repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
list | docstring
stringlengths 1
46.9k
| docstring_tokens
list | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
ArabellaTech/django-basic-cms
|
basic_cms/utils.py
|
https://github.com/ArabellaTech/django-basic-cms/blob/863f3c6098606f663994930cd8e7723ad0c07caf/basic_cms/utils.py#L163-L181
|
def get_placeholders(template_name):
"""Return a list of PlaceholderNode found in the given template.
:param template_name: the name of the template file
"""
try:
temp = loader.get_template(template_name)
except TemplateDoesNotExist:
return []
plist, blist = [], []
try:
# django 1.8
_placeholders_recursif(temp.template.nodelist, plist, blist)
except AttributeError:
# django 1.7
# raise
_placeholders_recursif(temp.nodelist, plist, blist)
return plist
|
[
"def",
"get_placeholders",
"(",
"template_name",
")",
":",
"try",
":",
"temp",
"=",
"loader",
".",
"get_template",
"(",
"template_name",
")",
"except",
"TemplateDoesNotExist",
":",
"return",
"[",
"]",
"plist",
",",
"blist",
"=",
"[",
"]",
",",
"[",
"]",
"try",
":",
"# django 1.8",
"_placeholders_recursif",
"(",
"temp",
".",
"template",
".",
"nodelist",
",",
"plist",
",",
"blist",
")",
"except",
"AttributeError",
":",
"# django 1.7",
"# raise",
"_placeholders_recursif",
"(",
"temp",
".",
"nodelist",
",",
"plist",
",",
"blist",
")",
"return",
"plist"
] |
Return a list of PlaceholderNode found in the given template.
:param template_name: the name of the template file
|
[
"Return",
"a",
"list",
"of",
"PlaceholderNode",
"found",
"in",
"the",
"given",
"template",
"."
] |
python
|
train
|
log2timeline/dfdatetime
|
dfdatetime/time_elements.py
|
https://github.com/log2timeline/dfdatetime/blob/141ca4ef1eff3d354b5deaac3d81cb08506f98d6/dfdatetime/time_elements.py#L298-L312
|
def CopyFromDateTimeString(self, time_string):
"""Copies time elements from a date and time string.
Args:
time_string (str): date and time value formatted as:
YYYY-MM-DD hh:mm:ss.######[+-]##:##
Where # are numeric digits ranging from 0 to 9 and the seconds
fraction can be either 3 or 6 digits. The time of day, seconds
fraction and time zone offset are optional. The default time zone
is UTC.
"""
date_time_values = self._CopyDateTimeFromString(time_string)
self._CopyFromDateTimeValues(date_time_values)
|
[
"def",
"CopyFromDateTimeString",
"(",
"self",
",",
"time_string",
")",
":",
"date_time_values",
"=",
"self",
".",
"_CopyDateTimeFromString",
"(",
"time_string",
")",
"self",
".",
"_CopyFromDateTimeValues",
"(",
"date_time_values",
")"
] |
Copies time elements from a date and time string.
Args:
time_string (str): date and time value formatted as:
YYYY-MM-DD hh:mm:ss.######[+-]##:##
Where # are numeric digits ranging from 0 to 9 and the seconds
fraction can be either 3 or 6 digits. The time of day, seconds
fraction and time zone offset are optional. The default time zone
is UTC.
|
[
"Copies",
"time",
"elements",
"from",
"a",
"date",
"and",
"time",
"string",
"."
] |
python
|
train
|
phoebe-project/phoebe2
|
phoebe/parameters/constraint.py
|
https://github.com/phoebe-project/phoebe2/blob/e64b8be683977064e2d55dd1b3ac400f64c3e379/phoebe/parameters/constraint.py#L236-L287
|
def asini(b, orbit, solve_for=None):
"""
Create a constraint for asini in an orbit.
If any of the required parameters ('asini', 'sma', 'incl') do not
exist in the orbit, they will be created.
:parameter b: the :class:`phoebe.frontend.bundle.Bundle`
:parameter str orbit: the label of the orbit in which this
constraint should be built
:parameter str solve_for: if 'asini' should not be the derived/constrained
parameter, provide which other parameter should be derived
(ie 'sma' or 'incl')
:returns: lhs (Parameter), rhs (ConstraintParameter), args (list of arguments
that were passed to this function)
"""
orbit_ps = _get_system_ps(b, orbit)
# We want to get the parameters in THIS orbit, but calling through
# the bundle in case we need to create it.
# To do that, we need to know the search parameters to get items from this PS.
metawargs = orbit_ps.meta
metawargs.pop('qualifier')
# Now we'll define the parameters in case they don't exist and need to be created
sma_def = FloatParameter(qualifier='sma', value=8.0, default_unit=u.solRad, description='Semi major axis')
incl_def = FloatParameter(qualifier='incl', value=90.0, default_unit=u.deg, description='Orbital inclination angle')
asini_def = FloatParameter(qualifier='asini', value=8.0, default_unit=u.solRad, description='Projected semi major axis')
# And now call get_or_create on the bundle
sma, created = b.get_or_create('sma', sma_def, **metawargs)
incl, created = b.get_or_create('incl', incl_def, **metawargs)
asini, created = b.get_or_create('asini', asini_def, **metawargs)
if solve_for in [None, asini]:
lhs = asini
rhs = sma * sin(incl)
elif solve_for == sma:
lhs = sma
rhs = asini / sin(incl)
elif solve_for == incl:
lhs = incl
rhs = arcsin(asini/sma)
else:
raise NotImplementedError
#- return lhs, rhs, args_as_pss
return lhs, rhs, {'orbit': orbit}
|
[
"def",
"asini",
"(",
"b",
",",
"orbit",
",",
"solve_for",
"=",
"None",
")",
":",
"orbit_ps",
"=",
"_get_system_ps",
"(",
"b",
",",
"orbit",
")",
"# We want to get the parameters in THIS orbit, but calling through",
"# the bundle in case we need to create it.",
"# To do that, we need to know the search parameters to get items from this PS.",
"metawargs",
"=",
"orbit_ps",
".",
"meta",
"metawargs",
".",
"pop",
"(",
"'qualifier'",
")",
"# Now we'll define the parameters in case they don't exist and need to be created",
"sma_def",
"=",
"FloatParameter",
"(",
"qualifier",
"=",
"'sma'",
",",
"value",
"=",
"8.0",
",",
"default_unit",
"=",
"u",
".",
"solRad",
",",
"description",
"=",
"'Semi major axis'",
")",
"incl_def",
"=",
"FloatParameter",
"(",
"qualifier",
"=",
"'incl'",
",",
"value",
"=",
"90.0",
",",
"default_unit",
"=",
"u",
".",
"deg",
",",
"description",
"=",
"'Orbital inclination angle'",
")",
"asini_def",
"=",
"FloatParameter",
"(",
"qualifier",
"=",
"'asini'",
",",
"value",
"=",
"8.0",
",",
"default_unit",
"=",
"u",
".",
"solRad",
",",
"description",
"=",
"'Projected semi major axis'",
")",
"# And now call get_or_create on the bundle",
"sma",
",",
"created",
"=",
"b",
".",
"get_or_create",
"(",
"'sma'",
",",
"sma_def",
",",
"*",
"*",
"metawargs",
")",
"incl",
",",
"created",
"=",
"b",
".",
"get_or_create",
"(",
"'incl'",
",",
"incl_def",
",",
"*",
"*",
"metawargs",
")",
"asini",
",",
"created",
"=",
"b",
".",
"get_or_create",
"(",
"'asini'",
",",
"asini_def",
",",
"*",
"*",
"metawargs",
")",
"if",
"solve_for",
"in",
"[",
"None",
",",
"asini",
"]",
":",
"lhs",
"=",
"asini",
"rhs",
"=",
"sma",
"*",
"sin",
"(",
"incl",
")",
"elif",
"solve_for",
"==",
"sma",
":",
"lhs",
"=",
"sma",
"rhs",
"=",
"asini",
"/",
"sin",
"(",
"incl",
")",
"elif",
"solve_for",
"==",
"incl",
":",
"lhs",
"=",
"incl",
"rhs",
"=",
"arcsin",
"(",
"asini",
"/",
"sma",
")",
"else",
":",
"raise",
"NotImplementedError",
"#- return lhs, rhs, args_as_pss",
"return",
"lhs",
",",
"rhs",
",",
"{",
"'orbit'",
":",
"orbit",
"}"
] |
Create a constraint for asini in an orbit.
If any of the required parameters ('asini', 'sma', 'incl') do not
exist in the orbit, they will be created.
:parameter b: the :class:`phoebe.frontend.bundle.Bundle`
:parameter str orbit: the label of the orbit in which this
constraint should be built
:parameter str solve_for: if 'asini' should not be the derived/constrained
parameter, provide which other parameter should be derived
(ie 'sma' or 'incl')
:returns: lhs (Parameter), rhs (ConstraintParameter), args (list of arguments
that were passed to this function)
|
[
"Create",
"a",
"constraint",
"for",
"asini",
"in",
"an",
"orbit",
"."
] |
python
|
train
|
SuperCowPowers/bat
|
bat/bro_log_reader.py
|
https://github.com/SuperCowPowers/bat/blob/069e6bc52843dc07760969c531cc442ca7da8e0c/bat/bro_log_reader.py#L99-L113
|
def _readrows(self):
"""Internal method _readrows, see readrows() for description"""
# Read in the Bro Headers
offset, self.field_names, self.field_types, self.type_converters = self._parse_bro_header(self._filepath)
# Use parent class to yield each row as a dictionary
for line in self.readlines(offset=offset):
# Check for #close
if line.startswith('#close'):
return
# Yield the line as a dict
yield self.make_dict(line.strip().split(self._delimiter))
|
[
"def",
"_readrows",
"(",
"self",
")",
":",
"# Read in the Bro Headers",
"offset",
",",
"self",
".",
"field_names",
",",
"self",
".",
"field_types",
",",
"self",
".",
"type_converters",
"=",
"self",
".",
"_parse_bro_header",
"(",
"self",
".",
"_filepath",
")",
"# Use parent class to yield each row as a dictionary",
"for",
"line",
"in",
"self",
".",
"readlines",
"(",
"offset",
"=",
"offset",
")",
":",
"# Check for #close",
"if",
"line",
".",
"startswith",
"(",
"'#close'",
")",
":",
"return",
"# Yield the line as a dict",
"yield",
"self",
".",
"make_dict",
"(",
"line",
".",
"strip",
"(",
")",
".",
"split",
"(",
"self",
".",
"_delimiter",
")",
")"
] |
Internal method _readrows, see readrows() for description
|
[
"Internal",
"method",
"_readrows",
"see",
"readrows",
"()",
"for",
"description"
] |
python
|
train
|
SwissDataScienceCenter/renku-python
|
renku/cli/workflow.py
|
https://github.com/SwissDataScienceCenter/renku-python/blob/691644d695b055a01e0ca22b2620e55bbd928c0d/renku/cli/workflow.py#L59-L77
|
def workflow(ctx, client):
"""List or manage workflows with subcommands."""
if ctx.invoked_subcommand is None:
from renku.models.refs import LinkReference
names = defaultdict(list)
for ref in LinkReference.iter_items(client, common_path='workflows'):
names[ref.reference.name].append(ref.name)
for path in client.workflow_path.glob('*.cwl'):
click.echo(
'{path}: {names}'.format(
path=path.name,
names=', '.join(
click.style(_deref(name), fg='green')
for name in names[path.name]
),
)
)
|
[
"def",
"workflow",
"(",
"ctx",
",",
"client",
")",
":",
"if",
"ctx",
".",
"invoked_subcommand",
"is",
"None",
":",
"from",
"renku",
".",
"models",
".",
"refs",
"import",
"LinkReference",
"names",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"ref",
"in",
"LinkReference",
".",
"iter_items",
"(",
"client",
",",
"common_path",
"=",
"'workflows'",
")",
":",
"names",
"[",
"ref",
".",
"reference",
".",
"name",
"]",
".",
"append",
"(",
"ref",
".",
"name",
")",
"for",
"path",
"in",
"client",
".",
"workflow_path",
".",
"glob",
"(",
"'*.cwl'",
")",
":",
"click",
".",
"echo",
"(",
"'{path}: {names}'",
".",
"format",
"(",
"path",
"=",
"path",
".",
"name",
",",
"names",
"=",
"', '",
".",
"join",
"(",
"click",
".",
"style",
"(",
"_deref",
"(",
"name",
")",
",",
"fg",
"=",
"'green'",
")",
"for",
"name",
"in",
"names",
"[",
"path",
".",
"name",
"]",
")",
",",
")",
")"
] |
List or manage workflows with subcommands.
|
[
"List",
"or",
"manage",
"workflows",
"with",
"subcommands",
"."
] |
python
|
train
|
fedora-python/pyp2rpm
|
pyp2rpm/command/extract_dist.py
|
https://github.com/fedora-python/pyp2rpm/blob/853eb3d226689a5ccdcdb9358b1a3394fafbd2b5/pyp2rpm/command/extract_dist.py#L75-L86
|
def to_list(var):
"""Checks if given value is a list, tries to convert, if it is not."""
if var is None:
return []
if isinstance(var, str):
var = var.split('\n')
elif not isinstance(var, list):
try:
var = list(var)
except TypeError:
raise ValueError("{} cannot be converted to the list.".format(var))
return var
|
[
"def",
"to_list",
"(",
"var",
")",
":",
"if",
"var",
"is",
"None",
":",
"return",
"[",
"]",
"if",
"isinstance",
"(",
"var",
",",
"str",
")",
":",
"var",
"=",
"var",
".",
"split",
"(",
"'\\n'",
")",
"elif",
"not",
"isinstance",
"(",
"var",
",",
"list",
")",
":",
"try",
":",
"var",
"=",
"list",
"(",
"var",
")",
"except",
"TypeError",
":",
"raise",
"ValueError",
"(",
"\"{} cannot be converted to the list.\"",
".",
"format",
"(",
"var",
")",
")",
"return",
"var"
] |
Checks if given value is a list, tries to convert, if it is not.
|
[
"Checks",
"if",
"given",
"value",
"is",
"a",
"list",
"tries",
"to",
"convert",
"if",
"it",
"is",
"not",
"."
] |
python
|
train
|
getsentry/libsourcemap
|
libsourcemap/highlevel.py
|
https://github.com/getsentry/libsourcemap/blob/94b5a34814fafee9dc23da8ec0ccca77f30e3370/libsourcemap/highlevel.py#L303-L308
|
def from_bytes(buffer):
"""Creates a sourcemap view from a JSON string."""
buffer = to_bytes(buffer)
return ProguardView._from_ptr(rustcall(
_lib.lsm_proguard_mapping_from_bytes,
buffer, len(buffer)))
|
[
"def",
"from_bytes",
"(",
"buffer",
")",
":",
"buffer",
"=",
"to_bytes",
"(",
"buffer",
")",
"return",
"ProguardView",
".",
"_from_ptr",
"(",
"rustcall",
"(",
"_lib",
".",
"lsm_proguard_mapping_from_bytes",
",",
"buffer",
",",
"len",
"(",
"buffer",
")",
")",
")"
] |
Creates a sourcemap view from a JSON string.
|
[
"Creates",
"a",
"sourcemap",
"view",
"from",
"a",
"JSON",
"string",
"."
] |
python
|
train
|
blueset/ehForwarderBot
|
ehforwarderbot/wizard.py
|
https://github.com/blueset/ehForwarderBot/blob/62e8fcfe77b2993aba91623f538f404a90f59f1d/ehforwarderbot/wizard.py#L700-L738
|
def prerequisite_check():
"""
Check prerequisites of the framework, including Python version, installation of
modules, etc.
Returns:
Optional[str]: If the check is not passed, return error message regarding
failed test case. None is returned otherwise.
"""
# Check Python version
if sys.version_info < (3, 6):
version_str = "%s.%s.%s" % sys.version_info[:3]
# TRANSLATORS: This word is used as a part of search query suggested to users,
# it may appears in context like "Ubuntu 16.04 install Python 3.7"
search_url = build_search_query(_("install") + " Python 3.7")
return _("EH Forwarder Bot requires a minimum of Python 3.6 to run. You "
"are currently using Python {version}. \n"
"\n"
"You may want to try:\n"
"{url}").format(version=version_str, url=search_url)
# Check installations of modules
modules_err = _("You may want to visit the modules repository to find a list of "
"available modules to install.\n"
"https://github.com/blueset/ehForwarderBot/wiki/Channels-Repository")
# 1. At least 1 master channel must be installed
try:
next(pkg_resources.iter_entry_points("ehforwarderbot.master"))
except StopIteration:
return _("No master channel detected. EH Forwarder Bot requires at least one "
"master channel installed to run.") + "\n\n" + modules_err
# 2. At least 1 slave channel must be installed
try:
next(pkg_resources.iter_entry_points("ehforwarderbot.slave"))
except StopIteration:
return _("No slave channel detected. EH Forwarder Bot requires at least one "
"slave channel installed to run.") + "\n\n" + modules_err
|
[
"def",
"prerequisite_check",
"(",
")",
":",
"# Check Python version",
"if",
"sys",
".",
"version_info",
"<",
"(",
"3",
",",
"6",
")",
":",
"version_str",
"=",
"\"%s.%s.%s\"",
"%",
"sys",
".",
"version_info",
"[",
":",
"3",
"]",
"# TRANSLATORS: This word is used as a part of search query suggested to users,",
"# it may appears in context like \"Ubuntu 16.04 install Python 3.7\"",
"search_url",
"=",
"build_search_query",
"(",
"_",
"(",
"\"install\"",
")",
"+",
"\" Python 3.7\"",
")",
"return",
"_",
"(",
"\"EH Forwarder Bot requires a minimum of Python 3.6 to run. You \"",
"\"are currently using Python {version}. \\n\"",
"\"\\n\"",
"\"You may want to try:\\n\"",
"\"{url}\"",
")",
".",
"format",
"(",
"version",
"=",
"version_str",
",",
"url",
"=",
"search_url",
")",
"# Check installations of modules",
"modules_err",
"=",
"_",
"(",
"\"You may want to visit the modules repository to find a list of \"",
"\"available modules to install.\\n\"",
"\"https://github.com/blueset/ehForwarderBot/wiki/Channels-Repository\"",
")",
"# 1. At least 1 master channel must be installed",
"try",
":",
"next",
"(",
"pkg_resources",
".",
"iter_entry_points",
"(",
"\"ehforwarderbot.master\"",
")",
")",
"except",
"StopIteration",
":",
"return",
"_",
"(",
"\"No master channel detected. EH Forwarder Bot requires at least one \"",
"\"master channel installed to run.\"",
")",
"+",
"\"\\n\\n\"",
"+",
"modules_err",
"# 2. At least 1 slave channel must be installed",
"try",
":",
"next",
"(",
"pkg_resources",
".",
"iter_entry_points",
"(",
"\"ehforwarderbot.slave\"",
")",
")",
"except",
"StopIteration",
":",
"return",
"_",
"(",
"\"No slave channel detected. EH Forwarder Bot requires at least one \"",
"\"slave channel installed to run.\"",
")",
"+",
"\"\\n\\n\"",
"+",
"modules_err"
] |
Check prerequisites of the framework, including Python version, installation of
modules, etc.
Returns:
Optional[str]: If the check is not passed, return error message regarding
failed test case. None is returned otherwise.
|
[
"Check",
"prerequisites",
"of",
"the",
"framework",
"including",
"Python",
"version",
"installation",
"of",
"modules",
"etc",
"."
] |
python
|
train
|
CalebBell/thermo
|
thermo/thermal_conductivity.py
|
https://github.com/CalebBell/thermo/blob/3857ed023a3e64fd3039a32d53576c24990ef1c3/thermo/thermal_conductivity.py#L1066-L1110
|
def DIPPR9H(ws, ks):
r'''Calculates thermal conductivity of a liquid mixture according to
mixing rules in [1]_ and also in [2]_.
.. math::
\lambda_m = \left( \sum_i w_i \lambda_i^{-2}\right)^{-1/2}
Parameters
----------
ws : float
Mass fractions of components
ks : float
Liquid thermal conductivites of all components, [W/m/K]
Returns
-------
kl : float
Thermal conductivity of liquid mixture, [W/m/K]
Notes
-----
This equation is entirely dimensionless; all dimensions cancel.
The example is from [2]_; all results agree.
The original source has not been reviewed.
DIPPR Procedure 9H: Method for the Thermal Conductivity of Nonaqueous Liquid Mixtures
Average deviations of 3%. for 118 nonaqueous systems with 817 data points.
Max deviation 20%. According to DIPPR.
Examples
--------
>>> DIPPR9H([0.258, 0.742], [0.1692, 0.1528])
0.15657104706719646
References
----------
.. [1] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. The
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.
.. [2] Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.
'''
if not none_and_length_check([ks, ws]): # check same-length inputs
raise Exception('Function inputs are incorrect format')
return sum(ws[i]/ks[i]**2 for i in range(len(ws)))**(-0.5)
|
[
"def",
"DIPPR9H",
"(",
"ws",
",",
"ks",
")",
":",
"if",
"not",
"none_and_length_check",
"(",
"[",
"ks",
",",
"ws",
"]",
")",
":",
"# check same-length inputs",
"raise",
"Exception",
"(",
"'Function inputs are incorrect format'",
")",
"return",
"sum",
"(",
"ws",
"[",
"i",
"]",
"/",
"ks",
"[",
"i",
"]",
"**",
"2",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"ws",
")",
")",
")",
"**",
"(",
"-",
"0.5",
")"
] |
r'''Calculates thermal conductivity of a liquid mixture according to
mixing rules in [1]_ and also in [2]_.
.. math::
\lambda_m = \left( \sum_i w_i \lambda_i^{-2}\right)^{-1/2}
Parameters
----------
ws : float
Mass fractions of components
ks : float
Liquid thermal conductivites of all components, [W/m/K]
Returns
-------
kl : float
Thermal conductivity of liquid mixture, [W/m/K]
Notes
-----
This equation is entirely dimensionless; all dimensions cancel.
The example is from [2]_; all results agree.
The original source has not been reviewed.
DIPPR Procedure 9H: Method for the Thermal Conductivity of Nonaqueous Liquid Mixtures
Average deviations of 3%. for 118 nonaqueous systems with 817 data points.
Max deviation 20%. According to DIPPR.
Examples
--------
>>> DIPPR9H([0.258, 0.742], [0.1692, 0.1528])
0.15657104706719646
References
----------
.. [1] Reid, Robert C.; Prausnitz, John M.; Poling, Bruce E. The
Properties of Gases and Liquids. McGraw-Hill Companies, 1987.
.. [2] Danner, Ronald P, and Design Institute for Physical Property Data.
Manual for Predicting Chemical Process Design Data. New York, N.Y, 1982.
|
[
"r",
"Calculates",
"thermal",
"conductivity",
"of",
"a",
"liquid",
"mixture",
"according",
"to",
"mixing",
"rules",
"in",
"[",
"1",
"]",
"_",
"and",
"also",
"in",
"[",
"2",
"]",
"_",
"."
] |
python
|
valid
|
nikhilkumarsingh/content-downloader
|
ctdl/gui.py
|
https://github.com/nikhilkumarsingh/content-downloader/blob/8b14af3a6eadcc43581e0425dc1d218208de12df/ctdl/gui.py#L258-L273
|
def click_download(self, event):
"""
event for download button
"""
args ['parallel'] = self.p.get()
args ['file_type'] = self.optionmenu.get()
args ['no_redirects'] = self.t.get()
args ['query'] = self.entry_query.get()
args ['min_file_size'] = int( self.entry_min.get())
args ['max_file_size'] = int( self.entry_max.get())
args ['limit'] = int( self.entry_limit.get())
args ['website']= self.entry_website.get()
args ['option']= self.engine.get()
print(args)
self.check_threat()
download_content_gui( **args )
|
[
"def",
"click_download",
"(",
"self",
",",
"event",
")",
":",
"args",
"[",
"'parallel'",
"]",
"=",
"self",
".",
"p",
".",
"get",
"(",
")",
"args",
"[",
"'file_type'",
"]",
"=",
"self",
".",
"optionmenu",
".",
"get",
"(",
")",
"args",
"[",
"'no_redirects'",
"]",
"=",
"self",
".",
"t",
".",
"get",
"(",
")",
"args",
"[",
"'query'",
"]",
"=",
"self",
".",
"entry_query",
".",
"get",
"(",
")",
"args",
"[",
"'min_file_size'",
"]",
"=",
"int",
"(",
"self",
".",
"entry_min",
".",
"get",
"(",
")",
")",
"args",
"[",
"'max_file_size'",
"]",
"=",
"int",
"(",
"self",
".",
"entry_max",
".",
"get",
"(",
")",
")",
"args",
"[",
"'limit'",
"]",
"=",
"int",
"(",
"self",
".",
"entry_limit",
".",
"get",
"(",
")",
")",
"args",
"[",
"'website'",
"]",
"=",
"self",
".",
"entry_website",
".",
"get",
"(",
")",
"args",
"[",
"'option'",
"]",
"=",
"self",
".",
"engine",
".",
"get",
"(",
")",
"print",
"(",
"args",
")",
"self",
".",
"check_threat",
"(",
")",
"download_content_gui",
"(",
"*",
"*",
"args",
")"
] |
event for download button
|
[
"event",
"for",
"download",
"button"
] |
python
|
train
|
benoitguigal/python-epson-printer
|
epson_printer/epsonprinter.py
|
https://github.com/benoitguigal/python-epson-printer/blob/7d89b2f21bc76d2cc4d5ad548e19a356ca92fbc5/epson_printer/epsonprinter.py#L258-L264
|
def print_images(self, *printable_images):
"""
This method allows printing several images in one shot. This is useful if the client code does not want the
printer to make pause during printing
"""
printable_image = reduce(lambda x, y: x.append(y), list(printable_images))
self.print_image(printable_image)
|
[
"def",
"print_images",
"(",
"self",
",",
"*",
"printable_images",
")",
":",
"printable_image",
"=",
"reduce",
"(",
"lambda",
"x",
",",
"y",
":",
"x",
".",
"append",
"(",
"y",
")",
",",
"list",
"(",
"printable_images",
")",
")",
"self",
".",
"print_image",
"(",
"printable_image",
")"
] |
This method allows printing several images in one shot. This is useful if the client code does not want the
printer to make pause during printing
|
[
"This",
"method",
"allows",
"printing",
"several",
"images",
"in",
"one",
"shot",
".",
"This",
"is",
"useful",
"if",
"the",
"client",
"code",
"does",
"not",
"want",
"the",
"printer",
"to",
"make",
"pause",
"during",
"printing"
] |
python
|
train
|
perimosocordiae/viztricks
|
viztricks/extensions.py
|
https://github.com/perimosocordiae/viztricks/blob/bae2f8a9ce9278ce0197f8efc34cc4fef1dfe1eb/viztricks/extensions.py#L189-L213
|
def jitterplot(data, positions=None, ax=None, vert=True, scale=0.1,
**scatter_kwargs):
'''Plots jittered points as a distribution visualizer.
Scatter plot arguments default to: marker='.', c='k', alpha=0.75
Also known as a stripplot.
See also: boxplot, violinplot, beeswarm
'''
if ax is None:
ax = plt.gca()
if positions is None:
positions = range(len(data))
kwargs = dict(marker='.', c='k', alpha=0.75)
kwargs.update(scatter_kwargs)
for pos, y in zip(positions, data):
if scale > 0:
x = np.random.normal(loc=pos, scale=scale, size=len(y))
else:
x = np.zeros_like(y) + pos
if not vert:
x, y = y, x
ax.scatter(x, y, **kwargs)
return plt.show
|
[
"def",
"jitterplot",
"(",
"data",
",",
"positions",
"=",
"None",
",",
"ax",
"=",
"None",
",",
"vert",
"=",
"True",
",",
"scale",
"=",
"0.1",
",",
"*",
"*",
"scatter_kwargs",
")",
":",
"if",
"ax",
"is",
"None",
":",
"ax",
"=",
"plt",
".",
"gca",
"(",
")",
"if",
"positions",
"is",
"None",
":",
"positions",
"=",
"range",
"(",
"len",
"(",
"data",
")",
")",
"kwargs",
"=",
"dict",
"(",
"marker",
"=",
"'.'",
",",
"c",
"=",
"'k'",
",",
"alpha",
"=",
"0.75",
")",
"kwargs",
".",
"update",
"(",
"scatter_kwargs",
")",
"for",
"pos",
",",
"y",
"in",
"zip",
"(",
"positions",
",",
"data",
")",
":",
"if",
"scale",
">",
"0",
":",
"x",
"=",
"np",
".",
"random",
".",
"normal",
"(",
"loc",
"=",
"pos",
",",
"scale",
"=",
"scale",
",",
"size",
"=",
"len",
"(",
"y",
")",
")",
"else",
":",
"x",
"=",
"np",
".",
"zeros_like",
"(",
"y",
")",
"+",
"pos",
"if",
"not",
"vert",
":",
"x",
",",
"y",
"=",
"y",
",",
"x",
"ax",
".",
"scatter",
"(",
"x",
",",
"y",
",",
"*",
"*",
"kwargs",
")",
"return",
"plt",
".",
"show"
] |
Plots jittered points as a distribution visualizer.
Scatter plot arguments default to: marker='.', c='k', alpha=0.75
Also known as a stripplot.
See also: boxplot, violinplot, beeswarm
|
[
"Plots",
"jittered",
"points",
"as",
"a",
"distribution",
"visualizer",
"."
] |
python
|
train
|
oceanprotocol/squid-py
|
squid_py/keeper/conditions/access.py
|
https://github.com/oceanprotocol/squid-py/blob/43a5b7431627e4c9ab7382ed9eb8153e96ed4483/squid_py/keeper/conditions/access.py#L55-L76
|
def get_purchased_assets_by_address(self, address, from_block=0, to_block='latest'):
"""
Get the list of the assets dids consumed for an address.
:param address: is the address of the granted user, hex-str
:param from_block: block to start to listen
:param to_block: block to stop to listen
:return: list of dids
"""
block_filter = EventFilter(
ConditionBase.FULFILLED_EVENT,
getattr(self.events, ConditionBase.FULFILLED_EVENT),
from_block=from_block,
to_block=to_block,
argument_filters={'_grantee': address}
)
log_items = block_filter.get_all_entries(max_tries=5)
did_list = []
for log_i in log_items:
did_list.append(id_to_did(log_i.args['_documentId']))
return did_list
|
[
"def",
"get_purchased_assets_by_address",
"(",
"self",
",",
"address",
",",
"from_block",
"=",
"0",
",",
"to_block",
"=",
"'latest'",
")",
":",
"block_filter",
"=",
"EventFilter",
"(",
"ConditionBase",
".",
"FULFILLED_EVENT",
",",
"getattr",
"(",
"self",
".",
"events",
",",
"ConditionBase",
".",
"FULFILLED_EVENT",
")",
",",
"from_block",
"=",
"from_block",
",",
"to_block",
"=",
"to_block",
",",
"argument_filters",
"=",
"{",
"'_grantee'",
":",
"address",
"}",
")",
"log_items",
"=",
"block_filter",
".",
"get_all_entries",
"(",
"max_tries",
"=",
"5",
")",
"did_list",
"=",
"[",
"]",
"for",
"log_i",
"in",
"log_items",
":",
"did_list",
".",
"append",
"(",
"id_to_did",
"(",
"log_i",
".",
"args",
"[",
"'_documentId'",
"]",
")",
")",
"return",
"did_list"
] |
Get the list of the assets dids consumed for an address.
:param address: is the address of the granted user, hex-str
:param from_block: block to start to listen
:param to_block: block to stop to listen
:return: list of dids
|
[
"Get",
"the",
"list",
"of",
"the",
"assets",
"dids",
"consumed",
"for",
"an",
"address",
"."
] |
python
|
train
|
sirfoga/pyhal
|
hal/files/parsers.py
|
https://github.com/sirfoga/pyhal/blob/4394d8a1f7e45bea28a255ec390f4962ee64d33a/hal/files/parsers.py#L41-L52
|
def get_matrix(self):
"""Stores values in array, store lines in array
:return: 2D matrix
"""
data = []
with open(self.path, encoding=self.encoding) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",", quotechar="\"")
for row in csv_reader:
data.append(row)
return data
|
[
"def",
"get_matrix",
"(",
"self",
")",
":",
"data",
"=",
"[",
"]",
"with",
"open",
"(",
"self",
".",
"path",
",",
"encoding",
"=",
"self",
".",
"encoding",
")",
"as",
"csv_file",
":",
"csv_reader",
"=",
"csv",
".",
"reader",
"(",
"csv_file",
",",
"delimiter",
"=",
"\",\"",
",",
"quotechar",
"=",
"\"\\\"\"",
")",
"for",
"row",
"in",
"csv_reader",
":",
"data",
".",
"append",
"(",
"row",
")",
"return",
"data"
] |
Stores values in array, store lines in array
:return: 2D matrix
|
[
"Stores",
"values",
"in",
"array",
"store",
"lines",
"in",
"array"
] |
python
|
train
|
rueckstiess/mtools
|
mtools/mloginfo/sections/query_section.py
|
https://github.com/rueckstiess/mtools/blob/a6a22910c3569c0c8a3908660ca218a4557e4249/mtools/mloginfo/sections/query_section.py#L52-L138
|
def run(self):
"""Run this section and print out information."""
grouping = Grouping(group_by=lambda x: (x.namespace, x.operation,
x.pattern))
logfile = self.mloginfo.logfile
if logfile.start and logfile.end:
progress_start = self.mloginfo._datetime_to_epoch(logfile.start)
progress_total = (self.mloginfo._datetime_to_epoch(logfile.end) -
progress_start)
else:
self.mloginfo.progress_bar_enabled = False
for i, le in enumerate(logfile):
# update progress bar every 1000 lines
if self.mloginfo.progress_bar_enabled and (i % 1000 == 0):
if le.datetime:
progress_curr = self.mloginfo._datetime_to_epoch(le
.datetime)
if progress_total:
(self.mloginfo
.update_progress(float(progress_curr -
progress_start) /
progress_total))
if (le.operation in ['query', 'getmore', 'update', 'remove'] or
le.command in ['count', 'findandmodify',
'geonear', 'find']):
lt = LogTuple(namespace=le.namespace, operation=op_or_cmd(le),
pattern=le.pattern, duration=le.duration)
grouping.add(lt)
grouping.sort_by_size()
# clear progress bar again
if self.mloginfo.progress_bar_enabled:
self.mloginfo.update_progress(1.0)
# no queries in the log file
if len(grouping) < 1:
print('no queries found.')
return
titles = ['namespace', 'operation', 'pattern', 'count', 'min (ms)',
'max (ms)', 'mean (ms)', '95%-ile (ms)', 'sum (ms)']
table_rows = []
for g in grouping:
# calculate statistics for this group
namespace, op, pattern = g
group_events = [le.duration for le in grouping[g]
if le.duration is not None]
stats = OrderedDict()
stats['namespace'] = namespace
stats['operation'] = op
stats['pattern'] = pattern
stats['count'] = len(group_events)
stats['min'] = min(group_events) if group_events else '-'
stats['max'] = max(group_events) if group_events else '-'
stats['mean'] = 0
if np:
stats['95%'] = (np.percentile(group_events, 95)
if group_events else '-')
else:
stats['95%'] = 'n/a'
stats['sum'] = sum(group_events) if group_events else '-'
stats['mean'] = (stats['sum'] / stats['count']
if group_events else '-')
if self.mloginfo.args['verbose']:
stats['example'] = grouping[g][0]
titles.append('example')
table_rows.append(stats)
# sort order depending on field names
reverse = True
if self.mloginfo.args['sort'] in ['namespace', 'pattern']:
reverse = False
table_rows = sorted(table_rows,
key=itemgetter(self.mloginfo.args['sort']),
reverse=reverse)
print_table(table_rows, titles, uppercase_headers=False)
print('')
|
[
"def",
"run",
"(",
"self",
")",
":",
"grouping",
"=",
"Grouping",
"(",
"group_by",
"=",
"lambda",
"x",
":",
"(",
"x",
".",
"namespace",
",",
"x",
".",
"operation",
",",
"x",
".",
"pattern",
")",
")",
"logfile",
"=",
"self",
".",
"mloginfo",
".",
"logfile",
"if",
"logfile",
".",
"start",
"and",
"logfile",
".",
"end",
":",
"progress_start",
"=",
"self",
".",
"mloginfo",
".",
"_datetime_to_epoch",
"(",
"logfile",
".",
"start",
")",
"progress_total",
"=",
"(",
"self",
".",
"mloginfo",
".",
"_datetime_to_epoch",
"(",
"logfile",
".",
"end",
")",
"-",
"progress_start",
")",
"else",
":",
"self",
".",
"mloginfo",
".",
"progress_bar_enabled",
"=",
"False",
"for",
"i",
",",
"le",
"in",
"enumerate",
"(",
"logfile",
")",
":",
"# update progress bar every 1000 lines",
"if",
"self",
".",
"mloginfo",
".",
"progress_bar_enabled",
"and",
"(",
"i",
"%",
"1000",
"==",
"0",
")",
":",
"if",
"le",
".",
"datetime",
":",
"progress_curr",
"=",
"self",
".",
"mloginfo",
".",
"_datetime_to_epoch",
"(",
"le",
".",
"datetime",
")",
"if",
"progress_total",
":",
"(",
"self",
".",
"mloginfo",
".",
"update_progress",
"(",
"float",
"(",
"progress_curr",
"-",
"progress_start",
")",
"/",
"progress_total",
")",
")",
"if",
"(",
"le",
".",
"operation",
"in",
"[",
"'query'",
",",
"'getmore'",
",",
"'update'",
",",
"'remove'",
"]",
"or",
"le",
".",
"command",
"in",
"[",
"'count'",
",",
"'findandmodify'",
",",
"'geonear'",
",",
"'find'",
"]",
")",
":",
"lt",
"=",
"LogTuple",
"(",
"namespace",
"=",
"le",
".",
"namespace",
",",
"operation",
"=",
"op_or_cmd",
"(",
"le",
")",
",",
"pattern",
"=",
"le",
".",
"pattern",
",",
"duration",
"=",
"le",
".",
"duration",
")",
"grouping",
".",
"add",
"(",
"lt",
")",
"grouping",
".",
"sort_by_size",
"(",
")",
"# clear progress bar again",
"if",
"self",
".",
"mloginfo",
".",
"progress_bar_enabled",
":",
"self",
".",
"mloginfo",
".",
"update_progress",
"(",
"1.0",
")",
"# no queries in the log file",
"if",
"len",
"(",
"grouping",
")",
"<",
"1",
":",
"print",
"(",
"'no queries found.'",
")",
"return",
"titles",
"=",
"[",
"'namespace'",
",",
"'operation'",
",",
"'pattern'",
",",
"'count'",
",",
"'min (ms)'",
",",
"'max (ms)'",
",",
"'mean (ms)'",
",",
"'95%-ile (ms)'",
",",
"'sum (ms)'",
"]",
"table_rows",
"=",
"[",
"]",
"for",
"g",
"in",
"grouping",
":",
"# calculate statistics for this group",
"namespace",
",",
"op",
",",
"pattern",
"=",
"g",
"group_events",
"=",
"[",
"le",
".",
"duration",
"for",
"le",
"in",
"grouping",
"[",
"g",
"]",
"if",
"le",
".",
"duration",
"is",
"not",
"None",
"]",
"stats",
"=",
"OrderedDict",
"(",
")",
"stats",
"[",
"'namespace'",
"]",
"=",
"namespace",
"stats",
"[",
"'operation'",
"]",
"=",
"op",
"stats",
"[",
"'pattern'",
"]",
"=",
"pattern",
"stats",
"[",
"'count'",
"]",
"=",
"len",
"(",
"group_events",
")",
"stats",
"[",
"'min'",
"]",
"=",
"min",
"(",
"group_events",
")",
"if",
"group_events",
"else",
"'-'",
"stats",
"[",
"'max'",
"]",
"=",
"max",
"(",
"group_events",
")",
"if",
"group_events",
"else",
"'-'",
"stats",
"[",
"'mean'",
"]",
"=",
"0",
"if",
"np",
":",
"stats",
"[",
"'95%'",
"]",
"=",
"(",
"np",
".",
"percentile",
"(",
"group_events",
",",
"95",
")",
"if",
"group_events",
"else",
"'-'",
")",
"else",
":",
"stats",
"[",
"'95%'",
"]",
"=",
"'n/a'",
"stats",
"[",
"'sum'",
"]",
"=",
"sum",
"(",
"group_events",
")",
"if",
"group_events",
"else",
"'-'",
"stats",
"[",
"'mean'",
"]",
"=",
"(",
"stats",
"[",
"'sum'",
"]",
"/",
"stats",
"[",
"'count'",
"]",
"if",
"group_events",
"else",
"'-'",
")",
"if",
"self",
".",
"mloginfo",
".",
"args",
"[",
"'verbose'",
"]",
":",
"stats",
"[",
"'example'",
"]",
"=",
"grouping",
"[",
"g",
"]",
"[",
"0",
"]",
"titles",
".",
"append",
"(",
"'example'",
")",
"table_rows",
".",
"append",
"(",
"stats",
")",
"# sort order depending on field names",
"reverse",
"=",
"True",
"if",
"self",
".",
"mloginfo",
".",
"args",
"[",
"'sort'",
"]",
"in",
"[",
"'namespace'",
",",
"'pattern'",
"]",
":",
"reverse",
"=",
"False",
"table_rows",
"=",
"sorted",
"(",
"table_rows",
",",
"key",
"=",
"itemgetter",
"(",
"self",
".",
"mloginfo",
".",
"args",
"[",
"'sort'",
"]",
")",
",",
"reverse",
"=",
"reverse",
")",
"print_table",
"(",
"table_rows",
",",
"titles",
",",
"uppercase_headers",
"=",
"False",
")",
"print",
"(",
"''",
")"
] |
Run this section and print out information.
|
[
"Run",
"this",
"section",
"and",
"print",
"out",
"information",
"."
] |
python
|
train
|
jjkester/django-auditlog
|
src/auditlog/receivers.py
|
https://github.com/jjkester/django-auditlog/blob/a22978e05b7ed43b87e4b6109550b86c738578fe/src/auditlog/receivers.py#L25-L47
|
def log_update(sender, instance, **kwargs):
"""
Signal receiver that creates a log entry when a model instance is changed and saved to the database.
Direct use is discouraged, connect your model through :py:func:`auditlog.registry.register` instead.
"""
if instance.pk is not None:
try:
old = sender.objects.get(pk=instance.pk)
except sender.DoesNotExist:
pass
else:
new = instance
changes = model_instance_diff(old, new)
# Log an entry only if there are changes
if changes:
log_entry = LogEntry.objects.log_create(
instance,
action=LogEntry.Action.UPDATE,
changes=json.dumps(changes),
)
|
[
"def",
"log_update",
"(",
"sender",
",",
"instance",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"instance",
".",
"pk",
"is",
"not",
"None",
":",
"try",
":",
"old",
"=",
"sender",
".",
"objects",
".",
"get",
"(",
"pk",
"=",
"instance",
".",
"pk",
")",
"except",
"sender",
".",
"DoesNotExist",
":",
"pass",
"else",
":",
"new",
"=",
"instance",
"changes",
"=",
"model_instance_diff",
"(",
"old",
",",
"new",
")",
"# Log an entry only if there are changes",
"if",
"changes",
":",
"log_entry",
"=",
"LogEntry",
".",
"objects",
".",
"log_create",
"(",
"instance",
",",
"action",
"=",
"LogEntry",
".",
"Action",
".",
"UPDATE",
",",
"changes",
"=",
"json",
".",
"dumps",
"(",
"changes",
")",
",",
")"
] |
Signal receiver that creates a log entry when a model instance is changed and saved to the database.
Direct use is discouraged, connect your model through :py:func:`auditlog.registry.register` instead.
|
[
"Signal",
"receiver",
"that",
"creates",
"a",
"log",
"entry",
"when",
"a",
"model",
"instance",
"is",
"changed",
"and",
"saved",
"to",
"the",
"database",
"."
] |
python
|
train
|
openstack/horizon
|
openstack_dashboard/dashboards/project/instances/utils.py
|
https://github.com/openstack/horizon/blob/5601ea9477323e599d9b766fcac1f8be742935b2/openstack_dashboard/dashboards/project/instances/utils.py#L93-L140
|
def network_field_data(request, include_empty_option=False, with_cidr=False,
for_launch=False):
"""Returns a list of tuples of all networks.
Generates a list of networks available to the user (request). And returns
a list of (id, name) tuples.
:param request: django http request object
:param include_empty_option: flag to include a empty tuple in the front of
the list
:param with_cidr: flag to include subnets cidr in field name
:return: list of (id, name) tuples
"""
tenant_id = request.user.tenant_id
networks = []
if api.base.is_service_enabled(request, 'network'):
extra_params = {}
if for_launch:
extra_params['include_pre_auto_allocate'] = True
try:
networks = api.neutron.network_list_for_tenant(
request, tenant_id, **extra_params)
except Exception as e:
msg = _('Failed to get network list {0}').format(six.text_type(e))
exceptions.handle(request, msg)
_networks = []
for n in networks:
if not n['subnets']:
continue
v = n.name_or_id
if with_cidr:
cidrs = ([subnet.cidr for subnet in n['subnets']
if subnet.ip_version == 4] +
[subnet.cidr for subnet in n['subnets']
if subnet.ip_version == 6])
v += ' (%s)' % ', '.join(cidrs)
_networks.append((n.id, v))
networks = sorted(_networks, key=itemgetter(1))
if not networks:
if include_empty_option:
return [("", _("No networks available")), ]
return []
if include_empty_option:
return [("", _("Select Network")), ] + networks
return networks
|
[
"def",
"network_field_data",
"(",
"request",
",",
"include_empty_option",
"=",
"False",
",",
"with_cidr",
"=",
"False",
",",
"for_launch",
"=",
"False",
")",
":",
"tenant_id",
"=",
"request",
".",
"user",
".",
"tenant_id",
"networks",
"=",
"[",
"]",
"if",
"api",
".",
"base",
".",
"is_service_enabled",
"(",
"request",
",",
"'network'",
")",
":",
"extra_params",
"=",
"{",
"}",
"if",
"for_launch",
":",
"extra_params",
"[",
"'include_pre_auto_allocate'",
"]",
"=",
"True",
"try",
":",
"networks",
"=",
"api",
".",
"neutron",
".",
"network_list_for_tenant",
"(",
"request",
",",
"tenant_id",
",",
"*",
"*",
"extra_params",
")",
"except",
"Exception",
"as",
"e",
":",
"msg",
"=",
"_",
"(",
"'Failed to get network list {0}'",
")",
".",
"format",
"(",
"six",
".",
"text_type",
"(",
"e",
")",
")",
"exceptions",
".",
"handle",
"(",
"request",
",",
"msg",
")",
"_networks",
"=",
"[",
"]",
"for",
"n",
"in",
"networks",
":",
"if",
"not",
"n",
"[",
"'subnets'",
"]",
":",
"continue",
"v",
"=",
"n",
".",
"name_or_id",
"if",
"with_cidr",
":",
"cidrs",
"=",
"(",
"[",
"subnet",
".",
"cidr",
"for",
"subnet",
"in",
"n",
"[",
"'subnets'",
"]",
"if",
"subnet",
".",
"ip_version",
"==",
"4",
"]",
"+",
"[",
"subnet",
".",
"cidr",
"for",
"subnet",
"in",
"n",
"[",
"'subnets'",
"]",
"if",
"subnet",
".",
"ip_version",
"==",
"6",
"]",
")",
"v",
"+=",
"' (%s)'",
"%",
"', '",
".",
"join",
"(",
"cidrs",
")",
"_networks",
".",
"append",
"(",
"(",
"n",
".",
"id",
",",
"v",
")",
")",
"networks",
"=",
"sorted",
"(",
"_networks",
",",
"key",
"=",
"itemgetter",
"(",
"1",
")",
")",
"if",
"not",
"networks",
":",
"if",
"include_empty_option",
":",
"return",
"[",
"(",
"\"\"",
",",
"_",
"(",
"\"No networks available\"",
")",
")",
",",
"]",
"return",
"[",
"]",
"if",
"include_empty_option",
":",
"return",
"[",
"(",
"\"\"",
",",
"_",
"(",
"\"Select Network\"",
")",
")",
",",
"]",
"+",
"networks",
"return",
"networks"
] |
Returns a list of tuples of all networks.
Generates a list of networks available to the user (request). And returns
a list of (id, name) tuples.
:param request: django http request object
:param include_empty_option: flag to include a empty tuple in the front of
the list
:param with_cidr: flag to include subnets cidr in field name
:return: list of (id, name) tuples
|
[
"Returns",
"a",
"list",
"of",
"tuples",
"of",
"all",
"networks",
"."
] |
python
|
train
|
bolt-project/bolt
|
bolt/factory.py
|
https://github.com/bolt-project/bolt/blob/9cd7104aa085498da3097b72696184b9d3651c51/bolt/factory.py#L9-L35
|
def wrapped(f):
"""
Decorator to append routed docstrings
"""
import inspect
def extract(func):
append = ""
args = inspect.getargspec(func)
for i, a in enumerate(args.args):
if i < (len(args) - len(args.defaults)):
append += str(a) + ", "
else:
default = args.defaults[i-len(args.defaults)]
if hasattr(default, "__name__"):
default = default.__name__
else:
default = str(default)
append += str(a) + "=" + default + ", "
append = append[:-2] + ")"
return append
doc = f.__doc__ + "\n"
doc += " local -> array(" + extract(getattr(ConstructLocal, f.__name__)) + "\n"
doc += " spark -> array(" + extract(getattr(ConstructSpark, f.__name__)) + "\n"
f.__doc__ = doc
return f
|
[
"def",
"wrapped",
"(",
"f",
")",
":",
"import",
"inspect",
"def",
"extract",
"(",
"func",
")",
":",
"append",
"=",
"\"\"",
"args",
"=",
"inspect",
".",
"getargspec",
"(",
"func",
")",
"for",
"i",
",",
"a",
"in",
"enumerate",
"(",
"args",
".",
"args",
")",
":",
"if",
"i",
"<",
"(",
"len",
"(",
"args",
")",
"-",
"len",
"(",
"args",
".",
"defaults",
")",
")",
":",
"append",
"+=",
"str",
"(",
"a",
")",
"+",
"\", \"",
"else",
":",
"default",
"=",
"args",
".",
"defaults",
"[",
"i",
"-",
"len",
"(",
"args",
".",
"defaults",
")",
"]",
"if",
"hasattr",
"(",
"default",
",",
"\"__name__\"",
")",
":",
"default",
"=",
"default",
".",
"__name__",
"else",
":",
"default",
"=",
"str",
"(",
"default",
")",
"append",
"+=",
"str",
"(",
"a",
")",
"+",
"\"=\"",
"+",
"default",
"+",
"\", \"",
"append",
"=",
"append",
"[",
":",
"-",
"2",
"]",
"+",
"\")\"",
"return",
"append",
"doc",
"=",
"f",
".",
"__doc__",
"+",
"\"\\n\"",
"doc",
"+=",
"\" local -> array(\"",
"+",
"extract",
"(",
"getattr",
"(",
"ConstructLocal",
",",
"f",
".",
"__name__",
")",
")",
"+",
"\"\\n\"",
"doc",
"+=",
"\" spark -> array(\"",
"+",
"extract",
"(",
"getattr",
"(",
"ConstructSpark",
",",
"f",
".",
"__name__",
")",
")",
"+",
"\"\\n\"",
"f",
".",
"__doc__",
"=",
"doc",
"return",
"f"
] |
Decorator to append routed docstrings
|
[
"Decorator",
"to",
"append",
"routed",
"docstrings"
] |
python
|
test
|
kgori/treeCl
|
treeCl/tasks.py
|
https://github.com/kgori/treeCl/blob/fed624b3db1c19cc07175ca04e3eda6905a8d305/treeCl/tasks.py#L46-L53
|
def eucdist_task(newick_string_a, newick_string_b, normalise, min_overlap=4, overlap_fail_value=0):
"""
Distributed version of tree_distance.eucdist
Parameters: two valid newick strings and a boolean
"""
tree_a = Tree(newick_string_a)
tree_b = Tree(newick_string_b)
return treedist.eucdist(tree_a, tree_b, normalise, min_overlap, overlap_fail_value)
|
[
"def",
"eucdist_task",
"(",
"newick_string_a",
",",
"newick_string_b",
",",
"normalise",
",",
"min_overlap",
"=",
"4",
",",
"overlap_fail_value",
"=",
"0",
")",
":",
"tree_a",
"=",
"Tree",
"(",
"newick_string_a",
")",
"tree_b",
"=",
"Tree",
"(",
"newick_string_b",
")",
"return",
"treedist",
".",
"eucdist",
"(",
"tree_a",
",",
"tree_b",
",",
"normalise",
",",
"min_overlap",
",",
"overlap_fail_value",
")"
] |
Distributed version of tree_distance.eucdist
Parameters: two valid newick strings and a boolean
|
[
"Distributed",
"version",
"of",
"tree_distance",
".",
"eucdist",
"Parameters",
":",
"two",
"valid",
"newick",
"strings",
"and",
"a",
"boolean"
] |
python
|
train
|
alex-kostirin/pyatomac
|
atomac/ldtpd/table.py
|
https://github.com/alex-kostirin/pyatomac/blob/3f46f6feb4504315eec07abb18bb41be4d257aeb/atomac/ldtpd/table.py#L523-L554
|
def doubleclickrow(self, window_name, object_name, row_text):
"""
Double click row matching given text
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_text: Row text to select
@type row_text: string
@return: row index matching the text on success.
@rtype: integer
"""
object_handle = self._get_object_handle(window_name, object_name)
if not object_handle.AXEnabled:
raise LdtpServerException(u"Object %s state disabled" % object_name)
object_handle.activate()
self.wait(1)
for cell in object_handle.AXRows:
cell = self._getfirstmatchingchild(cell, "(AXTextField|AXStaticText)")
if not cell:
continue
if re.match(row_text, cell.AXValue):
x, y, width, height = self._getobjectsize(cell)
# Mouse double click on the object
cell.doubleClickMouse((x + width / 2, y + height / 2))
return 1
raise LdtpServerException('Unable to get row text: %s' % row_text)
|
[
"def",
"doubleclickrow",
"(",
"self",
",",
"window_name",
",",
"object_name",
",",
"row_text",
")",
":",
"object_handle",
"=",
"self",
".",
"_get_object_handle",
"(",
"window_name",
",",
"object_name",
")",
"if",
"not",
"object_handle",
".",
"AXEnabled",
":",
"raise",
"LdtpServerException",
"(",
"u\"Object %s state disabled\"",
"%",
"object_name",
")",
"object_handle",
".",
"activate",
"(",
")",
"self",
".",
"wait",
"(",
"1",
")",
"for",
"cell",
"in",
"object_handle",
".",
"AXRows",
":",
"cell",
"=",
"self",
".",
"_getfirstmatchingchild",
"(",
"cell",
",",
"\"(AXTextField|AXStaticText)\"",
")",
"if",
"not",
"cell",
":",
"continue",
"if",
"re",
".",
"match",
"(",
"row_text",
",",
"cell",
".",
"AXValue",
")",
":",
"x",
",",
"y",
",",
"width",
",",
"height",
"=",
"self",
".",
"_getobjectsize",
"(",
"cell",
")",
"# Mouse double click on the object",
"cell",
".",
"doubleClickMouse",
"(",
"(",
"x",
"+",
"width",
"/",
"2",
",",
"y",
"+",
"height",
"/",
"2",
")",
")",
"return",
"1",
"raise",
"LdtpServerException",
"(",
"'Unable to get row text: %s'",
"%",
"row_text",
")"
] |
Double click row matching given text
@param window_name: Window name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type window_name: string
@param object_name: Object name to type in, either full name,
LDTP's name convention, or a Unix glob.
@type object_name: string
@param row_text: Row text to select
@type row_text: string
@return: row index matching the text on success.
@rtype: integer
|
[
"Double",
"click",
"row",
"matching",
"given",
"text"
] |
python
|
valid
|
radjkarl/fancyTools
|
fancytools/fcollections/FIFObuffer.py
|
https://github.com/radjkarl/fancyTools/blob/4c4d961003dc4ed6e46429a0c24f7e2bb52caa8b/fancytools/fcollections/FIFObuffer.py#L79-L87
|
def splitPos(self):
"""return the position of where to split the array
to get the values in the right order"""
if self._ind < self.shape:
return 0
v = int(self._splitPos)
if v >= 1:
self._splitPos = 0
return v
|
[
"def",
"splitPos",
"(",
"self",
")",
":",
"if",
"self",
".",
"_ind",
"<",
"self",
".",
"shape",
":",
"return",
"0",
"v",
"=",
"int",
"(",
"self",
".",
"_splitPos",
")",
"if",
"v",
">=",
"1",
":",
"self",
".",
"_splitPos",
"=",
"0",
"return",
"v"
] |
return the position of where to split the array
to get the values in the right order
|
[
"return",
"the",
"position",
"of",
"where",
"to",
"split",
"the",
"array",
"to",
"get",
"the",
"values",
"in",
"the",
"right",
"order"
] |
python
|
train
|
mikedh/trimesh
|
trimesh/triangles.py
|
https://github.com/mikedh/trimesh/blob/25e059bf6d4caa74f62ffd58ce4f61a90ee4e518/trimesh/triangles.py#L34-L57
|
def area(triangles=None, crosses=None, sum=False):
"""
Calculates the sum area of input triangles
Parameters
----------
triangles : (n, 3, 3) float
Vertices of triangles
crosses : (n, 3) float or None
As a speedup don't re- compute cross products
sum : bool
Return summed area or individual triangle area
Returns
----------
area : (n,) float or float
Individual or summed area depending on `sum` argument
"""
if crosses is None:
crosses = cross(triangles)
area = (np.sum(crosses**2, axis=1)**.5) * .5
if sum:
return np.sum(area)
return area
|
[
"def",
"area",
"(",
"triangles",
"=",
"None",
",",
"crosses",
"=",
"None",
",",
"sum",
"=",
"False",
")",
":",
"if",
"crosses",
"is",
"None",
":",
"crosses",
"=",
"cross",
"(",
"triangles",
")",
"area",
"=",
"(",
"np",
".",
"sum",
"(",
"crosses",
"**",
"2",
",",
"axis",
"=",
"1",
")",
"**",
".5",
")",
"*",
".5",
"if",
"sum",
":",
"return",
"np",
".",
"sum",
"(",
"area",
")",
"return",
"area"
] |
Calculates the sum area of input triangles
Parameters
----------
triangles : (n, 3, 3) float
Vertices of triangles
crosses : (n, 3) float or None
As a speedup don't re- compute cross products
sum : bool
Return summed area or individual triangle area
Returns
----------
area : (n,) float or float
Individual or summed area depending on `sum` argument
|
[
"Calculates",
"the",
"sum",
"area",
"of",
"input",
"triangles"
] |
python
|
train
|
sernst/cauldron
|
cauldron/session/exposed.py
|
https://github.com/sernst/cauldron/blob/4086aec9c038c402ea212c79fe8bd0d27104f9cf/cauldron/session/exposed.py#L41-L47
|
def display(self) -> typing.Union[None, report.Report]:
"""The display report for the current project."""
return (
self._project.current_step.report
if self._project and self._project.current_step else
None
)
|
[
"def",
"display",
"(",
"self",
")",
"->",
"typing",
".",
"Union",
"[",
"None",
",",
"report",
".",
"Report",
"]",
":",
"return",
"(",
"self",
".",
"_project",
".",
"current_step",
".",
"report",
"if",
"self",
".",
"_project",
"and",
"self",
".",
"_project",
".",
"current_step",
"else",
"None",
")"
] |
The display report for the current project.
|
[
"The",
"display",
"report",
"for",
"the",
"current",
"project",
"."
] |
python
|
train
|
senaite/senaite.core
|
bika/lims/idserver.py
|
https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/idserver.py#L361-L367
|
def make_storage_key(portal_type, prefix=None):
"""Make a storage (dict-) key for the number generator
"""
key = portal_type.lower()
if prefix:
key = "{}-{}".format(key, prefix)
return key
|
[
"def",
"make_storage_key",
"(",
"portal_type",
",",
"prefix",
"=",
"None",
")",
":",
"key",
"=",
"portal_type",
".",
"lower",
"(",
")",
"if",
"prefix",
":",
"key",
"=",
"\"{}-{}\"",
".",
"format",
"(",
"key",
",",
"prefix",
")",
"return",
"key"
] |
Make a storage (dict-) key for the number generator
|
[
"Make",
"a",
"storage",
"(",
"dict",
"-",
")",
"key",
"for",
"the",
"number",
"generator"
] |
python
|
train
|
brocade/pynos
|
pynos/versions/ver_6/ver_6_0_1/yang/brocade_aaa.py
|
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_aaa.py#L305-L317
|
def tacacs_server_host_port(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
tacacs_server = ET.SubElement(config, "tacacs-server", xmlns="urn:brocade.com:mgmt:brocade-aaa")
host = ET.SubElement(tacacs_server, "host")
hostname_key = ET.SubElement(host, "hostname")
hostname_key.text = kwargs.pop('hostname')
port = ET.SubElement(host, "port")
port.text = kwargs.pop('port')
callback = kwargs.pop('callback', self._callback)
return callback(config)
|
[
"def",
"tacacs_server_host_port",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"ET",
".",
"Element",
"(",
"\"config\"",
")",
"tacacs_server",
"=",
"ET",
".",
"SubElement",
"(",
"config",
",",
"\"tacacs-server\"",
",",
"xmlns",
"=",
"\"urn:brocade.com:mgmt:brocade-aaa\"",
")",
"host",
"=",
"ET",
".",
"SubElement",
"(",
"tacacs_server",
",",
"\"host\"",
")",
"hostname_key",
"=",
"ET",
".",
"SubElement",
"(",
"host",
",",
"\"hostname\"",
")",
"hostname_key",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'hostname'",
")",
"port",
"=",
"ET",
".",
"SubElement",
"(",
"host",
",",
"\"port\"",
")",
"port",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'port'",
")",
"callback",
"=",
"kwargs",
".",
"pop",
"(",
"'callback'",
",",
"self",
".",
"_callback",
")",
"return",
"callback",
"(",
"config",
")"
] |
Auto Generated Code
|
[
"Auto",
"Generated",
"Code"
] |
python
|
train
|
gwastro/pycbc
|
pycbc/types/timeseries.py
|
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/types/timeseries.py#L247-L306
|
def almost_equal_elem(self,other,tol,relative=True,dtol=0.0):
"""
Compare whether two time series are almost equal, element
by element.
If the 'relative' parameter is 'True' (the default) then the
'tol' parameter (which must be positive) is interpreted as a
relative tolerance, and the comparison returns 'True' only if
abs(self[i]-other[i]) <= tol*abs(self[i])
for all elements of the series.
If 'relative' is 'False', then 'tol' is an absolute tolerance,
and the comparison is true only if
abs(self[i]-other[i]) <= tol
for all elements of the series.
The method also checks that self.delta_t is within 'dtol' of
other.delta_t; if 'dtol' has its default value of 0 then exact
equality between the two is required.
Other meta-data (type, dtype, length, and epoch) must be exactly
equal. If either object's memory lives on the GPU it will be
copied to the CPU for the comparison, which may be slow. But the
original object itself will not have its memory relocated nor
scheme changed.
Parameters
----------
other: another Python object, that should be tested for
almost-equality with 'self', element-by-element.
tol: a non-negative number, the tolerance, which is interpreted
as either a relative tolerance (the default) or an absolute
tolerance.
relative: A boolean, indicating whether 'tol' should be interpreted
as a relative tolerance (if True, the default if this argument
is omitted) or as an absolute tolerance (if tol is False).
dtol: a non-negative number, the tolerance for delta_t. Like 'tol',
it is interpreted as relative or absolute based on the value of
'relative'. This parameter defaults to zero, enforcing exact
equality between the delta_t values of the two TimeSeries.
Returns
-------
boolean: 'True' if the data and delta_ts agree within the tolerance,
as interpreted by the 'relative' keyword, and if the types,
lengths, dtypes, and epochs are exactly the same.
"""
# Check that the delta_t tolerance is non-negative; raise an exception
# if needed.
if (dtol < 0.0):
raise ValueError("Tolerance in delta_t cannot be negative")
if super(TimeSeries,self).almost_equal_elem(other,tol=tol,relative=relative):
if relative:
return (self._epoch == other._epoch and
abs(self._delta_t-other._delta_t) <= dtol*self._delta_t)
else:
return (self._epoch == other._epoch and
abs(self._delta_t-other._delta_t) <= dtol)
else:
return False
|
[
"def",
"almost_equal_elem",
"(",
"self",
",",
"other",
",",
"tol",
",",
"relative",
"=",
"True",
",",
"dtol",
"=",
"0.0",
")",
":",
"# Check that the delta_t tolerance is non-negative; raise an exception",
"# if needed.",
"if",
"(",
"dtol",
"<",
"0.0",
")",
":",
"raise",
"ValueError",
"(",
"\"Tolerance in delta_t cannot be negative\"",
")",
"if",
"super",
"(",
"TimeSeries",
",",
"self",
")",
".",
"almost_equal_elem",
"(",
"other",
",",
"tol",
"=",
"tol",
",",
"relative",
"=",
"relative",
")",
":",
"if",
"relative",
":",
"return",
"(",
"self",
".",
"_epoch",
"==",
"other",
".",
"_epoch",
"and",
"abs",
"(",
"self",
".",
"_delta_t",
"-",
"other",
".",
"_delta_t",
")",
"<=",
"dtol",
"*",
"self",
".",
"_delta_t",
")",
"else",
":",
"return",
"(",
"self",
".",
"_epoch",
"==",
"other",
".",
"_epoch",
"and",
"abs",
"(",
"self",
".",
"_delta_t",
"-",
"other",
".",
"_delta_t",
")",
"<=",
"dtol",
")",
"else",
":",
"return",
"False"
] |
Compare whether two time series are almost equal, element
by element.
If the 'relative' parameter is 'True' (the default) then the
'tol' parameter (which must be positive) is interpreted as a
relative tolerance, and the comparison returns 'True' only if
abs(self[i]-other[i]) <= tol*abs(self[i])
for all elements of the series.
If 'relative' is 'False', then 'tol' is an absolute tolerance,
and the comparison is true only if
abs(self[i]-other[i]) <= tol
for all elements of the series.
The method also checks that self.delta_t is within 'dtol' of
other.delta_t; if 'dtol' has its default value of 0 then exact
equality between the two is required.
Other meta-data (type, dtype, length, and epoch) must be exactly
equal. If either object's memory lives on the GPU it will be
copied to the CPU for the comparison, which may be slow. But the
original object itself will not have its memory relocated nor
scheme changed.
Parameters
----------
other: another Python object, that should be tested for
almost-equality with 'self', element-by-element.
tol: a non-negative number, the tolerance, which is interpreted
as either a relative tolerance (the default) or an absolute
tolerance.
relative: A boolean, indicating whether 'tol' should be interpreted
as a relative tolerance (if True, the default if this argument
is omitted) or as an absolute tolerance (if tol is False).
dtol: a non-negative number, the tolerance for delta_t. Like 'tol',
it is interpreted as relative or absolute based on the value of
'relative'. This parameter defaults to zero, enforcing exact
equality between the delta_t values of the two TimeSeries.
Returns
-------
boolean: 'True' if the data and delta_ts agree within the tolerance,
as interpreted by the 'relative' keyword, and if the types,
lengths, dtypes, and epochs are exactly the same.
|
[
"Compare",
"whether",
"two",
"time",
"series",
"are",
"almost",
"equal",
"element",
"by",
"element",
"."
] |
python
|
train
|
cloudtools/stacker
|
stacker/lookups/handlers/file.py
|
https://github.com/cloudtools/stacker/blob/ad6013a03a560c46ba3c63c4d153336273e6da5d/stacker/lookups/handlers/file.py#L174-L201
|
def _parameterize_obj(obj):
"""Recursively parameterize all strings contained in an object.
Parameterizes all values of a Mapping, all items of a Sequence, an
unicode string, or pass other objects through unmodified.
Byte strings will be interpreted as UTF-8.
Args:
obj: data to parameterize
Return:
A parameterized object to be included in a CloudFormation template.
Mappings are converted to `dict`, Sequences are converted to `list`,
and strings possibly replaced by compositions of function calls.
"""
if isinstance(obj, Mapping):
return dict((key, _parameterize_obj(value))
for key, value in obj.items())
elif isinstance(obj, bytes):
return _parameterize_string(obj.decode('utf8'))
elif isinstance(obj, str):
return _parameterize_string(obj)
elif isinstance(obj, Sequence):
return list(_parameterize_obj(item) for item in obj)
else:
return obj
|
[
"def",
"_parameterize_obj",
"(",
"obj",
")",
":",
"if",
"isinstance",
"(",
"obj",
",",
"Mapping",
")",
":",
"return",
"dict",
"(",
"(",
"key",
",",
"_parameterize_obj",
"(",
"value",
")",
")",
"for",
"key",
",",
"value",
"in",
"obj",
".",
"items",
"(",
")",
")",
"elif",
"isinstance",
"(",
"obj",
",",
"bytes",
")",
":",
"return",
"_parameterize_string",
"(",
"obj",
".",
"decode",
"(",
"'utf8'",
")",
")",
"elif",
"isinstance",
"(",
"obj",
",",
"str",
")",
":",
"return",
"_parameterize_string",
"(",
"obj",
")",
"elif",
"isinstance",
"(",
"obj",
",",
"Sequence",
")",
":",
"return",
"list",
"(",
"_parameterize_obj",
"(",
"item",
")",
"for",
"item",
"in",
"obj",
")",
"else",
":",
"return",
"obj"
] |
Recursively parameterize all strings contained in an object.
Parameterizes all values of a Mapping, all items of a Sequence, an
unicode string, or pass other objects through unmodified.
Byte strings will be interpreted as UTF-8.
Args:
obj: data to parameterize
Return:
A parameterized object to be included in a CloudFormation template.
Mappings are converted to `dict`, Sequences are converted to `list`,
and strings possibly replaced by compositions of function calls.
|
[
"Recursively",
"parameterize",
"all",
"strings",
"contained",
"in",
"an",
"object",
"."
] |
python
|
train
|
django-salesforce/django-salesforce
|
salesforce/router.py
|
https://github.com/django-salesforce/django-salesforce/blob/6fd5643dba69d49c5881de50875cf90204a8f808/salesforce/router.py#L60-L85
|
def allow_migrate(self, db, app_label, model_name=None, **hints):
"""
Don't attempt to sync SF models to non SF databases and vice versa.
"""
if model_name:
model = apps.get_model(app_label, model_name)
else:
# hints are used with less priority, because many hints are dynamic
# models made by migrations on a '__fake__' module which are not
# SalesforceModels
model = hints.get('model')
if hasattr(model, '_salesforce_object'):
# SF models can be migrated if SALESFORCE_DB_ALIAS is e.g.
# a sqlite3 database or any non-SF database.
if not (is_sf_database(db) or db == self.sf_alias):
return False
else:
if is_sf_database(db) or self.sf_alias != 'default' and db == self.sf_alias:
return False
# TODO: It is usual that "migrate" is currently disallowed for SF.
# In the future it can be implemented to do a deep check by
# introspection of compatibily between Django models and SF database.
if hasattr(model, '_salesforce_object'):
# return False
pass
|
[
"def",
"allow_migrate",
"(",
"self",
",",
"db",
",",
"app_label",
",",
"model_name",
"=",
"None",
",",
"*",
"*",
"hints",
")",
":",
"if",
"model_name",
":",
"model",
"=",
"apps",
".",
"get_model",
"(",
"app_label",
",",
"model_name",
")",
"else",
":",
"# hints are used with less priority, because many hints are dynamic",
"# models made by migrations on a '__fake__' module which are not",
"# SalesforceModels",
"model",
"=",
"hints",
".",
"get",
"(",
"'model'",
")",
"if",
"hasattr",
"(",
"model",
",",
"'_salesforce_object'",
")",
":",
"# SF models can be migrated if SALESFORCE_DB_ALIAS is e.g.",
"# a sqlite3 database or any non-SF database.",
"if",
"not",
"(",
"is_sf_database",
"(",
"db",
")",
"or",
"db",
"==",
"self",
".",
"sf_alias",
")",
":",
"return",
"False",
"else",
":",
"if",
"is_sf_database",
"(",
"db",
")",
"or",
"self",
".",
"sf_alias",
"!=",
"'default'",
"and",
"db",
"==",
"self",
".",
"sf_alias",
":",
"return",
"False",
"# TODO: It is usual that \"migrate\" is currently disallowed for SF.",
"# In the future it can be implemented to do a deep check by",
"# introspection of compatibily between Django models and SF database.",
"if",
"hasattr",
"(",
"model",
",",
"'_salesforce_object'",
")",
":",
"# return False",
"pass"
] |
Don't attempt to sync SF models to non SF databases and vice versa.
|
[
"Don",
"t",
"attempt",
"to",
"sync",
"SF",
"models",
"to",
"non",
"SF",
"databases",
"and",
"vice",
"versa",
"."
] |
python
|
train
|
nerdvegas/rez
|
src/rez/build_system.py
|
https://github.com/nerdvegas/rez/blob/1d3b846d53b5b5404edfe8ddb9083f9ceec8c5e7/src/rez/build_system.py#L198-L243
|
def get_standard_vars(cls, context, variant, build_type, install,
build_path, install_path=None):
"""Returns a standard set of environment variables that can be set
for the build system to use
"""
from rez.config import config
package = variant.parent
variant_requires = map(str, variant.variant_requires)
if variant.index is None:
variant_subpath = ''
else:
variant_subpath = variant._non_shortlinked_subpath
vars_ = {
'REZ_BUILD_ENV': 1,
'REZ_BUILD_PATH': build_path,
'REZ_BUILD_THREAD_COUNT': package.config.build_thread_count,
'REZ_BUILD_VARIANT_INDEX': variant.index or 0,
'REZ_BUILD_VARIANT_REQUIRES': ' '.join(variant_requires),
'REZ_BUILD_VARIANT_SUBPATH': variant_subpath,
'REZ_BUILD_PROJECT_VERSION': str(package.version),
'REZ_BUILD_PROJECT_NAME': package.name,
'REZ_BUILD_PROJECT_DESCRIPTION': (package.description or '').strip(),
'REZ_BUILD_PROJECT_FILE': package.filepath,
'REZ_BUILD_SOURCE_PATH': os.path.dirname(package.filepath),
'REZ_BUILD_REQUIRES': ' '.join(
str(x) for x in context.requested_packages(True)
),
'REZ_BUILD_REQUIRES_UNVERSIONED': ' '.join(
x.name for x in context.requested_packages(True)
),
'REZ_BUILD_TYPE': build_type.name,
'REZ_BUILD_INSTALL': 1 if install else 0,
}
if install_path:
vars_['REZ_BUILD_INSTALL_PATH'] = install_path
if config.rez_1_environment_variables and \
not config.disable_rez_1_compatibility and \
build_type == BuildType.central:
vars_['REZ_IN_REZ_RELEASE'] = 1
return vars_
|
[
"def",
"get_standard_vars",
"(",
"cls",
",",
"context",
",",
"variant",
",",
"build_type",
",",
"install",
",",
"build_path",
",",
"install_path",
"=",
"None",
")",
":",
"from",
"rez",
".",
"config",
"import",
"config",
"package",
"=",
"variant",
".",
"parent",
"variant_requires",
"=",
"map",
"(",
"str",
",",
"variant",
".",
"variant_requires",
")",
"if",
"variant",
".",
"index",
"is",
"None",
":",
"variant_subpath",
"=",
"''",
"else",
":",
"variant_subpath",
"=",
"variant",
".",
"_non_shortlinked_subpath",
"vars_",
"=",
"{",
"'REZ_BUILD_ENV'",
":",
"1",
",",
"'REZ_BUILD_PATH'",
":",
"build_path",
",",
"'REZ_BUILD_THREAD_COUNT'",
":",
"package",
".",
"config",
".",
"build_thread_count",
",",
"'REZ_BUILD_VARIANT_INDEX'",
":",
"variant",
".",
"index",
"or",
"0",
",",
"'REZ_BUILD_VARIANT_REQUIRES'",
":",
"' '",
".",
"join",
"(",
"variant_requires",
")",
",",
"'REZ_BUILD_VARIANT_SUBPATH'",
":",
"variant_subpath",
",",
"'REZ_BUILD_PROJECT_VERSION'",
":",
"str",
"(",
"package",
".",
"version",
")",
",",
"'REZ_BUILD_PROJECT_NAME'",
":",
"package",
".",
"name",
",",
"'REZ_BUILD_PROJECT_DESCRIPTION'",
":",
"(",
"package",
".",
"description",
"or",
"''",
")",
".",
"strip",
"(",
")",
",",
"'REZ_BUILD_PROJECT_FILE'",
":",
"package",
".",
"filepath",
",",
"'REZ_BUILD_SOURCE_PATH'",
":",
"os",
".",
"path",
".",
"dirname",
"(",
"package",
".",
"filepath",
")",
",",
"'REZ_BUILD_REQUIRES'",
":",
"' '",
".",
"join",
"(",
"str",
"(",
"x",
")",
"for",
"x",
"in",
"context",
".",
"requested_packages",
"(",
"True",
")",
")",
",",
"'REZ_BUILD_REQUIRES_UNVERSIONED'",
":",
"' '",
".",
"join",
"(",
"x",
".",
"name",
"for",
"x",
"in",
"context",
".",
"requested_packages",
"(",
"True",
")",
")",
",",
"'REZ_BUILD_TYPE'",
":",
"build_type",
".",
"name",
",",
"'REZ_BUILD_INSTALL'",
":",
"1",
"if",
"install",
"else",
"0",
",",
"}",
"if",
"install_path",
":",
"vars_",
"[",
"'REZ_BUILD_INSTALL_PATH'",
"]",
"=",
"install_path",
"if",
"config",
".",
"rez_1_environment_variables",
"and",
"not",
"config",
".",
"disable_rez_1_compatibility",
"and",
"build_type",
"==",
"BuildType",
".",
"central",
":",
"vars_",
"[",
"'REZ_IN_REZ_RELEASE'",
"]",
"=",
"1",
"return",
"vars_"
] |
Returns a standard set of environment variables that can be set
for the build system to use
|
[
"Returns",
"a",
"standard",
"set",
"of",
"environment",
"variables",
"that",
"can",
"be",
"set",
"for",
"the",
"build",
"system",
"to",
"use"
] |
python
|
train
|
dagster-io/dagster
|
python_modules/dagster/dagster/core/events/logging.py
|
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/events/logging.py#L149-L167
|
def construct_json_event_logger(json_path):
'''Record a stream of event records to json'''
check.str_param(json_path, 'json_path')
return construct_single_handler_logger(
"json-event-record-logger",
DEBUG,
JsonEventLoggerHandler(
json_path,
lambda record: construct_event_record(
StructuredLoggerMessage(
name=record.name,
message=record.msg,
level=record.levelno,
meta=record.dagster_meta,
record=record,
)
),
),
)
|
[
"def",
"construct_json_event_logger",
"(",
"json_path",
")",
":",
"check",
".",
"str_param",
"(",
"json_path",
",",
"'json_path'",
")",
"return",
"construct_single_handler_logger",
"(",
"\"json-event-record-logger\"",
",",
"DEBUG",
",",
"JsonEventLoggerHandler",
"(",
"json_path",
",",
"lambda",
"record",
":",
"construct_event_record",
"(",
"StructuredLoggerMessage",
"(",
"name",
"=",
"record",
".",
"name",
",",
"message",
"=",
"record",
".",
"msg",
",",
"level",
"=",
"record",
".",
"levelno",
",",
"meta",
"=",
"record",
".",
"dagster_meta",
",",
"record",
"=",
"record",
",",
")",
")",
",",
")",
",",
")"
] |
Record a stream of event records to json
|
[
"Record",
"a",
"stream",
"of",
"event",
"records",
"to",
"json"
] |
python
|
test
|
dnanexus/dx-toolkit
|
src/python/dxpy/api.py
|
https://github.com/dnanexus/dx-toolkit/blob/74befb53ad90fcf902d8983ae6d74580f402d619/src/python/dxpy/api.py#L1361-L1367
|
def user_update(object_id, input_params={}, always_retry=False, **kwargs):
"""
Invokes the /user-xxxx/update API method.
For more info, see: https://wiki.dnanexus.com/API-Specification-v1.0.0/Users#API-method%3A-%2Fuser-xxxx%2Fupdate
"""
return DXHTTPRequest('/%s/update' % object_id, input_params, always_retry=always_retry, **kwargs)
|
[
"def",
"user_update",
"(",
"object_id",
",",
"input_params",
"=",
"{",
"}",
",",
"always_retry",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"DXHTTPRequest",
"(",
"'/%s/update'",
"%",
"object_id",
",",
"input_params",
",",
"always_retry",
"=",
"always_retry",
",",
"*",
"*",
"kwargs",
")"
] |
Invokes the /user-xxxx/update API method.
For more info, see: https://wiki.dnanexus.com/API-Specification-v1.0.0/Users#API-method%3A-%2Fuser-xxxx%2Fupdate
|
[
"Invokes",
"the",
"/",
"user",
"-",
"xxxx",
"/",
"update",
"API",
"method",
"."
] |
python
|
train
|
garenchan/policy
|
setup.py
|
https://github.com/garenchan/policy/blob/7709ae5f371146f8c90380d0877a5e59d731f644/setup.py#L61-L68
|
def get_install_requires():
"""return package's install requires"""
base = os.path.abspath(os.path.dirname(__file__))
requirements_file = os.path.join(base, 'requirements.txt')
if not os.path.exists(requirements_file):
return []
with open(requirements_file, mode='rt', encoding='utf-8') as f:
return f.read().splitlines()
|
[
"def",
"get_install_requires",
"(",
")",
":",
"base",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"__file__",
")",
")",
"requirements_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"base",
",",
"'requirements.txt'",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"requirements_file",
")",
":",
"return",
"[",
"]",
"with",
"open",
"(",
"requirements_file",
",",
"mode",
"=",
"'rt'",
",",
"encoding",
"=",
"'utf-8'",
")",
"as",
"f",
":",
"return",
"f",
".",
"read",
"(",
")",
".",
"splitlines",
"(",
")"
] |
return package's install requires
|
[
"return",
"package",
"s",
"install",
"requires"
] |
python
|
train
|
flipagram/smarterling
|
smarterling/__init__.py
|
https://github.com/flipagram/smarterling/blob/2ea0957edad0657ba4c54280796869ffc1031b11/smarterling/__init__.py#L25-L33
|
def get(self, key, default_val=None, require_value=False):
""" Returns a dictionary value
"""
val = dict.get(self, key, default_val)
if val is None and require_value:
raise KeyError('key "%s" not found' % key)
if isinstance(val, dict):
return AttributeDict(val)
return val
|
[
"def",
"get",
"(",
"self",
",",
"key",
",",
"default_val",
"=",
"None",
",",
"require_value",
"=",
"False",
")",
":",
"val",
"=",
"dict",
".",
"get",
"(",
"self",
",",
"key",
",",
"default_val",
")",
"if",
"val",
"is",
"None",
"and",
"require_value",
":",
"raise",
"KeyError",
"(",
"'key \"%s\" not found'",
"%",
"key",
")",
"if",
"isinstance",
"(",
"val",
",",
"dict",
")",
":",
"return",
"AttributeDict",
"(",
"val",
")",
"return",
"val"
] |
Returns a dictionary value
|
[
"Returns",
"a",
"dictionary",
"value"
] |
python
|
train
|
twilio/twilio-python
|
twilio/rest/serverless/v1/service/asset/asset_version.py
|
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/serverless/v1/service/asset/asset_version.py#L209-L223
|
def get_instance(self, payload):
"""
Build an instance of AssetVersionInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.serverless.v1.service.asset.asset_version.AssetVersionInstance
:rtype: twilio.rest.serverless.v1.service.asset.asset_version.AssetVersionInstance
"""
return AssetVersionInstance(
self._version,
payload,
service_sid=self._solution['service_sid'],
asset_sid=self._solution['asset_sid'],
)
|
[
"def",
"get_instance",
"(",
"self",
",",
"payload",
")",
":",
"return",
"AssetVersionInstance",
"(",
"self",
".",
"_version",
",",
"payload",
",",
"service_sid",
"=",
"self",
".",
"_solution",
"[",
"'service_sid'",
"]",
",",
"asset_sid",
"=",
"self",
".",
"_solution",
"[",
"'asset_sid'",
"]",
",",
")"
] |
Build an instance of AssetVersionInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.serverless.v1.service.asset.asset_version.AssetVersionInstance
:rtype: twilio.rest.serverless.v1.service.asset.asset_version.AssetVersionInstance
|
[
"Build",
"an",
"instance",
"of",
"AssetVersionInstance"
] |
python
|
train
|
fr33jc/bang
|
bang/providers/hpcloud/__init__.py
|
https://github.com/fr33jc/bang/blob/8f000713f88d2a9a8c1193b63ca10a6578560c16/bang/providers/hpcloud/__init__.py#L29-L104
|
def create_db(self, instance_name, instance_type,
admin_username, admin_password, security_groups=None, db_name=None,
storage_size_gb=DEFAULT_STORAGE_SIZE_GB,
timeout_s=DEFAULT_TIMEOUT_S):
"""
Creates a database instance.
This method blocks until the db instance is active, or until
:attr:`timeout_s` has elapsed.
By default, hpcloud *assigns* an automatically-generated set of
credentials for an admin user. In addition to launching the db
instance, this method uses the autogenerated credentials to login to
the server and create the intended admin user based on the credentials
supplied as method arguments.
:param str instance_name: A name to assign to the db instance.
:param str instance_type: The server instance type (e.g. ``medium``).
:param str admin_username: The admin username.
:param str admin_password: The admin password.
:param security_groups: *Not used in hpcloud*.
:param str db_name: The database name. If this is not specified, the
database will be named the same as the :attr:`instance_name`.
:param int storage_size_gb: The size of the storage volume in GB.
:param float timeout_s: The number of seconds to poll for an active
database server before failing. This value is also used when
attempting to connect to the running mysql server.
:rtype: :class:`dict`
"""
db = self._create_db(instance_name, instance_type,
storage_size_gb)
# hang on to these... hpcloud only provides a way to generate a new
# set of username/password - there is no way to retrieve the originals.
default_creds = db.credential
log.debug('Credentials for %s: %s' % (instance_name, default_creds))
instance = self._poll_instance_status(db, timeout_s)
# we're taking advantage of a security bug in hpcloud's dbaas security
# group rules. the default *security* is to allow connections from
# everywhere in the world.
def connect():
try:
return pymysql.connect(
host=instance.hostname,
port=instance.port,
# db=self.database,
user=default_creds['username'],
passwd=default_creds['password'],
connect_timeout=timeout_s,
)
except:
log.warn("Could not connect to db, %s" % instance_name)
# log.debug("Connection exception", exc_info=True)
log.info("Connecting to %s..." % instance_name)
db = poll_with_timeout(timeout_s, connect, 10)
cur = db.cursor()
cur.execute(
"grant all privileges on *.* "
"to '%s'@'%%' identified by '%s' "
"with grant option"
% (admin_username, admin_password)
)
cur.execute("flush privileges")
return db_to_dict(instance)
|
[
"def",
"create_db",
"(",
"self",
",",
"instance_name",
",",
"instance_type",
",",
"admin_username",
",",
"admin_password",
",",
"security_groups",
"=",
"None",
",",
"db_name",
"=",
"None",
",",
"storage_size_gb",
"=",
"DEFAULT_STORAGE_SIZE_GB",
",",
"timeout_s",
"=",
"DEFAULT_TIMEOUT_S",
")",
":",
"db",
"=",
"self",
".",
"_create_db",
"(",
"instance_name",
",",
"instance_type",
",",
"storage_size_gb",
")",
"# hang on to these... hpcloud only provides a way to generate a new",
"# set of username/password - there is no way to retrieve the originals.",
"default_creds",
"=",
"db",
".",
"credential",
"log",
".",
"debug",
"(",
"'Credentials for %s: %s'",
"%",
"(",
"instance_name",
",",
"default_creds",
")",
")",
"instance",
"=",
"self",
".",
"_poll_instance_status",
"(",
"db",
",",
"timeout_s",
")",
"# we're taking advantage of a security bug in hpcloud's dbaas security",
"# group rules. the default *security* is to allow connections from",
"# everywhere in the world.",
"def",
"connect",
"(",
")",
":",
"try",
":",
"return",
"pymysql",
".",
"connect",
"(",
"host",
"=",
"instance",
".",
"hostname",
",",
"port",
"=",
"instance",
".",
"port",
",",
"# db=self.database,",
"user",
"=",
"default_creds",
"[",
"'username'",
"]",
",",
"passwd",
"=",
"default_creds",
"[",
"'password'",
"]",
",",
"connect_timeout",
"=",
"timeout_s",
",",
")",
"except",
":",
"log",
".",
"warn",
"(",
"\"Could not connect to db, %s\"",
"%",
"instance_name",
")",
"# log.debug(\"Connection exception\", exc_info=True)",
"log",
".",
"info",
"(",
"\"Connecting to %s...\"",
"%",
"instance_name",
")",
"db",
"=",
"poll_with_timeout",
"(",
"timeout_s",
",",
"connect",
",",
"10",
")",
"cur",
"=",
"db",
".",
"cursor",
"(",
")",
"cur",
".",
"execute",
"(",
"\"grant all privileges on *.* \"",
"\"to '%s'@'%%' identified by '%s' \"",
"\"with grant option\"",
"%",
"(",
"admin_username",
",",
"admin_password",
")",
")",
"cur",
".",
"execute",
"(",
"\"flush privileges\"",
")",
"return",
"db_to_dict",
"(",
"instance",
")"
] |
Creates a database instance.
This method blocks until the db instance is active, or until
:attr:`timeout_s` has elapsed.
By default, hpcloud *assigns* an automatically-generated set of
credentials for an admin user. In addition to launching the db
instance, this method uses the autogenerated credentials to login to
the server and create the intended admin user based on the credentials
supplied as method arguments.
:param str instance_name: A name to assign to the db instance.
:param str instance_type: The server instance type (e.g. ``medium``).
:param str admin_username: The admin username.
:param str admin_password: The admin password.
:param security_groups: *Not used in hpcloud*.
:param str db_name: The database name. If this is not specified, the
database will be named the same as the :attr:`instance_name`.
:param int storage_size_gb: The size of the storage volume in GB.
:param float timeout_s: The number of seconds to poll for an active
database server before failing. This value is also used when
attempting to connect to the running mysql server.
:rtype: :class:`dict`
|
[
"Creates",
"a",
"database",
"instance",
"."
] |
python
|
train
|
BerkeleyAutomation/perception
|
perception/orthographic_intrinsics.py
|
https://github.com/BerkeleyAutomation/perception/blob/03d9b37dd6b66896cdfe173905c9413c8c3c5df6/perception/orthographic_intrinsics.py#L144-L191
|
def project_to_image(self, point_cloud, round_px=True):
"""Projects a point cloud onto the camera image plane and creates
a depth image. Zero depth means no point projected into the camera
at that pixel location (i.e. infinite depth).
Parameters
----------
point_cloud : :obj:`autolab_core.PointCloud` or :obj:`autolab_core.Point`
A PointCloud or Point to project onto the camera image plane.
round_px : bool
If True, projections are rounded to the nearest pixel.
Returns
-------
:obj:`DepthImage`
A DepthImage generated from projecting the point cloud into the
camera.
Raises
------
ValueError
If the input is not a PointCloud or Point in the same reference
frame as the camera.
"""
if not isinstance(point_cloud, PointCloud) and not (isinstance(point_cloud, Point) and point_cloud.dim == 3):
raise ValueError('Must provide PointCloud or 3D Point object for projection')
if point_cloud.frame != self._frame:
raise ValueError('Cannot project points in frame %s into camera with frame %s' %(point_cloud.frame, self._frame))
points_proj = self.S.dot(point_cloud.data) + self.t
if len(points_proj.shape) == 1:
points_proj = points_proj[:, np.newaxis]
point_depths = points_proj[2,:]
point_z = np.tile(point_depths, [3, 1])
points_proj = np.divide(points_proj, point_z)
if round_px:
points_proj = np.round(points_proj)
points_proj = points_proj[:2,:].astype(np.int16)
valid_ind = np.where((points_proj[0,:] >= 0) & \
(points_proj[1,:] >= 0) & \
(points_proj[0,:] < self.width) & \
(points_proj[1,:] < self.height))[0]
depth_data = np.zeros([self.height, self.width])
depth_data[points_proj[1,valid_ind], points_proj[0,valid_ind]] = point_depths[valid_ind]
return DepthImage(depth_data, frame=self.frame)
|
[
"def",
"project_to_image",
"(",
"self",
",",
"point_cloud",
",",
"round_px",
"=",
"True",
")",
":",
"if",
"not",
"isinstance",
"(",
"point_cloud",
",",
"PointCloud",
")",
"and",
"not",
"(",
"isinstance",
"(",
"point_cloud",
",",
"Point",
")",
"and",
"point_cloud",
".",
"dim",
"==",
"3",
")",
":",
"raise",
"ValueError",
"(",
"'Must provide PointCloud or 3D Point object for projection'",
")",
"if",
"point_cloud",
".",
"frame",
"!=",
"self",
".",
"_frame",
":",
"raise",
"ValueError",
"(",
"'Cannot project points in frame %s into camera with frame %s'",
"%",
"(",
"point_cloud",
".",
"frame",
",",
"self",
".",
"_frame",
")",
")",
"points_proj",
"=",
"self",
".",
"S",
".",
"dot",
"(",
"point_cloud",
".",
"data",
")",
"+",
"self",
".",
"t",
"if",
"len",
"(",
"points_proj",
".",
"shape",
")",
"==",
"1",
":",
"points_proj",
"=",
"points_proj",
"[",
":",
",",
"np",
".",
"newaxis",
"]",
"point_depths",
"=",
"points_proj",
"[",
"2",
",",
":",
"]",
"point_z",
"=",
"np",
".",
"tile",
"(",
"point_depths",
",",
"[",
"3",
",",
"1",
"]",
")",
"points_proj",
"=",
"np",
".",
"divide",
"(",
"points_proj",
",",
"point_z",
")",
"if",
"round_px",
":",
"points_proj",
"=",
"np",
".",
"round",
"(",
"points_proj",
")",
"points_proj",
"=",
"points_proj",
"[",
":",
"2",
",",
":",
"]",
".",
"astype",
"(",
"np",
".",
"int16",
")",
"valid_ind",
"=",
"np",
".",
"where",
"(",
"(",
"points_proj",
"[",
"0",
",",
":",
"]",
">=",
"0",
")",
"&",
"(",
"points_proj",
"[",
"1",
",",
":",
"]",
">=",
"0",
")",
"&",
"(",
"points_proj",
"[",
"0",
",",
":",
"]",
"<",
"self",
".",
"width",
")",
"&",
"(",
"points_proj",
"[",
"1",
",",
":",
"]",
"<",
"self",
".",
"height",
")",
")",
"[",
"0",
"]",
"depth_data",
"=",
"np",
".",
"zeros",
"(",
"[",
"self",
".",
"height",
",",
"self",
".",
"width",
"]",
")",
"depth_data",
"[",
"points_proj",
"[",
"1",
",",
"valid_ind",
"]",
",",
"points_proj",
"[",
"0",
",",
"valid_ind",
"]",
"]",
"=",
"point_depths",
"[",
"valid_ind",
"]",
"return",
"DepthImage",
"(",
"depth_data",
",",
"frame",
"=",
"self",
".",
"frame",
")"
] |
Projects a point cloud onto the camera image plane and creates
a depth image. Zero depth means no point projected into the camera
at that pixel location (i.e. infinite depth).
Parameters
----------
point_cloud : :obj:`autolab_core.PointCloud` or :obj:`autolab_core.Point`
A PointCloud or Point to project onto the camera image plane.
round_px : bool
If True, projections are rounded to the nearest pixel.
Returns
-------
:obj:`DepthImage`
A DepthImage generated from projecting the point cloud into the
camera.
Raises
------
ValueError
If the input is not a PointCloud or Point in the same reference
frame as the camera.
|
[
"Projects",
"a",
"point",
"cloud",
"onto",
"the",
"camera",
"image",
"plane",
"and",
"creates",
"a",
"depth",
"image",
".",
"Zero",
"depth",
"means",
"no",
"point",
"projected",
"into",
"the",
"camera",
"at",
"that",
"pixel",
"location",
"(",
"i",
".",
"e",
".",
"infinite",
"depth",
")",
"."
] |
python
|
train
|
IBMStreams/pypi.streamsx
|
streamsx/rest_primitives.py
|
https://github.com/IBMStreams/pypi.streamsx/blob/abd67b4757120f6f805787fba390f53e9df9cdd8/streamsx/rest_primitives.py#L2465-L2488
|
def update(self, properties=None, description=None):
"""Update this application configuration.
To create or update a property provide its key-value
pair in `properties`.
To delete a property provide its key with the value ``None``
in properties.
Args:
properties (dict): Property values to be updated. If ``None`` the properties are unchanged.
description (str): Description for the configuration. If ``None`` the description is unchanged.
Returns:
ApplicationConfiguration: self
"""
cv = ApplicationConfiguration._props(properties=properties, description=description)
res = self.rest_client.session.patch(self.rest_self,
headers = {'Accept' : 'application/json',
'Content-Type' : 'application/json'},
json=cv)
_handle_http_errors(res)
self.json_rep = res.json()
return self
|
[
"def",
"update",
"(",
"self",
",",
"properties",
"=",
"None",
",",
"description",
"=",
"None",
")",
":",
"cv",
"=",
"ApplicationConfiguration",
".",
"_props",
"(",
"properties",
"=",
"properties",
",",
"description",
"=",
"description",
")",
"res",
"=",
"self",
".",
"rest_client",
".",
"session",
".",
"patch",
"(",
"self",
".",
"rest_self",
",",
"headers",
"=",
"{",
"'Accept'",
":",
"'application/json'",
",",
"'Content-Type'",
":",
"'application/json'",
"}",
",",
"json",
"=",
"cv",
")",
"_handle_http_errors",
"(",
"res",
")",
"self",
".",
"json_rep",
"=",
"res",
".",
"json",
"(",
")",
"return",
"self"
] |
Update this application configuration.
To create or update a property provide its key-value
pair in `properties`.
To delete a property provide its key with the value ``None``
in properties.
Args:
properties (dict): Property values to be updated. If ``None`` the properties are unchanged.
description (str): Description for the configuration. If ``None`` the description is unchanged.
Returns:
ApplicationConfiguration: self
|
[
"Update",
"this",
"application",
"configuration",
"."
] |
python
|
train
|
ReadabilityHoldings/python-readability-api
|
readability/clients.py
|
https://github.com/ReadabilityHoldings/python-readability-api/blob/4b746166877d5a8dc29222aedccb18c2506a5385/readability/clients.py#L128-L152
|
def get_bookmarks(self, **filters):
"""
Get Bookmarks for the current user.
Filters:
:param archive: Filter Bookmarks returned by archived status.
:param favorite: Filter Bookmarks returned by favorite status.
:param domain: Filter Bookmarks returned by a domain.
:param added_since: Filter bookmarks by date added (since this date).
:param added_until: Filter bookmarks by date added (until this date).
:param opened_since: Filter bookmarks by date opened (since this date).
:param opened_until: Filter bookmarks by date opened (until this date).
:param archived_since: Filter bookmarks by date archived (since this date.)
:param archived_until: Filter bookmarks by date archived (until this date.)
:param updated_since: Filter bookmarks by date updated (since this date.)
:param updated_until: Filter bookmarks by date updated (until this date.)
:param page: What page of results to return. Default is 1.
:param per_page: How many results to return per page. Default is 20, max is 50.
:param only_deleted: Return only bookmarks that this user has deleted.
:param tags: Comma separated string of tags to filter bookmarks.
"""
filter_dict = filter_args_to_dict(filters, ACCEPTED_BOOKMARK_FILTERS)
url = self._generate_url('bookmarks', query_params=filter_dict)
return self.get(url)
|
[
"def",
"get_bookmarks",
"(",
"self",
",",
"*",
"*",
"filters",
")",
":",
"filter_dict",
"=",
"filter_args_to_dict",
"(",
"filters",
",",
"ACCEPTED_BOOKMARK_FILTERS",
")",
"url",
"=",
"self",
".",
"_generate_url",
"(",
"'bookmarks'",
",",
"query_params",
"=",
"filter_dict",
")",
"return",
"self",
".",
"get",
"(",
"url",
")"
] |
Get Bookmarks for the current user.
Filters:
:param archive: Filter Bookmarks returned by archived status.
:param favorite: Filter Bookmarks returned by favorite status.
:param domain: Filter Bookmarks returned by a domain.
:param added_since: Filter bookmarks by date added (since this date).
:param added_until: Filter bookmarks by date added (until this date).
:param opened_since: Filter bookmarks by date opened (since this date).
:param opened_until: Filter bookmarks by date opened (until this date).
:param archived_since: Filter bookmarks by date archived (since this date.)
:param archived_until: Filter bookmarks by date archived (until this date.)
:param updated_since: Filter bookmarks by date updated (since this date.)
:param updated_until: Filter bookmarks by date updated (until this date.)
:param page: What page of results to return. Default is 1.
:param per_page: How many results to return per page. Default is 20, max is 50.
:param only_deleted: Return only bookmarks that this user has deleted.
:param tags: Comma separated string of tags to filter bookmarks.
|
[
"Get",
"Bookmarks",
"for",
"the",
"current",
"user",
"."
] |
python
|
train
|
ContextLab/hypertools
|
hypertools/tools/format_data.py
|
https://github.com/ContextLab/hypertools/blob/b76c7ac8061998b560e969ff8e4f4c915088e7a0/hypertools/tools/format_data.py#L10-L164
|
def format_data(x, vectorizer='CountVectorizer',
semantic='LatentDirichletAllocation', corpus='wiki', ppca=True, text_align='hyper'):
"""
Formats data into a list of numpy arrays
This function is useful to identify rows of your array that contain missing
data or nans. The returned indices can be used to remove the rows with
missing data, or label the missing data points that are interpolated
using PPCA.
Parameters
----------
x : numpy array, dataframe, string or (mixed) list
The data to convert
vectorizer : str, dict, class or class instance
The vectorizer to use. Built-in options are 'CountVectorizer' or
'TfidfVectorizer'. To change default parameters, set to a dictionary
e.g. {'model' : 'CountVectorizer', 'params' : {'max_features' : 10}}. See
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction.text
for details. You can also specify your own vectorizer model as a class,
or class instance. With either option, the class must have a
fit_transform method (see here: http://scikit-learn.org/stable/data_transforms.html).
If a class, pass any parameters as a dictionary to vectorizer_params. If
a class instance, no parameters can be passed.
semantic : str, dict, class or class instance
Text model to use to transform text data. Built-in options are
'LatentDirichletAllocation' or 'NMF' (default: LDA). To change default
parameters, set to a dictionary e.g. {'model' : 'NMF', 'params' :
{'n_components' : 10}}. See
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
for details on the two model options. You can also specify your own
text model as a class, or class instance. With either option, the class
must have a fit_transform method (see here:
http://scikit-learn.org/stable/data_transforms.html).
If a class, pass any parameters as a dictionary to text_params. If
a class instance, no parameters can be passed.
corpus : list (or list of lists) of text samples or 'wiki', 'nips', 'sotus'.
Text to use to fit the semantic model (optional). If set to 'wiki', 'nips'
or 'sotus' and the default semantic and vectorizer models are used, a
pretrained model will be loaded which can save a lot of time.
ppca : bool
Performs PPCA to fill in missing values (default: True)
text_align : str
Alignment algorithm to use when both text and numerical data are passed.
If numerical arrays have the same shape, and the text data contains the
same number of samples, the text and numerical data are automatically
aligned to a common space. Example use case: an array of movie frames
(frames by pixels) and text descriptions of the frame. In this case,
the movie and text will be automatically aligned to the same space
(default: hyperalignment).
Returns
----------
data : list of numpy arrays
A list of formatted arrays
"""
# not sure why i needed to import here, but its the only way I could get it to work
from .df2mat import df2mat
from .text2mat import text2mat
from ..datageometry import DataGeometry
# if x is not a list, make it one
if type(x) is not list:
x = [x]
if all([isinstance(xi, six.string_types) for xi in x]):
x = [x]
# check data type for each element in list
dtypes = list(map(get_type, x))
# handle text data:
if any(map(lambda x: x in ['list_str', 'str', 'arr_str'], dtypes)):
# default text args
text_args = {
'vectorizer' : vectorizer,
'semantic' : semantic,
'corpus' : corpus
}
# filter text data
text_data = []
for i,j in zip(x, dtypes):
if j in ['list_str', 'str', 'arr_str']:
text_data.append(np.array(i).reshape(-1, 1))
# convert text to numerical matrices
text_data = text2mat(text_data, **text_args)
# replace the text data with transformed data
processed_x = []
textidx=0
for i, dtype in enumerate(dtypes):
if dtype in ['list_str', 'str', 'arr_str']:
processed_x.append(text_data[textidx])
textidx+=1
elif dtype == 'df':
processed_x.append(df2mat(x[i]))
elif dtype == 'geo':
text_args = {
'vectorizer' : vectorizer,
'semantic' : semantic,
'corpus' : corpus
}
for j in format_data(x[i].get_data(), **text_args):
processed_x.append(j)
else:
processed_x.append(x[i])
# reshape anything that is 1d
if any([i.ndim<=1 for i in processed_x]):
processed_x = [np.reshape(i,(i.shape[0],1)) if i.ndim==1 else i for i in processed_x]
contains_text = any([dtype in ['list_str', 'str', 'arr_str'] for dtype in dtypes])
contains_num = any([dtype in ['list_num', 'array', 'df', 'arr_num'] for dtype in dtypes])
# if there are any nans in any of the lists, use ppca
if ppca is True:
if contains_num:
num_data = []
for i,j in zip(processed_x, dtypes):
if j in ['list_num', 'array', 'df', 'arr_num']:
num_data.append(i)
if np.isnan(np.vstack(num_data)).any():
warnings.warn('Missing data: Inexact solution computed with PPCA (see https://github.com/allentran/pca-magic for details)')
num_data = fill_missing(num_data)
x_temp = []
for dtype in dtypes:
if dtype in ['list_str', 'str', 'arr_str']:
x_temp.append(text_data.pop(0))
elif dtype in ['list_num', 'array', 'df', 'arr_num']:
x_temp.append(num_data.pop(0))
processed_x = x_temp
# if input data contains both text and numerical data
if contains_num and contains_text:
# and if they have the same number of samples
if np.unique(np.array([i.shape[0] for i, j in zip(processed_x, dtypes)])).shape[0] == 1:
from .align import align as aligner
# align the data
warnings.warn('Numerical and text data with same number of '
'samples detected. Aligning data to a common space.')
processed_x = aligner(processed_x, align=text_align, format_data=False)
return processed_x
|
[
"def",
"format_data",
"(",
"x",
",",
"vectorizer",
"=",
"'CountVectorizer'",
",",
"semantic",
"=",
"'LatentDirichletAllocation'",
",",
"corpus",
"=",
"'wiki'",
",",
"ppca",
"=",
"True",
",",
"text_align",
"=",
"'hyper'",
")",
":",
"# not sure why i needed to import here, but its the only way I could get it to work",
"from",
".",
"df2mat",
"import",
"df2mat",
"from",
".",
"text2mat",
"import",
"text2mat",
"from",
".",
".",
"datageometry",
"import",
"DataGeometry",
"# if x is not a list, make it one",
"if",
"type",
"(",
"x",
")",
"is",
"not",
"list",
":",
"x",
"=",
"[",
"x",
"]",
"if",
"all",
"(",
"[",
"isinstance",
"(",
"xi",
",",
"six",
".",
"string_types",
")",
"for",
"xi",
"in",
"x",
"]",
")",
":",
"x",
"=",
"[",
"x",
"]",
"# check data type for each element in list",
"dtypes",
"=",
"list",
"(",
"map",
"(",
"get_type",
",",
"x",
")",
")",
"# handle text data:",
"if",
"any",
"(",
"map",
"(",
"lambda",
"x",
":",
"x",
"in",
"[",
"'list_str'",
",",
"'str'",
",",
"'arr_str'",
"]",
",",
"dtypes",
")",
")",
":",
"# default text args",
"text_args",
"=",
"{",
"'vectorizer'",
":",
"vectorizer",
",",
"'semantic'",
":",
"semantic",
",",
"'corpus'",
":",
"corpus",
"}",
"# filter text data",
"text_data",
"=",
"[",
"]",
"for",
"i",
",",
"j",
"in",
"zip",
"(",
"x",
",",
"dtypes",
")",
":",
"if",
"j",
"in",
"[",
"'list_str'",
",",
"'str'",
",",
"'arr_str'",
"]",
":",
"text_data",
".",
"append",
"(",
"np",
".",
"array",
"(",
"i",
")",
".",
"reshape",
"(",
"-",
"1",
",",
"1",
")",
")",
"# convert text to numerical matrices",
"text_data",
"=",
"text2mat",
"(",
"text_data",
",",
"*",
"*",
"text_args",
")",
"# replace the text data with transformed data",
"processed_x",
"=",
"[",
"]",
"textidx",
"=",
"0",
"for",
"i",
",",
"dtype",
"in",
"enumerate",
"(",
"dtypes",
")",
":",
"if",
"dtype",
"in",
"[",
"'list_str'",
",",
"'str'",
",",
"'arr_str'",
"]",
":",
"processed_x",
".",
"append",
"(",
"text_data",
"[",
"textidx",
"]",
")",
"textidx",
"+=",
"1",
"elif",
"dtype",
"==",
"'df'",
":",
"processed_x",
".",
"append",
"(",
"df2mat",
"(",
"x",
"[",
"i",
"]",
")",
")",
"elif",
"dtype",
"==",
"'geo'",
":",
"text_args",
"=",
"{",
"'vectorizer'",
":",
"vectorizer",
",",
"'semantic'",
":",
"semantic",
",",
"'corpus'",
":",
"corpus",
"}",
"for",
"j",
"in",
"format_data",
"(",
"x",
"[",
"i",
"]",
".",
"get_data",
"(",
")",
",",
"*",
"*",
"text_args",
")",
":",
"processed_x",
".",
"append",
"(",
"j",
")",
"else",
":",
"processed_x",
".",
"append",
"(",
"x",
"[",
"i",
"]",
")",
"# reshape anything that is 1d",
"if",
"any",
"(",
"[",
"i",
".",
"ndim",
"<=",
"1",
"for",
"i",
"in",
"processed_x",
"]",
")",
":",
"processed_x",
"=",
"[",
"np",
".",
"reshape",
"(",
"i",
",",
"(",
"i",
".",
"shape",
"[",
"0",
"]",
",",
"1",
")",
")",
"if",
"i",
".",
"ndim",
"==",
"1",
"else",
"i",
"for",
"i",
"in",
"processed_x",
"]",
"contains_text",
"=",
"any",
"(",
"[",
"dtype",
"in",
"[",
"'list_str'",
",",
"'str'",
",",
"'arr_str'",
"]",
"for",
"dtype",
"in",
"dtypes",
"]",
")",
"contains_num",
"=",
"any",
"(",
"[",
"dtype",
"in",
"[",
"'list_num'",
",",
"'array'",
",",
"'df'",
",",
"'arr_num'",
"]",
"for",
"dtype",
"in",
"dtypes",
"]",
")",
"# if there are any nans in any of the lists, use ppca",
"if",
"ppca",
"is",
"True",
":",
"if",
"contains_num",
":",
"num_data",
"=",
"[",
"]",
"for",
"i",
",",
"j",
"in",
"zip",
"(",
"processed_x",
",",
"dtypes",
")",
":",
"if",
"j",
"in",
"[",
"'list_num'",
",",
"'array'",
",",
"'df'",
",",
"'arr_num'",
"]",
":",
"num_data",
".",
"append",
"(",
"i",
")",
"if",
"np",
".",
"isnan",
"(",
"np",
".",
"vstack",
"(",
"num_data",
")",
")",
".",
"any",
"(",
")",
":",
"warnings",
".",
"warn",
"(",
"'Missing data: Inexact solution computed with PPCA (see https://github.com/allentran/pca-magic for details)'",
")",
"num_data",
"=",
"fill_missing",
"(",
"num_data",
")",
"x_temp",
"=",
"[",
"]",
"for",
"dtype",
"in",
"dtypes",
":",
"if",
"dtype",
"in",
"[",
"'list_str'",
",",
"'str'",
",",
"'arr_str'",
"]",
":",
"x_temp",
".",
"append",
"(",
"text_data",
".",
"pop",
"(",
"0",
")",
")",
"elif",
"dtype",
"in",
"[",
"'list_num'",
",",
"'array'",
",",
"'df'",
",",
"'arr_num'",
"]",
":",
"x_temp",
".",
"append",
"(",
"num_data",
".",
"pop",
"(",
"0",
")",
")",
"processed_x",
"=",
"x_temp",
"# if input data contains both text and numerical data",
"if",
"contains_num",
"and",
"contains_text",
":",
"# and if they have the same number of samples",
"if",
"np",
".",
"unique",
"(",
"np",
".",
"array",
"(",
"[",
"i",
".",
"shape",
"[",
"0",
"]",
"for",
"i",
",",
"j",
"in",
"zip",
"(",
"processed_x",
",",
"dtypes",
")",
"]",
")",
")",
".",
"shape",
"[",
"0",
"]",
"==",
"1",
":",
"from",
".",
"align",
"import",
"align",
"as",
"aligner",
"# align the data",
"warnings",
".",
"warn",
"(",
"'Numerical and text data with same number of '",
"'samples detected. Aligning data to a common space.'",
")",
"processed_x",
"=",
"aligner",
"(",
"processed_x",
",",
"align",
"=",
"text_align",
",",
"format_data",
"=",
"False",
")",
"return",
"processed_x"
] |
Formats data into a list of numpy arrays
This function is useful to identify rows of your array that contain missing
data or nans. The returned indices can be used to remove the rows with
missing data, or label the missing data points that are interpolated
using PPCA.
Parameters
----------
x : numpy array, dataframe, string or (mixed) list
The data to convert
vectorizer : str, dict, class or class instance
The vectorizer to use. Built-in options are 'CountVectorizer' or
'TfidfVectorizer'. To change default parameters, set to a dictionary
e.g. {'model' : 'CountVectorizer', 'params' : {'max_features' : 10}}. See
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction.text
for details. You can also specify your own vectorizer model as a class,
or class instance. With either option, the class must have a
fit_transform method (see here: http://scikit-learn.org/stable/data_transforms.html).
If a class, pass any parameters as a dictionary to vectorizer_params. If
a class instance, no parameters can be passed.
semantic : str, dict, class or class instance
Text model to use to transform text data. Built-in options are
'LatentDirichletAllocation' or 'NMF' (default: LDA). To change default
parameters, set to a dictionary e.g. {'model' : 'NMF', 'params' :
{'n_components' : 10}}. See
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
for details on the two model options. You can also specify your own
text model as a class, or class instance. With either option, the class
must have a fit_transform method (see here:
http://scikit-learn.org/stable/data_transforms.html).
If a class, pass any parameters as a dictionary to text_params. If
a class instance, no parameters can be passed.
corpus : list (or list of lists) of text samples or 'wiki', 'nips', 'sotus'.
Text to use to fit the semantic model (optional). If set to 'wiki', 'nips'
or 'sotus' and the default semantic and vectorizer models are used, a
pretrained model will be loaded which can save a lot of time.
ppca : bool
Performs PPCA to fill in missing values (default: True)
text_align : str
Alignment algorithm to use when both text and numerical data are passed.
If numerical arrays have the same shape, and the text data contains the
same number of samples, the text and numerical data are automatically
aligned to a common space. Example use case: an array of movie frames
(frames by pixels) and text descriptions of the frame. In this case,
the movie and text will be automatically aligned to the same space
(default: hyperalignment).
Returns
----------
data : list of numpy arrays
A list of formatted arrays
|
[
"Formats",
"data",
"into",
"a",
"list",
"of",
"numpy",
"arrays"
] |
python
|
train
|
thiagopbueno/tf-rddlsim
|
tfrddlsim/policy/random_policy.py
|
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/policy/random_policy.py#L70-L86
|
def _sample_actions(self,
state: Sequence[tf.Tensor]) -> Tuple[Sequence[tf.Tensor], tf.Tensor, tf.Tensor]:
'''Returns sampled action fluents and tensors related to the sampling.
Args:
state (Sequence[tf.Tensor]): A list of state fluents.
Returns:
Tuple[Sequence[tf.Tensor], tf.Tensor, tf.Tensor]: A tuple with
action fluents, an integer tensor for the number of samples, and
a boolean tensor for checking all action preconditions.
'''
default = self.compiler.compile_default_action(self.batch_size)
bound_constraints = self.compiler.compile_action_bound_constraints(state)
action = self._sample_action(bound_constraints, default)
n, action, checking = self._check_preconditions(state, action, bound_constraints, default)
return action, n, checking
|
[
"def",
"_sample_actions",
"(",
"self",
",",
"state",
":",
"Sequence",
"[",
"tf",
".",
"Tensor",
"]",
")",
"->",
"Tuple",
"[",
"Sequence",
"[",
"tf",
".",
"Tensor",
"]",
",",
"tf",
".",
"Tensor",
",",
"tf",
".",
"Tensor",
"]",
":",
"default",
"=",
"self",
".",
"compiler",
".",
"compile_default_action",
"(",
"self",
".",
"batch_size",
")",
"bound_constraints",
"=",
"self",
".",
"compiler",
".",
"compile_action_bound_constraints",
"(",
"state",
")",
"action",
"=",
"self",
".",
"_sample_action",
"(",
"bound_constraints",
",",
"default",
")",
"n",
",",
"action",
",",
"checking",
"=",
"self",
".",
"_check_preconditions",
"(",
"state",
",",
"action",
",",
"bound_constraints",
",",
"default",
")",
"return",
"action",
",",
"n",
",",
"checking"
] |
Returns sampled action fluents and tensors related to the sampling.
Args:
state (Sequence[tf.Tensor]): A list of state fluents.
Returns:
Tuple[Sequence[tf.Tensor], tf.Tensor, tf.Tensor]: A tuple with
action fluents, an integer tensor for the number of samples, and
a boolean tensor for checking all action preconditions.
|
[
"Returns",
"sampled",
"action",
"fluents",
"and",
"tensors",
"related",
"to",
"the",
"sampling",
"."
] |
python
|
train
|
wolfhong/formic
|
formic/formic.py
|
https://github.com/wolfhong/formic/blob/0d81eb88dcbb6fa705194fc6ccf2993f4abbaa76/formic/formic.py#L835-L857
|
def match(self, files):
"""Given a set of files in this directory, returns all the files that
match the :class:`Pattern` instances which match this directory."""
if not files:
return set()
if (self.matched_inherit.all_files()
or self.matched_and_subdir.all_files()
or self.matched_no_subdir.all_files()):
# Optimization: one of the matched patterns matches everything
# So simply return it
return set(files)
unmatched = set(files)
matched = set()
for pattern_set in self._matching_pattern_sets():
pattern_set.match_files(matched, unmatched)
if not unmatched:
# Optimization: If we have matched all files already
# simply return at this point - nothing else to do
break
return matched
|
[
"def",
"match",
"(",
"self",
",",
"files",
")",
":",
"if",
"not",
"files",
":",
"return",
"set",
"(",
")",
"if",
"(",
"self",
".",
"matched_inherit",
".",
"all_files",
"(",
")",
"or",
"self",
".",
"matched_and_subdir",
".",
"all_files",
"(",
")",
"or",
"self",
".",
"matched_no_subdir",
".",
"all_files",
"(",
")",
")",
":",
"# Optimization: one of the matched patterns matches everything",
"# So simply return it",
"return",
"set",
"(",
"files",
")",
"unmatched",
"=",
"set",
"(",
"files",
")",
"matched",
"=",
"set",
"(",
")",
"for",
"pattern_set",
"in",
"self",
".",
"_matching_pattern_sets",
"(",
")",
":",
"pattern_set",
".",
"match_files",
"(",
"matched",
",",
"unmatched",
")",
"if",
"not",
"unmatched",
":",
"# Optimization: If we have matched all files already",
"# simply return at this point - nothing else to do",
"break",
"return",
"matched"
] |
Given a set of files in this directory, returns all the files that
match the :class:`Pattern` instances which match this directory.
|
[
"Given",
"a",
"set",
"of",
"files",
"in",
"this",
"directory",
"returns",
"all",
"the",
"files",
"that",
"match",
"the",
":",
"class",
":",
"Pattern",
"instances",
"which",
"match",
"this",
"directory",
"."
] |
python
|
train
|
20c/vaping
|
vaping/config.py
|
https://github.com/20c/vaping/blob/c51f00586c99edb3d51e4abdbdfe3174755533ee/vaping/config.py#L8-L33
|
def parse_interval(val):
"""
converts a string to float of seconds
.5 = 500ms
90 = 1m30s
"""
re_intv = re.compile(r"([\d\.]+)([a-zA-Z]+)")
val = val.strip()
total = 0.0
for match in re_intv.findall(val):
unit = match[1]
count = float(match[0])
if unit == 's':
total += count
elif unit == 'm':
total += count * 60
elif unit == 'ms':
total += count / 1000
elif unit == "h":
total += count * 3600
elif unit == 'd':
total += count * 86400
else:
raise ValueError("unknown unit from interval string '%s'" % val)
return total
|
[
"def",
"parse_interval",
"(",
"val",
")",
":",
"re_intv",
"=",
"re",
".",
"compile",
"(",
"r\"([\\d\\.]+)([a-zA-Z]+)\"",
")",
"val",
"=",
"val",
".",
"strip",
"(",
")",
"total",
"=",
"0.0",
"for",
"match",
"in",
"re_intv",
".",
"findall",
"(",
"val",
")",
":",
"unit",
"=",
"match",
"[",
"1",
"]",
"count",
"=",
"float",
"(",
"match",
"[",
"0",
"]",
")",
"if",
"unit",
"==",
"'s'",
":",
"total",
"+=",
"count",
"elif",
"unit",
"==",
"'m'",
":",
"total",
"+=",
"count",
"*",
"60",
"elif",
"unit",
"==",
"'ms'",
":",
"total",
"+=",
"count",
"/",
"1000",
"elif",
"unit",
"==",
"\"h\"",
":",
"total",
"+=",
"count",
"*",
"3600",
"elif",
"unit",
"==",
"'d'",
":",
"total",
"+=",
"count",
"*",
"86400",
"else",
":",
"raise",
"ValueError",
"(",
"\"unknown unit from interval string '%s'\"",
"%",
"val",
")",
"return",
"total"
] |
converts a string to float of seconds
.5 = 500ms
90 = 1m30s
|
[
"converts",
"a",
"string",
"to",
"float",
"of",
"seconds",
".",
"5",
"=",
"500ms",
"90",
"=",
"1m30s"
] |
python
|
train
|
awesto/djangoshop-stripe
|
shop_stripe/payment.py
|
https://github.com/awesto/djangoshop-stripe/blob/010d4642f971961cfeb415520ad819b3751281cb/shop_stripe/payment.py#L28-L38
|
def get_payment_request(self, cart, request):
"""
From the given request, add a snippet to the page.
"""
try:
self.charge(cart, request)
thank_you_url = OrderModel.objects.get_latest_url()
js_expression = 'window.location.href="{}";'.format(thank_you_url)
return js_expression
except (KeyError, stripe.error.StripeError) as err:
raise ValidationError(err)
|
[
"def",
"get_payment_request",
"(",
"self",
",",
"cart",
",",
"request",
")",
":",
"try",
":",
"self",
".",
"charge",
"(",
"cart",
",",
"request",
")",
"thank_you_url",
"=",
"OrderModel",
".",
"objects",
".",
"get_latest_url",
"(",
")",
"js_expression",
"=",
"'window.location.href=\"{}\";'",
".",
"format",
"(",
"thank_you_url",
")",
"return",
"js_expression",
"except",
"(",
"KeyError",
",",
"stripe",
".",
"error",
".",
"StripeError",
")",
"as",
"err",
":",
"raise",
"ValidationError",
"(",
"err",
")"
] |
From the given request, add a snippet to the page.
|
[
"From",
"the",
"given",
"request",
"add",
"a",
"snippet",
"to",
"the",
"page",
"."
] |
python
|
train
|
KnorrFG/pyparadigm
|
pyparadigm/surface_composition.py
|
https://github.com/KnorrFG/pyparadigm/blob/69944cdf3ce2f6414ae1aa1d27a0d8c6e5fb3fd3/pyparadigm/surface_composition.py#L264-L282
|
def from_scale(scale_w, scale_h=None):
"""Creates a padding by the remaining space after scaling the content.
E.g. Padding.from_scale(0.5) would produce Padding(0.25, 0.25, 0.25, 0.25) and
Padding.from_scale(0.5, 1) would produce Padding(0.25, 0.25, 0, 0)
because the content would not be scaled (since scale_h=1) and therefore
there would be no vertical padding.
If scale_h is not specified scale_h=scale_w is used as default
:param scale_w: horizontal scaling factors
:type scale_w: float
:param scale_h: vertical scaling factor
:type scale_h: float
"""
if not scale_h: scale_h = scale_w
w_padding = [(1 - scale_w) * 0.5] * 2
h_padding = [(1 - scale_h) * 0.5] * 2
return Padding(*w_padding, *h_padding)
|
[
"def",
"from_scale",
"(",
"scale_w",
",",
"scale_h",
"=",
"None",
")",
":",
"if",
"not",
"scale_h",
":",
"scale_h",
"=",
"scale_w",
"w_padding",
"=",
"[",
"(",
"1",
"-",
"scale_w",
")",
"*",
"0.5",
"]",
"*",
"2",
"h_padding",
"=",
"[",
"(",
"1",
"-",
"scale_h",
")",
"*",
"0.5",
"]",
"*",
"2",
"return",
"Padding",
"(",
"*",
"w_padding",
",",
"*",
"h_padding",
")"
] |
Creates a padding by the remaining space after scaling the content.
E.g. Padding.from_scale(0.5) would produce Padding(0.25, 0.25, 0.25, 0.25) and
Padding.from_scale(0.5, 1) would produce Padding(0.25, 0.25, 0, 0)
because the content would not be scaled (since scale_h=1) and therefore
there would be no vertical padding.
If scale_h is not specified scale_h=scale_w is used as default
:param scale_w: horizontal scaling factors
:type scale_w: float
:param scale_h: vertical scaling factor
:type scale_h: float
|
[
"Creates",
"a",
"padding",
"by",
"the",
"remaining",
"space",
"after",
"scaling",
"the",
"content",
"."
] |
python
|
train
|
twilio/twilio-python
|
twilio/rest/api/v2010/account/connect_app.py
|
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/api/v2010/account/connect_app.py#L231-L273
|
def update(self, authorize_redirect_url=values.unset, company_name=values.unset,
deauthorize_callback_method=values.unset,
deauthorize_callback_url=values.unset, description=values.unset,
friendly_name=values.unset, homepage_url=values.unset,
permissions=values.unset):
"""
Update the ConnectAppInstance
:param unicode authorize_redirect_url: The URL to redirect the user to after authorization
:param unicode company_name: The company name to set for the Connect App
:param unicode deauthorize_callback_method: The HTTP method to use when calling deauthorize_callback_url
:param unicode deauthorize_callback_url: The URL to call to de-authorize the Connect App
:param unicode description: A description of the Connect App
:param unicode friendly_name: A string to describe the resource
:param unicode homepage_url: A public URL where users can obtain more information
:param ConnectAppInstance.Permission permissions: The set of permissions that your ConnectApp will request
:returns: Updated ConnectAppInstance
:rtype: twilio.rest.api.v2010.account.connect_app.ConnectAppInstance
"""
data = values.of({
'AuthorizeRedirectUrl': authorize_redirect_url,
'CompanyName': company_name,
'DeauthorizeCallbackMethod': deauthorize_callback_method,
'DeauthorizeCallbackUrl': deauthorize_callback_url,
'Description': description,
'FriendlyName': friendly_name,
'HomepageUrl': homepage_url,
'Permissions': serialize.map(permissions, lambda e: e),
})
payload = self._version.update(
'POST',
self._uri,
data=data,
)
return ConnectAppInstance(
self._version,
payload,
account_sid=self._solution['account_sid'],
sid=self._solution['sid'],
)
|
[
"def",
"update",
"(",
"self",
",",
"authorize_redirect_url",
"=",
"values",
".",
"unset",
",",
"company_name",
"=",
"values",
".",
"unset",
",",
"deauthorize_callback_method",
"=",
"values",
".",
"unset",
",",
"deauthorize_callback_url",
"=",
"values",
".",
"unset",
",",
"description",
"=",
"values",
".",
"unset",
",",
"friendly_name",
"=",
"values",
".",
"unset",
",",
"homepage_url",
"=",
"values",
".",
"unset",
",",
"permissions",
"=",
"values",
".",
"unset",
")",
":",
"data",
"=",
"values",
".",
"of",
"(",
"{",
"'AuthorizeRedirectUrl'",
":",
"authorize_redirect_url",
",",
"'CompanyName'",
":",
"company_name",
",",
"'DeauthorizeCallbackMethod'",
":",
"deauthorize_callback_method",
",",
"'DeauthorizeCallbackUrl'",
":",
"deauthorize_callback_url",
",",
"'Description'",
":",
"description",
",",
"'FriendlyName'",
":",
"friendly_name",
",",
"'HomepageUrl'",
":",
"homepage_url",
",",
"'Permissions'",
":",
"serialize",
".",
"map",
"(",
"permissions",
",",
"lambda",
"e",
":",
"e",
")",
",",
"}",
")",
"payload",
"=",
"self",
".",
"_version",
".",
"update",
"(",
"'POST'",
",",
"self",
".",
"_uri",
",",
"data",
"=",
"data",
",",
")",
"return",
"ConnectAppInstance",
"(",
"self",
".",
"_version",
",",
"payload",
",",
"account_sid",
"=",
"self",
".",
"_solution",
"[",
"'account_sid'",
"]",
",",
"sid",
"=",
"self",
".",
"_solution",
"[",
"'sid'",
"]",
",",
")"
] |
Update the ConnectAppInstance
:param unicode authorize_redirect_url: The URL to redirect the user to after authorization
:param unicode company_name: The company name to set for the Connect App
:param unicode deauthorize_callback_method: The HTTP method to use when calling deauthorize_callback_url
:param unicode deauthorize_callback_url: The URL to call to de-authorize the Connect App
:param unicode description: A description of the Connect App
:param unicode friendly_name: A string to describe the resource
:param unicode homepage_url: A public URL where users can obtain more information
:param ConnectAppInstance.Permission permissions: The set of permissions that your ConnectApp will request
:returns: Updated ConnectAppInstance
:rtype: twilio.rest.api.v2010.account.connect_app.ConnectAppInstance
|
[
"Update",
"the",
"ConnectAppInstance"
] |
python
|
train
|
mozilla/elasticutils
|
elasticutils/contrib/django/__init__.py
|
https://github.com/mozilla/elasticutils/blob/b880cc5d51fb1079b0581255ec664c1ec934656e/elasticutils/contrib/django/__init__.py#L298-L310
|
def get_indexable(cls):
"""Returns the queryset of ids of all things to be indexed.
Defaults to::
cls.get_model().objects.order_by('id').values_list(
'id', flat=True)
:returns: iterable of ids of objects to be indexed
"""
model = cls.get_model()
return model.objects.order_by('id').values_list('id', flat=True)
|
[
"def",
"get_indexable",
"(",
"cls",
")",
":",
"model",
"=",
"cls",
".",
"get_model",
"(",
")",
"return",
"model",
".",
"objects",
".",
"order_by",
"(",
"'id'",
")",
".",
"values_list",
"(",
"'id'",
",",
"flat",
"=",
"True",
")"
] |
Returns the queryset of ids of all things to be indexed.
Defaults to::
cls.get_model().objects.order_by('id').values_list(
'id', flat=True)
:returns: iterable of ids of objects to be indexed
|
[
"Returns",
"the",
"queryset",
"of",
"ids",
"of",
"all",
"things",
"to",
"be",
"indexed",
"."
] |
python
|
train
|
williamgilpin/pypdb
|
pypdb/pypdb.py
|
https://github.com/williamgilpin/pypdb/blob/bfb9e1b15b4ad097c5add50c4c176ac6cb28ee15/pypdb/pypdb.py#L313-L341
|
def get_info(pdb_id, url_root='http://www.rcsb.org/pdb/rest/describeMol?structureId='):
'''Look up all information about a given PDB ID
Parameters
----------
pdb_id : string
A 4 character string giving a pdb entry of interest
url_root : string
The string root of the specific url for the request type
Returns
-------
out : OrderedDict
An ordered dictionary object corresponding to bare xml
'''
url = url_root + pdb_id
req = urllib.request.Request(url)
f = urllib.request.urlopen(req)
result = f.read()
assert result
out = xmltodict.parse(result,process_namespaces=True)
return out
|
[
"def",
"get_info",
"(",
"pdb_id",
",",
"url_root",
"=",
"'http://www.rcsb.org/pdb/rest/describeMol?structureId='",
")",
":",
"url",
"=",
"url_root",
"+",
"pdb_id",
"req",
"=",
"urllib",
".",
"request",
".",
"Request",
"(",
"url",
")",
"f",
"=",
"urllib",
".",
"request",
".",
"urlopen",
"(",
"req",
")",
"result",
"=",
"f",
".",
"read",
"(",
")",
"assert",
"result",
"out",
"=",
"xmltodict",
".",
"parse",
"(",
"result",
",",
"process_namespaces",
"=",
"True",
")",
"return",
"out"
] |
Look up all information about a given PDB ID
Parameters
----------
pdb_id : string
A 4 character string giving a pdb entry of interest
url_root : string
The string root of the specific url for the request type
Returns
-------
out : OrderedDict
An ordered dictionary object corresponding to bare xml
|
[
"Look",
"up",
"all",
"information",
"about",
"a",
"given",
"PDB",
"ID"
] |
python
|
train
|
twilio/twilio-python
|
twilio/rest/ip_messaging/v1/service/channel/__init__.py
|
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/ip_messaging/v1/service/channel/__init__.py#L317-L330
|
def members(self):
"""
Access the members
:returns: twilio.rest.chat.v1.service.channel.member.MemberList
:rtype: twilio.rest.chat.v1.service.channel.member.MemberList
"""
if self._members is None:
self._members = MemberList(
self._version,
service_sid=self._solution['service_sid'],
channel_sid=self._solution['sid'],
)
return self._members
|
[
"def",
"members",
"(",
"self",
")",
":",
"if",
"self",
".",
"_members",
"is",
"None",
":",
"self",
".",
"_members",
"=",
"MemberList",
"(",
"self",
".",
"_version",
",",
"service_sid",
"=",
"self",
".",
"_solution",
"[",
"'service_sid'",
"]",
",",
"channel_sid",
"=",
"self",
".",
"_solution",
"[",
"'sid'",
"]",
",",
")",
"return",
"self",
".",
"_members"
] |
Access the members
:returns: twilio.rest.chat.v1.service.channel.member.MemberList
:rtype: twilio.rest.chat.v1.service.channel.member.MemberList
|
[
"Access",
"the",
"members"
] |
python
|
train
|
saltstack/salt
|
salt/utils/vmware.py
|
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/utils/vmware.py#L1155-L1181
|
def update_dvs(dvs_ref, dvs_config_spec):
'''
Updates a distributed virtual switch with the config_spec.
dvs_ref
The DVS reference.
dvs_config_spec
The updated config spec (vim.VMwareDVSConfigSpec) to be applied to
the DVS.
'''
dvs_name = get_managed_object_name(dvs_ref)
log.trace('Updating dvs \'%s\'', dvs_name)
try:
task = dvs_ref.ReconfigureDvs_Task(dvs_config_spec)
except vim.fault.NoPermission as exc:
log.exception(exc)
raise salt.exceptions.VMwareApiError(
'Not enough permissions. Required privilege: '
'{0}'.format(exc.privilegeId))
except vim.fault.VimFault as exc:
log.exception(exc)
raise salt.exceptions.VMwareApiError(exc.msg)
except vmodl.RuntimeFault as exc:
log.exception(exc)
raise salt.exceptions.VMwareRuntimeError(exc.msg)
wait_for_task(task, dvs_name, six.text_type(task.__class__))
|
[
"def",
"update_dvs",
"(",
"dvs_ref",
",",
"dvs_config_spec",
")",
":",
"dvs_name",
"=",
"get_managed_object_name",
"(",
"dvs_ref",
")",
"log",
".",
"trace",
"(",
"'Updating dvs \\'%s\\''",
",",
"dvs_name",
")",
"try",
":",
"task",
"=",
"dvs_ref",
".",
"ReconfigureDvs_Task",
"(",
"dvs_config_spec",
")",
"except",
"vim",
".",
"fault",
".",
"NoPermission",
"as",
"exc",
":",
"log",
".",
"exception",
"(",
"exc",
")",
"raise",
"salt",
".",
"exceptions",
".",
"VMwareApiError",
"(",
"'Not enough permissions. Required privilege: '",
"'{0}'",
".",
"format",
"(",
"exc",
".",
"privilegeId",
")",
")",
"except",
"vim",
".",
"fault",
".",
"VimFault",
"as",
"exc",
":",
"log",
".",
"exception",
"(",
"exc",
")",
"raise",
"salt",
".",
"exceptions",
".",
"VMwareApiError",
"(",
"exc",
".",
"msg",
")",
"except",
"vmodl",
".",
"RuntimeFault",
"as",
"exc",
":",
"log",
".",
"exception",
"(",
"exc",
")",
"raise",
"salt",
".",
"exceptions",
".",
"VMwareRuntimeError",
"(",
"exc",
".",
"msg",
")",
"wait_for_task",
"(",
"task",
",",
"dvs_name",
",",
"six",
".",
"text_type",
"(",
"task",
".",
"__class__",
")",
")"
] |
Updates a distributed virtual switch with the config_spec.
dvs_ref
The DVS reference.
dvs_config_spec
The updated config spec (vim.VMwareDVSConfigSpec) to be applied to
the DVS.
|
[
"Updates",
"a",
"distributed",
"virtual",
"switch",
"with",
"the",
"config_spec",
"."
] |
python
|
train
|
wrboyce/telegrambot
|
telegrambot/api/__init__.py
|
https://github.com/wrboyce/telegrambot/blob/c35ce19886df4c306a2a19851cc1f63e3066d70d/telegrambot/api/__init__.py#L201-L208
|
def set_web_hook(self, url=None, certificate=None):
"""
Use this method to specify a url and receive incoming updates via an outgoing webhook. Whenever there is an
update for the bot, we will send an HTTPS POST request to the specified url, containing a JSON-serialized
Update. In case of an unsuccessful request, we will give up after a reasonable amount of attempts.
"""
payload = dict(url=url, certificate=certificate)
return self._get('setWebHook', payload)
|
[
"def",
"set_web_hook",
"(",
"self",
",",
"url",
"=",
"None",
",",
"certificate",
"=",
"None",
")",
":",
"payload",
"=",
"dict",
"(",
"url",
"=",
"url",
",",
"certificate",
"=",
"certificate",
")",
"return",
"self",
".",
"_get",
"(",
"'setWebHook'",
",",
"payload",
")"
] |
Use this method to specify a url and receive incoming updates via an outgoing webhook. Whenever there is an
update for the bot, we will send an HTTPS POST request to the specified url, containing a JSON-serialized
Update. In case of an unsuccessful request, we will give up after a reasonable amount of attempts.
|
[
"Use",
"this",
"method",
"to",
"specify",
"a",
"url",
"and",
"receive",
"incoming",
"updates",
"via",
"an",
"outgoing",
"webhook",
".",
"Whenever",
"there",
"is",
"an",
"update",
"for",
"the",
"bot",
"we",
"will",
"send",
"an",
"HTTPS",
"POST",
"request",
"to",
"the",
"specified",
"url",
"containing",
"a",
"JSON",
"-",
"serialized",
"Update",
".",
"In",
"case",
"of",
"an",
"unsuccessful",
"request",
"we",
"will",
"give",
"up",
"after",
"a",
"reasonable",
"amount",
"of",
"attempts",
"."
] |
python
|
train
|
loli/medpy
|
medpy/io/save.py
|
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/io/save.py#L33-L120
|
def save(arr, filename, hdr = False, force = True, use_compression = False):
r"""
Save the image ``arr`` as filename using information encoded in ``hdr``. The target image
format is determined by the ``filename`` suffix. If the ``force`` parameter is set to true,
an already existing image is overwritten silently. Otherwise an error is thrown.
The header (``hdr``) object is the one returned by `~medpy.io.load.load` and is used
opportunistically, possibly loosing some meta-information.
Generally this function does not guarantee, that metadata other than the image shape
and pixel data type are kept.
MedPy relies on SimpleITK, which enables the power of ITK for image loading and saving.
The supported image file formats should include at least the following.
Medical formats:
- ITK MetaImage (.mha/.raw, .mhd)
- Neuroimaging Informatics Technology Initiative (NIfTI) (.nia, .nii, .nii.gz, .hdr, .img, .img.gz)
- Analyze (plain, SPM99, SPM2) (.hdr/.img, .img.gz)
- Digital Imaging and Communications in Medicine (DICOM) (.dcm, .dicom)
- Digital Imaging and Communications in Medicine (DICOM) series (<directory>/)
- Nearly Raw Raster Data (Nrrd) (.nrrd, .nhdr)
- Medical Imaging NetCDF (MINC) (.mnc, .MNC)
- Guys Image Processing Lab (GIPL) (.gipl, .gipl.gz)
Microscopy formats:
- Medical Research Council (MRC) (.mrc, .rec)
- Bio-Rad (.pic, .PIC)
- LSM (Zeiss) microscopy images (.tif, .TIF, .tiff, .TIFF, .lsm, .LSM)
- Stimulate / Signal Data (SDT) (.sdt)
Visualization formats:
- VTK images (.vtk)
Other formats:
- Portable Network Graphics (PNG) (.png, .PNG)
- Joint Photographic Experts Group (JPEG) (.jpg, .JPG, .jpeg, .JPEG)
- Tagged Image File Format (TIFF) (.tif, .TIF, .tiff, .TIFF)
- Windows bitmap (.bmp, .BMP)
- Hierarchical Data Format (HDF5) (.h5 , .hdf5 , .he5)
- MSX-DOS Screen-x (.ge4, .ge5)
For informations about which image formats, dimensionalities and pixel data types
your current configuration supports, run `python3 tests/support.py > myformats.log`.
Further information see https://simpleitk.readthedocs.io .
Parameters
----------
arr : array_like
The image data with order `x,y,z,c`.
filename : string
Where to save the image; path and filename including the image suffix.
hdr : object
The image header containing the metadata.
force : bool
Set to True to overwrite already exiting image silently.
use_compression : bool
Use data compression of the target format supports it.
Raises
------
ImageSavingError
If the image could not be saved due to various reasons
"""
logger = Logger.getInstance()
logger.info('Saving image as {}...'.format(filename))
# Check image file existance
if not force and os.path.exists(filename):
raise ImageSavingError('The target file {} already exists.'.format(filename))
# Roll axes from x,y,z,c to z,y,x,c
if arr.ndim == 4:
arr = np.moveaxis(arr, -1, 0)
arr = arr.T
sitkimage = sitk.GetImageFromArray(arr)
# Copy met-data as far as possible
if hdr:
hdr.copy_to(sitkimage)
sitk.WriteImage(sitkimage, filename, use_compression)
|
[
"def",
"save",
"(",
"arr",
",",
"filename",
",",
"hdr",
"=",
"False",
",",
"force",
"=",
"True",
",",
"use_compression",
"=",
"False",
")",
":",
"logger",
"=",
"Logger",
".",
"getInstance",
"(",
")",
"logger",
".",
"info",
"(",
"'Saving image as {}...'",
".",
"format",
"(",
"filename",
")",
")",
"# Check image file existance",
"if",
"not",
"force",
"and",
"os",
".",
"path",
".",
"exists",
"(",
"filename",
")",
":",
"raise",
"ImageSavingError",
"(",
"'The target file {} already exists.'",
".",
"format",
"(",
"filename",
")",
")",
"# Roll axes from x,y,z,c to z,y,x,c",
"if",
"arr",
".",
"ndim",
"==",
"4",
":",
"arr",
"=",
"np",
".",
"moveaxis",
"(",
"arr",
",",
"-",
"1",
",",
"0",
")",
"arr",
"=",
"arr",
".",
"T",
"sitkimage",
"=",
"sitk",
".",
"GetImageFromArray",
"(",
"arr",
")",
"# Copy met-data as far as possible",
"if",
"hdr",
":",
"hdr",
".",
"copy_to",
"(",
"sitkimage",
")",
"sitk",
".",
"WriteImage",
"(",
"sitkimage",
",",
"filename",
",",
"use_compression",
")"
] |
r"""
Save the image ``arr`` as filename using information encoded in ``hdr``. The target image
format is determined by the ``filename`` suffix. If the ``force`` parameter is set to true,
an already existing image is overwritten silently. Otherwise an error is thrown.
The header (``hdr``) object is the one returned by `~medpy.io.load.load` and is used
opportunistically, possibly loosing some meta-information.
Generally this function does not guarantee, that metadata other than the image shape
and pixel data type are kept.
MedPy relies on SimpleITK, which enables the power of ITK for image loading and saving.
The supported image file formats should include at least the following.
Medical formats:
- ITK MetaImage (.mha/.raw, .mhd)
- Neuroimaging Informatics Technology Initiative (NIfTI) (.nia, .nii, .nii.gz, .hdr, .img, .img.gz)
- Analyze (plain, SPM99, SPM2) (.hdr/.img, .img.gz)
- Digital Imaging and Communications in Medicine (DICOM) (.dcm, .dicom)
- Digital Imaging and Communications in Medicine (DICOM) series (<directory>/)
- Nearly Raw Raster Data (Nrrd) (.nrrd, .nhdr)
- Medical Imaging NetCDF (MINC) (.mnc, .MNC)
- Guys Image Processing Lab (GIPL) (.gipl, .gipl.gz)
Microscopy formats:
- Medical Research Council (MRC) (.mrc, .rec)
- Bio-Rad (.pic, .PIC)
- LSM (Zeiss) microscopy images (.tif, .TIF, .tiff, .TIFF, .lsm, .LSM)
- Stimulate / Signal Data (SDT) (.sdt)
Visualization formats:
- VTK images (.vtk)
Other formats:
- Portable Network Graphics (PNG) (.png, .PNG)
- Joint Photographic Experts Group (JPEG) (.jpg, .JPG, .jpeg, .JPEG)
- Tagged Image File Format (TIFF) (.tif, .TIF, .tiff, .TIFF)
- Windows bitmap (.bmp, .BMP)
- Hierarchical Data Format (HDF5) (.h5 , .hdf5 , .he5)
- MSX-DOS Screen-x (.ge4, .ge5)
For informations about which image formats, dimensionalities and pixel data types
your current configuration supports, run `python3 tests/support.py > myformats.log`.
Further information see https://simpleitk.readthedocs.io .
Parameters
----------
arr : array_like
The image data with order `x,y,z,c`.
filename : string
Where to save the image; path and filename including the image suffix.
hdr : object
The image header containing the metadata.
force : bool
Set to True to overwrite already exiting image silently.
use_compression : bool
Use data compression of the target format supports it.
Raises
------
ImageSavingError
If the image could not be saved due to various reasons
|
[
"r",
"Save",
"the",
"image",
"arr",
"as",
"filename",
"using",
"information",
"encoded",
"in",
"hdr",
".",
"The",
"target",
"image",
"format",
"is",
"determined",
"by",
"the",
"filename",
"suffix",
".",
"If",
"the",
"force",
"parameter",
"is",
"set",
"to",
"true",
"an",
"already",
"existing",
"image",
"is",
"overwritten",
"silently",
".",
"Otherwise",
"an",
"error",
"is",
"thrown",
".",
"The",
"header",
"(",
"hdr",
")",
"object",
"is",
"the",
"one",
"returned",
"by",
"~medpy",
".",
"io",
".",
"load",
".",
"load",
"and",
"is",
"used",
"opportunistically",
"possibly",
"loosing",
"some",
"meta",
"-",
"information",
".",
"Generally",
"this",
"function",
"does",
"not",
"guarantee",
"that",
"metadata",
"other",
"than",
"the",
"image",
"shape",
"and",
"pixel",
"data",
"type",
"are",
"kept",
".",
"MedPy",
"relies",
"on",
"SimpleITK",
"which",
"enables",
"the",
"power",
"of",
"ITK",
"for",
"image",
"loading",
"and",
"saving",
".",
"The",
"supported",
"image",
"file",
"formats",
"should",
"include",
"at",
"least",
"the",
"following",
"."
] |
python
|
train
|
great-expectations/great_expectations
|
great_expectations/cli.py
|
https://github.com/great-expectations/great_expectations/blob/08385c40529d4f14a1c46916788aecc47f33ee9d/great_expectations/cli.py#L55-L112
|
def validate(parsed_args):
"""
Read a dataset file and validate it using a config saved in another file. Uses parameters defined in the dispatch
method.
:param parsed_args: A Namespace object containing parsed arguments from the dispatch method.
:return: The number of unsucessful expectations
"""
parsed_args = vars(parsed_args)
data_set = parsed_args['dataset']
expectations_config_file = parsed_args['expectations_config_file']
expectations_config = json.load(open(expectations_config_file))
if parsed_args["evaluation_parameters"] is not None:
evaluation_parameters = json.load(
open(parsed_args["evaluation_parameters"]))
else:
evaluation_parameters = None
# Use a custom dataasset module and class if provided. Otherwise infer from the config.
if parsed_args["custom_dataset_module"]:
sys.path.insert(0, os.path.dirname(
parsed_args["custom_dataset_module"]))
module_name = os.path.basename(
parsed_args["custom_dataset_module"]).split('.')[0]
custom_module = __import__(module_name)
dataset_class = getattr(
custom_module, parsed_args["custom_dataset_class"])
elif "data_asset_type" in expectations_config:
if expectations_config["data_asset_type"] == "Dataset" or expectations_config["data_asset_type"] == "PandasDataset":
dataset_class = PandasDataset
elif expectations_config["data_asset_type"].endswith("Dataset"):
logger.info("Using PandasDataset to validate dataset of type %s." % expectations_config["data_asset_type"])
dataset_class = PandasDataset
elif expectations_config["data_asset_type"] == "FileDataAsset":
dataset_class = FileDataAsset
else:
logger.critical("Unrecognized data_asset_type %s. You may need to specifcy custom_dataset_module and custom_dataset_class." % expectations_config["data_asset_type"])
return -1
else:
dataset_class = PandasDataset
if issubclass(dataset_class, Dataset):
da = read_csv(data_set, expectations_config=expectations_config,
dataset_class=dataset_class)
else:
da = dataset_class(data_set, config=expectations_config)
result = da.validate(
evaluation_parameters=evaluation_parameters,
result_format=parsed_args["result_format"],
catch_exceptions=parsed_args["catch_exceptions"],
only_return_failures=parsed_args["only_return_failures"],
)
print(json.dumps(result, indent=2))
return result['statistics']['unsuccessful_expectations']
|
[
"def",
"validate",
"(",
"parsed_args",
")",
":",
"parsed_args",
"=",
"vars",
"(",
"parsed_args",
")",
"data_set",
"=",
"parsed_args",
"[",
"'dataset'",
"]",
"expectations_config_file",
"=",
"parsed_args",
"[",
"'expectations_config_file'",
"]",
"expectations_config",
"=",
"json",
".",
"load",
"(",
"open",
"(",
"expectations_config_file",
")",
")",
"if",
"parsed_args",
"[",
"\"evaluation_parameters\"",
"]",
"is",
"not",
"None",
":",
"evaluation_parameters",
"=",
"json",
".",
"load",
"(",
"open",
"(",
"parsed_args",
"[",
"\"evaluation_parameters\"",
"]",
")",
")",
"else",
":",
"evaluation_parameters",
"=",
"None",
"# Use a custom dataasset module and class if provided. Otherwise infer from the config.",
"if",
"parsed_args",
"[",
"\"custom_dataset_module\"",
"]",
":",
"sys",
".",
"path",
".",
"insert",
"(",
"0",
",",
"os",
".",
"path",
".",
"dirname",
"(",
"parsed_args",
"[",
"\"custom_dataset_module\"",
"]",
")",
")",
"module_name",
"=",
"os",
".",
"path",
".",
"basename",
"(",
"parsed_args",
"[",
"\"custom_dataset_module\"",
"]",
")",
".",
"split",
"(",
"'.'",
")",
"[",
"0",
"]",
"custom_module",
"=",
"__import__",
"(",
"module_name",
")",
"dataset_class",
"=",
"getattr",
"(",
"custom_module",
",",
"parsed_args",
"[",
"\"custom_dataset_class\"",
"]",
")",
"elif",
"\"data_asset_type\"",
"in",
"expectations_config",
":",
"if",
"expectations_config",
"[",
"\"data_asset_type\"",
"]",
"==",
"\"Dataset\"",
"or",
"expectations_config",
"[",
"\"data_asset_type\"",
"]",
"==",
"\"PandasDataset\"",
":",
"dataset_class",
"=",
"PandasDataset",
"elif",
"expectations_config",
"[",
"\"data_asset_type\"",
"]",
".",
"endswith",
"(",
"\"Dataset\"",
")",
":",
"logger",
".",
"info",
"(",
"\"Using PandasDataset to validate dataset of type %s.\"",
"%",
"expectations_config",
"[",
"\"data_asset_type\"",
"]",
")",
"dataset_class",
"=",
"PandasDataset",
"elif",
"expectations_config",
"[",
"\"data_asset_type\"",
"]",
"==",
"\"FileDataAsset\"",
":",
"dataset_class",
"=",
"FileDataAsset",
"else",
":",
"logger",
".",
"critical",
"(",
"\"Unrecognized data_asset_type %s. You may need to specifcy custom_dataset_module and custom_dataset_class.\"",
"%",
"expectations_config",
"[",
"\"data_asset_type\"",
"]",
")",
"return",
"-",
"1",
"else",
":",
"dataset_class",
"=",
"PandasDataset",
"if",
"issubclass",
"(",
"dataset_class",
",",
"Dataset",
")",
":",
"da",
"=",
"read_csv",
"(",
"data_set",
",",
"expectations_config",
"=",
"expectations_config",
",",
"dataset_class",
"=",
"dataset_class",
")",
"else",
":",
"da",
"=",
"dataset_class",
"(",
"data_set",
",",
"config",
"=",
"expectations_config",
")",
"result",
"=",
"da",
".",
"validate",
"(",
"evaluation_parameters",
"=",
"evaluation_parameters",
",",
"result_format",
"=",
"parsed_args",
"[",
"\"result_format\"",
"]",
",",
"catch_exceptions",
"=",
"parsed_args",
"[",
"\"catch_exceptions\"",
"]",
",",
"only_return_failures",
"=",
"parsed_args",
"[",
"\"only_return_failures\"",
"]",
",",
")",
"print",
"(",
"json",
".",
"dumps",
"(",
"result",
",",
"indent",
"=",
"2",
")",
")",
"return",
"result",
"[",
"'statistics'",
"]",
"[",
"'unsuccessful_expectations'",
"]"
] |
Read a dataset file and validate it using a config saved in another file. Uses parameters defined in the dispatch
method.
:param parsed_args: A Namespace object containing parsed arguments from the dispatch method.
:return: The number of unsucessful expectations
|
[
"Read",
"a",
"dataset",
"file",
"and",
"validate",
"it",
"using",
"a",
"config",
"saved",
"in",
"another",
"file",
".",
"Uses",
"parameters",
"defined",
"in",
"the",
"dispatch",
"method",
"."
] |
python
|
train
|
bids-standard/pybids
|
bids/utils.py
|
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/utils.py#L29-L41
|
def natural_sort(l, field=None):
'''
based on snippet found at http://stackoverflow.com/a/4836734/2445984
'''
convert = lambda text: int(text) if text.isdigit() else text.lower()
def alphanum_key(key):
if field is not None:
key = getattr(key, field)
if not isinstance(key, str):
key = str(key)
return [convert(c) for c in re.split('([0-9]+)', key)]
return sorted(l, key=alphanum_key)
|
[
"def",
"natural_sort",
"(",
"l",
",",
"field",
"=",
"None",
")",
":",
"convert",
"=",
"lambda",
"text",
":",
"int",
"(",
"text",
")",
"if",
"text",
".",
"isdigit",
"(",
")",
"else",
"text",
".",
"lower",
"(",
")",
"def",
"alphanum_key",
"(",
"key",
")",
":",
"if",
"field",
"is",
"not",
"None",
":",
"key",
"=",
"getattr",
"(",
"key",
",",
"field",
")",
"if",
"not",
"isinstance",
"(",
"key",
",",
"str",
")",
":",
"key",
"=",
"str",
"(",
"key",
")",
"return",
"[",
"convert",
"(",
"c",
")",
"for",
"c",
"in",
"re",
".",
"split",
"(",
"'([0-9]+)'",
",",
"key",
")",
"]",
"return",
"sorted",
"(",
"l",
",",
"key",
"=",
"alphanum_key",
")"
] |
based on snippet found at http://stackoverflow.com/a/4836734/2445984
|
[
"based",
"on",
"snippet",
"found",
"at",
"http",
":",
"//",
"stackoverflow",
".",
"com",
"/",
"a",
"/",
"4836734",
"/",
"2445984"
] |
python
|
train
|
maas/python-libmaas
|
maas/client/viscera/ipranges.py
|
https://github.com/maas/python-libmaas/blob/4092c68ef7fb1753efc843569848e2bcc3415002/maas/client/viscera/ipranges.py#L31-L74
|
async def create(
cls, start_ip: str, end_ip: str, *,
type: IPRangeType = IPRangeType.RESERVED,
comment: str = None, subnet: Union[Subnet, int] = None):
"""
Create a `IPRange` in MAAS.
:param start_ip: First IP address in the range (required).
:type start_ip: `str`
:parma end_ip: Last IP address in the range (required).
:type end_ip: `str`
:param type: Type of IP address range (optional).
:type type: `IPRangeType`
:param comment: Reason for the IP address range (optional).
:type comment: `str`
:param subnet: Subnet the IP address range should be created on
(optional). By default MAAS will calculate the correct subnet
based on the `start_ip` and `end_ip`.
:type subnet: `Subnet` or `int`
:returns: The created IPRange
:rtype: `IPRange`
"""
if not isinstance(type, IPRangeType):
raise TypeError(
"type must be an IPRangeType, not %s"
% TYPE(type).__name__)
params = {
'start_ip': start_ip,
'end_ip': end_ip,
'type': type.value,
}
if comment is not None:
params["comment"] = comment
if subnet is not None:
if isinstance(subnet, Subnet):
params["subnet"] = subnet.id
elif isinstance(subnet, int):
params["subnet"] = subnet
else:
raise TypeError(
"subnet must be Subnet or int, not %s" % (
TYPE(subnet).__class__))
return cls._object(await cls._handler.create(**params))
|
[
"async",
"def",
"create",
"(",
"cls",
",",
"start_ip",
":",
"str",
",",
"end_ip",
":",
"str",
",",
"*",
",",
"type",
":",
"IPRangeType",
"=",
"IPRangeType",
".",
"RESERVED",
",",
"comment",
":",
"str",
"=",
"None",
",",
"subnet",
":",
"Union",
"[",
"Subnet",
",",
"int",
"]",
"=",
"None",
")",
":",
"if",
"not",
"isinstance",
"(",
"type",
",",
"IPRangeType",
")",
":",
"raise",
"TypeError",
"(",
"\"type must be an IPRangeType, not %s\"",
"%",
"TYPE",
"(",
"type",
")",
".",
"__name__",
")",
"params",
"=",
"{",
"'start_ip'",
":",
"start_ip",
",",
"'end_ip'",
":",
"end_ip",
",",
"'type'",
":",
"type",
".",
"value",
",",
"}",
"if",
"comment",
"is",
"not",
"None",
":",
"params",
"[",
"\"comment\"",
"]",
"=",
"comment",
"if",
"subnet",
"is",
"not",
"None",
":",
"if",
"isinstance",
"(",
"subnet",
",",
"Subnet",
")",
":",
"params",
"[",
"\"subnet\"",
"]",
"=",
"subnet",
".",
"id",
"elif",
"isinstance",
"(",
"subnet",
",",
"int",
")",
":",
"params",
"[",
"\"subnet\"",
"]",
"=",
"subnet",
"else",
":",
"raise",
"TypeError",
"(",
"\"subnet must be Subnet or int, not %s\"",
"%",
"(",
"TYPE",
"(",
"subnet",
")",
".",
"__class__",
")",
")",
"return",
"cls",
".",
"_object",
"(",
"await",
"cls",
".",
"_handler",
".",
"create",
"(",
"*",
"*",
"params",
")",
")"
] |
Create a `IPRange` in MAAS.
:param start_ip: First IP address in the range (required).
:type start_ip: `str`
:parma end_ip: Last IP address in the range (required).
:type end_ip: `str`
:param type: Type of IP address range (optional).
:type type: `IPRangeType`
:param comment: Reason for the IP address range (optional).
:type comment: `str`
:param subnet: Subnet the IP address range should be created on
(optional). By default MAAS will calculate the correct subnet
based on the `start_ip` and `end_ip`.
:type subnet: `Subnet` or `int`
:returns: The created IPRange
:rtype: `IPRange`
|
[
"Create",
"a",
"IPRange",
"in",
"MAAS",
"."
] |
python
|
train
|
quantopian/empyrical
|
empyrical/utils.py
|
https://github.com/quantopian/empyrical/blob/badbdca75f5b293f28b5e947974894de041d6868/empyrical/utils.py#L349-L375
|
def load_portfolio_risk_factors(filepath_prefix=None, start=None, end=None):
"""
Load risk factors Mkt-Rf, SMB, HML, Rf, and UMD.
Data is stored in HDF5 file. If the data is more than 2
days old, redownload from Dartmouth.
Returns
-------
five_factors : pd.DataFrame
Risk factors timeseries.
"""
if start is None:
start = '1/1/1970'
if end is None:
end = _1_bday_ago()
start = get_utc_timestamp(start)
end = get_utc_timestamp(end)
if filepath_prefix is None:
filepath = data_path('factors.csv')
else:
filepath = filepath_prefix
five_factors = get_returns_cached(filepath, get_fama_french, end)
return five_factors.loc[start:end]
|
[
"def",
"load_portfolio_risk_factors",
"(",
"filepath_prefix",
"=",
"None",
",",
"start",
"=",
"None",
",",
"end",
"=",
"None",
")",
":",
"if",
"start",
"is",
"None",
":",
"start",
"=",
"'1/1/1970'",
"if",
"end",
"is",
"None",
":",
"end",
"=",
"_1_bday_ago",
"(",
")",
"start",
"=",
"get_utc_timestamp",
"(",
"start",
")",
"end",
"=",
"get_utc_timestamp",
"(",
"end",
")",
"if",
"filepath_prefix",
"is",
"None",
":",
"filepath",
"=",
"data_path",
"(",
"'factors.csv'",
")",
"else",
":",
"filepath",
"=",
"filepath_prefix",
"five_factors",
"=",
"get_returns_cached",
"(",
"filepath",
",",
"get_fama_french",
",",
"end",
")",
"return",
"five_factors",
".",
"loc",
"[",
"start",
":",
"end",
"]"
] |
Load risk factors Mkt-Rf, SMB, HML, Rf, and UMD.
Data is stored in HDF5 file. If the data is more than 2
days old, redownload from Dartmouth.
Returns
-------
five_factors : pd.DataFrame
Risk factors timeseries.
|
[
"Load",
"risk",
"factors",
"Mkt",
"-",
"Rf",
"SMB",
"HML",
"Rf",
"and",
"UMD",
".",
"Data",
"is",
"stored",
"in",
"HDF5",
"file",
".",
"If",
"the",
"data",
"is",
"more",
"than",
"2",
"days",
"old",
"redownload",
"from",
"Dartmouth",
".",
"Returns",
"-------",
"five_factors",
":",
"pd",
".",
"DataFrame",
"Risk",
"factors",
"timeseries",
"."
] |
python
|
train
|
tradenity/python-sdk
|
tradenity/resources/free_item_coupon.py
|
https://github.com/tradenity/python-sdk/blob/d13fbe23f4d6ff22554c6d8d2deaf209371adaf1/tradenity/resources/free_item_coupon.py#L531-L551
|
def delete_free_item_coupon_by_id(cls, free_item_coupon_id, **kwargs):
"""Delete FreeItemCoupon
Delete an instance of FreeItemCoupon by its ID.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async=True
>>> thread = api.delete_free_item_coupon_by_id(free_item_coupon_id, async=True)
>>> result = thread.get()
:param async bool
:param str free_item_coupon_id: ID of freeItemCoupon to delete. (required)
:return: None
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('async'):
return cls._delete_free_item_coupon_by_id_with_http_info(free_item_coupon_id, **kwargs)
else:
(data) = cls._delete_free_item_coupon_by_id_with_http_info(free_item_coupon_id, **kwargs)
return data
|
[
"def",
"delete_free_item_coupon_by_id",
"(",
"cls",
",",
"free_item_coupon_id",
",",
"*",
"*",
"kwargs",
")",
":",
"kwargs",
"[",
"'_return_http_data_only'",
"]",
"=",
"True",
"if",
"kwargs",
".",
"get",
"(",
"'async'",
")",
":",
"return",
"cls",
".",
"_delete_free_item_coupon_by_id_with_http_info",
"(",
"free_item_coupon_id",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"(",
"data",
")",
"=",
"cls",
".",
"_delete_free_item_coupon_by_id_with_http_info",
"(",
"free_item_coupon_id",
",",
"*",
"*",
"kwargs",
")",
"return",
"data"
] |
Delete FreeItemCoupon
Delete an instance of FreeItemCoupon by its ID.
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async=True
>>> thread = api.delete_free_item_coupon_by_id(free_item_coupon_id, async=True)
>>> result = thread.get()
:param async bool
:param str free_item_coupon_id: ID of freeItemCoupon to delete. (required)
:return: None
If the method is called asynchronously,
returns the request thread.
|
[
"Delete",
"FreeItemCoupon"
] |
python
|
train
|
pydata/xarray
|
xarray/core/dataset.py
|
https://github.com/pydata/xarray/blob/6d93a95d05bdbfc33fff24064f67d29dd891ab58/xarray/core/dataset.py#L1547-L1588
|
def _get_indexers_coords_and_indexes(self, indexers):
""" Extract coordinates from indexers.
Returns an OrderedDict mapping from coordinate name to the
coordinate variable.
Only coordinate with a name different from any of self.variables will
be attached.
"""
from .dataarray import DataArray
coord_list = []
indexes = OrderedDict()
for k, v in indexers.items():
if isinstance(v, DataArray):
v_coords = v.coords
if v.dtype.kind == 'b':
if v.ndim != 1: # we only support 1-d boolean array
raise ValueError(
'{:d}d-boolean array is used for indexing along '
'dimension {!r}, but only 1d boolean arrays are '
'supported.'.format(v.ndim, k))
# Make sure in case of boolean DataArray, its
# coordinate also should be indexed.
v_coords = v[v.values.nonzero()[0]].coords
coord_list.append({d: v_coords[d].variable for d in v.coords})
indexes.update(v.indexes)
# we don't need to call align() explicitly or check indexes for
# alignment, because merge_variables already checks for exact alignment
# between dimension coordinates
coords = merge_variables(coord_list)
assert_coordinate_consistent(self, coords)
# silently drop the conflicted variables.
attached_coords = OrderedDict(
(k, v) for k, v in coords.items() if k not in self._variables
)
attached_indexes = OrderedDict(
(k, v) for k, v in indexes.items() if k not in self._variables
)
return attached_coords, attached_indexes
|
[
"def",
"_get_indexers_coords_and_indexes",
"(",
"self",
",",
"indexers",
")",
":",
"from",
".",
"dataarray",
"import",
"DataArray",
"coord_list",
"=",
"[",
"]",
"indexes",
"=",
"OrderedDict",
"(",
")",
"for",
"k",
",",
"v",
"in",
"indexers",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"v",
",",
"DataArray",
")",
":",
"v_coords",
"=",
"v",
".",
"coords",
"if",
"v",
".",
"dtype",
".",
"kind",
"==",
"'b'",
":",
"if",
"v",
".",
"ndim",
"!=",
"1",
":",
"# we only support 1-d boolean array",
"raise",
"ValueError",
"(",
"'{:d}d-boolean array is used for indexing along '",
"'dimension {!r}, but only 1d boolean arrays are '",
"'supported.'",
".",
"format",
"(",
"v",
".",
"ndim",
",",
"k",
")",
")",
"# Make sure in case of boolean DataArray, its",
"# coordinate also should be indexed.",
"v_coords",
"=",
"v",
"[",
"v",
".",
"values",
".",
"nonzero",
"(",
")",
"[",
"0",
"]",
"]",
".",
"coords",
"coord_list",
".",
"append",
"(",
"{",
"d",
":",
"v_coords",
"[",
"d",
"]",
".",
"variable",
"for",
"d",
"in",
"v",
".",
"coords",
"}",
")",
"indexes",
".",
"update",
"(",
"v",
".",
"indexes",
")",
"# we don't need to call align() explicitly or check indexes for",
"# alignment, because merge_variables already checks for exact alignment",
"# between dimension coordinates",
"coords",
"=",
"merge_variables",
"(",
"coord_list",
")",
"assert_coordinate_consistent",
"(",
"self",
",",
"coords",
")",
"# silently drop the conflicted variables.",
"attached_coords",
"=",
"OrderedDict",
"(",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"coords",
".",
"items",
"(",
")",
"if",
"k",
"not",
"in",
"self",
".",
"_variables",
")",
"attached_indexes",
"=",
"OrderedDict",
"(",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"indexes",
".",
"items",
"(",
")",
"if",
"k",
"not",
"in",
"self",
".",
"_variables",
")",
"return",
"attached_coords",
",",
"attached_indexes"
] |
Extract coordinates from indexers.
Returns an OrderedDict mapping from coordinate name to the
coordinate variable.
Only coordinate with a name different from any of self.variables will
be attached.
|
[
"Extract",
"coordinates",
"from",
"indexers",
".",
"Returns",
"an",
"OrderedDict",
"mapping",
"from",
"coordinate",
"name",
"to",
"the",
"coordinate",
"variable",
"."
] |
python
|
train
|
mikekatz04/BOWIE
|
bowie/plotutils/forminput.py
|
https://github.com/mikekatz04/BOWIE/blob/a941342a3536cb57c817a1643896d99a3f354a86/bowie/plotutils/forminput.py#L503-L571
|
def add_dataset(self, name=None, label=None,
x_column_label=None, y_column_label=None, index=None, control=False):
"""Add a dataset to a specific plot.
This method adds a dataset to a plot. Its functional use is imperative
to the plot generation. It handles adding new files as well
as indexing to files that are added to other plots.
All Args default to None. However, these are note the defaults
in the code. See DataImportContainer attributes for defaults in code.
Args:
name (str, optional): Name (path) for file.
Required if reading from a file (at least one).
Required if file_name is not in "general". Must be ".txt" or ".hdf5".
Can include path from working directory.
label (str, optional): Column label in the dataset corresponding to desired SNR value.
Required if reading from a file (at least one).
x_column_label/y_column_label (str, optional): Column label from input file identifying
x/y values. This can override setting in "general". Default
is `x`/`y`.
index (int, optional): Index of plot with preloaded data.
Required if not loading a file.
control (bool, optional): If True, this dataset is set to the control.
This is needed for Ratio plots. It sets
the baseline. Default is False.
Raises:
ValueError: If no options are passes. This means no file indication
nor index.
"""
if name is None and label is None and index is None:
raise ValueError("Attempting to add a dataset without"
+ "supplying index or file information.")
if index is None:
trans_dict = DataImportContainer()
if name is not None:
trans_dict.file_name = name
if label is not None:
trans_dict.label = label
if x_column_label is not None:
trans_dict.x_column_label = x_column_label
if y_column_label is not None:
trans_dict.y_column_label = y_column_label
if control:
self.control = trans_dict
else:
# need to append file to file list.
if 'file' not in self.__dict__:
self.file = []
self.file.append(trans_dict)
else:
if control:
self.control = DataImportContainer()
self.control.index = index
else:
# need to append index to index list.
if 'indices' not in self.__dict__:
self.indices = []
self.indices.append(index)
return
|
[
"def",
"add_dataset",
"(",
"self",
",",
"name",
"=",
"None",
",",
"label",
"=",
"None",
",",
"x_column_label",
"=",
"None",
",",
"y_column_label",
"=",
"None",
",",
"index",
"=",
"None",
",",
"control",
"=",
"False",
")",
":",
"if",
"name",
"is",
"None",
"and",
"label",
"is",
"None",
"and",
"index",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"\"Attempting to add a dataset without\"",
"+",
"\"supplying index or file information.\"",
")",
"if",
"index",
"is",
"None",
":",
"trans_dict",
"=",
"DataImportContainer",
"(",
")",
"if",
"name",
"is",
"not",
"None",
":",
"trans_dict",
".",
"file_name",
"=",
"name",
"if",
"label",
"is",
"not",
"None",
":",
"trans_dict",
".",
"label",
"=",
"label",
"if",
"x_column_label",
"is",
"not",
"None",
":",
"trans_dict",
".",
"x_column_label",
"=",
"x_column_label",
"if",
"y_column_label",
"is",
"not",
"None",
":",
"trans_dict",
".",
"y_column_label",
"=",
"y_column_label",
"if",
"control",
":",
"self",
".",
"control",
"=",
"trans_dict",
"else",
":",
"# need to append file to file list.",
"if",
"'file'",
"not",
"in",
"self",
".",
"__dict__",
":",
"self",
".",
"file",
"=",
"[",
"]",
"self",
".",
"file",
".",
"append",
"(",
"trans_dict",
")",
"else",
":",
"if",
"control",
":",
"self",
".",
"control",
"=",
"DataImportContainer",
"(",
")",
"self",
".",
"control",
".",
"index",
"=",
"index",
"else",
":",
"# need to append index to index list.",
"if",
"'indices'",
"not",
"in",
"self",
".",
"__dict__",
":",
"self",
".",
"indices",
"=",
"[",
"]",
"self",
".",
"indices",
".",
"append",
"(",
"index",
")",
"return"
] |
Add a dataset to a specific plot.
This method adds a dataset to a plot. Its functional use is imperative
to the plot generation. It handles adding new files as well
as indexing to files that are added to other plots.
All Args default to None. However, these are note the defaults
in the code. See DataImportContainer attributes for defaults in code.
Args:
name (str, optional): Name (path) for file.
Required if reading from a file (at least one).
Required if file_name is not in "general". Must be ".txt" or ".hdf5".
Can include path from working directory.
label (str, optional): Column label in the dataset corresponding to desired SNR value.
Required if reading from a file (at least one).
x_column_label/y_column_label (str, optional): Column label from input file identifying
x/y values. This can override setting in "general". Default
is `x`/`y`.
index (int, optional): Index of plot with preloaded data.
Required if not loading a file.
control (bool, optional): If True, this dataset is set to the control.
This is needed for Ratio plots. It sets
the baseline. Default is False.
Raises:
ValueError: If no options are passes. This means no file indication
nor index.
|
[
"Add",
"a",
"dataset",
"to",
"a",
"specific",
"plot",
"."
] |
python
|
train
|
TeamHG-Memex/tensorboard_logger
|
tensorboard_logger/tensorboard_logger.py
|
https://github.com/TeamHG-Memex/tensorboard_logger/blob/93968344a471532530f035622118693845f32649/tensorboard_logger/tensorboard_logger.py#L71-L92
|
def log_value(self, name, value, step=None):
"""Log new value for given name on given step.
Args:
name (str): name of the variable (it will be converted to a valid
tensorflow summary name).
value (float): this is a real number to be logged as a scalar.
step (int): non-negative integer used for visualization: you can
log several different variables on one step, but should not log
different values of the same variable on the same step (this is
not checked).
"""
if isinstance(value, six.string_types):
raise TypeError('"value" should be a number, got {}'
.format(type(value)))
value = float(value)
self._check_step(step)
tf_name = self._ensure_tf_name(name)
summary = self._scalar_summary(tf_name, value, step)
self._log_summary(tf_name, summary, value, step=step)
|
[
"def",
"log_value",
"(",
"self",
",",
"name",
",",
"value",
",",
"step",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"value",
",",
"six",
".",
"string_types",
")",
":",
"raise",
"TypeError",
"(",
"'\"value\" should be a number, got {}'",
".",
"format",
"(",
"type",
"(",
"value",
")",
")",
")",
"value",
"=",
"float",
"(",
"value",
")",
"self",
".",
"_check_step",
"(",
"step",
")",
"tf_name",
"=",
"self",
".",
"_ensure_tf_name",
"(",
"name",
")",
"summary",
"=",
"self",
".",
"_scalar_summary",
"(",
"tf_name",
",",
"value",
",",
"step",
")",
"self",
".",
"_log_summary",
"(",
"tf_name",
",",
"summary",
",",
"value",
",",
"step",
"=",
"step",
")"
] |
Log new value for given name on given step.
Args:
name (str): name of the variable (it will be converted to a valid
tensorflow summary name).
value (float): this is a real number to be logged as a scalar.
step (int): non-negative integer used for visualization: you can
log several different variables on one step, but should not log
different values of the same variable on the same step (this is
not checked).
|
[
"Log",
"new",
"value",
"for",
"given",
"name",
"on",
"given",
"step",
"."
] |
python
|
train
|
frictionlessdata/datapackage-py
|
datapackage/registry.py
|
https://github.com/frictionlessdata/datapackage-py/blob/aca085ea54541b087140b58a81332f8728baeeb2/datapackage/registry.py#L129-L135
|
def _get_absolute_path(self, relative_path):
'''str: Return the received relative_path joined with the base path
(None if there were some error).'''
try:
return os.path.join(self.base_path, relative_path)
except (AttributeError, TypeError):
pass
|
[
"def",
"_get_absolute_path",
"(",
"self",
",",
"relative_path",
")",
":",
"try",
":",
"return",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"base_path",
",",
"relative_path",
")",
"except",
"(",
"AttributeError",
",",
"TypeError",
")",
":",
"pass"
] |
str: Return the received relative_path joined with the base path
(None if there were some error).
|
[
"str",
":",
"Return",
"the",
"received",
"relative_path",
"joined",
"with",
"the",
"base",
"path",
"(",
"None",
"if",
"there",
"were",
"some",
"error",
")",
"."
] |
python
|
valid
|
acutesoftware/AIKIF
|
aikif/index.py
|
https://github.com/acutesoftware/AIKIF/blob/fcf1582dc5f884b9a4fa7c6e20e9de9d94d21d03/aikif/index.py#L26-L58
|
def index():
"""
main function - outputs in following format BEFORE consolidation (which is TODO)
# filename, word, linenumbers
# refAction.csv, ActionTypeName, 1
# refAction.csv, PhysicalType, 1
# goals.csv, Cleanliness, 11
"""
lg = mod_log.Log(mod_cfg.fldrs['localPath'])
lg.record_command('Starting indexing', 'index.py') # sys.modules[self.__module__].__file__)
if silent == 'N':
print('------------------')
print('Rebuilding Indexes')
print('------------------')
with open(ndxFile, "w") as ndx:
ndx.write('filename, word, linenumbers\n')
files_to_index = mod_fl.FileList([mod_cfg.fldrs['public_data_path'] + os.sep + 'core'], ['*.csv'], ignore_files, "files_to_index_filelist.csv")
if silent == 'N':
print(format_op_hdr())
for f in files_to_index.get_list():
buildIndex(f, ndxFile, silent)
# now build the one big index file
consolidate(ndxFile, opIndex )
lg.record_command('Finished indexing', 'index.py') #, fle.GetModuleName())
if silent == 'N':
print('Done')
|
[
"def",
"index",
"(",
")",
":",
"lg",
"=",
"mod_log",
".",
"Log",
"(",
"mod_cfg",
".",
"fldrs",
"[",
"'localPath'",
"]",
")",
"lg",
".",
"record_command",
"(",
"'Starting indexing'",
",",
"'index.py'",
")",
"# sys.modules[self.__module__].__file__)",
"if",
"silent",
"==",
"'N'",
":",
"print",
"(",
"'------------------'",
")",
"print",
"(",
"'Rebuilding Indexes'",
")",
"print",
"(",
"'------------------'",
")",
"with",
"open",
"(",
"ndxFile",
",",
"\"w\"",
")",
"as",
"ndx",
":",
"ndx",
".",
"write",
"(",
"'filename, word, linenumbers\\n'",
")",
"files_to_index",
"=",
"mod_fl",
".",
"FileList",
"(",
"[",
"mod_cfg",
".",
"fldrs",
"[",
"'public_data_path'",
"]",
"+",
"os",
".",
"sep",
"+",
"'core'",
"]",
",",
"[",
"'*.csv'",
"]",
",",
"ignore_files",
",",
"\"files_to_index_filelist.csv\"",
")",
"if",
"silent",
"==",
"'N'",
":",
"print",
"(",
"format_op_hdr",
"(",
")",
")",
"for",
"f",
"in",
"files_to_index",
".",
"get_list",
"(",
")",
":",
"buildIndex",
"(",
"f",
",",
"ndxFile",
",",
"silent",
")",
"# now build the one big index file",
"consolidate",
"(",
"ndxFile",
",",
"opIndex",
")",
"lg",
".",
"record_command",
"(",
"'Finished indexing'",
",",
"'index.py'",
")",
"#, fle.GetModuleName())",
"if",
"silent",
"==",
"'N'",
":",
"print",
"(",
"'Done'",
")"
] |
main function - outputs in following format BEFORE consolidation (which is TODO)
# filename, word, linenumbers
# refAction.csv, ActionTypeName, 1
# refAction.csv, PhysicalType, 1
# goals.csv, Cleanliness, 11
|
[
"main",
"function",
"-",
"outputs",
"in",
"following",
"format",
"BEFORE",
"consolidation",
"(",
"which",
"is",
"TODO",
")",
"#",
"filename",
"word",
"linenumbers",
"#",
"refAction",
".",
"csv",
"ActionTypeName",
"1",
"#",
"refAction",
".",
"csv",
"PhysicalType",
"1",
"#",
"goals",
".",
"csv",
"Cleanliness",
"11"
] |
python
|
train
|
redhat-cip/python-dciclient
|
dciclient/v1/shell_commands/job.py
|
https://github.com/redhat-cip/python-dciclient/blob/a4aa5899062802bbe4c30a075d8447f8d222d214/dciclient/v1/shell_commands/job.py#L120-L132
|
def attach_issue(context, id, url):
"""attach_issue(context, id, url)
Attach an issue to a job.
>>> dcictl job-attach-issue [OPTIONS]
:param string id: ID of the job to attach the issue to [required]
:param string url: URL of the issue to attach to the job [required]
"""
result = job.attach_issue(context, id=id, url=url)
utils.format_output(result, context.format)
|
[
"def",
"attach_issue",
"(",
"context",
",",
"id",
",",
"url",
")",
":",
"result",
"=",
"job",
".",
"attach_issue",
"(",
"context",
",",
"id",
"=",
"id",
",",
"url",
"=",
"url",
")",
"utils",
".",
"format_output",
"(",
"result",
",",
"context",
".",
"format",
")"
] |
attach_issue(context, id, url)
Attach an issue to a job.
>>> dcictl job-attach-issue [OPTIONS]
:param string id: ID of the job to attach the issue to [required]
:param string url: URL of the issue to attach to the job [required]
|
[
"attach_issue",
"(",
"context",
"id",
"url",
")"
] |
python
|
train
|
ethereum/py-evm
|
eth/db/journal.py
|
https://github.com/ethereum/py-evm/blob/58346848f076116381d3274bbcea96b9e2cfcbdf/eth/db/journal.py#L93-L109
|
def record_changeset(self, custom_changeset_id: uuid.UUID = None) -> uuid.UUID:
"""
Creates a new changeset. Changesets are referenced by a random uuid4
to prevent collisions between multiple changesets.
"""
if custom_changeset_id is not None:
if custom_changeset_id in self.journal_data:
raise ValidationError(
"Tried to record with an existing changeset id: %r" % custom_changeset_id
)
else:
changeset_id = custom_changeset_id
else:
changeset_id = uuid.uuid4()
self.journal_data[changeset_id] = {}
return changeset_id
|
[
"def",
"record_changeset",
"(",
"self",
",",
"custom_changeset_id",
":",
"uuid",
".",
"UUID",
"=",
"None",
")",
"->",
"uuid",
".",
"UUID",
":",
"if",
"custom_changeset_id",
"is",
"not",
"None",
":",
"if",
"custom_changeset_id",
"in",
"self",
".",
"journal_data",
":",
"raise",
"ValidationError",
"(",
"\"Tried to record with an existing changeset id: %r\"",
"%",
"custom_changeset_id",
")",
"else",
":",
"changeset_id",
"=",
"custom_changeset_id",
"else",
":",
"changeset_id",
"=",
"uuid",
".",
"uuid4",
"(",
")",
"self",
".",
"journal_data",
"[",
"changeset_id",
"]",
"=",
"{",
"}",
"return",
"changeset_id"
] |
Creates a new changeset. Changesets are referenced by a random uuid4
to prevent collisions between multiple changesets.
|
[
"Creates",
"a",
"new",
"changeset",
".",
"Changesets",
"are",
"referenced",
"by",
"a",
"random",
"uuid4",
"to",
"prevent",
"collisions",
"between",
"multiple",
"changesets",
"."
] |
python
|
train
|
optimizely/python-sdk
|
optimizely/helpers/condition_tree_evaluator.py
|
https://github.com/optimizely/python-sdk/blob/ec028d9efcf22498c3820f2650fa10f5c30bec90/optimizely/helpers/condition_tree_evaluator.py#L17-L40
|
def and_evaluator(conditions, leaf_evaluator):
""" Evaluates a list of conditions as if the evaluator had been applied
to each entry and the results AND-ed together.
Args:
conditions: List of conditions ex: [operand_1, operand_2].
leaf_evaluator: Function which will be called to evaluate leaf condition values.
Returns:
Boolean:
- True if all operands evaluate to True.
- False if a single operand evaluates to False.
None: if conditions couldn't be evaluated.
"""
saw_null_result = False
for condition in conditions:
result = evaluate(condition, leaf_evaluator)
if result is False:
return False
if result is None:
saw_null_result = True
return None if saw_null_result else True
|
[
"def",
"and_evaluator",
"(",
"conditions",
",",
"leaf_evaluator",
")",
":",
"saw_null_result",
"=",
"False",
"for",
"condition",
"in",
"conditions",
":",
"result",
"=",
"evaluate",
"(",
"condition",
",",
"leaf_evaluator",
")",
"if",
"result",
"is",
"False",
":",
"return",
"False",
"if",
"result",
"is",
"None",
":",
"saw_null_result",
"=",
"True",
"return",
"None",
"if",
"saw_null_result",
"else",
"True"
] |
Evaluates a list of conditions as if the evaluator had been applied
to each entry and the results AND-ed together.
Args:
conditions: List of conditions ex: [operand_1, operand_2].
leaf_evaluator: Function which will be called to evaluate leaf condition values.
Returns:
Boolean:
- True if all operands evaluate to True.
- False if a single operand evaluates to False.
None: if conditions couldn't be evaluated.
|
[
"Evaluates",
"a",
"list",
"of",
"conditions",
"as",
"if",
"the",
"evaluator",
"had",
"been",
"applied",
"to",
"each",
"entry",
"and",
"the",
"results",
"AND",
"-",
"ed",
"together",
"."
] |
python
|
train
|
tritemio/PyBroMo
|
pybromo/diffusion.py
|
https://github.com/tritemio/PyBroMo/blob/b75f82a4551ff37e7c7a7e6954c536451f3e6d06/pybromo/diffusion.py#L863-L990
|
def simulate_timestamps_mix_da(self, max_rates_d, max_rates_a,
populations, bg_rate_d, bg_rate_a,
rs=None, seed=1, chunksize=2**16,
comp_filter=None, overwrite=False,
skip_existing=False, scale=10,
path=None, t_chunksize=2**19,
timeslice=None):
"""Compute D and A timestamps arrays for a mixture of N populations.
This method reads the emission from disk once, and generates a pair
of timestamps arrays (e.g. donor and acceptor) from each chunk.
Timestamp data are saved to disk and accessible as pytables arrays in
`._timestamps_d/a` and `._tparticles_d/a`.
The background generated timestamps are assigned a
conventional particle number (last particle index + 1).
Arguments:
max_rates_d (list): list of the peak max emission rate in the
donor channel for each population.
max_rates_a (list): list of the peak max emission rate in the
acceptor channel for each population.
populations (list of slices): slices to `self.particles`
defining each population.
bg_rate_d (float, cps): rate for a Poisson background process
in the donor channel.
bg_rate_a (float, cps): rate for a Poisson background process
in the acceptor channel.
rs (RandomState object): random state object used as random number
generator. If None, use a random state initialized from seed.
seed (uint): when `rs` is None, `seed` is used to initialize the
random state, otherwise is ignored.
chunksize (int): chunk size used for the on-disk timestamp array
comp_filter (tables.Filter or None): compression filter to use
for the on-disk `timestamps` and `tparticles` arrays.
If None use default compression.
overwrite (bool): if True, overwrite any pre-existing timestamps
array. If False, never overwrite. The outcome of simulating an
existing array is controlled by `skip_existing` flag.
skip_existing (bool): if True, skip simulation if the same
timestamps array is already present.
scale (int): `self.t_step` is multiplied by `scale` to obtain the
timestamps units in seconds.
path (string): folder where to save the data.
timeslice (float or None): timestamps are simulated until
`timeslice` seconds. If None, simulate until `self.t_max`.
"""
self.open_store_timestamp(chunksize=chunksize, path=path)
rs = self._get_group_randomstate(rs, seed, self.ts_group)
if t_chunksize is None:
t_chunksize = self.emission.chunkshape[1]
timeslice_size = self.n_samples
if timeslice is not None:
timeslice_size = timeslice // self.t_step
name_d = self._get_ts_name_mix(max_rates_d, populations, bg_rate_d, rs)
name_a = self._get_ts_name_mix(max_rates_a, populations, bg_rate_a, rs)
kw = dict(clk_p=self.t_step / scale,
populations=populations,
num_particles=self.num_particles,
bg_particle=self.num_particles,
overwrite=overwrite, chunksize=chunksize)
if comp_filter is not None:
kw.update(comp_filter=comp_filter)
kw.update(name=name_d, max_rates=max_rates_d, bg_rate=bg_rate_d)
try:
self._timestamps_d, self._tparticles_d = (self.ts_store
.add_timestamps(**kw))
except ExistingArrayError as e:
if skip_existing:
print(' - Skipping already present timestamps array.')
return
else:
raise e
kw.update(name=name_a, max_rates=max_rates_a, bg_rate=bg_rate_a)
try:
self._timestamps_a, self._tparticles_a = (self.ts_store
.add_timestamps(**kw))
except ExistingArrayError as e:
if skip_existing:
print(' - Skipping already present timestamps array.')
return
else:
raise e
self.ts_group._v_attrs['init_random_state'] = rs.get_state()
self._timestamps_d.attrs['init_random_state'] = rs.get_state()
self._timestamps_d.attrs['PyBroMo'] = __version__
self._timestamps_a.attrs['init_random_state'] = rs.get_state()
self._timestamps_a.attrs['PyBroMo'] = __version__
# Load emission in chunks, and save only the final timestamps
bg_rates_d = [None] * (len(max_rates_d) - 1) + [bg_rate_d]
bg_rates_a = [None] * (len(max_rates_a) - 1) + [bg_rate_a]
prev_time = 0
for i_start, i_end in iter_chunk_index(timeslice_size, t_chunksize):
curr_time = np.around(i_start * self.t_step, decimals=1)
if curr_time > prev_time:
print(' %.1fs' % curr_time, end='', flush=True)
prev_time = curr_time
em_chunk = self.emission[:, i_start:i_end]
times_chunk_s_d, par_index_chunk_s_d = \
self._sim_timestamps_populations(
em_chunk, max_rates_d, populations, bg_rates_d, i_start,
rs, scale)
times_chunk_s_a, par_index_chunk_s_a = \
self._sim_timestamps_populations(
em_chunk, max_rates_a, populations, bg_rates_a, i_start,
rs, scale)
# Save sorted timestamps (suffix '_s') and corresponding particles
self._timestamps_d.append(times_chunk_s_d)
self._tparticles_d.append(par_index_chunk_s_d)
self._timestamps_a.append(times_chunk_s_a)
self._tparticles_a.append(par_index_chunk_s_a)
# Save current random state so it can be resumed in the next session
self.ts_group._v_attrs['last_random_state'] = rs.get_state()
self._timestamps_d._v_attrs['last_random_state'] = rs.get_state()
self.ts_store.h5file.flush()
|
[
"def",
"simulate_timestamps_mix_da",
"(",
"self",
",",
"max_rates_d",
",",
"max_rates_a",
",",
"populations",
",",
"bg_rate_d",
",",
"bg_rate_a",
",",
"rs",
"=",
"None",
",",
"seed",
"=",
"1",
",",
"chunksize",
"=",
"2",
"**",
"16",
",",
"comp_filter",
"=",
"None",
",",
"overwrite",
"=",
"False",
",",
"skip_existing",
"=",
"False",
",",
"scale",
"=",
"10",
",",
"path",
"=",
"None",
",",
"t_chunksize",
"=",
"2",
"**",
"19",
",",
"timeslice",
"=",
"None",
")",
":",
"self",
".",
"open_store_timestamp",
"(",
"chunksize",
"=",
"chunksize",
",",
"path",
"=",
"path",
")",
"rs",
"=",
"self",
".",
"_get_group_randomstate",
"(",
"rs",
",",
"seed",
",",
"self",
".",
"ts_group",
")",
"if",
"t_chunksize",
"is",
"None",
":",
"t_chunksize",
"=",
"self",
".",
"emission",
".",
"chunkshape",
"[",
"1",
"]",
"timeslice_size",
"=",
"self",
".",
"n_samples",
"if",
"timeslice",
"is",
"not",
"None",
":",
"timeslice_size",
"=",
"timeslice",
"//",
"self",
".",
"t_step",
"name_d",
"=",
"self",
".",
"_get_ts_name_mix",
"(",
"max_rates_d",
",",
"populations",
",",
"bg_rate_d",
",",
"rs",
")",
"name_a",
"=",
"self",
".",
"_get_ts_name_mix",
"(",
"max_rates_a",
",",
"populations",
",",
"bg_rate_a",
",",
"rs",
")",
"kw",
"=",
"dict",
"(",
"clk_p",
"=",
"self",
".",
"t_step",
"/",
"scale",
",",
"populations",
"=",
"populations",
",",
"num_particles",
"=",
"self",
".",
"num_particles",
",",
"bg_particle",
"=",
"self",
".",
"num_particles",
",",
"overwrite",
"=",
"overwrite",
",",
"chunksize",
"=",
"chunksize",
")",
"if",
"comp_filter",
"is",
"not",
"None",
":",
"kw",
".",
"update",
"(",
"comp_filter",
"=",
"comp_filter",
")",
"kw",
".",
"update",
"(",
"name",
"=",
"name_d",
",",
"max_rates",
"=",
"max_rates_d",
",",
"bg_rate",
"=",
"bg_rate_d",
")",
"try",
":",
"self",
".",
"_timestamps_d",
",",
"self",
".",
"_tparticles_d",
"=",
"(",
"self",
".",
"ts_store",
".",
"add_timestamps",
"(",
"*",
"*",
"kw",
")",
")",
"except",
"ExistingArrayError",
"as",
"e",
":",
"if",
"skip_existing",
":",
"print",
"(",
"' - Skipping already present timestamps array.'",
")",
"return",
"else",
":",
"raise",
"e",
"kw",
".",
"update",
"(",
"name",
"=",
"name_a",
",",
"max_rates",
"=",
"max_rates_a",
",",
"bg_rate",
"=",
"bg_rate_a",
")",
"try",
":",
"self",
".",
"_timestamps_a",
",",
"self",
".",
"_tparticles_a",
"=",
"(",
"self",
".",
"ts_store",
".",
"add_timestamps",
"(",
"*",
"*",
"kw",
")",
")",
"except",
"ExistingArrayError",
"as",
"e",
":",
"if",
"skip_existing",
":",
"print",
"(",
"' - Skipping already present timestamps array.'",
")",
"return",
"else",
":",
"raise",
"e",
"self",
".",
"ts_group",
".",
"_v_attrs",
"[",
"'init_random_state'",
"]",
"=",
"rs",
".",
"get_state",
"(",
")",
"self",
".",
"_timestamps_d",
".",
"attrs",
"[",
"'init_random_state'",
"]",
"=",
"rs",
".",
"get_state",
"(",
")",
"self",
".",
"_timestamps_d",
".",
"attrs",
"[",
"'PyBroMo'",
"]",
"=",
"__version__",
"self",
".",
"_timestamps_a",
".",
"attrs",
"[",
"'init_random_state'",
"]",
"=",
"rs",
".",
"get_state",
"(",
")",
"self",
".",
"_timestamps_a",
".",
"attrs",
"[",
"'PyBroMo'",
"]",
"=",
"__version__",
"# Load emission in chunks, and save only the final timestamps",
"bg_rates_d",
"=",
"[",
"None",
"]",
"*",
"(",
"len",
"(",
"max_rates_d",
")",
"-",
"1",
")",
"+",
"[",
"bg_rate_d",
"]",
"bg_rates_a",
"=",
"[",
"None",
"]",
"*",
"(",
"len",
"(",
"max_rates_a",
")",
"-",
"1",
")",
"+",
"[",
"bg_rate_a",
"]",
"prev_time",
"=",
"0",
"for",
"i_start",
",",
"i_end",
"in",
"iter_chunk_index",
"(",
"timeslice_size",
",",
"t_chunksize",
")",
":",
"curr_time",
"=",
"np",
".",
"around",
"(",
"i_start",
"*",
"self",
".",
"t_step",
",",
"decimals",
"=",
"1",
")",
"if",
"curr_time",
">",
"prev_time",
":",
"print",
"(",
"' %.1fs'",
"%",
"curr_time",
",",
"end",
"=",
"''",
",",
"flush",
"=",
"True",
")",
"prev_time",
"=",
"curr_time",
"em_chunk",
"=",
"self",
".",
"emission",
"[",
":",
",",
"i_start",
":",
"i_end",
"]",
"times_chunk_s_d",
",",
"par_index_chunk_s_d",
"=",
"self",
".",
"_sim_timestamps_populations",
"(",
"em_chunk",
",",
"max_rates_d",
",",
"populations",
",",
"bg_rates_d",
",",
"i_start",
",",
"rs",
",",
"scale",
")",
"times_chunk_s_a",
",",
"par_index_chunk_s_a",
"=",
"self",
".",
"_sim_timestamps_populations",
"(",
"em_chunk",
",",
"max_rates_a",
",",
"populations",
",",
"bg_rates_a",
",",
"i_start",
",",
"rs",
",",
"scale",
")",
"# Save sorted timestamps (suffix '_s') and corresponding particles",
"self",
".",
"_timestamps_d",
".",
"append",
"(",
"times_chunk_s_d",
")",
"self",
".",
"_tparticles_d",
".",
"append",
"(",
"par_index_chunk_s_d",
")",
"self",
".",
"_timestamps_a",
".",
"append",
"(",
"times_chunk_s_a",
")",
"self",
".",
"_tparticles_a",
".",
"append",
"(",
"par_index_chunk_s_a",
")",
"# Save current random state so it can be resumed in the next session",
"self",
".",
"ts_group",
".",
"_v_attrs",
"[",
"'last_random_state'",
"]",
"=",
"rs",
".",
"get_state",
"(",
")",
"self",
".",
"_timestamps_d",
".",
"_v_attrs",
"[",
"'last_random_state'",
"]",
"=",
"rs",
".",
"get_state",
"(",
")",
"self",
".",
"ts_store",
".",
"h5file",
".",
"flush",
"(",
")"
] |
Compute D and A timestamps arrays for a mixture of N populations.
This method reads the emission from disk once, and generates a pair
of timestamps arrays (e.g. donor and acceptor) from each chunk.
Timestamp data are saved to disk and accessible as pytables arrays in
`._timestamps_d/a` and `._tparticles_d/a`.
The background generated timestamps are assigned a
conventional particle number (last particle index + 1).
Arguments:
max_rates_d (list): list of the peak max emission rate in the
donor channel for each population.
max_rates_a (list): list of the peak max emission rate in the
acceptor channel for each population.
populations (list of slices): slices to `self.particles`
defining each population.
bg_rate_d (float, cps): rate for a Poisson background process
in the donor channel.
bg_rate_a (float, cps): rate for a Poisson background process
in the acceptor channel.
rs (RandomState object): random state object used as random number
generator. If None, use a random state initialized from seed.
seed (uint): when `rs` is None, `seed` is used to initialize the
random state, otherwise is ignored.
chunksize (int): chunk size used for the on-disk timestamp array
comp_filter (tables.Filter or None): compression filter to use
for the on-disk `timestamps` and `tparticles` arrays.
If None use default compression.
overwrite (bool): if True, overwrite any pre-existing timestamps
array. If False, never overwrite. The outcome of simulating an
existing array is controlled by `skip_existing` flag.
skip_existing (bool): if True, skip simulation if the same
timestamps array is already present.
scale (int): `self.t_step` is multiplied by `scale` to obtain the
timestamps units in seconds.
path (string): folder where to save the data.
timeslice (float or None): timestamps are simulated until
`timeslice` seconds. If None, simulate until `self.t_max`.
|
[
"Compute",
"D",
"and",
"A",
"timestamps",
"arrays",
"for",
"a",
"mixture",
"of",
"N",
"populations",
"."
] |
python
|
valid
|
prompt-toolkit/pymux
|
pymux/main.py
|
https://github.com/prompt-toolkit/pymux/blob/3f66e62b9de4b2251c7f9afad6c516dc5a30ec67/pymux/main.py#L201-L227
|
def sync_focus(self, *_):
"""
Focus the focused window from the pymux arrangement.
"""
# Pop-up displayed?
if self.display_popup:
self.app.layout.focus(self.layout_manager.popup_dialog)
return
# Confirm.
if self.confirm_text:
return
# Custom prompt.
if self.prompt_command:
return # Focus prompt
# Command mode.
if self.command_mode:
return # Focus command
# No windows left, return. We will quit soon.
if not self.pymux.arrangement.windows:
return
pane = self.pymux.arrangement.get_active_pane()
self.app.layout.focus(pane.terminal)
|
[
"def",
"sync_focus",
"(",
"self",
",",
"*",
"_",
")",
":",
"# Pop-up displayed?",
"if",
"self",
".",
"display_popup",
":",
"self",
".",
"app",
".",
"layout",
".",
"focus",
"(",
"self",
".",
"layout_manager",
".",
"popup_dialog",
")",
"return",
"# Confirm.",
"if",
"self",
".",
"confirm_text",
":",
"return",
"# Custom prompt.",
"if",
"self",
".",
"prompt_command",
":",
"return",
"# Focus prompt",
"# Command mode.",
"if",
"self",
".",
"command_mode",
":",
"return",
"# Focus command",
"# No windows left, return. We will quit soon.",
"if",
"not",
"self",
".",
"pymux",
".",
"arrangement",
".",
"windows",
":",
"return",
"pane",
"=",
"self",
".",
"pymux",
".",
"arrangement",
".",
"get_active_pane",
"(",
")",
"self",
".",
"app",
".",
"layout",
".",
"focus",
"(",
"pane",
".",
"terminal",
")"
] |
Focus the focused window from the pymux arrangement.
|
[
"Focus",
"the",
"focused",
"window",
"from",
"the",
"pymux",
"arrangement",
"."
] |
python
|
train
|
mar10/wsgidav
|
wsgidav/util.py
|
https://github.com/mar10/wsgidav/blob/cec0d84222fc24bea01be1cea91729001963f172/wsgidav/util.py#L1103-L1185
|
def evaluate_http_conditionals(dav_res, last_modified, entitytag, environ):
"""Handle 'If-...:' headers (but not 'If:' header).
If-Match
@see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
Only perform the action if the client supplied entity matches the
same entity on the server. This is mainly for methods like
PUT to only update a resource if it has not been modified since the
user last updated it.
If-Match: "737060cd8c284d8af7ad3082f209582d"
If-Modified-Since
@see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25
Allows a 304 Not Modified to be returned if content is unchanged
If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
If-None-Match
@see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
Allows a 304 Not Modified to be returned if content is unchanged,
see HTTP ETag
If-None-Match: "737060cd8c284d8af7ad3082f209582d"
If-Unmodified-Since
@see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28
Only send the response if the entity has not been modified since a
specific time.
"""
if not dav_res:
return
# Conditions
# An HTTP/1.1 origin server, upon receiving a conditional request that includes both a
# Last-Modified date (e.g., in an If-Modified-Since or If-Unmodified-Since header field) and
# one or more entity tags (e.g., in an If-Match, If-None-Match, or If-Range header field) as
# cache validators, MUST NOT return a response status of 304 (Not Modified) unless doing so
# is consistent with all of the conditional header fields in the request.
if "HTTP_IF_MATCH" in environ and dav_res.support_etag():
ifmatchlist = environ["HTTP_IF_MATCH"].split(",")
for ifmatchtag in ifmatchlist:
ifmatchtag = ifmatchtag.strip(' "\t')
if ifmatchtag == entitytag or ifmatchtag == "*":
break
raise DAVError(HTTP_PRECONDITION_FAILED, "If-Match header condition failed")
# TODO: after the refactoring
ifModifiedSinceFailed = False
if "HTTP_IF_MODIFIED_SINCE" in environ and dav_res.support_modified():
ifmodtime = parse_time_string(environ["HTTP_IF_MODIFIED_SINCE"])
if ifmodtime and ifmodtime > last_modified:
ifModifiedSinceFailed = True
# If-None-Match
# If none of the entity tags match, then the server MAY perform the requested method as if the
# If-None-Match header field did not exist, but MUST also ignore any If-Modified-Since header
# field (s) in the request. That is, if no entity tags match, then the server MUST NOT return
# a 304 (Not Modified) response.
ignoreIfModifiedSince = False
if "HTTP_IF_NONE_MATCH" in environ and dav_res.support_etag():
ifmatchlist = environ["HTTP_IF_NONE_MATCH"].split(",")
for ifmatchtag in ifmatchlist:
ifmatchtag = ifmatchtag.strip(' "\t')
if ifmatchtag == entitytag or ifmatchtag == "*":
# ETag matched. If it's a GET request and we don't have an
# conflicting If-Modified header, we return NOT_MODIFIED
if (
environ["REQUEST_METHOD"] in ("GET", "HEAD")
and not ifModifiedSinceFailed
):
raise DAVError(HTTP_NOT_MODIFIED, "If-None-Match header failed")
raise DAVError(
HTTP_PRECONDITION_FAILED, "If-None-Match header condition failed"
)
ignoreIfModifiedSince = True
if "HTTP_IF_UNMODIFIED_SINCE" in environ and dav_res.support_modified():
ifunmodtime = parse_time_string(environ["HTTP_IF_UNMODIFIED_SINCE"])
if ifunmodtime and ifunmodtime <= last_modified:
raise DAVError(
HTTP_PRECONDITION_FAILED, "If-Unmodified-Since header condition failed"
)
if ifModifiedSinceFailed and not ignoreIfModifiedSince:
raise DAVError(HTTP_NOT_MODIFIED, "If-Modified-Since header condition failed")
return
|
[
"def",
"evaluate_http_conditionals",
"(",
"dav_res",
",",
"last_modified",
",",
"entitytag",
",",
"environ",
")",
":",
"if",
"not",
"dav_res",
":",
"return",
"# Conditions",
"# An HTTP/1.1 origin server, upon receiving a conditional request that includes both a",
"# Last-Modified date (e.g., in an If-Modified-Since or If-Unmodified-Since header field) and",
"# one or more entity tags (e.g., in an If-Match, If-None-Match, or If-Range header field) as",
"# cache validators, MUST NOT return a response status of 304 (Not Modified) unless doing so",
"# is consistent with all of the conditional header fields in the request.",
"if",
"\"HTTP_IF_MATCH\"",
"in",
"environ",
"and",
"dav_res",
".",
"support_etag",
"(",
")",
":",
"ifmatchlist",
"=",
"environ",
"[",
"\"HTTP_IF_MATCH\"",
"]",
".",
"split",
"(",
"\",\"",
")",
"for",
"ifmatchtag",
"in",
"ifmatchlist",
":",
"ifmatchtag",
"=",
"ifmatchtag",
".",
"strip",
"(",
"' \"\\t'",
")",
"if",
"ifmatchtag",
"==",
"entitytag",
"or",
"ifmatchtag",
"==",
"\"*\"",
":",
"break",
"raise",
"DAVError",
"(",
"HTTP_PRECONDITION_FAILED",
",",
"\"If-Match header condition failed\"",
")",
"# TODO: after the refactoring",
"ifModifiedSinceFailed",
"=",
"False",
"if",
"\"HTTP_IF_MODIFIED_SINCE\"",
"in",
"environ",
"and",
"dav_res",
".",
"support_modified",
"(",
")",
":",
"ifmodtime",
"=",
"parse_time_string",
"(",
"environ",
"[",
"\"HTTP_IF_MODIFIED_SINCE\"",
"]",
")",
"if",
"ifmodtime",
"and",
"ifmodtime",
">",
"last_modified",
":",
"ifModifiedSinceFailed",
"=",
"True",
"# If-None-Match",
"# If none of the entity tags match, then the server MAY perform the requested method as if the",
"# If-None-Match header field did not exist, but MUST also ignore any If-Modified-Since header",
"# field (s) in the request. That is, if no entity tags match, then the server MUST NOT return",
"# a 304 (Not Modified) response.",
"ignoreIfModifiedSince",
"=",
"False",
"if",
"\"HTTP_IF_NONE_MATCH\"",
"in",
"environ",
"and",
"dav_res",
".",
"support_etag",
"(",
")",
":",
"ifmatchlist",
"=",
"environ",
"[",
"\"HTTP_IF_NONE_MATCH\"",
"]",
".",
"split",
"(",
"\",\"",
")",
"for",
"ifmatchtag",
"in",
"ifmatchlist",
":",
"ifmatchtag",
"=",
"ifmatchtag",
".",
"strip",
"(",
"' \"\\t'",
")",
"if",
"ifmatchtag",
"==",
"entitytag",
"or",
"ifmatchtag",
"==",
"\"*\"",
":",
"# ETag matched. If it's a GET request and we don't have an",
"# conflicting If-Modified header, we return NOT_MODIFIED",
"if",
"(",
"environ",
"[",
"\"REQUEST_METHOD\"",
"]",
"in",
"(",
"\"GET\"",
",",
"\"HEAD\"",
")",
"and",
"not",
"ifModifiedSinceFailed",
")",
":",
"raise",
"DAVError",
"(",
"HTTP_NOT_MODIFIED",
",",
"\"If-None-Match header failed\"",
")",
"raise",
"DAVError",
"(",
"HTTP_PRECONDITION_FAILED",
",",
"\"If-None-Match header condition failed\"",
")",
"ignoreIfModifiedSince",
"=",
"True",
"if",
"\"HTTP_IF_UNMODIFIED_SINCE\"",
"in",
"environ",
"and",
"dav_res",
".",
"support_modified",
"(",
")",
":",
"ifunmodtime",
"=",
"parse_time_string",
"(",
"environ",
"[",
"\"HTTP_IF_UNMODIFIED_SINCE\"",
"]",
")",
"if",
"ifunmodtime",
"and",
"ifunmodtime",
"<=",
"last_modified",
":",
"raise",
"DAVError",
"(",
"HTTP_PRECONDITION_FAILED",
",",
"\"If-Unmodified-Since header condition failed\"",
")",
"if",
"ifModifiedSinceFailed",
"and",
"not",
"ignoreIfModifiedSince",
":",
"raise",
"DAVError",
"(",
"HTTP_NOT_MODIFIED",
",",
"\"If-Modified-Since header condition failed\"",
")",
"return"
] |
Handle 'If-...:' headers (but not 'If:' header).
If-Match
@see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
Only perform the action if the client supplied entity matches the
same entity on the server. This is mainly for methods like
PUT to only update a resource if it has not been modified since the
user last updated it.
If-Match: "737060cd8c284d8af7ad3082f209582d"
If-Modified-Since
@see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25
Allows a 304 Not Modified to be returned if content is unchanged
If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
If-None-Match
@see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
Allows a 304 Not Modified to be returned if content is unchanged,
see HTTP ETag
If-None-Match: "737060cd8c284d8af7ad3082f209582d"
If-Unmodified-Since
@see: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28
Only send the response if the entity has not been modified since a
specific time.
|
[
"Handle",
"If",
"-",
"...",
":",
"headers",
"(",
"but",
"not",
"If",
":",
"header",
")",
"."
] |
python
|
valid
|
gwastro/pycbc
|
pycbc/inference/io/base_hdf.py
|
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/inference/io/base_hdf.py#L554-L568
|
def write_injections(self, injection_file):
"""Writes injection parameters from the given injection file.
Everything in the injection file is copied to ``injections_group``.
Parameters
----------
injection_file : str
Path to HDF injection file.
"""
try:
with h5py.File(injection_file, "r") as fp:
super(BaseInferenceFile, self).copy(fp, self.injections_group)
except IOError:
logging.warn("Could not read %s as an HDF file", injection_file)
|
[
"def",
"write_injections",
"(",
"self",
",",
"injection_file",
")",
":",
"try",
":",
"with",
"h5py",
".",
"File",
"(",
"injection_file",
",",
"\"r\"",
")",
"as",
"fp",
":",
"super",
"(",
"BaseInferenceFile",
",",
"self",
")",
".",
"copy",
"(",
"fp",
",",
"self",
".",
"injections_group",
")",
"except",
"IOError",
":",
"logging",
".",
"warn",
"(",
"\"Could not read %s as an HDF file\"",
",",
"injection_file",
")"
] |
Writes injection parameters from the given injection file.
Everything in the injection file is copied to ``injections_group``.
Parameters
----------
injection_file : str
Path to HDF injection file.
|
[
"Writes",
"injection",
"parameters",
"from",
"the",
"given",
"injection",
"file",
"."
] |
python
|
train
|
gtaylor/django-dynamodb-sessions
|
dynamodb_sessions/backends/dynamodb.py
|
https://github.com/gtaylor/django-dynamodb-sessions/blob/434031aa483b26b0b7b5acbdf683bbe1575956f1/dynamodb_sessions/backends/dynamodb.py#L136-L179
|
def save(self, must_create=False):
"""
Saves the current session data to the database.
:keyword bool must_create: If ``True``, a ``CreateError`` exception
will be raised if the saving operation doesn't create a *new* entry
(as opposed to possibly updating an existing entry).
:raises: ``CreateError`` if ``must_create`` is ``True`` and a session
with the current session key already exists.
"""
# If the save method is called with must_create equal to True, I'm
# setting self._session_key equal to None and when
# self.get_or_create_session_key is called the new
# session_key will be created.
if must_create:
self._session_key = None
self._get_or_create_session_key()
update_kwargs = {
'Key': {'session_key': self.session_key},
}
attribute_names = {'#data': 'data'}
attribute_values = {
':data': self.encode(self._get_session(no_load=must_create))
}
set_updates = ['#data = :data']
if must_create:
# Set condition to ensure session with same key doesnt exist
update_kwargs['ConditionExpression'] = \
DynamoConditionAttr('session_key').not_exists()
attribute_values[':created'] = int(time.time())
set_updates.append('created = :created')
update_kwargs['UpdateExpression'] = 'SET ' + ','.join(set_updates)
update_kwargs['ExpressionAttributeValues'] = attribute_values
update_kwargs['ExpressionAttributeNames'] = attribute_names
try:
self.table.update_item(**update_kwargs)
except ClientError as e:
error_code = e.response['Error']['Code']
if error_code == 'ConditionalCheckFailedException':
raise CreateError
raise
|
[
"def",
"save",
"(",
"self",
",",
"must_create",
"=",
"False",
")",
":",
"# If the save method is called with must_create equal to True, I'm",
"# setting self._session_key equal to None and when",
"# self.get_or_create_session_key is called the new",
"# session_key will be created.",
"if",
"must_create",
":",
"self",
".",
"_session_key",
"=",
"None",
"self",
".",
"_get_or_create_session_key",
"(",
")",
"update_kwargs",
"=",
"{",
"'Key'",
":",
"{",
"'session_key'",
":",
"self",
".",
"session_key",
"}",
",",
"}",
"attribute_names",
"=",
"{",
"'#data'",
":",
"'data'",
"}",
"attribute_values",
"=",
"{",
"':data'",
":",
"self",
".",
"encode",
"(",
"self",
".",
"_get_session",
"(",
"no_load",
"=",
"must_create",
")",
")",
"}",
"set_updates",
"=",
"[",
"'#data = :data'",
"]",
"if",
"must_create",
":",
"# Set condition to ensure session with same key doesnt exist",
"update_kwargs",
"[",
"'ConditionExpression'",
"]",
"=",
"DynamoConditionAttr",
"(",
"'session_key'",
")",
".",
"not_exists",
"(",
")",
"attribute_values",
"[",
"':created'",
"]",
"=",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"set_updates",
".",
"append",
"(",
"'created = :created'",
")",
"update_kwargs",
"[",
"'UpdateExpression'",
"]",
"=",
"'SET '",
"+",
"','",
".",
"join",
"(",
"set_updates",
")",
"update_kwargs",
"[",
"'ExpressionAttributeValues'",
"]",
"=",
"attribute_values",
"update_kwargs",
"[",
"'ExpressionAttributeNames'",
"]",
"=",
"attribute_names",
"try",
":",
"self",
".",
"table",
".",
"update_item",
"(",
"*",
"*",
"update_kwargs",
")",
"except",
"ClientError",
"as",
"e",
":",
"error_code",
"=",
"e",
".",
"response",
"[",
"'Error'",
"]",
"[",
"'Code'",
"]",
"if",
"error_code",
"==",
"'ConditionalCheckFailedException'",
":",
"raise",
"CreateError",
"raise"
] |
Saves the current session data to the database.
:keyword bool must_create: If ``True``, a ``CreateError`` exception
will be raised if the saving operation doesn't create a *new* entry
(as opposed to possibly updating an existing entry).
:raises: ``CreateError`` if ``must_create`` is ``True`` and a session
with the current session key already exists.
|
[
"Saves",
"the",
"current",
"session",
"data",
"to",
"the",
"database",
"."
] |
python
|
train
|
resync/resync
|
resync/dump.py
|
https://github.com/resync/resync/blob/98292c17b2c00f2d6f5191c6ab51fef8c292a018/resync/dump.py#L188-L197
|
def archive_path(self, real_path):
"""Return the archive path for file with real_path.
Mapping is based on removal of self.path_prefix which is determined
by self.check_files().
"""
if (not self.path_prefix):
return(real_path)
else:
return(os.path.relpath(real_path, self.path_prefix))
|
[
"def",
"archive_path",
"(",
"self",
",",
"real_path",
")",
":",
"if",
"(",
"not",
"self",
".",
"path_prefix",
")",
":",
"return",
"(",
"real_path",
")",
"else",
":",
"return",
"(",
"os",
".",
"path",
".",
"relpath",
"(",
"real_path",
",",
"self",
".",
"path_prefix",
")",
")"
] |
Return the archive path for file with real_path.
Mapping is based on removal of self.path_prefix which is determined
by self.check_files().
|
[
"Return",
"the",
"archive",
"path",
"for",
"file",
"with",
"real_path",
"."
] |
python
|
train
|
abilian/abilian-core
|
abilian/web/assets/mixin.py
|
https://github.com/abilian/abilian-core/blob/0a71275bf108c3d51e13ca9e093c0249235351e3/abilian/web/assets/mixin.py#L115-L138
|
def register_asset(self, type_, *assets):
"""Register webassets bundle to be served on all pages.
:param type_: `"css"`, `"js-top"` or `"js""`.
:param assets:
a path to file, a :ref:`webassets.Bundle <webassets:bundles>`
instance or a callable that returns a
:ref:`webassets.Bundle <webassets:bundles>` instance.
:raises KeyError: if `type_` is not supported.
"""
supported = list(self._assets_bundles.keys())
if type_ not in supported:
msg = "Invalid type: {}. Valid types: {}".format(
repr(type_), ", ".join(sorted(supported))
)
raise KeyError(msg)
for asset in assets:
if not isinstance(asset, Bundle) and callable(asset):
asset = asset()
self._assets_bundles[type_].setdefault("bundles", []).append(asset)
|
[
"def",
"register_asset",
"(",
"self",
",",
"type_",
",",
"*",
"assets",
")",
":",
"supported",
"=",
"list",
"(",
"self",
".",
"_assets_bundles",
".",
"keys",
"(",
")",
")",
"if",
"type_",
"not",
"in",
"supported",
":",
"msg",
"=",
"\"Invalid type: {}. Valid types: {}\"",
".",
"format",
"(",
"repr",
"(",
"type_",
")",
",",
"\", \"",
".",
"join",
"(",
"sorted",
"(",
"supported",
")",
")",
")",
"raise",
"KeyError",
"(",
"msg",
")",
"for",
"asset",
"in",
"assets",
":",
"if",
"not",
"isinstance",
"(",
"asset",
",",
"Bundle",
")",
"and",
"callable",
"(",
"asset",
")",
":",
"asset",
"=",
"asset",
"(",
")",
"self",
".",
"_assets_bundles",
"[",
"type_",
"]",
".",
"setdefault",
"(",
"\"bundles\"",
",",
"[",
"]",
")",
".",
"append",
"(",
"asset",
")"
] |
Register webassets bundle to be served on all pages.
:param type_: `"css"`, `"js-top"` or `"js""`.
:param assets:
a path to file, a :ref:`webassets.Bundle <webassets:bundles>`
instance or a callable that returns a
:ref:`webassets.Bundle <webassets:bundles>` instance.
:raises KeyError: if `type_` is not supported.
|
[
"Register",
"webassets",
"bundle",
"to",
"be",
"served",
"on",
"all",
"pages",
"."
] |
python
|
train
|
googleapis/google-cloud-python
|
bigquery/google/cloud/bigquery/client.py
|
https://github.com/googleapis/google-cloud-python/blob/85e80125a59cb10f8cb105f25ecc099e4b940b50/bigquery/google/cloud/bigquery/client.py#L1964-L1977
|
def schema_to_json(self, schema_list, destination):
"""Takes a list of schema field objects.
Serializes the list of schema field objects as json to a file.
Destination is a file path or a file object.
"""
json_schema_list = [f.to_api_repr() for f in schema_list]
if isinstance(destination, io.IOBase):
return self._schema_to_json_file_object(json_schema_list, destination)
with open(destination, mode="w") as file_obj:
return self._schema_to_json_file_object(json_schema_list, file_obj)
|
[
"def",
"schema_to_json",
"(",
"self",
",",
"schema_list",
",",
"destination",
")",
":",
"json_schema_list",
"=",
"[",
"f",
".",
"to_api_repr",
"(",
")",
"for",
"f",
"in",
"schema_list",
"]",
"if",
"isinstance",
"(",
"destination",
",",
"io",
".",
"IOBase",
")",
":",
"return",
"self",
".",
"_schema_to_json_file_object",
"(",
"json_schema_list",
",",
"destination",
")",
"with",
"open",
"(",
"destination",
",",
"mode",
"=",
"\"w\"",
")",
"as",
"file_obj",
":",
"return",
"self",
".",
"_schema_to_json_file_object",
"(",
"json_schema_list",
",",
"file_obj",
")"
] |
Takes a list of schema field objects.
Serializes the list of schema field objects as json to a file.
Destination is a file path or a file object.
|
[
"Takes",
"a",
"list",
"of",
"schema",
"field",
"objects",
"."
] |
python
|
train
|
utek/pyseaweed
|
pyseaweed/weed.py
|
https://github.com/utek/pyseaweed/blob/218049329885425a2b8370157fa44952e64516be/pyseaweed/weed.py#L140-L147
|
def delete_file(self, fid):
"""
Delete file from WeedFS
:param string fid: File ID
"""
url = self.get_file_url(fid)
return self.conn.delete_data(url)
|
[
"def",
"delete_file",
"(",
"self",
",",
"fid",
")",
":",
"url",
"=",
"self",
".",
"get_file_url",
"(",
"fid",
")",
"return",
"self",
".",
"conn",
".",
"delete_data",
"(",
"url",
")"
] |
Delete file from WeedFS
:param string fid: File ID
|
[
"Delete",
"file",
"from",
"WeedFS"
] |
python
|
train
|
mushkevych/scheduler
|
synergy/scheduler/timetable.py
|
https://github.com/mushkevych/scheduler/blob/6740331360f49083c208085fb5a60ce80ebf418b/synergy/scheduler/timetable.py#L125-L152
|
def skip_tree_node(self, tree_node, tx_context=None):
""" method skips the node and all its dependants and child nodes """
if not tx_context:
# create transaction context if one was not provided
# format: {process_name: {timeperiod: AbstractTreeNode} }
tx_context = collections.defaultdict(dict)
if tree_node.timeperiod in tx_context[tree_node.process_name]:
# the node has already been marked for skipping
return tx_context
if tree_node.job_record.is_finished:
# the node is finished and does not require skipping
pass
else:
state_machine_name = context.process_context[tree_node.process_name].state_machine_name
state_machine = self.state_machines[state_machine_name]
state_machine.skip_job(tree_node.job_record)
tx_context[tree_node.process_name][tree_node.timeperiod] = tree_node
for timeperiod, node in tree_node.children.items():
self.skip_tree_node(node, tx_context)
dependant_nodes = self._find_dependant_tree_nodes(tree_node)
for node in dependant_nodes:
self.skip_tree_node(node, tx_context)
return tx_context
|
[
"def",
"skip_tree_node",
"(",
"self",
",",
"tree_node",
",",
"tx_context",
"=",
"None",
")",
":",
"if",
"not",
"tx_context",
":",
"# create transaction context if one was not provided",
"# format: {process_name: {timeperiod: AbstractTreeNode} }",
"tx_context",
"=",
"collections",
".",
"defaultdict",
"(",
"dict",
")",
"if",
"tree_node",
".",
"timeperiod",
"in",
"tx_context",
"[",
"tree_node",
".",
"process_name",
"]",
":",
"# the node has already been marked for skipping",
"return",
"tx_context",
"if",
"tree_node",
".",
"job_record",
".",
"is_finished",
":",
"# the node is finished and does not require skipping",
"pass",
"else",
":",
"state_machine_name",
"=",
"context",
".",
"process_context",
"[",
"tree_node",
".",
"process_name",
"]",
".",
"state_machine_name",
"state_machine",
"=",
"self",
".",
"state_machines",
"[",
"state_machine_name",
"]",
"state_machine",
".",
"skip_job",
"(",
"tree_node",
".",
"job_record",
")",
"tx_context",
"[",
"tree_node",
".",
"process_name",
"]",
"[",
"tree_node",
".",
"timeperiod",
"]",
"=",
"tree_node",
"for",
"timeperiod",
",",
"node",
"in",
"tree_node",
".",
"children",
".",
"items",
"(",
")",
":",
"self",
".",
"skip_tree_node",
"(",
"node",
",",
"tx_context",
")",
"dependant_nodes",
"=",
"self",
".",
"_find_dependant_tree_nodes",
"(",
"tree_node",
")",
"for",
"node",
"in",
"dependant_nodes",
":",
"self",
".",
"skip_tree_node",
"(",
"node",
",",
"tx_context",
")",
"return",
"tx_context"
] |
method skips the node and all its dependants and child nodes
|
[
"method",
"skips",
"the",
"node",
"and",
"all",
"its",
"dependants",
"and",
"child",
"nodes"
] |
python
|
train
|
SKA-ScienceDataProcessor/integration-prototype
|
sip/execution_control/configuration_db/sip_config_db/utils/generate_sbi_config.py
|
https://github.com/SKA-ScienceDataProcessor/integration-prototype/blob/8c8006de6ad71dcd44114b0338780738079c87d4/sip/execution_control/configuration_db/sip_config_db/utils/generate_sbi_config.py#L33-L59
|
def add_workflow_definitions(sbi_config: dict):
"""Add any missing SBI workflow definitions as placeholders.
This is a utility function used in testing and adds mock / test workflow
definitions to the database for workflows defined in the specified
SBI config.
Args:
sbi_config (dict): SBI configuration dictionary.
"""
registered_workflows = []
for i in range(len(sbi_config['processing_blocks'])):
workflow_config = sbi_config['processing_blocks'][i]['workflow']
workflow_name = '{}:{}'.format(workflow_config['id'],
workflow_config['version'])
if workflow_name in registered_workflows:
continue
workflow_definition = dict(
id=workflow_config['id'],
version=workflow_config['version'],
stages=[]
)
key = "workflow_definitions:{}:{}".format(workflow_config['id'],
workflow_config['version'])
DB.save_dict(key, workflow_definition, hierarchical=False)
registered_workflows.append(workflow_name)
|
[
"def",
"add_workflow_definitions",
"(",
"sbi_config",
":",
"dict",
")",
":",
"registered_workflows",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"sbi_config",
"[",
"'processing_blocks'",
"]",
")",
")",
":",
"workflow_config",
"=",
"sbi_config",
"[",
"'processing_blocks'",
"]",
"[",
"i",
"]",
"[",
"'workflow'",
"]",
"workflow_name",
"=",
"'{}:{}'",
".",
"format",
"(",
"workflow_config",
"[",
"'id'",
"]",
",",
"workflow_config",
"[",
"'version'",
"]",
")",
"if",
"workflow_name",
"in",
"registered_workflows",
":",
"continue",
"workflow_definition",
"=",
"dict",
"(",
"id",
"=",
"workflow_config",
"[",
"'id'",
"]",
",",
"version",
"=",
"workflow_config",
"[",
"'version'",
"]",
",",
"stages",
"=",
"[",
"]",
")",
"key",
"=",
"\"workflow_definitions:{}:{}\"",
".",
"format",
"(",
"workflow_config",
"[",
"'id'",
"]",
",",
"workflow_config",
"[",
"'version'",
"]",
")",
"DB",
".",
"save_dict",
"(",
"key",
",",
"workflow_definition",
",",
"hierarchical",
"=",
"False",
")",
"registered_workflows",
".",
"append",
"(",
"workflow_name",
")"
] |
Add any missing SBI workflow definitions as placeholders.
This is a utility function used in testing and adds mock / test workflow
definitions to the database for workflows defined in the specified
SBI config.
Args:
sbi_config (dict): SBI configuration dictionary.
|
[
"Add",
"any",
"missing",
"SBI",
"workflow",
"definitions",
"as",
"placeholders",
"."
] |
python
|
train
|
dswah/pyGAM
|
pygam/utils.py
|
https://github.com/dswah/pyGAM/blob/b3e5c3cd580f0a3ad69f9372861624f67760c325/pygam/utils.py#L802-L830
|
def flatten(iterable):
"""convenience tool to flatten any nested iterable
example:
flatten([[[],[4]],[[[5,[6,7, []]]]]])
>>> [4, 5, 6, 7]
flatten('hello')
>>> 'hello'
Parameters
----------
iterable
Returns
-------
flattened object
"""
if isiterable(iterable):
flat = []
for item in list(iterable):
item = flatten(item)
if not isiterable(item):
item = [item]
flat += item
return flat
else:
return iterable
|
[
"def",
"flatten",
"(",
"iterable",
")",
":",
"if",
"isiterable",
"(",
"iterable",
")",
":",
"flat",
"=",
"[",
"]",
"for",
"item",
"in",
"list",
"(",
"iterable",
")",
":",
"item",
"=",
"flatten",
"(",
"item",
")",
"if",
"not",
"isiterable",
"(",
"item",
")",
":",
"item",
"=",
"[",
"item",
"]",
"flat",
"+=",
"item",
"return",
"flat",
"else",
":",
"return",
"iterable"
] |
convenience tool to flatten any nested iterable
example:
flatten([[[],[4]],[[[5,[6,7, []]]]]])
>>> [4, 5, 6, 7]
flatten('hello')
>>> 'hello'
Parameters
----------
iterable
Returns
-------
flattened object
|
[
"convenience",
"tool",
"to",
"flatten",
"any",
"nested",
"iterable"
] |
python
|
train
|
intake/intake
|
intake/catalog/local.py
|
https://github.com/intake/intake/blob/277b96bfdee39d8a3048ea5408c6d6716d568336/intake/catalog/local.py#L263-L272
|
def get(self, **user_parameters):
"""Instantiate the DataSource for the given parameters"""
plugin, open_args = self._create_open_args(user_parameters)
data_source = plugin(**open_args)
data_source.catalog_object = self._catalog
data_source.name = self.name
data_source.description = self._description
data_source.cat = self._catalog
return data_source
|
[
"def",
"get",
"(",
"self",
",",
"*",
"*",
"user_parameters",
")",
":",
"plugin",
",",
"open_args",
"=",
"self",
".",
"_create_open_args",
"(",
"user_parameters",
")",
"data_source",
"=",
"plugin",
"(",
"*",
"*",
"open_args",
")",
"data_source",
".",
"catalog_object",
"=",
"self",
".",
"_catalog",
"data_source",
".",
"name",
"=",
"self",
".",
"name",
"data_source",
".",
"description",
"=",
"self",
".",
"_description",
"data_source",
".",
"cat",
"=",
"self",
".",
"_catalog",
"return",
"data_source"
] |
Instantiate the DataSource for the given parameters
|
[
"Instantiate",
"the",
"DataSource",
"for",
"the",
"given",
"parameters"
] |
python
|
train
|
Kozea/cairocffi
|
cairocffi/context.py
|
https://github.com/Kozea/cairocffi/blob/450853add7e32eea20985b6aa5f54d9cb3cd04fe/cairocffi/context.py#L1709-L1752
|
def select_font_face(self, family='', slant=constants.FONT_SLANT_NORMAL,
weight=constants.FONT_WEIGHT_NORMAL):
"""Selects a family and style of font from a simplified description
as a family name, slant and weight.
.. note::
The :meth:`select_font_face` method is part of
what the cairo designers call the "toy" text API.
It is convenient for short demos and simple programs,
but it is not expected to be adequate
for serious text-using applications.
See :ref:`fonts` for details.
Cairo provides no operation to list available family names
on the system (this is a "toy", remember),
but the standard CSS2 generic family names,
(``"serif"``, ``"sans-serif"``, ``"cursive"``, ``"fantasy"``,
``"monospace"``),
are likely to work as expected.
If family starts with the string ``"cairo:"``,
or if no native font backends are compiled in,
cairo will use an internal font family.
The internal font family recognizes many modifiers
in the family string,
most notably, it recognizes the string ``"monospace"``.
That is, the family name ``"cairo:monospace"``
will use the monospace version of the internal font family.
If text is drawn without a call to :meth:`select_font_face`,
(nor :meth:`set_font_face` nor :meth:`set_scaled_font`),
the default family is platform-specific,
but is essentially ``"sans-serif"``.
Default slant is :obj:`NORMAL <FONT_SLANT_NORMAL>`,
and default weight is :obj:`NORMAL <FONT_WEIGHT_NORMAL>`.
This method is equivalent to a call to :class:`ToyFontFace`
followed by :meth:`set_font_face`.
"""
cairo.cairo_select_font_face(
self._pointer, _encode_string(family), slant, weight)
self._check_status()
|
[
"def",
"select_font_face",
"(",
"self",
",",
"family",
"=",
"''",
",",
"slant",
"=",
"constants",
".",
"FONT_SLANT_NORMAL",
",",
"weight",
"=",
"constants",
".",
"FONT_WEIGHT_NORMAL",
")",
":",
"cairo",
".",
"cairo_select_font_face",
"(",
"self",
".",
"_pointer",
",",
"_encode_string",
"(",
"family",
")",
",",
"slant",
",",
"weight",
")",
"self",
".",
"_check_status",
"(",
")"
] |
Selects a family and style of font from a simplified description
as a family name, slant and weight.
.. note::
The :meth:`select_font_face` method is part of
what the cairo designers call the "toy" text API.
It is convenient for short demos and simple programs,
but it is not expected to be adequate
for serious text-using applications.
See :ref:`fonts` for details.
Cairo provides no operation to list available family names
on the system (this is a "toy", remember),
but the standard CSS2 generic family names,
(``"serif"``, ``"sans-serif"``, ``"cursive"``, ``"fantasy"``,
``"monospace"``),
are likely to work as expected.
If family starts with the string ``"cairo:"``,
or if no native font backends are compiled in,
cairo will use an internal font family.
The internal font family recognizes many modifiers
in the family string,
most notably, it recognizes the string ``"monospace"``.
That is, the family name ``"cairo:monospace"``
will use the monospace version of the internal font family.
If text is drawn without a call to :meth:`select_font_face`,
(nor :meth:`set_font_face` nor :meth:`set_scaled_font`),
the default family is platform-specific,
but is essentially ``"sans-serif"``.
Default slant is :obj:`NORMAL <FONT_SLANT_NORMAL>`,
and default weight is :obj:`NORMAL <FONT_WEIGHT_NORMAL>`.
This method is equivalent to a call to :class:`ToyFontFace`
followed by :meth:`set_font_face`.
|
[
"Selects",
"a",
"family",
"and",
"style",
"of",
"font",
"from",
"a",
"simplified",
"description",
"as",
"a",
"family",
"name",
"slant",
"and",
"weight",
"."
] |
python
|
train
|
inveniosoftware/invenio-webhooks
|
invenio_webhooks/views.py
|
https://github.com/inveniosoftware/invenio-webhooks/blob/f407cb2245464543ee474a81189fb9d3978bdde5/invenio_webhooks/views.py#L69-L81
|
def make_response(event):
"""Make a response from webhook event."""
code, message = event.status
response = jsonify(**event.response)
response.headers['X-Hub-Event'] = event.receiver_id
response.headers['X-Hub-Delivery'] = event.id
if message:
response.headers['X-Hub-Info'] = message
add_link_header(response, {'self': url_for(
'.event_item', receiver_id=event.receiver_id, event_id=event.id,
_external=True
)})
return response, code
|
[
"def",
"make_response",
"(",
"event",
")",
":",
"code",
",",
"message",
"=",
"event",
".",
"status",
"response",
"=",
"jsonify",
"(",
"*",
"*",
"event",
".",
"response",
")",
"response",
".",
"headers",
"[",
"'X-Hub-Event'",
"]",
"=",
"event",
".",
"receiver_id",
"response",
".",
"headers",
"[",
"'X-Hub-Delivery'",
"]",
"=",
"event",
".",
"id",
"if",
"message",
":",
"response",
".",
"headers",
"[",
"'X-Hub-Info'",
"]",
"=",
"message",
"add_link_header",
"(",
"response",
",",
"{",
"'self'",
":",
"url_for",
"(",
"'.event_item'",
",",
"receiver_id",
"=",
"event",
".",
"receiver_id",
",",
"event_id",
"=",
"event",
".",
"id",
",",
"_external",
"=",
"True",
")",
"}",
")",
"return",
"response",
",",
"code"
] |
Make a response from webhook event.
|
[
"Make",
"a",
"response",
"from",
"webhook",
"event",
"."
] |
python
|
train
|
erik/alexandra
|
alexandra/util.py
|
https://github.com/erik/alexandra/blob/8bea94efa1af465254a553dc4dfea3fa552b18da/alexandra/util.py#L87-L112
|
def validate_request_timestamp(req_body, max_diff=150):
"""Ensure the request's timestamp doesn't fall outside of the
app's specified tolerance.
Returns True if this request is valid, False otherwise.
:param req_body: JSON object parsed out of the raw POST data of a request.
:param max_diff: Maximum allowable difference in seconds between request
timestamp and system clock. Amazon requires <= 150 seconds for
published skills.
"""
time_str = req_body.get('request', {}).get('timestamp')
if not time_str:
log.error('timestamp not present %s', req_body)
return False
req_ts = datetime.strptime(time_str, "%Y-%m-%dT%H:%M:%SZ")
diff = (datetime.utcnow() - req_ts).total_seconds()
if abs(diff) > max_diff:
log.error('timestamp difference too high: %d sec', diff)
return False
return True
|
[
"def",
"validate_request_timestamp",
"(",
"req_body",
",",
"max_diff",
"=",
"150",
")",
":",
"time_str",
"=",
"req_body",
".",
"get",
"(",
"'request'",
",",
"{",
"}",
")",
".",
"get",
"(",
"'timestamp'",
")",
"if",
"not",
"time_str",
":",
"log",
".",
"error",
"(",
"'timestamp not present %s'",
",",
"req_body",
")",
"return",
"False",
"req_ts",
"=",
"datetime",
".",
"strptime",
"(",
"time_str",
",",
"\"%Y-%m-%dT%H:%M:%SZ\"",
")",
"diff",
"=",
"(",
"datetime",
".",
"utcnow",
"(",
")",
"-",
"req_ts",
")",
".",
"total_seconds",
"(",
")",
"if",
"abs",
"(",
"diff",
")",
">",
"max_diff",
":",
"log",
".",
"error",
"(",
"'timestamp difference too high: %d sec'",
",",
"diff",
")",
"return",
"False",
"return",
"True"
] |
Ensure the request's timestamp doesn't fall outside of the
app's specified tolerance.
Returns True if this request is valid, False otherwise.
:param req_body: JSON object parsed out of the raw POST data of a request.
:param max_diff: Maximum allowable difference in seconds between request
timestamp and system clock. Amazon requires <= 150 seconds for
published skills.
|
[
"Ensure",
"the",
"request",
"s",
"timestamp",
"doesn",
"t",
"fall",
"outside",
"of",
"the",
"app",
"s",
"specified",
"tolerance",
"."
] |
python
|
train
|
CalebBell/thermo
|
thermo/chemical.py
|
https://github.com/CalebBell/thermo/blob/3857ed023a3e64fd3039a32d53576c24990ef1c3/thermo/chemical.py#L2322-L2343
|
def alphal(self):
r'''Thermal diffusivity of the liquid phase of the chemical at its
current temperature and pressure, in units of [m^2/s].
.. math::
\alpha = \frac{k}{\rho Cp}
Utilizes the temperature and pressure dependent object oriented
interfaces :obj:`thermo.volume.VolumeLiquid`,
:obj:`thermo.thermal_conductivity.ThermalConductivityLiquid`,
and :obj:`thermo.heat_capacity.HeatCapacityLiquid` to calculate the
actual properties.
Examples
--------
>>> Chemical('nitrogen', T=70).alphal
9.444949636299626e-08
'''
kl, rhol, Cpl = self.kl, self.rhol, self.Cpl
if all([kl, rhol, Cpl]):
return thermal_diffusivity(k=kl, rho=rhol, Cp=Cpl)
return None
|
[
"def",
"alphal",
"(",
"self",
")",
":",
"kl",
",",
"rhol",
",",
"Cpl",
"=",
"self",
".",
"kl",
",",
"self",
".",
"rhol",
",",
"self",
".",
"Cpl",
"if",
"all",
"(",
"[",
"kl",
",",
"rhol",
",",
"Cpl",
"]",
")",
":",
"return",
"thermal_diffusivity",
"(",
"k",
"=",
"kl",
",",
"rho",
"=",
"rhol",
",",
"Cp",
"=",
"Cpl",
")",
"return",
"None"
] |
r'''Thermal diffusivity of the liquid phase of the chemical at its
current temperature and pressure, in units of [m^2/s].
.. math::
\alpha = \frac{k}{\rho Cp}
Utilizes the temperature and pressure dependent object oriented
interfaces :obj:`thermo.volume.VolumeLiquid`,
:obj:`thermo.thermal_conductivity.ThermalConductivityLiquid`,
and :obj:`thermo.heat_capacity.HeatCapacityLiquid` to calculate the
actual properties.
Examples
--------
>>> Chemical('nitrogen', T=70).alphal
9.444949636299626e-08
|
[
"r",
"Thermal",
"diffusivity",
"of",
"the",
"liquid",
"phase",
"of",
"the",
"chemical",
"at",
"its",
"current",
"temperature",
"and",
"pressure",
"in",
"units",
"of",
"[",
"m^2",
"/",
"s",
"]",
"."
] |
python
|
valid
|
valohai/valohai-yaml
|
valohai_yaml/parsing.py
|
https://github.com/valohai/valohai-yaml/blob/3d2e92381633d84cdba039f6905df34c9633a2e1/valohai_yaml/parsing.py#L6-L21
|
def parse(yaml, validate=True):
"""
Parse the given YAML data into a `Config` object, optionally validating it first.
:param yaml: YAML data (either a string, a stream, or pre-parsed Python dict/list)
:type yaml: list|dict|str|file
:param validate: Whether to validate the data before attempting to parse it.
:type validate: bool
:return: Config object
:rtype: valohai_yaml.objs.Config
"""
data = read_yaml(yaml)
if validate: # pragma: no branch
from .validation import validate
validate(data, raise_exc=True)
return Config.parse(data)
|
[
"def",
"parse",
"(",
"yaml",
",",
"validate",
"=",
"True",
")",
":",
"data",
"=",
"read_yaml",
"(",
"yaml",
")",
"if",
"validate",
":",
"# pragma: no branch",
"from",
".",
"validation",
"import",
"validate",
"validate",
"(",
"data",
",",
"raise_exc",
"=",
"True",
")",
"return",
"Config",
".",
"parse",
"(",
"data",
")"
] |
Parse the given YAML data into a `Config` object, optionally validating it first.
:param yaml: YAML data (either a string, a stream, or pre-parsed Python dict/list)
:type yaml: list|dict|str|file
:param validate: Whether to validate the data before attempting to parse it.
:type validate: bool
:return: Config object
:rtype: valohai_yaml.objs.Config
|
[
"Parse",
"the",
"given",
"YAML",
"data",
"into",
"a",
"Config",
"object",
"optionally",
"validating",
"it",
"first",
"."
] |
python
|
train
|
uber/doubles
|
doubles/target.py
|
https://github.com/uber/doubles/blob/15e68dcf98f709b19a581915fa6af5ef49ebdd8a/doubles/target.py#L48-L62
|
def _determine_doubled_obj(self):
"""Return the target object.
Returns the object that should be treated as the target object. For partial doubles, this
will be the same as ``self.obj``, but for pure doubles, it's pulled from the special
``_doubles_target`` attribute.
:return: The object to be doubled.
:rtype: object
"""
if isinstance(self.obj, ObjectDouble):
return self.obj._doubles_target
else:
return self.obj
|
[
"def",
"_determine_doubled_obj",
"(",
"self",
")",
":",
"if",
"isinstance",
"(",
"self",
".",
"obj",
",",
"ObjectDouble",
")",
":",
"return",
"self",
".",
"obj",
".",
"_doubles_target",
"else",
":",
"return",
"self",
".",
"obj"
] |
Return the target object.
Returns the object that should be treated as the target object. For partial doubles, this
will be the same as ``self.obj``, but for pure doubles, it's pulled from the special
``_doubles_target`` attribute.
:return: The object to be doubled.
:rtype: object
|
[
"Return",
"the",
"target",
"object",
"."
] |
python
|
train
|
idlesign/uwsgiconf
|
uwsgiconf/options/alarms.py
|
https://github.com/idlesign/uwsgiconf/blob/475407acb44199edbf7e0a66261bfeb51de1afae/uwsgiconf/options/alarms.py#L133-L145
|
def alarm_on_segfault(self, alarm):
"""Raise the specified alarm when the segmentation fault handler is executed.
Sends a backtrace.
:param AlarmType|list[AlarmType] alarm: Alarm.
"""
self.register_alarm(alarm)
for alarm in listify(alarm):
self._set('alarm-segfault', alarm.alias, multi=True)
return self._section
|
[
"def",
"alarm_on_segfault",
"(",
"self",
",",
"alarm",
")",
":",
"self",
".",
"register_alarm",
"(",
"alarm",
")",
"for",
"alarm",
"in",
"listify",
"(",
"alarm",
")",
":",
"self",
".",
"_set",
"(",
"'alarm-segfault'",
",",
"alarm",
".",
"alias",
",",
"multi",
"=",
"True",
")",
"return",
"self",
".",
"_section"
] |
Raise the specified alarm when the segmentation fault handler is executed.
Sends a backtrace.
:param AlarmType|list[AlarmType] alarm: Alarm.
|
[
"Raise",
"the",
"specified",
"alarm",
"when",
"the",
"segmentation",
"fault",
"handler",
"is",
"executed",
"."
] |
python
|
train
|
niolabs/python-xbee
|
xbee/backend/base.py
|
https://github.com/niolabs/python-xbee/blob/b91be3d0ee7ccaa1990120b5b5490999d8e6cbc7/xbee/backend/base.py#L286-L326
|
def _parse_samples(self, io_bytes):
"""
_parse_samples: binary data in XBee IO data format ->
[ {"dio-0":True,
"dio-1":False,
"adc-0":100"}, ...]
_parse_samples reads binary data from an XBee device in the IO
data format specified by the API. It will then return a
dictionary indicating the status of each enabled IO port.
"""
sample_count, dio_chans, aio_chans, dio_mask, header_size = \
self._parse_samples_header(io_bytes)
samples = []
# split the sample data into a list, so it can be pop()'d
sample_bytes = [byteToInt(c) for c in io_bytes[header_size:]]
# repeat for every sample provided
for sample_ind in range(0, sample_count):
tmp_samples = {}
if dio_chans:
# we have digital data
digital_data_set = (sample_bytes.pop(0) << 8 |
sample_bytes.pop(0))
digital_values = dio_mask & digital_data_set
for i in dio_chans:
tmp_samples['dio-{0}'.format(i)] = True \
if (digital_values >> i) & 1 else False
for i in aio_chans:
analog_sample = (sample_bytes.pop(0) << 8 | sample_bytes.pop(0))
tmp_samples['adc-{0}'.format(i)] = analog_sample
samples.append(tmp_samples)
return samples
|
[
"def",
"_parse_samples",
"(",
"self",
",",
"io_bytes",
")",
":",
"sample_count",
",",
"dio_chans",
",",
"aio_chans",
",",
"dio_mask",
",",
"header_size",
"=",
"self",
".",
"_parse_samples_header",
"(",
"io_bytes",
")",
"samples",
"=",
"[",
"]",
"# split the sample data into a list, so it can be pop()'d",
"sample_bytes",
"=",
"[",
"byteToInt",
"(",
"c",
")",
"for",
"c",
"in",
"io_bytes",
"[",
"header_size",
":",
"]",
"]",
"# repeat for every sample provided",
"for",
"sample_ind",
"in",
"range",
"(",
"0",
",",
"sample_count",
")",
":",
"tmp_samples",
"=",
"{",
"}",
"if",
"dio_chans",
":",
"# we have digital data",
"digital_data_set",
"=",
"(",
"sample_bytes",
".",
"pop",
"(",
"0",
")",
"<<",
"8",
"|",
"sample_bytes",
".",
"pop",
"(",
"0",
")",
")",
"digital_values",
"=",
"dio_mask",
"&",
"digital_data_set",
"for",
"i",
"in",
"dio_chans",
":",
"tmp_samples",
"[",
"'dio-{0}'",
".",
"format",
"(",
"i",
")",
"]",
"=",
"True",
"if",
"(",
"digital_values",
">>",
"i",
")",
"&",
"1",
"else",
"False",
"for",
"i",
"in",
"aio_chans",
":",
"analog_sample",
"=",
"(",
"sample_bytes",
".",
"pop",
"(",
"0",
")",
"<<",
"8",
"|",
"sample_bytes",
".",
"pop",
"(",
"0",
")",
")",
"tmp_samples",
"[",
"'adc-{0}'",
".",
"format",
"(",
"i",
")",
"]",
"=",
"analog_sample",
"samples",
".",
"append",
"(",
"tmp_samples",
")",
"return",
"samples"
] |
_parse_samples: binary data in XBee IO data format ->
[ {"dio-0":True,
"dio-1":False,
"adc-0":100"}, ...]
_parse_samples reads binary data from an XBee device in the IO
data format specified by the API. It will then return a
dictionary indicating the status of each enabled IO port.
|
[
"_parse_samples",
":",
"binary",
"data",
"in",
"XBee",
"IO",
"data",
"format",
"-",
">",
"[",
"{",
"dio",
"-",
"0",
":",
"True",
"dio",
"-",
"1",
":",
"False",
"adc",
"-",
"0",
":",
"100",
"}",
"...",
"]"
] |
python
|
train
|
openvax/mhcflurry
|
mhcflurry/parallelism.py
|
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/parallelism.py#L115-L188
|
def make_worker_pool(
processes=None,
initializer=None,
initializer_kwargs_per_process=None,
max_tasks_per_worker=None):
"""
Convenience wrapper to create a multiprocessing.Pool.
This function adds support for per-worker initializer arguments, which are
not natively supported by the multiprocessing module. The motivation for
this feature is to support allocating each worker to a (different) GPU.
IMPLEMENTATION NOTE:
The per-worker initializer arguments are implemented using a Queue. Each
worker reads its arguments from this queue when it starts. When it
terminates, it adds its initializer arguments back to the queue, so a
future process can initialize itself using these arguments.
There is one issue with this approach, however. If a worker crashes, it
never repopulates the queue of initializer arguments. This will prevent
any future worker from re-using those arguments. To deal with this
issue we add a second 'backup queue'. This queue always contains the
full set of initializer arguments: whenever a worker reads from it, it
always pushes the pop'd args back to the end of the queue immediately.
If the primary arg queue is ever empty, then workers will read
from this backup queue.
Parameters
----------
processes : int
Number of workers. Default: num CPUs.
initializer : function, optional
Init function to call in each worker
initializer_kwargs_per_process : list of dict, optional
Arguments to pass to initializer function for each worker. Length of
list must equal the number of workers.
max_tasks_per_worker : int, optional
Restart workers after this many tasks. Requires Python >=3.2.
Returns
-------
multiprocessing.Pool
"""
if not processes:
processes = cpu_count()
pool_kwargs = {
'processes': processes,
}
if max_tasks_per_worker:
pool_kwargs["maxtasksperchild"] = max_tasks_per_worker
if initializer:
if initializer_kwargs_per_process:
assert len(initializer_kwargs_per_process) == processes
kwargs_queue = Queue()
kwargs_queue_backup = Queue()
for kwargs in initializer_kwargs_per_process:
kwargs_queue.put(kwargs)
kwargs_queue_backup.put(kwargs)
pool_kwargs["initializer"] = worker_init_entry_point
pool_kwargs["initargs"] = (
initializer, kwargs_queue, kwargs_queue_backup)
else:
pool_kwargs["initializer"] = initializer
worker_pool = Pool(**pool_kwargs)
print("Started pool: %s" % str(worker_pool))
pprint(pool_kwargs)
return worker_pool
|
[
"def",
"make_worker_pool",
"(",
"processes",
"=",
"None",
",",
"initializer",
"=",
"None",
",",
"initializer_kwargs_per_process",
"=",
"None",
",",
"max_tasks_per_worker",
"=",
"None",
")",
":",
"if",
"not",
"processes",
":",
"processes",
"=",
"cpu_count",
"(",
")",
"pool_kwargs",
"=",
"{",
"'processes'",
":",
"processes",
",",
"}",
"if",
"max_tasks_per_worker",
":",
"pool_kwargs",
"[",
"\"maxtasksperchild\"",
"]",
"=",
"max_tasks_per_worker",
"if",
"initializer",
":",
"if",
"initializer_kwargs_per_process",
":",
"assert",
"len",
"(",
"initializer_kwargs_per_process",
")",
"==",
"processes",
"kwargs_queue",
"=",
"Queue",
"(",
")",
"kwargs_queue_backup",
"=",
"Queue",
"(",
")",
"for",
"kwargs",
"in",
"initializer_kwargs_per_process",
":",
"kwargs_queue",
".",
"put",
"(",
"kwargs",
")",
"kwargs_queue_backup",
".",
"put",
"(",
"kwargs",
")",
"pool_kwargs",
"[",
"\"initializer\"",
"]",
"=",
"worker_init_entry_point",
"pool_kwargs",
"[",
"\"initargs\"",
"]",
"=",
"(",
"initializer",
",",
"kwargs_queue",
",",
"kwargs_queue_backup",
")",
"else",
":",
"pool_kwargs",
"[",
"\"initializer\"",
"]",
"=",
"initializer",
"worker_pool",
"=",
"Pool",
"(",
"*",
"*",
"pool_kwargs",
")",
"print",
"(",
"\"Started pool: %s\"",
"%",
"str",
"(",
"worker_pool",
")",
")",
"pprint",
"(",
"pool_kwargs",
")",
"return",
"worker_pool"
] |
Convenience wrapper to create a multiprocessing.Pool.
This function adds support for per-worker initializer arguments, which are
not natively supported by the multiprocessing module. The motivation for
this feature is to support allocating each worker to a (different) GPU.
IMPLEMENTATION NOTE:
The per-worker initializer arguments are implemented using a Queue. Each
worker reads its arguments from this queue when it starts. When it
terminates, it adds its initializer arguments back to the queue, so a
future process can initialize itself using these arguments.
There is one issue with this approach, however. If a worker crashes, it
never repopulates the queue of initializer arguments. This will prevent
any future worker from re-using those arguments. To deal with this
issue we add a second 'backup queue'. This queue always contains the
full set of initializer arguments: whenever a worker reads from it, it
always pushes the pop'd args back to the end of the queue immediately.
If the primary arg queue is ever empty, then workers will read
from this backup queue.
Parameters
----------
processes : int
Number of workers. Default: num CPUs.
initializer : function, optional
Init function to call in each worker
initializer_kwargs_per_process : list of dict, optional
Arguments to pass to initializer function for each worker. Length of
list must equal the number of workers.
max_tasks_per_worker : int, optional
Restart workers after this many tasks. Requires Python >=3.2.
Returns
-------
multiprocessing.Pool
|
[
"Convenience",
"wrapper",
"to",
"create",
"a",
"multiprocessing",
".",
"Pool",
"."
] |
python
|
train
|
nephics/mat4py
|
mat4py/savemat.py
|
https://github.com/nephics/mat4py/blob/6c1a2ad903937437cc5f24f3c3f5aa2c5a77a1c1/mat4py/savemat.py#L207-L225
|
def write_numeric_array(fd, header, array):
"""Write the numeric array"""
# make a memory file for writing array data
bd = BytesIO()
# write matrix header to memory file
write_var_header(bd, header)
if not isinstance(array, basestring) and header['dims'][0] > 1:
# list array data in column major order
array = list(chain.from_iterable(izip(*array)))
# write matrix data to memory file
write_elements(bd, header['mtp'], array)
# write the variable to disk file
data = bd.getvalue()
bd.close()
write_var_data(fd, data)
|
[
"def",
"write_numeric_array",
"(",
"fd",
",",
"header",
",",
"array",
")",
":",
"# make a memory file for writing array data",
"bd",
"=",
"BytesIO",
"(",
")",
"# write matrix header to memory file",
"write_var_header",
"(",
"bd",
",",
"header",
")",
"if",
"not",
"isinstance",
"(",
"array",
",",
"basestring",
")",
"and",
"header",
"[",
"'dims'",
"]",
"[",
"0",
"]",
">",
"1",
":",
"# list array data in column major order",
"array",
"=",
"list",
"(",
"chain",
".",
"from_iterable",
"(",
"izip",
"(",
"*",
"array",
")",
")",
")",
"# write matrix data to memory file",
"write_elements",
"(",
"bd",
",",
"header",
"[",
"'mtp'",
"]",
",",
"array",
")",
"# write the variable to disk file",
"data",
"=",
"bd",
".",
"getvalue",
"(",
")",
"bd",
".",
"close",
"(",
")",
"write_var_data",
"(",
"fd",
",",
"data",
")"
] |
Write the numeric array
|
[
"Write",
"the",
"numeric",
"array"
] |
python
|
valid
|
spyder-ide/conda-manager
|
conda_manager/api/manager_api.py
|
https://github.com/spyder-ide/conda-manager/blob/89a2126cbecefc92185cf979347ccac1c5ee5d9d/conda_manager/api/manager_api.py#L151-L171
|
def _download_repodata(self, checked_repos):
"""Dowload repodata."""
self._files_downloaded = []
self._repodata_files = []
self.__counter = -1
if checked_repos:
for repo in checked_repos:
path = self._repo_url_to_path(repo)
self._files_downloaded.append(path)
self._repodata_files.append(path)
worker = self.download_async(repo, path)
worker.url = repo
worker.path = path
worker.sig_finished.connect(self._repodata_downloaded)
else:
# Empty, maybe there is no internet connection
# Load information from conda-meta and save that file
path = self._get_repodata_from_meta()
self._repodata_files = [path]
self._repodata_downloaded()
|
[
"def",
"_download_repodata",
"(",
"self",
",",
"checked_repos",
")",
":",
"self",
".",
"_files_downloaded",
"=",
"[",
"]",
"self",
".",
"_repodata_files",
"=",
"[",
"]",
"self",
".",
"__counter",
"=",
"-",
"1",
"if",
"checked_repos",
":",
"for",
"repo",
"in",
"checked_repos",
":",
"path",
"=",
"self",
".",
"_repo_url_to_path",
"(",
"repo",
")",
"self",
".",
"_files_downloaded",
".",
"append",
"(",
"path",
")",
"self",
".",
"_repodata_files",
".",
"append",
"(",
"path",
")",
"worker",
"=",
"self",
".",
"download_async",
"(",
"repo",
",",
"path",
")",
"worker",
".",
"url",
"=",
"repo",
"worker",
".",
"path",
"=",
"path",
"worker",
".",
"sig_finished",
".",
"connect",
"(",
"self",
".",
"_repodata_downloaded",
")",
"else",
":",
"# Empty, maybe there is no internet connection",
"# Load information from conda-meta and save that file",
"path",
"=",
"self",
".",
"_get_repodata_from_meta",
"(",
")",
"self",
".",
"_repodata_files",
"=",
"[",
"path",
"]",
"self",
".",
"_repodata_downloaded",
"(",
")"
] |
Dowload repodata.
|
[
"Dowload",
"repodata",
"."
] |
python
|
train
|
stevelittlefish/easyforms
|
easyforms/form.py
|
https://github.com/stevelittlefish/easyforms/blob/f5dd2635b045beec9af970b249909f8429cedc57/easyforms/form.py#L763-L770
|
def disable_validation(self, field_name):
"""Disable the validation rules for a field"""
field = self.field_dict.get(field_name)
if not field:
raise exceptions.FieldNotFound('Field not found: \'%s\' when trying to disable validation' % field_name)
field.validators = []
|
[
"def",
"disable_validation",
"(",
"self",
",",
"field_name",
")",
":",
"field",
"=",
"self",
".",
"field_dict",
".",
"get",
"(",
"field_name",
")",
"if",
"not",
"field",
":",
"raise",
"exceptions",
".",
"FieldNotFound",
"(",
"'Field not found: \\'%s\\' when trying to disable validation'",
"%",
"field_name",
")",
"field",
".",
"validators",
"=",
"[",
"]"
] |
Disable the validation rules for a field
|
[
"Disable",
"the",
"validation",
"rules",
"for",
"a",
"field"
] |
python
|
train
|
daviddrysdale/python-phonenumbers
|
python/phonenumbers/phonenumberutil.py
|
https://github.com/daviddrysdale/python-phonenumbers/blob/9cc5bb4ab5e661e70789b4c64bf7a9383c7bdc20/python/phonenumbers/phonenumberutil.py#L704-L769
|
def length_of_national_destination_code(numobj):
"""Return length of the national destination code code for a number.
Gets the length of the national destination code (NDC) from the
PhoneNumber object passed in, so that clients could use it to split a
national significant number into NDC and subscriber number. The NDC of a
phone number is normally the first group of digit(s) right after the
country calling code when the number is formatted in the international
format, if there is a subscriber number part that follows.
N.B.: similar to an area code, not all numbers have an NDC!
An example of how this could be used:
>>> import phonenumbers
>>> numobj = phonenumbers.parse("18002530000", "US")
>>> nsn = phonenumbers.national_significant_number(numobj)
>>> ndc_len = phonenumbers.length_of_national_destination_code(numobj)
>>> if ndc_len > 0:
... national_destination_code = nsn[:ndc_len]
... subscriber_number = nsn[ndc_len:]
... else:
... national_destination_code = ""
... subscriber_number = nsn
Refer to the unittests to see the difference between this function and
length_of_geographical_area_code.
Arguments:
numobj -- The PhoneNumber object to find the length of the NDC from.
Returns the length of NDC of the PhoneNumber object passed in, which
could be zero.
"""
if numobj.extension is not None:
# We don't want to alter the object given to us, but we don't want to
# include the extension when we format it, so we copy it and clear the
# extension here.
copied_numobj = PhoneNumber()
copied_numobj.merge_from(numobj)
copied_numobj.extension = None
else:
copied_numobj = numobj
nsn = format_number(copied_numobj, PhoneNumberFormat.INTERNATIONAL)
number_groups = re.split(NON_DIGITS_PATTERN, nsn)
# The pattern will start with "+COUNTRY_CODE " so the first group will
# always be the empty string (before the + symbol) and the second group
# will be the country calling code. The third group will be area code if
# it is not the last group.
if len(number_groups) <= 3:
return 0
if number_type(numobj) == PhoneNumberType.MOBILE:
# For example Argentinian mobile numbers, when formatted in the
# international format, are in the form of +54 9 NDC XXXX... As a
# result, we take the length of the third group (NDC) and add the
# length of the second group (which is the mobile token), which also
# forms part of the national significant number. This assumes that
# the mobile token is always formatted separately from the rest of the
# phone number.
mobile_token = country_mobile_token(numobj.country_code)
if mobile_token != U_EMPTY_STRING:
return len(number_groups[2]) + len(number_groups[3])
return len(number_groups[2])
|
[
"def",
"length_of_national_destination_code",
"(",
"numobj",
")",
":",
"if",
"numobj",
".",
"extension",
"is",
"not",
"None",
":",
"# We don't want to alter the object given to us, but we don't want to",
"# include the extension when we format it, so we copy it and clear the",
"# extension here.",
"copied_numobj",
"=",
"PhoneNumber",
"(",
")",
"copied_numobj",
".",
"merge_from",
"(",
"numobj",
")",
"copied_numobj",
".",
"extension",
"=",
"None",
"else",
":",
"copied_numobj",
"=",
"numobj",
"nsn",
"=",
"format_number",
"(",
"copied_numobj",
",",
"PhoneNumberFormat",
".",
"INTERNATIONAL",
")",
"number_groups",
"=",
"re",
".",
"split",
"(",
"NON_DIGITS_PATTERN",
",",
"nsn",
")",
"# The pattern will start with \"+COUNTRY_CODE \" so the first group will",
"# always be the empty string (before the + symbol) and the second group",
"# will be the country calling code. The third group will be area code if",
"# it is not the last group.",
"if",
"len",
"(",
"number_groups",
")",
"<=",
"3",
":",
"return",
"0",
"if",
"number_type",
"(",
"numobj",
")",
"==",
"PhoneNumberType",
".",
"MOBILE",
":",
"# For example Argentinian mobile numbers, when formatted in the",
"# international format, are in the form of +54 9 NDC XXXX... As a",
"# result, we take the length of the third group (NDC) and add the",
"# length of the second group (which is the mobile token), which also",
"# forms part of the national significant number. This assumes that",
"# the mobile token is always formatted separately from the rest of the",
"# phone number.",
"mobile_token",
"=",
"country_mobile_token",
"(",
"numobj",
".",
"country_code",
")",
"if",
"mobile_token",
"!=",
"U_EMPTY_STRING",
":",
"return",
"len",
"(",
"number_groups",
"[",
"2",
"]",
")",
"+",
"len",
"(",
"number_groups",
"[",
"3",
"]",
")",
"return",
"len",
"(",
"number_groups",
"[",
"2",
"]",
")"
] |
Return length of the national destination code code for a number.
Gets the length of the national destination code (NDC) from the
PhoneNumber object passed in, so that clients could use it to split a
national significant number into NDC and subscriber number. The NDC of a
phone number is normally the first group of digit(s) right after the
country calling code when the number is formatted in the international
format, if there is a subscriber number part that follows.
N.B.: similar to an area code, not all numbers have an NDC!
An example of how this could be used:
>>> import phonenumbers
>>> numobj = phonenumbers.parse("18002530000", "US")
>>> nsn = phonenumbers.national_significant_number(numobj)
>>> ndc_len = phonenumbers.length_of_national_destination_code(numobj)
>>> if ndc_len > 0:
... national_destination_code = nsn[:ndc_len]
... subscriber_number = nsn[ndc_len:]
... else:
... national_destination_code = ""
... subscriber_number = nsn
Refer to the unittests to see the difference between this function and
length_of_geographical_area_code.
Arguments:
numobj -- The PhoneNumber object to find the length of the NDC from.
Returns the length of NDC of the PhoneNumber object passed in, which
could be zero.
|
[
"Return",
"length",
"of",
"the",
"national",
"destination",
"code",
"code",
"for",
"a",
"number",
"."
] |
python
|
train
|
f3at/feat
|
src/feat/models/setter.py
|
https://github.com/f3at/feat/blob/15da93fc9d6ec8154f52a9172824e25821195ef8/src/feat/models/setter.py#L50-L62
|
def source_attr(attr_name):
"""
Creates a setter that will set the specified source attribute
to the current value.
@param attr_name: the name of an attribute belonging to the source.
@type attr_name: str
"""
def source_attr(value, context, **_params):
setattr(context["model"].source, attr_name, value)
return _attr()
return source_attr
|
[
"def",
"source_attr",
"(",
"attr_name",
")",
":",
"def",
"source_attr",
"(",
"value",
",",
"context",
",",
"*",
"*",
"_params",
")",
":",
"setattr",
"(",
"context",
"[",
"\"model\"",
"]",
".",
"source",
",",
"attr_name",
",",
"value",
")",
"return",
"_attr",
"(",
")",
"return",
"source_attr"
] |
Creates a setter that will set the specified source attribute
to the current value.
@param attr_name: the name of an attribute belonging to the source.
@type attr_name: str
|
[
"Creates",
"a",
"setter",
"that",
"will",
"set",
"the",
"specified",
"source",
"attribute",
"to",
"the",
"current",
"value",
"."
] |
python
|
train
|
wandb/client
|
wandb/vendor/prompt_toolkit/layout/controls.py
|
https://github.com/wandb/client/blob/7d08954ed5674fee223cd85ed0d8518fe47266b2/wandb/vendor/prompt_toolkit/layout/controls.py#L136-L149
|
def get_height_for_line(self, lineno, width):
"""
Return the height that a given line would need if it is rendered in a
space with the given width.
"""
try:
return self._line_heights[lineno, width]
except KeyError:
text = token_list_to_text(self.get_line(lineno))
result = self.get_height_for_text(text, width)
# Cache and return
self._line_heights[lineno, width] = result
return result
|
[
"def",
"get_height_for_line",
"(",
"self",
",",
"lineno",
",",
"width",
")",
":",
"try",
":",
"return",
"self",
".",
"_line_heights",
"[",
"lineno",
",",
"width",
"]",
"except",
"KeyError",
":",
"text",
"=",
"token_list_to_text",
"(",
"self",
".",
"get_line",
"(",
"lineno",
")",
")",
"result",
"=",
"self",
".",
"get_height_for_text",
"(",
"text",
",",
"width",
")",
"# Cache and return",
"self",
".",
"_line_heights",
"[",
"lineno",
",",
"width",
"]",
"=",
"result",
"return",
"result"
] |
Return the height that a given line would need if it is rendered in a
space with the given width.
|
[
"Return",
"the",
"height",
"that",
"a",
"given",
"line",
"would",
"need",
"if",
"it",
"is",
"rendered",
"in",
"a",
"space",
"with",
"the",
"given",
"width",
"."
] |
python
|
train
|
shreyaspotnis/rampage
|
rampage/daq/gpib.py
|
https://github.com/shreyaspotnis/rampage/blob/e2565aef7ee16ee06523de975e8aa41aca14e3b2/rampage/daq/gpib.py#L34-L56
|
def set_fm_ext(self, freq, amplitude, peak_freq_dev=None,
output_state=True):
"""Sets the func generator to frequency modulation with external modulation.
freq is the carrier frequency in Hz."""
if peak_freq_dev is None:
peak_freq_dev = freq
commands = ['FUNC SIN', # set to output sine functions
'FM:STAT ON',
'FREQ {0}'.format(freq),
'FM:SOUR EXT',
# 'FM:FREQ {0}'.format(freq),
'FM:DEV {0}'.format(peak_freq_dev),
'VOLT {0}'.format(amplitude),
'VOLT:OFFS 0'] # set to frequency modulation
if output_state is True:
commands.append('OUTP ON')
else:
commands.append('OUTP OFF')
command_string = '\n'.join(commands)
print_string = '\n\t' + command_string.replace('\n', '\n\t')
logging.info(print_string)
self.instr.write(command_string)
|
[
"def",
"set_fm_ext",
"(",
"self",
",",
"freq",
",",
"amplitude",
",",
"peak_freq_dev",
"=",
"None",
",",
"output_state",
"=",
"True",
")",
":",
"if",
"peak_freq_dev",
"is",
"None",
":",
"peak_freq_dev",
"=",
"freq",
"commands",
"=",
"[",
"'FUNC SIN'",
",",
"# set to output sine functions",
"'FM:STAT ON'",
",",
"'FREQ {0}'",
".",
"format",
"(",
"freq",
")",
",",
"'FM:SOUR EXT'",
",",
"# 'FM:FREQ {0}'.format(freq),",
"'FM:DEV {0}'",
".",
"format",
"(",
"peak_freq_dev",
")",
",",
"'VOLT {0}'",
".",
"format",
"(",
"amplitude",
")",
",",
"'VOLT:OFFS 0'",
"]",
"# set to frequency modulation",
"if",
"output_state",
"is",
"True",
":",
"commands",
".",
"append",
"(",
"'OUTP ON'",
")",
"else",
":",
"commands",
".",
"append",
"(",
"'OUTP OFF'",
")",
"command_string",
"=",
"'\\n'",
".",
"join",
"(",
"commands",
")",
"print_string",
"=",
"'\\n\\t'",
"+",
"command_string",
".",
"replace",
"(",
"'\\n'",
",",
"'\\n\\t'",
")",
"logging",
".",
"info",
"(",
"print_string",
")",
"self",
".",
"instr",
".",
"write",
"(",
"command_string",
")"
] |
Sets the func generator to frequency modulation with external modulation.
freq is the carrier frequency in Hz.
|
[
"Sets",
"the",
"func",
"generator",
"to",
"frequency",
"modulation",
"with",
"external",
"modulation",
".",
"freq",
"is",
"the",
"carrier",
"frequency",
"in",
"Hz",
"."
] |
python
|
train
|
nathancahill/mimicdb
|
mimicdb/s3/bucket.py
|
https://github.com/nathancahill/mimicdb/blob/9d0e8ebcba31d937f73752f9b88e5a4fec860765/mimicdb/s3/bucket.py#L74-L92
|
def delete_keys(self, *args, **kwargs):
"""Remove each key or key name in an iterable from the bucket set.
"""
ikeys = iter(kwargs.get('keys', args[0] if args else []))
while True:
try:
key = ikeys.next()
except StopIteration:
break
if isinstance(key, basestring):
mimicdb.backend.srem(tpl.bucket % self.name, key)
mimicdb.backend.delete(tpl.key % (self.name, key))
elif isinstance(key, BotoKey) or isinstance(key, Key):
mimicdb.backend.srem(tpl.bucket % self.name, key.name)
mimicdb.backend.delete(tpl.key % (self.name, key.name))
return super(Bucket, self).delete_keys(*args, **kwargs)
|
[
"def",
"delete_keys",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"ikeys",
"=",
"iter",
"(",
"kwargs",
".",
"get",
"(",
"'keys'",
",",
"args",
"[",
"0",
"]",
"if",
"args",
"else",
"[",
"]",
")",
")",
"while",
"True",
":",
"try",
":",
"key",
"=",
"ikeys",
".",
"next",
"(",
")",
"except",
"StopIteration",
":",
"break",
"if",
"isinstance",
"(",
"key",
",",
"basestring",
")",
":",
"mimicdb",
".",
"backend",
".",
"srem",
"(",
"tpl",
".",
"bucket",
"%",
"self",
".",
"name",
",",
"key",
")",
"mimicdb",
".",
"backend",
".",
"delete",
"(",
"tpl",
".",
"key",
"%",
"(",
"self",
".",
"name",
",",
"key",
")",
")",
"elif",
"isinstance",
"(",
"key",
",",
"BotoKey",
")",
"or",
"isinstance",
"(",
"key",
",",
"Key",
")",
":",
"mimicdb",
".",
"backend",
".",
"srem",
"(",
"tpl",
".",
"bucket",
"%",
"self",
".",
"name",
",",
"key",
".",
"name",
")",
"mimicdb",
".",
"backend",
".",
"delete",
"(",
"tpl",
".",
"key",
"%",
"(",
"self",
".",
"name",
",",
"key",
".",
"name",
")",
")",
"return",
"super",
"(",
"Bucket",
",",
"self",
")",
".",
"delete_keys",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] |
Remove each key or key name in an iterable from the bucket set.
|
[
"Remove",
"each",
"key",
"or",
"key",
"name",
"in",
"an",
"iterable",
"from",
"the",
"bucket",
"set",
"."
] |
python
|
valid
|
hydpy-dev/hydpy
|
hydpy/core/modeltools.py
|
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/modeltools.py#L751-L780
|
def extrapolate_error(self):
"""Estimate the numerical error to be expected when applying all
methods available based on the results of the current and the
last method.
Note that this expolation strategy cannot be applied on the first
method. If the current method is the first one, `-999.9` is returned.
>>> from hydpy.models.test_v1 import *
>>> parameterstep()
>>> model.numvars.error = 1e-2
>>> model.numvars.last_error = 1e-1
>>> model.numvars.idx_method = 10
>>> model.extrapolate_error()
>>> from hydpy import round_
>>> round_(model.numvars.extrapolated_error)
0.01
>>> model.numvars.idx_method = 9
>>> model.extrapolate_error()
>>> round_(model.numvars.extrapolated_error)
0.001
"""
if self.numvars.idx_method > 2:
self.numvars.extrapolated_error = modelutils.exp(
modelutils.log(self.numvars.error) +
(modelutils.log(self.numvars.error) -
modelutils.log(self.numvars.last_error)) *
(self.numconsts.nmb_methods-self.numvars.idx_method))
else:
self.numvars.extrapolated_error = -999.9
|
[
"def",
"extrapolate_error",
"(",
"self",
")",
":",
"if",
"self",
".",
"numvars",
".",
"idx_method",
">",
"2",
":",
"self",
".",
"numvars",
".",
"extrapolated_error",
"=",
"modelutils",
".",
"exp",
"(",
"modelutils",
".",
"log",
"(",
"self",
".",
"numvars",
".",
"error",
")",
"+",
"(",
"modelutils",
".",
"log",
"(",
"self",
".",
"numvars",
".",
"error",
")",
"-",
"modelutils",
".",
"log",
"(",
"self",
".",
"numvars",
".",
"last_error",
")",
")",
"*",
"(",
"self",
".",
"numconsts",
".",
"nmb_methods",
"-",
"self",
".",
"numvars",
".",
"idx_method",
")",
")",
"else",
":",
"self",
".",
"numvars",
".",
"extrapolated_error",
"=",
"-",
"999.9"
] |
Estimate the numerical error to be expected when applying all
methods available based on the results of the current and the
last method.
Note that this expolation strategy cannot be applied on the first
method. If the current method is the first one, `-999.9` is returned.
>>> from hydpy.models.test_v1 import *
>>> parameterstep()
>>> model.numvars.error = 1e-2
>>> model.numvars.last_error = 1e-1
>>> model.numvars.idx_method = 10
>>> model.extrapolate_error()
>>> from hydpy import round_
>>> round_(model.numvars.extrapolated_error)
0.01
>>> model.numvars.idx_method = 9
>>> model.extrapolate_error()
>>> round_(model.numvars.extrapolated_error)
0.001
|
[
"Estimate",
"the",
"numerical",
"error",
"to",
"be",
"expected",
"when",
"applying",
"all",
"methods",
"available",
"based",
"on",
"the",
"results",
"of",
"the",
"current",
"and",
"the",
"last",
"method",
"."
] |
python
|
train
|
opendatateam/udata
|
udata/core/spatial/models.py
|
https://github.com/opendatateam/udata/blob/f016585af94b0ff6bd73738c700324adc8ba7f8f/udata/core/spatial/models.py#L185-L191
|
def child_level(self):
"""Return the child level given handled levels."""
HANDLED_LEVELS = current_app.config.get('HANDLED_LEVELS')
try:
return HANDLED_LEVELS[HANDLED_LEVELS.index(self.level) - 1]
except (IndexError, ValueError):
return None
|
[
"def",
"child_level",
"(",
"self",
")",
":",
"HANDLED_LEVELS",
"=",
"current_app",
".",
"config",
".",
"get",
"(",
"'HANDLED_LEVELS'",
")",
"try",
":",
"return",
"HANDLED_LEVELS",
"[",
"HANDLED_LEVELS",
".",
"index",
"(",
"self",
".",
"level",
")",
"-",
"1",
"]",
"except",
"(",
"IndexError",
",",
"ValueError",
")",
":",
"return",
"None"
] |
Return the child level given handled levels.
|
[
"Return",
"the",
"child",
"level",
"given",
"handled",
"levels",
"."
] |
python
|
train
|
snowman2/pangaea
|
pangaea/read.py
|
https://github.com/snowman2/pangaea/blob/a304e9a489cfc0bc1c74e7cb50c3335a4f3d596f/pangaea/read.py#L18-L145
|
def open_mfdataset(path_to_lsm_files,
lat_var,
lon_var,
time_var,
lat_dim,
lon_dim,
time_dim,
lon_to_180=False,
coords_projected=False,
loader=None,
engine=None,
autoclose=True):
"""
Wrapper to open land surface model netcdf files
using :func:`xarray.open_mfdataset`.
.. warning:: The time dimension and variable will both be
renamed to 'time' to enable slicing.
Parameters
----------
path_to_lsm_files: :obj:`str`
Path to land surface model files with wildcard.
(Ex. '/path/to/files/*.nc')
lat_var: :obj:`str`
Latitude variable (Ex. lat).
lon_var: :obj:`str`
Longitude variable (Ex. lon).
time_var: :obj:`str`
Time variable (Ex. time).
lat_dim: :obj:`str`
Latitude dimension (Ex. lat).
lon_dim: :obj:`str`
Longitude dimension (Ex. lon).
time_dim: :obj:`str`
Time dimension (ex. time).
lon_to_180: bool, optional, default=False
It True, will convert longitude from [0 to 360]
to [-180 to 180].
coords_projected: bool, optional, default=False
It True, it will assume the coordinates are already
in the projected coordinate system.
loader: str, optional, default=None
If 'hrrr', it will load in the HRRR dataset.
engine: str, optional
See: :func:`xarray.open_mfdataset` documentation.
autoclose: :obj:`str`, optional, default=True
If True, will use autoclose option with
:func:`xarray.open_mfdataset`.
Returns
-------
:func:`xarray.Dataset`
Read with pangaea example::
import pangaea as pa
with pa.open_mfdataset('/path/to/ncfiles/*.nc',
lat_var='lat',
lon_var='lon',
time_var='time',
lat_dim='lat',
lon_dim='lon',
time_dim='time') as xds:
print(xds.lsm.projection)
"""
def define_coords(xds):
"""xarray loader to ensure coordinates are loaded correctly"""
# remove time dimension from lat, lon coordinates
if xds[lat_var].ndim == 3:
xds[lat_var] = xds[lat_var].squeeze(time_dim)
# make sure coords are defined as coords
if lat_var not in xds.coords \
or lon_var not in xds.coords \
or time_var not in xds.coords:
xds.set_coords([lat_var, lon_var, time_var],
inplace=True)
return xds
def extract_hrrr_date(xds):
"""xarray loader for HRRR"""
for var in xds.variables:
if 'initial_time' in xds[var].attrs.keys():
grid_time = pd.to_datetime(xds[var].attrs['initial_time'],
format="%m/%d/%Y (%H:%M)")
if 'forecast_time' in xds[var].attrs.keys():
time_units = 'h'
if 'forecast_time_units' in xds[var].attrs.keys():
time_units = \
str(xds[var].attrs['forecast_time_units'][0])
time_dt = int(xds[var].attrs['forecast_time'][0])
grid_time += np.timedelta64(time_dt, time_units)
return xds.assign(time=grid_time)
return xds
if loader == 'hrrr':
preprocess = extract_hrrr_date
engine = 'pynio' if engine is None else engine
else:
preprocess = define_coords
xds = xr.open_mfdataset(path_to_lsm_files,
autoclose=autoclose,
preprocess=preprocess,
concat_dim=time_dim,
engine=engine,
)
xds.lsm.y_var = lat_var
xds.lsm.x_var = lon_var
xds.lsm.y_dim = lat_dim
xds.lsm.x_dim = lon_dim
xds.lsm.lon_to_180 = lon_to_180
xds.lsm.coords_projected = coords_projected
# make sure time dimensions are same for slicing
xds.rename(
{
time_dim: 'time',
time_var: 'time',
},
inplace=True
)
xds.lsm.to_datetime()
return xds
|
[
"def",
"open_mfdataset",
"(",
"path_to_lsm_files",
",",
"lat_var",
",",
"lon_var",
",",
"time_var",
",",
"lat_dim",
",",
"lon_dim",
",",
"time_dim",
",",
"lon_to_180",
"=",
"False",
",",
"coords_projected",
"=",
"False",
",",
"loader",
"=",
"None",
",",
"engine",
"=",
"None",
",",
"autoclose",
"=",
"True",
")",
":",
"def",
"define_coords",
"(",
"xds",
")",
":",
"\"\"\"xarray loader to ensure coordinates are loaded correctly\"\"\"",
"# remove time dimension from lat, lon coordinates",
"if",
"xds",
"[",
"lat_var",
"]",
".",
"ndim",
"==",
"3",
":",
"xds",
"[",
"lat_var",
"]",
"=",
"xds",
"[",
"lat_var",
"]",
".",
"squeeze",
"(",
"time_dim",
")",
"# make sure coords are defined as coords",
"if",
"lat_var",
"not",
"in",
"xds",
".",
"coords",
"or",
"lon_var",
"not",
"in",
"xds",
".",
"coords",
"or",
"time_var",
"not",
"in",
"xds",
".",
"coords",
":",
"xds",
".",
"set_coords",
"(",
"[",
"lat_var",
",",
"lon_var",
",",
"time_var",
"]",
",",
"inplace",
"=",
"True",
")",
"return",
"xds",
"def",
"extract_hrrr_date",
"(",
"xds",
")",
":",
"\"\"\"xarray loader for HRRR\"\"\"",
"for",
"var",
"in",
"xds",
".",
"variables",
":",
"if",
"'initial_time'",
"in",
"xds",
"[",
"var",
"]",
".",
"attrs",
".",
"keys",
"(",
")",
":",
"grid_time",
"=",
"pd",
".",
"to_datetime",
"(",
"xds",
"[",
"var",
"]",
".",
"attrs",
"[",
"'initial_time'",
"]",
",",
"format",
"=",
"\"%m/%d/%Y (%H:%M)\"",
")",
"if",
"'forecast_time'",
"in",
"xds",
"[",
"var",
"]",
".",
"attrs",
".",
"keys",
"(",
")",
":",
"time_units",
"=",
"'h'",
"if",
"'forecast_time_units'",
"in",
"xds",
"[",
"var",
"]",
".",
"attrs",
".",
"keys",
"(",
")",
":",
"time_units",
"=",
"str",
"(",
"xds",
"[",
"var",
"]",
".",
"attrs",
"[",
"'forecast_time_units'",
"]",
"[",
"0",
"]",
")",
"time_dt",
"=",
"int",
"(",
"xds",
"[",
"var",
"]",
".",
"attrs",
"[",
"'forecast_time'",
"]",
"[",
"0",
"]",
")",
"grid_time",
"+=",
"np",
".",
"timedelta64",
"(",
"time_dt",
",",
"time_units",
")",
"return",
"xds",
".",
"assign",
"(",
"time",
"=",
"grid_time",
")",
"return",
"xds",
"if",
"loader",
"==",
"'hrrr'",
":",
"preprocess",
"=",
"extract_hrrr_date",
"engine",
"=",
"'pynio'",
"if",
"engine",
"is",
"None",
"else",
"engine",
"else",
":",
"preprocess",
"=",
"define_coords",
"xds",
"=",
"xr",
".",
"open_mfdataset",
"(",
"path_to_lsm_files",
",",
"autoclose",
"=",
"autoclose",
",",
"preprocess",
"=",
"preprocess",
",",
"concat_dim",
"=",
"time_dim",
",",
"engine",
"=",
"engine",
",",
")",
"xds",
".",
"lsm",
".",
"y_var",
"=",
"lat_var",
"xds",
".",
"lsm",
".",
"x_var",
"=",
"lon_var",
"xds",
".",
"lsm",
".",
"y_dim",
"=",
"lat_dim",
"xds",
".",
"lsm",
".",
"x_dim",
"=",
"lon_dim",
"xds",
".",
"lsm",
".",
"lon_to_180",
"=",
"lon_to_180",
"xds",
".",
"lsm",
".",
"coords_projected",
"=",
"coords_projected",
"# make sure time dimensions are same for slicing",
"xds",
".",
"rename",
"(",
"{",
"time_dim",
":",
"'time'",
",",
"time_var",
":",
"'time'",
",",
"}",
",",
"inplace",
"=",
"True",
")",
"xds",
".",
"lsm",
".",
"to_datetime",
"(",
")",
"return",
"xds"
] |
Wrapper to open land surface model netcdf files
using :func:`xarray.open_mfdataset`.
.. warning:: The time dimension and variable will both be
renamed to 'time' to enable slicing.
Parameters
----------
path_to_lsm_files: :obj:`str`
Path to land surface model files with wildcard.
(Ex. '/path/to/files/*.nc')
lat_var: :obj:`str`
Latitude variable (Ex. lat).
lon_var: :obj:`str`
Longitude variable (Ex. lon).
time_var: :obj:`str`
Time variable (Ex. time).
lat_dim: :obj:`str`
Latitude dimension (Ex. lat).
lon_dim: :obj:`str`
Longitude dimension (Ex. lon).
time_dim: :obj:`str`
Time dimension (ex. time).
lon_to_180: bool, optional, default=False
It True, will convert longitude from [0 to 360]
to [-180 to 180].
coords_projected: bool, optional, default=False
It True, it will assume the coordinates are already
in the projected coordinate system.
loader: str, optional, default=None
If 'hrrr', it will load in the HRRR dataset.
engine: str, optional
See: :func:`xarray.open_mfdataset` documentation.
autoclose: :obj:`str`, optional, default=True
If True, will use autoclose option with
:func:`xarray.open_mfdataset`.
Returns
-------
:func:`xarray.Dataset`
Read with pangaea example::
import pangaea as pa
with pa.open_mfdataset('/path/to/ncfiles/*.nc',
lat_var='lat',
lon_var='lon',
time_var='time',
lat_dim='lat',
lon_dim='lon',
time_dim='time') as xds:
print(xds.lsm.projection)
|
[
"Wrapper",
"to",
"open",
"land",
"surface",
"model",
"netcdf",
"files",
"using",
":",
"func",
":",
"xarray",
".",
"open_mfdataset",
"."
] |
python
|
train
|
genialis/resolwe
|
resolwe/flow/serializers/contributor.py
|
https://github.com/genialis/resolwe/blob/f7bb54932c81ec0cfc5b5e80d238fceaeaa48d86/resolwe/flow/serializers/contributor.py#L35-L45
|
def to_internal_value(self, data):
"""Format the internal value."""
# When setting the contributor, it may be passed as an integer.
if isinstance(data, dict) and isinstance(data.get('id', None), int):
data = data['id']
elif isinstance(data, int):
pass
else:
raise ValidationError("Contributor must be an integer or a dictionary with key 'id'")
return self.Meta.model.objects.get(pk=data)
|
[
"def",
"to_internal_value",
"(",
"self",
",",
"data",
")",
":",
"# When setting the contributor, it may be passed as an integer.",
"if",
"isinstance",
"(",
"data",
",",
"dict",
")",
"and",
"isinstance",
"(",
"data",
".",
"get",
"(",
"'id'",
",",
"None",
")",
",",
"int",
")",
":",
"data",
"=",
"data",
"[",
"'id'",
"]",
"elif",
"isinstance",
"(",
"data",
",",
"int",
")",
":",
"pass",
"else",
":",
"raise",
"ValidationError",
"(",
"\"Contributor must be an integer or a dictionary with key 'id'\"",
")",
"return",
"self",
".",
"Meta",
".",
"model",
".",
"objects",
".",
"get",
"(",
"pk",
"=",
"data",
")"
] |
Format the internal value.
|
[
"Format",
"the",
"internal",
"value",
"."
] |
python
|
train
|
Esri/ArcREST
|
src/arcrest/enrichment/_geoenrichment.py
|
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/enrichment/_geoenrichment.py#L548-L712
|
def standardGeographyQuery(self,
sourceCountry=None,
optionalCountryDataset=None,
geographyLayers=None,
geographyIDs=None,
geographyQuery=None,
returnSubGeographyLayer=False,
subGeographyLayer=None,
subGeographyQuery=None,
outSR=4326,
returnGeometry=False,
returnCentroids=False,
generalizationLevel=0,
useFuzzySearch=False,
featureLimit=1000):
"""
The GeoEnrichment service provides a helper method that returns
standard geography IDs and features for the supported geographic
levels in the United States and Canada.
As indicated throughout this documentation guide, the GeoEnrichment
service uses the concept of a study area to define the location of
the point or area that you want to enrich with additional
information. Locations can also be passed as one or many named
statistical areas. This form of a study area lets you define an
area by the ID of a standard geographic statistical feature, such
as a census or postal area. For example, to obtain enrichment
information for a U.S. state, county or ZIP Code or a Canadian
province or postal code, the Standard Geography Query helper method
allows you to search and query standard geography areas so that
they can be used in the GeoEnrichment method to obtain facts about
the location.
The most common workflow for this service is to find a FIPS
(standard geography ID) for a geographic name. For example, you can
use this service to find the FIPS for the county of San Diego which
is 06073. You can then use this FIPS ID within the GeoEnrichment
service study area definition to get geometry and optional
demographic data for the county. This study area definition is
passed as a parameter to the GeoEnrichment service to return data
defined in the enrichment pack and optionally return geometry for
the feature.
For examples and more help with this function see:
http://resources.arcgis.com/en/help/arcgis-rest-api/#/Standard_geography_query/02r30000000q000000/
Inputs:
sourceCountry - Optional parameter to specify the source country
for the search. Use this parameter to limit the search and
query of standard geographic features to one country. This
parameter supports both the two-digit and three-digit country
codes illustrated in the coverage table.
optionalCountryDataset - Optional parameter to specify a
specific dataset within a defined country.
geographyLayers - Optional parameter to specify which standard
geography layers are being queried or searched. If this
parameter is not provided, all layers within the defined
country will be queried.
geographyIDs - Optional parameter to specify which IDs for the
standard geography layers are being queried or searched. You
can use this parameter to return attributes and/or geometry for
standard geographic areas for administrative areas where you
already know the ID, for example, if you know the Federal
Information Processing Standard (FIPS) Codes for a U.S. state
or county; or, in Canada, to return the geometry and attributes
for a Forward Sortation Area (FSA).
geographyQuery - Optional parameter to specify the text to query
and search the standard geography layers specified. You can use
this parameter to query and find standard geography features
that meet an input term, for example, for a list of all the
U.S. counties that contain the word "orange". The
geographyQuery parameter can be a string that contains one or
more words.
returnSubGeographyLayer - Use this optional parameter to return
all the subgeographic areas that are within a parent geography.
For example, you could return all the U.S. counties for a given
U.S. state or you could return all the Canadian postal areas
(FSAs) within a Census Metropolitan Area (city).
When this parameter is set to true, the output features will be
defined in the subGeographyLayer. The output geometries will be
in the spatial reference system defined by outSR.
subGeographyLayer - Use this optional parameter to return all
the subgeographic areas that are within a parent geography. For
example, you could return all the U.S. counties within a given
U.S. state or you could return all the Canadian postal areas
(FSAs) within a Census Metropolitan Areas (city).
When this parameter is set to true, the output features will be
defined in the subGeographyLayer. The output geometries will be
in the spatial reference system defined by outSR.
subGeographyQuery - Optional parameter to filter the results of
the subgeography features that are returned by a search term.
You can use this parameter to query and find subgeography
features that meet an input term. This parameter is used to
filter the list of subgeography features that are within a
parent geography. For example, you may want a list of all the
ZIP Codes that are within "San Diego County" and filter the
results so that only ZIP Codes that start with "921" are
included in the output response. The subgeography query is a
string that contains one or more words.
outSR - Optional parameter to request the output geometries in a
specified spatial reference system.
returnGeometry - Optional parameter to request the output
geometries in the response.
returnCentroids - Optional Boolean parameter to request the
output geometry to return the center point for each feature.
Use this parameter to return all the geometries as points. For
example, you could return all U.S. ZIP Code centroids (points)
rather than providing the boundaries.
generalizationLevel - Optional integer that specifies the level
of generalization or detail in the area representations of the
administrative boundary or standard geographic data layers.
Values must be whole integers from 0 through 6, where 0 is most
detailed and 6 is most generalized.
useFuzzySearch - Optional Boolean parameter to define if text
provided in the geographyQuery parameter should utilize fuzzy
search logic. Fuzzy searches are based on the Levenshtein
Distance or Edit Distance algorithm.
featureLimit - Optional integer value where you can limit the
number of features that are returned from the geographyQuery.
"""
url = self._base_url + self._url_standard_geography_query_execute
params = {
"f" : "json"
}
if not sourceCountry is None:
params['sourceCountry'] = sourceCountry
if not optionalCountryDataset is None:
params['optionalCountryDataset'] = optionalCountryDataset
if not geographyLayers is None:
params['geographylayers'] = geographyLayers
if not geographyIDs is None:
params['geographyids'] = json.dumps(geographyIDs)
if not geographyQuery is None:
params['geographyQuery'] = geographyQuery
if not returnSubGeographyLayer is None and \
isinstance(returnSubGeographyLayer, bool):
params['returnSubGeographyLayer'] = returnSubGeographyLayer
if not subGeographyLayer is None:
params['subGeographyLayer'] = json.dumps(subGeographyLayer)
if not subGeographyQuery is None:
params['subGeographyQuery'] = subGeographyQuery
if not outSR is None and \
isinstance(outSR, int):
params['outSR'] = outSR
if not returnGeometry is None and \
isinstance(returnGeometry, bool):
params['returnGeometry'] = returnGeometry
if not returnCentroids is None and \
isinstance(returnCentroids, bool):
params['returnCentroids'] = returnCentroids
if not generalizationLevel is None and \
isinstance(generalizationLevel, int):
params['generalizationLevel'] = generalizationLevel
if not useFuzzySearch is None and \
isinstance(useFuzzySearch, bool):
params['useFuzzySearch'] = json.dumps(useFuzzySearch)
if featureLimit is None:
featureLimit = 1000
elif isinstance(featureLimit, int):
params['featureLimit'] = featureLimit
else:
params['featureLimit'] = 1000
return self._post(url=url,
param_dict=params,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port)
|
[
"def",
"standardGeographyQuery",
"(",
"self",
",",
"sourceCountry",
"=",
"None",
",",
"optionalCountryDataset",
"=",
"None",
",",
"geographyLayers",
"=",
"None",
",",
"geographyIDs",
"=",
"None",
",",
"geographyQuery",
"=",
"None",
",",
"returnSubGeographyLayer",
"=",
"False",
",",
"subGeographyLayer",
"=",
"None",
",",
"subGeographyQuery",
"=",
"None",
",",
"outSR",
"=",
"4326",
",",
"returnGeometry",
"=",
"False",
",",
"returnCentroids",
"=",
"False",
",",
"generalizationLevel",
"=",
"0",
",",
"useFuzzySearch",
"=",
"False",
",",
"featureLimit",
"=",
"1000",
")",
":",
"url",
"=",
"self",
".",
"_base_url",
"+",
"self",
".",
"_url_standard_geography_query_execute",
"params",
"=",
"{",
"\"f\"",
":",
"\"json\"",
"}",
"if",
"not",
"sourceCountry",
"is",
"None",
":",
"params",
"[",
"'sourceCountry'",
"]",
"=",
"sourceCountry",
"if",
"not",
"optionalCountryDataset",
"is",
"None",
":",
"params",
"[",
"'optionalCountryDataset'",
"]",
"=",
"optionalCountryDataset",
"if",
"not",
"geographyLayers",
"is",
"None",
":",
"params",
"[",
"'geographylayers'",
"]",
"=",
"geographyLayers",
"if",
"not",
"geographyIDs",
"is",
"None",
":",
"params",
"[",
"'geographyids'",
"]",
"=",
"json",
".",
"dumps",
"(",
"geographyIDs",
")",
"if",
"not",
"geographyQuery",
"is",
"None",
":",
"params",
"[",
"'geographyQuery'",
"]",
"=",
"geographyQuery",
"if",
"not",
"returnSubGeographyLayer",
"is",
"None",
"and",
"isinstance",
"(",
"returnSubGeographyLayer",
",",
"bool",
")",
":",
"params",
"[",
"'returnSubGeographyLayer'",
"]",
"=",
"returnSubGeographyLayer",
"if",
"not",
"subGeographyLayer",
"is",
"None",
":",
"params",
"[",
"'subGeographyLayer'",
"]",
"=",
"json",
".",
"dumps",
"(",
"subGeographyLayer",
")",
"if",
"not",
"subGeographyQuery",
"is",
"None",
":",
"params",
"[",
"'subGeographyQuery'",
"]",
"=",
"subGeographyQuery",
"if",
"not",
"outSR",
"is",
"None",
"and",
"isinstance",
"(",
"outSR",
",",
"int",
")",
":",
"params",
"[",
"'outSR'",
"]",
"=",
"outSR",
"if",
"not",
"returnGeometry",
"is",
"None",
"and",
"isinstance",
"(",
"returnGeometry",
",",
"bool",
")",
":",
"params",
"[",
"'returnGeometry'",
"]",
"=",
"returnGeometry",
"if",
"not",
"returnCentroids",
"is",
"None",
"and",
"isinstance",
"(",
"returnCentroids",
",",
"bool",
")",
":",
"params",
"[",
"'returnCentroids'",
"]",
"=",
"returnCentroids",
"if",
"not",
"generalizationLevel",
"is",
"None",
"and",
"isinstance",
"(",
"generalizationLevel",
",",
"int",
")",
":",
"params",
"[",
"'generalizationLevel'",
"]",
"=",
"generalizationLevel",
"if",
"not",
"useFuzzySearch",
"is",
"None",
"and",
"isinstance",
"(",
"useFuzzySearch",
",",
"bool",
")",
":",
"params",
"[",
"'useFuzzySearch'",
"]",
"=",
"json",
".",
"dumps",
"(",
"useFuzzySearch",
")",
"if",
"featureLimit",
"is",
"None",
":",
"featureLimit",
"=",
"1000",
"elif",
"isinstance",
"(",
"featureLimit",
",",
"int",
")",
":",
"params",
"[",
"'featureLimit'",
"]",
"=",
"featureLimit",
"else",
":",
"params",
"[",
"'featureLimit'",
"]",
"=",
"1000",
"return",
"self",
".",
"_post",
"(",
"url",
"=",
"url",
",",
"param_dict",
"=",
"params",
",",
"securityHandler",
"=",
"self",
".",
"_securityHandler",
",",
"proxy_url",
"=",
"self",
".",
"_proxy_url",
",",
"proxy_port",
"=",
"self",
".",
"_proxy_port",
")"
] |
The GeoEnrichment service provides a helper method that returns
standard geography IDs and features for the supported geographic
levels in the United States and Canada.
As indicated throughout this documentation guide, the GeoEnrichment
service uses the concept of a study area to define the location of
the point or area that you want to enrich with additional
information. Locations can also be passed as one or many named
statistical areas. This form of a study area lets you define an
area by the ID of a standard geographic statistical feature, such
as a census or postal area. For example, to obtain enrichment
information for a U.S. state, county or ZIP Code or a Canadian
province or postal code, the Standard Geography Query helper method
allows you to search and query standard geography areas so that
they can be used in the GeoEnrichment method to obtain facts about
the location.
The most common workflow for this service is to find a FIPS
(standard geography ID) for a geographic name. For example, you can
use this service to find the FIPS for the county of San Diego which
is 06073. You can then use this FIPS ID within the GeoEnrichment
service study area definition to get geometry and optional
demographic data for the county. This study area definition is
passed as a parameter to the GeoEnrichment service to return data
defined in the enrichment pack and optionally return geometry for
the feature.
For examples and more help with this function see:
http://resources.arcgis.com/en/help/arcgis-rest-api/#/Standard_geography_query/02r30000000q000000/
Inputs:
sourceCountry - Optional parameter to specify the source country
for the search. Use this parameter to limit the search and
query of standard geographic features to one country. This
parameter supports both the two-digit and three-digit country
codes illustrated in the coverage table.
optionalCountryDataset - Optional parameter to specify a
specific dataset within a defined country.
geographyLayers - Optional parameter to specify which standard
geography layers are being queried or searched. If this
parameter is not provided, all layers within the defined
country will be queried.
geographyIDs - Optional parameter to specify which IDs for the
standard geography layers are being queried or searched. You
can use this parameter to return attributes and/or geometry for
standard geographic areas for administrative areas where you
already know the ID, for example, if you know the Federal
Information Processing Standard (FIPS) Codes for a U.S. state
or county; or, in Canada, to return the geometry and attributes
for a Forward Sortation Area (FSA).
geographyQuery - Optional parameter to specify the text to query
and search the standard geography layers specified. You can use
this parameter to query and find standard geography features
that meet an input term, for example, for a list of all the
U.S. counties that contain the word "orange". The
geographyQuery parameter can be a string that contains one or
more words.
returnSubGeographyLayer - Use this optional parameter to return
all the subgeographic areas that are within a parent geography.
For example, you could return all the U.S. counties for a given
U.S. state or you could return all the Canadian postal areas
(FSAs) within a Census Metropolitan Area (city).
When this parameter is set to true, the output features will be
defined in the subGeographyLayer. The output geometries will be
in the spatial reference system defined by outSR.
subGeographyLayer - Use this optional parameter to return all
the subgeographic areas that are within a parent geography. For
example, you could return all the U.S. counties within a given
U.S. state or you could return all the Canadian postal areas
(FSAs) within a Census Metropolitan Areas (city).
When this parameter is set to true, the output features will be
defined in the subGeographyLayer. The output geometries will be
in the spatial reference system defined by outSR.
subGeographyQuery - Optional parameter to filter the results of
the subgeography features that are returned by a search term.
You can use this parameter to query and find subgeography
features that meet an input term. This parameter is used to
filter the list of subgeography features that are within a
parent geography. For example, you may want a list of all the
ZIP Codes that are within "San Diego County" and filter the
results so that only ZIP Codes that start with "921" are
included in the output response. The subgeography query is a
string that contains one or more words.
outSR - Optional parameter to request the output geometries in a
specified spatial reference system.
returnGeometry - Optional parameter to request the output
geometries in the response.
returnCentroids - Optional Boolean parameter to request the
output geometry to return the center point for each feature.
Use this parameter to return all the geometries as points. For
example, you could return all U.S. ZIP Code centroids (points)
rather than providing the boundaries.
generalizationLevel - Optional integer that specifies the level
of generalization or detail in the area representations of the
administrative boundary or standard geographic data layers.
Values must be whole integers from 0 through 6, where 0 is most
detailed and 6 is most generalized.
useFuzzySearch - Optional Boolean parameter to define if text
provided in the geographyQuery parameter should utilize fuzzy
search logic. Fuzzy searches are based on the Levenshtein
Distance or Edit Distance algorithm.
featureLimit - Optional integer value where you can limit the
number of features that are returned from the geographyQuery.
|
[
"The",
"GeoEnrichment",
"service",
"provides",
"a",
"helper",
"method",
"that",
"returns",
"standard",
"geography",
"IDs",
"and",
"features",
"for",
"the",
"supported",
"geographic",
"levels",
"in",
"the",
"United",
"States",
"and",
"Canada",
".",
"As",
"indicated",
"throughout",
"this",
"documentation",
"guide",
"the",
"GeoEnrichment",
"service",
"uses",
"the",
"concept",
"of",
"a",
"study",
"area",
"to",
"define",
"the",
"location",
"of",
"the",
"point",
"or",
"area",
"that",
"you",
"want",
"to",
"enrich",
"with",
"additional",
"information",
".",
"Locations",
"can",
"also",
"be",
"passed",
"as",
"one",
"or",
"many",
"named",
"statistical",
"areas",
".",
"This",
"form",
"of",
"a",
"study",
"area",
"lets",
"you",
"define",
"an",
"area",
"by",
"the",
"ID",
"of",
"a",
"standard",
"geographic",
"statistical",
"feature",
"such",
"as",
"a",
"census",
"or",
"postal",
"area",
".",
"For",
"example",
"to",
"obtain",
"enrichment",
"information",
"for",
"a",
"U",
".",
"S",
".",
"state",
"county",
"or",
"ZIP",
"Code",
"or",
"a",
"Canadian",
"province",
"or",
"postal",
"code",
"the",
"Standard",
"Geography",
"Query",
"helper",
"method",
"allows",
"you",
"to",
"search",
"and",
"query",
"standard",
"geography",
"areas",
"so",
"that",
"they",
"can",
"be",
"used",
"in",
"the",
"GeoEnrichment",
"method",
"to",
"obtain",
"facts",
"about",
"the",
"location",
".",
"The",
"most",
"common",
"workflow",
"for",
"this",
"service",
"is",
"to",
"find",
"a",
"FIPS",
"(",
"standard",
"geography",
"ID",
")",
"for",
"a",
"geographic",
"name",
".",
"For",
"example",
"you",
"can",
"use",
"this",
"service",
"to",
"find",
"the",
"FIPS",
"for",
"the",
"county",
"of",
"San",
"Diego",
"which",
"is",
"06073",
".",
"You",
"can",
"then",
"use",
"this",
"FIPS",
"ID",
"within",
"the",
"GeoEnrichment",
"service",
"study",
"area",
"definition",
"to",
"get",
"geometry",
"and",
"optional",
"demographic",
"data",
"for",
"the",
"county",
".",
"This",
"study",
"area",
"definition",
"is",
"passed",
"as",
"a",
"parameter",
"to",
"the",
"GeoEnrichment",
"service",
"to",
"return",
"data",
"defined",
"in",
"the",
"enrichment",
"pack",
"and",
"optionally",
"return",
"geometry",
"for",
"the",
"feature",
"."
] |
python
|
train
|
buildbot/buildbot
|
worker/buildbot_worker/runprocess.py
|
https://github.com/buildbot/buildbot/blob/5df3cfae6d760557d99156633c32b1822a1e130c/worker/buildbot_worker/runprocess.py#L589-L607
|
def _spawnProcess(self, processProtocol, executable, args=(), env=None,
path=None, uid=None, gid=None, usePTY=False, childFDs=None):
"""private implementation of reactor.spawnProcess, to allow use of
L{ProcGroupProcess}"""
if env is None:
env = {}
# use the ProcGroupProcess class, if available
if runtime.platformType == 'posix':
if self.useProcGroup and not usePTY:
return ProcGroupProcess(reactor, executable, args, env, path,
processProtocol, uid, gid, childFDs)
# fall back
if self.using_comspec:
return self._spawnAsBatch(processProtocol, executable, args, env,
path, usePTY=usePTY)
return reactor.spawnProcess(processProtocol, executable, args, env,
path, usePTY=usePTY)
|
[
"def",
"_spawnProcess",
"(",
"self",
",",
"processProtocol",
",",
"executable",
",",
"args",
"=",
"(",
")",
",",
"env",
"=",
"None",
",",
"path",
"=",
"None",
",",
"uid",
"=",
"None",
",",
"gid",
"=",
"None",
",",
"usePTY",
"=",
"False",
",",
"childFDs",
"=",
"None",
")",
":",
"if",
"env",
"is",
"None",
":",
"env",
"=",
"{",
"}",
"# use the ProcGroupProcess class, if available",
"if",
"runtime",
".",
"platformType",
"==",
"'posix'",
":",
"if",
"self",
".",
"useProcGroup",
"and",
"not",
"usePTY",
":",
"return",
"ProcGroupProcess",
"(",
"reactor",
",",
"executable",
",",
"args",
",",
"env",
",",
"path",
",",
"processProtocol",
",",
"uid",
",",
"gid",
",",
"childFDs",
")",
"# fall back",
"if",
"self",
".",
"using_comspec",
":",
"return",
"self",
".",
"_spawnAsBatch",
"(",
"processProtocol",
",",
"executable",
",",
"args",
",",
"env",
",",
"path",
",",
"usePTY",
"=",
"usePTY",
")",
"return",
"reactor",
".",
"spawnProcess",
"(",
"processProtocol",
",",
"executable",
",",
"args",
",",
"env",
",",
"path",
",",
"usePTY",
"=",
"usePTY",
")"
] |
private implementation of reactor.spawnProcess, to allow use of
L{ProcGroupProcess}
|
[
"private",
"implementation",
"of",
"reactor",
".",
"spawnProcess",
"to",
"allow",
"use",
"of",
"L",
"{",
"ProcGroupProcess",
"}"
] |
python
|
train
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.