointCoordinates': \ [{'strokes': 4}, \ {'points_per_stroke': 81}, \ {'fill_empty_with': 0}, \ {'pen_down': False}] \ } \ ] >>> get_features(l) [StrokeCount, ConstantPointCoordinates - strokes: 4 - points per stroke: 81 - fill empty with: 0 - pen down feature: False ] """ return utils.get_objectlist(model_description_features, config_key='features', module=sys.modules[__name__])
[ "def", "get_features", "(", "model_description_features", ")", ":", "return", "utils", ".", "get_objectlist", "(", "model_description_features", ",", "config_key", "=", "'features'", ",", "module", "=", "sys", ".", "modules", "[", "__name__", "]", ")" ]
Get features from a list of dictionaries Parameters ---------- model_description_features : list of dictionaries Examples -------- >>> l = [{'StrokeCount': None}, \ {'ConstantPointCoordinates': \ [{'strokes': 4}, \ {'points_per_stroke': 81}, \ {'fill_empty_with': 0}, \ {'pen_down': False}] \ } \ ] >>> get_features(l) [StrokeCount, ConstantPointCoordinates - strokes: 4 - points per stroke: 81 - fill empty with: 0 - pen down feature: False ]
[ "Get", "features", "from", "a", "list", "of", "dictionaries" ]
python
train
28.892857
dropbox/pyannotate
pyannotate_runtime/collect_types.py
https://github.com/dropbox/pyannotate/blob/d128c76b8a86f208e5c78716f2a917003650cebc/pyannotate_runtime/collect_types.py#L711-L727
def _make_sampling_sequence(n): # type: (int) -> List[int] """ Return a list containing the proposed call event sampling sequence. Return events are paired with call events and not counted separately. This is 0, 1, 2, ..., 4 plus 50, 100, 150, 200, etc. The total list size is n. """ seq = list(range(5)) i = 50 while len(seq) < n: seq.append(i) i += 50 return seq
[ "def", "_make_sampling_sequence", "(", "n", ")", ":", "# type: (int) -> List[int]", "seq", "=", "list", "(", "range", "(", "5", ")", ")", "i", "=", "50", "while", "len", "(", "seq", ")", "<", "n", ":", "seq", ".", "append", "(", "i", ")", "i", "+=", "50", "return", "seq" ]
Return a list containing the proposed call event sampling sequence. Return events are paired with call events and not counted separately. This is 0, 1, 2, ..., 4 plus 50, 100, 150, 200, etc. The total list size is n.
[ "Return", "a", "list", "containing", "the", "proposed", "call", "event", "sampling", "sequence", "." ]
python
train
24.176471
casouri/launchdman
launchdman/__init__.py
https://github.com/casouri/launchdman/blob/c83840e640cb075fab2534049f1e25fac6933c64/launchdman/__init__.py#L894-L898
def minute(self): '''set unit to minute''' self.magnification = 60 self._update(self.baseNumber, self.magnification) return self
[ "def", "minute", "(", "self", ")", ":", "self", ".", "magnification", "=", "60", "self", ".", "_update", "(", "self", ".", "baseNumber", ",", "self", ".", "magnification", ")", "return", "self" ]
set unit to minute
[ "set", "unit", "to", "minute" ]
python
train
31.2
ultrabug/py3status
py3status/i3status.py
https://github.com/ultrabug/py3status/blob/4c105f1b44f7384ca4f7da5f821a47e468c7dee2/py3status/i3status.py#L131-L140
def run(self): """ updates the modules output. Currently only time and tztime need to do this """ if self.update_time_value(): self.i3status.py3_wrapper.notify_update(self.module_name) due_time = self.py3.time_in(sync_to=self.time_delta) self.i3status.py3_wrapper.timeout_queue_add(self, due_time)
[ "def", "run", "(", "self", ")", ":", "if", "self", ".", "update_time_value", "(", ")", ":", "self", ".", "i3status", ".", "py3_wrapper", ".", "notify_update", "(", "self", ".", "module_name", ")", "due_time", "=", "self", ".", "py3", ".", "time_in", "(", "sync_to", "=", "self", ".", "time_delta", ")", "self", ".", "i3status", ".", "py3_wrapper", ".", "timeout_queue_add", "(", "self", ",", "due_time", ")" ]
updates the modules output. Currently only time and tztime need to do this
[ "updates", "the", "modules", "output", ".", "Currently", "only", "time", "and", "tztime", "need", "to", "do", "this" ]
python
train
35.7
flatangle/flatlib
flatlib/lists.py
https://github.com/flatangle/flatlib/blob/44e05b2991a296c678adbc17a1d51b6a21bc867c/flatlib/lists.py#L63-L66
def getObjectsInHouse(self, house): """ Returns a list with all objects in a house. """ res = [obj for obj in self if house.hasObject(obj)] return ObjectList(res)
[ "def", "getObjectsInHouse", "(", "self", ",", "house", ")", ":", "res", "=", "[", "obj", "for", "obj", "in", "self", "if", "house", ".", "hasObject", "(", "obj", ")", "]", "return", "ObjectList", "(", "res", ")" ]
Returns a list with all objects in a house.
[ "Returns", "a", "list", "with", "all", "objects", "in", "a", "house", "." ]
python
train
45.75
simpleai-team/simpleai
samples/search/missioners.py
https://github.com/simpleai-team/simpleai/blob/2836befa7e970013f62e0ee75562652aacac6f65/samples/search/missioners.py#L36-L43
def result(self, s, a): '''Result of applying an action to a state.''' # result: boat on opposite side, and numbers of missioners and # cannibals updated according to the move if s[2] == 0: return (s[0] - a[1][0], s[1] - a[1][1], 1) else: return (s[0] + a[1][0], s[1] + a[1][1], 0)
[ "def", "result", "(", "self", ",", "s", ",", "a", ")", ":", "# result: boat on opposite side, and numbers of missioners and", "# cannibals updated according to the move", "if", "s", "[", "2", "]", "==", "0", ":", "return", "(", "s", "[", "0", "]", "-", "a", "[", "1", "]", "[", "0", "]", ",", "s", "[", "1", "]", "-", "a", "[", "1", "]", "[", "1", "]", ",", "1", ")", "else", ":", "return", "(", "s", "[", "0", "]", "+", "a", "[", "1", "]", "[", "0", "]", ",", "s", "[", "1", "]", "+", "a", "[", "1", "]", "[", "1", "]", ",", "0", ")" ]
Result of applying an action to a state.
[ "Result", "of", "applying", "an", "action", "to", "a", "state", "." ]
python
train
42.25
CEA-COSMIC/ModOpt
modopt/opt/linear.py
https://github.com/CEA-COSMIC/ModOpt/blob/019b189cb897cbb4d210c44a100daaa08468830c/modopt/opt/linear.py#L186-L233
def _check_inputs(self, operators, weights): """ Check Inputs This method cheks that the input operators and weights are correctly formatted Parameters ---------- operators : list, tuple or np.ndarray List of linear operator class instances weights : list, tuple or np.ndarray List of weights for combining the linear adjoint operator results Returns ------- tuple operators and weights Raises ------ ValueError If the number of weights does not match the number of operators TypeError If the individual weight values are not floats """ operators = self._check_type(operators) for operator in operators: if not hasattr(operator, 'op'): raise ValueError('Operators must contain "op" method.') if not hasattr(operator, 'adj_op'): raise ValueError('Operators must contain "adj_op" method.') operator.op = check_callable(operator.op) operator.cost = check_callable(operator.adj_op) if not isinstance(weights, type(None)): weights = self._check_type(weights) if weights.size != operators.size: raise ValueError('The number of weights must match the ' 'number of operators.') if not np.issubdtype(weights.dtype, np.floating): raise TypeError('The weights must be a list of float values.') return operators, weights
[ "def", "_check_inputs", "(", "self", ",", "operators", ",", "weights", ")", ":", "operators", "=", "self", ".", "_check_type", "(", "operators", ")", "for", "operator", "in", "operators", ":", "if", "not", "hasattr", "(", "operator", ",", "'op'", ")", ":", "raise", "ValueError", "(", "'Operators must contain \"op\" method.'", ")", "if", "not", "hasattr", "(", "operator", ",", "'adj_op'", ")", ":", "raise", "ValueError", "(", "'Operators must contain \"adj_op\" method.'", ")", "operator", ".", "op", "=", "check_callable", "(", "operator", ".", "op", ")", "operator", ".", "cost", "=", "check_callable", "(", "operator", ".", "adj_op", ")", "if", "not", "isinstance", "(", "weights", ",", "type", "(", "None", ")", ")", ":", "weights", "=", "self", ".", "_check_type", "(", "weights", ")", "if", "weights", ".", "size", "!=", "operators", ".", "size", ":", "raise", "ValueError", "(", "'The number of weights must match the '", "'number of operators.'", ")", "if", "not", "np", ".", "issubdtype", "(", "weights", ".", "dtype", ",", "np", ".", "floating", ")", ":", "raise", "TypeError", "(", "'The weights must be a list of float values.'", ")", "return", "operators", ",", "weights" ]
Check Inputs This method cheks that the input operators and weights are correctly formatted Parameters ---------- operators : list, tuple or np.ndarray List of linear operator class instances weights : list, tuple or np.ndarray List of weights for combining the linear adjoint operator results Returns ------- tuple operators and weights Raises ------ ValueError If the number of weights does not match the number of operators TypeError If the individual weight values are not floats
[ "Check", "Inputs" ]
python
train
32.375
neurodata/ndio
ndio/remote/neurodata.py
https://github.com/neurodata/ndio/blob/792dd5816bc770b05a3db2f4327da42ff6253531/ndio/remote/neurodata.py#L549-L600
def create_dataset(self, name, x_img_size, y_img_size, z_img_size, x_vox_res, y_vox_res, z_vox_res, x_offset=0, y_offset=0, z_offset=0, scaling_levels=0, scaling_option=0, dataset_description="", is_public=0): """ Creates a dataset. Arguments: name (str): Name of dataset x_img_size (int): max x coordinate of image size y_img_size (int): max y coordinate of image size z_img_size (int): max z coordinate of image size x_vox_res (float): x voxel resolution y_vox_res (float): y voxel resolution z_vox_res (float): z voxel resolution x_offset (int): x offset amount y_offset (int): y offset amount z_offset (int): z offset amount scaling_levels (int): Level of resolution scaling scaling_option (int): Z slices is 0 or Isotropic is 1 dataset_description (str): Your description of the dataset is_public (int): 1 'true' or 0 'false' for viewability of data set in public Returns: bool: True if dataset created, False if not """ return self.resources.create_dataset(name, x_img_size, y_img_size, z_img_size, x_vox_res, y_vox_res, z_vox_res, x_offset, y_offset, z_offset, scaling_levels, scaling_option, dataset_description, is_public)
[ "def", "create_dataset", "(", "self", ",", "name", ",", "x_img_size", ",", "y_img_size", ",", "z_img_size", ",", "x_vox_res", ",", "y_vox_res", ",", "z_vox_res", ",", "x_offset", "=", "0", ",", "y_offset", "=", "0", ",", "z_offset", "=", "0", ",", "scaling_levels", "=", "0", ",", "scaling_option", "=", "0", ",", "dataset_description", "=", "\"\"", ",", "is_public", "=", "0", ")", ":", "return", "self", ".", "resources", ".", "create_dataset", "(", "name", ",", "x_img_size", ",", "y_img_size", ",", "z_img_size", ",", "x_vox_res", ",", "y_vox_res", ",", "z_vox_res", ",", "x_offset", ",", "y_offset", ",", "z_offset", ",", "scaling_levels", ",", "scaling_option", ",", "dataset_description", ",", "is_public", ")" ]
Creates a dataset. Arguments: name (str): Name of dataset x_img_size (int): max x coordinate of image size y_img_size (int): max y coordinate of image size z_img_size (int): max z coordinate of image size x_vox_res (float): x voxel resolution y_vox_res (float): y voxel resolution z_vox_res (float): z voxel resolution x_offset (int): x offset amount y_offset (int): y offset amount z_offset (int): z offset amount scaling_levels (int): Level of resolution scaling scaling_option (int): Z slices is 0 or Isotropic is 1 dataset_description (str): Your description of the dataset is_public (int): 1 'true' or 0 'false' for viewability of data set in public Returns: bool: True if dataset created, False if not
[ "Creates", "a", "dataset", "." ]
python
test
42.942308
estnltk/estnltk
estnltk/prettyprinter/marker.py
https://github.com/estnltk/estnltk/blob/28ae334a68a0673072febc318635f04da0dcc54a/estnltk/prettyprinter/marker.py#L100-L132
def create_tags_with_concatenated_css_classes(tags): """Function that creates <mark> tags such that they are not overlapping. In order to do this, it concatenates the css classes and stores the concatenated result in new tags. """ current_classes = set() result = [] for pos, group in group_tags_at_same_position(tags): opening, closing = get_opening_closing_tags(group) # handle closing tags at current position closing_added = False if len(closing) > 0: closing_tag = Tag(pos, False, '') for tag in closing: current_classes.remove(tag.css_class) result.append(closing_tag) closing_added = True # handle opening tags at current position opening_added = False if len(opening) > 0: # handle the begin of an overlap if not closing_added and len(current_classes) > 0: result.append(Tag(pos, False, '')) for tag in opening: current_classes.add(tag.css_class) opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) opening_added = True # handle the end of an overlap if closing_added and not opening_added and len(current_classes) > 0: opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) return result
[ "def", "create_tags_with_concatenated_css_classes", "(", "tags", ")", ":", "current_classes", "=", "set", "(", ")", "result", "=", "[", "]", "for", "pos", ",", "group", "in", "group_tags_at_same_position", "(", "tags", ")", ":", "opening", ",", "closing", "=", "get_opening_closing_tags", "(", "group", ")", "# handle closing tags at current position", "closing_added", "=", "False", "if", "len", "(", "closing", ")", ">", "0", ":", "closing_tag", "=", "Tag", "(", "pos", ",", "False", ",", "''", ")", "for", "tag", "in", "closing", ":", "current_classes", ".", "remove", "(", "tag", ".", "css_class", ")", "result", ".", "append", "(", "closing_tag", ")", "closing_added", "=", "True", "# handle opening tags at current position", "opening_added", "=", "False", "if", "len", "(", "opening", ")", ">", "0", ":", "# handle the begin of an overlap", "if", "not", "closing_added", "and", "len", "(", "current_classes", ")", ">", "0", ":", "result", ".", "append", "(", "Tag", "(", "pos", ",", "False", ",", "''", ")", ")", "for", "tag", "in", "opening", ":", "current_classes", ".", "add", "(", "tag", ".", "css_class", ")", "opening_tag", "=", "Tag", "(", "pos", ",", "True", ",", "' '", ".", "join", "(", "sorted", "(", "current_classes", ")", ")", ")", "result", ".", "append", "(", "opening_tag", ")", "opening_added", "=", "True", "# handle the end of an overlap", "if", "closing_added", "and", "not", "opening_added", "and", "len", "(", "current_classes", ")", ">", "0", ":", "opening_tag", "=", "Tag", "(", "pos", ",", "True", ",", "' '", ".", "join", "(", "sorted", "(", "current_classes", ")", ")", ")", "result", ".", "append", "(", "opening_tag", ")", "return", "result" ]
Function that creates <mark> tags such that they are not overlapping. In order to do this, it concatenates the css classes and stores the concatenated result in new tags.
[ "Function", "that", "creates", "<mark", ">", "tags", "such", "that", "they", "are", "not", "overlapping", ".", "In", "order", "to", "do", "this", "it", "concatenates", "the", "css", "classes", "and", "stores", "the", "concatenated", "result", "in", "new", "tags", "." ]
python
train
43.484848
hyperledger/sawtooth-core
rest_api/sawtooth_rest_api/route_handlers.py
https://github.com/hyperledger/sawtooth-core/blob/8cf473bc2207e51f02bd182d825158a57d72b098/rest_api/sawtooth_rest_api/route_handlers.py#L351-L375
async def fetch_block(self, request): """Fetches a specific block from the validator, specified by id. Request: path: - block_id: The 128-character id of the block to be fetched Response: data: A JSON object with the data from the fully expanded Block link: The link to this exact query """ error_traps = [error_handlers.BlockNotFoundTrap] block_id = request.match_info.get('block_id', '') self._validate_id(block_id) response = await self._query_validator( Message.CLIENT_BLOCK_GET_BY_ID_REQUEST, client_block_pb2.ClientBlockGetResponse, client_block_pb2.ClientBlockGetByIdRequest(block_id=block_id), error_traps) return self._wrap_response( request, data=self._expand_block(response['block']), metadata=self._get_metadata(request, response))
[ "async", "def", "fetch_block", "(", "self", ",", "request", ")", ":", "error_traps", "=", "[", "error_handlers", ".", "BlockNotFoundTrap", "]", "block_id", "=", "request", ".", "match_info", ".", "get", "(", "'block_id'", ",", "''", ")", "self", ".", "_validate_id", "(", "block_id", ")", "response", "=", "await", "self", ".", "_query_validator", "(", "Message", ".", "CLIENT_BLOCK_GET_BY_ID_REQUEST", ",", "client_block_pb2", ".", "ClientBlockGetResponse", ",", "client_block_pb2", ".", "ClientBlockGetByIdRequest", "(", "block_id", "=", "block_id", ")", ",", "error_traps", ")", "return", "self", ".", "_wrap_response", "(", "request", ",", "data", "=", "self", ".", "_expand_block", "(", "response", "[", "'block'", "]", ")", ",", "metadata", "=", "self", ".", "_get_metadata", "(", "request", ",", "response", ")", ")" ]
Fetches a specific block from the validator, specified by id. Request: path: - block_id: The 128-character id of the block to be fetched Response: data: A JSON object with the data from the fully expanded Block link: The link to this exact query
[ "Fetches", "a", "specific", "block", "from", "the", "validator", "specified", "by", "id", ".", "Request", ":", "path", ":", "-", "block_id", ":", "The", "128", "-", "character", "id", "of", "the", "block", "to", "be", "fetched" ]
python
train
37.24
JdeRobot/base
src/drivers/MAVLinkServer/MAVProxy/modules/mavproxy_nsh.py
https://github.com/JdeRobot/base/blob/303b18992785b2fe802212f2d758a60873007f1f/src/drivers/MAVLinkServer/MAVProxy/modules/mavproxy_nsh.py#L50-L68
def send(self, line): '''send some bytes''' line = line.strip() if line == ".": self.stop() return mav = self.master.mav if line != '+++': line += "\r\n" buf = [ord(x) for x in line] buf.extend([0]*(70-len(buf))) flags = mavutil.mavlink.SERIAL_CONTROL_FLAG_RESPOND flags |= mavutil.mavlink.SERIAL_CONTROL_FLAG_MULTI flags |= mavutil.mavlink.SERIAL_CONTROL_FLAG_EXCLUSIVE mav.serial_control_send(self.serial_settings.port, flags, 0, self.serial_settings.baudrate, len(line), buf)
[ "def", "send", "(", "self", ",", "line", ")", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "line", "==", "\".\"", ":", "self", ".", "stop", "(", ")", "return", "mav", "=", "self", ".", "master", ".", "mav", "if", "line", "!=", "'+++'", ":", "line", "+=", "\"\\r\\n\"", "buf", "=", "[", "ord", "(", "x", ")", "for", "x", "in", "line", "]", "buf", ".", "extend", "(", "[", "0", "]", "*", "(", "70", "-", "len", "(", "buf", ")", ")", ")", "flags", "=", "mavutil", ".", "mavlink", ".", "SERIAL_CONTROL_FLAG_RESPOND", "flags", "|=", "mavutil", ".", "mavlink", ".", "SERIAL_CONTROL_FLAG_MULTI", "flags", "|=", "mavutil", ".", "mavlink", ".", "SERIAL_CONTROL_FLAG_EXCLUSIVE", "mav", ".", "serial_control_send", "(", "self", ".", "serial_settings", ".", "port", ",", "flags", ",", "0", ",", "self", ".", "serial_settings", ".", "baudrate", ",", "len", "(", "line", ")", ",", "buf", ")" ]
send some bytes
[ "send", "some", "bytes" ]
python
train
35.842105
saltstack/salt
salt/utils/sanitizers.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/utils/sanitizers.py#L44-L51
def filename(value): ''' Remove everything that would affect paths in the filename :param value: :return: ''' return re.sub('[^a-zA-Z0-9.-_ ]', '', os.path.basename(InputSanitizer.trim(value)))
[ "def", "filename", "(", "value", ")", ":", "return", "re", ".", "sub", "(", "'[^a-zA-Z0-9.-_ ]'", ",", "''", ",", "os", ".", "path", ".", "basename", "(", "InputSanitizer", ".", "trim", "(", "value", ")", ")", ")" ]
Remove everything that would affect paths in the filename :param value: :return:
[ "Remove", "everything", "that", "would", "affect", "paths", "in", "the", "filename" ]
python
train
29.375
tradenity/python-sdk
tradenity/resources/table_rate_shipping.py
https://github.com/tradenity/python-sdk/blob/d13fbe23f4d6ff22554c6d8d2deaf209371adaf1/tradenity/resources/table_rate_shipping.py#L561-L581
def delete_table_rate_shipping_by_id(cls, table_rate_shipping_id, **kwargs): """Delete TableRateShipping Delete an instance of TableRateShipping by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_table_rate_shipping_by_id(table_rate_shipping_id, async=True) >>> result = thread.get() :param async bool :param str table_rate_shipping_id: ID of tableRateShipping to delete. (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._delete_table_rate_shipping_by_id_with_http_info(table_rate_shipping_id, **kwargs) else: (data) = cls._delete_table_rate_shipping_by_id_with_http_info(table_rate_shipping_id, **kwargs) return data
[ "def", "delete_table_rate_shipping_by_id", "(", "cls", ",", "table_rate_shipping_id", ",", "*", "*", "kwargs", ")", ":", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'async'", ")", ":", "return", "cls", ".", "_delete_table_rate_shipping_by_id_with_http_info", "(", "table_rate_shipping_id", ",", "*", "*", "kwargs", ")", "else", ":", "(", "data", ")", "=", "cls", ".", "_delete_table_rate_shipping_by_id_with_http_info", "(", "table_rate_shipping_id", ",", "*", "*", "kwargs", ")", "return", "data" ]
Delete TableRateShipping Delete an instance of TableRateShipping by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_table_rate_shipping_by_id(table_rate_shipping_id, async=True) >>> result = thread.get() :param async bool :param str table_rate_shipping_id: ID of tableRateShipping to delete. (required) :return: None If the method is called asynchronously, returns the request thread.
[ "Delete", "TableRateShipping" ]
python
train
47.52381
pallets/werkzeug
src/werkzeug/datastructures.py
https://github.com/pallets/werkzeug/blob/a220671d66755a94630a212378754bb432811158/src/werkzeug/datastructures.py#L2333-L2341
def to_header(self): """Converts the object back into an HTTP header.""" ranges = [] for begin, end in self.ranges: if end is None: ranges.append("%s-" % begin if begin >= 0 else str(begin)) else: ranges.append("%s-%s" % (begin, end - 1)) return "%s=%s" % (self.units, ",".join(ranges))
[ "def", "to_header", "(", "self", ")", ":", "ranges", "=", "[", "]", "for", "begin", ",", "end", "in", "self", ".", "ranges", ":", "if", "end", "is", "None", ":", "ranges", ".", "append", "(", "\"%s-\"", "%", "begin", "if", "begin", ">=", "0", "else", "str", "(", "begin", ")", ")", "else", ":", "ranges", ".", "append", "(", "\"%s-%s\"", "%", "(", "begin", ",", "end", "-", "1", ")", ")", "return", "\"%s=%s\"", "%", "(", "self", ".", "units", ",", "\",\"", ".", "join", "(", "ranges", ")", ")" ]
Converts the object back into an HTTP header.
[ "Converts", "the", "object", "back", "into", "an", "HTTP", "header", "." ]
python
train
40.666667
pyBookshelf/bookshelf
bookshelf/api_v2/pkg.py
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/pkg.py#L241-L259
def yum_install_from_url(pkg_name, url): """ installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package """ if is_package_installed(distribution='el', pkg=pkg_name) is False: log_green( "installing %s from %s" % (pkg_name, url)) with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): result = sudo("rpm -i %s" % url) if result.return_code == 0: return True elif result.return_code == 1: return False else: # print error to user print(result) raise SystemExit()
[ "def", "yum_install_from_url", "(", "pkg_name", ",", "url", ")", ":", "if", "is_package_installed", "(", "distribution", "=", "'el'", ",", "pkg", "=", "pkg_name", ")", "is", "False", ":", "log_green", "(", "\"installing %s from %s\"", "%", "(", "pkg_name", ",", "url", ")", ")", "with", "settings", "(", "hide", "(", "'warnings'", ",", "'running'", ",", "'stdout'", ",", "'stderr'", ")", ",", "warn_only", "=", "True", ",", "capture", "=", "True", ")", ":", "result", "=", "sudo", "(", "\"rpm -i %s\"", "%", "url", ")", "if", "result", ".", "return_code", "==", "0", ":", "return", "True", "elif", "result", ".", "return_code", "==", "1", ":", "return", "False", "else", ":", "# print error to user", "print", "(", "result", ")", "raise", "SystemExit", "(", ")" ]
installs a pkg from a url p pkg_name: the name of the package to install p url: the full URL for the rpm package
[ "installs", "a", "pkg", "from", "a", "url", "p", "pkg_name", ":", "the", "name", "of", "the", "package", "to", "install", "p", "url", ":", "the", "full", "URL", "for", "the", "rpm", "package" ]
python
train
38.263158
guaix-ucm/pyemir
emirdrp/processing/wavecal/islitlet_progress.py
https://github.com/guaix-ucm/pyemir/blob/fef6bbabcb13f80123cafd1800a0f508a3c21702/emirdrp/processing/wavecal/islitlet_progress.py#L27-L45
def islitlet_progress(islitlet, islitlet_max): """Auxiliary function to print out progress in loop of slitlets. Parameters ---------- islitlet : int Current slitlet number. islitlet_max : int Maximum slitlet number. """ if islitlet % 10 == 0: cout = str(islitlet // 10) else: cout = '.' sys.stdout.write(cout) if islitlet == islitlet_max: sys.stdout.write('\n') sys.stdout.flush()
[ "def", "islitlet_progress", "(", "islitlet", ",", "islitlet_max", ")", ":", "if", "islitlet", "%", "10", "==", "0", ":", "cout", "=", "str", "(", "islitlet", "//", "10", ")", "else", ":", "cout", "=", "'.'", "sys", ".", "stdout", ".", "write", "(", "cout", ")", "if", "islitlet", "==", "islitlet_max", ":", "sys", ".", "stdout", ".", "write", "(", "'\\n'", ")", "sys", ".", "stdout", ".", "flush", "(", ")" ]
Auxiliary function to print out progress in loop of slitlets. Parameters ---------- islitlet : int Current slitlet number. islitlet_max : int Maximum slitlet number.
[ "Auxiliary", "function", "to", "print", "out", "progress", "in", "loop", "of", "slitlets", "." ]
python
train
23.578947
shoebot/shoebot
lib/web/cache.py
https://github.com/shoebot/shoebot/blob/d554c1765c1899fa25727c9fc6805d221585562b/lib/web/cache.py#L78-L89
def age(self, id): """ Returns the age of the cache entry, in days. """ path = self.hash(id) if os.path.exists(path): modified = datetime.datetime.fromtimestamp(os.stat(path)[8]) age = datetime.datetime.today() - modified return age.days else: return 0
[ "def", "age", "(", "self", ",", "id", ")", ":", "path", "=", "self", ".", "hash", "(", "id", ")", "if", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "modified", "=", "datetime", ".", "datetime", ".", "fromtimestamp", "(", "os", ".", "stat", "(", "path", ")", "[", "8", "]", ")", "age", "=", "datetime", ".", "datetime", ".", "today", "(", ")", "-", "modified", "return", "age", ".", "days", "else", ":", "return", "0" ]
Returns the age of the cache entry, in days.
[ "Returns", "the", "age", "of", "the", "cache", "entry", "in", "days", "." ]
python
valid
27.583333
Robpol86/terminaltables
terminaltables/github_table.py
https://github.com/Robpol86/terminaltables/blob/ad8f46e50afdbaea377fc1f713bc0e7a31c4fccc/terminaltables/github_table.py#L56-L70
def gen_table(self, inner_widths, inner_heights, outer_widths): """Combine everything and yield every line of the entire table with borders. :param iter inner_widths: List of widths (no padding) for each column. :param iter inner_heights: List of heights (no padding) for each row. :param iter outer_widths: List of widths (with padding) for each column. :return: """ for i, row in enumerate(self.table_data): # Yield the row line by line (e.g. multi-line rows). for line in self.gen_row_lines(row, 'row', inner_widths, inner_heights[i]): yield line # Yield heading separator. if i == 0: yield self.horizontal_border(None, outer_widths)
[ "def", "gen_table", "(", "self", ",", "inner_widths", ",", "inner_heights", ",", "outer_widths", ")", ":", "for", "i", ",", "row", "in", "enumerate", "(", "self", ".", "table_data", ")", ":", "# Yield the row line by line (e.g. multi-line rows).", "for", "line", "in", "self", ".", "gen_row_lines", "(", "row", ",", "'row'", ",", "inner_widths", ",", "inner_heights", "[", "i", "]", ")", ":", "yield", "line", "# Yield heading separator.", "if", "i", "==", "0", ":", "yield", "self", ".", "horizontal_border", "(", "None", ",", "outer_widths", ")" ]
Combine everything and yield every line of the entire table with borders. :param iter inner_widths: List of widths (no padding) for each column. :param iter inner_heights: List of heights (no padding) for each row. :param iter outer_widths: List of widths (with padding) for each column. :return:
[ "Combine", "everything", "and", "yield", "every", "line", "of", "the", "entire", "table", "with", "borders", "." ]
python
train
50.6
b3j0f/utils
b3j0f/utils/ut.py
https://github.com/b3j0f/utils/blob/793871b98e90fd1c7ce9ef0dce839cc18fcbc6ff/b3j0f/utils/ut.py#L40-L54
def _subset(subset, superset): """True if subset is a subset of superset. :param dict subset: subset to compare. :param dict superset: superset to compare. :return: True iif all pairs (key, value) of subset are in superset. :rtype: bool """ result = True for k in subset: result = k in superset and subset[k] == superset[k] if not result: break return result
[ "def", "_subset", "(", "subset", ",", "superset", ")", ":", "result", "=", "True", "for", "k", "in", "subset", ":", "result", "=", "k", "in", "superset", "and", "subset", "[", "k", "]", "==", "superset", "[", "k", "]", "if", "not", "result", ":", "break", "return", "result" ]
True if subset is a subset of superset. :param dict subset: subset to compare. :param dict superset: superset to compare. :return: True iif all pairs (key, value) of subset are in superset. :rtype: bool
[ "True", "if", "subset", "is", "a", "subset", "of", "superset", "." ]
python
train
27.333333
shaunduncan/helga-facts
helga_facts.py
https://github.com/shaunduncan/helga-facts/blob/956b1d93abccdaaf318d7cac4451edc7e73bf5e9/helga_facts.py#L80-L86
def forget_fact(term): """ Forgets a fact by removing it from the database """ logger.info('Removing fact %s', term) db.facts.remove({'term': term_regex(term)}) return random.choice(ACKS)
[ "def", "forget_fact", "(", "term", ")", ":", "logger", ".", "info", "(", "'Removing fact %s'", ",", "term", ")", "db", ".", "facts", ".", "remove", "(", "{", "'term'", ":", "term_regex", "(", "term", ")", "}", ")", "return", "random", ".", "choice", "(", "ACKS", ")" ]
Forgets a fact by removing it from the database
[ "Forgets", "a", "fact", "by", "removing", "it", "from", "the", "database" ]
python
train
29.285714
honzamach/pydgets
pydgets/widgets.py
https://github.com/honzamach/pydgets/blob/5ca4ce19fc2d9b5f41441fb9163810f8ca502e79/pydgets/widgets.py#L1233-L1267
def _render_content(self, content, **settings): """ Perform widget rendering, but do not print anything. """ result = [] columns = settings[self.SETTING_COLUMNS] # Format each table cell into string. (columns, content) = self.table_format(columns, content) # Enumerate each table row. if settings[self.SETTING_FLAG_ENUMERATE]: (columns, content) = self.table_enumerate(columns, content) # Calculate the dimensions of each table column. dimensions = self.table_measure(columns, content) # Display table header. sb = {k: settings[k] for k in (self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} result.append(self.fmt_border(dimensions, 't', **sb)) if settings[self.SETTING_FLAG_HEADER]: s = {k: settings[k] for k in (self.SETTING_FLAG_PLAIN, self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} s[self.SETTING_TEXT_FORMATING] = settings[self.SETTING_HEADER_FORMATING] result.append(self.fmt_row_header(columns, dimensions, **s)) result.append(self.fmt_border(dimensions, 'm', **sb)) # Display table body. for row in content: s = {k: settings[k] for k in (self.SETTING_FLAG_PLAIN, self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} s[self.SETTING_TEXT_FORMATING] = settings[self.SETTING_TEXT_FORMATING] result.append(self.fmt_row(columns, dimensions, row, **s)) # Display table footer result.append(self.fmt_border(dimensions, 'b', **sb)) return result
[ "def", "_render_content", "(", "self", ",", "content", ",", "*", "*", "settings", ")", ":", "result", "=", "[", "]", "columns", "=", "settings", "[", "self", ".", "SETTING_COLUMNS", "]", "# Format each table cell into string.", "(", "columns", ",", "content", ")", "=", "self", ".", "table_format", "(", "columns", ",", "content", ")", "# Enumerate each table row.", "if", "settings", "[", "self", ".", "SETTING_FLAG_ENUMERATE", "]", ":", "(", "columns", ",", "content", ")", "=", "self", ".", "table_enumerate", "(", "columns", ",", "content", ")", "# Calculate the dimensions of each table column.", "dimensions", "=", "self", ".", "table_measure", "(", "columns", ",", "content", ")", "# Display table header.", "sb", "=", "{", "k", ":", "settings", "[", "k", "]", "for", "k", "in", "(", "self", ".", "SETTING_BORDER_STYLE", ",", "self", ".", "SETTING_BORDER_FORMATING", ")", "}", "result", ".", "append", "(", "self", ".", "fmt_border", "(", "dimensions", ",", "'t'", ",", "*", "*", "sb", ")", ")", "if", "settings", "[", "self", ".", "SETTING_FLAG_HEADER", "]", ":", "s", "=", "{", "k", ":", "settings", "[", "k", "]", "for", "k", "in", "(", "self", ".", "SETTING_FLAG_PLAIN", ",", "self", ".", "SETTING_BORDER_STYLE", ",", "self", ".", "SETTING_BORDER_FORMATING", ")", "}", "s", "[", "self", ".", "SETTING_TEXT_FORMATING", "]", "=", "settings", "[", "self", ".", "SETTING_HEADER_FORMATING", "]", "result", ".", "append", "(", "self", ".", "fmt_row_header", "(", "columns", ",", "dimensions", ",", "*", "*", "s", ")", ")", "result", ".", "append", "(", "self", ".", "fmt_border", "(", "dimensions", ",", "'m'", ",", "*", "*", "sb", ")", ")", "# Display table body.", "for", "row", "in", "content", ":", "s", "=", "{", "k", ":", "settings", "[", "k", "]", "for", "k", "in", "(", "self", ".", "SETTING_FLAG_PLAIN", ",", "self", ".", "SETTING_BORDER_STYLE", ",", "self", ".", "SETTING_BORDER_FORMATING", ")", "}", "s", "[", "self", ".", "SETTING_TEXT_FORMATING", "]", "=", "settings", "[", "self", ".", "SETTING_TEXT_FORMATING", "]", "result", ".", "append", "(", "self", ".", "fmt_row", "(", "columns", ",", "dimensions", ",", "row", ",", "*", "*", "s", ")", ")", "# Display table footer", "result", ".", "append", "(", "self", ".", "fmt_border", "(", "dimensions", ",", "'b'", ",", "*", "*", "sb", ")", ")", "return", "result" ]
Perform widget rendering, but do not print anything.
[ "Perform", "widget", "rendering", "but", "do", "not", "print", "anything", "." ]
python
train
45.685714
obriencj/python-javatools
javatools/__init__.py
https://github.com/obriencj/python-javatools/blob/9e2332b452ddc508bed0615937dddcb2cf051557/javatools/__init__.py#L1376-L1389
def get_arg_type_descriptors(self): """ The parameter type descriptor list for a method, or None for a field. Type descriptors are shorthand identifiers for the builtin java types. """ if not self.is_method: return tuple() tp = _typeseq(self.get_descriptor()) tp = _typeseq(tp[0][1:-1]) return tp
[ "def", "get_arg_type_descriptors", "(", "self", ")", ":", "if", "not", "self", ".", "is_method", ":", "return", "tuple", "(", ")", "tp", "=", "_typeseq", "(", "self", ".", "get_descriptor", "(", ")", ")", "tp", "=", "_typeseq", "(", "tp", "[", "0", "]", "[", "1", ":", "-", "1", "]", ")", "return", "tp" ]
The parameter type descriptor list for a method, or None for a field. Type descriptors are shorthand identifiers for the builtin java types.
[ "The", "parameter", "type", "descriptor", "list", "for", "a", "method", "or", "None", "for", "a", "field", ".", "Type", "descriptors", "are", "shorthand", "identifiers", "for", "the", "builtin", "java", "types", "." ]
python
train
26.5
OCHA-DAP/hdx-python-api
src/hdx/data/dataset.py
https://github.com/OCHA-DAP/hdx-python-api/blob/212440f54f73805826a16db77dbcb6033b18a313/src/hdx/data/dataset.py#L186-L200
def add_update_resources(self, resources, ignore_datasetid=False): # type: (List[Union[hdx.data.resource.Resource,Dict,str]], bool) -> None """Add new or update existing resources with new metadata to the dataset Args: resources (List[Union[hdx.data.resource.Resource,Dict,str]]): A list of either resource ids or resources metadata from either Resource objects or dictionaries ignore_datasetid (bool): Whether to ignore dataset id in the resource. Defaults to False. Returns: None """ if not isinstance(resources, list): raise HDXError('Resources should be a list!') for resource in resources: self.add_update_resource(resource, ignore_datasetid)
[ "def", "add_update_resources", "(", "self", ",", "resources", ",", "ignore_datasetid", "=", "False", ")", ":", "# type: (List[Union[hdx.data.resource.Resource,Dict,str]], bool) -> None", "if", "not", "isinstance", "(", "resources", ",", "list", ")", ":", "raise", "HDXError", "(", "'Resources should be a list!'", ")", "for", "resource", "in", "resources", ":", "self", ".", "add_update_resource", "(", "resource", ",", "ignore_datasetid", ")" ]
Add new or update existing resources with new metadata to the dataset Args: resources (List[Union[hdx.data.resource.Resource,Dict,str]]): A list of either resource ids or resources metadata from either Resource objects or dictionaries ignore_datasetid (bool): Whether to ignore dataset id in the resource. Defaults to False. Returns: None
[ "Add", "new", "or", "update", "existing", "resources", "with", "new", "metadata", "to", "the", "dataset" ]
python
train
50.066667
matthewdeanmartin/jiggle_version
jiggle_version/commands.py
https://github.com/matthewdeanmartin/jiggle_version/blob/963656a0a47b7162780a5f6c8f4b8bbbebc148f5/jiggle_version/commands.py#L26-L47
def bump_version(project, source, force_init): # type: (str, str, bool, bool) ->int """ Entry point :return: """ file_opener = FileOpener() # logger.debug("Starting version jiggler...") jiggler = JiggleVersion(project, source, file_opener, force_init) logger.debug( "Current, next : {0} -> {1} : {2}".format( jiggler.current_version, jiggler.version, jiggler.schema ) ) if not jiggler.version_finder.validate_current_versions(): logger.debug(unicode(jiggler.version_finder.all_current_versions())) logger.error("Versions not in sync, won't continue") die(-1, "Versions not in sync, won't continue") changed = jiggler.jiggle_all() logger.debug("Changed {0} files".format(changed)) return changed
[ "def", "bump_version", "(", "project", ",", "source", ",", "force_init", ")", ":", "# type: (str, str, bool, bool) ->int", "file_opener", "=", "FileOpener", "(", ")", "# logger.debug(\"Starting version jiggler...\")", "jiggler", "=", "JiggleVersion", "(", "project", ",", "source", ",", "file_opener", ",", "force_init", ")", "logger", ".", "debug", "(", "\"Current, next : {0} -> {1} : {2}\"", ".", "format", "(", "jiggler", ".", "current_version", ",", "jiggler", ".", "version", ",", "jiggler", ".", "schema", ")", ")", "if", "not", "jiggler", ".", "version_finder", ".", "validate_current_versions", "(", ")", ":", "logger", ".", "debug", "(", "unicode", "(", "jiggler", ".", "version_finder", ".", "all_current_versions", "(", ")", ")", ")", "logger", ".", "error", "(", "\"Versions not in sync, won't continue\"", ")", "die", "(", "-", "1", ",", "\"Versions not in sync, won't continue\"", ")", "changed", "=", "jiggler", ".", "jiggle_all", "(", ")", "logger", ".", "debug", "(", "\"Changed {0} files\"", ".", "format", "(", "changed", ")", ")", "return", "changed" ]
Entry point :return:
[ "Entry", "point", ":", "return", ":" ]
python
train
35.454545
Calysto/calysto
calysto/ai/conx.py
https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L3008-L3014
def loadTargetsFromFile(self, filename, cols = None, everyNrows = 1, delim = ' ', checkEven = 1): """ Loads targets from file. """ self.targets = self.loadVectors(filename, cols, everyNrows, delim, checkEven)
[ "def", "loadTargetsFromFile", "(", "self", ",", "filename", ",", "cols", "=", "None", ",", "everyNrows", "=", "1", ",", "delim", "=", "' '", ",", "checkEven", "=", "1", ")", ":", "self", ".", "targets", "=", "self", ".", "loadVectors", "(", "filename", ",", "cols", ",", "everyNrows", ",", "delim", ",", "checkEven", ")" ]
Loads targets from file.
[ "Loads", "targets", "from", "file", "." ]
python
train
43.142857
ajbosco/dag-factory
dagfactory/utils.py
https://github.com/ajbosco/dag-factory/blob/cc7cfe74e62f82859fe38d527e95311a2805723b/dagfactory/utils.py#L39-L65
def get_time_delta(time_string: str) -> timedelta: """ Takes a time string (1 hours, 10 days, etc.) and returns a python timedelta object :param time_string: the time value to convert to a timedelta :type time_string: str :returns: datetime.timedelta for relative time :type datetime.timedelta """ rel_time: Pattern = re.compile( pattern=r"((?P<hours>\d+?)\s+hour)?((?P<minutes>\d+?)\s+minute)?((?P<seconds>\d+?)\s+second)?((?P<days>\d+?)\s+day)?", # noqa flags=re.IGNORECASE, ) parts: Optional[Match[AnyStr]] = rel_time.match(string=time_string) if not parts: raise Exception(f"Invalid relative time: {time_string}") # https://docs.python.org/3/library/re.html#re.Match.groupdict parts: Dict[str, str] = parts.groupdict() time_params = {} if all(value == None for value in parts.values()): raise Exception(f"Invalid relative time: {time_string}") for time_unit, magnitude in parts.items(): if magnitude: time_params[time_unit]: int = int(magnitude) return timedelta(**time_params)
[ "def", "get_time_delta", "(", "time_string", ":", "str", ")", "->", "timedelta", ":", "rel_time", ":", "Pattern", "=", "re", ".", "compile", "(", "pattern", "=", "r\"((?P<hours>\\d+?)\\s+hour)?((?P<minutes>\\d+?)\\s+minute)?((?P<seconds>\\d+?)\\s+second)?((?P<days>\\d+?)\\s+day)?\"", ",", "# noqa", "flags", "=", "re", ".", "IGNORECASE", ",", ")", "parts", ":", "Optional", "[", "Match", "[", "AnyStr", "]", "]", "=", "rel_time", ".", "match", "(", "string", "=", "time_string", ")", "if", "not", "parts", ":", "raise", "Exception", "(", "f\"Invalid relative time: {time_string}\"", ")", "# https://docs.python.org/3/library/re.html#re.Match.groupdict", "parts", ":", "Dict", "[", "str", ",", "str", "]", "=", "parts", ".", "groupdict", "(", ")", "time_params", "=", "{", "}", "if", "all", "(", "value", "==", "None", "for", "value", "in", "parts", ".", "values", "(", ")", ")", ":", "raise", "Exception", "(", "f\"Invalid relative time: {time_string}\"", ")", "for", "time_unit", ",", "magnitude", "in", "parts", ".", "items", "(", ")", ":", "if", "magnitude", ":", "time_params", "[", "time_unit", "]", ":", "int", "=", "int", "(", "magnitude", ")", "return", "timedelta", "(", "*", "*", "time_params", ")" ]
Takes a time string (1 hours, 10 days, etc.) and returns a python timedelta object :param time_string: the time value to convert to a timedelta :type time_string: str :returns: datetime.timedelta for relative time :type datetime.timedelta
[ "Takes", "a", "time", "string", "(", "1", "hours", "10", "days", "etc", ".", ")", "and", "returns", "a", "python", "timedelta", "object" ]
python
train
40.296296
hydpy-dev/hydpy
hydpy/core/sequencetools.py
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/sequencetools.py#L910-L914
def seriesshape(self): """Shape of the whole time series (time being the first dimension).""" seriesshape = [len(hydpy.pub.timegrids.init)] seriesshape.extend(self.shape) return tuple(seriesshape)
[ "def", "seriesshape", "(", "self", ")", ":", "seriesshape", "=", "[", "len", "(", "hydpy", ".", "pub", ".", "timegrids", ".", "init", ")", "]", "seriesshape", ".", "extend", "(", "self", ".", "shape", ")", "return", "tuple", "(", "seriesshape", ")" ]
Shape of the whole time series (time being the first dimension).
[ "Shape", "of", "the", "whole", "time", "series", "(", "time", "being", "the", "first", "dimension", ")", "." ]
python
train
44.8
edeposit/edeposit.amqp.ftp
src/edeposit/amqp/ftp/decoders/validator.py
https://github.com/edeposit/edeposit.amqp.ftp/blob/fcdcbffb6e5d194e1bb4f85f0b8eaa9dbb08aa71/src/edeposit/amqp/ftp/decoders/validator.py#L243-L270
def _convert_to_dict(data): """ Convert `data` to dictionary. Tries to get sense in multidimensional arrays. Args: data: List/dict/tuple of variable dimension. Returns: dict: If the data can be converted to dictionary. Raises: MetaParsingException: When the data are unconvertible to dict. """ if isinstance(data, dict): return data if isinstance(data, list) or isinstance(data, tuple): if _all_correct_list(data): return dict(data) else: data = zip(data[::2], data[1::2]) return dict(data) else: raise MetaParsingException( "Can't decode provided metadata - unknown structure." )
[ "def", "_convert_to_dict", "(", "data", ")", ":", "if", "isinstance", "(", "data", ",", "dict", ")", ":", "return", "data", "if", "isinstance", "(", "data", ",", "list", ")", "or", "isinstance", "(", "data", ",", "tuple", ")", ":", "if", "_all_correct_list", "(", "data", ")", ":", "return", "dict", "(", "data", ")", "else", ":", "data", "=", "zip", "(", "data", "[", ":", ":", "2", "]", ",", "data", "[", "1", ":", ":", "2", "]", ")", "return", "dict", "(", "data", ")", "else", ":", "raise", "MetaParsingException", "(", "\"Can't decode provided metadata - unknown structure.\"", ")" ]
Convert `data` to dictionary. Tries to get sense in multidimensional arrays. Args: data: List/dict/tuple of variable dimension. Returns: dict: If the data can be converted to dictionary. Raises: MetaParsingException: When the data are unconvertible to dict.
[ "Convert", "data", "to", "dictionary", "." ]
python
train
25.357143
saltstack/salt
salt/modules/mount.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/mount.py#L557-L568
def match(self, fsys_view): ''' Compare potentially partial criteria against built filesystems entry dictionary ''' evalue_dict = fsys_view[1] for key, value in six.viewitems(self.criteria): if key in evalue_dict: if evalue_dict[key] != value: return False else: return False return True
[ "def", "match", "(", "self", ",", "fsys_view", ")", ":", "evalue_dict", "=", "fsys_view", "[", "1", "]", "for", "key", ",", "value", "in", "six", ".", "viewitems", "(", "self", ".", "criteria", ")", ":", "if", "key", "in", "evalue_dict", ":", "if", "evalue_dict", "[", "key", "]", "!=", "value", ":", "return", "False", "else", ":", "return", "False", "return", "True" ]
Compare potentially partial criteria against built filesystems entry dictionary
[ "Compare", "potentially", "partial", "criteria", "against", "built", "filesystems", "entry", "dictionary" ]
python
train
33.333333
PmagPy/PmagPy
pmagpy/pmag.py
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L4916-L4971
def doprinc(data): """ Gets principal components from data in form of a list of [dec,inc] data. Parameters ---------- data : nested list of dec, inc directions Returns ------- ppars : dictionary with the principal components dec : principal directiion declination inc : principal direction inclination V2dec : intermediate eigenvector declination V2inc : intermediate eigenvector inclination V3dec : minor eigenvector declination V3inc : minor eigenvector inclination tau1 : major eigenvalue tau2 : intermediate eigenvalue tau3 : minor eigenvalue N : number of points Edir : elongation direction [dec, inc, length] """ ppars = {} rad = old_div(np.pi, 180.) X = dir2cart(data) # for rec in data: # dir=[] # for c in rec: dir.append(c) # cart= (dir2cart(dir)) # X.append(cart) # put in T matrix # T = np.array(Tmatrix(X)) # # get sorted evals/evects # t, V = tauV(T) Pdir = cart2dir(V[0]) ppars['Edir'] = cart2dir(V[1]) # elongation direction dec, inc = doflip(Pdir[0], Pdir[1]) ppars['dec'] = dec ppars['inc'] = inc ppars['N'] = len(data) ppars['tau1'] = t[0] ppars['tau2'] = t[1] ppars['tau3'] = t[2] Pdir = cart2dir(V[1]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['V2dec'] = dec ppars['V2inc'] = inc Pdir = cart2dir(V[2]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['V3dec'] = dec ppars['V3inc'] = inc return ppars
[ "def", "doprinc", "(", "data", ")", ":", "ppars", "=", "{", "}", "rad", "=", "old_div", "(", "np", ".", "pi", ",", "180.", ")", "X", "=", "dir2cart", "(", "data", ")", "# for rec in data:", "# dir=[]", "# for c in rec: dir.append(c)", "# cart= (dir2cart(dir))", "# X.append(cart)", "# put in T matrix", "#", "T", "=", "np", ".", "array", "(", "Tmatrix", "(", "X", ")", ")", "#", "# get sorted evals/evects", "#", "t", ",", "V", "=", "tauV", "(", "T", ")", "Pdir", "=", "cart2dir", "(", "V", "[", "0", "]", ")", "ppars", "[", "'Edir'", "]", "=", "cart2dir", "(", "V", "[", "1", "]", ")", "# elongation direction", "dec", ",", "inc", "=", "doflip", "(", "Pdir", "[", "0", "]", ",", "Pdir", "[", "1", "]", ")", "ppars", "[", "'dec'", "]", "=", "dec", "ppars", "[", "'inc'", "]", "=", "inc", "ppars", "[", "'N'", "]", "=", "len", "(", "data", ")", "ppars", "[", "'tau1'", "]", "=", "t", "[", "0", "]", "ppars", "[", "'tau2'", "]", "=", "t", "[", "1", "]", "ppars", "[", "'tau3'", "]", "=", "t", "[", "2", "]", "Pdir", "=", "cart2dir", "(", "V", "[", "1", "]", ")", "dec", ",", "inc", "=", "doflip", "(", "Pdir", "[", "0", "]", ",", "Pdir", "[", "1", "]", ")", "ppars", "[", "'V2dec'", "]", "=", "dec", "ppars", "[", "'V2inc'", "]", "=", "inc", "Pdir", "=", "cart2dir", "(", "V", "[", "2", "]", ")", "dec", ",", "inc", "=", "doflip", "(", "Pdir", "[", "0", "]", ",", "Pdir", "[", "1", "]", ")", "ppars", "[", "'V3dec'", "]", "=", "dec", "ppars", "[", "'V3inc'", "]", "=", "inc", "return", "ppars" ]
Gets principal components from data in form of a list of [dec,inc] data. Parameters ---------- data : nested list of dec, inc directions Returns ------- ppars : dictionary with the principal components dec : principal directiion declination inc : principal direction inclination V2dec : intermediate eigenvector declination V2inc : intermediate eigenvector inclination V3dec : minor eigenvector declination V3inc : minor eigenvector inclination tau1 : major eigenvalue tau2 : intermediate eigenvalue tau3 : minor eigenvalue N : number of points Edir : elongation direction [dec, inc, length]
[ "Gets", "principal", "components", "from", "data", "in", "form", "of", "a", "list", "of", "[", "dec", "inc", "]", "data", "." ]
python
train
27.035714
benhoff/vexbot
vexbot/adapters/messaging.py
https://github.com/benhoff/vexbot/blob/9b844eb20e84eea92a0e7db7d86a90094956c38f/vexbot/adapters/messaging.py#L257-L270
def start(self) -> None: """ Start the internal control loop. Potentially blocking, depending on the value of `_run_control_loop` set by the initializer. """ self._setup() if self._run_control_loop: asyncio.set_event_loop(asyncio.new_event_loop()) self._heartbeat_reciever.start() self._logger.info(' Start Loop') return self.loop.start() else: self._logger.debug(' run_control_loop == False')
[ "def", "start", "(", "self", ")", "->", "None", ":", "self", ".", "_setup", "(", ")", "if", "self", ".", "_run_control_loop", ":", "asyncio", ".", "set_event_loop", "(", "asyncio", ".", "new_event_loop", "(", ")", ")", "self", ".", "_heartbeat_reciever", ".", "start", "(", ")", "self", ".", "_logger", ".", "info", "(", "' Start Loop'", ")", "return", "self", ".", "loop", ".", "start", "(", ")", "else", ":", "self", ".", "_logger", ".", "debug", "(", "' run_control_loop == False'", ")" ]
Start the internal control loop. Potentially blocking, depending on the value of `_run_control_loop` set by the initializer.
[ "Start", "the", "internal", "control", "loop", ".", "Potentially", "blocking", "depending", "on", "the", "value", "of", "_run_control_loop", "set", "by", "the", "initializer", "." ]
python
train
35.5
kodexlab/reliure
reliure/pipeline.py
https://github.com/kodexlab/reliure/blob/0450c7a9254c5c003162738458bbe0c49e777ba5/reliure/pipeline.py#L221-L231
def change_option_default(self, opt_name, default_val): """ Change the default value of an option :param opt_name: option name :type opt_name: str :param value: new default option value """ if not self.has_option(opt_name): raise ValueError("Unknow option name (%s)" % opt_name) self._options[opt_name].default = default_val
[ "def", "change_option_default", "(", "self", ",", "opt_name", ",", "default_val", ")", ":", "if", "not", "self", ".", "has_option", "(", "opt_name", ")", ":", "raise", "ValueError", "(", "\"Unknow option name (%s)\"", "%", "opt_name", ")", "self", ".", "_options", "[", "opt_name", "]", ".", "default", "=", "default_val" ]
Change the default value of an option :param opt_name: option name :type opt_name: str :param value: new default option value
[ "Change", "the", "default", "value", "of", "an", "option", ":", "param", "opt_name", ":", "option", "name", ":", "type", "opt_name", ":", "str", ":", "param", "value", ":", "new", "default", "option", "value" ]
python
train
36.363636
Clinical-Genomics/scout
scout/parse/variant/frequency.py
https://github.com/Clinical-Genomics/scout/blob/90a551e2e1653a319e654c2405c2866f93d0ebb9/scout/parse/variant/frequency.py#L113-L147
def parse_sv_frequencies(variant): """Parsing of some custom sv frequencies These are very specific at the moment, this will hopefully get better over time when the field of structural variants is more developed. Args: variant(cyvcf2.Variant) Returns: sv_frequencies(dict) """ frequency_keys = [ 'clingen_cgh_benignAF', 'clingen_cgh_benign', 'clingen_cgh_pathogenicAF', 'clingen_cgh_pathogenic', 'clingen_ngi', 'clingen_ngiAF', 'swegen', 'swegenAF', 'decipherAF', 'decipher' ] sv_frequencies = {} for key in frequency_keys: value = variant.INFO.get(key, 0) if 'AF' in key: value = float(value) else: value = int(value) if value > 0: sv_frequencies[key] = value return sv_frequencies
[ "def", "parse_sv_frequencies", "(", "variant", ")", ":", "frequency_keys", "=", "[", "'clingen_cgh_benignAF'", ",", "'clingen_cgh_benign'", ",", "'clingen_cgh_pathogenicAF'", ",", "'clingen_cgh_pathogenic'", ",", "'clingen_ngi'", ",", "'clingen_ngiAF'", ",", "'swegen'", ",", "'swegenAF'", ",", "'decipherAF'", ",", "'decipher'", "]", "sv_frequencies", "=", "{", "}", "for", "key", "in", "frequency_keys", ":", "value", "=", "variant", ".", "INFO", ".", "get", "(", "key", ",", "0", ")", "if", "'AF'", "in", "key", ":", "value", "=", "float", "(", "value", ")", "else", ":", "value", "=", "int", "(", "value", ")", "if", "value", ">", "0", ":", "sv_frequencies", "[", "key", "]", "=", "value", "return", "sv_frequencies" ]
Parsing of some custom sv frequencies These are very specific at the moment, this will hopefully get better over time when the field of structural variants is more developed. Args: variant(cyvcf2.Variant) Returns: sv_frequencies(dict)
[ "Parsing", "of", "some", "custom", "sv", "frequencies", "These", "are", "very", "specific", "at", "the", "moment", "this", "will", "hopefully", "get", "better", "over", "time", "when", "the", "field", "of", "structural", "variants", "is", "more", "developed", "." ]
python
test
24.685714
dsoprea/PySecure
pysecure/adapters/sftpa.py
https://github.com/dsoprea/PySecure/blob/ff7e01a0a77e79564cb00b6e38b4e6f9f88674f0/pysecure/adapters/sftpa.py#L886-L912
def read(self, size=None): """Read a length of bytes. Return empty on EOF. If 'size' is omitted, return whole file. """ if size is not None: return self.__sf.read(size) block_size = self.__class__.__block_size b = bytearray() received_bytes = 0 while 1: partial = self.__sf.read(block_size) # self.__log.debug("Reading (%d) bytes. (%d) bytes returned." % # (block_size, len(partial))) b.extend(partial) received_bytes += len(partial) if len(partial) < block_size: self.__log.debug("End of file.") break self.__log.debug("Read (%d) bytes for total-file." % (received_bytes)) return b
[ "def", "read", "(", "self", ",", "size", "=", "None", ")", ":", "if", "size", "is", "not", "None", ":", "return", "self", ".", "__sf", ".", "read", "(", "size", ")", "block_size", "=", "self", ".", "__class__", ".", "__block_size", "b", "=", "bytearray", "(", ")", "received_bytes", "=", "0", "while", "1", ":", "partial", "=", "self", ".", "__sf", ".", "read", "(", "block_size", ")", "# self.__log.debug(\"Reading (%d) bytes. (%d) bytes returned.\" % ", "# (block_size, len(partial)))", "b", ".", "extend", "(", "partial", ")", "received_bytes", "+=", "len", "(", "partial", ")", "if", "len", "(", "partial", ")", "<", "block_size", ":", "self", ".", "__log", ".", "debug", "(", "\"End of file.\"", ")", "break", "self", ".", "__log", ".", "debug", "(", "\"Read (%d) bytes for total-file.\"", "%", "(", "received_bytes", ")", ")", "return", "b" ]
Read a length of bytes. Return empty on EOF. If 'size' is omitted, return whole file.
[ "Read", "a", "length", "of", "bytes", ".", "Return", "empty", "on", "EOF", ".", "If", "size", "is", "omitted", "return", "whole", "file", "." ]
python
train
28.740741
all-umass/graphs
graphs/mixins/analysis.py
https://github.com/all-umass/graphs/blob/4fbeb025dfe33340335f34300f58dd3809228822/graphs/mixins/analysis.py#L94-L97
def profile(self): """Measure of bandedness, also known as 'envelope size'.""" leftmost_idx = np.argmax(self.matrix('dense').astype(bool), axis=0) return (np.arange(self.num_vertices()) - leftmost_idx).sum()
[ "def", "profile", "(", "self", ")", ":", "leftmost_idx", "=", "np", ".", "argmax", "(", "self", ".", "matrix", "(", "'dense'", ")", ".", "astype", "(", "bool", ")", ",", "axis", "=", "0", ")", "return", "(", "np", ".", "arange", "(", "self", ".", "num_vertices", "(", ")", ")", "-", "leftmost_idx", ")", ".", "sum", "(", ")" ]
Measure of bandedness, also known as 'envelope size'.
[ "Measure", "of", "bandedness", "also", "known", "as", "envelope", "size", "." ]
python
train
54
LudovicRousseau/pyscard
smartcard/CardConnection.py
https://github.com/LudovicRousseau/pyscard/blob/62e675028086c75656444cc21d563d9f08ebf8e7/smartcard/CardConnection.py#L129-L154
def transmit(self, bytes, protocol=None): """Transmit an apdu. Internally calls doTransmit() class method and notify observers upon command/response APDU events. Subclasses must override the doTransmit() class method. @param bytes: list of bytes to transmit @param protocol: the transmission protocol, from CardConnection.T0_protocol, CardConnection.T1_protocol, or CardConnection.RAW_protocol """ Observable.setChanged(self) Observable.notifyObservers(self, CardConnectionEvent( 'command', [bytes, protocol])) data, sw1, sw2 = self.doTransmit(bytes, protocol) Observable.setChanged(self) Observable.notifyObservers(self, CardConnectionEvent( 'response', [data, sw1, sw2])) if self.errorcheckingchain is not None: self.errorcheckingchain[0](data, sw1, sw2) return data, sw1, sw2
[ "def", "transmit", "(", "self", ",", "bytes", ",", "protocol", "=", "None", ")", ":", "Observable", ".", "setChanged", "(", "self", ")", "Observable", ".", "notifyObservers", "(", "self", ",", "CardConnectionEvent", "(", "'command'", ",", "[", "bytes", ",", "protocol", "]", ")", ")", "data", ",", "sw1", ",", "sw2", "=", "self", ".", "doTransmit", "(", "bytes", ",", "protocol", ")", "Observable", ".", "setChanged", "(", "self", ")", "Observable", ".", "notifyObservers", "(", "self", ",", "CardConnectionEvent", "(", "'response'", ",", "[", "data", ",", "sw1", ",", "sw2", "]", ")", ")", "if", "self", ".", "errorcheckingchain", "is", "not", "None", ":", "self", ".", "errorcheckingchain", "[", "0", "]", "(", "data", ",", "sw1", ",", "sw2", ")", "return", "data", ",", "sw1", ",", "sw2" ]
Transmit an apdu. Internally calls doTransmit() class method and notify observers upon command/response APDU events. Subclasses must override the doTransmit() class method. @param bytes: list of bytes to transmit @param protocol: the transmission protocol, from CardConnection.T0_protocol, CardConnection.T1_protocol, or CardConnection.RAW_protocol
[ "Transmit", "an", "apdu", ".", "Internally", "calls", "doTransmit", "()", "class", "method", "and", "notify", "observers", "upon", "command", "/", "response", "APDU", "events", ".", "Subclasses", "must", "override", "the", "doTransmit", "()", "class", "method", "." ]
python
train
44.769231
rosenbrockc/fortpy
fortpy/parsers/module.py
https://github.com/rosenbrockc/fortpy/blob/1ed0757c52d549e41d9d44bdea68cb89529293a5/fortpy/parsers/module.py#L260-L265
def _dict_increment(self, dictionary, key): """Increments the value of the dictionary at the specified key.""" if key in dictionary: dictionary[key] += 1 else: dictionary[key] = 1
[ "def", "_dict_increment", "(", "self", ",", "dictionary", ",", "key", ")", ":", "if", "key", "in", "dictionary", ":", "dictionary", "[", "key", "]", "+=", "1", "else", ":", "dictionary", "[", "key", "]", "=", "1" ]
Increments the value of the dictionary at the specified key.
[ "Increments", "the", "value", "of", "the", "dictionary", "at", "the", "specified", "key", "." ]
python
train
37
Jammy2211/PyAutoLens
autolens/model/inversion/pixelizations.py
https://github.com/Jammy2211/PyAutoLens/blob/91e50369c7a9c048c83d217625578b72423cd5a7/autolens/model/inversion/pixelizations.py#L11-L39
def setup_image_plane_pixelization_grid_from_galaxies_and_grid_stack(galaxies, grid_stack): """An image-plane pixelization is one where its pixel centres are computed by tracing a sparse grid of pixels from \ the image's regular grid to other planes (e.g. the source-plane). Provided a galaxy has an image-plane pixelization, this function returns a new *GridStack* instance where the \ image-plane pixelization's sparse grid is added to it as an attibute. Thus, when the *GridStack* are are passed to the *ray_tracing* module this sparse grid is also traced and the \ traced coordinates represent the centre of each pixelization pixel. Parameters ----------- galaxies : [model.galaxy.galaxy.Galaxy] A list of galaxies, which may contain pixelizations and an *ImagePlanePixelization*. grid_stacks : image.array.grid_stacks.GridStack The collection of grid_stacks (regular, sub, etc.) which the image-plane pixelization grid (referred to as pix) \ may be added to. """ if not isinstance(grid_stack.regular, grids.PaddedRegularGrid): for galaxy in galaxies: if hasattr(galaxy, 'pixelization'): if isinstance(galaxy.pixelization, ImagePlanePixelization): image_plane_pix_grid = galaxy.pixelization.image_plane_pix_grid_from_regular_grid( regular_grid=grid_stack.regular) return grid_stack.new_grid_stack_with_pix_grid_added(pix_grid=image_plane_pix_grid.sparse_grid, regular_to_nearest_pix=image_plane_pix_grid.regular_to_sparse) return grid_stack
[ "def", "setup_image_plane_pixelization_grid_from_galaxies_and_grid_stack", "(", "galaxies", ",", "grid_stack", ")", ":", "if", "not", "isinstance", "(", "grid_stack", ".", "regular", ",", "grids", ".", "PaddedRegularGrid", ")", ":", "for", "galaxy", "in", "galaxies", ":", "if", "hasattr", "(", "galaxy", ",", "'pixelization'", ")", ":", "if", "isinstance", "(", "galaxy", ".", "pixelization", ",", "ImagePlanePixelization", ")", ":", "image_plane_pix_grid", "=", "galaxy", ".", "pixelization", ".", "image_plane_pix_grid_from_regular_grid", "(", "regular_grid", "=", "grid_stack", ".", "regular", ")", "return", "grid_stack", ".", "new_grid_stack_with_pix_grid_added", "(", "pix_grid", "=", "image_plane_pix_grid", ".", "sparse_grid", ",", "regular_to_nearest_pix", "=", "image_plane_pix_grid", ".", "regular_to_sparse", ")", "return", "grid_stack" ]
An image-plane pixelization is one where its pixel centres are computed by tracing a sparse grid of pixels from \ the image's regular grid to other planes (e.g. the source-plane). Provided a galaxy has an image-plane pixelization, this function returns a new *GridStack* instance where the \ image-plane pixelization's sparse grid is added to it as an attibute. Thus, when the *GridStack* are are passed to the *ray_tracing* module this sparse grid is also traced and the \ traced coordinates represent the centre of each pixelization pixel. Parameters ----------- galaxies : [model.galaxy.galaxy.Galaxy] A list of galaxies, which may contain pixelizations and an *ImagePlanePixelization*. grid_stacks : image.array.grid_stacks.GridStack The collection of grid_stacks (regular, sub, etc.) which the image-plane pixelization grid (referred to as pix) \ may be added to.
[ "An", "image", "-", "plane", "pixelization", "is", "one", "where", "its", "pixel", "centres", "are", "computed", "by", "tracing", "a", "sparse", "grid", "of", "pixels", "from", "\\", "the", "image", "s", "regular", "grid", "to", "other", "planes", "(", "e", ".", "g", ".", "the", "source", "-", "plane", ")", "." ]
python
valid
57.586207
PmagPy/PmagPy
pmagpy/pmag.py
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/pmagpy/pmag.py#L6538-L6570
def sbar(Ss): """ calculate average s,sigma from list of "s"s. """ if type(Ss) == list: Ss = np.array(Ss) npts = Ss.shape[0] Ss = Ss.transpose() avd, avs = [], [] # D=np.array([Ss[0],Ss[1],Ss[2],Ss[3]+0.5*(Ss[0]+Ss[1]),Ss[4]+0.5*(Ss[1]+Ss[2]),Ss[5]+0.5*(Ss[0]+Ss[2])]).transpose() D = np.array([Ss[0], Ss[1], Ss[2], Ss[3] + 0.5 * (Ss[0] + Ss[1]), Ss[4] + 0.5 * (Ss[1] + Ss[2]), Ss[5] + 0.5 * (Ss[0] + Ss[2])]) for j in range(6): avd.append(np.average(D[j])) avs.append(np.average(Ss[j])) D = D.transpose() # for s in Ss: # print 'from sbar: ',s # D.append(s[:]) # append a copy of s # D[-1][3]=D[-1][3]+0.5*(s[0]+s[1]) # D[-1][4]=D[-1][4]+0.5*(s[1]+s[2]) # D[-1][5]=D[-1][5]+0.5*(s[0]+s[2]) # for j in range(6): # avd[j]+=(D[-1][j])/float(npts) # avs[j]+=(s[j])/float(npts) # calculate sigma nf = (npts - 1) * 6 # number of degrees of freedom s0 = 0 Dels = (D - avd)**2 s0 = np.sum(Dels) sigma = np.sqrt(s0/float(nf)) return nf, sigma, avs
[ "def", "sbar", "(", "Ss", ")", ":", "if", "type", "(", "Ss", ")", "==", "list", ":", "Ss", "=", "np", ".", "array", "(", "Ss", ")", "npts", "=", "Ss", ".", "shape", "[", "0", "]", "Ss", "=", "Ss", ".", "transpose", "(", ")", "avd", ",", "avs", "=", "[", "]", ",", "[", "]", "# D=np.array([Ss[0],Ss[1],Ss[2],Ss[3]+0.5*(Ss[0]+Ss[1]),Ss[4]+0.5*(Ss[1]+Ss[2]),Ss[5]+0.5*(Ss[0]+Ss[2])]).transpose()", "D", "=", "np", ".", "array", "(", "[", "Ss", "[", "0", "]", ",", "Ss", "[", "1", "]", ",", "Ss", "[", "2", "]", ",", "Ss", "[", "3", "]", "+", "0.5", "*", "(", "Ss", "[", "0", "]", "+", "Ss", "[", "1", "]", ")", ",", "Ss", "[", "4", "]", "+", "0.5", "*", "(", "Ss", "[", "1", "]", "+", "Ss", "[", "2", "]", ")", ",", "Ss", "[", "5", "]", "+", "0.5", "*", "(", "Ss", "[", "0", "]", "+", "Ss", "[", "2", "]", ")", "]", ")", "for", "j", "in", "range", "(", "6", ")", ":", "avd", ".", "append", "(", "np", ".", "average", "(", "D", "[", "j", "]", ")", ")", "avs", ".", "append", "(", "np", ".", "average", "(", "Ss", "[", "j", "]", ")", ")", "D", "=", "D", ".", "transpose", "(", ")", "# for s in Ss:", "# print 'from sbar: ',s", "# D.append(s[:]) # append a copy of s", "# D[-1][3]=D[-1][3]+0.5*(s[0]+s[1])", "# D[-1][4]=D[-1][4]+0.5*(s[1]+s[2])", "# D[-1][5]=D[-1][5]+0.5*(s[0]+s[2])", "# for j in range(6):", "# avd[j]+=(D[-1][j])/float(npts)", "# avs[j]+=(s[j])/float(npts)", "# calculate sigma", "nf", "=", "(", "npts", "-", "1", ")", "*", "6", "# number of degrees of freedom", "s0", "=", "0", "Dels", "=", "(", "D", "-", "avd", ")", "**", "2", "s0", "=", "np", ".", "sum", "(", "Dels", ")", "sigma", "=", "np", ".", "sqrt", "(", "s0", "/", "float", "(", "nf", ")", ")", "return", "nf", ",", "sigma", ",", "avs" ]
calculate average s,sigma from list of "s"s.
[ "calculate", "average", "s", "sigma", "from", "list", "of", "s", "s", "." ]
python
train
33
pip-services3-python/pip-services3-commons-python
pip_services3_commons/random/RandomString.py
https://github.com/pip-services3-python/pip-services3-commons-python/blob/22cbbb3e91e49717f65c083d36147fdb07ba9e3b/pip_services3_commons/random/RandomString.py#L74-L92
def next_string(min_size, max_size): """ Generates a random string, consisting of upper and lower case letters (of the English alphabet), digits (0-9), and symbols ("_,.:-/.[].{},#-!,$=%.+^.&*-() "). :param min_size: (optional) minimum string length. :param max_size: maximum string length. :return: a random string. """ result = '' max_size = max_size if max_size != None else min_size length = RandomInteger.next_integer(min_size, max_size) for i in range(length): result += random.choice(_chars) return result
[ "def", "next_string", "(", "min_size", ",", "max_size", ")", ":", "result", "=", "''", "max_size", "=", "max_size", "if", "max_size", "!=", "None", "else", "min_size", "length", "=", "RandomInteger", ".", "next_integer", "(", "min_size", ",", "max_size", ")", "for", "i", "in", "range", "(", "length", ")", ":", "result", "+=", "random", ".", "choice", "(", "_chars", ")", "return", "result" ]
Generates a random string, consisting of upper and lower case letters (of the English alphabet), digits (0-9), and symbols ("_,.:-/.[].{},#-!,$=%.+^.&*-() "). :param min_size: (optional) minimum string length. :param max_size: maximum string length. :return: a random string.
[ "Generates", "a", "random", "string", "consisting", "of", "upper", "and", "lower", "case", "letters", "(", "of", "the", "English", "alphabet", ")", "digits", "(", "0", "-", "9", ")", "and", "symbols", "(", "_", ".", ":", "-", "/", ".", "[]", ".", "{}", "#", "-", "!", "$", "=", "%", ".", "+", "^", ".", "&", "*", "-", "()", ")", "." ]
python
train
32.368421
AguaClara/aguaclara
aguaclara/core/physchem.py
https://github.com/AguaClara/aguaclara/blob/8dd4e734768b166a7fc2b60388a24df2f93783fc/aguaclara/core/physchem.py#L219-L230
def headloss_fric(FlowRate, Diam, Length, Nu, PipeRough): """Return the major head loss (due to wall shear) in a pipe. This equation applies to both laminar and turbulent flows. """ #Checking input validity - inputs not checked here are checked by #functions this function calls. ut.check_range([Length, ">0", "Length"]) return (fric(FlowRate, Diam, Nu, PipeRough) * 8 / (gravity.magnitude * np.pi**2) * (Length * FlowRate**2) / Diam**5 )
[ "def", "headloss_fric", "(", "FlowRate", ",", "Diam", ",", "Length", ",", "Nu", ",", "PipeRough", ")", ":", "#Checking input validity - inputs not checked here are checked by", "#functions this function calls.", "ut", ".", "check_range", "(", "[", "Length", ",", "\">0\"", ",", "\"Length\"", "]", ")", "return", "(", "fric", "(", "FlowRate", ",", "Diam", ",", "Nu", ",", "PipeRough", ")", "*", "8", "/", "(", "gravity", ".", "magnitude", "*", "np", ".", "pi", "**", "2", ")", "*", "(", "Length", "*", "FlowRate", "**", "2", ")", "/", "Diam", "**", "5", ")" ]
Return the major head loss (due to wall shear) in a pipe. This equation applies to both laminar and turbulent flows.
[ "Return", "the", "major", "head", "loss", "(", "due", "to", "wall", "shear", ")", "in", "a", "pipe", "." ]
python
train
41
fprimex/zdesk
zdesk/zdesk_api.py
https://github.com/fprimex/zdesk/blob/851611c13b4d530e9df31390b3ec709baf0a0188/zdesk/zdesk_api.py#L3568-L3572
def ticket_satisfaction_rating_create(self, ticket_id, data, **kwargs): "https://developer.zendesk.com/rest_api/docs/core/satisfaction_ratings#create-a-satisfaction-rating" api_path = "/api/v2/tickets/{ticket_id}/satisfaction_rating.json" api_path = api_path.format(ticket_id=ticket_id) return self.call(api_path, method="POST", data=data, **kwargs)
[ "def", "ticket_satisfaction_rating_create", "(", "self", ",", "ticket_id", ",", "data", ",", "*", "*", "kwargs", ")", ":", "api_path", "=", "\"/api/v2/tickets/{ticket_id}/satisfaction_rating.json\"", "api_path", "=", "api_path", ".", "format", "(", "ticket_id", "=", "ticket_id", ")", "return", "self", ".", "call", "(", "api_path", ",", "method", "=", "\"POST\"", ",", "data", "=", "data", ",", "*", "*", "kwargs", ")" ]
https://developer.zendesk.com/rest_api/docs/core/satisfaction_ratings#create-a-satisfaction-rating
[ "https", ":", "//", "developer", ".", "zendesk", ".", "com", "/", "rest_api", "/", "docs", "/", "core", "/", "satisfaction_ratings#create", "-", "a", "-", "satisfaction", "-", "rating" ]
python
train
75.4
projectatomic/atomic-reactor
atomic_reactor/util.py
https://github.com/projectatomic/atomic-reactor/blob/fd31c01b964097210bf169960d051e5f04019a80/atomic_reactor/util.py#L947-L1001
def get_manifest_digests(image, registry, insecure=False, dockercfg_path=None, versions=('v1', 'v2', 'v2_list', 'oci', 'oci_index'), require_digest=True): """Return manifest digest for image. :param image: ImageName, the remote image to inspect :param registry: str, URI for registry, if URI schema is not provided, https:// will be used :param insecure: bool, when True registry's cert is not verified :param dockercfg_path: str, dirname of .dockercfg location :param versions: tuple, which manifest schema versions to fetch digest :param require_digest: bool, when True exception is thrown if no digest is set in the headers. :return: dict, versions mapped to their digest """ registry_session = RegistrySession(registry, insecure=insecure, dockercfg_path=dockercfg_path) digests = {} # If all of the media types return a 404 NOT_FOUND status, then we rethrow # an exception, if all of the media types fail for some other reason - like # bad headers - then we return a ManifestDigest object with no digests. # This is interesting for the Pulp "retry until the manifest shows up" case. all_not_found = True saved_not_found = None for version in versions: media_type = get_manifest_media_type(version) response, saved_not_found = get_manifest(image, registry_session, version) if saved_not_found is None: all_not_found = False if not response: continue # set it to truthy value so that koji_import would know pulp supports these digests digests[version] = True if not response.headers.get('Docker-Content-Digest'): logger.warning('Unable to fetch digest for %s, no Docker-Content-Digest header', media_type) continue digests[version] = response.headers['Docker-Content-Digest'] context = '/'.join([x for x in [image.namespace, image.repo] if x]) tag = image.tag logger.debug('Image %s:%s has %s manifest digest: %s', context, tag, version, digests[version]) if not digests: if all_not_found and len(versions) > 0: raise saved_not_found if require_digest: raise RuntimeError('No digests found for {}'.format(image)) return ManifestDigest(**digests)
[ "def", "get_manifest_digests", "(", "image", ",", "registry", ",", "insecure", "=", "False", ",", "dockercfg_path", "=", "None", ",", "versions", "=", "(", "'v1'", ",", "'v2'", ",", "'v2_list'", ",", "'oci'", ",", "'oci_index'", ")", ",", "require_digest", "=", "True", ")", ":", "registry_session", "=", "RegistrySession", "(", "registry", ",", "insecure", "=", "insecure", ",", "dockercfg_path", "=", "dockercfg_path", ")", "digests", "=", "{", "}", "# If all of the media types return a 404 NOT_FOUND status, then we rethrow", "# an exception, if all of the media types fail for some other reason - like", "# bad headers - then we return a ManifestDigest object with no digests.", "# This is interesting for the Pulp \"retry until the manifest shows up\" case.", "all_not_found", "=", "True", "saved_not_found", "=", "None", "for", "version", "in", "versions", ":", "media_type", "=", "get_manifest_media_type", "(", "version", ")", "response", ",", "saved_not_found", "=", "get_manifest", "(", "image", ",", "registry_session", ",", "version", ")", "if", "saved_not_found", "is", "None", ":", "all_not_found", "=", "False", "if", "not", "response", ":", "continue", "# set it to truthy value so that koji_import would know pulp supports these digests", "digests", "[", "version", "]", "=", "True", "if", "not", "response", ".", "headers", ".", "get", "(", "'Docker-Content-Digest'", ")", ":", "logger", ".", "warning", "(", "'Unable to fetch digest for %s, no Docker-Content-Digest header'", ",", "media_type", ")", "continue", "digests", "[", "version", "]", "=", "response", ".", "headers", "[", "'Docker-Content-Digest'", "]", "context", "=", "'/'", ".", "join", "(", "[", "x", "for", "x", "in", "[", "image", ".", "namespace", ",", "image", ".", "repo", "]", "if", "x", "]", ")", "tag", "=", "image", ".", "tag", "logger", ".", "debug", "(", "'Image %s:%s has %s manifest digest: %s'", ",", "context", ",", "tag", ",", "version", ",", "digests", "[", "version", "]", ")", "if", "not", "digests", ":", "if", "all_not_found", "and", "len", "(", "versions", ")", ">", "0", ":", "raise", "saved_not_found", "if", "require_digest", ":", "raise", "RuntimeError", "(", "'No digests found for {}'", ".", "format", "(", "image", ")", ")", "return", "ManifestDigest", "(", "*", "*", "digests", ")" ]
Return manifest digest for image. :param image: ImageName, the remote image to inspect :param registry: str, URI for registry, if URI schema is not provided, https:// will be used :param insecure: bool, when True registry's cert is not verified :param dockercfg_path: str, dirname of .dockercfg location :param versions: tuple, which manifest schema versions to fetch digest :param require_digest: bool, when True exception is thrown if no digest is set in the headers. :return: dict, versions mapped to their digest
[ "Return", "manifest", "digest", "for", "image", "." ]
python
train
43.472727
zhmcclient/python-zhmcclient
zhmcclient_mock/_urihandler.py
https://github.com/zhmcclient/python-zhmcclient/blob/9657563e5d9184c51d3c903442a58b9725fdf335/zhmcclient_mock/_urihandler.py#L368-L376
def post(method, hmc, uri, uri_parms, body, logon_required, wait_for_completion): """Operation: Update <resource> Properties.""" assert wait_for_completion is True # async not supported yet try: resource = hmc.lookup_by_uri(uri) except KeyError: raise InvalidResourceError(method, uri) resource.update(body)
[ "def", "post", "(", "method", ",", "hmc", ",", "uri", ",", "uri_parms", ",", "body", ",", "logon_required", ",", "wait_for_completion", ")", ":", "assert", "wait_for_completion", "is", "True", "# async not supported yet", "try", ":", "resource", "=", "hmc", ".", "lookup_by_uri", "(", "uri", ")", "except", "KeyError", ":", "raise", "InvalidResourceError", "(", "method", ",", "uri", ")", "resource", ".", "update", "(", "body", ")" ]
Operation: Update <resource> Properties.
[ "Operation", ":", "Update", "<resource", ">", "Properties", "." ]
python
train
41.888889
tensorflow/tensor2tensor
tensor2tensor/models/resnet.py
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/resnet.py#L112-L188
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format="channels_first", use_td=False, targeting_rate=None, keep_prob=None, is_training=None): """Strided 2-D convolution with explicit padding. The padding is consistent and is based only on `kernel_size`, not on the dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). Args: inputs: `Tensor` of size `[batch, channels, height_in, width_in]`. filters: `int` number of filters in the convolution. kernel_size: `int` size of the kernel to be used in the convolution. strides: `int` strides of the convolution. data_format: `str` either "channels_first" for `[batch, channels, height, width]` or "channels_last for `[batch, height, width, channels]`. use_td: `str` one of "weight" or "unit". Set to False or "" to disable targeted dropout. targeting_rate: `float` proportion of weights to target with targeted dropout. keep_prob: `float` keep probability for targeted dropout. is_training: `bool` for whether the model is in training. Returns: A `Tensor` of shape `[batch, filters, height_out, width_out]`. Raises: Exception: if use_td is not valid. """ if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format=data_format) if use_td: inputs_shape = common_layers.shape_list(inputs) if use_td == "weight": if data_format == "channels_last": size = kernel_size * kernel_size * inputs_shape[-1] else: size = kernel_size * kernel_size * inputs_shape[1] targeting_count = targeting_rate * tf.to_float(size) targeting_fn = common_layers.weight_targeting elif use_td == "unit": targeting_count = targeting_rate * filters targeting_fn = common_layers.unit_targeting else: raise Exception("Unrecognized targeted dropout type: %s" % use_td) y = common_layers.td_conv( inputs, filters, kernel_size, targeting_count, targeting_fn, keep_prob, is_training, do_prune=True, strides=strides, padding=("SAME" if strides == 1 else "VALID"), data_format=data_format, use_bias=False, kernel_initializer=tf.variance_scaling_initializer()) else: y = layers().Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=("SAME" if strides == 1 else "VALID"), use_bias=False, kernel_initializer=tf.variance_scaling_initializer(), data_format=data_format)(inputs) return y
[ "def", "conv2d_fixed_padding", "(", "inputs", ",", "filters", ",", "kernel_size", ",", "strides", ",", "data_format", "=", "\"channels_first\"", ",", "use_td", "=", "False", ",", "targeting_rate", "=", "None", ",", "keep_prob", "=", "None", ",", "is_training", "=", "None", ")", ":", "if", "strides", ">", "1", ":", "inputs", "=", "fixed_padding", "(", "inputs", ",", "kernel_size", ",", "data_format", "=", "data_format", ")", "if", "use_td", ":", "inputs_shape", "=", "common_layers", ".", "shape_list", "(", "inputs", ")", "if", "use_td", "==", "\"weight\"", ":", "if", "data_format", "==", "\"channels_last\"", ":", "size", "=", "kernel_size", "*", "kernel_size", "*", "inputs_shape", "[", "-", "1", "]", "else", ":", "size", "=", "kernel_size", "*", "kernel_size", "*", "inputs_shape", "[", "1", "]", "targeting_count", "=", "targeting_rate", "*", "tf", ".", "to_float", "(", "size", ")", "targeting_fn", "=", "common_layers", ".", "weight_targeting", "elif", "use_td", "==", "\"unit\"", ":", "targeting_count", "=", "targeting_rate", "*", "filters", "targeting_fn", "=", "common_layers", ".", "unit_targeting", "else", ":", "raise", "Exception", "(", "\"Unrecognized targeted dropout type: %s\"", "%", "use_td", ")", "y", "=", "common_layers", ".", "td_conv", "(", "inputs", ",", "filters", ",", "kernel_size", ",", "targeting_count", ",", "targeting_fn", ",", "keep_prob", ",", "is_training", ",", "do_prune", "=", "True", ",", "strides", "=", "strides", ",", "padding", "=", "(", "\"SAME\"", "if", "strides", "==", "1", "else", "\"VALID\"", ")", ",", "data_format", "=", "data_format", ",", "use_bias", "=", "False", ",", "kernel_initializer", "=", "tf", ".", "variance_scaling_initializer", "(", ")", ")", "else", ":", "y", "=", "layers", "(", ")", ".", "Conv2D", "(", "filters", "=", "filters", ",", "kernel_size", "=", "kernel_size", ",", "strides", "=", "strides", ",", "padding", "=", "(", "\"SAME\"", "if", "strides", "==", "1", "else", "\"VALID\"", ")", ",", "use_bias", "=", "False", ",", "kernel_initializer", "=", "tf", ".", "variance_scaling_initializer", "(", ")", ",", "data_format", "=", "data_format", ")", "(", "inputs", ")", "return", "y" ]
Strided 2-D convolution with explicit padding. The padding is consistent and is based only on `kernel_size`, not on the dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). Args: inputs: `Tensor` of size `[batch, channels, height_in, width_in]`. filters: `int` number of filters in the convolution. kernel_size: `int` size of the kernel to be used in the convolution. strides: `int` strides of the convolution. data_format: `str` either "channels_first" for `[batch, channels, height, width]` or "channels_last for `[batch, height, width, channels]`. use_td: `str` one of "weight" or "unit". Set to False or "" to disable targeted dropout. targeting_rate: `float` proportion of weights to target with targeted dropout. keep_prob: `float` keep probability for targeted dropout. is_training: `bool` for whether the model is in training. Returns: A `Tensor` of shape `[batch, filters, height_out, width_out]`. Raises: Exception: if use_td is not valid.
[ "Strided", "2", "-", "D", "convolution", "with", "explicit", "padding", "." ]
python
train
35.38961
ayust/kitnirc
kitnirc/client.py
https://github.com/ayust/kitnirc/blob/cf19fe39219da75f053e1a3976bf21331b6fefea/kitnirc/client.py#L689-L704
def _parse_part(client, command, actor, args): """Parse a PART and update channel states, then dispatch events. Note that two events are dispatched here: - PART, because a user parted the channel - MEMBERS, because the channel's members changed """ actor = User(actor) channel, _, message = args.partition(' :') channel = client.server.get_channel(channel) channel.remove_user(actor) if actor.nick == client.user.nick: client.server.remove_channel(channel) client.dispatch_event("PART", actor, channel, message) if actor.nick != client.user.nick: client.dispatch_event("MEMBERS", channel)
[ "def", "_parse_part", "(", "client", ",", "command", ",", "actor", ",", "args", ")", ":", "actor", "=", "User", "(", "actor", ")", "channel", ",", "_", ",", "message", "=", "args", ".", "partition", "(", "' :'", ")", "channel", "=", "client", ".", "server", ".", "get_channel", "(", "channel", ")", "channel", ".", "remove_user", "(", "actor", ")", "if", "actor", ".", "nick", "==", "client", ".", "user", ".", "nick", ":", "client", ".", "server", ".", "remove_channel", "(", "channel", ")", "client", ".", "dispatch_event", "(", "\"PART\"", ",", "actor", ",", "channel", ",", "message", ")", "if", "actor", ".", "nick", "!=", "client", ".", "user", ".", "nick", ":", "client", ".", "dispatch_event", "(", "\"MEMBERS\"", ",", "channel", ")" ]
Parse a PART and update channel states, then dispatch events. Note that two events are dispatched here: - PART, because a user parted the channel - MEMBERS, because the channel's members changed
[ "Parse", "a", "PART", "and", "update", "channel", "states", "then", "dispatch", "events", "." ]
python
train
40.375
apache/incubator-mxnet
example/speech_recognition/stt_io_bucketingiter.py
https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/example/speech_recognition/stt_io_bucketingiter.py#L132-L165
def next(self): """Returns the next batch of data.""" if self.curr_idx == len(self.idx): raise StopIteration i, j = self.idx[self.curr_idx] self.curr_idx += 1 audio_paths = [] texts = [] for duration, audio_path, text in self.data[i][j:j+self.batch_size]: audio_paths.append(audio_path) texts.append(text) if self.is_first_epoch: data_set = self.datagen.prepare_minibatch(audio_paths, texts, overwrite=True, is_bi_graphemes=self.is_bi_graphemes, seq_length=self.buckets[i], save_feature_as_csvfile=self.save_feature_as_csvfile) else: data_set = self.datagen.prepare_minibatch(audio_paths, texts, overwrite=False, is_bi_graphemes=self.is_bi_graphemes, seq_length=self.buckets[i], save_feature_as_csvfile=self.save_feature_as_csvfile) data_all = [mx.nd.array(data_set['x'])] + self.init_state_arrays label_all = [mx.nd.array(data_set['y'])] self.label = label_all provide_data = [('data', (self.batch_size, self.buckets[i], self.width * self.height))] + self.init_states return mx.io.DataBatch(data_all, label_all, pad=0, bucket_key=self.buckets[i], provide_data=provide_data, provide_label=self.provide_label)
[ "def", "next", "(", "self", ")", ":", "if", "self", ".", "curr_idx", "==", "len", "(", "self", ".", "idx", ")", ":", "raise", "StopIteration", "i", ",", "j", "=", "self", ".", "idx", "[", "self", ".", "curr_idx", "]", "self", ".", "curr_idx", "+=", "1", "audio_paths", "=", "[", "]", "texts", "=", "[", "]", "for", "duration", ",", "audio_path", ",", "text", "in", "self", ".", "data", "[", "i", "]", "[", "j", ":", "j", "+", "self", ".", "batch_size", "]", ":", "audio_paths", ".", "append", "(", "audio_path", ")", "texts", ".", "append", "(", "text", ")", "if", "self", ".", "is_first_epoch", ":", "data_set", "=", "self", ".", "datagen", ".", "prepare_minibatch", "(", "audio_paths", ",", "texts", ",", "overwrite", "=", "True", ",", "is_bi_graphemes", "=", "self", ".", "is_bi_graphemes", ",", "seq_length", "=", "self", ".", "buckets", "[", "i", "]", ",", "save_feature_as_csvfile", "=", "self", ".", "save_feature_as_csvfile", ")", "else", ":", "data_set", "=", "self", ".", "datagen", ".", "prepare_minibatch", "(", "audio_paths", ",", "texts", ",", "overwrite", "=", "False", ",", "is_bi_graphemes", "=", "self", ".", "is_bi_graphemes", ",", "seq_length", "=", "self", ".", "buckets", "[", "i", "]", ",", "save_feature_as_csvfile", "=", "self", ".", "save_feature_as_csvfile", ")", "data_all", "=", "[", "mx", ".", "nd", ".", "array", "(", "data_set", "[", "'x'", "]", ")", "]", "+", "self", ".", "init_state_arrays", "label_all", "=", "[", "mx", ".", "nd", ".", "array", "(", "data_set", "[", "'y'", "]", ")", "]", "self", ".", "label", "=", "label_all", "provide_data", "=", "[", "(", "'data'", ",", "(", "self", ".", "batch_size", ",", "self", ".", "buckets", "[", "i", "]", ",", "self", ".", "width", "*", "self", ".", "height", ")", ")", "]", "+", "self", ".", "init_states", "return", "mx", ".", "io", ".", "DataBatch", "(", "data_all", ",", "label_all", ",", "pad", "=", "0", ",", "bucket_key", "=", "self", ".", "buckets", "[", "i", "]", ",", "provide_data", "=", "provide_data", ",", "provide_label", "=", "self", ".", "provide_label", ")" ]
Returns the next batch of data.
[ "Returns", "the", "next", "batch", "of", "data", "." ]
python
train
49.088235
useblocks/sphinxcontrib-needs
sphinxcontrib/needs/directives/needlist.py
https://github.com/useblocks/sphinxcontrib-needs/blob/f49af4859a74e9fe76de5b9133c01335ac6ae191/sphinxcontrib/needs/directives/needlist.py#L69-L135
def process_needlist(app, doctree, fromdocname): """ Replace all needlist nodes with a list of the collected needs. Augment each need with a backlink to the original location. """ env = app.builder.env for node in doctree.traverse(Needlist): if not app.config.needs_include_needs: # Ok, this is really dirty. # If we replace a node, docutils checks, if it will not lose any attributes. # But this is here the case, because we are using the attribute "ids" of a node. # However, I do not understand, why losing an attribute is such a big deal, so we delete everything # before docutils claims about it. for att in ('ids', 'names', 'classes', 'dupnames'): node[att] = [] node.replace_self([]) continue id = node.attributes["ids"][0] current_needfilter = env.need_all_needlists[id] all_needs = env.needs_all_needs content = [] all_needs = list(all_needs.values()) if current_needfilter["sort_by"] is not None: if current_needfilter["sort_by"] == "id": all_needs = sorted(all_needs, key=lambda node: node["id"]) elif current_needfilter["sort_by"] == "status": all_needs = sorted(all_needs, key=status_sorter) found_needs = procces_filters(all_needs, current_needfilter) line_block = nodes.line_block() for need_info in found_needs: para = nodes.line() description = "%s: %s" % (need_info["id"], need_info["title"]) if current_needfilter["show_status"] and need_info["status"] is not None: description += " (%s)" % need_info["status"] if current_needfilter["show_tags"] and need_info["tags"] is not None: description += " [%s]" % "; ".join(need_info["tags"]) title = nodes.Text(description, description) # Create a reference if not need_info["hide"]: ref = nodes.reference('', '') ref['refdocname'] = need_info['docname'] ref['refuri'] = app.builder.get_relative_uri( fromdocname, need_info['docname']) ref['refuri'] += '#' + need_info['target_node']['refid'] ref.append(title) para += ref else: para += title line_block.append(para) content.append(line_block) if len(content) == 0: content.append(no_needs_found_paragraph()) if current_needfilter["show_filters"]: content.append(used_filter_paragraph(current_needfilter)) node.replace_self(content)
[ "def", "process_needlist", "(", "app", ",", "doctree", ",", "fromdocname", ")", ":", "env", "=", "app", ".", "builder", ".", "env", "for", "node", "in", "doctree", ".", "traverse", "(", "Needlist", ")", ":", "if", "not", "app", ".", "config", ".", "needs_include_needs", ":", "# Ok, this is really dirty.", "# If we replace a node, docutils checks, if it will not lose any attributes.", "# But this is here the case, because we are using the attribute \"ids\" of a node.", "# However, I do not understand, why losing an attribute is such a big deal, so we delete everything", "# before docutils claims about it.", "for", "att", "in", "(", "'ids'", ",", "'names'", ",", "'classes'", ",", "'dupnames'", ")", ":", "node", "[", "att", "]", "=", "[", "]", "node", ".", "replace_self", "(", "[", "]", ")", "continue", "id", "=", "node", ".", "attributes", "[", "\"ids\"", "]", "[", "0", "]", "current_needfilter", "=", "env", ".", "need_all_needlists", "[", "id", "]", "all_needs", "=", "env", ".", "needs_all_needs", "content", "=", "[", "]", "all_needs", "=", "list", "(", "all_needs", ".", "values", "(", ")", ")", "if", "current_needfilter", "[", "\"sort_by\"", "]", "is", "not", "None", ":", "if", "current_needfilter", "[", "\"sort_by\"", "]", "==", "\"id\"", ":", "all_needs", "=", "sorted", "(", "all_needs", ",", "key", "=", "lambda", "node", ":", "node", "[", "\"id\"", "]", ")", "elif", "current_needfilter", "[", "\"sort_by\"", "]", "==", "\"status\"", ":", "all_needs", "=", "sorted", "(", "all_needs", ",", "key", "=", "status_sorter", ")", "found_needs", "=", "procces_filters", "(", "all_needs", ",", "current_needfilter", ")", "line_block", "=", "nodes", ".", "line_block", "(", ")", "for", "need_info", "in", "found_needs", ":", "para", "=", "nodes", ".", "line", "(", ")", "description", "=", "\"%s: %s\"", "%", "(", "need_info", "[", "\"id\"", "]", ",", "need_info", "[", "\"title\"", "]", ")", "if", "current_needfilter", "[", "\"show_status\"", "]", "and", "need_info", "[", "\"status\"", "]", "is", "not", "None", ":", "description", "+=", "\" (%s)\"", "%", "need_info", "[", "\"status\"", "]", "if", "current_needfilter", "[", "\"show_tags\"", "]", "and", "need_info", "[", "\"tags\"", "]", "is", "not", "None", ":", "description", "+=", "\" [%s]\"", "%", "\"; \"", ".", "join", "(", "need_info", "[", "\"tags\"", "]", ")", "title", "=", "nodes", ".", "Text", "(", "description", ",", "description", ")", "# Create a reference", "if", "not", "need_info", "[", "\"hide\"", "]", ":", "ref", "=", "nodes", ".", "reference", "(", "''", ",", "''", ")", "ref", "[", "'refdocname'", "]", "=", "need_info", "[", "'docname'", "]", "ref", "[", "'refuri'", "]", "=", "app", ".", "builder", ".", "get_relative_uri", "(", "fromdocname", ",", "need_info", "[", "'docname'", "]", ")", "ref", "[", "'refuri'", "]", "+=", "'#'", "+", "need_info", "[", "'target_node'", "]", "[", "'refid'", "]", "ref", ".", "append", "(", "title", ")", "para", "+=", "ref", "else", ":", "para", "+=", "title", "line_block", ".", "append", "(", "para", ")", "content", ".", "append", "(", "line_block", ")", "if", "len", "(", "content", ")", "==", "0", ":", "content", ".", "append", "(", "no_needs_found_paragraph", "(", ")", ")", "if", "current_needfilter", "[", "\"show_filters\"", "]", ":", "content", ".", "append", "(", "used_filter_paragraph", "(", "current_needfilter", ")", ")", "node", ".", "replace_self", "(", "content", ")" ]
Replace all needlist nodes with a list of the collected needs. Augment each need with a backlink to the original location.
[ "Replace", "all", "needlist", "nodes", "with", "a", "list", "of", "the", "collected", "needs", ".", "Augment", "each", "need", "with", "a", "backlink", "to", "the", "original", "location", "." ]
python
train
40.149254
apache/incubator-mxnet
example/sparse/matrix_factorization/data.py
https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/example/sparse/matrix_factorization/data.py#L29-L56
def get_movielens_iter(filename, batch_size): """Not particularly fast code to parse the text file and load into NDArrays. return two data iters, one for train, the other for validation. """ logging.info("Preparing data iterators for " + filename + " ... ") user = [] item = [] score = [] with open(filename, 'r') as f: num_samples = 0 for line in f: tks = line.strip().split('::') if len(tks) != 4: continue num_samples += 1 user.append((tks[0])) item.append((tks[1])) score.append((tks[2])) # convert to ndarrays user = mx.nd.array(user, dtype='int32') item = mx.nd.array(item) score = mx.nd.array(score) # prepare data iters data_train = {'user': user, 'item': item} label_train = {'score': score} iter_train = mx.io.NDArrayIter(data=data_train,label=label_train, batch_size=batch_size, shuffle=True) return mx.io.PrefetchingIter(iter_train)
[ "def", "get_movielens_iter", "(", "filename", ",", "batch_size", ")", ":", "logging", ".", "info", "(", "\"Preparing data iterators for \"", "+", "filename", "+", "\" ... \"", ")", "user", "=", "[", "]", "item", "=", "[", "]", "score", "=", "[", "]", "with", "open", "(", "filename", ",", "'r'", ")", "as", "f", ":", "num_samples", "=", "0", "for", "line", "in", "f", ":", "tks", "=", "line", ".", "strip", "(", ")", ".", "split", "(", "'::'", ")", "if", "len", "(", "tks", ")", "!=", "4", ":", "continue", "num_samples", "+=", "1", "user", ".", "append", "(", "(", "tks", "[", "0", "]", ")", ")", "item", ".", "append", "(", "(", "tks", "[", "1", "]", ")", ")", "score", ".", "append", "(", "(", "tks", "[", "2", "]", ")", ")", "# convert to ndarrays", "user", "=", "mx", ".", "nd", ".", "array", "(", "user", ",", "dtype", "=", "'int32'", ")", "item", "=", "mx", ".", "nd", ".", "array", "(", "item", ")", "score", "=", "mx", ".", "nd", ".", "array", "(", "score", ")", "# prepare data iters", "data_train", "=", "{", "'user'", ":", "user", ",", "'item'", ":", "item", "}", "label_train", "=", "{", "'score'", ":", "score", "}", "iter_train", "=", "mx", ".", "io", ".", "NDArrayIter", "(", "data", "=", "data_train", ",", "label", "=", "label_train", ",", "batch_size", "=", "batch_size", ",", "shuffle", "=", "True", ")", "return", "mx", ".", "io", ".", "PrefetchingIter", "(", "iter_train", ")" ]
Not particularly fast code to parse the text file and load into NDArrays. return two data iters, one for train, the other for validation.
[ "Not", "particularly", "fast", "code", "to", "parse", "the", "text", "file", "and", "load", "into", "NDArrays", ".", "return", "two", "data", "iters", "one", "for", "train", "the", "other", "for", "validation", "." ]
python
train
36.571429
hatemile/hatemile-for-python
hatemile/implementation/css.py
https://github.com/hatemile/hatemile-for-python/blob/1e914f9aa09f6f8d78282af131311546ecba9fb8/hatemile/implementation/css.py#L635-L645
def _speak_normal_inherit(self, element): """ Speak the content of element and descendants. :param element: The element. :type element: hatemile.util.html.htmldomelement.HTMLDOMElement """ self._visit(element, self._speak_normal) element.normalize()
[ "def", "_speak_normal_inherit", "(", "self", ",", "element", ")", ":", "self", ".", "_visit", "(", "element", ",", "self", ".", "_speak_normal", ")", "element", ".", "normalize", "(", ")" ]
Speak the content of element and descendants. :param element: The element. :type element: hatemile.util.html.htmldomelement.HTMLDOMElement
[ "Speak", "the", "content", "of", "element", "and", "descendants", "." ]
python
train
27.090909
pysathq/pysat
examples/rc2.py
https://github.com/pysathq/pysat/blob/522742e8f2d4c6ac50ecd9087f7a346206774c67/examples/rc2.py#L249-L304
def init(self, formula, incr=False): """ Initialize the internal SAT oracle. The oracle is used incrementally and so it is initialized only once when constructing an object of class :class:`RC2`. Given an input :class:`.WCNF` formula, the method bootstraps the oracle with its hard clauses. It also augments the soft clauses with "fresh" selectors and adds them to the oracle afterwards. Optional input parameter ``incr`` (``False`` by default) regulates whether or not Glucose's incremental mode [6]_ is turned on. :param formula: input formula :param incr: apply incremental mode of Glucose :type formula: :class:`.WCNF` :type incr: bool """ # creating a solver object self.oracle = Solver(name=self.solver, bootstrap_with=formula.hard, incr=incr, use_timer=True) # adding soft clauses to oracle for i, cl in enumerate(formula.soft): selv = cl[0] # if clause is unit, selector variable is its literal if len(cl) > 1: self.topv += 1 selv = self.topv cl.append(-self.topv) self.oracle.add_clause(cl) if selv not in self.wght: # record selector and its weight self.sels.append(selv) self.wght[selv] = formula.wght[i] self.smap[selv] = i else: # selector is not new; increment its weight self.wght[selv] += formula.wght[i] # storing the set of selectors self.sels_set = set(self.sels) # at this point internal and external variables are the same for v in range(1, formula.nv + 1): self.vmap.e2i[v] = v self.vmap.i2e[v] = v if self.verbose > 1: print('c formula: {0} vars, {1} hard, {2} soft'.format(formula.nv, len(formula.hard), len(formula.soft)))
[ "def", "init", "(", "self", ",", "formula", ",", "incr", "=", "False", ")", ":", "# creating a solver object", "self", ".", "oracle", "=", "Solver", "(", "name", "=", "self", ".", "solver", ",", "bootstrap_with", "=", "formula", ".", "hard", ",", "incr", "=", "incr", ",", "use_timer", "=", "True", ")", "# adding soft clauses to oracle", "for", "i", ",", "cl", "in", "enumerate", "(", "formula", ".", "soft", ")", ":", "selv", "=", "cl", "[", "0", "]", "# if clause is unit, selector variable is its literal", "if", "len", "(", "cl", ")", ">", "1", ":", "self", ".", "topv", "+=", "1", "selv", "=", "self", ".", "topv", "cl", ".", "append", "(", "-", "self", ".", "topv", ")", "self", ".", "oracle", ".", "add_clause", "(", "cl", ")", "if", "selv", "not", "in", "self", ".", "wght", ":", "# record selector and its weight", "self", ".", "sels", ".", "append", "(", "selv", ")", "self", ".", "wght", "[", "selv", "]", "=", "formula", ".", "wght", "[", "i", "]", "self", ".", "smap", "[", "selv", "]", "=", "i", "else", ":", "# selector is not new; increment its weight", "self", ".", "wght", "[", "selv", "]", "+=", "formula", ".", "wght", "[", "i", "]", "# storing the set of selectors", "self", ".", "sels_set", "=", "set", "(", "self", ".", "sels", ")", "# at this point internal and external variables are the same", "for", "v", "in", "range", "(", "1", ",", "formula", ".", "nv", "+", "1", ")", ":", "self", ".", "vmap", ".", "e2i", "[", "v", "]", "=", "v", "self", ".", "vmap", ".", "i2e", "[", "v", "]", "=", "v", "if", "self", ".", "verbose", ">", "1", ":", "print", "(", "'c formula: {0} vars, {1} hard, {2} soft'", ".", "format", "(", "formula", ".", "nv", ",", "len", "(", "formula", ".", "hard", ")", ",", "len", "(", "formula", ".", "soft", ")", ")", ")" ]
Initialize the internal SAT oracle. The oracle is used incrementally and so it is initialized only once when constructing an object of class :class:`RC2`. Given an input :class:`.WCNF` formula, the method bootstraps the oracle with its hard clauses. It also augments the soft clauses with "fresh" selectors and adds them to the oracle afterwards. Optional input parameter ``incr`` (``False`` by default) regulates whether or not Glucose's incremental mode [6]_ is turned on. :param formula: input formula :param incr: apply incremental mode of Glucose :type formula: :class:`.WCNF` :type incr: bool
[ "Initialize", "the", "internal", "SAT", "oracle", ".", "The", "oracle", "is", "used", "incrementally", "and", "so", "it", "is", "initialized", "only", "once", "when", "constructing", "an", "object", "of", "class", ":", "class", ":", "RC2", ".", "Given", "an", "input", ":", "class", ":", ".", "WCNF", "formula", "the", "method", "bootstraps", "the", "oracle", "with", "its", "hard", "clauses", ".", "It", "also", "augments", "the", "soft", "clauses", "with", "fresh", "selectors", "and", "adds", "them", "to", "the", "oracle", "afterwards", "." ]
python
train
36.357143
noobermin/lspreader
lspreader/lspreader.py
https://github.com/noobermin/lspreader/blob/903b9d6427513b07986ffacf76cbca54e18d8be6/lspreader/lspreader.py#L43-L59
def get_list(file,fmt): '''makes a list out of the fmt from the LspOutput f using the format i for int f for float d for double s for string''' out=[] for i in fmt: if i == 'i': out.append(get_int(file)); elif i == 'f' or i == 'd': out.append(get_float(file)); elif i == 's': out.append(get_str(file)); else: raise ValueError("Unexpected flag '{}'".format(i)); return out;
[ "def", "get_list", "(", "file", ",", "fmt", ")", ":", "out", "=", "[", "]", "for", "i", "in", "fmt", ":", "if", "i", "==", "'i'", ":", "out", ".", "append", "(", "get_int", "(", "file", ")", ")", "elif", "i", "==", "'f'", "or", "i", "==", "'d'", ":", "out", ".", "append", "(", "get_float", "(", "file", ")", ")", "elif", "i", "==", "'s'", ":", "out", ".", "append", "(", "get_str", "(", "file", ")", ")", "else", ":", "raise", "ValueError", "(", "\"Unexpected flag '{}'\"", ".", "format", "(", "i", ")", ")", "return", "out" ]
makes a list out of the fmt from the LspOutput f using the format i for int f for float d for double s for string
[ "makes", "a", "list", "out", "of", "the", "fmt", "from", "the", "LspOutput", "f", "using", "the", "format", "i", "for", "int", "f", "for", "float", "d", "for", "double", "s", "for", "string" ]
python
train
28.235294
CybOXProject/mixbox
mixbox/datautils.py
https://github.com/CybOXProject/mixbox/blob/9097dae7a433f5b98c18171c4a5598f69a7d30af/mixbox/datautils.py#L26-L42
def import_class(classpath): """Import the class referred to by the fully qualified class path. Args: classpath: A full "foo.bar.MyClass" path to a class definition. Returns: The class referred to by the classpath. Raises: ImportError: If an error occurs while importing the module. AttributeError: IF the class does not exist in the imported module. """ modname, classname = classpath.rsplit(".", 1) module = importlib.import_module(modname) klass = getattr(module, classname) return klass
[ "def", "import_class", "(", "classpath", ")", ":", "modname", ",", "classname", "=", "classpath", ".", "rsplit", "(", "\".\"", ",", "1", ")", "module", "=", "importlib", ".", "import_module", "(", "modname", ")", "klass", "=", "getattr", "(", "module", ",", "classname", ")", "return", "klass" ]
Import the class referred to by the fully qualified class path. Args: classpath: A full "foo.bar.MyClass" path to a class definition. Returns: The class referred to by the classpath. Raises: ImportError: If an error occurs while importing the module. AttributeError: IF the class does not exist in the imported module.
[ "Import", "the", "class", "referred", "to", "by", "the", "fully", "qualified", "class", "path", "." ]
python
train
32.117647
ratt-ru/PyMORESANE
pymoresane/iuwt_toolbox.py
https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt_toolbox.py#L292-L306
def snr_ratio(in1, in2): """ The following function simply calculates the signal to noise ratio between two signals. INPUTS: in1 (no default): Array containing values for signal 1. in2 (no default): Array containing values for signal 2. OUTPUTS: out1 The ratio of the signal to noise ratios of two signals. """ out1 = 20*(np.log10(np.linalg.norm(in1)/np.linalg.norm(in1-in2))) return out1
[ "def", "snr_ratio", "(", "in1", ",", "in2", ")", ":", "out1", "=", "20", "*", "(", "np", ".", "log10", "(", "np", ".", "linalg", ".", "norm", "(", "in1", ")", "/", "np", ".", "linalg", ".", "norm", "(", "in1", "-", "in2", ")", ")", ")", "return", "out1" ]
The following function simply calculates the signal to noise ratio between two signals. INPUTS: in1 (no default): Array containing values for signal 1. in2 (no default): Array containing values for signal 2. OUTPUTS: out1 The ratio of the signal to noise ratios of two signals.
[ "The", "following", "function", "simply", "calculates", "the", "signal", "to", "noise", "ratio", "between", "two", "signals", "." ]
python
train
30.733333
saltstack/salt
salt/modules/memcached.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/memcached.py#L51-L58
def _connect(host=DEFAULT_HOST, port=DEFAULT_PORT): ''' Returns a tuple of (user, host, port) with config, pillar, or default values assigned to missing values. ''' if six.text_type(port).isdigit(): return memcache.Client(['{0}:{1}'.format(host, port)], debug=0) raise SaltInvocationError('port must be an integer')
[ "def", "_connect", "(", "host", "=", "DEFAULT_HOST", ",", "port", "=", "DEFAULT_PORT", ")", ":", "if", "six", ".", "text_type", "(", "port", ")", ".", "isdigit", "(", ")", ":", "return", "memcache", ".", "Client", "(", "[", "'{0}:{1}'", ".", "format", "(", "host", ",", "port", ")", "]", ",", "debug", "=", "0", ")", "raise", "SaltInvocationError", "(", "'port must be an integer'", ")" ]
Returns a tuple of (user, host, port) with config, pillar, or default values assigned to missing values.
[ "Returns", "a", "tuple", "of", "(", "user", "host", "port", ")", "with", "config", "pillar", "or", "default", "values", "assigned", "to", "missing", "values", "." ]
python
train
42.5
Metatab/metapack
metapack/terms.py
https://github.com/Metatab/metapack/blob/8365f221fbeaa3c0be9091f2eaf3447fd8e2e8d6/metapack/terms.py#L287-L306
def schema_columns(self): """Return column informatino only from this schema""" t = self.schema_term columns = [] if t: for i, c in enumerate(t.children): if c.term_is("Table.Column"): p = c.all_props p['pos'] = i p['name'] = c.value p['header'] = self._name_for_col_term(c, i) columns.append(p) return columns
[ "def", "schema_columns", "(", "self", ")", ":", "t", "=", "self", ".", "schema_term", "columns", "=", "[", "]", "if", "t", ":", "for", "i", ",", "c", "in", "enumerate", "(", "t", ".", "children", ")", ":", "if", "c", ".", "term_is", "(", "\"Table.Column\"", ")", ":", "p", "=", "c", ".", "all_props", "p", "[", "'pos'", "]", "=", "i", "p", "[", "'name'", "]", "=", "c", ".", "value", "p", "[", "'header'", "]", "=", "self", ".", "_name_for_col_term", "(", "c", ",", "i", ")", "columns", ".", "append", "(", "p", ")", "return", "columns" ]
Return column informatino only from this schema
[ "Return", "column", "informatino", "only", "from", "this", "schema" ]
python
train
24.3
sam-cox/pytides
pytides/tide.py
https://github.com/sam-cox/pytides/blob/63a2507299002f1979ea55a17a82561158d685f7/pytides/tide.py#L62-L96
def _prepare(constituents, t0, t = None, radians = True): """ Return constituent speed and equilibrium argument at a given time, and constituent node factors at given times. Arguments: constituents -- list of constituents to prepare t0 -- time at which to evaluate speed and equilibrium argument for each constituent t -- list of times at which to evaluate node factors for each constituent (default: t0) radians -- whether to return the angular arguments in radians or degrees (default: True) """ #The equilibrium argument is constant and taken at the beginning of the #time series (t0). The speed of the equilibrium argument changes very #slowly, so again we take it to be constant over any length of data. The #node factors change more rapidly. if isinstance(t0, Iterable): t0 = t0[0] if t is None: t = [t0] if not isinstance(t, Iterable): t = [t] a0 = astro(t0) a = [astro(t_i) for t_i in t] #For convenience give u, V0 (but not speed!) in [0, 360) V0 = np.array([c.V(a0) for c in constituents])[:, np.newaxis] speed = np.array([c.speed(a0) for c in constituents])[:, np.newaxis] u = [np.mod(np.array([c.u(a_i) for c in constituents])[:, np.newaxis], 360.0) for a_i in a] f = [np.mod(np.array([c.f(a_i) for c in constituents])[:, np.newaxis], 360.0) for a_i in a] if radians: speed = d2r*speed V0 = d2r*V0 u = [d2r*each for each in u] return speed, u, f, V0
[ "def", "_prepare", "(", "constituents", ",", "t0", ",", "t", "=", "None", ",", "radians", "=", "True", ")", ":", "#The equilibrium argument is constant and taken at the beginning of the", "#time series (t0). The speed of the equilibrium argument changes very", "#slowly, so again we take it to be constant over any length of data. The", "#node factors change more rapidly.", "if", "isinstance", "(", "t0", ",", "Iterable", ")", ":", "t0", "=", "t0", "[", "0", "]", "if", "t", "is", "None", ":", "t", "=", "[", "t0", "]", "if", "not", "isinstance", "(", "t", ",", "Iterable", ")", ":", "t", "=", "[", "t", "]", "a0", "=", "astro", "(", "t0", ")", "a", "=", "[", "astro", "(", "t_i", ")", "for", "t_i", "in", "t", "]", "#For convenience give u, V0 (but not speed!) in [0, 360)", "V0", "=", "np", ".", "array", "(", "[", "c", ".", "V", "(", "a0", ")", "for", "c", "in", "constituents", "]", ")", "[", ":", ",", "np", ".", "newaxis", "]", "speed", "=", "np", ".", "array", "(", "[", "c", ".", "speed", "(", "a0", ")", "for", "c", "in", "constituents", "]", ")", "[", ":", ",", "np", ".", "newaxis", "]", "u", "=", "[", "np", ".", "mod", "(", "np", ".", "array", "(", "[", "c", ".", "u", "(", "a_i", ")", "for", "c", "in", "constituents", "]", ")", "[", ":", ",", "np", ".", "newaxis", "]", ",", "360.0", ")", "for", "a_i", "in", "a", "]", "f", "=", "[", "np", ".", "mod", "(", "np", ".", "array", "(", "[", "c", ".", "f", "(", "a_i", ")", "for", "c", "in", "constituents", "]", ")", "[", ":", ",", "np", ".", "newaxis", "]", ",", "360.0", ")", "for", "a_i", "in", "a", "]", "if", "radians", ":", "speed", "=", "d2r", "*", "speed", "V0", "=", "d2r", "*", "V0", "u", "=", "[", "d2r", "*", "each", "for", "each", "in", "u", "]", "return", "speed", ",", "u", ",", "f", ",", "V0" ]
Return constituent speed and equilibrium argument at a given time, and constituent node factors at given times. Arguments: constituents -- list of constituents to prepare t0 -- time at which to evaluate speed and equilibrium argument for each constituent t -- list of times at which to evaluate node factors for each constituent (default: t0) radians -- whether to return the angular arguments in radians or degrees (default: True)
[ "Return", "constituent", "speed", "and", "equilibrium", "argument", "at", "a", "given", "time", "and", "constituent", "node", "factors", "at", "given", "times", ".", "Arguments", ":", "constituents", "--", "list", "of", "constituents", "to", "prepare", "t0", "--", "time", "at", "which", "to", "evaluate", "speed", "and", "equilibrium", "argument", "for", "each", "constituent", "t", "--", "list", "of", "times", "at", "which", "to", "evaluate", "node", "factors", "for", "each", "constituent", "(", "default", ":", "t0", ")", "radians", "--", "whether", "to", "return", "the", "angular", "arguments", "in", "radians", "or", "degrees", "(", "default", ":", "True", ")" ]
python
train
40.114286
datasift/datasift-python
datasift/historics.py
https://github.com/datasift/datasift-python/blob/bfaca1a47501a18e11065ecf630d9c31df818f65/datasift/historics.py#L10-L39
def prepare(self, hash, start, end, name, sources, sample=None): """ Prepare a historics query which can later be started. Uses API documented at http://dev.datasift.com/docs/api/rest-api/endpoints/historicsprepare :param hash: The hash of a CSDL create the query for :type hash: str :param start: when to start querying data from - unix timestamp :type start: int :param end: when the query should end - unix timestamp :type end: int :param name: the name of the query :type name: str :param sources: list of sources e.g. ['facebook','bitly','tumblr'] :type sources: list :param sample: percentage to sample, either 10 or 100 :type sample: int :return: dict of REST API output with headers attached :rtype: :class:`~datasift.request.DictResponse` :raises: :class:`~datasift.exceptions.HistoricSourcesRequired`, :class:`~datasift.exceptions.DataSiftApiException`, :class:`requests.exceptions.HTTPError` """ if len(sources) == 0: raise HistoricSourcesRequired() if not isinstance(sources, list): sources = [sources] params = {'hash': hash, 'start': start, 'end': end, 'name': name, 'sources': ','.join(sources)} if sample: params['sample'] = sample return self.request.post('prepare', params)
[ "def", "prepare", "(", "self", ",", "hash", ",", "start", ",", "end", ",", "name", ",", "sources", ",", "sample", "=", "None", ")", ":", "if", "len", "(", "sources", ")", "==", "0", ":", "raise", "HistoricSourcesRequired", "(", ")", "if", "not", "isinstance", "(", "sources", ",", "list", ")", ":", "sources", "=", "[", "sources", "]", "params", "=", "{", "'hash'", ":", "hash", ",", "'start'", ":", "start", ",", "'end'", ":", "end", ",", "'name'", ":", "name", ",", "'sources'", ":", "','", ".", "join", "(", "sources", ")", "}", "if", "sample", ":", "params", "[", "'sample'", "]", "=", "sample", "return", "self", ".", "request", ".", "post", "(", "'prepare'", ",", "params", ")" ]
Prepare a historics query which can later be started. Uses API documented at http://dev.datasift.com/docs/api/rest-api/endpoints/historicsprepare :param hash: The hash of a CSDL create the query for :type hash: str :param start: when to start querying data from - unix timestamp :type start: int :param end: when the query should end - unix timestamp :type end: int :param name: the name of the query :type name: str :param sources: list of sources e.g. ['facebook','bitly','tumblr'] :type sources: list :param sample: percentage to sample, either 10 or 100 :type sample: int :return: dict of REST API output with headers attached :rtype: :class:`~datasift.request.DictResponse` :raises: :class:`~datasift.exceptions.HistoricSourcesRequired`, :class:`~datasift.exceptions.DataSiftApiException`, :class:`requests.exceptions.HTTPError`
[ "Prepare", "a", "historics", "query", "which", "can", "later", "be", "started", "." ]
python
train
48.333333
reingart/gui2py
gui/controls/gridview.py
https://github.com/reingart/gui2py/blob/aca0a05f6fcde55c94ad7cc058671a06608b01a4/gui/controls/gridview.py#L448-L455
def clear(self): "Remove all rows and reset internal structures" ## list has no clear ... remove items in reverse order for i in range(len(self)-1, -1, -1): del self[i] self._key = 0 if hasattr(self._grid_view, "wx_obj"): self._grid_view.wx_obj.ClearGrid()
[ "def", "clear", "(", "self", ")", ":", "## list has no clear ... remove items in reverse order\r", "for", "i", "in", "range", "(", "len", "(", "self", ")", "-", "1", ",", "-", "1", ",", "-", "1", ")", ":", "del", "self", "[", "i", "]", "self", ".", "_key", "=", "0", "if", "hasattr", "(", "self", ".", "_grid_view", ",", "\"wx_obj\"", ")", ":", "self", ".", "_grid_view", ".", "wx_obj", ".", "ClearGrid", "(", ")" ]
Remove all rows and reset internal structures
[ "Remove", "all", "rows", "and", "reset", "internal", "structures" ]
python
test
40
fedora-infra/fedmsg-atomic-composer
fedmsg_atomic_composer/composer.py
https://github.com/fedora-infra/fedmsg-atomic-composer/blob/9be9fd4955af0568f8743d7a1a243cd8f70020c3/fedmsg_atomic_composer/composer.py#L119-L126
def mock_cmd(self, release, *cmd, **kwargs): """Run a mock command in the chroot for a given release""" fmt = '{mock_cmd}' if kwargs.get('new_chroot') is True: fmt +=' --new-chroot' fmt += ' --configdir={mock_dir}' return self.call(fmt.format(**release).split() + list(cmd))
[ "def", "mock_cmd", "(", "self", ",", "release", ",", "*", "cmd", ",", "*", "*", "kwargs", ")", ":", "fmt", "=", "'{mock_cmd}'", "if", "kwargs", ".", "get", "(", "'new_chroot'", ")", "is", "True", ":", "fmt", "+=", "' --new-chroot'", "fmt", "+=", "' --configdir={mock_dir}'", "return", "self", ".", "call", "(", "fmt", ".", "format", "(", "*", "*", "release", ")", ".", "split", "(", ")", "+", "list", "(", "cmd", ")", ")" ]
Run a mock command in the chroot for a given release
[ "Run", "a", "mock", "command", "in", "the", "chroot", "for", "a", "given", "release" ]
python
train
43
MacHu-GWU/sqlalchemy_mate-project
sqlalchemy_mate/pt.py
https://github.com/MacHu-GWU/sqlalchemy_mate-project/blob/946754744c8870f083fd7b4339fca15d1d6128b2/sqlalchemy_mate/pt.py#L34-L49
def from_stmt(stmt, engine, **kwargs): """ Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable """ result_proxy = engine.execute(stmt, **kwargs) return from_db_cursor(result_proxy.cursor)
[ "def", "from_stmt", "(", "stmt", ",", "engine", ",", "*", "*", "kwargs", ")", ":", "result_proxy", "=", "engine", ".", "execute", "(", "stmt", ",", "*", "*", "kwargs", ")", "return", "from_db_cursor", "(", "result_proxy", ".", "cursor", ")" ]
Execute a query in form of texture clause, return the result in form of :class:`PrettyTable`. :type stmt: TextClause :param stmt: :type engine: Engine :param engine: :rtype: PrettyTable
[ "Execute", "a", "query", "in", "form", "of", "texture", "clause", "return", "the", "result", "in", "form", "of" ]
python
train
22.125
UCL-INGI/INGInious
inginious/frontend/pages/course_admin/aggregation_edit.py
https://github.com/UCL-INGI/INGInious/blob/cbda9a9c7f2b8e8eb1e6d7d51f0d18092086300c/inginious/frontend/pages/course_admin/aggregation_edit.py#L21-L63
def get_user_lists(self, course, aggregationid=''): """ Get the available student and tutor lists for aggregation edition""" tutor_list = course.get_staff() # Determine student list and if they are grouped student_list = list(self.database.aggregations.aggregate([ {"$match": {"courseid": course.get_id()}}, {"$unwind": "$students"}, {"$project": { "classroom": "$_id", "students": 1, "grouped": { "$anyElementTrue": { "$map": { "input": "$groups.students", "as": "group", "in": { "$anyElementTrue": { "$map": { "input": "$$group", "as": "groupmember", "in": {"$eq": ["$$groupmember", "$students"]} } } } } } } }} ])) student_list = dict([(student["students"], student) for student in student_list]) users_info = self.user_manager.get_users_info(list(student_list.keys()) + tutor_list) if aggregationid: # Order the non-registered students other_students = [student_list[entry]['students'] for entry in student_list.keys() if not student_list[entry]['classroom'] == ObjectId(aggregationid)] other_students = sorted(other_students, key=lambda val: (("0"+users_info[val][0]) if users_info[val] else ("1"+val))) return student_list, tutor_list, other_students, users_info else: return student_list, tutor_list, users_info
[ "def", "get_user_lists", "(", "self", ",", "course", ",", "aggregationid", "=", "''", ")", ":", "tutor_list", "=", "course", ".", "get_staff", "(", ")", "# Determine student list and if they are grouped", "student_list", "=", "list", "(", "self", ".", "database", ".", "aggregations", ".", "aggregate", "(", "[", "{", "\"$match\"", ":", "{", "\"courseid\"", ":", "course", ".", "get_id", "(", ")", "}", "}", ",", "{", "\"$unwind\"", ":", "\"$students\"", "}", ",", "{", "\"$project\"", ":", "{", "\"classroom\"", ":", "\"$_id\"", ",", "\"students\"", ":", "1", ",", "\"grouped\"", ":", "{", "\"$anyElementTrue\"", ":", "{", "\"$map\"", ":", "{", "\"input\"", ":", "\"$groups.students\"", ",", "\"as\"", ":", "\"group\"", ",", "\"in\"", ":", "{", "\"$anyElementTrue\"", ":", "{", "\"$map\"", ":", "{", "\"input\"", ":", "\"$$group\"", ",", "\"as\"", ":", "\"groupmember\"", ",", "\"in\"", ":", "{", "\"$eq\"", ":", "[", "\"$$groupmember\"", ",", "\"$students\"", "]", "}", "}", "}", "}", "}", "}", "}", "}", "}", "]", ")", ")", "student_list", "=", "dict", "(", "[", "(", "student", "[", "\"students\"", "]", ",", "student", ")", "for", "student", "in", "student_list", "]", ")", "users_info", "=", "self", ".", "user_manager", ".", "get_users_info", "(", "list", "(", "student_list", ".", "keys", "(", ")", ")", "+", "tutor_list", ")", "if", "aggregationid", ":", "# Order the non-registered students", "other_students", "=", "[", "student_list", "[", "entry", "]", "[", "'students'", "]", "for", "entry", "in", "student_list", ".", "keys", "(", ")", "if", "not", "student_list", "[", "entry", "]", "[", "'classroom'", "]", "==", "ObjectId", "(", "aggregationid", ")", "]", "other_students", "=", "sorted", "(", "other_students", ",", "key", "=", "lambda", "val", ":", "(", "(", "\"0\"", "+", "users_info", "[", "val", "]", "[", "0", "]", ")", "if", "users_info", "[", "val", "]", "else", "(", "\"1\"", "+", "val", ")", ")", ")", "return", "student_list", ",", "tutor_list", ",", "other_students", ",", "users_info", "else", ":", "return", "student_list", ",", "tutor_list", ",", "users_info" ]
Get the available student and tutor lists for aggregation edition
[ "Get", "the", "available", "student", "and", "tutor", "lists", "for", "aggregation", "edition" ]
python
train
44.418605
retext-project/retext
ReText/window.py
https://github.com/retext-project/retext/blob/ad70435341dd89c7a74742df9d1f9af70859a969/ReText/window.py#L995-L1006
def getPageSizeByName(self, pageSizeName): """ Returns a validated PageSize instance corresponding to the given name. Returns None if the name is not a valid PageSize. """ pageSize = None lowerCaseNames = {pageSize.lower(): pageSize for pageSize in self.availablePageSizes()} if pageSizeName.lower() in lowerCaseNames: pageSize = getattr(QPagedPaintDevice, lowerCaseNames[pageSizeName.lower()]) return pageSize
[ "def", "getPageSizeByName", "(", "self", ",", "pageSizeName", ")", ":", "pageSize", "=", "None", "lowerCaseNames", "=", "{", "pageSize", ".", "lower", "(", ")", ":", "pageSize", "for", "pageSize", "in", "self", ".", "availablePageSizes", "(", ")", "}", "if", "pageSizeName", ".", "lower", "(", ")", "in", "lowerCaseNames", ":", "pageSize", "=", "getattr", "(", "QPagedPaintDevice", ",", "lowerCaseNames", "[", "pageSizeName", ".", "lower", "(", ")", "]", ")", "return", "pageSize" ]
Returns a validated PageSize instance corresponding to the given name. Returns None if the name is not a valid PageSize.
[ "Returns", "a", "validated", "PageSize", "instance", "corresponding", "to", "the", "given", "name", ".", "Returns", "None", "if", "the", "name", "is", "not", "a", "valid", "PageSize", "." ]
python
train
36.5
jsommers/switchyard
switchyard/lib/packet/util.py
https://github.com/jsommers/switchyard/blob/fdcb3869c937dcedbd6ea7a7822ebd412bf1e2b0/switchyard/lib/packet/util.py#L14-L29
def create_ip_arp_request(srchw, srcip, targetip): ''' Create and return a packet containing an Ethernet header and ARP header. ''' ether = Ethernet() ether.src = srchw ether.dst = SpecialEthAddr.ETHER_BROADCAST.value ether.ethertype = EtherType.ARP arp = Arp() arp.operation = ArpOperation.Request arp.senderhwaddr = srchw arp.senderprotoaddr = srcip arp.targethwaddr = SpecialEthAddr.ETHER_BROADCAST.value arp.targetprotoaddr = targetip return ether + arp
[ "def", "create_ip_arp_request", "(", "srchw", ",", "srcip", ",", "targetip", ")", ":", "ether", "=", "Ethernet", "(", ")", "ether", ".", "src", "=", "srchw", "ether", ".", "dst", "=", "SpecialEthAddr", ".", "ETHER_BROADCAST", ".", "value", "ether", ".", "ethertype", "=", "EtherType", ".", "ARP", "arp", "=", "Arp", "(", ")", "arp", ".", "operation", "=", "ArpOperation", ".", "Request", "arp", ".", "senderhwaddr", "=", "srchw", "arp", ".", "senderprotoaddr", "=", "srcip", "arp", ".", "targethwaddr", "=", "SpecialEthAddr", ".", "ETHER_BROADCAST", ".", "value", "arp", ".", "targetprotoaddr", "=", "targetip", "return", "ether", "+", "arp" ]
Create and return a packet containing an Ethernet header and ARP header.
[ "Create", "and", "return", "a", "packet", "containing", "an", "Ethernet", "header", "and", "ARP", "header", "." ]
python
train
31.375
geophysics-ubonn/reda
lib/reda/utils/data.py
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/utils/data.py#L21-L66
def download_data(identifier, outdir): """Download data from a separate data repository for testing. Parameters ---------- identifier: string The identifier used to find the data set outdir: string unzip the data in this directory """ # determine target if use_local_data_repository is not None: url_base = 'file:' + request.pathname2url( use_local_data_repository + os.sep) else: url_base = repository_url print('url_base: {}'.format(url_base)) url = url_base + inventory_filename # download inventory file filename, headers =request.urlretrieve(url) df = pd.read_csv( filename, delim_whitespace=True, comment='#', header=None, names=['identifier', 'rel_path'], ) # find relative path to data file rel_path_query = df.query('identifier == "{}"'.format(identifier)) if rel_path_query.shape[0] == 0: raise Exception('identifier not found') rel_path = rel_path_query['rel_path'].values[0] # download the file url = url_base + rel_path print('data url: {}'.format(url)) filename, headers =request.urlretrieve(url) if not os.path.isdir(outdir): os.makedirs(outdir) zip_obj = zipfile.ZipFile(filename) zip_obj.extractall(outdir)
[ "def", "download_data", "(", "identifier", ",", "outdir", ")", ":", "# determine target", "if", "use_local_data_repository", "is", "not", "None", ":", "url_base", "=", "'file:'", "+", "request", ".", "pathname2url", "(", "use_local_data_repository", "+", "os", ".", "sep", ")", "else", ":", "url_base", "=", "repository_url", "print", "(", "'url_base: {}'", ".", "format", "(", "url_base", ")", ")", "url", "=", "url_base", "+", "inventory_filename", "# download inventory file", "filename", ",", "headers", "=", "request", ".", "urlretrieve", "(", "url", ")", "df", "=", "pd", ".", "read_csv", "(", "filename", ",", "delim_whitespace", "=", "True", ",", "comment", "=", "'#'", ",", "header", "=", "None", ",", "names", "=", "[", "'identifier'", ",", "'rel_path'", "]", ",", ")", "# find relative path to data file", "rel_path_query", "=", "df", ".", "query", "(", "'identifier == \"{}\"'", ".", "format", "(", "identifier", ")", ")", "if", "rel_path_query", ".", "shape", "[", "0", "]", "==", "0", ":", "raise", "Exception", "(", "'identifier not found'", ")", "rel_path", "=", "rel_path_query", "[", "'rel_path'", "]", ".", "values", "[", "0", "]", "# download the file", "url", "=", "url_base", "+", "rel_path", "print", "(", "'data url: {}'", ".", "format", "(", "url", ")", ")", "filename", ",", "headers", "=", "request", ".", "urlretrieve", "(", "url", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "makedirs", "(", "outdir", ")", "zip_obj", "=", "zipfile", ".", "ZipFile", "(", "filename", ")", "zip_obj", ".", "extractall", "(", "outdir", ")" ]
Download data from a separate data repository for testing. Parameters ---------- identifier: string The identifier used to find the data set outdir: string unzip the data in this directory
[ "Download", "data", "from", "a", "separate", "data", "repository", "for", "testing", "." ]
python
train
28.021739
DigitalGlobe/gbdxtools
gbdxtools/vector_styles.py
https://github.com/DigitalGlobe/gbdxtools/blob/def62f8f2d77b168aa2bd115290aaa0f9a08a4bb/gbdxtools/vector_styles.py#L216-L232
def paint(self): """ Renders a javascript snippet suitable for use as a mapbox-gl fill-extrusion paint entry Returns: A dict that can be converted to a mapbox-gl javascript paint snippet """ snippet = { 'fill-extrusion-opacity': VectorStyle.get_style_value(self.opacity), 'fill-extrusion-color': VectorStyle.get_style_value(self.color), 'fill-extrusion-base': VectorStyle.get_style_value(self.base), 'fill-extrusion-height': VectorStyle.get_style_value(self.height) } if self.translate: snippet['fill-extrusion-translate'] = self.translate return snippet
[ "def", "paint", "(", "self", ")", ":", "snippet", "=", "{", "'fill-extrusion-opacity'", ":", "VectorStyle", ".", "get_style_value", "(", "self", ".", "opacity", ")", ",", "'fill-extrusion-color'", ":", "VectorStyle", ".", "get_style_value", "(", "self", ".", "color", ")", ",", "'fill-extrusion-base'", ":", "VectorStyle", ".", "get_style_value", "(", "self", ".", "base", ")", ",", "'fill-extrusion-height'", ":", "VectorStyle", ".", "get_style_value", "(", "self", ".", "height", ")", "}", "if", "self", ".", "translate", ":", "snippet", "[", "'fill-extrusion-translate'", "]", "=", "self", ".", "translate", "return", "snippet" ]
Renders a javascript snippet suitable for use as a mapbox-gl fill-extrusion paint entry Returns: A dict that can be converted to a mapbox-gl javascript paint snippet
[ "Renders", "a", "javascript", "snippet", "suitable", "for", "use", "as", "a", "mapbox", "-", "gl", "fill", "-", "extrusion", "paint", "entry" ]
python
valid
39.764706
hammerlab/cohorts
cohorts/utils.py
https://github.com/hammerlab/cohorts/blob/278b05e609e6c4d4a77c57d49446460be53ea33e/cohorts/utils.py#L210-L219
def set_attributes(obj, additional_data): """ Given an object and a dictionary, give the object new attributes from that dictionary. Uses _strip_column_name to git rid of whitespace/uppercase/special characters. """ for key, value in additional_data.items(): if hasattr(obj, key): raise ValueError("Key %s in additional_data already exists in this object" % key) setattr(obj, _strip_column_name(key), value)
[ "def", "set_attributes", "(", "obj", ",", "additional_data", ")", ":", "for", "key", ",", "value", "in", "additional_data", ".", "items", "(", ")", ":", "if", "hasattr", "(", "obj", ",", "key", ")", ":", "raise", "ValueError", "(", "\"Key %s in additional_data already exists in this object\"", "%", "key", ")", "setattr", "(", "obj", ",", "_strip_column_name", "(", "key", ")", ",", "value", ")" ]
Given an object and a dictionary, give the object new attributes from that dictionary. Uses _strip_column_name to git rid of whitespace/uppercase/special characters.
[ "Given", "an", "object", "and", "a", "dictionary", "give", "the", "object", "new", "attributes", "from", "that", "dictionary", "." ]
python
train
44.7
MAVENSDC/PyTplot
pytplot/xlim.py
https://github.com/MAVENSDC/PyTplot/blob/d76cdb95363a4bd4fea6bca7960f8523efa7fa83/pytplot/xlim.py#L10-L44
def xlim(min, max): """ This function will set the x axis range for all time series plots Parameters: min : flt The time to start all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" max : flt The time to end all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" Returns: None Examples: >>> # Set the timespan to be 2017-07-17 00:00:00 plus 1 day >>> import pytplot >>> pytplot.xlim(1500249600, 1500249600 + 86400) >>> # The same as above, but using different inputs >>> pytplot.xlim("2017-07-17 00:00:00", "2017-07-18 00:00:00") """ if not isinstance(min, (int, float, complex)): min = tplot_utilities.str_to_int(min) if not isinstance(max, (int, float, complex)): max = tplot_utilities.str_to_int(max) if 'x_range' in tplot_opt_glob: lim_info['xlast'] = tplot_opt_glob['x_range'] else: lim_info['xfull'] = Range1d(min, max) lim_info['xlast'] = Range1d(min, max) tplot_opt_glob['x_range'] = [min, max] return
[ "def", "xlim", "(", "min", ",", "max", ")", ":", "if", "not", "isinstance", "(", "min", ",", "(", "int", ",", "float", ",", "complex", ")", ")", ":", "min", "=", "tplot_utilities", ".", "str_to_int", "(", "min", ")", "if", "not", "isinstance", "(", "max", ",", "(", "int", ",", "float", ",", "complex", ")", ")", ":", "max", "=", "tplot_utilities", ".", "str_to_int", "(", "max", ")", "if", "'x_range'", "in", "tplot_opt_glob", ":", "lim_info", "[", "'xlast'", "]", "=", "tplot_opt_glob", "[", "'x_range'", "]", "else", ":", "lim_info", "[", "'xfull'", "]", "=", "Range1d", "(", "min", ",", "max", ")", "lim_info", "[", "'xlast'", "]", "=", "Range1d", "(", "min", ",", "max", ")", "tplot_opt_glob", "[", "'x_range'", "]", "=", "[", "min", ",", "max", "]", "return" ]
This function will set the x axis range for all time series plots Parameters: min : flt The time to start all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" max : flt The time to end all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" Returns: None Examples: >>> # Set the timespan to be 2017-07-17 00:00:00 plus 1 day >>> import pytplot >>> pytplot.xlim(1500249600, 1500249600 + 86400) >>> # The same as above, but using different inputs >>> pytplot.xlim("2017-07-17 00:00:00", "2017-07-18 00:00:00")
[ "This", "function", "will", "set", "the", "x", "axis", "range", "for", "all", "time", "series", "plots", "Parameters", ":", "min", ":", "flt", "The", "time", "to", "start", "all", "time", "series", "plots", ".", "Can", "be", "given", "in", "seconds", "since", "epoch", "or", "as", "a", "string", "in", "the", "format", "YYYY", "-", "MM", "-", "DD", "HH", ":", "MM", ":", "SS", "max", ":", "flt", "The", "time", "to", "end", "all", "time", "series", "plots", ".", "Can", "be", "given", "in", "seconds", "since", "epoch", "or", "as", "a", "string", "in", "the", "format", "YYYY", "-", "MM", "-", "DD", "HH", ":", "MM", ":", "SS", "Returns", ":", "None", "Examples", ":", ">>>", "#", "Set", "the", "timespan", "to", "be", "2017", "-", "07", "-", "17", "00", ":", "00", ":", "00", "plus", "1", "day", ">>>", "import", "pytplot", ">>>", "pytplot", ".", "xlim", "(", "1500249600", "1500249600", "+", "86400", ")", ">>>", "#", "The", "same", "as", "above", "but", "using", "different", "inputs", ">>>", "pytplot", ".", "xlim", "(", "2017", "-", "07", "-", "17", "00", ":", "00", ":", "00", "2017", "-", "07", "-", "18", "00", ":", "00", ":", "00", ")" ]
python
train
35.028571
assemblerflow/flowcraft
flowcraft/generator/inspect.py
https://github.com/assemblerflow/flowcraft/blob/fc3f4bddded1efc76006600016dc71a06dd908c0/flowcraft/generator/inspect.py#L1356-L1373
def _get_log_lines(self, n=300): """Returns a list with the last ``n`` lines of the nextflow log file Parameters ---------- n : int Number of last lines from the log file Returns ------- list List of strings with the nextflow log """ with open(self.log_file) as fh: last_lines = fh.readlines()[-n:] return last_lines
[ "def", "_get_log_lines", "(", "self", ",", "n", "=", "300", ")", ":", "with", "open", "(", "self", ".", "log_file", ")", "as", "fh", ":", "last_lines", "=", "fh", ".", "readlines", "(", ")", "[", "-", "n", ":", "]", "return", "last_lines" ]
Returns a list with the last ``n`` lines of the nextflow log file Parameters ---------- n : int Number of last lines from the log file Returns ------- list List of strings with the nextflow log
[ "Returns", "a", "list", "with", "the", "last", "n", "lines", "of", "the", "nextflow", "log", "file" ]
python
test
23.277778
michaeljohnbarr/django-timezone-utils
timezone_utils/fields.py
https://github.com/michaeljohnbarr/django-timezone-utils/blob/61c8b50c59049cb7eccd4e3892f332f88b890f00/timezone_utils/fields.py#L179-L233
def _check_choices_attribute(self): # pragma: no cover """Checks to make sure that choices contains valid timezone choices.""" if self.choices: warning_params = { 'msg': ( "'choices' contains an invalid time zone value '{value}' " "which was not found as a supported time zone by pytz " "{version}." ), 'hint': "Values must be found in pytz.all_timezones.", 'obj': self, } for option_key, option_value in self.choices: if isinstance(option_value, (list, tuple)): # This is an optgroup, so look inside the group for # options. for optgroup_key in map(lambda x: x[0], option_value): if optgroup_key not in pytz.all_timezones: # Make sure we don't raise this error on empty # values if optgroup_key not in self.empty_values: # Update the error message by adding the value warning_params.update({ 'msg': warning_params['msg'].format( value=optgroup_key, version=pytz.VERSION ) }) # Return the warning return [ checks.Warning(**warning_params) ] elif option_key not in pytz.all_timezones: # Make sure we don't raise this error on empty # values if option_key not in self.empty_values: # Update the error message by adding the value warning_params.update({ 'msg': warning_params['msg'].format( value=option_key, version=pytz.VERSION ) }) # Return the warning return [ checks.Warning(**warning_params) ] # When no error, return an empty list return []
[ "def", "_check_choices_attribute", "(", "self", ")", ":", "# pragma: no cover", "if", "self", ".", "choices", ":", "warning_params", "=", "{", "'msg'", ":", "(", "\"'choices' contains an invalid time zone value '{value}' \"", "\"which was not found as a supported time zone by pytz \"", "\"{version}.\"", ")", ",", "'hint'", ":", "\"Values must be found in pytz.all_timezones.\"", ",", "'obj'", ":", "self", ",", "}", "for", "option_key", ",", "option_value", "in", "self", ".", "choices", ":", "if", "isinstance", "(", "option_value", ",", "(", "list", ",", "tuple", ")", ")", ":", "# This is an optgroup, so look inside the group for", "# options.", "for", "optgroup_key", "in", "map", "(", "lambda", "x", ":", "x", "[", "0", "]", ",", "option_value", ")", ":", "if", "optgroup_key", "not", "in", "pytz", ".", "all_timezones", ":", "# Make sure we don't raise this error on empty", "# values", "if", "optgroup_key", "not", "in", "self", ".", "empty_values", ":", "# Update the error message by adding the value", "warning_params", ".", "update", "(", "{", "'msg'", ":", "warning_params", "[", "'msg'", "]", ".", "format", "(", "value", "=", "optgroup_key", ",", "version", "=", "pytz", ".", "VERSION", ")", "}", ")", "# Return the warning", "return", "[", "checks", ".", "Warning", "(", "*", "*", "warning_params", ")", "]", "elif", "option_key", "not", "in", "pytz", ".", "all_timezones", ":", "# Make sure we don't raise this error on empty", "# values", "if", "option_key", "not", "in", "self", ".", "empty_values", ":", "# Update the error message by adding the value", "warning_params", ".", "update", "(", "{", "'msg'", ":", "warning_params", "[", "'msg'", "]", ".", "format", "(", "value", "=", "option_key", ",", "version", "=", "pytz", ".", "VERSION", ")", "}", ")", "# Return the warning", "return", "[", "checks", ".", "Warning", "(", "*", "*", "warning_params", ")", "]", "# When no error, return an empty list", "return", "[", "]" ]
Checks to make sure that choices contains valid timezone choices.
[ "Checks", "to", "make", "sure", "that", "choices", "contains", "valid", "timezone", "choices", "." ]
python
train
44.109091
gpoulter/python-ngram
ngram.py
https://github.com/gpoulter/python-ngram/blob/f8543bdc84a4d24ac60a48b36c4034f881664491/ngram.py#L267-L294
def items_sharing_ngrams(self, query): """Retrieve the subset of items that share n-grams the query string. :param query: look up items that share N-grams with this string. :return: mapping from matched string to the number of shared N-grams. >>> from ngram import NGram >>> n = NGram(["ham","spam","eggs"]) >>> sorted(n.items_sharing_ngrams("mam").items()) [('ham', 2), ('spam', 2)] """ # From matched string to number of N-grams shared with query string shared = {} # Dictionary mapping n-gram to string to number of occurrences of that # ngram in the string that remain to be matched. remaining = {} for ngram in self.split(query): try: for match, count in self._grams[ngram].items(): remaining.setdefault(ngram, {}).setdefault(match, count) # match as many occurrences as exist in matched string if remaining[ngram][match] > 0: remaining[ngram][match] -= 1 shared.setdefault(match, 0) shared[match] += 1 except KeyError: pass return shared
[ "def", "items_sharing_ngrams", "(", "self", ",", "query", ")", ":", "# From matched string to number of N-grams shared with query string", "shared", "=", "{", "}", "# Dictionary mapping n-gram to string to number of occurrences of that", "# ngram in the string that remain to be matched.", "remaining", "=", "{", "}", "for", "ngram", "in", "self", ".", "split", "(", "query", ")", ":", "try", ":", "for", "match", ",", "count", "in", "self", ".", "_grams", "[", "ngram", "]", ".", "items", "(", ")", ":", "remaining", ".", "setdefault", "(", "ngram", ",", "{", "}", ")", ".", "setdefault", "(", "match", ",", "count", ")", "# match as many occurrences as exist in matched string", "if", "remaining", "[", "ngram", "]", "[", "match", "]", ">", "0", ":", "remaining", "[", "ngram", "]", "[", "match", "]", "-=", "1", "shared", ".", "setdefault", "(", "match", ",", "0", ")", "shared", "[", "match", "]", "+=", "1", "except", "KeyError", ":", "pass", "return", "shared" ]
Retrieve the subset of items that share n-grams the query string. :param query: look up items that share N-grams with this string. :return: mapping from matched string to the number of shared N-grams. >>> from ngram import NGram >>> n = NGram(["ham","spam","eggs"]) >>> sorted(n.items_sharing_ngrams("mam").items()) [('ham', 2), ('spam', 2)]
[ "Retrieve", "the", "subset", "of", "items", "that", "share", "n", "-", "grams", "the", "query", "string", "." ]
python
train
43.785714
wonambi-python/wonambi
wonambi/widgets/notes.py
https://github.com/wonambi-python/wonambi/blob/1d8e3d7e53df8017c199f703bcab582914676e76/wonambi/widgets/notes.py#L1892-L1927
def create_dialog(self): """Create the dialog.""" bbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) self.idx_ok = bbox.button(QDialogButtonBox.Ok) self.idx_cancel = bbox.button(QDialogButtonBox.Cancel) filebutton = QPushButton() filebutton.setText('Choose') self.idx_filename = filebutton self.xp_format = FormMenu(['CSV', 'Brain Vision']) self.all_types = FormBool('All event types') self.idx_evt_type = QListWidget() self.idx_evt_type.setSelectionMode(QAbstractItemView.ExtendedSelection) filebutton.clicked.connect(self.save_as) self.all_types.connect(self.toggle_buttons) bbox.clicked.connect(self.button_clicked) form = QFormLayout() form.addRow('Filename', self.idx_filename) form.addRow('Format', self.xp_format) form.addRow(self.all_types) form.addRow('Event type(s)', self.idx_evt_type) btnlayout = QHBoxLayout() btnlayout.addStretch(1) btnlayout.addWidget(bbox) vlayout = QVBoxLayout() vlayout.addLayout(form) vlayout.addStretch(1) vlayout.addLayout(btnlayout) self.setLayout(vlayout)
[ "def", "create_dialog", "(", "self", ")", ":", "bbox", "=", "QDialogButtonBox", "(", "QDialogButtonBox", ".", "Ok", "|", "QDialogButtonBox", ".", "Cancel", ")", "self", ".", "idx_ok", "=", "bbox", ".", "button", "(", "QDialogButtonBox", ".", "Ok", ")", "self", ".", "idx_cancel", "=", "bbox", ".", "button", "(", "QDialogButtonBox", ".", "Cancel", ")", "filebutton", "=", "QPushButton", "(", ")", "filebutton", ".", "setText", "(", "'Choose'", ")", "self", ".", "idx_filename", "=", "filebutton", "self", ".", "xp_format", "=", "FormMenu", "(", "[", "'CSV'", ",", "'Brain Vision'", "]", ")", "self", ".", "all_types", "=", "FormBool", "(", "'All event types'", ")", "self", ".", "idx_evt_type", "=", "QListWidget", "(", ")", "self", ".", "idx_evt_type", ".", "setSelectionMode", "(", "QAbstractItemView", ".", "ExtendedSelection", ")", "filebutton", ".", "clicked", ".", "connect", "(", "self", ".", "save_as", ")", "self", ".", "all_types", ".", "connect", "(", "self", ".", "toggle_buttons", ")", "bbox", ".", "clicked", ".", "connect", "(", "self", ".", "button_clicked", ")", "form", "=", "QFormLayout", "(", ")", "form", ".", "addRow", "(", "'Filename'", ",", "self", ".", "idx_filename", ")", "form", ".", "addRow", "(", "'Format'", ",", "self", ".", "xp_format", ")", "form", ".", "addRow", "(", "self", ".", "all_types", ")", "form", ".", "addRow", "(", "'Event type(s)'", ",", "self", ".", "idx_evt_type", ")", "btnlayout", "=", "QHBoxLayout", "(", ")", "btnlayout", ".", "addStretch", "(", "1", ")", "btnlayout", ".", "addWidget", "(", "bbox", ")", "vlayout", "=", "QVBoxLayout", "(", ")", "vlayout", ".", "addLayout", "(", "form", ")", "vlayout", ".", "addStretch", "(", "1", ")", "vlayout", ".", "addLayout", "(", "btnlayout", ")", "self", ".", "setLayout", "(", "vlayout", ")" ]
Create the dialog.
[ "Create", "the", "dialog", "." ]
python
train
34.555556
astropy/photutils
photutils/centroids/core.py
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/centroids/core.py#L325-L355
def centroid_2dg(data, error=None, mask=None): """ Calculate the centroid of a 2D array by fitting a 2D Gaussian (plus a constant) to the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid. """ gfit = fit_2dgaussian(data, error=error, mask=mask) return np.array([gfit.x_mean.value, gfit.y_mean.value])
[ "def", "centroid_2dg", "(", "data", ",", "error", "=", "None", ",", "mask", "=", "None", ")", ":", "gfit", "=", "fit_2dgaussian", "(", "data", ",", "error", "=", "error", ",", "mask", "=", "mask", ")", "return", "np", ".", "array", "(", "[", "gfit", ".", "x_mean", ".", "value", ",", "gfit", ".", "y_mean", ".", "value", "]", ")" ]
Calculate the centroid of a 2D array by fitting a 2D Gaussian (plus a constant) to the array. Invalid values (e.g. NaNs or infs) in the ``data`` or ``error`` arrays are automatically masked. The mask for invalid values represents the combination of the invalid-value masks for the ``data`` and ``error`` arrays. Parameters ---------- data : array_like The 2D data array. error : array_like, optional The 2D array of the 1-sigma errors of the input ``data``. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Returns ------- centroid : `~numpy.ndarray` The ``x, y`` coordinates of the centroid.
[ "Calculate", "the", "centroid", "of", "a", "2D", "array", "by", "fitting", "a", "2D", "Gaussian", "(", "plus", "a", "constant", ")", "to", "the", "array", "." ]
python
train
30.967742
GNS3/gns3-server
gns3server/compute/dynamips/__init__.py
https://github.com/GNS3/gns3-server/blob/a221678448fb5d24e977ef562f81d56aacc89ab1/gns3server/compute/dynamips/__init__.py#L187-L207
def project_closing(self, project): """ Called when a project is about to be closed. :param project: Project instance """ yield from super().project_closing(project) # delete the Dynamips devices corresponding to the project tasks = [] for device in self._devices.values(): if device.project.id == project.id: tasks.append(asyncio.async(device.delete())) if tasks: done, _ = yield from asyncio.wait(tasks) for future in done: try: future.result() except (Exception, GeneratorExit) as e: log.error("Could not delete device {}".format(e), exc_info=1)
[ "def", "project_closing", "(", "self", ",", "project", ")", ":", "yield", "from", "super", "(", ")", ".", "project_closing", "(", "project", ")", "# delete the Dynamips devices corresponding to the project", "tasks", "=", "[", "]", "for", "device", "in", "self", ".", "_devices", ".", "values", "(", ")", ":", "if", "device", ".", "project", ".", "id", "==", "project", ".", "id", ":", "tasks", ".", "append", "(", "asyncio", ".", "async", "(", "device", ".", "delete", "(", ")", ")", ")", "if", "tasks", ":", "done", ",", "_", "=", "yield", "from", "asyncio", ".", "wait", "(", "tasks", ")", "for", "future", "in", "done", ":", "try", ":", "future", ".", "result", "(", ")", "except", "(", "Exception", ",", "GeneratorExit", ")", "as", "e", ":", "log", ".", "error", "(", "\"Could not delete device {}\"", ".", "format", "(", "e", ")", ",", "exc_info", "=", "1", ")" ]
Called when a project is about to be closed. :param project: Project instance
[ "Called", "when", "a", "project", "is", "about", "to", "be", "closed", "." ]
python
train
34.619048
pypa/pipenv
pipenv/vendor/requests/utils.py
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/vendor/requests/utils.py#L344-L375
def parse_dict_header(value): """Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` :rtype: dict """ result = {} for item in _parse_list_header(value): if '=' not in item: result[item] = None continue name, value = item.split('=', 1) if value[:1] == value[-1:] == '"': value = unquote_header_value(value[1:-1]) result[name] = value return result
[ "def", "parse_dict_header", "(", "value", ")", ":", "result", "=", "{", "}", "for", "item", "in", "_parse_list_header", "(", "value", ")", ":", "if", "'='", "not", "in", "item", ":", "result", "[", "item", "]", "=", "None", "continue", "name", ",", "value", "=", "item", ".", "split", "(", "'='", ",", "1", ")", "if", "value", "[", ":", "1", "]", "==", "value", "[", "-", "1", ":", "]", "==", "'\"'", ":", "value", "=", "unquote_header_value", "(", "value", "[", "1", ":", "-", "1", "]", ")", "result", "[", "name", "]", "=", "value", "return", "result" ]
Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` :rtype: dict
[ "Parse", "lists", "of", "key", "value", "pairs", "as", "described", "by", "RFC", "2068", "Section", "2", "and", "convert", "them", "into", "a", "python", "dict", ":" ]
python
train
29.375
nvdv/vprof
setup.py
https://github.com/nvdv/vprof/blob/4c3ff78f8920ab10cb9c00b14143452aa09ff6bb/setup.py#L112-L119
def get_vprof_version(filename): """Returns actual version specified in filename.""" with open(filename) as src_file: version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", src_file.read(), re.M) if version_match: return version_match.group(1) raise RuntimeError('Unable to find version info.')
[ "def", "get_vprof_version", "(", "filename", ")", ":", "with", "open", "(", "filename", ")", "as", "src_file", ":", "version_match", "=", "re", ".", "search", "(", "r\"^__version__ = ['\\\"]([^'\\\"]*)['\\\"]\"", ",", "src_file", ".", "read", "(", ")", ",", "re", ".", "M", ")", "if", "version_match", ":", "return", "version_match", ".", "group", "(", "1", ")", "raise", "RuntimeError", "(", "'Unable to find version info.'", ")" ]
Returns actual version specified in filename.
[ "Returns", "actual", "version", "specified", "in", "filename", "." ]
python
test
46.875
zalando/patroni
patroni/ha.py
https://github.com/zalando/patroni/blob/f6d29081c90af52064b981cdd877a07338d86038/patroni/ha.py#L1153-L1190
def handle_starting_instance(self): """Starting up PostgreSQL may take a long time. In case we are the leader we may want to fail over to.""" # Check if we are in startup, when paused defer to main loop for manual failovers. if not self.state_handler.check_for_startup() or self.is_paused(): self.set_start_timeout(None) if self.is_paused(): self.state_handler.set_state(self.state_handler.is_running() and 'running' or 'stopped') return None # state_handler.state == 'starting' here if self.has_lock(): if not self.update_lock(): logger.info("Lost lock while starting up. Demoting self.") self.demote('immediate-nolock') return 'stopped PostgreSQL while starting up because leader key was lost' timeout = self._start_timeout or self.patroni.config['master_start_timeout'] time_left = timeout - self.state_handler.time_in_state() if time_left <= 0: if self.is_failover_possible(self.cluster.members): logger.info("Demoting self because master startup is taking too long") self.demote('immediate') return 'stopped PostgreSQL because of startup timeout' else: return 'master start has timed out, but continuing to wait because failover is not possible' else: msg = self.process_manual_failover_from_leader() if msg is not None: return msg return 'PostgreSQL is still starting up, {0:.0f} seconds until timeout'.format(time_left) else: # Use normal processing for standbys logger.info("Still starting up as a standby.") return None
[ "def", "handle_starting_instance", "(", "self", ")", ":", "# Check if we are in startup, when paused defer to main loop for manual failovers.", "if", "not", "self", ".", "state_handler", ".", "check_for_startup", "(", ")", "or", "self", ".", "is_paused", "(", ")", ":", "self", ".", "set_start_timeout", "(", "None", ")", "if", "self", ".", "is_paused", "(", ")", ":", "self", ".", "state_handler", ".", "set_state", "(", "self", ".", "state_handler", ".", "is_running", "(", ")", "and", "'running'", "or", "'stopped'", ")", "return", "None", "# state_handler.state == 'starting' here", "if", "self", ".", "has_lock", "(", ")", ":", "if", "not", "self", ".", "update_lock", "(", ")", ":", "logger", ".", "info", "(", "\"Lost lock while starting up. Demoting self.\"", ")", "self", ".", "demote", "(", "'immediate-nolock'", ")", "return", "'stopped PostgreSQL while starting up because leader key was lost'", "timeout", "=", "self", ".", "_start_timeout", "or", "self", ".", "patroni", ".", "config", "[", "'master_start_timeout'", "]", "time_left", "=", "timeout", "-", "self", ".", "state_handler", ".", "time_in_state", "(", ")", "if", "time_left", "<=", "0", ":", "if", "self", ".", "is_failover_possible", "(", "self", ".", "cluster", ".", "members", ")", ":", "logger", ".", "info", "(", "\"Demoting self because master startup is taking too long\"", ")", "self", ".", "demote", "(", "'immediate'", ")", "return", "'stopped PostgreSQL because of startup timeout'", "else", ":", "return", "'master start has timed out, but continuing to wait because failover is not possible'", "else", ":", "msg", "=", "self", ".", "process_manual_failover_from_leader", "(", ")", "if", "msg", "is", "not", "None", ":", "return", "msg", "return", "'PostgreSQL is still starting up, {0:.0f} seconds until timeout'", ".", "format", "(", "time_left", ")", "else", ":", "# Use normal processing for standbys", "logger", ".", "info", "(", "\"Still starting up as a standby.\"", ")", "return", "None" ]
Starting up PostgreSQL may take a long time. In case we are the leader we may want to fail over to.
[ "Starting", "up", "PostgreSQL", "may", "take", "a", "long", "time", ".", "In", "case", "we", "are", "the", "leader", "we", "may", "want", "to", "fail", "over", "to", "." ]
python
train
48.105263
automl/HpBandSter
hpbandster/optimizers/bohb.py
https://github.com/automl/HpBandSter/blob/841db4b827f342e5eb7f725723ea6461ac52d45a/hpbandster/optimizers/bohb.py#L119-L141
def get_next_iteration(self, iteration, iteration_kwargs={}): """ BO-HB uses (just like Hyperband) SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters ---------- iteration: int the index of the iteration to be instantiated Returns ------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations """ # number of 'SH rungs' s = self.max_SH_iter - 1 - (iteration%self.max_SH_iter) # number of configurations in that bracket n0 = int(np.floor((self.max_SH_iter)/(s+1)) * self.eta**s) ns = [max(int(n0*(self.eta**(-i))), 1) for i in range(s+1)] return(SuccessiveHalving(HPB_iter=iteration, num_configs=ns, budgets=self.budgets[(-s-1):], config_sampler=self.config_generator.get_config, **iteration_kwargs))
[ "def", "get_next_iteration", "(", "self", ",", "iteration", ",", "iteration_kwargs", "=", "{", "}", ")", ":", "# number of 'SH rungs'", "s", "=", "self", ".", "max_SH_iter", "-", "1", "-", "(", "iteration", "%", "self", ".", "max_SH_iter", ")", "# number of configurations in that bracket", "n0", "=", "int", "(", "np", ".", "floor", "(", "(", "self", ".", "max_SH_iter", ")", "/", "(", "s", "+", "1", ")", ")", "*", "self", ".", "eta", "**", "s", ")", "ns", "=", "[", "max", "(", "int", "(", "n0", "*", "(", "self", ".", "eta", "**", "(", "-", "i", ")", ")", ")", ",", "1", ")", "for", "i", "in", "range", "(", "s", "+", "1", ")", "]", "return", "(", "SuccessiveHalving", "(", "HPB_iter", "=", "iteration", ",", "num_configs", "=", "ns", ",", "budgets", "=", "self", ".", "budgets", "[", "(", "-", "s", "-", "1", ")", ":", "]", ",", "config_sampler", "=", "self", ".", "config_generator", ".", "get_config", ",", "*", "*", "iteration_kwargs", ")", ")" ]
BO-HB uses (just like Hyperband) SuccessiveHalving for each iteration. See Li et al. (2016) for reference. Parameters ---------- iteration: int the index of the iteration to be instantiated Returns ------- SuccessiveHalving: the SuccessiveHalving iteration with the corresponding number of configurations
[ "BO", "-", "HB", "uses", "(", "just", "like", "Hyperband", ")", "SuccessiveHalving", "for", "each", "iteration", ".", "See", "Li", "et", "al", ".", "(", "2016", ")", "for", "reference", ".", "Parameters", "----------", "iteration", ":", "int", "the", "index", "of", "the", "iteration", "to", "be", "instantiated" ]
python
train
35
chaoss/grimoirelab-elk
grimoire_elk/enriched/discourse.py
https://github.com/chaoss/grimoirelab-elk/blob/64e08b324b36d9f6909bf705145d6451c8d34e65/grimoire_elk/enriched/discourse.py#L148-L154
def __related_categories(self, category_id): """ Get all related categories to a given one """ related = [] for cat in self.categories_tree: if category_id in self.categories_tree[cat]: related.append(self.categories[cat]) return related
[ "def", "__related_categories", "(", "self", ",", "category_id", ")", ":", "related", "=", "[", "]", "for", "cat", "in", "self", ".", "categories_tree", ":", "if", "category_id", "in", "self", ".", "categories_tree", "[", "cat", "]", ":", "related", ".", "append", "(", "self", ".", "categories", "[", "cat", "]", ")", "return", "related" ]
Get all related categories to a given one
[ "Get", "all", "related", "categories", "to", "a", "given", "one" ]
python
train
41.571429