repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
list | docstring
stringlengths 1
46.9k
| docstring_tokens
list | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
shi-cong/PYSTUDY
|
PYSTUDY/net/fingerlib.py
|
https://github.com/shi-cong/PYSTUDY/blob/c8da7128ea18ecaa5849f2066d321e70d6f97f70/PYSTUDY/net/fingerlib.py#L7-L33
|
def get_host_finger(protocol, ip, port, timeout=5):
"""
获取远程主机特定端口下服务的指纹
:param protocol: 协议,tcp / udp
:params ip: ip
:params port: 端口
:return: 服务器指纹
"""
client = None
msg = b"Hello, Server\r\n"
if protocol == 'tcp':
# tcp 协议
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.settimeout(timeout)
client.connect((ip, port))
client.send(msg)
elif protocol == 'udp':
# udp 协议
client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
client.settimeout(timeout)
client.sendto(msg, (ip, port))
else:
raise Exception('协议不支持')
serverFinger = client.recv(1024)
client.close()
return serverFinger
|
[
"def",
"get_host_finger",
"(",
"protocol",
",",
"ip",
",",
"port",
",",
"timeout",
"=",
"5",
")",
":",
"client",
"=",
"None",
"msg",
"=",
"b\"Hello, Server\\r\\n\"",
"if",
"protocol",
"==",
"'tcp'",
":",
"# tcp 协议",
"client",
"=",
"socket",
".",
"socket",
"(",
"socket",
".",
"AF_INET",
",",
"socket",
".",
"SOCK_STREAM",
")",
"client",
".",
"settimeout",
"(",
"timeout",
")",
"client",
".",
"connect",
"(",
"(",
"ip",
",",
"port",
")",
")",
"client",
".",
"send",
"(",
"msg",
")",
"elif",
"protocol",
"==",
"'udp'",
":",
"# udp 协议",
"client",
"=",
"socket",
".",
"socket",
"(",
"socket",
".",
"AF_INET",
",",
"socket",
".",
"SOCK_DGRAM",
")",
"client",
".",
"settimeout",
"(",
"timeout",
")",
"client",
".",
"sendto",
"(",
"msg",
",",
"(",
"ip",
",",
"port",
")",
")",
"else",
":",
"raise",
"Exception",
"(",
"'协议不支持')",
"",
"serverFinger",
"=",
"client",
".",
"recv",
"(",
"1024",
")",
"client",
".",
"close",
"(",
")",
"return",
"serverFinger"
] |
获取远程主机特定端口下服务的指纹
:param protocol: 协议,tcp / udp
:params ip: ip
:params port: 端口
:return: 服务器指纹
|
[
"获取远程主机特定端口下服务的指纹",
":",
"param",
"protocol",
":",
"协议,tcp",
"/",
"udp",
":",
"params",
"ip",
":",
"ip",
":",
"params",
"port",
":",
"端口",
":",
"return",
":",
"服务器指纹"
] |
python
|
train
|
newville/wxmplot
|
wxmplot/utils.py
|
https://github.com/newville/wxmplot/blob/8e0dc037453e5cdf18c968dc5a3d29efd761edee/wxmplot/utils.py#L68-L76
|
def pack(window, sizer, expand=1.1):
"simple wxPython pack function"
tsize = window.GetSize()
msize = window.GetMinSize()
window.SetSizer(sizer)
sizer.Fit(window)
nsize = (10*int(expand*(max(msize[0], tsize[0])/10)),
10*int(expand*(max(msize[1], tsize[1])/10.)))
window.SetSize(nsize)
|
[
"def",
"pack",
"(",
"window",
",",
"sizer",
",",
"expand",
"=",
"1.1",
")",
":",
"tsize",
"=",
"window",
".",
"GetSize",
"(",
")",
"msize",
"=",
"window",
".",
"GetMinSize",
"(",
")",
"window",
".",
"SetSizer",
"(",
"sizer",
")",
"sizer",
".",
"Fit",
"(",
"window",
")",
"nsize",
"=",
"(",
"10",
"*",
"int",
"(",
"expand",
"*",
"(",
"max",
"(",
"msize",
"[",
"0",
"]",
",",
"tsize",
"[",
"0",
"]",
")",
"/",
"10",
")",
")",
",",
"10",
"*",
"int",
"(",
"expand",
"*",
"(",
"max",
"(",
"msize",
"[",
"1",
"]",
",",
"tsize",
"[",
"1",
"]",
")",
"/",
"10.",
")",
")",
")",
"window",
".",
"SetSize",
"(",
"nsize",
")"
] |
simple wxPython pack function
|
[
"simple",
"wxPython",
"pack",
"function"
] |
python
|
train
|
amreuland/PyVDF
|
PyVDF/__init__.py
|
https://github.com/amreuland/PyVDF/blob/3d546178153204a1286c61be8f641b59f6c2750e/PyVDF/__init__.py#L343-L367
|
def edit(self, path, value):
"""
Edit a key value
:param path: The path key for the value
:type path: :py:obj:`str`
:param value: The value to be set
:type value: :py:obj:`str`
"""
_dict = PyVDF.__UseDict
p = [re.sub('[\[\]]', '', w) for w in PyVDF.__RE_Path_Seperator.findall(path)]
array = self.getData()
a = array
for c in p[:-1]:
try:
if not isinstance(a[c], dict):
a[c] = _dict()
except KeyError:
a[c] = _dict()
a = a[c]
if value == None:
a.pop(p[-1], None)
else:
a[p[-1]] = value
self.__data = array
|
[
"def",
"edit",
"(",
"self",
",",
"path",
",",
"value",
")",
":",
"_dict",
"=",
"PyVDF",
".",
"__UseDict",
"p",
"=",
"[",
"re",
".",
"sub",
"(",
"'[\\[\\]]'",
",",
"''",
",",
"w",
")",
"for",
"w",
"in",
"PyVDF",
".",
"__RE_Path_Seperator",
".",
"findall",
"(",
"path",
")",
"]",
"array",
"=",
"self",
".",
"getData",
"(",
")",
"a",
"=",
"array",
"for",
"c",
"in",
"p",
"[",
":",
"-",
"1",
"]",
":",
"try",
":",
"if",
"not",
"isinstance",
"(",
"a",
"[",
"c",
"]",
",",
"dict",
")",
":",
"a",
"[",
"c",
"]",
"=",
"_dict",
"(",
")",
"except",
"KeyError",
":",
"a",
"[",
"c",
"]",
"=",
"_dict",
"(",
")",
"a",
"=",
"a",
"[",
"c",
"]",
"if",
"value",
"==",
"None",
":",
"a",
".",
"pop",
"(",
"p",
"[",
"-",
"1",
"]",
",",
"None",
")",
"else",
":",
"a",
"[",
"p",
"[",
"-",
"1",
"]",
"]",
"=",
"value",
"self",
".",
"__data",
"=",
"array"
] |
Edit a key value
:param path: The path key for the value
:type path: :py:obj:`str`
:param value: The value to be set
:type value: :py:obj:`str`
|
[
"Edit",
"a",
"key",
"value"
] |
python
|
train
|
openstack/networking-cisco
|
networking_cisco/apps/saf/agent/topo_disc/pub_lldp_api.py
|
https://github.com/openstack/networking-cisco/blob/aa58a30aec25b86f9aa5952b0863045975debfa9/networking_cisco/apps/saf/agent/topo_disc/pub_lldp_api.py#L139-L146
|
def get_remote_chassis_id_mac(self, tlv_data):
"""Returns Remote Chassis ID MAC from the TLV. """
ret, parsed_val = self._check_common_tlv_format(
tlv_data, "MAC:", "Chassis ID TLV")
if not ret:
return None
mac = parsed_val[1].split('\n')
return mac[0].strip()
|
[
"def",
"get_remote_chassis_id_mac",
"(",
"self",
",",
"tlv_data",
")",
":",
"ret",
",",
"parsed_val",
"=",
"self",
".",
"_check_common_tlv_format",
"(",
"tlv_data",
",",
"\"MAC:\"",
",",
"\"Chassis ID TLV\"",
")",
"if",
"not",
"ret",
":",
"return",
"None",
"mac",
"=",
"parsed_val",
"[",
"1",
"]",
".",
"split",
"(",
"'\\n'",
")",
"return",
"mac",
"[",
"0",
"]",
".",
"strip",
"(",
")"
] |
Returns Remote Chassis ID MAC from the TLV.
|
[
"Returns",
"Remote",
"Chassis",
"ID",
"MAC",
"from",
"the",
"TLV",
"."
] |
python
|
train
|
ewels/MultiQC
|
multiqc/utils/config.py
|
https://github.com/ewels/MultiQC/blob/2037d6322b2554146a74efbf869156ad20d4c4ec/multiqc/utils/config.py#L212-L220
|
def update_dict(d, u):
""" Recursively updates nested dict d from nested dict u
"""
for key, val in u.items():
if isinstance(val, collections.Mapping):
d[key] = update_dict(d.get(key, {}), val)
else:
d[key] = u[key]
return d
|
[
"def",
"update_dict",
"(",
"d",
",",
"u",
")",
":",
"for",
"key",
",",
"val",
"in",
"u",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"val",
",",
"collections",
".",
"Mapping",
")",
":",
"d",
"[",
"key",
"]",
"=",
"update_dict",
"(",
"d",
".",
"get",
"(",
"key",
",",
"{",
"}",
")",
",",
"val",
")",
"else",
":",
"d",
"[",
"key",
"]",
"=",
"u",
"[",
"key",
"]",
"return",
"d"
] |
Recursively updates nested dict d from nested dict u
|
[
"Recursively",
"updates",
"nested",
"dict",
"d",
"from",
"nested",
"dict",
"u"
] |
python
|
train
|
Jajcus/pyxmpp2
|
pyxmpp2/ext/vcard.py
|
https://github.com/Jajcus/pyxmpp2/blob/14a40a3950910a9cd008b55f0d8905aa0186ce18/pyxmpp2/ext/vcard.py#L641-L647
|
def rfc2426(self):
"""RFC2426-encode the field content.
:return: the field in the RFC 2426 format.
:returntype: `str`"""
return rfc2425encode("label",u"\n".join(self.lines),
{"type":",".join(self.type)})
|
[
"def",
"rfc2426",
"(",
"self",
")",
":",
"return",
"rfc2425encode",
"(",
"\"label\"",
",",
"u\"\\n\"",
".",
"join",
"(",
"self",
".",
"lines",
")",
",",
"{",
"\"type\"",
":",
"\",\"",
".",
"join",
"(",
"self",
".",
"type",
")",
"}",
")"
] |
RFC2426-encode the field content.
:return: the field in the RFC 2426 format.
:returntype: `str`
|
[
"RFC2426",
"-",
"encode",
"the",
"field",
"content",
"."
] |
python
|
valid
|
thoughtworksarts/EmoPy
|
EmoPy/src/neuralnets.py
|
https://github.com/thoughtworksarts/EmoPy/blob/a0ab97b3719ebe0a9de9bfc5adae5e46c9b77fd7/EmoPy/src/neuralnets.py#L74-L92
|
def _init_model(self):
"""
Initialize base model from Keras and add top layers to match number of training emotions labels.
:return:
"""
base_model = self._get_base_model()
top_layer_model = base_model.output
top_layer_model = GlobalAveragePooling2D()(top_layer_model)
top_layer_model = Dense(1024, activation='relu')(top_layer_model)
prediction_layer = Dense(output_dim=len(self.emotion_map.keys()), activation='softmax')(top_layer_model)
model = Model(input=base_model.input, output=prediction_layer)
print(model.summary())
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
self.model = model
|
[
"def",
"_init_model",
"(",
"self",
")",
":",
"base_model",
"=",
"self",
".",
"_get_base_model",
"(",
")",
"top_layer_model",
"=",
"base_model",
".",
"output",
"top_layer_model",
"=",
"GlobalAveragePooling2D",
"(",
")",
"(",
"top_layer_model",
")",
"top_layer_model",
"=",
"Dense",
"(",
"1024",
",",
"activation",
"=",
"'relu'",
")",
"(",
"top_layer_model",
")",
"prediction_layer",
"=",
"Dense",
"(",
"output_dim",
"=",
"len",
"(",
"self",
".",
"emotion_map",
".",
"keys",
"(",
")",
")",
",",
"activation",
"=",
"'softmax'",
")",
"(",
"top_layer_model",
")",
"model",
"=",
"Model",
"(",
"input",
"=",
"base_model",
".",
"input",
",",
"output",
"=",
"prediction_layer",
")",
"print",
"(",
"model",
".",
"summary",
"(",
")",
")",
"for",
"layer",
"in",
"base_model",
".",
"layers",
":",
"layer",
".",
"trainable",
"=",
"False",
"model",
".",
"compile",
"(",
"optimizer",
"=",
"'rmsprop'",
",",
"loss",
"=",
"'categorical_crossentropy'",
",",
"metrics",
"=",
"[",
"'accuracy'",
"]",
")",
"self",
".",
"model",
"=",
"model"
] |
Initialize base model from Keras and add top layers to match number of training emotions labels.
:return:
|
[
"Initialize",
"base",
"model",
"from",
"Keras",
"and",
"add",
"top",
"layers",
"to",
"match",
"number",
"of",
"training",
"emotions",
"labels",
".",
":",
"return",
":"
] |
python
|
train
|
hobson/aima
|
aima/learning.py
|
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/learning.py#L196-L203
|
def PluralityLearner(dataset):
"""A very dumb algorithm: always pick the result that was most popular
in the training data. Makes a baseline for comparison."""
most_popular = mode([e[dataset.target] for e in dataset.examples])
def predict(example):
"Always return same result: the most popular from the training set."
return most_popular
return predict
|
[
"def",
"PluralityLearner",
"(",
"dataset",
")",
":",
"most_popular",
"=",
"mode",
"(",
"[",
"e",
"[",
"dataset",
".",
"target",
"]",
"for",
"e",
"in",
"dataset",
".",
"examples",
"]",
")",
"def",
"predict",
"(",
"example",
")",
":",
"\"Always return same result: the most popular from the training set.\"",
"return",
"most_popular",
"return",
"predict"
] |
A very dumb algorithm: always pick the result that was most popular
in the training data. Makes a baseline for comparison.
|
[
"A",
"very",
"dumb",
"algorithm",
":",
"always",
"pick",
"the",
"result",
"that",
"was",
"most",
"popular",
"in",
"the",
"training",
"data",
".",
"Makes",
"a",
"baseline",
"for",
"comparison",
"."
] |
python
|
valid
|
noxdafox/vminspect
|
vminspect/comparator.py
|
https://github.com/noxdafox/vminspect/blob/e685282564877e2d1950f1e09b292f4f4db1dbcd/vminspect/comparator.py#L377-L384
|
def files_size(fs0, fs1, files):
"""Gets the file size of the given files."""
for file_meta in files['deleted_files']:
file_meta['size'] = fs0.stat(file_meta['path'])['size']
for file_meta in files['created_files'] + files['modified_files']:
file_meta['size'] = fs1.stat(file_meta['path'])['size']
return files
|
[
"def",
"files_size",
"(",
"fs0",
",",
"fs1",
",",
"files",
")",
":",
"for",
"file_meta",
"in",
"files",
"[",
"'deleted_files'",
"]",
":",
"file_meta",
"[",
"'size'",
"]",
"=",
"fs0",
".",
"stat",
"(",
"file_meta",
"[",
"'path'",
"]",
")",
"[",
"'size'",
"]",
"for",
"file_meta",
"in",
"files",
"[",
"'created_files'",
"]",
"+",
"files",
"[",
"'modified_files'",
"]",
":",
"file_meta",
"[",
"'size'",
"]",
"=",
"fs1",
".",
"stat",
"(",
"file_meta",
"[",
"'path'",
"]",
")",
"[",
"'size'",
"]",
"return",
"files"
] |
Gets the file size of the given files.
|
[
"Gets",
"the",
"file",
"size",
"of",
"the",
"given",
"files",
"."
] |
python
|
train
|
Alignak-monitoring/alignak
|
alignak/objects/item.py
|
https://github.com/Alignak-monitoring/alignak/blob/f3c145207e83159b799d3714e4241399c7740a64/alignak/objects/item.py#L1390-L1425
|
def explode_contact_groups_into_contacts(item, contactgroups):
"""
Get all contacts of contact_groups and put them in contacts container
:param item: item where have contact_groups property
:type item: object
:param contactgroups: all contactgroups object
:type contactgroups: alignak.objects.contactgroup.Contactgroups
:return: None
"""
if not hasattr(item, 'contact_groups'):
return
# TODO : See if we can remove this if
cgnames = ''
if item.contact_groups:
if isinstance(item.contact_groups, list):
cgnames = item.contact_groups
else:
cgnames = item.contact_groups.split(',')
cgnames = strip_and_uniq(cgnames)
for cgname in cgnames:
contactgroup = contactgroups.find_by_name(cgname)
if not contactgroup:
item.add_error("The contact group '%s' defined on the %s '%s' do not exist"
% (cgname, item.__class__.my_type, item.get_name()))
continue
cnames = contactgroups.get_members_of_group(cgname)
# We add contacts into our contacts
if cnames:
if hasattr(item, 'contacts'):
# Fix #1054 - bad contact explosion
# item.contacts.extend(cnames)
item.contacts = item.contacts + cnames
else:
item.contacts = cnames
|
[
"def",
"explode_contact_groups_into_contacts",
"(",
"item",
",",
"contactgroups",
")",
":",
"if",
"not",
"hasattr",
"(",
"item",
",",
"'contact_groups'",
")",
":",
"return",
"# TODO : See if we can remove this if",
"cgnames",
"=",
"''",
"if",
"item",
".",
"contact_groups",
":",
"if",
"isinstance",
"(",
"item",
".",
"contact_groups",
",",
"list",
")",
":",
"cgnames",
"=",
"item",
".",
"contact_groups",
"else",
":",
"cgnames",
"=",
"item",
".",
"contact_groups",
".",
"split",
"(",
"','",
")",
"cgnames",
"=",
"strip_and_uniq",
"(",
"cgnames",
")",
"for",
"cgname",
"in",
"cgnames",
":",
"contactgroup",
"=",
"contactgroups",
".",
"find_by_name",
"(",
"cgname",
")",
"if",
"not",
"contactgroup",
":",
"item",
".",
"add_error",
"(",
"\"The contact group '%s' defined on the %s '%s' do not exist\"",
"%",
"(",
"cgname",
",",
"item",
".",
"__class__",
".",
"my_type",
",",
"item",
".",
"get_name",
"(",
")",
")",
")",
"continue",
"cnames",
"=",
"contactgroups",
".",
"get_members_of_group",
"(",
"cgname",
")",
"# We add contacts into our contacts",
"if",
"cnames",
":",
"if",
"hasattr",
"(",
"item",
",",
"'contacts'",
")",
":",
"# Fix #1054 - bad contact explosion",
"# item.contacts.extend(cnames)",
"item",
".",
"contacts",
"=",
"item",
".",
"contacts",
"+",
"cnames",
"else",
":",
"item",
".",
"contacts",
"=",
"cnames"
] |
Get all contacts of contact_groups and put them in contacts container
:param item: item where have contact_groups property
:type item: object
:param contactgroups: all contactgroups object
:type contactgroups: alignak.objects.contactgroup.Contactgroups
:return: None
|
[
"Get",
"all",
"contacts",
"of",
"contact_groups",
"and",
"put",
"them",
"in",
"contacts",
"container"
] |
python
|
train
|
PyGithub/PyGithub
|
github/Repository.py
|
https://github.com/PyGithub/PyGithub/blob/f716df86bbe7dc276c6596699fa9712b61ef974c/github/Repository.py#L1535-L1555
|
def get_views_traffic(self, per=github.GithubObject.NotSet):
"""
:calls: `GET /repos/:owner/:repo/traffic/views <https://developer.github.com/v3/repos/traffic/>`_
:param per: string, must be one of day or week, day by default
:rtype: None or list of :class:`github.View.View`
"""
assert per is github.GithubObject.NotSet or (isinstance(per, (str, unicode)) and (per == "day" or per == "week")), "per must be day or week, day by default"
url_parameters = dict()
if per is not github.GithubObject.NotSet:
url_parameters["per"] = per
headers, data = self._requester.requestJsonAndCheck(
"GET",
self.url + "/traffic/views",
parameters=url_parameters
)
if (isinstance(data, dict)) and ("views" in data) and (isinstance(data["views"], list)):
data["views"] = [
github.View.View(self._requester, headers, item, completed=True)
for item in data["views"]
]
return data
|
[
"def",
"get_views_traffic",
"(",
"self",
",",
"per",
"=",
"github",
".",
"GithubObject",
".",
"NotSet",
")",
":",
"assert",
"per",
"is",
"github",
".",
"GithubObject",
".",
"NotSet",
"or",
"(",
"isinstance",
"(",
"per",
",",
"(",
"str",
",",
"unicode",
")",
")",
"and",
"(",
"per",
"==",
"\"day\"",
"or",
"per",
"==",
"\"week\"",
")",
")",
",",
"\"per must be day or week, day by default\"",
"url_parameters",
"=",
"dict",
"(",
")",
"if",
"per",
"is",
"not",
"github",
".",
"GithubObject",
".",
"NotSet",
":",
"url_parameters",
"[",
"\"per\"",
"]",
"=",
"per",
"headers",
",",
"data",
"=",
"self",
".",
"_requester",
".",
"requestJsonAndCheck",
"(",
"\"GET\"",
",",
"self",
".",
"url",
"+",
"\"/traffic/views\"",
",",
"parameters",
"=",
"url_parameters",
")",
"if",
"(",
"isinstance",
"(",
"data",
",",
"dict",
")",
")",
"and",
"(",
"\"views\"",
"in",
"data",
")",
"and",
"(",
"isinstance",
"(",
"data",
"[",
"\"views\"",
"]",
",",
"list",
")",
")",
":",
"data",
"[",
"\"views\"",
"]",
"=",
"[",
"github",
".",
"View",
".",
"View",
"(",
"self",
".",
"_requester",
",",
"headers",
",",
"item",
",",
"completed",
"=",
"True",
")",
"for",
"item",
"in",
"data",
"[",
"\"views\"",
"]",
"]",
"return",
"data"
] |
:calls: `GET /repos/:owner/:repo/traffic/views <https://developer.github.com/v3/repos/traffic/>`_
:param per: string, must be one of day or week, day by default
:rtype: None or list of :class:`github.View.View`
|
[
":",
"calls",
":",
"GET",
"/",
"repos",
"/",
":",
"owner",
"/",
":",
"repo",
"/",
"traffic",
"/",
"views",
"<https",
":",
"//",
"developer",
".",
"github",
".",
"com",
"/",
"v3",
"/",
"repos",
"/",
"traffic",
"/",
">",
"_",
":",
"param",
"per",
":",
"string",
"must",
"be",
"one",
"of",
"day",
"or",
"week",
"day",
"by",
"default",
":",
"rtype",
":",
"None",
"or",
"list",
"of",
":",
"class",
":",
"github",
".",
"View",
".",
"View"
] |
python
|
train
|
aeroxis/sultan
|
src/sultan/result.py
|
https://github.com/aeroxis/sultan/blob/65b4271a161d6c19a9eb0170b5a95832a139ab7f/src/sultan/result.py#L225-L233
|
def print_stdout(self, always_print=False):
"""
Prints the stdout to console - if there is any stdout, otherwise does nothing.
:param always_print: print the stdout, even if there is nothing in the buffer (default: false)
"""
if self.__stdout or always_print:
self.__echo.info("--{ STDOUT }---" + "-" * 100)
self.__format_lines_info(self.stdout)
self.__echo.info("---------------" + "-" * 100)
|
[
"def",
"print_stdout",
"(",
"self",
",",
"always_print",
"=",
"False",
")",
":",
"if",
"self",
".",
"__stdout",
"or",
"always_print",
":",
"self",
".",
"__echo",
".",
"info",
"(",
"\"--{ STDOUT }---\"",
"+",
"\"-\"",
"*",
"100",
")",
"self",
".",
"__format_lines_info",
"(",
"self",
".",
"stdout",
")",
"self",
".",
"__echo",
".",
"info",
"(",
"\"---------------\"",
"+",
"\"-\"",
"*",
"100",
")"
] |
Prints the stdout to console - if there is any stdout, otherwise does nothing.
:param always_print: print the stdout, even if there is nothing in the buffer (default: false)
|
[
"Prints",
"the",
"stdout",
"to",
"console",
"-",
"if",
"there",
"is",
"any",
"stdout",
"otherwise",
"does",
"nothing",
".",
":",
"param",
"always_print",
":",
"print",
"the",
"stdout",
"even",
"if",
"there",
"is",
"nothing",
"in",
"the",
"buffer",
"(",
"default",
":",
"false",
")"
] |
python
|
valid
|
pyviz/holoviews
|
holoviews/util/__init__.py
|
https://github.com/pyviz/holoviews/blob/ae0dd2f3de448b0ca5e9065aabd6ef8d84c7e655/holoviews/util/__init__.py#L257-L264
|
def _cellmagic(cls, options, obj, strict=False):
"Deprecated, not expected to be used by any current code"
options, failure = cls._process_magic(options, strict)
if failure: return obj
if not isinstance(obj, Dimensioned):
return obj
else:
return StoreOptions.set_options(obj, options)
|
[
"def",
"_cellmagic",
"(",
"cls",
",",
"options",
",",
"obj",
",",
"strict",
"=",
"False",
")",
":",
"options",
",",
"failure",
"=",
"cls",
".",
"_process_magic",
"(",
"options",
",",
"strict",
")",
"if",
"failure",
":",
"return",
"obj",
"if",
"not",
"isinstance",
"(",
"obj",
",",
"Dimensioned",
")",
":",
"return",
"obj",
"else",
":",
"return",
"StoreOptions",
".",
"set_options",
"(",
"obj",
",",
"options",
")"
] |
Deprecated, not expected to be used by any current code
|
[
"Deprecated",
"not",
"expected",
"to",
"be",
"used",
"by",
"any",
"current",
"code"
] |
python
|
train
|
synw/dataswim
|
dataswim/data/clean.py
|
https://github.com/synw/dataswim/blob/4a4a53f80daa7cd8e8409d76a19ce07296269da2/dataswim/data/clean.py#L159-L174
|
def to_float(self, col: str, **kwargs):
"""
Convert colums values to float
:param col: name of the colum
:type col: str, at least one
:param \*\*kwargs: keyword arguments for ``df.astype``
:type \*\*kwargs: optional
:example: ``ds.to_float("mycol1")``
"""
try:
self.df[col] = self.df[col].astype(np.float64, **kwargs)
self.ok("Converted column values to float")
except Exception as e:
self.err(e, "Error converting to float")
|
[
"def",
"to_float",
"(",
"self",
",",
"col",
":",
"str",
",",
"*",
"*",
"kwargs",
")",
":",
"try",
":",
"self",
".",
"df",
"[",
"col",
"]",
"=",
"self",
".",
"df",
"[",
"col",
"]",
".",
"astype",
"(",
"np",
".",
"float64",
",",
"*",
"*",
"kwargs",
")",
"self",
".",
"ok",
"(",
"\"Converted column values to float\"",
")",
"except",
"Exception",
"as",
"e",
":",
"self",
".",
"err",
"(",
"e",
",",
"\"Error converting to float\"",
")"
] |
Convert colums values to float
:param col: name of the colum
:type col: str, at least one
:param \*\*kwargs: keyword arguments for ``df.astype``
:type \*\*kwargs: optional
:example: ``ds.to_float("mycol1")``
|
[
"Convert",
"colums",
"values",
"to",
"float"
] |
python
|
train
|
Locu/chronology
|
pykronos/pykronos/utils/cache.py
|
https://github.com/Locu/chronology/blob/0edf3ee3286c76e242cbf92436ffa9c836b428e2/pykronos/pykronos/utils/cache.py#L120-L130
|
def _bucket_time(self, event_time):
"""
The seconds since epoch that represent a computed bucket.
An event bucket is the time of the earliest possible event for
that `bucket_width`. Example: if `bucket_width =
timedelta(minutes=10)`, bucket times will be the number of seconds
since epoch at 12:00, 12:10, ... on each day.
"""
event_time = kronos_time_to_epoch_time(event_time)
return event_time - (event_time % self._bucket_width)
|
[
"def",
"_bucket_time",
"(",
"self",
",",
"event_time",
")",
":",
"event_time",
"=",
"kronos_time_to_epoch_time",
"(",
"event_time",
")",
"return",
"event_time",
"-",
"(",
"event_time",
"%",
"self",
".",
"_bucket_width",
")"
] |
The seconds since epoch that represent a computed bucket.
An event bucket is the time of the earliest possible event for
that `bucket_width`. Example: if `bucket_width =
timedelta(minutes=10)`, bucket times will be the number of seconds
since epoch at 12:00, 12:10, ... on each day.
|
[
"The",
"seconds",
"since",
"epoch",
"that",
"represent",
"a",
"computed",
"bucket",
"."
] |
python
|
train
|
gawel/irc3
|
irc3/base.py
|
https://github.com/gawel/irc3/blob/cd27840a5809a1f803dc620860fe75d83d2a2ec8/irc3/base.py#L156-L171
|
def attach_events(self, *events, **kwargs):
"""Attach one or more events to the bot instance"""
reg = self.registry
insert = 'insert' in kwargs
for e in events:
cregexp = e.compile(self.config)
regexp = getattr(e.regexp, 're', e.regexp)
if regexp not in reg.events[e.iotype]:
if insert:
reg.events_re[e.iotype].insert(0, (regexp, cregexp))
else:
reg.events_re[e.iotype].append((regexp, cregexp))
if insert:
reg.events[e.iotype][regexp].insert(0, e)
else:
reg.events[e.iotype][regexp].append(e)
|
[
"def",
"attach_events",
"(",
"self",
",",
"*",
"events",
",",
"*",
"*",
"kwargs",
")",
":",
"reg",
"=",
"self",
".",
"registry",
"insert",
"=",
"'insert'",
"in",
"kwargs",
"for",
"e",
"in",
"events",
":",
"cregexp",
"=",
"e",
".",
"compile",
"(",
"self",
".",
"config",
")",
"regexp",
"=",
"getattr",
"(",
"e",
".",
"regexp",
",",
"'re'",
",",
"e",
".",
"regexp",
")",
"if",
"regexp",
"not",
"in",
"reg",
".",
"events",
"[",
"e",
".",
"iotype",
"]",
":",
"if",
"insert",
":",
"reg",
".",
"events_re",
"[",
"e",
".",
"iotype",
"]",
".",
"insert",
"(",
"0",
",",
"(",
"regexp",
",",
"cregexp",
")",
")",
"else",
":",
"reg",
".",
"events_re",
"[",
"e",
".",
"iotype",
"]",
".",
"append",
"(",
"(",
"regexp",
",",
"cregexp",
")",
")",
"if",
"insert",
":",
"reg",
".",
"events",
"[",
"e",
".",
"iotype",
"]",
"[",
"regexp",
"]",
".",
"insert",
"(",
"0",
",",
"e",
")",
"else",
":",
"reg",
".",
"events",
"[",
"e",
".",
"iotype",
"]",
"[",
"regexp",
"]",
".",
"append",
"(",
"e",
")"
] |
Attach one or more events to the bot instance
|
[
"Attach",
"one",
"or",
"more",
"events",
"to",
"the",
"bot",
"instance"
] |
python
|
train
|
google/grr
|
grr/core/grr_response_core/lib/parsers/config_file.py
|
https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/core/grr_response_core/lib/parsers/config_file.py#L637-L660
|
def Parse(self, cmd, args, stdout, stderr, return_val, time_taken,
knowledge_base):
"""Parse the mount command output."""
_ = stderr, time_taken, args, knowledge_base # Unused.
self.CheckReturn(cmd, return_val)
result = rdf_protodict.AttributedDict()
for entry in self._field_parser.ParseEntries(stdout):
line_str = " ".join(entry)
mount_rslt = self.mount_re.match(line_str)
if mount_rslt:
device, mount_point, fs_type, option_str = mount_rslt.groups()
result = rdf_client_fs.Filesystem()
result.device = device
result.mount_point = mount_point
result.type = fs_type
# Parse these options as a dict as some items may be key/values.
# KeyValue parser uses OrderedDict as the native parser method. Use it.
options = KeyValueParser(term=",").ParseToOrderedDict(option_str)
# Keys without values get assigned [] by default. Because these keys are
# actually true, if declared, change any [] values to True.
for k, v in iteritems(options):
options[k] = v or [True]
result.options = rdf_protodict.AttributedDict(**options)
yield result
|
[
"def",
"Parse",
"(",
"self",
",",
"cmd",
",",
"args",
",",
"stdout",
",",
"stderr",
",",
"return_val",
",",
"time_taken",
",",
"knowledge_base",
")",
":",
"_",
"=",
"stderr",
",",
"time_taken",
",",
"args",
",",
"knowledge_base",
"# Unused.",
"self",
".",
"CheckReturn",
"(",
"cmd",
",",
"return_val",
")",
"result",
"=",
"rdf_protodict",
".",
"AttributedDict",
"(",
")",
"for",
"entry",
"in",
"self",
".",
"_field_parser",
".",
"ParseEntries",
"(",
"stdout",
")",
":",
"line_str",
"=",
"\" \"",
".",
"join",
"(",
"entry",
")",
"mount_rslt",
"=",
"self",
".",
"mount_re",
".",
"match",
"(",
"line_str",
")",
"if",
"mount_rslt",
":",
"device",
",",
"mount_point",
",",
"fs_type",
",",
"option_str",
"=",
"mount_rslt",
".",
"groups",
"(",
")",
"result",
"=",
"rdf_client_fs",
".",
"Filesystem",
"(",
")",
"result",
".",
"device",
"=",
"device",
"result",
".",
"mount_point",
"=",
"mount_point",
"result",
".",
"type",
"=",
"fs_type",
"# Parse these options as a dict as some items may be key/values.",
"# KeyValue parser uses OrderedDict as the native parser method. Use it.",
"options",
"=",
"KeyValueParser",
"(",
"term",
"=",
"\",\"",
")",
".",
"ParseToOrderedDict",
"(",
"option_str",
")",
"# Keys without values get assigned [] by default. Because these keys are",
"# actually true, if declared, change any [] values to True.",
"for",
"k",
",",
"v",
"in",
"iteritems",
"(",
"options",
")",
":",
"options",
"[",
"k",
"]",
"=",
"v",
"or",
"[",
"True",
"]",
"result",
".",
"options",
"=",
"rdf_protodict",
".",
"AttributedDict",
"(",
"*",
"*",
"options",
")",
"yield",
"result"
] |
Parse the mount command output.
|
[
"Parse",
"the",
"mount",
"command",
"output",
"."
] |
python
|
train
|
sentinel-hub/eo-learn
|
core/eolearn/core/utilities.py
|
https://github.com/sentinel-hub/eo-learn/blob/b8c390b9f553c561612fe9eb64e720611633a035/core/eolearn/core/utilities.py#L190-L201
|
def _parse_feature_names(feature_names, new_names):
"""Helping function of `_parse_features` that parses a collection of feature names."""
if isinstance(feature_names, set):
return FeatureParser._parse_names_set(feature_names)
if isinstance(feature_names, dict):
return FeatureParser._parse_names_dict(feature_names)
if isinstance(feature_names, (tuple, list)):
return FeatureParser._parse_names_tuple(feature_names, new_names)
raise ValueError('Failed to parse {}, expected dictionary, set or tuple'.format(feature_names))
|
[
"def",
"_parse_feature_names",
"(",
"feature_names",
",",
"new_names",
")",
":",
"if",
"isinstance",
"(",
"feature_names",
",",
"set",
")",
":",
"return",
"FeatureParser",
".",
"_parse_names_set",
"(",
"feature_names",
")",
"if",
"isinstance",
"(",
"feature_names",
",",
"dict",
")",
":",
"return",
"FeatureParser",
".",
"_parse_names_dict",
"(",
"feature_names",
")",
"if",
"isinstance",
"(",
"feature_names",
",",
"(",
"tuple",
",",
"list",
")",
")",
":",
"return",
"FeatureParser",
".",
"_parse_names_tuple",
"(",
"feature_names",
",",
"new_names",
")",
"raise",
"ValueError",
"(",
"'Failed to parse {}, expected dictionary, set or tuple'",
".",
"format",
"(",
"feature_names",
")",
")"
] |
Helping function of `_parse_features` that parses a collection of feature names.
|
[
"Helping",
"function",
"of",
"_parse_features",
"that",
"parses",
"a",
"collection",
"of",
"feature",
"names",
"."
] |
python
|
train
|
git-afsantos/bonsai
|
bonsai/model.py
|
https://github.com/git-afsantos/bonsai/blob/aa5af3f535b3b506bfc95c107c501fc9c4bcd072/bonsai/model.py#L56-L71
|
def filter(self, cls, recursive=False):
"""Retrieves all descendants (including self) that are instances
of a given class.
Args:
cls (class): The class to use as a filter.
Kwargs:
recursive (bool): Whether to descend recursively down the tree.
"""
source = self.walk_preorder if recursive else self._children
return [
codeobj
for codeobj in source()
if isinstance(codeobj, cls)
]
|
[
"def",
"filter",
"(",
"self",
",",
"cls",
",",
"recursive",
"=",
"False",
")",
":",
"source",
"=",
"self",
".",
"walk_preorder",
"if",
"recursive",
"else",
"self",
".",
"_children",
"return",
"[",
"codeobj",
"for",
"codeobj",
"in",
"source",
"(",
")",
"if",
"isinstance",
"(",
"codeobj",
",",
"cls",
")",
"]"
] |
Retrieves all descendants (including self) that are instances
of a given class.
Args:
cls (class): The class to use as a filter.
Kwargs:
recursive (bool): Whether to descend recursively down the tree.
|
[
"Retrieves",
"all",
"descendants",
"(",
"including",
"self",
")",
"that",
"are",
"instances",
"of",
"a",
"given",
"class",
"."
] |
python
|
train
|
rraadd88/rohan
|
rohan/dandage/io_sets.py
|
https://github.com/rraadd88/rohan/blob/b0643a3582a2fffc0165ace69fb80880d92bfb10/rohan/dandage/io_sets.py#L38-L49
|
def rankwithlist(l,lwith,test=False):
"""
rank l wrt lwith
"""
if not (isinstance(l,list) and isinstance(lwith,list)):
l,lwith=list(l),list(lwith)
from scipy.stats import rankdata
if test:
print(l,lwith)
print(rankdata(l),rankdata(lwith))
print(rankdata(l+lwith))
return rankdata(l+lwith)[:len(l)]
|
[
"def",
"rankwithlist",
"(",
"l",
",",
"lwith",
",",
"test",
"=",
"False",
")",
":",
"if",
"not",
"(",
"isinstance",
"(",
"l",
",",
"list",
")",
"and",
"isinstance",
"(",
"lwith",
",",
"list",
")",
")",
":",
"l",
",",
"lwith",
"=",
"list",
"(",
"l",
")",
",",
"list",
"(",
"lwith",
")",
"from",
"scipy",
".",
"stats",
"import",
"rankdata",
"if",
"test",
":",
"print",
"(",
"l",
",",
"lwith",
")",
"print",
"(",
"rankdata",
"(",
"l",
")",
",",
"rankdata",
"(",
"lwith",
")",
")",
"print",
"(",
"rankdata",
"(",
"l",
"+",
"lwith",
")",
")",
"return",
"rankdata",
"(",
"l",
"+",
"lwith",
")",
"[",
":",
"len",
"(",
"l",
")",
"]"
] |
rank l wrt lwith
|
[
"rank",
"l",
"wrt",
"lwith"
] |
python
|
train
|
Microsoft/LightGBM
|
python-package/lightgbm/basic.py
|
https://github.com/Microsoft/LightGBM/blob/8d2ec69f4f685b0ab1c4624d59ee2d3287bb3147/python-package/lightgbm/basic.py#L1318-L1337
|
def set_weight(self, weight):
"""Set weight of each instance.
Parameters
----------
weight : list, numpy 1-D array, pandas Series or None
Weight to be set for each data point.
Returns
-------
self : Dataset
Dataset with set weight.
"""
if weight is not None and np.all(weight == 1):
weight = None
self.weight = weight
if self.handle is not None and weight is not None:
weight = list_to_1d_numpy(weight, name='weight')
self.set_field('weight', weight)
return self
|
[
"def",
"set_weight",
"(",
"self",
",",
"weight",
")",
":",
"if",
"weight",
"is",
"not",
"None",
"and",
"np",
".",
"all",
"(",
"weight",
"==",
"1",
")",
":",
"weight",
"=",
"None",
"self",
".",
"weight",
"=",
"weight",
"if",
"self",
".",
"handle",
"is",
"not",
"None",
"and",
"weight",
"is",
"not",
"None",
":",
"weight",
"=",
"list_to_1d_numpy",
"(",
"weight",
",",
"name",
"=",
"'weight'",
")",
"self",
".",
"set_field",
"(",
"'weight'",
",",
"weight",
")",
"return",
"self"
] |
Set weight of each instance.
Parameters
----------
weight : list, numpy 1-D array, pandas Series or None
Weight to be set for each data point.
Returns
-------
self : Dataset
Dataset with set weight.
|
[
"Set",
"weight",
"of",
"each",
"instance",
"."
] |
python
|
train
|
brocade/pynos
|
pynos/versions/ver_6/ver_6_0_1/yang/brocade_interface_ext.py
|
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_interface_ext.py#L111-L125
|
def get_vlan_brief_output_vlan_vlan_name(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
get_vlan_brief = ET.Element("get_vlan_brief")
config = get_vlan_brief
output = ET.SubElement(get_vlan_brief, "output")
vlan = ET.SubElement(output, "vlan")
vlan_id_key = ET.SubElement(vlan, "vlan-id")
vlan_id_key.text = kwargs.pop('vlan_id')
vlan_name = ET.SubElement(vlan, "vlan-name")
vlan_name.text = kwargs.pop('vlan_name')
callback = kwargs.pop('callback', self._callback)
return callback(config)
|
[
"def",
"get_vlan_brief_output_vlan_vlan_name",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"ET",
".",
"Element",
"(",
"\"config\"",
")",
"get_vlan_brief",
"=",
"ET",
".",
"Element",
"(",
"\"get_vlan_brief\"",
")",
"config",
"=",
"get_vlan_brief",
"output",
"=",
"ET",
".",
"SubElement",
"(",
"get_vlan_brief",
",",
"\"output\"",
")",
"vlan",
"=",
"ET",
".",
"SubElement",
"(",
"output",
",",
"\"vlan\"",
")",
"vlan_id_key",
"=",
"ET",
".",
"SubElement",
"(",
"vlan",
",",
"\"vlan-id\"",
")",
"vlan_id_key",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'vlan_id'",
")",
"vlan_name",
"=",
"ET",
".",
"SubElement",
"(",
"vlan",
",",
"\"vlan-name\"",
")",
"vlan_name",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'vlan_name'",
")",
"callback",
"=",
"kwargs",
".",
"pop",
"(",
"'callback'",
",",
"self",
".",
"_callback",
")",
"return",
"callback",
"(",
"config",
")"
] |
Auto Generated Code
|
[
"Auto",
"Generated",
"Code"
] |
python
|
train
|
sci-bots/svg-model
|
svg_model/color.py
|
https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/color.py#L7-L46
|
def hex_color_to_rgba(hex_color, normalize_to=255):
'''
Convert a hex-formatted number (i.e., `"#RGB[A]"` or `"#RRGGBB[AA]"`) to an
RGBA tuple (i.e., `(<r>, <g>, <b>, <a>)`).
Args:
hex_color (str) : hex-formatted number (e.g., `"#2fc"`, `"#3c2f8611"`)
normalize_to (int, float) : Factor to normalize each channel by
Returns:
(tuple) : RGBA tuple (i.e., `(<r>, <g>, <b>, <a>)`), where range of
each channel in tuple is `[0, normalize_to]`.
'''
color_pattern_one_digit = (r'#(?P<R>[\da-fA-F])(?P<G>[\da-fA-F])'
r'(?P<B>[\da-fA-F])(?P<A>[\da-fA-F])?')
color_pattern_two_digit = (r'#(?P<R>[\da-fA-F]{2})(?P<G>[\da-fA-F]{2})'
r'(?P<B>[\da-fA-F]{2})(?P<A>[\da-fA-F]{2})?')
# First try to match `#rrggbb[aa]`.
match = re.match(color_pattern_two_digit, hex_color)
if match:
channels = match.groupdict()
channel_scale = 255
else:
# Try to match `#rgb[a]`.
match = re.match(color_pattern_one_digit, hex_color)
if match:
channels = match.groupdict()
channel_scale = 15
else:
raise ValueError('Color string must be in format #RGB[A] or '
'#RRGGBB[AA] (i.e., alpha channel is optional)')
scale = normalize_to / channel_scale
return tuple(type(normalize_to)(int(channels[k], 16) * scale)
if channels[k] is not None else None
for k in 'RGBA')
|
[
"def",
"hex_color_to_rgba",
"(",
"hex_color",
",",
"normalize_to",
"=",
"255",
")",
":",
"color_pattern_one_digit",
"=",
"(",
"r'#(?P<R>[\\da-fA-F])(?P<G>[\\da-fA-F])'",
"r'(?P<B>[\\da-fA-F])(?P<A>[\\da-fA-F])?'",
")",
"color_pattern_two_digit",
"=",
"(",
"r'#(?P<R>[\\da-fA-F]{2})(?P<G>[\\da-fA-F]{2})'",
"r'(?P<B>[\\da-fA-F]{2})(?P<A>[\\da-fA-F]{2})?'",
")",
"# First try to match `#rrggbb[aa]`.",
"match",
"=",
"re",
".",
"match",
"(",
"color_pattern_two_digit",
",",
"hex_color",
")",
"if",
"match",
":",
"channels",
"=",
"match",
".",
"groupdict",
"(",
")",
"channel_scale",
"=",
"255",
"else",
":",
"# Try to match `#rgb[a]`.",
"match",
"=",
"re",
".",
"match",
"(",
"color_pattern_one_digit",
",",
"hex_color",
")",
"if",
"match",
":",
"channels",
"=",
"match",
".",
"groupdict",
"(",
")",
"channel_scale",
"=",
"15",
"else",
":",
"raise",
"ValueError",
"(",
"'Color string must be in format #RGB[A] or '",
"'#RRGGBB[AA] (i.e., alpha channel is optional)'",
")",
"scale",
"=",
"normalize_to",
"/",
"channel_scale",
"return",
"tuple",
"(",
"type",
"(",
"normalize_to",
")",
"(",
"int",
"(",
"channels",
"[",
"k",
"]",
",",
"16",
")",
"*",
"scale",
")",
"if",
"channels",
"[",
"k",
"]",
"is",
"not",
"None",
"else",
"None",
"for",
"k",
"in",
"'RGBA'",
")"
] |
Convert a hex-formatted number (i.e., `"#RGB[A]"` or `"#RRGGBB[AA]"`) to an
RGBA tuple (i.e., `(<r>, <g>, <b>, <a>)`).
Args:
hex_color (str) : hex-formatted number (e.g., `"#2fc"`, `"#3c2f8611"`)
normalize_to (int, float) : Factor to normalize each channel by
Returns:
(tuple) : RGBA tuple (i.e., `(<r>, <g>, <b>, <a>)`), where range of
each channel in tuple is `[0, normalize_to]`.
|
[
"Convert",
"a",
"hex",
"-",
"formatted",
"number",
"(",
"i",
".",
"e",
".",
"#RGB",
"[",
"A",
"]",
"or",
"#RRGGBB",
"[",
"AA",
"]",
")",
"to",
"an",
"RGBA",
"tuple",
"(",
"i",
".",
"e",
".",
"(",
"<r",
">",
"<g",
">",
"<b",
">",
"<a",
">",
")",
")",
"."
] |
python
|
train
|
learningequality/ricecooker
|
ricecooker/classes/nodes.py
|
https://github.com/learningequality/ricecooker/blob/2f0385282500cb77ef2894646c6f9ce11bd7a853/ricecooker/classes/nodes.py#L738-L751
|
def process_files(self):
""" process_files: goes through question fields and replaces image strings
Args: None
Returns: None
"""
config.LOGGER.info("\t*** Processing images for exercise: {}".format(self.title))
downloaded = super(ExerciseNode, self).process_files()
for question in self.questions:
downloaded += question.process_question()
self.process_exercise_data()
config.LOGGER.info("\t*** Images for {} have been processed".format(self.title))
return downloaded
|
[
"def",
"process_files",
"(",
"self",
")",
":",
"config",
".",
"LOGGER",
".",
"info",
"(",
"\"\\t*** Processing images for exercise: {}\"",
".",
"format",
"(",
"self",
".",
"title",
")",
")",
"downloaded",
"=",
"super",
"(",
"ExerciseNode",
",",
"self",
")",
".",
"process_files",
"(",
")",
"for",
"question",
"in",
"self",
".",
"questions",
":",
"downloaded",
"+=",
"question",
".",
"process_question",
"(",
")",
"self",
".",
"process_exercise_data",
"(",
")",
"config",
".",
"LOGGER",
".",
"info",
"(",
"\"\\t*** Images for {} have been processed\"",
".",
"format",
"(",
"self",
".",
"title",
")",
")",
"return",
"downloaded"
] |
process_files: goes through question fields and replaces image strings
Args: None
Returns: None
|
[
"process_files",
":",
"goes",
"through",
"question",
"fields",
"and",
"replaces",
"image",
"strings",
"Args",
":",
"None",
"Returns",
":",
"None"
] |
python
|
train
|
lcgong/redbean
|
redbean/handler_argument.py
|
https://github.com/lcgong/redbean/blob/45df9ff1e807e742771c752808d7fdac4007c919/redbean/handler_argument.py#L11-L50
|
def argument_getter_factory(route_spec):
""" 根据spec来生成handler函数参数值读取器 """
func_sig = inspect.signature(route_spec.handler_func)
param_names = list(func_sig.parameters.keys())
arg_getters = build_argval_getters(route_spec)
n_args = len(arg_getters)
async def argument_getters(request):
errors = None
values = {}
for i in range(n_args):
try:
arg_name = param_names[i]
values[arg_name] = await arg_getters[i](request)
except HTTPException:
raise
except Exception as exc :
if errors is None:
errors = []
request.app.logger.error('', exc_info=True)
exc_type = type(exc)
data = {
"name": arg_name,
"type": f"{exc_type.__module__}.{exc_type.__qualname__}",
"error": str(exc)
}
errors.append(data)
if errors is not None:
raise RESTfulArgumentError(errors)
return values
return argument_getters
|
[
"def",
"argument_getter_factory",
"(",
"route_spec",
")",
":",
"func_sig",
"=",
"inspect",
".",
"signature",
"(",
"route_spec",
".",
"handler_func",
")",
"param_names",
"=",
"list",
"(",
"func_sig",
".",
"parameters",
".",
"keys",
"(",
")",
")",
"arg_getters",
"=",
"build_argval_getters",
"(",
"route_spec",
")",
"n_args",
"=",
"len",
"(",
"arg_getters",
")",
"async",
"def",
"argument_getters",
"(",
"request",
")",
":",
"errors",
"=",
"None",
"values",
"=",
"{",
"}",
"for",
"i",
"in",
"range",
"(",
"n_args",
")",
":",
"try",
":",
"arg_name",
"=",
"param_names",
"[",
"i",
"]",
"values",
"[",
"arg_name",
"]",
"=",
"await",
"arg_getters",
"[",
"i",
"]",
"(",
"request",
")",
"except",
"HTTPException",
":",
"raise",
"except",
"Exception",
"as",
"exc",
":",
"if",
"errors",
"is",
"None",
":",
"errors",
"=",
"[",
"]",
"request",
".",
"app",
".",
"logger",
".",
"error",
"(",
"''",
",",
"exc_info",
"=",
"True",
")",
"exc_type",
"=",
"type",
"(",
"exc",
")",
"data",
"=",
"{",
"\"name\"",
":",
"arg_name",
",",
"\"type\"",
":",
"f\"{exc_type.__module__}.{exc_type.__qualname__}\"",
",",
"\"error\"",
":",
"str",
"(",
"exc",
")",
"}",
"errors",
".",
"append",
"(",
"data",
")",
"if",
"errors",
"is",
"not",
"None",
":",
"raise",
"RESTfulArgumentError",
"(",
"errors",
")",
"return",
"values",
"return",
"argument_getters"
] |
根据spec来生成handler函数参数值读取器
|
[
"根据spec来生成handler函数参数值读取器"
] |
python
|
train
|
materialsproject/custodian
|
custodian/qchem/jobs.py
|
https://github.com/materialsproject/custodian/blob/b33b01574fc899f959acb3c495398fd3d0fc41d0/custodian/qchem/jobs.py#L132-L270
|
def opt_with_frequency_flattener(cls,
qchem_command,
multimode="openmp",
input_file="mol.qin",
output_file="mol.qout",
qclog_file="mol.qclog",
max_iterations=10,
max_molecule_perturb_scale=0.3,
check_connectivity=True,
**QCJob_kwargs):
"""
Optimize a structure and calculate vibrational frequencies to check if the
structure is in a true minima. If a frequency is negative, iteratively
perturbe the geometry, optimize, and recalculate frequencies until all are
positive, aka a true minima has been found.
Args:
qchem_command (str): Command to run QChem.
multimode (str): Parallelization scheme, either openmp or mpi.
input_file (str): Name of the QChem input file.
output_file (str): Name of the QChem output file.
max_iterations (int): Number of perturbation -> optimization -> frequency
iterations to perform. Defaults to 10.
max_molecule_perturb_scale (float): The maximum scaled perturbation that
can be applied to the molecule. Defaults to 0.3.
check_connectivity (bool): Whether to check differences in connectivity
introduced by structural perturbation. Defaults to True.
**QCJob_kwargs: Passthrough kwargs to QCJob. See
:class:`custodian.qchem.jobs.QCJob`.
"""
min_molecule_perturb_scale = 0.1
scale_grid = 10
perturb_scale_grid = (
max_molecule_perturb_scale - min_molecule_perturb_scale
) / scale_grid
if not os.path.exists(input_file):
raise AssertionError('Input file must be present!')
orig_opt_input = QCInput.from_file(input_file)
orig_opt_rem = copy.deepcopy(orig_opt_input.rem)
orig_freq_rem = copy.deepcopy(orig_opt_input.rem)
orig_freq_rem["job_type"] = "freq"
first = True
reversed_direction = False
num_neg_freqs = []
for ii in range(max_iterations):
yield (QCJob(
qchem_command=qchem_command,
multimode=multimode,
input_file=input_file,
output_file=output_file,
qclog_file=qclog_file,
suffix=".opt_" + str(ii),
backup=first,
**QCJob_kwargs))
first = False
opt_outdata = QCOutput(output_file + ".opt_" + str(ii)).data
if opt_outdata["structure_change"] == "unconnected_fragments" and not opt_outdata["completion"]:
print("Unstable molecule broke into unconnected fragments which failed to optimize! Exiting...")
break
else:
freq_QCInput = QCInput(
molecule=opt_outdata.get("molecule_from_optimized_geometry"),
rem=orig_freq_rem,
opt=orig_opt_input.opt,
pcm=orig_opt_input.pcm,
solvent=orig_opt_input.solvent)
freq_QCInput.write_file(input_file)
yield (QCJob(
qchem_command=qchem_command,
multimode=multimode,
input_file=input_file,
output_file=output_file,
qclog_file=qclog_file,
suffix=".freq_" + str(ii),
backup=first,
**QCJob_kwargs))
outdata = QCOutput(output_file + ".freq_" + str(ii)).data
errors = outdata.get("errors")
if len(errors) != 0:
raise AssertionError('No errors should be encountered while flattening frequencies!')
if outdata.get('frequencies')[0] > 0.0:
print("All frequencies positive!")
break
else:
num_neg_freqs += [sum(1 for freq in outdata.get('frequencies') if freq < 0)]
if len(num_neg_freqs) > 1:
if num_neg_freqs[-1] == num_neg_freqs[-2] and not reversed_direction:
reversed_direction = True
elif num_neg_freqs[-1] == num_neg_freqs[-2] and reversed_direction:
if len(num_neg_freqs) < 3:
raise AssertionError("ERROR: This should only be possible after at least three frequency flattening iterations! Exiting...")
else:
raise Exception("ERROR: Reversing the perturbation direction still could not flatten any frequencies. Exiting...")
elif num_neg_freqs[-1] != num_neg_freqs[-2] and reversed_direction:
reversed_direction = False
negative_freq_vecs = outdata.get("frequency_mode_vectors")[0]
structure_successfully_perturbed = False
for molecule_perturb_scale in np.arange(
max_molecule_perturb_scale, min_molecule_perturb_scale,
-perturb_scale_grid):
new_coords = perturb_coordinates(
old_coords=outdata.get("initial_geometry"),
negative_freq_vecs=negative_freq_vecs,
molecule_perturb_scale=molecule_perturb_scale,
reversed_direction=reversed_direction)
new_molecule = Molecule(
species=outdata.get('species'),
coords=new_coords,
charge=outdata.get('charge'),
spin_multiplicity=outdata.get('multiplicity'))
if check_connectivity:
old_molgraph = MoleculeGraph.with_local_env_strategy(outdata.get("initial_molecule"),
OpenBabelNN(),
reorder=False,
extend_structure=False)
new_molgraph = MoleculeGraph.with_local_env_strategy(new_molecule,
OpenBabelNN(),
reorder=False,
extend_structure=False)
if old_molgraph.isomorphic_to(new_molgraph):
structure_successfully_perturbed = True
break
if not structure_successfully_perturbed:
raise Exception(
"ERROR: Unable to perturb coordinates to remove negative frequency without changing the connectivity! Exiting..."
)
new_opt_QCInput = QCInput(
molecule=new_molecule,
rem=orig_opt_rem,
opt=orig_opt_input.opt,
pcm=orig_opt_input.pcm,
solvent=orig_opt_input.solvent)
new_opt_QCInput.write_file(input_file)
|
[
"def",
"opt_with_frequency_flattener",
"(",
"cls",
",",
"qchem_command",
",",
"multimode",
"=",
"\"openmp\"",
",",
"input_file",
"=",
"\"mol.qin\"",
",",
"output_file",
"=",
"\"mol.qout\"",
",",
"qclog_file",
"=",
"\"mol.qclog\"",
",",
"max_iterations",
"=",
"10",
",",
"max_molecule_perturb_scale",
"=",
"0.3",
",",
"check_connectivity",
"=",
"True",
",",
"*",
"*",
"QCJob_kwargs",
")",
":",
"min_molecule_perturb_scale",
"=",
"0.1",
"scale_grid",
"=",
"10",
"perturb_scale_grid",
"=",
"(",
"max_molecule_perturb_scale",
"-",
"min_molecule_perturb_scale",
")",
"/",
"scale_grid",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"input_file",
")",
":",
"raise",
"AssertionError",
"(",
"'Input file must be present!'",
")",
"orig_opt_input",
"=",
"QCInput",
".",
"from_file",
"(",
"input_file",
")",
"orig_opt_rem",
"=",
"copy",
".",
"deepcopy",
"(",
"orig_opt_input",
".",
"rem",
")",
"orig_freq_rem",
"=",
"copy",
".",
"deepcopy",
"(",
"orig_opt_input",
".",
"rem",
")",
"orig_freq_rem",
"[",
"\"job_type\"",
"]",
"=",
"\"freq\"",
"first",
"=",
"True",
"reversed_direction",
"=",
"False",
"num_neg_freqs",
"=",
"[",
"]",
"for",
"ii",
"in",
"range",
"(",
"max_iterations",
")",
":",
"yield",
"(",
"QCJob",
"(",
"qchem_command",
"=",
"qchem_command",
",",
"multimode",
"=",
"multimode",
",",
"input_file",
"=",
"input_file",
",",
"output_file",
"=",
"output_file",
",",
"qclog_file",
"=",
"qclog_file",
",",
"suffix",
"=",
"\".opt_\"",
"+",
"str",
"(",
"ii",
")",
",",
"backup",
"=",
"first",
",",
"*",
"*",
"QCJob_kwargs",
")",
")",
"first",
"=",
"False",
"opt_outdata",
"=",
"QCOutput",
"(",
"output_file",
"+",
"\".opt_\"",
"+",
"str",
"(",
"ii",
")",
")",
".",
"data",
"if",
"opt_outdata",
"[",
"\"structure_change\"",
"]",
"==",
"\"unconnected_fragments\"",
"and",
"not",
"opt_outdata",
"[",
"\"completion\"",
"]",
":",
"print",
"(",
"\"Unstable molecule broke into unconnected fragments which failed to optimize! Exiting...\"",
")",
"break",
"else",
":",
"freq_QCInput",
"=",
"QCInput",
"(",
"molecule",
"=",
"opt_outdata",
".",
"get",
"(",
"\"molecule_from_optimized_geometry\"",
")",
",",
"rem",
"=",
"orig_freq_rem",
",",
"opt",
"=",
"orig_opt_input",
".",
"opt",
",",
"pcm",
"=",
"orig_opt_input",
".",
"pcm",
",",
"solvent",
"=",
"orig_opt_input",
".",
"solvent",
")",
"freq_QCInput",
".",
"write_file",
"(",
"input_file",
")",
"yield",
"(",
"QCJob",
"(",
"qchem_command",
"=",
"qchem_command",
",",
"multimode",
"=",
"multimode",
",",
"input_file",
"=",
"input_file",
",",
"output_file",
"=",
"output_file",
",",
"qclog_file",
"=",
"qclog_file",
",",
"suffix",
"=",
"\".freq_\"",
"+",
"str",
"(",
"ii",
")",
",",
"backup",
"=",
"first",
",",
"*",
"*",
"QCJob_kwargs",
")",
")",
"outdata",
"=",
"QCOutput",
"(",
"output_file",
"+",
"\".freq_\"",
"+",
"str",
"(",
"ii",
")",
")",
".",
"data",
"errors",
"=",
"outdata",
".",
"get",
"(",
"\"errors\"",
")",
"if",
"len",
"(",
"errors",
")",
"!=",
"0",
":",
"raise",
"AssertionError",
"(",
"'No errors should be encountered while flattening frequencies!'",
")",
"if",
"outdata",
".",
"get",
"(",
"'frequencies'",
")",
"[",
"0",
"]",
">",
"0.0",
":",
"print",
"(",
"\"All frequencies positive!\"",
")",
"break",
"else",
":",
"num_neg_freqs",
"+=",
"[",
"sum",
"(",
"1",
"for",
"freq",
"in",
"outdata",
".",
"get",
"(",
"'frequencies'",
")",
"if",
"freq",
"<",
"0",
")",
"]",
"if",
"len",
"(",
"num_neg_freqs",
")",
">",
"1",
":",
"if",
"num_neg_freqs",
"[",
"-",
"1",
"]",
"==",
"num_neg_freqs",
"[",
"-",
"2",
"]",
"and",
"not",
"reversed_direction",
":",
"reversed_direction",
"=",
"True",
"elif",
"num_neg_freqs",
"[",
"-",
"1",
"]",
"==",
"num_neg_freqs",
"[",
"-",
"2",
"]",
"and",
"reversed_direction",
":",
"if",
"len",
"(",
"num_neg_freqs",
")",
"<",
"3",
":",
"raise",
"AssertionError",
"(",
"\"ERROR: This should only be possible after at least three frequency flattening iterations! Exiting...\"",
")",
"else",
":",
"raise",
"Exception",
"(",
"\"ERROR: Reversing the perturbation direction still could not flatten any frequencies. Exiting...\"",
")",
"elif",
"num_neg_freqs",
"[",
"-",
"1",
"]",
"!=",
"num_neg_freqs",
"[",
"-",
"2",
"]",
"and",
"reversed_direction",
":",
"reversed_direction",
"=",
"False",
"negative_freq_vecs",
"=",
"outdata",
".",
"get",
"(",
"\"frequency_mode_vectors\"",
")",
"[",
"0",
"]",
"structure_successfully_perturbed",
"=",
"False",
"for",
"molecule_perturb_scale",
"in",
"np",
".",
"arange",
"(",
"max_molecule_perturb_scale",
",",
"min_molecule_perturb_scale",
",",
"-",
"perturb_scale_grid",
")",
":",
"new_coords",
"=",
"perturb_coordinates",
"(",
"old_coords",
"=",
"outdata",
".",
"get",
"(",
"\"initial_geometry\"",
")",
",",
"negative_freq_vecs",
"=",
"negative_freq_vecs",
",",
"molecule_perturb_scale",
"=",
"molecule_perturb_scale",
",",
"reversed_direction",
"=",
"reversed_direction",
")",
"new_molecule",
"=",
"Molecule",
"(",
"species",
"=",
"outdata",
".",
"get",
"(",
"'species'",
")",
",",
"coords",
"=",
"new_coords",
",",
"charge",
"=",
"outdata",
".",
"get",
"(",
"'charge'",
")",
",",
"spin_multiplicity",
"=",
"outdata",
".",
"get",
"(",
"'multiplicity'",
")",
")",
"if",
"check_connectivity",
":",
"old_molgraph",
"=",
"MoleculeGraph",
".",
"with_local_env_strategy",
"(",
"outdata",
".",
"get",
"(",
"\"initial_molecule\"",
")",
",",
"OpenBabelNN",
"(",
")",
",",
"reorder",
"=",
"False",
",",
"extend_structure",
"=",
"False",
")",
"new_molgraph",
"=",
"MoleculeGraph",
".",
"with_local_env_strategy",
"(",
"new_molecule",
",",
"OpenBabelNN",
"(",
")",
",",
"reorder",
"=",
"False",
",",
"extend_structure",
"=",
"False",
")",
"if",
"old_molgraph",
".",
"isomorphic_to",
"(",
"new_molgraph",
")",
":",
"structure_successfully_perturbed",
"=",
"True",
"break",
"if",
"not",
"structure_successfully_perturbed",
":",
"raise",
"Exception",
"(",
"\"ERROR: Unable to perturb coordinates to remove negative frequency without changing the connectivity! Exiting...\"",
")",
"new_opt_QCInput",
"=",
"QCInput",
"(",
"molecule",
"=",
"new_molecule",
",",
"rem",
"=",
"orig_opt_rem",
",",
"opt",
"=",
"orig_opt_input",
".",
"opt",
",",
"pcm",
"=",
"orig_opt_input",
".",
"pcm",
",",
"solvent",
"=",
"orig_opt_input",
".",
"solvent",
")",
"new_opt_QCInput",
".",
"write_file",
"(",
"input_file",
")"
] |
Optimize a structure and calculate vibrational frequencies to check if the
structure is in a true minima. If a frequency is negative, iteratively
perturbe the geometry, optimize, and recalculate frequencies until all are
positive, aka a true minima has been found.
Args:
qchem_command (str): Command to run QChem.
multimode (str): Parallelization scheme, either openmp or mpi.
input_file (str): Name of the QChem input file.
output_file (str): Name of the QChem output file.
max_iterations (int): Number of perturbation -> optimization -> frequency
iterations to perform. Defaults to 10.
max_molecule_perturb_scale (float): The maximum scaled perturbation that
can be applied to the molecule. Defaults to 0.3.
check_connectivity (bool): Whether to check differences in connectivity
introduced by structural perturbation. Defaults to True.
**QCJob_kwargs: Passthrough kwargs to QCJob. See
:class:`custodian.qchem.jobs.QCJob`.
|
[
"Optimize",
"a",
"structure",
"and",
"calculate",
"vibrational",
"frequencies",
"to",
"check",
"if",
"the",
"structure",
"is",
"in",
"a",
"true",
"minima",
".",
"If",
"a",
"frequency",
"is",
"negative",
"iteratively",
"perturbe",
"the",
"geometry",
"optimize",
"and",
"recalculate",
"frequencies",
"until",
"all",
"are",
"positive",
"aka",
"a",
"true",
"minima",
"has",
"been",
"found",
"."
] |
python
|
train
|
cloud9ers/gurumate
|
environment/lib/python2.7/site-packages/IPython/nbformat/v3/nbbase.py
|
https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/lib/python2.7/site-packages/IPython/nbformat/v3/nbbase.py#L176-L192
|
def new_metadata(name=None, authors=None, license=None, created=None,
modified=None, gistid=None):
"""Create a new metadata node."""
metadata = NotebookNode()
if name is not None:
metadata.name = unicode(name)
if authors is not None:
metadata.authors = list(authors)
if created is not None:
metadata.created = unicode(created)
if modified is not None:
metadata.modified = unicode(modified)
if license is not None:
metadata.license = unicode(license)
if gistid is not None:
metadata.gistid = unicode(gistid)
return metadata
|
[
"def",
"new_metadata",
"(",
"name",
"=",
"None",
",",
"authors",
"=",
"None",
",",
"license",
"=",
"None",
",",
"created",
"=",
"None",
",",
"modified",
"=",
"None",
",",
"gistid",
"=",
"None",
")",
":",
"metadata",
"=",
"NotebookNode",
"(",
")",
"if",
"name",
"is",
"not",
"None",
":",
"metadata",
".",
"name",
"=",
"unicode",
"(",
"name",
")",
"if",
"authors",
"is",
"not",
"None",
":",
"metadata",
".",
"authors",
"=",
"list",
"(",
"authors",
")",
"if",
"created",
"is",
"not",
"None",
":",
"metadata",
".",
"created",
"=",
"unicode",
"(",
"created",
")",
"if",
"modified",
"is",
"not",
"None",
":",
"metadata",
".",
"modified",
"=",
"unicode",
"(",
"modified",
")",
"if",
"license",
"is",
"not",
"None",
":",
"metadata",
".",
"license",
"=",
"unicode",
"(",
"license",
")",
"if",
"gistid",
"is",
"not",
"None",
":",
"metadata",
".",
"gistid",
"=",
"unicode",
"(",
"gistid",
")",
"return",
"metadata"
] |
Create a new metadata node.
|
[
"Create",
"a",
"new",
"metadata",
"node",
"."
] |
python
|
test
|
miLibris/flask-rest-jsonapi
|
flask_rest_jsonapi/data_layers/alchemy.py
|
https://github.com/miLibris/flask-rest-jsonapi/blob/ecc8f2cd2b54cc0bfae7acd6cffcda0ba1140c43/flask_rest_jsonapi/data_layers/alchemy.py#L519-L534
|
def paginate_query(self, query, paginate_info):
"""Paginate query according to jsonapi 1.0
:param Query query: sqlalchemy queryset
:param dict paginate_info: pagination information
:return Query: the paginated query
"""
if int(paginate_info.get('size', 1)) == 0:
return query
page_size = int(paginate_info.get('size', 0)) or current_app.config['PAGE_SIZE']
query = query.limit(page_size)
if paginate_info.get('number'):
query = query.offset((int(paginate_info['number']) - 1) * page_size)
return query
|
[
"def",
"paginate_query",
"(",
"self",
",",
"query",
",",
"paginate_info",
")",
":",
"if",
"int",
"(",
"paginate_info",
".",
"get",
"(",
"'size'",
",",
"1",
")",
")",
"==",
"0",
":",
"return",
"query",
"page_size",
"=",
"int",
"(",
"paginate_info",
".",
"get",
"(",
"'size'",
",",
"0",
")",
")",
"or",
"current_app",
".",
"config",
"[",
"'PAGE_SIZE'",
"]",
"query",
"=",
"query",
".",
"limit",
"(",
"page_size",
")",
"if",
"paginate_info",
".",
"get",
"(",
"'number'",
")",
":",
"query",
"=",
"query",
".",
"offset",
"(",
"(",
"int",
"(",
"paginate_info",
"[",
"'number'",
"]",
")",
"-",
"1",
")",
"*",
"page_size",
")",
"return",
"query"
] |
Paginate query according to jsonapi 1.0
:param Query query: sqlalchemy queryset
:param dict paginate_info: pagination information
:return Query: the paginated query
|
[
"Paginate",
"query",
"according",
"to",
"jsonapi",
"1",
".",
"0"
] |
python
|
train
|
buildbot/buildbot
|
master/buildbot/process/cache.py
|
https://github.com/buildbot/buildbot/blob/5df3cfae6d760557d99156633c32b1822a1e130c/master/buildbot/process/cache.py#L40-L59
|
def get_cache(self, cache_name, miss_fn):
"""
Get an L{AsyncLRUCache} object with the given name. If such an object
does not exist, it will be created. Since the cache is permanent, this
method can be called only once, e.g., in C{startService}, and it value
stored indefinitely.
@param cache_name: name of the cache (usually the name of the type of
object it stores)
@param miss_fn: miss function for the cache; see L{AsyncLRUCache}
constructor.
@returns: L{AsyncLRUCache} instance
"""
try:
return self._caches[cache_name]
except KeyError:
max_size = self.config.get(cache_name, self.DEFAULT_CACHE_SIZE)
assert max_size >= 1
c = self._caches[cache_name] = lru.AsyncLRUCache(miss_fn, max_size)
return c
|
[
"def",
"get_cache",
"(",
"self",
",",
"cache_name",
",",
"miss_fn",
")",
":",
"try",
":",
"return",
"self",
".",
"_caches",
"[",
"cache_name",
"]",
"except",
"KeyError",
":",
"max_size",
"=",
"self",
".",
"config",
".",
"get",
"(",
"cache_name",
",",
"self",
".",
"DEFAULT_CACHE_SIZE",
")",
"assert",
"max_size",
">=",
"1",
"c",
"=",
"self",
".",
"_caches",
"[",
"cache_name",
"]",
"=",
"lru",
".",
"AsyncLRUCache",
"(",
"miss_fn",
",",
"max_size",
")",
"return",
"c"
] |
Get an L{AsyncLRUCache} object with the given name. If such an object
does not exist, it will be created. Since the cache is permanent, this
method can be called only once, e.g., in C{startService}, and it value
stored indefinitely.
@param cache_name: name of the cache (usually the name of the type of
object it stores)
@param miss_fn: miss function for the cache; see L{AsyncLRUCache}
constructor.
@returns: L{AsyncLRUCache} instance
|
[
"Get",
"an",
"L",
"{",
"AsyncLRUCache",
"}",
"object",
"with",
"the",
"given",
"name",
".",
"If",
"such",
"an",
"object",
"does",
"not",
"exist",
"it",
"will",
"be",
"created",
".",
"Since",
"the",
"cache",
"is",
"permanent",
"this",
"method",
"can",
"be",
"called",
"only",
"once",
"e",
".",
"g",
".",
"in",
"C",
"{",
"startService",
"}",
"and",
"it",
"value",
"stored",
"indefinitely",
"."
] |
python
|
train
|
Microsoft/nni
|
tools/nni_annotation/__init__.py
|
https://github.com/Microsoft/nni/blob/c7cc8db32da8d2ec77a382a55089f4e17247ce41/tools/nni_annotation/__init__.py#L36-L61
|
def generate_search_space(code_dir):
"""Generate search space from Python source code.
Return a serializable search space object.
code_dir: directory path of source files (str)
"""
search_space = {}
if code_dir.endswith(slash):
code_dir = code_dir[:-1]
for subdir, _, files in os.walk(code_dir):
# generate module name from path
if subdir == code_dir:
package = ''
else:
assert subdir.startswith(code_dir + slash), subdir
prefix_len = len(code_dir) + 1
package = subdir[prefix_len:].replace(slash, '.') + '.'
for file_name in files:
if file_name.endswith('.py'):
path = os.path.join(subdir, file_name)
module = package + file_name[:-3]
search_space.update(_generate_file_search_space(path, module))
return search_space
|
[
"def",
"generate_search_space",
"(",
"code_dir",
")",
":",
"search_space",
"=",
"{",
"}",
"if",
"code_dir",
".",
"endswith",
"(",
"slash",
")",
":",
"code_dir",
"=",
"code_dir",
"[",
":",
"-",
"1",
"]",
"for",
"subdir",
",",
"_",
",",
"files",
"in",
"os",
".",
"walk",
"(",
"code_dir",
")",
":",
"# generate module name from path",
"if",
"subdir",
"==",
"code_dir",
":",
"package",
"=",
"''",
"else",
":",
"assert",
"subdir",
".",
"startswith",
"(",
"code_dir",
"+",
"slash",
")",
",",
"subdir",
"prefix_len",
"=",
"len",
"(",
"code_dir",
")",
"+",
"1",
"package",
"=",
"subdir",
"[",
"prefix_len",
":",
"]",
".",
"replace",
"(",
"slash",
",",
"'.'",
")",
"+",
"'.'",
"for",
"file_name",
"in",
"files",
":",
"if",
"file_name",
".",
"endswith",
"(",
"'.py'",
")",
":",
"path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"subdir",
",",
"file_name",
")",
"module",
"=",
"package",
"+",
"file_name",
"[",
":",
"-",
"3",
"]",
"search_space",
".",
"update",
"(",
"_generate_file_search_space",
"(",
"path",
",",
"module",
")",
")",
"return",
"search_space"
] |
Generate search space from Python source code.
Return a serializable search space object.
code_dir: directory path of source files (str)
|
[
"Generate",
"search",
"space",
"from",
"Python",
"source",
"code",
".",
"Return",
"a",
"serializable",
"search",
"space",
"object",
".",
"code_dir",
":",
"directory",
"path",
"of",
"source",
"files",
"(",
"str",
")"
] |
python
|
train
|
ska-sa/katcp-python
|
katcp/resource_client.py
|
https://github.com/ska-sa/katcp-python/blob/9127c826a1d030c53b84d0e95743e20e5c5ea153/katcp/resource_client.py#L828-L866
|
def set_sampling_strategy(self, sensor_name, strategy_and_params):
"""Set the sampling strategy for the named sensor
Parameters
----------
sensor_name : str
Name of the sensor
strategy_and_params : seq of str or str
As tuple contains (<strat_name>, [<strat_parm1>, ...]) where the
strategy names and parameters are as defined by the KATCP spec. As
str contains the same elements in space-separated form.
Returns
-------
sensor_strategy : tuple
(success, info) with
success : bool
True if setting succeeded for this sensor, else False
info : tuple
Normalibed sensor strategy and parameters as tuple if
success == True else, sys.exc_info() tuple for the error
that occured.
"""
try:
strategy_and_params = resource.normalize_strategy_parameters(
strategy_and_params)
self._strategy_cache[sensor_name] = strategy_and_params
reply = yield self._inspecting_client.wrapped_request(
'sensor-sampling', sensor_name, *strategy_and_params)
if not reply.succeeded:
raise KATCPSensorError('Error setting strategy for sensor {0}: \n'
'{1!s}'.format(sensor_name, reply))
sensor_strategy = (True, strategy_and_params)
except Exception as e:
self._logger.exception('Exception found!')
sensor_strategy = (False, str(e))
raise tornado.gen.Return(sensor_strategy)
|
[
"def",
"set_sampling_strategy",
"(",
"self",
",",
"sensor_name",
",",
"strategy_and_params",
")",
":",
"try",
":",
"strategy_and_params",
"=",
"resource",
".",
"normalize_strategy_parameters",
"(",
"strategy_and_params",
")",
"self",
".",
"_strategy_cache",
"[",
"sensor_name",
"]",
"=",
"strategy_and_params",
"reply",
"=",
"yield",
"self",
".",
"_inspecting_client",
".",
"wrapped_request",
"(",
"'sensor-sampling'",
",",
"sensor_name",
",",
"*",
"strategy_and_params",
")",
"if",
"not",
"reply",
".",
"succeeded",
":",
"raise",
"KATCPSensorError",
"(",
"'Error setting strategy for sensor {0}: \\n'",
"'{1!s}'",
".",
"format",
"(",
"sensor_name",
",",
"reply",
")",
")",
"sensor_strategy",
"=",
"(",
"True",
",",
"strategy_and_params",
")",
"except",
"Exception",
"as",
"e",
":",
"self",
".",
"_logger",
".",
"exception",
"(",
"'Exception found!'",
")",
"sensor_strategy",
"=",
"(",
"False",
",",
"str",
"(",
"e",
")",
")",
"raise",
"tornado",
".",
"gen",
".",
"Return",
"(",
"sensor_strategy",
")"
] |
Set the sampling strategy for the named sensor
Parameters
----------
sensor_name : str
Name of the sensor
strategy_and_params : seq of str or str
As tuple contains (<strat_name>, [<strat_parm1>, ...]) where the
strategy names and parameters are as defined by the KATCP spec. As
str contains the same elements in space-separated form.
Returns
-------
sensor_strategy : tuple
(success, info) with
success : bool
True if setting succeeded for this sensor, else False
info : tuple
Normalibed sensor strategy and parameters as tuple if
success == True else, sys.exc_info() tuple for the error
that occured.
|
[
"Set",
"the",
"sampling",
"strategy",
"for",
"the",
"named",
"sensor"
] |
python
|
train
|
tradenity/python-sdk
|
tradenity/resources/product.py
|
https://github.com/tradenity/python-sdk/blob/d13fbe23f4d6ff22554c6d8d2deaf209371adaf1/tradenity/resources/product.py#L1096-L1116
|
def create_product(cls, product, **kwargs):
"""Create Product
Create a new Product
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async=True
>>> thread = api.create_product(product, async=True)
>>> result = thread.get()
:param async bool
:param Product product: Attributes of product to create (required)
:return: Product
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('async'):
return cls._create_product_with_http_info(product, **kwargs)
else:
(data) = cls._create_product_with_http_info(product, **kwargs)
return data
|
[
"def",
"create_product",
"(",
"cls",
",",
"product",
",",
"*",
"*",
"kwargs",
")",
":",
"kwargs",
"[",
"'_return_http_data_only'",
"]",
"=",
"True",
"if",
"kwargs",
".",
"get",
"(",
"'async'",
")",
":",
"return",
"cls",
".",
"_create_product_with_http_info",
"(",
"product",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"(",
"data",
")",
"=",
"cls",
".",
"_create_product_with_http_info",
"(",
"product",
",",
"*",
"*",
"kwargs",
")",
"return",
"data"
] |
Create Product
Create a new Product
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async=True
>>> thread = api.create_product(product, async=True)
>>> result = thread.get()
:param async bool
:param Product product: Attributes of product to create (required)
:return: Product
If the method is called asynchronously,
returns the request thread.
|
[
"Create",
"Product"
] |
python
|
train
|
erikrose/parsimonious
|
parsimonious/nodes.py
|
https://github.com/erikrose/parsimonious/blob/12263be5ceca89344905c2c3eb9ac5a603e976e1/parsimonious/nodes.py#L275-L289
|
def _parse_or_match(self, text, pos, method_name):
"""Execute a parse or match on the default grammar, followed by a
visitation.
Raise RuntimeError if there is no default grammar specified.
"""
if not self.grammar:
raise RuntimeError(
"The {cls}.{method}() shortcut won't work because {cls} was "
"never associated with a specific " "grammar. Fill out its "
"`grammar` attribute, and try again.".format(
cls=self.__class__.__name__,
method=method_name))
return self.visit(getattr(self.grammar, method_name)(text, pos=pos))
|
[
"def",
"_parse_or_match",
"(",
"self",
",",
"text",
",",
"pos",
",",
"method_name",
")",
":",
"if",
"not",
"self",
".",
"grammar",
":",
"raise",
"RuntimeError",
"(",
"\"The {cls}.{method}() shortcut won't work because {cls} was \"",
"\"never associated with a specific \"",
"\"grammar. Fill out its \"",
"\"`grammar` attribute, and try again.\"",
".",
"format",
"(",
"cls",
"=",
"self",
".",
"__class__",
".",
"__name__",
",",
"method",
"=",
"method_name",
")",
")",
"return",
"self",
".",
"visit",
"(",
"getattr",
"(",
"self",
".",
"grammar",
",",
"method_name",
")",
"(",
"text",
",",
"pos",
"=",
"pos",
")",
")"
] |
Execute a parse or match on the default grammar, followed by a
visitation.
Raise RuntimeError if there is no default grammar specified.
|
[
"Execute",
"a",
"parse",
"or",
"match",
"on",
"the",
"default",
"grammar",
"followed",
"by",
"a",
"visitation",
"."
] |
python
|
train
|
hugapi/hug
|
hug/api.py
|
https://github.com/hugapi/hug/blob/080901c81576657f82e2432fd4a82f1d0d2f370c/hug/api.py#L294-L319
|
def documentation_404(self, base_url=None):
"""Returns a smart 404 page that contains documentation for the written API"""
base_url = self.base_url if base_url is None else base_url
def handle_404(request, response, *args, **kwargs):
url_prefix = request.forwarded_uri[:-1]
if request.path and request.path != "/":
url_prefix = request.forwarded_uri.split(request.path)[0]
to_return = OrderedDict()
to_return['404'] = ("The API call you tried to make was not defined. "
"Here's a definition of the API to help you get going :)")
to_return['documentation'] = self.documentation(base_url, self.determine_version(request, False),
prefix=url_prefix)
if self.output_format == hug.output_format.json:
response.data = hug.output_format.json(to_return, indent=4, separators=(',', ': '))
response.content_type = 'application/json; charset=utf-8'
else:
response.data = self.output_format(to_return, request=request, response=response)
response.content_type = self.output_format.content_type
response.status = falcon.HTTP_NOT_FOUND
handle_404.interface = True
return handle_404
|
[
"def",
"documentation_404",
"(",
"self",
",",
"base_url",
"=",
"None",
")",
":",
"base_url",
"=",
"self",
".",
"base_url",
"if",
"base_url",
"is",
"None",
"else",
"base_url",
"def",
"handle_404",
"(",
"request",
",",
"response",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"url_prefix",
"=",
"request",
".",
"forwarded_uri",
"[",
":",
"-",
"1",
"]",
"if",
"request",
".",
"path",
"and",
"request",
".",
"path",
"!=",
"\"/\"",
":",
"url_prefix",
"=",
"request",
".",
"forwarded_uri",
".",
"split",
"(",
"request",
".",
"path",
")",
"[",
"0",
"]",
"to_return",
"=",
"OrderedDict",
"(",
")",
"to_return",
"[",
"'404'",
"]",
"=",
"(",
"\"The API call you tried to make was not defined. \"",
"\"Here's a definition of the API to help you get going :)\"",
")",
"to_return",
"[",
"'documentation'",
"]",
"=",
"self",
".",
"documentation",
"(",
"base_url",
",",
"self",
".",
"determine_version",
"(",
"request",
",",
"False",
")",
",",
"prefix",
"=",
"url_prefix",
")",
"if",
"self",
".",
"output_format",
"==",
"hug",
".",
"output_format",
".",
"json",
":",
"response",
".",
"data",
"=",
"hug",
".",
"output_format",
".",
"json",
"(",
"to_return",
",",
"indent",
"=",
"4",
",",
"separators",
"=",
"(",
"','",
",",
"': '",
")",
")",
"response",
".",
"content_type",
"=",
"'application/json; charset=utf-8'",
"else",
":",
"response",
".",
"data",
"=",
"self",
".",
"output_format",
"(",
"to_return",
",",
"request",
"=",
"request",
",",
"response",
"=",
"response",
")",
"response",
".",
"content_type",
"=",
"self",
".",
"output_format",
".",
"content_type",
"response",
".",
"status",
"=",
"falcon",
".",
"HTTP_NOT_FOUND",
"handle_404",
".",
"interface",
"=",
"True",
"return",
"handle_404"
] |
Returns a smart 404 page that contains documentation for the written API
|
[
"Returns",
"a",
"smart",
"404",
"page",
"that",
"contains",
"documentation",
"for",
"the",
"written",
"API"
] |
python
|
train
|
bitcraft/PyTMX
|
pytmx/pytmx.py
|
https://github.com/bitcraft/PyTMX/blob/3fb9788dd66ecfd0c8fa0e9f38c582337d89e1d9/pytmx/pytmx.py#L1146-L1187
|
def parse_xml(self, node):
""" Parse an Object from ElementTree xml node
:param node: ElementTree xml node
:return: self
"""
def read_points(text):
"""parse a text string of float tuples and return [(x,...),...]
"""
return tuple(tuple(map(float, i.split(','))) for i in text.split())
self._set_properties(node)
# correctly handle "tile objects" (object with gid set)
if self.gid:
self.gid = self.parent.register_gid(self.gid)
points = None
polygon = node.find('polygon')
if polygon is not None:
points = read_points(polygon.get('points'))
self.closed = True
polyline = node.find('polyline')
if polyline is not None:
points = read_points(polyline.get('points'))
self.closed = False
if points:
x1 = x2 = y1 = y2 = 0
for x, y in points:
if x < x1: x1 = x
if x > x2: x2 = x
if y < y1: y1 = y
if y > y2: y2 = y
self.width = abs(x1) + abs(x2)
self.height = abs(y1) + abs(y2)
self.points = tuple(
[(i[0] + self.x, i[1] + self.y) for i in points])
return self
|
[
"def",
"parse_xml",
"(",
"self",
",",
"node",
")",
":",
"def",
"read_points",
"(",
"text",
")",
":",
"\"\"\"parse a text string of float tuples and return [(x,...),...]\n \"\"\"",
"return",
"tuple",
"(",
"tuple",
"(",
"map",
"(",
"float",
",",
"i",
".",
"split",
"(",
"','",
")",
")",
")",
"for",
"i",
"in",
"text",
".",
"split",
"(",
")",
")",
"self",
".",
"_set_properties",
"(",
"node",
")",
"# correctly handle \"tile objects\" (object with gid set)",
"if",
"self",
".",
"gid",
":",
"self",
".",
"gid",
"=",
"self",
".",
"parent",
".",
"register_gid",
"(",
"self",
".",
"gid",
")",
"points",
"=",
"None",
"polygon",
"=",
"node",
".",
"find",
"(",
"'polygon'",
")",
"if",
"polygon",
"is",
"not",
"None",
":",
"points",
"=",
"read_points",
"(",
"polygon",
".",
"get",
"(",
"'points'",
")",
")",
"self",
".",
"closed",
"=",
"True",
"polyline",
"=",
"node",
".",
"find",
"(",
"'polyline'",
")",
"if",
"polyline",
"is",
"not",
"None",
":",
"points",
"=",
"read_points",
"(",
"polyline",
".",
"get",
"(",
"'points'",
")",
")",
"self",
".",
"closed",
"=",
"False",
"if",
"points",
":",
"x1",
"=",
"x2",
"=",
"y1",
"=",
"y2",
"=",
"0",
"for",
"x",
",",
"y",
"in",
"points",
":",
"if",
"x",
"<",
"x1",
":",
"x1",
"=",
"x",
"if",
"x",
">",
"x2",
":",
"x2",
"=",
"x",
"if",
"y",
"<",
"y1",
":",
"y1",
"=",
"y",
"if",
"y",
">",
"y2",
":",
"y2",
"=",
"y",
"self",
".",
"width",
"=",
"abs",
"(",
"x1",
")",
"+",
"abs",
"(",
"x2",
")",
"self",
".",
"height",
"=",
"abs",
"(",
"y1",
")",
"+",
"abs",
"(",
"y2",
")",
"self",
".",
"points",
"=",
"tuple",
"(",
"[",
"(",
"i",
"[",
"0",
"]",
"+",
"self",
".",
"x",
",",
"i",
"[",
"1",
"]",
"+",
"self",
".",
"y",
")",
"for",
"i",
"in",
"points",
"]",
")",
"return",
"self"
] |
Parse an Object from ElementTree xml node
:param node: ElementTree xml node
:return: self
|
[
"Parse",
"an",
"Object",
"from",
"ElementTree",
"xml",
"node"
] |
python
|
train
|
HewlettPackard/python-hpOneView
|
hpOneView/resources/servers/server_profiles.py
|
https://github.com/HewlettPackard/python-hpOneView/blob/3c6219723ef25e6e0c83d44a89007f89bc325b89/hpOneView/resources/servers/server_profiles.py#L108-L135
|
def delete_all(self, filter, timeout=-1, force=False):
"""
Deletes all Server Profile objects from the appliance that match the provided filter.
Filters are supported only for the following profile attributes: name, description, serialnumber, uuid,
mactype, wwntype, serialnumbertype, status, and state.
Examples:
>>> server_profile_client.delete_all(filter="name='Exchange Server'")
# Remove all profiles that match the name "Exchange Server"
>>> server_profile_client.delete_all(filter="name matches'%25Database%25'")
# Remove all profiles that have the word "Database" in its name
The filter function here operates similarly to the function defined for GET Server Profiles. It allows
for both actual and partial matches of data in the profile. Any requests that use a wildcard match
must include a %25 as illustrated in the previous example. This is how you encode that character for
transmission to the appliance.
Args:
filter (dict): Object to delete.
timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
Returns:
bool: Indicates whether the server profile was successfully deleted.
"""
return self._helper.delete_all(filter=filter, force=force, timeout=timeout)
|
[
"def",
"delete_all",
"(",
"self",
",",
"filter",
",",
"timeout",
"=",
"-",
"1",
",",
"force",
"=",
"False",
")",
":",
"return",
"self",
".",
"_helper",
".",
"delete_all",
"(",
"filter",
"=",
"filter",
",",
"force",
"=",
"force",
",",
"timeout",
"=",
"timeout",
")"
] |
Deletes all Server Profile objects from the appliance that match the provided filter.
Filters are supported only for the following profile attributes: name, description, serialnumber, uuid,
mactype, wwntype, serialnumbertype, status, and state.
Examples:
>>> server_profile_client.delete_all(filter="name='Exchange Server'")
# Remove all profiles that match the name "Exchange Server"
>>> server_profile_client.delete_all(filter="name matches'%25Database%25'")
# Remove all profiles that have the word "Database" in its name
The filter function here operates similarly to the function defined for GET Server Profiles. It allows
for both actual and partial matches of data in the profile. Any requests that use a wildcard match
must include a %25 as illustrated in the previous example. This is how you encode that character for
transmission to the appliance.
Args:
filter (dict): Object to delete.
timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
Returns:
bool: Indicates whether the server profile was successfully deleted.
|
[
"Deletes",
"all",
"Server",
"Profile",
"objects",
"from",
"the",
"appliance",
"that",
"match",
"the",
"provided",
"filter",
".",
"Filters",
"are",
"supported",
"only",
"for",
"the",
"following",
"profile",
"attributes",
":",
"name",
"description",
"serialnumber",
"uuid",
"mactype",
"wwntype",
"serialnumbertype",
"status",
"and",
"state",
"."
] |
python
|
train
|
ThreatConnect-Inc/tcex
|
tcex/tcex_ti_batch.py
|
https://github.com/ThreatConnect-Inc/tcex/blob/dd4d7a1ef723af1561687120191886b9a2fd4b47/tcex/tcex_ti_batch.py#L1292-L1344
|
def submit(self, poll=True, errors=True, process_files=True, halt_on_error=True):
"""Submit Batch request to ThreatConnect API.
By default this method will submit the job request and data and if the size of the data
is below the value **synchronousBatchSaveLimit** set in System Setting it will process
the request synchronously and return the batch status. If the size of the batch is greater
than the value set the batch job will be queued.
Errors are not retrieve automatically and need to be enabled.
If any of the submit, poll, or error methods fail the entire submit will halt at the point
of failure. The behavior can be changed by setting halt_on_error to False.
Each of these methods can also be called on their own for greater control of the submit
process.
Args:
poll (bool, default:True): Poll for status.
errors (bool, default:True): Retrieve any batch errors (only if poll is True).
process_files (bool, default:True): Send any document or report attachments to the API.
halt_on_error (bool, default:True): If True any exception will raise an error.
Returns.
dict: The Batch Status from the ThreatConnect API.
"""
batch_data = (
self.submit_create_and_upload(halt_on_error).get('data', {}).get('batchStatus', {})
)
batch_id = batch_data.get('id')
if batch_id is not None:
self.tcex.log.info('Batch ID: {}'.format(batch_id))
# job hit queue
if poll:
# poll for status
batch_data = (
self.poll(batch_id, halt_on_error=halt_on_error)
.get('data', {})
.get('batchStatus')
)
if errors:
# retrieve errors
error_groups = batch_data.get('errorGroupCount', 0)
error_indicators = batch_data.get('errorIndicatorCount', 0)
if error_groups > 0 or error_indicators > 0:
self.tcex.log.debug('retrieving batch errors')
batch_data['errors'] = self.errors(batch_id)
else:
# can't process files if status is unknown (polling must be enabled)
process_files = False
if process_files:
# submit file data after batch job is complete
batch_data['uploadStatus'] = self.submit_files(halt_on_error)
return batch_data
|
[
"def",
"submit",
"(",
"self",
",",
"poll",
"=",
"True",
",",
"errors",
"=",
"True",
",",
"process_files",
"=",
"True",
",",
"halt_on_error",
"=",
"True",
")",
":",
"batch_data",
"=",
"(",
"self",
".",
"submit_create_and_upload",
"(",
"halt_on_error",
")",
".",
"get",
"(",
"'data'",
",",
"{",
"}",
")",
".",
"get",
"(",
"'batchStatus'",
",",
"{",
"}",
")",
")",
"batch_id",
"=",
"batch_data",
".",
"get",
"(",
"'id'",
")",
"if",
"batch_id",
"is",
"not",
"None",
":",
"self",
".",
"tcex",
".",
"log",
".",
"info",
"(",
"'Batch ID: {}'",
".",
"format",
"(",
"batch_id",
")",
")",
"# job hit queue",
"if",
"poll",
":",
"# poll for status",
"batch_data",
"=",
"(",
"self",
".",
"poll",
"(",
"batch_id",
",",
"halt_on_error",
"=",
"halt_on_error",
")",
".",
"get",
"(",
"'data'",
",",
"{",
"}",
")",
".",
"get",
"(",
"'batchStatus'",
")",
")",
"if",
"errors",
":",
"# retrieve errors",
"error_groups",
"=",
"batch_data",
".",
"get",
"(",
"'errorGroupCount'",
",",
"0",
")",
"error_indicators",
"=",
"batch_data",
".",
"get",
"(",
"'errorIndicatorCount'",
",",
"0",
")",
"if",
"error_groups",
">",
"0",
"or",
"error_indicators",
">",
"0",
":",
"self",
".",
"tcex",
".",
"log",
".",
"debug",
"(",
"'retrieving batch errors'",
")",
"batch_data",
"[",
"'errors'",
"]",
"=",
"self",
".",
"errors",
"(",
"batch_id",
")",
"else",
":",
"# can't process files if status is unknown (polling must be enabled)",
"process_files",
"=",
"False",
"if",
"process_files",
":",
"# submit file data after batch job is complete",
"batch_data",
"[",
"'uploadStatus'",
"]",
"=",
"self",
".",
"submit_files",
"(",
"halt_on_error",
")",
"return",
"batch_data"
] |
Submit Batch request to ThreatConnect API.
By default this method will submit the job request and data and if the size of the data
is below the value **synchronousBatchSaveLimit** set in System Setting it will process
the request synchronously and return the batch status. If the size of the batch is greater
than the value set the batch job will be queued.
Errors are not retrieve automatically and need to be enabled.
If any of the submit, poll, or error methods fail the entire submit will halt at the point
of failure. The behavior can be changed by setting halt_on_error to False.
Each of these methods can also be called on their own for greater control of the submit
process.
Args:
poll (bool, default:True): Poll for status.
errors (bool, default:True): Retrieve any batch errors (only if poll is True).
process_files (bool, default:True): Send any document or report attachments to the API.
halt_on_error (bool, default:True): If True any exception will raise an error.
Returns.
dict: The Batch Status from the ThreatConnect API.
|
[
"Submit",
"Batch",
"request",
"to",
"ThreatConnect",
"API",
"."
] |
python
|
train
|
marteinn/AtomicPress
|
atomicpress/utils/files.py
|
https://github.com/marteinn/AtomicPress/blob/b8a0ca9c9c327f062833fc4a401a8ac0baccf6d1/atomicpress/utils/files.py#L16-L36
|
def generate_image_from_url(url=None, timeout=30):
"""
Downloads and saves a image from url into a file.
"""
file_name = posixpath.basename(url)
img_tmp = NamedTemporaryFile(delete=True)
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
except Exception as e: # NOQA
return None, None
img_tmp.write(response.content)
img_tmp.flush()
image = File(img_tmp)
image.seek(0)
return file_name, image
|
[
"def",
"generate_image_from_url",
"(",
"url",
"=",
"None",
",",
"timeout",
"=",
"30",
")",
":",
"file_name",
"=",
"posixpath",
".",
"basename",
"(",
"url",
")",
"img_tmp",
"=",
"NamedTemporaryFile",
"(",
"delete",
"=",
"True",
")",
"try",
":",
"response",
"=",
"requests",
".",
"get",
"(",
"url",
",",
"timeout",
"=",
"timeout",
")",
"response",
".",
"raise_for_status",
"(",
")",
"except",
"Exception",
"as",
"e",
":",
"# NOQA",
"return",
"None",
",",
"None",
"img_tmp",
".",
"write",
"(",
"response",
".",
"content",
")",
"img_tmp",
".",
"flush",
"(",
")",
"image",
"=",
"File",
"(",
"img_tmp",
")",
"image",
".",
"seek",
"(",
"0",
")",
"return",
"file_name",
",",
"image"
] |
Downloads and saves a image from url into a file.
|
[
"Downloads",
"and",
"saves",
"a",
"image",
"from",
"url",
"into",
"a",
"file",
"."
] |
python
|
train
|
obriencj/python-javatools
|
javatools/distdiff.py
|
https://github.com/obriencj/python-javatools/blob/9e2332b452ddc508bed0615937dddcb2cf051557/javatools/distdiff.py#L304-L363
|
def collect_impl(self):
"""
emits change instances based on the delta of the two distribution
directories
"""
ld = self.ldata
rd = self.rdata
deep = not self.shallow
for event, entry in compare(ld, rd):
if deep and fnmatches(entry, *JAR_PATTERNS):
if event == LEFT:
yield DistJarRemoved(ld, rd, entry)
elif event == RIGHT:
yield DistJarAdded(ld, rd, entry)
elif event == DIFF:
yield DistJarChange(ld, rd, entry, True)
elif event == SAME:
yield DistJarChange(ld, rd, entry, False)
elif deep and fnmatches(entry, "*.class"):
if event == LEFT:
yield DistClassRemoved(ld, rd, entry)
elif event == RIGHT:
yield DistClassAdded(ld, rd, entry)
elif event == DIFF:
yield DistClassChange(ld, rd, entry, True)
elif event == SAME:
yield DistClassChange(ld, rd, entry, False)
elif deep and fnmatches(entry, *TEXT_PATTERNS):
if event == LEFT:
yield DistContentRemoved(ld, rd, entry)
elif event == RIGHT:
yield DistContentAdded(ld, rd, entry)
elif event == DIFF:
yield DistTextChange(ld, rd, entry)
elif event == SAME:
yield DistTextChange(ld, rd, entry, False)
elif deep and fnmatches(entry, "*/MANIFEST.MF"):
if event == LEFT:
yield DistContentRemoved(ld, rd, entry)
elif event == RIGHT:
yield DistContentAdded(ld, rd, entry)
elif event == DIFF:
yield DistManifestChange(ld, rd, entry, True)
elif event == SAME:
yield DistManifestChange(ld, rd, entry, False)
else:
if event == LEFT:
yield DistContentRemoved(ld, rd, entry)
elif event == RIGHT:
yield DistContentAdded(ld, rd, entry)
elif event == DIFF:
yield DistContentChange(ld, rd, entry, True)
elif event == SAME:
yield DistContentChange(ld, rd, entry, False)
|
[
"def",
"collect_impl",
"(",
"self",
")",
":",
"ld",
"=",
"self",
".",
"ldata",
"rd",
"=",
"self",
".",
"rdata",
"deep",
"=",
"not",
"self",
".",
"shallow",
"for",
"event",
",",
"entry",
"in",
"compare",
"(",
"ld",
",",
"rd",
")",
":",
"if",
"deep",
"and",
"fnmatches",
"(",
"entry",
",",
"*",
"JAR_PATTERNS",
")",
":",
"if",
"event",
"==",
"LEFT",
":",
"yield",
"DistJarRemoved",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"RIGHT",
":",
"yield",
"DistJarAdded",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"DIFF",
":",
"yield",
"DistJarChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"True",
")",
"elif",
"event",
"==",
"SAME",
":",
"yield",
"DistJarChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"False",
")",
"elif",
"deep",
"and",
"fnmatches",
"(",
"entry",
",",
"\"*.class\"",
")",
":",
"if",
"event",
"==",
"LEFT",
":",
"yield",
"DistClassRemoved",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"RIGHT",
":",
"yield",
"DistClassAdded",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"DIFF",
":",
"yield",
"DistClassChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"True",
")",
"elif",
"event",
"==",
"SAME",
":",
"yield",
"DistClassChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"False",
")",
"elif",
"deep",
"and",
"fnmatches",
"(",
"entry",
",",
"*",
"TEXT_PATTERNS",
")",
":",
"if",
"event",
"==",
"LEFT",
":",
"yield",
"DistContentRemoved",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"RIGHT",
":",
"yield",
"DistContentAdded",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"DIFF",
":",
"yield",
"DistTextChange",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"SAME",
":",
"yield",
"DistTextChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"False",
")",
"elif",
"deep",
"and",
"fnmatches",
"(",
"entry",
",",
"\"*/MANIFEST.MF\"",
")",
":",
"if",
"event",
"==",
"LEFT",
":",
"yield",
"DistContentRemoved",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"RIGHT",
":",
"yield",
"DistContentAdded",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"DIFF",
":",
"yield",
"DistManifestChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"True",
")",
"elif",
"event",
"==",
"SAME",
":",
"yield",
"DistManifestChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"False",
")",
"else",
":",
"if",
"event",
"==",
"LEFT",
":",
"yield",
"DistContentRemoved",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"RIGHT",
":",
"yield",
"DistContentAdded",
"(",
"ld",
",",
"rd",
",",
"entry",
")",
"elif",
"event",
"==",
"DIFF",
":",
"yield",
"DistContentChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"True",
")",
"elif",
"event",
"==",
"SAME",
":",
"yield",
"DistContentChange",
"(",
"ld",
",",
"rd",
",",
"entry",
",",
"False",
")"
] |
emits change instances based on the delta of the two distribution
directories
|
[
"emits",
"change",
"instances",
"based",
"on",
"the",
"delta",
"of",
"the",
"two",
"distribution",
"directories"
] |
python
|
train
|
tensorflow/probability
|
tensorflow_probability/python/distributions/von_mises_fisher.py
|
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/von_mises_fisher.py#L36-L73
|
def _bessel_ive(v, z, cache=None):
"""Computes I_v(z)*exp(-abs(z)) using a recurrence relation, where z > 0."""
# TODO(b/67497980): Switch to a more numerically faithful implementation.
z = tf.convert_to_tensor(value=z)
wrap = lambda result: tf.debugging.check_numerics(result, 'besseli{}'.format(v
))
if float(v) >= 2:
raise ValueError(
'Evaluating bessel_i by recurrence becomes imprecise for large v')
cache = cache or {}
safe_z = tf.where(z > 0, z, tf.ones_like(z))
if v in cache:
return wrap(cache[v])
if v == 0:
cache[v] = tf.math.bessel_i0e(z)
elif v == 1:
cache[v] = tf.math.bessel_i1e(z)
elif v == 0.5:
# sinh(x)*exp(-abs(x)), sinh(x) = (e^x - e^{-x}) / 2
sinhe = lambda x: (tf.exp(x - tf.abs(x)) - tf.exp(-x - tf.abs(x))) / 2
cache[v] = (
np.sqrt(2 / np.pi) * sinhe(z) *
tf.where(z > 0, tf.math.rsqrt(safe_z), tf.ones_like(safe_z)))
elif v == -0.5:
# cosh(x)*exp(-abs(x)), cosh(x) = (e^x + e^{-x}) / 2
coshe = lambda x: (tf.exp(x - tf.abs(x)) + tf.exp(-x - tf.abs(x))) / 2
cache[v] = (
np.sqrt(2 / np.pi) * coshe(z) *
tf.where(z > 0, tf.math.rsqrt(safe_z), tf.ones_like(safe_z)))
if v <= 1:
return wrap(cache[v])
# Recurrence relation:
cache[v] = (_bessel_ive(v - 2, z, cache) -
(2 * (v - 1)) * _bessel_ive(v - 1, z, cache) / z)
return wrap(cache[v])
|
[
"def",
"_bessel_ive",
"(",
"v",
",",
"z",
",",
"cache",
"=",
"None",
")",
":",
"# TODO(b/67497980): Switch to a more numerically faithful implementation.",
"z",
"=",
"tf",
".",
"convert_to_tensor",
"(",
"value",
"=",
"z",
")",
"wrap",
"=",
"lambda",
"result",
":",
"tf",
".",
"debugging",
".",
"check_numerics",
"(",
"result",
",",
"'besseli{}'",
".",
"format",
"(",
"v",
")",
")",
"if",
"float",
"(",
"v",
")",
">=",
"2",
":",
"raise",
"ValueError",
"(",
"'Evaluating bessel_i by recurrence becomes imprecise for large v'",
")",
"cache",
"=",
"cache",
"or",
"{",
"}",
"safe_z",
"=",
"tf",
".",
"where",
"(",
"z",
">",
"0",
",",
"z",
",",
"tf",
".",
"ones_like",
"(",
"z",
")",
")",
"if",
"v",
"in",
"cache",
":",
"return",
"wrap",
"(",
"cache",
"[",
"v",
"]",
")",
"if",
"v",
"==",
"0",
":",
"cache",
"[",
"v",
"]",
"=",
"tf",
".",
"math",
".",
"bessel_i0e",
"(",
"z",
")",
"elif",
"v",
"==",
"1",
":",
"cache",
"[",
"v",
"]",
"=",
"tf",
".",
"math",
".",
"bessel_i1e",
"(",
"z",
")",
"elif",
"v",
"==",
"0.5",
":",
"# sinh(x)*exp(-abs(x)), sinh(x) = (e^x - e^{-x}) / 2",
"sinhe",
"=",
"lambda",
"x",
":",
"(",
"tf",
".",
"exp",
"(",
"x",
"-",
"tf",
".",
"abs",
"(",
"x",
")",
")",
"-",
"tf",
".",
"exp",
"(",
"-",
"x",
"-",
"tf",
".",
"abs",
"(",
"x",
")",
")",
")",
"/",
"2",
"cache",
"[",
"v",
"]",
"=",
"(",
"np",
".",
"sqrt",
"(",
"2",
"/",
"np",
".",
"pi",
")",
"*",
"sinhe",
"(",
"z",
")",
"*",
"tf",
".",
"where",
"(",
"z",
">",
"0",
",",
"tf",
".",
"math",
".",
"rsqrt",
"(",
"safe_z",
")",
",",
"tf",
".",
"ones_like",
"(",
"safe_z",
")",
")",
")",
"elif",
"v",
"==",
"-",
"0.5",
":",
"# cosh(x)*exp(-abs(x)), cosh(x) = (e^x + e^{-x}) / 2",
"coshe",
"=",
"lambda",
"x",
":",
"(",
"tf",
".",
"exp",
"(",
"x",
"-",
"tf",
".",
"abs",
"(",
"x",
")",
")",
"+",
"tf",
".",
"exp",
"(",
"-",
"x",
"-",
"tf",
".",
"abs",
"(",
"x",
")",
")",
")",
"/",
"2",
"cache",
"[",
"v",
"]",
"=",
"(",
"np",
".",
"sqrt",
"(",
"2",
"/",
"np",
".",
"pi",
")",
"*",
"coshe",
"(",
"z",
")",
"*",
"tf",
".",
"where",
"(",
"z",
">",
"0",
",",
"tf",
".",
"math",
".",
"rsqrt",
"(",
"safe_z",
")",
",",
"tf",
".",
"ones_like",
"(",
"safe_z",
")",
")",
")",
"if",
"v",
"<=",
"1",
":",
"return",
"wrap",
"(",
"cache",
"[",
"v",
"]",
")",
"# Recurrence relation:",
"cache",
"[",
"v",
"]",
"=",
"(",
"_bessel_ive",
"(",
"v",
"-",
"2",
",",
"z",
",",
"cache",
")",
"-",
"(",
"2",
"*",
"(",
"v",
"-",
"1",
")",
")",
"*",
"_bessel_ive",
"(",
"v",
"-",
"1",
",",
"z",
",",
"cache",
")",
"/",
"z",
")",
"return",
"wrap",
"(",
"cache",
"[",
"v",
"]",
")"
] |
Computes I_v(z)*exp(-abs(z)) using a recurrence relation, where z > 0.
|
[
"Computes",
"I_v",
"(",
"z",
")",
"*",
"exp",
"(",
"-",
"abs",
"(",
"z",
"))",
"using",
"a",
"recurrence",
"relation",
"where",
"z",
">",
"0",
"."
] |
python
|
test
|
saltstack/salt
|
salt/states/chocolatey.py
|
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/chocolatey.py#L202-L278
|
def uninstalled(name, version=None, uninstall_args=None, override_args=False):
'''
Uninstalls a package
name
The name of the package to be uninstalled
version
Uninstalls a specific version of the package. Defaults to latest
version installed.
uninstall_args
A list of uninstall arguments you want to pass to the uninstallation
process i.e product key or feature list
override_args
Set to true if you want to override the original uninstall arguments (
for the native uninstaller)in the package and use your own.
When this is set to False uninstall_args will be appended to the end of
the default arguments
.. code-block: yaml
Removemypackage:
chocolatey.uninstalled:
- name: mypackage
- version: '21.5'
'''
ret = {'name': name,
'result': True,
'changes': {},
'comment': ''}
# Get list of currently installed packages
pre_uninstall = __salt__['chocolatey.list'](local_only=True)
# Determine if package is installed
if name.lower() in [package.lower() for package in pre_uninstall.keys()]:
try:
ret['changes'] = {
name: '{0} version {1} will be removed'.format(
name, pre_uninstall[name][0]
)
}
except KeyError:
ret['changes'] = {name: '{0} will be removed'.format(name)}
else:
ret['comment'] = 'The package {0} is not installed'.format(name)
return ret
if __opts__['test']:
ret['result'] = None
ret['comment'] = 'The uninstall was tested'
return ret
# Uninstall the package
result = __salt__['chocolatey.uninstall'](name,
version,
uninstall_args,
override_args)
if 'Running chocolatey failed' not in result:
ret['result'] = True
else:
ret['result'] = False
if not ret['result']:
ret['comment'] = 'Failed to uninstall the package {0}'.format(name)
# Get list of installed packages after 'chocolatey.uninstall'
post_uninstall = __salt__['chocolatey.list'](local_only=True)
ret['changes'] = salt.utils.data.compare_dicts(pre_uninstall, post_uninstall)
return ret
|
[
"def",
"uninstalled",
"(",
"name",
",",
"version",
"=",
"None",
",",
"uninstall_args",
"=",
"None",
",",
"override_args",
"=",
"False",
")",
":",
"ret",
"=",
"{",
"'name'",
":",
"name",
",",
"'result'",
":",
"True",
",",
"'changes'",
":",
"{",
"}",
",",
"'comment'",
":",
"''",
"}",
"# Get list of currently installed packages",
"pre_uninstall",
"=",
"__salt__",
"[",
"'chocolatey.list'",
"]",
"(",
"local_only",
"=",
"True",
")",
"# Determine if package is installed",
"if",
"name",
".",
"lower",
"(",
")",
"in",
"[",
"package",
".",
"lower",
"(",
")",
"for",
"package",
"in",
"pre_uninstall",
".",
"keys",
"(",
")",
"]",
":",
"try",
":",
"ret",
"[",
"'changes'",
"]",
"=",
"{",
"name",
":",
"'{0} version {1} will be removed'",
".",
"format",
"(",
"name",
",",
"pre_uninstall",
"[",
"name",
"]",
"[",
"0",
"]",
")",
"}",
"except",
"KeyError",
":",
"ret",
"[",
"'changes'",
"]",
"=",
"{",
"name",
":",
"'{0} will be removed'",
".",
"format",
"(",
"name",
")",
"}",
"else",
":",
"ret",
"[",
"'comment'",
"]",
"=",
"'The package {0} is not installed'",
".",
"format",
"(",
"name",
")",
"return",
"ret",
"if",
"__opts__",
"[",
"'test'",
"]",
":",
"ret",
"[",
"'result'",
"]",
"=",
"None",
"ret",
"[",
"'comment'",
"]",
"=",
"'The uninstall was tested'",
"return",
"ret",
"# Uninstall the package",
"result",
"=",
"__salt__",
"[",
"'chocolatey.uninstall'",
"]",
"(",
"name",
",",
"version",
",",
"uninstall_args",
",",
"override_args",
")",
"if",
"'Running chocolatey failed'",
"not",
"in",
"result",
":",
"ret",
"[",
"'result'",
"]",
"=",
"True",
"else",
":",
"ret",
"[",
"'result'",
"]",
"=",
"False",
"if",
"not",
"ret",
"[",
"'result'",
"]",
":",
"ret",
"[",
"'comment'",
"]",
"=",
"'Failed to uninstall the package {0}'",
".",
"format",
"(",
"name",
")",
"# Get list of installed packages after 'chocolatey.uninstall'",
"post_uninstall",
"=",
"__salt__",
"[",
"'chocolatey.list'",
"]",
"(",
"local_only",
"=",
"True",
")",
"ret",
"[",
"'changes'",
"]",
"=",
"salt",
".",
"utils",
".",
"data",
".",
"compare_dicts",
"(",
"pre_uninstall",
",",
"post_uninstall",
")",
"return",
"ret"
] |
Uninstalls a package
name
The name of the package to be uninstalled
version
Uninstalls a specific version of the package. Defaults to latest
version installed.
uninstall_args
A list of uninstall arguments you want to pass to the uninstallation
process i.e product key or feature list
override_args
Set to true if you want to override the original uninstall arguments (
for the native uninstaller)in the package and use your own.
When this is set to False uninstall_args will be appended to the end of
the default arguments
.. code-block: yaml
Removemypackage:
chocolatey.uninstalled:
- name: mypackage
- version: '21.5'
|
[
"Uninstalls",
"a",
"package"
] |
python
|
train
|
mitsei/dlkit
|
dlkit/json_/assessment/sessions.py
|
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/assessment/sessions.py#L3661-L3679
|
def unassign_item_from_bank(self, item_id, bank_id):
"""Removes an ``Item`` from a ``Bank``.
arg: item_id (osid.id.Id): the ``Id`` of the ``Item``
arg: bank_id (osid.id.Id): the ``Id`` of the ``Bank``
raise: NotFound - ``item_id`` or ``bank_id`` not found or
``item_id`` not assigned to ``bank_id``
raise: NullArgument - ``item_id`` or ``bank_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure occurred
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceBinAssignmentSession.unassign_resource_from_bin
mgr = self._get_provider_manager('ASSESSMENT', local=True)
lookup_session = mgr.get_bank_lookup_session(proxy=self._proxy)
lookup_session.get_bank(bank_id) # to raise NotFound
self._unassign_object_from_catalog(item_id, bank_id)
|
[
"def",
"unassign_item_from_bank",
"(",
"self",
",",
"item_id",
",",
"bank_id",
")",
":",
"# Implemented from template for",
"# osid.resource.ResourceBinAssignmentSession.unassign_resource_from_bin",
"mgr",
"=",
"self",
".",
"_get_provider_manager",
"(",
"'ASSESSMENT'",
",",
"local",
"=",
"True",
")",
"lookup_session",
"=",
"mgr",
".",
"get_bank_lookup_session",
"(",
"proxy",
"=",
"self",
".",
"_proxy",
")",
"lookup_session",
".",
"get_bank",
"(",
"bank_id",
")",
"# to raise NotFound",
"self",
".",
"_unassign_object_from_catalog",
"(",
"item_id",
",",
"bank_id",
")"
] |
Removes an ``Item`` from a ``Bank``.
arg: item_id (osid.id.Id): the ``Id`` of the ``Item``
arg: bank_id (osid.id.Id): the ``Id`` of the ``Bank``
raise: NotFound - ``item_id`` or ``bank_id`` not found or
``item_id`` not assigned to ``bank_id``
raise: NullArgument - ``item_id`` or ``bank_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure occurred
*compliance: mandatory -- This method must be implemented.*
|
[
"Removes",
"an",
"Item",
"from",
"a",
"Bank",
"."
] |
python
|
train
|
trp07/messages
|
messages/_utils.py
|
https://github.com/trp07/messages/blob/7789ebc960335a59ea5d319fceed3dd349023648/messages/_utils.py#L117-L130
|
def validate_whatsapp(attr, value):
"""WhatsApp input validator function."""
if attr in ("from_", "to"):
if value is not None and "whatsapp:" in value:
value = value.split("whatsapp:+")[-1]
check_valid(
"WhatsApp",
attr,
value,
validus.isint,
"phone number starting with the '+' symbol",
)
elif attr in ("attachments"):
check_valid("WhatsApp", attr, value, validus.isurl, "url")
|
[
"def",
"validate_whatsapp",
"(",
"attr",
",",
"value",
")",
":",
"if",
"attr",
"in",
"(",
"\"from_\"",
",",
"\"to\"",
")",
":",
"if",
"value",
"is",
"not",
"None",
"and",
"\"whatsapp:\"",
"in",
"value",
":",
"value",
"=",
"value",
".",
"split",
"(",
"\"whatsapp:+\"",
")",
"[",
"-",
"1",
"]",
"check_valid",
"(",
"\"WhatsApp\"",
",",
"attr",
",",
"value",
",",
"validus",
".",
"isint",
",",
"\"phone number starting with the '+' symbol\"",
",",
")",
"elif",
"attr",
"in",
"(",
"\"attachments\"",
")",
":",
"check_valid",
"(",
"\"WhatsApp\"",
",",
"attr",
",",
"value",
",",
"validus",
".",
"isurl",
",",
"\"url\"",
")"
] |
WhatsApp input validator function.
|
[
"WhatsApp",
"input",
"validator",
"function",
"."
] |
python
|
test
|
sporsh/carnifex
|
carnifex/ssh/session.py
|
https://github.com/sporsh/carnifex/blob/82dd3bd2bc134dfb69a78f43171e227f2127060b/carnifex/ssh/session.py#L104-L108
|
def requestSubsystem(self, subsystem):
"""Request a subsystem and return a deferred reply.
"""
data = common.NS(subsystem)
return self.sendRequest('subsystem', data, wantReply=True)
|
[
"def",
"requestSubsystem",
"(",
"self",
",",
"subsystem",
")",
":",
"data",
"=",
"common",
".",
"NS",
"(",
"subsystem",
")",
"return",
"self",
".",
"sendRequest",
"(",
"'subsystem'",
",",
"data",
",",
"wantReply",
"=",
"True",
")"
] |
Request a subsystem and return a deferred reply.
|
[
"Request",
"a",
"subsystem",
"and",
"return",
"a",
"deferred",
"reply",
"."
] |
python
|
train
|
robehickman/simple-http-file-sync
|
shttpfs/server.py
|
https://github.com/robehickman/simple-http-file-sync/blob/fa29b3ee58e9504e1d3ddfc0c14047284bf9921d/shttpfs/server.py#L314-L330
|
def pull_file():
""" Get a file from the server """
session_token = request.headers['session_token']
repository = request.headers['repository']
#===
current_user = have_authenticated_user(request.environ['REMOTE_ADDR'], repository, session_token)
if current_user is False: return fail(user_auth_fail_msg)
#===
data_store = versioned_storage(config['repositories'][repository]['path'])
file_info = data_store.get_file_info_from_path(request.headers['path'])
return success({'file_info_json' : json.dumps(file_info)},
send_from_directory(data_store.get_file_directory_path(file_info['hash']), file_info['hash'][2:]))
|
[
"def",
"pull_file",
"(",
")",
":",
"session_token",
"=",
"request",
".",
"headers",
"[",
"'session_token'",
"]",
"repository",
"=",
"request",
".",
"headers",
"[",
"'repository'",
"]",
"#===",
"current_user",
"=",
"have_authenticated_user",
"(",
"request",
".",
"environ",
"[",
"'REMOTE_ADDR'",
"]",
",",
"repository",
",",
"session_token",
")",
"if",
"current_user",
"is",
"False",
":",
"return",
"fail",
"(",
"user_auth_fail_msg",
")",
"#===",
"data_store",
"=",
"versioned_storage",
"(",
"config",
"[",
"'repositories'",
"]",
"[",
"repository",
"]",
"[",
"'path'",
"]",
")",
"file_info",
"=",
"data_store",
".",
"get_file_info_from_path",
"(",
"request",
".",
"headers",
"[",
"'path'",
"]",
")",
"return",
"success",
"(",
"{",
"'file_info_json'",
":",
"json",
".",
"dumps",
"(",
"file_info",
")",
"}",
",",
"send_from_directory",
"(",
"data_store",
".",
"get_file_directory_path",
"(",
"file_info",
"[",
"'hash'",
"]",
")",
",",
"file_info",
"[",
"'hash'",
"]",
"[",
"2",
":",
"]",
")",
")"
] |
Get a file from the server
|
[
"Get",
"a",
"file",
"from",
"the",
"server"
] |
python
|
train
|
pandas-dev/pandas
|
pandas/io/formats/format.py
|
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/io/formats/format.py#L1442-L1461
|
def _trim_zeros_float(str_floats, na_rep='NaN'):
"""
Trims zeros, leaving just one before the decimal points if need be.
"""
trimmed = str_floats
def _is_number(x):
return (x != na_rep and not x.endswith('inf'))
def _cond(values):
finite = [x for x in values if _is_number(x)]
return (len(finite) > 0 and all(x.endswith('0') for x in finite) and
not (any(('e' in x) or ('E' in x) for x in finite)))
while _cond(trimmed):
trimmed = [x[:-1] if _is_number(x) else x for x in trimmed]
# leave one 0 after the decimal points if need be.
return [x + "0" if x.endswith('.') and _is_number(x) else x
for x in trimmed]
|
[
"def",
"_trim_zeros_float",
"(",
"str_floats",
",",
"na_rep",
"=",
"'NaN'",
")",
":",
"trimmed",
"=",
"str_floats",
"def",
"_is_number",
"(",
"x",
")",
":",
"return",
"(",
"x",
"!=",
"na_rep",
"and",
"not",
"x",
".",
"endswith",
"(",
"'inf'",
")",
")",
"def",
"_cond",
"(",
"values",
")",
":",
"finite",
"=",
"[",
"x",
"for",
"x",
"in",
"values",
"if",
"_is_number",
"(",
"x",
")",
"]",
"return",
"(",
"len",
"(",
"finite",
")",
">",
"0",
"and",
"all",
"(",
"x",
".",
"endswith",
"(",
"'0'",
")",
"for",
"x",
"in",
"finite",
")",
"and",
"not",
"(",
"any",
"(",
"(",
"'e'",
"in",
"x",
")",
"or",
"(",
"'E'",
"in",
"x",
")",
"for",
"x",
"in",
"finite",
")",
")",
")",
"while",
"_cond",
"(",
"trimmed",
")",
":",
"trimmed",
"=",
"[",
"x",
"[",
":",
"-",
"1",
"]",
"if",
"_is_number",
"(",
"x",
")",
"else",
"x",
"for",
"x",
"in",
"trimmed",
"]",
"# leave one 0 after the decimal points if need be.",
"return",
"[",
"x",
"+",
"\"0\"",
"if",
"x",
".",
"endswith",
"(",
"'.'",
")",
"and",
"_is_number",
"(",
"x",
")",
"else",
"x",
"for",
"x",
"in",
"trimmed",
"]"
] |
Trims zeros, leaving just one before the decimal points if need be.
|
[
"Trims",
"zeros",
"leaving",
"just",
"one",
"before",
"the",
"decimal",
"points",
"if",
"need",
"be",
"."
] |
python
|
train
|
crocs-muni/roca
|
roca/detect.py
|
https://github.com/crocs-muni/roca/blob/74ad6ce63c428d83dcffce9c5e26ef7b9e30faa5/roca/detect.py#L216-L234
|
def try_get_dn_part(subject, oid=None):
"""
Tries to extracts the OID from the X500 name.
:param subject:
:param oid:
:return:
"""
try:
if subject is None:
return None
if oid is None:
return None
for sub in subject:
if oid is not None and sub.oid == oid:
return sub.value
except:
pass
return None
|
[
"def",
"try_get_dn_part",
"(",
"subject",
",",
"oid",
"=",
"None",
")",
":",
"try",
":",
"if",
"subject",
"is",
"None",
":",
"return",
"None",
"if",
"oid",
"is",
"None",
":",
"return",
"None",
"for",
"sub",
"in",
"subject",
":",
"if",
"oid",
"is",
"not",
"None",
"and",
"sub",
".",
"oid",
"==",
"oid",
":",
"return",
"sub",
".",
"value",
"except",
":",
"pass",
"return",
"None"
] |
Tries to extracts the OID from the X500 name.
:param subject:
:param oid:
:return:
|
[
"Tries",
"to",
"extracts",
"the",
"OID",
"from",
"the",
"X500",
"name",
".",
":",
"param",
"subject",
":",
":",
"param",
"oid",
":",
":",
"return",
":"
] |
python
|
train
|
sassoo/goldman
|
goldman/utils/responder_helpers.py
|
https://github.com/sassoo/goldman/blob/b72540c9ad06b5c68aadb1b4fa8cb0b716260bf2/goldman/utils/responder_helpers.py#L317-L334
|
def to_rest_models(models, includes=None):
""" Convert the models into a dict for serialization
models should be an array of single model objects that
will each be serialized.
:return: dict
"""
props = {}
props['data'] = []
for model in models:
props['data'].append(_to_rest(model, includes=includes))
props['included'] = _to_rest_includes(models, includes=includes)
return props
|
[
"def",
"to_rest_models",
"(",
"models",
",",
"includes",
"=",
"None",
")",
":",
"props",
"=",
"{",
"}",
"props",
"[",
"'data'",
"]",
"=",
"[",
"]",
"for",
"model",
"in",
"models",
":",
"props",
"[",
"'data'",
"]",
".",
"append",
"(",
"_to_rest",
"(",
"model",
",",
"includes",
"=",
"includes",
")",
")",
"props",
"[",
"'included'",
"]",
"=",
"_to_rest_includes",
"(",
"models",
",",
"includes",
"=",
"includes",
")",
"return",
"props"
] |
Convert the models into a dict for serialization
models should be an array of single model objects that
will each be serialized.
:return: dict
|
[
"Convert",
"the",
"models",
"into",
"a",
"dict",
"for",
"serialization"
] |
python
|
train
|
shaunduncan/giphypop
|
giphypop.py
|
https://github.com/shaunduncan/giphypop/blob/21e7f51c4f000ae24be3805b7eeec52bcce3d390/giphypop.py#L509-L516
|
def translate(term=None, phrase=None, api_key=GIPHY_PUBLIC_KEY, strict=False,
rating=None):
"""
Shorthand for creating a Giphy api wrapper with the given api key
and then calling the translate method.
"""
return Giphy(api_key=api_key, strict=strict).translate(
term=term, phrase=phrase, rating=rating)
|
[
"def",
"translate",
"(",
"term",
"=",
"None",
",",
"phrase",
"=",
"None",
",",
"api_key",
"=",
"GIPHY_PUBLIC_KEY",
",",
"strict",
"=",
"False",
",",
"rating",
"=",
"None",
")",
":",
"return",
"Giphy",
"(",
"api_key",
"=",
"api_key",
",",
"strict",
"=",
"strict",
")",
".",
"translate",
"(",
"term",
"=",
"term",
",",
"phrase",
"=",
"phrase",
",",
"rating",
"=",
"rating",
")"
] |
Shorthand for creating a Giphy api wrapper with the given api key
and then calling the translate method.
|
[
"Shorthand",
"for",
"creating",
"a",
"Giphy",
"api",
"wrapper",
"with",
"the",
"given",
"api",
"key",
"and",
"then",
"calling",
"the",
"translate",
"method",
"."
] |
python
|
test
|
VIVelev/PyDojoML
|
dojo/base/model.py
|
https://github.com/VIVelev/PyDojoML/blob/773fdce6866aa6decd306a5a85f94129fed816eb/dojo/base/model.py#L85-L106
|
def fit(self, X, y):
"""Fits the given model to the data and labels provided.
Parameters:
-----------
X : matrix, shape (n_samples, n_features)
The samples, the train data.
y : vector, shape (n_samples,)
The target labels.
Returns:
--------
self : instance of the model itself (`self`)
"""
X = np.array(X, dtype=np.float32)
y = np.array(y, dtype=np.float32)
assert X.shape[0] == y.shape[0]
return X, y
|
[
"def",
"fit",
"(",
"self",
",",
"X",
",",
"y",
")",
":",
"X",
"=",
"np",
".",
"array",
"(",
"X",
",",
"dtype",
"=",
"np",
".",
"float32",
")",
"y",
"=",
"np",
".",
"array",
"(",
"y",
",",
"dtype",
"=",
"np",
".",
"float32",
")",
"assert",
"X",
".",
"shape",
"[",
"0",
"]",
"==",
"y",
".",
"shape",
"[",
"0",
"]",
"return",
"X",
",",
"y"
] |
Fits the given model to the data and labels provided.
Parameters:
-----------
X : matrix, shape (n_samples, n_features)
The samples, the train data.
y : vector, shape (n_samples,)
The target labels.
Returns:
--------
self : instance of the model itself (`self`)
|
[
"Fits",
"the",
"given",
"model",
"to",
"the",
"data",
"and",
"labels",
"provided",
".",
"Parameters",
":",
"-----------",
"X",
":",
"matrix",
"shape",
"(",
"n_samples",
"n_features",
")",
"The",
"samples",
"the",
"train",
"data",
"."
] |
python
|
train
|
HewlettPackard/python-hpOneView
|
hpOneView/resources/settings/firmware_drivers.py
|
https://github.com/HewlettPackard/python-hpOneView/blob/3c6219723ef25e6e0c83d44a89007f89bc325b89/hpOneView/resources/settings/firmware_drivers.py#L73-L92
|
def get_by(self, field, value):
"""
Gets the list of firmware baseline resources managed by the appliance. Optional parameters can be used to
filter the list of resources returned.
The search is case-insensitive.
Args:
field: Field name to filter.
value: Value to filter.
Returns:
list: List of firmware baseline resources.
"""
firmwares = self.get_all()
matches = []
for item in firmwares:
if item.get(field) == value:
matches.append(item)
return matches
|
[
"def",
"get_by",
"(",
"self",
",",
"field",
",",
"value",
")",
":",
"firmwares",
"=",
"self",
".",
"get_all",
"(",
")",
"matches",
"=",
"[",
"]",
"for",
"item",
"in",
"firmwares",
":",
"if",
"item",
".",
"get",
"(",
"field",
")",
"==",
"value",
":",
"matches",
".",
"append",
"(",
"item",
")",
"return",
"matches"
] |
Gets the list of firmware baseline resources managed by the appliance. Optional parameters can be used to
filter the list of resources returned.
The search is case-insensitive.
Args:
field: Field name to filter.
value: Value to filter.
Returns:
list: List of firmware baseline resources.
|
[
"Gets",
"the",
"list",
"of",
"firmware",
"baseline",
"resources",
"managed",
"by",
"the",
"appliance",
".",
"Optional",
"parameters",
"can",
"be",
"used",
"to",
"filter",
"the",
"list",
"of",
"resources",
"returned",
"."
] |
python
|
train
|
dwavesystems/dwave-system
|
dwave/embedding/polynomialembedder.py
|
https://github.com/dwavesystems/dwave-system/blob/86a1698f15ccd8b0ece0ed868ee49292d3f67f5b/dwave/embedding/polynomialembedder.py#L1064-L1098
|
def largestNativeBiClique(self, chain_imbalance=0, max_chain_length=None):
"""Returns a native embedding for the complete bipartite graph :math:`K_{n,m}`
for `n <= m`; where `n` is as large as possible and `m` is as large as
possible subject to `n`. The native embedding of a complete bipartite
graph is a set of horizontally-aligned qubits connected in lines
together with an equal-sized set of vertically-aligned qubits
connected in lines.
INPUTS:
chain_imbalance: how big of a difference to allow between the
chain lengths on the two sides of the bipartition. If ``None``,
then we allow an arbitrary imbalance. (default: ``0``)
max_chain_length: longest chain length to consider or None if chain
lengths are allowed to be unbounded. (default: ``None``)
OUTPUT:
embedding (tuple): a tuple of two lists containing lists of qubits.
If ``embedding = (A_side, B_side)``, the lists found in ``A_side`` and
``B_side`` are chains of qubits. These lists of qubits are arranged so that
>>> [zip(chain,chain[1:]) for chain in A_side]
and
>>> [zip(chain,chain[1:]) for chain in B_side]
are lists of valid couplers.
"""
def f(x):
return x.largestNativeBiClique(chain_imbalance=chain_imbalance,
max_chain_length=max_chain_length)
objective = self._objective_bestscore
emb = self._map_to_processors(f, objective)
return self._translate_partitioned(emb)
|
[
"def",
"largestNativeBiClique",
"(",
"self",
",",
"chain_imbalance",
"=",
"0",
",",
"max_chain_length",
"=",
"None",
")",
":",
"def",
"f",
"(",
"x",
")",
":",
"return",
"x",
".",
"largestNativeBiClique",
"(",
"chain_imbalance",
"=",
"chain_imbalance",
",",
"max_chain_length",
"=",
"max_chain_length",
")",
"objective",
"=",
"self",
".",
"_objective_bestscore",
"emb",
"=",
"self",
".",
"_map_to_processors",
"(",
"f",
",",
"objective",
")",
"return",
"self",
".",
"_translate_partitioned",
"(",
"emb",
")"
] |
Returns a native embedding for the complete bipartite graph :math:`K_{n,m}`
for `n <= m`; where `n` is as large as possible and `m` is as large as
possible subject to `n`. The native embedding of a complete bipartite
graph is a set of horizontally-aligned qubits connected in lines
together with an equal-sized set of vertically-aligned qubits
connected in lines.
INPUTS:
chain_imbalance: how big of a difference to allow between the
chain lengths on the two sides of the bipartition. If ``None``,
then we allow an arbitrary imbalance. (default: ``0``)
max_chain_length: longest chain length to consider or None if chain
lengths are allowed to be unbounded. (default: ``None``)
OUTPUT:
embedding (tuple): a tuple of two lists containing lists of qubits.
If ``embedding = (A_side, B_side)``, the lists found in ``A_side`` and
``B_side`` are chains of qubits. These lists of qubits are arranged so that
>>> [zip(chain,chain[1:]) for chain in A_side]
and
>>> [zip(chain,chain[1:]) for chain in B_side]
are lists of valid couplers.
|
[
"Returns",
"a",
"native",
"embedding",
"for",
"the",
"complete",
"bipartite",
"graph",
":",
"math",
":",
"K_",
"{",
"n",
"m",
"}",
"for",
"n",
"<",
"=",
"m",
";",
"where",
"n",
"is",
"as",
"large",
"as",
"possible",
"and",
"m",
"is",
"as",
"large",
"as",
"possible",
"subject",
"to",
"n",
".",
"The",
"native",
"embedding",
"of",
"a",
"complete",
"bipartite",
"graph",
"is",
"a",
"set",
"of",
"horizontally",
"-",
"aligned",
"qubits",
"connected",
"in",
"lines",
"together",
"with",
"an",
"equal",
"-",
"sized",
"set",
"of",
"vertically",
"-",
"aligned",
"qubits",
"connected",
"in",
"lines",
"."
] |
python
|
train
|
not-na/peng3d
|
peng3d/gui/menus.py
|
https://github.com/not-na/peng3d/blob/1151be665b26cc8a479f6307086ba919e4d32d85/peng3d/gui/menus.py#L151-L167
|
def add_label_main(self,label_main):
"""
Adds the main label of the dialog.
This widget can be triggered by setting the label ``label_main`` to a string.
This widget will be centered on the screen.
"""
# Main Label
self.wlabel_main = text.Label("label_main",self,self.window,self.peng,
pos=lambda sw,sh, bw,bh: (sw/2-bw/2,sh/2-bh/2),
size=[0,0],
label=label_main,
#multiline=True, # TODO: implement multine dialog
)
self.wlabel_main.size = lambda sw,sh: (sw,self.wlabel_main._label.font_size)
self.addWidget(self.wlabel_main)
|
[
"def",
"add_label_main",
"(",
"self",
",",
"label_main",
")",
":",
"# Main Label",
"self",
".",
"wlabel_main",
"=",
"text",
".",
"Label",
"(",
"\"label_main\"",
",",
"self",
",",
"self",
".",
"window",
",",
"self",
".",
"peng",
",",
"pos",
"=",
"lambda",
"sw",
",",
"sh",
",",
"bw",
",",
"bh",
":",
"(",
"sw",
"/",
"2",
"-",
"bw",
"/",
"2",
",",
"sh",
"/",
"2",
"-",
"bh",
"/",
"2",
")",
",",
"size",
"=",
"[",
"0",
",",
"0",
"]",
",",
"label",
"=",
"label_main",
",",
"#multiline=True, # TODO: implement multine dialog",
")",
"self",
".",
"wlabel_main",
".",
"size",
"=",
"lambda",
"sw",
",",
"sh",
":",
"(",
"sw",
",",
"self",
".",
"wlabel_main",
".",
"_label",
".",
"font_size",
")",
"self",
".",
"addWidget",
"(",
"self",
".",
"wlabel_main",
")"
] |
Adds the main label of the dialog.
This widget can be triggered by setting the label ``label_main`` to a string.
This widget will be centered on the screen.
|
[
"Adds",
"the",
"main",
"label",
"of",
"the",
"dialog",
".",
"This",
"widget",
"can",
"be",
"triggered",
"by",
"setting",
"the",
"label",
"label_main",
"to",
"a",
"string",
".",
"This",
"widget",
"will",
"be",
"centered",
"on",
"the",
"screen",
"."
] |
python
|
test
|
SKA-ScienceDataProcessor/integration-prototype
|
sip/platform/logging/sip_logging/sip_logging.py
|
https://github.com/SKA-ScienceDataProcessor/integration-prototype/blob/8c8006de6ad71dcd44114b0338780738079c87d4/sip/platform/logging/sip_logging/sip_logging.py#L119-L123
|
def set_log_level(logger_name: str, log_level: str, propagate: bool = False):
"""Set the log level of the specified logger."""
log = logging.getLogger(logger_name)
log.propagate = propagate
log.setLevel(log_level)
|
[
"def",
"set_log_level",
"(",
"logger_name",
":",
"str",
",",
"log_level",
":",
"str",
",",
"propagate",
":",
"bool",
"=",
"False",
")",
":",
"log",
"=",
"logging",
".",
"getLogger",
"(",
"logger_name",
")",
"log",
".",
"propagate",
"=",
"propagate",
"log",
".",
"setLevel",
"(",
"log_level",
")"
] |
Set the log level of the specified logger.
|
[
"Set",
"the",
"log",
"level",
"of",
"the",
"specified",
"logger",
"."
] |
python
|
train
|
LinuxChristian/pyW215
|
pyW215/pyW215.py
|
https://github.com/LinuxChristian/pyW215/blob/63e50b8ee11bc38ed66554f9b92429b552dda550/pyW215/pyW215.py#L285-L296
|
def state(self, value):
"""Set device state.
:type value: str
:param value: Future state (either ON or OFF)
"""
if value.upper() == ON:
return self.SOAPAction('SetSocketSettings', 'SetSocketSettingsResult', self.controlParameters("1", "true"))
elif value.upper() == OFF:
return self.SOAPAction('SetSocketSettings', 'SetSocketSettingsResult', self.controlParameters("1", "false"))
else:
raise TypeError("State %s is not valid." % str(value))
|
[
"def",
"state",
"(",
"self",
",",
"value",
")",
":",
"if",
"value",
".",
"upper",
"(",
")",
"==",
"ON",
":",
"return",
"self",
".",
"SOAPAction",
"(",
"'SetSocketSettings'",
",",
"'SetSocketSettingsResult'",
",",
"self",
".",
"controlParameters",
"(",
"\"1\"",
",",
"\"true\"",
")",
")",
"elif",
"value",
".",
"upper",
"(",
")",
"==",
"OFF",
":",
"return",
"self",
".",
"SOAPAction",
"(",
"'SetSocketSettings'",
",",
"'SetSocketSettingsResult'",
",",
"self",
".",
"controlParameters",
"(",
"\"1\"",
",",
"\"false\"",
")",
")",
"else",
":",
"raise",
"TypeError",
"(",
"\"State %s is not valid.\"",
"%",
"str",
"(",
"value",
")",
")"
] |
Set device state.
:type value: str
:param value: Future state (either ON or OFF)
|
[
"Set",
"device",
"state",
"."
] |
python
|
train
|
jasonrbriggs/stomp.py
|
stomp/listener.py
|
https://github.com/jasonrbriggs/stomp.py/blob/643843c5fbf25fd24339dd0e69a9411c3d8b94c7/stomp/listener.py#L384-L395
|
def on_error(self, headers, body):
"""
Increment the error count. See :py:meth:`ConnectionListener.on_error`
:param dict headers: headers in the message
:param body: the message content
"""
if log.isEnabledFor(logging.DEBUG):
log.debug("received an error %s [%s]", body, headers)
else:
log.info("received an error %s", body)
self.errors += 1
|
[
"def",
"on_error",
"(",
"self",
",",
"headers",
",",
"body",
")",
":",
"if",
"log",
".",
"isEnabledFor",
"(",
"logging",
".",
"DEBUG",
")",
":",
"log",
".",
"debug",
"(",
"\"received an error %s [%s]\"",
",",
"body",
",",
"headers",
")",
"else",
":",
"log",
".",
"info",
"(",
"\"received an error %s\"",
",",
"body",
")",
"self",
".",
"errors",
"+=",
"1"
] |
Increment the error count. See :py:meth:`ConnectionListener.on_error`
:param dict headers: headers in the message
:param body: the message content
|
[
"Increment",
"the",
"error",
"count",
".",
"See",
":",
"py",
":",
"meth",
":",
"ConnectionListener",
".",
"on_error"
] |
python
|
train
|
quantmind/pulsar
|
examples/proxyserver/manage.py
|
https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/examples/proxyserver/manage.py#L157-L184
|
def pre_request(self, response, exc=None):
"""Start the tunnel.
This is a callback fired once a connection with upstream server is
established.
"""
if response.request.method == 'CONNECT':
self.start_response(
'200 Connection established',
[('content-length', '0')]
)
# send empty byte so that headers are sent
self.future.set_result([b''])
# proxy - server connection
upstream = response.connection
# client - proxy connection
dostream = self.connection
# Upgrade downstream connection
dostream.upgrade(partial(StreamTunnel.create, upstream))
#
# upstream upgrade
upstream.upgrade(partial(StreamTunnel.create, dostream))
response.fire_event('post_request')
# abort the event
raise AbortEvent
else:
response.event('data_processed').bind(self.data_processed)
response.event('post_request').bind(self.post_request)
|
[
"def",
"pre_request",
"(",
"self",
",",
"response",
",",
"exc",
"=",
"None",
")",
":",
"if",
"response",
".",
"request",
".",
"method",
"==",
"'CONNECT'",
":",
"self",
".",
"start_response",
"(",
"'200 Connection established'",
",",
"[",
"(",
"'content-length'",
",",
"'0'",
")",
"]",
")",
"# send empty byte so that headers are sent",
"self",
".",
"future",
".",
"set_result",
"(",
"[",
"b''",
"]",
")",
"# proxy - server connection",
"upstream",
"=",
"response",
".",
"connection",
"# client - proxy connection",
"dostream",
"=",
"self",
".",
"connection",
"# Upgrade downstream connection",
"dostream",
".",
"upgrade",
"(",
"partial",
"(",
"StreamTunnel",
".",
"create",
",",
"upstream",
")",
")",
"#",
"# upstream upgrade",
"upstream",
".",
"upgrade",
"(",
"partial",
"(",
"StreamTunnel",
".",
"create",
",",
"dostream",
")",
")",
"response",
".",
"fire_event",
"(",
"'post_request'",
")",
"# abort the event",
"raise",
"AbortEvent",
"else",
":",
"response",
".",
"event",
"(",
"'data_processed'",
")",
".",
"bind",
"(",
"self",
".",
"data_processed",
")",
"response",
".",
"event",
"(",
"'post_request'",
")",
".",
"bind",
"(",
"self",
".",
"post_request",
")"
] |
Start the tunnel.
This is a callback fired once a connection with upstream server is
established.
|
[
"Start",
"the",
"tunnel",
"."
] |
python
|
train
|
dcwatson/bbcode
|
bbcode.py
|
https://github.com/dcwatson/bbcode/blob/eb6f7ff140a78ddb1641102d7382479c4d7c1c78/bbcode.py#L347-L370
|
def _tag_extent(self, data, start):
"""
Finds the extent of a tag, accounting for option quoting and new tags starting before the current one closes.
Returns (found_close, end_pos) where valid is False if another tag started before this one closed.
"""
in_quote = False
quotable = False
lto = len(self.tag_opener)
ltc = len(self.tag_closer)
for i in xrange(start + 1, len(data)):
ch = data[i]
if ch == '=':
quotable = True
if ch in ('"', "'"):
if quotable and not in_quote:
in_quote = ch
elif in_quote == ch:
in_quote = False
quotable = False
if not in_quote and data[i:i + lto] == self.tag_opener:
return i, False
if not in_quote and data[i:i + ltc] == self.tag_closer:
return i + ltc, True
return len(data), False
|
[
"def",
"_tag_extent",
"(",
"self",
",",
"data",
",",
"start",
")",
":",
"in_quote",
"=",
"False",
"quotable",
"=",
"False",
"lto",
"=",
"len",
"(",
"self",
".",
"tag_opener",
")",
"ltc",
"=",
"len",
"(",
"self",
".",
"tag_closer",
")",
"for",
"i",
"in",
"xrange",
"(",
"start",
"+",
"1",
",",
"len",
"(",
"data",
")",
")",
":",
"ch",
"=",
"data",
"[",
"i",
"]",
"if",
"ch",
"==",
"'='",
":",
"quotable",
"=",
"True",
"if",
"ch",
"in",
"(",
"'\"'",
",",
"\"'\"",
")",
":",
"if",
"quotable",
"and",
"not",
"in_quote",
":",
"in_quote",
"=",
"ch",
"elif",
"in_quote",
"==",
"ch",
":",
"in_quote",
"=",
"False",
"quotable",
"=",
"False",
"if",
"not",
"in_quote",
"and",
"data",
"[",
"i",
":",
"i",
"+",
"lto",
"]",
"==",
"self",
".",
"tag_opener",
":",
"return",
"i",
",",
"False",
"if",
"not",
"in_quote",
"and",
"data",
"[",
"i",
":",
"i",
"+",
"ltc",
"]",
"==",
"self",
".",
"tag_closer",
":",
"return",
"i",
"+",
"ltc",
",",
"True",
"return",
"len",
"(",
"data",
")",
",",
"False"
] |
Finds the extent of a tag, accounting for option quoting and new tags starting before the current one closes.
Returns (found_close, end_pos) where valid is False if another tag started before this one closed.
|
[
"Finds",
"the",
"extent",
"of",
"a",
"tag",
"accounting",
"for",
"option",
"quoting",
"and",
"new",
"tags",
"starting",
"before",
"the",
"current",
"one",
"closes",
".",
"Returns",
"(",
"found_close",
"end_pos",
")",
"where",
"valid",
"is",
"False",
"if",
"another",
"tag",
"started",
"before",
"this",
"one",
"closed",
"."
] |
python
|
train
|
cs50/python-cs50
|
src/cs50/cs50.py
|
https://github.com/cs50/python-cs50/blob/f987e9036bcf1bf60adf50a2827cc2cd5b9fd08a/src/cs50/cs50.py#L47-L67
|
def formatException(type, value, tb):
"""
Format traceback, darkening entries from global site-packages directories
and user-specific site-packages directory.
https://stackoverflow.com/a/46071447/5156190
"""
# Absolute paths to site-packages
packages = tuple(join(abspath(p), "") for p in sys.path[1:])
# Highlight lines not referring to files in site-packages
lines = []
for line in format_exception(type, value, tb):
matches = re.search(r"^ File \"([^\"]+)\", line \d+, in .+", line)
if matches and matches.group(1).startswith(packages):
lines += line
else:
matches = re.search(r"^(\s*)(.*?)(\s*)$", line, re.DOTALL)
lines.append(matches.group(1) + colored(matches.group(2), "yellow") + matches.group(3))
return "".join(lines).rstrip()
|
[
"def",
"formatException",
"(",
"type",
",",
"value",
",",
"tb",
")",
":",
"# Absolute paths to site-packages",
"packages",
"=",
"tuple",
"(",
"join",
"(",
"abspath",
"(",
"p",
")",
",",
"\"\"",
")",
"for",
"p",
"in",
"sys",
".",
"path",
"[",
"1",
":",
"]",
")",
"# Highlight lines not referring to files in site-packages",
"lines",
"=",
"[",
"]",
"for",
"line",
"in",
"format_exception",
"(",
"type",
",",
"value",
",",
"tb",
")",
":",
"matches",
"=",
"re",
".",
"search",
"(",
"r\"^ File \\\"([^\\\"]+)\\\", line \\d+, in .+\"",
",",
"line",
")",
"if",
"matches",
"and",
"matches",
".",
"group",
"(",
"1",
")",
".",
"startswith",
"(",
"packages",
")",
":",
"lines",
"+=",
"line",
"else",
":",
"matches",
"=",
"re",
".",
"search",
"(",
"r\"^(\\s*)(.*?)(\\s*)$\"",
",",
"line",
",",
"re",
".",
"DOTALL",
")",
"lines",
".",
"append",
"(",
"matches",
".",
"group",
"(",
"1",
")",
"+",
"colored",
"(",
"matches",
".",
"group",
"(",
"2",
")",
",",
"\"yellow\"",
")",
"+",
"matches",
".",
"group",
"(",
"3",
")",
")",
"return",
"\"\"",
".",
"join",
"(",
"lines",
")",
".",
"rstrip",
"(",
")"
] |
Format traceback, darkening entries from global site-packages directories
and user-specific site-packages directory.
https://stackoverflow.com/a/46071447/5156190
|
[
"Format",
"traceback",
"darkening",
"entries",
"from",
"global",
"site",
"-",
"packages",
"directories",
"and",
"user",
"-",
"specific",
"site",
"-",
"packages",
"directory",
"."
] |
python
|
train
|
nerdvegas/rez
|
src/rez/vendor/colorama/ansitowin32.py
|
https://github.com/nerdvegas/rez/blob/1d3b846d53b5b5404edfe8ddb9083f9ceec8c5e7/src/rez/vendor/colorama/ansitowin32.py#L131-L143
|
def write_and_convert(self, text):
'''
Write the given text to our wrapped stream, stripping any ANSI
sequences from the text, and optionally converting them into win32
calls.
'''
cursor = 0
for match in self.ANSI_RE.finditer(text):
start, end = match.span()
self.write_plain_text(text, cursor, start)
self.convert_ansi(*match.groups())
cursor = end
self.write_plain_text(text, cursor, len(text))
|
[
"def",
"write_and_convert",
"(",
"self",
",",
"text",
")",
":",
"cursor",
"=",
"0",
"for",
"match",
"in",
"self",
".",
"ANSI_RE",
".",
"finditer",
"(",
"text",
")",
":",
"start",
",",
"end",
"=",
"match",
".",
"span",
"(",
")",
"self",
".",
"write_plain_text",
"(",
"text",
",",
"cursor",
",",
"start",
")",
"self",
".",
"convert_ansi",
"(",
"*",
"match",
".",
"groups",
"(",
")",
")",
"cursor",
"=",
"end",
"self",
".",
"write_plain_text",
"(",
"text",
",",
"cursor",
",",
"len",
"(",
"text",
")",
")"
] |
Write the given text to our wrapped stream, stripping any ANSI
sequences from the text, and optionally converting them into win32
calls.
|
[
"Write",
"the",
"given",
"text",
"to",
"our",
"wrapped",
"stream",
"stripping",
"any",
"ANSI",
"sequences",
"from",
"the",
"text",
"and",
"optionally",
"converting",
"them",
"into",
"win32",
"calls",
"."
] |
python
|
train
|
neuroticnerd/armory
|
armory/utils/boolean.py
|
https://github.com/neuroticnerd/armory/blob/d37c5ca1dbdd60dddb968e35f0bbe4bc1299dca1/armory/utils/boolean.py#L21-L50
|
def boolean(value, boolmap=_BOOL_MAP):
"""
Convert value to <type bool>.
Uses the boolean mapping dict to attempt to determine the conversion
of the given value. If the value is not found in the mapping, it falls
back to the built-in Python bool conversion. Optionally, a custom
mapping dict can be passed to use for the value lookups.
The default mapping dict allows quick and easy conversion of some
common string values that have logical meaning as being true or false.
This alternative allows one to consider a separate mapping when
converting values to a boolean that are not what Python would
inherently consider the value as. This is particularly useful for
environment variables which are almost always retrieved as strings
instead of whatever their inherent data type actually is.
Because of how Python treats strings, this means that an environment
variable which has been given the value of ``"False"`` ends up
evaluating to ``True`` even though that was probably not the intention.
"""
if boolmap == _BOOL_MAP and isinstance(value, str):
result = boolmap.get(value.lower())
else:
result = boolmap.get(value)
if result is None:
result = bool(value)
return result
|
[
"def",
"boolean",
"(",
"value",
",",
"boolmap",
"=",
"_BOOL_MAP",
")",
":",
"if",
"boolmap",
"==",
"_BOOL_MAP",
"and",
"isinstance",
"(",
"value",
",",
"str",
")",
":",
"result",
"=",
"boolmap",
".",
"get",
"(",
"value",
".",
"lower",
"(",
")",
")",
"else",
":",
"result",
"=",
"boolmap",
".",
"get",
"(",
"value",
")",
"if",
"result",
"is",
"None",
":",
"result",
"=",
"bool",
"(",
"value",
")",
"return",
"result"
] |
Convert value to <type bool>.
Uses the boolean mapping dict to attempt to determine the conversion
of the given value. If the value is not found in the mapping, it falls
back to the built-in Python bool conversion. Optionally, a custom
mapping dict can be passed to use for the value lookups.
The default mapping dict allows quick and easy conversion of some
common string values that have logical meaning as being true or false.
This alternative allows one to consider a separate mapping when
converting values to a boolean that are not what Python would
inherently consider the value as. This is particularly useful for
environment variables which are almost always retrieved as strings
instead of whatever their inherent data type actually is.
Because of how Python treats strings, this means that an environment
variable which has been given the value of ``"False"`` ends up
evaluating to ``True`` even though that was probably not the intention.
|
[
"Convert",
"value",
"to",
"<type",
"bool",
">",
"."
] |
python
|
train
|
libtcod/python-tcod
|
tcod/libtcodpy.py
|
https://github.com/libtcod/python-tcod/blob/8ba10c5cfb813eaf3e834de971ba2d6acb7838e4/tcod/libtcodpy.py#L1007-L1025
|
def console_map_ascii_code_to_font(
asciiCode: int, fontCharX: int, fontCharY: int
) -> None:
"""Set a character code to new coordinates on the tile-set.
`asciiCode` must be within the bounds created during the initialization of
the loaded tile-set. For example, you can't use 255 here unless you have a
256 tile tile-set loaded. This applies to all functions in this group.
Args:
asciiCode (int): The character code to change.
fontCharX (int): The X tile coordinate on the loaded tileset.
0 is the leftmost tile.
fontCharY (int): The Y tile coordinate on the loaded tileset.
0 is the topmost tile.
"""
lib.TCOD_console_map_ascii_code_to_font(
_int(asciiCode), fontCharX, fontCharY
)
|
[
"def",
"console_map_ascii_code_to_font",
"(",
"asciiCode",
":",
"int",
",",
"fontCharX",
":",
"int",
",",
"fontCharY",
":",
"int",
")",
"->",
"None",
":",
"lib",
".",
"TCOD_console_map_ascii_code_to_font",
"(",
"_int",
"(",
"asciiCode",
")",
",",
"fontCharX",
",",
"fontCharY",
")"
] |
Set a character code to new coordinates on the tile-set.
`asciiCode` must be within the bounds created during the initialization of
the loaded tile-set. For example, you can't use 255 here unless you have a
256 tile tile-set loaded. This applies to all functions in this group.
Args:
asciiCode (int): The character code to change.
fontCharX (int): The X tile coordinate on the loaded tileset.
0 is the leftmost tile.
fontCharY (int): The Y tile coordinate on the loaded tileset.
0 is the topmost tile.
|
[
"Set",
"a",
"character",
"code",
"to",
"new",
"coordinates",
"on",
"the",
"tile",
"-",
"set",
"."
] |
python
|
train
|
arista-eosplus/pyeapi
|
pyeapi/api/varp.py
|
https://github.com/arista-eosplus/pyeapi/blob/96a74faef1fe3bd79c4e900aed29c9956a0587d6/pyeapi/api/varp.py#L66-L93
|
def get(self):
"""Returns the current VARP configuration
The Varp resource returns the following:
* mac_address (str): The virtual-router mac address
* interfaces (dict): A list of the interfaces that have a
virtual-router address configured.
Return:
A Python dictionary object of key/value pairs that represents
the current configuration of the node. If the specified
interface does not exist then None is returned::
{
"mac_address": "aa:bb:cc:dd:ee:ff",
"interfaces": {
"Vlan100": {
"addresses": [ "1.1.1.1", "2.2.2.2"]
},
"Vlan200": [...]
}
}
"""
resource = dict()
resource.update(self._parse_mac_address())
resource.update(self._parse_interfaces())
return resource
|
[
"def",
"get",
"(",
"self",
")",
":",
"resource",
"=",
"dict",
"(",
")",
"resource",
".",
"update",
"(",
"self",
".",
"_parse_mac_address",
"(",
")",
")",
"resource",
".",
"update",
"(",
"self",
".",
"_parse_interfaces",
"(",
")",
")",
"return",
"resource"
] |
Returns the current VARP configuration
The Varp resource returns the following:
* mac_address (str): The virtual-router mac address
* interfaces (dict): A list of the interfaces that have a
virtual-router address configured.
Return:
A Python dictionary object of key/value pairs that represents
the current configuration of the node. If the specified
interface does not exist then None is returned::
{
"mac_address": "aa:bb:cc:dd:ee:ff",
"interfaces": {
"Vlan100": {
"addresses": [ "1.1.1.1", "2.2.2.2"]
},
"Vlan200": [...]
}
}
|
[
"Returns",
"the",
"current",
"VARP",
"configuration"
] |
python
|
train
|
secdev/scapy
|
scapy/layers/tls/tools.py
|
https://github.com/secdev/scapy/blob/3ffe757c184017dd46464593a8f80f85abc1e79a/scapy/layers/tls/tools.py#L65-L76
|
def _tls_mac_add(alg, c, write_seq_num):
"""
Compute the MAC using provided MAC alg instance over TLSCiphertext c using
current write sequence number write_seq_num. Computed MAC is then appended
to c.data and c.len is updated to reflect that change. It is the
caller responsibility to increment the sequence number after the operation.
The function has no return value.
"""
write_seq_num = struct.pack("!Q", write_seq_num)
h = alg.digest(write_seq_num + bytes(c))
c.data += h
c.len += alg.hash_len
|
[
"def",
"_tls_mac_add",
"(",
"alg",
",",
"c",
",",
"write_seq_num",
")",
":",
"write_seq_num",
"=",
"struct",
".",
"pack",
"(",
"\"!Q\"",
",",
"write_seq_num",
")",
"h",
"=",
"alg",
".",
"digest",
"(",
"write_seq_num",
"+",
"bytes",
"(",
"c",
")",
")",
"c",
".",
"data",
"+=",
"h",
"c",
".",
"len",
"+=",
"alg",
".",
"hash_len"
] |
Compute the MAC using provided MAC alg instance over TLSCiphertext c using
current write sequence number write_seq_num. Computed MAC is then appended
to c.data and c.len is updated to reflect that change. It is the
caller responsibility to increment the sequence number after the operation.
The function has no return value.
|
[
"Compute",
"the",
"MAC",
"using",
"provided",
"MAC",
"alg",
"instance",
"over",
"TLSCiphertext",
"c",
"using",
"current",
"write",
"sequence",
"number",
"write_seq_num",
".",
"Computed",
"MAC",
"is",
"then",
"appended",
"to",
"c",
".",
"data",
"and",
"c",
".",
"len",
"is",
"updated",
"to",
"reflect",
"that",
"change",
".",
"It",
"is",
"the",
"caller",
"responsibility",
"to",
"increment",
"the",
"sequence",
"number",
"after",
"the",
"operation",
".",
"The",
"function",
"has",
"no",
"return",
"value",
"."
] |
python
|
train
|
user-cont/conu
|
conu/apidefs/filesystem.py
|
https://github.com/user-cont/conu/blob/08caae7bb6bdd265b55bb106c3da6a7946a5a352/conu/apidefs/filesystem.py#L146-L158
|
def directory_is_present(self, directory_path):
"""
check if directory 'directory_path' is present, raise IOError if it's not a directory
:param directory_path: str, directory to check
:return: True if directory exists, False if directory does not exist
"""
p = self.p(directory_path)
if not os.path.exists(p):
return False
if not os.path.isdir(p):
raise IOError("%s is not a directory" % directory_path)
return True
|
[
"def",
"directory_is_present",
"(",
"self",
",",
"directory_path",
")",
":",
"p",
"=",
"self",
".",
"p",
"(",
"directory_path",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"p",
")",
":",
"return",
"False",
"if",
"not",
"os",
".",
"path",
".",
"isdir",
"(",
"p",
")",
":",
"raise",
"IOError",
"(",
"\"%s is not a directory\"",
"%",
"directory_path",
")",
"return",
"True"
] |
check if directory 'directory_path' is present, raise IOError if it's not a directory
:param directory_path: str, directory to check
:return: True if directory exists, False if directory does not exist
|
[
"check",
"if",
"directory",
"directory_path",
"is",
"present",
"raise",
"IOError",
"if",
"it",
"s",
"not",
"a",
"directory"
] |
python
|
train
|
JukeboxPipeline/jukebox-core
|
src/jukeboxcore/gui/configeditor.py
|
https://github.com/JukeboxPipeline/jukebox-core/blob/bac2280ca49940355270e4b69400ce9976ab2e6f/src/jukeboxcore/gui/configeditor.py#L103-L133
|
def setData(self, index, value, role=QtCore.Qt.EditRole):
"""Reimplemented from QtCore.QAbstractItemModel
You can only set the value.
:param index: the index to edit, column should be 1.
:type index: :class:`PySide.QtCore.QModelIndex`
:param value: the new value for the configobj
:type value: object
:param role: Optional - the ItemDataRole. Default is QtCore.Qt.EditRole
:type role: QtCore.Qt.ItemDataRole
:returns: True if index was edited, False if index could not be edited.
:rtype: bool
:raises: None
"""
if index.isValid():
if role == QtCore.Qt.EditRole:
if index.column() == 1:
p = index.internalPointer()
k = self.get_key(p, index.row())
# we could just set the value
# BUT for listvalues etc it will not work
strval = self._val_to_str(value)
# _handle_value will parse it correctly
# comments gets lost
(parsedval, comment) = self._conf._handle_value(strval)
p[k] = parsedval
self.dataChanged.emit(index, index)
return True
return False
|
[
"def",
"setData",
"(",
"self",
",",
"index",
",",
"value",
",",
"role",
"=",
"QtCore",
".",
"Qt",
".",
"EditRole",
")",
":",
"if",
"index",
".",
"isValid",
"(",
")",
":",
"if",
"role",
"==",
"QtCore",
".",
"Qt",
".",
"EditRole",
":",
"if",
"index",
".",
"column",
"(",
")",
"==",
"1",
":",
"p",
"=",
"index",
".",
"internalPointer",
"(",
")",
"k",
"=",
"self",
".",
"get_key",
"(",
"p",
",",
"index",
".",
"row",
"(",
")",
")",
"# we could just set the value",
"# BUT for listvalues etc it will not work",
"strval",
"=",
"self",
".",
"_val_to_str",
"(",
"value",
")",
"# _handle_value will parse it correctly",
"# comments gets lost",
"(",
"parsedval",
",",
"comment",
")",
"=",
"self",
".",
"_conf",
".",
"_handle_value",
"(",
"strval",
")",
"p",
"[",
"k",
"]",
"=",
"parsedval",
"self",
".",
"dataChanged",
".",
"emit",
"(",
"index",
",",
"index",
")",
"return",
"True",
"return",
"False"
] |
Reimplemented from QtCore.QAbstractItemModel
You can only set the value.
:param index: the index to edit, column should be 1.
:type index: :class:`PySide.QtCore.QModelIndex`
:param value: the new value for the configobj
:type value: object
:param role: Optional - the ItemDataRole. Default is QtCore.Qt.EditRole
:type role: QtCore.Qt.ItemDataRole
:returns: True if index was edited, False if index could not be edited.
:rtype: bool
:raises: None
|
[
"Reimplemented",
"from",
"QtCore",
".",
"QAbstractItemModel"
] |
python
|
train
|
tensorflow/tensor2tensor
|
tensor2tensor/trax/trainer.py
|
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/trax/trainer.py#L65-L81
|
def _setup_gin():
"""Setup gin configuration."""
# Imports for configurables
# pylint: disable=g-import-not-at-top,unused-import,g-bad-import-order,reimported,unused-variable
from tensor2tensor.trax import models as _trax_models
from tensor2tensor.trax import optimizers as _trax_opt
# pylint: disable=g-import-not-at-top,unused-import,g-bad-import-order,reimported,unused-variable
configs = FLAGS.config or []
# Override with --dataset and --model
if FLAGS.dataset:
configs.append("inputs.dataset_name='%s'" % FLAGS.dataset)
if FLAGS.data_dir:
configs.append("inputs.data_dir='%s'" % FLAGS.data_dir)
if FLAGS.model:
configs.append("[email protected].%s" % FLAGS.model)
gin.parse_config_files_and_bindings(FLAGS.config_file, configs)
|
[
"def",
"_setup_gin",
"(",
")",
":",
"# Imports for configurables",
"# pylint: disable=g-import-not-at-top,unused-import,g-bad-import-order,reimported,unused-variable",
"from",
"tensor2tensor",
".",
"trax",
"import",
"models",
"as",
"_trax_models",
"from",
"tensor2tensor",
".",
"trax",
"import",
"optimizers",
"as",
"_trax_opt",
"# pylint: disable=g-import-not-at-top,unused-import,g-bad-import-order,reimported,unused-variable",
"configs",
"=",
"FLAGS",
".",
"config",
"or",
"[",
"]",
"# Override with --dataset and --model",
"if",
"FLAGS",
".",
"dataset",
":",
"configs",
".",
"append",
"(",
"\"inputs.dataset_name='%s'\"",
"%",
"FLAGS",
".",
"dataset",
")",
"if",
"FLAGS",
".",
"data_dir",
":",
"configs",
".",
"append",
"(",
"\"inputs.data_dir='%s'\"",
"%",
"FLAGS",
".",
"data_dir",
")",
"if",
"FLAGS",
".",
"model",
":",
"configs",
".",
"append",
"(",
"\"[email protected].%s\"",
"%",
"FLAGS",
".",
"model",
")",
"gin",
".",
"parse_config_files_and_bindings",
"(",
"FLAGS",
".",
"config_file",
",",
"configs",
")"
] |
Setup gin configuration.
|
[
"Setup",
"gin",
"configuration",
"."
] |
python
|
train
|
pantsbuild/pants
|
src/python/pants/util/dirutil.py
|
https://github.com/pantsbuild/pants/blob/b72e650da0df685824ffdcc71988b8c282d0962d/src/python/pants/util/dirutil.py#L475-L493
|
def touch(path, times=None):
"""Equivalent of unix `touch path`.
:API: public
:path: The file to touch.
:times Either a tuple of (atime, mtime) or else a single time to use for both. If not
specified both atime and mtime are updated to the current time.
"""
if times:
if len(times) > 2:
raise ValueError('times must either be a tuple of (atime, mtime) or else a single time value '
'to use for both.')
if len(times) == 1:
times = (times, times)
with safe_open(path, 'a'):
os.utime(path, times)
|
[
"def",
"touch",
"(",
"path",
",",
"times",
"=",
"None",
")",
":",
"if",
"times",
":",
"if",
"len",
"(",
"times",
")",
">",
"2",
":",
"raise",
"ValueError",
"(",
"'times must either be a tuple of (atime, mtime) or else a single time value '",
"'to use for both.'",
")",
"if",
"len",
"(",
"times",
")",
"==",
"1",
":",
"times",
"=",
"(",
"times",
",",
"times",
")",
"with",
"safe_open",
"(",
"path",
",",
"'a'",
")",
":",
"os",
".",
"utime",
"(",
"path",
",",
"times",
")"
] |
Equivalent of unix `touch path`.
:API: public
:path: The file to touch.
:times Either a tuple of (atime, mtime) or else a single time to use for both. If not
specified both atime and mtime are updated to the current time.
|
[
"Equivalent",
"of",
"unix",
"touch",
"path",
"."
] |
python
|
train
|
gwpy/gwpy
|
gwpy/io/gwf.py
|
https://github.com/gwpy/gwpy/blob/7a92b917e7dd2d99b15895293a1fa1d66cdb210a/gwpy/io/gwf.py#L305-L322
|
def _iter_channels(framefile):
"""Yields the name and type of each channel in a GWF file TOC
**Requires:** |LDAStools.frameCPP|_
Parameters
----------
framefile : `str`, `LDAStools.frameCPP.IFrameFStream`
path of GWF file, or open file stream, to read
"""
from LDAStools import frameCPP
if not isinstance(framefile, frameCPP.IFrameFStream):
framefile = open_gwf(framefile, 'r')
toc = framefile.GetTOC()
for typename in ('Sim', 'Proc', 'ADC'):
typen = typename.lower()
for name in getattr(toc, 'Get{0}'.format(typename))():
yield name, typen
|
[
"def",
"_iter_channels",
"(",
"framefile",
")",
":",
"from",
"LDAStools",
"import",
"frameCPP",
"if",
"not",
"isinstance",
"(",
"framefile",
",",
"frameCPP",
".",
"IFrameFStream",
")",
":",
"framefile",
"=",
"open_gwf",
"(",
"framefile",
",",
"'r'",
")",
"toc",
"=",
"framefile",
".",
"GetTOC",
"(",
")",
"for",
"typename",
"in",
"(",
"'Sim'",
",",
"'Proc'",
",",
"'ADC'",
")",
":",
"typen",
"=",
"typename",
".",
"lower",
"(",
")",
"for",
"name",
"in",
"getattr",
"(",
"toc",
",",
"'Get{0}'",
".",
"format",
"(",
"typename",
")",
")",
"(",
")",
":",
"yield",
"name",
",",
"typen"
] |
Yields the name and type of each channel in a GWF file TOC
**Requires:** |LDAStools.frameCPP|_
Parameters
----------
framefile : `str`, `LDAStools.frameCPP.IFrameFStream`
path of GWF file, or open file stream, to read
|
[
"Yields",
"the",
"name",
"and",
"type",
"of",
"each",
"channel",
"in",
"a",
"GWF",
"file",
"TOC"
] |
python
|
train
|
azogue/dataweb
|
dataweb/requestweb/__init__.py
|
https://github.com/azogue/dataweb/blob/085035855df7cef0fe7725bbe9a706832344d946/dataweb/requestweb/__init__.py#L99-L227
|
def get_data_en_intervalo(d0=None, df=None, date_fmt=DATE_FMT,
usar_multithread=USAR_MULTITHREAD, max_threads_requests=MAX_THREADS_REQUESTS,
timeout=TIMEOUT, num_retries=NUM_RETRIES,
func_procesa_data_dia=None, func_url_data_dia=None, max_act_exec=None, verbose=True,
data_extra_request=None):
"""
Obtiene los datos en bruto de la red realizando múltiples requests al tiempo
Procesa los datos en bruto obtenidos de la red convirtiendo a Pandas DataFrame
"""
def _date(dia_string):
if dia_string is None:
return dt.date.today()
elif type(dia_string) is pd.Timestamp:
return dia_string.to_datetime().date()
elif type(dia_string) is not dt.date:
return dt.datetime.strptime(dia_string, date_fmt).date()
else:
return dia_string
def _procesa_merge_datos_dias(lista_m, dict_data_merge):
def _merge_datos_dias(key_tarea_merge, dict_merge_dias):
dict_merge_dias[key_tarea_merge] = merge_data(dict_merge_dias[key_tarea_merge])
if num_dias > 1 and usar_multithread:
lista_grupos = list()
grupos_dias = [lista_m[i:i + DIAS_MERGE_MAX] for i in np.arange(0, num_dias, DIAS_MERGE_MAX)]
for grupo in grupos_dias:
lista_dfs = list()
for key_g in grupo:
lista_dfs.append(dict_data_merge[key_g])
lista_grupos.append(lista_dfs)
keys_grupos = np.arange(len(lista_grupos))
dict_merge = dict(zip(keys_grupos, lista_grupos))
procesa_tareas_paralelo(keys_grupos, dict_merge, _merge_datos_dias,
'\nMERGE DATAFRAMES DE DATOS WEB DIARIOS (%lu GRUPOS)',
usar_multithread, MAX_THREADS_MERGE, verbose=verbose)
dict_merge_final = {0: [dict_merge[k] for k in dict_merge.keys()]}
_merge_datos_dias(0, dict_merge_final)
return dict_merge_final[0]
else:
return merge_data(list(dict_data_merge.values()))
def _hay_errores_en_datos_obtenidos(dict_data_obtenida):
keys = list(sorted(dict_data_obtenida.keys()))
data_es_none = [dict_data_obtenida[k] is None for k in keys]
error = False
if any(data_es_none):
df_err = pd.DataFrame({'key': keys, 'is_bad': data_es_none})
df_err['date'] = df_err['key'].apply(lambda x: pd.Timestamp(x))
df_err['delta'] = (df_err['date'] - df_err['date'].shift(1)).fillna(3600 * 24)
df_g = df_err[~df_err['is_bad']].copy()
df_g['delta_g'] = (df_g['date'] - df_g['date'].shift(1)).fillna(3600 * 24)
# print(df_err)
# print(df_err['delta'].describe())
# print(df_g['delta_g'].describe())
if df_g['delta_g'].max() < pd.Timedelta(2, 'D'):
bad_days = df_err[df_err['is_bad']]['key'].tolist()
if verbose:
print('HAY TAREAS NO REALIZADAS ({}):\n{}'.format(len(bad_days), bad_days))
logging.error('HAY TAREAS NO REALIZADAS ({}):\n{}'.format(len(bad_days), bad_days))
error = False
else:
if verbose:
print('NO HAY NINGUNA TAREA REALIZADA!')
logging.error('NO HAY NINGUNA TAREA REALIZADA!')
bad_days = df_err['key'].tolist()
error = True
for k in bad_days:
dict_data_obtenida.pop(k)
return error
def _obtiene_request(url, key, headers=None, p_req=None, json_r=False, **kwargs_r):
if type(url) is list:
results = [request_data_url(u, headers, num_retries, timeout, p_req, json_r, **kwargs_r) for u in url]
dict_data[key] = list(zip(*results))
else:
stat_response = request_data_url(url, headers, num_retries, timeout, p_req, json_r, **kwargs_r)
dict_data[key] = stat_response
def _obtiene_data_dia(key, dict_data_responses):
url = func_url_data_dia(key)
extra = dict_data_responses[key] if type(dict_data_responses[key]) is dict else {}
headers = extra.pop('headers', None)
json_req = extra.pop('json_req', False)
params_request = extra.pop('params_request', None)
try:
count_process, ok = 0, -1
while count_process < num_retries and ok != 0:
_obtiene_request(url, key, headers, params_request, json_req, **extra)
data_import, ok = func_procesa_data_dia(key, dict_data_responses[key][1])
if ok == 0:
dict_data_responses[key] = data_import
elif ok == -2: # Código de salida temprana:
count_process = num_retries
count_process += 1
if ok != 0:
dict_data_responses[key] = None
except Exception as e:
if verbose:
print('PROCESANDO DATA!???? (Exception: {}; KEY: {}; URL: {})'.format(e, key, url))
logging.error('PROCESANDO DATA!???? (Exception: {}; KEY: {}; URL: {})'.format(e, key, url))
dict_data_responses[key] = None
tic_ini = time.time()
lista_dias = [dia.strftime(date_fmt) for dia in pd.date_range(_date(d0), _date(df))]
if max_act_exec: # BORRAR. Es para limitar el nº de días adquiridos de golpe.
lista_dias = lista_dias[:max_act_exec]
num_dias = len(lista_dias)
if data_extra_request is None:
dict_data = dict(zip(lista_dias, np.zeros(num_dias)))
else:
dict_data = dict(zip(lista_dias, [data_extra_request.copy() for _ in range(num_dias)]))
# IMPORTA DATOS Y LOS PROCESA
procesa_tareas_paralelo(lista_dias, dict_data, _obtiene_data_dia,
'\nPROCESADO DE DATOS WEB DE %lu DÍAS',
usar_multithread, max_threads_requests, verbose=verbose)
hay_errores = _hay_errores_en_datos_obtenidos(dict_data)
# MERGE DATOS
# print(len(lista_dias), len(dict_data.keys()))
if not hay_errores and num_dias > 0:
# data_merge = _procesa_merge_datos_dias(lista_dias, dict_data)
data_merge = _procesa_merge_datos_dias(list(sorted(dict_data.keys())), dict_data)
str_resumen_import = '\n%lu días importados [Proceso Total %.2f seg, %.4f seg/día]' \
% (num_dias, time.time() - tic_ini, (time.time() - tic_ini) / float(num_dias))
return data_merge, hay_errores, str_resumen_import
else:
return None, hay_errores, 'ERROR IMPORTANDO!!'
|
[
"def",
"get_data_en_intervalo",
"(",
"d0",
"=",
"None",
",",
"df",
"=",
"None",
",",
"date_fmt",
"=",
"DATE_FMT",
",",
"usar_multithread",
"=",
"USAR_MULTITHREAD",
",",
"max_threads_requests",
"=",
"MAX_THREADS_REQUESTS",
",",
"timeout",
"=",
"TIMEOUT",
",",
"num_retries",
"=",
"NUM_RETRIES",
",",
"func_procesa_data_dia",
"=",
"None",
",",
"func_url_data_dia",
"=",
"None",
",",
"max_act_exec",
"=",
"None",
",",
"verbose",
"=",
"True",
",",
"data_extra_request",
"=",
"None",
")",
":",
"def",
"_date",
"(",
"dia_string",
")",
":",
"if",
"dia_string",
"is",
"None",
":",
"return",
"dt",
".",
"date",
".",
"today",
"(",
")",
"elif",
"type",
"(",
"dia_string",
")",
"is",
"pd",
".",
"Timestamp",
":",
"return",
"dia_string",
".",
"to_datetime",
"(",
")",
".",
"date",
"(",
")",
"elif",
"type",
"(",
"dia_string",
")",
"is",
"not",
"dt",
".",
"date",
":",
"return",
"dt",
".",
"datetime",
".",
"strptime",
"(",
"dia_string",
",",
"date_fmt",
")",
".",
"date",
"(",
")",
"else",
":",
"return",
"dia_string",
"def",
"_procesa_merge_datos_dias",
"(",
"lista_m",
",",
"dict_data_merge",
")",
":",
"def",
"_merge_datos_dias",
"(",
"key_tarea_merge",
",",
"dict_merge_dias",
")",
":",
"dict_merge_dias",
"[",
"key_tarea_merge",
"]",
"=",
"merge_data",
"(",
"dict_merge_dias",
"[",
"key_tarea_merge",
"]",
")",
"if",
"num_dias",
">",
"1",
"and",
"usar_multithread",
":",
"lista_grupos",
"=",
"list",
"(",
")",
"grupos_dias",
"=",
"[",
"lista_m",
"[",
"i",
":",
"i",
"+",
"DIAS_MERGE_MAX",
"]",
"for",
"i",
"in",
"np",
".",
"arange",
"(",
"0",
",",
"num_dias",
",",
"DIAS_MERGE_MAX",
")",
"]",
"for",
"grupo",
"in",
"grupos_dias",
":",
"lista_dfs",
"=",
"list",
"(",
")",
"for",
"key_g",
"in",
"grupo",
":",
"lista_dfs",
".",
"append",
"(",
"dict_data_merge",
"[",
"key_g",
"]",
")",
"lista_grupos",
".",
"append",
"(",
"lista_dfs",
")",
"keys_grupos",
"=",
"np",
".",
"arange",
"(",
"len",
"(",
"lista_grupos",
")",
")",
"dict_merge",
"=",
"dict",
"(",
"zip",
"(",
"keys_grupos",
",",
"lista_grupos",
")",
")",
"procesa_tareas_paralelo",
"(",
"keys_grupos",
",",
"dict_merge",
",",
"_merge_datos_dias",
",",
"'\\nMERGE DATAFRAMES DE DATOS WEB DIARIOS (%lu GRUPOS)'",
",",
"usar_multithread",
",",
"MAX_THREADS_MERGE",
",",
"verbose",
"=",
"verbose",
")",
"dict_merge_final",
"=",
"{",
"0",
":",
"[",
"dict_merge",
"[",
"k",
"]",
"for",
"k",
"in",
"dict_merge",
".",
"keys",
"(",
")",
"]",
"}",
"_merge_datos_dias",
"(",
"0",
",",
"dict_merge_final",
")",
"return",
"dict_merge_final",
"[",
"0",
"]",
"else",
":",
"return",
"merge_data",
"(",
"list",
"(",
"dict_data_merge",
".",
"values",
"(",
")",
")",
")",
"def",
"_hay_errores_en_datos_obtenidos",
"(",
"dict_data_obtenida",
")",
":",
"keys",
"=",
"list",
"(",
"sorted",
"(",
"dict_data_obtenida",
".",
"keys",
"(",
")",
")",
")",
"data_es_none",
"=",
"[",
"dict_data_obtenida",
"[",
"k",
"]",
"is",
"None",
"for",
"k",
"in",
"keys",
"]",
"error",
"=",
"False",
"if",
"any",
"(",
"data_es_none",
")",
":",
"df_err",
"=",
"pd",
".",
"DataFrame",
"(",
"{",
"'key'",
":",
"keys",
",",
"'is_bad'",
":",
"data_es_none",
"}",
")",
"df_err",
"[",
"'date'",
"]",
"=",
"df_err",
"[",
"'key'",
"]",
".",
"apply",
"(",
"lambda",
"x",
":",
"pd",
".",
"Timestamp",
"(",
"x",
")",
")",
"df_err",
"[",
"'delta'",
"]",
"=",
"(",
"df_err",
"[",
"'date'",
"]",
"-",
"df_err",
"[",
"'date'",
"]",
".",
"shift",
"(",
"1",
")",
")",
".",
"fillna",
"(",
"3600",
"*",
"24",
")",
"df_g",
"=",
"df_err",
"[",
"~",
"df_err",
"[",
"'is_bad'",
"]",
"]",
".",
"copy",
"(",
")",
"df_g",
"[",
"'delta_g'",
"]",
"=",
"(",
"df_g",
"[",
"'date'",
"]",
"-",
"df_g",
"[",
"'date'",
"]",
".",
"shift",
"(",
"1",
")",
")",
".",
"fillna",
"(",
"3600",
"*",
"24",
")",
"# print(df_err)",
"# print(df_err['delta'].describe())",
"# print(df_g['delta_g'].describe())",
"if",
"df_g",
"[",
"'delta_g'",
"]",
".",
"max",
"(",
")",
"<",
"pd",
".",
"Timedelta",
"(",
"2",
",",
"'D'",
")",
":",
"bad_days",
"=",
"df_err",
"[",
"df_err",
"[",
"'is_bad'",
"]",
"]",
"[",
"'key'",
"]",
".",
"tolist",
"(",
")",
"if",
"verbose",
":",
"print",
"(",
"'HAY TAREAS NO REALIZADAS ({}):\\n{}'",
".",
"format",
"(",
"len",
"(",
"bad_days",
")",
",",
"bad_days",
")",
")",
"logging",
".",
"error",
"(",
"'HAY TAREAS NO REALIZADAS ({}):\\n{}'",
".",
"format",
"(",
"len",
"(",
"bad_days",
")",
",",
"bad_days",
")",
")",
"error",
"=",
"False",
"else",
":",
"if",
"verbose",
":",
"print",
"(",
"'NO HAY NINGUNA TAREA REALIZADA!'",
")",
"logging",
".",
"error",
"(",
"'NO HAY NINGUNA TAREA REALIZADA!'",
")",
"bad_days",
"=",
"df_err",
"[",
"'key'",
"]",
".",
"tolist",
"(",
")",
"error",
"=",
"True",
"for",
"k",
"in",
"bad_days",
":",
"dict_data_obtenida",
".",
"pop",
"(",
"k",
")",
"return",
"error",
"def",
"_obtiene_request",
"(",
"url",
",",
"key",
",",
"headers",
"=",
"None",
",",
"p_req",
"=",
"None",
",",
"json_r",
"=",
"False",
",",
"*",
"*",
"kwargs_r",
")",
":",
"if",
"type",
"(",
"url",
")",
"is",
"list",
":",
"results",
"=",
"[",
"request_data_url",
"(",
"u",
",",
"headers",
",",
"num_retries",
",",
"timeout",
",",
"p_req",
",",
"json_r",
",",
"*",
"*",
"kwargs_r",
")",
"for",
"u",
"in",
"url",
"]",
"dict_data",
"[",
"key",
"]",
"=",
"list",
"(",
"zip",
"(",
"*",
"results",
")",
")",
"else",
":",
"stat_response",
"=",
"request_data_url",
"(",
"url",
",",
"headers",
",",
"num_retries",
",",
"timeout",
",",
"p_req",
",",
"json_r",
",",
"*",
"*",
"kwargs_r",
")",
"dict_data",
"[",
"key",
"]",
"=",
"stat_response",
"def",
"_obtiene_data_dia",
"(",
"key",
",",
"dict_data_responses",
")",
":",
"url",
"=",
"func_url_data_dia",
"(",
"key",
")",
"extra",
"=",
"dict_data_responses",
"[",
"key",
"]",
"if",
"type",
"(",
"dict_data_responses",
"[",
"key",
"]",
")",
"is",
"dict",
"else",
"{",
"}",
"headers",
"=",
"extra",
".",
"pop",
"(",
"'headers'",
",",
"None",
")",
"json_req",
"=",
"extra",
".",
"pop",
"(",
"'json_req'",
",",
"False",
")",
"params_request",
"=",
"extra",
".",
"pop",
"(",
"'params_request'",
",",
"None",
")",
"try",
":",
"count_process",
",",
"ok",
"=",
"0",
",",
"-",
"1",
"while",
"count_process",
"<",
"num_retries",
"and",
"ok",
"!=",
"0",
":",
"_obtiene_request",
"(",
"url",
",",
"key",
",",
"headers",
",",
"params_request",
",",
"json_req",
",",
"*",
"*",
"extra",
")",
"data_import",
",",
"ok",
"=",
"func_procesa_data_dia",
"(",
"key",
",",
"dict_data_responses",
"[",
"key",
"]",
"[",
"1",
"]",
")",
"if",
"ok",
"==",
"0",
":",
"dict_data_responses",
"[",
"key",
"]",
"=",
"data_import",
"elif",
"ok",
"==",
"-",
"2",
":",
"# Código de salida temprana:",
"count_process",
"=",
"num_retries",
"count_process",
"+=",
"1",
"if",
"ok",
"!=",
"0",
":",
"dict_data_responses",
"[",
"key",
"]",
"=",
"None",
"except",
"Exception",
"as",
"e",
":",
"if",
"verbose",
":",
"print",
"(",
"'PROCESANDO DATA!???? (Exception: {}; KEY: {}; URL: {})'",
".",
"format",
"(",
"e",
",",
"key",
",",
"url",
")",
")",
"logging",
".",
"error",
"(",
"'PROCESANDO DATA!???? (Exception: {}; KEY: {}; URL: {})'",
".",
"format",
"(",
"e",
",",
"key",
",",
"url",
")",
")",
"dict_data_responses",
"[",
"key",
"]",
"=",
"None",
"tic_ini",
"=",
"time",
".",
"time",
"(",
")",
"lista_dias",
"=",
"[",
"dia",
".",
"strftime",
"(",
"date_fmt",
")",
"for",
"dia",
"in",
"pd",
".",
"date_range",
"(",
"_date",
"(",
"d0",
")",
",",
"_date",
"(",
"df",
")",
")",
"]",
"if",
"max_act_exec",
":",
"# BORRAR. Es para limitar el nº de días adquiridos de golpe.",
"lista_dias",
"=",
"lista_dias",
"[",
":",
"max_act_exec",
"]",
"num_dias",
"=",
"len",
"(",
"lista_dias",
")",
"if",
"data_extra_request",
"is",
"None",
":",
"dict_data",
"=",
"dict",
"(",
"zip",
"(",
"lista_dias",
",",
"np",
".",
"zeros",
"(",
"num_dias",
")",
")",
")",
"else",
":",
"dict_data",
"=",
"dict",
"(",
"zip",
"(",
"lista_dias",
",",
"[",
"data_extra_request",
".",
"copy",
"(",
")",
"for",
"_",
"in",
"range",
"(",
"num_dias",
")",
"]",
")",
")",
"# IMPORTA DATOS Y LOS PROCESA",
"procesa_tareas_paralelo",
"(",
"lista_dias",
",",
"dict_data",
",",
"_obtiene_data_dia",
",",
"'\\nPROCESADO DE DATOS WEB DE %lu DÍAS',",
"",
"usar_multithread",
",",
"max_threads_requests",
",",
"verbose",
"=",
"verbose",
")",
"hay_errores",
"=",
"_hay_errores_en_datos_obtenidos",
"(",
"dict_data",
")",
"# MERGE DATOS",
"# print(len(lista_dias), len(dict_data.keys()))",
"if",
"not",
"hay_errores",
"and",
"num_dias",
">",
"0",
":",
"# data_merge = _procesa_merge_datos_dias(lista_dias, dict_data)",
"data_merge",
"=",
"_procesa_merge_datos_dias",
"(",
"list",
"(",
"sorted",
"(",
"dict_data",
".",
"keys",
"(",
")",
")",
")",
",",
"dict_data",
")",
"str_resumen_import",
"=",
"'\\n%lu días importados [Proceso Total %.2f seg, %.4f seg/día]' \\",
"%",
"(",
"num_dias",
",",
"time",
".",
"time",
"(",
")",
"-",
"tic_ini",
",",
"(",
"time",
".",
"time",
"(",
")",
"-",
"tic_ini",
")",
"/",
"float",
"(",
"num_dias",
")",
")",
"return",
"data_merge",
",",
"hay_errores",
",",
"str_resumen_import",
"else",
":",
"return",
"None",
",",
"hay_errores",
",",
"'ERROR IMPORTANDO!!'"
] |
Obtiene los datos en bruto de la red realizando múltiples requests al tiempo
Procesa los datos en bruto obtenidos de la red convirtiendo a Pandas DataFrame
|
[
"Obtiene",
"los",
"datos",
"en",
"bruto",
"de",
"la",
"red",
"realizando",
"múltiples",
"requests",
"al",
"tiempo",
"Procesa",
"los",
"datos",
"en",
"bruto",
"obtenidos",
"de",
"la",
"red",
"convirtiendo",
"a",
"Pandas",
"DataFrame"
] |
python
|
train
|
blockchain-certificates/cert-core
|
cert_core/cert_store/certificate_store.py
|
https://github.com/blockchain-certificates/cert-core/blob/b6a6c29bc87ccd9d2cf15a2c4301f986cfb31453/cert_core/cert_store/certificate_store.py#L72-L94
|
def get_certificate(self, certificate_uid):
"""
Returns certificate as byte array. We need this for v1 certs, which compute a binary hash. Raises
KeyError if not found
:param certificate_uid:
:return:
"""
logging.debug('Retrieving certificate for uid=%s', certificate_uid)
is_v1_uid = model.is_v1_uid(certificate_uid)
if not is_v1_uid:
return super(V1AwareCertificateStore, self).get_certificate(certificate_uid)
# else it's V1.1 (if not valid, it will throw)
certificate = self._find_certificate_metadata(uid=certificate_uid)
if certificate:
certificate_bytes = self._get_certificate_raw(certificate_uid)
certificate_json = helpers.certificate_bytes_to_json(certificate_bytes)
return model.to_certificate_model(certificate_json, certificate['txid'], certificate_bytes)
message = 'Certificate metadata not found for certificate uid=%s' % certificate_uid
logging.error(message)
raise KeyError(message)
|
[
"def",
"get_certificate",
"(",
"self",
",",
"certificate_uid",
")",
":",
"logging",
".",
"debug",
"(",
"'Retrieving certificate for uid=%s'",
",",
"certificate_uid",
")",
"is_v1_uid",
"=",
"model",
".",
"is_v1_uid",
"(",
"certificate_uid",
")",
"if",
"not",
"is_v1_uid",
":",
"return",
"super",
"(",
"V1AwareCertificateStore",
",",
"self",
")",
".",
"get_certificate",
"(",
"certificate_uid",
")",
"# else it's V1.1 (if not valid, it will throw)",
"certificate",
"=",
"self",
".",
"_find_certificate_metadata",
"(",
"uid",
"=",
"certificate_uid",
")",
"if",
"certificate",
":",
"certificate_bytes",
"=",
"self",
".",
"_get_certificate_raw",
"(",
"certificate_uid",
")",
"certificate_json",
"=",
"helpers",
".",
"certificate_bytes_to_json",
"(",
"certificate_bytes",
")",
"return",
"model",
".",
"to_certificate_model",
"(",
"certificate_json",
",",
"certificate",
"[",
"'txid'",
"]",
",",
"certificate_bytes",
")",
"message",
"=",
"'Certificate metadata not found for certificate uid=%s'",
"%",
"certificate_uid",
"logging",
".",
"error",
"(",
"message",
")",
"raise",
"KeyError",
"(",
"message",
")"
] |
Returns certificate as byte array. We need this for v1 certs, which compute a binary hash. Raises
KeyError if not found
:param certificate_uid:
:return:
|
[
"Returns",
"certificate",
"as",
"byte",
"array",
".",
"We",
"need",
"this",
"for",
"v1",
"certs",
"which",
"compute",
"a",
"binary",
"hash",
".",
"Raises",
"KeyError",
"if",
"not",
"found",
":",
"param",
"certificate_uid",
":",
":",
"return",
":"
] |
python
|
train
|
ofek/bit
|
bit/transaction.py
|
https://github.com/ofek/bit/blob/20fc0e7047946c1f28f868008d99d659905c1af6/bit/transaction.py#L206-L370
|
def select_coins(target, fee, output_size, min_change, *, absolute_fee=False,
consolidate=False, unspents):
'''
Implementation of Branch-and-Bound coin selection defined in Erhart's
Master's thesis An Evaluation of Coin Selection Strategies here:
http://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
:param target: The total amount of the outputs in a transaction for which
we try to select the inputs to spend.
:type target: ``int``
:param fee: The number of satoshi per byte for the fee of the transaction.
:type fee: ``int``
:param output_size: A list containing as int the sizes of each output.
:type output_size: ``list`` of ``int`
:param min_change: The minimum amount of satoshis allowed for the
return/change address if there is no perfect match.
:type min_change: ``int``
:param absolute_fee: Whether or not the parameter ``fee`` should be
repurposed to denote the exact fee amount.
:type absolute_fee: ``bool``
:param consolidate: Whether or not the Branch-and-Bound process for finding
a perfect match should be skipped and all unspents
used directly.
:type consolidate: ``bool``
:param unspents: The UTXOs to use as inputs.
:type unspents: ``list`` of :class:`~bit.network.meta.Unspent`
:raises InsufficientFunds: If ``unspents`` does not contain enough balance
to allow spending matching the target.
'''
# The maximum number of tries for Branch-and-Bound:
BNB_TRIES = 1000000
# COST_OF_OVERHEAD excludes the return address of output_size (last element).
COST_OF_OVERHEAD = (8 + sum(output_size[:-1]) + 1) * fee
def branch_and_bound(d, selected_coins, effective_value, target, fee,
sorted_unspents): # pragma: no cover
nonlocal COST_OF_OVERHEAD, BNB_TRIES
BNB_TRIES -= 1
COST_PER_INPUT = 148 * fee # Just typical estimate values
COST_PER_OUTPUT = 34 * fee
# The target we want to match includes cost of overhead for transaction
target_to_match = target + COST_OF_OVERHEAD
# Allowing to pay fee for a whole input and output is rationally
# correct, but increases the fee-rate dramatically for only few inputs.
match_range = COST_PER_INPUT + COST_PER_OUTPUT
# We could allow to spend up to X% more on the fees if we can find a
# perfect match:
# match_range += int(0.1 * fee * sum(u.vsize for u in selected_coins))
# Check for solution and cut criteria:
if effective_value > target_to_match + match_range:
return []
elif effective_value >= target_to_match:
return selected_coins
elif BNB_TRIES <= 0:
return []
elif d >= len(sorted_unspents):
return []
else:
# Randomly explore next branch:
binary_random = randint(0, 1)
if binary_random:
# Explore inclusion branch first, else omission branch:
effective_value_new = effective_value + \
sorted_unspents[d].amount - fee * sorted_unspents[d].vsize
with_this = branch_and_bound(
d + 1,
selected_coins + [sorted_unspents[d]],
effective_value_new,
target,
fee,
sorted_unspents
)
if with_this != []:
return with_this
else:
without_this = branch_and_bound(
d + 1,
selected_coins,
effective_value,
target,
fee,
sorted_unspents
)
return without_this
else:
# As above but explore omission branch first:
without_this = branch_and_bound(
d + 1,
selected_coins,
effective_value,
target,
fee,
sorted_unspents
)
if without_this != []:
return without_this
else:
effective_value_new = effective_value + \
sorted_unspents[d].amount - fee * sorted_unspents[d].vsize
with_this = branch_and_bound(
d + 1,
selected_coins + [sorted_unspents[d]],
effective_value_new,
target,
fee,
sorted_unspents
)
return with_this
sorted_unspents = sorted(unspents, key=lambda u: u.amount, reverse=True)
selected_coins = []
if not consolidate:
# Trying to find a perfect match using Branch-and-Bound:
selected_coins = branch_and_bound(
d=0,
selected_coins=[],
effective_value=0,
target=target,
fee=fee,
sorted_unspents=sorted_unspents
)
remaining = 0
# Fallback: If no match, Single Random Draw with return address:
if selected_coins == []:
unspents = unspents.copy()
# Since we have no information on the user's spending habit it is
# best practice to randomly select UTXOs until we have enough.
if not consolidate:
# To have a deterministic way of inserting inputs when
# consolidating, we only shuffle the unspents otherwise.
shuffle(unspents)
while unspents:
selected_coins.append(unspents.pop(0))
estimated_fee = estimate_tx_fee(
sum(u.vsize for u in selected_coins),
len(selected_coins),
sum(output_size),
len(output_size),
fee
)
estimated_fee = fee if absolute_fee else estimated_fee
remaining = sum(u.amount for u in selected_coins) - target - estimated_fee
if remaining >= min_change and (not consolidate or len(unspents) == 0):
break
else:
raise InsufficientFunds('Balance {} is less than {} (including '
'fee).'.format(sum(
u.amount for u in selected_coins),
target + min_change + estimated_fee))
return selected_coins, remaining
|
[
"def",
"select_coins",
"(",
"target",
",",
"fee",
",",
"output_size",
",",
"min_change",
",",
"*",
",",
"absolute_fee",
"=",
"False",
",",
"consolidate",
"=",
"False",
",",
"unspents",
")",
":",
"# The maximum number of tries for Branch-and-Bound:",
"BNB_TRIES",
"=",
"1000000",
"# COST_OF_OVERHEAD excludes the return address of output_size (last element).",
"COST_OF_OVERHEAD",
"=",
"(",
"8",
"+",
"sum",
"(",
"output_size",
"[",
":",
"-",
"1",
"]",
")",
"+",
"1",
")",
"*",
"fee",
"def",
"branch_and_bound",
"(",
"d",
",",
"selected_coins",
",",
"effective_value",
",",
"target",
",",
"fee",
",",
"sorted_unspents",
")",
":",
"# pragma: no cover",
"nonlocal",
"COST_OF_OVERHEAD",
",",
"BNB_TRIES",
"BNB_TRIES",
"-=",
"1",
"COST_PER_INPUT",
"=",
"148",
"*",
"fee",
"# Just typical estimate values",
"COST_PER_OUTPUT",
"=",
"34",
"*",
"fee",
"# The target we want to match includes cost of overhead for transaction",
"target_to_match",
"=",
"target",
"+",
"COST_OF_OVERHEAD",
"# Allowing to pay fee for a whole input and output is rationally",
"# correct, but increases the fee-rate dramatically for only few inputs.",
"match_range",
"=",
"COST_PER_INPUT",
"+",
"COST_PER_OUTPUT",
"# We could allow to spend up to X% more on the fees if we can find a",
"# perfect match:",
"# match_range += int(0.1 * fee * sum(u.vsize for u in selected_coins))",
"# Check for solution and cut criteria:",
"if",
"effective_value",
">",
"target_to_match",
"+",
"match_range",
":",
"return",
"[",
"]",
"elif",
"effective_value",
">=",
"target_to_match",
":",
"return",
"selected_coins",
"elif",
"BNB_TRIES",
"<=",
"0",
":",
"return",
"[",
"]",
"elif",
"d",
">=",
"len",
"(",
"sorted_unspents",
")",
":",
"return",
"[",
"]",
"else",
":",
"# Randomly explore next branch:",
"binary_random",
"=",
"randint",
"(",
"0",
",",
"1",
")",
"if",
"binary_random",
":",
"# Explore inclusion branch first, else omission branch:",
"effective_value_new",
"=",
"effective_value",
"+",
"sorted_unspents",
"[",
"d",
"]",
".",
"amount",
"-",
"fee",
"*",
"sorted_unspents",
"[",
"d",
"]",
".",
"vsize",
"with_this",
"=",
"branch_and_bound",
"(",
"d",
"+",
"1",
",",
"selected_coins",
"+",
"[",
"sorted_unspents",
"[",
"d",
"]",
"]",
",",
"effective_value_new",
",",
"target",
",",
"fee",
",",
"sorted_unspents",
")",
"if",
"with_this",
"!=",
"[",
"]",
":",
"return",
"with_this",
"else",
":",
"without_this",
"=",
"branch_and_bound",
"(",
"d",
"+",
"1",
",",
"selected_coins",
",",
"effective_value",
",",
"target",
",",
"fee",
",",
"sorted_unspents",
")",
"return",
"without_this",
"else",
":",
"# As above but explore omission branch first:",
"without_this",
"=",
"branch_and_bound",
"(",
"d",
"+",
"1",
",",
"selected_coins",
",",
"effective_value",
",",
"target",
",",
"fee",
",",
"sorted_unspents",
")",
"if",
"without_this",
"!=",
"[",
"]",
":",
"return",
"without_this",
"else",
":",
"effective_value_new",
"=",
"effective_value",
"+",
"sorted_unspents",
"[",
"d",
"]",
".",
"amount",
"-",
"fee",
"*",
"sorted_unspents",
"[",
"d",
"]",
".",
"vsize",
"with_this",
"=",
"branch_and_bound",
"(",
"d",
"+",
"1",
",",
"selected_coins",
"+",
"[",
"sorted_unspents",
"[",
"d",
"]",
"]",
",",
"effective_value_new",
",",
"target",
",",
"fee",
",",
"sorted_unspents",
")",
"return",
"with_this",
"sorted_unspents",
"=",
"sorted",
"(",
"unspents",
",",
"key",
"=",
"lambda",
"u",
":",
"u",
".",
"amount",
",",
"reverse",
"=",
"True",
")",
"selected_coins",
"=",
"[",
"]",
"if",
"not",
"consolidate",
":",
"# Trying to find a perfect match using Branch-and-Bound:",
"selected_coins",
"=",
"branch_and_bound",
"(",
"d",
"=",
"0",
",",
"selected_coins",
"=",
"[",
"]",
",",
"effective_value",
"=",
"0",
",",
"target",
"=",
"target",
",",
"fee",
"=",
"fee",
",",
"sorted_unspents",
"=",
"sorted_unspents",
")",
"remaining",
"=",
"0",
"# Fallback: If no match, Single Random Draw with return address:",
"if",
"selected_coins",
"==",
"[",
"]",
":",
"unspents",
"=",
"unspents",
".",
"copy",
"(",
")",
"# Since we have no information on the user's spending habit it is",
"# best practice to randomly select UTXOs until we have enough.",
"if",
"not",
"consolidate",
":",
"# To have a deterministic way of inserting inputs when",
"# consolidating, we only shuffle the unspents otherwise.",
"shuffle",
"(",
"unspents",
")",
"while",
"unspents",
":",
"selected_coins",
".",
"append",
"(",
"unspents",
".",
"pop",
"(",
"0",
")",
")",
"estimated_fee",
"=",
"estimate_tx_fee",
"(",
"sum",
"(",
"u",
".",
"vsize",
"for",
"u",
"in",
"selected_coins",
")",
",",
"len",
"(",
"selected_coins",
")",
",",
"sum",
"(",
"output_size",
")",
",",
"len",
"(",
"output_size",
")",
",",
"fee",
")",
"estimated_fee",
"=",
"fee",
"if",
"absolute_fee",
"else",
"estimated_fee",
"remaining",
"=",
"sum",
"(",
"u",
".",
"amount",
"for",
"u",
"in",
"selected_coins",
")",
"-",
"target",
"-",
"estimated_fee",
"if",
"remaining",
">=",
"min_change",
"and",
"(",
"not",
"consolidate",
"or",
"len",
"(",
"unspents",
")",
"==",
"0",
")",
":",
"break",
"else",
":",
"raise",
"InsufficientFunds",
"(",
"'Balance {} is less than {} (including '",
"'fee).'",
".",
"format",
"(",
"sum",
"(",
"u",
".",
"amount",
"for",
"u",
"in",
"selected_coins",
")",
",",
"target",
"+",
"min_change",
"+",
"estimated_fee",
")",
")",
"return",
"selected_coins",
",",
"remaining"
] |
Implementation of Branch-and-Bound coin selection defined in Erhart's
Master's thesis An Evaluation of Coin Selection Strategies here:
http://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
:param target: The total amount of the outputs in a transaction for which
we try to select the inputs to spend.
:type target: ``int``
:param fee: The number of satoshi per byte for the fee of the transaction.
:type fee: ``int``
:param output_size: A list containing as int the sizes of each output.
:type output_size: ``list`` of ``int`
:param min_change: The minimum amount of satoshis allowed for the
return/change address if there is no perfect match.
:type min_change: ``int``
:param absolute_fee: Whether or not the parameter ``fee`` should be
repurposed to denote the exact fee amount.
:type absolute_fee: ``bool``
:param consolidate: Whether or not the Branch-and-Bound process for finding
a perfect match should be skipped and all unspents
used directly.
:type consolidate: ``bool``
:param unspents: The UTXOs to use as inputs.
:type unspents: ``list`` of :class:`~bit.network.meta.Unspent`
:raises InsufficientFunds: If ``unspents`` does not contain enough balance
to allow spending matching the target.
|
[
"Implementation",
"of",
"Branch",
"-",
"and",
"-",
"Bound",
"coin",
"selection",
"defined",
"in",
"Erhart",
"s",
"Master",
"s",
"thesis",
"An",
"Evaluation",
"of",
"Coin",
"Selection",
"Strategies",
"here",
":",
"http",
":",
"//",
"murch",
".",
"one",
"/",
"wp",
"-",
"content",
"/",
"uploads",
"/",
"2016",
"/",
"11",
"/",
"erhardt2016coinselection",
".",
"pdf"
] |
python
|
train
|
slok/prometheus-python
|
prometheus/collectors.py
|
https://github.com/slok/prometheus-python/blob/51c6de3cdcd4e36eae6e1643b136f486b57a18cd/prometheus/collectors.py#L71-L88
|
def get_all(self):
""" Returns a list populated by tuples of 2 elements, first one is
a dict with all the labels and the second elemnt is the value
of the metric itself
"""
with mutex:
items = self.values.items()
result = []
for k, v in items:
# Check if is a single value dict (custom empty key)
if not k or k == MetricDict.EMPTY_KEY:
key = None
else:
key = decoder.decode(k)
result.append((key, self.get(k)))
return result
|
[
"def",
"get_all",
"(",
"self",
")",
":",
"with",
"mutex",
":",
"items",
"=",
"self",
".",
"values",
".",
"items",
"(",
")",
"result",
"=",
"[",
"]",
"for",
"k",
",",
"v",
"in",
"items",
":",
"# Check if is a single value dict (custom empty key)",
"if",
"not",
"k",
"or",
"k",
"==",
"MetricDict",
".",
"EMPTY_KEY",
":",
"key",
"=",
"None",
"else",
":",
"key",
"=",
"decoder",
".",
"decode",
"(",
"k",
")",
"result",
".",
"append",
"(",
"(",
"key",
",",
"self",
".",
"get",
"(",
"k",
")",
")",
")",
"return",
"result"
] |
Returns a list populated by tuples of 2 elements, first one is
a dict with all the labels and the second elemnt is the value
of the metric itself
|
[
"Returns",
"a",
"list",
"populated",
"by",
"tuples",
"of",
"2",
"elements",
"first",
"one",
"is",
"a",
"dict",
"with",
"all",
"the",
"labels",
"and",
"the",
"second",
"elemnt",
"is",
"the",
"value",
"of",
"the",
"metric",
"itself"
] |
python
|
train
|
jmoiron/micromongo
|
micromongo/models.py
|
https://github.com/jmoiron/micromongo/blob/0d7dd1396e2f25ece6648619ccff32345bc306a1/micromongo/models.py#L23-L36
|
def connect(*args, **kwargs):
"""Connect to the database. Passes arguments along to
``pymongo.connection.Connection`` unmodified.
The Connection returned by this proxy method will be used by micromongo
for all of its queries. Micromongo will alter the behavior of this
conneciton object in some subtle ways; if you want a clean one, call
``micromongo.clean_connection`` after connecting."""
global __connection, __connection_args
__connection_args = (args, dict(kwargs))
# inject our class_router
kwargs['class_router'] = class_router
__connection = Connection(*args, **kwargs)
return __connection
|
[
"def",
"connect",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"global",
"__connection",
",",
"__connection_args",
"__connection_args",
"=",
"(",
"args",
",",
"dict",
"(",
"kwargs",
")",
")",
"# inject our class_router",
"kwargs",
"[",
"'class_router'",
"]",
"=",
"class_router",
"__connection",
"=",
"Connection",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"__connection"
] |
Connect to the database. Passes arguments along to
``pymongo.connection.Connection`` unmodified.
The Connection returned by this proxy method will be used by micromongo
for all of its queries. Micromongo will alter the behavior of this
conneciton object in some subtle ways; if you want a clean one, call
``micromongo.clean_connection`` after connecting.
|
[
"Connect",
"to",
"the",
"database",
".",
"Passes",
"arguments",
"along",
"to",
"pymongo",
".",
"connection",
".",
"Connection",
"unmodified",
"."
] |
python
|
train
|
romanz/trezor-agent
|
libagent/gpg/decode.py
|
https://github.com/romanz/trezor-agent/blob/513b1259c4d7aca5f88cd958edc11828d0712f1b/libagent/gpg/decode.py#L18-L40
|
def parse_subpackets(s):
"""See https://tools.ietf.org/html/rfc4880#section-5.2.3.1 for details."""
subpackets = []
total_size = s.readfmt('>H')
data = s.read(total_size)
s = util.Reader(io.BytesIO(data))
while True:
try:
first = s.readfmt('B')
except EOFError:
break
if first < 192:
subpacket_len = first
elif first < 255:
subpacket_len = ((first - 192) << 8) + s.readfmt('B') + 192
else: # first == 255
subpacket_len = s.readfmt('>L')
subpackets.append(s.read(subpacket_len))
return subpackets
|
[
"def",
"parse_subpackets",
"(",
"s",
")",
":",
"subpackets",
"=",
"[",
"]",
"total_size",
"=",
"s",
".",
"readfmt",
"(",
"'>H'",
")",
"data",
"=",
"s",
".",
"read",
"(",
"total_size",
")",
"s",
"=",
"util",
".",
"Reader",
"(",
"io",
".",
"BytesIO",
"(",
"data",
")",
")",
"while",
"True",
":",
"try",
":",
"first",
"=",
"s",
".",
"readfmt",
"(",
"'B'",
")",
"except",
"EOFError",
":",
"break",
"if",
"first",
"<",
"192",
":",
"subpacket_len",
"=",
"first",
"elif",
"first",
"<",
"255",
":",
"subpacket_len",
"=",
"(",
"(",
"first",
"-",
"192",
")",
"<<",
"8",
")",
"+",
"s",
".",
"readfmt",
"(",
"'B'",
")",
"+",
"192",
"else",
":",
"# first == 255",
"subpacket_len",
"=",
"s",
".",
"readfmt",
"(",
"'>L'",
")",
"subpackets",
".",
"append",
"(",
"s",
".",
"read",
"(",
"subpacket_len",
")",
")",
"return",
"subpackets"
] |
See https://tools.ietf.org/html/rfc4880#section-5.2.3.1 for details.
|
[
"See",
"https",
":",
"//",
"tools",
".",
"ietf",
".",
"org",
"/",
"html",
"/",
"rfc4880#section",
"-",
"5",
".",
"2",
".",
"3",
".",
"1",
"for",
"details",
"."
] |
python
|
train
|
diging/tethne
|
tethne/plot/__init__.py
|
https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/plot/__init__.py#L100-L262
|
def plot_sigma(corpus, sigma, nodes=None, **kwargs):
"""
Plot sigma values for the ``topn`` most influential nodes.
Parameters
----------
G : :class:`.GraphCollection`
corpus : :class:`.Corpus`
feature : str
Name of a featureset in `corpus`.
topn : int or float {0.-1.}
(default: 20) Number (int) or percentage (float) of top-occurring
features to return. If ``flist`` is provided, this parameter is ignored.
sort_by : str
(default: 'max') Criterion for selecting ``topn`` nodes.
perslice : bool
(default: False) If True, loads ``topn`` features per slice. Otherwise,
loads ``topn`` features overall. If ``flist`` is provided, this
parameter is ignored.
flist : list
List of nodes. If provided, ``topn`` and ``perslice`` are ignored.
fig : :class:`matplotlib.figure.Figure`
(default: None) You may provide a Figure instance if you wish.
Otherwise, a new figure is generated.
Returns
-------
fig : :class:`matplotlib.figure.Figure`
G : :class:`.GraphCollection`
A co-citation graph collection, updated with ``sigma`` node attributes.
Examples
--------
Assuming that you have a :class:`.Corpus` (``G``) sliced by ``'date'`` and a
co-citation :class:`.GraphCollection` (``corpus``)...
.. code-block:: python
>>> from tethne.analyze.cocitation import plot_sigma
>>> fig,G = plot_sigma(G, corpus, topn=5, perslice=True)
>>> fig.savefig('~/sigma_plot.png')
In this figure, the top 5 most sigma-influential nodes in each slice are
shown. Red bands indicate periods in which each paper was influential;
opacity indicates the intensity of sigma (normalized by the highest value in
the plot). The period prior to the first instance of each node is grayed
out.
.. figure:: _static/images/sigma_plot.png
:width: 600
:align: center
"""
try:
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
except ImportError:
raise RuntimeError('This method requires the package matplotlib.')
if nodes == 'all':
nodes = sigma.keys()
# Display parameters.
color = kwargs.get('color', 'red')
years = sorted(corpus.indices['date'].keys())
width = years[1] - years[0] # Get width based on slices.
height = 1.0
sort_by = kwargs.get('sort_by', 'max')
perslice = kwargs.get('perslice', False)
topn = kwargs.get('topn', 20)
if not nodes:
# Get only the topn most significant papers.
include = []
if sort_by == 'max':
if perslice: # Get topn per slice.
vals = {}
norm_by = 0.
# Organize values in a way that makes selection easier.
for node, history in sigma.iteritems():
years, values = history
if max(values) == 0.:
continue
for year, val in zip(years, values):
if year not in vals:
vals[year] = {}
vals[year][node] = val
# Get the maximum values for each slice.
for year, node_values in vals.iteritems():
indices = argsort(node_values.values())[-topn:][::-1]
include += [node_values.keys()[i] for i in indices]
max_value = max(node_values.values())
if max_value > norm_by:
norm_by = max_value
else: # Get topn overall.
maxes = [max(v[1]) for v in sigma.values() ]
indices = argsort(maxes)[-topn:][::-1]
include = [sigma.keys()[i] for i in indices]
norm_by = max(maxes)
# Nodes to include.
nodes = [node for node, values in sigma.iteritems()
if max(values[1]) > 0 and node in include]
# if fig is None: # Create a new Figure instance.
fig = plt.figure(figsize=(10, len(nodes)/4.))
# Plot!
f = 1 # Current subplot.
axes = {}
# Earliest year for which we have values.
x_min = min([min(years) for years, values in sigma.values()])
for node in nodes:
x_order = argsort(sigma[node][0])
x = sorted(sigma[node][0])
y = [sigma[node][1][i]/norm_by for i in x_order]
ax = fig.add_subplot(len(nodes), 1, f)
f+=1
ax.set_yticks([])
ax.set_xbound(x_min, max(years)+1)
# Only show xticks on the bottom subplot.
if not f == len(nodes) + 1:
ax.set_xticklabels([])
# Block out years until first occurrence of feature.
rect = mpatches.Rectangle((x_min, 0), x[0] - x_min,
height, fill=True, linewidth=0.0)
rect.set_facecolor('black')
rect.set_alpha(0.1)
ax.add_patch(rect)
# Add a rectangle for each year, shaded according to burstness state.
for d in xrange(min(x), max(x)):
try: # May not have values for all years.
i = x.index(d)
except ValueError:
continue
xy = (d, 0.)
state = y[i]
rect = mpatches.Rectangle(xy, width, height,
fill=True, linewidth=0.0)
rect.set_facecolor(color)
rect.set_alpha(state + 0.1)
ax.add_patch(rect)
ax.set_ylabel(node, rotation=0,
horizontalalignment='right',
verticalalignment='center')
plt.subplots_adjust(left=0.5)
fig.tight_layout(h_pad=0.25)
plt.show()
|
[
"def",
"plot_sigma",
"(",
"corpus",
",",
"sigma",
",",
"nodes",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"try",
":",
"import",
"matplotlib",
".",
"pyplot",
"as",
"plt",
"import",
"matplotlib",
".",
"patches",
"as",
"mpatches",
"except",
"ImportError",
":",
"raise",
"RuntimeError",
"(",
"'This method requires the package matplotlib.'",
")",
"if",
"nodes",
"==",
"'all'",
":",
"nodes",
"=",
"sigma",
".",
"keys",
"(",
")",
"# Display parameters.",
"color",
"=",
"kwargs",
".",
"get",
"(",
"'color'",
",",
"'red'",
")",
"years",
"=",
"sorted",
"(",
"corpus",
".",
"indices",
"[",
"'date'",
"]",
".",
"keys",
"(",
")",
")",
"width",
"=",
"years",
"[",
"1",
"]",
"-",
"years",
"[",
"0",
"]",
"# Get width based on slices.",
"height",
"=",
"1.0",
"sort_by",
"=",
"kwargs",
".",
"get",
"(",
"'sort_by'",
",",
"'max'",
")",
"perslice",
"=",
"kwargs",
".",
"get",
"(",
"'perslice'",
",",
"False",
")",
"topn",
"=",
"kwargs",
".",
"get",
"(",
"'topn'",
",",
"20",
")",
"if",
"not",
"nodes",
":",
"# Get only the topn most significant papers.",
"include",
"=",
"[",
"]",
"if",
"sort_by",
"==",
"'max'",
":",
"if",
"perslice",
":",
"# Get topn per slice.",
"vals",
"=",
"{",
"}",
"norm_by",
"=",
"0.",
"# Organize values in a way that makes selection easier.",
"for",
"node",
",",
"history",
"in",
"sigma",
".",
"iteritems",
"(",
")",
":",
"years",
",",
"values",
"=",
"history",
"if",
"max",
"(",
"values",
")",
"==",
"0.",
":",
"continue",
"for",
"year",
",",
"val",
"in",
"zip",
"(",
"years",
",",
"values",
")",
":",
"if",
"year",
"not",
"in",
"vals",
":",
"vals",
"[",
"year",
"]",
"=",
"{",
"}",
"vals",
"[",
"year",
"]",
"[",
"node",
"]",
"=",
"val",
"# Get the maximum values for each slice.",
"for",
"year",
",",
"node_values",
"in",
"vals",
".",
"iteritems",
"(",
")",
":",
"indices",
"=",
"argsort",
"(",
"node_values",
".",
"values",
"(",
")",
")",
"[",
"-",
"topn",
":",
"]",
"[",
":",
":",
"-",
"1",
"]",
"include",
"+=",
"[",
"node_values",
".",
"keys",
"(",
")",
"[",
"i",
"]",
"for",
"i",
"in",
"indices",
"]",
"max_value",
"=",
"max",
"(",
"node_values",
".",
"values",
"(",
")",
")",
"if",
"max_value",
">",
"norm_by",
":",
"norm_by",
"=",
"max_value",
"else",
":",
"# Get topn overall.",
"maxes",
"=",
"[",
"max",
"(",
"v",
"[",
"1",
"]",
")",
"for",
"v",
"in",
"sigma",
".",
"values",
"(",
")",
"]",
"indices",
"=",
"argsort",
"(",
"maxes",
")",
"[",
"-",
"topn",
":",
"]",
"[",
":",
":",
"-",
"1",
"]",
"include",
"=",
"[",
"sigma",
".",
"keys",
"(",
")",
"[",
"i",
"]",
"for",
"i",
"in",
"indices",
"]",
"norm_by",
"=",
"max",
"(",
"maxes",
")",
"# Nodes to include.",
"nodes",
"=",
"[",
"node",
"for",
"node",
",",
"values",
"in",
"sigma",
".",
"iteritems",
"(",
")",
"if",
"max",
"(",
"values",
"[",
"1",
"]",
")",
">",
"0",
"and",
"node",
"in",
"include",
"]",
"# if fig is None: # Create a new Figure instance.",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"10",
",",
"len",
"(",
"nodes",
")",
"/",
"4.",
")",
")",
"# Plot!",
"f",
"=",
"1",
"# Current subplot.",
"axes",
"=",
"{",
"}",
"# Earliest year for which we have values.",
"x_min",
"=",
"min",
"(",
"[",
"min",
"(",
"years",
")",
"for",
"years",
",",
"values",
"in",
"sigma",
".",
"values",
"(",
")",
"]",
")",
"for",
"node",
"in",
"nodes",
":",
"x_order",
"=",
"argsort",
"(",
"sigma",
"[",
"node",
"]",
"[",
"0",
"]",
")",
"x",
"=",
"sorted",
"(",
"sigma",
"[",
"node",
"]",
"[",
"0",
"]",
")",
"y",
"=",
"[",
"sigma",
"[",
"node",
"]",
"[",
"1",
"]",
"[",
"i",
"]",
"/",
"norm_by",
"for",
"i",
"in",
"x_order",
"]",
"ax",
"=",
"fig",
".",
"add_subplot",
"(",
"len",
"(",
"nodes",
")",
",",
"1",
",",
"f",
")",
"f",
"+=",
"1",
"ax",
".",
"set_yticks",
"(",
"[",
"]",
")",
"ax",
".",
"set_xbound",
"(",
"x_min",
",",
"max",
"(",
"years",
")",
"+",
"1",
")",
"# Only show xticks on the bottom subplot.",
"if",
"not",
"f",
"==",
"len",
"(",
"nodes",
")",
"+",
"1",
":",
"ax",
".",
"set_xticklabels",
"(",
"[",
"]",
")",
"# Block out years until first occurrence of feature.",
"rect",
"=",
"mpatches",
".",
"Rectangle",
"(",
"(",
"x_min",
",",
"0",
")",
",",
"x",
"[",
"0",
"]",
"-",
"x_min",
",",
"height",
",",
"fill",
"=",
"True",
",",
"linewidth",
"=",
"0.0",
")",
"rect",
".",
"set_facecolor",
"(",
"'black'",
")",
"rect",
".",
"set_alpha",
"(",
"0.1",
")",
"ax",
".",
"add_patch",
"(",
"rect",
")",
"# Add a rectangle for each year, shaded according to burstness state.",
"for",
"d",
"in",
"xrange",
"(",
"min",
"(",
"x",
")",
",",
"max",
"(",
"x",
")",
")",
":",
"try",
":",
"# May not have values for all years.",
"i",
"=",
"x",
".",
"index",
"(",
"d",
")",
"except",
"ValueError",
":",
"continue",
"xy",
"=",
"(",
"d",
",",
"0.",
")",
"state",
"=",
"y",
"[",
"i",
"]",
"rect",
"=",
"mpatches",
".",
"Rectangle",
"(",
"xy",
",",
"width",
",",
"height",
",",
"fill",
"=",
"True",
",",
"linewidth",
"=",
"0.0",
")",
"rect",
".",
"set_facecolor",
"(",
"color",
")",
"rect",
".",
"set_alpha",
"(",
"state",
"+",
"0.1",
")",
"ax",
".",
"add_patch",
"(",
"rect",
")",
"ax",
".",
"set_ylabel",
"(",
"node",
",",
"rotation",
"=",
"0",
",",
"horizontalalignment",
"=",
"'right'",
",",
"verticalalignment",
"=",
"'center'",
")",
"plt",
".",
"subplots_adjust",
"(",
"left",
"=",
"0.5",
")",
"fig",
".",
"tight_layout",
"(",
"h_pad",
"=",
"0.25",
")",
"plt",
".",
"show",
"(",
")"
] |
Plot sigma values for the ``topn`` most influential nodes.
Parameters
----------
G : :class:`.GraphCollection`
corpus : :class:`.Corpus`
feature : str
Name of a featureset in `corpus`.
topn : int or float {0.-1.}
(default: 20) Number (int) or percentage (float) of top-occurring
features to return. If ``flist`` is provided, this parameter is ignored.
sort_by : str
(default: 'max') Criterion for selecting ``topn`` nodes.
perslice : bool
(default: False) If True, loads ``topn`` features per slice. Otherwise,
loads ``topn`` features overall. If ``flist`` is provided, this
parameter is ignored.
flist : list
List of nodes. If provided, ``topn`` and ``perslice`` are ignored.
fig : :class:`matplotlib.figure.Figure`
(default: None) You may provide a Figure instance if you wish.
Otherwise, a new figure is generated.
Returns
-------
fig : :class:`matplotlib.figure.Figure`
G : :class:`.GraphCollection`
A co-citation graph collection, updated with ``sigma`` node attributes.
Examples
--------
Assuming that you have a :class:`.Corpus` (``G``) sliced by ``'date'`` and a
co-citation :class:`.GraphCollection` (``corpus``)...
.. code-block:: python
>>> from tethne.analyze.cocitation import plot_sigma
>>> fig,G = plot_sigma(G, corpus, topn=5, perslice=True)
>>> fig.savefig('~/sigma_plot.png')
In this figure, the top 5 most sigma-influential nodes in each slice are
shown. Red bands indicate periods in which each paper was influential;
opacity indicates the intensity of sigma (normalized by the highest value in
the plot). The period prior to the first instance of each node is grayed
out.
.. figure:: _static/images/sigma_plot.png
:width: 600
:align: center
|
[
"Plot",
"sigma",
"values",
"for",
"the",
"topn",
"most",
"influential",
"nodes",
"."
] |
python
|
train
|
python-openxml/python-docx
|
docx/parts/image.py
|
https://github.com/python-openxml/python-docx/blob/6756f6cd145511d3eb6d1d188beea391b1ddfd53/docx/parts/image.py#L50-L60
|
def filename(self):
"""
Filename from which this image part was originally created. A generic
name, e.g. 'image.png', is substituted if no name is available, for
example when the image was loaded from an unnamed stream. In that
case a default extension is applied based on the detected MIME type
of the image.
"""
if self._image is not None:
return self._image.filename
return 'image.%s' % self.partname.ext
|
[
"def",
"filename",
"(",
"self",
")",
":",
"if",
"self",
".",
"_image",
"is",
"not",
"None",
":",
"return",
"self",
".",
"_image",
".",
"filename",
"return",
"'image.%s'",
"%",
"self",
".",
"partname",
".",
"ext"
] |
Filename from which this image part was originally created. A generic
name, e.g. 'image.png', is substituted if no name is available, for
example when the image was loaded from an unnamed stream. In that
case a default extension is applied based on the detected MIME type
of the image.
|
[
"Filename",
"from",
"which",
"this",
"image",
"part",
"was",
"originally",
"created",
".",
"A",
"generic",
"name",
"e",
".",
"g",
".",
"image",
".",
"png",
"is",
"substituted",
"if",
"no",
"name",
"is",
"available",
"for",
"example",
"when",
"the",
"image",
"was",
"loaded",
"from",
"an",
"unnamed",
"stream",
".",
"In",
"that",
"case",
"a",
"default",
"extension",
"is",
"applied",
"based",
"on",
"the",
"detected",
"MIME",
"type",
"of",
"the",
"image",
"."
] |
python
|
train
|
Varkal/chuda
|
chuda/shell.py
|
https://github.com/Varkal/chuda/blob/0d93b716dede35231c21be97bcc19a656655983f/chuda/shell.py#L174-L203
|
def wait_for(self, pattern, timeout=None):
"""
Block until a pattern have been found in stdout and stderr
Args:
pattern(:class:`~re.Pattern`): The pattern to search
timeout(int): Maximum number of second to wait. If None, wait infinitely
Raises:
TimeoutError: When timeout is reach
"""
should_continue = True
if self.block:
raise TypeError(NON_BLOCKING_ERROR_MESSAGE)
def stop(signum, frame): # pylint: disable=W0613
nonlocal should_continue
if should_continue:
raise TimeoutError()
if timeout:
signal.signal(signal.SIGALRM, stop)
signal.alarm(timeout)
while should_continue:
output = self.poll_output() + self.poll_error()
filtered = [line for line in output if re.match(pattern, line)]
if filtered:
should_continue = False
|
[
"def",
"wait_for",
"(",
"self",
",",
"pattern",
",",
"timeout",
"=",
"None",
")",
":",
"should_continue",
"=",
"True",
"if",
"self",
".",
"block",
":",
"raise",
"TypeError",
"(",
"NON_BLOCKING_ERROR_MESSAGE",
")",
"def",
"stop",
"(",
"signum",
",",
"frame",
")",
":",
"# pylint: disable=W0613",
"nonlocal",
"should_continue",
"if",
"should_continue",
":",
"raise",
"TimeoutError",
"(",
")",
"if",
"timeout",
":",
"signal",
".",
"signal",
"(",
"signal",
".",
"SIGALRM",
",",
"stop",
")",
"signal",
".",
"alarm",
"(",
"timeout",
")",
"while",
"should_continue",
":",
"output",
"=",
"self",
".",
"poll_output",
"(",
")",
"+",
"self",
".",
"poll_error",
"(",
")",
"filtered",
"=",
"[",
"line",
"for",
"line",
"in",
"output",
"if",
"re",
".",
"match",
"(",
"pattern",
",",
"line",
")",
"]",
"if",
"filtered",
":",
"should_continue",
"=",
"False"
] |
Block until a pattern have been found in stdout and stderr
Args:
pattern(:class:`~re.Pattern`): The pattern to search
timeout(int): Maximum number of second to wait. If None, wait infinitely
Raises:
TimeoutError: When timeout is reach
|
[
"Block",
"until",
"a",
"pattern",
"have",
"been",
"found",
"in",
"stdout",
"and",
"stderr"
] |
python
|
train
|
freakboy3742/pyxero
|
examples/public_oauth_flow/runserver.py
|
https://github.com/freakboy3742/pyxero/blob/5566f17fa06ed1f2fb9426c112951a72276b0f9a/examples/public_oauth_flow/runserver.py#L54-L126
|
def do_GET(self):
"""
Handle GET request
"""
consumer_key = os.environ.get('XERO_CONSUMER_KEY')
consumer_secret = os.environ.get('XERO_CONSUMER_SECRET')
if consumer_key is None or consumer_secret is None:
raise KeyError(
'Please define both XERO_CONSUMER_KEY and XERO_CONSUMER_SECRET environment variables')
print("Serving path: {}".format(self.path))
path = urlparse(self.path)
if path.path == '/do-auth':
credentials = PublicCredentials(
consumer_key, consumer_secret, callback_uri='http://localhost:8000/oauth')
# Save generated credentials details to persistent storage
for key, value in credentials.state.items():
OAUTH_PERSISTENT_SERVER_STORAGE.update({key: value})
# Redirect to Xero at url provided by credentials generation
self.redirect_response(credentials.url)
return
elif path.path == '/oauth':
params = dict(parse_qsl(path.query))
if 'oauth_token' not in params or 'oauth_verifier' not in params or 'org' not in params:
self.send_error(500, message='Missing parameters required.')
return
stored_values = OAUTH_PERSISTENT_SERVER_STORAGE
credentials = PublicCredentials(**stored_values)
try:
credentials.verify(params['oauth_verifier'])
# Resave our verified credentials
for key, value in credentials.state.items():
OAUTH_PERSISTENT_SERVER_STORAGE.update({key: value})
except XeroException as e:
self.send_error(500, message='{}: {}'.format(e.__class__, e.message))
return
# Once verified, api can be invoked with xero = Xero(credentials)
self.redirect_response('/verified')
return
elif path.path == '/verified':
stored_values = OAUTH_PERSISTENT_SERVER_STORAGE
credentials = PublicCredentials(**stored_values)
try:
xero = Xero(credentials)
except XeroException as e:
self.send_error(500, message='{}: {}'.format(e.__class__, e.message))
return
page_body = 'Your contacts:<br><br>'
contacts = xero.contacts.all()
if contacts:
page_body += '<br>'.join([str(contact) for contact in contacts])
else:
page_body += 'No contacts'
self.page_response(title='Xero Contacts', body=page_body)
return
SimpleHTTPServer.SimpleHTTPRequestHandler.do_GET(self)
|
[
"def",
"do_GET",
"(",
"self",
")",
":",
"consumer_key",
"=",
"os",
".",
"environ",
".",
"get",
"(",
"'XERO_CONSUMER_KEY'",
")",
"consumer_secret",
"=",
"os",
".",
"environ",
".",
"get",
"(",
"'XERO_CONSUMER_SECRET'",
")",
"if",
"consumer_key",
"is",
"None",
"or",
"consumer_secret",
"is",
"None",
":",
"raise",
"KeyError",
"(",
"'Please define both XERO_CONSUMER_KEY and XERO_CONSUMER_SECRET environment variables'",
")",
"print",
"(",
"\"Serving path: {}\"",
".",
"format",
"(",
"self",
".",
"path",
")",
")",
"path",
"=",
"urlparse",
"(",
"self",
".",
"path",
")",
"if",
"path",
".",
"path",
"==",
"'/do-auth'",
":",
"credentials",
"=",
"PublicCredentials",
"(",
"consumer_key",
",",
"consumer_secret",
",",
"callback_uri",
"=",
"'http://localhost:8000/oauth'",
")",
"# Save generated credentials details to persistent storage",
"for",
"key",
",",
"value",
"in",
"credentials",
".",
"state",
".",
"items",
"(",
")",
":",
"OAUTH_PERSISTENT_SERVER_STORAGE",
".",
"update",
"(",
"{",
"key",
":",
"value",
"}",
")",
"# Redirect to Xero at url provided by credentials generation",
"self",
".",
"redirect_response",
"(",
"credentials",
".",
"url",
")",
"return",
"elif",
"path",
".",
"path",
"==",
"'/oauth'",
":",
"params",
"=",
"dict",
"(",
"parse_qsl",
"(",
"path",
".",
"query",
")",
")",
"if",
"'oauth_token'",
"not",
"in",
"params",
"or",
"'oauth_verifier'",
"not",
"in",
"params",
"or",
"'org'",
"not",
"in",
"params",
":",
"self",
".",
"send_error",
"(",
"500",
",",
"message",
"=",
"'Missing parameters required.'",
")",
"return",
"stored_values",
"=",
"OAUTH_PERSISTENT_SERVER_STORAGE",
"credentials",
"=",
"PublicCredentials",
"(",
"*",
"*",
"stored_values",
")",
"try",
":",
"credentials",
".",
"verify",
"(",
"params",
"[",
"'oauth_verifier'",
"]",
")",
"# Resave our verified credentials",
"for",
"key",
",",
"value",
"in",
"credentials",
".",
"state",
".",
"items",
"(",
")",
":",
"OAUTH_PERSISTENT_SERVER_STORAGE",
".",
"update",
"(",
"{",
"key",
":",
"value",
"}",
")",
"except",
"XeroException",
"as",
"e",
":",
"self",
".",
"send_error",
"(",
"500",
",",
"message",
"=",
"'{}: {}'",
".",
"format",
"(",
"e",
".",
"__class__",
",",
"e",
".",
"message",
")",
")",
"return",
"# Once verified, api can be invoked with xero = Xero(credentials)",
"self",
".",
"redirect_response",
"(",
"'/verified'",
")",
"return",
"elif",
"path",
".",
"path",
"==",
"'/verified'",
":",
"stored_values",
"=",
"OAUTH_PERSISTENT_SERVER_STORAGE",
"credentials",
"=",
"PublicCredentials",
"(",
"*",
"*",
"stored_values",
")",
"try",
":",
"xero",
"=",
"Xero",
"(",
"credentials",
")",
"except",
"XeroException",
"as",
"e",
":",
"self",
".",
"send_error",
"(",
"500",
",",
"message",
"=",
"'{}: {}'",
".",
"format",
"(",
"e",
".",
"__class__",
",",
"e",
".",
"message",
")",
")",
"return",
"page_body",
"=",
"'Your contacts:<br><br>'",
"contacts",
"=",
"xero",
".",
"contacts",
".",
"all",
"(",
")",
"if",
"contacts",
":",
"page_body",
"+=",
"'<br>'",
".",
"join",
"(",
"[",
"str",
"(",
"contact",
")",
"for",
"contact",
"in",
"contacts",
"]",
")",
"else",
":",
"page_body",
"+=",
"'No contacts'",
"self",
".",
"page_response",
"(",
"title",
"=",
"'Xero Contacts'",
",",
"body",
"=",
"page_body",
")",
"return",
"SimpleHTTPServer",
".",
"SimpleHTTPRequestHandler",
".",
"do_GET",
"(",
"self",
")"
] |
Handle GET request
|
[
"Handle",
"GET",
"request"
] |
python
|
train
|
awslabs/serverless-application-model
|
samtranslator/model/__init__.py
|
https://github.com/awslabs/serverless-application-model/blob/cccb0c96b5c91e53355ebc07e542467303a5eedd/samtranslator/model/__init__.py#L189-L213
|
def _generate_resource_dict(self):
"""Generates the resource dict for this Resource, the value associated with the logical id in a CloudFormation
template's Resources section.
:returns: the resource dict for this Resource
:rtype: dict
"""
resource_dict = {}
resource_dict['Type'] = self.resource_type
if self.depends_on:
resource_dict['DependsOn'] = self.depends_on
resource_dict.update(self.resource_attributes)
properties_dict = {}
for name in self.property_types:
value = getattr(self, name)
if value is not None:
properties_dict[name] = value
resource_dict['Properties'] = properties_dict
return resource_dict
|
[
"def",
"_generate_resource_dict",
"(",
"self",
")",
":",
"resource_dict",
"=",
"{",
"}",
"resource_dict",
"[",
"'Type'",
"]",
"=",
"self",
".",
"resource_type",
"if",
"self",
".",
"depends_on",
":",
"resource_dict",
"[",
"'DependsOn'",
"]",
"=",
"self",
".",
"depends_on",
"resource_dict",
".",
"update",
"(",
"self",
".",
"resource_attributes",
")",
"properties_dict",
"=",
"{",
"}",
"for",
"name",
"in",
"self",
".",
"property_types",
":",
"value",
"=",
"getattr",
"(",
"self",
",",
"name",
")",
"if",
"value",
"is",
"not",
"None",
":",
"properties_dict",
"[",
"name",
"]",
"=",
"value",
"resource_dict",
"[",
"'Properties'",
"]",
"=",
"properties_dict",
"return",
"resource_dict"
] |
Generates the resource dict for this Resource, the value associated with the logical id in a CloudFormation
template's Resources section.
:returns: the resource dict for this Resource
:rtype: dict
|
[
"Generates",
"the",
"resource",
"dict",
"for",
"this",
"Resource",
"the",
"value",
"associated",
"with",
"the",
"logical",
"id",
"in",
"a",
"CloudFormation",
"template",
"s",
"Resources",
"section",
"."
] |
python
|
train
|
JohnDoee/thomas
|
thomas/outputs/http.py
|
https://github.com/JohnDoee/thomas/blob/51916dd110098b189a1c2fbcb71794fd9ec94832/thomas/outputs/http.py#L278-L311
|
def makeProducer(self, request, fileForReading):
"""
Make a L{StaticProducer} that will produce the body of this response.
This method will also set the response code and Content-* headers.
@param request: The L{Request} object.
@param fileForReading: The file object containing the resource.
@return: A L{StaticProducer}. Calling C{.start()} on this will begin
producing the response.
"""
byteRange = request.getHeader(b'range')
if byteRange is None or not self.getFileSize():
self._setContentHeaders(request)
request.setResponseCode(http.OK)
return NoRangeStaticProducer(request, fileForReading)
try:
parsedRanges = self._parseRangeHeader(byteRange)
except ValueError:
logger.warning("Ignoring malformed Range header %r" % (byteRange,))
self._setContentHeaders(request)
request.setResponseCode(http.OK)
return NoRangeStaticProducer(request, fileForReading)
if len(parsedRanges) == 1:
offset, size = self._doSingleRangeRequest(
request, parsedRanges[0])
self._setContentHeaders(request, size)
return SingleRangeStaticProducer(
request, fileForReading, offset, size)
else:
rangeInfo = self._doMultipleRangeRequest(request, parsedRanges)
return MultipleRangeStaticProducer(
request, fileForReading, rangeInfo)
|
[
"def",
"makeProducer",
"(",
"self",
",",
"request",
",",
"fileForReading",
")",
":",
"byteRange",
"=",
"request",
".",
"getHeader",
"(",
"b'range'",
")",
"if",
"byteRange",
"is",
"None",
"or",
"not",
"self",
".",
"getFileSize",
"(",
")",
":",
"self",
".",
"_setContentHeaders",
"(",
"request",
")",
"request",
".",
"setResponseCode",
"(",
"http",
".",
"OK",
")",
"return",
"NoRangeStaticProducer",
"(",
"request",
",",
"fileForReading",
")",
"try",
":",
"parsedRanges",
"=",
"self",
".",
"_parseRangeHeader",
"(",
"byteRange",
")",
"except",
"ValueError",
":",
"logger",
".",
"warning",
"(",
"\"Ignoring malformed Range header %r\"",
"%",
"(",
"byteRange",
",",
")",
")",
"self",
".",
"_setContentHeaders",
"(",
"request",
")",
"request",
".",
"setResponseCode",
"(",
"http",
".",
"OK",
")",
"return",
"NoRangeStaticProducer",
"(",
"request",
",",
"fileForReading",
")",
"if",
"len",
"(",
"parsedRanges",
")",
"==",
"1",
":",
"offset",
",",
"size",
"=",
"self",
".",
"_doSingleRangeRequest",
"(",
"request",
",",
"parsedRanges",
"[",
"0",
"]",
")",
"self",
".",
"_setContentHeaders",
"(",
"request",
",",
"size",
")",
"return",
"SingleRangeStaticProducer",
"(",
"request",
",",
"fileForReading",
",",
"offset",
",",
"size",
")",
"else",
":",
"rangeInfo",
"=",
"self",
".",
"_doMultipleRangeRequest",
"(",
"request",
",",
"parsedRanges",
")",
"return",
"MultipleRangeStaticProducer",
"(",
"request",
",",
"fileForReading",
",",
"rangeInfo",
")"
] |
Make a L{StaticProducer} that will produce the body of this response.
This method will also set the response code and Content-* headers.
@param request: The L{Request} object.
@param fileForReading: The file object containing the resource.
@return: A L{StaticProducer}. Calling C{.start()} on this will begin
producing the response.
|
[
"Make",
"a",
"L",
"{",
"StaticProducer",
"}",
"that",
"will",
"produce",
"the",
"body",
"of",
"this",
"response",
"."
] |
python
|
train
|
robehickman/simple-http-file-sync
|
shttpfs/versioned_storage.py
|
https://github.com/robehickman/simple-http-file-sync/blob/fa29b3ee58e9504e1d3ddfc0c14047284bf9921d/shttpfs/versioned_storage.py#L113-L118
|
def have_active_commit(self):
""" Checks if there is an active commit owned by the specified user """
commit_state = sfs.file_or_default(sfs.cpjoin(self.base_path, 'active_commit'), None)
if commit_state != None: return True
return False
|
[
"def",
"have_active_commit",
"(",
"self",
")",
":",
"commit_state",
"=",
"sfs",
".",
"file_or_default",
"(",
"sfs",
".",
"cpjoin",
"(",
"self",
".",
"base_path",
",",
"'active_commit'",
")",
",",
"None",
")",
"if",
"commit_state",
"!=",
"None",
":",
"return",
"True",
"return",
"False"
] |
Checks if there is an active commit owned by the specified user
|
[
"Checks",
"if",
"there",
"is",
"an",
"active",
"commit",
"owned",
"by",
"the",
"specified",
"user"
] |
python
|
train
|
Phelimb/ga4gh-mongo
|
ga4ghmongo/schema/models/variants.py
|
https://github.com/Phelimb/ga4gh-mongo/blob/5f5a3e1922be0e0d13af1874fad6eed5418ee761/ga4ghmongo/schema/models/variants.py#L292-L308
|
def is_deletion(reference_bases, alternate_bases):
""" Return whether or not the INDEL is a deletion """
# if multiple alts, it is unclear if we have a transition
if len(alternate_bases) > 1:
return False
if is_indel(reference_bases, alternate_bases):
# just one alt allele
alt_allele = alternate_bases[0]
if alt_allele is None:
return True
if len(reference_bases) > len(alt_allele):
return True
else:
return False
else:
return False
|
[
"def",
"is_deletion",
"(",
"reference_bases",
",",
"alternate_bases",
")",
":",
"# if multiple alts, it is unclear if we have a transition",
"if",
"len",
"(",
"alternate_bases",
")",
">",
"1",
":",
"return",
"False",
"if",
"is_indel",
"(",
"reference_bases",
",",
"alternate_bases",
")",
":",
"# just one alt allele",
"alt_allele",
"=",
"alternate_bases",
"[",
"0",
"]",
"if",
"alt_allele",
"is",
"None",
":",
"return",
"True",
"if",
"len",
"(",
"reference_bases",
")",
">",
"len",
"(",
"alt_allele",
")",
":",
"return",
"True",
"else",
":",
"return",
"False",
"else",
":",
"return",
"False"
] |
Return whether or not the INDEL is a deletion
|
[
"Return",
"whether",
"or",
"not",
"the",
"INDEL",
"is",
"a",
"deletion"
] |
python
|
train
|
ghukill/pyfc4
|
pyfc4/plugins/pcdm/models.py
|
https://github.com/ghukill/pyfc4/blob/59011df592f08978c4a901a908862d112a5dcf02/pyfc4/plugins/pcdm/models.py#L232-L274
|
def _post_create(self, auto_refresh=False):
'''
resource.create() hook
'''
# set PCDM triple as Object
self.add_triple(self.rdf.prefixes.rdf.type, self.rdf.prefixes.pcdm.Object)
self.update(auto_refresh=auto_refresh)
# create /files child resource
files_child = PCDMFilesContainer(
self.repo,
'%s/files' % self.uri_as_string(),
membershipResource=self.uri,
hasMemberRelation=self.rdf.prefixes.pcdm.hasFile)
files_child.create(specify_uri=True)
# create /members child resource
members_child = PCDMMembersContainer(
self.repo,
'%s/members' % self.uri_as_string(),
membershipResource=self.uri,
hasMemberRelation=self.rdf.prefixes.pcdm.hasMember,
insertedContentRelation=self.rdf.prefixes.ore.proxyFor)
members_child.create(specify_uri=True)
# create /related child resource
related_child = PCDMRelatedContainer(
self.repo,
'%s/related' % self.uri_as_string(),
membershipResource=self.uri,
hasMemberRelation=self.rdf.prefixes.ore.aggregates,
insertedContentRelation=self.rdf.prefixes.ore.proxyFor)
related_child.create(specify_uri=True)
# create /associated child resource
associated_child = PCDMAssociatedContainer(
self.repo,
'%s/associated' % self.uri_as_string(),
membershipResource=self.uri,
hasMemberRelation=self.rdf.prefixes.pcdm.hasRelatedFile)
associated_child.create(specify_uri=True)
|
[
"def",
"_post_create",
"(",
"self",
",",
"auto_refresh",
"=",
"False",
")",
":",
"# set PCDM triple as Object",
"self",
".",
"add_triple",
"(",
"self",
".",
"rdf",
".",
"prefixes",
".",
"rdf",
".",
"type",
",",
"self",
".",
"rdf",
".",
"prefixes",
".",
"pcdm",
".",
"Object",
")",
"self",
".",
"update",
"(",
"auto_refresh",
"=",
"auto_refresh",
")",
"# create /files child resource",
"files_child",
"=",
"PCDMFilesContainer",
"(",
"self",
".",
"repo",
",",
"'%s/files'",
"%",
"self",
".",
"uri_as_string",
"(",
")",
",",
"membershipResource",
"=",
"self",
".",
"uri",
",",
"hasMemberRelation",
"=",
"self",
".",
"rdf",
".",
"prefixes",
".",
"pcdm",
".",
"hasFile",
")",
"files_child",
".",
"create",
"(",
"specify_uri",
"=",
"True",
")",
"# create /members child resource",
"members_child",
"=",
"PCDMMembersContainer",
"(",
"self",
".",
"repo",
",",
"'%s/members'",
"%",
"self",
".",
"uri_as_string",
"(",
")",
",",
"membershipResource",
"=",
"self",
".",
"uri",
",",
"hasMemberRelation",
"=",
"self",
".",
"rdf",
".",
"prefixes",
".",
"pcdm",
".",
"hasMember",
",",
"insertedContentRelation",
"=",
"self",
".",
"rdf",
".",
"prefixes",
".",
"ore",
".",
"proxyFor",
")",
"members_child",
".",
"create",
"(",
"specify_uri",
"=",
"True",
")",
"# create /related child resource",
"related_child",
"=",
"PCDMRelatedContainer",
"(",
"self",
".",
"repo",
",",
"'%s/related'",
"%",
"self",
".",
"uri_as_string",
"(",
")",
",",
"membershipResource",
"=",
"self",
".",
"uri",
",",
"hasMemberRelation",
"=",
"self",
".",
"rdf",
".",
"prefixes",
".",
"ore",
".",
"aggregates",
",",
"insertedContentRelation",
"=",
"self",
".",
"rdf",
".",
"prefixes",
".",
"ore",
".",
"proxyFor",
")",
"related_child",
".",
"create",
"(",
"specify_uri",
"=",
"True",
")",
"# create /associated child resource",
"associated_child",
"=",
"PCDMAssociatedContainer",
"(",
"self",
".",
"repo",
",",
"'%s/associated'",
"%",
"self",
".",
"uri_as_string",
"(",
")",
",",
"membershipResource",
"=",
"self",
".",
"uri",
",",
"hasMemberRelation",
"=",
"self",
".",
"rdf",
".",
"prefixes",
".",
"pcdm",
".",
"hasRelatedFile",
")",
"associated_child",
".",
"create",
"(",
"specify_uri",
"=",
"True",
")"
] |
resource.create() hook
|
[
"resource",
".",
"create",
"()",
"hook"
] |
python
|
train
|
chrisspen/burlap
|
burlap/vm.py
|
https://github.com/chrisspen/burlap/blob/a92b0a8e5206850bb777c74af8421ea8b33779bd/burlap/vm.py#L597-L628
|
def delete(name=None, group=None, release=None, except_release=None,
dryrun=1, verbose=1):
"""
Permanently erase one or more VM instances from existence.
"""
verbose = int(verbose)
if env.vm_type == EC2:
conn = get_ec2_connection()
instances = list_instances(
name=name,
group=group,
release=release,
except_release=except_release,
)
for instance_name, instance_data in instances.items():
public_dns_name = instance_data['public_dns_name']
print('\nDeleting %s (%s)...' \
% (instance_name, instance_data['id']))
if not get_dryrun():
conn.terminate_instances(instance_ids=[instance_data['id']])
# Clear host key on localhost.
known_hosts = os.path.expanduser('~/.ssh/known_hosts')
cmd = 'ssh-keygen -f "%s" -R %s' % (known_hosts, public_dns_name)
local_or_dryrun(cmd)
else:
raise NotImplementedError
|
[
"def",
"delete",
"(",
"name",
"=",
"None",
",",
"group",
"=",
"None",
",",
"release",
"=",
"None",
",",
"except_release",
"=",
"None",
",",
"dryrun",
"=",
"1",
",",
"verbose",
"=",
"1",
")",
":",
"verbose",
"=",
"int",
"(",
"verbose",
")",
"if",
"env",
".",
"vm_type",
"==",
"EC2",
":",
"conn",
"=",
"get_ec2_connection",
"(",
")",
"instances",
"=",
"list_instances",
"(",
"name",
"=",
"name",
",",
"group",
"=",
"group",
",",
"release",
"=",
"release",
",",
"except_release",
"=",
"except_release",
",",
")",
"for",
"instance_name",
",",
"instance_data",
"in",
"instances",
".",
"items",
"(",
")",
":",
"public_dns_name",
"=",
"instance_data",
"[",
"'public_dns_name'",
"]",
"print",
"(",
"'\\nDeleting %s (%s)...'",
"%",
"(",
"instance_name",
",",
"instance_data",
"[",
"'id'",
"]",
")",
")",
"if",
"not",
"get_dryrun",
"(",
")",
":",
"conn",
".",
"terminate_instances",
"(",
"instance_ids",
"=",
"[",
"instance_data",
"[",
"'id'",
"]",
"]",
")",
"# Clear host key on localhost.",
"known_hosts",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"'~/.ssh/known_hosts'",
")",
"cmd",
"=",
"'ssh-keygen -f \"%s\" -R %s'",
"%",
"(",
"known_hosts",
",",
"public_dns_name",
")",
"local_or_dryrun",
"(",
"cmd",
")",
"else",
":",
"raise",
"NotImplementedError"
] |
Permanently erase one or more VM instances from existence.
|
[
"Permanently",
"erase",
"one",
"or",
"more",
"VM",
"instances",
"from",
"existence",
"."
] |
python
|
valid
|
apache/incubator-mxnet
|
plugin/opencv/opencv.py
|
https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/plugin/opencv/opencv.py#L29-L49
|
def imdecode(str_img, flag=1):
"""Decode image from str buffer.
Wrapper for cv2.imdecode that uses mx.nd.NDArray
Parameters
----------
str_img : str
str buffer read from image file
flag : int
same as flag for cv2.imdecode
Returns
-------
img : NDArray
decoded image in (width, height, channels)
with BGR color channel order
"""
hdl = NDArrayHandle()
check_call(_LIB.MXCVImdecode(ctypes.c_char_p(str_img),
mx_uint(len(str_img)),
flag, ctypes.byref(hdl)))
return mx.nd.NDArray(hdl)
|
[
"def",
"imdecode",
"(",
"str_img",
",",
"flag",
"=",
"1",
")",
":",
"hdl",
"=",
"NDArrayHandle",
"(",
")",
"check_call",
"(",
"_LIB",
".",
"MXCVImdecode",
"(",
"ctypes",
".",
"c_char_p",
"(",
"str_img",
")",
",",
"mx_uint",
"(",
"len",
"(",
"str_img",
")",
")",
",",
"flag",
",",
"ctypes",
".",
"byref",
"(",
"hdl",
")",
")",
")",
"return",
"mx",
".",
"nd",
".",
"NDArray",
"(",
"hdl",
")"
] |
Decode image from str buffer.
Wrapper for cv2.imdecode that uses mx.nd.NDArray
Parameters
----------
str_img : str
str buffer read from image file
flag : int
same as flag for cv2.imdecode
Returns
-------
img : NDArray
decoded image in (width, height, channels)
with BGR color channel order
|
[
"Decode",
"image",
"from",
"str",
"buffer",
".",
"Wrapper",
"for",
"cv2",
".",
"imdecode",
"that",
"uses",
"mx",
".",
"nd",
".",
"NDArray"
] |
python
|
train
|
astropy/astropy-helpers
|
astropy_helpers/distutils_helpers.py
|
https://github.com/astropy/astropy-helpers/blob/f5a27d3f84a98ea0eebb85e0cf3e7214c6bc0d09/astropy_helpers/distutils_helpers.py#L226-L254
|
def get_distutils_display_options():
""" Returns a set of all the distutils display options in their long and
short forms. These are the setup.py arguments such as --name or --version
which print the project's metadata and then exit.
Returns
-------
opts : set
The long and short form display option arguments, including the - or --
"""
short_display_opts = set('-' + o[1] for o in Distribution.display_options
if o[1])
long_display_opts = set('--' + o[0] for o in Distribution.display_options)
# Include -h and --help which are not explicitly listed in
# Distribution.display_options (as they are handled by optparse)
short_display_opts.add('-h')
long_display_opts.add('--help')
# This isn't the greatest approach to hardcode these commands.
# However, there doesn't seem to be a good way to determine
# whether build *will be* run as part of the command at this
# phase.
display_commands = set([
'clean', 'register', 'setopt', 'saveopts', 'egg_info',
'alias'])
return short_display_opts.union(long_display_opts.union(display_commands))
|
[
"def",
"get_distutils_display_options",
"(",
")",
":",
"short_display_opts",
"=",
"set",
"(",
"'-'",
"+",
"o",
"[",
"1",
"]",
"for",
"o",
"in",
"Distribution",
".",
"display_options",
"if",
"o",
"[",
"1",
"]",
")",
"long_display_opts",
"=",
"set",
"(",
"'--'",
"+",
"o",
"[",
"0",
"]",
"for",
"o",
"in",
"Distribution",
".",
"display_options",
")",
"# Include -h and --help which are not explicitly listed in",
"# Distribution.display_options (as they are handled by optparse)",
"short_display_opts",
".",
"add",
"(",
"'-h'",
")",
"long_display_opts",
".",
"add",
"(",
"'--help'",
")",
"# This isn't the greatest approach to hardcode these commands.",
"# However, there doesn't seem to be a good way to determine",
"# whether build *will be* run as part of the command at this",
"# phase.",
"display_commands",
"=",
"set",
"(",
"[",
"'clean'",
",",
"'register'",
",",
"'setopt'",
",",
"'saveopts'",
",",
"'egg_info'",
",",
"'alias'",
"]",
")",
"return",
"short_display_opts",
".",
"union",
"(",
"long_display_opts",
".",
"union",
"(",
"display_commands",
")",
")"
] |
Returns a set of all the distutils display options in their long and
short forms. These are the setup.py arguments such as --name or --version
which print the project's metadata and then exit.
Returns
-------
opts : set
The long and short form display option arguments, including the - or --
|
[
"Returns",
"a",
"set",
"of",
"all",
"the",
"distutils",
"display",
"options",
"in",
"their",
"long",
"and",
"short",
"forms",
".",
"These",
"are",
"the",
"setup",
".",
"py",
"arguments",
"such",
"as",
"--",
"name",
"or",
"--",
"version",
"which",
"print",
"the",
"project",
"s",
"metadata",
"and",
"then",
"exit",
"."
] |
python
|
train
|
angr/angr
|
angr/analyses/cfg/segment_list.py
|
https://github.com/angr/angr/blob/4e2f97d56af5419ee73bdb30482c8dd8ff5f3e40/angr/analyses/cfg/segment_list.py#L315-L354
|
def next_pos_with_sort_not_in(self, address, sorts, max_distance=None):
"""
Returns the address of the next occupied block whose sort is not one of the specified ones.
:param int address: The address to begin the search with (including itself).
:param sorts: A collection of sort strings.
:param max_distance: The maximum distance between `address` and the next position. Search will stop after
we come across an occupied position that is beyond `address` + max_distance. This check
will be disabled if `max_distance` is set to None.
:return: The next occupied position whose sort is not one of the specified ones, or None if no such
position exists.
:rtype: int or None
"""
list_length = len(self._list)
idx = self._search(address)
if idx < list_length:
# Occupied
block = self._list[idx]
if max_distance is not None and address + max_distance < block.start:
return None
if block.start <= address < block.end:
# the address is inside the current block
if block.sort not in sorts:
return address
# tick the idx forward by 1
idx += 1
i = idx
while i < list_length:
if max_distance is not None and address + max_distance < self._list[i].start:
return None
if self._list[i].sort not in sorts:
return self._list[i].start
i += 1
return None
|
[
"def",
"next_pos_with_sort_not_in",
"(",
"self",
",",
"address",
",",
"sorts",
",",
"max_distance",
"=",
"None",
")",
":",
"list_length",
"=",
"len",
"(",
"self",
".",
"_list",
")",
"idx",
"=",
"self",
".",
"_search",
"(",
"address",
")",
"if",
"idx",
"<",
"list_length",
":",
"# Occupied",
"block",
"=",
"self",
".",
"_list",
"[",
"idx",
"]",
"if",
"max_distance",
"is",
"not",
"None",
"and",
"address",
"+",
"max_distance",
"<",
"block",
".",
"start",
":",
"return",
"None",
"if",
"block",
".",
"start",
"<=",
"address",
"<",
"block",
".",
"end",
":",
"# the address is inside the current block",
"if",
"block",
".",
"sort",
"not",
"in",
"sorts",
":",
"return",
"address",
"# tick the idx forward by 1",
"idx",
"+=",
"1",
"i",
"=",
"idx",
"while",
"i",
"<",
"list_length",
":",
"if",
"max_distance",
"is",
"not",
"None",
"and",
"address",
"+",
"max_distance",
"<",
"self",
".",
"_list",
"[",
"i",
"]",
".",
"start",
":",
"return",
"None",
"if",
"self",
".",
"_list",
"[",
"i",
"]",
".",
"sort",
"not",
"in",
"sorts",
":",
"return",
"self",
".",
"_list",
"[",
"i",
"]",
".",
"start",
"i",
"+=",
"1",
"return",
"None"
] |
Returns the address of the next occupied block whose sort is not one of the specified ones.
:param int address: The address to begin the search with (including itself).
:param sorts: A collection of sort strings.
:param max_distance: The maximum distance between `address` and the next position. Search will stop after
we come across an occupied position that is beyond `address` + max_distance. This check
will be disabled if `max_distance` is set to None.
:return: The next occupied position whose sort is not one of the specified ones, or None if no such
position exists.
:rtype: int or None
|
[
"Returns",
"the",
"address",
"of",
"the",
"next",
"occupied",
"block",
"whose",
"sort",
"is",
"not",
"one",
"of",
"the",
"specified",
"ones",
"."
] |
python
|
train
|
ralphbean/taskw
|
taskw/utils.py
|
https://github.com/ralphbean/taskw/blob/11e2f9132eaedd157f514538de9b5f3b69c30a52/taskw/utils.py#L164-L183
|
def decode_task(line):
""" Parse a single record (task) from a task database file.
I don't understand why they don't just use JSON or YAML. But
that's okay.
>>> decode_task('[description:"Make a python API for taskwarrior"]')
{'description': 'Make a python API for taskwarrior'}
"""
task = {}
for key, value in re.findall(r'(\w+):"(.*?)(?<!\\)"', line):
value = value.replace('\\"', '"') # unescape quotes
task[key] = value
for unsafe, safe in six.iteritems(decode_replacements):
task[key] = task[key].replace(unsafe, safe)
if 'tags' in task:
task['tags'] = task['tags'].split(',')
return task
|
[
"def",
"decode_task",
"(",
"line",
")",
":",
"task",
"=",
"{",
"}",
"for",
"key",
",",
"value",
"in",
"re",
".",
"findall",
"(",
"r'(\\w+):\"(.*?)(?<!\\\\)\"'",
",",
"line",
")",
":",
"value",
"=",
"value",
".",
"replace",
"(",
"'\\\\\"'",
",",
"'\"'",
")",
"# unescape quotes",
"task",
"[",
"key",
"]",
"=",
"value",
"for",
"unsafe",
",",
"safe",
"in",
"six",
".",
"iteritems",
"(",
"decode_replacements",
")",
":",
"task",
"[",
"key",
"]",
"=",
"task",
"[",
"key",
"]",
".",
"replace",
"(",
"unsafe",
",",
"safe",
")",
"if",
"'tags'",
"in",
"task",
":",
"task",
"[",
"'tags'",
"]",
"=",
"task",
"[",
"'tags'",
"]",
".",
"split",
"(",
"','",
")",
"return",
"task"
] |
Parse a single record (task) from a task database file.
I don't understand why they don't just use JSON or YAML. But
that's okay.
>>> decode_task('[description:"Make a python API for taskwarrior"]')
{'description': 'Make a python API for taskwarrior'}
|
[
"Parse",
"a",
"single",
"record",
"(",
"task",
")",
"from",
"a",
"task",
"database",
"file",
"."
] |
python
|
train
|
learningequality/ricecooker
|
ricecooker/chefs.py
|
https://github.com/learningequality/ricecooker/blob/2f0385282500cb77ef2894646c6f9ce11bd7a853/ricecooker/chefs.py#L443-L477
|
def pre_run(self, args, options):
"""
This function is called before `run` in order to build the json tree.
"""
if 'generate' in args and args['generate']:
self.metadata_provider = CsvMetadataProvider(args['channeldir'],
channelinfo=args['channelinfo'],
contentinfo=args['contentinfo'],
exercisesinfo=args['exercisesinfo'],
questionsinfo=args['questionsinfo'],
validate_and_cache=False)
self.metadata_provider.generate_templates(exercise_questions=True)
self.metadata_provider.generate_contentinfo_from_channeldir(args, options)
sys.exit(0)
elif 'importstudioid' in args and args['importstudioid']:
studio_id = args['importstudioid']
config.LOGGER.info("Calling with importstudioid... " + studio_id)
self.metadata_provider = CsvMetadataProvider(args['channeldir'],
channelinfo=args['channelinfo'],
contentinfo=args['contentinfo'],
exercisesinfo=args['exercisesinfo'],
questionsinfo=args['questionsinfo'],
validate_and_cache=False)
self.metadata_provider.generate_templates(exercise_questions=True)
self.metadata_provider.generate_exercises_from_importstudioid(args, options)
sys.exit(0)
if self.metadata_provider is None:
self._init_metadata_provider(args, options)
kwargs = {} # combined dictionary of argparse args and extra options
kwargs.update(args)
kwargs.update(options)
json_tree_path = self.get_json_tree_path(**kwargs)
build_ricecooker_json_tree(args, options, self.metadata_provider, json_tree_path)
|
[
"def",
"pre_run",
"(",
"self",
",",
"args",
",",
"options",
")",
":",
"if",
"'generate'",
"in",
"args",
"and",
"args",
"[",
"'generate'",
"]",
":",
"self",
".",
"metadata_provider",
"=",
"CsvMetadataProvider",
"(",
"args",
"[",
"'channeldir'",
"]",
",",
"channelinfo",
"=",
"args",
"[",
"'channelinfo'",
"]",
",",
"contentinfo",
"=",
"args",
"[",
"'contentinfo'",
"]",
",",
"exercisesinfo",
"=",
"args",
"[",
"'exercisesinfo'",
"]",
",",
"questionsinfo",
"=",
"args",
"[",
"'questionsinfo'",
"]",
",",
"validate_and_cache",
"=",
"False",
")",
"self",
".",
"metadata_provider",
".",
"generate_templates",
"(",
"exercise_questions",
"=",
"True",
")",
"self",
".",
"metadata_provider",
".",
"generate_contentinfo_from_channeldir",
"(",
"args",
",",
"options",
")",
"sys",
".",
"exit",
"(",
"0",
")",
"elif",
"'importstudioid'",
"in",
"args",
"and",
"args",
"[",
"'importstudioid'",
"]",
":",
"studio_id",
"=",
"args",
"[",
"'importstudioid'",
"]",
"config",
".",
"LOGGER",
".",
"info",
"(",
"\"Calling with importstudioid... \"",
"+",
"studio_id",
")",
"self",
".",
"metadata_provider",
"=",
"CsvMetadataProvider",
"(",
"args",
"[",
"'channeldir'",
"]",
",",
"channelinfo",
"=",
"args",
"[",
"'channelinfo'",
"]",
",",
"contentinfo",
"=",
"args",
"[",
"'contentinfo'",
"]",
",",
"exercisesinfo",
"=",
"args",
"[",
"'exercisesinfo'",
"]",
",",
"questionsinfo",
"=",
"args",
"[",
"'questionsinfo'",
"]",
",",
"validate_and_cache",
"=",
"False",
")",
"self",
".",
"metadata_provider",
".",
"generate_templates",
"(",
"exercise_questions",
"=",
"True",
")",
"self",
".",
"metadata_provider",
".",
"generate_exercises_from_importstudioid",
"(",
"args",
",",
"options",
")",
"sys",
".",
"exit",
"(",
"0",
")",
"if",
"self",
".",
"metadata_provider",
"is",
"None",
":",
"self",
".",
"_init_metadata_provider",
"(",
"args",
",",
"options",
")",
"kwargs",
"=",
"{",
"}",
"# combined dictionary of argparse args and extra options",
"kwargs",
".",
"update",
"(",
"args",
")",
"kwargs",
".",
"update",
"(",
"options",
")",
"json_tree_path",
"=",
"self",
".",
"get_json_tree_path",
"(",
"*",
"*",
"kwargs",
")",
"build_ricecooker_json_tree",
"(",
"args",
",",
"options",
",",
"self",
".",
"metadata_provider",
",",
"json_tree_path",
")"
] |
This function is called before `run` in order to build the json tree.
|
[
"This",
"function",
"is",
"called",
"before",
"run",
"in",
"order",
"to",
"build",
"the",
"json",
"tree",
"."
] |
python
|
train
|
clalancette/pycdlib
|
pycdlib/pycdlib.py
|
https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/pycdlib.py#L1909-L1928
|
def _remove_from_ptr_size(self, ptr):
# type: (path_table_record.PathTableRecord) -> int
'''
An internal method to remove a PTR from a VD, removing space from the VD if
necessary.
Parameters:
ptr - The PTR to remove from the VD.
Returns:
The number of bytes to remove from the VDs (this may be zero).
'''
num_bytes_to_remove = 0
for pvd in self.pvds:
# The remove_from_ptr_size() returns True if the PVD no longer
# needs the extra extents in the PTR that stored this directory.
# We always remove 4 additional extents for that.
if pvd.remove_from_ptr_size(path_table_record.PathTableRecord.record_length(ptr.len_di)):
num_bytes_to_remove += 4 * self.pvd.logical_block_size()
return num_bytes_to_remove
|
[
"def",
"_remove_from_ptr_size",
"(",
"self",
",",
"ptr",
")",
":",
"# type: (path_table_record.PathTableRecord) -> int",
"num_bytes_to_remove",
"=",
"0",
"for",
"pvd",
"in",
"self",
".",
"pvds",
":",
"# The remove_from_ptr_size() returns True if the PVD no longer",
"# needs the extra extents in the PTR that stored this directory.",
"# We always remove 4 additional extents for that.",
"if",
"pvd",
".",
"remove_from_ptr_size",
"(",
"path_table_record",
".",
"PathTableRecord",
".",
"record_length",
"(",
"ptr",
".",
"len_di",
")",
")",
":",
"num_bytes_to_remove",
"+=",
"4",
"*",
"self",
".",
"pvd",
".",
"logical_block_size",
"(",
")",
"return",
"num_bytes_to_remove"
] |
An internal method to remove a PTR from a VD, removing space from the VD if
necessary.
Parameters:
ptr - The PTR to remove from the VD.
Returns:
The number of bytes to remove from the VDs (this may be zero).
|
[
"An",
"internal",
"method",
"to",
"remove",
"a",
"PTR",
"from",
"a",
"VD",
"removing",
"space",
"from",
"the",
"VD",
"if",
"necessary",
"."
] |
python
|
train
|
wavefrontHQ/python-client
|
wavefront_api_client/api/search_api.py
|
https://github.com/wavefrontHQ/python-client/blob/b0f1046a8f68c2c7d69e395f7167241f224c738a/wavefront_api_client/api/search_api.py#L915-L935
|
def search_cloud_integration_entities(self, **kwargs): # noqa: E501
"""Search over a customer's non-deleted cloud integrations # noqa: E501
# noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.search_cloud_integration_entities(async_req=True)
>>> result = thread.get()
:param async_req bool
:param SortableSearchRequest body:
:return: ResponseContainerPagedCloudIntegration
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.search_cloud_integration_entities_with_http_info(**kwargs) # noqa: E501
else:
(data) = self.search_cloud_integration_entities_with_http_info(**kwargs) # noqa: E501
return data
|
[
"def",
"search_cloud_integration_entities",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"# noqa: E501",
"kwargs",
"[",
"'_return_http_data_only'",
"]",
"=",
"True",
"if",
"kwargs",
".",
"get",
"(",
"'async_req'",
")",
":",
"return",
"self",
".",
"search_cloud_integration_entities_with_http_info",
"(",
"*",
"*",
"kwargs",
")",
"# noqa: E501",
"else",
":",
"(",
"data",
")",
"=",
"self",
".",
"search_cloud_integration_entities_with_http_info",
"(",
"*",
"*",
"kwargs",
")",
"# noqa: E501",
"return",
"data"
] |
Search over a customer's non-deleted cloud integrations # noqa: E501
# noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.search_cloud_integration_entities(async_req=True)
>>> result = thread.get()
:param async_req bool
:param SortableSearchRequest body:
:return: ResponseContainerPagedCloudIntegration
If the method is called asynchronously,
returns the request thread.
|
[
"Search",
"over",
"a",
"customer",
"s",
"non",
"-",
"deleted",
"cloud",
"integrations",
"#",
"noqa",
":",
"E501"
] |
python
|
train
|
QuantEcon/QuantEcon.py
|
quantecon/compute_fp.py
|
https://github.com/QuantEcon/QuantEcon.py/blob/26a66c552f2a73967d7efb6e1f4b4c4985a12643/quantecon/compute_fp.py#L285-L352
|
def _initialize_tableaux_ig(X, Y, tableaux, bases):
"""
Given sequences `X` and `Y` of ndarrays, initialize the tableau and
basis arrays in place for the "geometric" imitation game as defined
in McLennan and Tourky (2006), to be passed to `_lemke_howson_tbl`.
Parameters
----------
X, Y : ndarray(float)
Arrays of the same shape (m, n).
tableaux : tuple(ndarray(float, ndim=2))
Tuple of two arrays to be used to store the tableaux, of shape
(2m, 2m). Modified in place.
bases : tuple(ndarray(int, ndim=1))
Tuple of two arrays to be used to store the bases, of shape
(m,). Modified in place.
Returns
-------
tableaux : tuple(ndarray(float, ndim=2))
View to `tableaux`.
bases : tuple(ndarray(int, ndim=1))
View to `bases`.
"""
m = X.shape[0]
min_ = np.zeros(m)
# Mover
for i in range(m):
for j in range(2*m):
if j == i or j == i + m:
tableaux[0][i, j] = 1
else:
tableaux[0][i, j] = 0
# Right hand side
tableaux[0][i, 2*m] = 1
# Imitator
for i in range(m):
# Slack variables
for j in range(m):
if j == i:
tableaux[1][i, j] = 1
else:
tableaux[1][i, j] = 0
# Payoff variables
for j in range(m):
d = X[i] - Y[j]
tableaux[1][i, m+j] = _square_sum(d) * (-1)
if tableaux[1][i, m+j] < min_[j]:
min_[j] = tableaux[1][i, m+j]
# Right hand side
tableaux[1][i, 2*m] = 1
# Shift the payoff values
for i in range(m):
for j in range(m):
tableaux[1][i, m+j] -= min_[j]
tableaux[1][i, m+j] += 1
for pl, start in enumerate([m, 0]):
for i in range(m):
bases[pl][i] = start + i
return tableaux, bases
|
[
"def",
"_initialize_tableaux_ig",
"(",
"X",
",",
"Y",
",",
"tableaux",
",",
"bases",
")",
":",
"m",
"=",
"X",
".",
"shape",
"[",
"0",
"]",
"min_",
"=",
"np",
".",
"zeros",
"(",
"m",
")",
"# Mover",
"for",
"i",
"in",
"range",
"(",
"m",
")",
":",
"for",
"j",
"in",
"range",
"(",
"2",
"*",
"m",
")",
":",
"if",
"j",
"==",
"i",
"or",
"j",
"==",
"i",
"+",
"m",
":",
"tableaux",
"[",
"0",
"]",
"[",
"i",
",",
"j",
"]",
"=",
"1",
"else",
":",
"tableaux",
"[",
"0",
"]",
"[",
"i",
",",
"j",
"]",
"=",
"0",
"# Right hand side",
"tableaux",
"[",
"0",
"]",
"[",
"i",
",",
"2",
"*",
"m",
"]",
"=",
"1",
"# Imitator",
"for",
"i",
"in",
"range",
"(",
"m",
")",
":",
"# Slack variables",
"for",
"j",
"in",
"range",
"(",
"m",
")",
":",
"if",
"j",
"==",
"i",
":",
"tableaux",
"[",
"1",
"]",
"[",
"i",
",",
"j",
"]",
"=",
"1",
"else",
":",
"tableaux",
"[",
"1",
"]",
"[",
"i",
",",
"j",
"]",
"=",
"0",
"# Payoff variables",
"for",
"j",
"in",
"range",
"(",
"m",
")",
":",
"d",
"=",
"X",
"[",
"i",
"]",
"-",
"Y",
"[",
"j",
"]",
"tableaux",
"[",
"1",
"]",
"[",
"i",
",",
"m",
"+",
"j",
"]",
"=",
"_square_sum",
"(",
"d",
")",
"*",
"(",
"-",
"1",
")",
"if",
"tableaux",
"[",
"1",
"]",
"[",
"i",
",",
"m",
"+",
"j",
"]",
"<",
"min_",
"[",
"j",
"]",
":",
"min_",
"[",
"j",
"]",
"=",
"tableaux",
"[",
"1",
"]",
"[",
"i",
",",
"m",
"+",
"j",
"]",
"# Right hand side",
"tableaux",
"[",
"1",
"]",
"[",
"i",
",",
"2",
"*",
"m",
"]",
"=",
"1",
"# Shift the payoff values",
"for",
"i",
"in",
"range",
"(",
"m",
")",
":",
"for",
"j",
"in",
"range",
"(",
"m",
")",
":",
"tableaux",
"[",
"1",
"]",
"[",
"i",
",",
"m",
"+",
"j",
"]",
"-=",
"min_",
"[",
"j",
"]",
"tableaux",
"[",
"1",
"]",
"[",
"i",
",",
"m",
"+",
"j",
"]",
"+=",
"1",
"for",
"pl",
",",
"start",
"in",
"enumerate",
"(",
"[",
"m",
",",
"0",
"]",
")",
":",
"for",
"i",
"in",
"range",
"(",
"m",
")",
":",
"bases",
"[",
"pl",
"]",
"[",
"i",
"]",
"=",
"start",
"+",
"i",
"return",
"tableaux",
",",
"bases"
] |
Given sequences `X` and `Y` of ndarrays, initialize the tableau and
basis arrays in place for the "geometric" imitation game as defined
in McLennan and Tourky (2006), to be passed to `_lemke_howson_tbl`.
Parameters
----------
X, Y : ndarray(float)
Arrays of the same shape (m, n).
tableaux : tuple(ndarray(float, ndim=2))
Tuple of two arrays to be used to store the tableaux, of shape
(2m, 2m). Modified in place.
bases : tuple(ndarray(int, ndim=1))
Tuple of two arrays to be used to store the bases, of shape
(m,). Modified in place.
Returns
-------
tableaux : tuple(ndarray(float, ndim=2))
View to `tableaux`.
bases : tuple(ndarray(int, ndim=1))
View to `bases`.
|
[
"Given",
"sequences",
"X",
"and",
"Y",
"of",
"ndarrays",
"initialize",
"the",
"tableau",
"and",
"basis",
"arrays",
"in",
"place",
"for",
"the",
"geometric",
"imitation",
"game",
"as",
"defined",
"in",
"McLennan",
"and",
"Tourky",
"(",
"2006",
")",
"to",
"be",
"passed",
"to",
"_lemke_howson_tbl",
"."
] |
python
|
train
|
discogs/python-cas-client
|
cas_client/cas_client.py
|
https://github.com/discogs/python-cas-client/blob/f1efa2f49a22d43135014cb1b8d9dd3875304318/cas_client/cas_client.py#L85-L113
|
def get_api_url(
self,
api_resource,
auth_token_ticket,
authenticator,
private_key,
service_url=None,
**kwargs
):
'''
Build an auth-token-protected CAS API url.
'''
auth_token, auth_token_signature = self._build_auth_token_data(
auth_token_ticket,
authenticator,
private_key,
**kwargs
)
params = {
'at': auth_token,
'ats': auth_token_signature,
}
if service_url is not None:
params['service'] = service_url
url = '{}?{}'.format(
self._get_api_url(api_resource),
urlencode(params),
)
return url
|
[
"def",
"get_api_url",
"(",
"self",
",",
"api_resource",
",",
"auth_token_ticket",
",",
"authenticator",
",",
"private_key",
",",
"service_url",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"auth_token",
",",
"auth_token_signature",
"=",
"self",
".",
"_build_auth_token_data",
"(",
"auth_token_ticket",
",",
"authenticator",
",",
"private_key",
",",
"*",
"*",
"kwargs",
")",
"params",
"=",
"{",
"'at'",
":",
"auth_token",
",",
"'ats'",
":",
"auth_token_signature",
",",
"}",
"if",
"service_url",
"is",
"not",
"None",
":",
"params",
"[",
"'service'",
"]",
"=",
"service_url",
"url",
"=",
"'{}?{}'",
".",
"format",
"(",
"self",
".",
"_get_api_url",
"(",
"api_resource",
")",
",",
"urlencode",
"(",
"params",
")",
",",
")",
"return",
"url"
] |
Build an auth-token-protected CAS API url.
|
[
"Build",
"an",
"auth",
"-",
"token",
"-",
"protected",
"CAS",
"API",
"url",
"."
] |
python
|
train
|
aegirhall/console-menu
|
consolemenu/console_menu.py
|
https://github.com/aegirhall/console-menu/blob/1a28959d6f1dd6ac79c87b11efd8529d05532422/consolemenu/console_menu.py#L102-L114
|
def append_item(self, item):
"""
Add an item to the end of the menu before the exit item.
Args:
item (MenuItem): The item to be added.
"""
did_remove = self.remove_exit()
item.menu = self
self.items.append(item)
if did_remove:
self.add_exit()
|
[
"def",
"append_item",
"(",
"self",
",",
"item",
")",
":",
"did_remove",
"=",
"self",
".",
"remove_exit",
"(",
")",
"item",
".",
"menu",
"=",
"self",
"self",
".",
"items",
".",
"append",
"(",
"item",
")",
"if",
"did_remove",
":",
"self",
".",
"add_exit",
"(",
")"
] |
Add an item to the end of the menu before the exit item.
Args:
item (MenuItem): The item to be added.
|
[
"Add",
"an",
"item",
"to",
"the",
"end",
"of",
"the",
"menu",
"before",
"the",
"exit",
"item",
"."
] |
python
|
train
|
minhhoit/yacms
|
yacms/utils/docs.py
|
https://github.com/minhhoit/yacms/blob/2921b706b7107c6e8c5f2bbf790ff11f85a2167f/yacms/utils/docs.py#L288-L302
|
def build_requirements(docs_path, package_name="yacms"):
"""
Updates the requirements file with yacms's version number.
"""
mezz_string = "yacms=="
project_path = os.path.join(docs_path, "..")
requirements_file = os.path.join(project_path, package_name,
"project_template", "requirements.txt")
with open(requirements_file, "r") as f:
requirements = f.readlines()
with open(requirements_file, "w") as f:
f.write("yacms==%s\n" % __version__)
for requirement in requirements:
if requirement.strip() and not requirement.startswith(mezz_string):
f.write(requirement)
|
[
"def",
"build_requirements",
"(",
"docs_path",
",",
"package_name",
"=",
"\"yacms\"",
")",
":",
"mezz_string",
"=",
"\"yacms==\"",
"project_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"docs_path",
",",
"\"..\"",
")",
"requirements_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"project_path",
",",
"package_name",
",",
"\"project_template\"",
",",
"\"requirements.txt\"",
")",
"with",
"open",
"(",
"requirements_file",
",",
"\"r\"",
")",
"as",
"f",
":",
"requirements",
"=",
"f",
".",
"readlines",
"(",
")",
"with",
"open",
"(",
"requirements_file",
",",
"\"w\"",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"\"yacms==%s\\n\"",
"%",
"__version__",
")",
"for",
"requirement",
"in",
"requirements",
":",
"if",
"requirement",
".",
"strip",
"(",
")",
"and",
"not",
"requirement",
".",
"startswith",
"(",
"mezz_string",
")",
":",
"f",
".",
"write",
"(",
"requirement",
")"
] |
Updates the requirements file with yacms's version number.
|
[
"Updates",
"the",
"requirements",
"file",
"with",
"yacms",
"s",
"version",
"number",
"."
] |
python
|
train
|
IAMconsortium/pyam
|
pyam/core.py
|
https://github.com/IAMconsortium/pyam/blob/4077929ca6e7be63a0e3ecf882c5f1da97b287bf/pyam/core.py#L248-L290
|
def pivot_table(self, index, columns, values='value',
aggfunc='count', fill_value=None, style=None):
"""Returns a pivot table
Parameters
----------
index: str or list of strings
rows for Pivot table
columns: str or list of strings
columns for Pivot table
values: str, default 'value'
dataframe column to aggregate or count
aggfunc: str or function, default 'count'
function used for aggregation,
accepts 'count', 'mean', and 'sum'
fill_value: scalar, default None
value to replace missing values with
style: str, default None
output style for pivot table formatting
accepts 'highlight_not_max', 'heatmap'
"""
index = [index] if isstr(index) else index
columns = [columns] if isstr(columns) else columns
df = self.data
# allow 'aggfunc' to be passed as string for easier user interface
if isstr(aggfunc):
if aggfunc == 'count':
df = self.data.groupby(index + columns, as_index=False).count()
fill_value = 0
elif aggfunc == 'mean':
df = self.data.groupby(index + columns, as_index=False).mean()\
.round(2)
aggfunc = np.sum
fill_value = 0 if style == 'heatmap' else ""
elif aggfunc == 'sum':
aggfunc = np.sum
fill_value = 0 if style == 'heatmap' else ""
df = df.pivot_table(values=values, index=index, columns=columns,
aggfunc=aggfunc, fill_value=fill_value)
return df
|
[
"def",
"pivot_table",
"(",
"self",
",",
"index",
",",
"columns",
",",
"values",
"=",
"'value'",
",",
"aggfunc",
"=",
"'count'",
",",
"fill_value",
"=",
"None",
",",
"style",
"=",
"None",
")",
":",
"index",
"=",
"[",
"index",
"]",
"if",
"isstr",
"(",
"index",
")",
"else",
"index",
"columns",
"=",
"[",
"columns",
"]",
"if",
"isstr",
"(",
"columns",
")",
"else",
"columns",
"df",
"=",
"self",
".",
"data",
"# allow 'aggfunc' to be passed as string for easier user interface",
"if",
"isstr",
"(",
"aggfunc",
")",
":",
"if",
"aggfunc",
"==",
"'count'",
":",
"df",
"=",
"self",
".",
"data",
".",
"groupby",
"(",
"index",
"+",
"columns",
",",
"as_index",
"=",
"False",
")",
".",
"count",
"(",
")",
"fill_value",
"=",
"0",
"elif",
"aggfunc",
"==",
"'mean'",
":",
"df",
"=",
"self",
".",
"data",
".",
"groupby",
"(",
"index",
"+",
"columns",
",",
"as_index",
"=",
"False",
")",
".",
"mean",
"(",
")",
".",
"round",
"(",
"2",
")",
"aggfunc",
"=",
"np",
".",
"sum",
"fill_value",
"=",
"0",
"if",
"style",
"==",
"'heatmap'",
"else",
"\"\"",
"elif",
"aggfunc",
"==",
"'sum'",
":",
"aggfunc",
"=",
"np",
".",
"sum",
"fill_value",
"=",
"0",
"if",
"style",
"==",
"'heatmap'",
"else",
"\"\"",
"df",
"=",
"df",
".",
"pivot_table",
"(",
"values",
"=",
"values",
",",
"index",
"=",
"index",
",",
"columns",
"=",
"columns",
",",
"aggfunc",
"=",
"aggfunc",
",",
"fill_value",
"=",
"fill_value",
")",
"return",
"df"
] |
Returns a pivot table
Parameters
----------
index: str or list of strings
rows for Pivot table
columns: str or list of strings
columns for Pivot table
values: str, default 'value'
dataframe column to aggregate or count
aggfunc: str or function, default 'count'
function used for aggregation,
accepts 'count', 'mean', and 'sum'
fill_value: scalar, default None
value to replace missing values with
style: str, default None
output style for pivot table formatting
accepts 'highlight_not_max', 'heatmap'
|
[
"Returns",
"a",
"pivot",
"table"
] |
python
|
train
|
CZ-NIC/yangson
|
yangson/schemanode.py
|
https://github.com/CZ-NIC/yangson/blob/a4b9464041fa8b28f6020a420ababf18fddf5d4a/yangson/schemanode.py#L619-L621
|
def _choice_stmt(self, stmt: Statement, sctx: SchemaContext) -> None:
"""Handle choice statement."""
self._handle_child(ChoiceNode(), stmt, sctx)
|
[
"def",
"_choice_stmt",
"(",
"self",
",",
"stmt",
":",
"Statement",
",",
"sctx",
":",
"SchemaContext",
")",
"->",
"None",
":",
"self",
".",
"_handle_child",
"(",
"ChoiceNode",
"(",
")",
",",
"stmt",
",",
"sctx",
")"
] |
Handle choice statement.
|
[
"Handle",
"choice",
"statement",
"."
] |
python
|
train
|
openstack/proliantutils
|
proliantutils/redfish/resources/manager/virtual_media.py
|
https://github.com/openstack/proliantutils/blob/86ef3b47b4eca97c221577e3570b0240d6a25f22/proliantutils/redfish/resources/manager/virtual_media.py#L93-L106
|
def set_vm_status(self, boot_on_next_reset):
"""Set the Virtual Media drive status.
:param boot_on_next_reset: boolean value
:raises: SushyError, on an error from iLO.
"""
data = {
"Oem": {
"Hpe": {
"BootOnNextServerReset": boot_on_next_reset
}
}
}
self._conn.patch(self.path, data=data)
|
[
"def",
"set_vm_status",
"(",
"self",
",",
"boot_on_next_reset",
")",
":",
"data",
"=",
"{",
"\"Oem\"",
":",
"{",
"\"Hpe\"",
":",
"{",
"\"BootOnNextServerReset\"",
":",
"boot_on_next_reset",
"}",
"}",
"}",
"self",
".",
"_conn",
".",
"patch",
"(",
"self",
".",
"path",
",",
"data",
"=",
"data",
")"
] |
Set the Virtual Media drive status.
:param boot_on_next_reset: boolean value
:raises: SushyError, on an error from iLO.
|
[
"Set",
"the",
"Virtual",
"Media",
"drive",
"status",
"."
] |
python
|
train
|
pricingassistant/mrq
|
mrq/queue.py
|
https://github.com/pricingassistant/mrq/blob/d0a5a34de9cba38afa94fb7c9e17f9b570b79a50/mrq/queue.py#L211-L224
|
def all(cls):
""" List all queues in MongoDB via aggregation, with their queued jobs counts. Might be slow. """
# Start with raw queues we know exist from the config
queues = {x: 0 for x in Queue.get_queues_config()}
stats = list(context.connections.mongodb_jobs.mrq_jobs.aggregate([
{"$match": {"status": "queued"}},
{"$group": {"_id": "$queue", "jobs": {"$sum": 1}}}
]))
queues.update({x["_id"]: x["jobs"] for x in stats})
return queues
|
[
"def",
"all",
"(",
"cls",
")",
":",
"# Start with raw queues we know exist from the config",
"queues",
"=",
"{",
"x",
":",
"0",
"for",
"x",
"in",
"Queue",
".",
"get_queues_config",
"(",
")",
"}",
"stats",
"=",
"list",
"(",
"context",
".",
"connections",
".",
"mongodb_jobs",
".",
"mrq_jobs",
".",
"aggregate",
"(",
"[",
"{",
"\"$match\"",
":",
"{",
"\"status\"",
":",
"\"queued\"",
"}",
"}",
",",
"{",
"\"$group\"",
":",
"{",
"\"_id\"",
":",
"\"$queue\"",
",",
"\"jobs\"",
":",
"{",
"\"$sum\"",
":",
"1",
"}",
"}",
"}",
"]",
")",
")",
"queues",
".",
"update",
"(",
"{",
"x",
"[",
"\"_id\"",
"]",
":",
"x",
"[",
"\"jobs\"",
"]",
"for",
"x",
"in",
"stats",
"}",
")",
"return",
"queues"
] |
List all queues in MongoDB via aggregation, with their queued jobs counts. Might be slow.
|
[
"List",
"all",
"queues",
"in",
"MongoDB",
"via",
"aggregation",
"with",
"their",
"queued",
"jobs",
"counts",
".",
"Might",
"be",
"slow",
"."
] |
python
|
train
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.