repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
GNS3/gns3-server
gns3server/compute/iou/iou_vm.py
https://github.com/GNS3/gns3-server/blob/a221678448fb5d24e977ef562f81d56aacc89ab1/gns3server/compute/iou/iou_vm.py#L832-L867
def adapter_add_nio_binding(self, adapter_number, port_number, nio): """ Adds a adapter NIO binding. :param adapter_number: adapter number :param port_number: port number :param nio: NIO instance to add to the adapter/port """ try: adapter = self._adapters[adapter_number] except IndexError: raise IOUError('Adapter {adapter_number} does not exist for IOU "{name}"'.format(name=self._name, adapter_number=adapter_number)) if not adapter.port_exists(port_number): raise IOUError("Port {port_number} does not exist in adapter {adapter}".format(adapter=adapter, port_number=port_number)) adapter.add_nio(port_number, nio) log.info('IOU "{name}" [{id}]: {nio} added to {adapter_number}/{port_number}'.format(name=self._name, id=self._id, nio=nio, adapter_number=adapter_number, port_number=port_number)) if self.ubridge: bridge_name = "IOL-BRIDGE-{}".format(self.application_id + 512) yield from self._ubridge_send("iol_bridge add_nio_udp {name} {iol_id} {bay} {unit} {lport} {rhost} {rport}".format(name=bridge_name, iol_id=self.application_id, bay=adapter_number, unit=port_number, lport=nio.lport, rhost=nio.rhost, rport=nio.rport)) yield from self._ubridge_apply_filters(adapter_number, port_number, nio.filters)
[ "def", "adapter_add_nio_binding", "(", "self", ",", "adapter_number", ",", "port_number", ",", "nio", ")", ":", "try", ":", "adapter", "=", "self", ".", "_adapters", "[", "adapter_number", "]", "except", "IndexError", ":", "raise", "IOUError", "(", "'Adapter {adapter_number} does not exist for IOU \"{name}\"'", ".", "format", "(", "name", "=", "self", ".", "_name", ",", "adapter_number", "=", "adapter_number", ")", ")", "if", "not", "adapter", ".", "port_exists", "(", "port_number", ")", ":", "raise", "IOUError", "(", "\"Port {port_number} does not exist in adapter {adapter}\"", ".", "format", "(", "adapter", "=", "adapter", ",", "port_number", "=", "port_number", ")", ")", "adapter", ".", "add_nio", "(", "port_number", ",", "nio", ")", "log", ".", "info", "(", "'IOU \"{name}\" [{id}]: {nio} added to {adapter_number}/{port_number}'", ".", "format", "(", "name", "=", "self", ".", "_name", ",", "id", "=", "self", ".", "_id", ",", "nio", "=", "nio", ",", "adapter_number", "=", "adapter_number", ",", "port_number", "=", "port_number", ")", ")", "if", "self", ".", "ubridge", ":", "bridge_name", "=", "\"IOL-BRIDGE-{}\"", ".", "format", "(", "self", ".", "application_id", "+", "512", ")", "yield", "from", "self", ".", "_ubridge_send", "(", "\"iol_bridge add_nio_udp {name} {iol_id} {bay} {unit} {lport} {rhost} {rport}\"", ".", "format", "(", "name", "=", "bridge_name", ",", "iol_id", "=", "self", ".", "application_id", ",", "bay", "=", "adapter_number", ",", "unit", "=", "port_number", ",", "lport", "=", "nio", ".", "lport", ",", "rhost", "=", "nio", ".", "rhost", ",", "rport", "=", "nio", ".", "rport", ")", ")", "yield", "from", "self", ".", "_ubridge_apply_filters", "(", "adapter_number", ",", "port_number", ",", "nio", ".", "filters", ")" ]
Adds a adapter NIO binding. :param adapter_number: adapter number :param port_number: port number :param nio: NIO instance to add to the adapter/port
[ "Adds", "a", "adapter", "NIO", "binding", "." ]
python
train
googlefonts/fontbakery
Lib/fontbakery/profiles/googlefonts.py
https://github.com/googlefonts/fontbakery/blob/b355aea2e619a4477769e060d24c32448aa65399/Lib/fontbakery/profiles/googlefonts.py#L3579-L3611
def com_google_fonts_check_family_tnum_horizontal_metrics(fonts): """All tabular figures must have the same width across the RIBBI-family.""" from fontbakery.constants import RIBBI_STYLE_NAMES from fontTools.ttLib import TTFont RIBBI_ttFonts = [TTFont(f) for f in fonts if style(f) in RIBBI_STYLE_NAMES] tnum_widths = {} for ttFont in RIBBI_ttFonts: glyphs = ttFont.getGlyphSet() tnum_glyphs = [(glyph_id, glyphs[glyph_id]) for glyph_id in glyphs.keys() if glyph_id.endswith(".tnum")] for glyph_id, glyph in tnum_glyphs: if glyph.width not in tnum_widths: tnum_widths[glyph.width] = [glyph_id] else: tnum_widths[glyph.width].append(glyph_id) if len(tnum_widths.keys()) > 1: max_num = 0 most_common_width = None for width, glyphs in tnum_widths.items(): if len(glyphs) > max_num: max_num = len(glyphs) most_common_width = width del tnum_widths[most_common_width] yield FAIL, (f"The most common tabular glyph width is {most_common_width}." " But there are other tabular glyphs with different widths" f" such as the following ones:\n\t{tnum_widths}.") else: yield PASS, "OK"
[ "def", "com_google_fonts_check_family_tnum_horizontal_metrics", "(", "fonts", ")", ":", "from", "fontbakery", ".", "constants", "import", "RIBBI_STYLE_NAMES", "from", "fontTools", ".", "ttLib", "import", "TTFont", "RIBBI_ttFonts", "=", "[", "TTFont", "(", "f", ")", "for", "f", "in", "fonts", "if", "style", "(", "f", ")", "in", "RIBBI_STYLE_NAMES", "]", "tnum_widths", "=", "{", "}", "for", "ttFont", "in", "RIBBI_ttFonts", ":", "glyphs", "=", "ttFont", ".", "getGlyphSet", "(", ")", "tnum_glyphs", "=", "[", "(", "glyph_id", ",", "glyphs", "[", "glyph_id", "]", ")", "for", "glyph_id", "in", "glyphs", ".", "keys", "(", ")", "if", "glyph_id", ".", "endswith", "(", "\".tnum\"", ")", "]", "for", "glyph_id", ",", "glyph", "in", "tnum_glyphs", ":", "if", "glyph", ".", "width", "not", "in", "tnum_widths", ":", "tnum_widths", "[", "glyph", ".", "width", "]", "=", "[", "glyph_id", "]", "else", ":", "tnum_widths", "[", "glyph", ".", "width", "]", ".", "append", "(", "glyph_id", ")", "if", "len", "(", "tnum_widths", ".", "keys", "(", ")", ")", ">", "1", ":", "max_num", "=", "0", "most_common_width", "=", "None", "for", "width", ",", "glyphs", "in", "tnum_widths", ".", "items", "(", ")", ":", "if", "len", "(", "glyphs", ")", ">", "max_num", ":", "max_num", "=", "len", "(", "glyphs", ")", "most_common_width", "=", "width", "del", "tnum_widths", "[", "most_common_width", "]", "yield", "FAIL", ",", "(", "f\"The most common tabular glyph width is {most_common_width}.\"", "\" But there are other tabular glyphs with different widths\"", "f\" such as the following ones:\\n\\t{tnum_widths}.\"", ")", "else", ":", "yield", "PASS", ",", "\"OK\"" ]
All tabular figures must have the same width across the RIBBI-family.
[ "All", "tabular", "figures", "must", "have", "the", "same", "width", "across", "the", "RIBBI", "-", "family", "." ]
python
train
openstates/billy
billy/reports/utils.py
https://github.com/openstates/billy/blob/5fc795347f12a949e410a8cfad0c911ea6bced67/billy/reports/utils.py#L11-L19
def update_common(obj, report): """ do updated_at checks """ # updated checks if obj['updated_at'] >= yesterday: report['_updated_today_count'] += 1 if obj['updated_at'] >= last_month: report['_updated_this_month_count'] += 1 if obj['updated_at'] >= last_year: report['_updated_this_year_count'] += 1
[ "def", "update_common", "(", "obj", ",", "report", ")", ":", "# updated checks", "if", "obj", "[", "'updated_at'", "]", ">=", "yesterday", ":", "report", "[", "'_updated_today_count'", "]", "+=", "1", "if", "obj", "[", "'updated_at'", "]", ">=", "last_month", ":", "report", "[", "'_updated_this_month_count'", "]", "+=", "1", "if", "obj", "[", "'updated_at'", "]", ">=", "last_year", ":", "report", "[", "'_updated_this_year_count'", "]", "+=", "1" ]
do updated_at checks
[ "do", "updated_at", "checks" ]
python
train
gem/oq-engine
openquake/hazardlib/gsim/afshari_stewart_2016.py
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/gsim/afshari_stewart_2016.py#L174-L184
def _get_tau(self, C, mag): """ Returns magnitude dependent inter-event standard deviation (tau) (equation 14) """ if mag < 6.5: return C["tau1"] elif mag < 7.: return C["tau1"] + (C["tau2"] - C["tau1"]) * ((mag - 6.5) / 0.5) else: return C["tau2"]
[ "def", "_get_tau", "(", "self", ",", "C", ",", "mag", ")", ":", "if", "mag", "<", "6.5", ":", "return", "C", "[", "\"tau1\"", "]", "elif", "mag", "<", "7.", ":", "return", "C", "[", "\"tau1\"", "]", "+", "(", "C", "[", "\"tau2\"", "]", "-", "C", "[", "\"tau1\"", "]", ")", "*", "(", "(", "mag", "-", "6.5", ")", "/", "0.5", ")", "else", ":", "return", "C", "[", "\"tau2\"", "]" ]
Returns magnitude dependent inter-event standard deviation (tau) (equation 14)
[ "Returns", "magnitude", "dependent", "inter", "-", "event", "standard", "deviation", "(", "tau", ")", "(", "equation", "14", ")" ]
python
train
LudovicRousseau/pyscard
smartcard/ExclusiveConnectCardConnection.py
https://github.com/LudovicRousseau/pyscard/blob/62e675028086c75656444cc21d563d9f08ebf8e7/smartcard/ExclusiveConnectCardConnection.py#L41-L72
def connect(self, protocol=None, mode=None, disposition=None): '''Disconnect and reconnect in exclusive mode PCSCCardconnections.''' CardConnectionDecorator.connect(self, protocol, mode, disposition) component = self.component while True: if isinstance(component, smartcard.pcsc.PCSCCardConnection.PCSCCardConnection): pcscprotocol = PCSCCardConnection.translateprotocolmask( protocol) if 0 == pcscprotocol: pcscprotocol = component.getProtocol() if component.hcard is not None: hresult = SCardDisconnect(component.hcard, SCARD_LEAVE_CARD) if hresult != 0: raise CardConnectionException( 'Failed to disconnect: ' + SCardGetErrorMessage(hresult)) hresult, component.hcard, dwActiveProtocol = SCardConnect( component.hcontext, str(component.reader), SCARD_SHARE_EXCLUSIVE, pcscprotocol) if hresult != 0: raise CardConnectionException( 'Failed to connect with SCARD_SHARE_EXCLUSIVE' + SCardGetErrorMessage(hresult)) # print('reconnected exclusive') break if hasattr(component, 'component'): component = component.component else: break
[ "def", "connect", "(", "self", ",", "protocol", "=", "None", ",", "mode", "=", "None", ",", "disposition", "=", "None", ")", ":", "CardConnectionDecorator", ".", "connect", "(", "self", ",", "protocol", ",", "mode", ",", "disposition", ")", "component", "=", "self", ".", "component", "while", "True", ":", "if", "isinstance", "(", "component", ",", "smartcard", ".", "pcsc", ".", "PCSCCardConnection", ".", "PCSCCardConnection", ")", ":", "pcscprotocol", "=", "PCSCCardConnection", ".", "translateprotocolmask", "(", "protocol", ")", "if", "0", "==", "pcscprotocol", ":", "pcscprotocol", "=", "component", ".", "getProtocol", "(", ")", "if", "component", ".", "hcard", "is", "not", "None", ":", "hresult", "=", "SCardDisconnect", "(", "component", ".", "hcard", ",", "SCARD_LEAVE_CARD", ")", "if", "hresult", "!=", "0", ":", "raise", "CardConnectionException", "(", "'Failed to disconnect: '", "+", "SCardGetErrorMessage", "(", "hresult", ")", ")", "hresult", ",", "component", ".", "hcard", ",", "dwActiveProtocol", "=", "SCardConnect", "(", "component", ".", "hcontext", ",", "str", "(", "component", ".", "reader", ")", ",", "SCARD_SHARE_EXCLUSIVE", ",", "pcscprotocol", ")", "if", "hresult", "!=", "0", ":", "raise", "CardConnectionException", "(", "'Failed to connect with SCARD_SHARE_EXCLUSIVE'", "+", "SCardGetErrorMessage", "(", "hresult", ")", ")", "# print('reconnected exclusive')", "break", "if", "hasattr", "(", "component", ",", "'component'", ")", ":", "component", "=", "component", ".", "component", "else", ":", "break" ]
Disconnect and reconnect in exclusive mode PCSCCardconnections.
[ "Disconnect", "and", "reconnect", "in", "exclusive", "mode", "PCSCCardconnections", "." ]
python
train
PythonCharmers/python-future
src/future/builtins/newnext.py
https://github.com/PythonCharmers/python-future/blob/c423752879acc05eebc29b0bb9909327bd5c7308/src/future/builtins/newnext.py#L43-L67
def newnext(iterator, default=_SENTINEL): """ next(iterator[, default]) Return the next item from the iterator. If default is given and the iterator is exhausted, it is returned instead of raising StopIteration. """ # args = [] # if default is not _SENTINEL: # args.append(default) try: try: return iterator.__next__() except AttributeError: try: return iterator.next() except AttributeError: raise TypeError("'{0}' object is not an iterator".format( iterator.__class__.__name__)) except StopIteration as e: if default is _SENTINEL: raise e else: return default
[ "def", "newnext", "(", "iterator", ",", "default", "=", "_SENTINEL", ")", ":", "# args = []", "# if default is not _SENTINEL:", "# args.append(default)", "try", ":", "try", ":", "return", "iterator", ".", "__next__", "(", ")", "except", "AttributeError", ":", "try", ":", "return", "iterator", ".", "next", "(", ")", "except", "AttributeError", ":", "raise", "TypeError", "(", "\"'{0}' object is not an iterator\"", ".", "format", "(", "iterator", ".", "__class__", ".", "__name__", ")", ")", "except", "StopIteration", "as", "e", ":", "if", "default", "is", "_SENTINEL", ":", "raise", "e", "else", ":", "return", "default" ]
next(iterator[, default]) Return the next item from the iterator. If default is given and the iterator is exhausted, it is returned instead of raising StopIteration.
[ "next", "(", "iterator", "[", "default", "]", ")" ]
python
train
ibis-project/ibis
ibis/expr/api.py
https://github.com/ibis-project/ibis/blob/1e39a5fd9ef088b45c155e8a5f541767ee8ef2e7/ibis/expr/api.py#L1350-L1363
def _integer_to_interval(arg, unit='s'): """ Convert integer interval with the same inner type Parameters ---------- unit : {'Y', 'M', 'W', 'D', 'h', 'm', s', 'ms', 'us', 'ns'} Returns ------- interval : interval value expression """ op = ops.IntervalFromInteger(arg, unit) return op.to_expr()
[ "def", "_integer_to_interval", "(", "arg", ",", "unit", "=", "'s'", ")", ":", "op", "=", "ops", ".", "IntervalFromInteger", "(", "arg", ",", "unit", ")", "return", "op", ".", "to_expr", "(", ")" ]
Convert integer interval with the same inner type Parameters ---------- unit : {'Y', 'M', 'W', 'D', 'h', 'm', s', 'ms', 'us', 'ns'} Returns ------- interval : interval value expression
[ "Convert", "integer", "interval", "with", "the", "same", "inner", "type" ]
python
train
materialsproject/pymatgen
pymatgen/io/vasp/outputs.py
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/io/vasp/outputs.py#L2090-L2207
def read_igpar(self): """ Renders accessible: er_ev = e<r>_ev (dictionary with Spin.up/Spin.down as keys) er_bp = e<r>_bp (dictionary with Spin.up/Spin.down as keys) er_ev_tot = spin up + spin down summed er_bp_tot = spin up + spin down summed p_elc = spin up + spin down summed p_ion = spin up + spin down summed (See VASP section "LBERRY, IGPAR, NPPSTR, DIPOL tags" for info on what these are). """ # variables to be filled self.er_ev = {} # will be dict (Spin.up/down) of array(3*float) self.er_bp = {} # will be dics (Spin.up/down) of array(3*float) self.er_ev_tot = None # will be array(3*float) self.er_bp_tot = None # will be array(3*float) self.p_elec = None self.p_ion = None try: search = [] # Nonspin cases def er_ev(results, match): results.er_ev[Spin.up] = np.array(map(float, match.groups()[1:4])) / 2 results.er_ev[Spin.down] = results.er_ev[Spin.up] results.context = 2 search.append([r"^ *e<r>_ev=\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) " r"*([-0-9.Ee+]*) *\)", None, er_ev]) def er_bp(results, match): results.er_bp[Spin.up] = np.array([float(match.group(i)) for i in range(1, 4)]) / 2 results.er_bp[Spin.down] = results.er_bp[Spin.up] search.append([r"^ *e<r>_bp=\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) " r"*([-0-9.Ee+]*) *\)", lambda results, line: results.context == 2, er_bp]) # Spin cases def er_ev_up(results, match): results.er_ev[Spin.up] = np.array([float(match.group(i)) for i in range(1, 4)]) results.context = Spin.up search.append([r"^.*Spin component 1 *e<r>_ev=\( *([-0-9.Ee+]*) " r"*([-0-9.Ee+]*) *([-0-9.Ee+]*) *\)", None, er_ev_up]) def er_bp_up(results, match): results.er_bp[Spin.up] = np.array([float(match.group(1)), float(match.group(2)), float(match.group(3))]) search.append([r"^ *e<r>_bp=\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) " r"*([-0-9.Ee+]*) *\)", lambda results, line: results.context == Spin.up, er_bp_up]) def er_ev_dn(results, match): results.er_ev[Spin.down] = np.array([float(match.group(1)), float(match.group(2)), float(match.group(3))]) results.context = Spin.down search.append([r"^.*Spin component 2 *e<r>_ev=\( *([-0-9.Ee+]*) " r"*([-0-9.Ee+]*) *([-0-9.Ee+]*) *\)", None, er_ev_dn]) def er_bp_dn(results, match): results.er_bp[Spin.down] = np.array([float(match.group(i)) for i in range(1, 4)]) search.append([r"^ *e<r>_bp=\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) " r"*([-0-9.Ee+]*) *\)", lambda results, line: results.context == Spin.down, er_bp_dn]) # Always present spin/non-spin def p_elc(results, match): results.p_elc = np.array([float(match.group(i)) for i in range(1, 4)]) search.append([r"^.*Total electronic dipole moment: " r"*p\[elc\]=\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) " r"*([-0-9.Ee+]*) *\)", None, p_elc]) def p_ion(results, match): results.p_ion = np.array([float(match.group(i)) for i in range(1, 4)]) search.append([r"^.*ionic dipole moment: " r"*p\[ion\]=\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) " r"*([-0-9.Ee+]*) *\)", None, p_ion]) self.context = None self.er_ev = {Spin.up: None, Spin.down: None} self.er_bp = {Spin.up: None, Spin.down: None} micro_pyawk(self.filename, search, self) if self.er_ev[Spin.up] is not None and \ self.er_ev[Spin.down] is not None: self.er_ev_tot = self.er_ev[Spin.up] + self.er_ev[Spin.down] if self.er_bp[Spin.up] is not None and \ self.er_bp[Spin.down] is not None: self.er_bp_tot = self.er_bp[Spin.up] + self.er_bp[Spin.down] except: self.er_ev_tot = None self.er_bp_tot = None raise Exception("IGPAR OUTCAR could not be parsed.")
[ "def", "read_igpar", "(", "self", ")", ":", "# variables to be filled", "self", ".", "er_ev", "=", "{", "}", "# will be dict (Spin.up/down) of array(3*float)", "self", ".", "er_bp", "=", "{", "}", "# will be dics (Spin.up/down) of array(3*float)", "self", ".", "er_ev_tot", "=", "None", "# will be array(3*float)", "self", ".", "er_bp_tot", "=", "None", "# will be array(3*float)", "self", ".", "p_elec", "=", "None", "self", ".", "p_ion", "=", "None", "try", ":", "search", "=", "[", "]", "# Nonspin cases", "def", "er_ev", "(", "results", ",", "match", ")", ":", "results", ".", "er_ev", "[", "Spin", ".", "up", "]", "=", "np", ".", "array", "(", "map", "(", "float", ",", "match", ".", "groups", "(", ")", "[", "1", ":", "4", "]", ")", ")", "/", "2", "results", ".", "er_ev", "[", "Spin", ".", "down", "]", "=", "results", ".", "er_ev", "[", "Spin", ".", "up", "]", "results", ".", "context", "=", "2", "search", ".", "append", "(", "[", "r\"^ *e<r>_ev=\\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) \"", "r\"*([-0-9.Ee+]*) *\\)\"", ",", "None", ",", "er_ev", "]", ")", "def", "er_bp", "(", "results", ",", "match", ")", ":", "results", ".", "er_bp", "[", "Spin", ".", "up", "]", "=", "np", ".", "array", "(", "[", "float", "(", "match", ".", "group", "(", "i", ")", ")", "for", "i", "in", "range", "(", "1", ",", "4", ")", "]", ")", "/", "2", "results", ".", "er_bp", "[", "Spin", ".", "down", "]", "=", "results", ".", "er_bp", "[", "Spin", ".", "up", "]", "search", ".", "append", "(", "[", "r\"^ *e<r>_bp=\\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) \"", "r\"*([-0-9.Ee+]*) *\\)\"", ",", "lambda", "results", ",", "line", ":", "results", ".", "context", "==", "2", ",", "er_bp", "]", ")", "# Spin cases", "def", "er_ev_up", "(", "results", ",", "match", ")", ":", "results", ".", "er_ev", "[", "Spin", ".", "up", "]", "=", "np", ".", "array", "(", "[", "float", "(", "match", ".", "group", "(", "i", ")", ")", "for", "i", "in", "range", "(", "1", ",", "4", ")", "]", ")", "results", ".", "context", "=", "Spin", ".", "up", "search", ".", "append", "(", "[", "r\"^.*Spin component 1 *e<r>_ev=\\( *([-0-9.Ee+]*) \"", "r\"*([-0-9.Ee+]*) *([-0-9.Ee+]*) *\\)\"", ",", "None", ",", "er_ev_up", "]", ")", "def", "er_bp_up", "(", "results", ",", "match", ")", ":", "results", ".", "er_bp", "[", "Spin", ".", "up", "]", "=", "np", ".", "array", "(", "[", "float", "(", "match", ".", "group", "(", "1", ")", ")", ",", "float", "(", "match", ".", "group", "(", "2", ")", ")", ",", "float", "(", "match", ".", "group", "(", "3", ")", ")", "]", ")", "search", ".", "append", "(", "[", "r\"^ *e<r>_bp=\\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) \"", "r\"*([-0-9.Ee+]*) *\\)\"", ",", "lambda", "results", ",", "line", ":", "results", ".", "context", "==", "Spin", ".", "up", ",", "er_bp_up", "]", ")", "def", "er_ev_dn", "(", "results", ",", "match", ")", ":", "results", ".", "er_ev", "[", "Spin", ".", "down", "]", "=", "np", ".", "array", "(", "[", "float", "(", "match", ".", "group", "(", "1", ")", ")", ",", "float", "(", "match", ".", "group", "(", "2", ")", ")", ",", "float", "(", "match", ".", "group", "(", "3", ")", ")", "]", ")", "results", ".", "context", "=", "Spin", ".", "down", "search", ".", "append", "(", "[", "r\"^.*Spin component 2 *e<r>_ev=\\( *([-0-9.Ee+]*) \"", "r\"*([-0-9.Ee+]*) *([-0-9.Ee+]*) *\\)\"", ",", "None", ",", "er_ev_dn", "]", ")", "def", "er_bp_dn", "(", "results", ",", "match", ")", ":", "results", ".", "er_bp", "[", "Spin", ".", "down", "]", "=", "np", ".", "array", "(", "[", "float", "(", "match", ".", "group", "(", "i", ")", ")", "for", "i", "in", "range", "(", "1", ",", "4", ")", "]", ")", "search", ".", "append", "(", "[", "r\"^ *e<r>_bp=\\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) \"", "r\"*([-0-9.Ee+]*) *\\)\"", ",", "lambda", "results", ",", "line", ":", "results", ".", "context", "==", "Spin", ".", "down", ",", "er_bp_dn", "]", ")", "# Always present spin/non-spin", "def", "p_elc", "(", "results", ",", "match", ")", ":", "results", ".", "p_elc", "=", "np", ".", "array", "(", "[", "float", "(", "match", ".", "group", "(", "i", ")", ")", "for", "i", "in", "range", "(", "1", ",", "4", ")", "]", ")", "search", ".", "append", "(", "[", "r\"^.*Total electronic dipole moment: \"", "r\"*p\\[elc\\]=\\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) \"", "r\"*([-0-9.Ee+]*) *\\)\"", ",", "None", ",", "p_elc", "]", ")", "def", "p_ion", "(", "results", ",", "match", ")", ":", "results", ".", "p_ion", "=", "np", ".", "array", "(", "[", "float", "(", "match", ".", "group", "(", "i", ")", ")", "for", "i", "in", "range", "(", "1", ",", "4", ")", "]", ")", "search", ".", "append", "(", "[", "r\"^.*ionic dipole moment: \"", "r\"*p\\[ion\\]=\\( *([-0-9.Ee+]*) *([-0-9.Ee+]*) \"", "r\"*([-0-9.Ee+]*) *\\)\"", ",", "None", ",", "p_ion", "]", ")", "self", ".", "context", "=", "None", "self", ".", "er_ev", "=", "{", "Spin", ".", "up", ":", "None", ",", "Spin", ".", "down", ":", "None", "}", "self", ".", "er_bp", "=", "{", "Spin", ".", "up", ":", "None", ",", "Spin", ".", "down", ":", "None", "}", "micro_pyawk", "(", "self", ".", "filename", ",", "search", ",", "self", ")", "if", "self", ".", "er_ev", "[", "Spin", ".", "up", "]", "is", "not", "None", "and", "self", ".", "er_ev", "[", "Spin", ".", "down", "]", "is", "not", "None", ":", "self", ".", "er_ev_tot", "=", "self", ".", "er_ev", "[", "Spin", ".", "up", "]", "+", "self", ".", "er_ev", "[", "Spin", ".", "down", "]", "if", "self", ".", "er_bp", "[", "Spin", ".", "up", "]", "is", "not", "None", "and", "self", ".", "er_bp", "[", "Spin", ".", "down", "]", "is", "not", "None", ":", "self", ".", "er_bp_tot", "=", "self", ".", "er_bp", "[", "Spin", ".", "up", "]", "+", "self", ".", "er_bp", "[", "Spin", ".", "down", "]", "except", ":", "self", ".", "er_ev_tot", "=", "None", "self", ".", "er_bp_tot", "=", "None", "raise", "Exception", "(", "\"IGPAR OUTCAR could not be parsed.\"", ")" ]
Renders accessible: er_ev = e<r>_ev (dictionary with Spin.up/Spin.down as keys) er_bp = e<r>_bp (dictionary with Spin.up/Spin.down as keys) er_ev_tot = spin up + spin down summed er_bp_tot = spin up + spin down summed p_elc = spin up + spin down summed p_ion = spin up + spin down summed (See VASP section "LBERRY, IGPAR, NPPSTR, DIPOL tags" for info on what these are).
[ "Renders", "accessible", ":", "er_ev", "=", "e<r", ">", "_ev", "(", "dictionary", "with", "Spin", ".", "up", "/", "Spin", ".", "down", "as", "keys", ")", "er_bp", "=", "e<r", ">", "_bp", "(", "dictionary", "with", "Spin", ".", "up", "/", "Spin", ".", "down", "as", "keys", ")", "er_ev_tot", "=", "spin", "up", "+", "spin", "down", "summed", "er_bp_tot", "=", "spin", "up", "+", "spin", "down", "summed", "p_elc", "=", "spin", "up", "+", "spin", "down", "summed", "p_ion", "=", "spin", "up", "+", "spin", "down", "summed" ]
python
train
pandas-dev/pandas
pandas/core/generic.py
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/generic.py#L274-L278
def _construct_axes_dict(self, axes=None, **kwargs): """Return an axes dictionary for myself.""" d = {a: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d
[ "def", "_construct_axes_dict", "(", "self", ",", "axes", "=", "None", ",", "*", "*", "kwargs", ")", ":", "d", "=", "{", "a", ":", "self", ".", "_get_axis", "(", "a", ")", "for", "a", "in", "(", "axes", "or", "self", ".", "_AXIS_ORDERS", ")", "}", "d", ".", "update", "(", "kwargs", ")", "return", "d" ]
Return an axes dictionary for myself.
[ "Return", "an", "axes", "dictionary", "for", "myself", "." ]
python
train
deviantony/valigator
valigator/scheduler.py
https://github.com/deviantony/valigator/blob/0557029bc58ea1270e358c14ca382d3807ed5b6f/valigator/scheduler.py#L11-L38
def validate_backup(configuration, backup_data): """Celery task. It will extract the backup archive into a unique folder in the temporary directory specified in the configuration. Once extracted, a Docker container will be started and will start a restoration procedure. The worker will wait for the container to exit and retrieve its return code. A notification is sent if the return code is != 0. If the return code == 0, the container will be removed. Lastly, it will remove the temporary workdir. """ extract_archive(backup_data['archive_path'], backup_data['workdir']) docker_client = Client(configuration['docker']['url']) container = run_container(docker_client, backup_data) return_code = docker_client.wait(container) print('Container return code: {}'.format(return_code)) if return_code != 0: notifier = MailNotifier(configuration['mail']) report = {'archive': backup_data['archive_path'], 'image': backup_data['image'], 'container_id': container.get('Id')} notifier.send_report(report) else: docker_client.remove_container(container) remove_file(backup_data['workdir'])
[ "def", "validate_backup", "(", "configuration", ",", "backup_data", ")", ":", "extract_archive", "(", "backup_data", "[", "'archive_path'", "]", ",", "backup_data", "[", "'workdir'", "]", ")", "docker_client", "=", "Client", "(", "configuration", "[", "'docker'", "]", "[", "'url'", "]", ")", "container", "=", "run_container", "(", "docker_client", ",", "backup_data", ")", "return_code", "=", "docker_client", ".", "wait", "(", "container", ")", "print", "(", "'Container return code: {}'", ".", "format", "(", "return_code", ")", ")", "if", "return_code", "!=", "0", ":", "notifier", "=", "MailNotifier", "(", "configuration", "[", "'mail'", "]", ")", "report", "=", "{", "'archive'", ":", "backup_data", "[", "'archive_path'", "]", ",", "'image'", ":", "backup_data", "[", "'image'", "]", ",", "'container_id'", ":", "container", ".", "get", "(", "'Id'", ")", "}", "notifier", ".", "send_report", "(", "report", ")", "else", ":", "docker_client", ".", "remove_container", "(", "container", ")", "remove_file", "(", "backup_data", "[", "'workdir'", "]", ")" ]
Celery task. It will extract the backup archive into a unique folder in the temporary directory specified in the configuration. Once extracted, a Docker container will be started and will start a restoration procedure. The worker will wait for the container to exit and retrieve its return code. A notification is sent if the return code is != 0. If the return code == 0, the container will be removed. Lastly, it will remove the temporary workdir.
[ "Celery", "task", ".", "It", "will", "extract", "the", "backup", "archive", "into", "a", "unique", "folder", "in", "the", "temporary", "directory", "specified", "in", "the", "configuration", "." ]
python
train
pkgw/pwkit
pwkit/io.py
https://github.com/pkgw/pwkit/blob/d40957a1c3d2ea34e7ceac2267ee9635135f2793/pwkit/io.py#L736-L754
def read_fits_bintable (self, hdu=1, drop_nonscalar_ok=True, **kwargs): """Open as a FITS file, read in a binary table, and return it as a :class:`pandas.DataFrame`, converted with :func:`pkwit.numutil.fits_recarray_to_data_frame`. The *hdu* argument specifies which HDU to read, with its default 1 indicating the first FITS extension. The *drop_nonscalar_ok* argument specifies if non-scalar table values (which are inexpressible in :class:`pandas.DataFrame`s) should be silently ignored (``True``) or cause a :exc:`ValueError` to be raised (``False``). Other **kwargs** are passed to :func:`astropy.io.fits.open`, (see :meth:`Path.read_fits`) although the open mode is hardcoded to be ``"readonly"``. """ from astropy.io import fits from .numutil import fits_recarray_to_data_frame as frtdf with fits.open (text_type (self), mode='readonly', **kwargs) as hdulist: return frtdf (hdulist[hdu].data, drop_nonscalar_ok=drop_nonscalar_ok)
[ "def", "read_fits_bintable", "(", "self", ",", "hdu", "=", "1", ",", "drop_nonscalar_ok", "=", "True", ",", "*", "*", "kwargs", ")", ":", "from", "astropy", ".", "io", "import", "fits", "from", ".", "numutil", "import", "fits_recarray_to_data_frame", "as", "frtdf", "with", "fits", ".", "open", "(", "text_type", "(", "self", ")", ",", "mode", "=", "'readonly'", ",", "*", "*", "kwargs", ")", "as", "hdulist", ":", "return", "frtdf", "(", "hdulist", "[", "hdu", "]", ".", "data", ",", "drop_nonscalar_ok", "=", "drop_nonscalar_ok", ")" ]
Open as a FITS file, read in a binary table, and return it as a :class:`pandas.DataFrame`, converted with :func:`pkwit.numutil.fits_recarray_to_data_frame`. The *hdu* argument specifies which HDU to read, with its default 1 indicating the first FITS extension. The *drop_nonscalar_ok* argument specifies if non-scalar table values (which are inexpressible in :class:`pandas.DataFrame`s) should be silently ignored (``True``) or cause a :exc:`ValueError` to be raised (``False``). Other **kwargs** are passed to :func:`astropy.io.fits.open`, (see :meth:`Path.read_fits`) although the open mode is hardcoded to be ``"readonly"``.
[ "Open", "as", "a", "FITS", "file", "read", "in", "a", "binary", "table", "and", "return", "it", "as", "a", ":", "class", ":", "pandas", ".", "DataFrame", "converted", "with", ":", "func", ":", "pkwit", ".", "numutil", ".", "fits_recarray_to_data_frame", ".", "The", "*", "hdu", "*", "argument", "specifies", "which", "HDU", "to", "read", "with", "its", "default", "1", "indicating", "the", "first", "FITS", "extension", ".", "The", "*", "drop_nonscalar_ok", "*", "argument", "specifies", "if", "non", "-", "scalar", "table", "values", "(", "which", "are", "inexpressible", "in", ":", "class", ":", "pandas", ".", "DataFrame", "s", ")", "should", "be", "silently", "ignored", "(", "True", ")", "or", "cause", "a", ":", "exc", ":", "ValueError", "to", "be", "raised", "(", "False", ")", ".", "Other", "**", "kwargs", "**", "are", "passed", "to", ":", "func", ":", "astropy", ".", "io", ".", "fits", ".", "open", "(", "see", ":", "meth", ":", "Path", ".", "read_fits", ")", "although", "the", "open", "mode", "is", "hardcoded", "to", "be", "readonly", "." ]
python
train
spacetelescope/acstools
acstools/acs_destripe_plus.py
https://github.com/spacetelescope/acstools/blob/bbf8dd080cefcbf88529ec87c420f9e1b8002554/acstools/acs_destripe_plus.py#L111-L498
def destripe_plus(inputfile, suffix='strp', stat='pmode1', maxiter=15, sigrej=2.0, lower=None, upper=None, binwidth=0.3, scimask1=None, scimask2=None, dqbits=None, rpt_clean=0, atol=0.01, cte_correct=True, clobber=False, verbose=True): r"""Calibrate post-SM4 ACS/WFC exposure(s) and use standalone :ref:`acsdestripe`. This takes a RAW image and generates a FLT file containing its calibrated and destriped counterpart. If CTE correction is performed, FLC will also be present. Parameters ---------- inputfile : str or list of str Input filenames in one of these formats: * a Python list of filenames * a partial filename with wildcards ('\*raw.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) suffix : str The string to use to add to each input file name to indicate an output product of ``acs_destripe``. This only affects the intermediate output file that will be automatically renamed to ``*blv_tmp.fits`` during the processing. stat : { 'pmode1', 'pmode2', 'mean', 'mode', 'median', 'midpt' } (Default = 'pmode1') Specifies the statistics to be used for computation of the background in image rows: * 'pmode1' - SEXTRACTOR-like mode estimate based on a modified `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``2.5*median-1.5*mean``; * 'pmode2' - mode estimate based on `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``3*median-2*mean``; * 'mean' - the mean of the distribution of the "good" pixels (after clipping, masking, etc.); * 'mode' - the mode of the distribution of the "good" pixels; * 'median' - the median of the distribution of the "good" pixels; * 'midpt' - estimate of the median of the distribution of the "good" pixels based on an algorithm similar to IRAF's `imagestats` task (``CDF(midpt)=1/2``). .. note:: The midpoint and mode are computed in two passes through the image. In the first pass the standard deviation of the pixels is calculated and used with the *binwidth* parameter to compute the resolution of the data histogram. The midpoint is estimated by integrating the histogram and computing by interpolation the data value at which exactly half the pixels are below that data value and half are above it. The mode is computed by locating the maximum of the data histogram and fitting the peak by parabolic interpolation. maxiter : int This parameter controls the maximum number of iterations to perform when computing the statistics used to compute the row-by-row corrections. sigrej : float This parameters sets the sigma level for the rejection applied during each iteration of statistics computations for the row-by-row corrections. lower : float, None (Default = None) Lower limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). upper : float, None (Default = None) Upper limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). binwidth : float (Default = 0.1) Histogram's bin width, in sigma units, used to sample the distribution of pixel brightness values in order to compute the background statistics. This parameter is aplicable *only* to *stat* parameter values of `'mode'` or `'midpt'`. clobber : bool Specify whether or not to 'clobber' (delete then replace) previously generated products with the same names. scimask1 : str or list of str Mask images for *calibrated* ``SCI,1``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. scimask2 : str or list of str Mask images for *calibrated* ``SCI,2``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. This is not used for subarrays. dqbits : int, str, None (Default = None) Integer sum of all the DQ bit values from the input image's DQ array that should be considered "good" when building masks for de-striping computations. For example, if pixels in the DQ array can be combinations of 1, 2, 4, and 8 flags and one wants to consider DQ "defects" having flags 2 and 4 as being acceptable for de-striping computations, then `dqbits` should be set to 2+4=6. Then a DQ pixel having values 2,4, or 6 will be considered a good pixel, while a DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged as a "bad" pixel. Alternatively, one can enter a comma- or '+'-separated list of integer bit flags that should be added to obtain the final "good" bits. For example, both ``4,8`` and ``4+8`` are equivalent to setting `dqbits` to 12. | Set `dqbits` to 0 to make *all* non-zero pixels in the DQ mask to be considered "bad" pixels, and the corresponding image pixels not to be used for de-striping computations. | Default value (`None`) will turn off the use of image's DQ array for de-striping computations. | In order to reverse the meaning of the `dqbits` parameter from indicating values of the "good" DQ flags to indicating the "bad" DQ flags, prepend '~' to the string value. For example, in order not to use pixels with DQ flags 4 and 8 for sky computations and to consider as "good" all other pixels (regardless of their DQ flag), set `dqbits` to ``~4+8``, or ``~4,8``. To obtain the same effect with an `int` input value (except for 0), enter -(4+8+1)=-9. Following this convention, a `dqbits` string value of ``'~0'`` would be equivalent to setting ``dqbits=None``. .. note:: DQ masks (if used), *will be* combined with user masks specified in the `scimask1` and `scimask2` parameters (if any). rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. cte_correct : bool Perform CTE correction. verbose : bool Print informational messages. Default = True. Raises ------ ImportError ``stsci.tools`` not found. IOError Input file does not exist. ValueError Invalid header values or CALACS version. """ # Optional package dependencies from stsci.tools import parseinput try: from stsci.tools.bitmask import interpret_bit_flags except ImportError: from stsci.tools.bitmask import ( interpret_bits_value as interpret_bit_flags ) # process input file(s) and if we have multiple input files - recursively # call acs_destripe_plus for each input image: flist = parseinput.parseinput(inputfile)[0] if isinstance(scimask1, str): mlist1 = parseinput.parseinput(scimask1)[0] elif isinstance(scimask1, np.ndarray): mlist1 = [scimask1.copy()] elif scimask1 is None: mlist1 = [] elif isinstance(scimask1, list): mlist1 = [] for m in scimask1: if isinstance(m, np.ndarray): mlist1.append(m.copy()) elif isinstance(m, str): mlist1 += parseinput.parseinput(m)[0] else: raise TypeError("'scimask1' must be a list of str or " "numpy.ndarray values.") else: raise TypeError("'scimask1' must be either a str, or a " "numpy.ndarray, or a list of the two type of " "values.") if isinstance(scimask2, str): mlist2 = parseinput.parseinput(scimask2)[0] elif isinstance(scimask2, np.ndarray): mlist2 = [scimask2.copy()] elif scimask2 is None: mlist2 = [] elif isinstance(scimask2, list): mlist2 = [] for m in scimask2: if isinstance(m, np.ndarray): mlist2.append(m.copy()) elif isinstance(m, str): mlist2 += parseinput.parseinput(m)[0] else: raise TypeError("'scimask2' must be a list of str or " "numpy.ndarray values.") else: raise TypeError("'scimask2' must be either a str, or a " "numpy.ndarray, or a list of the two type of " "values.") n_input = len(flist) n_mask1 = len(mlist1) n_mask2 = len(mlist2) if n_input == 0: raise ValueError( 'No input file(s) provided or the file(s) do not exist') if n_mask1 == 0: mlist1 = [None] * n_input elif n_mask1 != n_input: raise ValueError('Insufficient masks for [SCI,1]') if n_mask2 == 0: mlist2 = [None] * n_input elif n_mask2 != n_input: raise ValueError('Insufficient masks for [SCI,2]') if n_input > 1: for img, mf1, mf2 in zip(flist, mlist1, mlist2): destripe_plus( inputfile=img, suffix=suffix, stat=stat, lower=lower, upper=upper, binwidth=binwidth, maxiter=maxiter, sigrej=sigrej, scimask1=scimask1, scimask2=scimask2, dqbits=dqbits, cte_correct=cte_correct, clobber=clobber, verbose=verbose ) return inputfile = flist[0] scimask1 = mlist1[0] scimask2 = mlist2[0] # verify that the RAW image exists in cwd cwddir = os.getcwd() if not os.path.exists(os.path.join(cwddir, inputfile)): raise IOError("{0} does not exist.".format(inputfile)) # get image's primary header: header = fits.getheader(inputfile) # verify masks defined (or not) simultaneously: if (header['CCDAMP'] == 'ABCD' and ((scimask1 is not None and scimask2 is None) or (scimask1 is None and scimask2 is not None))): raise ValueError("Both 'scimask1' and 'scimask2' must be specified " "or not specified together.") calacs_str = subprocess.check_output(['calacs.e', '--version']).split()[0] calacs_ver = [int(x) for x in calacs_str.decode().split('.')] if calacs_ver < [8, 3, 1]: raise ValueError('CALACS {0} is incomptible. ' 'Must be 8.3.1 or later.'.format(calacs_str)) # check date for post-SM4 and if supported subarray or full frame is_subarray = False ctecorr = header['PCTECORR'] aperture = header['APERTURE'] detector = header['DETECTOR'] date_obs = Time(header['DATE-OBS']) # intermediate filenames blvtmp_name = inputfile.replace('raw', 'blv_tmp') blctmp_name = inputfile.replace('raw', 'blc_tmp') # output filenames tra_name = inputfile.replace('_raw.fits', '.tra') flt_name = inputfile.replace('raw', 'flt') flc_name = inputfile.replace('raw', 'flc') if detector != 'WFC': raise ValueError("{0} is not a WFC image, please check the 'DETECTOR'" " keyword.".format(inputfile)) if date_obs < SM4_DATE: raise ValueError( "{0} is a pre-SM4 image.".format(inputfile)) if header['SUBARRAY'] and cte_correct: if aperture in SUBARRAY_LIST: is_subarray = True else: LOG.warning('Using non-supported subarray, ' 'turning CTE correction off') cte_correct = False # delete files from previous CALACS runs if clobber: for tmpfilename in [blvtmp_name, blctmp_name, flt_name, flc_name, tra_name]: if os.path.exists(tmpfilename): os.remove(tmpfilename) # run ACSCCD on RAW acsccd.acsccd(inputfile) # modify user mask with DQ masks if requested dqbits = interpret_bit_flags(dqbits) if dqbits is not None: # save 'tra' file in memory to trick the log file # not to save first acs2d log as this is done only # for the purpose of obtaining DQ masks. # WISH: it would have been nice is there was an easy way of obtaining # just the DQ masks as if data were calibrated but without # having to recalibrate them with acs2d. if os.path.isfile(tra_name): with open(tra_name) as fh: tra_lines = fh.readlines() else: tra_lines = None # apply flats, etc. acs2d.acs2d(blvtmp_name, verbose=False, quiet=True) # extract DQ arrays from the FLT image: dq1, dq2 = _read_DQ_arrays(flt_name) mask1 = _get_mask(scimask1, 1) scimask1 = acs_destripe._mergeUserMaskAndDQ(dq1, mask1, dqbits) mask2 = _get_mask(scimask2, 2) if dq2 is not None: scimask2 = acs_destripe._mergeUserMaskAndDQ(dq2, mask2, dqbits) elif mask2 is None: scimask2 = None # reconstruct trailer file: if tra_lines is not None: with open(tra_name, mode='w') as fh: fh.writelines(tra_lines) # delete temporary FLT image: if os.path.isfile(flt_name): os.remove(flt_name) # execute destriping (post-SM4 data only) acs_destripe.clean( blvtmp_name, suffix, stat=stat, maxiter=maxiter, sigrej=sigrej, lower=lower, upper=upper, binwidth=binwidth, mask1=scimask1, mask2=scimask2, dqbits=dqbits, rpt_clean=rpt_clean, atol=atol, clobber=clobber, verbose=verbose) blvtmpsfx = 'blv_tmp_{0}'.format(suffix) os.rename(inputfile.replace('raw', blvtmpsfx), blvtmp_name) # update subarray header if is_subarray and cte_correct: fits.setval(blvtmp_name, 'PCTECORR', value='PERFORM') ctecorr = 'PERFORM' # perform CTE correction on destriped image if cte_correct: if ctecorr == 'PERFORM': acscte.acscte(blvtmp_name) else: LOG.warning( "PCTECORR={0}, cannot run CTE correction".format(ctecorr)) cte_correct = False # run ACS2D to get FLT and FLC images acs2d.acs2d(blvtmp_name) if cte_correct: acs2d.acs2d(blctmp_name) # delete intermediate files os.remove(blvtmp_name) if cte_correct and os.path.isfile(blctmp_name): os.remove(blctmp_name) info_str = 'Done.\nFLT: {0}\n'.format(flt_name) if cte_correct: info_str += 'FLC: {0}\n'.format(flc_name) LOG.info(info_str)
[ "def", "destripe_plus", "(", "inputfile", ",", "suffix", "=", "'strp'", ",", "stat", "=", "'pmode1'", ",", "maxiter", "=", "15", ",", "sigrej", "=", "2.0", ",", "lower", "=", "None", ",", "upper", "=", "None", ",", "binwidth", "=", "0.3", ",", "scimask1", "=", "None", ",", "scimask2", "=", "None", ",", "dqbits", "=", "None", ",", "rpt_clean", "=", "0", ",", "atol", "=", "0.01", ",", "cte_correct", "=", "True", ",", "clobber", "=", "False", ",", "verbose", "=", "True", ")", ":", "# Optional package dependencies", "from", "stsci", ".", "tools", "import", "parseinput", "try", ":", "from", "stsci", ".", "tools", ".", "bitmask", "import", "interpret_bit_flags", "except", "ImportError", ":", "from", "stsci", ".", "tools", ".", "bitmask", "import", "(", "interpret_bits_value", "as", "interpret_bit_flags", ")", "# process input file(s) and if we have multiple input files - recursively", "# call acs_destripe_plus for each input image:", "flist", "=", "parseinput", ".", "parseinput", "(", "inputfile", ")", "[", "0", "]", "if", "isinstance", "(", "scimask1", ",", "str", ")", ":", "mlist1", "=", "parseinput", ".", "parseinput", "(", "scimask1", ")", "[", "0", "]", "elif", "isinstance", "(", "scimask1", ",", "np", ".", "ndarray", ")", ":", "mlist1", "=", "[", "scimask1", ".", "copy", "(", ")", "]", "elif", "scimask1", "is", "None", ":", "mlist1", "=", "[", "]", "elif", "isinstance", "(", "scimask1", ",", "list", ")", ":", "mlist1", "=", "[", "]", "for", "m", "in", "scimask1", ":", "if", "isinstance", "(", "m", ",", "np", ".", "ndarray", ")", ":", "mlist1", ".", "append", "(", "m", ".", "copy", "(", ")", ")", "elif", "isinstance", "(", "m", ",", "str", ")", ":", "mlist1", "+=", "parseinput", ".", "parseinput", "(", "m", ")", "[", "0", "]", "else", ":", "raise", "TypeError", "(", "\"'scimask1' must be a list of str or \"", "\"numpy.ndarray values.\"", ")", "else", ":", "raise", "TypeError", "(", "\"'scimask1' must be either a str, or a \"", "\"numpy.ndarray, or a list of the two type of \"", "\"values.\"", ")", "if", "isinstance", "(", "scimask2", ",", "str", ")", ":", "mlist2", "=", "parseinput", ".", "parseinput", "(", "scimask2", ")", "[", "0", "]", "elif", "isinstance", "(", "scimask2", ",", "np", ".", "ndarray", ")", ":", "mlist2", "=", "[", "scimask2", ".", "copy", "(", ")", "]", "elif", "scimask2", "is", "None", ":", "mlist2", "=", "[", "]", "elif", "isinstance", "(", "scimask2", ",", "list", ")", ":", "mlist2", "=", "[", "]", "for", "m", "in", "scimask2", ":", "if", "isinstance", "(", "m", ",", "np", ".", "ndarray", ")", ":", "mlist2", ".", "append", "(", "m", ".", "copy", "(", ")", ")", "elif", "isinstance", "(", "m", ",", "str", ")", ":", "mlist2", "+=", "parseinput", ".", "parseinput", "(", "m", ")", "[", "0", "]", "else", ":", "raise", "TypeError", "(", "\"'scimask2' must be a list of str or \"", "\"numpy.ndarray values.\"", ")", "else", ":", "raise", "TypeError", "(", "\"'scimask2' must be either a str, or a \"", "\"numpy.ndarray, or a list of the two type of \"", "\"values.\"", ")", "n_input", "=", "len", "(", "flist", ")", "n_mask1", "=", "len", "(", "mlist1", ")", "n_mask2", "=", "len", "(", "mlist2", ")", "if", "n_input", "==", "0", ":", "raise", "ValueError", "(", "'No input file(s) provided or the file(s) do not exist'", ")", "if", "n_mask1", "==", "0", ":", "mlist1", "=", "[", "None", "]", "*", "n_input", "elif", "n_mask1", "!=", "n_input", ":", "raise", "ValueError", "(", "'Insufficient masks for [SCI,1]'", ")", "if", "n_mask2", "==", "0", ":", "mlist2", "=", "[", "None", "]", "*", "n_input", "elif", "n_mask2", "!=", "n_input", ":", "raise", "ValueError", "(", "'Insufficient masks for [SCI,2]'", ")", "if", "n_input", ">", "1", ":", "for", "img", ",", "mf1", ",", "mf2", "in", "zip", "(", "flist", ",", "mlist1", ",", "mlist2", ")", ":", "destripe_plus", "(", "inputfile", "=", "img", ",", "suffix", "=", "suffix", ",", "stat", "=", "stat", ",", "lower", "=", "lower", ",", "upper", "=", "upper", ",", "binwidth", "=", "binwidth", ",", "maxiter", "=", "maxiter", ",", "sigrej", "=", "sigrej", ",", "scimask1", "=", "scimask1", ",", "scimask2", "=", "scimask2", ",", "dqbits", "=", "dqbits", ",", "cte_correct", "=", "cte_correct", ",", "clobber", "=", "clobber", ",", "verbose", "=", "verbose", ")", "return", "inputfile", "=", "flist", "[", "0", "]", "scimask1", "=", "mlist1", "[", "0", "]", "scimask2", "=", "mlist2", "[", "0", "]", "# verify that the RAW image exists in cwd", "cwddir", "=", "os", ".", "getcwd", "(", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "cwddir", ",", "inputfile", ")", ")", ":", "raise", "IOError", "(", "\"{0} does not exist.\"", ".", "format", "(", "inputfile", ")", ")", "# get image's primary header:", "header", "=", "fits", ".", "getheader", "(", "inputfile", ")", "# verify masks defined (or not) simultaneously:", "if", "(", "header", "[", "'CCDAMP'", "]", "==", "'ABCD'", "and", "(", "(", "scimask1", "is", "not", "None", "and", "scimask2", "is", "None", ")", "or", "(", "scimask1", "is", "None", "and", "scimask2", "is", "not", "None", ")", ")", ")", ":", "raise", "ValueError", "(", "\"Both 'scimask1' and 'scimask2' must be specified \"", "\"or not specified together.\"", ")", "calacs_str", "=", "subprocess", ".", "check_output", "(", "[", "'calacs.e'", ",", "'--version'", "]", ")", ".", "split", "(", ")", "[", "0", "]", "calacs_ver", "=", "[", "int", "(", "x", ")", "for", "x", "in", "calacs_str", ".", "decode", "(", ")", ".", "split", "(", "'.'", ")", "]", "if", "calacs_ver", "<", "[", "8", ",", "3", ",", "1", "]", ":", "raise", "ValueError", "(", "'CALACS {0} is incomptible. '", "'Must be 8.3.1 or later.'", ".", "format", "(", "calacs_str", ")", ")", "# check date for post-SM4 and if supported subarray or full frame", "is_subarray", "=", "False", "ctecorr", "=", "header", "[", "'PCTECORR'", "]", "aperture", "=", "header", "[", "'APERTURE'", "]", "detector", "=", "header", "[", "'DETECTOR'", "]", "date_obs", "=", "Time", "(", "header", "[", "'DATE-OBS'", "]", ")", "# intermediate filenames", "blvtmp_name", "=", "inputfile", ".", "replace", "(", "'raw'", ",", "'blv_tmp'", ")", "blctmp_name", "=", "inputfile", ".", "replace", "(", "'raw'", ",", "'blc_tmp'", ")", "# output filenames", "tra_name", "=", "inputfile", ".", "replace", "(", "'_raw.fits'", ",", "'.tra'", ")", "flt_name", "=", "inputfile", ".", "replace", "(", "'raw'", ",", "'flt'", ")", "flc_name", "=", "inputfile", ".", "replace", "(", "'raw'", ",", "'flc'", ")", "if", "detector", "!=", "'WFC'", ":", "raise", "ValueError", "(", "\"{0} is not a WFC image, please check the 'DETECTOR'\"", "\" keyword.\"", ".", "format", "(", "inputfile", ")", ")", "if", "date_obs", "<", "SM4_DATE", ":", "raise", "ValueError", "(", "\"{0} is a pre-SM4 image.\"", ".", "format", "(", "inputfile", ")", ")", "if", "header", "[", "'SUBARRAY'", "]", "and", "cte_correct", ":", "if", "aperture", "in", "SUBARRAY_LIST", ":", "is_subarray", "=", "True", "else", ":", "LOG", ".", "warning", "(", "'Using non-supported subarray, '", "'turning CTE correction off'", ")", "cte_correct", "=", "False", "# delete files from previous CALACS runs", "if", "clobber", ":", "for", "tmpfilename", "in", "[", "blvtmp_name", ",", "blctmp_name", ",", "flt_name", ",", "flc_name", ",", "tra_name", "]", ":", "if", "os", ".", "path", ".", "exists", "(", "tmpfilename", ")", ":", "os", ".", "remove", "(", "tmpfilename", ")", "# run ACSCCD on RAW", "acsccd", ".", "acsccd", "(", "inputfile", ")", "# modify user mask with DQ masks if requested", "dqbits", "=", "interpret_bit_flags", "(", "dqbits", ")", "if", "dqbits", "is", "not", "None", ":", "# save 'tra' file in memory to trick the log file", "# not to save first acs2d log as this is done only", "# for the purpose of obtaining DQ masks.", "# WISH: it would have been nice is there was an easy way of obtaining", "# just the DQ masks as if data were calibrated but without", "# having to recalibrate them with acs2d.", "if", "os", ".", "path", ".", "isfile", "(", "tra_name", ")", ":", "with", "open", "(", "tra_name", ")", "as", "fh", ":", "tra_lines", "=", "fh", ".", "readlines", "(", ")", "else", ":", "tra_lines", "=", "None", "# apply flats, etc.", "acs2d", ".", "acs2d", "(", "blvtmp_name", ",", "verbose", "=", "False", ",", "quiet", "=", "True", ")", "# extract DQ arrays from the FLT image:", "dq1", ",", "dq2", "=", "_read_DQ_arrays", "(", "flt_name", ")", "mask1", "=", "_get_mask", "(", "scimask1", ",", "1", ")", "scimask1", "=", "acs_destripe", ".", "_mergeUserMaskAndDQ", "(", "dq1", ",", "mask1", ",", "dqbits", ")", "mask2", "=", "_get_mask", "(", "scimask2", ",", "2", ")", "if", "dq2", "is", "not", "None", ":", "scimask2", "=", "acs_destripe", ".", "_mergeUserMaskAndDQ", "(", "dq2", ",", "mask2", ",", "dqbits", ")", "elif", "mask2", "is", "None", ":", "scimask2", "=", "None", "# reconstruct trailer file:", "if", "tra_lines", "is", "not", "None", ":", "with", "open", "(", "tra_name", ",", "mode", "=", "'w'", ")", "as", "fh", ":", "fh", ".", "writelines", "(", "tra_lines", ")", "# delete temporary FLT image:", "if", "os", ".", "path", ".", "isfile", "(", "flt_name", ")", ":", "os", ".", "remove", "(", "flt_name", ")", "# execute destriping (post-SM4 data only)", "acs_destripe", ".", "clean", "(", "blvtmp_name", ",", "suffix", ",", "stat", "=", "stat", ",", "maxiter", "=", "maxiter", ",", "sigrej", "=", "sigrej", ",", "lower", "=", "lower", ",", "upper", "=", "upper", ",", "binwidth", "=", "binwidth", ",", "mask1", "=", "scimask1", ",", "mask2", "=", "scimask2", ",", "dqbits", "=", "dqbits", ",", "rpt_clean", "=", "rpt_clean", ",", "atol", "=", "atol", ",", "clobber", "=", "clobber", ",", "verbose", "=", "verbose", ")", "blvtmpsfx", "=", "'blv_tmp_{0}'", ".", "format", "(", "suffix", ")", "os", ".", "rename", "(", "inputfile", ".", "replace", "(", "'raw'", ",", "blvtmpsfx", ")", ",", "blvtmp_name", ")", "# update subarray header", "if", "is_subarray", "and", "cte_correct", ":", "fits", ".", "setval", "(", "blvtmp_name", ",", "'PCTECORR'", ",", "value", "=", "'PERFORM'", ")", "ctecorr", "=", "'PERFORM'", "# perform CTE correction on destriped image", "if", "cte_correct", ":", "if", "ctecorr", "==", "'PERFORM'", ":", "acscte", ".", "acscte", "(", "blvtmp_name", ")", "else", ":", "LOG", ".", "warning", "(", "\"PCTECORR={0}, cannot run CTE correction\"", ".", "format", "(", "ctecorr", ")", ")", "cte_correct", "=", "False", "# run ACS2D to get FLT and FLC images", "acs2d", ".", "acs2d", "(", "blvtmp_name", ")", "if", "cte_correct", ":", "acs2d", ".", "acs2d", "(", "blctmp_name", ")", "# delete intermediate files", "os", ".", "remove", "(", "blvtmp_name", ")", "if", "cte_correct", "and", "os", ".", "path", ".", "isfile", "(", "blctmp_name", ")", ":", "os", ".", "remove", "(", "blctmp_name", ")", "info_str", "=", "'Done.\\nFLT: {0}\\n'", ".", "format", "(", "flt_name", ")", "if", "cte_correct", ":", "info_str", "+=", "'FLC: {0}\\n'", ".", "format", "(", "flc_name", ")", "LOG", ".", "info", "(", "info_str", ")" ]
r"""Calibrate post-SM4 ACS/WFC exposure(s) and use standalone :ref:`acsdestripe`. This takes a RAW image and generates a FLT file containing its calibrated and destriped counterpart. If CTE correction is performed, FLC will also be present. Parameters ---------- inputfile : str or list of str Input filenames in one of these formats: * a Python list of filenames * a partial filename with wildcards ('\*raw.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) suffix : str The string to use to add to each input file name to indicate an output product of ``acs_destripe``. This only affects the intermediate output file that will be automatically renamed to ``*blv_tmp.fits`` during the processing. stat : { 'pmode1', 'pmode2', 'mean', 'mode', 'median', 'midpt' } (Default = 'pmode1') Specifies the statistics to be used for computation of the background in image rows: * 'pmode1' - SEXTRACTOR-like mode estimate based on a modified `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``2.5*median-1.5*mean``; * 'pmode2' - mode estimate based on `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``3*median-2*mean``; * 'mean' - the mean of the distribution of the "good" pixels (after clipping, masking, etc.); * 'mode' - the mode of the distribution of the "good" pixels; * 'median' - the median of the distribution of the "good" pixels; * 'midpt' - estimate of the median of the distribution of the "good" pixels based on an algorithm similar to IRAF's `imagestats` task (``CDF(midpt)=1/2``). .. note:: The midpoint and mode are computed in two passes through the image. In the first pass the standard deviation of the pixels is calculated and used with the *binwidth* parameter to compute the resolution of the data histogram. The midpoint is estimated by integrating the histogram and computing by interpolation the data value at which exactly half the pixels are below that data value and half are above it. The mode is computed by locating the maximum of the data histogram and fitting the peak by parabolic interpolation. maxiter : int This parameter controls the maximum number of iterations to perform when computing the statistics used to compute the row-by-row corrections. sigrej : float This parameters sets the sigma level for the rejection applied during each iteration of statistics computations for the row-by-row corrections. lower : float, None (Default = None) Lower limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). upper : float, None (Default = None) Upper limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). binwidth : float (Default = 0.1) Histogram's bin width, in sigma units, used to sample the distribution of pixel brightness values in order to compute the background statistics. This parameter is aplicable *only* to *stat* parameter values of `'mode'` or `'midpt'`. clobber : bool Specify whether or not to 'clobber' (delete then replace) previously generated products with the same names. scimask1 : str or list of str Mask images for *calibrated* ``SCI,1``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. scimask2 : str or list of str Mask images for *calibrated* ``SCI,2``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. This is not used for subarrays. dqbits : int, str, None (Default = None) Integer sum of all the DQ bit values from the input image's DQ array that should be considered "good" when building masks for de-striping computations. For example, if pixels in the DQ array can be combinations of 1, 2, 4, and 8 flags and one wants to consider DQ "defects" having flags 2 and 4 as being acceptable for de-striping computations, then `dqbits` should be set to 2+4=6. Then a DQ pixel having values 2,4, or 6 will be considered a good pixel, while a DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged as a "bad" pixel. Alternatively, one can enter a comma- or '+'-separated list of integer bit flags that should be added to obtain the final "good" bits. For example, both ``4,8`` and ``4+8`` are equivalent to setting `dqbits` to 12. | Set `dqbits` to 0 to make *all* non-zero pixels in the DQ mask to be considered "bad" pixels, and the corresponding image pixels not to be used for de-striping computations. | Default value (`None`) will turn off the use of image's DQ array for de-striping computations. | In order to reverse the meaning of the `dqbits` parameter from indicating values of the "good" DQ flags to indicating the "bad" DQ flags, prepend '~' to the string value. For example, in order not to use pixels with DQ flags 4 and 8 for sky computations and to consider as "good" all other pixels (regardless of their DQ flag), set `dqbits` to ``~4+8``, or ``~4,8``. To obtain the same effect with an `int` input value (except for 0), enter -(4+8+1)=-9. Following this convention, a `dqbits` string value of ``'~0'`` would be equivalent to setting ``dqbits=None``. .. note:: DQ masks (if used), *will be* combined with user masks specified in the `scimask1` and `scimask2` parameters (if any). rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. cte_correct : bool Perform CTE correction. verbose : bool Print informational messages. Default = True. Raises ------ ImportError ``stsci.tools`` not found. IOError Input file does not exist. ValueError Invalid header values or CALACS version.
[ "r", "Calibrate", "post", "-", "SM4", "ACS", "/", "WFC", "exposure", "(", "s", ")", "and", "use", "standalone", ":", "ref", ":", "acsdestripe", "." ]
python
train
estnltk/estnltk
estnltk/text.py
https://github.com/estnltk/estnltk/blob/28ae334a68a0673072febc318635f04da0dcc54a/estnltk/text.py#L937-L941
def timex_spans(self): """The list of spans of ``timexes`` layer elements.""" if not self.is_tagged(TIMEXES): self.tag_timexes() return self.spans(TIMEXES)
[ "def", "timex_spans", "(", "self", ")", ":", "if", "not", "self", ".", "is_tagged", "(", "TIMEXES", ")", ":", "self", ".", "tag_timexes", "(", ")", "return", "self", ".", "spans", "(", "TIMEXES", ")" ]
The list of spans of ``timexes`` layer elements.
[ "The", "list", "of", "spans", "of", "timexes", "layer", "elements", "." ]
python
train
divio/python-mautic
mautic/contacts.py
https://github.com/divio/python-mautic/blob/1fbff629070200002373c5e94c75e01561df418a/mautic/contacts.py#L17-L26
def get_owners(self): """ Get a list of users available as contact owners :return: dict|str """ response = self._client.session.get( '{url}/list/owners'.format(url=self.endpoint_url) ) return self.process_response(response)
[ "def", "get_owners", "(", "self", ")", ":", "response", "=", "self", ".", "_client", ".", "session", ".", "get", "(", "'{url}/list/owners'", ".", "format", "(", "url", "=", "self", ".", "endpoint_url", ")", ")", "return", "self", ".", "process_response", "(", "response", ")" ]
Get a list of users available as contact owners :return: dict|str
[ "Get", "a", "list", "of", "users", "available", "as", "contact", "owners" ]
python
train
brocade/pynos
pynos/versions/ver_7/ver_7_1_0/yang/brocade_firmware.py
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_7/ver_7_1_0/yang/brocade_firmware.py#L853-L865
def logical_chassis_fwdl_status_output_cluster_fwdl_entries_rbridge_id(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") logical_chassis_fwdl_status = ET.Element("logical_chassis_fwdl_status") config = logical_chassis_fwdl_status output = ET.SubElement(logical_chassis_fwdl_status, "output") cluster_fwdl_entries = ET.SubElement(output, "cluster-fwdl-entries") rbridge_id = ET.SubElement(cluster_fwdl_entries, "rbridge-id") rbridge_id.text = kwargs.pop('rbridge_id') callback = kwargs.pop('callback', self._callback) return callback(config)
[ "def", "logical_chassis_fwdl_status_output_cluster_fwdl_entries_rbridge_id", "(", "self", ",", "*", "*", "kwargs", ")", ":", "config", "=", "ET", ".", "Element", "(", "\"config\"", ")", "logical_chassis_fwdl_status", "=", "ET", ".", "Element", "(", "\"logical_chassis_fwdl_status\"", ")", "config", "=", "logical_chassis_fwdl_status", "output", "=", "ET", ".", "SubElement", "(", "logical_chassis_fwdl_status", ",", "\"output\"", ")", "cluster_fwdl_entries", "=", "ET", ".", "SubElement", "(", "output", ",", "\"cluster-fwdl-entries\"", ")", "rbridge_id", "=", "ET", ".", "SubElement", "(", "cluster_fwdl_entries", ",", "\"rbridge-id\"", ")", "rbridge_id", ".", "text", "=", "kwargs", ".", "pop", "(", "'rbridge_id'", ")", "callback", "=", "kwargs", ".", "pop", "(", "'callback'", ",", "self", ".", "_callback", ")", "return", "callback", "(", "config", ")" ]
Auto Generated Code
[ "Auto", "Generated", "Code" ]
python
train
byt3bl33d3r/CrackMapExec
cme/protocols/smb/db_navigator.py
https://github.com/byt3bl33d3r/CrackMapExec/blob/333f1c4e06884e85b2776459963ef85d182aba8e/cme/protocols/smb/db_navigator.py#L255-L262
def complete_hosts(self, text, line, begidx, endidx): "Tab-complete 'creds' commands." commands = ["add", "remove", "dc"] mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in commands if s.startswith(mline)]
[ "def", "complete_hosts", "(", "self", ",", "text", ",", "line", ",", "begidx", ",", "endidx", ")", ":", "commands", "=", "[", "\"add\"", ",", "\"remove\"", ",", "\"dc\"", "]", "mline", "=", "line", ".", "partition", "(", "' '", ")", "[", "2", "]", "offs", "=", "len", "(", "mline", ")", "-", "len", "(", "text", ")", "return", "[", "s", "[", "offs", ":", "]", "for", "s", "in", "commands", "if", "s", ".", "startswith", "(", "mline", ")", "]" ]
Tab-complete 'creds' commands.
[ "Tab", "-", "complete", "creds", "commands", "." ]
python
train
pandas-dev/pandas
pandas/core/internals/blocks.py
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/internals/blocks.py#L224-L234
def make_block_same_class(self, values, placement=None, ndim=None, dtype=None): """ Wrap given values in a block of same type as self. """ if dtype is not None: # issue 19431 fastparquet is passing this warnings.warn("dtype argument is deprecated, will be removed " "in a future release.", DeprecationWarning) if placement is None: placement = self.mgr_locs return make_block(values, placement=placement, ndim=ndim, klass=self.__class__, dtype=dtype)
[ "def", "make_block_same_class", "(", "self", ",", "values", ",", "placement", "=", "None", ",", "ndim", "=", "None", ",", "dtype", "=", "None", ")", ":", "if", "dtype", "is", "not", "None", ":", "# issue 19431 fastparquet is passing this", "warnings", ".", "warn", "(", "\"dtype argument is deprecated, will be removed \"", "\"in a future release.\"", ",", "DeprecationWarning", ")", "if", "placement", "is", "None", ":", "placement", "=", "self", ".", "mgr_locs", "return", "make_block", "(", "values", ",", "placement", "=", "placement", ",", "ndim", "=", "ndim", ",", "klass", "=", "self", ".", "__class__", ",", "dtype", "=", "dtype", ")" ]
Wrap given values in a block of same type as self.
[ "Wrap", "given", "values", "in", "a", "block", "of", "same", "type", "as", "self", "." ]
python
train
PMBio/limix-backup
limix/core/old/gp/gp_base.py
https://github.com/PMBio/limix-backup/blob/1e201fdb5c694d0d5506f207f3de65d8ef66146c/limix/core/old/gp/gp_base.py#L120-L142
def checkGradient(self,h=1e-6,verbose=True): """ utility function to check the gradient of the gp """ grad_an = self.LMLgrad() grad_num = {} params0 = self.params.copy() for key in list(self.params.keys()): paramsL = params0.copy() paramsR = params0.copy() grad_num[key] = SP.zeros_like(self.params[key]) e = SP.zeros(self.params[key].shape[0]) for i in range(self.params[key].shape[0]): e[i] = 1 paramsL[key]=params0[key]-h*e paramsR[key]=params0[key]+h*e lml_L = self.LML(paramsL) lml_R = self.LML(paramsR) grad_num[key][i] = (lml_R-lml_L)/(2*h) e[i] = 0 if verbose: print(('%s:'%key)) print((abs(grad_an[key]-grad_num[key]))) print('') self.setParams(params0)
[ "def", "checkGradient", "(", "self", ",", "h", "=", "1e-6", ",", "verbose", "=", "True", ")", ":", "grad_an", "=", "self", ".", "LMLgrad", "(", ")", "grad_num", "=", "{", "}", "params0", "=", "self", ".", "params", ".", "copy", "(", ")", "for", "key", "in", "list", "(", "self", ".", "params", ".", "keys", "(", ")", ")", ":", "paramsL", "=", "params0", ".", "copy", "(", ")", "paramsR", "=", "params0", ".", "copy", "(", ")", "grad_num", "[", "key", "]", "=", "SP", ".", "zeros_like", "(", "self", ".", "params", "[", "key", "]", ")", "e", "=", "SP", ".", "zeros", "(", "self", ".", "params", "[", "key", "]", ".", "shape", "[", "0", "]", ")", "for", "i", "in", "range", "(", "self", ".", "params", "[", "key", "]", ".", "shape", "[", "0", "]", ")", ":", "e", "[", "i", "]", "=", "1", "paramsL", "[", "key", "]", "=", "params0", "[", "key", "]", "-", "h", "*", "e", "paramsR", "[", "key", "]", "=", "params0", "[", "key", "]", "+", "h", "*", "e", "lml_L", "=", "self", ".", "LML", "(", "paramsL", ")", "lml_R", "=", "self", ".", "LML", "(", "paramsR", ")", "grad_num", "[", "key", "]", "[", "i", "]", "=", "(", "lml_R", "-", "lml_L", ")", "/", "(", "2", "*", "h", ")", "e", "[", "i", "]", "=", "0", "if", "verbose", ":", "print", "(", "(", "'%s:'", "%", "key", ")", ")", "print", "(", "(", "abs", "(", "grad_an", "[", "key", "]", "-", "grad_num", "[", "key", "]", ")", ")", ")", "print", "(", "''", ")", "self", ".", "setParams", "(", "params0", ")" ]
utility function to check the gradient of the gp
[ "utility", "function", "to", "check", "the", "gradient", "of", "the", "gp" ]
python
train
jaraco/jaraco.itertools
jaraco/itertools.py
https://github.com/jaraco/jaraco.itertools/blob/0dc47c8924fa3d9ab676c3a6e195f03f728b72c6/jaraco/itertools.py#L856-L877
def partition_items(count, bin_size): """ Given the total number of items, determine the number of items that can be added to each bin with a limit on the bin size. So if you want to partition 11 items into groups of 3, you'll want three of three and one of two. >>> partition_items(11, 3) [3, 3, 3, 2] But if you only have ten items, you'll have two groups of three and two of two. >>> partition_items(10, 3) [3, 3, 2, 2] """ num_bins = int(math.ceil(count / float(bin_size))) bins = [0] * num_bins for i in range(count): bins[i % num_bins] += 1 return bins
[ "def", "partition_items", "(", "count", ",", "bin_size", ")", ":", "num_bins", "=", "int", "(", "math", ".", "ceil", "(", "count", "/", "float", "(", "bin_size", ")", ")", ")", "bins", "=", "[", "0", "]", "*", "num_bins", "for", "i", "in", "range", "(", "count", ")", ":", "bins", "[", "i", "%", "num_bins", "]", "+=", "1", "return", "bins" ]
Given the total number of items, determine the number of items that can be added to each bin with a limit on the bin size. So if you want to partition 11 items into groups of 3, you'll want three of three and one of two. >>> partition_items(11, 3) [3, 3, 3, 2] But if you only have ten items, you'll have two groups of three and two of two. >>> partition_items(10, 3) [3, 3, 2, 2]
[ "Given", "the", "total", "number", "of", "items", "determine", "the", "number", "of", "items", "that", "can", "be", "added", "to", "each", "bin", "with", "a", "limit", "on", "the", "bin", "size", "." ]
python
test
PmagPy/PmagPy
programs/conversion_scripts2/pmd_magic2.py
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/conversion_scripts2/pmd_magic2.py#L7-L276
def main(command_line=True, **kwargs): """ NAME pmd_magic.py DESCRIPTION converts PMD (Enkin) format files to magic_measurements format files SYNTAX pmd_magic.py [command line options] OPTIONS -h: prints the help message and quits. -f FILE: specify input file, or -F FILE: specify output file, default is magic_measurements.txt -Fsa: specify er_samples format file for appending, default is new er_samples.txt -spc NUM : specify number of characters to designate a specimen, default = 1 -loc LOCNAME : specify location/study name -A: don't average replicate measurements -ncn NCON: specify naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY -lat: Lattitude of site (if no value given assumes 0) -lon: Longitude of site (if no value given assumes 0) -mcd [SO-MAG,SO-SUN,SO-SIGHT...] supply how these samples were oriented NB: all others you will have to customize your self or e-mail [email protected] for help. INPUT PMD format files """ # initialize some stuff noave=0 inst="" samp_con,Z='1',"" missing=1 demag="N" er_location_name="unknown" citation='This study' args=sys.argv meth_code="LP-NO" specnum=-1 MagRecs=[] version_num=pmag.get_version() Samps=[] # keeps track of sample orientations DIspec=[] MagFiles=[] user="" mag_file="" dir_path='.' ErSamps=[] SampOuts=[] samp_file = 'er_samples.txt' meas_file = 'magic_measurements.txt' # # get command line arguments # if command_line: if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path=sys.argv[ind+1] if '-ID' in sys.argv: ind = sys.argv.index('-ID') input_dir_path = sys.argv[ind+1] else: input_dir_path = dir_path output_dir_path = dir_path if "-h" in args: print(main.__doc__) return False if '-F' in args: ind=args.index("-F") meas_file = args[ind+1] if '-Fsa' in args: ind = args.index("-Fsa") samp_file = args[ind+1] #try: # open(samp_file,'r') # ErSamps,file_type=pmag.magic_read(samp_file) # print 'sample information will be appended to ', samp_file #except: # print samp_file,' not found: sample information will be stored in new er_samples.txt file' # samp_file = output_dir_path+'/er_samples.txt' if '-f' in args: ind = args.index("-f") mag_file= args[ind+1] if "-spc" in args: ind = args.index("-spc") specnum = int(args[ind+1]) if "-ncn" in args: ind=args.index("-ncn") samp_con=sys.argv[ind+1] if "-loc" in args: ind=args.index("-loc") er_location_name=args[ind+1] if "-A" in args: noave=1 if "-mcd" in args: ind=args.index("-mcd") meth_code=args[ind+1] if "-lat" in args: ind=args.index("-lat") site_lat=args[ind+1] if "-lon" in args: ind=args.index("-lon") site_lon=args[ind+1] if not command_line: dir_path = kwargs.get('dir_path', '.') input_dir_path = kwargs.get('input_dir_path', dir_path) output_dir_path = dir_path meas_file = kwargs.get('meas_file', 'magic_measurements.txt') mag_file = kwargs.get('mag_file') spec_file = kwargs.get('spec_file', 'er_specimens.txt') samp_file = kwargs.get('samp_file', 'er_samples.txt') site_file = kwargs.get('site_file', 'er_sites.txt') site_lat = kwargs.get('site_lat', 0) site_lon = kwargs.get('site_lon', 0) specnum = kwargs.get('specnum', 0) samp_con = kwargs.get('samp_con', '1') er_location_name = kwargs.get('er_location_name', '') noave = kwargs.get('noave', 0) # default (0) means DO average meth_code = kwargs.get('meth_code', "LP-NO") print(samp_con) # format variables mag_file = os.path.join(input_dir_path,mag_file) meas_file = os.path.join(output_dir_path,meas_file) spec_file = os.path.join(output_dir_path,spec_file) samp_file = os.path.join(output_dir_path,samp_file) site_file = os.path.join(output_dir_path,site_file) if specnum!=0:specnum=-specnum if "4" in samp_con: if "-" not in samp_con: print("naming convention option [4] must be in form 4-Z where Z is an integer") return False, "naming convention option [4] must be in form 4-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="4" if "7" in samp_con: if "-" not in samp_con: print("option [7] must be in form 7-Z where Z is an integer") return False, "naming convention option [7] must be in form 7-Z where Z is an integer" else: Z=samp_con.split("-")[1] samp_con="7" # parse data data=open(mag_file,'r').readlines() # read in data from file comment=data[0] line=data[1].strip() line=line.replace("=","= ") # make finding orientations easier rec=line.split() # read in sample orientation, etc. er_specimen_name=rec[0] ErSpecRec,ErSampRec,ErSiteRec={},{},{} # make a sample record if specnum!=0: er_sample_name=rec[0][:specnum] else: er_sample_name=rec[0] if len(ErSamps)>0: # need to copy existing for samp in ErSamps: if samp['er_sample_name']==er_sample_name: ErSampRec=samp # we'll ammend this one else: SampOuts.append(samp) # keep all the others if int(samp_con)<6: er_site_name=pmag.parse_site(er_sample_name,samp_con,Z) else: if 'er_site_name' in list(ErSampRec.keys()):er_site_name=ErSampREc['er_site_name'] if 'er_location_name' in list(ErSampRec.keys()):er_location_name=ErSampREc['er_location_name'] az_ind=rec.index('a=')+1 ErSampRec['er_sample_name']=er_sample_name ErSampRec['er_sample_description']=comment ErSampRec['sample_azimuth']=rec[az_ind] dip_ind=rec.index('b=')+1 dip=-float(rec[dip_ind]) ErSampRec['sample_dip']='%7.1f'%(dip) strike_ind=rec.index('s=')+1 ErSampRec['sample_bed_dip_direction']='%7.1f'%(float(rec[strike_ind])+90.) bd_ind=rec.index('d=')+1 ErSampRec['sample_bed_dip']=rec[bd_ind] v_ind=rec.index('v=')+1 vol=rec[v_ind][:-3] date=rec[-2] time=rec[-1] ErSampRec['magic_method_codes']=meth_code if 'er_location_name' not in list(ErSampRec.keys()):ErSampRec['er_location_name']=er_location_name if 'er_site_name' not in list(ErSampRec.keys()):ErSampRec['er_site_name']=er_site_name if 'er_citation_names' not in list(ErSampRec.keys()):ErSampRec['er_citation_names']='This study' if 'magic_method_codes' not in list(ErSampRec.keys()):ErSampRec['magic_method_codes']='SO-NO' ErSpecRec['er_specimen_name'] = er_specimen_name ErSpecRec['er_sample_name'] = er_sample_name ErSpecRec['er_site_name'] = er_site_name ErSpecRec['er_location_name'] = er_location_name ErSpecRec['er_citation_names']='This study' ErSiteRec['er_site_name'] = er_site_name ErSiteRec['er_location_name'] = er_location_name ErSiteRec['er_citation_names']='This study' ErSiteRec['site_lat'] = site_lat ErSiteRec['site_lon']= site_lon SpecOuts.append(ErSpecRec) SampOuts.append(ErSampRec) SiteOuts.append(ErSiteRec) for k in range(3,len(data)): # read in data line=data[k] rec=line.split() if len(rec)>1: # skip blank lines at bottom MagRec={} MagRec['measurement_description']='Date: '+date+' '+time MagRec["er_citation_names"]="This study" MagRec['er_location_name']=er_location_name MagRec['er_site_name']=er_site_name MagRec['er_sample_name']=er_sample_name MagRec['magic_software_packages']=version_num MagRec["treatment_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_temp"]='%8.3e' % (273) # room temp in kelvin MagRec["measurement_flag"]='g' MagRec["measurement_standard"]='u' MagRec["measurement_number"]='1' MagRec["er_specimen_name"]=er_specimen_name if rec[0]=='NRM': meas_type="LT-NO" elif rec[0][0]=='M' or rec[0][0]=='H': meas_type="LT-AF-Z" elif rec[0][0]=='T': meas_type="LT-T-Z" else: print("measurement type unknown") return False, "measurement type unknown" X=[float(rec[1]),float(rec[2]),float(rec[3])] Vec=pmag.cart2dir(X) MagRec["measurement_magn_moment"]='%10.3e'% (Vec[2]) # Am^2 MagRec["measurement_magn_volume"]=rec[4] # A/m MagRec["measurement_dec"]='%7.1f'%(Vec[0]) MagRec["measurement_inc"]='%7.1f'%(Vec[1]) MagRec["treatment_ac_field"]='0' if meas_type!='LT-NO': treat=float(rec[0][1:]) else: treat=0 if meas_type=="LT-AF-Z": MagRec["treatment_ac_field"]='%8.3e' %(treat*1e-3) # convert from mT to tesla elif meas_type=="LT-T-Z": MagRec["treatment_temp"]='%8.3e' % (treat+273.) # temp in kelvin MagRec['magic_method_codes']=meas_type MagRecs.append(MagRec) MagOuts=pmag.measurements_methods(MagRecs,noave) pmag.magic_write(meas_file,MagOuts,'magic_measurements') print("results put in ",meas_file) pmag.magic_write(samp_file,SpecOuts,'er_specimens') pmag.magic_write(samp_file,SampOuts,'er_samples') pmag.magic_write(samp_file,SiteOuts,'er_sites') return True, meas_file
[ "def", "main", "(", "command_line", "=", "True", ",", "*", "*", "kwargs", ")", ":", "# initialize some stuff", "noave", "=", "0", "inst", "=", "\"\"", "samp_con", ",", "Z", "=", "'1'", ",", "\"\"", "missing", "=", "1", "demag", "=", "\"N\"", "er_location_name", "=", "\"unknown\"", "citation", "=", "'This study'", "args", "=", "sys", ".", "argv", "meth_code", "=", "\"LP-NO\"", "specnum", "=", "-", "1", "MagRecs", "=", "[", "]", "version_num", "=", "pmag", ".", "get_version", "(", ")", "Samps", "=", "[", "]", "# keeps track of sample orientations", "DIspec", "=", "[", "]", "MagFiles", "=", "[", "]", "user", "=", "\"\"", "mag_file", "=", "\"\"", "dir_path", "=", "'.'", "ErSamps", "=", "[", "]", "SampOuts", "=", "[", "]", "samp_file", "=", "'er_samples.txt'", "meas_file", "=", "'magic_measurements.txt'", "#", "# get command line arguments", "#", "if", "command_line", ":", "if", "'-WD'", "in", "sys", ".", "argv", ":", "ind", "=", "sys", ".", "argv", ".", "index", "(", "'-WD'", ")", "dir_path", "=", "sys", ".", "argv", "[", "ind", "+", "1", "]", "if", "'-ID'", "in", "sys", ".", "argv", ":", "ind", "=", "sys", ".", "argv", ".", "index", "(", "'-ID'", ")", "input_dir_path", "=", "sys", ".", "argv", "[", "ind", "+", "1", "]", "else", ":", "input_dir_path", "=", "dir_path", "output_dir_path", "=", "dir_path", "if", "\"-h\"", "in", "args", ":", "print", "(", "main", ".", "__doc__", ")", "return", "False", "if", "'-F'", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-F\"", ")", "meas_file", "=", "args", "[", "ind", "+", "1", "]", "if", "'-Fsa'", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-Fsa\"", ")", "samp_file", "=", "args", "[", "ind", "+", "1", "]", "#try:", "# open(samp_file,'r')", "# ErSamps,file_type=pmag.magic_read(samp_file)", "# print 'sample information will be appended to ', samp_file ", "#except:", "# print samp_file,' not found: sample information will be stored in new er_samples.txt file'", "# samp_file = output_dir_path+'/er_samples.txt'", "if", "'-f'", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-f\"", ")", "mag_file", "=", "args", "[", "ind", "+", "1", "]", "if", "\"-spc\"", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-spc\"", ")", "specnum", "=", "int", "(", "args", "[", "ind", "+", "1", "]", ")", "if", "\"-ncn\"", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-ncn\"", ")", "samp_con", "=", "sys", ".", "argv", "[", "ind", "+", "1", "]", "if", "\"-loc\"", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-loc\"", ")", "er_location_name", "=", "args", "[", "ind", "+", "1", "]", "if", "\"-A\"", "in", "args", ":", "noave", "=", "1", "if", "\"-mcd\"", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-mcd\"", ")", "meth_code", "=", "args", "[", "ind", "+", "1", "]", "if", "\"-lat\"", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-lat\"", ")", "site_lat", "=", "args", "[", "ind", "+", "1", "]", "if", "\"-lon\"", "in", "args", ":", "ind", "=", "args", ".", "index", "(", "\"-lon\"", ")", "site_lon", "=", "args", "[", "ind", "+", "1", "]", "if", "not", "command_line", ":", "dir_path", "=", "kwargs", ".", "get", "(", "'dir_path'", ",", "'.'", ")", "input_dir_path", "=", "kwargs", ".", "get", "(", "'input_dir_path'", ",", "dir_path", ")", "output_dir_path", "=", "dir_path", "meas_file", "=", "kwargs", ".", "get", "(", "'meas_file'", ",", "'magic_measurements.txt'", ")", "mag_file", "=", "kwargs", ".", "get", "(", "'mag_file'", ")", "spec_file", "=", "kwargs", ".", "get", "(", "'spec_file'", ",", "'er_specimens.txt'", ")", "samp_file", "=", "kwargs", ".", "get", "(", "'samp_file'", ",", "'er_samples.txt'", ")", "site_file", "=", "kwargs", ".", "get", "(", "'site_file'", ",", "'er_sites.txt'", ")", "site_lat", "=", "kwargs", ".", "get", "(", "'site_lat'", ",", "0", ")", "site_lon", "=", "kwargs", ".", "get", "(", "'site_lon'", ",", "0", ")", "specnum", "=", "kwargs", ".", "get", "(", "'specnum'", ",", "0", ")", "samp_con", "=", "kwargs", ".", "get", "(", "'samp_con'", ",", "'1'", ")", "er_location_name", "=", "kwargs", ".", "get", "(", "'er_location_name'", ",", "''", ")", "noave", "=", "kwargs", ".", "get", "(", "'noave'", ",", "0", ")", "# default (0) means DO average", "meth_code", "=", "kwargs", ".", "get", "(", "'meth_code'", ",", "\"LP-NO\"", ")", "print", "(", "samp_con", ")", "# format variables", "mag_file", "=", "os", ".", "path", ".", "join", "(", "input_dir_path", ",", "mag_file", ")", "meas_file", "=", "os", ".", "path", ".", "join", "(", "output_dir_path", ",", "meas_file", ")", "spec_file", "=", "os", ".", "path", ".", "join", "(", "output_dir_path", ",", "spec_file", ")", "samp_file", "=", "os", ".", "path", ".", "join", "(", "output_dir_path", ",", "samp_file", ")", "site_file", "=", "os", ".", "path", ".", "join", "(", "output_dir_path", ",", "site_file", ")", "if", "specnum", "!=", "0", ":", "specnum", "=", "-", "specnum", "if", "\"4\"", "in", "samp_con", ":", "if", "\"-\"", "not", "in", "samp_con", ":", "print", "(", "\"naming convention option [4] must be in form 4-Z where Z is an integer\"", ")", "return", "False", ",", "\"naming convention option [4] must be in form 4-Z where Z is an integer\"", "else", ":", "Z", "=", "samp_con", ".", "split", "(", "\"-\"", ")", "[", "1", "]", "samp_con", "=", "\"4\"", "if", "\"7\"", "in", "samp_con", ":", "if", "\"-\"", "not", "in", "samp_con", ":", "print", "(", "\"option [7] must be in form 7-Z where Z is an integer\"", ")", "return", "False", ",", "\"naming convention option [7] must be in form 7-Z where Z is an integer\"", "else", ":", "Z", "=", "samp_con", ".", "split", "(", "\"-\"", ")", "[", "1", "]", "samp_con", "=", "\"7\"", "# parse data", "data", "=", "open", "(", "mag_file", ",", "'r'", ")", ".", "readlines", "(", ")", "# read in data from file", "comment", "=", "data", "[", "0", "]", "line", "=", "data", "[", "1", "]", ".", "strip", "(", ")", "line", "=", "line", ".", "replace", "(", "\"=\"", ",", "\"= \"", ")", "# make finding orientations easier", "rec", "=", "line", ".", "split", "(", ")", "# read in sample orientation, etc.", "er_specimen_name", "=", "rec", "[", "0", "]", "ErSpecRec", ",", "ErSampRec", ",", "ErSiteRec", "=", "{", "}", ",", "{", "}", ",", "{", "}", "# make a sample record", "if", "specnum", "!=", "0", ":", "er_sample_name", "=", "rec", "[", "0", "]", "[", ":", "specnum", "]", "else", ":", "er_sample_name", "=", "rec", "[", "0", "]", "if", "len", "(", "ErSamps", ")", ">", "0", ":", "# need to copy existing", "for", "samp", "in", "ErSamps", ":", "if", "samp", "[", "'er_sample_name'", "]", "==", "er_sample_name", ":", "ErSampRec", "=", "samp", "# we'll ammend this one", "else", ":", "SampOuts", ".", "append", "(", "samp", ")", "# keep all the others", "if", "int", "(", "samp_con", ")", "<", "6", ":", "er_site_name", "=", "pmag", ".", "parse_site", "(", "er_sample_name", ",", "samp_con", ",", "Z", ")", "else", ":", "if", "'er_site_name'", "in", "list", "(", "ErSampRec", ".", "keys", "(", ")", ")", ":", "er_site_name", "=", "ErSampREc", "[", "'er_site_name'", "]", "if", "'er_location_name'", "in", "list", "(", "ErSampRec", ".", "keys", "(", ")", ")", ":", "er_location_name", "=", "ErSampREc", "[", "'er_location_name'", "]", "az_ind", "=", "rec", ".", "index", "(", "'a='", ")", "+", "1", "ErSampRec", "[", "'er_sample_name'", "]", "=", "er_sample_name", "ErSampRec", "[", "'er_sample_description'", "]", "=", "comment", "ErSampRec", "[", "'sample_azimuth'", "]", "=", "rec", "[", "az_ind", "]", "dip_ind", "=", "rec", ".", "index", "(", "'b='", ")", "+", "1", "dip", "=", "-", "float", "(", "rec", "[", "dip_ind", "]", ")", "ErSampRec", "[", "'sample_dip'", "]", "=", "'%7.1f'", "%", "(", "dip", ")", "strike_ind", "=", "rec", ".", "index", "(", "'s='", ")", "+", "1", "ErSampRec", "[", "'sample_bed_dip_direction'", "]", "=", "'%7.1f'", "%", "(", "float", "(", "rec", "[", "strike_ind", "]", ")", "+", "90.", ")", "bd_ind", "=", "rec", ".", "index", "(", "'d='", ")", "+", "1", "ErSampRec", "[", "'sample_bed_dip'", "]", "=", "rec", "[", "bd_ind", "]", "v_ind", "=", "rec", ".", "index", "(", "'v='", ")", "+", "1", "vol", "=", "rec", "[", "v_ind", "]", "[", ":", "-", "3", "]", "date", "=", "rec", "[", "-", "2", "]", "time", "=", "rec", "[", "-", "1", "]", "ErSampRec", "[", "'magic_method_codes'", "]", "=", "meth_code", "if", "'er_location_name'", "not", "in", "list", "(", "ErSampRec", ".", "keys", "(", ")", ")", ":", "ErSampRec", "[", "'er_location_name'", "]", "=", "er_location_name", "if", "'er_site_name'", "not", "in", "list", "(", "ErSampRec", ".", "keys", "(", ")", ")", ":", "ErSampRec", "[", "'er_site_name'", "]", "=", "er_site_name", "if", "'er_citation_names'", "not", "in", "list", "(", "ErSampRec", ".", "keys", "(", ")", ")", ":", "ErSampRec", "[", "'er_citation_names'", "]", "=", "'This study'", "if", "'magic_method_codes'", "not", "in", "list", "(", "ErSampRec", ".", "keys", "(", ")", ")", ":", "ErSampRec", "[", "'magic_method_codes'", "]", "=", "'SO-NO'", "ErSpecRec", "[", "'er_specimen_name'", "]", "=", "er_specimen_name", "ErSpecRec", "[", "'er_sample_name'", "]", "=", "er_sample_name", "ErSpecRec", "[", "'er_site_name'", "]", "=", "er_site_name", "ErSpecRec", "[", "'er_location_name'", "]", "=", "er_location_name", "ErSpecRec", "[", "'er_citation_names'", "]", "=", "'This study'", "ErSiteRec", "[", "'er_site_name'", "]", "=", "er_site_name", "ErSiteRec", "[", "'er_location_name'", "]", "=", "er_location_name", "ErSiteRec", "[", "'er_citation_names'", "]", "=", "'This study'", "ErSiteRec", "[", "'site_lat'", "]", "=", "site_lat", "ErSiteRec", "[", "'site_lon'", "]", "=", "site_lon", "SpecOuts", ".", "append", "(", "ErSpecRec", ")", "SampOuts", ".", "append", "(", "ErSampRec", ")", "SiteOuts", ".", "append", "(", "ErSiteRec", ")", "for", "k", "in", "range", "(", "3", ",", "len", "(", "data", ")", ")", ":", "# read in data", "line", "=", "data", "[", "k", "]", "rec", "=", "line", ".", "split", "(", ")", "if", "len", "(", "rec", ")", ">", "1", ":", "# skip blank lines at bottom ", "MagRec", "=", "{", "}", "MagRec", "[", "'measurement_description'", "]", "=", "'Date: '", "+", "date", "+", "' '", "+", "time", "MagRec", "[", "\"er_citation_names\"", "]", "=", "\"This study\"", "MagRec", "[", "'er_location_name'", "]", "=", "er_location_name", "MagRec", "[", "'er_site_name'", "]", "=", "er_site_name", "MagRec", "[", "'er_sample_name'", "]", "=", "er_sample_name", "MagRec", "[", "'magic_software_packages'", "]", "=", "version_num", "MagRec", "[", "\"treatment_temp\"", "]", "=", "'%8.3e'", "%", "(", "273", ")", "# room temp in kelvin", "MagRec", "[", "\"measurement_temp\"", "]", "=", "'%8.3e'", "%", "(", "273", ")", "# room temp in kelvin", "MagRec", "[", "\"measurement_flag\"", "]", "=", "'g'", "MagRec", "[", "\"measurement_standard\"", "]", "=", "'u'", "MagRec", "[", "\"measurement_number\"", "]", "=", "'1'", "MagRec", "[", "\"er_specimen_name\"", "]", "=", "er_specimen_name", "if", "rec", "[", "0", "]", "==", "'NRM'", ":", "meas_type", "=", "\"LT-NO\"", "elif", "rec", "[", "0", "]", "[", "0", "]", "==", "'M'", "or", "rec", "[", "0", "]", "[", "0", "]", "==", "'H'", ":", "meas_type", "=", "\"LT-AF-Z\"", "elif", "rec", "[", "0", "]", "[", "0", "]", "==", "'T'", ":", "meas_type", "=", "\"LT-T-Z\"", "else", ":", "print", "(", "\"measurement type unknown\"", ")", "return", "False", ",", "\"measurement type unknown\"", "X", "=", "[", "float", "(", "rec", "[", "1", "]", ")", ",", "float", "(", "rec", "[", "2", "]", ")", ",", "float", "(", "rec", "[", "3", "]", ")", "]", "Vec", "=", "pmag", ".", "cart2dir", "(", "X", ")", "MagRec", "[", "\"measurement_magn_moment\"", "]", "=", "'%10.3e'", "%", "(", "Vec", "[", "2", "]", ")", "# Am^2 ", "MagRec", "[", "\"measurement_magn_volume\"", "]", "=", "rec", "[", "4", "]", "# A/m ", "MagRec", "[", "\"measurement_dec\"", "]", "=", "'%7.1f'", "%", "(", "Vec", "[", "0", "]", ")", "MagRec", "[", "\"measurement_inc\"", "]", "=", "'%7.1f'", "%", "(", "Vec", "[", "1", "]", ")", "MagRec", "[", "\"treatment_ac_field\"", "]", "=", "'0'", "if", "meas_type", "!=", "'LT-NO'", ":", "treat", "=", "float", "(", "rec", "[", "0", "]", "[", "1", ":", "]", ")", "else", ":", "treat", "=", "0", "if", "meas_type", "==", "\"LT-AF-Z\"", ":", "MagRec", "[", "\"treatment_ac_field\"", "]", "=", "'%8.3e'", "%", "(", "treat", "*", "1e-3", ")", "# convert from mT to tesla", "elif", "meas_type", "==", "\"LT-T-Z\"", ":", "MagRec", "[", "\"treatment_temp\"", "]", "=", "'%8.3e'", "%", "(", "treat", "+", "273.", ")", "# temp in kelvin", "MagRec", "[", "'magic_method_codes'", "]", "=", "meas_type", "MagRecs", ".", "append", "(", "MagRec", ")", "MagOuts", "=", "pmag", ".", "measurements_methods", "(", "MagRecs", ",", "noave", ")", "pmag", ".", "magic_write", "(", "meas_file", ",", "MagOuts", ",", "'magic_measurements'", ")", "print", "(", "\"results put in \"", ",", "meas_file", ")", "pmag", ".", "magic_write", "(", "samp_file", ",", "SpecOuts", ",", "'er_specimens'", ")", "pmag", ".", "magic_write", "(", "samp_file", ",", "SampOuts", ",", "'er_samples'", ")", "pmag", ".", "magic_write", "(", "samp_file", ",", "SiteOuts", ",", "'er_sites'", ")", "return", "True", ",", "meas_file" ]
NAME pmd_magic.py DESCRIPTION converts PMD (Enkin) format files to magic_measurements format files SYNTAX pmd_magic.py [command line options] OPTIONS -h: prints the help message and quits. -f FILE: specify input file, or -F FILE: specify output file, default is magic_measurements.txt -Fsa: specify er_samples format file for appending, default is new er_samples.txt -spc NUM : specify number of characters to designate a specimen, default = 1 -loc LOCNAME : specify location/study name -A: don't average replicate measurements -ncn NCON: specify naming convention Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column -- NOT CURRENTLY SUPPORTED [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY -lat: Lattitude of site (if no value given assumes 0) -lon: Longitude of site (if no value given assumes 0) -mcd [SO-MAG,SO-SUN,SO-SIGHT...] supply how these samples were oriented NB: all others you will have to customize your self or e-mail [email protected] for help. INPUT PMD format files
[ "NAME", "pmd_magic", ".", "py", "DESCRIPTION", "converts", "PMD", "(", "Enkin", ")", "format", "files", "to", "magic_measurements", "format", "files" ]
python
train
WebarchivCZ/WA-KAT
src/wa_kat/templates/static/js/Lib/site-packages/components/keyword_handler.py
https://github.com/WebarchivCZ/WA-KAT/blob/16d064a3a775dc1d2713debda7847ded52dd2a06/src/wa_kat/templates/static/js/Lib/site-packages/components/keyword_handler.py#L144-L157
def set_kw_typeahead_input(cls): """ Map the typeahead input to remote dataset. """ # get reference to parent element parent_id = cls.intput_el.parent.id if "typeahead" not in parent_id.lower(): parent_id = cls.intput_el.parent.parent.id window.make_keyword_typeahead_tag( "#" + parent_id, join(settings.API_PATH, "kw_list.json"), cls.on_select_callback, )
[ "def", "set_kw_typeahead_input", "(", "cls", ")", ":", "# get reference to parent element", "parent_id", "=", "cls", ".", "intput_el", ".", "parent", ".", "id", "if", "\"typeahead\"", "not", "in", "parent_id", ".", "lower", "(", ")", ":", "parent_id", "=", "cls", ".", "intput_el", ".", "parent", ".", "parent", ".", "id", "window", ".", "make_keyword_typeahead_tag", "(", "\"#\"", "+", "parent_id", ",", "join", "(", "settings", ".", "API_PATH", ",", "\"kw_list.json\"", ")", ",", "cls", ".", "on_select_callback", ",", ")" ]
Map the typeahead input to remote dataset.
[ "Map", "the", "typeahead", "input", "to", "remote", "dataset", "." ]
python
train
pantsbuild/pants
contrib/python/src/python/pants/contrib/python/checks/checker/common.py
https://github.com/pantsbuild/pants/blob/b72e650da0df685824ffdcc71988b8c282d0962d/contrib/python/src/python/pants/contrib/python/checks/checker/common.py#L218-L227
def line_range(self, line_number): """Return a slice for the given line number""" if line_number <= 0 or line_number > len(self.lines): raise IndexError('NOTE: Python file line numbers are offset by 1.') if line_number not in self.logical_lines: return slice(line_number, line_number + 1) else: start, stop, _ = self.logical_lines[line_number] return slice(start, stop)
[ "def", "line_range", "(", "self", ",", "line_number", ")", ":", "if", "line_number", "<=", "0", "or", "line_number", ">", "len", "(", "self", ".", "lines", ")", ":", "raise", "IndexError", "(", "'NOTE: Python file line numbers are offset by 1.'", ")", "if", "line_number", "not", "in", "self", ".", "logical_lines", ":", "return", "slice", "(", "line_number", ",", "line_number", "+", "1", ")", "else", ":", "start", ",", "stop", ",", "_", "=", "self", ".", "logical_lines", "[", "line_number", "]", "return", "slice", "(", "start", ",", "stop", ")" ]
Return a slice for the given line number
[ "Return", "a", "slice", "for", "the", "given", "line", "number" ]
python
train
opendatateam/udata
udata/forms/fields.py
https://github.com/opendatateam/udata/blob/f016585af94b0ff6bd73738c700324adc8ba7f8f/udata/forms/fields.py#L55-L59
def pre_validate(self, form): '''Calls preprocessors before pre_validation''' for preprocessor in self._preprocessors: preprocessor(form, self) super(FieldHelper, self).pre_validate(form)
[ "def", "pre_validate", "(", "self", ",", "form", ")", ":", "for", "preprocessor", "in", "self", ".", "_preprocessors", ":", "preprocessor", "(", "form", ",", "self", ")", "super", "(", "FieldHelper", ",", "self", ")", ".", "pre_validate", "(", "form", ")" ]
Calls preprocessors before pre_validation
[ "Calls", "preprocessors", "before", "pre_validation" ]
python
train
JukeboxPipeline/jukebox-core
src/jukeboxcore/gui/widgets/reftrackwidget.py
https://github.com/JukeboxPipeline/jukebox-core/blob/bac2280ca49940355270e4b69400ce9976ab2e6f/src/jukeboxcore/gui/widgets/reftrackwidget.py#L402-L411
def replace(self, ): """Replace the current reftrack :returns: None :rtype: None :raises: None """ tfi = self.get_taskfileinfo_selection() if tfi: self.reftrack.replace(tfi)
[ "def", "replace", "(", "self", ",", ")", ":", "tfi", "=", "self", ".", "get_taskfileinfo_selection", "(", ")", "if", "tfi", ":", "self", ".", "reftrack", ".", "replace", "(", "tfi", ")" ]
Replace the current reftrack :returns: None :rtype: None :raises: None
[ "Replace", "the", "current", "reftrack" ]
python
train
neurosynth/neurosynth
neurosynth/analysis/reduce.py
https://github.com/neurosynth/neurosynth/blob/948ce7edce15d7df693446e76834e0c23bfe8f11/neurosynth/analysis/reduce.py#L176-L323
def run_lda(abstracts, n_topics=50, n_words=31, n_iters=1000, alpha=None, beta=0.001): """ Perform topic modeling using Latent Dirichlet Allocation with the Java toolbox MALLET. Args: abstracts: A pandas DataFrame with two columns ('pmid' and 'abstract') containing article abstracts. n_topics: Number of topics to generate. Default=50. n_words: Number of top words to return for each topic. Default=31, based on Poldrack et al. (2012). n_iters: Number of iterations to run in training topic model. Default=1000. alpha: The Dirichlet prior on the per-document topic distributions. Default: 50 / n_topics, based on Poldrack et al. (2012). beta: The Dirichlet prior on the per-topic word distribution. Default: 0.001, based on Poldrack et al. (2012). Returns: weights_df: A pandas DataFrame derived from the MALLET output-doc-topics output file. Contains the weight assigned to each article for each topic, which can be used to select articles for topic-based meta-analyses (accepted threshold from Poldrack article is 0.001). [n_topics]+1 columns: 'pmid' is the first column and the following columns are the topic names. The names of the topics match the names in df (e.g., topic_000). keys_df: A pandas DataFrame derived from the MALLET output-topic-keys output file. Contains the top [n_words] words for each topic, which can act as a summary of the topic's content. Two columns: 'topic' and 'terms'. The names of the topics match the names in weights (e.g., topic_000). """ if abstracts.index.name != 'pmid': abstracts.index = abstracts['pmid'] resdir = os.path.abspath(get_resource_path()) tempdir = os.path.join(resdir, 'topic_models') absdir = os.path.join(tempdir, 'abstracts') if not os.path.isdir(tempdir): os.mkdir(tempdir) if alpha is None: alpha = 50. / n_topics # Check for presence of abstract files and convert if necessary if not os.path.isdir(absdir): print('Abstracts folder not found. Creating abstract files...') os.mkdir(absdir) for pmid in abstracts.index.values: abstract = abstracts.loc[pmid]['abstract'] with open(os.path.join(absdir, str(pmid) + '.txt'), 'w') as fo: fo.write(abstract) # Run MALLET topic modeling print('Generating topics...') mallet_bin = join(dirname(dirname(__file__)), 'resources/mallet/bin/mallet') import_str = ('{mallet} import-dir ' '--input {absdir} ' '--output {outdir}/topic-input.mallet ' '--keep-sequence ' '--remove-stopwords').format(mallet=mallet_bin, absdir=absdir, outdir=tempdir) train_str = ('{mallet} train-topics ' '--input {out}/topic-input.mallet ' '--num-topics {n_topics} ' '--num-top-words {n_words} ' '--output-topic-keys {out}/topic_keys.txt ' '--output-doc-topics {out}/doc_topics.txt ' '--num-iterations {n_iters} ' '--output-model {out}/saved_model.mallet ' '--random-seed 1 ' '--alpha {alpha} ' '--beta {beta}').format(mallet=mallet_bin, out=tempdir, n_topics=n_topics, n_words=n_words, n_iters=n_iters, alpha=alpha, beta=beta) subprocess.call(import_str, shell=True) subprocess.call(train_str, shell=True) # Read in and convert doc_topics and topic_keys. def clean_str(string): return os.path.basename(os.path.splitext(string)[0]) def get_sort(lst): return [i[0] for i in sorted(enumerate(lst), key=lambda x:x[1])] topic_names = ['topic_{0:03d}'.format(i) for i in range(n_topics)] # doc_topics: Topic weights for each paper. # The conversion here is pretty ugly at the moment. # First row should be dropped. First column is row number and can be used # as the index. # Second column is 'file: /full/path/to/pmid.txt' <-- Parse to get pmid. # After that, odd columns are topic numbers and even columns are the # weights for the topics in the preceding column. These columns are sorted # on an individual pmid basis by the weights. n_cols = (2 * n_topics) + 1 dt_df = pd.read_csv(os.path.join(tempdir, 'doc_topics.txt'), delimiter='\t', skiprows=1, header=None, index_col=0) dt_df = dt_df[dt_df.columns[:n_cols]] # Get pmids from filenames dt_df[1] = dt_df[1].apply(clean_str) # Put weights (even cols) and topics (odd cols) into separate dfs. weights_df = dt_df[dt_df.columns[2::2]] weights_df.index = dt_df[1] weights_df.columns = range(n_topics) topics_df = dt_df[dt_df.columns[1::2]] topics_df.index = dt_df[1] topics_df.columns = range(n_topics) # Sort columns in weights_df separately for each row using topics_df. sorters_df = topics_df.apply(get_sort, axis=1) weights = weights_df.as_matrix() sorters = sorters_df.as_matrix() # there has to be a better way to do this. for i in range(sorters.shape[0]): weights[i, :] = weights[i, sorters[i, :]] # Define topic names (e.g., topic_000) index = dt_df[1] weights_df = pd.DataFrame(columns=topic_names, data=weights, index=index) weights_df.index.name = 'pmid' # topic_keys: Top [n_words] words for each topic. keys_df = pd.read_csv(os.path.join(tempdir, 'topic_keys.txt'), delimiter='\t', header=None, index_col=0) # Second column is a list of the terms. keys_df = keys_df[[2]] keys_df.rename(columns={2: 'terms'}, inplace=True) keys_df.index = topic_names keys_df.index.name = 'topic' # Remove all temporary files (abstract files, model, and outputs). shutil.rmtree(tempdir) # Return article topic weights and topic keys. return weights_df, keys_df
[ "def", "run_lda", "(", "abstracts", ",", "n_topics", "=", "50", ",", "n_words", "=", "31", ",", "n_iters", "=", "1000", ",", "alpha", "=", "None", ",", "beta", "=", "0.001", ")", ":", "if", "abstracts", ".", "index", ".", "name", "!=", "'pmid'", ":", "abstracts", ".", "index", "=", "abstracts", "[", "'pmid'", "]", "resdir", "=", "os", ".", "path", ".", "abspath", "(", "get_resource_path", "(", ")", ")", "tempdir", "=", "os", ".", "path", ".", "join", "(", "resdir", ",", "'topic_models'", ")", "absdir", "=", "os", ".", "path", ".", "join", "(", "tempdir", ",", "'abstracts'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "tempdir", ")", ":", "os", ".", "mkdir", "(", "tempdir", ")", "if", "alpha", "is", "None", ":", "alpha", "=", "50.", "/", "n_topics", "# Check for presence of abstract files and convert if necessary", "if", "not", "os", ".", "path", ".", "isdir", "(", "absdir", ")", ":", "print", "(", "'Abstracts folder not found. Creating abstract files...'", ")", "os", ".", "mkdir", "(", "absdir", ")", "for", "pmid", "in", "abstracts", ".", "index", ".", "values", ":", "abstract", "=", "abstracts", ".", "loc", "[", "pmid", "]", "[", "'abstract'", "]", "with", "open", "(", "os", ".", "path", ".", "join", "(", "absdir", ",", "str", "(", "pmid", ")", "+", "'.txt'", ")", ",", "'w'", ")", "as", "fo", ":", "fo", ".", "write", "(", "abstract", ")", "# Run MALLET topic modeling", "print", "(", "'Generating topics...'", ")", "mallet_bin", "=", "join", "(", "dirname", "(", "dirname", "(", "__file__", ")", ")", ",", "'resources/mallet/bin/mallet'", ")", "import_str", "=", "(", "'{mallet} import-dir '", "'--input {absdir} '", "'--output {outdir}/topic-input.mallet '", "'--keep-sequence '", "'--remove-stopwords'", ")", ".", "format", "(", "mallet", "=", "mallet_bin", ",", "absdir", "=", "absdir", ",", "outdir", "=", "tempdir", ")", "train_str", "=", "(", "'{mallet} train-topics '", "'--input {out}/topic-input.mallet '", "'--num-topics {n_topics} '", "'--num-top-words {n_words} '", "'--output-topic-keys {out}/topic_keys.txt '", "'--output-doc-topics {out}/doc_topics.txt '", "'--num-iterations {n_iters} '", "'--output-model {out}/saved_model.mallet '", "'--random-seed 1 '", "'--alpha {alpha} '", "'--beta {beta}'", ")", ".", "format", "(", "mallet", "=", "mallet_bin", ",", "out", "=", "tempdir", ",", "n_topics", "=", "n_topics", ",", "n_words", "=", "n_words", ",", "n_iters", "=", "n_iters", ",", "alpha", "=", "alpha", ",", "beta", "=", "beta", ")", "subprocess", ".", "call", "(", "import_str", ",", "shell", "=", "True", ")", "subprocess", ".", "call", "(", "train_str", ",", "shell", "=", "True", ")", "# Read in and convert doc_topics and topic_keys.", "def", "clean_str", "(", "string", ")", ":", "return", "os", ".", "path", ".", "basename", "(", "os", ".", "path", ".", "splitext", "(", "string", ")", "[", "0", "]", ")", "def", "get_sort", "(", "lst", ")", ":", "return", "[", "i", "[", "0", "]", "for", "i", "in", "sorted", "(", "enumerate", "(", "lst", ")", ",", "key", "=", "lambda", "x", ":", "x", "[", "1", "]", ")", "]", "topic_names", "=", "[", "'topic_{0:03d}'", ".", "format", "(", "i", ")", "for", "i", "in", "range", "(", "n_topics", ")", "]", "# doc_topics: Topic weights for each paper.", "# The conversion here is pretty ugly at the moment.", "# First row should be dropped. First column is row number and can be used", "# as the index.", "# Second column is 'file: /full/path/to/pmid.txt' <-- Parse to get pmid.", "# After that, odd columns are topic numbers and even columns are the", "# weights for the topics in the preceding column. These columns are sorted", "# on an individual pmid basis by the weights.", "n_cols", "=", "(", "2", "*", "n_topics", ")", "+", "1", "dt_df", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "tempdir", ",", "'doc_topics.txt'", ")", ",", "delimiter", "=", "'\\t'", ",", "skiprows", "=", "1", ",", "header", "=", "None", ",", "index_col", "=", "0", ")", "dt_df", "=", "dt_df", "[", "dt_df", ".", "columns", "[", ":", "n_cols", "]", "]", "# Get pmids from filenames", "dt_df", "[", "1", "]", "=", "dt_df", "[", "1", "]", ".", "apply", "(", "clean_str", ")", "# Put weights (even cols) and topics (odd cols) into separate dfs.", "weights_df", "=", "dt_df", "[", "dt_df", ".", "columns", "[", "2", ":", ":", "2", "]", "]", "weights_df", ".", "index", "=", "dt_df", "[", "1", "]", "weights_df", ".", "columns", "=", "range", "(", "n_topics", ")", "topics_df", "=", "dt_df", "[", "dt_df", ".", "columns", "[", "1", ":", ":", "2", "]", "]", "topics_df", ".", "index", "=", "dt_df", "[", "1", "]", "topics_df", ".", "columns", "=", "range", "(", "n_topics", ")", "# Sort columns in weights_df separately for each row using topics_df.", "sorters_df", "=", "topics_df", ".", "apply", "(", "get_sort", ",", "axis", "=", "1", ")", "weights", "=", "weights_df", ".", "as_matrix", "(", ")", "sorters", "=", "sorters_df", ".", "as_matrix", "(", ")", "# there has to be a better way to do this.", "for", "i", "in", "range", "(", "sorters", ".", "shape", "[", "0", "]", ")", ":", "weights", "[", "i", ",", ":", "]", "=", "weights", "[", "i", ",", "sorters", "[", "i", ",", ":", "]", "]", "# Define topic names (e.g., topic_000)", "index", "=", "dt_df", "[", "1", "]", "weights_df", "=", "pd", ".", "DataFrame", "(", "columns", "=", "topic_names", ",", "data", "=", "weights", ",", "index", "=", "index", ")", "weights_df", ".", "index", ".", "name", "=", "'pmid'", "# topic_keys: Top [n_words] words for each topic.", "keys_df", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "tempdir", ",", "'topic_keys.txt'", ")", ",", "delimiter", "=", "'\\t'", ",", "header", "=", "None", ",", "index_col", "=", "0", ")", "# Second column is a list of the terms.", "keys_df", "=", "keys_df", "[", "[", "2", "]", "]", "keys_df", ".", "rename", "(", "columns", "=", "{", "2", ":", "'terms'", "}", ",", "inplace", "=", "True", ")", "keys_df", ".", "index", "=", "topic_names", "keys_df", ".", "index", ".", "name", "=", "'topic'", "# Remove all temporary files (abstract files, model, and outputs).", "shutil", ".", "rmtree", "(", "tempdir", ")", "# Return article topic weights and topic keys.", "return", "weights_df", ",", "keys_df" ]
Perform topic modeling using Latent Dirichlet Allocation with the Java toolbox MALLET. Args: abstracts: A pandas DataFrame with two columns ('pmid' and 'abstract') containing article abstracts. n_topics: Number of topics to generate. Default=50. n_words: Number of top words to return for each topic. Default=31, based on Poldrack et al. (2012). n_iters: Number of iterations to run in training topic model. Default=1000. alpha: The Dirichlet prior on the per-document topic distributions. Default: 50 / n_topics, based on Poldrack et al. (2012). beta: The Dirichlet prior on the per-topic word distribution. Default: 0.001, based on Poldrack et al. (2012). Returns: weights_df: A pandas DataFrame derived from the MALLET output-doc-topics output file. Contains the weight assigned to each article for each topic, which can be used to select articles for topic-based meta-analyses (accepted threshold from Poldrack article is 0.001). [n_topics]+1 columns: 'pmid' is the first column and the following columns are the topic names. The names of the topics match the names in df (e.g., topic_000). keys_df: A pandas DataFrame derived from the MALLET output-topic-keys output file. Contains the top [n_words] words for each topic, which can act as a summary of the topic's content. Two columns: 'topic' and 'terms'. The names of the topics match the names in weights (e.g., topic_000).
[ "Perform", "topic", "modeling", "using", "Latent", "Dirichlet", "Allocation", "with", "the", "Java", "toolbox", "MALLET", "." ]
python
test
senaite/senaite.core
bika/lims/adapters/identifiers.py
https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/adapters/identifiers.py#L39-L45
def IdentifiersIndexer(instance): """Return a list of unique Identifier strings This populates the Identifiers Keyword index, but with some replacements to prevent the word-splitter etc from taking effect. """ identifiers = instance.Schema()['Identifiers'].get(instance) return [safe_unicode(i['Identifier']) for i in identifiers]
[ "def", "IdentifiersIndexer", "(", "instance", ")", ":", "identifiers", "=", "instance", ".", "Schema", "(", ")", "[", "'Identifiers'", "]", ".", "get", "(", "instance", ")", "return", "[", "safe_unicode", "(", "i", "[", "'Identifier'", "]", ")", "for", "i", "in", "identifiers", "]" ]
Return a list of unique Identifier strings This populates the Identifiers Keyword index, but with some replacements to prevent the word-splitter etc from taking effect.
[ "Return", "a", "list", "of", "unique", "Identifier", "strings", "This", "populates", "the", "Identifiers", "Keyword", "index", "but", "with", "some", "replacements", "to", "prevent", "the", "word", "-", "splitter", "etc", "from", "taking", "effect", "." ]
python
train
Fantomas42/django-blog-zinnia
zinnia/sitemaps.py
https://github.com/Fantomas42/django-blog-zinnia/blob/b4949304b104a8e1a7a7a0773cbfd024313c3a15/zinnia/sitemaps.py#L61-L69
def get_queryset(self): """ Build a queryset of items with published entries and annotated with the number of entries and the latest modification date. """ return self.model.published.annotate( count_entries_published=Count('entries')).annotate( last_update=Max('entries__last_update')).order_by( '-count_entries_published', '-last_update', '-pk')
[ "def", "get_queryset", "(", "self", ")", ":", "return", "self", ".", "model", ".", "published", ".", "annotate", "(", "count_entries_published", "=", "Count", "(", "'entries'", ")", ")", ".", "annotate", "(", "last_update", "=", "Max", "(", "'entries__last_update'", ")", ")", ".", "order_by", "(", "'-count_entries_published'", ",", "'-last_update'", ",", "'-pk'", ")" ]
Build a queryset of items with published entries and annotated with the number of entries and the latest modification date.
[ "Build", "a", "queryset", "of", "items", "with", "published", "entries", "and", "annotated", "with", "the", "number", "of", "entries", "and", "the", "latest", "modification", "date", "." ]
python
train
miLibris/flask-rest-jsonapi
flask_rest_jsonapi/data_layers/alchemy.py
https://github.com/miLibris/flask-rest-jsonapi/blob/ecc8f2cd2b54cc0bfae7acd6cffcda0ba1140c43/flask_rest_jsonapi/data_layers/alchemy.py#L197-L254
def create_relationship(self, json_data, relationship_field, related_id_field, view_kwargs): """Create a relationship :param dict json_data: the request params :param str relationship_field: the model attribute used for relationship :param str related_id_field: the identifier field of the related model :param dict view_kwargs: kwargs from the resource view :return boolean: True if relationship have changed else False """ self.before_create_relationship(json_data, relationship_field, related_id_field, view_kwargs) obj = self.get_object(view_kwargs) if obj is None: url_field = getattr(self, 'url_field', 'id') filter_value = view_kwargs[url_field] raise ObjectNotFound('{}: {} not found'.format(self.model.__name__, filter_value), source={'parameter': url_field}) if not hasattr(obj, relationship_field): raise RelationNotFound("{} has no attribute {}".format(obj.__class__.__name__, relationship_field)) related_model = getattr(obj.__class__, relationship_field).property.mapper.class_ updated = False if isinstance(json_data['data'], list): obj_ids = {str(getattr(obj__, related_id_field)) for obj__ in getattr(obj, relationship_field)} for obj_ in json_data['data']: if obj_['id'] not in obj_ids: getattr(obj, relationship_field).append(self.get_related_object(related_model, related_id_field, obj_)) updated = True else: related_object = None if json_data['data'] is not None: related_object = self.get_related_object(related_model, related_id_field, json_data['data']) obj_id = getattr(getattr(obj, relationship_field), related_id_field, None) new_obj_id = getattr(related_object, related_id_field, None) if obj_id != new_obj_id: setattr(obj, relationship_field, related_object) updated = True try: self.session.commit() except JsonApiException as e: self.session.rollback() raise e except Exception as e: self.session.rollback() raise JsonApiException("Create relationship error: " + str(e)) self.after_create_relationship(obj, updated, json_data, relationship_field, related_id_field, view_kwargs) return obj, updated
[ "def", "create_relationship", "(", "self", ",", "json_data", ",", "relationship_field", ",", "related_id_field", ",", "view_kwargs", ")", ":", "self", ".", "before_create_relationship", "(", "json_data", ",", "relationship_field", ",", "related_id_field", ",", "view_kwargs", ")", "obj", "=", "self", ".", "get_object", "(", "view_kwargs", ")", "if", "obj", "is", "None", ":", "url_field", "=", "getattr", "(", "self", ",", "'url_field'", ",", "'id'", ")", "filter_value", "=", "view_kwargs", "[", "url_field", "]", "raise", "ObjectNotFound", "(", "'{}: {} not found'", ".", "format", "(", "self", ".", "model", ".", "__name__", ",", "filter_value", ")", ",", "source", "=", "{", "'parameter'", ":", "url_field", "}", ")", "if", "not", "hasattr", "(", "obj", ",", "relationship_field", ")", ":", "raise", "RelationNotFound", "(", "\"{} has no attribute {}\"", ".", "format", "(", "obj", ".", "__class__", ".", "__name__", ",", "relationship_field", ")", ")", "related_model", "=", "getattr", "(", "obj", ".", "__class__", ",", "relationship_field", ")", ".", "property", ".", "mapper", ".", "class_", "updated", "=", "False", "if", "isinstance", "(", "json_data", "[", "'data'", "]", ",", "list", ")", ":", "obj_ids", "=", "{", "str", "(", "getattr", "(", "obj__", ",", "related_id_field", ")", ")", "for", "obj__", "in", "getattr", "(", "obj", ",", "relationship_field", ")", "}", "for", "obj_", "in", "json_data", "[", "'data'", "]", ":", "if", "obj_", "[", "'id'", "]", "not", "in", "obj_ids", ":", "getattr", "(", "obj", ",", "relationship_field", ")", ".", "append", "(", "self", ".", "get_related_object", "(", "related_model", ",", "related_id_field", ",", "obj_", ")", ")", "updated", "=", "True", "else", ":", "related_object", "=", "None", "if", "json_data", "[", "'data'", "]", "is", "not", "None", ":", "related_object", "=", "self", ".", "get_related_object", "(", "related_model", ",", "related_id_field", ",", "json_data", "[", "'data'", "]", ")", "obj_id", "=", "getattr", "(", "getattr", "(", "obj", ",", "relationship_field", ")", ",", "related_id_field", ",", "None", ")", "new_obj_id", "=", "getattr", "(", "related_object", ",", "related_id_field", ",", "None", ")", "if", "obj_id", "!=", "new_obj_id", ":", "setattr", "(", "obj", ",", "relationship_field", ",", "related_object", ")", "updated", "=", "True", "try", ":", "self", ".", "session", ".", "commit", "(", ")", "except", "JsonApiException", "as", "e", ":", "self", ".", "session", ".", "rollback", "(", ")", "raise", "e", "except", "Exception", "as", "e", ":", "self", ".", "session", ".", "rollback", "(", ")", "raise", "JsonApiException", "(", "\"Create relationship error: \"", "+", "str", "(", "e", ")", ")", "self", ".", "after_create_relationship", "(", "obj", ",", "updated", ",", "json_data", ",", "relationship_field", ",", "related_id_field", ",", "view_kwargs", ")", "return", "obj", ",", "updated" ]
Create a relationship :param dict json_data: the request params :param str relationship_field: the model attribute used for relationship :param str related_id_field: the identifier field of the related model :param dict view_kwargs: kwargs from the resource view :return boolean: True if relationship have changed else False
[ "Create", "a", "relationship" ]
python
train
josiah-wolf-oberholtzer/uqbar
uqbar/io/__init__.py
https://github.com/josiah-wolf-oberholtzer/uqbar/blob/eca7fefebbbee1e2ae13bf5d6baa838be66b1db6/uqbar/io/__init__.py#L146-L186
def write( contents: str, path: Union[str, pathlib.Path], verbose: bool = False, logger_func=None, ) -> bool: """ Writes ``contents`` to ``path``. Checks if ``path`` already exists and only write out new contents if the old contents do not match. Creates any intermediate missing directories. :param contents: the file contents to write :param path: the path to write to :param verbose: whether to print output """ print_func = logger_func or print path = pathlib.Path(path) if path.exists(): with path.open("r") as file_pointer: old_contents = file_pointer.read() if old_contents == contents: if verbose: print_func("preserved {}".format(path)) return False else: with path.open("w") as file_pointer: file_pointer.write(contents) if verbose: print_func("rewrote {}".format(path)) return True elif not path.exists(): if not path.parent.exists(): path.parent.mkdir(parents=True) with path.open("w") as file_pointer: file_pointer.write(contents) if verbose: print_func("wrote {}".format(path)) return True
[ "def", "write", "(", "contents", ":", "str", ",", "path", ":", "Union", "[", "str", ",", "pathlib", ".", "Path", "]", ",", "verbose", ":", "bool", "=", "False", ",", "logger_func", "=", "None", ",", ")", "->", "bool", ":", "print_func", "=", "logger_func", "or", "print", "path", "=", "pathlib", ".", "Path", "(", "path", ")", "if", "path", ".", "exists", "(", ")", ":", "with", "path", ".", "open", "(", "\"r\"", ")", "as", "file_pointer", ":", "old_contents", "=", "file_pointer", ".", "read", "(", ")", "if", "old_contents", "==", "contents", ":", "if", "verbose", ":", "print_func", "(", "\"preserved {}\"", ".", "format", "(", "path", ")", ")", "return", "False", "else", ":", "with", "path", ".", "open", "(", "\"w\"", ")", "as", "file_pointer", ":", "file_pointer", ".", "write", "(", "contents", ")", "if", "verbose", ":", "print_func", "(", "\"rewrote {}\"", ".", "format", "(", "path", ")", ")", "return", "True", "elif", "not", "path", ".", "exists", "(", ")", ":", "if", "not", "path", ".", "parent", ".", "exists", "(", ")", ":", "path", ".", "parent", ".", "mkdir", "(", "parents", "=", "True", ")", "with", "path", ".", "open", "(", "\"w\"", ")", "as", "file_pointer", ":", "file_pointer", ".", "write", "(", "contents", ")", "if", "verbose", ":", "print_func", "(", "\"wrote {}\"", ".", "format", "(", "path", ")", ")", "return", "True" ]
Writes ``contents`` to ``path``. Checks if ``path`` already exists and only write out new contents if the old contents do not match. Creates any intermediate missing directories. :param contents: the file contents to write :param path: the path to write to :param verbose: whether to print output
[ "Writes", "contents", "to", "path", "." ]
python
train
ampl/amplpy
amplpy/entity.py
https://github.com/ampl/amplpy/blob/39df6954049a11a8f666aed26853259b4687099a/amplpy/entity.py#L177-L205
def setValues(self, data): """ Set the values of this entiy to the correponding values of a DataFrame indexed over the same sets (or a subset). This function assigns the values in the first data column of the passed dataframe to the entity the function is called from. In particular, the statement: .. code-block:: python x.setValues(y.getValues()) is semantically equivalent to the AMPL statement: .. code-block:: ampl let {s in S} x[s] := y[s]; Args: data: The data to set the entity to. """ if isinstance(data, DataFrame): self._impl.setValuesDf(data._impl) else: if pd is not None and isinstance(data, (pd.DataFrame, pd.Series)): df = DataFrame.fromPandas(data) self._impl.setValuesDf(df._impl) return raise TypeError
[ "def", "setValues", "(", "self", ",", "data", ")", ":", "if", "isinstance", "(", "data", ",", "DataFrame", ")", ":", "self", ".", "_impl", ".", "setValuesDf", "(", "data", ".", "_impl", ")", "else", ":", "if", "pd", "is", "not", "None", "and", "isinstance", "(", "data", ",", "(", "pd", ".", "DataFrame", ",", "pd", ".", "Series", ")", ")", ":", "df", "=", "DataFrame", ".", "fromPandas", "(", "data", ")", "self", ".", "_impl", ".", "setValuesDf", "(", "df", ".", "_impl", ")", "return", "raise", "TypeError" ]
Set the values of this entiy to the correponding values of a DataFrame indexed over the same sets (or a subset). This function assigns the values in the first data column of the passed dataframe to the entity the function is called from. In particular, the statement: .. code-block:: python x.setValues(y.getValues()) is semantically equivalent to the AMPL statement: .. code-block:: ampl let {s in S} x[s] := y[s]; Args: data: The data to set the entity to.
[ "Set", "the", "values", "of", "this", "entiy", "to", "the", "correponding", "values", "of", "a", "DataFrame", "indexed", "over", "the", "same", "sets", "(", "or", "a", "subset", ")", ".", "This", "function", "assigns", "the", "values", "in", "the", "first", "data", "column", "of", "the", "passed", "dataframe", "to", "the", "entity", "the", "function", "is", "called", "from", ".", "In", "particular", "the", "statement", ":" ]
python
train
ontio/ontology-python-sdk
ontology/smart_contract/neo_contract/oep4.py
https://github.com/ontio/ontology-python-sdk/blob/ac88bdda941896c5d2ced08422a9c5179d3f9b19/ontology/smart_contract/neo_contract/oep4.py#L89-L102
def get_total_supply(self) -> int: """ This interface is used to call the TotalSupply method in ope4 that return the total supply of the oep4 token. :return: the total supply of the oep4 token. """ func = InvokeFunction('totalSupply') response = self.__sdk.get_network().send_neo_vm_transaction_pre_exec(self.__hex_contract_address, None, func) try: total_supply = ContractDataParser.to_int(response['Result']) except SDKException: total_supply = 0 return total_supply
[ "def", "get_total_supply", "(", "self", ")", "->", "int", ":", "func", "=", "InvokeFunction", "(", "'totalSupply'", ")", "response", "=", "self", ".", "__sdk", ".", "get_network", "(", ")", ".", "send_neo_vm_transaction_pre_exec", "(", "self", ".", "__hex_contract_address", ",", "None", ",", "func", ")", "try", ":", "total_supply", "=", "ContractDataParser", ".", "to_int", "(", "response", "[", "'Result'", "]", ")", "except", "SDKException", ":", "total_supply", "=", "0", "return", "total_supply" ]
This interface is used to call the TotalSupply method in ope4 that return the total supply of the oep4 token. :return: the total supply of the oep4 token.
[ "This", "interface", "is", "used", "to", "call", "the", "TotalSupply", "method", "in", "ope4", "that", "return", "the", "total", "supply", "of", "the", "oep4", "token", "." ]
python
train
kejbaly2/metrique
metrique/sqlalchemy.py
https://github.com/kejbaly2/metrique/blob/a10b076097441b7dde687949139f702f5c1e1b35/metrique/sqlalchemy.py#L849-L863
def index_list(self): ''' List all cube indexes :param collection: cube name :param owner: username of cube owner ''' logger.info('Listing indexes') _ix = {} _i = self.inspector for tbl in _i.get_table_names(): _ix.setdefault(tbl, []) for ix in _i.get_indexes(tbl): _ix[tbl].append(ix) return _ix
[ "def", "index_list", "(", "self", ")", ":", "logger", ".", "info", "(", "'Listing indexes'", ")", "_ix", "=", "{", "}", "_i", "=", "self", ".", "inspector", "for", "tbl", "in", "_i", ".", "get_table_names", "(", ")", ":", "_ix", ".", "setdefault", "(", "tbl", ",", "[", "]", ")", "for", "ix", "in", "_i", ".", "get_indexes", "(", "tbl", ")", ":", "_ix", "[", "tbl", "]", ".", "append", "(", "ix", ")", "return", "_ix" ]
List all cube indexes :param collection: cube name :param owner: username of cube owner
[ "List", "all", "cube", "indexes" ]
python
train
quantumlib/Cirq
cirq/devices/noise_model.py
https://github.com/quantumlib/Cirq/blob/0827da80dd7880e5b923eb69407e980ed9bc0bd2/cirq/devices/noise_model.py#L94-L111
def noisy_operation(self, operation: 'cirq.Operation') -> 'cirq.OP_TREE': """Adds noise to an individual operation. Args: operation: The operation to make noisy. Returns: An OP_TREE corresponding to the noisy operations implementing the noisy version of the given operation. """ if not hasattr(self.noisy_moments, '_not_overridden'): return self.noisy_moments([ops.Moment([operation])], operation.qubits) if not hasattr(self.noisy_moment, '_not_overridden'): return self.noisy_moment(ops.Moment([operation]), operation.qubits) assert False, 'Should be unreachable.'
[ "def", "noisy_operation", "(", "self", ",", "operation", ":", "'cirq.Operation'", ")", "->", "'cirq.OP_TREE'", ":", "if", "not", "hasattr", "(", "self", ".", "noisy_moments", ",", "'_not_overridden'", ")", ":", "return", "self", ".", "noisy_moments", "(", "[", "ops", ".", "Moment", "(", "[", "operation", "]", ")", "]", ",", "operation", ".", "qubits", ")", "if", "not", "hasattr", "(", "self", ".", "noisy_moment", ",", "'_not_overridden'", ")", ":", "return", "self", ".", "noisy_moment", "(", "ops", ".", "Moment", "(", "[", "operation", "]", ")", ",", "operation", ".", "qubits", ")", "assert", "False", ",", "'Should be unreachable.'" ]
Adds noise to an individual operation. Args: operation: The operation to make noisy. Returns: An OP_TREE corresponding to the noisy operations implementing the noisy version of the given operation.
[ "Adds", "noise", "to", "an", "individual", "operation", "." ]
python
train
255BITS/hyperchamber
hyperchamber/selector.py
https://github.com/255BITS/hyperchamber/blob/4d5774bde9ea6ce1113f77a069ffc605148482b8/hyperchamber/selector.py#L29-L32
def set(self, key, value): """Sets a hyperparameter. Can be used to set an array of hyperparameters.""" self.store[key]=value return self.store
[ "def", "set", "(", "self", ",", "key", ",", "value", ")", ":", "self", ".", "store", "[", "key", "]", "=", "value", "return", "self", ".", "store" ]
Sets a hyperparameter. Can be used to set an array of hyperparameters.
[ "Sets", "a", "hyperparameter", ".", "Can", "be", "used", "to", "set", "an", "array", "of", "hyperparameters", "." ]
python
train
Valuehorizon/valuehorizon-companies
companies/models.py
https://github.com/Valuehorizon/valuehorizon-companies/blob/5366e230da69ee30fcdc1bf4beddc99310f6b767/companies/models.py#L242-L249
def get_immediate_children_ownership(self): """ Return all direct subsidiaries of this company AS OWNERSHIP OBJECTS. Excludes subsidiaries of subsidiaries. """ ownership = Ownership.objects.filter(parent=self).select_related('child', 'child__country') return ownership
[ "def", "get_immediate_children_ownership", "(", "self", ")", ":", "ownership", "=", "Ownership", ".", "objects", ".", "filter", "(", "parent", "=", "self", ")", ".", "select_related", "(", "'child'", ",", "'child__country'", ")", "return", "ownership" ]
Return all direct subsidiaries of this company AS OWNERSHIP OBJECTS. Excludes subsidiaries of subsidiaries.
[ "Return", "all", "direct", "subsidiaries", "of", "this", "company", "AS", "OWNERSHIP", "OBJECTS", ".", "Excludes", "subsidiaries", "of", "subsidiaries", "." ]
python
train
wonambi-python/wonambi
wonambi/widgets/notes.py
https://github.com/wonambi-python/wonambi/blob/1d8e3d7e53df8017c199f703bcab582914676e76/wonambi/widgets/notes.py#L878-L908
def find_row(self, ev_start, ev_end): """Highlight event row in table from start and end time. Parameters ---------- ev_start : float start time, in seconds from record start ev_end : float end time, in seconds from record start Returns ------- int index of event row in idx_annot_list QTableWidget """ all_starts = self.idx_annot_list.property('start') all_ends = self.idx_annot_list.property('end') for i, (start, end) in enumerate(zip(all_starts, all_ends)): if start == ev_start and end == ev_end: return i for i, start in enumerate(all_starts): if start == ev_start: return i for i, end in enumerate(all_ends): if end == ev_end: return i raise ValueError
[ "def", "find_row", "(", "self", ",", "ev_start", ",", "ev_end", ")", ":", "all_starts", "=", "self", ".", "idx_annot_list", ".", "property", "(", "'start'", ")", "all_ends", "=", "self", ".", "idx_annot_list", ".", "property", "(", "'end'", ")", "for", "i", ",", "(", "start", ",", "end", ")", "in", "enumerate", "(", "zip", "(", "all_starts", ",", "all_ends", ")", ")", ":", "if", "start", "==", "ev_start", "and", "end", "==", "ev_end", ":", "return", "i", "for", "i", ",", "start", "in", "enumerate", "(", "all_starts", ")", ":", "if", "start", "==", "ev_start", ":", "return", "i", "for", "i", ",", "end", "in", "enumerate", "(", "all_ends", ")", ":", "if", "end", "==", "ev_end", ":", "return", "i", "raise", "ValueError" ]
Highlight event row in table from start and end time. Parameters ---------- ev_start : float start time, in seconds from record start ev_end : float end time, in seconds from record start Returns ------- int index of event row in idx_annot_list QTableWidget
[ "Highlight", "event", "row", "in", "table", "from", "start", "and", "end", "time", ".", "Parameters", "----------", "ev_start", ":", "float", "start", "time", "in", "seconds", "from", "record", "start", "ev_end", ":", "float", "end", "time", "in", "seconds", "from", "record", "start", "Returns", "-------", "int", "index", "of", "event", "row", "in", "idx_annot_list", "QTableWidget" ]
python
train
creare-com/pydem
pydem/reader/my_types.py
https://github.com/creare-com/pydem/blob/c2fc8d84cfb411df84f71a6dec9edc4b544f710a/pydem/reader/my_types.py#L150-L159
def grid_coords_from_corners(upper_left_corner, lower_right_corner, size): ''' Points are the outer edges of the UL and LR pixels. Size is rows, columns. GC projection type is taken from Points. ''' assert upper_left_corner.wkt == lower_right_corner.wkt geotransform = np.array([upper_left_corner.lon, -(upper_left_corner.lon - lower_right_corner.lon) / float(size[1]), 0, upper_left_corner.lat, 0, -(upper_left_corner.lat - lower_right_corner.lat) / float(size[0])]) return GridCoordinates(geotransform=geotransform, wkt=upper_left_corner.wkt, y_size=size[0], x_size=size[1])
[ "def", "grid_coords_from_corners", "(", "upper_left_corner", ",", "lower_right_corner", ",", "size", ")", ":", "assert", "upper_left_corner", ".", "wkt", "==", "lower_right_corner", ".", "wkt", "geotransform", "=", "np", ".", "array", "(", "[", "upper_left_corner", ".", "lon", ",", "-", "(", "upper_left_corner", ".", "lon", "-", "lower_right_corner", ".", "lon", ")", "/", "float", "(", "size", "[", "1", "]", ")", ",", "0", ",", "upper_left_corner", ".", "lat", ",", "0", ",", "-", "(", "upper_left_corner", ".", "lat", "-", "lower_right_corner", ".", "lat", ")", "/", "float", "(", "size", "[", "0", "]", ")", "]", ")", "return", "GridCoordinates", "(", "geotransform", "=", "geotransform", ",", "wkt", "=", "upper_left_corner", ".", "wkt", ",", "y_size", "=", "size", "[", "0", "]", ",", "x_size", "=", "size", "[", "1", "]", ")" ]
Points are the outer edges of the UL and LR pixels. Size is rows, columns. GC projection type is taken from Points.
[ "Points", "are", "the", "outer", "edges", "of", "the", "UL", "and", "LR", "pixels", ".", "Size", "is", "rows", "columns", ".", "GC", "projection", "type", "is", "taken", "from", "Points", "." ]
python
train
astropy/photutils
photutils/segmentation/properties.py
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L931-L945
def area(self): """ The total unmasked area of the source segment in units of pixels**2. Note that the source area may be smaller than its segment area if a mask is input to `SourceProperties` or `source_properties`, or if the ``data`` within the segment contains invalid values (e.g. NaN or infs). """ if self._is_completely_masked: return np.nan * u.pix**2 else: return len(self.values) * u.pix**2
[ "def", "area", "(", "self", ")", ":", "if", "self", ".", "_is_completely_masked", ":", "return", "np", ".", "nan", "*", "u", ".", "pix", "**", "2", "else", ":", "return", "len", "(", "self", ".", "values", ")", "*", "u", ".", "pix", "**", "2" ]
The total unmasked area of the source segment in units of pixels**2. Note that the source area may be smaller than its segment area if a mask is input to `SourceProperties` or `source_properties`, or if the ``data`` within the segment contains invalid values (e.g. NaN or infs).
[ "The", "total", "unmasked", "area", "of", "the", "source", "segment", "in", "units", "of", "pixels", "**", "2", "." ]
python
train
ValvePython/steam
steam/steamid.py
https://github.com/ValvePython/steam/blob/2de1364c47598410b572114e6129eab8fff71d5b/steam/steamid.py#L145-L171
def as_steam3(self): """ :return: steam3 format (e.g ``[U:1:1234]``) :rtype: :class:`str` """ typechar = str(ETypeChar(self.type)) instance = None if self.type in (EType.AnonGameServer, EType.Multiseat): instance = self.instance elif self.type == EType.Individual: if self.instance != 1: instance = self.instance elif self.type == EType.Chat: if self.instance & EInstanceFlag.Clan: typechar = 'c' elif self.instance & EInstanceFlag.Lobby: typechar = 'L' else: typechar = 'T' parts = [typechar, int(self.universe), self.id] if instance is not None: parts.append(instance) return '[%s]' % (':'.join(map(str, parts)))
[ "def", "as_steam3", "(", "self", ")", ":", "typechar", "=", "str", "(", "ETypeChar", "(", "self", ".", "type", ")", ")", "instance", "=", "None", "if", "self", ".", "type", "in", "(", "EType", ".", "AnonGameServer", ",", "EType", ".", "Multiseat", ")", ":", "instance", "=", "self", ".", "instance", "elif", "self", ".", "type", "==", "EType", ".", "Individual", ":", "if", "self", ".", "instance", "!=", "1", ":", "instance", "=", "self", ".", "instance", "elif", "self", ".", "type", "==", "EType", ".", "Chat", ":", "if", "self", ".", "instance", "&", "EInstanceFlag", ".", "Clan", ":", "typechar", "=", "'c'", "elif", "self", ".", "instance", "&", "EInstanceFlag", ".", "Lobby", ":", "typechar", "=", "'L'", "else", ":", "typechar", "=", "'T'", "parts", "=", "[", "typechar", ",", "int", "(", "self", ".", "universe", ")", ",", "self", ".", "id", "]", "if", "instance", "is", "not", "None", ":", "parts", ".", "append", "(", "instance", ")", "return", "'[%s]'", "%", "(", "':'", ".", "join", "(", "map", "(", "str", ",", "parts", ")", ")", ")" ]
:return: steam3 format (e.g ``[U:1:1234]``) :rtype: :class:`str`
[ ":", "return", ":", "steam3", "format", "(", "e", ".", "g", "[", "U", ":", "1", ":", "1234", "]", ")", ":", "rtype", ":", ":", "class", ":", "str" ]
python
train
collectiveacuity/labPack
labpack/storage/aws/s3.py
https://github.com/collectiveacuity/labPack/blob/52949ece35e72e3cc308f54d9ffa6bfbd96805b8/labpack/storage/aws/s3.py#L1873-L1991
def list(self, prefix='', delimiter='', filter_function=None, max_results=1, previous_key=''): ''' a method to list keys in the collection :param prefix: string with prefix value to filter results :param delimiter: string with value results must not contain (after prefix) :param filter_function: (positional arguments) function used to filter results :param max_results: integer with maximum number of results to return :param previous_key: string with key in collection to begin search after :return: list of key strings NOTE: each key string can be divided into one or more segments based upon the / characters which occur in the key string as well as its file extension type. if the key string represents a file path, then each directory in the path, the file name and the file extension are all separate indexed values. eg. lab/unittests/1473719695.2165067.json is indexed: [ 'lab', 'unittests', '1473719695.2165067', '.json' ] it is possible to filter the records in the collection according to one or more of these path segments using a filter_function. NOTE: the filter_function must be able to accept an array of positional arguments and return a value that can evaluate to true or false. while searching the records, list produces an array of strings which represent the directory structure in relative path of each key string. if a filter_function is provided, this list of strings is fed to the filter function. if the function evaluates this input and returns a true value the file will be included in the list results. ''' title = '%s.list' % self.__class__.__name__ # validate input input_fields = { 'prefix': prefix, 'delimiter': delimiter, 'max_results': max_results, 'record_key': previous_key } for key, value in input_fields.items(): if value: object_title = '%s(%s=%s)' % (title, key, str(value)) self.fields.validate(value, '.%s' % key, object_title) # construct default response results_list = [] # handle filter function filter if filter_function: # validate filter function try: path_segments = [ 'lab', 'unittests', '1473719695.2165067', '.json' ] filter_function(*path_segments) except: err_msg = '%s(filter_function=%s)' % (title, filter_function.__class__.__name__) raise TypeError('%s must accept positional arguments.' % err_msg) # construct keyword arguments list_kwargs = { 'bucket_name': self.bucket_name, 'prefix': prefix, 'delimiter': delimiter } # determine starting key starting_key = '1' if previous_key: previous_kwargs = {} previous_kwargs.update(**list_kwargs) previous_kwargs['max_results'] = 1 previous_kwargs['starting_key'] = previous_key search_list, next_key = self.s3.list_records(**list_kwargs) list_kwargs['starting_key'] = next_key # iterate filter over collection import os while starting_key: search_list, starting_key = self.s3.list_records(**list_kwargs) for record in search_list: record_key = record['key'] path_segments = record_key.split(os.sep) if filter_function(*path_segments): results_list.append(record_key) if len(results_list) == max_results: return results_list # handle other filters else: # construct keyword arguments list_kwargs = { 'bucket_name': self.bucket_name, 'prefix': prefix, 'delimiter': delimiter, 'max_results': max_results } # determine starting key if previous_key: previous_kwargs = {} previous_kwargs.update(**list_kwargs) previous_kwargs['max_results'] = 1 previous_kwargs['starting_key'] = previous_key search_list, starting_key = self.s3.list_records(**list_kwargs) list_kwargs['starting_key'] = starting_key # retrieve results search_list, starting_key = self.s3.list_records(**list_kwargs) # construct result list for record in search_list: results_list.append(record['key']) return results_list
[ "def", "list", "(", "self", ",", "prefix", "=", "''", ",", "delimiter", "=", "''", ",", "filter_function", "=", "None", ",", "max_results", "=", "1", ",", "previous_key", "=", "''", ")", ":", "title", "=", "'%s.list'", "%", "self", ".", "__class__", ".", "__name__", "# validate input", "input_fields", "=", "{", "'prefix'", ":", "prefix", ",", "'delimiter'", ":", "delimiter", ",", "'max_results'", ":", "max_results", ",", "'record_key'", ":", "previous_key", "}", "for", "key", ",", "value", "in", "input_fields", ".", "items", "(", ")", ":", "if", "value", ":", "object_title", "=", "'%s(%s=%s)'", "%", "(", "title", ",", "key", ",", "str", "(", "value", ")", ")", "self", ".", "fields", ".", "validate", "(", "value", ",", "'.%s'", "%", "key", ",", "object_title", ")", "# construct default response", "results_list", "=", "[", "]", "# handle filter function filter", "if", "filter_function", ":", "# validate filter function", "try", ":", "path_segments", "=", "[", "'lab'", ",", "'unittests'", ",", "'1473719695.2165067'", ",", "'.json'", "]", "filter_function", "(", "*", "path_segments", ")", "except", ":", "err_msg", "=", "'%s(filter_function=%s)'", "%", "(", "title", ",", "filter_function", ".", "__class__", ".", "__name__", ")", "raise", "TypeError", "(", "'%s must accept positional arguments.'", "%", "err_msg", ")", "# construct keyword arguments", "list_kwargs", "=", "{", "'bucket_name'", ":", "self", ".", "bucket_name", ",", "'prefix'", ":", "prefix", ",", "'delimiter'", ":", "delimiter", "}", "# determine starting key", "starting_key", "=", "'1'", "if", "previous_key", ":", "previous_kwargs", "=", "{", "}", "previous_kwargs", ".", "update", "(", "*", "*", "list_kwargs", ")", "previous_kwargs", "[", "'max_results'", "]", "=", "1", "previous_kwargs", "[", "'starting_key'", "]", "=", "previous_key", "search_list", ",", "next_key", "=", "self", ".", "s3", ".", "list_records", "(", "*", "*", "list_kwargs", ")", "list_kwargs", "[", "'starting_key'", "]", "=", "next_key", "# iterate filter over collection", "import", "os", "while", "starting_key", ":", "search_list", ",", "starting_key", "=", "self", ".", "s3", ".", "list_records", "(", "*", "*", "list_kwargs", ")", "for", "record", "in", "search_list", ":", "record_key", "=", "record", "[", "'key'", "]", "path_segments", "=", "record_key", ".", "split", "(", "os", ".", "sep", ")", "if", "filter_function", "(", "*", "path_segments", ")", ":", "results_list", ".", "append", "(", "record_key", ")", "if", "len", "(", "results_list", ")", "==", "max_results", ":", "return", "results_list", "# handle other filters", "else", ":", "# construct keyword arguments", "list_kwargs", "=", "{", "'bucket_name'", ":", "self", ".", "bucket_name", ",", "'prefix'", ":", "prefix", ",", "'delimiter'", ":", "delimiter", ",", "'max_results'", ":", "max_results", "}", "# determine starting key", "if", "previous_key", ":", "previous_kwargs", "=", "{", "}", "previous_kwargs", ".", "update", "(", "*", "*", "list_kwargs", ")", "previous_kwargs", "[", "'max_results'", "]", "=", "1", "previous_kwargs", "[", "'starting_key'", "]", "=", "previous_key", "search_list", ",", "starting_key", "=", "self", ".", "s3", ".", "list_records", "(", "*", "*", "list_kwargs", ")", "list_kwargs", "[", "'starting_key'", "]", "=", "starting_key", "# retrieve results ", "search_list", ",", "starting_key", "=", "self", ".", "s3", ".", "list_records", "(", "*", "*", "list_kwargs", ")", "# construct result list", "for", "record", "in", "search_list", ":", "results_list", ".", "append", "(", "record", "[", "'key'", "]", ")", "return", "results_list" ]
a method to list keys in the collection :param prefix: string with prefix value to filter results :param delimiter: string with value results must not contain (after prefix) :param filter_function: (positional arguments) function used to filter results :param max_results: integer with maximum number of results to return :param previous_key: string with key in collection to begin search after :return: list of key strings NOTE: each key string can be divided into one or more segments based upon the / characters which occur in the key string as well as its file extension type. if the key string represents a file path, then each directory in the path, the file name and the file extension are all separate indexed values. eg. lab/unittests/1473719695.2165067.json is indexed: [ 'lab', 'unittests', '1473719695.2165067', '.json' ] it is possible to filter the records in the collection according to one or more of these path segments using a filter_function. NOTE: the filter_function must be able to accept an array of positional arguments and return a value that can evaluate to true or false. while searching the records, list produces an array of strings which represent the directory structure in relative path of each key string. if a filter_function is provided, this list of strings is fed to the filter function. if the function evaluates this input and returns a true value the file will be included in the list results.
[ "a", "method", "to", "list", "keys", "in", "the", "collection" ]
python
train
volfpeter/graphscraper
src/graphscraper/base.py
https://github.com/volfpeter/graphscraper/blob/11d407509956a282ee25190ed6491a162fc0fe7f/src/graphscraper/base.py#L330-L387
def get_node_by_name(self, node_name: str, can_validate_and_load: bool = False, external_id: Optional[str] = None) -> Optional[Node]: """ Returns the node with the given name if it exists either in the graph or in its database cache or `None` otherwise. Arguments: node_name (str): The name of the node to return. can_validate_and_load (bool): Whether `self._graph.get_authentic_node_name(node_name)` can be called to validate the node name and add the node to the graph if the node name is valid. external_id (Optional[str]): An optional external ID that is used only if there no node with the given name in the graph or in the cache and `can_validate_and_load` is `True`. Returns: The node with the given name if it exists either in the graph or in its database cache, `None` otherwise. """ node: Node = self._node_name_map.get(node_name) if node is not None: return node db_node: DBNode = self._graph.database.Node.find_by_name(node_name) if db_node is None: if can_validate_and_load: node_name = self._graph.get_authentic_node_name(node_name) if node_name is not None: node = self._node_name_map.get(node_name) if node is not None: return node db_node = self._graph.database.Node.find_by_name(node_name) if db_node is None: self._internal_add_node(node_name=node_name, external_id=external_id, are_neighbors_cached=False, add_to_cache=True) else: self._internal_add_node(node_name=db_node.name, external_id=db_node.external_id, are_neighbors_cached=db_node.are_neighbors_cached, add_to_cache=False) else: return None else: self._internal_add_node(node_name=db_node.name, external_id=db_node.external_id, are_neighbors_cached=db_node.are_neighbors_cached, add_to_cache=False) node = self._node_name_map.get(node_name) # Trying to load the cached neighbors of the created node from the database could # cause a very-very-very deep recursion, so don't even think about doing it here. return node
[ "def", "get_node_by_name", "(", "self", ",", "node_name", ":", "str", ",", "can_validate_and_load", ":", "bool", "=", "False", ",", "external_id", ":", "Optional", "[", "str", "]", "=", "None", ")", "->", "Optional", "[", "Node", "]", ":", "node", ":", "Node", "=", "self", ".", "_node_name_map", ".", "get", "(", "node_name", ")", "if", "node", "is", "not", "None", ":", "return", "node", "db_node", ":", "DBNode", "=", "self", ".", "_graph", ".", "database", ".", "Node", ".", "find_by_name", "(", "node_name", ")", "if", "db_node", "is", "None", ":", "if", "can_validate_and_load", ":", "node_name", "=", "self", ".", "_graph", ".", "get_authentic_node_name", "(", "node_name", ")", "if", "node_name", "is", "not", "None", ":", "node", "=", "self", ".", "_node_name_map", ".", "get", "(", "node_name", ")", "if", "node", "is", "not", "None", ":", "return", "node", "db_node", "=", "self", ".", "_graph", ".", "database", ".", "Node", ".", "find_by_name", "(", "node_name", ")", "if", "db_node", "is", "None", ":", "self", ".", "_internal_add_node", "(", "node_name", "=", "node_name", ",", "external_id", "=", "external_id", ",", "are_neighbors_cached", "=", "False", ",", "add_to_cache", "=", "True", ")", "else", ":", "self", ".", "_internal_add_node", "(", "node_name", "=", "db_node", ".", "name", ",", "external_id", "=", "db_node", ".", "external_id", ",", "are_neighbors_cached", "=", "db_node", ".", "are_neighbors_cached", ",", "add_to_cache", "=", "False", ")", "else", ":", "return", "None", "else", ":", "self", ".", "_internal_add_node", "(", "node_name", "=", "db_node", ".", "name", ",", "external_id", "=", "db_node", ".", "external_id", ",", "are_neighbors_cached", "=", "db_node", ".", "are_neighbors_cached", ",", "add_to_cache", "=", "False", ")", "node", "=", "self", ".", "_node_name_map", ".", "get", "(", "node_name", ")", "# Trying to load the cached neighbors of the created node from the database could\r", "# cause a very-very-very deep recursion, so don't even think about doing it here.\r", "return", "node" ]
Returns the node with the given name if it exists either in the graph or in its database cache or `None` otherwise. Arguments: node_name (str): The name of the node to return. can_validate_and_load (bool): Whether `self._graph.get_authentic_node_name(node_name)` can be called to validate the node name and add the node to the graph if the node name is valid. external_id (Optional[str]): An optional external ID that is used only if there no node with the given name in the graph or in the cache and `can_validate_and_load` is `True`. Returns: The node with the given name if it exists either in the graph or in its database cache, `None` otherwise.
[ "Returns", "the", "node", "with", "the", "given", "name", "if", "it", "exists", "either", "in", "the", "graph", "or", "in", "its", "database", "cache", "or", "None", "otherwise", ".", "Arguments", ":", "node_name", "(", "str", ")", ":", "The", "name", "of", "the", "node", "to", "return", ".", "can_validate_and_load", "(", "bool", ")", ":", "Whether", "self", ".", "_graph", ".", "get_authentic_node_name", "(", "node_name", ")", "can", "be", "called", "to", "validate", "the", "node", "name", "and", "add", "the", "node", "to", "the", "graph", "if", "the", "node", "name", "is", "valid", ".", "external_id", "(", "Optional", "[", "str", "]", ")", ":", "An", "optional", "external", "ID", "that", "is", "used", "only", "if", "there", "no", "node", "with", "the", "given", "name", "in", "the", "graph", "or", "in", "the", "cache", "and", "can_validate_and_load", "is", "True", ".", "Returns", ":", "The", "node", "with", "the", "given", "name", "if", "it", "exists", "either", "in", "the", "graph", "or", "in", "its", "database", "cache", "None", "otherwise", "." ]
python
train
BD2KGenomics/protect
src/protect/mutation_calling/somaticsniper.py
https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/mutation_calling/somaticsniper.py#L67-L123
def run_somaticsniper(job, tumor_bam, normal_bam, univ_options, somaticsniper_options, split=True): """ Run the SomaticSniper subgraph on the DNA bams. Optionally split the results into per-chromosome vcfs. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict somaticsniper_options: Options specific to SomaticSniper :param bool split: Should the results be split into perchrom vcfs? :return: Either the fsID to the genome-level vcf or a dict of results from running SomaticSniper on every chromosome perchrom_somaticsniper: |- 'chr1': fsID |- 'chr2' fsID | |-... | +- 'chrM': fsID :rtype: toil.fileStore.FileID|dict """ # Get a list of chromosomes to handle if somaticsniper_options['chromosomes']: chromosomes = somaticsniper_options['chromosomes'] else: chromosomes = sample_chromosomes(job, somaticsniper_options['genome_fai']) perchrom_somaticsniper = defaultdict() snipe = job.wrapJobFn(run_somaticsniper_full, tumor_bam, normal_bam, univ_options, somaticsniper_options, disk=PromisedRequirement(sniper_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], normal_bam['normal_dna_fix_pg_sorted.bam'], somaticsniper_options['genome_fasta']), memory='6G') pileup = job.wrapJobFn(run_pileup, tumor_bam, univ_options, somaticsniper_options, disk=PromisedRequirement(pileup_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], somaticsniper_options['genome_fasta']), memory='6G') filtersnipes = job.wrapJobFn(filter_somaticsniper, tumor_bam, snipe.rv(), pileup.rv(), univ_options, somaticsniper_options, disk=PromisedRequirement(sniper_filter_disk, tumor_bam['tumor_dna_fix_pg_sorted.bam'], somaticsniper_options['genome_fasta']), memory='6G') job.addChild(snipe) job.addChild(pileup) snipe.addChild(filtersnipes) pileup.addChild(filtersnipes) if split: unmerge_snipes = job.wrapJobFn(unmerge, filtersnipes.rv(), 'somaticsniper', chromosomes, somaticsniper_options, univ_options) filtersnipes.addChild(unmerge_snipes) return unmerge_snipes.rv() else: return filtersnipes.rv()
[ "def", "run_somaticsniper", "(", "job", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "somaticsniper_options", ",", "split", "=", "True", ")", ":", "# Get a list of chromosomes to handle", "if", "somaticsniper_options", "[", "'chromosomes'", "]", ":", "chromosomes", "=", "somaticsniper_options", "[", "'chromosomes'", "]", "else", ":", "chromosomes", "=", "sample_chromosomes", "(", "job", ",", "somaticsniper_options", "[", "'genome_fai'", "]", ")", "perchrom_somaticsniper", "=", "defaultdict", "(", ")", "snipe", "=", "job", ".", "wrapJobFn", "(", "run_somaticsniper_full", ",", "tumor_bam", ",", "normal_bam", ",", "univ_options", ",", "somaticsniper_options", ",", "disk", "=", "PromisedRequirement", "(", "sniper_disk", ",", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "normal_bam", "[", "'normal_dna_fix_pg_sorted.bam'", "]", ",", "somaticsniper_options", "[", "'genome_fasta'", "]", ")", ",", "memory", "=", "'6G'", ")", "pileup", "=", "job", ".", "wrapJobFn", "(", "run_pileup", ",", "tumor_bam", ",", "univ_options", ",", "somaticsniper_options", ",", "disk", "=", "PromisedRequirement", "(", "pileup_disk", ",", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "somaticsniper_options", "[", "'genome_fasta'", "]", ")", ",", "memory", "=", "'6G'", ")", "filtersnipes", "=", "job", ".", "wrapJobFn", "(", "filter_somaticsniper", ",", "tumor_bam", ",", "snipe", ".", "rv", "(", ")", ",", "pileup", ".", "rv", "(", ")", ",", "univ_options", ",", "somaticsniper_options", ",", "disk", "=", "PromisedRequirement", "(", "sniper_filter_disk", ",", "tumor_bam", "[", "'tumor_dna_fix_pg_sorted.bam'", "]", ",", "somaticsniper_options", "[", "'genome_fasta'", "]", ")", ",", "memory", "=", "'6G'", ")", "job", ".", "addChild", "(", "snipe", ")", "job", ".", "addChild", "(", "pileup", ")", "snipe", ".", "addChild", "(", "filtersnipes", ")", "pileup", ".", "addChild", "(", "filtersnipes", ")", "if", "split", ":", "unmerge_snipes", "=", "job", ".", "wrapJobFn", "(", "unmerge", ",", "filtersnipes", ".", "rv", "(", ")", ",", "'somaticsniper'", ",", "chromosomes", ",", "somaticsniper_options", ",", "univ_options", ")", "filtersnipes", ".", "addChild", "(", "unmerge_snipes", ")", "return", "unmerge_snipes", ".", "rv", "(", ")", "else", ":", "return", "filtersnipes", ".", "rv", "(", ")" ]
Run the SomaticSniper subgraph on the DNA bams. Optionally split the results into per-chromosome vcfs. :param dict tumor_bam: Dict of bam and bai for tumor DNA-Seq :param dict normal_bam: Dict of bam and bai for normal DNA-Seq :param dict univ_options: Dict of universal options used by almost all tools :param dict somaticsniper_options: Options specific to SomaticSniper :param bool split: Should the results be split into perchrom vcfs? :return: Either the fsID to the genome-level vcf or a dict of results from running SomaticSniper on every chromosome perchrom_somaticsniper: |- 'chr1': fsID |- 'chr2' fsID | |-... | +- 'chrM': fsID :rtype: toil.fileStore.FileID|dict
[ "Run", "the", "SomaticSniper", "subgraph", "on", "the", "DNA", "bams", ".", "Optionally", "split", "the", "results", "into", "per", "-", "chromosome", "vcfs", "." ]
python
train
mlperf/training
reinforcement/tensorflow/minigo/ml_perf/reference_implementation.py
https://github.com/mlperf/training/blob/1c6ae725a81d15437a2b2df05cac0673fde5c3a4/reinforcement/tensorflow/minigo/ml_perf/reference_implementation.py#L417-L447
def main(unused_argv): """Run the reinforcement learning loop.""" print('Wiping dir %s' % FLAGS.base_dir, flush=True) shutil.rmtree(FLAGS.base_dir, ignore_errors=True) dirs = [fsdb.models_dir(), fsdb.selfplay_dir(), fsdb.holdout_dir(), fsdb.eval_dir(), fsdb.golden_chunk_dir(), fsdb.working_dir()] for d in dirs: ensure_dir_exists(d); # Copy the flag files so there's no chance of them getting accidentally # overwritten while the RL loop is running. flags_dir = os.path.join(FLAGS.base_dir, 'flags') shutil.copytree(FLAGS.flags_dir, flags_dir) FLAGS.flags_dir = flags_dir # Copy the target model to the models directory so we can find it easily. shutil.copy(FLAGS.target_path, os.path.join(fsdb.models_dir(), 'target.pb')) logging.getLogger().addHandler( logging.FileHandler(os.path.join(FLAGS.base_dir, 'rl_loop.log'))) formatter = logging.Formatter('[%(asctime)s] %(message)s', '%Y-%m-%d %H:%M:%S') for handler in logging.getLogger().handlers: handler.setFormatter(formatter) with logged_timer('Total time'): try: rl_loop() finally: asyncio.get_event_loop().close()
[ "def", "main", "(", "unused_argv", ")", ":", "print", "(", "'Wiping dir %s'", "%", "FLAGS", ".", "base_dir", ",", "flush", "=", "True", ")", "shutil", ".", "rmtree", "(", "FLAGS", ".", "base_dir", ",", "ignore_errors", "=", "True", ")", "dirs", "=", "[", "fsdb", ".", "models_dir", "(", ")", ",", "fsdb", ".", "selfplay_dir", "(", ")", ",", "fsdb", ".", "holdout_dir", "(", ")", ",", "fsdb", ".", "eval_dir", "(", ")", ",", "fsdb", ".", "golden_chunk_dir", "(", ")", ",", "fsdb", ".", "working_dir", "(", ")", "]", "for", "d", "in", "dirs", ":", "ensure_dir_exists", "(", "d", ")", "# Copy the flag files so there's no chance of them getting accidentally", "# overwritten while the RL loop is running.", "flags_dir", "=", "os", ".", "path", ".", "join", "(", "FLAGS", ".", "base_dir", ",", "'flags'", ")", "shutil", ".", "copytree", "(", "FLAGS", ".", "flags_dir", ",", "flags_dir", ")", "FLAGS", ".", "flags_dir", "=", "flags_dir", "# Copy the target model to the models directory so we can find it easily.", "shutil", ".", "copy", "(", "FLAGS", ".", "target_path", ",", "os", ".", "path", ".", "join", "(", "fsdb", ".", "models_dir", "(", ")", ",", "'target.pb'", ")", ")", "logging", ".", "getLogger", "(", ")", ".", "addHandler", "(", "logging", ".", "FileHandler", "(", "os", ".", "path", ".", "join", "(", "FLAGS", ".", "base_dir", ",", "'rl_loop.log'", ")", ")", ")", "formatter", "=", "logging", ".", "Formatter", "(", "'[%(asctime)s] %(message)s'", ",", "'%Y-%m-%d %H:%M:%S'", ")", "for", "handler", "in", "logging", ".", "getLogger", "(", ")", ".", "handlers", ":", "handler", ".", "setFormatter", "(", "formatter", ")", "with", "logged_timer", "(", "'Total time'", ")", ":", "try", ":", "rl_loop", "(", ")", "finally", ":", "asyncio", ".", "get_event_loop", "(", ")", ".", "close", "(", ")" ]
Run the reinforcement learning loop.
[ "Run", "the", "reinforcement", "learning", "loop", "." ]
python
train
calmjs/calmjs.parse
src/calmjs/parse/parsers/es5.py
https://github.com/calmjs/calmjs.parse/blob/369f0ee346c5a84c4d5c35a7733a0e63b02eac59/src/calmjs/parse/parsers/es5.py#L542-L550
def p_arguments(self, p): """arguments : LPAREN RPAREN | LPAREN argument_list RPAREN """ if len(p) == 4: p[0] = self.asttypes.Arguments(p[2]) else: p[0] = self.asttypes.Arguments([]) p[0].setpos(p)
[ "def", "p_arguments", "(", "self", ",", "p", ")", ":", "if", "len", "(", "p", ")", "==", "4", ":", "p", "[", "0", "]", "=", "self", ".", "asttypes", ".", "Arguments", "(", "p", "[", "2", "]", ")", "else", ":", "p", "[", "0", "]", "=", "self", ".", "asttypes", ".", "Arguments", "(", "[", "]", ")", "p", "[", "0", "]", ".", "setpos", "(", "p", ")" ]
arguments : LPAREN RPAREN | LPAREN argument_list RPAREN
[ "arguments", ":", "LPAREN", "RPAREN", "|", "LPAREN", "argument_list", "RPAREN" ]
python
train
SeleniumHQ/selenium
py/selenium/webdriver/common/action_chains.py
https://github.com/SeleniumHQ/selenium/blob/df40c28b41d4b3953f90eaff84838a9ac052b84a/py/selenium/webdriver/common/action_chains.py#L327-L343
def send_keys(self, *keys_to_send): """ Sends keys to current focused element. :Args: - keys_to_send: The keys to send. Modifier keys constants can be found in the 'Keys' class. """ typing = keys_to_typing(keys_to_send) if self._driver.w3c: for key in typing: self.key_down(key) self.key_up(key) else: self._actions.append(lambda: self._driver.execute( Command.SEND_KEYS_TO_ACTIVE_ELEMENT, {'value': typing})) return self
[ "def", "send_keys", "(", "self", ",", "*", "keys_to_send", ")", ":", "typing", "=", "keys_to_typing", "(", "keys_to_send", ")", "if", "self", ".", "_driver", ".", "w3c", ":", "for", "key", "in", "typing", ":", "self", ".", "key_down", "(", "key", ")", "self", ".", "key_up", "(", "key", ")", "else", ":", "self", ".", "_actions", ".", "append", "(", "lambda", ":", "self", ".", "_driver", ".", "execute", "(", "Command", ".", "SEND_KEYS_TO_ACTIVE_ELEMENT", ",", "{", "'value'", ":", "typing", "}", ")", ")", "return", "self" ]
Sends keys to current focused element. :Args: - keys_to_send: The keys to send. Modifier keys constants can be found in the 'Keys' class.
[ "Sends", "keys", "to", "current", "focused", "element", "." ]
python
train
hyperledger/sawtooth-core
validator/sawtooth_validator/execution/scheduler_parallel.py
https://github.com/hyperledger/sawtooth-core/blob/8cf473bc2207e51f02bd182d825158a57d72b098/validator/sawtooth_validator/execution/scheduler_parallel.py#L107-L121
def prune(self, address): ''' Remove all children (and descendants) below ADDRESS. Arguments: address (str): the address to be pruned ''' try: for step in self._walk_to_address(address): node = step except AddressNotInTree: return node.children.clear()
[ "def", "prune", "(", "self", ",", "address", ")", ":", "try", ":", "for", "step", "in", "self", ".", "_walk_to_address", "(", "address", ")", ":", "node", "=", "step", "except", "AddressNotInTree", ":", "return", "node", ".", "children", ".", "clear", "(", ")" ]
Remove all children (and descendants) below ADDRESS. Arguments: address (str): the address to be pruned
[ "Remove", "all", "children", "(", "and", "descendants", ")", "below", "ADDRESS", "." ]
python
train
IBMStreams/pypi.streamsx
streamsx/spl/spl.py
https://github.com/IBMStreams/pypi.streamsx/blob/abd67b4757120f6f805787fba390f53e9df9cdd8/streamsx/spl/spl.py#L1082-L1097
def ignore(wrapped): """ Decorator to ignore a Python function. If a Python callable is decorated with ``@spl.ignore`` then function is ignored by ``spl-python-extract.py``. Args: wrapped: Function that will be ignored. """ @functools.wraps(wrapped) def _ignore(*args, **kwargs): return wrapped(*args, **kwargs) _ignore._splpy_optype = _OperatorType.Ignore _ignore._splpy_file = inspect.getsourcefile(wrapped) return _ignore
[ "def", "ignore", "(", "wrapped", ")", ":", "@", "functools", ".", "wraps", "(", "wrapped", ")", "def", "_ignore", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "wrapped", "(", "*", "args", ",", "*", "*", "kwargs", ")", "_ignore", ".", "_splpy_optype", "=", "_OperatorType", ".", "Ignore", "_ignore", ".", "_splpy_file", "=", "inspect", ".", "getsourcefile", "(", "wrapped", ")", "return", "_ignore" ]
Decorator to ignore a Python function. If a Python callable is decorated with ``@spl.ignore`` then function is ignored by ``spl-python-extract.py``. Args: wrapped: Function that will be ignored.
[ "Decorator", "to", "ignore", "a", "Python", "function", "." ]
python
train
apache/spark
python/pyspark/sql/functions.py
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/functions.py#L908-L924
def date_format(date, format): """ Converts a date/timestamp/string to a value of string in the format specified by the date format given by the second argument. A pattern could be for instance `dd.MM.yyyy` and could return a string like '18.03.1993'. All pattern letters of the Java class `java.time.format.DateTimeFormatter` can be used. .. note:: Use when ever possible specialized functions like `year`. These benefit from a specialized implementation. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_format('dt', 'MM/dd/yyy').alias('date')).collect() [Row(date=u'04/08/2015')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_format(_to_java_column(date), format))
[ "def", "date_format", "(", "date", ",", "format", ")", ":", "sc", "=", "SparkContext", ".", "_active_spark_context", "return", "Column", "(", "sc", ".", "_jvm", ".", "functions", ".", "date_format", "(", "_to_java_column", "(", "date", ")", ",", "format", ")", ")" ]
Converts a date/timestamp/string to a value of string in the format specified by the date format given by the second argument. A pattern could be for instance `dd.MM.yyyy` and could return a string like '18.03.1993'. All pattern letters of the Java class `java.time.format.DateTimeFormatter` can be used. .. note:: Use when ever possible specialized functions like `year`. These benefit from a specialized implementation. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_format('dt', 'MM/dd/yyy').alias('date')).collect() [Row(date=u'04/08/2015')]
[ "Converts", "a", "date", "/", "timestamp", "/", "string", "to", "a", "value", "of", "string", "in", "the", "format", "specified", "by", "the", "date", "format", "given", "by", "the", "second", "argument", "." ]
python
train
idlesign/django-siteprefs
siteprefs/toolbox.py
https://github.com/idlesign/django-siteprefs/blob/3d6bf5e64220fe921468a36fce68e15d7947cf92/siteprefs/toolbox.py#L171-L180
def patch_locals(depth=2): """Temporarily (see unpatch_locals()) replaces all module variables considered preferences with PatchedLocal objects, so that every variable has different hash returned by id(). """ for name, locals_dict in traverse_local_prefs(depth): locals_dict[name] = PatchedLocal(name, locals_dict[name]) get_frame_locals(depth)[__PATCHED_LOCALS_SENTINEL] = True
[ "def", "patch_locals", "(", "depth", "=", "2", ")", ":", "for", "name", ",", "locals_dict", "in", "traverse_local_prefs", "(", "depth", ")", ":", "locals_dict", "[", "name", "]", "=", "PatchedLocal", "(", "name", ",", "locals_dict", "[", "name", "]", ")", "get_frame_locals", "(", "depth", ")", "[", "__PATCHED_LOCALS_SENTINEL", "]", "=", "True" ]
Temporarily (see unpatch_locals()) replaces all module variables considered preferences with PatchedLocal objects, so that every variable has different hash returned by id().
[ "Temporarily", "(", "see", "unpatch_locals", "()", ")", "replaces", "all", "module", "variables", "considered", "preferences", "with", "PatchedLocal", "objects", "so", "that", "every", "variable", "has", "different", "hash", "returned", "by", "id", "()", "." ]
python
valid
idlesign/srptools
srptools/context.py
https://github.com/idlesign/srptools/blob/eb08a27137d3216e41d63bbeafbac79f43881a6a/srptools/context.py#L213-L232
def get_common_session_key_proof(self, session_key, salt, server_public, client_public): """M = H(H(N) XOR H(g) | H(U) | s | A | B | K) :param bytes session_key: :param int salt: :param int server_public: :param int client_public: :rtype: bytes """ h = self.hash prove = h( h(self._prime) ^ h(self._gen), h(self._user), salt, client_public, server_public, session_key, as_bytes=True ) return prove
[ "def", "get_common_session_key_proof", "(", "self", ",", "session_key", ",", "salt", ",", "server_public", ",", "client_public", ")", ":", "h", "=", "self", ".", "hash", "prove", "=", "h", "(", "h", "(", "self", ".", "_prime", ")", "^", "h", "(", "self", ".", "_gen", ")", ",", "h", "(", "self", ".", "_user", ")", ",", "salt", ",", "client_public", ",", "server_public", ",", "session_key", ",", "as_bytes", "=", "True", ")", "return", "prove" ]
M = H(H(N) XOR H(g) | H(U) | s | A | B | K) :param bytes session_key: :param int salt: :param int server_public: :param int client_public: :rtype: bytes
[ "M", "=", "H", "(", "H", "(", "N", ")", "XOR", "H", "(", "g", ")", "|", "H", "(", "U", ")", "|", "s", "|", "A", "|", "B", "|", "K", ")" ]
python
train
ejeschke/ginga
ginga/ImageView.py
https://github.com/ejeschke/ginga/blob/a78c893ec6f37a837de851947e9bb4625c597915/ginga/ImageView.py#L2488-L2503
def panset_xy(self, data_x, data_y, no_reset=False): """Similar to :meth:`set_pan`, except that input pan positions are always in data space. """ pan_coord = self.t_['pan_coord'] # To center on the pixel if pan_coord == 'wcs': image = self.get_image() if image is None: return pan_x, pan_y = image.pixtoradec(data_x, data_y) else: pan_x, pan_y = data_x, data_y self.set_pan(pan_x, pan_y, coord=pan_coord, no_reset=no_reset)
[ "def", "panset_xy", "(", "self", ",", "data_x", ",", "data_y", ",", "no_reset", "=", "False", ")", ":", "pan_coord", "=", "self", ".", "t_", "[", "'pan_coord'", "]", "# To center on the pixel", "if", "pan_coord", "==", "'wcs'", ":", "image", "=", "self", ".", "get_image", "(", ")", "if", "image", "is", "None", ":", "return", "pan_x", ",", "pan_y", "=", "image", ".", "pixtoradec", "(", "data_x", ",", "data_y", ")", "else", ":", "pan_x", ",", "pan_y", "=", "data_x", ",", "data_y", "self", ".", "set_pan", "(", "pan_x", ",", "pan_y", ",", "coord", "=", "pan_coord", ",", "no_reset", "=", "no_reset", ")" ]
Similar to :meth:`set_pan`, except that input pan positions are always in data space.
[ "Similar", "to", ":", "meth", ":", "set_pan", "except", "that", "input", "pan", "positions", "are", "always", "in", "data", "space", "." ]
python
train
PyCQA/astroid
astroid/node_classes.py
https://github.com/PyCQA/astroid/blob/e0a298df55b15abcb77c2a93253f5ab7be52d0fb/astroid/node_classes.py#L333-L364
def infer(self, context=None, **kwargs): """Get a generator of the inferred values. This is the main entry point to the inference system. .. seealso:: :ref:`inference` If the instance has some explicit inference function set, it will be called instead of the default interface. :returns: The inferred values. :rtype: iterable """ if context is not None: context = context.extra_context.get(self, context) if self._explicit_inference is not None: # explicit_inference is not bound, give it self explicitly try: # pylint: disable=not-callable return self._explicit_inference(self, context, **kwargs) except exceptions.UseInferenceDefault: pass if not context: return self._infer(context, **kwargs) key = (self, context.lookupname, context.callcontext, context.boundnode) if key in context.inferred: return iter(context.inferred[key]) gen = context.cache_generator(key, self._infer(context, **kwargs)) return util.limit_inference(gen, MANAGER.max_inferable_values)
[ "def", "infer", "(", "self", ",", "context", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "context", "is", "not", "None", ":", "context", "=", "context", ".", "extra_context", ".", "get", "(", "self", ",", "context", ")", "if", "self", ".", "_explicit_inference", "is", "not", "None", ":", "# explicit_inference is not bound, give it self explicitly", "try", ":", "# pylint: disable=not-callable", "return", "self", ".", "_explicit_inference", "(", "self", ",", "context", ",", "*", "*", "kwargs", ")", "except", "exceptions", ".", "UseInferenceDefault", ":", "pass", "if", "not", "context", ":", "return", "self", ".", "_infer", "(", "context", ",", "*", "*", "kwargs", ")", "key", "=", "(", "self", ",", "context", ".", "lookupname", ",", "context", ".", "callcontext", ",", "context", ".", "boundnode", ")", "if", "key", "in", "context", ".", "inferred", ":", "return", "iter", "(", "context", ".", "inferred", "[", "key", "]", ")", "gen", "=", "context", ".", "cache_generator", "(", "key", ",", "self", ".", "_infer", "(", "context", ",", "*", "*", "kwargs", ")", ")", "return", "util", ".", "limit_inference", "(", "gen", ",", "MANAGER", ".", "max_inferable_values", ")" ]
Get a generator of the inferred values. This is the main entry point to the inference system. .. seealso:: :ref:`inference` If the instance has some explicit inference function set, it will be called instead of the default interface. :returns: The inferred values. :rtype: iterable
[ "Get", "a", "generator", "of", "the", "inferred", "values", "." ]
python
train
allenai/allennlp
allennlp/state_machines/trainers/expected_risk_minimization.py
https://github.com/allenai/allennlp/blob/648a36f77db7e45784c047176074f98534c76636/allennlp/state_machines/trainers/expected_risk_minimization.py#L151-L166
def _get_best_final_states(self, finished_states: List[StateType]) -> Dict[int, List[StateType]]: """ Returns the best finished states for each batch instance based on model scores. We return at most ``self._max_num_decoded_sequences`` number of sequences per instance. """ batch_states: Dict[int, List[StateType]] = defaultdict(list) for state in finished_states: batch_states[state.batch_indices[0]].append(state) best_states: Dict[int, List[StateType]] = {} for batch_index, states in batch_states.items(): # The time this sort takes is pretty negligible, no particular need to optimize this # yet. Maybe with a larger beam size... finished_to_sort = [(-state.score[0].item(), state) for state in states] finished_to_sort.sort(key=lambda x: x[0]) best_states[batch_index] = [state[1] for state in finished_to_sort[:self._beam_size]] return best_states
[ "def", "_get_best_final_states", "(", "self", ",", "finished_states", ":", "List", "[", "StateType", "]", ")", "->", "Dict", "[", "int", ",", "List", "[", "StateType", "]", "]", ":", "batch_states", ":", "Dict", "[", "int", ",", "List", "[", "StateType", "]", "]", "=", "defaultdict", "(", "list", ")", "for", "state", "in", "finished_states", ":", "batch_states", "[", "state", ".", "batch_indices", "[", "0", "]", "]", ".", "append", "(", "state", ")", "best_states", ":", "Dict", "[", "int", ",", "List", "[", "StateType", "]", "]", "=", "{", "}", "for", "batch_index", ",", "states", "in", "batch_states", ".", "items", "(", ")", ":", "# The time this sort takes is pretty negligible, no particular need to optimize this", "# yet. Maybe with a larger beam size...", "finished_to_sort", "=", "[", "(", "-", "state", ".", "score", "[", "0", "]", ".", "item", "(", ")", ",", "state", ")", "for", "state", "in", "states", "]", "finished_to_sort", ".", "sort", "(", "key", "=", "lambda", "x", ":", "x", "[", "0", "]", ")", "best_states", "[", "batch_index", "]", "=", "[", "state", "[", "1", "]", "for", "state", "in", "finished_to_sort", "[", ":", "self", ".", "_beam_size", "]", "]", "return", "best_states" ]
Returns the best finished states for each batch instance based on model scores. We return at most ``self._max_num_decoded_sequences`` number of sequences per instance.
[ "Returns", "the", "best", "finished", "states", "for", "each", "batch", "instance", "based", "on", "model", "scores", ".", "We", "return", "at", "most", "self", ".", "_max_num_decoded_sequences", "number", "of", "sequences", "per", "instance", "." ]
python
train
liminspace/dju-common
dju_common/validators.py
https://github.com/liminspace/dju-common/blob/c68860bb84d454a35e66275841c20f38375c2135/dju_common/validators.py#L6-L14
def validate_email_domain(email): """ Validates email domain by blacklist. """ try: domain = email.split('@', 1)[1].lower().strip() except IndexError: return if domain in dju_settings.DJU_EMAIL_DOMAIN_BLACK_LIST: raise ValidationError(_(u'Email with domain "%(domain)s" is disallowed.'), code='banned_domain', params={'domain': domain})
[ "def", "validate_email_domain", "(", "email", ")", ":", "try", ":", "domain", "=", "email", ".", "split", "(", "'@'", ",", "1", ")", "[", "1", "]", ".", "lower", "(", ")", ".", "strip", "(", ")", "except", "IndexError", ":", "return", "if", "domain", "in", "dju_settings", ".", "DJU_EMAIL_DOMAIN_BLACK_LIST", ":", "raise", "ValidationError", "(", "_", "(", "u'Email with domain \"%(domain)s\" is disallowed.'", ")", ",", "code", "=", "'banned_domain'", ",", "params", "=", "{", "'domain'", ":", "domain", "}", ")" ]
Validates email domain by blacklist.
[ "Validates", "email", "domain", "by", "blacklist", "." ]
python
train
mcs07/ChemDataExtractor
chemdataextractor/scrape/scraper.py
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/scrape/scraper.py#L77-L90
def run(self, url): """Request URL, scrape response and return an EntityList.""" url = self.process_url(url) if not url: return response = self.make_request(self.http, url) selector = self.process_response(response) entities = [] for root in self.get_roots(selector): entity = self.entity(root) entity = self.process_entity(entity) if entity: entities.append(entity) return EntityList(*entities)
[ "def", "run", "(", "self", ",", "url", ")", ":", "url", "=", "self", ".", "process_url", "(", "url", ")", "if", "not", "url", ":", "return", "response", "=", "self", ".", "make_request", "(", "self", ".", "http", ",", "url", ")", "selector", "=", "self", ".", "process_response", "(", "response", ")", "entities", "=", "[", "]", "for", "root", "in", "self", ".", "get_roots", "(", "selector", ")", ":", "entity", "=", "self", ".", "entity", "(", "root", ")", "entity", "=", "self", ".", "process_entity", "(", "entity", ")", "if", "entity", ":", "entities", ".", "append", "(", "entity", ")", "return", "EntityList", "(", "*", "entities", ")" ]
Request URL, scrape response and return an EntityList.
[ "Request", "URL", "scrape", "response", "and", "return", "an", "EntityList", "." ]
python
train
kevin1024/vcrpy
vcr/stubs/__init__.py
https://github.com/kevin1024/vcrpy/blob/114fcd29b43c55896aaa6a6613bc7766f2707c8b/vcr/stubs/__init__.py#L137-L148
def _uri(self, url): """Returns request absolute URI""" if url and not url.startswith('/'): # Then this must be a proxy request. return url uri = "{0}://{1}{2}{3}".format( self._protocol, self.real_connection.host, self._port_postfix(), url, ) return uri
[ "def", "_uri", "(", "self", ",", "url", ")", ":", "if", "url", "and", "not", "url", ".", "startswith", "(", "'/'", ")", ":", "# Then this must be a proxy request.", "return", "url", "uri", "=", "\"{0}://{1}{2}{3}\"", ".", "format", "(", "self", ".", "_protocol", ",", "self", ".", "real_connection", ".", "host", ",", "self", ".", "_port_postfix", "(", ")", ",", "url", ",", ")", "return", "uri" ]
Returns request absolute URI
[ "Returns", "request", "absolute", "URI" ]
python
train
CamDavidsonPilon/lifelines
lifelines/fitters/__init__.py
https://github.com/CamDavidsonPilon/lifelines/blob/bdf6be6f1d10eea4c46365ee0ee6a47d8c30edf8/lifelines/fitters/__init__.py#L986-L1003
def hazard_at_times(self, times, label=None): """ Return a Pandas series of the predicted hazard at specific times. Parameters ----------- times: iterable or float values to return the hazard at. label: string, optional Rename the series returned. Useful for plotting. Returns -------- pd.Series """ label = coalesce(label, self._label) return pd.Series(self._hazard(self._fitted_parameters_, times), index=_to_array(times), name=label)
[ "def", "hazard_at_times", "(", "self", ",", "times", ",", "label", "=", "None", ")", ":", "label", "=", "coalesce", "(", "label", ",", "self", ".", "_label", ")", "return", "pd", ".", "Series", "(", "self", ".", "_hazard", "(", "self", ".", "_fitted_parameters_", ",", "times", ")", ",", "index", "=", "_to_array", "(", "times", ")", ",", "name", "=", "label", ")" ]
Return a Pandas series of the predicted hazard at specific times. Parameters ----------- times: iterable or float values to return the hazard at. label: string, optional Rename the series returned. Useful for plotting. Returns -------- pd.Series
[ "Return", "a", "Pandas", "series", "of", "the", "predicted", "hazard", "at", "specific", "times", "." ]
python
train
atztogo/phonopy
phonopy/interface/qe.py
https://github.com/atztogo/phonopy/blob/869cc2ba9e7d495d5f4cf6942415ab3fc9e2a10f/phonopy/interface/qe.py#L457-L473
def _parse_q2r(self, f): """Parse q2r output file The format of q2r output is described at the mailing list below: http://www.democritos.it/pipermail/pw_forum/2005-April/002408.html http://www.democritos.it/pipermail/pw_forum/2008-September/010099.html http://www.democritos.it/pipermail/pw_forum/2009-August/013613.html https://www.mail-archive.com/[email protected]/msg24388.html """ natom, dim, epsilon, borns = self._parse_parameters(f) fc_dct = {'fc': self._parse_fc(f, natom, dim), 'dimension': dim, 'dielectric': epsilon, 'born': borns} return fc_dct
[ "def", "_parse_q2r", "(", "self", ",", "f", ")", ":", "natom", ",", "dim", ",", "epsilon", ",", "borns", "=", "self", ".", "_parse_parameters", "(", "f", ")", "fc_dct", "=", "{", "'fc'", ":", "self", ".", "_parse_fc", "(", "f", ",", "natom", ",", "dim", ")", ",", "'dimension'", ":", "dim", ",", "'dielectric'", ":", "epsilon", ",", "'born'", ":", "borns", "}", "return", "fc_dct" ]
Parse q2r output file The format of q2r output is described at the mailing list below: http://www.democritos.it/pipermail/pw_forum/2005-April/002408.html http://www.democritos.it/pipermail/pw_forum/2008-September/010099.html http://www.democritos.it/pipermail/pw_forum/2009-August/013613.html https://www.mail-archive.com/[email protected]/msg24388.html
[ "Parse", "q2r", "output", "file" ]
python
train
ask/carrot
carrot/messaging.py
https://github.com/ask/carrot/blob/5889a25cd2e274642071c9bba39772f4b3e3d9da/carrot/messaging.py#L914-L926
def _receive_callback(self, raw_message): """Internal method used when a message is received in consume mode.""" message = self.backend.message_to_python(raw_message) if self.auto_ack and not message.acknowledged: message.ack() try: decoded = message.decode() except Exception, exc: if not self.on_decode_error: raise self.on_decode_error(message, exc) else: self.receive(decoded, message)
[ "def", "_receive_callback", "(", "self", ",", "raw_message", ")", ":", "message", "=", "self", ".", "backend", ".", "message_to_python", "(", "raw_message", ")", "if", "self", ".", "auto_ack", "and", "not", "message", ".", "acknowledged", ":", "message", ".", "ack", "(", ")", "try", ":", "decoded", "=", "message", ".", "decode", "(", ")", "except", "Exception", ",", "exc", ":", "if", "not", "self", ".", "on_decode_error", ":", "raise", "self", ".", "on_decode_error", "(", "message", ",", "exc", ")", "else", ":", "self", ".", "receive", "(", "decoded", ",", "message", ")" ]
Internal method used when a message is received in consume mode.
[ "Internal", "method", "used", "when", "a", "message", "is", "received", "in", "consume", "mode", "." ]
python
train
GreenBuildingRegistry/yaml-config
yamlconf/config.py
https://github.com/GreenBuildingRegistry/yaml-config/blob/3d4bf4cadd07d4c3b71674077bd7cf16efb6ea10/yamlconf/config.py#L142-L147
def keys(self, section=None): """Provide dict like keys method""" if not section and self.section: section = self.section config = self.config.get(section, {}) if section else self.config return config.keys()
[ "def", "keys", "(", "self", ",", "section", "=", "None", ")", ":", "if", "not", "section", "and", "self", ".", "section", ":", "section", "=", "self", ".", "section", "config", "=", "self", ".", "config", ".", "get", "(", "section", ",", "{", "}", ")", "if", "section", "else", "self", ".", "config", "return", "config", ".", "keys", "(", ")" ]
Provide dict like keys method
[ "Provide", "dict", "like", "keys", "method" ]
python
train
webrecorder/warcio
warcio/archiveiterator.py
https://github.com/webrecorder/warcio/blob/c64c4394805e13256695f51af072c95389397ee9/warcio/archiveiterator.py#L231-L247
def _next_record(self, next_line): """ Use loader to parse the record from the reader stream Supporting warc and arc records """ record = self.loader.parse_record_stream(self.reader, next_line, self.known_format, self.no_record_parse, self.ensure_http_headers) self.member_info = None # Track known format for faster parsing of other records if not self.mixed_arc_warc: self.known_format = record.format return record
[ "def", "_next_record", "(", "self", ",", "next_line", ")", ":", "record", "=", "self", ".", "loader", ".", "parse_record_stream", "(", "self", ".", "reader", ",", "next_line", ",", "self", ".", "known_format", ",", "self", ".", "no_record_parse", ",", "self", ".", "ensure_http_headers", ")", "self", ".", "member_info", "=", "None", "# Track known format for faster parsing of other records", "if", "not", "self", ".", "mixed_arc_warc", ":", "self", ".", "known_format", "=", "record", ".", "format", "return", "record" ]
Use loader to parse the record from the reader stream Supporting warc and arc records
[ "Use", "loader", "to", "parse", "the", "record", "from", "the", "reader", "stream", "Supporting", "warc", "and", "arc", "records" ]
python
train
wandb/client
wandb/vendor/prompt_toolkit/clipboard/base.py
https://github.com/wandb/client/blob/7d08954ed5674fee223cd85ed0d8518fe47266b2/wandb/vendor/prompt_toolkit/clipboard/base.py#L46-L51
def set_text(self, text): # Not abstract. """ Shortcut for setting plain text on clipboard. """ assert isinstance(text, six.string_types) self.set_data(ClipboardData(text))
[ "def", "set_text", "(", "self", ",", "text", ")", ":", "# Not abstract.", "assert", "isinstance", "(", "text", ",", "six", ".", "string_types", ")", "self", ".", "set_data", "(", "ClipboardData", "(", "text", ")", ")" ]
Shortcut for setting plain text on clipboard.
[ "Shortcut", "for", "setting", "plain", "text", "on", "clipboard", "." ]
python
train
costastf/locationsharinglib
_CI/library/patch.py
https://github.com/costastf/locationsharinglib/blob/dcd74b0cdb59b951345df84987238763e50ef282/_CI/library/patch.py#L143-L156
def xstrip(filename): """ Make relative path out of absolute by stripping prefixes used on Linux, OS X and Windows. This function is critical for security. """ while xisabs(filename): # strip windows drive with all slashes if re.match(b'\\w:[\\\\/]', filename): filename = re.sub(b'^\\w+:[\\\\/]+', b'', filename) # strip all slashes elif re.match(b'[\\\\/]', filename): filename = re.sub(b'^[\\\\/]+', b'', filename) return filename
[ "def", "xstrip", "(", "filename", ")", ":", "while", "xisabs", "(", "filename", ")", ":", "# strip windows drive with all slashes", "if", "re", ".", "match", "(", "b'\\\\w:[\\\\\\\\/]'", ",", "filename", ")", ":", "filename", "=", "re", ".", "sub", "(", "b'^\\\\w+:[\\\\\\\\/]+'", ",", "b''", ",", "filename", ")", "# strip all slashes", "elif", "re", ".", "match", "(", "b'[\\\\\\\\/]'", ",", "filename", ")", ":", "filename", "=", "re", ".", "sub", "(", "b'^[\\\\\\\\/]+'", ",", "b''", ",", "filename", ")", "return", "filename" ]
Make relative path out of absolute by stripping prefixes used on Linux, OS X and Windows. This function is critical for security.
[ "Make", "relative", "path", "out", "of", "absolute", "by", "stripping", "prefixes", "used", "on", "Linux", "OS", "X", "and", "Windows", "." ]
python
train
sdispater/orator
orator/orm/relations/has_many.py
https://github.com/sdispater/orator/blob/bd90bf198ee897751848f9a92e49d18e60a74136/orator/orm/relations/has_many.py#L14-L26
def init_relation(self, models, relation): """ Initialize the relation on a set of models. :type models: list :type relation: str """ for model in models: model.set_relation( relation, Result(self._related.new_collection(), self, model) ) return models
[ "def", "init_relation", "(", "self", ",", "models", ",", "relation", ")", ":", "for", "model", "in", "models", ":", "model", ".", "set_relation", "(", "relation", ",", "Result", "(", "self", ".", "_related", ".", "new_collection", "(", ")", ",", "self", ",", "model", ")", ")", "return", "models" ]
Initialize the relation on a set of models. :type models: list :type relation: str
[ "Initialize", "the", "relation", "on", "a", "set", "of", "models", "." ]
python
train
user-cont/conu
conu/backend/podman/backend.py
https://github.com/user-cont/conu/blob/08caae7bb6bdd265b55bb106c3da6a7946a5a352/conu/backend/podman/backend.py#L139-L155
def list_images(self): """ List all available podman images. :return: collection of instances of :class:`conu.PodmanImage` """ images = [] for image in self._list_all_podman_images(): try: i_name, tag = parse_reference(image["names"][0]) except (IndexError, TypeError): i_name, tag = None, None d_im = PodmanImage(i_name, tag=tag, identifier=image["id"], pull_policy=PodmanImagePullPolicy.NEVER) images.append(d_im) return images
[ "def", "list_images", "(", "self", ")", ":", "images", "=", "[", "]", "for", "image", "in", "self", ".", "_list_all_podman_images", "(", ")", ":", "try", ":", "i_name", ",", "tag", "=", "parse_reference", "(", "image", "[", "\"names\"", "]", "[", "0", "]", ")", "except", "(", "IndexError", ",", "TypeError", ")", ":", "i_name", ",", "tag", "=", "None", ",", "None", "d_im", "=", "PodmanImage", "(", "i_name", ",", "tag", "=", "tag", ",", "identifier", "=", "image", "[", "\"id\"", "]", ",", "pull_policy", "=", "PodmanImagePullPolicy", ".", "NEVER", ")", "images", ".", "append", "(", "d_im", ")", "return", "images" ]
List all available podman images. :return: collection of instances of :class:`conu.PodmanImage`
[ "List", "all", "available", "podman", "images", "." ]
python
train
Unidata/MetPy
metpy/calc/basic.py
https://github.com/Unidata/MetPy/blob/16f68a94919b9a82dcf9cada2169cf039129e67b/metpy/calc/basic.py#L431-L468
def geopotential_to_height(geopot): r"""Compute height from a given geopotential. Parameters ---------- geopotential : `pint.Quantity` Geopotential (array_like) Returns ------- `pint.Quantity` The corresponding height value(s) Examples -------- >>> from metpy.constants import g, G, me, Re >>> import metpy.calc >>> from metpy.units import units >>> height = np.linspace(0,10000, num = 11) * units.m >>> geopot = metpy.calc.height_to_geopotential(height) >>> geopot <Quantity([ 0. 9817.46806283 19631.85526579 29443.16305888 39251.39289118 49056.54621087 58858.62446525 68657.62910064 78453.56156253 88246.42329545 98036.21574306], 'meter ** 2 / second ** 2')> >>> height = metpy.calc.geopotential_to_height(geopot) >>> height <Quantity([ 0. 1000. 2000. 3000. 4000. 5000. 6000. 7000. 8000. 9000. 10000.], 'meter')> Notes ----- Derived from definition of geopotential in [Hobbs2006]_ pg.14 Eq.1.8. """ # Calculate geopotential height = (((1 / mpconsts.Re) - (geopot / (mpconsts.G * mpconsts.me))) ** -1) - mpconsts.Re return height
[ "def", "geopotential_to_height", "(", "geopot", ")", ":", "# Calculate geopotential", "height", "=", "(", "(", "(", "1", "/", "mpconsts", ".", "Re", ")", "-", "(", "geopot", "/", "(", "mpconsts", ".", "G", "*", "mpconsts", ".", "me", ")", ")", ")", "**", "-", "1", ")", "-", "mpconsts", ".", "Re", "return", "height" ]
r"""Compute height from a given geopotential. Parameters ---------- geopotential : `pint.Quantity` Geopotential (array_like) Returns ------- `pint.Quantity` The corresponding height value(s) Examples -------- >>> from metpy.constants import g, G, me, Re >>> import metpy.calc >>> from metpy.units import units >>> height = np.linspace(0,10000, num = 11) * units.m >>> geopot = metpy.calc.height_to_geopotential(height) >>> geopot <Quantity([ 0. 9817.46806283 19631.85526579 29443.16305888 39251.39289118 49056.54621087 58858.62446525 68657.62910064 78453.56156253 88246.42329545 98036.21574306], 'meter ** 2 / second ** 2')> >>> height = metpy.calc.geopotential_to_height(geopot) >>> height <Quantity([ 0. 1000. 2000. 3000. 4000. 5000. 6000. 7000. 8000. 9000. 10000.], 'meter')> Notes ----- Derived from definition of geopotential in [Hobbs2006]_ pg.14 Eq.1.8.
[ "r", "Compute", "height", "from", "a", "given", "geopotential", "." ]
python
train
SwoopSearch/pyaddress
address/address.py
https://github.com/SwoopSearch/pyaddress/blob/62ebb07a6840e710d256406a8ec1d06abec0e1c4/address/address.py#L250-L279
def preprocess_address(self, address): """ Takes a basic address and attempts to clean it up, extract reasonably assured bits that may throw off the rest of the parsing, and return the cleaned address. """ # Run some basic cleaning address = address.replace("# ", "#") address = address.replace(" & ", "&") # Clear the address of things like 'X units', which shouldn't be in an address anyway. We won't save this for now. if re.search(r"-?-?\w+ units", address, re.IGNORECASE): address = re.sub(r"-?-?\w+ units", "", address, flags=re.IGNORECASE) # Sometimes buildings are put in parantheses. # building_match = re.search(r"\(.*\)", address, re.IGNORECASE) # if building_match: # self.building = self._clean(building_match.group().replace('(', '').replace(')', '')) # address = re.sub(r"\(.*\)", "", address, flags=re.IGNORECASE) # Now let's get the apartment stuff out of the way. Using only sure match regexes, delete apartment parts from # the address. This prevents things like "Unit" being the street name. apartment_regexes = [r'#\w+ & \w+', '#\w+ rm \w+', "#\w+-\w", r'apt #{0,1}\w+', r'apartment #{0,1}\w+', r'#\w+', r'# \w+', r'rm \w+', r'unit #?\w+', r'units #?\w+', r'- #{0,1}\w+', r'no\s?\d+\w*', r'style\s\w{1,2}', r'townhouse style\s\w{1,2}'] for regex in apartment_regexes: apartment_match = re.search(regex, address, re.IGNORECASE) if apartment_match: # print "Matched regex: ", regex, apartment_match.group() self.apartment = self._clean(apartment_match.group()) address = re.sub(regex, "", address, flags=re.IGNORECASE) # Now check for things like ", ," which throw off dstk address = re.sub(r"\,\s*\,", ",", address) return address
[ "def", "preprocess_address", "(", "self", ",", "address", ")", ":", "# Run some basic cleaning", "address", "=", "address", ".", "replace", "(", "\"# \"", ",", "\"#\"", ")", "address", "=", "address", ".", "replace", "(", "\" & \"", ",", "\"&\"", ")", "# Clear the address of things like 'X units', which shouldn't be in an address anyway. We won't save this for now.", "if", "re", ".", "search", "(", "r\"-?-?\\w+ units\"", ",", "address", ",", "re", ".", "IGNORECASE", ")", ":", "address", "=", "re", ".", "sub", "(", "r\"-?-?\\w+ units\"", ",", "\"\"", ",", "address", ",", "flags", "=", "re", ".", "IGNORECASE", ")", "# Sometimes buildings are put in parantheses.", "# building_match = re.search(r\"\\(.*\\)\", address, re.IGNORECASE)", "# if building_match:", "# self.building = self._clean(building_match.group().replace('(', '').replace(')', ''))", "# address = re.sub(r\"\\(.*\\)\", \"\", address, flags=re.IGNORECASE)", "# Now let's get the apartment stuff out of the way. Using only sure match regexes, delete apartment parts from", "# the address. This prevents things like \"Unit\" being the street name.", "apartment_regexes", "=", "[", "r'#\\w+ & \\w+'", ",", "'#\\w+ rm \\w+'", ",", "\"#\\w+-\\w\"", ",", "r'apt #{0,1}\\w+'", ",", "r'apartment #{0,1}\\w+'", ",", "r'#\\w+'", ",", "r'# \\w+'", ",", "r'rm \\w+'", ",", "r'unit #?\\w+'", ",", "r'units #?\\w+'", ",", "r'- #{0,1}\\w+'", ",", "r'no\\s?\\d+\\w*'", ",", "r'style\\s\\w{1,2}'", ",", "r'townhouse style\\s\\w{1,2}'", "]", "for", "regex", "in", "apartment_regexes", ":", "apartment_match", "=", "re", ".", "search", "(", "regex", ",", "address", ",", "re", ".", "IGNORECASE", ")", "if", "apartment_match", ":", "# print \"Matched regex: \", regex, apartment_match.group()", "self", ".", "apartment", "=", "self", ".", "_clean", "(", "apartment_match", ".", "group", "(", ")", ")", "address", "=", "re", ".", "sub", "(", "regex", ",", "\"\"", ",", "address", ",", "flags", "=", "re", ".", "IGNORECASE", ")", "# Now check for things like \", ,\" which throw off dstk", "address", "=", "re", ".", "sub", "(", "r\"\\,\\s*\\,\"", ",", "\",\"", ",", "address", ")", "return", "address" ]
Takes a basic address and attempts to clean it up, extract reasonably assured bits that may throw off the rest of the parsing, and return the cleaned address.
[ "Takes", "a", "basic", "address", "and", "attempts", "to", "clean", "it", "up", "extract", "reasonably", "assured", "bits", "that", "may", "throw", "off", "the", "rest", "of", "the", "parsing", "and", "return", "the", "cleaned", "address", "." ]
python
train
timothyb0912/pylogit
pylogit/base_multinomial_cm_v2.py
https://github.com/timothyb0912/pylogit/blob/f83b0fd6debaa7358d87c3828428f6d4ead71357/pylogit/base_multinomial_cm_v2.py#L386-L407
def check_num_rows_of_parameter_array(param_array, correct_num_rows, title): """ Ensures that `param_array.shape[0]` has the correct magnitude. Raises a helpful ValueError if otherwise. Parameters ---------- param_array : ndarray. correct_num_rows : int. The int that `param_array.shape[0]` should equal. title : str. The 'name' of the param_array whose shape is being checked. Results ------- None. """ if param_array.shape[0] != correct_num_rows: msg = "{}.shape[0] should equal {}, but it does not" raise ValueError(msg.format(title, correct_num_rows)) return None
[ "def", "check_num_rows_of_parameter_array", "(", "param_array", ",", "correct_num_rows", ",", "title", ")", ":", "if", "param_array", ".", "shape", "[", "0", "]", "!=", "correct_num_rows", ":", "msg", "=", "\"{}.shape[0] should equal {}, but it does not\"", "raise", "ValueError", "(", "msg", ".", "format", "(", "title", ",", "correct_num_rows", ")", ")", "return", "None" ]
Ensures that `param_array.shape[0]` has the correct magnitude. Raises a helpful ValueError if otherwise. Parameters ---------- param_array : ndarray. correct_num_rows : int. The int that `param_array.shape[0]` should equal. title : str. The 'name' of the param_array whose shape is being checked. Results ------- None.
[ "Ensures", "that", "param_array", ".", "shape", "[", "0", "]", "has", "the", "correct", "magnitude", ".", "Raises", "a", "helpful", "ValueError", "if", "otherwise", "." ]
python
train
facebook/watchman
python/pywatchman/__init__.py
https://github.com/facebook/watchman/blob/d416c249dd8f463dc69fc2691d0f890598c045a9/python/pywatchman/__init__.py#L397-L434
def _get_overlapped_result_ex_impl(pipe, olap, nbytes, millis, alertable): """ Windows 7 and earlier does not support GetOverlappedResultEx. The alternative is to use GetOverlappedResult and wait for read or write operation to complete. This is done be using CreateEvent and WaitForSingleObjectEx. CreateEvent, WaitForSingleObjectEx and GetOverlappedResult are all part of Windows API since WindowsXP. This is the exact same implementation that can be found in the watchman source code (see get_overlapped_result_ex_impl in stream_win.c). This way, maintenance should be simplified. """ log("Preparing to wait for maximum %dms", millis) if millis != 0: waitReturnCode = WaitForSingleObjectEx(olap.hEvent, millis, alertable) if waitReturnCode == WAIT_OBJECT_0: # Event is signaled, overlapped IO operation result should be available. pass elif waitReturnCode == WAIT_IO_COMPLETION: # WaitForSingleObjectEx returnes because the system added an I/O completion # routine or an asynchronous procedure call (APC) to the thread queue. SetLastError(WAIT_IO_COMPLETION) pass elif waitReturnCode == WAIT_TIMEOUT: # We reached the maximum allowed wait time, the IO operation failed # to complete in timely fashion. SetLastError(WAIT_TIMEOUT) return False elif waitReturnCode == WAIT_FAILED: # something went wrong calling WaitForSingleObjectEx err = GetLastError() log("WaitForSingleObjectEx failed: %s", _win32_strerror(err)) return False else: # unexpected situation deserving investigation. err = GetLastError() log("Unexpected error: %s", _win32_strerror(err)) return False return GetOverlappedResult(pipe, olap, nbytes, False)
[ "def", "_get_overlapped_result_ex_impl", "(", "pipe", ",", "olap", ",", "nbytes", ",", "millis", ",", "alertable", ")", ":", "log", "(", "\"Preparing to wait for maximum %dms\"", ",", "millis", ")", "if", "millis", "!=", "0", ":", "waitReturnCode", "=", "WaitForSingleObjectEx", "(", "olap", ".", "hEvent", ",", "millis", ",", "alertable", ")", "if", "waitReturnCode", "==", "WAIT_OBJECT_0", ":", "# Event is signaled, overlapped IO operation result should be available.", "pass", "elif", "waitReturnCode", "==", "WAIT_IO_COMPLETION", ":", "# WaitForSingleObjectEx returnes because the system added an I/O completion", "# routine or an asynchronous procedure call (APC) to the thread queue.", "SetLastError", "(", "WAIT_IO_COMPLETION", ")", "pass", "elif", "waitReturnCode", "==", "WAIT_TIMEOUT", ":", "# We reached the maximum allowed wait time, the IO operation failed", "# to complete in timely fashion.", "SetLastError", "(", "WAIT_TIMEOUT", ")", "return", "False", "elif", "waitReturnCode", "==", "WAIT_FAILED", ":", "# something went wrong calling WaitForSingleObjectEx", "err", "=", "GetLastError", "(", ")", "log", "(", "\"WaitForSingleObjectEx failed: %s\"", ",", "_win32_strerror", "(", "err", ")", ")", "return", "False", "else", ":", "# unexpected situation deserving investigation.", "err", "=", "GetLastError", "(", ")", "log", "(", "\"Unexpected error: %s\"", ",", "_win32_strerror", "(", "err", ")", ")", "return", "False", "return", "GetOverlappedResult", "(", "pipe", ",", "olap", ",", "nbytes", ",", "False", ")" ]
Windows 7 and earlier does not support GetOverlappedResultEx. The alternative is to use GetOverlappedResult and wait for read or write operation to complete. This is done be using CreateEvent and WaitForSingleObjectEx. CreateEvent, WaitForSingleObjectEx and GetOverlappedResult are all part of Windows API since WindowsXP. This is the exact same implementation that can be found in the watchman source code (see get_overlapped_result_ex_impl in stream_win.c). This way, maintenance should be simplified.
[ "Windows", "7", "and", "earlier", "does", "not", "support", "GetOverlappedResultEx", ".", "The", "alternative", "is", "to", "use", "GetOverlappedResult", "and", "wait", "for", "read", "or", "write", "operation", "to", "complete", ".", "This", "is", "done", "be", "using", "CreateEvent", "and", "WaitForSingleObjectEx", ".", "CreateEvent", "WaitForSingleObjectEx", "and", "GetOverlappedResult", "are", "all", "part", "of", "Windows", "API", "since", "WindowsXP", ".", "This", "is", "the", "exact", "same", "implementation", "that", "can", "be", "found", "in", "the", "watchman", "source", "code", "(", "see", "get_overlapped_result_ex_impl", "in", "stream_win", ".", "c", ")", ".", "This", "way", "maintenance", "should", "be", "simplified", "." ]
python
train
couchbase/couchbase-python-client
couchbase/bucket.py
https://github.com/couchbase/couchbase-python-client/blob/a7bada167785bf79a29c39f820d932a433a6a535/couchbase/bucket.py#L1159-L1167
def replace_multi(self, keys, ttl=0, format=None, persist_to=0, replicate_to=0): """Replace multiple keys. Multi variant of :meth:`replace` .. seealso:: :meth:`replace`, :meth:`upsert_multi`, :meth:`upsert` """ return _Base.replace_multi(self, keys, ttl=ttl, format=format, persist_to=persist_to, replicate_to=replicate_to)
[ "def", "replace_multi", "(", "self", ",", "keys", ",", "ttl", "=", "0", ",", "format", "=", "None", ",", "persist_to", "=", "0", ",", "replicate_to", "=", "0", ")", ":", "return", "_Base", ".", "replace_multi", "(", "self", ",", "keys", ",", "ttl", "=", "ttl", ",", "format", "=", "format", ",", "persist_to", "=", "persist_to", ",", "replicate_to", "=", "replicate_to", ")" ]
Replace multiple keys. Multi variant of :meth:`replace` .. seealso:: :meth:`replace`, :meth:`upsert_multi`, :meth:`upsert`
[ "Replace", "multiple", "keys", ".", "Multi", "variant", "of", ":", "meth", ":", "replace" ]
python
train
pgxcentre/geneparse
geneparse/index/impute2.py
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/index/impute2.py#L59-L92
def generate_index(fn, cols=None, names=None, sep=" "): """Build a index for the given file. Args: fn (str): the name of the file. cols (list): a list containing column to keep (as int). names (list): the name corresponding to the column to keep (as str). sep (str): the field separator. Returns: pandas.DataFrame: the index. """ # Some assertions assert cols is not None, "'cols' was not set" assert names is not None, "'names' was not set" assert len(cols) == len(names) # Getting the open function bgzip, open_func = get_open_func(fn, return_fmt=True) # Reading the required columns data = pd.read_csv(fn, sep=sep, engine="c", usecols=cols, names=names, compression="gzip" if bgzip else None) # Getting the seek information f = open_func(fn, "rb") data["seek"] = np.fromiter(_seek_generator(f), dtype=np.uint)[:-1] f.close() # Saving the index to file write_index(get_index_fn(fn), data) return data
[ "def", "generate_index", "(", "fn", ",", "cols", "=", "None", ",", "names", "=", "None", ",", "sep", "=", "\" \"", ")", ":", "# Some assertions", "assert", "cols", "is", "not", "None", ",", "\"'cols' was not set\"", "assert", "names", "is", "not", "None", ",", "\"'names' was not set\"", "assert", "len", "(", "cols", ")", "==", "len", "(", "names", ")", "# Getting the open function", "bgzip", ",", "open_func", "=", "get_open_func", "(", "fn", ",", "return_fmt", "=", "True", ")", "# Reading the required columns", "data", "=", "pd", ".", "read_csv", "(", "fn", ",", "sep", "=", "sep", ",", "engine", "=", "\"c\"", ",", "usecols", "=", "cols", ",", "names", "=", "names", ",", "compression", "=", "\"gzip\"", "if", "bgzip", "else", "None", ")", "# Getting the seek information", "f", "=", "open_func", "(", "fn", ",", "\"rb\"", ")", "data", "[", "\"seek\"", "]", "=", "np", ".", "fromiter", "(", "_seek_generator", "(", "f", ")", ",", "dtype", "=", "np", ".", "uint", ")", "[", ":", "-", "1", "]", "f", ".", "close", "(", ")", "# Saving the index to file", "write_index", "(", "get_index_fn", "(", "fn", ")", ",", "data", ")", "return", "data" ]
Build a index for the given file. Args: fn (str): the name of the file. cols (list): a list containing column to keep (as int). names (list): the name corresponding to the column to keep (as str). sep (str): the field separator. Returns: pandas.DataFrame: the index.
[ "Build", "a", "index", "for", "the", "given", "file", "." ]
python
train
tcalmant/ipopo
pelix/ipopo/constants.py
https://github.com/tcalmant/ipopo/blob/2f9ae0c44cd9c34ef1a9d50837b3254e75678eb1/pelix/ipopo/constants.py#L245-L270
def use_waiting_list(bundle_context): # type: (BundleContext) -> Any """ Utility context to use the iPOPO waiting list safely in a "with" block. It looks after the the iPOPO waiting list service and releases its reference when exiting the context. :param bundle_context: The calling bundle context :return: The iPOPO waiting list service :raise BundleException: Service not found """ # Get the service and its reference ref = bundle_context.get_service_reference(SERVICE_IPOPO_WAITING_LIST) if ref is None: raise BundleException("No iPOPO waiting list service available") try: # Give the service yield bundle_context.get_service(ref) finally: try: # Release it bundle_context.unget_service(ref) except BundleException: # Service might have already been unregistered pass
[ "def", "use_waiting_list", "(", "bundle_context", ")", ":", "# type: (BundleContext) -> Any", "# Get the service and its reference", "ref", "=", "bundle_context", ".", "get_service_reference", "(", "SERVICE_IPOPO_WAITING_LIST", ")", "if", "ref", "is", "None", ":", "raise", "BundleException", "(", "\"No iPOPO waiting list service available\"", ")", "try", ":", "# Give the service", "yield", "bundle_context", ".", "get_service", "(", "ref", ")", "finally", ":", "try", ":", "# Release it", "bundle_context", ".", "unget_service", "(", "ref", ")", "except", "BundleException", ":", "# Service might have already been unregistered", "pass" ]
Utility context to use the iPOPO waiting list safely in a "with" block. It looks after the the iPOPO waiting list service and releases its reference when exiting the context. :param bundle_context: The calling bundle context :return: The iPOPO waiting list service :raise BundleException: Service not found
[ "Utility", "context", "to", "use", "the", "iPOPO", "waiting", "list", "safely", "in", "a", "with", "block", ".", "It", "looks", "after", "the", "the", "iPOPO", "waiting", "list", "service", "and", "releases", "its", "reference", "when", "exiting", "the", "context", "." ]
python
train
duniter/duniter-python-api
duniterpy/helpers.py
https://github.com/duniter/duniter-python-api/blob/3a1e5d61a2f72f5afaf29d010c6cf4dff3648165/duniterpy/helpers.py#L31-L42
def xor_bytes(b1: bytes, b2: bytes) -> bytearray: """ Apply XOR operation on two bytes arguments :param b1: First bytes argument :param b2: Second bytes argument :rtype bytearray: """ result = bytearray() for i1, i2 in zip(b1, b2): result.append(i1 ^ i2) return result
[ "def", "xor_bytes", "(", "b1", ":", "bytes", ",", "b2", ":", "bytes", ")", "->", "bytearray", ":", "result", "=", "bytearray", "(", ")", "for", "i1", ",", "i2", "in", "zip", "(", "b1", ",", "b2", ")", ":", "result", ".", "append", "(", "i1", "^", "i2", ")", "return", "result" ]
Apply XOR operation on two bytes arguments :param b1: First bytes argument :param b2: Second bytes argument :rtype bytearray:
[ "Apply", "XOR", "operation", "on", "two", "bytes", "arguments" ]
python
train
spyder-ide/spyder-kernels
spyder_kernels/utils/dochelpers.py
https://github.com/spyder-ide/spyder-kernels/blob/2c5b36cdb797b8aba77bc406ca96f5e079c4aaca/spyder_kernels/utils/dochelpers.py#L231-L267
def getargs(obj): """Get the names and default values of a function's arguments""" if inspect.isfunction(obj) or inspect.isbuiltin(obj): func_obj = obj elif inspect.ismethod(obj): func_obj = get_meth_func(obj) elif inspect.isclass(obj) and hasattr(obj, '__init__'): func_obj = getattr(obj, '__init__') else: return [] if not hasattr(func_obj, 'func_code'): # Builtin: try to extract info from doc args = getargsfromdoc(func_obj) if args is not None: return args else: # Example: PyQt5 return getargsfromdoc(obj) args, _, _ = inspect.getargs(func_obj.func_code) if not args: return getargsfromdoc(obj) # Supporting tuple arguments in def statement: for i_arg, arg in enumerate(args): if isinstance(arg, list): args[i_arg] = "(%s)" % ", ".join(arg) defaults = get_func_defaults(func_obj) if defaults is not None: for index, default in enumerate(defaults): args[index+len(args)-len(defaults)] += '='+repr(default) if inspect.isclass(obj) or inspect.ismethod(obj): if len(args) == 1: return None if 'self' in args: args.remove('self') return args
[ "def", "getargs", "(", "obj", ")", ":", "if", "inspect", ".", "isfunction", "(", "obj", ")", "or", "inspect", ".", "isbuiltin", "(", "obj", ")", ":", "func_obj", "=", "obj", "elif", "inspect", ".", "ismethod", "(", "obj", ")", ":", "func_obj", "=", "get_meth_func", "(", "obj", ")", "elif", "inspect", ".", "isclass", "(", "obj", ")", "and", "hasattr", "(", "obj", ",", "'__init__'", ")", ":", "func_obj", "=", "getattr", "(", "obj", ",", "'__init__'", ")", "else", ":", "return", "[", "]", "if", "not", "hasattr", "(", "func_obj", ",", "'func_code'", ")", ":", "# Builtin: try to extract info from doc", "args", "=", "getargsfromdoc", "(", "func_obj", ")", "if", "args", "is", "not", "None", ":", "return", "args", "else", ":", "# Example: PyQt5", "return", "getargsfromdoc", "(", "obj", ")", "args", ",", "_", ",", "_", "=", "inspect", ".", "getargs", "(", "func_obj", ".", "func_code", ")", "if", "not", "args", ":", "return", "getargsfromdoc", "(", "obj", ")", "# Supporting tuple arguments in def statement:", "for", "i_arg", ",", "arg", "in", "enumerate", "(", "args", ")", ":", "if", "isinstance", "(", "arg", ",", "list", ")", ":", "args", "[", "i_arg", "]", "=", "\"(%s)\"", "%", "\", \"", ".", "join", "(", "arg", ")", "defaults", "=", "get_func_defaults", "(", "func_obj", ")", "if", "defaults", "is", "not", "None", ":", "for", "index", ",", "default", "in", "enumerate", "(", "defaults", ")", ":", "args", "[", "index", "+", "len", "(", "args", ")", "-", "len", "(", "defaults", ")", "]", "+=", "'='", "+", "repr", "(", "default", ")", "if", "inspect", ".", "isclass", "(", "obj", ")", "or", "inspect", ".", "ismethod", "(", "obj", ")", ":", "if", "len", "(", "args", ")", "==", "1", ":", "return", "None", "if", "'self'", "in", "args", ":", "args", ".", "remove", "(", "'self'", ")", "return", "args" ]
Get the names and default values of a function's arguments
[ "Get", "the", "names", "and", "default", "values", "of", "a", "function", "s", "arguments" ]
python
train
awslabs/sockeye
sockeye/utils.py
https://github.com/awslabs/sockeye/blob/5d64a1ee1ef3cbba17c6d1d94bc061020c43f6ab/sockeye/utils.py#L909-L916
def metric_value_is_better(new: float, old: float, metric: str) -> bool: """ Returns true if new value is strictly better than old for given metric. """ if C.METRIC_MAXIMIZE[metric]: return new > old else: return new < old
[ "def", "metric_value_is_better", "(", "new", ":", "float", ",", "old", ":", "float", ",", "metric", ":", "str", ")", "->", "bool", ":", "if", "C", ".", "METRIC_MAXIMIZE", "[", "metric", "]", ":", "return", "new", ">", "old", "else", ":", "return", "new", "<", "old" ]
Returns true if new value is strictly better than old for given metric.
[ "Returns", "true", "if", "new", "value", "is", "strictly", "better", "than", "old", "for", "given", "metric", "." ]
python
train
ruipgil/TrackToTrip
tracktotrip/track.py
https://github.com/ruipgil/TrackToTrip/blob/5537c14ee9748091b5255b658ab528e1d6227f99/tracktotrip/track.py#L99-L115
def simplify(self, eps, max_dist_error, max_speed_error, topology_only=False): """ In-place simplification of segments Args: max_dist_error (float): Min distance error, in meters max_speed_error (float): Min speed error, in km/h topology_only: Boolean, optional. True to keep the topology, neglecting velocity and time accuracy (use common Douglas-Ramen-Peucker). False (default) to simplify segments keeping the velocity between points. Returns: This track """ for segment in self.segments: segment.simplify(eps, max_dist_error, max_speed_error, topology_only) return self
[ "def", "simplify", "(", "self", ",", "eps", ",", "max_dist_error", ",", "max_speed_error", ",", "topology_only", "=", "False", ")", ":", "for", "segment", "in", "self", ".", "segments", ":", "segment", ".", "simplify", "(", "eps", ",", "max_dist_error", ",", "max_speed_error", ",", "topology_only", ")", "return", "self" ]
In-place simplification of segments Args: max_dist_error (float): Min distance error, in meters max_speed_error (float): Min speed error, in km/h topology_only: Boolean, optional. True to keep the topology, neglecting velocity and time accuracy (use common Douglas-Ramen-Peucker). False (default) to simplify segments keeping the velocity between points. Returns: This track
[ "In", "-", "place", "simplification", "of", "segments" ]
python
train
johnwmillr/LyricsGenius
lyricsgenius/api.py
https://github.com/johnwmillr/LyricsGenius/blob/e36482f7c42235037f3b9b7013edcd54141124e3/lyricsgenius/api.py#L336-L381
def save_artists(self, artists, filename="artist_lyrics", overwrite=False): """Save lyrics from multiple Artist objects as JSON object :param artists: List of Artist objects to save lyrics from :param filename: Name of output file (json) :param overwrite: Overwrites preexisting file if True """ if isinstance(artists, Artist): artists = [artists] # Create a temporary directory for lyrics start = time.time() tmp_dir = 'tmp_lyrics' if not os.path.isdir(tmp_dir): os.mkdir(tmp_dir) count = 0 else: count = len(os.listdir(tmp_dir)) # Check if file already exists if os.path.isfile(filename + ".json") and not overwrite: msg = "{f} already exists. Overwrite?\n(y/n): ".format(f=filename) if input(msg).lower() != "y": print("Leaving file in place. Exiting.") os.rmdir(tmp_dir) return # Extract each artist's lyrics in json format all_lyrics = {'artists': []} for n, artist in enumerate(artists): if isinstance(artist, Artist): all_lyrics['artists'].append({}) f = "tmp_{n}_{a}".format(n=count + n, a=artist.name.replace(" ", "")) tmp_file = os.path.join(tmp_dir, f) if self.verbose: print(tmp_file) all_lyrics['artists'][-1] = artist.save_lyrics(overwrite=True) # Save all of the lyrics with open(filename + '.json', 'w') as outfile: json.dump(all_lyrics, outfile) # Delete the temporary directory shutil.rmtree(tmp_dir) elapsed = (time.time() - start) / 60 / 60 print("Time elapsed: {t} hours".format(t=elapsed))
[ "def", "save_artists", "(", "self", ",", "artists", ",", "filename", "=", "\"artist_lyrics\"", ",", "overwrite", "=", "False", ")", ":", "if", "isinstance", "(", "artists", ",", "Artist", ")", ":", "artists", "=", "[", "artists", "]", "# Create a temporary directory for lyrics", "start", "=", "time", ".", "time", "(", ")", "tmp_dir", "=", "'tmp_lyrics'", "if", "not", "os", ".", "path", ".", "isdir", "(", "tmp_dir", ")", ":", "os", ".", "mkdir", "(", "tmp_dir", ")", "count", "=", "0", "else", ":", "count", "=", "len", "(", "os", ".", "listdir", "(", "tmp_dir", ")", ")", "# Check if file already exists", "if", "os", ".", "path", ".", "isfile", "(", "filename", "+", "\".json\"", ")", "and", "not", "overwrite", ":", "msg", "=", "\"{f} already exists. Overwrite?\\n(y/n): \"", ".", "format", "(", "f", "=", "filename", ")", "if", "input", "(", "msg", ")", ".", "lower", "(", ")", "!=", "\"y\"", ":", "print", "(", "\"Leaving file in place. Exiting.\"", ")", "os", ".", "rmdir", "(", "tmp_dir", ")", "return", "# Extract each artist's lyrics in json format", "all_lyrics", "=", "{", "'artists'", ":", "[", "]", "}", "for", "n", ",", "artist", "in", "enumerate", "(", "artists", ")", ":", "if", "isinstance", "(", "artist", ",", "Artist", ")", ":", "all_lyrics", "[", "'artists'", "]", ".", "append", "(", "{", "}", ")", "f", "=", "\"tmp_{n}_{a}\"", ".", "format", "(", "n", "=", "count", "+", "n", ",", "a", "=", "artist", ".", "name", ".", "replace", "(", "\" \"", ",", "\"\"", ")", ")", "tmp_file", "=", "os", ".", "path", ".", "join", "(", "tmp_dir", ",", "f", ")", "if", "self", ".", "verbose", ":", "print", "(", "tmp_file", ")", "all_lyrics", "[", "'artists'", "]", "[", "-", "1", "]", "=", "artist", ".", "save_lyrics", "(", "overwrite", "=", "True", ")", "# Save all of the lyrics", "with", "open", "(", "filename", "+", "'.json'", ",", "'w'", ")", "as", "outfile", ":", "json", ".", "dump", "(", "all_lyrics", ",", "outfile", ")", "# Delete the temporary directory", "shutil", ".", "rmtree", "(", "tmp_dir", ")", "elapsed", "=", "(", "time", ".", "time", "(", ")", "-", "start", ")", "/", "60", "/", "60", "print", "(", "\"Time elapsed: {t} hours\"", ".", "format", "(", "t", "=", "elapsed", ")", ")" ]
Save lyrics from multiple Artist objects as JSON object :param artists: List of Artist objects to save lyrics from :param filename: Name of output file (json) :param overwrite: Overwrites preexisting file if True
[ "Save", "lyrics", "from", "multiple", "Artist", "objects", "as", "JSON", "object", ":", "param", "artists", ":", "List", "of", "Artist", "objects", "to", "save", "lyrics", "from", ":", "param", "filename", ":", "Name", "of", "output", "file", "(", "json", ")", ":", "param", "overwrite", ":", "Overwrites", "preexisting", "file", "if", "True" ]
python
train
pricingassistant/mongokat
mongokat/collection.py
https://github.com/pricingassistant/mongokat/blob/61eaf4bc1c4cc359c6f9592ec97b9a04d9561411/mongokat/collection.py#L225-L240
def find_by_ids(self, _ids, projection=None, **kwargs): """ Does a big _id:$in query on any iterator """ id_list = [ObjectId(_id) for _id in _ids] if len(_ids) == 0: return [] # FIXME : this should be an empty cursor ! # Optimized path when only fetching the _id field. # Be mindful this might not filter missing documents that may not have been returned, had we done the query. if projection is not None and list(projection.keys()) == ["_id"]: return [self({"_id": x}, fetched_fields={"_id": True}) for x in id_list] else: return self.find({"_id": {"$in": id_list}}, projection=projection, **kwargs)
[ "def", "find_by_ids", "(", "self", ",", "_ids", ",", "projection", "=", "None", ",", "*", "*", "kwargs", ")", ":", "id_list", "=", "[", "ObjectId", "(", "_id", ")", "for", "_id", "in", "_ids", "]", "if", "len", "(", "_ids", ")", "==", "0", ":", "return", "[", "]", "# FIXME : this should be an empty cursor !", "# Optimized path when only fetching the _id field.", "# Be mindful this might not filter missing documents that may not have been returned, had we done the query.", "if", "projection", "is", "not", "None", "and", "list", "(", "projection", ".", "keys", "(", ")", ")", "==", "[", "\"_id\"", "]", ":", "return", "[", "self", "(", "{", "\"_id\"", ":", "x", "}", ",", "fetched_fields", "=", "{", "\"_id\"", ":", "True", "}", ")", "for", "x", "in", "id_list", "]", "else", ":", "return", "self", ".", "find", "(", "{", "\"_id\"", ":", "{", "\"$in\"", ":", "id_list", "}", "}", ",", "projection", "=", "projection", ",", "*", "*", "kwargs", ")" ]
Does a big _id:$in query on any iterator
[ "Does", "a", "big", "_id", ":", "$in", "query", "on", "any", "iterator" ]
python
train
rapidpro/expressions
python/temba_expressions/functions/custom.py
https://github.com/rapidpro/expressions/blob/b03d91ec58fc328960bce90ecb5fa49dcf467627/python/temba_expressions/functions/custom.py#L10-L26
def field(ctx, text, index, delimiter=' '): """ Reference a field in string separated by a delimiter """ splits = text.split(delimiter) # remove our delimiters and whitespace splits = [f for f in splits if f != delimiter and len(f.strip()) > 0] index = conversions.to_integer(index, ctx) if index < 1: raise ValueError('Field index cannot be less than 1') if index <= len(splits): return splits[index-1] else: return ''
[ "def", "field", "(", "ctx", ",", "text", ",", "index", ",", "delimiter", "=", "' '", ")", ":", "splits", "=", "text", ".", "split", "(", "delimiter", ")", "# remove our delimiters and whitespace", "splits", "=", "[", "f", "for", "f", "in", "splits", "if", "f", "!=", "delimiter", "and", "len", "(", "f", ".", "strip", "(", ")", ")", ">", "0", "]", "index", "=", "conversions", ".", "to_integer", "(", "index", ",", "ctx", ")", "if", "index", "<", "1", ":", "raise", "ValueError", "(", "'Field index cannot be less than 1'", ")", "if", "index", "<=", "len", "(", "splits", ")", ":", "return", "splits", "[", "index", "-", "1", "]", "else", ":", "return", "''" ]
Reference a field in string separated by a delimiter
[ "Reference", "a", "field", "in", "string", "separated", "by", "a", "delimiter" ]
python
train
iotile/coretools
iotileemulate/iotile/emulate/utilities/format_rpc.py
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotileemulate/iotile/emulate/utilities/format_rpc.py#L6-L32
def format_rpc(data): """Format an RPC call and response. Args: data (tuple): A tuple containing the address, rpc_id, argument and response payloads and any error code. Returns: str: The formated RPC string. """ address, rpc_id, args, resp, _status = data name = rpc_name(rpc_id) if isinstance(args, (bytes, bytearray)): arg_str = hexlify(args) else: arg_str = repr(args) if isinstance(resp, (bytes, bytearray)): resp_str = hexlify(resp) else: resp_str = repr(resp) #FIXME: Check and print status as well return "%s called on address %d, payload=%s, response=%s" % (name, address, arg_str, resp_str)
[ "def", "format_rpc", "(", "data", ")", ":", "address", ",", "rpc_id", ",", "args", ",", "resp", ",", "_status", "=", "data", "name", "=", "rpc_name", "(", "rpc_id", ")", "if", "isinstance", "(", "args", ",", "(", "bytes", ",", "bytearray", ")", ")", ":", "arg_str", "=", "hexlify", "(", "args", ")", "else", ":", "arg_str", "=", "repr", "(", "args", ")", "if", "isinstance", "(", "resp", ",", "(", "bytes", ",", "bytearray", ")", ")", ":", "resp_str", "=", "hexlify", "(", "resp", ")", "else", ":", "resp_str", "=", "repr", "(", "resp", ")", "#FIXME: Check and print status as well", "return", "\"%s called on address %d, payload=%s, response=%s\"", "%", "(", "name", ",", "address", ",", "arg_str", ",", "resp_str", ")" ]
Format an RPC call and response. Args: data (tuple): A tuple containing the address, rpc_id, argument and response payloads and any error code. Returns: str: The formated RPC string.
[ "Format", "an", "RPC", "call", "and", "response", "." ]
python
train
brocade/pynos
pynos/versions/ver_7/ver_7_1_0/nsx.py
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_7/ver_7_1_0/nsx.py#L69-L96
def set_nsxcontroller_ip(self, **kwargs): """ Set nsx-controller IP Args: IP (str): IPV4 address. callback (function): A function executed upon completion of the method. Returns: Return value of `callback`. Raises: None """ name = kwargs.pop('name') ip_addr = str((kwargs.pop('ip_addr', None))) nsxipaddress = ip_interface(unicode(ip_addr)) if nsxipaddress.version != 4: raise ValueError('NSX Controller ip must be IPV4') ip_args = dict(name=name, address=ip_addr) method_name = 'nsx_controller_connection_addr_address' method_class = self._brocade_tunnels nsxcontroller_attr = getattr(method_class, method_name) config = nsxcontroller_attr(**ip_args) output = self._callback(config) return output
[ "def", "set_nsxcontroller_ip", "(", "self", ",", "*", "*", "kwargs", ")", ":", "name", "=", "kwargs", ".", "pop", "(", "'name'", ")", "ip_addr", "=", "str", "(", "(", "kwargs", ".", "pop", "(", "'ip_addr'", ",", "None", ")", ")", ")", "nsxipaddress", "=", "ip_interface", "(", "unicode", "(", "ip_addr", ")", ")", "if", "nsxipaddress", ".", "version", "!=", "4", ":", "raise", "ValueError", "(", "'NSX Controller ip must be IPV4'", ")", "ip_args", "=", "dict", "(", "name", "=", "name", ",", "address", "=", "ip_addr", ")", "method_name", "=", "'nsx_controller_connection_addr_address'", "method_class", "=", "self", ".", "_brocade_tunnels", "nsxcontroller_attr", "=", "getattr", "(", "method_class", ",", "method_name", ")", "config", "=", "nsxcontroller_attr", "(", "*", "*", "ip_args", ")", "output", "=", "self", ".", "_callback", "(", "config", ")", "return", "output" ]
Set nsx-controller IP Args: IP (str): IPV4 address. callback (function): A function executed upon completion of the method. Returns: Return value of `callback`. Raises: None
[ "Set", "nsx", "-", "controller", "IP" ]
python
train
manns/pyspread
pyspread/src/gui/_main_window.py
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/gui/_main_window.py#L614-L631
def OnNewGpgKey(self, event): """New GPG key event handler. Launches GPG choice and creation dialog """ if gnupg is None: return if genkey is None: # gnupg is not present self.interfaces.display_warning( _("Python gnupg not found. No key selected."), _("Key selection failed.")) else: # gnupg is present genkey()
[ "def", "OnNewGpgKey", "(", "self", ",", "event", ")", ":", "if", "gnupg", "is", "None", ":", "return", "if", "genkey", "is", "None", ":", "# gnupg is not present", "self", ".", "interfaces", ".", "display_warning", "(", "_", "(", "\"Python gnupg not found. No key selected.\"", ")", ",", "_", "(", "\"Key selection failed.\"", ")", ")", "else", ":", "# gnupg is present", "genkey", "(", ")" ]
New GPG key event handler. Launches GPG choice and creation dialog
[ "New", "GPG", "key", "event", "handler", "." ]
python
train
iotile/coretools
iotilecore/iotile/core/utilities/workqueue_thread.py
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilecore/iotile/core/utilities/workqueue_thread.py#L300-L314
def stop(self, timeout=None, force=False): """Stop the worker thread and synchronously wait for it to finish. Args: timeout (float): The maximum time to wait for the thread to stop before raising a TimeoutExpiredError. If force is True, TimeoutExpiredError is not raised and the thread is just marked as a daemon thread so that it does not block cleanly exiting the process. force (bool): If true and the thread does not exit in timeout seconds no error is raised since the thread is marked as daemon and will be killed when the process exits. """ self.signal_stop() self.wait_stopped(timeout, force)
[ "def", "stop", "(", "self", ",", "timeout", "=", "None", ",", "force", "=", "False", ")", ":", "self", ".", "signal_stop", "(", ")", "self", ".", "wait_stopped", "(", "timeout", ",", "force", ")" ]
Stop the worker thread and synchronously wait for it to finish. Args: timeout (float): The maximum time to wait for the thread to stop before raising a TimeoutExpiredError. If force is True, TimeoutExpiredError is not raised and the thread is just marked as a daemon thread so that it does not block cleanly exiting the process. force (bool): If true and the thread does not exit in timeout seconds no error is raised since the thread is marked as daemon and will be killed when the process exits.
[ "Stop", "the", "worker", "thread", "and", "synchronously", "wait", "for", "it", "to", "finish", "." ]
python
train
arista-eosplus/pyeapi
pyeapi/client.py
https://github.com/arista-eosplus/pyeapi/blob/96a74faef1fe3bd79c4e900aed29c9956a0587d6/pyeapi/client.py#L815-L842
def connect_to(name): """Creates a node instance based on an entry from the config This function will retrieve the settings for the specified connection from the config and return a Node instance. The configuration must be loaded prior to calling this function. Args: name (str): The name of the connection to load from the config. The name argument should be the connection name (everything right of the colon from the INI file) Returns: This function will return an instance of Node with the settings from the config instance. Raises: AttributeError: raised if the specified configuration name is not found in the loaded configuration """ kwargs = config_for(name) if not kwargs: raise AttributeError('connection profile not found in config') node = connect(return_node=True, **kwargs) return node
[ "def", "connect_to", "(", "name", ")", ":", "kwargs", "=", "config_for", "(", "name", ")", "if", "not", "kwargs", ":", "raise", "AttributeError", "(", "'connection profile not found in config'", ")", "node", "=", "connect", "(", "return_node", "=", "True", ",", "*", "*", "kwargs", ")", "return", "node" ]
Creates a node instance based on an entry from the config This function will retrieve the settings for the specified connection from the config and return a Node instance. The configuration must be loaded prior to calling this function. Args: name (str): The name of the connection to load from the config. The name argument should be the connection name (everything right of the colon from the INI file) Returns: This function will return an instance of Node with the settings from the config instance. Raises: AttributeError: raised if the specified configuration name is not found in the loaded configuration
[ "Creates", "a", "node", "instance", "based", "on", "an", "entry", "from", "the", "config" ]
python
train
googleapis/google-cloud-python
firestore/google/cloud/firestore_v1beta1/transaction.py
https://github.com/googleapis/google-cloud-python/blob/85e80125a59cb10f8cb105f25ecc099e4b940b50/firestore/google/cloud/firestore_v1beta1/transaction.py#L229-L264
def _pre_commit(self, transaction, *args, **kwargs): """Begin transaction and call the wrapped callable. If the callable raises an exception, the transaction will be rolled back. If not, the transaction will be "ready" for ``Commit`` (i.e. it will have staged writes). Args: transaction (~.firestore_v1beta1.transaction.Transaction): A transaction to execute the callable within. args (Tuple[Any, ...]): The extra positional arguments to pass along to the wrapped callable. kwargs (Dict[str, Any]): The extra keyword arguments to pass along to the wrapped callable. Returns: Any: result of the wrapped callable. Raises: Exception: Any failure caused by ``to_wrap``. """ # Force the ``transaction`` to be not "in progress". transaction._clean_up() transaction._begin(retry_id=self.retry_id) # Update the stored transaction IDs. self.current_id = transaction._id if self.retry_id is None: self.retry_id = self.current_id try: return self.to_wrap(transaction, *args, **kwargs) except: # noqa # NOTE: If ``rollback`` fails this will lose the information # from the original failure. transaction._rollback() raise
[ "def", "_pre_commit", "(", "self", ",", "transaction", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# Force the ``transaction`` to be not \"in progress\".", "transaction", ".", "_clean_up", "(", ")", "transaction", ".", "_begin", "(", "retry_id", "=", "self", ".", "retry_id", ")", "# Update the stored transaction IDs.", "self", ".", "current_id", "=", "transaction", ".", "_id", "if", "self", ".", "retry_id", "is", "None", ":", "self", ".", "retry_id", "=", "self", ".", "current_id", "try", ":", "return", "self", ".", "to_wrap", "(", "transaction", ",", "*", "args", ",", "*", "*", "kwargs", ")", "except", ":", "# noqa", "# NOTE: If ``rollback`` fails this will lose the information", "# from the original failure.", "transaction", ".", "_rollback", "(", ")", "raise" ]
Begin transaction and call the wrapped callable. If the callable raises an exception, the transaction will be rolled back. If not, the transaction will be "ready" for ``Commit`` (i.e. it will have staged writes). Args: transaction (~.firestore_v1beta1.transaction.Transaction): A transaction to execute the callable within. args (Tuple[Any, ...]): The extra positional arguments to pass along to the wrapped callable. kwargs (Dict[str, Any]): The extra keyword arguments to pass along to the wrapped callable. Returns: Any: result of the wrapped callable. Raises: Exception: Any failure caused by ``to_wrap``.
[ "Begin", "transaction", "and", "call", "the", "wrapped", "callable", "." ]
python
train
sdispater/eloquent
eloquent/orm/relations/morph_pivot.py
https://github.com/sdispater/eloquent/blob/0638b688d5fd0c1a46b7471dd465eeb4c2f84666/eloquent/orm/relations/morph_pivot.py#L25-L35
def delete(self): """ Delete the pivot model record from the database. :rtype: int """ query = self._get_delete_query() query.where(self._morph_type, self._morph_class) return query.delete()
[ "def", "delete", "(", "self", ")", ":", "query", "=", "self", ".", "_get_delete_query", "(", ")", "query", ".", "where", "(", "self", ".", "_morph_type", ",", "self", ".", "_morph_class", ")", "return", "query", ".", "delete", "(", ")" ]
Delete the pivot model record from the database. :rtype: int
[ "Delete", "the", "pivot", "model", "record", "from", "the", "database", "." ]
python
train
lreis2415/PyGeoC
pygeoc/TauDEM.py
https://github.com/lreis2415/PyGeoC/blob/9a92d1a229bb74298e3c57f27c97079980b5f729/pygeoc/TauDEM.py#L431-L446
def areadinf(np, angfile, sca, outlet=None, wg=None, edgecontaimination=False, workingdir=None, mpiexedir=None, exedir=None, log_file=None, runtime_file=None, hostfile=None): """Run Accumulate area according to Dinf flow direction""" # -nc means do not consider edge contaimination if edgecontaimination: in_params = {'-nc': None} else: in_params = None fname = TauDEM.func_name('areadinf') return TauDEM.run(FileClass.get_executable_fullpath(fname, exedir), {'-ang': angfile, '-o': outlet, '-wg': wg}, workingdir, in_params, {'-sca': sca}, {'mpipath': mpiexedir, 'hostfile': hostfile, 'n': np}, {'logfile': log_file, 'runtimefile': runtime_file})
[ "def", "areadinf", "(", "np", ",", "angfile", ",", "sca", ",", "outlet", "=", "None", ",", "wg", "=", "None", ",", "edgecontaimination", "=", "False", ",", "workingdir", "=", "None", ",", "mpiexedir", "=", "None", ",", "exedir", "=", "None", ",", "log_file", "=", "None", ",", "runtime_file", "=", "None", ",", "hostfile", "=", "None", ")", ":", "# -nc means do not consider edge contaimination", "if", "edgecontaimination", ":", "in_params", "=", "{", "'-nc'", ":", "None", "}", "else", ":", "in_params", "=", "None", "fname", "=", "TauDEM", ".", "func_name", "(", "'areadinf'", ")", "return", "TauDEM", ".", "run", "(", "FileClass", ".", "get_executable_fullpath", "(", "fname", ",", "exedir", ")", ",", "{", "'-ang'", ":", "angfile", ",", "'-o'", ":", "outlet", ",", "'-wg'", ":", "wg", "}", ",", "workingdir", ",", "in_params", ",", "{", "'-sca'", ":", "sca", "}", ",", "{", "'mpipath'", ":", "mpiexedir", ",", "'hostfile'", ":", "hostfile", ",", "'n'", ":", "np", "}", ",", "{", "'logfile'", ":", "log_file", ",", "'runtimefile'", ":", "runtime_file", "}", ")" ]
Run Accumulate area according to Dinf flow direction
[ "Run", "Accumulate", "area", "according", "to", "Dinf", "flow", "direction" ]
python
train
quantumlib/Cirq
cirq/ops/common_gates.py
https://github.com/quantumlib/Cirq/blob/0827da80dd7880e5b923eb69407e980ed9bc0bd2/cirq/ops/common_gates.py#L1144-L1147
def Rz(rads: Union[float, sympy.Basic]) -> ZPowGate: """Returns a gate with the matrix e^{-i Z rads / 2}.""" pi = sympy.pi if protocols.is_parameterized(rads) else np.pi return ZPowGate(exponent=rads / pi, global_shift=-0.5)
[ "def", "Rz", "(", "rads", ":", "Union", "[", "float", ",", "sympy", ".", "Basic", "]", ")", "->", "ZPowGate", ":", "pi", "=", "sympy", ".", "pi", "if", "protocols", ".", "is_parameterized", "(", "rads", ")", "else", "np", ".", "pi", "return", "ZPowGate", "(", "exponent", "=", "rads", "/", "pi", ",", "global_shift", "=", "-", "0.5", ")" ]
Returns a gate with the matrix e^{-i Z rads / 2}.
[ "Returns", "a", "gate", "with", "the", "matrix", "e^", "{", "-", "i", "Z", "rads", "/", "2", "}", "." ]
python
train
manns/pyspread
pyspread/src/gui/_grid.py
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/gui/_grid.py#L1405-L1427
def OnDeleteCols(self, event): """Deletes columns from all tables of the grid""" bbox = self.grid.selection.get_bbox() if bbox is None or bbox[1][1] is None: # Insert rows at cursor del_point = self.grid.actions.cursor[1] no_cols = 1 else: # Insert at right edge of bounding box del_point = bbox[0][1] no_cols = self._get_no_rowscols(bbox)[1] with undo.group(_("Delete columns")): self.grid.actions.delete_cols(del_point, no_cols) self.grid.GetTable().ResetView() # Update the default sized cell sizes self.grid.actions.zoom() event.Skip()
[ "def", "OnDeleteCols", "(", "self", ",", "event", ")", ":", "bbox", "=", "self", ".", "grid", ".", "selection", ".", "get_bbox", "(", ")", "if", "bbox", "is", "None", "or", "bbox", "[", "1", "]", "[", "1", "]", "is", "None", ":", "# Insert rows at cursor", "del_point", "=", "self", ".", "grid", ".", "actions", ".", "cursor", "[", "1", "]", "no_cols", "=", "1", "else", ":", "# Insert at right edge of bounding box", "del_point", "=", "bbox", "[", "0", "]", "[", "1", "]", "no_cols", "=", "self", ".", "_get_no_rowscols", "(", "bbox", ")", "[", "1", "]", "with", "undo", ".", "group", "(", "_", "(", "\"Delete columns\"", ")", ")", ":", "self", ".", "grid", ".", "actions", ".", "delete_cols", "(", "del_point", ",", "no_cols", ")", "self", ".", "grid", ".", "GetTable", "(", ")", ".", "ResetView", "(", ")", "# Update the default sized cell sizes", "self", ".", "grid", ".", "actions", ".", "zoom", "(", ")", "event", ".", "Skip", "(", ")" ]
Deletes columns from all tables of the grid
[ "Deletes", "columns", "from", "all", "tables", "of", "the", "grid" ]
python
train
rigetti/pyquil
pyquil/operator_estimation.py
https://github.com/rigetti/pyquil/blob/ec98e453084b0037d69d8c3245f6822a5422593d/pyquil/operator_estimation.py#L486-L512
def construct_tpb_graph(experiments: TomographyExperiment): """ Construct a graph where an edge signifies two experiments are diagonal in a TPB. """ g = nx.Graph() for expt in experiments: assert len(expt) == 1, 'already grouped?' expt = expt[0] if expt not in g: g.add_node(expt, count=1) else: g.nodes[expt]['count'] += 1 for expt1, expt2 in itertools.combinations(experiments, r=2): expt1 = expt1[0] expt2 = expt2[0] if expt1 == expt2: continue max_weight_in = _max_weight_state([expt1.in_state, expt2.in_state]) max_weight_out = _max_weight_operator([expt1.out_operator, expt2.out_operator]) if max_weight_in is not None and max_weight_out is not None: g.add_edge(expt1, expt2) return g
[ "def", "construct_tpb_graph", "(", "experiments", ":", "TomographyExperiment", ")", ":", "g", "=", "nx", ".", "Graph", "(", ")", "for", "expt", "in", "experiments", ":", "assert", "len", "(", "expt", ")", "==", "1", ",", "'already grouped?'", "expt", "=", "expt", "[", "0", "]", "if", "expt", "not", "in", "g", ":", "g", ".", "add_node", "(", "expt", ",", "count", "=", "1", ")", "else", ":", "g", ".", "nodes", "[", "expt", "]", "[", "'count'", "]", "+=", "1", "for", "expt1", ",", "expt2", "in", "itertools", ".", "combinations", "(", "experiments", ",", "r", "=", "2", ")", ":", "expt1", "=", "expt1", "[", "0", "]", "expt2", "=", "expt2", "[", "0", "]", "if", "expt1", "==", "expt2", ":", "continue", "max_weight_in", "=", "_max_weight_state", "(", "[", "expt1", ".", "in_state", ",", "expt2", ".", "in_state", "]", ")", "max_weight_out", "=", "_max_weight_operator", "(", "[", "expt1", ".", "out_operator", ",", "expt2", ".", "out_operator", "]", ")", "if", "max_weight_in", "is", "not", "None", "and", "max_weight_out", "is", "not", "None", ":", "g", ".", "add_edge", "(", "expt1", ",", "expt2", ")", "return", "g" ]
Construct a graph where an edge signifies two experiments are diagonal in a TPB.
[ "Construct", "a", "graph", "where", "an", "edge", "signifies", "two", "experiments", "are", "diagonal", "in", "a", "TPB", "." ]
python
train
brutasse/graphite-api
graphite_api/render/glyph.py
https://github.com/brutasse/graphite-api/blob/0886b7adcf985a1e8bcb084f6dd1dc166a3f3dff/graphite_api/render/glyph.py#L511-L524
def computeSlop(self, step, divisor): """Compute the slop that would result from step and divisor. Return the slop, or None if this combination can't cover the full range. See chooseStep() for the definition of "slop". """ bottom = step * math.floor(self.minValue / float(step) + EPSILON) top = bottom + step * divisor if top >= self.maxValue - EPSILON * step: return max(top - self.maxValue, self.minValue - bottom) else: return None
[ "def", "computeSlop", "(", "self", ",", "step", ",", "divisor", ")", ":", "bottom", "=", "step", "*", "math", ".", "floor", "(", "self", ".", "minValue", "/", "float", "(", "step", ")", "+", "EPSILON", ")", "top", "=", "bottom", "+", "step", "*", "divisor", "if", "top", ">=", "self", ".", "maxValue", "-", "EPSILON", "*", "step", ":", "return", "max", "(", "top", "-", "self", ".", "maxValue", ",", "self", ".", "minValue", "-", "bottom", ")", "else", ":", "return", "None" ]
Compute the slop that would result from step and divisor. Return the slop, or None if this combination can't cover the full range. See chooseStep() for the definition of "slop".
[ "Compute", "the", "slop", "that", "would", "result", "from", "step", "and", "divisor", "." ]
python
train
Becksteinlab/GromacsWrapper
gromacs/run.py
https://github.com/Becksteinlab/GromacsWrapper/blob/d4f9a8cb6f48292732cf7c7e4ef4a6d2ccbc51b9/gromacs/run.py#L177-L190
def mpicommand(self, *args, **kwargs): """Return a list of the mpi command portion of the commandline. Only allows primitive mpi at the moment: *mpiexec* -n *ncores* *mdrun* *mdrun-args* (This is a primitive example for OpenMP. Override it for more complicated cases.) """ if self.mpiexec is None: raise NotImplementedError("Override mpiexec to enable the simple OpenMP launcher") # example implementation ncores = kwargs.pop('ncores', 8) return [self.mpiexec, '-n', str(ncores)]
[ "def", "mpicommand", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "mpiexec", "is", "None", ":", "raise", "NotImplementedError", "(", "\"Override mpiexec to enable the simple OpenMP launcher\"", ")", "# example implementation", "ncores", "=", "kwargs", ".", "pop", "(", "'ncores'", ",", "8", ")", "return", "[", "self", ".", "mpiexec", ",", "'-n'", ",", "str", "(", "ncores", ")", "]" ]
Return a list of the mpi command portion of the commandline. Only allows primitive mpi at the moment: *mpiexec* -n *ncores* *mdrun* *mdrun-args* (This is a primitive example for OpenMP. Override it for more complicated cases.)
[ "Return", "a", "list", "of", "the", "mpi", "command", "portion", "of", "the", "commandline", "." ]
python
valid
DistrictDataLabs/yellowbrick
yellowbrick/bestfit.py
https://github.com/DistrictDataLabs/yellowbrick/blob/59b67236a3862c73363e8edad7cd86da5b69e3b2/yellowbrick/bestfit.py#L49-L157
def draw_best_fit(X, y, ax, estimator='linear', **kwargs): """ Uses Scikit-Learn to fit a model to X and y then uses the resulting model to predict the curve based on the X values. This curve is drawn to the ax (matplotlib axis) which must be passed as the third variable. The estimator function can be one of the following: - ``'linear'``: Uses OLS to fit the regression - ``'quadratic'``: Uses OLS with Polynomial order 2 - ``'exponential'``: Not implemented yet - ``'log'``: Not implemented yet - ``'select_best'``: Selects the best fit via MSE The remaining keyword arguments are passed to ax.plot to define and describe the line of best fit. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values ax : matplotlib Axes, default: None The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required). estimator : string, default: 'linear' The name of the estimator function used to draw the best fit line. The estimator can currently be one of linear, quadratic, exponential, log, or select_best. The select best method uses the minimum MSE to select the best fit line. kwargs : dict Keyword arguments to pass to the matplotlib plot function to style and label the line of best fit. By default, the standard line color is used unless the color keyword argument is passed in. Returns ------- ax : matplotlib Axes The axes with the line drawn on it. """ # Estimators are the types of best fit lines that can be drawn. estimators = { LINEAR: fit_linear, # Uses OLS to fit the regression QUADRATIC: fit_quadratic, # Uses OLS with Polynomial order 2 EXPONENTIAL: fit_exponential, # Not implemented yet LOG: fit_log, # Not implemented yet SELECT_BEST: fit_select_best, # Selects the best fit via MSE } # Check to make sure that a correct estimator value was passed in. if estimator not in estimators: raise YellowbrickValueError( "'{}' not a valid type of estimator; choose from {}".format( estimator, ", ".join(estimators.keys()) ) ) # Then collect the estimator function from the mapping. estimator = estimators[estimator] # Ensure that X and y are the same length if len(X) != len(y): raise YellowbrickValueError(( "X and y must have same length:" " X len {} doesn't match y len {}!" ).format(len(X), len(y))) # Ensure that X and y are np.arrays X = np.array(X) y = np.array(y) # Verify that X is a two dimensional array for Scikit-Learn esitmators # and that its dimensions are (n, 1) where n is the number of rows. if X.ndim < 2: X = X[:,np.newaxis] # Reshape X into the correct dimensions if X.ndim > 2: raise YellowbrickValueError( "X must be a (1,) or (n,1) dimensional array not {}".format(X.shape) ) # Verify that y is a (n,) dimensional array if y.ndim > 1: raise YellowbrickValueError( "y must be a (1,) dimensional array not {}".format(y.shape) ) # Uses the estimator to fit the data and get the model back. model = estimator(X, y) # Set the color if not passed in. if 'c' not in kwargs and 'color' not in kwargs: kwargs['color'] = LINE_COLOR # Get the current working axes ax = ax or plt.gca() # Plot line of best fit onto the axes that were passed in. # TODO: determine if xlim or X.min(), X.max() are better params xr = np.linspace(*ax.get_xlim(), num=100) ax.plot(xr, model.predict(xr[:,np.newaxis]), **kwargs) return ax
[ "def", "draw_best_fit", "(", "X", ",", "y", ",", "ax", ",", "estimator", "=", "'linear'", ",", "*", "*", "kwargs", ")", ":", "# Estimators are the types of best fit lines that can be drawn.", "estimators", "=", "{", "LINEAR", ":", "fit_linear", ",", "# Uses OLS to fit the regression", "QUADRATIC", ":", "fit_quadratic", ",", "# Uses OLS with Polynomial order 2", "EXPONENTIAL", ":", "fit_exponential", ",", "# Not implemented yet", "LOG", ":", "fit_log", ",", "# Not implemented yet", "SELECT_BEST", ":", "fit_select_best", ",", "# Selects the best fit via MSE", "}", "# Check to make sure that a correct estimator value was passed in.", "if", "estimator", "not", "in", "estimators", ":", "raise", "YellowbrickValueError", "(", "\"'{}' not a valid type of estimator; choose from {}\"", ".", "format", "(", "estimator", ",", "\", \"", ".", "join", "(", "estimators", ".", "keys", "(", ")", ")", ")", ")", "# Then collect the estimator function from the mapping.", "estimator", "=", "estimators", "[", "estimator", "]", "# Ensure that X and y are the same length", "if", "len", "(", "X", ")", "!=", "len", "(", "y", ")", ":", "raise", "YellowbrickValueError", "(", "(", "\"X and y must have same length:\"", "\" X len {} doesn't match y len {}!\"", ")", ".", "format", "(", "len", "(", "X", ")", ",", "len", "(", "y", ")", ")", ")", "# Ensure that X and y are np.arrays", "X", "=", "np", ".", "array", "(", "X", ")", "y", "=", "np", ".", "array", "(", "y", ")", "# Verify that X is a two dimensional array for Scikit-Learn esitmators", "# and that its dimensions are (n, 1) where n is the number of rows.", "if", "X", ".", "ndim", "<", "2", ":", "X", "=", "X", "[", ":", ",", "np", ".", "newaxis", "]", "# Reshape X into the correct dimensions", "if", "X", ".", "ndim", ">", "2", ":", "raise", "YellowbrickValueError", "(", "\"X must be a (1,) or (n,1) dimensional array not {}\"", ".", "format", "(", "X", ".", "shape", ")", ")", "# Verify that y is a (n,) dimensional array", "if", "y", ".", "ndim", ">", "1", ":", "raise", "YellowbrickValueError", "(", "\"y must be a (1,) dimensional array not {}\"", ".", "format", "(", "y", ".", "shape", ")", ")", "# Uses the estimator to fit the data and get the model back.", "model", "=", "estimator", "(", "X", ",", "y", ")", "# Set the color if not passed in.", "if", "'c'", "not", "in", "kwargs", "and", "'color'", "not", "in", "kwargs", ":", "kwargs", "[", "'color'", "]", "=", "LINE_COLOR", "# Get the current working axes", "ax", "=", "ax", "or", "plt", ".", "gca", "(", ")", "# Plot line of best fit onto the axes that were passed in.", "# TODO: determine if xlim or X.min(), X.max() are better params", "xr", "=", "np", ".", "linspace", "(", "*", "ax", ".", "get_xlim", "(", ")", ",", "num", "=", "100", ")", "ax", ".", "plot", "(", "xr", ",", "model", ".", "predict", "(", "xr", "[", ":", ",", "np", ".", "newaxis", "]", ")", ",", "*", "*", "kwargs", ")", "return", "ax" ]
Uses Scikit-Learn to fit a model to X and y then uses the resulting model to predict the curve based on the X values. This curve is drawn to the ax (matplotlib axis) which must be passed as the third variable. The estimator function can be one of the following: - ``'linear'``: Uses OLS to fit the regression - ``'quadratic'``: Uses OLS with Polynomial order 2 - ``'exponential'``: Not implemented yet - ``'log'``: Not implemented yet - ``'select_best'``: Selects the best fit via MSE The remaining keyword arguments are passed to ax.plot to define and describe the line of best fit. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values ax : matplotlib Axes, default: None The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required). estimator : string, default: 'linear' The name of the estimator function used to draw the best fit line. The estimator can currently be one of linear, quadratic, exponential, log, or select_best. The select best method uses the minimum MSE to select the best fit line. kwargs : dict Keyword arguments to pass to the matplotlib plot function to style and label the line of best fit. By default, the standard line color is used unless the color keyword argument is passed in. Returns ------- ax : matplotlib Axes The axes with the line drawn on it.
[ "Uses", "Scikit", "-", "Learn", "to", "fit", "a", "model", "to", "X", "and", "y", "then", "uses", "the", "resulting", "model", "to", "predict", "the", "curve", "based", "on", "the", "X", "values", ".", "This", "curve", "is", "drawn", "to", "the", "ax", "(", "matplotlib", "axis", ")", "which", "must", "be", "passed", "as", "the", "third", "variable", "." ]
python
train
ssato/python-anytemplate
anytemplate/engines/pystache.py
https://github.com/ssato/python-anytemplate/blob/3e56baa914bd47f044083b20e33100f836443596/anytemplate/engines/pystache.py#L61-L78
def _make_renderer(self, at_paths, at_encoding, **kwargs): """ :param at_paths: Template search paths :param at_encoding: Template encoding :param kwargs: Keyword arguments passed to the template engine to render templates with specific features enabled. """ for eopt in ("file_encoding", "string_encoding"): default = self._roptions.get(eopt, at_encoding.lower()) self._roptions[eopt] = kwargs.get(eopt, default) pkey = "search_dirs" paths = kwargs.get(pkey, []) + self._roptions.get(pkey, []) if at_paths is not None: paths = at_paths + paths self._roptions[pkey] = paths return pystache.renderer.Renderer(**self._roptions)
[ "def", "_make_renderer", "(", "self", ",", "at_paths", ",", "at_encoding", ",", "*", "*", "kwargs", ")", ":", "for", "eopt", "in", "(", "\"file_encoding\"", ",", "\"string_encoding\"", ")", ":", "default", "=", "self", ".", "_roptions", ".", "get", "(", "eopt", ",", "at_encoding", ".", "lower", "(", ")", ")", "self", ".", "_roptions", "[", "eopt", "]", "=", "kwargs", ".", "get", "(", "eopt", ",", "default", ")", "pkey", "=", "\"search_dirs\"", "paths", "=", "kwargs", ".", "get", "(", "pkey", ",", "[", "]", ")", "+", "self", ".", "_roptions", ".", "get", "(", "pkey", ",", "[", "]", ")", "if", "at_paths", "is", "not", "None", ":", "paths", "=", "at_paths", "+", "paths", "self", ".", "_roptions", "[", "pkey", "]", "=", "paths", "return", "pystache", ".", "renderer", ".", "Renderer", "(", "*", "*", "self", ".", "_roptions", ")" ]
:param at_paths: Template search paths :param at_encoding: Template encoding :param kwargs: Keyword arguments passed to the template engine to render templates with specific features enabled.
[ ":", "param", "at_paths", ":", "Template", "search", "paths", ":", "param", "at_encoding", ":", "Template", "encoding", ":", "param", "kwargs", ":", "Keyword", "arguments", "passed", "to", "the", "template", "engine", "to", "render", "templates", "with", "specific", "features", "enabled", "." ]
python
train
obfusk/m
m.py
https://github.com/obfusk/m/blob/23ec2754abc9e945e5f01fcc64c13c833faf2e33/m.py#L1705-L1715
def zlines(f = None, sep = "\0", osep = None, size = 8192): # {{{1 """File iterator that uses alternative line terminators.""" if f is None: f = sys.stdin if osep is None: osep = sep buf = "" while True: chars = f.read(size) if not chars: break buf += chars; lines = buf.split(sep); buf = lines.pop() for line in lines: yield line + osep if buf: yield buf
[ "def", "zlines", "(", "f", "=", "None", ",", "sep", "=", "\"\\0\"", ",", "osep", "=", "None", ",", "size", "=", "8192", ")", ":", "# {{{1", "if", "f", "is", "None", ":", "f", "=", "sys", ".", "stdin", "if", "osep", "is", "None", ":", "osep", "=", "sep", "buf", "=", "\"\"", "while", "True", ":", "chars", "=", "f", ".", "read", "(", "size", ")", "if", "not", "chars", ":", "break", "buf", "+=", "chars", "lines", "=", "buf", ".", "split", "(", "sep", ")", "buf", "=", "lines", ".", "pop", "(", ")", "for", "line", "in", "lines", ":", "yield", "line", "+", "osep", "if", "buf", ":", "yield", "buf" ]
File iterator that uses alternative line terminators.
[ "File", "iterator", "that", "uses", "alternative", "line", "terminators", "." ]
python
train
f3at/feat
src/feat/models/getter.py
https://github.com/f3at/feat/blob/15da93fc9d6ec8154f52a9172824e25821195ef8/src/feat/models/getter.py#L53-L65
def source_attr(attr_name): """ Creates a getter that will drop the current value and retrieve the source's attribute with specified name. @param attr_name: the name of an attribute belonging to the source. @type attr_name: str """ def source_attr(_value, context, **_params): value = getattr(context["model"].source, attr_name) return _attr(value) return source_attr
[ "def", "source_attr", "(", "attr_name", ")", ":", "def", "source_attr", "(", "_value", ",", "context", ",", "*", "*", "_params", ")", ":", "value", "=", "getattr", "(", "context", "[", "\"model\"", "]", ".", "source", ",", "attr_name", ")", "return", "_attr", "(", "value", ")", "return", "source_attr" ]
Creates a getter that will drop the current value and retrieve the source's attribute with specified name. @param attr_name: the name of an attribute belonging to the source. @type attr_name: str
[ "Creates", "a", "getter", "that", "will", "drop", "the", "current", "value", "and", "retrieve", "the", "source", "s", "attribute", "with", "specified", "name", "." ]
python
train
delfick/harpoon
harpoon/option_spec/image_objs.py
https://github.com/delfick/harpoon/blob/a2d39311d6127b7da2e15f40468bf320d598e461/harpoon/option_spec/image_objs.py#L494-L501
def pair(self): """Get the name and value for this environment variable""" if self.set_val is not None: return self.env_name, self.set_val elif self.default_val is not None: return self.env_name, os.environ.get(self.env_name, self.default_val) else: return self.env_name, os.environ[self.env_name]
[ "def", "pair", "(", "self", ")", ":", "if", "self", ".", "set_val", "is", "not", "None", ":", "return", "self", ".", "env_name", ",", "self", ".", "set_val", "elif", "self", ".", "default_val", "is", "not", "None", ":", "return", "self", ".", "env_name", ",", "os", ".", "environ", ".", "get", "(", "self", ".", "env_name", ",", "self", ".", "default_val", ")", "else", ":", "return", "self", ".", "env_name", ",", "os", ".", "environ", "[", "self", ".", "env_name", "]" ]
Get the name and value for this environment variable
[ "Get", "the", "name", "and", "value", "for", "this", "environment", "variable" ]
python
train
angr/angr
angr/procedures/libc/strtol.py
https://github.com/angr/angr/blob/4e2f97d56af5419ee73bdb30482c8dd8ff5f3e40/angr/procedures/libc/strtol.py#L78-L149
def _string_to_int(s, state, region, base, signed, read_length=None): """ reads values from s and generates the symbolic number that it would equal the first char is either a number in the given base, or the result is 0 expression indicates whether or not it was successful """ # if length wasn't provided, read the maximum bytes length = state.libc.max_strtol_len if read_length is None else read_length # expression whether or not it was valid at all expression, _ = strtol._char_to_val(region.load(s, 1), base) cases = [] # to detect overflows we keep it in a larger bv and extract it at the end num_bits = min(state.arch.bits*2, 128) current_val = state.solver.BVV(0, num_bits) num_bytes = state.solver.BVS("num_bytes", state.arch.bits) constraints_num_bytes = [] conditions = [] cutoff = False # we need all the conditions to hold except the last one to have found a value for i in range(length): char = region.load(s + i, 1) condition, value = strtol._char_to_val(char, base) # if it was the end we'll get the current val cases.append((num_bytes == i, current_val)) # identify the constraints necessary to set num_bytes to the current value # the current char (i.e. the terminator if this is satisfied) should not be a char, # so `condition` should be false, plus all the previous conditions should be satisfied case_constraints = conditions + [state.solver.Not(condition)] + [num_bytes == i] constraints_num_bytes.append(state.solver.And(*case_constraints)) # break the loop early if no value past this is viable if condition.is_false(): cutoff = True # ??? break # add the value and the condition current_val = current_val*base + value.zero_extend(num_bits-8) conditions.append(condition) # the last one is unterminated, let's ignore it if not cutoff: cases.append((num_bytes == length, current_val)) case_constraints = conditions + [num_bytes == length] constraints_num_bytes.append(state.solver.And(*case_constraints)) # only one of the constraints need to hold # since the constraints look like (num_bytes == 2 and the first 2 chars are valid, and the 3rd isn't) final_constraint = state.solver.Or(*constraints_num_bytes) if final_constraint.op == '__eq__' and final_constraint.args[0] is num_bytes and not final_constraint.args[1].symbolic: # CONCRETE CASE result = cases[state.solver.eval(final_constraint.args[1])][1] num_bytes = final_constraint.args[1] else: # symbolic case state.add_constraints(final_constraint) result = state.solver.ite_cases(cases, 0) # overflow check max_bits = state.arch.bits-1 if signed else state.arch.bits max_val = 2**max_bits - 1 result = state.solver.If(result < max_val, state.solver.Extract(state.arch.bits-1, 0, result), state.solver.BVV(max_val, state.arch.bits)) return expression, result, num_bytes
[ "def", "_string_to_int", "(", "s", ",", "state", ",", "region", ",", "base", ",", "signed", ",", "read_length", "=", "None", ")", ":", "# if length wasn't provided, read the maximum bytes", "length", "=", "state", ".", "libc", ".", "max_strtol_len", "if", "read_length", "is", "None", "else", "read_length", "# expression whether or not it was valid at all", "expression", ",", "_", "=", "strtol", ".", "_char_to_val", "(", "region", ".", "load", "(", "s", ",", "1", ")", ",", "base", ")", "cases", "=", "[", "]", "# to detect overflows we keep it in a larger bv and extract it at the end", "num_bits", "=", "min", "(", "state", ".", "arch", ".", "bits", "*", "2", ",", "128", ")", "current_val", "=", "state", ".", "solver", ".", "BVV", "(", "0", ",", "num_bits", ")", "num_bytes", "=", "state", ".", "solver", ".", "BVS", "(", "\"num_bytes\"", ",", "state", ".", "arch", ".", "bits", ")", "constraints_num_bytes", "=", "[", "]", "conditions", "=", "[", "]", "cutoff", "=", "False", "# we need all the conditions to hold except the last one to have found a value", "for", "i", "in", "range", "(", "length", ")", ":", "char", "=", "region", ".", "load", "(", "s", "+", "i", ",", "1", ")", "condition", ",", "value", "=", "strtol", ".", "_char_to_val", "(", "char", ",", "base", ")", "# if it was the end we'll get the current val", "cases", ".", "append", "(", "(", "num_bytes", "==", "i", ",", "current_val", ")", ")", "# identify the constraints necessary to set num_bytes to the current value", "# the current char (i.e. the terminator if this is satisfied) should not be a char,", "# so `condition` should be false, plus all the previous conditions should be satisfied", "case_constraints", "=", "conditions", "+", "[", "state", ".", "solver", ".", "Not", "(", "condition", ")", "]", "+", "[", "num_bytes", "==", "i", "]", "constraints_num_bytes", ".", "append", "(", "state", ".", "solver", ".", "And", "(", "*", "case_constraints", ")", ")", "# break the loop early if no value past this is viable", "if", "condition", ".", "is_false", "(", ")", ":", "cutoff", "=", "True", "# ???", "break", "# add the value and the condition", "current_val", "=", "current_val", "*", "base", "+", "value", ".", "zero_extend", "(", "num_bits", "-", "8", ")", "conditions", ".", "append", "(", "condition", ")", "# the last one is unterminated, let's ignore it", "if", "not", "cutoff", ":", "cases", ".", "append", "(", "(", "num_bytes", "==", "length", ",", "current_val", ")", ")", "case_constraints", "=", "conditions", "+", "[", "num_bytes", "==", "length", "]", "constraints_num_bytes", ".", "append", "(", "state", ".", "solver", ".", "And", "(", "*", "case_constraints", ")", ")", "# only one of the constraints need to hold", "# since the constraints look like (num_bytes == 2 and the first 2 chars are valid, and the 3rd isn't)", "final_constraint", "=", "state", ".", "solver", ".", "Or", "(", "*", "constraints_num_bytes", ")", "if", "final_constraint", ".", "op", "==", "'__eq__'", "and", "final_constraint", ".", "args", "[", "0", "]", "is", "num_bytes", "and", "not", "final_constraint", ".", "args", "[", "1", "]", ".", "symbolic", ":", "# CONCRETE CASE", "result", "=", "cases", "[", "state", ".", "solver", ".", "eval", "(", "final_constraint", ".", "args", "[", "1", "]", ")", "]", "[", "1", "]", "num_bytes", "=", "final_constraint", ".", "args", "[", "1", "]", "else", ":", "# symbolic case", "state", ".", "add_constraints", "(", "final_constraint", ")", "result", "=", "state", ".", "solver", ".", "ite_cases", "(", "cases", ",", "0", ")", "# overflow check", "max_bits", "=", "state", ".", "arch", ".", "bits", "-", "1", "if", "signed", "else", "state", ".", "arch", ".", "bits", "max_val", "=", "2", "**", "max_bits", "-", "1", "result", "=", "state", ".", "solver", ".", "If", "(", "result", "<", "max_val", ",", "state", ".", "solver", ".", "Extract", "(", "state", ".", "arch", ".", "bits", "-", "1", ",", "0", ",", "result", ")", ",", "state", ".", "solver", ".", "BVV", "(", "max_val", ",", "state", ".", "arch", ".", "bits", ")", ")", "return", "expression", ",", "result", ",", "num_bytes" ]
reads values from s and generates the symbolic number that it would equal the first char is either a number in the given base, or the result is 0 expression indicates whether or not it was successful
[ "reads", "values", "from", "s", "and", "generates", "the", "symbolic", "number", "that", "it", "would", "equal", "the", "first", "char", "is", "either", "a", "number", "in", "the", "given", "base", "or", "the", "result", "is", "0", "expression", "indicates", "whether", "or", "not", "it", "was", "successful" ]
python
train
j0ack/flask-codemirror
flask_codemirror/__init__.py
https://github.com/j0ack/flask-codemirror/blob/81ad831ff849b60bb34de5db727ad626ff3c9bdc/flask_codemirror/__init__.py#L92-L127
def include_codemirror(self): """Include resources in pages""" contents = [] # base js = self._get_tag('codemirror.js', 'script') css = self._get_tag('codemirror.css', 'stylesheet') if js and css: contents.append(js) contents.append(css) # languages for language in self.languages: url = self.__class__.LANGUAGE_REL_URL.format(language) js = self._get_tag(url, 'script') if js: contents.append(js) # theme if self.theme: url = self.__class__.THEME_REL_URL.format(self.theme) css = self._get_tag(url, 'stylesheet') if css: contents.append(css) # addons if self.addons: # add to list for addon_type, name in self.addons: url = self.__class__.ADDON_REL_URL.format(addon_type, name) js = self._get_tag(url, 'script') if js: contents.append(js) # if there is a css file relative to this addon url = self.__class__.ADDON_CSS_REL_URL.format(addon_type, name) css = self._get_tag(url, 'stylesheet', False) if css: contents.append(css) # return html return Markup('\n'.join(contents))
[ "def", "include_codemirror", "(", "self", ")", ":", "contents", "=", "[", "]", "# base", "js", "=", "self", ".", "_get_tag", "(", "'codemirror.js'", ",", "'script'", ")", "css", "=", "self", ".", "_get_tag", "(", "'codemirror.css'", ",", "'stylesheet'", ")", "if", "js", "and", "css", ":", "contents", ".", "append", "(", "js", ")", "contents", ".", "append", "(", "css", ")", "# languages", "for", "language", "in", "self", ".", "languages", ":", "url", "=", "self", ".", "__class__", ".", "LANGUAGE_REL_URL", ".", "format", "(", "language", ")", "js", "=", "self", ".", "_get_tag", "(", "url", ",", "'script'", ")", "if", "js", ":", "contents", ".", "append", "(", "js", ")", "# theme", "if", "self", ".", "theme", ":", "url", "=", "self", ".", "__class__", ".", "THEME_REL_URL", ".", "format", "(", "self", ".", "theme", ")", "css", "=", "self", ".", "_get_tag", "(", "url", ",", "'stylesheet'", ")", "if", "css", ":", "contents", ".", "append", "(", "css", ")", "# addons", "if", "self", ".", "addons", ":", "# add to list", "for", "addon_type", ",", "name", "in", "self", ".", "addons", ":", "url", "=", "self", ".", "__class__", ".", "ADDON_REL_URL", ".", "format", "(", "addon_type", ",", "name", ")", "js", "=", "self", ".", "_get_tag", "(", "url", ",", "'script'", ")", "if", "js", ":", "contents", ".", "append", "(", "js", ")", "# if there is a css file relative to this addon", "url", "=", "self", ".", "__class__", ".", "ADDON_CSS_REL_URL", ".", "format", "(", "addon_type", ",", "name", ")", "css", "=", "self", ".", "_get_tag", "(", "url", ",", "'stylesheet'", ",", "False", ")", "if", "css", ":", "contents", ".", "append", "(", "css", ")", "# return html", "return", "Markup", "(", "'\\n'", ".", "join", "(", "contents", ")", ")" ]
Include resources in pages
[ "Include", "resources", "in", "pages" ]
python
train
carpyncho/feets
feets/libs/ls_fap.py
https://github.com/carpyncho/feets/blob/53bdfb73b53845561914fc1f756e0c2377b9b76b/feets/libs/ls_fap.py#L207-L215
def fap_davies(Z, fmax, t, y, dy, normalization='standard'): """Davies upper-bound to the false alarm probability (Eqn 5 of Baluev 2008) """ N = len(t) fap_s = fap_single(Z, N, normalization=normalization) tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization) return fap_s + tau
[ "def", "fap_davies", "(", "Z", ",", "fmax", ",", "t", ",", "y", ",", "dy", ",", "normalization", "=", "'standard'", ")", ":", "N", "=", "len", "(", "t", ")", "fap_s", "=", "fap_single", "(", "Z", ",", "N", ",", "normalization", "=", "normalization", ")", "tau", "=", "tau_davies", "(", "Z", ",", "fmax", ",", "t", ",", "y", ",", "dy", ",", "normalization", "=", "normalization", ")", "return", "fap_s", "+", "tau" ]
Davies upper-bound to the false alarm probability (Eqn 5 of Baluev 2008)
[ "Davies", "upper", "-", "bound", "to", "the", "false", "alarm", "probability" ]
python
train