repo
stringlengths
7
55
path
stringlengths
4
223
url
stringlengths
87
315
code
stringlengths
75
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
avg_line_len
float64
7.91
980
ArduPilot/MAVProxy
MAVProxy/modules/mavproxy_firmware.py
https://github.com/ArduPilot/MAVProxy/blob/f50bdeff33064876f7dc8dc4683d278ff47f75d5/MAVProxy/modules/mavproxy_firmware.py#L165-L171
def filter_rows(self, filters, rows): '''returns rows as filtered by filters''' ret = [] for row in rows: if not self.row_is_filtered(row, filters): ret.append(row) return ret
[ "def", "filter_rows", "(", "self", ",", "filters", ",", "rows", ")", ":", "ret", "=", "[", "]", "for", "row", "in", "rows", ":", "if", "not", "self", ".", "row_is_filtered", "(", "row", ",", "filters", ")", ":", "ret", ".", "append", "(", "row", ")", "return", "ret" ]
returns rows as filtered by filters
[ "returns", "rows", "as", "filtered", "by", "filters" ]
python
train
32.714286
aparo/pyes
pyes/managers.py
https://github.com/aparo/pyes/blob/712eb6095961755067b2b5baa262008ade6584b3/pyes/managers.py#L406-L414
def gateway_snapshot(self, indices=None): """ Gateway snapshot one or more indices (See :ref:`es-guide-reference-api-admin-indices-gateway-snapshot`) :keyword indices: a list of indices or None for default configured. """ path = self.conn._make_path(indices, (), '_gateway', 'snapshot') return self.conn._send_request('POST', path)
[ "def", "gateway_snapshot", "(", "self", ",", "indices", "=", "None", ")", ":", "path", "=", "self", ".", "conn", ".", "_make_path", "(", "indices", ",", "(", ")", ",", "'_gateway'", ",", "'snapshot'", ")", "return", "self", ".", "conn", ".", "_send_request", "(", "'POST'", ",", "path", ")" ]
Gateway snapshot one or more indices (See :ref:`es-guide-reference-api-admin-indices-gateway-snapshot`) :keyword indices: a list of indices or None for default configured.
[ "Gateway", "snapshot", "one", "or", "more", "indices", "(", "See", ":", "ref", ":", "es", "-", "guide", "-", "reference", "-", "api", "-", "admin", "-", "indices", "-", "gateway", "-", "snapshot", ")" ]
python
train
42.222222
emory-libraries/eulfedora
eulfedora/api.py
https://github.com/emory-libraries/eulfedora/blob/161826f3fdcdab4007f6fa7dfd9f1ecabc4bcbe4/eulfedora/api.py#L788-L801
def setDatastreamVersionable(self, pid, dsID, versionable): '''Update datastream versionable setting. :param pid: object pid :param dsID: datastream id :param versionable: boolean :returns: boolean success ''' # /objects/{pid}/datastreams/{dsID} ? [versionable] http_args = {'versionable': versionable} url = 'objects/%(pid)s/datastreams/%(dsid)s' % {'pid': pid, 'dsid': dsID} response = self.put(url, params=http_args) # returns response code 200 on success return response.status_code == requests.codes.ok
[ "def", "setDatastreamVersionable", "(", "self", ",", "pid", ",", "dsID", ",", "versionable", ")", ":", "# /objects/{pid}/datastreams/{dsID} ? [versionable]", "http_args", "=", "{", "'versionable'", ":", "versionable", "}", "url", "=", "'objects/%(pid)s/datastreams/%(dsid)s'", "%", "{", "'pid'", ":", "pid", ",", "'dsid'", ":", "dsID", "}", "response", "=", "self", ".", "put", "(", "url", ",", "params", "=", "http_args", ")", "# returns response code 200 on success", "return", "response", ".", "status_code", "==", "requests", ".", "codes", ".", "ok" ]
Update datastream versionable setting. :param pid: object pid :param dsID: datastream id :param versionable: boolean :returns: boolean success
[ "Update", "datastream", "versionable", "setting", "." ]
python
train
42.214286
APSL/transmanager
transmanager/utils.py
https://github.com/APSL/transmanager/blob/79157085840008e146b264521681913090197ed1/transmanager/utils.py#L9-L24
def get_application_choices(): """ Get the select options for the application selector :return: """ result = [] keys = set() for ct in ContentType.objects.order_by('app_label', 'model'): try: if issubclass(ct.model_class(), TranslatableModel) and ct.app_label not in keys: result.append(('{}'.format(ct.app_label), '{}'.format(ct.app_label.capitalize()))) keys.add(ct.app_label) except TypeError: continue return result
[ "def", "get_application_choices", "(", ")", ":", "result", "=", "[", "]", "keys", "=", "set", "(", ")", "for", "ct", "in", "ContentType", ".", "objects", ".", "order_by", "(", "'app_label'", ",", "'model'", ")", ":", "try", ":", "if", "issubclass", "(", "ct", ".", "model_class", "(", ")", ",", "TranslatableModel", ")", "and", "ct", ".", "app_label", "not", "in", "keys", ":", "result", ".", "append", "(", "(", "'{}'", ".", "format", "(", "ct", ".", "app_label", ")", ",", "'{}'", ".", "format", "(", "ct", ".", "app_label", ".", "capitalize", "(", ")", ")", ")", ")", "keys", ".", "add", "(", "ct", ".", "app_label", ")", "except", "TypeError", ":", "continue", "return", "result" ]
Get the select options for the application selector :return:
[ "Get", "the", "select", "options", "for", "the", "application", "selector" ]
python
train
31.8125
senaite/senaite.core
bika/lims/barcode.py
https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/barcode.py#L121-L129
def handle_Sample(self, instance): """If this sample has a single AR, go there. If the sample has 0 or >1 ARs, go to the sample's view URL. """ ars = instance.getAnalysisRequests() if len(ars) == 1: return self.handle_AnalysisRequest(ars[0]) else: return instance.absolute_url()
[ "def", "handle_Sample", "(", "self", ",", "instance", ")", ":", "ars", "=", "instance", ".", "getAnalysisRequests", "(", ")", "if", "len", "(", "ars", ")", "==", "1", ":", "return", "self", ".", "handle_AnalysisRequest", "(", "ars", "[", "0", "]", ")", "else", ":", "return", "instance", ".", "absolute_url", "(", ")" ]
If this sample has a single AR, go there. If the sample has 0 or >1 ARs, go to the sample's view URL.
[ "If", "this", "sample", "has", "a", "single", "AR", "go", "there", ".", "If", "the", "sample", "has", "0", "or", ">", "1", "ARs", "go", "to", "the", "sample", "s", "view", "URL", "." ]
python
train
38
LionelR/pyair
pyair/reg.py
https://github.com/LionelR/pyair/blob/467e8a843ca9f882f8bb2958805b7293591996ad/pyair/reg.py#L632-L678
def excel_synthese(fct, df, excel_file): """ Enregistre dans un fichier Excel une synthèse des calculs réglementaires en fournissant les valeurs calculées suivant les réglementations définies dans chaque fonction de calcul et un tableau de nombre de dépassement. Les résultats sont enregistrés Paramètres: fct: fonction renvoyant les éléments calculées df: DataFrame de valeurs d'entrée à fournir à la fonction excel_file: Chemin du fichier excel où écrire les valeurs Retourne: Rien """ def sheet_name(name): # formatage du nom des feuilles (suppression des guillements, :, ...) name = unicodedata.normalize('NFKD', name).encode('ascii', 'ignore') name = k.replace("'", "").replace(":", "").replace(" ", "_") name = "%i-%s" % (i, name) name = name[:31] return name res_count = dict() polluant, res = fct(df) print("\nTraitement du polluant: %s" % polluant) writer = pd.ExcelWriter(excel_file) # Valeurs mesurées suivant critères for i, (k, v) in enumerate(res.items()): comp = compresse(v) comp.index.name = k comp = comp.apply(pd.np.round) comp.to_excel(writer, sheet_name=sheet_name(k)) res_count[k] = v.count() # Nombre de dépassements des critères name = "Nombre_de_depassements" res_count = pd.DataFrame(res_count).T res_count.index.name = name res_count.to_excel(writer, sheet_name=name) writer.save()
[ "def", "excel_synthese", "(", "fct", ",", "df", ",", "excel_file", ")", ":", "def", "sheet_name", "(", "name", ")", ":", "# formatage du nom des feuilles (suppression des guillements, :, ...)", "name", "=", "unicodedata", ".", "normalize", "(", "'NFKD'", ",", "name", ")", ".", "encode", "(", "'ascii'", ",", "'ignore'", ")", "name", "=", "k", ".", "replace", "(", "\"'\"", ",", "\"\"", ")", ".", "replace", "(", "\":\"", ",", "\"\"", ")", ".", "replace", "(", "\" \"", ",", "\"_\"", ")", "name", "=", "\"%i-%s\"", "%", "(", "i", ",", "name", ")", "name", "=", "name", "[", ":", "31", "]", "return", "name", "res_count", "=", "dict", "(", ")", "polluant", ",", "res", "=", "fct", "(", "df", ")", "print", "(", "\"\\nTraitement du polluant: %s\"", "%", "polluant", ")", "writer", "=", "pd", ".", "ExcelWriter", "(", "excel_file", ")", "# Valeurs mesurées suivant critères", "for", "i", ",", "(", "k", ",", "v", ")", "in", "enumerate", "(", "res", ".", "items", "(", ")", ")", ":", "comp", "=", "compresse", "(", "v", ")", "comp", ".", "index", ".", "name", "=", "k", "comp", "=", "comp", ".", "apply", "(", "pd", ".", "np", ".", "round", ")", "comp", ".", "to_excel", "(", "writer", ",", "sheet_name", "=", "sheet_name", "(", "k", ")", ")", "res_count", "[", "k", "]", "=", "v", ".", "count", "(", ")", "# Nombre de dépassements des critères", "name", "=", "\"Nombre_de_depassements\"", "res_count", "=", "pd", ".", "DataFrame", "(", "res_count", ")", ".", "T", "res_count", ".", "index", ".", "name", "=", "name", "res_count", ".", "to_excel", "(", "writer", ",", "sheet_name", "=", "name", ")", "writer", ".", "save", "(", ")" ]
Enregistre dans un fichier Excel une synthèse des calculs réglementaires en fournissant les valeurs calculées suivant les réglementations définies dans chaque fonction de calcul et un tableau de nombre de dépassement. Les résultats sont enregistrés Paramètres: fct: fonction renvoyant les éléments calculées df: DataFrame de valeurs d'entrée à fournir à la fonction excel_file: Chemin du fichier excel où écrire les valeurs Retourne: Rien
[ "Enregistre", "dans", "un", "fichier", "Excel", "une", "synthèse", "des", "calculs", "réglementaires", "en", "fournissant", "les", "valeurs", "calculées", "suivant", "les", "réglementations", "définies", "dans", "chaque", "fonction", "de", "calcul", "et", "un", "tableau", "de", "nombre", "de", "dépassement", ".", "Les", "résultats", "sont", "enregistrés" ]
python
valid
31.06383
wtolson/gnsq
gnsq/nsqd.py
https://github.com/wtolson/gnsq/blob/0fd02578b2c9c5fa30626d78579db2a46c10edac/gnsq/nsqd.py#L622-L644
def stats(self, topic=None, channel=None, text=False): """Return internal instrumented statistics. :param topic: (optional) filter to topic :param channel: (optional) filter to channel :param text: return the stats as a string (default: ``False``) """ if text: fields = {'format': 'text'} else: fields = {'format': 'json'} if topic: nsq.assert_valid_topic_name(topic) fields['topic'] = topic if channel: nsq.assert_valid_channel_name(channel) fields['channel'] = channel return self._request('GET', '/stats', fields=fields)
[ "def", "stats", "(", "self", ",", "topic", "=", "None", ",", "channel", "=", "None", ",", "text", "=", "False", ")", ":", "if", "text", ":", "fields", "=", "{", "'format'", ":", "'text'", "}", "else", ":", "fields", "=", "{", "'format'", ":", "'json'", "}", "if", "topic", ":", "nsq", ".", "assert_valid_topic_name", "(", "topic", ")", "fields", "[", "'topic'", "]", "=", "topic", "if", "channel", ":", "nsq", ".", "assert_valid_channel_name", "(", "channel", ")", "fields", "[", "'channel'", "]", "=", "channel", "return", "self", ".", "_request", "(", "'GET'", ",", "'/stats'", ",", "fields", "=", "fields", ")" ]
Return internal instrumented statistics. :param topic: (optional) filter to topic :param channel: (optional) filter to channel :param text: return the stats as a string (default: ``False``)
[ "Return", "internal", "instrumented", "statistics", "." ]
python
train
28.652174
praekeltfoundation/seaworthy
docs/apigen.py
https://github.com/praekeltfoundation/seaworthy/blob/6f10a19b45d4ea1dc3bd0553cc4d0438696c079c/docs/apigen.py#L62-L83
def create_autosummary_file(modules, opts): # type: (List[unicode], Any, unicode) -> None """Create the module's index.""" lines = [ 'API Reference', '=============', '', '.. autosummary::', ' :template: api_module.rst', ' :toctree: {}'.format(opts.destdir), '', ] modules.sort() for module in modules: lines.append(' {}'.format(module)) lines.append('') fname = path.join(opts.srcdir, '{}.rst'.format(opts.docname)) logger.info('[apigen] creating API docs file: {}'.format(fname)) with FileAvoidWrite(fname) as f: f.write('\n'.join(lines))
[ "def", "create_autosummary_file", "(", "modules", ",", "opts", ")", ":", "# type: (List[unicode], Any, unicode) -> None", "lines", "=", "[", "'API Reference'", ",", "'============='", ",", "''", ",", "'.. autosummary::'", ",", "' :template: api_module.rst'", ",", "' :toctree: {}'", ".", "format", "(", "opts", ".", "destdir", ")", ",", "''", ",", "]", "modules", ".", "sort", "(", ")", "for", "module", "in", "modules", ":", "lines", ".", "append", "(", "' {}'", ".", "format", "(", "module", ")", ")", "lines", ".", "append", "(", "''", ")", "fname", "=", "path", ".", "join", "(", "opts", ".", "srcdir", ",", "'{}.rst'", ".", "format", "(", "opts", ".", "docname", ")", ")", "logger", ".", "info", "(", "'[apigen] creating API docs file: {}'", ".", "format", "(", "fname", ")", ")", "with", "FileAvoidWrite", "(", "fname", ")", "as", "f", ":", "f", ".", "write", "(", "'\\n'", ".", "join", "(", "lines", ")", ")" ]
Create the module's index.
[ "Create", "the", "module", "s", "index", "." ]
python
train
29.045455
saltstack/salt
salt/states/mount.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/mount.py#L61-L728
def mounted(name, device, fstype, mkmnt=False, opts='defaults', dump=0, pass_num=0, config='/etc/fstab', persist=True, mount=True, user=None, match_on='auto', device_name_regex=None, extra_mount_invisible_options=None, extra_mount_invisible_keys=None, extra_mount_ignore_fs_keys=None, extra_mount_translate_options=None, hidden_opts=None, **kwargs): ''' Verify that a device is mounted name The path to the location where the device is to be mounted device The device name, typically the device node, such as ``/dev/sdb1`` or ``UUID=066e0200-2867-4ebe-b9e6-f30026ca2314`` or ``LABEL=DATA`` fstype The filesystem type, this will be ``xfs``, ``ext2/3/4`` in the case of classic filesystems, ``fuse`` in the case of fuse mounts, and ``nfs`` in the case of nfs mounts mkmnt If the mount point is not present then the state will fail, set ``mkmnt: True`` to create the mount point if it is otherwise not present opts A list object of options or a comma delimited list dump The dump value to be passed into the fstab, Default is ``0`` pass_num The pass value to be passed into the fstab, Default is ``0`` config Set an alternative location for the fstab, Default is ``/etc/fstab`` persist Set if the mount should be saved in the fstab, Default is ``True`` mount Set if the mount should be mounted immediately, Default is ``True`` user The account used to execute the mount; this defaults to the user salt is running as on the minion match_on A name or list of fstab properties on which this state should be applied. Default is ``auto``, a special value indicating to guess based on fstype. In general, ``auto`` matches on name for recognized special devices and device otherwise. device_name_regex A list of device exact names or regular expressions which should not force a remount. For example, glusterfs may be mounted with a comma-separated list of servers in fstab, but the /proc/self/mountinfo will show only the first available server. .. code-block:: jinja {% set glusterfs_ip_list = ['10.0.0.1', '10.0.0.2', '10.0.0.3'] %} mount glusterfs volume: mount.mounted: - name: /mnt/glusterfs_mount_point - device: {{ glusterfs_ip_list|join(',') }}:/volume_name - fstype: glusterfs - opts: _netdev,rw,defaults,direct-io-mode=disable - mkmnt: True - persist: True - dump: 0 - pass_num: 0 - device_name_regex: - ({{ glusterfs_ip_list|join('|') }}):/volume_name .. versionadded:: 2016.11.0 extra_mount_invisible_options A list of extra options that are not visible through the ``/proc/self/mountinfo`` interface. If a option is not visible through this interface it will always remount the device. This option extends the builtin ``mount_invisible_options`` list. extra_mount_invisible_keys A list of extra key options that are not visible through the ``/proc/self/mountinfo`` interface. If a key option is not visible through this interface it will always remount the device. This option extends the builtin ``mount_invisible_keys`` list. A good example for a key option is the password option:: password=badsecret extra_mount_ignore_fs_keys A dict of filesystem options which should not force a remount. This will update the internal dictionary. The dict should look like this:: { 'ramfs': ['size'] } extra_mount_translate_options A dict of mount options that gets translated when mounted. To prevent a remount add additional options to the default dictionary. This will update the internal dictionary. The dictionary should look like this:: { 'tcp': 'proto=tcp', 'udp': 'proto=udp' } hidden_opts A list of mount options that will be ignored when considering a remount as part of the state application .. versionadded:: 2015.8.2 ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} update_mount_cache = False if not name: ret['result'] = False ret['comment'] = 'Must provide name to mount.mounted' return ret if not device: ret['result'] = False ret['comment'] = 'Must provide device to mount.mounted' return ret if not fstype: ret['result'] = False ret['comment'] = 'Must provide fstype to mount.mounted' return ret if device_name_regex is None: device_name_regex = [] # Defaults is not a valid option on Mac OS if __grains__['os'] in ['MacOS', 'Darwin'] and opts == 'defaults': opts = 'noowners' # Defaults is not a valid option on AIX if __grains__['os'] in ['AIX']: if opts == 'defaults': opts = '' # Defaults is not a valid option on Solaris if 'Solaris' in __grains__['os'] and opts == 'defaults': opts = '-' # Make sure that opts is correct, it can be a list or a comma delimited # string if isinstance(opts, string_types): opts = opts.split(',') if isinstance(hidden_opts, string_types): hidden_opts = hidden_opts.split(',') # remove possible trailing slash if not name == '/': name = name.rstrip('/') device_list = [] # Get the active data active = __salt__['mount.active'](extended=True) real_name = os.path.realpath(name) if device.startswith('/'): if 'bind' in opts and real_name in active: _device = device if active[real_name]['device'].startswith('/'): # Find the device that the bind really points at. while True: if _device in active: _real_device = active[_device]['device'] opts = list(set(opts + active[_device]['opts'] + active[_device]['superopts'])) active[real_name]['opts'].append('bind') break _device = os.path.dirname(_device) real_device = _real_device else: # Remote file systems act differently. if _device in active: opts = list(set(opts + active[_device]['opts'] + active[_device]['superopts'])) active[real_name]['opts'].append('bind') real_device = active[real_name]['device'] else: real_device = os.path.realpath(device) elif device.upper().startswith('UUID='): real_device = device.split('=')[1].strip('"').lower() elif device.upper().startswith('LABEL='): _label = device.split('=')[1] cmd = 'blkid -t LABEL={0}'.format(_label) res = __salt__['cmd.run_all']('{0}'.format(cmd)) if res['retcode'] > 0: ret['comment'] = 'Unable to find device with label {0}.'.format(_label) ret['result'] = False return ret else: # output is a list of entries like this: # /dev/sda: LABEL="<label>" UUID="<uuid>" UUID_SUB="<uuid>" TYPE="btrfs" # exact list of properties varies between filesystems, but we're # only interested in the device in the first column for line in res['stdout']: dev_with_label = line.split(':')[0] device_list.append(dev_with_label) real_device = device_list[0] else: real_device = device # LVS devices have 2 names under /dev: # /dev/mapper/vg--name-lv--name and /dev/vg-name/lv-name # No matter what name is used for mounting, # mount always displays the device as /dev/mapper/vg--name-lv--name # Note the double-dash escaping. # So, let's call that the canonical device name # We should normalize names of the /dev/vg-name/lv-name type to the canonical name lvs_match = re.match(r'^/dev/(?P<vg_name>[^/]+)/(?P<lv_name>[^/]+$)', device) if lvs_match: double_dash_escaped = dict((k, re.sub(r'-', '--', v)) for k, v in six.iteritems(lvs_match.groupdict())) mapper_device = '/dev/mapper/{vg_name}-{lv_name}'.format(**double_dash_escaped) if os.path.exists(mapper_device): real_device = mapper_device # When included in a Salt state file, FUSE devices are prefaced by the # filesystem type and a hash, e.g. sshfs. In the mount list only the # hostname is included. So if we detect that the device is a FUSE device # then we remove the prefaced string so that the device in state matches # the device in the mount list. fuse_match = re.match(r'^\w+\#(?P<device_name>.+)', device) if fuse_match: if 'device_name' in fuse_match.groupdict(): real_device = fuse_match.group('device_name') if real_name in active: if 'superopts' not in active[real_name]: active[real_name]['superopts'] = [] if mount: device_list.append(active[real_name]['device']) device_list.append(os.path.realpath(device_list[0])) alt_device = active[real_name]['alt_device'] if 'alt_device' in active[real_name] else None uuid_device = active[real_name]['device_uuid'] if 'device_uuid' in active[real_name] else None label_device = active[real_name]['device_label'] if 'device_label' in active[real_name] else None if alt_device and alt_device not in device_list: device_list.append(alt_device) if uuid_device and uuid_device not in device_list: device_list.append(uuid_device) if label_device and label_device not in device_list: device_list.append(label_device) if opts: mount_invisible_options = [ '_netdev', 'actimeo', 'bg', 'comment', 'defaults', 'delay_connect', 'direct-io-mode', 'intr', 'loop', 'nointr', 'nobootwait', 'nofail', 'password', 'reconnect', 'retry', 'soft', 'auto', 'users', 'bind', 'nonempty', 'transform_symlinks', 'port', 'backup-volfile-servers', ] if extra_mount_invisible_options: mount_invisible_options.extend(extra_mount_invisible_options) if hidden_opts: mount_invisible_options = list(set(mount_invisible_options) | set(hidden_opts)) # options which are provided as key=value (e.g. password=Zohp5ohb) mount_invisible_keys = [ 'actimeo', 'comment', 'credentials', 'direct-io-mode', 'password', 'port', 'retry', 'secretfile', ] if extra_mount_invisible_keys: mount_invisible_keys.extend(extra_mount_invisible_keys) # Some filesystems have options which should not force a remount. mount_ignore_fs_keys = { 'ramfs': ['size'] } if extra_mount_ignore_fs_keys: mount_ignore_fs_keys.update(extra_mount_ignore_fs_keys) # Some options are translated once mounted mount_translate_options = { 'tcp': 'proto=tcp', 'udp': 'proto=udp', } if extra_mount_translate_options: mount_translate_options.update(extra_mount_translate_options) for opt in opts: if opt in mount_translate_options: opt = mount_translate_options[opt] keyval_option = opt.split('=')[0] if keyval_option in mount_invisible_keys: opt = keyval_option size_match = re.match(r'size=(?P<size_value>[0-9]+)(?P<size_unit>k|m|g)', opt) if size_match: converted_size = _size_convert(size_match) opt = "size={0}k".format(converted_size) # make cifs option user synonym for option username which is reported by /proc/mounts if fstype in ['cifs'] and opt.split('=')[0] == 'user': opt = "username={0}".format(opt.split('=')[1]) if opt.split('=')[0] in mount_ignore_fs_keys.get(fstype, []): opt = opt.split('=')[0] # convert uid/gid to numeric value from user/group name name_id_opts = {'uid': 'user.info', 'gid': 'group.info'} if opt.split('=')[0] in name_id_opts and len(opt.split('=')) > 1: _givenid = opt.split('=')[1] _param = opt.split('=')[0] _id = _givenid if not re.match('[0-9]+$', _givenid): _info = __salt__[name_id_opts[_param]](_givenid) if _info and _param in _info: _id = _info[_param] opt = _param + '=' + six.text_type(_id) _active_superopts = active[real_name].get('superopts', []) for _active_opt in _active_superopts: size_match = re.match(r'size=(?P<size_value>[0-9]+)(?P<size_unit>k|m|g)', _active_opt) if size_match: converted_size = _size_convert(size_match) opt = "size={0}k".format(converted_size) _active_superopts.remove(_active_opt) _active_opt = "size={0}k".format(converted_size) _active_superopts.append(_active_opt) if opt not in active[real_name]['opts'] \ and opt not in _active_superopts \ and opt not in mount_invisible_options \ and opt not in mount_ignore_fs_keys.get(fstype, []) \ and opt not in mount_invisible_keys: if __opts__['test']: ret['result'] = None ret['comment'] = "Remount would be forced because options ({0}) changed".format(opt) return ret else: # Some file systems require umounting and mounting if options change # add others to list that require similiar functionality if fstype in ['nfs', 'cvfs'] or fstype.startswith('fuse'): ret['changes']['umount'] = "Forced unmount and mount because " \ + "options ({0}) changed".format(opt) unmount_result = __salt__['mount.umount'](real_name) if unmount_result is True: mount_result = __salt__['mount.mount'](real_name, device, mkmnt=mkmnt, fstype=fstype, opts=opts) ret['result'] = mount_result else: ret['result'] = False ret['comment'] = 'Unable to unmount {0}: {1}.'.format(real_name, unmount_result) return ret else: ret['changes']['umount'] = "Forced remount because " \ + "options ({0}) changed".format(opt) remount_result = __salt__['mount.remount'](real_name, device, mkmnt=mkmnt, fstype=fstype, opts=opts) ret['result'] = remount_result # Cleanup after the remount, so we # don't write remount into fstab if 'remount' in opts: opts.remove('remount') # Update the cache update_mount_cache = True mount_cache = __salt__['mount.read_mount_cache'](real_name) if 'opts' in mount_cache: _missing = [opt for opt in mount_cache['opts'] if opt not in opts] if _missing: if __opts__['test']: ret['result'] = None ret['comment'] = ('Remount would be forced because' ' options ({0})' 'changed'.format(','.join(_missing))) return ret else: # Some file systems require umounting and mounting if options change # add others to list that require similiar functionality if fstype in ['nfs', 'cvfs'] or fstype.startswith('fuse'): ret['changes']['umount'] = "Forced unmount and mount because " \ + "options ({0}) changed".format(opt) unmount_result = __salt__['mount.umount'](real_name) if unmount_result is True: mount_result = __salt__['mount.mount'](real_name, device, mkmnt=mkmnt, fstype=fstype, opts=opts) ret['result'] = mount_result else: ret['result'] = False ret['comment'] = 'Unable to unmount {0}: {1}.'.format(real_name, unmount_result) return ret else: ret['changes']['umount'] = "Forced remount because " \ + "options ({0}) changed".format(opt) remount_result = __salt__['mount.remount'](real_name, device, mkmnt=mkmnt, fstype=fstype, opts=opts) ret['result'] = remount_result # Cleanup after the remount, so we # don't write remount into fstab if 'remount' in opts: opts.remove('remount') update_mount_cache = True else: update_mount_cache = True if real_device not in device_list: # name matches but device doesn't - need to umount _device_mismatch_is_ignored = None for regex in list(device_name_regex): for _device in device_list: if re.match(regex, _device): _device_mismatch_is_ignored = _device break if _device_mismatch_is_ignored: ret['result'] = True ret['comment'] = "An umount will not be forced " \ + "because device matched device_name_regex: " \ + _device_mismatch_is_ignored elif __opts__['test']: ret['result'] = None ret['comment'] = "An umount would have been forced " \ + "because devices do not match. Watched: " \ + device else: ret['changes']['umount'] = "Forced unmount because devices " \ + "don't match. Wanted: " + device if real_device != device: ret['changes']['umount'] += " (" + real_device + ")" ret['changes']['umount'] += ", current: " + ', '.join(device_list) out = __salt__['mount.umount'](real_name, user=user) active = __salt__['mount.active'](extended=True) if real_name in active: ret['comment'] = "Unable to unmount" ret['result'] = None return ret update_mount_cache = True else: ret['comment'] = 'Target was already mounted' # using a duplicate check so I can catch the results of a umount if real_name not in active: if mount: # The mount is not present! Mount it if __opts__['test']: ret['result'] = None if os.path.exists(name): ret['comment'] = '{0} would be mounted'.format(name) elif mkmnt: ret['comment'] = '{0} would be created and mounted'.format(name) else: ret['comment'] = '{0} does not exist and would not be created'.format(name) return ret if not os.path.exists(name) and not mkmnt: ret['result'] = False ret['comment'] = 'Mount directory is not present' return ret out = __salt__['mount.mount'](name, device, mkmnt, fstype, opts, user=user) active = __salt__['mount.active'](extended=True) update_mount_cache = True if isinstance(out, string_types): # Failed to (re)mount, the state has failed! ret['comment'] = out ret['result'] = False return ret elif real_name in active: # (Re)mount worked! ret['comment'] = 'Target was successfully mounted' ret['changes']['mount'] = True elif not os.path.exists(name): if __opts__['test']: ret['result'] = None if mkmnt: ret['comment'] = '{0} would be created, but not mounted'.format(name) else: ret['comment'] = '{0} does not exist and would neither be created nor mounted'.format(name) elif mkmnt: __salt__['file.mkdir'](name, user=user) ret['comment'] = '{0} was created, not mounted'.format(name) else: ret['comment'] = '{0} not present and not mounted'.format(name) else: if __opts__['test']: ret['result'] = None ret['comment'] = '{0} would not be mounted'.format(name) else: ret['comment'] = '{0} not mounted'.format(name) if persist: if '/etc/fstab' == config: # Override default for Mac OS if __grains__['os'] in ['MacOS', 'Darwin']: config = "/etc/auto_salt" # Override default for AIX elif 'AIX' in __grains__['os']: config = "/etc/filesystems" if __opts__['test']: if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.set_automaster'](name, device, fstype, opts, config, test=True) elif __grains__['os'] in ['AIX']: out = __salt__['mount.set_filesystems'](name, device, fstype, opts, mount, config, test=True, match_on=match_on) elif 'Solaris' in __grains__['os']: out = __salt__['mount.set_vfstab'](name, device, fstype, opts, config=config, test=True, match_on=match_on) else: out = __salt__['mount.set_fstab'](name, device, fstype, opts, dump, pass_num, config, test=True, match_on=match_on) if out != 'present': ret['result'] = None if out == 'new': if mount: comment = ('{0} is mounted, but needs to be ' 'written to the fstab in order to be ' 'made persistent.').format(name) else: comment = ('{0} needs to be ' 'written to the fstab in order to be ' 'made persistent.').format(name) elif out == 'change': if mount: comment = ('{0} is mounted, but its fstab entry ' 'must be updated.').format(name) else: comment = ('The {0} fstab entry ' 'must be updated.').format(name) else: ret['result'] = False comment = ('Unable to detect fstab status for ' 'mount point {0} due to unexpected ' 'output \'{1}\' from call to ' 'mount.set_fstab. This is most likely ' 'a bug.').format(name, out) if 'comment' in ret: ret['comment'] = '{0}. {1}'.format(ret['comment'], comment) else: ret['comment'] = comment return ret else: if __grains__['os'] in ['MacOS', 'Darwin']: out = __salt__['mount.set_automaster'](name, device, fstype, opts, config) elif __grains__['os'] in ['AIX']: out = __salt__['mount.set_filesystems'](name, device, fstype, opts, mount, config, match_on=match_on) elif 'Solaris' in __grains__['os']: out = __salt__['mount.set_vfstab'](name, device, fstype, opts, config=config, match_on=match_on) else: out = __salt__['mount.set_fstab'](name, device, fstype, opts, dump, pass_num, config, match_on=match_on) if update_mount_cache: cache_result = __salt__['mount.write_mount_cache'](real_name, device, mkmnt=mkmnt, fstype=fstype, mount_opts=opts) if out == 'present': ret['comment'] += '. Entry already exists in the fstab.' return ret if out == 'new': ret['changes']['persist'] = 'new' ret['comment'] += '. Added new entry to the fstab.' return ret if out == 'change': ret['changes']['persist'] = 'update' ret['comment'] += '. Updated the entry in the fstab.' return ret if out == 'bad config': ret['result'] = False ret['comment'] += '. However, the fstab was not found.' return ret return ret
[ "def", "mounted", "(", "name", ",", "device", ",", "fstype", ",", "mkmnt", "=", "False", ",", "opts", "=", "'defaults'", ",", "dump", "=", "0", ",", "pass_num", "=", "0", ",", "config", "=", "'/etc/fstab'", ",", "persist", "=", "True", ",", "mount", "=", "True", ",", "user", "=", "None", ",", "match_on", "=", "'auto'", ",", "device_name_regex", "=", "None", ",", "extra_mount_invisible_options", "=", "None", ",", "extra_mount_invisible_keys", "=", "None", ",", "extra_mount_ignore_fs_keys", "=", "None", ",", "extra_mount_translate_options", "=", "None", ",", "hidden_opts", "=", "None", ",", "*", "*", "kwargs", ")", ":", "ret", "=", "{", "'name'", ":", "name", ",", "'changes'", ":", "{", "}", ",", "'result'", ":", "True", ",", "'comment'", ":", "''", "}", "update_mount_cache", "=", "False", "if", "not", "name", ":", "ret", "[", "'result'", "]", "=", "False", "ret", "[", "'comment'", "]", "=", "'Must provide name to mount.mounted'", "return", "ret", "if", "not", "device", ":", "ret", "[", "'result'", "]", "=", "False", "ret", "[", "'comment'", "]", "=", "'Must provide device to mount.mounted'", "return", "ret", "if", "not", "fstype", ":", "ret", "[", "'result'", "]", "=", "False", "ret", "[", "'comment'", "]", "=", "'Must provide fstype to mount.mounted'", "return", "ret", "if", "device_name_regex", "is", "None", ":", "device_name_regex", "=", "[", "]", "# Defaults is not a valid option on Mac OS", "if", "__grains__", "[", "'os'", "]", "in", "[", "'MacOS'", ",", "'Darwin'", "]", "and", "opts", "==", "'defaults'", ":", "opts", "=", "'noowners'", "# Defaults is not a valid option on AIX", "if", "__grains__", "[", "'os'", "]", "in", "[", "'AIX'", "]", ":", "if", "opts", "==", "'defaults'", ":", "opts", "=", "''", "# Defaults is not a valid option on Solaris", "if", "'Solaris'", "in", "__grains__", "[", "'os'", "]", "and", "opts", "==", "'defaults'", ":", "opts", "=", "'-'", "# Make sure that opts is correct, it can be a list or a comma delimited", "# string", "if", "isinstance", "(", "opts", ",", "string_types", ")", ":", "opts", "=", "opts", ".", "split", "(", "','", ")", "if", "isinstance", "(", "hidden_opts", ",", "string_types", ")", ":", "hidden_opts", "=", "hidden_opts", ".", "split", "(", "','", ")", "# remove possible trailing slash", "if", "not", "name", "==", "'/'", ":", "name", "=", "name", ".", "rstrip", "(", "'/'", ")", "device_list", "=", "[", "]", "# Get the active data", "active", "=", "__salt__", "[", "'mount.active'", "]", "(", "extended", "=", "True", ")", "real_name", "=", "os", ".", "path", ".", "realpath", "(", "name", ")", "if", "device", ".", "startswith", "(", "'/'", ")", ":", "if", "'bind'", "in", "opts", "and", "real_name", "in", "active", ":", "_device", "=", "device", "if", "active", "[", "real_name", "]", "[", "'device'", "]", ".", "startswith", "(", "'/'", ")", ":", "# Find the device that the bind really points at.", "while", "True", ":", "if", "_device", "in", "active", ":", "_real_device", "=", "active", "[", "_device", "]", "[", "'device'", "]", "opts", "=", "list", "(", "set", "(", "opts", "+", "active", "[", "_device", "]", "[", "'opts'", "]", "+", "active", "[", "_device", "]", "[", "'superopts'", "]", ")", ")", "active", "[", "real_name", "]", "[", "'opts'", "]", ".", "append", "(", "'bind'", ")", "break", "_device", "=", "os", ".", "path", ".", "dirname", "(", "_device", ")", "real_device", "=", "_real_device", "else", ":", "# Remote file systems act differently.", "if", "_device", "in", "active", ":", "opts", "=", "list", "(", "set", "(", "opts", "+", "active", "[", "_device", "]", "[", "'opts'", "]", "+", "active", "[", "_device", "]", "[", "'superopts'", "]", ")", ")", "active", "[", "real_name", "]", "[", "'opts'", "]", ".", "append", "(", "'bind'", ")", "real_device", "=", "active", "[", "real_name", "]", "[", "'device'", "]", "else", ":", "real_device", "=", "os", ".", "path", ".", "realpath", "(", "device", ")", "elif", "device", ".", "upper", "(", ")", ".", "startswith", "(", "'UUID='", ")", ":", "real_device", "=", "device", ".", "split", "(", "'='", ")", "[", "1", "]", ".", "strip", "(", "'\"'", ")", ".", "lower", "(", ")", "elif", "device", ".", "upper", "(", ")", ".", "startswith", "(", "'LABEL='", ")", ":", "_label", "=", "device", ".", "split", "(", "'='", ")", "[", "1", "]", "cmd", "=", "'blkid -t LABEL={0}'", ".", "format", "(", "_label", ")", "res", "=", "__salt__", "[", "'cmd.run_all'", "]", "(", "'{0}'", ".", "format", "(", "cmd", ")", ")", "if", "res", "[", "'retcode'", "]", ">", "0", ":", "ret", "[", "'comment'", "]", "=", "'Unable to find device with label {0}.'", ".", "format", "(", "_label", ")", "ret", "[", "'result'", "]", "=", "False", "return", "ret", "else", ":", "# output is a list of entries like this:", "# /dev/sda: LABEL=\"<label>\" UUID=\"<uuid>\" UUID_SUB=\"<uuid>\" TYPE=\"btrfs\"", "# exact list of properties varies between filesystems, but we're", "# only interested in the device in the first column", "for", "line", "in", "res", "[", "'stdout'", "]", ":", "dev_with_label", "=", "line", ".", "split", "(", "':'", ")", "[", "0", "]", "device_list", ".", "append", "(", "dev_with_label", ")", "real_device", "=", "device_list", "[", "0", "]", "else", ":", "real_device", "=", "device", "# LVS devices have 2 names under /dev:", "# /dev/mapper/vg--name-lv--name and /dev/vg-name/lv-name", "# No matter what name is used for mounting,", "# mount always displays the device as /dev/mapper/vg--name-lv--name", "# Note the double-dash escaping.", "# So, let's call that the canonical device name", "# We should normalize names of the /dev/vg-name/lv-name type to the canonical name", "lvs_match", "=", "re", ".", "match", "(", "r'^/dev/(?P<vg_name>[^/]+)/(?P<lv_name>[^/]+$)'", ",", "device", ")", "if", "lvs_match", ":", "double_dash_escaped", "=", "dict", "(", "(", "k", ",", "re", ".", "sub", "(", "r'-'", ",", "'--'", ",", "v", ")", ")", "for", "k", ",", "v", "in", "six", ".", "iteritems", "(", "lvs_match", ".", "groupdict", "(", ")", ")", ")", "mapper_device", "=", "'/dev/mapper/{vg_name}-{lv_name}'", ".", "format", "(", "*", "*", "double_dash_escaped", ")", "if", "os", ".", "path", ".", "exists", "(", "mapper_device", ")", ":", "real_device", "=", "mapper_device", "# When included in a Salt state file, FUSE devices are prefaced by the", "# filesystem type and a hash, e.g. sshfs. In the mount list only the", "# hostname is included. So if we detect that the device is a FUSE device", "# then we remove the prefaced string so that the device in state matches", "# the device in the mount list.", "fuse_match", "=", "re", ".", "match", "(", "r'^\\w+\\#(?P<device_name>.+)'", ",", "device", ")", "if", "fuse_match", ":", "if", "'device_name'", "in", "fuse_match", ".", "groupdict", "(", ")", ":", "real_device", "=", "fuse_match", ".", "group", "(", "'device_name'", ")", "if", "real_name", "in", "active", ":", "if", "'superopts'", "not", "in", "active", "[", "real_name", "]", ":", "active", "[", "real_name", "]", "[", "'superopts'", "]", "=", "[", "]", "if", "mount", ":", "device_list", ".", "append", "(", "active", "[", "real_name", "]", "[", "'device'", "]", ")", "device_list", ".", "append", "(", "os", ".", "path", ".", "realpath", "(", "device_list", "[", "0", "]", ")", ")", "alt_device", "=", "active", "[", "real_name", "]", "[", "'alt_device'", "]", "if", "'alt_device'", "in", "active", "[", "real_name", "]", "else", "None", "uuid_device", "=", "active", "[", "real_name", "]", "[", "'device_uuid'", "]", "if", "'device_uuid'", "in", "active", "[", "real_name", "]", "else", "None", "label_device", "=", "active", "[", "real_name", "]", "[", "'device_label'", "]", "if", "'device_label'", "in", "active", "[", "real_name", "]", "else", "None", "if", "alt_device", "and", "alt_device", "not", "in", "device_list", ":", "device_list", ".", "append", "(", "alt_device", ")", "if", "uuid_device", "and", "uuid_device", "not", "in", "device_list", ":", "device_list", ".", "append", "(", "uuid_device", ")", "if", "label_device", "and", "label_device", "not", "in", "device_list", ":", "device_list", ".", "append", "(", "label_device", ")", "if", "opts", ":", "mount_invisible_options", "=", "[", "'_netdev'", ",", "'actimeo'", ",", "'bg'", ",", "'comment'", ",", "'defaults'", ",", "'delay_connect'", ",", "'direct-io-mode'", ",", "'intr'", ",", "'loop'", ",", "'nointr'", ",", "'nobootwait'", ",", "'nofail'", ",", "'password'", ",", "'reconnect'", ",", "'retry'", ",", "'soft'", ",", "'auto'", ",", "'users'", ",", "'bind'", ",", "'nonempty'", ",", "'transform_symlinks'", ",", "'port'", ",", "'backup-volfile-servers'", ",", "]", "if", "extra_mount_invisible_options", ":", "mount_invisible_options", ".", "extend", "(", "extra_mount_invisible_options", ")", "if", "hidden_opts", ":", "mount_invisible_options", "=", "list", "(", "set", "(", "mount_invisible_options", ")", "|", "set", "(", "hidden_opts", ")", ")", "# options which are provided as key=value (e.g. password=Zohp5ohb)", "mount_invisible_keys", "=", "[", "'actimeo'", ",", "'comment'", ",", "'credentials'", ",", "'direct-io-mode'", ",", "'password'", ",", "'port'", ",", "'retry'", ",", "'secretfile'", ",", "]", "if", "extra_mount_invisible_keys", ":", "mount_invisible_keys", ".", "extend", "(", "extra_mount_invisible_keys", ")", "# Some filesystems have options which should not force a remount.", "mount_ignore_fs_keys", "=", "{", "'ramfs'", ":", "[", "'size'", "]", "}", "if", "extra_mount_ignore_fs_keys", ":", "mount_ignore_fs_keys", ".", "update", "(", "extra_mount_ignore_fs_keys", ")", "# Some options are translated once mounted", "mount_translate_options", "=", "{", "'tcp'", ":", "'proto=tcp'", ",", "'udp'", ":", "'proto=udp'", ",", "}", "if", "extra_mount_translate_options", ":", "mount_translate_options", ".", "update", "(", "extra_mount_translate_options", ")", "for", "opt", "in", "opts", ":", "if", "opt", "in", "mount_translate_options", ":", "opt", "=", "mount_translate_options", "[", "opt", "]", "keyval_option", "=", "opt", ".", "split", "(", "'='", ")", "[", "0", "]", "if", "keyval_option", "in", "mount_invisible_keys", ":", "opt", "=", "keyval_option", "size_match", "=", "re", ".", "match", "(", "r'size=(?P<size_value>[0-9]+)(?P<size_unit>k|m|g)'", ",", "opt", ")", "if", "size_match", ":", "converted_size", "=", "_size_convert", "(", "size_match", ")", "opt", "=", "\"size={0}k\"", ".", "format", "(", "converted_size", ")", "# make cifs option user synonym for option username which is reported by /proc/mounts", "if", "fstype", "in", "[", "'cifs'", "]", "and", "opt", ".", "split", "(", "'='", ")", "[", "0", "]", "==", "'user'", ":", "opt", "=", "\"username={0}\"", ".", "format", "(", "opt", ".", "split", "(", "'='", ")", "[", "1", "]", ")", "if", "opt", ".", "split", "(", "'='", ")", "[", "0", "]", "in", "mount_ignore_fs_keys", ".", "get", "(", "fstype", ",", "[", "]", ")", ":", "opt", "=", "opt", ".", "split", "(", "'='", ")", "[", "0", "]", "# convert uid/gid to numeric value from user/group name", "name_id_opts", "=", "{", "'uid'", ":", "'user.info'", ",", "'gid'", ":", "'group.info'", "}", "if", "opt", ".", "split", "(", "'='", ")", "[", "0", "]", "in", "name_id_opts", "and", "len", "(", "opt", ".", "split", "(", "'='", ")", ")", ">", "1", ":", "_givenid", "=", "opt", ".", "split", "(", "'='", ")", "[", "1", "]", "_param", "=", "opt", ".", "split", "(", "'='", ")", "[", "0", "]", "_id", "=", "_givenid", "if", "not", "re", ".", "match", "(", "'[0-9]+$'", ",", "_givenid", ")", ":", "_info", "=", "__salt__", "[", "name_id_opts", "[", "_param", "]", "]", "(", "_givenid", ")", "if", "_info", "and", "_param", "in", "_info", ":", "_id", "=", "_info", "[", "_param", "]", "opt", "=", "_param", "+", "'='", "+", "six", ".", "text_type", "(", "_id", ")", "_active_superopts", "=", "active", "[", "real_name", "]", ".", "get", "(", "'superopts'", ",", "[", "]", ")", "for", "_active_opt", "in", "_active_superopts", ":", "size_match", "=", "re", ".", "match", "(", "r'size=(?P<size_value>[0-9]+)(?P<size_unit>k|m|g)'", ",", "_active_opt", ")", "if", "size_match", ":", "converted_size", "=", "_size_convert", "(", "size_match", ")", "opt", "=", "\"size={0}k\"", ".", "format", "(", "converted_size", ")", "_active_superopts", ".", "remove", "(", "_active_opt", ")", "_active_opt", "=", "\"size={0}k\"", ".", "format", "(", "converted_size", ")", "_active_superopts", ".", "append", "(", "_active_opt", ")", "if", "opt", "not", "in", "active", "[", "real_name", "]", "[", "'opts'", "]", "and", "opt", "not", "in", "_active_superopts", "and", "opt", "not", "in", "mount_invisible_options", "and", "opt", "not", "in", "mount_ignore_fs_keys", ".", "get", "(", "fstype", ",", "[", "]", ")", "and", "opt", "not", "in", "mount_invisible_keys", ":", "if", "__opts__", "[", "'test'", "]", ":", "ret", "[", "'result'", "]", "=", "None", "ret", "[", "'comment'", "]", "=", "\"Remount would be forced because options ({0}) changed\"", ".", "format", "(", "opt", ")", "return", "ret", "else", ":", "# Some file systems require umounting and mounting if options change", "# add others to list that require similiar functionality", "if", "fstype", "in", "[", "'nfs'", ",", "'cvfs'", "]", "or", "fstype", ".", "startswith", "(", "'fuse'", ")", ":", "ret", "[", "'changes'", "]", "[", "'umount'", "]", "=", "\"Forced unmount and mount because \"", "+", "\"options ({0}) changed\"", ".", "format", "(", "opt", ")", "unmount_result", "=", "__salt__", "[", "'mount.umount'", "]", "(", "real_name", ")", "if", "unmount_result", "is", "True", ":", "mount_result", "=", "__salt__", "[", "'mount.mount'", "]", "(", "real_name", ",", "device", ",", "mkmnt", "=", "mkmnt", ",", "fstype", "=", "fstype", ",", "opts", "=", "opts", ")", "ret", "[", "'result'", "]", "=", "mount_result", "else", ":", "ret", "[", "'result'", "]", "=", "False", "ret", "[", "'comment'", "]", "=", "'Unable to unmount {0}: {1}.'", ".", "format", "(", "real_name", ",", "unmount_result", ")", "return", "ret", "else", ":", "ret", "[", "'changes'", "]", "[", "'umount'", "]", "=", "\"Forced remount because \"", "+", "\"options ({0}) changed\"", ".", "format", "(", "opt", ")", "remount_result", "=", "__salt__", "[", "'mount.remount'", "]", "(", "real_name", ",", "device", ",", "mkmnt", "=", "mkmnt", ",", "fstype", "=", "fstype", ",", "opts", "=", "opts", ")", "ret", "[", "'result'", "]", "=", "remount_result", "# Cleanup after the remount, so we", "# don't write remount into fstab", "if", "'remount'", "in", "opts", ":", "opts", ".", "remove", "(", "'remount'", ")", "# Update the cache", "update_mount_cache", "=", "True", "mount_cache", "=", "__salt__", "[", "'mount.read_mount_cache'", "]", "(", "real_name", ")", "if", "'opts'", "in", "mount_cache", ":", "_missing", "=", "[", "opt", "for", "opt", "in", "mount_cache", "[", "'opts'", "]", "if", "opt", "not", "in", "opts", "]", "if", "_missing", ":", "if", "__opts__", "[", "'test'", "]", ":", "ret", "[", "'result'", "]", "=", "None", "ret", "[", "'comment'", "]", "=", "(", "'Remount would be forced because'", "' options ({0})'", "'changed'", ".", "format", "(", "','", ".", "join", "(", "_missing", ")", ")", ")", "return", "ret", "else", ":", "# Some file systems require umounting and mounting if options change", "# add others to list that require similiar functionality", "if", "fstype", "in", "[", "'nfs'", ",", "'cvfs'", "]", "or", "fstype", ".", "startswith", "(", "'fuse'", ")", ":", "ret", "[", "'changes'", "]", "[", "'umount'", "]", "=", "\"Forced unmount and mount because \"", "+", "\"options ({0}) changed\"", ".", "format", "(", "opt", ")", "unmount_result", "=", "__salt__", "[", "'mount.umount'", "]", "(", "real_name", ")", "if", "unmount_result", "is", "True", ":", "mount_result", "=", "__salt__", "[", "'mount.mount'", "]", "(", "real_name", ",", "device", ",", "mkmnt", "=", "mkmnt", ",", "fstype", "=", "fstype", ",", "opts", "=", "opts", ")", "ret", "[", "'result'", "]", "=", "mount_result", "else", ":", "ret", "[", "'result'", "]", "=", "False", "ret", "[", "'comment'", "]", "=", "'Unable to unmount {0}: {1}.'", ".", "format", "(", "real_name", ",", "unmount_result", ")", "return", "ret", "else", ":", "ret", "[", "'changes'", "]", "[", "'umount'", "]", "=", "\"Forced remount because \"", "+", "\"options ({0}) changed\"", ".", "format", "(", "opt", ")", "remount_result", "=", "__salt__", "[", "'mount.remount'", "]", "(", "real_name", ",", "device", ",", "mkmnt", "=", "mkmnt", ",", "fstype", "=", "fstype", ",", "opts", "=", "opts", ")", "ret", "[", "'result'", "]", "=", "remount_result", "# Cleanup after the remount, so we", "# don't write remount into fstab", "if", "'remount'", "in", "opts", ":", "opts", ".", "remove", "(", "'remount'", ")", "update_mount_cache", "=", "True", "else", ":", "update_mount_cache", "=", "True", "if", "real_device", "not", "in", "device_list", ":", "# name matches but device doesn't - need to umount", "_device_mismatch_is_ignored", "=", "None", "for", "regex", "in", "list", "(", "device_name_regex", ")", ":", "for", "_device", "in", "device_list", ":", "if", "re", ".", "match", "(", "regex", ",", "_device", ")", ":", "_device_mismatch_is_ignored", "=", "_device", "break", "if", "_device_mismatch_is_ignored", ":", "ret", "[", "'result'", "]", "=", "True", "ret", "[", "'comment'", "]", "=", "\"An umount will not be forced \"", "+", "\"because device matched device_name_regex: \"", "+", "_device_mismatch_is_ignored", "elif", "__opts__", "[", "'test'", "]", ":", "ret", "[", "'result'", "]", "=", "None", "ret", "[", "'comment'", "]", "=", "\"An umount would have been forced \"", "+", "\"because devices do not match. Watched: \"", "+", "device", "else", ":", "ret", "[", "'changes'", "]", "[", "'umount'", "]", "=", "\"Forced unmount because devices \"", "+", "\"don't match. Wanted: \"", "+", "device", "if", "real_device", "!=", "device", ":", "ret", "[", "'changes'", "]", "[", "'umount'", "]", "+=", "\" (\"", "+", "real_device", "+", "\")\"", "ret", "[", "'changes'", "]", "[", "'umount'", "]", "+=", "\", current: \"", "+", "', '", ".", "join", "(", "device_list", ")", "out", "=", "__salt__", "[", "'mount.umount'", "]", "(", "real_name", ",", "user", "=", "user", ")", "active", "=", "__salt__", "[", "'mount.active'", "]", "(", "extended", "=", "True", ")", "if", "real_name", "in", "active", ":", "ret", "[", "'comment'", "]", "=", "\"Unable to unmount\"", "ret", "[", "'result'", "]", "=", "None", "return", "ret", "update_mount_cache", "=", "True", "else", ":", "ret", "[", "'comment'", "]", "=", "'Target was already mounted'", "# using a duplicate check so I can catch the results of a umount", "if", "real_name", "not", "in", "active", ":", "if", "mount", ":", "# The mount is not present! Mount it", "if", "__opts__", "[", "'test'", "]", ":", "ret", "[", "'result'", "]", "=", "None", "if", "os", ".", "path", ".", "exists", "(", "name", ")", ":", "ret", "[", "'comment'", "]", "=", "'{0} would be mounted'", ".", "format", "(", "name", ")", "elif", "mkmnt", ":", "ret", "[", "'comment'", "]", "=", "'{0} would be created and mounted'", ".", "format", "(", "name", ")", "else", ":", "ret", "[", "'comment'", "]", "=", "'{0} does not exist and would not be created'", ".", "format", "(", "name", ")", "return", "ret", "if", "not", "os", ".", "path", ".", "exists", "(", "name", ")", "and", "not", "mkmnt", ":", "ret", "[", "'result'", "]", "=", "False", "ret", "[", "'comment'", "]", "=", "'Mount directory is not present'", "return", "ret", "out", "=", "__salt__", "[", "'mount.mount'", "]", "(", "name", ",", "device", ",", "mkmnt", ",", "fstype", ",", "opts", ",", "user", "=", "user", ")", "active", "=", "__salt__", "[", "'mount.active'", "]", "(", "extended", "=", "True", ")", "update_mount_cache", "=", "True", "if", "isinstance", "(", "out", ",", "string_types", ")", ":", "# Failed to (re)mount, the state has failed!", "ret", "[", "'comment'", "]", "=", "out", "ret", "[", "'result'", "]", "=", "False", "return", "ret", "elif", "real_name", "in", "active", ":", "# (Re)mount worked!", "ret", "[", "'comment'", "]", "=", "'Target was successfully mounted'", "ret", "[", "'changes'", "]", "[", "'mount'", "]", "=", "True", "elif", "not", "os", ".", "path", ".", "exists", "(", "name", ")", ":", "if", "__opts__", "[", "'test'", "]", ":", "ret", "[", "'result'", "]", "=", "None", "if", "mkmnt", ":", "ret", "[", "'comment'", "]", "=", "'{0} would be created, but not mounted'", ".", "format", "(", "name", ")", "else", ":", "ret", "[", "'comment'", "]", "=", "'{0} does not exist and would neither be created nor mounted'", ".", "format", "(", "name", ")", "elif", "mkmnt", ":", "__salt__", "[", "'file.mkdir'", "]", "(", "name", ",", "user", "=", "user", ")", "ret", "[", "'comment'", "]", "=", "'{0} was created, not mounted'", ".", "format", "(", "name", ")", "else", ":", "ret", "[", "'comment'", "]", "=", "'{0} not present and not mounted'", ".", "format", "(", "name", ")", "else", ":", "if", "__opts__", "[", "'test'", "]", ":", "ret", "[", "'result'", "]", "=", "None", "ret", "[", "'comment'", "]", "=", "'{0} would not be mounted'", ".", "format", "(", "name", ")", "else", ":", "ret", "[", "'comment'", "]", "=", "'{0} not mounted'", ".", "format", "(", "name", ")", "if", "persist", ":", "if", "'/etc/fstab'", "==", "config", ":", "# Override default for Mac OS", "if", "__grains__", "[", "'os'", "]", "in", "[", "'MacOS'", ",", "'Darwin'", "]", ":", "config", "=", "\"/etc/auto_salt\"", "# Override default for AIX", "elif", "'AIX'", "in", "__grains__", "[", "'os'", "]", ":", "config", "=", "\"/etc/filesystems\"", "if", "__opts__", "[", "'test'", "]", ":", "if", "__grains__", "[", "'os'", "]", "in", "[", "'MacOS'", ",", "'Darwin'", "]", ":", "out", "=", "__salt__", "[", "'mount.set_automaster'", "]", "(", "name", ",", "device", ",", "fstype", ",", "opts", ",", "config", ",", "test", "=", "True", ")", "elif", "__grains__", "[", "'os'", "]", "in", "[", "'AIX'", "]", ":", "out", "=", "__salt__", "[", "'mount.set_filesystems'", "]", "(", "name", ",", "device", ",", "fstype", ",", "opts", ",", "mount", ",", "config", ",", "test", "=", "True", ",", "match_on", "=", "match_on", ")", "elif", "'Solaris'", "in", "__grains__", "[", "'os'", "]", ":", "out", "=", "__salt__", "[", "'mount.set_vfstab'", "]", "(", "name", ",", "device", ",", "fstype", ",", "opts", ",", "config", "=", "config", ",", "test", "=", "True", ",", "match_on", "=", "match_on", ")", "else", ":", "out", "=", "__salt__", "[", "'mount.set_fstab'", "]", "(", "name", ",", "device", ",", "fstype", ",", "opts", ",", "dump", ",", "pass_num", ",", "config", ",", "test", "=", "True", ",", "match_on", "=", "match_on", ")", "if", "out", "!=", "'present'", ":", "ret", "[", "'result'", "]", "=", "None", "if", "out", "==", "'new'", ":", "if", "mount", ":", "comment", "=", "(", "'{0} is mounted, but needs to be '", "'written to the fstab in order to be '", "'made persistent.'", ")", ".", "format", "(", "name", ")", "else", ":", "comment", "=", "(", "'{0} needs to be '", "'written to the fstab in order to be '", "'made persistent.'", ")", ".", "format", "(", "name", ")", "elif", "out", "==", "'change'", ":", "if", "mount", ":", "comment", "=", "(", "'{0} is mounted, but its fstab entry '", "'must be updated.'", ")", ".", "format", "(", "name", ")", "else", ":", "comment", "=", "(", "'The {0} fstab entry '", "'must be updated.'", ")", ".", "format", "(", "name", ")", "else", ":", "ret", "[", "'result'", "]", "=", "False", "comment", "=", "(", "'Unable to detect fstab status for '", "'mount point {0} due to unexpected '", "'output \\'{1}\\' from call to '", "'mount.set_fstab. This is most likely '", "'a bug.'", ")", ".", "format", "(", "name", ",", "out", ")", "if", "'comment'", "in", "ret", ":", "ret", "[", "'comment'", "]", "=", "'{0}. {1}'", ".", "format", "(", "ret", "[", "'comment'", "]", ",", "comment", ")", "else", ":", "ret", "[", "'comment'", "]", "=", "comment", "return", "ret", "else", ":", "if", "__grains__", "[", "'os'", "]", "in", "[", "'MacOS'", ",", "'Darwin'", "]", ":", "out", "=", "__salt__", "[", "'mount.set_automaster'", "]", "(", "name", ",", "device", ",", "fstype", ",", "opts", ",", "config", ")", "elif", "__grains__", "[", "'os'", "]", "in", "[", "'AIX'", "]", ":", "out", "=", "__salt__", "[", "'mount.set_filesystems'", "]", "(", "name", ",", "device", ",", "fstype", ",", "opts", ",", "mount", ",", "config", ",", "match_on", "=", "match_on", ")", "elif", "'Solaris'", "in", "__grains__", "[", "'os'", "]", ":", "out", "=", "__salt__", "[", "'mount.set_vfstab'", "]", "(", "name", ",", "device", ",", "fstype", ",", "opts", ",", "config", "=", "config", ",", "match_on", "=", "match_on", ")", "else", ":", "out", "=", "__salt__", "[", "'mount.set_fstab'", "]", "(", "name", ",", "device", ",", "fstype", ",", "opts", ",", "dump", ",", "pass_num", ",", "config", ",", "match_on", "=", "match_on", ")", "if", "update_mount_cache", ":", "cache_result", "=", "__salt__", "[", "'mount.write_mount_cache'", "]", "(", "real_name", ",", "device", ",", "mkmnt", "=", "mkmnt", ",", "fstype", "=", "fstype", ",", "mount_opts", "=", "opts", ")", "if", "out", "==", "'present'", ":", "ret", "[", "'comment'", "]", "+=", "'. Entry already exists in the fstab.'", "return", "ret", "if", "out", "==", "'new'", ":", "ret", "[", "'changes'", "]", "[", "'persist'", "]", "=", "'new'", "ret", "[", "'comment'", "]", "+=", "'. Added new entry to the fstab.'", "return", "ret", "if", "out", "==", "'change'", ":", "ret", "[", "'changes'", "]", "[", "'persist'", "]", "=", "'update'", "ret", "[", "'comment'", "]", "+=", "'. Updated the entry in the fstab.'", "return", "ret", "if", "out", "==", "'bad config'", ":", "ret", "[", "'result'", "]", "=", "False", "ret", "[", "'comment'", "]", "+=", "'. However, the fstab was not found.'", "return", "ret", "return", "ret" ]
Verify that a device is mounted name The path to the location where the device is to be mounted device The device name, typically the device node, such as ``/dev/sdb1`` or ``UUID=066e0200-2867-4ebe-b9e6-f30026ca2314`` or ``LABEL=DATA`` fstype The filesystem type, this will be ``xfs``, ``ext2/3/4`` in the case of classic filesystems, ``fuse`` in the case of fuse mounts, and ``nfs`` in the case of nfs mounts mkmnt If the mount point is not present then the state will fail, set ``mkmnt: True`` to create the mount point if it is otherwise not present opts A list object of options or a comma delimited list dump The dump value to be passed into the fstab, Default is ``0`` pass_num The pass value to be passed into the fstab, Default is ``0`` config Set an alternative location for the fstab, Default is ``/etc/fstab`` persist Set if the mount should be saved in the fstab, Default is ``True`` mount Set if the mount should be mounted immediately, Default is ``True`` user The account used to execute the mount; this defaults to the user salt is running as on the minion match_on A name or list of fstab properties on which this state should be applied. Default is ``auto``, a special value indicating to guess based on fstype. In general, ``auto`` matches on name for recognized special devices and device otherwise. device_name_regex A list of device exact names or regular expressions which should not force a remount. For example, glusterfs may be mounted with a comma-separated list of servers in fstab, but the /proc/self/mountinfo will show only the first available server. .. code-block:: jinja {% set glusterfs_ip_list = ['10.0.0.1', '10.0.0.2', '10.0.0.3'] %} mount glusterfs volume: mount.mounted: - name: /mnt/glusterfs_mount_point - device: {{ glusterfs_ip_list|join(',') }}:/volume_name - fstype: glusterfs - opts: _netdev,rw,defaults,direct-io-mode=disable - mkmnt: True - persist: True - dump: 0 - pass_num: 0 - device_name_regex: - ({{ glusterfs_ip_list|join('|') }}):/volume_name .. versionadded:: 2016.11.0 extra_mount_invisible_options A list of extra options that are not visible through the ``/proc/self/mountinfo`` interface. If a option is not visible through this interface it will always remount the device. This option extends the builtin ``mount_invisible_options`` list. extra_mount_invisible_keys A list of extra key options that are not visible through the ``/proc/self/mountinfo`` interface. If a key option is not visible through this interface it will always remount the device. This option extends the builtin ``mount_invisible_keys`` list. A good example for a key option is the password option:: password=badsecret extra_mount_ignore_fs_keys A dict of filesystem options which should not force a remount. This will update the internal dictionary. The dict should look like this:: { 'ramfs': ['size'] } extra_mount_translate_options A dict of mount options that gets translated when mounted. To prevent a remount add additional options to the default dictionary. This will update the internal dictionary. The dictionary should look like this:: { 'tcp': 'proto=tcp', 'udp': 'proto=udp' } hidden_opts A list of mount options that will be ignored when considering a remount as part of the state application .. versionadded:: 2015.8.2
[ "Verify", "that", "a", "device", "is", "mounted" ]
python
train
44.976048
aaugustin/websockets
src/websockets/protocol.py
https://github.com/aaugustin/websockets/blob/17b3f47549b6f752a1be07fa1ba3037cb59c7d56/src/websockets/protocol.py#L953-L969
async def write_close_frame(self, data: bytes = b"") -> None: """ Write a close frame if and only if the connection state is OPEN. This dedicated coroutine must be used for writing close frames to ensure that at most one close frame is sent on a given connection. """ # Test and set the connection state before sending the close frame to # avoid sending two frames in case of concurrent calls. if self.state is State.OPEN: # 7.1.3. The WebSocket Closing Handshake is Started self.state = State.CLOSING logger.debug("%s - state = CLOSING", self.side) # 7.1.2. Start the WebSocket Closing Handshake await self.write_frame(True, OP_CLOSE, data, _expected_state=State.CLOSING)
[ "async", "def", "write_close_frame", "(", "self", ",", "data", ":", "bytes", "=", "b\"\"", ")", "->", "None", ":", "# Test and set the connection state before sending the close frame to", "# avoid sending two frames in case of concurrent calls.", "if", "self", ".", "state", "is", "State", ".", "OPEN", ":", "# 7.1.3. The WebSocket Closing Handshake is Started", "self", ".", "state", "=", "State", ".", "CLOSING", "logger", ".", "debug", "(", "\"%s - state = CLOSING\"", ",", "self", ".", "side", ")", "# 7.1.2. Start the WebSocket Closing Handshake", "await", "self", ".", "write_frame", "(", "True", ",", "OP_CLOSE", ",", "data", ",", "_expected_state", "=", "State", ".", "CLOSING", ")" ]
Write a close frame if and only if the connection state is OPEN. This dedicated coroutine must be used for writing close frames to ensure that at most one close frame is sent on a given connection.
[ "Write", "a", "close", "frame", "if", "and", "only", "if", "the", "connection", "state", "is", "OPEN", "." ]
python
train
46.058824
alvinwan/TexSoup
TexSoup/reader.py
https://github.com/alvinwan/TexSoup/blob/63323ed71510fd2351102b8c36660a3b7703cead/TexSoup/reader.py#L109-L120
def tokenize_punctuation_command(text): """Process command that augments or modifies punctuation. This is important to the tokenization of a string, as opening or closing punctuation is not supposed to match. :param Buffer text: iterator over text, with current position """ if text.peek() == '\\': for point in PUNCTUATION_COMMANDS: if text.peek((1, len(point) + 1)) == point: return text.forward(len(point) + 1)
[ "def", "tokenize_punctuation_command", "(", "text", ")", ":", "if", "text", ".", "peek", "(", ")", "==", "'\\\\'", ":", "for", "point", "in", "PUNCTUATION_COMMANDS", ":", "if", "text", ".", "peek", "(", "(", "1", ",", "len", "(", "point", ")", "+", "1", ")", ")", "==", "point", ":", "return", "text", ".", "forward", "(", "len", "(", "point", ")", "+", "1", ")" ]
Process command that augments or modifies punctuation. This is important to the tokenization of a string, as opening or closing punctuation is not supposed to match. :param Buffer text: iterator over text, with current position
[ "Process", "command", "that", "augments", "or", "modifies", "punctuation", "." ]
python
train
38.666667
manns/pyspread
pyspread/src/gui/_main_window.py
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/gui/_main_window.py#L1407-L1425
def OnTextColorDialog(self, event): """Event handler for launching text color dialog""" dlg = wx.ColourDialog(self.main_window) # Ensure the full colour dialog is displayed, # not the abbreviated version. dlg.GetColourData().SetChooseFull(True) if dlg.ShowModal() == wx.ID_OK: # Fetch color data data = dlg.GetColourData() color = data.GetColour().GetRGB() post_command_event(self.main_window, self.main_window.TextColorMsg, color=color) dlg.Destroy()
[ "def", "OnTextColorDialog", "(", "self", ",", "event", ")", ":", "dlg", "=", "wx", ".", "ColourDialog", "(", "self", ".", "main_window", ")", "# Ensure the full colour dialog is displayed,", "# not the abbreviated version.", "dlg", ".", "GetColourData", "(", ")", ".", "SetChooseFull", "(", "True", ")", "if", "dlg", ".", "ShowModal", "(", ")", "==", "wx", ".", "ID_OK", ":", "# Fetch color data", "data", "=", "dlg", ".", "GetColourData", "(", ")", "color", "=", "data", ".", "GetColour", "(", ")", ".", "GetRGB", "(", ")", "post_command_event", "(", "self", ".", "main_window", ",", "self", ".", "main_window", ".", "TextColorMsg", ",", "color", "=", "color", ")", "dlg", ".", "Destroy", "(", ")" ]
Event handler for launching text color dialog
[ "Event", "handler", "for", "launching", "text", "color", "dialog" ]
python
train
30.210526
vertexproject/synapse
synapse/datamodel.py
https://github.com/vertexproject/synapse/blob/22e67c5a8f6d7caddbcf34b39ab1bd2d6c4a6e0b/synapse/datamodel.py#L389-L411
def addDataModels(self, mods): ''' Adds a model definition (same format as input to Model.addDataModels and output of Model.getModelDef). ''' # Load all the universal properties for _, mdef in mods: for univname, _, _ in mdef.get('univs', ()): self.addUnivName(univname) # Load all the forms for _, mdef in mods: for formname, formopts, propdefs in mdef.get('forms', ()): self.formnames.add(formname) self.propnames.add(formname) for univname in self.univnames: full = f'{formname}{univname}' self.propnames.add(full) for propname, _, _ in propdefs: full = f'{formname}:{propname}' self.propnames.add(full)
[ "def", "addDataModels", "(", "self", ",", "mods", ")", ":", "# Load all the universal properties", "for", "_", ",", "mdef", "in", "mods", ":", "for", "univname", ",", "_", ",", "_", "in", "mdef", ".", "get", "(", "'univs'", ",", "(", ")", ")", ":", "self", ".", "addUnivName", "(", "univname", ")", "# Load all the forms", "for", "_", ",", "mdef", "in", "mods", ":", "for", "formname", ",", "formopts", ",", "propdefs", "in", "mdef", ".", "get", "(", "'forms'", ",", "(", ")", ")", ":", "self", ".", "formnames", ".", "add", "(", "formname", ")", "self", ".", "propnames", ".", "add", "(", "formname", ")", "for", "univname", "in", "self", ".", "univnames", ":", "full", "=", "f'{formname}{univname}'", "self", ".", "propnames", ".", "add", "(", "full", ")", "for", "propname", ",", "_", ",", "_", "in", "propdefs", ":", "full", "=", "f'{formname}:{propname}'", "self", ".", "propnames", ".", "add", "(", "full", ")" ]
Adds a model definition (same format as input to Model.addDataModels and output of Model.getModelDef).
[ "Adds", "a", "model", "definition", "(", "same", "format", "as", "input", "to", "Model", ".", "addDataModels", "and", "output", "of", "Model", ".", "getModelDef", ")", "." ]
python
train
36
spacetelescope/stsci.tools
lib/stsci/tools/parseinput.py
https://github.com/spacetelescope/stsci.tools/blob/9a022503ad24ca54ce83331482dfa3ff6de9f403/lib/stsci/tools/parseinput.py#L185-L218
def countinputs(inputlist): """ Determine the number of inputfiles provided by the user and the number of those files that are association tables Parameters ---------- inputlist : string the user input Returns ------- numInputs: int number of inputs provided by the user numASNfiles: int number of association files provided as input """ # Initialize return values numInputs = 0 numASNfiles = 0 # User irafglob to count the number of inputfiles files = irafglob(inputlist, atfile=None) # Use the "len" ufunc to count the number of entries in the list numInputs = len(files) # Loop over the list and see if any of the entries are association files for file in files: if (checkASN(file) == True): numASNfiles += 1 return numInputs,numASNfiles
[ "def", "countinputs", "(", "inputlist", ")", ":", "# Initialize return values", "numInputs", "=", "0", "numASNfiles", "=", "0", "# User irafglob to count the number of inputfiles", "files", "=", "irafglob", "(", "inputlist", ",", "atfile", "=", "None", ")", "# Use the \"len\" ufunc to count the number of entries in the list", "numInputs", "=", "len", "(", "files", ")", "# Loop over the list and see if any of the entries are association files", "for", "file", "in", "files", ":", "if", "(", "checkASN", "(", "file", ")", "==", "True", ")", ":", "numASNfiles", "+=", "1", "return", "numInputs", ",", "numASNfiles" ]
Determine the number of inputfiles provided by the user and the number of those files that are association tables Parameters ---------- inputlist : string the user input Returns ------- numInputs: int number of inputs provided by the user numASNfiles: int number of association files provided as input
[ "Determine", "the", "number", "of", "inputfiles", "provided", "by", "the", "user", "and", "the", "number", "of", "those", "files", "that", "are", "association", "tables" ]
python
train
24.823529
kelproject/pykube
pykube/http.py
https://github.com/kelproject/pykube/blob/e8a46298a592ad9037587afb707ac75b3114eff9/pykube/http.py#L178-L185
def version(self): """ Get Kubernetes API version """ response = self.get(version="", base="/version") response.raise_for_status() data = response.json() return (data["major"], data["minor"])
[ "def", "version", "(", "self", ")", ":", "response", "=", "self", ".", "get", "(", "version", "=", "\"\"", ",", "base", "=", "\"/version\"", ")", "response", ".", "raise_for_status", "(", ")", "data", "=", "response", ".", "json", "(", ")", "return", "(", "data", "[", "\"major\"", "]", ",", "data", "[", "\"minor\"", "]", ")" ]
Get Kubernetes API version
[ "Get", "Kubernetes", "API", "version" ]
python
train
30
saltstack/salt
salt/cloud/__init__.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/cloud/__init__.py#L623-L657
def map_providers(self, query='list_nodes', cached=False): ''' Return a mapping of what named VMs are running on what VM providers based on what providers are defined in the configuration and VMs ''' if cached is True and query in self.__cached_provider_queries: return self.__cached_provider_queries[query] pmap = {} for alias, drivers in six.iteritems(self.opts['providers']): for driver, details in six.iteritems(drivers): fun = '{0}.{1}'.format(driver, query) if fun not in self.clouds: log.error('Public cloud provider %s is not available', driver) continue if alias not in pmap: pmap[alias] = {} try: with salt.utils.context.func_globals_inject( self.clouds[fun], __active_provider_name__=':'.join([alias, driver]) ): pmap[alias][driver] = self.clouds[fun]() except Exception as err: log.debug( 'Failed to execute \'%s()\' while querying for ' 'running nodes: %s', fun, err, exc_info_on_loglevel=logging.DEBUG ) # Failed to communicate with the provider, don't list any # nodes pmap[alias][driver] = [] self.__cached_provider_queries[query] = pmap return pmap
[ "def", "map_providers", "(", "self", ",", "query", "=", "'list_nodes'", ",", "cached", "=", "False", ")", ":", "if", "cached", "is", "True", "and", "query", "in", "self", ".", "__cached_provider_queries", ":", "return", "self", ".", "__cached_provider_queries", "[", "query", "]", "pmap", "=", "{", "}", "for", "alias", ",", "drivers", "in", "six", ".", "iteritems", "(", "self", ".", "opts", "[", "'providers'", "]", ")", ":", "for", "driver", ",", "details", "in", "six", ".", "iteritems", "(", "drivers", ")", ":", "fun", "=", "'{0}.{1}'", ".", "format", "(", "driver", ",", "query", ")", "if", "fun", "not", "in", "self", ".", "clouds", ":", "log", ".", "error", "(", "'Public cloud provider %s is not available'", ",", "driver", ")", "continue", "if", "alias", "not", "in", "pmap", ":", "pmap", "[", "alias", "]", "=", "{", "}", "try", ":", "with", "salt", ".", "utils", ".", "context", ".", "func_globals_inject", "(", "self", ".", "clouds", "[", "fun", "]", ",", "__active_provider_name__", "=", "':'", ".", "join", "(", "[", "alias", ",", "driver", "]", ")", ")", ":", "pmap", "[", "alias", "]", "[", "driver", "]", "=", "self", ".", "clouds", "[", "fun", "]", "(", ")", "except", "Exception", "as", "err", ":", "log", ".", "debug", "(", "'Failed to execute \\'%s()\\' while querying for '", "'running nodes: %s'", ",", "fun", ",", "err", ",", "exc_info_on_loglevel", "=", "logging", ".", "DEBUG", ")", "# Failed to communicate with the provider, don't list any", "# nodes", "pmap", "[", "alias", "]", "[", "driver", "]", "=", "[", "]", "self", ".", "__cached_provider_queries", "[", "query", "]", "=", "pmap", "return", "pmap" ]
Return a mapping of what named VMs are running on what VM providers based on what providers are defined in the configuration and VMs
[ "Return", "a", "mapping", "of", "what", "named", "VMs", "are", "running", "on", "what", "VM", "providers", "based", "on", "what", "providers", "are", "defined", "in", "the", "configuration", "and", "VMs" ]
python
train
44.371429
mozilla/taar
taar/recommenders/hybrid_recommender.py
https://github.com/mozilla/taar/blob/4002eb395f0b7ad837f1578e92d590e2cf82bdca/taar/recommenders/hybrid_recommender.py#L28-L32
def get_randomized_guid_sample(self, item_count): """ Fetch a subset of randomzied GUIDs from the whitelist """ dataset = self.get_whitelist() random.shuffle(dataset) return dataset[:item_count]
[ "def", "get_randomized_guid_sample", "(", "self", ",", "item_count", ")", ":", "dataset", "=", "self", ".", "get_whitelist", "(", ")", "random", ".", "shuffle", "(", "dataset", ")", "return", "dataset", "[", ":", "item_count", "]" ]
Fetch a subset of randomzied GUIDs from the whitelist
[ "Fetch", "a", "subset", "of", "randomzied", "GUIDs", "from", "the", "whitelist" ]
python
train
44.4
gem/oq-engine
openquake/hazardlib/calc/hazard_curve.py
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/calc/hazard_curve.py#L94-L176
def classical(group, src_filter, gsims, param, monitor=Monitor()): """ Compute the hazard curves for a set of sources belonging to the same tectonic region type for all the GSIMs associated to that TRT. The arguments are the same as in :func:`calc_hazard_curves`, except for ``gsims``, which is a list of GSIM instances. :returns: a dictionary {grp_id: pmap} with attributes .grp_ids, .calc_times, .eff_ruptures """ if not hasattr(src_filter, 'sitecol'): # a sitecol was passed src_filter = SourceFilter(src_filter, {}) # Get the parameters assigned to the group src_mutex = getattr(group, 'src_interdep', None) == 'mutex' rup_mutex = getattr(group, 'rup_interdep', None) == 'mutex' cluster = getattr(group, 'cluster', None) # Compute the number of ruptures grp_ids = set() for src in group: if not src.num_ruptures: # src.num_ruptures is set when parsing the XML, but not when # the source is instantiated manually, so it is set here src.num_ruptures = src.count_ruptures() # This sets the proper TOM in case of a cluster if cluster: src.temporal_occurrence_model = FatedTOM(time_span=1) # Updating IDs grp_ids.update(src.src_group_ids) # Now preparing context maxdist = src_filter.integration_distance imtls = param['imtls'] trunclevel = param.get('truncation_level') cmaker = ContextMaker( src.tectonic_region_type, gsims, maxdist, param, monitor) # Prepare the accumulator for the probability maps pmap = AccumDict({grp_id: ProbabilityMap(len(imtls.array), len(gsims)) for grp_id in grp_ids}) rupdata = {grp_id: [] for grp_id in grp_ids} # AccumDict of arrays with 3 elements weight, nsites, calc_time calc_times = AccumDict(accum=numpy.zeros(3, numpy.float32)) eff_ruptures = AccumDict(accum=0) # grp_id -> num_ruptures # Computing hazard for src, s_sites in src_filter(group): # filter now t0 = time.time() try: poemap = cmaker.poe_map(src, s_sites, imtls, trunclevel, rup_indep=not rup_mutex) except Exception as err: etype, err, tb = sys.exc_info() msg = '%s (source id=%s)' % (str(err), src.source_id) raise etype(msg).with_traceback(tb) if src_mutex: # mutex sources, there is a single group for sid in poemap: pcurve = pmap[src.src_group_id].setdefault(sid, 0) pcurve += poemap[sid] * src.mutex_weight elif poemap: for gid in src.src_group_ids: pmap[gid] |= poemap if len(cmaker.rupdata): for gid in src.src_group_ids: rupdata[gid].append(cmaker.rupdata) calc_times[src.id] += numpy.array( [src.weight, len(s_sites), time.time() - t0]) # storing the number of contributing ruptures too eff_ruptures += {gid: getattr(poemap, 'eff_ruptures', 0) for gid in src.src_group_ids} # Updating the probability map in the case of mutually exclusive # sources group_probability = getattr(group, 'grp_probability', None) if src_mutex and group_probability: pmap[src.src_group_id] *= group_probability # Processing cluster if cluster: tom = getattr(group, 'temporal_occurrence_model') pmap = _cluster(param, tom, imtls, gsims, grp_ids, pmap) # Return results for gid, data in rupdata.items(): if len(data): rupdata[gid] = numpy.concatenate(data) return dict(pmap=pmap, calc_times=calc_times, eff_ruptures=eff_ruptures, rup_data=rupdata)
[ "def", "classical", "(", "group", ",", "src_filter", ",", "gsims", ",", "param", ",", "monitor", "=", "Monitor", "(", ")", ")", ":", "if", "not", "hasattr", "(", "src_filter", ",", "'sitecol'", ")", ":", "# a sitecol was passed", "src_filter", "=", "SourceFilter", "(", "src_filter", ",", "{", "}", ")", "# Get the parameters assigned to the group", "src_mutex", "=", "getattr", "(", "group", ",", "'src_interdep'", ",", "None", ")", "==", "'mutex'", "rup_mutex", "=", "getattr", "(", "group", ",", "'rup_interdep'", ",", "None", ")", "==", "'mutex'", "cluster", "=", "getattr", "(", "group", ",", "'cluster'", ",", "None", ")", "# Compute the number of ruptures", "grp_ids", "=", "set", "(", ")", "for", "src", "in", "group", ":", "if", "not", "src", ".", "num_ruptures", ":", "# src.num_ruptures is set when parsing the XML, but not when", "# the source is instantiated manually, so it is set here", "src", ".", "num_ruptures", "=", "src", ".", "count_ruptures", "(", ")", "# This sets the proper TOM in case of a cluster", "if", "cluster", ":", "src", ".", "temporal_occurrence_model", "=", "FatedTOM", "(", "time_span", "=", "1", ")", "# Updating IDs", "grp_ids", ".", "update", "(", "src", ".", "src_group_ids", ")", "# Now preparing context", "maxdist", "=", "src_filter", ".", "integration_distance", "imtls", "=", "param", "[", "'imtls'", "]", "trunclevel", "=", "param", ".", "get", "(", "'truncation_level'", ")", "cmaker", "=", "ContextMaker", "(", "src", ".", "tectonic_region_type", ",", "gsims", ",", "maxdist", ",", "param", ",", "monitor", ")", "# Prepare the accumulator for the probability maps", "pmap", "=", "AccumDict", "(", "{", "grp_id", ":", "ProbabilityMap", "(", "len", "(", "imtls", ".", "array", ")", ",", "len", "(", "gsims", ")", ")", "for", "grp_id", "in", "grp_ids", "}", ")", "rupdata", "=", "{", "grp_id", ":", "[", "]", "for", "grp_id", "in", "grp_ids", "}", "# AccumDict of arrays with 3 elements weight, nsites, calc_time", "calc_times", "=", "AccumDict", "(", "accum", "=", "numpy", ".", "zeros", "(", "3", ",", "numpy", ".", "float32", ")", ")", "eff_ruptures", "=", "AccumDict", "(", "accum", "=", "0", ")", "# grp_id -> num_ruptures", "# Computing hazard", "for", "src", ",", "s_sites", "in", "src_filter", "(", "group", ")", ":", "# filter now", "t0", "=", "time", ".", "time", "(", ")", "try", ":", "poemap", "=", "cmaker", ".", "poe_map", "(", "src", ",", "s_sites", ",", "imtls", ",", "trunclevel", ",", "rup_indep", "=", "not", "rup_mutex", ")", "except", "Exception", "as", "err", ":", "etype", ",", "err", ",", "tb", "=", "sys", ".", "exc_info", "(", ")", "msg", "=", "'%s (source id=%s)'", "%", "(", "str", "(", "err", ")", ",", "src", ".", "source_id", ")", "raise", "etype", "(", "msg", ")", ".", "with_traceback", "(", "tb", ")", "if", "src_mutex", ":", "# mutex sources, there is a single group", "for", "sid", "in", "poemap", ":", "pcurve", "=", "pmap", "[", "src", ".", "src_group_id", "]", ".", "setdefault", "(", "sid", ",", "0", ")", "pcurve", "+=", "poemap", "[", "sid", "]", "*", "src", ".", "mutex_weight", "elif", "poemap", ":", "for", "gid", "in", "src", ".", "src_group_ids", ":", "pmap", "[", "gid", "]", "|=", "poemap", "if", "len", "(", "cmaker", ".", "rupdata", ")", ":", "for", "gid", "in", "src", ".", "src_group_ids", ":", "rupdata", "[", "gid", "]", ".", "append", "(", "cmaker", ".", "rupdata", ")", "calc_times", "[", "src", ".", "id", "]", "+=", "numpy", ".", "array", "(", "[", "src", ".", "weight", ",", "len", "(", "s_sites", ")", ",", "time", ".", "time", "(", ")", "-", "t0", "]", ")", "# storing the number of contributing ruptures too", "eff_ruptures", "+=", "{", "gid", ":", "getattr", "(", "poemap", ",", "'eff_ruptures'", ",", "0", ")", "for", "gid", "in", "src", ".", "src_group_ids", "}", "# Updating the probability map in the case of mutually exclusive", "# sources", "group_probability", "=", "getattr", "(", "group", ",", "'grp_probability'", ",", "None", ")", "if", "src_mutex", "and", "group_probability", ":", "pmap", "[", "src", ".", "src_group_id", "]", "*=", "group_probability", "# Processing cluster", "if", "cluster", ":", "tom", "=", "getattr", "(", "group", ",", "'temporal_occurrence_model'", ")", "pmap", "=", "_cluster", "(", "param", ",", "tom", ",", "imtls", ",", "gsims", ",", "grp_ids", ",", "pmap", ")", "# Return results", "for", "gid", ",", "data", "in", "rupdata", ".", "items", "(", ")", ":", "if", "len", "(", "data", ")", ":", "rupdata", "[", "gid", "]", "=", "numpy", ".", "concatenate", "(", "data", ")", "return", "dict", "(", "pmap", "=", "pmap", ",", "calc_times", "=", "calc_times", ",", "eff_ruptures", "=", "eff_ruptures", ",", "rup_data", "=", "rupdata", ")" ]
Compute the hazard curves for a set of sources belonging to the same tectonic region type for all the GSIMs associated to that TRT. The arguments are the same as in :func:`calc_hazard_curves`, except for ``gsims``, which is a list of GSIM instances. :returns: a dictionary {grp_id: pmap} with attributes .grp_ids, .calc_times, .eff_ruptures
[ "Compute", "the", "hazard", "curves", "for", "a", "set", "of", "sources", "belonging", "to", "the", "same", "tectonic", "region", "type", "for", "all", "the", "GSIMs", "associated", "to", "that", "TRT", ".", "The", "arguments", "are", "the", "same", "as", "in", ":", "func", ":", "calc_hazard_curves", "except", "for", "gsims", "which", "is", "a", "list", "of", "GSIM", "instances", "." ]
python
train
44.578313
cmbruns/pyopenvr
src/openvr/__init__.py
https://github.com/cmbruns/pyopenvr/blob/68395d26bb3df6ab1f0f059c38d441f962938be6/src/openvr/__init__.py#L2996-L3001
def getEventTypeNameFromEnum(self, eType): """returns the name of an EVREvent enum value""" fn = self.function_table.getEventTypeNameFromEnum result = fn(eType) return result
[ "def", "getEventTypeNameFromEnum", "(", "self", ",", "eType", ")", ":", "fn", "=", "self", ".", "function_table", ".", "getEventTypeNameFromEnum", "result", "=", "fn", "(", "eType", ")", "return", "result" ]
returns the name of an EVREvent enum value
[ "returns", "the", "name", "of", "an", "EVREvent", "enum", "value" ]
python
train
33.666667
rigetti/pyquil
pyquil/device.py
https://github.com/rigetti/pyquil/blob/ec98e453084b0037d69d8c3245f6822a5422593d/pyquil/device.py#L354-L365
def isa_from_graph(graph: nx.Graph, oneq_type='Xhalves', twoq_type='CZ') -> ISA: """ Generate an ISA object from a NetworkX graph. :param graph: The graph :param oneq_type: The type of 1-qubit gate. Currently 'Xhalves' :param twoq_type: The type of 2-qubit gate. One of 'CZ' or 'CPHASE'. """ all_qubits = list(range(max(graph.nodes) + 1)) qubits = [Qubit(i, type=oneq_type, dead=i not in graph.nodes) for i in all_qubits] edges = [Edge(sorted((a, b)), type=twoq_type, dead=False) for a, b in graph.edges] return ISA(qubits, edges)
[ "def", "isa_from_graph", "(", "graph", ":", "nx", ".", "Graph", ",", "oneq_type", "=", "'Xhalves'", ",", "twoq_type", "=", "'CZ'", ")", "->", "ISA", ":", "all_qubits", "=", "list", "(", "range", "(", "max", "(", "graph", ".", "nodes", ")", "+", "1", ")", ")", "qubits", "=", "[", "Qubit", "(", "i", ",", "type", "=", "oneq_type", ",", "dead", "=", "i", "not", "in", "graph", ".", "nodes", ")", "for", "i", "in", "all_qubits", "]", "edges", "=", "[", "Edge", "(", "sorted", "(", "(", "a", ",", "b", ")", ")", ",", "type", "=", "twoq_type", ",", "dead", "=", "False", ")", "for", "a", ",", "b", "in", "graph", ".", "edges", "]", "return", "ISA", "(", "qubits", ",", "edges", ")" ]
Generate an ISA object from a NetworkX graph. :param graph: The graph :param oneq_type: The type of 1-qubit gate. Currently 'Xhalves' :param twoq_type: The type of 2-qubit gate. One of 'CZ' or 'CPHASE'.
[ "Generate", "an", "ISA", "object", "from", "a", "NetworkX", "graph", "." ]
python
train
46.666667
fermiPy/fermipy
fermipy/diffuse/source_factory.py
https://github.com/fermiPy/fermipy/blob/9df5e7e3728307fd58c5bba36fd86783c39fbad4/fermipy/diffuse/source_factory.py#L204-L217
def make_roi(cls, sources=None): """Build and return a `fermipy.roi_model.ROIModel` object from a dict with information about the sources """ if sources is None: sources = {} src_fact = cls() src_fact.add_sources(sources) ret_model = roi_model.ROIModel( {}, skydir=SkyCoord(0.0, 0.0, unit='deg')) for source in src_fact.sources.values(): ret_model.load_source(source, build_index=False, merge_sources=False) return ret_model
[ "def", "make_roi", "(", "cls", ",", "sources", "=", "None", ")", ":", "if", "sources", "is", "None", ":", "sources", "=", "{", "}", "src_fact", "=", "cls", "(", ")", "src_fact", ".", "add_sources", "(", "sources", ")", "ret_model", "=", "roi_model", ".", "ROIModel", "(", "{", "}", ",", "skydir", "=", "SkyCoord", "(", "0.0", ",", "0.0", ",", "unit", "=", "'deg'", ")", ")", "for", "source", "in", "src_fact", ".", "sources", ".", "values", "(", ")", ":", "ret_model", ".", "load_source", "(", "source", ",", "build_index", "=", "False", ",", "merge_sources", "=", "False", ")", "return", "ret_model" ]
Build and return a `fermipy.roi_model.ROIModel` object from a dict with information about the sources
[ "Build", "and", "return", "a", "fermipy", ".", "roi_model", ".", "ROIModel", "object", "from", "a", "dict", "with", "information", "about", "the", "sources" ]
python
train
39.5
smarie/python-parsyfiles
parsyfiles/type_inspection_tools.py
https://github.com/smarie/python-parsyfiles/blob/344b37e1151e8d4e7c2ee49ae09d6568715ae64e/parsyfiles/type_inspection_tools.py#L90-L115
def robust_isinstance(inst, typ) -> bool: """ Similar to isinstance, but if 'typ' is a parametrized generic Type, it is first transformed into its base generic class so that the instance check works. It is also robust to Union and Any. :param inst: :param typ: :return: """ if typ is Any: return True if is_typevar(typ): if hasattr(typ, '__constraints__') and typ.__constraints__ is not None: typs = get_args(typ, evaluate=True) return any(robust_isinstance(inst, t) for t in typs) elif hasattr(typ, '__bound__') and typ.__bound__ is not None: return robust_isinstance(inst, typ.__bound__) else: # a raw TypeVar means 'anything' return True else: if is_union_type(typ): typs = get_args(typ, evaluate=True) return any(robust_isinstance(inst, t) for t in typs) else: return isinstance(inst, get_base_generic_type(typ))
[ "def", "robust_isinstance", "(", "inst", ",", "typ", ")", "->", "bool", ":", "if", "typ", "is", "Any", ":", "return", "True", "if", "is_typevar", "(", "typ", ")", ":", "if", "hasattr", "(", "typ", ",", "'__constraints__'", ")", "and", "typ", ".", "__constraints__", "is", "not", "None", ":", "typs", "=", "get_args", "(", "typ", ",", "evaluate", "=", "True", ")", "return", "any", "(", "robust_isinstance", "(", "inst", ",", "t", ")", "for", "t", "in", "typs", ")", "elif", "hasattr", "(", "typ", ",", "'__bound__'", ")", "and", "typ", ".", "__bound__", "is", "not", "None", ":", "return", "robust_isinstance", "(", "inst", ",", "typ", ".", "__bound__", ")", "else", ":", "# a raw TypeVar means 'anything'", "return", "True", "else", ":", "if", "is_union_type", "(", "typ", ")", ":", "typs", "=", "get_args", "(", "typ", ",", "evaluate", "=", "True", ")", "return", "any", "(", "robust_isinstance", "(", "inst", ",", "t", ")", "for", "t", "in", "typs", ")", "else", ":", "return", "isinstance", "(", "inst", ",", "get_base_generic_type", "(", "typ", ")", ")" ]
Similar to isinstance, but if 'typ' is a parametrized generic Type, it is first transformed into its base generic class so that the instance check works. It is also robust to Union and Any. :param inst: :param typ: :return:
[ "Similar", "to", "isinstance", "but", "if", "typ", "is", "a", "parametrized", "generic", "Type", "it", "is", "first", "transformed", "into", "its", "base", "generic", "class", "so", "that", "the", "instance", "check", "works", ".", "It", "is", "also", "robust", "to", "Union", "and", "Any", "." ]
python
train
37.538462
collectiveacuity/labPack
labpack/storage/google/drive.py
https://github.com/collectiveacuity/labPack/blob/52949ece35e72e3cc308f54d9ffa6bfbd96805b8/labpack/storage/google/drive.py#L236-L271
def _get_id(self, file_path): ''' a helper method for retrieving id of file or folder ''' title = '%s._get_id' % self.__class__.__name__ # construct request kwargs list_kwargs = { 'spaces': self.drive_space, 'fields': 'files(id, parents)' } # determine path segments path_segments = file_path.split(os.sep) # walk down parents to file name parent_id = '' empty_string = '' while path_segments: walk_query = "name = '%s'" % path_segments.pop(0) if parent_id: walk_query += "and '%s' in parents" % parent_id list_kwargs['q'] = walk_query try: response = self.drive.list(**list_kwargs).execute() except: raise DriveConnectionError(title) file_list = response.get('files', []) if file_list: if path_segments: parent_id = file_list[0].get('id') else: file_id = file_list[0].get('id') return file_id, parent_id else: return empty_string, empty_string
[ "def", "_get_id", "(", "self", ",", "file_path", ")", ":", "title", "=", "'%s._get_id'", "%", "self", ".", "__class__", ".", "__name__", "# construct request kwargs", "list_kwargs", "=", "{", "'spaces'", ":", "self", ".", "drive_space", ",", "'fields'", ":", "'files(id, parents)'", "}", "# determine path segments", "path_segments", "=", "file_path", ".", "split", "(", "os", ".", "sep", ")", "# walk down parents to file name", "parent_id", "=", "''", "empty_string", "=", "''", "while", "path_segments", ":", "walk_query", "=", "\"name = '%s'\"", "%", "path_segments", ".", "pop", "(", "0", ")", "if", "parent_id", ":", "walk_query", "+=", "\"and '%s' in parents\"", "%", "parent_id", "list_kwargs", "[", "'q'", "]", "=", "walk_query", "try", ":", "response", "=", "self", ".", "drive", ".", "list", "(", "*", "*", "list_kwargs", ")", ".", "execute", "(", ")", "except", ":", "raise", "DriveConnectionError", "(", "title", ")", "file_list", "=", "response", ".", "get", "(", "'files'", ",", "[", "]", ")", "if", "file_list", ":", "if", "path_segments", ":", "parent_id", "=", "file_list", "[", "0", "]", ".", "get", "(", "'id'", ")", "else", ":", "file_id", "=", "file_list", "[", "0", "]", ".", "get", "(", "'id'", ")", "return", "file_id", ",", "parent_id", "else", ":", "return", "empty_string", ",", "empty_string" ]
a helper method for retrieving id of file or folder
[ "a", "helper", "method", "for", "retrieving", "id", "of", "file", "or", "folder" ]
python
train
33.388889
annoviko/pyclustering
pyclustering/container/cftree.py
https://github.com/annoviko/pyclustering/blob/98aa0dd89fd36f701668fb1eb29c8fb5662bf7d0/pyclustering/container/cftree.py#L656-L665
def insert_entry(self, entry): """! @brief Insert new clustering feature to the leaf node. @param[in] entry (cfentry): Clustering feature. """ self.feature += entry; self.entries.append(entry);
[ "def", "insert_entry", "(", "self", ",", "entry", ")", ":", "self", ".", "feature", "+=", "entry", "self", ".", "entries", ".", "append", "(", "entry", ")" ]
! @brief Insert new clustering feature to the leaf node. @param[in] entry (cfentry): Clustering feature.
[ "!" ]
python
valid
29
pyQode/pyqode.core
pyqode/core/modes/pygments_sh.py
https://github.com/pyQode/pyqode.core/blob/a99ec6cd22d519394f613309412f8329dc4e90cb/pyqode/core/modes/pygments_sh.py#L185-L205
def set_mime_type(self, mime_type): """ Update the highlighter lexer based on a mime type. :param mime_type: mime type of the new lexer to setup. """ try: self.set_lexer_from_mime_type(mime_type) except ClassNotFound: _logger().exception('failed to get lexer from mimetype') self._lexer = TextLexer() return False except ImportError: # import error while loading some pygments plugins, the editor # should not crash _logger().warning('failed to get lexer from mimetype (%s)' % mime_type) self._lexer = TextLexer() return False else: return True
[ "def", "set_mime_type", "(", "self", ",", "mime_type", ")", ":", "try", ":", "self", ".", "set_lexer_from_mime_type", "(", "mime_type", ")", "except", "ClassNotFound", ":", "_logger", "(", ")", ".", "exception", "(", "'failed to get lexer from mimetype'", ")", "self", ".", "_lexer", "=", "TextLexer", "(", ")", "return", "False", "except", "ImportError", ":", "# import error while loading some pygments plugins, the editor", "# should not crash", "_logger", "(", ")", ".", "warning", "(", "'failed to get lexer from mimetype (%s)'", "%", "mime_type", ")", "self", ".", "_lexer", "=", "TextLexer", "(", ")", "return", "False", "else", ":", "return", "True" ]
Update the highlighter lexer based on a mime type. :param mime_type: mime type of the new lexer to setup.
[ "Update", "the", "highlighter", "lexer", "based", "on", "a", "mime", "type", "." ]
python
train
35.190476
clalancette/pycdlib
pycdlib/udf.py
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/udf.py#L3184-L3200
def track_file_ident_desc(self, file_ident): # type: (UDFFileIdentifierDescriptor) -> None ''' A method to start tracking a UDF File Identifier descriptor in this UDF File Entry. Both 'tracking' and 'addition' add the identifier to the list of file identifiers, but tracking doees not expand or otherwise modify the UDF File Entry. Parameters: file_ident - The UDF File Identifier Descriptor to start tracking. Returns: Nothing. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('UDF File Entry not initialized') self.fi_descs.append(file_ident)
[ "def", "track_file_ident_desc", "(", "self", ",", "file_ident", ")", ":", "# type: (UDFFileIdentifierDescriptor) -> None", "if", "not", "self", ".", "_initialized", ":", "raise", "pycdlibexception", ".", "PyCdlibInternalError", "(", "'UDF File Entry not initialized'", ")", "self", ".", "fi_descs", ".", "append", "(", "file_ident", ")" ]
A method to start tracking a UDF File Identifier descriptor in this UDF File Entry. Both 'tracking' and 'addition' add the identifier to the list of file identifiers, but tracking doees not expand or otherwise modify the UDF File Entry. Parameters: file_ident - The UDF File Identifier Descriptor to start tracking. Returns: Nothing.
[ "A", "method", "to", "start", "tracking", "a", "UDF", "File", "Identifier", "descriptor", "in", "this", "UDF", "File", "Entry", ".", "Both", "tracking", "and", "addition", "add", "the", "identifier", "to", "the", "list", "of", "file", "identifiers", "but", "tracking", "doees", "not", "expand", "or", "otherwise", "modify", "the", "UDF", "File", "Entry", "." ]
python
train
39.647059
smira/py-numa
numa.py
https://github.com/smira/py-numa/blob/eb38979c61028eb9422a4ad1eda0387cd93ea390/numa.py#L354-L366
def get_run_on_node_mask(): """ Returns the mask of nodes that the current thread is allowed to run on. @return: node mask @rtype: C{set} """ bitmask = libnuma.numa_get_run_node_mask() nodemask = nodemask_t() libnuma.copy_bitmask_to_nodemask(bitmask, byref(nodemask)) libnuma.numa_bitmask_free(bitmask) return numa_nodemask_to_set(nodemask)
[ "def", "get_run_on_node_mask", "(", ")", ":", "bitmask", "=", "libnuma", ".", "numa_get_run_node_mask", "(", ")", "nodemask", "=", "nodemask_t", "(", ")", "libnuma", ".", "copy_bitmask_to_nodemask", "(", "bitmask", ",", "byref", "(", "nodemask", ")", ")", "libnuma", ".", "numa_bitmask_free", "(", "bitmask", ")", "return", "numa_nodemask_to_set", "(", "nodemask", ")" ]
Returns the mask of nodes that the current thread is allowed to run on. @return: node mask @rtype: C{set}
[ "Returns", "the", "mask", "of", "nodes", "that", "the", "current", "thread", "is", "allowed", "to", "run", "on", "." ]
python
train
28.461538
EnigmaBridge/jbossply
jbossply/main.py
https://github.com/EnigmaBridge/jbossply/blob/44b30b15982cae781f0c356fab7263751b20b4d0/jbossply/main.py#L12-L23
def main(): """ Reads stdin jboss output, writes json on output :return: """ buff = '' for line in fileinput.input(): buff += line parser = jbossparser.JbossParser() result = parser.parse(buff) print(json.dumps(result))
[ "def", "main", "(", ")", ":", "buff", "=", "''", "for", "line", "in", "fileinput", ".", "input", "(", ")", ":", "buff", "+=", "line", "parser", "=", "jbossparser", ".", "JbossParser", "(", ")", "result", "=", "parser", ".", "parse", "(", "buff", ")", "print", "(", "json", ".", "dumps", "(", "result", ")", ")" ]
Reads stdin jboss output, writes json on output :return:
[ "Reads", "stdin", "jboss", "output", "writes", "json", "on", "output", ":", "return", ":" ]
python
train
21.083333
delfick/aws_syncr
aws_syncr/option_spec/aws_syncr_specs.py
https://github.com/delfick/aws_syncr/blob/8cd214b27c1eee98dfba4632cbb8bc0ae36356bd/aws_syncr/option_spec/aws_syncr_specs.py#L51-L63
def aws_syncr_spec(self): """Spec for aws_syncr options""" formatted_string = formatted(string_spec(), MergedOptionStringFormatter, expected_type=string_types) return create_spec(AwsSyncr , extra = defaulted(formatted_string, "") , stage = defaulted(formatted_string, "") , debug = defaulted(boolean(), False) , dry_run = defaulted(boolean(), False) , location = defaulted(formatted_string, "ap-southeast-2") , artifact = formatted_string , environment = formatted_string , config_folder = directory_spec() )
[ "def", "aws_syncr_spec", "(", "self", ")", ":", "formatted_string", "=", "formatted", "(", "string_spec", "(", ")", ",", "MergedOptionStringFormatter", ",", "expected_type", "=", "string_types", ")", "return", "create_spec", "(", "AwsSyncr", ",", "extra", "=", "defaulted", "(", "formatted_string", ",", "\"\"", ")", ",", "stage", "=", "defaulted", "(", "formatted_string", ",", "\"\"", ")", ",", "debug", "=", "defaulted", "(", "boolean", "(", ")", ",", "False", ")", ",", "dry_run", "=", "defaulted", "(", "boolean", "(", ")", ",", "False", ")", ",", "location", "=", "defaulted", "(", "formatted_string", ",", "\"ap-southeast-2\"", ")", ",", "artifact", "=", "formatted_string", ",", "environment", "=", "formatted_string", ",", "config_folder", "=", "directory_spec", "(", ")", ")" ]
Spec for aws_syncr options
[ "Spec", "for", "aws_syncr", "options" ]
python
train
48.307692
tanghaibao/jcvi
jcvi/formats/blast.py
https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/formats/blast.py#L383-L408
def gaps(args): """ %prog gaps A_vs_B.blast Find distribution of gap sizes betwen adjacent HSPs. """ p = OptionParser(gaps.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) blastfile, = args blast = BlastSlow(blastfile) logging.debug("A total of {} records imported".format(len(blast))) query_gaps = list(collect_gaps(blast)) subject_gaps = list(collect_gaps(blast, use_subject=True)) logging.debug("Query gaps: {} Subject gaps: {}"\ .format(len(query_gaps), len(subject_gaps))) from jcvi.graphics.base import savefig import seaborn as sns sns.distplot(query_gaps) savefig("query_gaps.pdf")
[ "def", "gaps", "(", "args", ")", ":", "p", "=", "OptionParser", "(", "gaps", ".", "__doc__", ")", "opts", ",", "args", "=", "p", ".", "parse_args", "(", "args", ")", "if", "len", "(", "args", ")", "!=", "1", ":", "sys", ".", "exit", "(", "not", "p", ".", "print_help", "(", ")", ")", "blastfile", ",", "=", "args", "blast", "=", "BlastSlow", "(", "blastfile", ")", "logging", ".", "debug", "(", "\"A total of {} records imported\"", ".", "format", "(", "len", "(", "blast", ")", ")", ")", "query_gaps", "=", "list", "(", "collect_gaps", "(", "blast", ")", ")", "subject_gaps", "=", "list", "(", "collect_gaps", "(", "blast", ",", "use_subject", "=", "True", ")", ")", "logging", ".", "debug", "(", "\"Query gaps: {} Subject gaps: {}\"", ".", "format", "(", "len", "(", "query_gaps", ")", ",", "len", "(", "subject_gaps", ")", ")", ")", "from", "jcvi", ".", "graphics", ".", "base", "import", "savefig", "import", "seaborn", "as", "sns", "sns", ".", "distplot", "(", "query_gaps", ")", "savefig", "(", "\"query_gaps.pdf\"", ")" ]
%prog gaps A_vs_B.blast Find distribution of gap sizes betwen adjacent HSPs.
[ "%prog", "gaps", "A_vs_B", ".", "blast" ]
python
train
27.192308
happyleavesaoc/python-snapcast
snapcast/control/client.py
https://github.com/happyleavesaoc/python-snapcast/blob/9b3c483358677327c7fd6d0666bf474c19d87f19/snapcast/control/client.py#L94-L104
def set_volume(self, percent, update_group=True): """Set client volume percent.""" if percent not in range(0, 101): raise ValueError('Volume percent out of range') new_volume = self._client['config']['volume'] new_volume['percent'] = percent self._client['config']['volume']['percent'] = percent yield from self._server.client_volume(self.identifier, new_volume) if update_group: self._server.group(self.group.identifier).callback() _LOGGER.info('set volume to %s on %s', percent, self.friendly_name)
[ "def", "set_volume", "(", "self", ",", "percent", ",", "update_group", "=", "True", ")", ":", "if", "percent", "not", "in", "range", "(", "0", ",", "101", ")", ":", "raise", "ValueError", "(", "'Volume percent out of range'", ")", "new_volume", "=", "self", ".", "_client", "[", "'config'", "]", "[", "'volume'", "]", "new_volume", "[", "'percent'", "]", "=", "percent", "self", ".", "_client", "[", "'config'", "]", "[", "'volume'", "]", "[", "'percent'", "]", "=", "percent", "yield", "from", "self", ".", "_server", ".", "client_volume", "(", "self", ".", "identifier", ",", "new_volume", ")", "if", "update_group", ":", "self", ".", "_server", ".", "group", "(", "self", ".", "group", ".", "identifier", ")", ".", "callback", "(", ")", "_LOGGER", ".", "info", "(", "'set volume to %s on %s'", ",", "percent", ",", "self", ".", "friendly_name", ")" ]
Set client volume percent.
[ "Set", "client", "volume", "percent", "." ]
python
train
52.545455
monarch-initiative/dipper
dipper/sources/UDP.py
https://github.com/monarch-initiative/dipper/blob/24cc80db355bbe15776edc5c7b41e0886959ba41/dipper/sources/UDP.py#L324-L439
def _add_variant_gene_relationship(self, patient_var_map, gene_coordinate_map): """ Right now it is unclear the best approach on how to connect variants to genes. In most cases has_affected_locus/GENO:0000418 is accurate; however, there are cases where a variant is in the intron on one gene and is purported to causally affect another gene down or upstream. In these cases we must first disambiguate which gene is the affected locus, and which gene(s) are predicated to be causully influenced by (RO:0002566) UPDATE 8-30: In the latest dataset we no longer have 1-many mappings between variants and genes, but leaving this here in case we see these in the future The logic followed here is: if mutation type contains downstream/upstream and more than one gene of interest, investigate coordinates of all genes to see if we can disambiguate which genes are which :return: None """ # genotype = Genotype(self.graph) dipper_util = DipperUtil() model = Model(self.graph) # Note this could be compressed in someway to remove one level of for looping for patient in patient_var_map: for variant_id, variant in patient_var_map[patient].items(): variant_bnode = self.make_id("{0}".format(variant_id), "_") genes_of_interest = variant['genes_of_interest'] if len(genes_of_interest) == 1: # Assume variant is variant allele of gene gene = genes_of_interest[0] gene_id = dipper_util.get_ncbi_id_from_symbol(gene) self._add_gene_to_graph( gene, variant_bnode, gene_id, self.globaltt['has_affected_feature']) elif re.search(r'upstream|downstream', variant['type'], flags=re.I): # Attempt to disambiguate ref_gene = [] up_down_gene = [] unmatched_genes = [] for gene in variant['genes_of_interest']: if gene_id and gene_id != '' and gene_id in gene_coordinate_map: if gene_coordinate_map[gene_id]['start'] \ <= variant['position']\ <= gene_coordinate_map[gene_id]['end']: gene_info = { 'symbol': gene, 'strand': gene_coordinate_map[gene_id]['strand'] } ref_gene.append(gene_info) else: up_down_gene.append(gene) else: unmatched_genes.append(gene) if len(ref_gene) == 1: self._add_gene_to_graph( ref_gene[0]['symbol'], variant_bnode, gene_id, self.globaltt['has_affected_feature']) # update label with gene gene_list = [ref_gene[0]['symbol']] # build label expects list variant_label = self._build_variant_label( variant['build'], variant['chromosome'], variant['position'], variant['reference_allele'], variant['variant_allele'], gene_list) model.addLabel(variant_bnode, variant_label) # In some cases there are multiple instances # of same gene from dupe rows in the source # Credit http://stackoverflow.com/a/3844832 elif len(ref_gene) > 0 and ref_gene[1:] == ref_gene[:-1]: self._add_gene_to_graph( ref_gene[0]['symbol'], variant_bnode, gene_id, self.globaltt['has_affected_feature']) # build label function expects list gene_list = [ref_gene[0]['symbol']] variant_label = self._build_variant_label( variant['build'], variant['chromosome'], variant['position'], variant['reference_allele'], variant['variant_allele'], gene_list) model.addLabel(variant_bnode, variant_label) # Check if reference genes are on different strands elif len(ref_gene) == 2: strands = [st['strand'] for st in ref_gene] if "minus" in strands and "plus" in strands: for r_gene in ref_gene: self._add_gene_to_graph( r_gene['symbol'], variant_bnode, gene_id, self.globaltt['has_affected_feature']) else: LOG.warning( "unable to map intron variant to gene coordinates: %s", variant) for r_gene in ref_gene: self._add_gene_to_graph( r_gene['symbol'], variant_bnode, gene_id, self.globaltt['causally_influences']) elif re.search(r'intron', variant['type'], flags=re.I): LOG.warning( "unable to map intron variant to gene coordinates_2: %s", variant) for neighbor in up_down_gene: self._add_gene_to_graph( neighbor, variant_bnode, gene_id, self.globaltt['causally_influences']) # Unmatched genes are likely because we cannot map to an NCBIGene # or we do not have coordinate information for unmatched_gene in unmatched_genes: self._add_gene_to_graph( unmatched_gene, variant_bnode, gene_id, self.globaltt['causally_influences']) return
[ "def", "_add_variant_gene_relationship", "(", "self", ",", "patient_var_map", ",", "gene_coordinate_map", ")", ":", "# genotype = Genotype(self.graph)", "dipper_util", "=", "DipperUtil", "(", ")", "model", "=", "Model", "(", "self", ".", "graph", ")", "# Note this could be compressed in someway to remove one level of for looping", "for", "patient", "in", "patient_var_map", ":", "for", "variant_id", ",", "variant", "in", "patient_var_map", "[", "patient", "]", ".", "items", "(", ")", ":", "variant_bnode", "=", "self", ".", "make_id", "(", "\"{0}\"", ".", "format", "(", "variant_id", ")", ",", "\"_\"", ")", "genes_of_interest", "=", "variant", "[", "'genes_of_interest'", "]", "if", "len", "(", "genes_of_interest", ")", "==", "1", ":", "# Assume variant is variant allele of gene", "gene", "=", "genes_of_interest", "[", "0", "]", "gene_id", "=", "dipper_util", ".", "get_ncbi_id_from_symbol", "(", "gene", ")", "self", ".", "_add_gene_to_graph", "(", "gene", ",", "variant_bnode", ",", "gene_id", ",", "self", ".", "globaltt", "[", "'has_affected_feature'", "]", ")", "elif", "re", ".", "search", "(", "r'upstream|downstream'", ",", "variant", "[", "'type'", "]", ",", "flags", "=", "re", ".", "I", ")", ":", "# Attempt to disambiguate", "ref_gene", "=", "[", "]", "up_down_gene", "=", "[", "]", "unmatched_genes", "=", "[", "]", "for", "gene", "in", "variant", "[", "'genes_of_interest'", "]", ":", "if", "gene_id", "and", "gene_id", "!=", "''", "and", "gene_id", "in", "gene_coordinate_map", ":", "if", "gene_coordinate_map", "[", "gene_id", "]", "[", "'start'", "]", "<=", "variant", "[", "'position'", "]", "<=", "gene_coordinate_map", "[", "gene_id", "]", "[", "'end'", "]", ":", "gene_info", "=", "{", "'symbol'", ":", "gene", ",", "'strand'", ":", "gene_coordinate_map", "[", "gene_id", "]", "[", "'strand'", "]", "}", "ref_gene", ".", "append", "(", "gene_info", ")", "else", ":", "up_down_gene", ".", "append", "(", "gene", ")", "else", ":", "unmatched_genes", ".", "append", "(", "gene", ")", "if", "len", "(", "ref_gene", ")", "==", "1", ":", "self", ".", "_add_gene_to_graph", "(", "ref_gene", "[", "0", "]", "[", "'symbol'", "]", ",", "variant_bnode", ",", "gene_id", ",", "self", ".", "globaltt", "[", "'has_affected_feature'", "]", ")", "# update label with gene", "gene_list", "=", "[", "ref_gene", "[", "0", "]", "[", "'symbol'", "]", "]", "# build label expects list", "variant_label", "=", "self", ".", "_build_variant_label", "(", "variant", "[", "'build'", "]", ",", "variant", "[", "'chromosome'", "]", ",", "variant", "[", "'position'", "]", ",", "variant", "[", "'reference_allele'", "]", ",", "variant", "[", "'variant_allele'", "]", ",", "gene_list", ")", "model", ".", "addLabel", "(", "variant_bnode", ",", "variant_label", ")", "# In some cases there are multiple instances", "# of same gene from dupe rows in the source", "# Credit http://stackoverflow.com/a/3844832", "elif", "len", "(", "ref_gene", ")", ">", "0", "and", "ref_gene", "[", "1", ":", "]", "==", "ref_gene", "[", ":", "-", "1", "]", ":", "self", ".", "_add_gene_to_graph", "(", "ref_gene", "[", "0", "]", "[", "'symbol'", "]", ",", "variant_bnode", ",", "gene_id", ",", "self", ".", "globaltt", "[", "'has_affected_feature'", "]", ")", "# build label function expects list", "gene_list", "=", "[", "ref_gene", "[", "0", "]", "[", "'symbol'", "]", "]", "variant_label", "=", "self", ".", "_build_variant_label", "(", "variant", "[", "'build'", "]", ",", "variant", "[", "'chromosome'", "]", ",", "variant", "[", "'position'", "]", ",", "variant", "[", "'reference_allele'", "]", ",", "variant", "[", "'variant_allele'", "]", ",", "gene_list", ")", "model", ".", "addLabel", "(", "variant_bnode", ",", "variant_label", ")", "# Check if reference genes are on different strands", "elif", "len", "(", "ref_gene", ")", "==", "2", ":", "strands", "=", "[", "st", "[", "'strand'", "]", "for", "st", "in", "ref_gene", "]", "if", "\"minus\"", "in", "strands", "and", "\"plus\"", "in", "strands", ":", "for", "r_gene", "in", "ref_gene", ":", "self", ".", "_add_gene_to_graph", "(", "r_gene", "[", "'symbol'", "]", ",", "variant_bnode", ",", "gene_id", ",", "self", ".", "globaltt", "[", "'has_affected_feature'", "]", ")", "else", ":", "LOG", ".", "warning", "(", "\"unable to map intron variant to gene coordinates: %s\"", ",", "variant", ")", "for", "r_gene", "in", "ref_gene", ":", "self", ".", "_add_gene_to_graph", "(", "r_gene", "[", "'symbol'", "]", ",", "variant_bnode", ",", "gene_id", ",", "self", ".", "globaltt", "[", "'causally_influences'", "]", ")", "elif", "re", ".", "search", "(", "r'intron'", ",", "variant", "[", "'type'", "]", ",", "flags", "=", "re", ".", "I", ")", ":", "LOG", ".", "warning", "(", "\"unable to map intron variant to gene coordinates_2: %s\"", ",", "variant", ")", "for", "neighbor", "in", "up_down_gene", ":", "self", ".", "_add_gene_to_graph", "(", "neighbor", ",", "variant_bnode", ",", "gene_id", ",", "self", ".", "globaltt", "[", "'causally_influences'", "]", ")", "# Unmatched genes are likely because we cannot map to an NCBIGene", "# or we do not have coordinate information", "for", "unmatched_gene", "in", "unmatched_genes", ":", "self", ".", "_add_gene_to_graph", "(", "unmatched_gene", ",", "variant_bnode", ",", "gene_id", ",", "self", ".", "globaltt", "[", "'causally_influences'", "]", ")", "return" ]
Right now it is unclear the best approach on how to connect variants to genes. In most cases has_affected_locus/GENO:0000418 is accurate; however, there are cases where a variant is in the intron on one gene and is purported to causally affect another gene down or upstream. In these cases we must first disambiguate which gene is the affected locus, and which gene(s) are predicated to be causully influenced by (RO:0002566) UPDATE 8-30: In the latest dataset we no longer have 1-many mappings between variants and genes, but leaving this here in case we see these in the future The logic followed here is: if mutation type contains downstream/upstream and more than one gene of interest, investigate coordinates of all genes to see if we can disambiguate which genes are which :return: None
[ "Right", "now", "it", "is", "unclear", "the", "best", "approach", "on", "how", "to", "connect", "variants", "to", "genes", ".", "In", "most", "cases", "has_affected_locus", "/", "GENO", ":", "0000418", "is", "accurate", ";", "however", "there", "are", "cases", "where", "a", "variant", "is", "in", "the", "intron", "on", "one", "gene", "and", "is", "purported", "to", "causally", "affect", "another", "gene", "down", "or", "upstream", ".", "In", "these", "cases", "we", "must", "first", "disambiguate", "which", "gene", "is", "the", "affected", "locus", "and", "which", "gene", "(", "s", ")", "are", "predicated", "to", "be", "causully", "influenced", "by", "(", "RO", ":", "0002566", ")" ]
python
train
54.387931
fabioz/PyDev.Debugger
_pydevd_bundle/pydevd_reload.py
https://github.com/fabioz/PyDev.Debugger/blob/ed9c4307662a5593b8a7f1f3389ecd0e79b8c503/_pydevd_bundle/pydevd_reload.py#L167-L179
def xreload(mod): """Reload a module in place, updating classes, methods and functions. mod: a module object Returns a boolean indicating whether a change was done. """ r = Reload(mod) r.apply() found_change = r.found_change r = None pydevd_dont_trace.clear_trace_filter_cache() return found_change
[ "def", "xreload", "(", "mod", ")", ":", "r", "=", "Reload", "(", "mod", ")", "r", ".", "apply", "(", ")", "found_change", "=", "r", ".", "found_change", "r", "=", "None", "pydevd_dont_trace", ".", "clear_trace_filter_cache", "(", ")", "return", "found_change" ]
Reload a module in place, updating classes, methods and functions. mod: a module object Returns a boolean indicating whether a change was done.
[ "Reload", "a", "module", "in", "place", "updating", "classes", "methods", "and", "functions", "." ]
python
train
25.230769
osrg/ryu
ryu/services/protocols/bgp/core_managers/peer_manager.py
https://github.com/osrg/ryu/blob/6f906e72c92e10bd0264c9b91a2f7bb85b97780c/ryu/services/protocols/bgp/core_managers/peer_manager.py#L77-L83
def get_peers_in_established(self): """Returns list of peers in established state.""" est_peers = [] for peer in self._peers.values(): if peer.in_established: est_peers.append(peer) return est_peers
[ "def", "get_peers_in_established", "(", "self", ")", ":", "est_peers", "=", "[", "]", "for", "peer", "in", "self", ".", "_peers", ".", "values", "(", ")", ":", "if", "peer", ".", "in_established", ":", "est_peers", ".", "append", "(", "peer", ")", "return", "est_peers" ]
Returns list of peers in established state.
[ "Returns", "list", "of", "peers", "in", "established", "state", "." ]
python
train
36
rvswift/EB
EB/builder/splitter/splitter_io.py
https://github.com/rvswift/EB/blob/341880b79faf8147dc9fa6e90438531cd09fabcc/EB/builder/splitter/splitter_io.py#L26-L70
def print_extended_help(): """ Prints an extended help message. """ # initiate TextWrapper class, which will handle all of the string formatting w = textwrap.TextWrapper() w.expand_tabs = False w.width=110 w.initial_indent = ' ' w.subsequent_indent = ' ' print('') print(textwrap.fill("<split> Complete parameter list:", initial_indent='')) print('') cmd = "--input : (required) csv file to split into training and test sets" print(w.fill(cmd)) cmd = "\t\tColumns should be as follows:" print(w.fill(cmd)) print('') cmd="\t\t id, status, receptor_1, receptor_2, ..., receptor_N" print(w.fill(cmd)) cmd="\t\t CH44, 1, -9.7, -9.3, ..., -10.2" print(w.fill(cmd)) cmd="\t\t ZN44, 0, -6.6, -6.1, ..., -6.8" print(w.fill(cmd)) print('') cmd="\t\tid is a unique molecular identifier" print(w.fill(cmd)) cmd="\t\tstatus takes a value of '1' if the molecule is active and '0' otherwise." print(w.fill(cmd)) cmd="\t\treceptor_1 through receptor_N are docking scores." print(w.fill(cmd)) print('') tfrac = "--training_fraction : (optional) The fraction of input active molecules\ allocated to the training set, e.g. 0.40. Defaults to allocate half to the training\ set." print(w.fill(tfrac)) print('') d2a = "--decoy_to_active : (optional) The decoy to active ratio to establish in the \ training and validation sets. Defaults to maintain the input file ratio." print(w.fill(d2a)) print('')
[ "def", "print_extended_help", "(", ")", ":", "# initiate TextWrapper class, which will handle all of the string formatting", "w", "=", "textwrap", ".", "TextWrapper", "(", ")", "w", ".", "expand_tabs", "=", "False", "w", ".", "width", "=", "110", "w", ".", "initial_indent", "=", "' '", "w", ".", "subsequent_indent", "=", "' '", "print", "(", "''", ")", "print", "(", "textwrap", ".", "fill", "(", "\"<split> Complete parameter list:\"", ",", "initial_indent", "=", "''", ")", ")", "print", "(", "''", ")", "cmd", "=", "\"--input : (required) csv file to split into training and test sets\"", "print", "(", "w", ".", "fill", "(", "cmd", ")", ")", "cmd", "=", "\"\\t\\tColumns should be as follows:\"", "print", "(", "w", ".", "fill", "(", "cmd", ")", ")", "print", "(", "''", ")", "cmd", "=", "\"\\t\\t id, status, receptor_1, receptor_2, ..., receptor_N\"", "print", "(", "w", ".", "fill", "(", "cmd", ")", ")", "cmd", "=", "\"\\t\\t CH44, 1, -9.7, -9.3, ..., -10.2\"", "print", "(", "w", ".", "fill", "(", "cmd", ")", ")", "cmd", "=", "\"\\t\\t ZN44, 0, -6.6, -6.1, ..., -6.8\"", "print", "(", "w", ".", "fill", "(", "cmd", ")", ")", "print", "(", "''", ")", "cmd", "=", "\"\\t\\tid is a unique molecular identifier\"", "print", "(", "w", ".", "fill", "(", "cmd", ")", ")", "cmd", "=", "\"\\t\\tstatus takes a value of '1' if the molecule is active and '0' otherwise.\"", "print", "(", "w", ".", "fill", "(", "cmd", ")", ")", "cmd", "=", "\"\\t\\treceptor_1 through receptor_N are docking scores.\"", "print", "(", "w", ".", "fill", "(", "cmd", ")", ")", "print", "(", "''", ")", "tfrac", "=", "\"--training_fraction : (optional) The fraction of input active molecules\\\n\tallocated to the training set, e.g. 0.40. Defaults to allocate half to the training\\\n\tset.\"", "print", "(", "w", ".", "fill", "(", "tfrac", ")", ")", "print", "(", "''", ")", "d2a", "=", "\"--decoy_to_active : (optional) The decoy to active ratio to establish in the \\\n\ttraining and validation sets. Defaults to maintain the input file ratio.\"", "print", "(", "w", ".", "fill", "(", "d2a", ")", ")", "print", "(", "''", ")" ]
Prints an extended help message.
[ "Prints", "an", "extended", "help", "message", "." ]
python
train
34.266667
codeinn/vcs
vcs/backends/git/changeset.py
https://github.com/codeinn/vcs/blob/e6cd94188e9c36d273411bf3adc0584ac6ab92a0/vcs/backends/git/changeset.py#L469-L474
def affected_files(self): """ Get's a fast accessible file changes for given changeset """ added, modified, deleted = self._changes_cache return list(added.union(modified).union(deleted))
[ "def", "affected_files", "(", "self", ")", ":", "added", ",", "modified", ",", "deleted", "=", "self", ".", "_changes_cache", "return", "list", "(", "added", ".", "union", "(", "modified", ")", ".", "union", "(", "deleted", ")", ")" ]
Get's a fast accessible file changes for given changeset
[ "Get", "s", "a", "fast", "accessible", "file", "changes", "for", "given", "changeset" ]
python
train
37
DataBiosphere/toil
src/toil/leader.py
https://github.com/DataBiosphere/toil/blob/a8252277ff814e7bee0971139c2344f88e44b644/src/toil/leader.py#L815-L843
def getSuccessors(jobGraph, alreadySeenSuccessors, jobStore): """ Gets successors of the given job by walking the job graph recursively. Any successor in alreadySeenSuccessors is ignored and not traversed. Returns the set of found successors. This set is added to alreadySeenSuccessors. """ successors = set() def successorRecursion(jobGraph): # For lists of successors for successorList in jobGraph.stack: # For each successor in list of successors for successorJobNode in successorList: # If successor not already visited if successorJobNode.jobStoreID not in alreadySeenSuccessors: # Add to set of successors successors.add(successorJobNode.jobStoreID) alreadySeenSuccessors.add(successorJobNode.jobStoreID) # Recurse if job exists # (job may not exist if already completed) if jobStore.exists(successorJobNode.jobStoreID): successorRecursion(jobStore.load(successorJobNode.jobStoreID)) successorRecursion(jobGraph) # Recurse from jobGraph return successors
[ "def", "getSuccessors", "(", "jobGraph", ",", "alreadySeenSuccessors", ",", "jobStore", ")", ":", "successors", "=", "set", "(", ")", "def", "successorRecursion", "(", "jobGraph", ")", ":", "# For lists of successors", "for", "successorList", "in", "jobGraph", ".", "stack", ":", "# For each successor in list of successors", "for", "successorJobNode", "in", "successorList", ":", "# If successor not already visited", "if", "successorJobNode", ".", "jobStoreID", "not", "in", "alreadySeenSuccessors", ":", "# Add to set of successors", "successors", ".", "add", "(", "successorJobNode", ".", "jobStoreID", ")", "alreadySeenSuccessors", ".", "add", "(", "successorJobNode", ".", "jobStoreID", ")", "# Recurse if job exists", "# (job may not exist if already completed)", "if", "jobStore", ".", "exists", "(", "successorJobNode", ".", "jobStoreID", ")", ":", "successorRecursion", "(", "jobStore", ".", "load", "(", "successorJobNode", ".", "jobStoreID", ")", ")", "successorRecursion", "(", "jobGraph", ")", "# Recurse from jobGraph", "return", "successors" ]
Gets successors of the given job by walking the job graph recursively. Any successor in alreadySeenSuccessors is ignored and not traversed. Returns the set of found successors. This set is added to alreadySeenSuccessors.
[ "Gets", "successors", "of", "the", "given", "job", "by", "walking", "the", "job", "graph", "recursively", ".", "Any", "successor", "in", "alreadySeenSuccessors", "is", "ignored", "and", "not", "traversed", ".", "Returns", "the", "set", "of", "found", "successors", ".", "This", "set", "is", "added", "to", "alreadySeenSuccessors", "." ]
python
train
44.103448
rstoneback/pysat
pysat/_instrument.py
https://github.com/rstoneback/pysat/blob/4ae1afd80e15e4449397d39dce8c3e969c32c422/pysat/_instrument.py#L1409-L1823
def to_netcdf4(self, fname=None, base_instrument=None, epoch_name='Epoch', zlib=False, complevel=4, shuffle=True): """Stores loaded data into a netCDF4 file. Parameters ---------- fname : string full path to save instrument object to base_instrument : pysat.Instrument used as a comparison, only attributes that are present with self and not on base_instrument are written to netCDF epoch_name : str Label in file for datetime index of Instrument object zlib : boolean Flag for engaging zlib compression (True - compression on) complevel : int an integer between 1 and 9 describing the level of compression desired (default 4). Ignored if zlib=False shuffle : boolean the HDF5 shuffle filter will be applied before compressing the data (default True). This significantly improves compression. Default is True. Ignored if zlib=False. Note ---- Stores 1-D data along dimension 'epoch' - the date time index. Stores higher order data (e.g. dataframes within series) separately - The name of the main variable column is used to prepend subvariable names within netCDF, var_subvar_sub - A netCDF4 dimension is created for each main variable column with higher order data; first dimension Epoch - The index organizing the data stored as a dimension variable - from_netcdf4 uses the variable dimensions to reconstruct data structure All attributes attached to instrument meta are written to netCDF attrs. """ import netCDF4 import pysat file_format = 'NETCDF4' # base_instrument used to define the standard attributes attached # to the instrument object. Any additional attributes added # to the main input Instrument will be written to the netCDF4 base_instrument = Instrument() if base_instrument is None else base_instrument # begin processing metadata for writing to the file # look to see if user supplied a list of export keys # corresponding to internally tracked metadata within pysat export_meta = self.generic_meta_translator(self.meta) if self._meta_translation_table is None: # didn't find a translation table, using the strings # attached to the supplied pysat.Instrument object export_name_labels = [self.name_label] export_units_labels = [self.units_label] export_desc_labels = [self.desc_label] export_notes_labels = [self.notes_label] else: # user supplied labels in translation table export_name_labels = self._meta_translation_table['name_label'] export_units_labels = self._meta_translation_table['units_label'] export_desc_labels = self._meta_translation_table['desc_label'] export_notes_labels = self._meta_translation_table['notes_label'] print('Using Metadata Translation Table: ', self._meta_translation_table) # Apply instrument specific post-processing to the export_meta if hasattr(self._export_meta_post_processing, '__call__'): export_meta = self._export_meta_post_processing(export_meta) # general process for writing data is this # first, take care of the EPOCH information # second, iterate over the variable colums in Instrument.data # check the type of data # if 1D column, do simple write (type is not an object) # if it is an object, then check if writing strings, if not strings, then # if column is a Series of Frames, write as 2D variables # metadata must be filtered before writing to netCDF4, string variables # can't have a fill value with netCDF4.Dataset(fname, mode='w', format=file_format) as out_data: # number of items, yeah num = len(self.data.index) # write out the datetime index out_data.createDimension(epoch_name, num) cdfkey = out_data.createVariable(epoch_name, 'i8', dimensions=(epoch_name), zlib=zlib, complevel=complevel, shuffle=shuffle) # grab existing metadata for Epoch or create suitable info if epoch_name in self.meta: new_dict = export_meta[self.meta.var_case_name(epoch_name)] else: # create empty shell new_dict = {} # update required and basic information if not present for export_name_label in export_name_labels: if export_name_label not in new_dict: new_dict[export_name_label] = epoch_name for export_units_label in export_units_labels: if export_units_label not in new_dict: new_dict[export_units_label] = 'Milliseconds since 1970-1-1 00:00:00' for export_desc_label in export_desc_labels: if export_desc_label not in new_dict: new_dict[export_desc_label] = 'Milliseconds since 1970-1-1 00:00:00' for export_notes_label in export_notes_labels: if export_notes_label not in new_dict: new_dict[export_notes_label] = '' new_dict['calendar'] = 'standard' new_dict['Format'] = 'i8' new_dict['Var_Type'] = 'data' if self.data.index.is_monotonic_increasing: new_dict['MonoTon'] = 'increase' elif self.data.index.is_monotonic_decreasing: new_dict['MonoTon'] = 'decrease' new_dict['Time_Base'] = 'Milliseconds since 1970-1-1 00:00:00' new_dict['Time_Scale'] = 'UTC' new_dict = self._filter_netcdf4_metadata(new_dict, np.int64) # attach metadata cdfkey.setncatts(new_dict) # attach data cdfkey[:] = (self.data.index.values.astype(np.int64) * 1.E-6).astype(np.int64) # iterate over all of the columns in the Instrument dataframe # check what kind of data we are dealing with, then store for key in self.data.columns: # print (key) # get information on type data we are dealing with # data is data in proer type( multiformat support) # coltype is the direct type, np.int64 # and datetime_flag lets you know if the data is full of time # information data, coltype, datetime_flag = self._get_data_info(self[key], file_format) # operate on data based upon type if self[key].dtype != np.dtype('O'): # not an object, normal basic 1D data # print(key, coltype, file_format) cdfkey = out_data.createVariable(key, coltype, dimensions=(epoch_name), zlib=zlib, complevel=complevel, shuffle=shuffle) #, chunksizes=1) # attach any meta data, after filtering for standards try: # attach dimension metadata new_dict = export_meta[key] new_dict['Depend_0'] = epoch_name new_dict['Display_Type'] = 'Time Series' new_dict['Format'] = self._get_var_type_code(coltype) new_dict['Var_Type'] = 'data' new_dict = self._filter_netcdf4_metadata(new_dict, coltype) cdfkey.setncatts(new_dict) except KeyError: print(', '.join(('Unable to find MetaData for', key))) # assign data if datetime_flag: # datetime is in nanoseconds, storing milliseconds cdfkey[:] = (data.values.astype(coltype) * 1.E-6).astype(coltype) else: # not datetime data, just store as is cdfkey[:] = data.values.astype(coltype) # back to main check on type of data to write else: # it is a Series of objects, need to figure out # what the actual objects are, then act as needed # use info in coltype to get real datatype of object # isinstance isn't working here because of something with coltype if (coltype == type(' ')) or (coltype == type(u' ')): # dealing with a string cdfkey = out_data.createVariable(key, coltype, \ dimensions=(epoch_name), zlib=zlib, \ complevel=complevel, shuffle=shuffle) # attach any meta data try: # attach dimension metadata new_dict = export_meta[key] new_dict['Depend_0'] = epoch_name new_dict['Display_Type'] = 'Time Series' new_dict['Format'] = self._get_var_type_code(coltype) new_dict['Var_Type'] = 'data' # no FillValue or FillVal allowed for strings new_dict = self._filter_netcdf4_metadata(new_dict, \ coltype, remove=True) # really attach metadata now cdfkey.setncatts(new_dict) except KeyError: print(', '.join(('Unable to find MetaData for', key))) # time to actually write the data now cdfkey[:] = data.values # still dealing with an object, not just a series # of strings # maps to if check on coltypes being stringbased else: # presuming a series with a dataframe or series in each location # start by collecting some basic info on dimensions # sizes, names, then create corresponding netCDF4 dimensions # total dimensions stored for object are epoch plus ones # created below dims = np.shape(self[key].iloc[0]) obj_dim_names = [] if len(dims) == 1: # generally working with higher dimensional data # pad dimensions so that the rest of the code works # for either a Series or a Frame dims = (dims[0], 0) for i, dim in enumerate(dims[:-1]): # don't need to go over last dimension value, # it covers number of columns (if a frame) obj_dim_names.append(key) out_data.createDimension(obj_dim_names[-1], dim) # create simple tuple with information needed to create # the right dimensions for variables that will # be written to file var_dim = tuple([epoch_name] + obj_dim_names) # We need to do different things if a series or dataframe # stored try: # start by assuming it is a dataframe # get list of subvariables iterable = self[key].iloc[0].columns # store our newfound knowledge, we are dealing with # a series of DataFrames is_frame = True except AttributeError: # turns out data is Series of Series # which doesn't have columns iterable = [self[key].iloc[0].name] is_frame = False # find location within main variable # that actually has subvariable data (not just empty frame/series) # so we can determine what the real underlying data types are good_data_loc = 0 for jjj in np.arange(len(self.data)): if len(self.data[key].iloc[0]) > 0: data_loc = jjj break # found a place with data, if there is one # now iterate over the subvariables, get data info # create netCDF4 variables and store the data # stored name is variable_subvariable for col in iterable: if is_frame: # we are working with a dataframe # so multiple subvariables stored under a single # main variable heading data, coltype, _ = self._get_data_info(self[key].iloc[good_data_loc][col], file_format) cdfkey = out_data.createVariable(key + '_' + col, coltype, dimensions=var_dim, zlib=zlib, complevel=complevel, shuffle=shuffle) # attach any meta data try: new_dict = export_meta[key+'_'+col] new_dict['Depend_0'] = epoch_name new_dict['Depend_1'] = obj_dim_names[-1] new_dict['Display_Type'] = 'Spectrogram' new_dict['Format'] = self._get_var_type_code(coltype) new_dict['Var_Type'] = 'data' # print('Frame Writing ', key, col, export_meta[key].children[col]) new_dict = self._filter_netcdf4_metadata(new_dict, coltype) # print ('mid2 ', new_dict) cdfkey.setncatts(new_dict) except KeyError: print(', '.join(('Unable to find MetaData for', key, col)) ) # attach data # it may be slow to repeatedly call the store # method as well astype method below collect # data into a numpy array, then write the full # array in one go # print(coltype, dims) temp_cdf_data = np.zeros((num, dims[0])).astype(coltype) for i in range(num): temp_cdf_data[i, :] = self[key].iloc[i][col].values # write data cdfkey[:, :] = temp_cdf_data.astype(coltype) else: # we are dealing with a Series # get information about information within series data, coltype, _ = self._get_data_info(self[key].iloc[good_data_loc], file_format) cdfkey = out_data.createVariable(key + '_data', coltype, dimensions=var_dim, zlib=zlib, complevel=complevel, shuffle=shuffle) #, chunksizes=1) # attach any meta data try: new_dict = export_meta[key] new_dict['Depend_0'] = epoch_name new_dict['Depend_1'] = obj_dim_names[-1] new_dict['Display_Type'] = 'Spectrogram' new_dict['Format'] = self._get_var_type_code(coltype) new_dict['Var_Type'] = 'data' new_dict = self._filter_netcdf4_metadata(new_dict, coltype) # really attach metadata now # print ('mid3 ', new_dict) cdfkey.setncatts(new_dict) except KeyError: print(', '.join(('Unable to find MetaData for', key))) # attach data temp_cdf_data = np.zeros((num, dims[0])).astype(coltype) for i in range(num): temp_cdf_data[i, :] = self[i, key].values # write data cdfkey[:, :] = temp_cdf_data.astype(coltype) # we are done storing the actual data for the given higher # order variable, now we need to store the index for all # of that fancy data # get index information data, coltype, datetime_flag = self._get_data_info(self[key].iloc[good_data_loc].index, file_format) # create dimension variable for to store index in netCDF4 cdfkey = out_data.createVariable(key, coltype, dimensions=var_dim, zlib=zlib, complevel=complevel, shuffle=shuffle) # work with metadata new_dict = export_meta[key] new_dict['Depend_0'] = epoch_name new_dict['Depend_1'] = obj_dim_names[-1] new_dict['Display_Type'] = 'Time Series' new_dict['Format'] = self._get_var_type_code(coltype) new_dict['Var_Type'] = 'data' if datetime_flag: #print('datetime flag') for export_name_label in export_name_labels: new_dict[export_name_label] = epoch_name for export_units_label in export_units_labels: new_dict[export_units_label] = 'Milliseconds since 1970-1-1 00:00:00' new_dict = self._filter_netcdf4_metadata(new_dict, coltype) # set metadata dict cdfkey.setncatts(new_dict) # set data temp_cdf_data = np.zeros((num, dims[0])).astype(coltype) for i in range(num): temp_cdf_data[i, :] = self[i, key].index.values cdfkey[:, :] = (temp_cdf_data.astype(coltype) * 1.E-6).astype(coltype) else: if self[key].iloc[data_loc].index.name is not None: for export_name_label in export_name_labels: new_dict[export_name_label] = self[key].iloc[data_loc].index.name else: for export_name_label in export_name_labels: new_dict[export_name_label] = key new_dict = self._filter_netcdf4_metadata(new_dict, coltype) # assign metadata dict cdfkey.setncatts(new_dict) # set data temp_cdf_data = np.zeros((num, dims[0])).astype(coltype) for i in range(num): temp_cdf_data[i, :] = self[key].iloc[i].index.to_native_types() cdfkey[:, :] = temp_cdf_data.astype(coltype) # store any non standard attributes # compare this Instrument's attributes to base object base_attrb = dir(base_instrument) this_attrb = dir(self) # filter out any 'private' attributes # those that start with a _ adict = {} for key in this_attrb: if key not in base_attrb: if key[0] != '_': adict[key] = self.__getattribute__(key) # store any non-standard attributes attached to meta base_attrb = dir(base_instrument.meta) this_attrb = dir(self.meta) for key in this_attrb: if key not in base_attrb: if key[0] != '_': adict[key] = self.meta.__getattribute__(key) adict['pysat_version'] = pysat.__version__ if 'Conventions' not in adict: adict['Conventions'] = 'SPDF ISTP/IACG Modified for NetCDF' if 'Text_Supplement' not in adict: adict['Text_Supplement'] = '' adict['Date_Start'] = pysat.datetime.strftime(self.data.index[0], '%a, %d %b %Y, %Y-%m-%dT%H:%M:%S.%f UTC') adict['Date_End'] = pysat.datetime.strftime(self.data.index[-1], '%a, %d %b %Y, %Y-%m-%dT%H:%M:%S.%f UTC') adict['File'] = os.path.split(fname) adict['Generation_Date'] = pysat.datetime.utcnow().strftime('%Y%m%d') adict['Logical_File_ID'] = os.path.split(fname)[-1].split('.')[:-1] # check for binary types for key in adict.keys(): if isinstance(adict[key], bool): adict[key] = int(adict[key]) # print('adict', adict) out_data.setncatts(adict) return
[ "def", "to_netcdf4", "(", "self", ",", "fname", "=", "None", ",", "base_instrument", "=", "None", ",", "epoch_name", "=", "'Epoch'", ",", "zlib", "=", "False", ",", "complevel", "=", "4", ",", "shuffle", "=", "True", ")", ":", "import", "netCDF4", "import", "pysat", "file_format", "=", "'NETCDF4'", "# base_instrument used to define the standard attributes attached", "# to the instrument object. Any additional attributes added", "# to the main input Instrument will be written to the netCDF4", "base_instrument", "=", "Instrument", "(", ")", "if", "base_instrument", "is", "None", "else", "base_instrument", "# begin processing metadata for writing to the file", "# look to see if user supplied a list of export keys", "# corresponding to internally tracked metadata within pysat", "export_meta", "=", "self", ".", "generic_meta_translator", "(", "self", ".", "meta", ")", "if", "self", ".", "_meta_translation_table", "is", "None", ":", "# didn't find a translation table, using the strings", "# attached to the supplied pysat.Instrument object", "export_name_labels", "=", "[", "self", ".", "name_label", "]", "export_units_labels", "=", "[", "self", ".", "units_label", "]", "export_desc_labels", "=", "[", "self", ".", "desc_label", "]", "export_notes_labels", "=", "[", "self", ".", "notes_label", "]", "else", ":", "# user supplied labels in translation table", "export_name_labels", "=", "self", ".", "_meta_translation_table", "[", "'name_label'", "]", "export_units_labels", "=", "self", ".", "_meta_translation_table", "[", "'units_label'", "]", "export_desc_labels", "=", "self", ".", "_meta_translation_table", "[", "'desc_label'", "]", "export_notes_labels", "=", "self", ".", "_meta_translation_table", "[", "'notes_label'", "]", "print", "(", "'Using Metadata Translation Table: '", ",", "self", ".", "_meta_translation_table", ")", "# Apply instrument specific post-processing to the export_meta", "if", "hasattr", "(", "self", ".", "_export_meta_post_processing", ",", "'__call__'", ")", ":", "export_meta", "=", "self", ".", "_export_meta_post_processing", "(", "export_meta", ")", "# general process for writing data is this", "# first, take care of the EPOCH information", "# second, iterate over the variable colums in Instrument.data", "# check the type of data", "# if 1D column, do simple write (type is not an object)", "# if it is an object, then check if writing strings, if not strings, then", "# if column is a Series of Frames, write as 2D variables", "# metadata must be filtered before writing to netCDF4, string variables ", "# can't have a fill value", "with", "netCDF4", ".", "Dataset", "(", "fname", ",", "mode", "=", "'w'", ",", "format", "=", "file_format", ")", "as", "out_data", ":", "# number of items, yeah", "num", "=", "len", "(", "self", ".", "data", ".", "index", ")", "# write out the datetime index", "out_data", ".", "createDimension", "(", "epoch_name", ",", "num", ")", "cdfkey", "=", "out_data", ".", "createVariable", "(", "epoch_name", ",", "'i8'", ",", "dimensions", "=", "(", "epoch_name", ")", ",", "zlib", "=", "zlib", ",", "complevel", "=", "complevel", ",", "shuffle", "=", "shuffle", ")", "# grab existing metadata for Epoch or create suitable info", "if", "epoch_name", "in", "self", ".", "meta", ":", "new_dict", "=", "export_meta", "[", "self", ".", "meta", ".", "var_case_name", "(", "epoch_name", ")", "]", "else", ":", "# create empty shell", "new_dict", "=", "{", "}", "# update required and basic information if not present", "for", "export_name_label", "in", "export_name_labels", ":", "if", "export_name_label", "not", "in", "new_dict", ":", "new_dict", "[", "export_name_label", "]", "=", "epoch_name", "for", "export_units_label", "in", "export_units_labels", ":", "if", "export_units_label", "not", "in", "new_dict", ":", "new_dict", "[", "export_units_label", "]", "=", "'Milliseconds since 1970-1-1 00:00:00'", "for", "export_desc_label", "in", "export_desc_labels", ":", "if", "export_desc_label", "not", "in", "new_dict", ":", "new_dict", "[", "export_desc_label", "]", "=", "'Milliseconds since 1970-1-1 00:00:00'", "for", "export_notes_label", "in", "export_notes_labels", ":", "if", "export_notes_label", "not", "in", "new_dict", ":", "new_dict", "[", "export_notes_label", "]", "=", "''", "new_dict", "[", "'calendar'", "]", "=", "'standard'", "new_dict", "[", "'Format'", "]", "=", "'i8'", "new_dict", "[", "'Var_Type'", "]", "=", "'data'", "if", "self", ".", "data", ".", "index", ".", "is_monotonic_increasing", ":", "new_dict", "[", "'MonoTon'", "]", "=", "'increase'", "elif", "self", ".", "data", ".", "index", ".", "is_monotonic_decreasing", ":", "new_dict", "[", "'MonoTon'", "]", "=", "'decrease'", "new_dict", "[", "'Time_Base'", "]", "=", "'Milliseconds since 1970-1-1 00:00:00'", "new_dict", "[", "'Time_Scale'", "]", "=", "'UTC'", "new_dict", "=", "self", ".", "_filter_netcdf4_metadata", "(", "new_dict", ",", "np", ".", "int64", ")", "# attach metadata", "cdfkey", ".", "setncatts", "(", "new_dict", ")", "# attach data", "cdfkey", "[", ":", "]", "=", "(", "self", ".", "data", ".", "index", ".", "values", ".", "astype", "(", "np", ".", "int64", ")", "*", "1.E-6", ")", ".", "astype", "(", "np", ".", "int64", ")", "# iterate over all of the columns in the Instrument dataframe", "# check what kind of data we are dealing with, then store", "for", "key", "in", "self", ".", "data", ".", "columns", ":", "# print (key)", "# get information on type data we are dealing with", "# data is data in proer type( multiformat support)", "# coltype is the direct type, np.int64", "# and datetime_flag lets you know if the data is full of time", "# information", "data", ",", "coltype", ",", "datetime_flag", "=", "self", ".", "_get_data_info", "(", "self", "[", "key", "]", ",", "file_format", ")", "# operate on data based upon type", "if", "self", "[", "key", "]", ".", "dtype", "!=", "np", ".", "dtype", "(", "'O'", ")", ":", "# not an object, normal basic 1D data", "# print(key, coltype, file_format)", "cdfkey", "=", "out_data", ".", "createVariable", "(", "key", ",", "coltype", ",", "dimensions", "=", "(", "epoch_name", ")", ",", "zlib", "=", "zlib", ",", "complevel", "=", "complevel", ",", "shuffle", "=", "shuffle", ")", "#, chunksizes=1)", "# attach any meta data, after filtering for standards", "try", ":", "# attach dimension metadata", "new_dict", "=", "export_meta", "[", "key", "]", "new_dict", "[", "'Depend_0'", "]", "=", "epoch_name", "new_dict", "[", "'Display_Type'", "]", "=", "'Time Series'", "new_dict", "[", "'Format'", "]", "=", "self", ".", "_get_var_type_code", "(", "coltype", ")", "new_dict", "[", "'Var_Type'", "]", "=", "'data'", "new_dict", "=", "self", ".", "_filter_netcdf4_metadata", "(", "new_dict", ",", "coltype", ")", "cdfkey", ".", "setncatts", "(", "new_dict", ")", "except", "KeyError", ":", "print", "(", "', '", ".", "join", "(", "(", "'Unable to find MetaData for'", ",", "key", ")", ")", ")", "# assign data", "if", "datetime_flag", ":", "# datetime is in nanoseconds, storing milliseconds", "cdfkey", "[", ":", "]", "=", "(", "data", ".", "values", ".", "astype", "(", "coltype", ")", "*", "1.E-6", ")", ".", "astype", "(", "coltype", ")", "else", ":", "# not datetime data, just store as is", "cdfkey", "[", ":", "]", "=", "data", ".", "values", ".", "astype", "(", "coltype", ")", "# back to main check on type of data to write", "else", ":", "# it is a Series of objects, need to figure out", "# what the actual objects are, then act as needed", "# use info in coltype to get real datatype of object", "# isinstance isn't working here because of something with coltype", "if", "(", "coltype", "==", "type", "(", "' '", ")", ")", "or", "(", "coltype", "==", "type", "(", "u' '", ")", ")", ":", "# dealing with a string", "cdfkey", "=", "out_data", ".", "createVariable", "(", "key", ",", "coltype", ",", "dimensions", "=", "(", "epoch_name", ")", ",", "zlib", "=", "zlib", ",", "complevel", "=", "complevel", ",", "shuffle", "=", "shuffle", ")", "# attach any meta data", "try", ":", "# attach dimension metadata", "new_dict", "=", "export_meta", "[", "key", "]", "new_dict", "[", "'Depend_0'", "]", "=", "epoch_name", "new_dict", "[", "'Display_Type'", "]", "=", "'Time Series'", "new_dict", "[", "'Format'", "]", "=", "self", ".", "_get_var_type_code", "(", "coltype", ")", "new_dict", "[", "'Var_Type'", "]", "=", "'data'", "# no FillValue or FillVal allowed for strings", "new_dict", "=", "self", ".", "_filter_netcdf4_metadata", "(", "new_dict", ",", "coltype", ",", "remove", "=", "True", ")", "# really attach metadata now", "cdfkey", ".", "setncatts", "(", "new_dict", ")", "except", "KeyError", ":", "print", "(", "', '", ".", "join", "(", "(", "'Unable to find MetaData for'", ",", "key", ")", ")", ")", "# time to actually write the data now", "cdfkey", "[", ":", "]", "=", "data", ".", "values", "# still dealing with an object, not just a series", "# of strings", "# maps to if check on coltypes being stringbased", "else", ":", "# presuming a series with a dataframe or series in each location", "# start by collecting some basic info on dimensions", "# sizes, names, then create corresponding netCDF4 dimensions", "# total dimensions stored for object are epoch plus ones", "# created below", "dims", "=", "np", ".", "shape", "(", "self", "[", "key", "]", ".", "iloc", "[", "0", "]", ")", "obj_dim_names", "=", "[", "]", "if", "len", "(", "dims", ")", "==", "1", ":", "# generally working with higher dimensional data", "# pad dimensions so that the rest of the code works", "# for either a Series or a Frame", "dims", "=", "(", "dims", "[", "0", "]", ",", "0", ")", "for", "i", ",", "dim", "in", "enumerate", "(", "dims", "[", ":", "-", "1", "]", ")", ":", "# don't need to go over last dimension value,", "# it covers number of columns (if a frame)", "obj_dim_names", ".", "append", "(", "key", ")", "out_data", ".", "createDimension", "(", "obj_dim_names", "[", "-", "1", "]", ",", "dim", ")", "# create simple tuple with information needed to create", "# the right dimensions for variables that will", "# be written to file", "var_dim", "=", "tuple", "(", "[", "epoch_name", "]", "+", "obj_dim_names", ")", "# We need to do different things if a series or dataframe", "# stored", "try", ":", "# start by assuming it is a dataframe", "# get list of subvariables", "iterable", "=", "self", "[", "key", "]", ".", "iloc", "[", "0", "]", ".", "columns", "# store our newfound knowledge, we are dealing with", "# a series of DataFrames", "is_frame", "=", "True", "except", "AttributeError", ":", "# turns out data is Series of Series ", "# which doesn't have columns", "iterable", "=", "[", "self", "[", "key", "]", ".", "iloc", "[", "0", "]", ".", "name", "]", "is_frame", "=", "False", "# find location within main variable", "# that actually has subvariable data (not just empty frame/series)", "# so we can determine what the real underlying data types are", "good_data_loc", "=", "0", "for", "jjj", "in", "np", ".", "arange", "(", "len", "(", "self", ".", "data", ")", ")", ":", "if", "len", "(", "self", ".", "data", "[", "key", "]", ".", "iloc", "[", "0", "]", ")", ">", "0", ":", "data_loc", "=", "jjj", "break", "# found a place with data, if there is one", "# now iterate over the subvariables, get data info", "# create netCDF4 variables and store the data ", "# stored name is variable_subvariable", "for", "col", "in", "iterable", ":", "if", "is_frame", ":", "# we are working with a dataframe", "# so multiple subvariables stored under a single", "# main variable heading", "data", ",", "coltype", ",", "_", "=", "self", ".", "_get_data_info", "(", "self", "[", "key", "]", ".", "iloc", "[", "good_data_loc", "]", "[", "col", "]", ",", "file_format", ")", "cdfkey", "=", "out_data", ".", "createVariable", "(", "key", "+", "'_'", "+", "col", ",", "coltype", ",", "dimensions", "=", "var_dim", ",", "zlib", "=", "zlib", ",", "complevel", "=", "complevel", ",", "shuffle", "=", "shuffle", ")", "# attach any meta data", "try", ":", "new_dict", "=", "export_meta", "[", "key", "+", "'_'", "+", "col", "]", "new_dict", "[", "'Depend_0'", "]", "=", "epoch_name", "new_dict", "[", "'Depend_1'", "]", "=", "obj_dim_names", "[", "-", "1", "]", "new_dict", "[", "'Display_Type'", "]", "=", "'Spectrogram'", "new_dict", "[", "'Format'", "]", "=", "self", ".", "_get_var_type_code", "(", "coltype", ")", "new_dict", "[", "'Var_Type'", "]", "=", "'data'", "# print('Frame Writing ', key, col, export_meta[key].children[col])", "new_dict", "=", "self", ".", "_filter_netcdf4_metadata", "(", "new_dict", ",", "coltype", ")", "# print ('mid2 ', new_dict)", "cdfkey", ".", "setncatts", "(", "new_dict", ")", "except", "KeyError", ":", "print", "(", "', '", ".", "join", "(", "(", "'Unable to find MetaData for'", ",", "key", ",", "col", ")", ")", ")", "# attach data", "# it may be slow to repeatedly call the store", "# method as well astype method below collect", "# data into a numpy array, then write the full", "# array in one go", "# print(coltype, dims)", "temp_cdf_data", "=", "np", ".", "zeros", "(", "(", "num", ",", "dims", "[", "0", "]", ")", ")", ".", "astype", "(", "coltype", ")", "for", "i", "in", "range", "(", "num", ")", ":", "temp_cdf_data", "[", "i", ",", ":", "]", "=", "self", "[", "key", "]", ".", "iloc", "[", "i", "]", "[", "col", "]", ".", "values", "# write data", "cdfkey", "[", ":", ",", ":", "]", "=", "temp_cdf_data", ".", "astype", "(", "coltype", ")", "else", ":", "# we are dealing with a Series", "# get information about information within series", "data", ",", "coltype", ",", "_", "=", "self", ".", "_get_data_info", "(", "self", "[", "key", "]", ".", "iloc", "[", "good_data_loc", "]", ",", "file_format", ")", "cdfkey", "=", "out_data", ".", "createVariable", "(", "key", "+", "'_data'", ",", "coltype", ",", "dimensions", "=", "var_dim", ",", "zlib", "=", "zlib", ",", "complevel", "=", "complevel", ",", "shuffle", "=", "shuffle", ")", "#, chunksizes=1)", "# attach any meta data", "try", ":", "new_dict", "=", "export_meta", "[", "key", "]", "new_dict", "[", "'Depend_0'", "]", "=", "epoch_name", "new_dict", "[", "'Depend_1'", "]", "=", "obj_dim_names", "[", "-", "1", "]", "new_dict", "[", "'Display_Type'", "]", "=", "'Spectrogram'", "new_dict", "[", "'Format'", "]", "=", "self", ".", "_get_var_type_code", "(", "coltype", ")", "new_dict", "[", "'Var_Type'", "]", "=", "'data'", "new_dict", "=", "self", ".", "_filter_netcdf4_metadata", "(", "new_dict", ",", "coltype", ")", "# really attach metadata now", "# print ('mid3 ', new_dict)", "cdfkey", ".", "setncatts", "(", "new_dict", ")", "except", "KeyError", ":", "print", "(", "', '", ".", "join", "(", "(", "'Unable to find MetaData for'", ",", "key", ")", ")", ")", "# attach data", "temp_cdf_data", "=", "np", ".", "zeros", "(", "(", "num", ",", "dims", "[", "0", "]", ")", ")", ".", "astype", "(", "coltype", ")", "for", "i", "in", "range", "(", "num", ")", ":", "temp_cdf_data", "[", "i", ",", ":", "]", "=", "self", "[", "i", ",", "key", "]", ".", "values", "# write data", "cdfkey", "[", ":", ",", ":", "]", "=", "temp_cdf_data", ".", "astype", "(", "coltype", ")", "# we are done storing the actual data for the given higher", "# order variable, now we need to store the index for all", "# of that fancy data", "# get index information", "data", ",", "coltype", ",", "datetime_flag", "=", "self", ".", "_get_data_info", "(", "self", "[", "key", "]", ".", "iloc", "[", "good_data_loc", "]", ".", "index", ",", "file_format", ")", "# create dimension variable for to store index in netCDF4", "cdfkey", "=", "out_data", ".", "createVariable", "(", "key", ",", "coltype", ",", "dimensions", "=", "var_dim", ",", "zlib", "=", "zlib", ",", "complevel", "=", "complevel", ",", "shuffle", "=", "shuffle", ")", "# work with metadata", "new_dict", "=", "export_meta", "[", "key", "]", "new_dict", "[", "'Depend_0'", "]", "=", "epoch_name", "new_dict", "[", "'Depend_1'", "]", "=", "obj_dim_names", "[", "-", "1", "]", "new_dict", "[", "'Display_Type'", "]", "=", "'Time Series'", "new_dict", "[", "'Format'", "]", "=", "self", ".", "_get_var_type_code", "(", "coltype", ")", "new_dict", "[", "'Var_Type'", "]", "=", "'data'", "if", "datetime_flag", ":", "#print('datetime flag') ", "for", "export_name_label", "in", "export_name_labels", ":", "new_dict", "[", "export_name_label", "]", "=", "epoch_name", "for", "export_units_label", "in", "export_units_labels", ":", "new_dict", "[", "export_units_label", "]", "=", "'Milliseconds since 1970-1-1 00:00:00'", "new_dict", "=", "self", ".", "_filter_netcdf4_metadata", "(", "new_dict", ",", "coltype", ")", "# set metadata dict", "cdfkey", ".", "setncatts", "(", "new_dict", ")", "# set data", "temp_cdf_data", "=", "np", ".", "zeros", "(", "(", "num", ",", "dims", "[", "0", "]", ")", ")", ".", "astype", "(", "coltype", ")", "for", "i", "in", "range", "(", "num", ")", ":", "temp_cdf_data", "[", "i", ",", ":", "]", "=", "self", "[", "i", ",", "key", "]", ".", "index", ".", "values", "cdfkey", "[", ":", ",", ":", "]", "=", "(", "temp_cdf_data", ".", "astype", "(", "coltype", ")", "*", "1.E-6", ")", ".", "astype", "(", "coltype", ")", "else", ":", "if", "self", "[", "key", "]", ".", "iloc", "[", "data_loc", "]", ".", "index", ".", "name", "is", "not", "None", ":", "for", "export_name_label", "in", "export_name_labels", ":", "new_dict", "[", "export_name_label", "]", "=", "self", "[", "key", "]", ".", "iloc", "[", "data_loc", "]", ".", "index", ".", "name", "else", ":", "for", "export_name_label", "in", "export_name_labels", ":", "new_dict", "[", "export_name_label", "]", "=", "key", "new_dict", "=", "self", ".", "_filter_netcdf4_metadata", "(", "new_dict", ",", "coltype", ")", "# assign metadata dict", "cdfkey", ".", "setncatts", "(", "new_dict", ")", "# set data", "temp_cdf_data", "=", "np", ".", "zeros", "(", "(", "num", ",", "dims", "[", "0", "]", ")", ")", ".", "astype", "(", "coltype", ")", "for", "i", "in", "range", "(", "num", ")", ":", "temp_cdf_data", "[", "i", ",", ":", "]", "=", "self", "[", "key", "]", ".", "iloc", "[", "i", "]", ".", "index", ".", "to_native_types", "(", ")", "cdfkey", "[", ":", ",", ":", "]", "=", "temp_cdf_data", ".", "astype", "(", "coltype", ")", "# store any non standard attributes", "# compare this Instrument's attributes to base object", "base_attrb", "=", "dir", "(", "base_instrument", ")", "this_attrb", "=", "dir", "(", "self", ")", "# filter out any 'private' attributes", "# those that start with a _", "adict", "=", "{", "}", "for", "key", "in", "this_attrb", ":", "if", "key", "not", "in", "base_attrb", ":", "if", "key", "[", "0", "]", "!=", "'_'", ":", "adict", "[", "key", "]", "=", "self", ".", "__getattribute__", "(", "key", ")", "# store any non-standard attributes attached to meta", "base_attrb", "=", "dir", "(", "base_instrument", ".", "meta", ")", "this_attrb", "=", "dir", "(", "self", ".", "meta", ")", "for", "key", "in", "this_attrb", ":", "if", "key", "not", "in", "base_attrb", ":", "if", "key", "[", "0", "]", "!=", "'_'", ":", "adict", "[", "key", "]", "=", "self", ".", "meta", ".", "__getattribute__", "(", "key", ")", "adict", "[", "'pysat_version'", "]", "=", "pysat", ".", "__version__", "if", "'Conventions'", "not", "in", "adict", ":", "adict", "[", "'Conventions'", "]", "=", "'SPDF ISTP/IACG Modified for NetCDF'", "if", "'Text_Supplement'", "not", "in", "adict", ":", "adict", "[", "'Text_Supplement'", "]", "=", "''", "adict", "[", "'Date_Start'", "]", "=", "pysat", ".", "datetime", ".", "strftime", "(", "self", ".", "data", ".", "index", "[", "0", "]", ",", "'%a, %d %b %Y, %Y-%m-%dT%H:%M:%S.%f UTC'", ")", "adict", "[", "'Date_End'", "]", "=", "pysat", ".", "datetime", ".", "strftime", "(", "self", ".", "data", ".", "index", "[", "-", "1", "]", ",", "'%a, %d %b %Y, %Y-%m-%dT%H:%M:%S.%f UTC'", ")", "adict", "[", "'File'", "]", "=", "os", ".", "path", ".", "split", "(", "fname", ")", "adict", "[", "'Generation_Date'", "]", "=", "pysat", ".", "datetime", ".", "utcnow", "(", ")", ".", "strftime", "(", "'%Y%m%d'", ")", "adict", "[", "'Logical_File_ID'", "]", "=", "os", ".", "path", ".", "split", "(", "fname", ")", "[", "-", "1", "]", ".", "split", "(", "'.'", ")", "[", ":", "-", "1", "]", "# check for binary types", "for", "key", "in", "adict", ".", "keys", "(", ")", ":", "if", "isinstance", "(", "adict", "[", "key", "]", ",", "bool", ")", ":", "adict", "[", "key", "]", "=", "int", "(", "adict", "[", "key", "]", ")", "# print('adict', adict)", "out_data", ".", "setncatts", "(", "adict", ")", "return" ]
Stores loaded data into a netCDF4 file. Parameters ---------- fname : string full path to save instrument object to base_instrument : pysat.Instrument used as a comparison, only attributes that are present with self and not on base_instrument are written to netCDF epoch_name : str Label in file for datetime index of Instrument object zlib : boolean Flag for engaging zlib compression (True - compression on) complevel : int an integer between 1 and 9 describing the level of compression desired (default 4). Ignored if zlib=False shuffle : boolean the HDF5 shuffle filter will be applied before compressing the data (default True). This significantly improves compression. Default is True. Ignored if zlib=False. Note ---- Stores 1-D data along dimension 'epoch' - the date time index. Stores higher order data (e.g. dataframes within series) separately - The name of the main variable column is used to prepend subvariable names within netCDF, var_subvar_sub - A netCDF4 dimension is created for each main variable column with higher order data; first dimension Epoch - The index organizing the data stored as a dimension variable - from_netcdf4 uses the variable dimensions to reconstruct data structure All attributes attached to instrument meta are written to netCDF attrs.
[ "Stores", "loaded", "data", "into", "a", "netCDF4", "file", ".", "Parameters", "----------", "fname", ":", "string", "full", "path", "to", "save", "instrument", "object", "to", "base_instrument", ":", "pysat", ".", "Instrument", "used", "as", "a", "comparison", "only", "attributes", "that", "are", "present", "with", "self", "and", "not", "on", "base_instrument", "are", "written", "to", "netCDF", "epoch_name", ":", "str", "Label", "in", "file", "for", "datetime", "index", "of", "Instrument", "object", "zlib", ":", "boolean", "Flag", "for", "engaging", "zlib", "compression", "(", "True", "-", "compression", "on", ")", "complevel", ":", "int", "an", "integer", "between", "1", "and", "9", "describing", "the", "level", "of", "compression", "desired", "(", "default", "4", ")", ".", "Ignored", "if", "zlib", "=", "False", "shuffle", ":", "boolean", "the", "HDF5", "shuffle", "filter", "will", "be", "applied", "before", "compressing", "the", "data", "(", "default", "True", ")", ".", "This", "significantly", "improves", "compression", ".", "Default", "is", "True", ".", "Ignored", "if", "zlib", "=", "False", "." ]
python
train
57.055422
modin-project/modin
modin/pandas/indexing.py
https://github.com/modin-project/modin/blob/5b77d242596560c646b8405340c9ce64acb183cb/modin/pandas/indexing.py#L127-L140
def _compute_ndim(row_loc, col_loc): """Compute the ndim of result from locators """ row_scaler = is_scalar(row_loc) col_scaler = is_scalar(col_loc) if row_scaler and col_scaler: ndim = 0 elif row_scaler ^ col_scaler: ndim = 1 else: ndim = 2 return ndim
[ "def", "_compute_ndim", "(", "row_loc", ",", "col_loc", ")", ":", "row_scaler", "=", "is_scalar", "(", "row_loc", ")", "col_scaler", "=", "is_scalar", "(", "col_loc", ")", "if", "row_scaler", "and", "col_scaler", ":", "ndim", "=", "0", "elif", "row_scaler", "^", "col_scaler", ":", "ndim", "=", "1", "else", ":", "ndim", "=", "2", "return", "ndim" ]
Compute the ndim of result from locators
[ "Compute", "the", "ndim", "of", "result", "from", "locators" ]
python
train
21.285714
openstack/networking-cisco
networking_cisco/apps/saf/server/services/firewall/native/fw_mgr.py
https://github.com/openstack/networking-cisco/blob/aa58a30aec25b86f9aa5952b0863045975debfa9/networking_cisco/apps/saf/server/services/firewall/native/fw_mgr.py#L455-L471
def _check_delete_fw(self, tenant_id, drvr_name): """Deletes the Firewall, if all conditioms are met. This function after modifying the DB with delete operation status, calls the routine to remove the fabric cfg from DB and unconfigure the device. """ fw_dict = self.fwid_attr[tenant_id].get_fw_dict() ret = False try: with self.fwid_attr[tenant_id].mutex_lock: self.update_fw_db_final_result(fw_dict.get('fw_id'), ( fw_constants.RESULT_FW_DELETE_INIT)) ret = self._delete_fw_fab_dev(tenant_id, drvr_name, fw_dict) except Exception as exc: LOG.error("Exception raised in delete fw %s", str(exc)) return ret
[ "def", "_check_delete_fw", "(", "self", ",", "tenant_id", ",", "drvr_name", ")", ":", "fw_dict", "=", "self", ".", "fwid_attr", "[", "tenant_id", "]", ".", "get_fw_dict", "(", ")", "ret", "=", "False", "try", ":", "with", "self", ".", "fwid_attr", "[", "tenant_id", "]", ".", "mutex_lock", ":", "self", ".", "update_fw_db_final_result", "(", "fw_dict", ".", "get", "(", "'fw_id'", ")", ",", "(", "fw_constants", ".", "RESULT_FW_DELETE_INIT", ")", ")", "ret", "=", "self", ".", "_delete_fw_fab_dev", "(", "tenant_id", ",", "drvr_name", ",", "fw_dict", ")", "except", "Exception", "as", "exc", ":", "LOG", ".", "error", "(", "\"Exception raised in delete fw %s\"", ",", "str", "(", "exc", ")", ")", "return", "ret" ]
Deletes the Firewall, if all conditioms are met. This function after modifying the DB with delete operation status, calls the routine to remove the fabric cfg from DB and unconfigure the device.
[ "Deletes", "the", "Firewall", "if", "all", "conditioms", "are", "met", "." ]
python
train
43.941176
pyviz/param
param/parameterized.py
https://github.com/pyviz/param/blob/8f0dafa78defa883247b40635f96cc6d5c1b3481/param/parameterized.py#L152-L161
def get_occupied_slots(instance): """ Return a list of slots for which values have been set. (While a slot might be defined, if a value for that slot hasn't been set, then it's an AttributeError to request the slot's value.) """ return [slot for slot in get_all_slots(type(instance)) if hasattr(instance,slot)]
[ "def", "get_occupied_slots", "(", "instance", ")", ":", "return", "[", "slot", "for", "slot", "in", "get_all_slots", "(", "type", "(", "instance", ")", ")", "if", "hasattr", "(", "instance", ",", "slot", ")", "]" ]
Return a list of slots for which values have been set. (While a slot might be defined, if a value for that slot hasn't been set, then it's an AttributeError to request the slot's value.)
[ "Return", "a", "list", "of", "slots", "for", "which", "values", "have", "been", "set", "." ]
python
train
34.2
F5Networks/f5-common-python
f5-sdk-dist/build_pkgs.py
https://github.com/F5Networks/f5-common-python/blob/7e67d5acd757a60e3d5f8c88c534bd72208f5494/f5-sdk-dist/build_pkgs.py#L143-L168
def build_debian(config, os_versions, os_type='ubuntu'): """build_debian Builds for a specific debian operating system with os version specified. By default, it will use os_type='ubuntu' """ def build_pkg(config, os_type, os_version): result = _build_package(config, os_type, os_version) if not result.succeeded: print(result.cli) raise DebianError(result, os_type, os_version, frame=gfi(cf())) error = 0 if isinstance(os_versions, str): os_version = os_versions try: build_pkg(config, os_type, os_version) except DebianError as error: error.print_msg() else: for os_version in os_versions: try: build_pkg(config, os_type, os_version) except DebianError as error: error.print_msg() return error
[ "def", "build_debian", "(", "config", ",", "os_versions", ",", "os_type", "=", "'ubuntu'", ")", ":", "def", "build_pkg", "(", "config", ",", "os_type", ",", "os_version", ")", ":", "result", "=", "_build_package", "(", "config", ",", "os_type", ",", "os_version", ")", "if", "not", "result", ".", "succeeded", ":", "print", "(", "result", ".", "cli", ")", "raise", "DebianError", "(", "result", ",", "os_type", ",", "os_version", ",", "frame", "=", "gfi", "(", "cf", "(", ")", ")", ")", "error", "=", "0", "if", "isinstance", "(", "os_versions", ",", "str", ")", ":", "os_version", "=", "os_versions", "try", ":", "build_pkg", "(", "config", ",", "os_type", ",", "os_version", ")", "except", "DebianError", "as", "error", ":", "error", ".", "print_msg", "(", ")", "else", ":", "for", "os_version", "in", "os_versions", ":", "try", ":", "build_pkg", "(", "config", ",", "os_type", ",", "os_version", ")", "except", "DebianError", "as", "error", ":", "error", ".", "print_msg", "(", ")", "return", "error" ]
build_debian Builds for a specific debian operating system with os version specified. By default, it will use os_type='ubuntu'
[ "build_debian" ]
python
train
32.769231
docker/docker-py
docker/api/container.py
https://github.com/docker/docker-py/blob/613d6aad83acc9931ff2ecfd6a6c7bd8061dc125/docker/api/container.py#L973-L993
def remove_container(self, container, v=False, link=False, force=False): """ Remove a container. Similar to the ``docker rm`` command. Args: container (str): The container to remove v (bool): Remove the volumes associated with the container link (bool): Remove the specified link and not the underlying container force (bool): Force the removal of a running container (uses ``SIGKILL``) Raises: :py:class:`docker.errors.APIError` If the server returns an error. """ params = {'v': v, 'link': link, 'force': force} res = self._delete( self._url("/containers/{0}", container), params=params ) self._raise_for_status(res)
[ "def", "remove_container", "(", "self", ",", "container", ",", "v", "=", "False", ",", "link", "=", "False", ",", "force", "=", "False", ")", ":", "params", "=", "{", "'v'", ":", "v", ",", "'link'", ":", "link", ",", "'force'", ":", "force", "}", "res", "=", "self", ".", "_delete", "(", "self", ".", "_url", "(", "\"/containers/{0}\"", ",", "container", ")", ",", "params", "=", "params", ")", "self", ".", "_raise_for_status", "(", "res", ")" ]
Remove a container. Similar to the ``docker rm`` command. Args: container (str): The container to remove v (bool): Remove the volumes associated with the container link (bool): Remove the specified link and not the underlying container force (bool): Force the removal of a running container (uses ``SIGKILL``) Raises: :py:class:`docker.errors.APIError` If the server returns an error.
[ "Remove", "a", "container", ".", "Similar", "to", "the", "docker", "rm", "command", "." ]
python
train
37.714286
fr33jc/bang
bang/util.py
https://github.com/fr33jc/bang/blob/8f000713f88d2a9a8c1193b63ca10a6578560c16/bang/util.py#L149-L159
def add_if_unique(self, name): """ Returns ``True`` on success. Returns ``False`` if the name already exists in the namespace. """ with self.lock: if name not in self.names: self.names.append(name) return True return False
[ "def", "add_if_unique", "(", "self", ",", "name", ")", ":", "with", "self", ".", "lock", ":", "if", "name", "not", "in", "self", ".", "names", ":", "self", ".", "names", ".", "append", "(", "name", ")", "return", "True", "return", "False" ]
Returns ``True`` on success. Returns ``False`` if the name already exists in the namespace.
[ "Returns", "True", "on", "success", "." ]
python
train
27.727273
SpriteLink/NIPAP
nipap-cli/nipap_cli/nipap_cli.py
https://github.com/SpriteLink/NIPAP/blob/f96069f11ab952d80b13cab06e0528f2d24b3de9/nipap-cli/nipap_cli/nipap_cli.py#L688-L842
def add_prefix(arg, opts, shell_opts): """ Add prefix to NIPAP """ # sanity checks if 'from-pool' not in opts and 'from-prefix' not in opts and 'prefix' not in opts: print("ERROR: 'prefix', 'from-pool' or 'from-prefix' must be specified.", file=sys.stderr) sys.exit(1) if len([opt for opt in opts if opt in ['from-pool', 'from-prefix', 'prefix']]) > 1: print("ERROR: Use either assignment 'from-pool', 'from-prefix' or manual mode (using 'prefix')", file=sys.stderr) sys.exit(1) if 'from-pool' in opts: return add_prefix_from_pool(arg, opts) args = {} p = _prefix_from_opts(opts) p.vrf = get_vrf(opts.get('vrf_rt'), abort=True) for avp in opts.get('extra-attribute', []): try: key, value = avp.split('=', 1) except ValueError: print("ERROR: Incorrect extra-attribute: %s. Accepted form: 'key=value'\n" % avp, file=sys.stderr) return p.avps[key] = value if 'from-prefix' in opts: args['from-prefix'] = [ opts['from-prefix'], ] if 'prefix_length' in opts: args['prefix_length'] = int(opts['prefix_length']) if 'family' in opts: if opts['family'] == 'ipv4': family = 4 elif opts['family'] == 'ipv6': family = 6 elif opts['family'] == 'dual-stack': print("ERROR: dual-stack mode only valid for from-pool assignments", file=sys.stderr) sys.exit(1) args['family'] = family # try to automatically figure out type for new prefix when not # allocating from a pool # get a list of prefixes that contain this prefix vrf_id = 0 if p.vrf: vrf_id = p.vrf.id if 'from-prefix' in args: parent_prefix = args['from-prefix'][0] parent_op = 'equals' else: # If no prefix length is specified it is assumed to be a host and we do # a search for prefixes that contains the specified prefix. The last # entry will be the parent of the new prefix and we can look at it to # determine type. # If prefix length is specified (i.e. CIDR format) we check if prefix # length equals max length in which case we assume a host prefix, # otherwise we search for the network using an equal match and by # zeroing out bits in the host part. if len(opts.get('prefix').split("/")) == 2: ip = IPy.IP(opts.get('prefix').split("/")[0]) plen = int(opts.get('prefix').split("/")[1]) if ip.version() == 4 and plen == 32 or ip.version() == 6 and plen == 128: parent_prefix = str(ip) parent_op = 'contains' else: parent_prefix = str(IPy.IP(opts.get('prefix'), make_net=True)) parent_op = 'equals' else: parent_prefix = opts.get('prefix') parent_op = 'contains' auto_type_query = { 'val1': { 'val1' : 'prefix', 'operator' : parent_op, 'val2' : parent_prefix }, 'operator': 'and', 'val2': { 'val1' : 'vrf_id', 'operator' : 'equals', 'val2' : vrf_id } } res = Prefix.search(auto_type_query, { }) # no results, ie the requested prefix is a top level prefix if len(res['result']) == 0: if p.type is None: print("ERROR: Type of prefix must be specified ('assignment' or 'reservation').", file=sys.stderr) sys.exit(1) else: # last prefix in list will be the parent of the new prefix parent = res['result'][-1] # if the parent is an assignment, we can assume the new prefix to be # a host and act accordingly if parent.type == 'assignment': # automatically set type if p.type is None: print("WARNING: Parent prefix is of type 'assignment'. Automatically setting type 'host' for new prefix.", file=sys.stderr) elif p.type == 'host': pass else: print("WARNING: Parent prefix is of type 'assignment'. Automatically overriding specified type '%s' with type 'host' for new prefix." % p.type, file=sys.stderr) p.type = 'host' # if it's a manually specified prefix if 'prefix' in opts: # fiddle prefix length to all bits set if parent.family == 4: p.prefix = p.prefix.split('/')[0] + '/32' else: p.prefix = p.prefix.split('/')[0] + '/128' # for from-prefix, we set prefix_length to host length elif 'from-prefix' in opts: if parent.family == 4: args['prefix_length'] = 32 else: args['prefix_length'] = 128 try: p.save(args) except NipapError as exc: print("Could not add prefix to NIPAP: %s" % str(exc), file=sys.stderr) sys.exit(1) if p.type == 'host': print("Host %s added to %s: %s" % (p.display_prefix, vrf_format(p.vrf), p.node or p.description)) else: print("Network %s added to %s: %s" % (p.display_prefix, vrf_format(p.vrf), p.description)) if opts.get('add-hosts') is not None: if p.type != 'assignment': print("ERROR: Not possible to add hosts to non-assignment", file=sys.stderr) sys.exit(1) for host in opts.get('add-hosts').split(','): h_opts = { 'from-prefix': p.prefix, 'vrf_rt': p.vrf.rt, 'type': 'host', 'node': host } add_prefix({}, h_opts, {})
[ "def", "add_prefix", "(", "arg", ",", "opts", ",", "shell_opts", ")", ":", "# sanity checks", "if", "'from-pool'", "not", "in", "opts", "and", "'from-prefix'", "not", "in", "opts", "and", "'prefix'", "not", "in", "opts", ":", "print", "(", "\"ERROR: 'prefix', 'from-pool' or 'from-prefix' must be specified.\"", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")", "if", "len", "(", "[", "opt", "for", "opt", "in", "opts", "if", "opt", "in", "[", "'from-pool'", ",", "'from-prefix'", ",", "'prefix'", "]", "]", ")", ">", "1", ":", "print", "(", "\"ERROR: Use either assignment 'from-pool', 'from-prefix' or manual mode (using 'prefix')\"", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")", "if", "'from-pool'", "in", "opts", ":", "return", "add_prefix_from_pool", "(", "arg", ",", "opts", ")", "args", "=", "{", "}", "p", "=", "_prefix_from_opts", "(", "opts", ")", "p", ".", "vrf", "=", "get_vrf", "(", "opts", ".", "get", "(", "'vrf_rt'", ")", ",", "abort", "=", "True", ")", "for", "avp", "in", "opts", ".", "get", "(", "'extra-attribute'", ",", "[", "]", ")", ":", "try", ":", "key", ",", "value", "=", "avp", ".", "split", "(", "'='", ",", "1", ")", "except", "ValueError", ":", "print", "(", "\"ERROR: Incorrect extra-attribute: %s. Accepted form: 'key=value'\\n\"", "%", "avp", ",", "file", "=", "sys", ".", "stderr", ")", "return", "p", ".", "avps", "[", "key", "]", "=", "value", "if", "'from-prefix'", "in", "opts", ":", "args", "[", "'from-prefix'", "]", "=", "[", "opts", "[", "'from-prefix'", "]", ",", "]", "if", "'prefix_length'", "in", "opts", ":", "args", "[", "'prefix_length'", "]", "=", "int", "(", "opts", "[", "'prefix_length'", "]", ")", "if", "'family'", "in", "opts", ":", "if", "opts", "[", "'family'", "]", "==", "'ipv4'", ":", "family", "=", "4", "elif", "opts", "[", "'family'", "]", "==", "'ipv6'", ":", "family", "=", "6", "elif", "opts", "[", "'family'", "]", "==", "'dual-stack'", ":", "print", "(", "\"ERROR: dual-stack mode only valid for from-pool assignments\"", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")", "args", "[", "'family'", "]", "=", "family", "# try to automatically figure out type for new prefix when not", "# allocating from a pool", "# get a list of prefixes that contain this prefix", "vrf_id", "=", "0", "if", "p", ".", "vrf", ":", "vrf_id", "=", "p", ".", "vrf", ".", "id", "if", "'from-prefix'", "in", "args", ":", "parent_prefix", "=", "args", "[", "'from-prefix'", "]", "[", "0", "]", "parent_op", "=", "'equals'", "else", ":", "# If no prefix length is specified it is assumed to be a host and we do", "# a search for prefixes that contains the specified prefix. The last", "# entry will be the parent of the new prefix and we can look at it to", "# determine type.", "# If prefix length is specified (i.e. CIDR format) we check if prefix", "# length equals max length in which case we assume a host prefix,", "# otherwise we search for the network using an equal match and by", "# zeroing out bits in the host part.", "if", "len", "(", "opts", ".", "get", "(", "'prefix'", ")", ".", "split", "(", "\"/\"", ")", ")", "==", "2", ":", "ip", "=", "IPy", ".", "IP", "(", "opts", ".", "get", "(", "'prefix'", ")", ".", "split", "(", "\"/\"", ")", "[", "0", "]", ")", "plen", "=", "int", "(", "opts", ".", "get", "(", "'prefix'", ")", ".", "split", "(", "\"/\"", ")", "[", "1", "]", ")", "if", "ip", ".", "version", "(", ")", "==", "4", "and", "plen", "==", "32", "or", "ip", ".", "version", "(", ")", "==", "6", "and", "plen", "==", "128", ":", "parent_prefix", "=", "str", "(", "ip", ")", "parent_op", "=", "'contains'", "else", ":", "parent_prefix", "=", "str", "(", "IPy", ".", "IP", "(", "opts", ".", "get", "(", "'prefix'", ")", ",", "make_net", "=", "True", ")", ")", "parent_op", "=", "'equals'", "else", ":", "parent_prefix", "=", "opts", ".", "get", "(", "'prefix'", ")", "parent_op", "=", "'contains'", "auto_type_query", "=", "{", "'val1'", ":", "{", "'val1'", ":", "'prefix'", ",", "'operator'", ":", "parent_op", ",", "'val2'", ":", "parent_prefix", "}", ",", "'operator'", ":", "'and'", ",", "'val2'", ":", "{", "'val1'", ":", "'vrf_id'", ",", "'operator'", ":", "'equals'", ",", "'val2'", ":", "vrf_id", "}", "}", "res", "=", "Prefix", ".", "search", "(", "auto_type_query", ",", "{", "}", ")", "# no results, ie the requested prefix is a top level prefix", "if", "len", "(", "res", "[", "'result'", "]", ")", "==", "0", ":", "if", "p", ".", "type", "is", "None", ":", "print", "(", "\"ERROR: Type of prefix must be specified ('assignment' or 'reservation').\"", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")", "else", ":", "# last prefix in list will be the parent of the new prefix", "parent", "=", "res", "[", "'result'", "]", "[", "-", "1", "]", "# if the parent is an assignment, we can assume the new prefix to be", "# a host and act accordingly", "if", "parent", ".", "type", "==", "'assignment'", ":", "# automatically set type", "if", "p", ".", "type", "is", "None", ":", "print", "(", "\"WARNING: Parent prefix is of type 'assignment'. Automatically setting type 'host' for new prefix.\"", ",", "file", "=", "sys", ".", "stderr", ")", "elif", "p", ".", "type", "==", "'host'", ":", "pass", "else", ":", "print", "(", "\"WARNING: Parent prefix is of type 'assignment'. Automatically overriding specified type '%s' with type 'host' for new prefix.\"", "%", "p", ".", "type", ",", "file", "=", "sys", ".", "stderr", ")", "p", ".", "type", "=", "'host'", "# if it's a manually specified prefix", "if", "'prefix'", "in", "opts", ":", "# fiddle prefix length to all bits set", "if", "parent", ".", "family", "==", "4", ":", "p", ".", "prefix", "=", "p", ".", "prefix", ".", "split", "(", "'/'", ")", "[", "0", "]", "+", "'/32'", "else", ":", "p", ".", "prefix", "=", "p", ".", "prefix", ".", "split", "(", "'/'", ")", "[", "0", "]", "+", "'/128'", "# for from-prefix, we set prefix_length to host length", "elif", "'from-prefix'", "in", "opts", ":", "if", "parent", ".", "family", "==", "4", ":", "args", "[", "'prefix_length'", "]", "=", "32", "else", ":", "args", "[", "'prefix_length'", "]", "=", "128", "try", ":", "p", ".", "save", "(", "args", ")", "except", "NipapError", "as", "exc", ":", "print", "(", "\"Could not add prefix to NIPAP: %s\"", "%", "str", "(", "exc", ")", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")", "if", "p", ".", "type", "==", "'host'", ":", "print", "(", "\"Host %s added to %s: %s\"", "%", "(", "p", ".", "display_prefix", ",", "vrf_format", "(", "p", ".", "vrf", ")", ",", "p", ".", "node", "or", "p", ".", "description", ")", ")", "else", ":", "print", "(", "\"Network %s added to %s: %s\"", "%", "(", "p", ".", "display_prefix", ",", "vrf_format", "(", "p", ".", "vrf", ")", ",", "p", ".", "description", ")", ")", "if", "opts", ".", "get", "(", "'add-hosts'", ")", "is", "not", "None", ":", "if", "p", ".", "type", "!=", "'assignment'", ":", "print", "(", "\"ERROR: Not possible to add hosts to non-assignment\"", ",", "file", "=", "sys", ".", "stderr", ")", "sys", ".", "exit", "(", "1", ")", "for", "host", "in", "opts", ".", "get", "(", "'add-hosts'", ")", ".", "split", "(", "','", ")", ":", "h_opts", "=", "{", "'from-prefix'", ":", "p", ".", "prefix", ",", "'vrf_rt'", ":", "p", ".", "vrf", ".", "rt", ",", "'type'", ":", "'host'", ",", "'node'", ":", "host", "}", "add_prefix", "(", "{", "}", ",", "h_opts", ",", "{", "}", ")" ]
Add prefix to NIPAP
[ "Add", "prefix", "to", "NIPAP" ]
python
train
37.03871
sods/paramz
paramz/optimization/optimization.py
https://github.com/sods/paramz/blob/ae6fc6274b70fb723d91e48fc5026a9bc5a06508/paramz/optimization/optimization.py#L105-L132
def opt(self, x_init, f_fp=None, f=None, fp=None): """ Run the optimizer """ rcstrings = ['Converged', 'Maximum number of f evaluations reached', 'Error'] assert f_fp != None, "BFGS requires f_fp" opt_dict = {} if self.xtol is not None: print("WARNING: l-bfgs-b doesn't have an xtol arg, so I'm going to ignore it") if self.ftol is not None: print("WARNING: l-bfgs-b doesn't have an ftol arg, so I'm going to ignore it") if self.gtol is not None: opt_dict['pgtol'] = self.gtol if self.bfgs_factor is not None: opt_dict['factr'] = self.bfgs_factor opt_result = optimize.fmin_l_bfgs_b(f_fp, x_init, maxfun=self.max_iters, maxiter=self.max_iters, **opt_dict) self.x_opt = opt_result[0] self.f_opt = f_fp(self.x_opt)[0] self.funct_eval = opt_result[2]['funcalls'] self.status = rcstrings[opt_result[2]['warnflag']] #a more helpful error message is available in opt_result in the Error case if opt_result[2]['warnflag']==2: # pragma: no coverage, this is not needed to be covered self.status = 'Error' + str(opt_result[2]['task'])
[ "def", "opt", "(", "self", ",", "x_init", ",", "f_fp", "=", "None", ",", "f", "=", "None", ",", "fp", "=", "None", ")", ":", "rcstrings", "=", "[", "'Converged'", ",", "'Maximum number of f evaluations reached'", ",", "'Error'", "]", "assert", "f_fp", "!=", "None", ",", "\"BFGS requires f_fp\"", "opt_dict", "=", "{", "}", "if", "self", ".", "xtol", "is", "not", "None", ":", "print", "(", "\"WARNING: l-bfgs-b doesn't have an xtol arg, so I'm going to ignore it\"", ")", "if", "self", ".", "ftol", "is", "not", "None", ":", "print", "(", "\"WARNING: l-bfgs-b doesn't have an ftol arg, so I'm going to ignore it\"", ")", "if", "self", ".", "gtol", "is", "not", "None", ":", "opt_dict", "[", "'pgtol'", "]", "=", "self", ".", "gtol", "if", "self", ".", "bfgs_factor", "is", "not", "None", ":", "opt_dict", "[", "'factr'", "]", "=", "self", ".", "bfgs_factor", "opt_result", "=", "optimize", ".", "fmin_l_bfgs_b", "(", "f_fp", ",", "x_init", ",", "maxfun", "=", "self", ".", "max_iters", ",", "maxiter", "=", "self", ".", "max_iters", ",", "*", "*", "opt_dict", ")", "self", ".", "x_opt", "=", "opt_result", "[", "0", "]", "self", ".", "f_opt", "=", "f_fp", "(", "self", ".", "x_opt", ")", "[", "0", "]", "self", ".", "funct_eval", "=", "opt_result", "[", "2", "]", "[", "'funcalls'", "]", "self", ".", "status", "=", "rcstrings", "[", "opt_result", "[", "2", "]", "[", "'warnflag'", "]", "]", "#a more helpful error message is available in opt_result in the Error case", "if", "opt_result", "[", "2", "]", "[", "'warnflag'", "]", "==", "2", ":", "# pragma: no coverage, this is not needed to be covered", "self", ".", "status", "=", "'Error'", "+", "str", "(", "opt_result", "[", "2", "]", "[", "'task'", "]", ")" ]
Run the optimizer
[ "Run", "the", "optimizer" ]
python
train
42.821429
dmlc/xgboost
python-package/xgboost/sklearn.py
https://github.com/dmlc/xgboost/blob/253fdd8a42d5ec6b819788199584d27bf9ea6253/python-package/xgboost/sklearn.py#L302-L408
def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None, callbacks=None): # pylint: disable=missing-docstring,invalid-name,attribute-defined-outside-init """ Fit the gradient boosting model Parameters ---------- X : array_like Feature matrix y : array_like Labels sample_weight : array_like instance weights eval_set : list, optional A list of (X, y) tuple pairs to use as a validation set for early-stopping sample_weight_eval_set : list, optional A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of instance weights on the i-th validation set. eval_metric : str, callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.rst. If callable, a custom evaluation metric. The call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that you may need to call the get_label method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. This objective is always minimized. early_stopping_rounds : int Activates early stopping. Validation error needs to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at least one item in evals. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears in the parameters) verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. xgb_model : str file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`callback_api`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)] """ if sample_weight is not None: trainDmatrix = DMatrix(X, label=y, weight=sample_weight, missing=self.missing, nthread=self.n_jobs) else: trainDmatrix = DMatrix(X, label=y, missing=self.missing, nthread=self.n_jobs) evals_result = {} if eval_set is not None: if sample_weight_eval_set is None: sample_weight_eval_set = [None] * len(eval_set) evals = list( DMatrix(eval_set[i][0], label=eval_set[i][1], missing=self.missing, weight=sample_weight_eval_set[i], nthread=self.n_jobs) for i in range(len(eval_set))) evals = list(zip(evals, ["validation_{}".format(i) for i in range(len(evals))])) else: evals = () params = self.get_xgb_params() if callable(self.objective): obj = _objective_decorator(self.objective) params["objective"] = "reg:linear" else: obj = None feval = eval_metric if callable(eval_metric) else None if eval_metric is not None: if callable(eval_metric): eval_metric = None else: params.update({'eval_metric': eval_metric}) self._Booster = train(params, trainDmatrix, self.get_num_boosting_rounds(), evals=evals, early_stopping_rounds=early_stopping_rounds, evals_result=evals_result, obj=obj, feval=feval, verbose_eval=verbose, xgb_model=xgb_model, callbacks=callbacks) if evals_result: for val in evals_result.items(): evals_result_key = list(val[1].keys())[0] evals_result[val[0]][evals_result_key] = val[1][evals_result_key] self.evals_result_ = evals_result if early_stopping_rounds is not None: self.best_score = self._Booster.best_score self.best_iteration = self._Booster.best_iteration self.best_ntree_limit = self._Booster.best_ntree_limit return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", ",", "sample_weight", "=", "None", ",", "eval_set", "=", "None", ",", "eval_metric", "=", "None", ",", "early_stopping_rounds", "=", "None", ",", "verbose", "=", "True", ",", "xgb_model", "=", "None", ",", "sample_weight_eval_set", "=", "None", ",", "callbacks", "=", "None", ")", ":", "# pylint: disable=missing-docstring,invalid-name,attribute-defined-outside-init", "if", "sample_weight", "is", "not", "None", ":", "trainDmatrix", "=", "DMatrix", "(", "X", ",", "label", "=", "y", ",", "weight", "=", "sample_weight", ",", "missing", "=", "self", ".", "missing", ",", "nthread", "=", "self", ".", "n_jobs", ")", "else", ":", "trainDmatrix", "=", "DMatrix", "(", "X", ",", "label", "=", "y", ",", "missing", "=", "self", ".", "missing", ",", "nthread", "=", "self", ".", "n_jobs", ")", "evals_result", "=", "{", "}", "if", "eval_set", "is", "not", "None", ":", "if", "sample_weight_eval_set", "is", "None", ":", "sample_weight_eval_set", "=", "[", "None", "]", "*", "len", "(", "eval_set", ")", "evals", "=", "list", "(", "DMatrix", "(", "eval_set", "[", "i", "]", "[", "0", "]", ",", "label", "=", "eval_set", "[", "i", "]", "[", "1", "]", ",", "missing", "=", "self", ".", "missing", ",", "weight", "=", "sample_weight_eval_set", "[", "i", "]", ",", "nthread", "=", "self", ".", "n_jobs", ")", "for", "i", "in", "range", "(", "len", "(", "eval_set", ")", ")", ")", "evals", "=", "list", "(", "zip", "(", "evals", ",", "[", "\"validation_{}\"", ".", "format", "(", "i", ")", "for", "i", "in", "range", "(", "len", "(", "evals", ")", ")", "]", ")", ")", "else", ":", "evals", "=", "(", ")", "params", "=", "self", ".", "get_xgb_params", "(", ")", "if", "callable", "(", "self", ".", "objective", ")", ":", "obj", "=", "_objective_decorator", "(", "self", ".", "objective", ")", "params", "[", "\"objective\"", "]", "=", "\"reg:linear\"", "else", ":", "obj", "=", "None", "feval", "=", "eval_metric", "if", "callable", "(", "eval_metric", ")", "else", "None", "if", "eval_metric", "is", "not", "None", ":", "if", "callable", "(", "eval_metric", ")", ":", "eval_metric", "=", "None", "else", ":", "params", ".", "update", "(", "{", "'eval_metric'", ":", "eval_metric", "}", ")", "self", ".", "_Booster", "=", "train", "(", "params", ",", "trainDmatrix", ",", "self", ".", "get_num_boosting_rounds", "(", ")", ",", "evals", "=", "evals", ",", "early_stopping_rounds", "=", "early_stopping_rounds", ",", "evals_result", "=", "evals_result", ",", "obj", "=", "obj", ",", "feval", "=", "feval", ",", "verbose_eval", "=", "verbose", ",", "xgb_model", "=", "xgb_model", ",", "callbacks", "=", "callbacks", ")", "if", "evals_result", ":", "for", "val", "in", "evals_result", ".", "items", "(", ")", ":", "evals_result_key", "=", "list", "(", "val", "[", "1", "]", ".", "keys", "(", ")", ")", "[", "0", "]", "evals_result", "[", "val", "[", "0", "]", "]", "[", "evals_result_key", "]", "=", "val", "[", "1", "]", "[", "evals_result_key", "]", "self", ".", "evals_result_", "=", "evals_result", "if", "early_stopping_rounds", "is", "not", "None", ":", "self", ".", "best_score", "=", "self", ".", "_Booster", ".", "best_score", "self", ".", "best_iteration", "=", "self", ".", "_Booster", ".", "best_iteration", "self", ".", "best_ntree_limit", "=", "self", ".", "_Booster", ".", "best_ntree_limit", "return", "self" ]
Fit the gradient boosting model Parameters ---------- X : array_like Feature matrix y : array_like Labels sample_weight : array_like instance weights eval_set : list, optional A list of (X, y) tuple pairs to use as a validation set for early-stopping sample_weight_eval_set : list, optional A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of instance weights on the i-th validation set. eval_metric : str, callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.rst. If callable, a custom evaluation metric. The call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that you may need to call the get_label method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. This objective is always minimized. early_stopping_rounds : int Activates early stopping. Validation error needs to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at least one item in evals. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears in the parameters) verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. xgb_model : str file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`callback_api`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)]
[ "Fit", "the", "gradient", "boosting", "model" ]
python
train
45.775701
ansible/molecule
molecule/command/idempotence.py
https://github.com/ansible/molecule/blob/766dc35b0b0ce498cd5e3a62b40f828742d0d08c/molecule/command/idempotence.py#L92-L110
def _is_idempotent(self, output): """ Parses the output of the provisioning for changed and returns a bool. :param output: A string containing the output of the ansible run. :return: bool """ # Remove blank lines to make regex matches easier output = re.sub(r'\n\s*\n*', '\n', output) # Look for any non-zero changed lines changed = re.search(r'(changed=[1-9][0-9]*)', output) if changed: # Not idempotent return False return True
[ "def", "_is_idempotent", "(", "self", ",", "output", ")", ":", "# Remove blank lines to make regex matches easier", "output", "=", "re", ".", "sub", "(", "r'\\n\\s*\\n*'", ",", "'\\n'", ",", "output", ")", "# Look for any non-zero changed lines", "changed", "=", "re", ".", "search", "(", "r'(changed=[1-9][0-9]*)'", ",", "output", ")", "if", "changed", ":", "# Not idempotent", "return", "False", "return", "True" ]
Parses the output of the provisioning for changed and returns a bool. :param output: A string containing the output of the ansible run. :return: bool
[ "Parses", "the", "output", "of", "the", "provisioning", "for", "changed", "and", "returns", "a", "bool", "." ]
python
train
27.842105
senaite/senaite.core
bika/lims/catalog/catalog_utilities.py
https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/catalog/catalog_utilities.py#L53-L76
def getCatalog(instance, field='UID'): """ Returns the catalog that stores objects of instance passed in type. If an object is indexed by more than one catalog, the first match will be returned. :param instance: A single object :type instance: ATContentType :returns: The first catalog that stores the type of object passed in """ uid = instance.UID() if 'workflow_skiplist' in instance.REQUEST and \ [x for x in instance.REQUEST['workflow_skiplist'] if x.find(uid) > -1]: return None else: # grab the first catalog we are indexed in. # we're only indexed in one. at = getToolByName(instance, 'archetype_tool') plone = instance.portal_url.getPortalObject() catalog_name = instance.portal_type in at.catalog_map \ and at.catalog_map[instance.portal_type][0] or 'portal_catalog' catalog = getToolByName(plone, catalog_name) return catalog
[ "def", "getCatalog", "(", "instance", ",", "field", "=", "'UID'", ")", ":", "uid", "=", "instance", ".", "UID", "(", ")", "if", "'workflow_skiplist'", "in", "instance", ".", "REQUEST", "and", "[", "x", "for", "x", "in", "instance", ".", "REQUEST", "[", "'workflow_skiplist'", "]", "if", "x", ".", "find", "(", "uid", ")", ">", "-", "1", "]", ":", "return", "None", "else", ":", "# grab the first catalog we are indexed in.", "# we're only indexed in one.", "at", "=", "getToolByName", "(", "instance", ",", "'archetype_tool'", ")", "plone", "=", "instance", ".", "portal_url", ".", "getPortalObject", "(", ")", "catalog_name", "=", "instance", ".", "portal_type", "in", "at", ".", "catalog_map", "and", "at", ".", "catalog_map", "[", "instance", ".", "portal_type", "]", "[", "0", "]", "or", "'portal_catalog'", "catalog", "=", "getToolByName", "(", "plone", ",", "catalog_name", ")", "return", "catalog" ]
Returns the catalog that stores objects of instance passed in type. If an object is indexed by more than one catalog, the first match will be returned. :param instance: A single object :type instance: ATContentType :returns: The first catalog that stores the type of object passed in
[ "Returns", "the", "catalog", "that", "stores", "objects", "of", "instance", "passed", "in", "type", ".", "If", "an", "object", "is", "indexed", "by", "more", "than", "one", "catalog", "the", "first", "match", "will", "be", "returned", "." ]
python
train
39.625
lago-project/lago
lago/log_utils.py
https://github.com/lago-project/lago/blob/5b8970f7687e063e4619066d5b8093ca997678c9/lago/log_utils.py#L265-L278
def get_tasks(self, thread_name): """ Args: thread_name (str): name of the thread to get the tasks for Returns: OrderedDict of str, Task: list of task names and log records for each for the given thread """ if thread_name not in self.tasks_by_thread: with self._tasks_lock: self.tasks_by_thread[thread_name] = OrderedDict() return self.tasks_by_thread[thread_name]
[ "def", "get_tasks", "(", "self", ",", "thread_name", ")", ":", "if", "thread_name", "not", "in", "self", ".", "tasks_by_thread", ":", "with", "self", ".", "_tasks_lock", ":", "self", ".", "tasks_by_thread", "[", "thread_name", "]", "=", "OrderedDict", "(", ")", "return", "self", ".", "tasks_by_thread", "[", "thread_name", "]" ]
Args: thread_name (str): name of the thread to get the tasks for Returns: OrderedDict of str, Task: list of task names and log records for each for the given thread
[ "Args", ":", "thread_name", "(", "str", ")", ":", "name", "of", "the", "thread", "to", "get", "the", "tasks", "for" ]
python
train
33.5
ansible/ansible-runner
ansible_runner/utils.py
https://github.com/ansible/ansible-runner/blob/8ce485480a5d0b602428d9d64a752e06fb46cdb8/ansible_runner/utils.py#L39-L49
def isplaybook(obj): ''' Inspects the object and returns if it is a playbook Args: obj (object): The object to be inspected by this function Returns: boolean: True if the object is a list and False if it is not ''' return isinstance(obj, Iterable) and (not isinstance(obj, string_types) and not isinstance(obj, Mapping))
[ "def", "isplaybook", "(", "obj", ")", ":", "return", "isinstance", "(", "obj", ",", "Iterable", ")", "and", "(", "not", "isinstance", "(", "obj", ",", "string_types", ")", "and", "not", "isinstance", "(", "obj", ",", "Mapping", ")", ")" ]
Inspects the object and returns if it is a playbook Args: obj (object): The object to be inspected by this function Returns: boolean: True if the object is a list and False if it is not
[ "Inspects", "the", "object", "and", "returns", "if", "it", "is", "a", "playbook" ]
python
train
32
emilydolson/avida-spatial-tools
avidaspatial/utils.py
https://github.com/emilydolson/avida-spatial-tools/blob/7beb0166ccefad5fa722215b030ac2a53d62b59e/avidaspatial/utils.py#L124-L133
def prepend_zeros_to_lists(ls): """ Takes a list of lists and appends 0s to the beggining of each sub_list until they are all the same length. Used for sign-extending binary numbers. """ longest = max([len(l) for l in ls]) for i in range(len(ls)): while len(ls[i]) < longest: ls[i].insert(0, "0")
[ "def", "prepend_zeros_to_lists", "(", "ls", ")", ":", "longest", "=", "max", "(", "[", "len", "(", "l", ")", "for", "l", "in", "ls", "]", ")", "for", "i", "in", "range", "(", "len", "(", "ls", ")", ")", ":", "while", "len", "(", "ls", "[", "i", "]", ")", "<", "longest", ":", "ls", "[", "i", "]", ".", "insert", "(", "0", ",", "\"0\"", ")" ]
Takes a list of lists and appends 0s to the beggining of each sub_list until they are all the same length. Used for sign-extending binary numbers.
[ "Takes", "a", "list", "of", "lists", "and", "appends", "0s", "to", "the", "beggining", "of", "each", "sub_list", "until", "they", "are", "all", "the", "same", "length", ".", "Used", "for", "sign", "-", "extending", "binary", "numbers", "." ]
python
train
33.2
mrjoes/sockjs-tornado
sockjs/tornado/session.py
https://github.com/mrjoes/sockjs-tornado/blob/bd3a99b407f1181f054b3b1730f438dde375ca1c/sockjs/tornado/session.py#L241-L252
def on_delete(self, forced): """Session expiration callback `forced` If session item explicitly deleted, forced will be set to True. If item expired, will be set to False. """ # Do not remove connection if it was not forced and there's running connection if not forced and self.handler is not None and not self.is_closed: self.promote() else: self.close()
[ "def", "on_delete", "(", "self", ",", "forced", ")", ":", "# Do not remove connection if it was not forced and there's running connection", "if", "not", "forced", "and", "self", ".", "handler", "is", "not", "None", "and", "not", "self", ".", "is_closed", ":", "self", ".", "promote", "(", ")", "else", ":", "self", ".", "close", "(", ")" ]
Session expiration callback `forced` If session item explicitly deleted, forced will be set to True. If item expired, will be set to False.
[ "Session", "expiration", "callback" ]
python
train
36.75
aestrivex/bctpy
bct/algorithms/distance.py
https://github.com/aestrivex/bctpy/blob/4cb0e759eb4a038750b07e23bd29958c400684b8/bct/algorithms/distance.py#L910-L1004
def search_information(adjacency, transform=None, has_memory=False): """ Calculates search information of `adjacency` Computes the amount of information (measured in bits) that a random walker needs to follow the shortest path between a given pair of nodes. Parameters ---------- adjacency : (N x N) array_like Weighted/unweighted, direct/undirected connection weight/length array transform : str, optional If `adjacency` is a connection weight array, specify a transform to map input connection weights to connection lengths. Options include ['log', 'inv'], where 'log' is `-np.log(adjacency)` and 'inv' is `1/adjacency`. Default: None has_memory : bool, optional This flag defines whether or not the random walker "remembers" its previous step, which has the effect of reducing the amount of information needed to find the next state. Default: False Returns ------- SI : (N x N) ndarray Pair-wise search information array. Note that `SI[i,j]` may be different from `SI[j,i]``; hence, `SI` is not a symmetric matrix even when `adjacency` is symmetric. References ---------- .. [1] Goni, J., van den Heuvel, M. P., Avena-Koenigsberger, A., de Mendizabal, N. V., Betzel, R. F., Griffa, A., Hagmann, P., Corominas-Murtra, B., Thiran, J-P., & Sporns, O. (2014). Resting-brain functional connectivity predicted by analytic measures of network communication. Proceedings of the National Academy of Sciences, 111(2), 833-838. .. [2] Rosvall, M., Trusina, A., Minnhagen, P., & Sneppen, K. (2005). Networks and cities: An information perspective. Physical Review Letters, 94(2), 028701. """ N = len(adjacency) if np.allclose(adjacency, adjacency.T): flag_triu = True else: flag_triu = False T = np.linalg.solve(np.diag(np.sum(adjacency, axis=1)), adjacency) _, hops, Pmat = distance_wei_floyd(adjacency, transform) SI = np.zeros((N, N)) SI[np.eye(N) > 0] = np.nan for i in range(N): for j in range(N): if (j > i and flag_triu) or (not flag_triu and i != j): path = retrieve_shortest_path(i, j, hops, Pmat) lp = len(path) - 1 if flag_triu: if np.any(path): pr_step_ff = np.zeros(lp) pr_step_bk = np.zeros(lp) if has_memory: pr_step_ff[0] = T[path[0], path[1]] pr_step_bk[lp-1] = T[path[lp], path[lp-1]] for z in range(1, lp): pr_step_ff[z] = T[path[z], path[z+1]] / (1 - T[path[z-1], path[z]]) pr_step_bk[lp-z-1] = T[path[lp-z], path[lp-z-1]] / (1 - T[path[lp-z+1], path[lp-z]]) else: for z in range(lp): pr_step_ff[z] = T[path[z], path[z+1]] pr_step_bk[z] = T[path[z+1], path[z]] prob_sp_ff = np.prod(pr_step_ff) prob_sp_bk = np.prod(pr_step_bk) SI[i, j] = -np.log2(prob_sp_ff) SI[j, i] = -np.log2(prob_sp_bk) else: if np.any(path): pr_step_ff = np.zeros(lp) if has_memory: pr_step_ff[0] = T[path[0], path[1]] for z in range(1, lp): pr_step_ff[z] = T[path[z], path[z+1]] / (1 - T[path[z-1], path[z]]) else: for z in range(lp): pr_step_ff[z] = T[path[z], path[z+1]] prob_sp_ff = np.prod(pr_step_ff) SI[i, j] = -np.log2(prob_sp_ff) else: SI[i, j] = np.inf return SI
[ "def", "search_information", "(", "adjacency", ",", "transform", "=", "None", ",", "has_memory", "=", "False", ")", ":", "N", "=", "len", "(", "adjacency", ")", "if", "np", ".", "allclose", "(", "adjacency", ",", "adjacency", ".", "T", ")", ":", "flag_triu", "=", "True", "else", ":", "flag_triu", "=", "False", "T", "=", "np", ".", "linalg", ".", "solve", "(", "np", ".", "diag", "(", "np", ".", "sum", "(", "adjacency", ",", "axis", "=", "1", ")", ")", ",", "adjacency", ")", "_", ",", "hops", ",", "Pmat", "=", "distance_wei_floyd", "(", "adjacency", ",", "transform", ")", "SI", "=", "np", ".", "zeros", "(", "(", "N", ",", "N", ")", ")", "SI", "[", "np", ".", "eye", "(", "N", ")", ">", "0", "]", "=", "np", ".", "nan", "for", "i", "in", "range", "(", "N", ")", ":", "for", "j", "in", "range", "(", "N", ")", ":", "if", "(", "j", ">", "i", "and", "flag_triu", ")", "or", "(", "not", "flag_triu", "and", "i", "!=", "j", ")", ":", "path", "=", "retrieve_shortest_path", "(", "i", ",", "j", ",", "hops", ",", "Pmat", ")", "lp", "=", "len", "(", "path", ")", "-", "1", "if", "flag_triu", ":", "if", "np", ".", "any", "(", "path", ")", ":", "pr_step_ff", "=", "np", ".", "zeros", "(", "lp", ")", "pr_step_bk", "=", "np", ".", "zeros", "(", "lp", ")", "if", "has_memory", ":", "pr_step_ff", "[", "0", "]", "=", "T", "[", "path", "[", "0", "]", ",", "path", "[", "1", "]", "]", "pr_step_bk", "[", "lp", "-", "1", "]", "=", "T", "[", "path", "[", "lp", "]", ",", "path", "[", "lp", "-", "1", "]", "]", "for", "z", "in", "range", "(", "1", ",", "lp", ")", ":", "pr_step_ff", "[", "z", "]", "=", "T", "[", "path", "[", "z", "]", ",", "path", "[", "z", "+", "1", "]", "]", "/", "(", "1", "-", "T", "[", "path", "[", "z", "-", "1", "]", ",", "path", "[", "z", "]", "]", ")", "pr_step_bk", "[", "lp", "-", "z", "-", "1", "]", "=", "T", "[", "path", "[", "lp", "-", "z", "]", ",", "path", "[", "lp", "-", "z", "-", "1", "]", "]", "/", "(", "1", "-", "T", "[", "path", "[", "lp", "-", "z", "+", "1", "]", ",", "path", "[", "lp", "-", "z", "]", "]", ")", "else", ":", "for", "z", "in", "range", "(", "lp", ")", ":", "pr_step_ff", "[", "z", "]", "=", "T", "[", "path", "[", "z", "]", ",", "path", "[", "z", "+", "1", "]", "]", "pr_step_bk", "[", "z", "]", "=", "T", "[", "path", "[", "z", "+", "1", "]", ",", "path", "[", "z", "]", "]", "prob_sp_ff", "=", "np", ".", "prod", "(", "pr_step_ff", ")", "prob_sp_bk", "=", "np", ".", "prod", "(", "pr_step_bk", ")", "SI", "[", "i", ",", "j", "]", "=", "-", "np", ".", "log2", "(", "prob_sp_ff", ")", "SI", "[", "j", ",", "i", "]", "=", "-", "np", ".", "log2", "(", "prob_sp_bk", ")", "else", ":", "if", "np", ".", "any", "(", "path", ")", ":", "pr_step_ff", "=", "np", ".", "zeros", "(", "lp", ")", "if", "has_memory", ":", "pr_step_ff", "[", "0", "]", "=", "T", "[", "path", "[", "0", "]", ",", "path", "[", "1", "]", "]", "for", "z", "in", "range", "(", "1", ",", "lp", ")", ":", "pr_step_ff", "[", "z", "]", "=", "T", "[", "path", "[", "z", "]", ",", "path", "[", "z", "+", "1", "]", "]", "/", "(", "1", "-", "T", "[", "path", "[", "z", "-", "1", "]", ",", "path", "[", "z", "]", "]", ")", "else", ":", "for", "z", "in", "range", "(", "lp", ")", ":", "pr_step_ff", "[", "z", "]", "=", "T", "[", "path", "[", "z", "]", ",", "path", "[", "z", "+", "1", "]", "]", "prob_sp_ff", "=", "np", ".", "prod", "(", "pr_step_ff", ")", "SI", "[", "i", ",", "j", "]", "=", "-", "np", ".", "log2", "(", "prob_sp_ff", ")", "else", ":", "SI", "[", "i", ",", "j", "]", "=", "np", ".", "inf", "return", "SI" ]
Calculates search information of `adjacency` Computes the amount of information (measured in bits) that a random walker needs to follow the shortest path between a given pair of nodes. Parameters ---------- adjacency : (N x N) array_like Weighted/unweighted, direct/undirected connection weight/length array transform : str, optional If `adjacency` is a connection weight array, specify a transform to map input connection weights to connection lengths. Options include ['log', 'inv'], where 'log' is `-np.log(adjacency)` and 'inv' is `1/adjacency`. Default: None has_memory : bool, optional This flag defines whether or not the random walker "remembers" its previous step, which has the effect of reducing the amount of information needed to find the next state. Default: False Returns ------- SI : (N x N) ndarray Pair-wise search information array. Note that `SI[i,j]` may be different from `SI[j,i]``; hence, `SI` is not a symmetric matrix even when `adjacency` is symmetric. References ---------- .. [1] Goni, J., van den Heuvel, M. P., Avena-Koenigsberger, A., de Mendizabal, N. V., Betzel, R. F., Griffa, A., Hagmann, P., Corominas-Murtra, B., Thiran, J-P., & Sporns, O. (2014). Resting-brain functional connectivity predicted by analytic measures of network communication. Proceedings of the National Academy of Sciences, 111(2), 833-838. .. [2] Rosvall, M., Trusina, A., Minnhagen, P., & Sneppen, K. (2005). Networks and cities: An information perspective. Physical Review Letters, 94(2), 028701.
[ "Calculates", "search", "information", "of", "adjacency" ]
python
train
42.084211
log2timeline/plaso
plaso/cli/helpers/elastic_output.py
https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/cli/helpers/elastic_output.py#L86-L137
def ParseOptions(cls, options, output_module): """Parses and validates options. Args: options (argparse.Namespace): parser options. output_module (OutputModule): output module to configure. Raises: BadConfigObject: when the output module object is of the wrong type. BadConfigOption: when a configuration parameter fails validation. """ elastic_output_modules = ( elastic.ElasticsearchOutputModule, elastic.ElasticsearchOutputModule) if not isinstance(output_module, elastic_output_modules): raise errors.BadConfigObject( 'Output module is not an instance of ElasticsearchOutputModule') index_name = cls._ParseStringOption( options, 'index_name', default_value=cls._DEFAULT_INDEX_NAME) document_type = cls._ParseStringOption( options, 'document_type', default_value=cls._DEFAULT_DOCUMENT_TYPE) flush_interval = cls._ParseNumericOption( options, 'flush_interval', default_value=cls._DEFAULT_FLUSH_INTERVAL) raw_fields = getattr( options, 'raw_fields', cls._DEFAULT_RAW_FIELDS) elastic_user = cls._ParseStringOption( options, 'elastic_user', default_value=cls._DEFAULT_ELASTIC_USER) use_ssl = getattr(options, 'use_ssl', False) ca_certificates_path = cls._ParseStringOption( options, 'ca_certificates_file_path', default_value=cls._DEFAULT_CA_CERTS) elastic_url_prefix = cls._ParseStringOption( options, 'elastic_url_prefix', default_value=cls._DEFAULT_URL_PREFIX) if elastic_user is not None: elastic_password = getpass.getpass( 'Enter your Elasticsearch password: ') else: elastic_password = None ElasticSearchServerArgumentsHelper.ParseOptions(options, output_module) output_module.SetIndexName(index_name) output_module.SetDocumentType(document_type) output_module.SetFlushInterval(flush_interval) output_module.SetRawFields(raw_fields) output_module.SetUsername(elastic_user) output_module.SetPassword(elastic_password) output_module.SetUseSSL(use_ssl) output_module.SetCACertificatesPath(ca_certificates_path) output_module.SetURLPrefix(elastic_url_prefix)
[ "def", "ParseOptions", "(", "cls", ",", "options", ",", "output_module", ")", ":", "elastic_output_modules", "=", "(", "elastic", ".", "ElasticsearchOutputModule", ",", "elastic", ".", "ElasticsearchOutputModule", ")", "if", "not", "isinstance", "(", "output_module", ",", "elastic_output_modules", ")", ":", "raise", "errors", ".", "BadConfigObject", "(", "'Output module is not an instance of ElasticsearchOutputModule'", ")", "index_name", "=", "cls", ".", "_ParseStringOption", "(", "options", ",", "'index_name'", ",", "default_value", "=", "cls", ".", "_DEFAULT_INDEX_NAME", ")", "document_type", "=", "cls", ".", "_ParseStringOption", "(", "options", ",", "'document_type'", ",", "default_value", "=", "cls", ".", "_DEFAULT_DOCUMENT_TYPE", ")", "flush_interval", "=", "cls", ".", "_ParseNumericOption", "(", "options", ",", "'flush_interval'", ",", "default_value", "=", "cls", ".", "_DEFAULT_FLUSH_INTERVAL", ")", "raw_fields", "=", "getattr", "(", "options", ",", "'raw_fields'", ",", "cls", ".", "_DEFAULT_RAW_FIELDS", ")", "elastic_user", "=", "cls", ".", "_ParseStringOption", "(", "options", ",", "'elastic_user'", ",", "default_value", "=", "cls", ".", "_DEFAULT_ELASTIC_USER", ")", "use_ssl", "=", "getattr", "(", "options", ",", "'use_ssl'", ",", "False", ")", "ca_certificates_path", "=", "cls", ".", "_ParseStringOption", "(", "options", ",", "'ca_certificates_file_path'", ",", "default_value", "=", "cls", ".", "_DEFAULT_CA_CERTS", ")", "elastic_url_prefix", "=", "cls", ".", "_ParseStringOption", "(", "options", ",", "'elastic_url_prefix'", ",", "default_value", "=", "cls", ".", "_DEFAULT_URL_PREFIX", ")", "if", "elastic_user", "is", "not", "None", ":", "elastic_password", "=", "getpass", ".", "getpass", "(", "'Enter your Elasticsearch password: '", ")", "else", ":", "elastic_password", "=", "None", "ElasticSearchServerArgumentsHelper", ".", "ParseOptions", "(", "options", ",", "output_module", ")", "output_module", ".", "SetIndexName", "(", "index_name", ")", "output_module", ".", "SetDocumentType", "(", "document_type", ")", "output_module", ".", "SetFlushInterval", "(", "flush_interval", ")", "output_module", ".", "SetRawFields", "(", "raw_fields", ")", "output_module", ".", "SetUsername", "(", "elastic_user", ")", "output_module", ".", "SetPassword", "(", "elastic_password", ")", "output_module", ".", "SetUseSSL", "(", "use_ssl", ")", "output_module", ".", "SetCACertificatesPath", "(", "ca_certificates_path", ")", "output_module", ".", "SetURLPrefix", "(", "elastic_url_prefix", ")" ]
Parses and validates options. Args: options (argparse.Namespace): parser options. output_module (OutputModule): output module to configure. Raises: BadConfigObject: when the output module object is of the wrong type. BadConfigOption: when a configuration parameter fails validation.
[ "Parses", "and", "validates", "options", "." ]
python
train
41.423077
bitprophet/ssh
ssh/agent.py
https://github.com/bitprophet/ssh/blob/e8bdad4c82a50158a749233dca58c29e47c60b76/ssh/agent.py#L199-L219
def connect(self): """ Method automatically called by the run() method of the AgentProxyThread """ if ('SSH_AUTH_SOCK' in os.environ) and (sys.platform != 'win32'): conn = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) try: retry_on_signal(lambda: conn.connect(os.environ['SSH_AUTH_SOCK'])) except: # probably a dangling env var: the ssh agent is gone return elif sys.platform == 'win32': import win_pageant if win_pageant.can_talk_to_agent(): conn = win_pageant.PageantConnection() else: return else: # no agent support return self._conn = conn
[ "def", "connect", "(", "self", ")", ":", "if", "(", "'SSH_AUTH_SOCK'", "in", "os", ".", "environ", ")", "and", "(", "sys", ".", "platform", "!=", "'win32'", ")", ":", "conn", "=", "socket", ".", "socket", "(", "socket", ".", "AF_UNIX", ",", "socket", ".", "SOCK_STREAM", ")", "try", ":", "retry_on_signal", "(", "lambda", ":", "conn", ".", "connect", "(", "os", ".", "environ", "[", "'SSH_AUTH_SOCK'", "]", ")", ")", "except", ":", "# probably a dangling env var: the ssh agent is gone", "return", "elif", "sys", ".", "platform", "==", "'win32'", ":", "import", "win_pageant", "if", "win_pageant", ".", "can_talk_to_agent", "(", ")", ":", "conn", "=", "win_pageant", ".", "PageantConnection", "(", ")", "else", ":", "return", "else", ":", "# no agent support", "return", "self", ".", "_conn", "=", "conn" ]
Method automatically called by the run() method of the AgentProxyThread
[ "Method", "automatically", "called", "by", "the", "run", "()", "method", "of", "the", "AgentProxyThread" ]
python
train
36.190476
vaexio/vaex
packages/vaex-core/vaex/dataframe.py
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/dataframe.py#L4150-L4161
def dropna(self, drop_nan=True, drop_masked=True, column_names=None): """Create a shallow copy of a DataFrame, with filtering set using select_non_missing. :param drop_nan: drop rows when there is a NaN in any of the columns (will only affect float values) :param drop_masked: drop rows when there is a masked value in any of the columns :param column_names: The columns to consider, default: all (real, non-virtual) columns :rtype: DataFrame """ copy = self.copy() copy.select_non_missing(drop_nan=drop_nan, drop_masked=drop_masked, column_names=column_names, name=FILTER_SELECTION_NAME, mode='and') return copy
[ "def", "dropna", "(", "self", ",", "drop_nan", "=", "True", ",", "drop_masked", "=", "True", ",", "column_names", "=", "None", ")", ":", "copy", "=", "self", ".", "copy", "(", ")", "copy", ".", "select_non_missing", "(", "drop_nan", "=", "drop_nan", ",", "drop_masked", "=", "drop_masked", ",", "column_names", "=", "column_names", ",", "name", "=", "FILTER_SELECTION_NAME", ",", "mode", "=", "'and'", ")", "return", "copy" ]
Create a shallow copy of a DataFrame, with filtering set using select_non_missing. :param drop_nan: drop rows when there is a NaN in any of the columns (will only affect float values) :param drop_masked: drop rows when there is a masked value in any of the columns :param column_names: The columns to consider, default: all (real, non-virtual) columns :rtype: DataFrame
[ "Create", "a", "shallow", "copy", "of", "a", "DataFrame", "with", "filtering", "set", "using", "select_non_missing", "." ]
python
test
58.833333
Esri/ArcREST
src/arcrest/security/security.py
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/security/security.py#L209-L213
def password(self, value): """gets/sets the current password""" if isinstance(value, str): self._password = value self._handler = None
[ "def", "password", "(", "self", ",", "value", ")", ":", "if", "isinstance", "(", "value", ",", "str", ")", ":", "self", ".", "_password", "=", "value", "self", ".", "_handler", "=", "None" ]
gets/sets the current password
[ "gets", "/", "sets", "the", "current", "password" ]
python
train
34
log2timeline/dftimewolf
dftimewolf/lib/utils.py
https://github.com/log2timeline/dftimewolf/blob/45f898476a288d73c4256ae8e3836a2a4848c0d7/dftimewolf/lib/utils.py#L21-L60
def import_args_from_dict(value, args, config): """Replaces some arguments by those specified by a key-value dictionary. This function will be recursively called on a dictionary looking for any value containing a "$" variable. If found, the value will be replaced by the attribute in "args" of the same name. It is used to load arguments from the CLI and any extra configuration parameters passed in recipes. Args: value: The value of a {key: value} dictionary. This is passed recursively and may change in nature: string, list, or dict. The top-level variable should be the dictionary that is supposed to be recursively traversed. args: A {key: value} dictionary used to do replacements. config: A dftimewolf.Config class containing configuration information Returns: The first caller of the function will receive a dictionary in which strings starting with "@" are replaced by the parameters in args. """ if isinstance(value, six.string_types): for match in TOKEN_REGEX.finditer(str(value)): token = match.group(1) if token in args: actual_param = args[token] if isinstance(actual_param, six.string_types): value = value.replace("@"+token, args[token]) else: value = actual_param elif isinstance(value, list): return [import_args_from_dict(item, args, config) for item in value] elif isinstance(value, dict): return { key: import_args_from_dict(val, args, config) for key, val in value.items() } elif isinstance(value, tuple): return tuple(import_args_from_dict(val, args, config) for val in value) return value
[ "def", "import_args_from_dict", "(", "value", ",", "args", ",", "config", ")", ":", "if", "isinstance", "(", "value", ",", "six", ".", "string_types", ")", ":", "for", "match", "in", "TOKEN_REGEX", ".", "finditer", "(", "str", "(", "value", ")", ")", ":", "token", "=", "match", ".", "group", "(", "1", ")", "if", "token", "in", "args", ":", "actual_param", "=", "args", "[", "token", "]", "if", "isinstance", "(", "actual_param", ",", "six", ".", "string_types", ")", ":", "value", "=", "value", ".", "replace", "(", "\"@\"", "+", "token", ",", "args", "[", "token", "]", ")", "else", ":", "value", "=", "actual_param", "elif", "isinstance", "(", "value", ",", "list", ")", ":", "return", "[", "import_args_from_dict", "(", "item", ",", "args", ",", "config", ")", "for", "item", "in", "value", "]", "elif", "isinstance", "(", "value", ",", "dict", ")", ":", "return", "{", "key", ":", "import_args_from_dict", "(", "val", ",", "args", ",", "config", ")", "for", "key", ",", "val", "in", "value", ".", "items", "(", ")", "}", "elif", "isinstance", "(", "value", ",", "tuple", ")", ":", "return", "tuple", "(", "import_args_from_dict", "(", "val", ",", "args", ",", "config", ")", "for", "val", "in", "value", ")", "return", "value" ]
Replaces some arguments by those specified by a key-value dictionary. This function will be recursively called on a dictionary looking for any value containing a "$" variable. If found, the value will be replaced by the attribute in "args" of the same name. It is used to load arguments from the CLI and any extra configuration parameters passed in recipes. Args: value: The value of a {key: value} dictionary. This is passed recursively and may change in nature: string, list, or dict. The top-level variable should be the dictionary that is supposed to be recursively traversed. args: A {key: value} dictionary used to do replacements. config: A dftimewolf.Config class containing configuration information Returns: The first caller of the function will receive a dictionary in which strings starting with "@" are replaced by the parameters in args.
[ "Replaces", "some", "arguments", "by", "those", "specified", "by", "a", "key", "-", "value", "dictionary", "." ]
python
train
40.85
Skype4Py/Skype4Py
Skype4Py/call.py
https://github.com/Skype4Py/Skype4Py/blob/c48d83f7034109fe46315d45a066126002c6e0d4/Skype4Py/call.py#L175-L188
def Join(self, Id): """Joins with another call to form a conference. :Parameters: Id : int Call Id of the other call to join to the conference. :return: Conference object. :rtype: `Conference` """ #self._Alter('JOIN_CONFERENCE', Id) reply = self._Owner._DoCommand('SET CALL %s JOIN_CONFERENCE %s' % (self.Id, Id), 'CALL %s CONF_ID' % self.Id) return Conference(self._Owner, reply.split()[-1])
[ "def", "Join", "(", "self", ",", "Id", ")", ":", "#self._Alter('JOIN_CONFERENCE', Id)", "reply", "=", "self", ".", "_Owner", ".", "_DoCommand", "(", "'SET CALL %s JOIN_CONFERENCE %s'", "%", "(", "self", ".", "Id", ",", "Id", ")", ",", "'CALL %s CONF_ID'", "%", "self", ".", "Id", ")", "return", "Conference", "(", "self", ".", "_Owner", ",", "reply", ".", "split", "(", ")", "[", "-", "1", "]", ")" ]
Joins with another call to form a conference. :Parameters: Id : int Call Id of the other call to join to the conference. :return: Conference object. :rtype: `Conference`
[ "Joins", "with", "another", "call", "to", "form", "a", "conference", "." ]
python
train
34.214286
ChargePoint/pydnp3
examples/outstation.py
https://github.com/ChargePoint/pydnp3/blob/5bcd8240d1fc0aa1579e71f2efcab63b4c61c547/examples/outstation.py#L201-L214
def apply_update(self, value, index): """ Record an opendnp3 data value (Analog, Binary, etc.) in the outstation's database. The data value gets sent to the Master as a side-effect. :param value: An instance of Analog, Binary, or another opendnp3 data value. :param index: (integer) Index of the data definition in the opendnp3 database. """ _log.debug('Recording {} measurement, index={}, value={}'.format(type(value).__name__, index, value.value)) builder = asiodnp3.UpdateBuilder() builder.Update(value, index) update = builder.Build() OutstationApplication.get_outstation().Apply(update)
[ "def", "apply_update", "(", "self", ",", "value", ",", "index", ")", ":", "_log", ".", "debug", "(", "'Recording {} measurement, index={}, value={}'", ".", "format", "(", "type", "(", "value", ")", ".", "__name__", ",", "index", ",", "value", ".", "value", ")", ")", "builder", "=", "asiodnp3", ".", "UpdateBuilder", "(", ")", "builder", ".", "Update", "(", "value", ",", "index", ")", "update", "=", "builder", ".", "Build", "(", ")", "OutstationApplication", ".", "get_outstation", "(", ")", ".", "Apply", "(", "update", ")" ]
Record an opendnp3 data value (Analog, Binary, etc.) in the outstation's database. The data value gets sent to the Master as a side-effect. :param value: An instance of Analog, Binary, or another opendnp3 data value. :param index: (integer) Index of the data definition in the opendnp3 database.
[ "Record", "an", "opendnp3", "data", "value", "(", "Analog", "Binary", "etc", ".", ")", "in", "the", "outstation", "s", "database", "." ]
python
valid
48.285714
ChristopherRabotin/bungiesearch
bungiesearch/utils.py
https://github.com/ChristopherRabotin/bungiesearch/blob/13768342bc2698b214eb0003c2d113b6e273c30d/bungiesearch/utils.py#L15-L64
def update_index(model_items, model_name, action='index', bulk_size=100, num_docs=-1, start_date=None, end_date=None, refresh=True): ''' Updates the index for the provided model_items. :param model_items: a list of model_items (django Model instances, or proxy instances) which are to be indexed/updated or deleted. If action is 'index', the model_items must be serializable objects. If action is 'delete', the model_items must be primary keys corresponding to obects in the index. :param model_name: doctype, which must also be the model name. :param action: the action that you'd like to perform on this group of data. Must be in ('index', 'delete') and defaults to 'index.' :param bulk_size: bulk size for indexing. Defaults to 100. :param num_docs: maximum number of model_items from the provided list to be indexed. :param start_date: start date for indexing. Must be as YYYY-MM-DD. :param end_date: end date for indexing. Must be as YYYY-MM-DD. :param refresh: a boolean that determines whether to refresh the index, making all operations performed since the last refresh immediately available for search, instead of needing to wait for the scheduled Elasticsearch execution. Defaults to True. :note: If model_items contain multiple models, then num_docs is applied to *each* model. For example, if bulk_size is set to 5, and item contains models Article and Article2, then 5 model_items of Article *and* 5 model_items of Article2 will be indexed. ''' src = Bungiesearch() if action == 'delete' and not hasattr(model_items, '__iter__'): raise ValueError("If action is 'delete', model_items must be an iterable of primary keys.") logger.info('Getting index for model {}.'.format(model_name)) for index_name in src.get_index(model_name): index_instance = src.get_model_index(model_name) model = index_instance.get_model() if num_docs == -1: if isinstance(model_items, (list, tuple)): num_docs = len(model_items) else: model_items = filter_model_items(index_instance, model_items, model_name, start_date, end_date) num_docs = model_items.count() if not model_items.ordered: model_items = model_items.order_by('pk') else: logger.warning('Limiting the number of model_items to {} to {}.'.format(action, num_docs)) logger.info('{} {} documents on index {}'.format(action, num_docs, index_name)) prev_step = 0 max_docs = num_docs + bulk_size if num_docs > bulk_size else bulk_size + 1 for next_step in range(bulk_size, max_docs, bulk_size): logger.info('{}: documents {} to {} of {} total on index {}.'.format(action.capitalize(), prev_step, next_step, num_docs, index_name)) data = create_indexed_document(index_instance, model_items[prev_step:next_step], action) bulk_index(src.get_es_instance(), data, index=index_name, doc_type=model.__name__, raise_on_error=True) prev_step = next_step if refresh: src.get_es_instance().indices.refresh(index=index_name)
[ "def", "update_index", "(", "model_items", ",", "model_name", ",", "action", "=", "'index'", ",", "bulk_size", "=", "100", ",", "num_docs", "=", "-", "1", ",", "start_date", "=", "None", ",", "end_date", "=", "None", ",", "refresh", "=", "True", ")", ":", "src", "=", "Bungiesearch", "(", ")", "if", "action", "==", "'delete'", "and", "not", "hasattr", "(", "model_items", ",", "'__iter__'", ")", ":", "raise", "ValueError", "(", "\"If action is 'delete', model_items must be an iterable of primary keys.\"", ")", "logger", ".", "info", "(", "'Getting index for model {}.'", ".", "format", "(", "model_name", ")", ")", "for", "index_name", "in", "src", ".", "get_index", "(", "model_name", ")", ":", "index_instance", "=", "src", ".", "get_model_index", "(", "model_name", ")", "model", "=", "index_instance", ".", "get_model", "(", ")", "if", "num_docs", "==", "-", "1", ":", "if", "isinstance", "(", "model_items", ",", "(", "list", ",", "tuple", ")", ")", ":", "num_docs", "=", "len", "(", "model_items", ")", "else", ":", "model_items", "=", "filter_model_items", "(", "index_instance", ",", "model_items", ",", "model_name", ",", "start_date", ",", "end_date", ")", "num_docs", "=", "model_items", ".", "count", "(", ")", "if", "not", "model_items", ".", "ordered", ":", "model_items", "=", "model_items", ".", "order_by", "(", "'pk'", ")", "else", ":", "logger", ".", "warning", "(", "'Limiting the number of model_items to {} to {}.'", ".", "format", "(", "action", ",", "num_docs", ")", ")", "logger", ".", "info", "(", "'{} {} documents on index {}'", ".", "format", "(", "action", ",", "num_docs", ",", "index_name", ")", ")", "prev_step", "=", "0", "max_docs", "=", "num_docs", "+", "bulk_size", "if", "num_docs", ">", "bulk_size", "else", "bulk_size", "+", "1", "for", "next_step", "in", "range", "(", "bulk_size", ",", "max_docs", ",", "bulk_size", ")", ":", "logger", ".", "info", "(", "'{}: documents {} to {} of {} total on index {}.'", ".", "format", "(", "action", ".", "capitalize", "(", ")", ",", "prev_step", ",", "next_step", ",", "num_docs", ",", "index_name", ")", ")", "data", "=", "create_indexed_document", "(", "index_instance", ",", "model_items", "[", "prev_step", ":", "next_step", "]", ",", "action", ")", "bulk_index", "(", "src", ".", "get_es_instance", "(", ")", ",", "data", ",", "index", "=", "index_name", ",", "doc_type", "=", "model", ".", "__name__", ",", "raise_on_error", "=", "True", ")", "prev_step", "=", "next_step", "if", "refresh", ":", "src", ".", "get_es_instance", "(", ")", ".", "indices", ".", "refresh", "(", "index", "=", "index_name", ")" ]
Updates the index for the provided model_items. :param model_items: a list of model_items (django Model instances, or proxy instances) which are to be indexed/updated or deleted. If action is 'index', the model_items must be serializable objects. If action is 'delete', the model_items must be primary keys corresponding to obects in the index. :param model_name: doctype, which must also be the model name. :param action: the action that you'd like to perform on this group of data. Must be in ('index', 'delete') and defaults to 'index.' :param bulk_size: bulk size for indexing. Defaults to 100. :param num_docs: maximum number of model_items from the provided list to be indexed. :param start_date: start date for indexing. Must be as YYYY-MM-DD. :param end_date: end date for indexing. Must be as YYYY-MM-DD. :param refresh: a boolean that determines whether to refresh the index, making all operations performed since the last refresh immediately available for search, instead of needing to wait for the scheduled Elasticsearch execution. Defaults to True. :note: If model_items contain multiple models, then num_docs is applied to *each* model. For example, if bulk_size is set to 5, and item contains models Article and Article2, then 5 model_items of Article *and* 5 model_items of Article2 will be indexed.
[ "Updates", "the", "index", "for", "the", "provided", "model_items", ".", ":", "param", "model_items", ":", "a", "list", "of", "model_items", "(", "django", "Model", "instances", "or", "proxy", "instances", ")", "which", "are", "to", "be", "indexed", "/", "updated", "or", "deleted", ".", "If", "action", "is", "index", "the", "model_items", "must", "be", "serializable", "objects", ".", "If", "action", "is", "delete", "the", "model_items", "must", "be", "primary", "keys", "corresponding", "to", "obects", "in", "the", "index", ".", ":", "param", "model_name", ":", "doctype", "which", "must", "also", "be", "the", "model", "name", ".", ":", "param", "action", ":", "the", "action", "that", "you", "d", "like", "to", "perform", "on", "this", "group", "of", "data", ".", "Must", "be", "in", "(", "index", "delete", ")", "and", "defaults", "to", "index", ".", ":", "param", "bulk_size", ":", "bulk", "size", "for", "indexing", ".", "Defaults", "to", "100", ".", ":", "param", "num_docs", ":", "maximum", "number", "of", "model_items", "from", "the", "provided", "list", "to", "be", "indexed", ".", ":", "param", "start_date", ":", "start", "date", "for", "indexing", ".", "Must", "be", "as", "YYYY", "-", "MM", "-", "DD", ".", ":", "param", "end_date", ":", "end", "date", "for", "indexing", ".", "Must", "be", "as", "YYYY", "-", "MM", "-", "DD", ".", ":", "param", "refresh", ":", "a", "boolean", "that", "determines", "whether", "to", "refresh", "the", "index", "making", "all", "operations", "performed", "since", "the", "last", "refresh", "immediately", "available", "for", "search", "instead", "of", "needing", "to", "wait", "for", "the", "scheduled", "Elasticsearch", "execution", ".", "Defaults", "to", "True", ".", ":", "note", ":", "If", "model_items", "contain", "multiple", "models", "then", "num_docs", "is", "applied", "to", "*", "each", "*", "model", ".", "For", "example", "if", "bulk_size", "is", "set", "to", "5", "and", "item", "contains", "models", "Article", "and", "Article2", "then", "5", "model_items", "of", "Article", "*", "and", "*", "5", "model_items", "of", "Article2", "will", "be", "indexed", "." ]
python
train
63.08
fastavro/fastavro
fastavro/_read_py.py
https://github.com/fastavro/fastavro/blob/bafe826293e19eb93e77bbb0f6adfa059c7884b2/fastavro/_read_py.py#L345-L366
def read_union(fo, writer_schema, reader_schema=None): """A union is encoded by first writing a long value indicating the zero-based position within the union of the schema of its value. The value is then encoded per the indicated schema within the union. """ # schema resolution index = read_long(fo) if reader_schema: # Handle case where the reader schema is just a single type (not union) if not isinstance(reader_schema, list): if match_types(writer_schema[index], reader_schema): return read_data(fo, writer_schema[index], reader_schema) else: for schema in reader_schema: if match_types(writer_schema[index], schema): return read_data(fo, writer_schema[index], schema) msg = 'schema mismatch: %s not found in %s' % \ (writer_schema, reader_schema) raise SchemaResolutionError(msg) else: return read_data(fo, writer_schema[index])
[ "def", "read_union", "(", "fo", ",", "writer_schema", ",", "reader_schema", "=", "None", ")", ":", "# schema resolution", "index", "=", "read_long", "(", "fo", ")", "if", "reader_schema", ":", "# Handle case where the reader schema is just a single type (not union)", "if", "not", "isinstance", "(", "reader_schema", ",", "list", ")", ":", "if", "match_types", "(", "writer_schema", "[", "index", "]", ",", "reader_schema", ")", ":", "return", "read_data", "(", "fo", ",", "writer_schema", "[", "index", "]", ",", "reader_schema", ")", "else", ":", "for", "schema", "in", "reader_schema", ":", "if", "match_types", "(", "writer_schema", "[", "index", "]", ",", "schema", ")", ":", "return", "read_data", "(", "fo", ",", "writer_schema", "[", "index", "]", ",", "schema", ")", "msg", "=", "'schema mismatch: %s not found in %s'", "%", "(", "writer_schema", ",", "reader_schema", ")", "raise", "SchemaResolutionError", "(", "msg", ")", "else", ":", "return", "read_data", "(", "fo", ",", "writer_schema", "[", "index", "]", ")" ]
A union is encoded by first writing a long value indicating the zero-based position within the union of the schema of its value. The value is then encoded per the indicated schema within the union.
[ "A", "union", "is", "encoded", "by", "first", "writing", "a", "long", "value", "indicating", "the", "zero", "-", "based", "position", "within", "the", "union", "of", "the", "schema", "of", "its", "value", "." ]
python
train
44.681818
codeforamerica/epa_python
epa/radinfo/radinfo.py
https://github.com/codeforamerica/epa_python/blob/62a53da62936bea8daa487a01a52b973e9062b2c/epa/radinfo/radinfo.py#L23-L29
def facility(self, column=None, value=None, **kwargs): """ Check information related to Radiation facilities. >>> RADInfo().facility('state_code', 'CA') """ return self._resolve_call('RAD_FACILITY', column, value, **kwargs)
[ "def", "facility", "(", "self", ",", "column", "=", "None", ",", "value", "=", "None", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "_resolve_call", "(", "'RAD_FACILITY'", ",", "column", ",", "value", ",", "*", "*", "kwargs", ")" ]
Check information related to Radiation facilities. >>> RADInfo().facility('state_code', 'CA')
[ "Check", "information", "related", "to", "Radiation", "facilities", "." ]
python
train
36.857143
twilio/twilio-python
twilio/rest/api/v2010/account/call/recording.py
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/api/v2010/account/call/recording.py#L248-L262
def get_instance(self, payload): """ Build an instance of RecordingInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.call.recording.RecordingInstance :rtype: twilio.rest.api.v2010.account.call.recording.RecordingInstance """ return RecordingInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], )
[ "def", "get_instance", "(", "self", ",", "payload", ")", ":", "return", "RecordingInstance", "(", "self", ".", "_version", ",", "payload", ",", "account_sid", "=", "self", ".", "_solution", "[", "'account_sid'", "]", ",", "call_sid", "=", "self", ".", "_solution", "[", "'call_sid'", "]", ",", ")" ]
Build an instance of RecordingInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.call.recording.RecordingInstance :rtype: twilio.rest.api.v2010.account.call.recording.RecordingInstance
[ "Build", "an", "instance", "of", "RecordingInstance" ]
python
train
33.733333
trolldbois/ctypeslib
ctypeslib/codegen/typehandler.py
https://github.com/trolldbois/ctypeslib/blob/2aeb1942a5a32a5cc798c287cd0d9e684a0181a8/ctypeslib/codegen/typehandler.py#L154-L187
def _array_handler(self, _cursor_type): """ Handles all array types. Resolves it's element type and makes a Array typedesc. """ # The element type has been previously declared # we need to get the canonical typedef, in some cases _type = _cursor_type.get_canonical() size = _type.get_array_size() if size == -1 and _type.kind == TypeKind.INCOMPLETEARRAY: size = 0 # FIXME: Incomplete Array handling at end of record. # https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html # FIXME VARIABLEARRAY DEPENDENTSIZEDARRAY _array_type = _type.get_array_element_type() # .get_canonical() if self.is_fundamental_type(_array_type): _subtype = self.parse_cursor_type(_array_type) elif self.is_pointer_type(_array_type): # code.interact(local=locals()) # pointers to POD have no declaration ?? # FIXME test_struct_with_pointer x_n_t g[1] _subtype = self.parse_cursor_type(_array_type) elif self.is_array_type(_array_type): _subtype = self.parse_cursor_type(_array_type) else: _subtype_decl = _array_type.get_declaration() _subtype = self.parse_cursor(_subtype_decl) # if _subtype_decl.kind == CursorKind.NO_DECL_FOUND: # pass #_subtype_name = self.get_unique_name(_subtype_decl) #_subtype = self.get_registered(_subtype_name) obj = typedesc.ArrayType(_subtype, size) obj.location = _subtype.location return obj
[ "def", "_array_handler", "(", "self", ",", "_cursor_type", ")", ":", "# The element type has been previously declared", "# we need to get the canonical typedef, in some cases", "_type", "=", "_cursor_type", ".", "get_canonical", "(", ")", "size", "=", "_type", ".", "get_array_size", "(", ")", "if", "size", "==", "-", "1", "and", "_type", ".", "kind", "==", "TypeKind", ".", "INCOMPLETEARRAY", ":", "size", "=", "0", "# FIXME: Incomplete Array handling at end of record.", "# https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html", "# FIXME VARIABLEARRAY DEPENDENTSIZEDARRAY", "_array_type", "=", "_type", ".", "get_array_element_type", "(", ")", "# .get_canonical()", "if", "self", ".", "is_fundamental_type", "(", "_array_type", ")", ":", "_subtype", "=", "self", ".", "parse_cursor_type", "(", "_array_type", ")", "elif", "self", ".", "is_pointer_type", "(", "_array_type", ")", ":", "# code.interact(local=locals())", "# pointers to POD have no declaration ??", "# FIXME test_struct_with_pointer x_n_t g[1]", "_subtype", "=", "self", ".", "parse_cursor_type", "(", "_array_type", ")", "elif", "self", ".", "is_array_type", "(", "_array_type", ")", ":", "_subtype", "=", "self", ".", "parse_cursor_type", "(", "_array_type", ")", "else", ":", "_subtype_decl", "=", "_array_type", ".", "get_declaration", "(", ")", "_subtype", "=", "self", ".", "parse_cursor", "(", "_subtype_decl", ")", "# if _subtype_decl.kind == CursorKind.NO_DECL_FOUND:", "# pass", "#_subtype_name = self.get_unique_name(_subtype_decl)", "#_subtype = self.get_registered(_subtype_name)", "obj", "=", "typedesc", ".", "ArrayType", "(", "_subtype", ",", "size", ")", "obj", ".", "location", "=", "_subtype", ".", "location", "return", "obj" ]
Handles all array types. Resolves it's element type and makes a Array typedesc.
[ "Handles", "all", "array", "types", ".", "Resolves", "it", "s", "element", "type", "and", "makes", "a", "Array", "typedesc", "." ]
python
train
46.882353
MisterWil/abodepy
abodepy/__init__.py
https://github.com/MisterWil/abodepy/blob/6f84bb428fd1da98855f55083cd427bebbcc57ae/abodepy/__init__.py#L302-L313
def get_automation(self, automation_id, refresh=False): """Get a single automation.""" if self._automations is None: self.get_automations() refresh = False automation = self._automations.get(str(automation_id)) if automation and refresh: automation.refresh() return automation
[ "def", "get_automation", "(", "self", ",", "automation_id", ",", "refresh", "=", "False", ")", ":", "if", "self", ".", "_automations", "is", "None", ":", "self", ".", "get_automations", "(", ")", "refresh", "=", "False", "automation", "=", "self", ".", "_automations", ".", "get", "(", "str", "(", "automation_id", ")", ")", "if", "automation", "and", "refresh", ":", "automation", ".", "refresh", "(", ")", "return", "automation" ]
Get a single automation.
[ "Get", "a", "single", "automation", "." ]
python
train
28.666667
reingart/pyafipws
utils.py
https://github.com/reingart/pyafipws/blob/ee87cfe4ac12285ab431df5fec257f103042d1ab/utils.py#L195-L210
def inicializar_y_capturar_excepciones_simple(func): "Decorador para inicializar y capturar errores (versión básica indep.)" @functools.wraps(func) def capturar_errores_wrapper(self, *args, **kwargs): self.inicializar() try: return func(self, *args, **kwargs) except: ex = exception_info() self.Excepcion = ex['name'] self.Traceback = ex['msg'] if self.LanzarExcepciones: raise else: return False return capturar_errores_wrapper
[ "def", "inicializar_y_capturar_excepciones_simple", "(", "func", ")", ":", "@", "functools", ".", "wraps", "(", "func", ")", "def", "capturar_errores_wrapper", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "self", ".", "inicializar", "(", ")", "try", ":", "return", "func", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "except", ":", "ex", "=", "exception_info", "(", ")", "self", ".", "Excepcion", "=", "ex", "[", "'name'", "]", "self", ".", "Traceback", "=", "ex", "[", "'msg'", "]", "if", "self", ".", "LanzarExcepciones", ":", "raise", "else", ":", "return", "False", "return", "capturar_errores_wrapper" ]
Decorador para inicializar y capturar errores (versión básica indep.)
[ "Decorador", "para", "inicializar", "y", "capturar", "errores", "(", "versión", "básica", "indep", ".", ")" ]
python
train
34.8125
PmagPy/PmagPy
programs/dmag_magic.py
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/dmag_magic.py#L16-L187
def dmag_magic(in_file="measurements.txt", dir_path=".", input_dir_path="", spec_file="specimens.txt", samp_file="samples.txt", site_file="sites.txt", loc_file="locations.txt", plot_by="loc", LT="AF", norm=True, XLP="", save_plots=True, fmt="svg"): """ plots intensity decay curves for demagnetization experiments Parameters ---------- in_file : str, default "measurements.txt" dir_path : str output directory, default "." input_dir_path : str input file directory (if different from dir_path), default "" spec_file : str input specimen file name, default "specimens.txt" samp_file: str input sample file name, default "samples.txt" site_file : str input site file name, default "sites.txt" loc_file : str input location file name, default "locations.txt" plot_by : str [spc, sam, sit, loc] (specimen, sample, site, location), default "loc" LT : str lab treatment [T, AF, M], default AF norm : bool normalize by NRM magnetization, default True XLP : str exclude specific lab protocols, (for example, method codes like LP-PI) default "" save_plots : bool plot and save non-interactively, default True fmt : str ["png", "svg", "pdf", "jpg"], default "svg" Returns --------- type - Tuple : (True or False indicating if conversion was sucessful, file name(s) written) """ dir_path = os.path.realpath(dir_path) if not input_dir_path: input_dir_path = dir_path input_dir_path = os.path.realpath(input_dir_path) # format plot_key name_dict = {'loc': 'location', 'sit': 'site', 'sam': 'sample', 'spc': 'specimen'} if plot_by not in name_dict.values(): try: plot_key = name_dict[plot_by] except KeyError: print('Unrecognized plot_by {}, falling back to plot by location'.format(plot_by)) plot_key = "loc" else: plot_key = plot_by # figure out what kind of experiment LT = "LT-" + LT + "-Z" print('LT', LT) if LT == "LT-T-Z": units, dmag_key = 'K', 'treat_temp' elif LT == "LT-AF-Z": units, dmag_key = 'T', 'treat_ac_field' elif LT == 'LT-M-Z': units, dmag_key = 'J', 'treat_mw_energy' else: units = 'U' # init FIG = {} # plot dictionary FIG['demag'] = 1 # demag is figure 1 # create contribution and add required headers fnames = {"specimens": spec_file, "samples": samp_file, 'sites': site_file, 'locations': loc_file} if not os.path.exists(pmag.resolve_file_name(in_file, input_dir_path)): print('-E- Could not find {}'.format(in_file)) return False, [] contribution = cb.Contribution(input_dir_path, single_file=in_file, custom_filenames=fnames) file_type = list(contribution.tables.keys())[0] print(len(contribution.tables['measurements'].df), ' records read from ', in_file) # add plot_key into measurements table if plot_key not in contribution.tables['measurements'].df.columns: #contribution.propagate_name_down(plot_key, 'measurements') contribution.propagate_location_to_measurements() data_container = contribution.tables[file_type] # pare down to only records with useful data # grab records that have the requested code data_slice = data_container.get_records_for_code(LT) # and don't have the offending code data = data_container.get_records_for_code(XLP, incl=False, use_slice=True, sli=data_slice, strict_match=False) # make sure quality is in the dataframe if 'quality' not in data.columns: data['quality'] = 'g' # get intensity key and make sure intensity data is not blank intlist = ['magn_moment', 'magn_volume', 'magn_mass'] IntMeths = [col_name for col_name in data.columns if col_name in intlist] # get rid of any entirely blank intensity columns for col_name in IntMeths: if not data[col_name].any(): data.drop(col_name, axis=1, inplace=True) IntMeths = [col_name for col_name in data.columns if col_name in intlist] if len(IntMeths) == 0: print('-E- No intensity headers found') return False, [] int_key = IntMeths[0] # plot first intensity method found - normalized to initial value anyway - doesn't matter which used data = data[data[int_key].notnull()] # make list of individual plots # by default, will be by location_name plotlist = data[plot_key].unique() plotlist.sort() pmagplotlib.plot_init(FIG['demag'], 5, 5) last_plot = False # iterate through and plot the data for plot in plotlist: if plot == plotlist[-1]: last_plot = True plot_data = data[data[plot_key] == plot].copy() if not save_plots: print(plot, 'plotting by: ', plot_key) if len(plot_data) > 2: title = plot spcs = [] spcs = plot_data['specimen'].unique() for spc in spcs: INTblock = [] spec_data = plot_data[plot_data['specimen'] == spc] for ind, rec in spec_data.iterrows(): INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[int_key]), 1, rec['quality']]) if len(INTblock) > 2: pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0, units, norm) if save_plots: files = {} for key in list(FIG.keys()): if pmagplotlib.isServer: files[key] = title + '_' + LT + '.' + fmt incl_dir = False else: # if not server, include directory in output path files[key] = os.path.join(dir_path, title + '_' + LT + '.' + fmt) incl_dir = True pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir) else: pmagplotlib.draw_figs(FIG) prompt = " S[a]ve to save plot, [q]uit, Return to continue: " ans = input(prompt) if ans == 'q': return True, [] if ans == "a": files = {} for key in list(FIG.keys()): if pmagplotlib.isServer: files[key] = title + '_' + LT + '.' + fmt incl_dir = False else: # if not server, include directory in output path files[key] = os.path.join(dir_path, title + '_' + LT + '.' + fmt) incl_dir = True pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir) pmagplotlib.clearFIG(FIG['demag']) if last_plot: return True, []
[ "def", "dmag_magic", "(", "in_file", "=", "\"measurements.txt\"", ",", "dir_path", "=", "\".\"", ",", "input_dir_path", "=", "\"\"", ",", "spec_file", "=", "\"specimens.txt\"", ",", "samp_file", "=", "\"samples.txt\"", ",", "site_file", "=", "\"sites.txt\"", ",", "loc_file", "=", "\"locations.txt\"", ",", "plot_by", "=", "\"loc\"", ",", "LT", "=", "\"AF\"", ",", "norm", "=", "True", ",", "XLP", "=", "\"\"", ",", "save_plots", "=", "True", ",", "fmt", "=", "\"svg\"", ")", ":", "dir_path", "=", "os", ".", "path", ".", "realpath", "(", "dir_path", ")", "if", "not", "input_dir_path", ":", "input_dir_path", "=", "dir_path", "input_dir_path", "=", "os", ".", "path", ".", "realpath", "(", "input_dir_path", ")", "# format plot_key", "name_dict", "=", "{", "'loc'", ":", "'location'", ",", "'sit'", ":", "'site'", ",", "'sam'", ":", "'sample'", ",", "'spc'", ":", "'specimen'", "}", "if", "plot_by", "not", "in", "name_dict", ".", "values", "(", ")", ":", "try", ":", "plot_key", "=", "name_dict", "[", "plot_by", "]", "except", "KeyError", ":", "print", "(", "'Unrecognized plot_by {}, falling back to plot by location'", ".", "format", "(", "plot_by", ")", ")", "plot_key", "=", "\"loc\"", "else", ":", "plot_key", "=", "plot_by", "# figure out what kind of experiment", "LT", "=", "\"LT-\"", "+", "LT", "+", "\"-Z\"", "print", "(", "'LT'", ",", "LT", ")", "if", "LT", "==", "\"LT-T-Z\"", ":", "units", ",", "dmag_key", "=", "'K'", ",", "'treat_temp'", "elif", "LT", "==", "\"LT-AF-Z\"", ":", "units", ",", "dmag_key", "=", "'T'", ",", "'treat_ac_field'", "elif", "LT", "==", "'LT-M-Z'", ":", "units", ",", "dmag_key", "=", "'J'", ",", "'treat_mw_energy'", "else", ":", "units", "=", "'U'", "# init", "FIG", "=", "{", "}", "# plot dictionary", "FIG", "[", "'demag'", "]", "=", "1", "# demag is figure 1", "# create contribution and add required headers", "fnames", "=", "{", "\"specimens\"", ":", "spec_file", ",", "\"samples\"", ":", "samp_file", ",", "'sites'", ":", "site_file", ",", "'locations'", ":", "loc_file", "}", "if", "not", "os", ".", "path", ".", "exists", "(", "pmag", ".", "resolve_file_name", "(", "in_file", ",", "input_dir_path", ")", ")", ":", "print", "(", "'-E- Could not find {}'", ".", "format", "(", "in_file", ")", ")", "return", "False", ",", "[", "]", "contribution", "=", "cb", ".", "Contribution", "(", "input_dir_path", ",", "single_file", "=", "in_file", ",", "custom_filenames", "=", "fnames", ")", "file_type", "=", "list", "(", "contribution", ".", "tables", ".", "keys", "(", ")", ")", "[", "0", "]", "print", "(", "len", "(", "contribution", ".", "tables", "[", "'measurements'", "]", ".", "df", ")", ",", "' records read from '", ",", "in_file", ")", "# add plot_key into measurements table", "if", "plot_key", "not", "in", "contribution", ".", "tables", "[", "'measurements'", "]", ".", "df", ".", "columns", ":", "#contribution.propagate_name_down(plot_key, 'measurements')", "contribution", ".", "propagate_location_to_measurements", "(", ")", "data_container", "=", "contribution", ".", "tables", "[", "file_type", "]", "# pare down to only records with useful data", "# grab records that have the requested code", "data_slice", "=", "data_container", ".", "get_records_for_code", "(", "LT", ")", "# and don't have the offending code", "data", "=", "data_container", ".", "get_records_for_code", "(", "XLP", ",", "incl", "=", "False", ",", "use_slice", "=", "True", ",", "sli", "=", "data_slice", ",", "strict_match", "=", "False", ")", "# make sure quality is in the dataframe", "if", "'quality'", "not", "in", "data", ".", "columns", ":", "data", "[", "'quality'", "]", "=", "'g'", "# get intensity key and make sure intensity data is not blank", "intlist", "=", "[", "'magn_moment'", ",", "'magn_volume'", ",", "'magn_mass'", "]", "IntMeths", "=", "[", "col_name", "for", "col_name", "in", "data", ".", "columns", "if", "col_name", "in", "intlist", "]", "# get rid of any entirely blank intensity columns", "for", "col_name", "in", "IntMeths", ":", "if", "not", "data", "[", "col_name", "]", ".", "any", "(", ")", ":", "data", ".", "drop", "(", "col_name", ",", "axis", "=", "1", ",", "inplace", "=", "True", ")", "IntMeths", "=", "[", "col_name", "for", "col_name", "in", "data", ".", "columns", "if", "col_name", "in", "intlist", "]", "if", "len", "(", "IntMeths", ")", "==", "0", ":", "print", "(", "'-E- No intensity headers found'", ")", "return", "False", ",", "[", "]", "int_key", "=", "IntMeths", "[", "0", "]", "# plot first intensity method found - normalized to initial value anyway - doesn't matter which used", "data", "=", "data", "[", "data", "[", "int_key", "]", ".", "notnull", "(", ")", "]", "# make list of individual plots", "# by default, will be by location_name", "plotlist", "=", "data", "[", "plot_key", "]", ".", "unique", "(", ")", "plotlist", ".", "sort", "(", ")", "pmagplotlib", ".", "plot_init", "(", "FIG", "[", "'demag'", "]", ",", "5", ",", "5", ")", "last_plot", "=", "False", "# iterate through and plot the data", "for", "plot", "in", "plotlist", ":", "if", "plot", "==", "plotlist", "[", "-", "1", "]", ":", "last_plot", "=", "True", "plot_data", "=", "data", "[", "data", "[", "plot_key", "]", "==", "plot", "]", ".", "copy", "(", ")", "if", "not", "save_plots", ":", "print", "(", "plot", ",", "'plotting by: '", ",", "plot_key", ")", "if", "len", "(", "plot_data", ")", ">", "2", ":", "title", "=", "plot", "spcs", "=", "[", "]", "spcs", "=", "plot_data", "[", "'specimen'", "]", ".", "unique", "(", ")", "for", "spc", "in", "spcs", ":", "INTblock", "=", "[", "]", "spec_data", "=", "plot_data", "[", "plot_data", "[", "'specimen'", "]", "==", "spc", "]", "for", "ind", ",", "rec", "in", "spec_data", ".", "iterrows", "(", ")", ":", "INTblock", ".", "append", "(", "[", "float", "(", "rec", "[", "dmag_key", "]", ")", ",", "0", ",", "0", ",", "float", "(", "rec", "[", "int_key", "]", ")", ",", "1", ",", "rec", "[", "'quality'", "]", "]", ")", "if", "len", "(", "INTblock", ")", ">", "2", ":", "pmagplotlib", ".", "plot_mag", "(", "FIG", "[", "'demag'", "]", ",", "INTblock", ",", "title", ",", "0", ",", "units", ",", "norm", ")", "if", "save_plots", ":", "files", "=", "{", "}", "for", "key", "in", "list", "(", "FIG", ".", "keys", "(", ")", ")", ":", "if", "pmagplotlib", ".", "isServer", ":", "files", "[", "key", "]", "=", "title", "+", "'_'", "+", "LT", "+", "'.'", "+", "fmt", "incl_dir", "=", "False", "else", ":", "# if not server, include directory in output path", "files", "[", "key", "]", "=", "os", ".", "path", ".", "join", "(", "dir_path", ",", "title", "+", "'_'", "+", "LT", "+", "'.'", "+", "fmt", ")", "incl_dir", "=", "True", "pmagplotlib", ".", "save_plots", "(", "FIG", ",", "files", ",", "incl_directory", "=", "incl_dir", ")", "else", ":", "pmagplotlib", ".", "draw_figs", "(", "FIG", ")", "prompt", "=", "\" S[a]ve to save plot, [q]uit, Return to continue: \"", "ans", "=", "input", "(", "prompt", ")", "if", "ans", "==", "'q'", ":", "return", "True", ",", "[", "]", "if", "ans", "==", "\"a\"", ":", "files", "=", "{", "}", "for", "key", "in", "list", "(", "FIG", ".", "keys", "(", ")", ")", ":", "if", "pmagplotlib", ".", "isServer", ":", "files", "[", "key", "]", "=", "title", "+", "'_'", "+", "LT", "+", "'.'", "+", "fmt", "incl_dir", "=", "False", "else", ":", "# if not server, include directory in output path", "files", "[", "key", "]", "=", "os", ".", "path", ".", "join", "(", "dir_path", ",", "title", "+", "'_'", "+", "LT", "+", "'.'", "+", "fmt", ")", "incl_dir", "=", "True", "pmagplotlib", ".", "save_plots", "(", "FIG", ",", "files", ",", "incl_directory", "=", "incl_dir", ")", "pmagplotlib", ".", "clearFIG", "(", "FIG", "[", "'demag'", "]", ")", "if", "last_plot", ":", "return", "True", ",", "[", "]" ]
plots intensity decay curves for demagnetization experiments Parameters ---------- in_file : str, default "measurements.txt" dir_path : str output directory, default "." input_dir_path : str input file directory (if different from dir_path), default "" spec_file : str input specimen file name, default "specimens.txt" samp_file: str input sample file name, default "samples.txt" site_file : str input site file name, default "sites.txt" loc_file : str input location file name, default "locations.txt" plot_by : str [spc, sam, sit, loc] (specimen, sample, site, location), default "loc" LT : str lab treatment [T, AF, M], default AF norm : bool normalize by NRM magnetization, default True XLP : str exclude specific lab protocols, (for example, method codes like LP-PI) default "" save_plots : bool plot and save non-interactively, default True fmt : str ["png", "svg", "pdf", "jpg"], default "svg" Returns --------- type - Tuple : (True or False indicating if conversion was sucessful, file name(s) written)
[ "plots", "intensity", "decay", "curves", "for", "demagnetization", "experiments" ]
python
train
40.023256
fastai/fastai
fastai/layers.py
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/layers.py#L221-L229
def icnr(x, scale=2, init=nn.init.kaiming_normal_): "ICNR init of `x`, with `scale` and `init` function." ni,nf,h,w = x.shape ni2 = int(ni/(scale**2)) k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1) k = k.contiguous().view(ni2, nf, -1) k = k.repeat(1, 1, scale**2) k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1) x.data.copy_(k)
[ "def", "icnr", "(", "x", ",", "scale", "=", "2", ",", "init", "=", "nn", ".", "init", ".", "kaiming_normal_", ")", ":", "ni", ",", "nf", ",", "h", ",", "w", "=", "x", ".", "shape", "ni2", "=", "int", "(", "ni", "/", "(", "scale", "**", "2", ")", ")", "k", "=", "init", "(", "torch", ".", "zeros", "(", "[", "ni2", ",", "nf", ",", "h", ",", "w", "]", ")", ")", ".", "transpose", "(", "0", ",", "1", ")", "k", "=", "k", ".", "contiguous", "(", ")", ".", "view", "(", "ni2", ",", "nf", ",", "-", "1", ")", "k", "=", "k", ".", "repeat", "(", "1", ",", "1", ",", "scale", "**", "2", ")", "k", "=", "k", ".", "contiguous", "(", ")", ".", "view", "(", "[", "nf", ",", "ni", ",", "h", ",", "w", "]", ")", ".", "transpose", "(", "0", ",", "1", ")", "x", ".", "data", ".", "copy_", "(", "k", ")" ]
ICNR init of `x`, with `scale` and `init` function.
[ "ICNR", "init", "of", "x", "with", "scale", "and", "init", "function", "." ]
python
train
40.111111
jobovy/galpy
galpy/orbit/Orbit.py
https://github.com/jobovy/galpy/blob/9c5b9fe65d58835624dffe432be282060918ee08/galpy/orbit/Orbit.py#L2643-L2689
def vra(self,*args,**kwargs): """ NAME: vra PURPOSE: return velocity in right ascension (km/s) INPUT: t - (optional) time at which to get vra (can be Quantity) obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer in the Galactocentric frame (in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]; entries can be Quantity) OR Orbit object that corresponds to the orbit of the observer Y is ignored and always assumed to be zero ro= (Object-wide default) physical scale for distances to use to convert (can be Quantity) vo= (Object-wide default) physical scale for velocities to use to convert (can be Quantity) OUTPUT: v_ra(t) in km/s HISTORY: 2011-03-27 - Written - Bovy (NYU) """ from .OrbitTop import _check_roSet, _check_voSet _check_roSet(self,kwargs,'vra') _check_voSet(self,kwargs,'vra') dist= self._orb.dist(*args,**kwargs) if _APY_UNITS and isinstance(dist,units.Quantity): out= units.Quantity(dist.to(units.kpc).value*_K* self._orb.pmra(*args,**kwargs)\ .to(units.mas/units.yr).value, unit=units.km/units.s) else: out= dist*_K*self._orb.pmra(*args,**kwargs) if len(out) == 1: return out[0] else: return out
[ "def", "vra", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "from", ".", "OrbitTop", "import", "_check_roSet", ",", "_check_voSet", "_check_roSet", "(", "self", ",", "kwargs", ",", "'vra'", ")", "_check_voSet", "(", "self", ",", "kwargs", ",", "'vra'", ")", "dist", "=", "self", ".", "_orb", ".", "dist", "(", "*", "args", ",", "*", "*", "kwargs", ")", "if", "_APY_UNITS", "and", "isinstance", "(", "dist", ",", "units", ".", "Quantity", ")", ":", "out", "=", "units", ".", "Quantity", "(", "dist", ".", "to", "(", "units", ".", "kpc", ")", ".", "value", "*", "_K", "*", "self", ".", "_orb", ".", "pmra", "(", "*", "args", ",", "*", "*", "kwargs", ")", ".", "to", "(", "units", ".", "mas", "/", "units", ".", "yr", ")", ".", "value", ",", "unit", "=", "units", ".", "km", "/", "units", ".", "s", ")", "else", ":", "out", "=", "dist", "*", "_K", "*", "self", ".", "_orb", ".", "pmra", "(", "*", "args", ",", "*", "*", "kwargs", ")", "if", "len", "(", "out", ")", "==", "1", ":", "return", "out", "[", "0", "]", "else", ":", "return", "out" ]
NAME: vra PURPOSE: return velocity in right ascension (km/s) INPUT: t - (optional) time at which to get vra (can be Quantity) obs=[X,Y,Z,vx,vy,vz] - (optional) position and velocity of observer in the Galactocentric frame (in kpc and km/s) (default=[8.0,0.,0.,0.,220.,0.]; entries can be Quantity) OR Orbit object that corresponds to the orbit of the observer Y is ignored and always assumed to be zero ro= (Object-wide default) physical scale for distances to use to convert (can be Quantity) vo= (Object-wide default) physical scale for velocities to use to convert (can be Quantity) OUTPUT: v_ra(t) in km/s HISTORY: 2011-03-27 - Written - Bovy (NYU)
[ "NAME", ":" ]
python
train
32.978723
dropbox/stone
stone/frontend/parser.py
https://github.com/dropbox/stone/blob/2e95cbcd1c48e05cca68c919fd8d24adec6b0f58/stone/frontend/parser.py#L478-L480
def p_tag_ref(self, p): 'tag_ref : ID' p[0] = AstTagRef(self.path, p.lineno(1), p.lexpos(1), p[1])
[ "def", "p_tag_ref", "(", "self", ",", "p", ")", ":", "p", "[", "0", "]", "=", "AstTagRef", "(", "self", ".", "path", ",", "p", ".", "lineno", "(", "1", ")", ",", "p", ".", "lexpos", "(", "1", ")", ",", "p", "[", "1", "]", ")" ]
tag_ref : ID
[ "tag_ref", ":", "ID" ]
python
train
37.333333
h2oai/h2o-3
scripts/run.py
https://github.com/h2oai/h2o-3/blob/dd62aaa1e7f680a8b16ee14bc66b0fb5195c2ad8/scripts/run.py#L71-L77
def is_ipython_notebook(file_name): """ Return True if file_name matches a regexp for an ipython notebook. False otherwise. :param file_name: file to test """ if (not re.match("^.*checkpoint\.ipynb$", file_name)) and re.match("^.*\.ipynb$", file_name): return True return False
[ "def", "is_ipython_notebook", "(", "file_name", ")", ":", "if", "(", "not", "re", ".", "match", "(", "\"^.*checkpoint\\.ipynb$\"", ",", "file_name", ")", ")", "and", "re", ".", "match", "(", "\"^.*\\.ipynb$\"", ",", "file_name", ")", ":", "return", "True", "return", "False" ]
Return True if file_name matches a regexp for an ipython notebook. False otherwise. :param file_name: file to test
[ "Return", "True", "if", "file_name", "matches", "a", "regexp", "for", "an", "ipython", "notebook", ".", "False", "otherwise", ".", ":", "param", "file_name", ":", "file", "to", "test" ]
python
test
42.285714
rwl/pylon
pylon/io/excel.py
https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L38-L43
def write(self, file_or_filename): """ Writes case data to file in Excel format. """ self.book = Workbook() self._write_data(None) self.book.save(file_or_filename)
[ "def", "write", "(", "self", ",", "file_or_filename", ")", ":", "self", ".", "book", "=", "Workbook", "(", ")", "self", ".", "_write_data", "(", "None", ")", "self", ".", "book", ".", "save", "(", "file_or_filename", ")" ]
Writes case data to file in Excel format.
[ "Writes", "case", "data", "to", "file", "in", "Excel", "format", "." ]
python
train
33
datadesk/django-bakery
bakery/management/commands/__init__.py
https://github.com/datadesk/django-bakery/blob/e2feb13a66552a388fbcfaaacdd504bba08d3c69/bakery/management/commands/__init__.py#L8-L38
def get_s3_client(): """ A DRY place to make sure AWS credentials in settings override environment based credentials. Boto3 will fall back to: http://boto3.readthedocs.io/en/latest/guide/configuration.html """ session_kwargs = {} if hasattr(settings, 'AWS_ACCESS_KEY_ID'): session_kwargs['aws_access_key_id'] = settings.AWS_ACCESS_KEY_ID if hasattr(settings, 'AWS_SECRET_ACCESS_KEY'): session_kwargs['aws_secret_access_key'] = settings.AWS_SECRET_ACCESS_KEY boto3.setup_default_session(**session_kwargs) s3_kwargs = {} if hasattr(settings, 'AWS_S3_ENDPOINT'): s3_kwargs['endpoint_url'] = settings.AWS_S3_ENDPOINT elif hasattr(settings, 'AWS_S3_HOST'): if hasattr(settings, 'AWS_S3_USE_SSL') and settings.AWS_S3_USE_SSL is False: protocol = "http://" else: protocol = "https://" s3_kwargs['endpoint_url'] = "{}{}".format( protocol, settings.AWS_S3_HOST ) if hasattr(settings, "AWS_REGION"): s3_kwargs['region_name'] = settings.AWS_REGION s3_client = boto3.client('s3', **s3_kwargs) s3_resource = boto3.resource('s3', **s3_kwargs) return s3_client, s3_resource
[ "def", "get_s3_client", "(", ")", ":", "session_kwargs", "=", "{", "}", "if", "hasattr", "(", "settings", ",", "'AWS_ACCESS_KEY_ID'", ")", ":", "session_kwargs", "[", "'aws_access_key_id'", "]", "=", "settings", ".", "AWS_ACCESS_KEY_ID", "if", "hasattr", "(", "settings", ",", "'AWS_SECRET_ACCESS_KEY'", ")", ":", "session_kwargs", "[", "'aws_secret_access_key'", "]", "=", "settings", ".", "AWS_SECRET_ACCESS_KEY", "boto3", ".", "setup_default_session", "(", "*", "*", "session_kwargs", ")", "s3_kwargs", "=", "{", "}", "if", "hasattr", "(", "settings", ",", "'AWS_S3_ENDPOINT'", ")", ":", "s3_kwargs", "[", "'endpoint_url'", "]", "=", "settings", ".", "AWS_S3_ENDPOINT", "elif", "hasattr", "(", "settings", ",", "'AWS_S3_HOST'", ")", ":", "if", "hasattr", "(", "settings", ",", "'AWS_S3_USE_SSL'", ")", "and", "settings", ".", "AWS_S3_USE_SSL", "is", "False", ":", "protocol", "=", "\"http://\"", "else", ":", "protocol", "=", "\"https://\"", "s3_kwargs", "[", "'endpoint_url'", "]", "=", "\"{}{}\"", ".", "format", "(", "protocol", ",", "settings", ".", "AWS_S3_HOST", ")", "if", "hasattr", "(", "settings", ",", "\"AWS_REGION\"", ")", ":", "s3_kwargs", "[", "'region_name'", "]", "=", "settings", ".", "AWS_REGION", "s3_client", "=", "boto3", ".", "client", "(", "'s3'", ",", "*", "*", "s3_kwargs", ")", "s3_resource", "=", "boto3", ".", "resource", "(", "'s3'", ",", "*", "*", "s3_kwargs", ")", "return", "s3_client", ",", "s3_resource" ]
A DRY place to make sure AWS credentials in settings override environment based credentials. Boto3 will fall back to: http://boto3.readthedocs.io/en/latest/guide/configuration.html
[ "A", "DRY", "place", "to", "make", "sure", "AWS", "credentials", "in", "settings", "override", "environment", "based", "credentials", ".", "Boto3", "will", "fall", "back", "to", ":", "http", ":", "//", "boto3", ".", "readthedocs", ".", "io", "/", "en", "/", "latest", "/", "guide", "/", "configuration", ".", "html" ]
python
train
38.935484
shad7/tvdbapi_client
tvdbapi_client/api.py
https://github.com/shad7/tvdbapi_client/blob/edf1771184122f4db42af7fc087407a3e6a4e377/tvdbapi_client/api.py#L96-L100
def token_expired(self): """Provide access to flag indicating if token has expired.""" if self._token_timer is None: return True return timeutil.is_newer_than(self._token_timer, timeutil.ONE_HOUR)
[ "def", "token_expired", "(", "self", ")", ":", "if", "self", ".", "_token_timer", "is", "None", ":", "return", "True", "return", "timeutil", ".", "is_newer_than", "(", "self", ".", "_token_timer", ",", "timeutil", ".", "ONE_HOUR", ")" ]
Provide access to flag indicating if token has expired.
[ "Provide", "access", "to", "flag", "indicating", "if", "token", "has", "expired", "." ]
python
train
45.6
limix/numpy-sugar
numpy_sugar/linalg/qs.py
https://github.com/limix/numpy-sugar/blob/4bdfa26913135c76ef3cd542a332f4e5861e948b/numpy_sugar/linalg/qs.py#L5-L36
def economic_qs(K, epsilon=sqrt(finfo(float).eps)): r"""Economic eigen decomposition for symmetric matrices. A symmetric matrix ``K`` can be decomposed in :math:`\mathrm Q_0 \mathrm S_0 \mathrm Q_0^\intercal + \mathrm Q_1\ \mathrm S_1 \mathrm Q_1^ \intercal`, where :math:`\mathrm S_1` is a zero matrix with size determined by ``K``'s rank deficiency. Args: K (array_like): Symmetric matrix. epsilon (float): Eigen value threshold. Default is ``sqrt(finfo(float).eps)``. Returns: tuple: ``((Q0, Q1), S0)``. """ (S, Q) = eigh(K) nok = abs(max(Q[0].min(), Q[0].max(), key=abs)) < epsilon nok = nok and abs(max(K.min(), K.max(), key=abs)) >= epsilon if nok: from scipy.linalg import eigh as sp_eigh (S, Q) = sp_eigh(K) ok = S >= epsilon nok = logical_not(ok) S0 = S[ok] Q0 = Q[:, ok] Q1 = Q[:, nok] return ((Q0, Q1), S0)
[ "def", "economic_qs", "(", "K", ",", "epsilon", "=", "sqrt", "(", "finfo", "(", "float", ")", ".", "eps", ")", ")", ":", "(", "S", ",", "Q", ")", "=", "eigh", "(", "K", ")", "nok", "=", "abs", "(", "max", "(", "Q", "[", "0", "]", ".", "min", "(", ")", ",", "Q", "[", "0", "]", ".", "max", "(", ")", ",", "key", "=", "abs", ")", ")", "<", "epsilon", "nok", "=", "nok", "and", "abs", "(", "max", "(", "K", ".", "min", "(", ")", ",", "K", ".", "max", "(", ")", ",", "key", "=", "abs", ")", ")", ">=", "epsilon", "if", "nok", ":", "from", "scipy", ".", "linalg", "import", "eigh", "as", "sp_eigh", "(", "S", ",", "Q", ")", "=", "sp_eigh", "(", "K", ")", "ok", "=", "S", ">=", "epsilon", "nok", "=", "logical_not", "(", "ok", ")", "S0", "=", "S", "[", "ok", "]", "Q0", "=", "Q", "[", ":", ",", "ok", "]", "Q1", "=", "Q", "[", ":", ",", "nok", "]", "return", "(", "(", "Q0", ",", "Q1", ")", ",", "S0", ")" ]
r"""Economic eigen decomposition for symmetric matrices. A symmetric matrix ``K`` can be decomposed in :math:`\mathrm Q_0 \mathrm S_0 \mathrm Q_0^\intercal + \mathrm Q_1\ \mathrm S_1 \mathrm Q_1^ \intercal`, where :math:`\mathrm S_1` is a zero matrix with size determined by ``K``'s rank deficiency. Args: K (array_like): Symmetric matrix. epsilon (float): Eigen value threshold. Default is ``sqrt(finfo(float).eps)``. Returns: tuple: ``((Q0, Q1), S0)``.
[ "r", "Economic", "eigen", "decomposition", "for", "symmetric", "matrices", "." ]
python
train
29.0625
gwastro/pycbc
pycbc/workflow/jobsetup.py
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/workflow/jobsetup.py#L179-L322
def sngl_ifo_job_setup(workflow, ifo, out_files, curr_exe_job, science_segs, datafind_outs, parents=None, link_job_instance=None, allow_overlap=True, compatibility_mode=True): """ This function sets up a set of single ifo jobs. A basic overview of how this works is as follows: * (1) Identify the length of data that each job needs to read in, and what part of that data the job is valid for. * START LOOPING OVER SCIENCE SEGMENTS * (2) Identify how many jobs are needed (if any) to cover the given science segment and the time shift between jobs. If no jobs continue. * START LOOPING OVER JOBS * (3) Identify the time that the given job should produce valid output (ie. inspiral triggers) over. * (4) Identify the data range that the job will need to read in to produce the aforementioned valid output. * (5) Identify all parents/inputs of the job. * (6) Add the job to the workflow * END LOOPING OVER JOBS * END LOOPING OVER SCIENCE SEGMENTS Parameters ----------- workflow: pycbc.workflow.core.Workflow An instance of the Workflow class that manages the constructed workflow. ifo : string The name of the ifo to set up the jobs for out_files : pycbc.workflow.core.FileList The FileList containing the list of jobs. Jobs will be appended to this list, and it does not need to be empty when supplied. curr_exe_job : Job An instanced of the Job class that has a get_valid times method. science_segs : ligo.segments.segmentlist The list of times that the jobs should cover datafind_outs : pycbc.workflow.core.FileList The file list containing the datafind files. parents : pycbc.workflow.core.FileList (optional, kwarg, default=None) The FileList containing the list of jobs that are parents to the one being set up. link_job_instance : Job instance (optional), Coordinate the valid times with another Executable. allow_overlap : boolean (optional, kwarg, default = True) If this is set the times that jobs are valid for will be allowed to overlap. This may be desired for template banks which may have some overlap in the times they cover. This may not be desired for inspiral jobs, where you probably want triggers recorded by jobs to not overlap at all. compatibility_mode : boolean (optional, kwarg, default = False) If given the jobs will be tiled in the same method as used in inspiral hipe. This requires that link_job_instance is also given. If not given workflow's methods are used. Returns -------- out_files : pycbc.workflow.core.FileList A list of the files that will be generated by this step in the workflow. """ if compatibility_mode and not link_job_instance: errMsg = "Compability mode requires a link_job_instance." raise ValueError(errMsg) ########### (1) ############ # Get the times that can be analysed and needed data lengths data_length, valid_chunk, valid_length = identify_needed_data(curr_exe_job, link_job_instance=link_job_instance) # Loop over science segments and set up jobs for curr_seg in science_segs: ########### (2) ############ # Initialize the class that identifies how many jobs are needed and the # shift between them. segmenter = JobSegmenter(data_length, valid_chunk, valid_length, curr_seg, curr_exe_job, compatibility_mode=compatibility_mode) for job_num in range(segmenter.num_jobs): ############## (3) ############# # Figure out over what times this job will be valid for job_valid_seg = segmenter.get_valid_times_for_job(job_num, allow_overlap=allow_overlap) ############## (4) ############# # Get the data that this job should read in job_data_seg = segmenter.get_data_times_for_job(job_num) ############# (5) ############ # Identify parents/inputs to the job if parents: # Find the set of files with the best overlap curr_parent = parents.find_outputs_in_range(ifo, job_valid_seg, useSplitLists=True) if not curr_parent: err_string = ("No parent jobs found overlapping %d to %d." %(job_valid_seg[0], job_valid_seg[1])) err_string += "\nThis is a bad error! Contact a developer." raise ValueError(err_string) else: curr_parent = [None] curr_dfouts = None if datafind_outs: curr_dfouts = datafind_outs.find_all_output_in_range(ifo, job_data_seg, useSplitLists=True) if not curr_dfouts: err_str = ("No datafind jobs found overlapping %d to %d." %(job_data_seg[0],job_data_seg[1])) err_str += "\nThis shouldn't happen. Contact a developer." raise ValueError(err_str) ############## (6) ############# # Make node and add to workflow # Note if I have more than one curr_parent I need to make more than # one job. If there are no curr_parents it is set to [None] and I # make a single job. This catches the case of a split template bank # where I run a number of jobs to cover a single range of time. # Sort parent jobs to ensure predictable order sorted_parents = sorted(curr_parent, key=lambda fobj: fobj.tagged_description) for pnum, parent in enumerate(sorted_parents): if len(curr_parent) != 1: tag = ["JOB%d" %(pnum,)] else: tag = [] # To ensure output file uniqueness I add a tag # We should generate unique names automatically, but it is a # pain until we can set the output names for all Executables node = curr_exe_job.create_node(job_data_seg, job_valid_seg, parent=parent, dfParents=curr_dfouts, tags=tag) workflow.add_node(node) curr_out_files = node.output_files # FIXME: Here we remove PSD files if they are coming through. # This should be done in a better way. On to-do list. curr_out_files = [i for i in curr_out_files if 'PSD_FILE'\ not in i.tags] out_files += curr_out_files return out_files
[ "def", "sngl_ifo_job_setup", "(", "workflow", ",", "ifo", ",", "out_files", ",", "curr_exe_job", ",", "science_segs", ",", "datafind_outs", ",", "parents", "=", "None", ",", "link_job_instance", "=", "None", ",", "allow_overlap", "=", "True", ",", "compatibility_mode", "=", "True", ")", ":", "if", "compatibility_mode", "and", "not", "link_job_instance", ":", "errMsg", "=", "\"Compability mode requires a link_job_instance.\"", "raise", "ValueError", "(", "errMsg", ")", "########### (1) ############", "# Get the times that can be analysed and needed data lengths", "data_length", ",", "valid_chunk", ",", "valid_length", "=", "identify_needed_data", "(", "curr_exe_job", ",", "link_job_instance", "=", "link_job_instance", ")", "# Loop over science segments and set up jobs", "for", "curr_seg", "in", "science_segs", ":", "########### (2) ############", "# Initialize the class that identifies how many jobs are needed and the", "# shift between them.", "segmenter", "=", "JobSegmenter", "(", "data_length", ",", "valid_chunk", ",", "valid_length", ",", "curr_seg", ",", "curr_exe_job", ",", "compatibility_mode", "=", "compatibility_mode", ")", "for", "job_num", "in", "range", "(", "segmenter", ".", "num_jobs", ")", ":", "############## (3) #############", "# Figure out over what times this job will be valid for", "job_valid_seg", "=", "segmenter", ".", "get_valid_times_for_job", "(", "job_num", ",", "allow_overlap", "=", "allow_overlap", ")", "############## (4) #############", "# Get the data that this job should read in", "job_data_seg", "=", "segmenter", ".", "get_data_times_for_job", "(", "job_num", ")", "############# (5) ############", "# Identify parents/inputs to the job", "if", "parents", ":", "# Find the set of files with the best overlap", "curr_parent", "=", "parents", ".", "find_outputs_in_range", "(", "ifo", ",", "job_valid_seg", ",", "useSplitLists", "=", "True", ")", "if", "not", "curr_parent", ":", "err_string", "=", "(", "\"No parent jobs found overlapping %d to %d.\"", "%", "(", "job_valid_seg", "[", "0", "]", ",", "job_valid_seg", "[", "1", "]", ")", ")", "err_string", "+=", "\"\\nThis is a bad error! Contact a developer.\"", "raise", "ValueError", "(", "err_string", ")", "else", ":", "curr_parent", "=", "[", "None", "]", "curr_dfouts", "=", "None", "if", "datafind_outs", ":", "curr_dfouts", "=", "datafind_outs", ".", "find_all_output_in_range", "(", "ifo", ",", "job_data_seg", ",", "useSplitLists", "=", "True", ")", "if", "not", "curr_dfouts", ":", "err_str", "=", "(", "\"No datafind jobs found overlapping %d to %d.\"", "%", "(", "job_data_seg", "[", "0", "]", ",", "job_data_seg", "[", "1", "]", ")", ")", "err_str", "+=", "\"\\nThis shouldn't happen. Contact a developer.\"", "raise", "ValueError", "(", "err_str", ")", "############## (6) #############", "# Make node and add to workflow", "# Note if I have more than one curr_parent I need to make more than", "# one job. If there are no curr_parents it is set to [None] and I", "# make a single job. This catches the case of a split template bank", "# where I run a number of jobs to cover a single range of time.", "# Sort parent jobs to ensure predictable order", "sorted_parents", "=", "sorted", "(", "curr_parent", ",", "key", "=", "lambda", "fobj", ":", "fobj", ".", "tagged_description", ")", "for", "pnum", ",", "parent", "in", "enumerate", "(", "sorted_parents", ")", ":", "if", "len", "(", "curr_parent", ")", "!=", "1", ":", "tag", "=", "[", "\"JOB%d\"", "%", "(", "pnum", ",", ")", "]", "else", ":", "tag", "=", "[", "]", "# To ensure output file uniqueness I add a tag", "# We should generate unique names automatically, but it is a", "# pain until we can set the output names for all Executables", "node", "=", "curr_exe_job", ".", "create_node", "(", "job_data_seg", ",", "job_valid_seg", ",", "parent", "=", "parent", ",", "dfParents", "=", "curr_dfouts", ",", "tags", "=", "tag", ")", "workflow", ".", "add_node", "(", "node", ")", "curr_out_files", "=", "node", ".", "output_files", "# FIXME: Here we remove PSD files if they are coming through.", "# This should be done in a better way. On to-do list.", "curr_out_files", "=", "[", "i", "for", "i", "in", "curr_out_files", "if", "'PSD_FILE'", "not", "in", "i", ".", "tags", "]", "out_files", "+=", "curr_out_files", "return", "out_files" ]
This function sets up a set of single ifo jobs. A basic overview of how this works is as follows: * (1) Identify the length of data that each job needs to read in, and what part of that data the job is valid for. * START LOOPING OVER SCIENCE SEGMENTS * (2) Identify how many jobs are needed (if any) to cover the given science segment and the time shift between jobs. If no jobs continue. * START LOOPING OVER JOBS * (3) Identify the time that the given job should produce valid output (ie. inspiral triggers) over. * (4) Identify the data range that the job will need to read in to produce the aforementioned valid output. * (5) Identify all parents/inputs of the job. * (6) Add the job to the workflow * END LOOPING OVER JOBS * END LOOPING OVER SCIENCE SEGMENTS Parameters ----------- workflow: pycbc.workflow.core.Workflow An instance of the Workflow class that manages the constructed workflow. ifo : string The name of the ifo to set up the jobs for out_files : pycbc.workflow.core.FileList The FileList containing the list of jobs. Jobs will be appended to this list, and it does not need to be empty when supplied. curr_exe_job : Job An instanced of the Job class that has a get_valid times method. science_segs : ligo.segments.segmentlist The list of times that the jobs should cover datafind_outs : pycbc.workflow.core.FileList The file list containing the datafind files. parents : pycbc.workflow.core.FileList (optional, kwarg, default=None) The FileList containing the list of jobs that are parents to the one being set up. link_job_instance : Job instance (optional), Coordinate the valid times with another Executable. allow_overlap : boolean (optional, kwarg, default = True) If this is set the times that jobs are valid for will be allowed to overlap. This may be desired for template banks which may have some overlap in the times they cover. This may not be desired for inspiral jobs, where you probably want triggers recorded by jobs to not overlap at all. compatibility_mode : boolean (optional, kwarg, default = False) If given the jobs will be tiled in the same method as used in inspiral hipe. This requires that link_job_instance is also given. If not given workflow's methods are used. Returns -------- out_files : pycbc.workflow.core.FileList A list of the files that will be generated by this step in the workflow.
[ "This", "function", "sets", "up", "a", "set", "of", "single", "ifo", "jobs", ".", "A", "basic", "overview", "of", "how", "this", "works", "is", "as", "follows", ":" ]
python
train
49.013889
bwohlberg/sporco
sporco/admm/cbpdn.py
https://github.com/bwohlberg/sporco/blob/8946a04331106f4e39904fbdf2dc7351900baa04/sporco/admm/cbpdn.py#L614-L620
def obfn_reg(self): """Compute regularisation term and contribution to objective function. """ rl1 = np.linalg.norm((self.wl1 * self.obfn_gvar()).ravel(), 1) return (self.lmbda*rl1, rl1)
[ "def", "obfn_reg", "(", "self", ")", ":", "rl1", "=", "np", ".", "linalg", ".", "norm", "(", "(", "self", ".", "wl1", "*", "self", ".", "obfn_gvar", "(", ")", ")", ".", "ravel", "(", ")", ",", "1", ")", "return", "(", "self", ".", "lmbda", "*", "rl1", ",", "rl1", ")" ]
Compute regularisation term and contribution to objective function.
[ "Compute", "regularisation", "term", "and", "contribution", "to", "objective", "function", "." ]
python
train
31.571429
ellmetha/django-machina
machina/apps/forum_conversation/views.py
https://github.com/ellmetha/django-machina/blob/89ac083c1eaf1cfdeae6686ee094cc86362e8c69/machina/apps/forum_conversation/views.py#L314-L321
def get_post(self): """ Returns the considered post if applicable. """ pk = self.kwargs.get(self.post_pk_url_kwarg, None) if not pk: return if not hasattr(self, '_forum_post'): self._forum_post = get_object_or_404(Post, pk=pk) return self._forum_post
[ "def", "get_post", "(", "self", ")", ":", "pk", "=", "self", ".", "kwargs", ".", "get", "(", "self", ".", "post_pk_url_kwarg", ",", "None", ")", "if", "not", "pk", ":", "return", "if", "not", "hasattr", "(", "self", ",", "'_forum_post'", ")", ":", "self", ".", "_forum_post", "=", "get_object_or_404", "(", "Post", ",", "pk", "=", "pk", ")", "return", "self", ".", "_forum_post" ]
Returns the considered post if applicable.
[ "Returns", "the", "considered", "post", "if", "applicable", "." ]
python
train
38.375
rvswift/EB
EB/builder/splitter/splitter.py
https://github.com/rvswift/EB/blob/341880b79faf8147dc9fa6e90438531cd09fabcc/EB/builder/splitter/splitter.py#L190-L230
def read_csv(csvfile, options): """ Read csv and return molList, a list of mol objects """ # open file or exit name, ext = os.path.splitext(csvfile) try: if ext == '.gz': f = gzip.open(csvfile, 'rb') else: f = open(csvfile, 'rU') except IOError: print(" \n '{f}' could not be opened\n".format(f=os.path.basename(csvfile))) sys.exit(1) # read file csv_reader = csv.reader(f) molList = [] linenumber = 1 for line in csv_reader: # get column labels from the first line if linenumber == 1: prop_indices = read_header(line, options) # otherwise read line & append to MolList else: mol = Molecule() mol = read_line(line, options, prop_indices, mol) # if the line's junk, skip it if mol == 1: print(" skipping molecule 'm'\n".format(m=(linenumber - 1))) else: molList.append(mol) linenumber += 1 # return molList return molList
[ "def", "read_csv", "(", "csvfile", ",", "options", ")", ":", "# open file or exit", "name", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "csvfile", ")", "try", ":", "if", "ext", "==", "'.gz'", ":", "f", "=", "gzip", ".", "open", "(", "csvfile", ",", "'rb'", ")", "else", ":", "f", "=", "open", "(", "csvfile", ",", "'rU'", ")", "except", "IOError", ":", "print", "(", "\" \\n '{f}' could not be opened\\n\"", ".", "format", "(", "f", "=", "os", ".", "path", ".", "basename", "(", "csvfile", ")", ")", ")", "sys", ".", "exit", "(", "1", ")", "# read file", "csv_reader", "=", "csv", ".", "reader", "(", "f", ")", "molList", "=", "[", "]", "linenumber", "=", "1", "for", "line", "in", "csv_reader", ":", "# get column labels from the first line", "if", "linenumber", "==", "1", ":", "prop_indices", "=", "read_header", "(", "line", ",", "options", ")", "# otherwise read line & append to MolList", "else", ":", "mol", "=", "Molecule", "(", ")", "mol", "=", "read_line", "(", "line", ",", "options", ",", "prop_indices", ",", "mol", ")", "# if the line's junk, skip it", "if", "mol", "==", "1", ":", "print", "(", "\" skipping molecule 'm'\\n\"", ".", "format", "(", "m", "=", "(", "linenumber", "-", "1", ")", ")", ")", "else", ":", "molList", ".", "append", "(", "mol", ")", "linenumber", "+=", "1", "# return molList", "return", "molList" ]
Read csv and return molList, a list of mol objects
[ "Read", "csv", "and", "return", "molList", "a", "list", "of", "mol", "objects" ]
python
train
25.292683
echinopsii/net.echinopsii.ariane.community.cli.python3
ariane_clip3/directory.py
https://github.com/echinopsii/net.echinopsii.ariane.community.cli.python3/blob/0a7feddebf66fee4bef38d64f456d93a7e9fcd68/ariane_clip3/directory.py#L137-L157
def location_2_json(self): """ transform ariane_clip3 location object to Ariane server JSON obj :return: Ariane JSON obj """ LOGGER.debug("Location.location_2_json") json_obj = { 'locationID': self.id, 'locationName': self.name, 'locationDescription': self.description, 'locationAddress': self.address, 'locationZipCode': self.zip_code, 'locationTown': self.town, 'locationType': self.type, 'locationCountry': self.country, 'locationGPSLat': self.gpsLatitude, 'locationGPSLng': self.gpsLongitude, 'locationRoutingAreasID': self.routing_area_ids, 'locationSubnetsID': self.subnet_ids } return json.dumps(json_obj)
[ "def", "location_2_json", "(", "self", ")", ":", "LOGGER", ".", "debug", "(", "\"Location.location_2_json\"", ")", "json_obj", "=", "{", "'locationID'", ":", "self", ".", "id", ",", "'locationName'", ":", "self", ".", "name", ",", "'locationDescription'", ":", "self", ".", "description", ",", "'locationAddress'", ":", "self", ".", "address", ",", "'locationZipCode'", ":", "self", ".", "zip_code", ",", "'locationTown'", ":", "self", ".", "town", ",", "'locationType'", ":", "self", ".", "type", ",", "'locationCountry'", ":", "self", ".", "country", ",", "'locationGPSLat'", ":", "self", ".", "gpsLatitude", ",", "'locationGPSLng'", ":", "self", ".", "gpsLongitude", ",", "'locationRoutingAreasID'", ":", "self", ".", "routing_area_ids", ",", "'locationSubnetsID'", ":", "self", ".", "subnet_ids", "}", "return", "json", ".", "dumps", "(", "json_obj", ")" ]
transform ariane_clip3 location object to Ariane server JSON obj :return: Ariane JSON obj
[ "transform", "ariane_clip3", "location", "object", "to", "Ariane", "server", "JSON", "obj", ":", "return", ":", "Ariane", "JSON", "obj" ]
python
train
38.095238
hazelcast/hazelcast-python-client
hazelcast/protocol/codec/ringbuffer_read_one_codec.py
https://github.com/hazelcast/hazelcast-python-client/blob/3f6639443c23d6d036aa343f8e094f052250d2c1/hazelcast/protocol/codec/ringbuffer_read_one_codec.py#L10-L15
def calculate_size(name, sequence): """ Calculates the request payload size""" data_size = 0 data_size += calculate_size_str(name) data_size += LONG_SIZE_IN_BYTES return data_size
[ "def", "calculate_size", "(", "name", ",", "sequence", ")", ":", "data_size", "=", "0", "data_size", "+=", "calculate_size_str", "(", "name", ")", "data_size", "+=", "LONG_SIZE_IN_BYTES", "return", "data_size" ]
Calculates the request payload size
[ "Calculates", "the", "request", "payload", "size" ]
python
train
32.333333
nwilming/ocupy
ocupy/saccade_geometry.py
https://github.com/nwilming/ocupy/blob/a0bd64f822576feaa502939d6bafd1183b237d16/ocupy/saccade_geometry.py#L51-L63
def saccadic_momentum_effect(durations, forward_angle, summary_stat=nanmean): """ Computes the mean fixation duration at forward angles. """ durations_per_da = np.nan * np.ones((len(e_angle) - 1,)) for i, (bo, b1) in enumerate(zip(e_angle[:-1], e_angle[1:])): idx = ( bo <= forward_angle) & ( forward_angle < b1) & ( ~np.isnan(durations)) durations_per_da[i] = summary_stat(durations[idx]) return durations_per_da
[ "def", "saccadic_momentum_effect", "(", "durations", ",", "forward_angle", ",", "summary_stat", "=", "nanmean", ")", ":", "durations_per_da", "=", "np", ".", "nan", "*", "np", ".", "ones", "(", "(", "len", "(", "e_angle", ")", "-", "1", ",", ")", ")", "for", "i", ",", "(", "bo", ",", "b1", ")", "in", "enumerate", "(", "zip", "(", "e_angle", "[", ":", "-", "1", "]", ",", "e_angle", "[", "1", ":", "]", ")", ")", ":", "idx", "=", "(", "bo", "<=", "forward_angle", ")", "&", "(", "forward_angle", "<", "b1", ")", "&", "(", "~", "np", ".", "isnan", "(", "durations", ")", ")", "durations_per_da", "[", "i", "]", "=", "summary_stat", "(", "durations", "[", "idx", "]", ")", "return", "durations_per_da" ]
Computes the mean fixation duration at forward angles.
[ "Computes", "the", "mean", "fixation", "duration", "at", "forward", "angles", "." ]
python
train
38.923077
openpermissions/koi
koi/base.py
https://github.com/openpermissions/koi/blob/d721f8e1dfa8f07ad265d9dec32e8aaf80a9f281/koi/base.py#L120-L152
def get_json_body(self, required=None, validators=None): """Get JSON from the request body :param required: optionally provide a list of keys that should be in the JSON body (raises a 400 HTTPError if any are missing) :param validator: optionally provide a dictionary of items that should be in the body with a method that validates the item. The method must be synchronous and return a boolean, no exceptions. :raises: HTTPError """ content_type = self.request.headers.get('Content-Type', 'application/json') if 'application/json' not in content_type.split(';'): raise HTTPError(415, 'Content-Type should be application/json') if not self.request.body: error = 'Request body is empty' logging.warning(error) raise HTTPError(400, error) try: body = json.loads(self.request.body) except (ValueError, TypeError): error = 'Error parsing JSON' logging.warning(error) raise HTTPError(400, error) if required: _check_required(body, required) if validators: _validate(body, validators) return body
[ "def", "get_json_body", "(", "self", ",", "required", "=", "None", ",", "validators", "=", "None", ")", ":", "content_type", "=", "self", ".", "request", ".", "headers", ".", "get", "(", "'Content-Type'", ",", "'application/json'", ")", "if", "'application/json'", "not", "in", "content_type", ".", "split", "(", "';'", ")", ":", "raise", "HTTPError", "(", "415", ",", "'Content-Type should be application/json'", ")", "if", "not", "self", ".", "request", ".", "body", ":", "error", "=", "'Request body is empty'", "logging", ".", "warning", "(", "error", ")", "raise", "HTTPError", "(", "400", ",", "error", ")", "try", ":", "body", "=", "json", ".", "loads", "(", "self", ".", "request", ".", "body", ")", "except", "(", "ValueError", ",", "TypeError", ")", ":", "error", "=", "'Error parsing JSON'", "logging", ".", "warning", "(", "error", ")", "raise", "HTTPError", "(", "400", ",", "error", ")", "if", "required", ":", "_check_required", "(", "body", ",", "required", ")", "if", "validators", ":", "_validate", "(", "body", ",", "validators", ")", "return", "body" ]
Get JSON from the request body :param required: optionally provide a list of keys that should be in the JSON body (raises a 400 HTTPError if any are missing) :param validator: optionally provide a dictionary of items that should be in the body with a method that validates the item. The method must be synchronous and return a boolean, no exceptions. :raises: HTTPError
[ "Get", "JSON", "from", "the", "request", "body" ]
python
train
38.151515
eqcorrscan/EQcorrscan
eqcorrscan/utils/plotting.py
https://github.com/eqcorrscan/EQcorrscan/blob/3121b4aca801ee5d38f56ca297ce1c0f9515d9ff/eqcorrscan/utils/plotting.py#L810-L959
def detection_multiplot(stream, template, times, streamcolour='k', templatecolour='r', size=(10.5, 7.5), **kwargs): """ Plot a stream of data with a template on top of it at detection times. :type stream: obspy.core.stream.Stream :param stream: Stream of data to be plotted as the background. :type template: obspy.core.stream.Stream :param template: Template to be plotted on top of the base stream. :type times: list :param times: list of detection times, one for each event :type streamcolour: str :param streamcolour: String of matplotlib colour types for the stream :type templatecolour: str :param templatecolour: Colour to plot the template in. :type size: tuple :param size: Figure size. :returns: :class:`matplotlib.figure.Figure` .. rubric:: Example >>> from obspy import read, read_events >>> import os >>> from eqcorrscan.core import template_gen >>> from eqcorrscan.utils.plotting import detection_multiplot >>> # Get the path to the test data >>> import eqcorrscan >>> import os >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> >>> test_file = os.path.join(TEST_PATH, 'REA', ... 'TEST_', '01-0411-15L.S201309') >>> test_wavefile = os.path.join( ... TEST_PATH, 'WAV', 'TEST_', '2013-09-01-0410-35.DFDPC_024_00') >>> event = read_events(test_file)[0] >>> st = read(test_wavefile) >>> st = st.filter('bandpass', freqmin=2.0, freqmax=15.0) >>> for tr in st: ... tr = tr.trim(tr.stats.starttime + 30, tr.stats.endtime - 30) ... # Hack around seisan 2-letter channel naming ... tr.stats.channel = tr.stats.channel[0] + tr.stats.channel[-1] >>> template = template_gen._template_gen(event.picks, st, 2) >>> times = [min([pk.time -0.05 for pk in event.picks])] >>> detection_multiplot(stream=st, template=template, ... times=times) # doctest: +SKIP .. plot:: from obspy import read, read_events import os from eqcorrscan.core import template_gen from eqcorrscan.utils.plotting import detection_multiplot test_file = os.path.realpath('../../..') + \ '/tests/test_data/REA/TEST_/01-0411-15L.S201309' test_wavefile = os.path.realpath('../../..') +\ '/tests/test_data/WAV/TEST_/' +\ '2013-09-01-0410-35.DFDPC_024_00' event = read_events(test_file)[0] st = read(test_wavefile) st.filter('bandpass', freqmin=2.0, freqmax=15.0) for tr in st: tr.trim(tr.stats.starttime + 30, tr.stats.endtime - 30) tr.stats.channel = tr.stats.channel[0] + tr.stats.channel[-1] template = template_gen._template_gen(event.picks, st, 2) times = [min([pk.time -0.05 for pk in event.picks])] detection_multiplot(stream=st, template=template, times=times) """ import matplotlib.pyplot as plt # Only take traces that match in both accounting for streams shorter than # templates template_stachans = [(tr.stats.station, tr.stats.channel) for tr in template] stream_stachans = [(tr.stats.station, tr.stats.channel) for tr in stream] temp = Stream([tr for tr in template if (tr.stats.station, tr.stats.channel) in stream_stachans]) st = Stream([tr for tr in stream if (tr.stats.station, tr.stats.channel) in template_stachans]) ntraces = len(temp) fig, axes = plt.subplots(ntraces, 1, sharex=True, figsize=size) if len(temp) > 1: axes = axes.ravel() mintime = min([tr.stats.starttime for tr in temp]) temp.sort(keys=['starttime']) for i, template_tr in enumerate(temp): if len(temp) > 1: axis = axes[i] else: axis = axes image = st.select(station=template_tr.stats.station, channel='*' + template_tr.stats.channel[-1]) if not image: msg = ' '.join(['No data for', template_tr.stats.station, template_tr.stats.channel]) print(msg) continue image = image.merge()[0] # Downsample if needed if image.stats.sampling_rate > 20 and image.stats.npts > 10000: image.decimate(int(image.stats.sampling_rate // 20)) template_tr.decimate(int(template_tr.stats.sampling_rate // 20)) # Get a list of datetime objects image_times = [image.stats.starttime.datetime + dt.timedelta((j * image.stats.delta) / 86400) for j in range(len(image.data))] axis.plot(image_times, image.data / max(image.data), streamcolour, linewidth=1.2) for time in times: lagged_time = UTCDateTime(time) + (template_tr.stats.starttime - mintime) lagged_time = lagged_time.datetime template_times = [lagged_time + dt.timedelta((j * template_tr.stats.delta) / 86400) for j in range(len(template_tr.data))] # Normalize the template according to the data detected in try: normalizer = max(image.data[int((template_times[0] - image_times[0]). total_seconds() / image.stats.delta): int((template_times[-1] - image_times[0]). total_seconds() / image.stats.delta)] / max(image.data)) except ValueError: # Occurs when there is no data in the image at this time... normalizer = max(image.data) normalizer /= max(template_tr.data) axis.plot(template_times, template_tr.data * normalizer, templatecolour, linewidth=1.2) ylab = '.'.join([template_tr.stats.station, template_tr.stats.channel]) axis.set_ylabel(ylab, rotation=0, horizontalalignment='right') if len(template) > 1: axes[len(axes) - 1].set_xlabel('Time') else: axis.set_xlabel('Time') plt.subplots_adjust(hspace=0, left=0.175, right=0.95, bottom=0.07) plt.xticks(rotation=10) fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover return fig
[ "def", "detection_multiplot", "(", "stream", ",", "template", ",", "times", ",", "streamcolour", "=", "'k'", ",", "templatecolour", "=", "'r'", ",", "size", "=", "(", "10.5", ",", "7.5", ")", ",", "*", "*", "kwargs", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "# Only take traces that match in both accounting for streams shorter than", "# templates", "template_stachans", "=", "[", "(", "tr", ".", "stats", ".", "station", ",", "tr", ".", "stats", ".", "channel", ")", "for", "tr", "in", "template", "]", "stream_stachans", "=", "[", "(", "tr", ".", "stats", ".", "station", ",", "tr", ".", "stats", ".", "channel", ")", "for", "tr", "in", "stream", "]", "temp", "=", "Stream", "(", "[", "tr", "for", "tr", "in", "template", "if", "(", "tr", ".", "stats", ".", "station", ",", "tr", ".", "stats", ".", "channel", ")", "in", "stream_stachans", "]", ")", "st", "=", "Stream", "(", "[", "tr", "for", "tr", "in", "stream", "if", "(", "tr", ".", "stats", ".", "station", ",", "tr", ".", "stats", ".", "channel", ")", "in", "template_stachans", "]", ")", "ntraces", "=", "len", "(", "temp", ")", "fig", ",", "axes", "=", "plt", ".", "subplots", "(", "ntraces", ",", "1", ",", "sharex", "=", "True", ",", "figsize", "=", "size", ")", "if", "len", "(", "temp", ")", ">", "1", ":", "axes", "=", "axes", ".", "ravel", "(", ")", "mintime", "=", "min", "(", "[", "tr", ".", "stats", ".", "starttime", "for", "tr", "in", "temp", "]", ")", "temp", ".", "sort", "(", "keys", "=", "[", "'starttime'", "]", ")", "for", "i", ",", "template_tr", "in", "enumerate", "(", "temp", ")", ":", "if", "len", "(", "temp", ")", ">", "1", ":", "axis", "=", "axes", "[", "i", "]", "else", ":", "axis", "=", "axes", "image", "=", "st", ".", "select", "(", "station", "=", "template_tr", ".", "stats", ".", "station", ",", "channel", "=", "'*'", "+", "template_tr", ".", "stats", ".", "channel", "[", "-", "1", "]", ")", "if", "not", "image", ":", "msg", "=", "' '", ".", "join", "(", "[", "'No data for'", ",", "template_tr", ".", "stats", ".", "station", ",", "template_tr", ".", "stats", ".", "channel", "]", ")", "print", "(", "msg", ")", "continue", "image", "=", "image", ".", "merge", "(", ")", "[", "0", "]", "# Downsample if needed", "if", "image", ".", "stats", ".", "sampling_rate", ">", "20", "and", "image", ".", "stats", ".", "npts", ">", "10000", ":", "image", ".", "decimate", "(", "int", "(", "image", ".", "stats", ".", "sampling_rate", "//", "20", ")", ")", "template_tr", ".", "decimate", "(", "int", "(", "template_tr", ".", "stats", ".", "sampling_rate", "//", "20", ")", ")", "# Get a list of datetime objects", "image_times", "=", "[", "image", ".", "stats", ".", "starttime", ".", "datetime", "+", "dt", ".", "timedelta", "(", "(", "j", "*", "image", ".", "stats", ".", "delta", ")", "/", "86400", ")", "for", "j", "in", "range", "(", "len", "(", "image", ".", "data", ")", ")", "]", "axis", ".", "plot", "(", "image_times", ",", "image", ".", "data", "/", "max", "(", "image", ".", "data", ")", ",", "streamcolour", ",", "linewidth", "=", "1.2", ")", "for", "time", "in", "times", ":", "lagged_time", "=", "UTCDateTime", "(", "time", ")", "+", "(", "template_tr", ".", "stats", ".", "starttime", "-", "mintime", ")", "lagged_time", "=", "lagged_time", ".", "datetime", "template_times", "=", "[", "lagged_time", "+", "dt", ".", "timedelta", "(", "(", "j", "*", "template_tr", ".", "stats", ".", "delta", ")", "/", "86400", ")", "for", "j", "in", "range", "(", "len", "(", "template_tr", ".", "data", ")", ")", "]", "# Normalize the template according to the data detected in", "try", ":", "normalizer", "=", "max", "(", "image", ".", "data", "[", "int", "(", "(", "template_times", "[", "0", "]", "-", "image_times", "[", "0", "]", ")", ".", "total_seconds", "(", ")", "/", "image", ".", "stats", ".", "delta", ")", ":", "int", "(", "(", "template_times", "[", "-", "1", "]", "-", "image_times", "[", "0", "]", ")", ".", "total_seconds", "(", ")", "/", "image", ".", "stats", ".", "delta", ")", "]", "/", "max", "(", "image", ".", "data", ")", ")", "except", "ValueError", ":", "# Occurs when there is no data in the image at this time...", "normalizer", "=", "max", "(", "image", ".", "data", ")", "normalizer", "/=", "max", "(", "template_tr", ".", "data", ")", "axis", ".", "plot", "(", "template_times", ",", "template_tr", ".", "data", "*", "normalizer", ",", "templatecolour", ",", "linewidth", "=", "1.2", ")", "ylab", "=", "'.'", ".", "join", "(", "[", "template_tr", ".", "stats", ".", "station", ",", "template_tr", ".", "stats", ".", "channel", "]", ")", "axis", ".", "set_ylabel", "(", "ylab", ",", "rotation", "=", "0", ",", "horizontalalignment", "=", "'right'", ")", "if", "len", "(", "template", ")", ">", "1", ":", "axes", "[", "len", "(", "axes", ")", "-", "1", "]", ".", "set_xlabel", "(", "'Time'", ")", "else", ":", "axis", ".", "set_xlabel", "(", "'Time'", ")", "plt", ".", "subplots_adjust", "(", "hspace", "=", "0", ",", "left", "=", "0.175", ",", "right", "=", "0.95", ",", "bottom", "=", "0.07", ")", "plt", ".", "xticks", "(", "rotation", "=", "10", ")", "fig", "=", "_finalise_figure", "(", "fig", "=", "fig", ",", "*", "*", "kwargs", ")", "# pragma: no cover", "return", "fig" ]
Plot a stream of data with a template on top of it at detection times. :type stream: obspy.core.stream.Stream :param stream: Stream of data to be plotted as the background. :type template: obspy.core.stream.Stream :param template: Template to be plotted on top of the base stream. :type times: list :param times: list of detection times, one for each event :type streamcolour: str :param streamcolour: String of matplotlib colour types for the stream :type templatecolour: str :param templatecolour: Colour to plot the template in. :type size: tuple :param size: Figure size. :returns: :class:`matplotlib.figure.Figure` .. rubric:: Example >>> from obspy import read, read_events >>> import os >>> from eqcorrscan.core import template_gen >>> from eqcorrscan.utils.plotting import detection_multiplot >>> # Get the path to the test data >>> import eqcorrscan >>> import os >>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data' >>> >>> test_file = os.path.join(TEST_PATH, 'REA', ... 'TEST_', '01-0411-15L.S201309') >>> test_wavefile = os.path.join( ... TEST_PATH, 'WAV', 'TEST_', '2013-09-01-0410-35.DFDPC_024_00') >>> event = read_events(test_file)[0] >>> st = read(test_wavefile) >>> st = st.filter('bandpass', freqmin=2.0, freqmax=15.0) >>> for tr in st: ... tr = tr.trim(tr.stats.starttime + 30, tr.stats.endtime - 30) ... # Hack around seisan 2-letter channel naming ... tr.stats.channel = tr.stats.channel[0] + tr.stats.channel[-1] >>> template = template_gen._template_gen(event.picks, st, 2) >>> times = [min([pk.time -0.05 for pk in event.picks])] >>> detection_multiplot(stream=st, template=template, ... times=times) # doctest: +SKIP .. plot:: from obspy import read, read_events import os from eqcorrscan.core import template_gen from eqcorrscan.utils.plotting import detection_multiplot test_file = os.path.realpath('../../..') + \ '/tests/test_data/REA/TEST_/01-0411-15L.S201309' test_wavefile = os.path.realpath('../../..') +\ '/tests/test_data/WAV/TEST_/' +\ '2013-09-01-0410-35.DFDPC_024_00' event = read_events(test_file)[0] st = read(test_wavefile) st.filter('bandpass', freqmin=2.0, freqmax=15.0) for tr in st: tr.trim(tr.stats.starttime + 30, tr.stats.endtime - 30) tr.stats.channel = tr.stats.channel[0] + tr.stats.channel[-1] template = template_gen._template_gen(event.picks, st, 2) times = [min([pk.time -0.05 for pk in event.picks])] detection_multiplot(stream=st, template=template, times=times)
[ "Plot", "a", "stream", "of", "data", "with", "a", "template", "on", "top", "of", "it", "at", "detection", "times", "." ]
python
train
44.98
jbeluch/xbmcswift2
xbmcswift2/xbmcmixin.py
https://github.com/jbeluch/xbmcswift2/blob/0e7a3642499554edc8265fdf1ba6c5ee567daa78/xbmcswift2/xbmcmixin.py#L398-L418
def add_items(self, items): '''Adds ListItems to the XBMC interface. Each item in the provided list should either be instances of xbmcswift2.ListItem, or regular dictionaries that will be passed to xbmcswift2.ListItem.from_dict. Returns the list of ListItems. :param items: An iterable of items where each item is either a dictionary with keys/values suitable for passing to :meth:`xbmcswift2.ListItem.from_dict` or an instance of :class:`xbmcswift2.ListItem`. ''' _items = [self._listitemify(item) for item in items] tuples = [item.as_tuple() for item in _items] xbmcplugin.addDirectoryItems(self.handle, tuples, len(tuples)) # We need to keep track internally of added items so we can return them # all at the end for testing purposes self.added_items.extend(_items) # Possibly need an if statement if only for debug mode return _items
[ "def", "add_items", "(", "self", ",", "items", ")", ":", "_items", "=", "[", "self", ".", "_listitemify", "(", "item", ")", "for", "item", "in", "items", "]", "tuples", "=", "[", "item", ".", "as_tuple", "(", ")", "for", "item", "in", "_items", "]", "xbmcplugin", ".", "addDirectoryItems", "(", "self", ".", "handle", ",", "tuples", ",", "len", "(", "tuples", ")", ")", "# We need to keep track internally of added items so we can return them", "# all at the end for testing purposes", "self", ".", "added_items", ".", "extend", "(", "_items", ")", "# Possibly need an if statement if only for debug mode", "return", "_items" ]
Adds ListItems to the XBMC interface. Each item in the provided list should either be instances of xbmcswift2.ListItem, or regular dictionaries that will be passed to xbmcswift2.ListItem.from_dict. Returns the list of ListItems. :param items: An iterable of items where each item is either a dictionary with keys/values suitable for passing to :meth:`xbmcswift2.ListItem.from_dict` or an instance of :class:`xbmcswift2.ListItem`.
[ "Adds", "ListItems", "to", "the", "XBMC", "interface", ".", "Each", "item", "in", "the", "provided", "list", "should", "either", "be", "instances", "of", "xbmcswift2", ".", "ListItem", "or", "regular", "dictionaries", "that", "will", "be", "passed", "to", "xbmcswift2", ".", "ListItem", ".", "from_dict", ".", "Returns", "the", "list", "of", "ListItems", "." ]
python
train
47.52381
Fantomas42/django-blog-zinnia
zinnia/views/mixins/templates.py
https://github.com/Fantomas42/django-blog-zinnia/blob/b4949304b104a8e1a7a7a0773cbfd024313c3a15/zinnia/views/mixins/templates.py#L81-L125
def get_template_names(self): """ Return a list of template names to be used for the view. """ year = self.get_archive_part_value('year') week = self.get_archive_part_value('week') month = self.get_archive_part_value('month') day = self.get_archive_part_value('day') templates = [] path = 'zinnia/archives' template_names = self.get_default_base_template_names() for template_name in template_names: templates.extend([template_name, 'zinnia/%s' % template_name, '%s/%s' % (path, template_name)]) if year: for template_name in template_names: templates.append( '%s/%s/%s' % (path, year, template_name)) if week: for template_name in template_names: templates.extend([ '%s/week/%s/%s' % (path, week, template_name), '%s/%s/week/%s/%s' % (path, year, week, template_name)]) if month: for template_name in template_names: templates.extend([ '%s/month/%s/%s' % (path, month, template_name), '%s/%s/month/%s/%s' % (path, year, month, template_name)]) if day: for template_name in template_names: templates.extend([ '%s/day/%s/%s' % (path, day, template_name), '%s/%s/day/%s/%s' % (path, year, day, template_name), '%s/month/%s/day/%s/%s' % (path, month, day, template_name), '%s/%s/%s/%s/%s' % (path, year, month, day, template_name)]) if self.template_name is not None: templates.append(self.template_name) templates.reverse() return templates
[ "def", "get_template_names", "(", "self", ")", ":", "year", "=", "self", ".", "get_archive_part_value", "(", "'year'", ")", "week", "=", "self", ".", "get_archive_part_value", "(", "'week'", ")", "month", "=", "self", ".", "get_archive_part_value", "(", "'month'", ")", "day", "=", "self", ".", "get_archive_part_value", "(", "'day'", ")", "templates", "=", "[", "]", "path", "=", "'zinnia/archives'", "template_names", "=", "self", ".", "get_default_base_template_names", "(", ")", "for", "template_name", "in", "template_names", ":", "templates", ".", "extend", "(", "[", "template_name", ",", "'zinnia/%s'", "%", "template_name", ",", "'%s/%s'", "%", "(", "path", ",", "template_name", ")", "]", ")", "if", "year", ":", "for", "template_name", "in", "template_names", ":", "templates", ".", "append", "(", "'%s/%s/%s'", "%", "(", "path", ",", "year", ",", "template_name", ")", ")", "if", "week", ":", "for", "template_name", "in", "template_names", ":", "templates", ".", "extend", "(", "[", "'%s/week/%s/%s'", "%", "(", "path", ",", "week", ",", "template_name", ")", ",", "'%s/%s/week/%s/%s'", "%", "(", "path", ",", "year", ",", "week", ",", "template_name", ")", "]", ")", "if", "month", ":", "for", "template_name", "in", "template_names", ":", "templates", ".", "extend", "(", "[", "'%s/month/%s/%s'", "%", "(", "path", ",", "month", ",", "template_name", ")", ",", "'%s/%s/month/%s/%s'", "%", "(", "path", ",", "year", ",", "month", ",", "template_name", ")", "]", ")", "if", "day", ":", "for", "template_name", "in", "template_names", ":", "templates", ".", "extend", "(", "[", "'%s/day/%s/%s'", "%", "(", "path", ",", "day", ",", "template_name", ")", ",", "'%s/%s/day/%s/%s'", "%", "(", "path", ",", "year", ",", "day", ",", "template_name", ")", ",", "'%s/month/%s/day/%s/%s'", "%", "(", "path", ",", "month", ",", "day", ",", "template_name", ")", ",", "'%s/%s/%s/%s/%s'", "%", "(", "path", ",", "year", ",", "month", ",", "day", ",", "template_name", ")", "]", ")", "if", "self", ".", "template_name", "is", "not", "None", ":", "templates", ".", "append", "(", "self", ".", "template_name", ")", "templates", ".", "reverse", "(", ")", "return", "templates" ]
Return a list of template names to be used for the view.
[ "Return", "a", "list", "of", "template", "names", "to", "be", "used", "for", "the", "view", "." ]
python
train
42.311111
lcharleux/argiope
argiope/mesh.py
https://github.com/lcharleux/argiope/blob/8170e431362dc760589f7d141090fd133dece259/argiope/mesh.py#L508-L528
def node_set_to_surface(self, tag): """ Converts a node set to surface. """ # Create a dummy node with label 0 nodes = self.nodes.copy() dummy = nodes.iloc[0].copy() dummy["coords"] *= np.nan dummy["sets"] = True nodes.loc[0] = dummy # Getting element surfaces element_surfaces= self.split("surfaces").unstack() # killer hack ! surf = pd.DataFrame( nodes.sets[tag].loc[element_surfaces.values.flatten()] .values.reshape(element_surfaces.shape) .prod(axis = 1) .astype(np.bool), index = element_surfaces.index).unstack().fillna(False) for k in surf.keys(): self.elements["surfaces", tag, "f{0}".format(k[1]+1) ] = surf.loc[:, k]
[ "def", "node_set_to_surface", "(", "self", ",", "tag", ")", ":", "# Create a dummy node with label 0", "nodes", "=", "self", ".", "nodes", ".", "copy", "(", ")", "dummy", "=", "nodes", ".", "iloc", "[", "0", "]", ".", "copy", "(", ")", "dummy", "[", "\"coords\"", "]", "*=", "np", ".", "nan", "dummy", "[", "\"sets\"", "]", "=", "True", "nodes", ".", "loc", "[", "0", "]", "=", "dummy", "# Getting element surfaces", "element_surfaces", "=", "self", ".", "split", "(", "\"surfaces\"", ")", ".", "unstack", "(", ")", "# killer hack !", "surf", "=", "pd", ".", "DataFrame", "(", "nodes", ".", "sets", "[", "tag", "]", ".", "loc", "[", "element_surfaces", ".", "values", ".", "flatten", "(", ")", "]", ".", "values", ".", "reshape", "(", "element_surfaces", ".", "shape", ")", ".", "prod", "(", "axis", "=", "1", ")", ".", "astype", "(", "np", ".", "bool", ")", ",", "index", "=", "element_surfaces", ".", "index", ")", ".", "unstack", "(", ")", ".", "fillna", "(", "False", ")", "for", "k", "in", "surf", ".", "keys", "(", ")", ":", "self", ".", "elements", "[", "\"surfaces\"", ",", "tag", ",", "\"f{0}\"", ".", "format", "(", "k", "[", "1", "]", "+", "1", ")", "]", "=", "surf", ".", "loc", "[", ":", ",", "k", "]" ]
Converts a node set to surface.
[ "Converts", "a", "node", "set", "to", "surface", "." ]
python
test
35.809524
shoebot/shoebot
lib/graph/__init__.py
https://github.com/shoebot/shoebot/blob/d554c1765c1899fa25727c9fc6805d221585562b/lib/graph/__init__.py#L241-L257
def copy(self, empty=False): """ Create a copy of the graph (by default with nodes and edges). """ g = graph(self.layout.n, self.distance, self.layout.type) g.layout = self.layout.copy(g) g.styles = self.styles.copy(g) g.events = self.events.copy(g) if not empty: for n in self.nodes: g.add_node(n.id, n.r, n.style, n.category, n.label, (n == self.root), n.__dict__) for e in self.edges: g.add_edge(e.node1.id, e.node2.id, e.weight, e.length, e.label, e.__dict__) return g
[ "def", "copy", "(", "self", ",", "empty", "=", "False", ")", ":", "g", "=", "graph", "(", "self", ".", "layout", ".", "n", ",", "self", ".", "distance", ",", "self", ".", "layout", ".", "type", ")", "g", ".", "layout", "=", "self", ".", "layout", ".", "copy", "(", "g", ")", "g", ".", "styles", "=", "self", ".", "styles", ".", "copy", "(", "g", ")", "g", ".", "events", "=", "self", ".", "events", ".", "copy", "(", "g", ")", "if", "not", "empty", ":", "for", "n", "in", "self", ".", "nodes", ":", "g", ".", "add_node", "(", "n", ".", "id", ",", "n", ".", "r", ",", "n", ".", "style", ",", "n", ".", "category", ",", "n", ".", "label", ",", "(", "n", "==", "self", ".", "root", ")", ",", "n", ".", "__dict__", ")", "for", "e", "in", "self", ".", "edges", ":", "g", ".", "add_edge", "(", "e", ".", "node1", ".", "id", ",", "e", ".", "node2", ".", "id", ",", "e", ".", "weight", ",", "e", ".", "length", ",", "e", ".", "label", ",", "e", ".", "__dict__", ")", "return", "g" ]
Create a copy of the graph (by default with nodes and edges).
[ "Create", "a", "copy", "of", "the", "graph", "(", "by", "default", "with", "nodes", "and", "edges", ")", "." ]
python
valid
35.529412
SheffieldML/GPy
GPy/models/ss_gplvm.py
https://github.com/SheffieldML/GPy/blob/54c32d79d289d622fb18b898aee65a2a431d90cf/GPy/models/ss_gplvm.py#L249-L251
def get_X_gradients(self, X): """Get the gradients of the posterior distribution of X in its specific form.""" return X.mean.gradient, X.variance.gradient, X.binary_prob.gradient
[ "def", "get_X_gradients", "(", "self", ",", "X", ")", ":", "return", "X", ".", "mean", ".", "gradient", ",", "X", ".", "variance", ".", "gradient", ",", "X", ".", "binary_prob", ".", "gradient" ]
Get the gradients of the posterior distribution of X in its specific form.
[ "Get", "the", "gradients", "of", "the", "posterior", "distribution", "of", "X", "in", "its", "specific", "form", "." ]
python
train
64
Gorialis/jishaku
jishaku/repl/inspections.py
https://github.com/Gorialis/jishaku/blob/fc7c479b9d510ede189a929c8aa6f7c8ef7f9a6e/jishaku/repl/inspections.py#L22-L45
def add_inspection(name): """ Add a Jishaku object inspection """ # create the real decorator def inspection_inner(func): """ Jishaku inspection decorator """ # pylint: disable=inconsistent-return-statements # create an encapsulated version of the inspection that swallows exceptions @functools.wraps(func) def encapsulated(*args, **kwargs): try: return func(*args, **kwargs) except (TypeError, AttributeError, ValueError, OSError): return INSPECTIONS.append((name, encapsulated)) return func return inspection_inner
[ "def", "add_inspection", "(", "name", ")", ":", "# create the real decorator", "def", "inspection_inner", "(", "func", ")", ":", "\"\"\"\n Jishaku inspection decorator\n \"\"\"", "# pylint: disable=inconsistent-return-statements", "# create an encapsulated version of the inspection that swallows exceptions", "@", "functools", ".", "wraps", "(", "func", ")", "def", "encapsulated", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "try", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "(", "TypeError", ",", "AttributeError", ",", "ValueError", ",", "OSError", ")", ":", "return", "INSPECTIONS", ".", "append", "(", "(", "name", ",", "encapsulated", ")", ")", "return", "func", "return", "inspection_inner" ]
Add a Jishaku object inspection
[ "Add", "a", "Jishaku", "object", "inspection" ]
python
train
27.041667
annayqho/TheCannon
code/lamost/abundances/calc_gradient_spectra.py
https://github.com/annayqho/TheCannon/blob/8010a0a5dc9a3f9bb91efa79d7756f79b3c7ba9a/code/lamost/abundances/calc_gradient_spectra.py#L62-L94
def gen_cannon_grad_spec(choose, coeffs, pivots): """ Generate Cannon gradient spectra Parameters ---------- labels: default values for [teff, logg, feh, cfe, nfe, afe, ak] choose: val of cfe or nfe, whatever you're varying low: lowest val of cfe or nfe, whatever you're varying high: highest val of cfe or nfe, whatever you're varying """ base_labels = [4800, 2.5, 0.03, 0.10, -0.17, -0.17, 0, -0.16, -0.13, -0.15, 0.13, 0.08, 0.17, -0.062] label_names = np.array( ['TEFF', 'LOGG', 'AK', 'Al', 'Ca', 'C', 'Fe', 'Mg', 'Mn', 'Ni', 'N', 'O', 'Si', 'Ti']) label_atnum = np.array( [0, 1, -1, 13, 20, 6, 26, 12, 25, 28, 7, 8, 14, 22]) # Generate Cannon gradient spectra ind = np.where(label_atnum==choose)[0][0] low_lab = copy.copy(base_labels) high = base_labels[ind] if choose > 0: low = base_labels[ind] - 0.2 else: #temperature if choose != 0: print("warning...") low = base_labels[ind] - 200 low_lab[ind] = low lvec = (train_model._get_lvec(np.array([low_lab]), pivots))[0] model_low = np.dot(coeffs, lvec) lvec = (train_model._get_lvec(np.array([base_labels]), pivots))[0] model_high = np.dot(coeffs, lvec) grad_spec = (model_high - model_low) / (high - low) return grad_spec
[ "def", "gen_cannon_grad_spec", "(", "choose", ",", "coeffs", ",", "pivots", ")", ":", "base_labels", "=", "[", "4800", ",", "2.5", ",", "0.03", ",", "0.10", ",", "-", "0.17", ",", "-", "0.17", ",", "0", ",", "-", "0.16", ",", "-", "0.13", ",", "-", "0.15", ",", "0.13", ",", "0.08", ",", "0.17", ",", "-", "0.062", "]", "label_names", "=", "np", ".", "array", "(", "[", "'TEFF'", ",", "'LOGG'", ",", "'AK'", ",", "'Al'", ",", "'Ca'", ",", "'C'", ",", "'Fe'", ",", "'Mg'", ",", "'Mn'", ",", "'Ni'", ",", "'N'", ",", "'O'", ",", "'Si'", ",", "'Ti'", "]", ")", "label_atnum", "=", "np", ".", "array", "(", "[", "0", ",", "1", ",", "-", "1", ",", "13", ",", "20", ",", "6", ",", "26", ",", "12", ",", "25", ",", "28", ",", "7", ",", "8", ",", "14", ",", "22", "]", ")", "# Generate Cannon gradient spectra", "ind", "=", "np", ".", "where", "(", "label_atnum", "==", "choose", ")", "[", "0", "]", "[", "0", "]", "low_lab", "=", "copy", ".", "copy", "(", "base_labels", ")", "high", "=", "base_labels", "[", "ind", "]", "if", "choose", ">", "0", ":", "low", "=", "base_labels", "[", "ind", "]", "-", "0.2", "else", ":", "#temperature", "if", "choose", "!=", "0", ":", "print", "(", "\"warning...\"", ")", "low", "=", "base_labels", "[", "ind", "]", "-", "200", "low_lab", "[", "ind", "]", "=", "low", "lvec", "=", "(", "train_model", ".", "_get_lvec", "(", "np", ".", "array", "(", "[", "low_lab", "]", ")", ",", "pivots", ")", ")", "[", "0", "]", "model_low", "=", "np", ".", "dot", "(", "coeffs", ",", "lvec", ")", "lvec", "=", "(", "train_model", ".", "_get_lvec", "(", "np", ".", "array", "(", "[", "base_labels", "]", ")", ",", "pivots", ")", ")", "[", "0", "]", "model_high", "=", "np", ".", "dot", "(", "coeffs", ",", "lvec", ")", "grad_spec", "=", "(", "model_high", "-", "model_low", ")", "/", "(", "high", "-", "low", ")", "return", "grad_spec" ]
Generate Cannon gradient spectra Parameters ---------- labels: default values for [teff, logg, feh, cfe, nfe, afe, ak] choose: val of cfe or nfe, whatever you're varying low: lowest val of cfe or nfe, whatever you're varying high: highest val of cfe or nfe, whatever you're varying
[ "Generate", "Cannon", "gradient", "spectra" ]
python
train
39.787879
lambdamusic/Ontospy
ontospy/core/utils.py
https://github.com/lambdamusic/Ontospy/blob/eb46cb13792b2b87f21babdf976996318eec7571/ontospy/core/utils.py#L651-L674
def inferURILocalSymbol(aUri): """ From a URI returns a tuple (namespace, uri-last-bit) Eg from <'http://www.w3.org/2008/05/skos#something'> ==> ('something', 'http://www.w3.org/2008/05/skos') from <'http://www.w3.org/2003/01/geo/wgs84_pos'> we extract ==> ('wgs84_pos', 'http://www.w3.org/2003/01/geo/') """ # stringa = aUri.__str__() stringa = aUri try: ns = stringa.split("#")[0] name = stringa.split("#")[1] except: if "/" in stringa: ns = stringa.rsplit("/", 1)[0] name = stringa.rsplit("/", 1)[1] else: ns = "" name = stringa return (name, ns)
[ "def", "inferURILocalSymbol", "(", "aUri", ")", ":", "# stringa = aUri.__str__()", "stringa", "=", "aUri", "try", ":", "ns", "=", "stringa", ".", "split", "(", "\"#\"", ")", "[", "0", "]", "name", "=", "stringa", ".", "split", "(", "\"#\"", ")", "[", "1", "]", "except", ":", "if", "\"/\"", "in", "stringa", ":", "ns", "=", "stringa", ".", "rsplit", "(", "\"/\"", ",", "1", ")", "[", "0", "]", "name", "=", "stringa", ".", "rsplit", "(", "\"/\"", ",", "1", ")", "[", "1", "]", "else", ":", "ns", "=", "\"\"", "name", "=", "stringa", "return", "(", "name", ",", "ns", ")" ]
From a URI returns a tuple (namespace, uri-last-bit) Eg from <'http://www.w3.org/2008/05/skos#something'> ==> ('something', 'http://www.w3.org/2008/05/skos') from <'http://www.w3.org/2003/01/geo/wgs84_pos'> we extract ==> ('wgs84_pos', 'http://www.w3.org/2003/01/geo/')
[ "From", "a", "URI", "returns", "a", "tuple", "(", "namespace", "uri", "-", "last", "-", "bit", ")" ]
python
train
27.833333
darvid/biome
src/biome/__init__.py
https://github.com/darvid/biome/blob/e1f1945165df9def31af42e5e13b623e1de97f01/src/biome/__init__.py#L130-L150
def get_dict(self, name, default=None): """Retrieves an environment variable value as a dictionary. Args: name (str): The case-insensitive, unprefixed variable name. default: If provided, a default value will be returned instead of throwing ``EnvironmentError``. Returns: dict: The environment variable's value as a ``dict``. Raises: EnvironmentError: If the environment variable does not exist, and ``default`` was not provided. """ if name not in self: if default is not None: return default raise EnvironmentError.not_found(self._prefix, name) return dict(**self.get(name))
[ "def", "get_dict", "(", "self", ",", "name", ",", "default", "=", "None", ")", ":", "if", "name", "not", "in", "self", ":", "if", "default", "is", "not", "None", ":", "return", "default", "raise", "EnvironmentError", ".", "not_found", "(", "self", ".", "_prefix", ",", "name", ")", "return", "dict", "(", "*", "*", "self", ".", "get", "(", "name", ")", ")" ]
Retrieves an environment variable value as a dictionary. Args: name (str): The case-insensitive, unprefixed variable name. default: If provided, a default value will be returned instead of throwing ``EnvironmentError``. Returns: dict: The environment variable's value as a ``dict``. Raises: EnvironmentError: If the environment variable does not exist, and ``default`` was not provided.
[ "Retrieves", "an", "environment", "variable", "value", "as", "a", "dictionary", "." ]
python
train
35.047619
koehlma/pygrooveshark
src/grooveshark/classes/album.py
https://github.com/koehlma/pygrooveshark/blob/17673758ac12f54dc26ac879c30ea44f13b81057/src/grooveshark/classes/album.py#L95-L101
def export(self): """ Returns a dictionary with all album information. Use the :meth:`from_export` method to recreate the :class:`Album` object. """ return {'id' : self.id, 'name' : self.name, 'artist' : self._artist_name, 'artist_id' : self._artist_id, 'cover' : self._cover_url}
[ "def", "export", "(", "self", ")", ":", "return", "{", "'id'", ":", "self", ".", "id", ",", "'name'", ":", "self", ".", "name", ",", "'artist'", ":", "self", ".", "_artist_name", ",", "'artist_id'", ":", "self", ".", "_artist_id", ",", "'cover'", ":", "self", ".", "_cover_url", "}" ]
Returns a dictionary with all album information. Use the :meth:`from_export` method to recreate the :class:`Album` object.
[ "Returns", "a", "dictionary", "with", "all", "album", "information", ".", "Use", "the", ":", "meth", ":", "from_export", "method", "to", "recreate", "the", ":", "class", ":", "Album", "object", "." ]
python
train
46
GPflow/GPflow
gpflow/training/scipy_optimizer.py
https://github.com/GPflow/GPflow/blob/549394f0b1b0696c7b521a065e49bdae6e7acf27/gpflow/training/scipy_optimizer.py#L27-L52
def make_optimize_tensor(self, model, session=None, var_list=None, **kwargs): """ Make SciPy optimization tensor. The `make_optimize_tensor` method builds optimization tensor and initializes all necessary variables created by optimizer. :param model: GPflow model. :param session: Tensorflow session. :param var_list: List of variables for training. :param kwargs: Scipy optional optimization parameters, - `maxiter`, maximal number of iterations to perform. - `disp`, if True, prints convergence messages. :return: Tensorflow operation. """ session = model.enquire_session(session) with session.as_default(): var_list = self._gen_var_list(model, var_list) optimizer_kwargs = self._optimizer_kwargs.copy() options = optimizer_kwargs.get('options', {}) options.update(kwargs) optimizer_kwargs.update(dict(options=options)) objective = model.objective optimizer = external_optimizer.ScipyOptimizerInterface( objective, var_list=var_list, **optimizer_kwargs) model.initialize(session=session) return optimizer
[ "def", "make_optimize_tensor", "(", "self", ",", "model", ",", "session", "=", "None", ",", "var_list", "=", "None", ",", "*", "*", "kwargs", ")", ":", "session", "=", "model", ".", "enquire_session", "(", "session", ")", "with", "session", ".", "as_default", "(", ")", ":", "var_list", "=", "self", ".", "_gen_var_list", "(", "model", ",", "var_list", ")", "optimizer_kwargs", "=", "self", ".", "_optimizer_kwargs", ".", "copy", "(", ")", "options", "=", "optimizer_kwargs", ".", "get", "(", "'options'", ",", "{", "}", ")", "options", ".", "update", "(", "kwargs", ")", "optimizer_kwargs", ".", "update", "(", "dict", "(", "options", "=", "options", ")", ")", "objective", "=", "model", ".", "objective", "optimizer", "=", "external_optimizer", ".", "ScipyOptimizerInterface", "(", "objective", ",", "var_list", "=", "var_list", ",", "*", "*", "optimizer_kwargs", ")", "model", ".", "initialize", "(", "session", "=", "session", ")", "return", "optimizer" ]
Make SciPy optimization tensor. The `make_optimize_tensor` method builds optimization tensor and initializes all necessary variables created by optimizer. :param model: GPflow model. :param session: Tensorflow session. :param var_list: List of variables for training. :param kwargs: Scipy optional optimization parameters, - `maxiter`, maximal number of iterations to perform. - `disp`, if True, prints convergence messages. :return: Tensorflow operation.
[ "Make", "SciPy", "optimization", "tensor", ".", "The", "make_optimize_tensor", "method", "builds", "optimization", "tensor", "and", "initializes", "all", "necessary", "variables", "created", "by", "optimizer", "." ]
python
train
48.230769
jaywink/federation
federation/utils/diaspora.py
https://github.com/jaywink/federation/blob/59d31bb37e662891dbea72c1dee05dc53146c78b/federation/utils/diaspora.py#L235-L238
def get_private_endpoint(id: str, guid: str) -> str: """Get remote endpoint for delivering private payloads.""" _username, domain = id.split("@") return "https://%s/receive/users/%s" % (domain, guid)
[ "def", "get_private_endpoint", "(", "id", ":", "str", ",", "guid", ":", "str", ")", "->", "str", ":", "_username", ",", "domain", "=", "id", ".", "split", "(", "\"@\"", ")", "return", "\"https://%s/receive/users/%s\"", "%", "(", "domain", ",", "guid", ")" ]
Get remote endpoint for delivering private payloads.
[ "Get", "remote", "endpoint", "for", "delivering", "private", "payloads", "." ]
python
train
52
redcanari/canari3
src/canari/entrypoints.py
https://github.com/redcanari/canari3/blob/322d2bae4b49ac728229f418b786b51fcc227352/src/canari/entrypoints.py#L193-L196
def load_plume_package(package, plume_dir, accept_defaults): """Loads a canari package into Plume.""" from canari.commands.load_plume_package import load_plume_package load_plume_package(package, plume_dir, accept_defaults)
[ "def", "load_plume_package", "(", "package", ",", "plume_dir", ",", "accept_defaults", ")", ":", "from", "canari", ".", "commands", ".", "load_plume_package", "import", "load_plume_package", "load_plume_package", "(", "package", ",", "plume_dir", ",", "accept_defaults", ")" ]
Loads a canari package into Plume.
[ "Loads", "a", "canari", "package", "into", "Plume", "." ]
python
train
58
spulec/freezegun
freezegun/api.py
https://github.com/spulec/freezegun/blob/9347d133f33f675c87bb0569d70d9d95abef737f/freezegun/api.py#L397-L413
def _parse_time_to_freeze(time_to_freeze_str): """Parses all the possible inputs for freeze_time :returns: a naive ``datetime.datetime`` object """ if time_to_freeze_str is None: time_to_freeze_str = datetime.datetime.utcnow() if isinstance(time_to_freeze_str, datetime.datetime): time_to_freeze = time_to_freeze_str elif isinstance(time_to_freeze_str, datetime.date): time_to_freeze = datetime.datetime.combine(time_to_freeze_str, datetime.time()) elif isinstance(time_to_freeze_str, datetime.timedelta): time_to_freeze = datetime.datetime.utcnow() + time_to_freeze_str else: time_to_freeze = parser.parse(time_to_freeze_str) return convert_to_timezone_naive(time_to_freeze)
[ "def", "_parse_time_to_freeze", "(", "time_to_freeze_str", ")", ":", "if", "time_to_freeze_str", "is", "None", ":", "time_to_freeze_str", "=", "datetime", ".", "datetime", ".", "utcnow", "(", ")", "if", "isinstance", "(", "time_to_freeze_str", ",", "datetime", ".", "datetime", ")", ":", "time_to_freeze", "=", "time_to_freeze_str", "elif", "isinstance", "(", "time_to_freeze_str", ",", "datetime", ".", "date", ")", ":", "time_to_freeze", "=", "datetime", ".", "datetime", ".", "combine", "(", "time_to_freeze_str", ",", "datetime", ".", "time", "(", ")", ")", "elif", "isinstance", "(", "time_to_freeze_str", ",", "datetime", ".", "timedelta", ")", ":", "time_to_freeze", "=", "datetime", ".", "datetime", ".", "utcnow", "(", ")", "+", "time_to_freeze_str", "else", ":", "time_to_freeze", "=", "parser", ".", "parse", "(", "time_to_freeze_str", ")", "return", "convert_to_timezone_naive", "(", "time_to_freeze", ")" ]
Parses all the possible inputs for freeze_time :returns: a naive ``datetime.datetime`` object
[ "Parses", "all", "the", "possible", "inputs", "for", "freeze_time", ":", "returns", ":", "a", "naive", "datetime", ".", "datetime", "object" ]
python
train
43.352941