repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
KimiNewt/pyshark
src/pyshark/packet/fields.py
https://github.com/KimiNewt/pyshark/blob/089ea6208c4321f03bc548f491e00a053285918f/src/pyshark/packet/fields.py#L56-L64
def binary_value(self): """ Converts this field to binary (assuming it's a binary string) """ str_raw_value = str(self.raw_value) if len(str_raw_value) % 2 == 1: str_raw_value = '0' + str_raw_value return binascii.unhexlify(str_raw_value)
[ "def", "binary_value", "(", "self", ")", ":", "str_raw_value", "=", "str", "(", "self", ".", "raw_value", ")", "if", "len", "(", "str_raw_value", ")", "%", "2", "==", "1", ":", "str_raw_value", "=", "'0'", "+", "str_raw_value", "return", "binascii", ".", "unhexlify", "(", "str_raw_value", ")" ]
Converts this field to binary (assuming it's a binary string)
[ "Converts", "this", "field", "to", "binary", "(", "assuming", "it", "s", "a", "binary", "string", ")" ]
python
train
ZELLMECHANIK-DRESDEN/dclab
dclab/features/bright.py
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/features/bright.py#L12-L85
def get_bright(mask, image, ret_data="avg,sd"): """Compute avg and/or std of the event brightness The event brightness is defined by the gray-scale values of the image data within the event mask area. Parameters ---------- mask: ndarray or list of ndarrays of shape (M,N) and dtype bool The mask values, True where the event is located in `image`. image: ndarray or list of ndarrays of shape (M,N) A 2D array that holds the image in form of grayscale values of an event. ret_data: str A comma-separated list of metrices to compute - "avg": compute the average - "sd": compute the standard deviation Selected metrics are returned in alphabetical order. Returns ------- bright_avg: float or ndarray of size N Average image data within the contour bright_std: float or ndarray of size N Standard deviation of image data within the contour """ # This method is based on a pull request by Maik Herbig. ret_avg = "avg" in ret_data ret_std = "sd" in ret_data if ret_avg + ret_std == 0: raise ValueError("No valid metrices selected!") if isinstance(mask, np.ndarray) and len(mask.shape) == 2: # We have a single image image = [image] mask = [mask] ret_list = False else: ret_list = True length = min(len(mask), len(image)) # Results are stored in a separate array initialized with nans if ret_avg: avg = np.zeros(length, dtype=float) * np.nan if ret_std: std = np.zeros(length, dtype=float) * np.nan for ii in range(length): imgi = image[ii] mski = mask[ii] # Assign results if ret_avg: avg[ii] = np.mean(imgi[mski]) if ret_std: std[ii] = np.std(imgi[mski]) results = [] # Keep alphabetical order if ret_avg: results.append(avg) if ret_std: results.append(std) if not ret_list: # Only return scalars results = [r[0] for r in results] if ret_avg+ret_std == 1: # Only return one column return results[0] return results
[ "def", "get_bright", "(", "mask", ",", "image", ",", "ret_data", "=", "\"avg,sd\"", ")", ":", "# This method is based on a pull request by Maik Herbig.", "ret_avg", "=", "\"avg\"", "in", "ret_data", "ret_std", "=", "\"sd\"", "in", "ret_data", "if", "ret_avg", "+", "ret_std", "==", "0", ":", "raise", "ValueError", "(", "\"No valid metrices selected!\"", ")", "if", "isinstance", "(", "mask", ",", "np", ".", "ndarray", ")", "and", "len", "(", "mask", ".", "shape", ")", "==", "2", ":", "# We have a single image", "image", "=", "[", "image", "]", "mask", "=", "[", "mask", "]", "ret_list", "=", "False", "else", ":", "ret_list", "=", "True", "length", "=", "min", "(", "len", "(", "mask", ")", ",", "len", "(", "image", ")", ")", "# Results are stored in a separate array initialized with nans", "if", "ret_avg", ":", "avg", "=", "np", ".", "zeros", "(", "length", ",", "dtype", "=", "float", ")", "*", "np", ".", "nan", "if", "ret_std", ":", "std", "=", "np", ".", "zeros", "(", "length", ",", "dtype", "=", "float", ")", "*", "np", ".", "nan", "for", "ii", "in", "range", "(", "length", ")", ":", "imgi", "=", "image", "[", "ii", "]", "mski", "=", "mask", "[", "ii", "]", "# Assign results", "if", "ret_avg", ":", "avg", "[", "ii", "]", "=", "np", ".", "mean", "(", "imgi", "[", "mski", "]", ")", "if", "ret_std", ":", "std", "[", "ii", "]", "=", "np", ".", "std", "(", "imgi", "[", "mski", "]", ")", "results", "=", "[", "]", "# Keep alphabetical order", "if", "ret_avg", ":", "results", ".", "append", "(", "avg", ")", "if", "ret_std", ":", "results", ".", "append", "(", "std", ")", "if", "not", "ret_list", ":", "# Only return scalars", "results", "=", "[", "r", "[", "0", "]", "for", "r", "in", "results", "]", "if", "ret_avg", "+", "ret_std", "==", "1", ":", "# Only return one column", "return", "results", "[", "0", "]", "return", "results" ]
Compute avg and/or std of the event brightness The event brightness is defined by the gray-scale values of the image data within the event mask area. Parameters ---------- mask: ndarray or list of ndarrays of shape (M,N) and dtype bool The mask values, True where the event is located in `image`. image: ndarray or list of ndarrays of shape (M,N) A 2D array that holds the image in form of grayscale values of an event. ret_data: str A comma-separated list of metrices to compute - "avg": compute the average - "sd": compute the standard deviation Selected metrics are returned in alphabetical order. Returns ------- bright_avg: float or ndarray of size N Average image data within the contour bright_std: float or ndarray of size N Standard deviation of image data within the contour
[ "Compute", "avg", "and", "/", "or", "std", "of", "the", "event", "brightness" ]
python
train
tensorflow/probability
tensorflow_probability/python/math/root_search.py
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/math/root_search.py#L44-L321
def secant_root(objective_fn, initial_position, next_position=None, value_at_position=None, position_tolerance=1e-8, value_tolerance=1e-8, max_iterations=50, stopping_policy_fn=tf.reduce_all, validate_args=False, name=None): r"""Finds root(s) of a function of single variable using the secant method. The [secant method](https://en.wikipedia.org/wiki/Secant_method) is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function. The secant method can be thought of as a finite-difference approximation of Newton's method. Args: objective_fn: Python callable for which roots are searched. It must be a callable of a single variable. `objective_fn` must return a `Tensor` of the same shape and dtype as `initial_position`. initial_position: `Tensor` or Python float representing the starting position. The function will search for roots in the neighborhood of each point. The shape of `initial_position` should match that of the input to `objective_fn`. next_position: Optional `Tensor` representing the next position in the search. If specified, this argument must broadcast with the shape of `initial_position` and have the same dtype. It will be used to compute the first step to take when searching for roots. If not specified, a default value will be used instead. Default value: `initial_position * (1 + 1e-4) + sign(initial_position) * 1e-4`. value_at_position: Optional `Tensor` or Pyhon float representing the value of `objective_fn` at `initial_position`. If specified, this argument must have the same shape and dtype as `initial_position`. If not specified, the value will be evaluated during the search. Default value: None. position_tolerance: Optional `Tensor` representing the tolerance for the estimated roots. If specified, this argument must broadcast with the shape of `initial_position` and have the same dtype. Default value: `1e-8`. value_tolerance: Optional `Tensor` representing the tolerance used to check for roots. If the absolute value of `objective_fn` is smaller than `value_tolerance` at a given position, then that position is considered a root for the function. If specified, this argument must broadcast with the shape of `initial_position` and have the same dtype. Default value: `1e-8`. max_iterations: Optional `Tensor` or Python integer specifying the maximum number of steps to perform for each initial position. Must broadcast with the shape of `initial_position`. Default value: `50`. stopping_policy_fn: Python `callable` controlling the algorithm termination. It must be a callable accepting a `Tensor` of booleans with the shape of `initial_position` (each denoting whether the search is finished for each starting point), and returning a scalar boolean `Tensor` (indicating whether the overall search should stop). Typical values are `tf.reduce_all` (which returns only when the search is finished for all points), and `tf.reduce_any` (which returns as soon as the search is finished for any point). Default value: `tf.reduce_all` (returns only when the search is finished for all points). validate_args: Python `bool` indicating whether to validate arguments such as `position_tolerance`, `value_tolerance`, and `max_iterations`. Default value: `False`. name: Python `str` name prefixed to ops created by this function. Returns: root_search_results: A Python `namedtuple` containing the following items: estimated_root: `Tensor` containing the last position explored. If the search was successful within the specified tolerance, this position is a root of the objective function. objective_at_estimated_root: `Tensor` containing the value of the objective function at `position`. If the search was successful within the specified tolerance, then this is close to 0. num_iterations: The number of iterations performed. Raises: ValueError: if a non-callable `stopping_policy_fn` is passed. #### Examples ```python import tensorflow as tf import tensorflow_probability as tfp tf.enable_eager_execution() # Example 1: Roots of a single function from two different starting points. f = lambda x: (63 * x**5 - 70 * x**3 + 15 * x) / 8. x = tf.constant([-1, 10], dtype=tf.float64) tfp.math.secant_root(objective_fn=f, initial_position=x)) # ==> RootSearchResults( estimated_root=array([-0.90617985, 0.90617985]), objective_at_estimated_root=array([-4.81727769e-10, 7.44957651e-10]), num_iterations=array([ 7, 24], dtype=int32)) tfp.math.secant_root(objective_fn=f, initial_position=x, stopping_policy_fn=tf.reduce_any) # ==> RootSearchResults( estimated_root=array([-0.90617985, 3.27379206]), objective_at_estimated_root=array([-4.81727769e-10, 2.66058312e+03]), num_iterations=array([7, 8], dtype=int32)) # Example 2: Roots of a multiplex function from a single starting point. def f(x): return tf.constant([0., 63. / 8], dtype=tf.float64) * x**5 \ + tf.constant([5. / 2, -70. / 8], dtype=tf.float64) * x**3 \ + tf.constant([-3. / 2, 15. / 8], dtype=tf.float64) * x x = tf.constant([-1, -1], dtype=tf.float64) tfp.math.secant_root(objective_fn=f, initial_position=x) # ==> RootSearchResults( estimated_root=array([-0.77459667, -0.90617985]), objective_at_estimated_root=array([-7.81339438e-11, -4.81727769e-10]), num_iterations=array([7, 7], dtype=int32)) # Example 3: Roots of a multiplex function from two starting points. def f(x): return tf.constant([0., 63. / 8], dtype=tf.float64) * x**5 \ + tf.constant([5. / 2, -70. / 8], dtype=tf.float64) * x**3 \ + tf.constant([-3. / 2, 15. / 8], dtype=tf.float64) * x x = tf.constant([[-1, -1], [10, 10]], dtype=tf.float64) tfp.math.secant_root(objective_fn=f, initial_position=x) # ==> RootSearchResults( estimated_root=array([ [-0.77459667, -0.90617985], [ 0.77459667, 0.90617985]]), objective_at_estimated_root=array([ [-7.81339438e-11, -4.81727769e-10], [6.66025013e-11, 7.44957651e-10]]), num_iterations=array([ [7, 7], [16, 24]], dtype=int32)) ``` """ if not callable(stopping_policy_fn): raise ValueError('stopping_policy_fn must be callable') position = tf.convert_to_tensor( value=initial_position, name='position', ) value_at_position = tf.convert_to_tensor( value=value_at_position or objective_fn(position), name='value_at_position', dtype=position.dtype.base_dtype) zero = tf.zeros_like(position) position_tolerance = tf.convert_to_tensor( value=position_tolerance, name='position_tolerance', dtype=position.dtype) value_tolerance = tf.convert_to_tensor( value=value_tolerance, name='value_tolerance', dtype=position.dtype) num_iterations = tf.zeros_like(position, dtype=tf.int32) max_iterations = tf.convert_to_tensor(value=max_iterations, dtype=tf.int32) max_iterations = tf.broadcast_to( max_iterations, name='max_iterations', shape=position.shape) # Compute the step from `next_position` if present. This covers the case where # a user has two starting points, which bound the root or has a specific step # size in mind. if next_position is None: epsilon = tf.constant(1e-4, dtype=position.dtype, shape=position.shape) step = position * epsilon + tf.sign(position) * epsilon else: step = next_position - initial_position finished = tf.constant(False, shape=position.shape) # Negate `stopping_condition` to determine if the search should continue. # This means, in particular, that tf.reduce_*all* will return only when the # search is finished for *all* starting points. def _should_continue(position, value_at_position, num_iterations, step, finished): """Indicates whether the overall search should continue. Args: position: `Tensor` containing the current root estimates. value_at_position: `Tensor` containing the value of `objective_fn` at `position`. num_iterations: `Tensor` containing the current iteration index for each point. step: `Tensor` containing the size of the step to take for each point. finished: `Tensor` indicating for which points the search is finished. Returns: A boolean value indicating whether the overall search should continue. """ del position, value_at_position, num_iterations, step # Unused return ~tf.convert_to_tensor( value=stopping_policy_fn(finished), name='should_stop', dtype=tf.bool) # For each point in `position`, the search is stopped if either: # (1) A root has been found # (2) f(position) == f(position + step) # (3) The maximum number of iterations has been reached # In case (2), the search may be stopped both before the desired tolerance is # achieved (or even a root is found), and the maximum number of iterations is # reached. def _body(position, value_at_position, num_iterations, step, finished): """Performs one iteration of the secant root-finding algorithm. Args: position: `Tensor` containing the current root estimates. value_at_position: `Tensor` containing the value of `objective_fn` at `position`. num_iterations: `Tensor` containing the current iteration index for each point. step: `Tensor` containing the size of the step to take for each point. finished: `Tensor` indicating for which points the search is finished. Returns: The `Tensor`s to use for the next iteration of the algorithm. """ # True if the search was already finished, or (1) or (3) just became true. was_finished = finished | (num_iterations >= max_iterations) | ( tf.abs(step) < position_tolerance) | ( tf.abs(value_at_position) < value_tolerance) # Compute the next position and the value at that point. next_position = tf.where(was_finished, position, position + step) value_at_next_position = tf.where(was_finished, value_at_position, objective_fn(next_position)) # True if the search was already finished, or (2) just became true. is_finished = tf.equal(value_at_position, value_at_next_position) # Use the mid-point between the last two positions if (2) just became true. next_position = tf.where(is_finished & ~was_finished, (position + next_position) * 0.5, next_position) # Once finished, stop updating the iteration index and set the step to zero. num_iterations = tf.where(is_finished, num_iterations, num_iterations + 1) next_step = tf.where( is_finished, zero, step * value_at_next_position / (value_at_position - value_at_next_position)) return (next_position, value_at_next_position, num_iterations, next_step, is_finished) with tf.compat.v1.name_scope( name, 'secant_root', [position, next_position, value_at_position, max_iterations]): assertions = [] if validate_args: assertions += [ tf.Assert( tf.reduce_all(input_tensor=position_tolerance > zero), [position_tolerance]), tf.Assert( tf.reduce_all(input_tensor=value_tolerance > zero), [value_tolerance]), tf.Assert( tf.reduce_all(input_tensor=max_iterations >= num_iterations), [max_iterations]), ] with tf.control_dependencies(assertions): root, value_at_root, num_iterations, _, _ = tf.while_loop( cond=_should_continue, body=_body, loop_vars=[ position, value_at_position, num_iterations, step, finished ]) return RootSearchResults( estimated_root=root, objective_at_estimated_root=value_at_root, num_iterations=num_iterations)
[ "def", "secant_root", "(", "objective_fn", ",", "initial_position", ",", "next_position", "=", "None", ",", "value_at_position", "=", "None", ",", "position_tolerance", "=", "1e-8", ",", "value_tolerance", "=", "1e-8", ",", "max_iterations", "=", "50", ",", "stopping_policy_fn", "=", "tf", ".", "reduce_all", ",", "validate_args", "=", "False", ",", "name", "=", "None", ")", ":", "if", "not", "callable", "(", "stopping_policy_fn", ")", ":", "raise", "ValueError", "(", "'stopping_policy_fn must be callable'", ")", "position", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "initial_position", ",", "name", "=", "'position'", ",", ")", "value_at_position", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "value_at_position", "or", "objective_fn", "(", "position", ")", ",", "name", "=", "'value_at_position'", ",", "dtype", "=", "position", ".", "dtype", ".", "base_dtype", ")", "zero", "=", "tf", ".", "zeros_like", "(", "position", ")", "position_tolerance", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "position_tolerance", ",", "name", "=", "'position_tolerance'", ",", "dtype", "=", "position", ".", "dtype", ")", "value_tolerance", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "value_tolerance", ",", "name", "=", "'value_tolerance'", ",", "dtype", "=", "position", ".", "dtype", ")", "num_iterations", "=", "tf", ".", "zeros_like", "(", "position", ",", "dtype", "=", "tf", ".", "int32", ")", "max_iterations", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "max_iterations", ",", "dtype", "=", "tf", ".", "int32", ")", "max_iterations", "=", "tf", ".", "broadcast_to", "(", "max_iterations", ",", "name", "=", "'max_iterations'", ",", "shape", "=", "position", ".", "shape", ")", "# Compute the step from `next_position` if present. This covers the case where", "# a user has two starting points, which bound the root or has a specific step", "# size in mind.", "if", "next_position", "is", "None", ":", "epsilon", "=", "tf", ".", "constant", "(", "1e-4", ",", "dtype", "=", "position", ".", "dtype", ",", "shape", "=", "position", ".", "shape", ")", "step", "=", "position", "*", "epsilon", "+", "tf", ".", "sign", "(", "position", ")", "*", "epsilon", "else", ":", "step", "=", "next_position", "-", "initial_position", "finished", "=", "tf", ".", "constant", "(", "False", ",", "shape", "=", "position", ".", "shape", ")", "# Negate `stopping_condition` to determine if the search should continue.", "# This means, in particular, that tf.reduce_*all* will return only when the", "# search is finished for *all* starting points.", "def", "_should_continue", "(", "position", ",", "value_at_position", ",", "num_iterations", ",", "step", ",", "finished", ")", ":", "\"\"\"Indicates whether the overall search should continue.\n\n Args:\n position: `Tensor` containing the current root estimates.\n value_at_position: `Tensor` containing the value of `objective_fn` at\n `position`.\n num_iterations: `Tensor` containing the current iteration index for each\n point.\n step: `Tensor` containing the size of the step to take for each point.\n finished: `Tensor` indicating for which points the search is finished.\n\n Returns:\n A boolean value indicating whether the overall search should continue.\n \"\"\"", "del", "position", ",", "value_at_position", ",", "num_iterations", ",", "step", "# Unused", "return", "~", "tf", ".", "convert_to_tensor", "(", "value", "=", "stopping_policy_fn", "(", "finished", ")", ",", "name", "=", "'should_stop'", ",", "dtype", "=", "tf", ".", "bool", ")", "# For each point in `position`, the search is stopped if either:", "# (1) A root has been found", "# (2) f(position) == f(position + step)", "# (3) The maximum number of iterations has been reached", "# In case (2), the search may be stopped both before the desired tolerance is", "# achieved (or even a root is found), and the maximum number of iterations is", "# reached.", "def", "_body", "(", "position", ",", "value_at_position", ",", "num_iterations", ",", "step", ",", "finished", ")", ":", "\"\"\"Performs one iteration of the secant root-finding algorithm.\n\n Args:\n position: `Tensor` containing the current root estimates.\n value_at_position: `Tensor` containing the value of `objective_fn` at\n `position`.\n num_iterations: `Tensor` containing the current iteration index for each\n point.\n step: `Tensor` containing the size of the step to take for each point.\n finished: `Tensor` indicating for which points the search is finished.\n\n Returns:\n The `Tensor`s to use for the next iteration of the algorithm.\n \"\"\"", "# True if the search was already finished, or (1) or (3) just became true.", "was_finished", "=", "finished", "|", "(", "num_iterations", ">=", "max_iterations", ")", "|", "(", "tf", ".", "abs", "(", "step", ")", "<", "position_tolerance", ")", "|", "(", "tf", ".", "abs", "(", "value_at_position", ")", "<", "value_tolerance", ")", "# Compute the next position and the value at that point.", "next_position", "=", "tf", ".", "where", "(", "was_finished", ",", "position", ",", "position", "+", "step", ")", "value_at_next_position", "=", "tf", ".", "where", "(", "was_finished", ",", "value_at_position", ",", "objective_fn", "(", "next_position", ")", ")", "# True if the search was already finished, or (2) just became true.", "is_finished", "=", "tf", ".", "equal", "(", "value_at_position", ",", "value_at_next_position", ")", "# Use the mid-point between the last two positions if (2) just became true.", "next_position", "=", "tf", ".", "where", "(", "is_finished", "&", "~", "was_finished", ",", "(", "position", "+", "next_position", ")", "*", "0.5", ",", "next_position", ")", "# Once finished, stop updating the iteration index and set the step to zero.", "num_iterations", "=", "tf", ".", "where", "(", "is_finished", ",", "num_iterations", ",", "num_iterations", "+", "1", ")", "next_step", "=", "tf", ".", "where", "(", "is_finished", ",", "zero", ",", "step", "*", "value_at_next_position", "/", "(", "value_at_position", "-", "value_at_next_position", ")", ")", "return", "(", "next_position", ",", "value_at_next_position", ",", "num_iterations", ",", "next_step", ",", "is_finished", ")", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "'secant_root'", ",", "[", "position", ",", "next_position", ",", "value_at_position", ",", "max_iterations", "]", ")", ":", "assertions", "=", "[", "]", "if", "validate_args", ":", "assertions", "+=", "[", "tf", ".", "Assert", "(", "tf", ".", "reduce_all", "(", "input_tensor", "=", "position_tolerance", ">", "zero", ")", ",", "[", "position_tolerance", "]", ")", ",", "tf", ".", "Assert", "(", "tf", ".", "reduce_all", "(", "input_tensor", "=", "value_tolerance", ">", "zero", ")", ",", "[", "value_tolerance", "]", ")", ",", "tf", ".", "Assert", "(", "tf", ".", "reduce_all", "(", "input_tensor", "=", "max_iterations", ">=", "num_iterations", ")", ",", "[", "max_iterations", "]", ")", ",", "]", "with", "tf", ".", "control_dependencies", "(", "assertions", ")", ":", "root", ",", "value_at_root", ",", "num_iterations", ",", "_", ",", "_", "=", "tf", ".", "while_loop", "(", "cond", "=", "_should_continue", ",", "body", "=", "_body", ",", "loop_vars", "=", "[", "position", ",", "value_at_position", ",", "num_iterations", ",", "step", ",", "finished", "]", ")", "return", "RootSearchResults", "(", "estimated_root", "=", "root", ",", "objective_at_estimated_root", "=", "value_at_root", ",", "num_iterations", "=", "num_iterations", ")" ]
r"""Finds root(s) of a function of single variable using the secant method. The [secant method](https://en.wikipedia.org/wiki/Secant_method) is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function. The secant method can be thought of as a finite-difference approximation of Newton's method. Args: objective_fn: Python callable for which roots are searched. It must be a callable of a single variable. `objective_fn` must return a `Tensor` of the same shape and dtype as `initial_position`. initial_position: `Tensor` or Python float representing the starting position. The function will search for roots in the neighborhood of each point. The shape of `initial_position` should match that of the input to `objective_fn`. next_position: Optional `Tensor` representing the next position in the search. If specified, this argument must broadcast with the shape of `initial_position` and have the same dtype. It will be used to compute the first step to take when searching for roots. If not specified, a default value will be used instead. Default value: `initial_position * (1 + 1e-4) + sign(initial_position) * 1e-4`. value_at_position: Optional `Tensor` or Pyhon float representing the value of `objective_fn` at `initial_position`. If specified, this argument must have the same shape and dtype as `initial_position`. If not specified, the value will be evaluated during the search. Default value: None. position_tolerance: Optional `Tensor` representing the tolerance for the estimated roots. If specified, this argument must broadcast with the shape of `initial_position` and have the same dtype. Default value: `1e-8`. value_tolerance: Optional `Tensor` representing the tolerance used to check for roots. If the absolute value of `objective_fn` is smaller than `value_tolerance` at a given position, then that position is considered a root for the function. If specified, this argument must broadcast with the shape of `initial_position` and have the same dtype. Default value: `1e-8`. max_iterations: Optional `Tensor` or Python integer specifying the maximum number of steps to perform for each initial position. Must broadcast with the shape of `initial_position`. Default value: `50`. stopping_policy_fn: Python `callable` controlling the algorithm termination. It must be a callable accepting a `Tensor` of booleans with the shape of `initial_position` (each denoting whether the search is finished for each starting point), and returning a scalar boolean `Tensor` (indicating whether the overall search should stop). Typical values are `tf.reduce_all` (which returns only when the search is finished for all points), and `tf.reduce_any` (which returns as soon as the search is finished for any point). Default value: `tf.reduce_all` (returns only when the search is finished for all points). validate_args: Python `bool` indicating whether to validate arguments such as `position_tolerance`, `value_tolerance`, and `max_iterations`. Default value: `False`. name: Python `str` name prefixed to ops created by this function. Returns: root_search_results: A Python `namedtuple` containing the following items: estimated_root: `Tensor` containing the last position explored. If the search was successful within the specified tolerance, this position is a root of the objective function. objective_at_estimated_root: `Tensor` containing the value of the objective function at `position`. If the search was successful within the specified tolerance, then this is close to 0. num_iterations: The number of iterations performed. Raises: ValueError: if a non-callable `stopping_policy_fn` is passed. #### Examples ```python import tensorflow as tf import tensorflow_probability as tfp tf.enable_eager_execution() # Example 1: Roots of a single function from two different starting points. f = lambda x: (63 * x**5 - 70 * x**3 + 15 * x) / 8. x = tf.constant([-1, 10], dtype=tf.float64) tfp.math.secant_root(objective_fn=f, initial_position=x)) # ==> RootSearchResults( estimated_root=array([-0.90617985, 0.90617985]), objective_at_estimated_root=array([-4.81727769e-10, 7.44957651e-10]), num_iterations=array([ 7, 24], dtype=int32)) tfp.math.secant_root(objective_fn=f, initial_position=x, stopping_policy_fn=tf.reduce_any) # ==> RootSearchResults( estimated_root=array([-0.90617985, 3.27379206]), objective_at_estimated_root=array([-4.81727769e-10, 2.66058312e+03]), num_iterations=array([7, 8], dtype=int32)) # Example 2: Roots of a multiplex function from a single starting point. def f(x): return tf.constant([0., 63. / 8], dtype=tf.float64) * x**5 \ + tf.constant([5. / 2, -70. / 8], dtype=tf.float64) * x**3 \ + tf.constant([-3. / 2, 15. / 8], dtype=tf.float64) * x x = tf.constant([-1, -1], dtype=tf.float64) tfp.math.secant_root(objective_fn=f, initial_position=x) # ==> RootSearchResults( estimated_root=array([-0.77459667, -0.90617985]), objective_at_estimated_root=array([-7.81339438e-11, -4.81727769e-10]), num_iterations=array([7, 7], dtype=int32)) # Example 3: Roots of a multiplex function from two starting points. def f(x): return tf.constant([0., 63. / 8], dtype=tf.float64) * x**5 \ + tf.constant([5. / 2, -70. / 8], dtype=tf.float64) * x**3 \ + tf.constant([-3. / 2, 15. / 8], dtype=tf.float64) * x x = tf.constant([[-1, -1], [10, 10]], dtype=tf.float64) tfp.math.secant_root(objective_fn=f, initial_position=x) # ==> RootSearchResults( estimated_root=array([ [-0.77459667, -0.90617985], [ 0.77459667, 0.90617985]]), objective_at_estimated_root=array([ [-7.81339438e-11, -4.81727769e-10], [6.66025013e-11, 7.44957651e-10]]), num_iterations=array([ [7, 7], [16, 24]], dtype=int32)) ```
[ "r", "Finds", "root", "(", "s", ")", "of", "a", "function", "of", "single", "variable", "using", "the", "secant", "method", "." ]
python
test
marrow/WebCore
web/server/eventlet_.py
https://github.com/marrow/WebCore/blob/38d50f8022ca62976a1e5ff23f7714bd647b6532/web/server/eventlet_.py#L15-L22
def serve(application, host='127.0.0.1', port=8080): """Eventlet-based WSGI-HTTP server. For a more fully-featured Eventlet-capable interface, see also [Spawning](http://pypi.python.org/pypi/Spawning/). """ # Instantiate the server with a bound port and with our application. server(listen(host, int(port)), application)
[ "def", "serve", "(", "application", ",", "host", "=", "'127.0.0.1'", ",", "port", "=", "8080", ")", ":", "# Instantiate the server with a bound port and with our application.", "server", "(", "listen", "(", "host", ",", "int", "(", "port", ")", ")", ",", "application", ")" ]
Eventlet-based WSGI-HTTP server. For a more fully-featured Eventlet-capable interface, see also [Spawning](http://pypi.python.org/pypi/Spawning/).
[ "Eventlet", "-", "based", "WSGI", "-", "HTTP", "server", ".", "For", "a", "more", "fully", "-", "featured", "Eventlet", "-", "capable", "interface", "see", "also", "[", "Spawning", "]", "(", "http", ":", "//", "pypi", ".", "python", ".", "org", "/", "pypi", "/", "Spawning", "/", ")", "." ]
python
train
nccgroup/opinel
opinel/utils/aws.py
https://github.com/nccgroup/opinel/blob/2d4f5b96e0a1f9cb0356629f4f87e4ed99ce2606/opinel/utils/aws.py#L108-L139
def handle_truncated_response(callback, params, entities): """ Handle truncated responses :param callback: :param params: :param entities: :return: """ results = {} for entity in entities: results[entity] = [] while True: try: marker_found = False response = callback(**params) for entity in entities: if entity in response: results[entity] = results[entity] + response[entity] for marker_name in ['NextToken', 'Marker', 'PaginationToken']: if marker_name in response and response[marker_name]: params[marker_name] = response[marker_name] marker_found = True if not marker_found: break except Exception as e: if is_throttled(e): time.sleep(1) else: raise e return results
[ "def", "handle_truncated_response", "(", "callback", ",", "params", ",", "entities", ")", ":", "results", "=", "{", "}", "for", "entity", "in", "entities", ":", "results", "[", "entity", "]", "=", "[", "]", "while", "True", ":", "try", ":", "marker_found", "=", "False", "response", "=", "callback", "(", "*", "*", "params", ")", "for", "entity", "in", "entities", ":", "if", "entity", "in", "response", ":", "results", "[", "entity", "]", "=", "results", "[", "entity", "]", "+", "response", "[", "entity", "]", "for", "marker_name", "in", "[", "'NextToken'", ",", "'Marker'", ",", "'PaginationToken'", "]", ":", "if", "marker_name", "in", "response", "and", "response", "[", "marker_name", "]", ":", "params", "[", "marker_name", "]", "=", "response", "[", "marker_name", "]", "marker_found", "=", "True", "if", "not", "marker_found", ":", "break", "except", "Exception", "as", "e", ":", "if", "is_throttled", "(", "e", ")", ":", "time", ".", "sleep", "(", "1", ")", "else", ":", "raise", "e", "return", "results" ]
Handle truncated responses :param callback: :param params: :param entities: :return:
[ "Handle", "truncated", "responses" ]
python
train
fkarb/xltable
xltable/workbook.py
https://github.com/fkarb/xltable/blob/7a592642d27ad5ee90d2aa8c26338abaa9d84bea/xltable/workbook.py#L62-L80
def to_xlsx(self, **kwargs): """ Write workbook to a .xlsx file using xlsxwriter. Return a xlsxwriter.workbook.Workbook. :param kwargs: Extra arguments passed to the xlsxwriter.Workbook constructor. """ from xlsxwriter.workbook import Workbook as _Workbook self.workbook_obj = _Workbook(**kwargs) self.workbook_obj.set_calc_mode(self.calc_mode) for worksheet in self.itersheets(): worksheet.to_xlsx(workbook=self) self.workbook_obj.filename = self.filename if self.filename: self.workbook_obj.close() return self.workbook_obj
[ "def", "to_xlsx", "(", "self", ",", "*", "*", "kwargs", ")", ":", "from", "xlsxwriter", ".", "workbook", "import", "Workbook", "as", "_Workbook", "self", ".", "workbook_obj", "=", "_Workbook", "(", "*", "*", "kwargs", ")", "self", ".", "workbook_obj", ".", "set_calc_mode", "(", "self", ".", "calc_mode", ")", "for", "worksheet", "in", "self", ".", "itersheets", "(", ")", ":", "worksheet", ".", "to_xlsx", "(", "workbook", "=", "self", ")", "self", ".", "workbook_obj", ".", "filename", "=", "self", ".", "filename", "if", "self", ".", "filename", ":", "self", ".", "workbook_obj", ".", "close", "(", ")", "return", "self", ".", "workbook_obj" ]
Write workbook to a .xlsx file using xlsxwriter. Return a xlsxwriter.workbook.Workbook. :param kwargs: Extra arguments passed to the xlsxwriter.Workbook constructor.
[ "Write", "workbook", "to", "a", ".", "xlsx", "file", "using", "xlsxwriter", ".", "Return", "a", "xlsxwriter", ".", "workbook", ".", "Workbook", "." ]
python
train
quantmind/dynts
dynts/lib/fallback/maths.py
https://github.com/quantmind/dynts/blob/21ac57c648bfec402fa6b1fe569496cf098fb5e8/dynts/lib/fallback/maths.py#L3-L33
def bindata(data, maxbins = 30, reduction = 0.1): ''' data must be numeric list with a len above 20 This function counts the number of data points in a reduced array ''' tole = 0.01 N = len(data) assert N > 20 vmin = min(data) vmax = max(data) DV = vmax - vmin tol = tole*DV vmax += tol if vmin >= 0: vmin -= tol vmin = max(0.0,vmin) else: vmin -= tol n = min(maxbins,max(2,int(round(reduction*N)))) DV = vmax - vmin bbin = npy.linspace(vmin,vmax,n+1) sso = npy.searchsorted(bbin,npy.sort(data)) x = [] y = [] for i in range(0,n): x.append(0.5*(bbin[i+1]+bbin[i])) y.append(0.0) dy = 1.0/N for i in sso: y[i-1] += dy/(bbin[i]-bbin[i-1]) return (x,y)
[ "def", "bindata", "(", "data", ",", "maxbins", "=", "30", ",", "reduction", "=", "0.1", ")", ":", "tole", "=", "0.01", "N", "=", "len", "(", "data", ")", "assert", "N", ">", "20", "vmin", "=", "min", "(", "data", ")", "vmax", "=", "max", "(", "data", ")", "DV", "=", "vmax", "-", "vmin", "tol", "=", "tole", "*", "DV", "vmax", "+=", "tol", "if", "vmin", ">=", "0", ":", "vmin", "-=", "tol", "vmin", "=", "max", "(", "0.0", ",", "vmin", ")", "else", ":", "vmin", "-=", "tol", "n", "=", "min", "(", "maxbins", ",", "max", "(", "2", ",", "int", "(", "round", "(", "reduction", "*", "N", ")", ")", ")", ")", "DV", "=", "vmax", "-", "vmin", "bbin", "=", "npy", ".", "linspace", "(", "vmin", ",", "vmax", ",", "n", "+", "1", ")", "sso", "=", "npy", ".", "searchsorted", "(", "bbin", ",", "npy", ".", "sort", "(", "data", ")", ")", "x", "=", "[", "]", "y", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "n", ")", ":", "x", ".", "append", "(", "0.5", "*", "(", "bbin", "[", "i", "+", "1", "]", "+", "bbin", "[", "i", "]", ")", ")", "y", ".", "append", "(", "0.0", ")", "dy", "=", "1.0", "/", "N", "for", "i", "in", "sso", ":", "y", "[", "i", "-", "1", "]", "+=", "dy", "/", "(", "bbin", "[", "i", "]", "-", "bbin", "[", "i", "-", "1", "]", ")", "return", "(", "x", ",", "y", ")" ]
data must be numeric list with a len above 20 This function counts the number of data points in a reduced array
[ "data", "must", "be", "numeric", "list", "with", "a", "len", "above", "20", "This", "function", "counts", "the", "number", "of", "data", "points", "in", "a", "reduced", "array" ]
python
train
biocore/burrito-fillings
bfillings/mafft.py
https://github.com/biocore/burrito-fillings/blob/02ab71a46119b40793bd56a4ae00ca15f6dc3329/bfillings/mafft.py#L411-L470
def align_two_alignments(aln1, aln2, moltype, params=None): """Returns an Alignment object from two existing Alignments. aln1, aln2: cogent.core.alignment.Alignment objects, or data that can be used to build them. - Mafft profile alignment only works with aligned sequences. Alignment object used to handle unaligned sequences. params: dict of parameters to pass in to the Mafft app controller. """ #create SequenceCollection object from seqs aln1 = Alignment(aln1,MolType=moltype) #Create mapping between abbreviated IDs and full IDs aln1_int_map, aln1_int_keys = aln1.getIntMap() #Create SequenceCollection from int_map. aln1_int_map = Alignment(aln1_int_map,MolType=moltype) #create Alignment object from aln aln2 = Alignment(aln2,MolType=moltype) #Create mapping between abbreviated IDs and full IDs aln2_int_map, aln2_int_keys = aln2.getIntMap(prefix='seqn_') #Create SequenceCollection from int_map. aln2_int_map = Alignment(aln2_int_map,MolType=moltype) #Update aln1_int_keys with aln2_int_keys aln1_int_keys.update(aln2_int_keys) #Create Mafft app. app = Mafft(InputHandler='_input_as_paths',\ params=params, SuppressStderr=False) app._command = 'mafft-profile' aln1_path = app._tempfile_as_multiline_string(aln1_int_map.toFasta()) aln2_path = app._tempfile_as_multiline_string(aln2_int_map.toFasta()) filepaths = [aln1_path,aln2_path] #Get results using int_map as input to app res = app(filepaths) #Get alignment as dict out of results alignment = dict(parse_fasta(res['StdOut'])) #Make new dict mapping original IDs new_alignment = {} for k,v in alignment.items(): key = k.replace('_seed_','') new_alignment[aln1_int_keys[key]]=v #Create an Alignment object from alignment dict new_alignment = Alignment(new_alignment,MolType=moltype) #Clean up res.cleanUp() remove(aln1_path) remove(aln2_path) remove('pre') remove('trace') del(aln1,aln1_int_map,aln1_int_keys,\ aln2,aln2_int_map,aln2_int_keys,app,res,alignment) return new_alignment
[ "def", "align_two_alignments", "(", "aln1", ",", "aln2", ",", "moltype", ",", "params", "=", "None", ")", ":", "#create SequenceCollection object from seqs", "aln1", "=", "Alignment", "(", "aln1", ",", "MolType", "=", "moltype", ")", "#Create mapping between abbreviated IDs and full IDs", "aln1_int_map", ",", "aln1_int_keys", "=", "aln1", ".", "getIntMap", "(", ")", "#Create SequenceCollection from int_map.", "aln1_int_map", "=", "Alignment", "(", "aln1_int_map", ",", "MolType", "=", "moltype", ")", "#create Alignment object from aln", "aln2", "=", "Alignment", "(", "aln2", ",", "MolType", "=", "moltype", ")", "#Create mapping between abbreviated IDs and full IDs", "aln2_int_map", ",", "aln2_int_keys", "=", "aln2", ".", "getIntMap", "(", "prefix", "=", "'seqn_'", ")", "#Create SequenceCollection from int_map.", "aln2_int_map", "=", "Alignment", "(", "aln2_int_map", ",", "MolType", "=", "moltype", ")", "#Update aln1_int_keys with aln2_int_keys", "aln1_int_keys", ".", "update", "(", "aln2_int_keys", ")", "#Create Mafft app.", "app", "=", "Mafft", "(", "InputHandler", "=", "'_input_as_paths'", ",", "params", "=", "params", ",", "SuppressStderr", "=", "False", ")", "app", ".", "_command", "=", "'mafft-profile'", "aln1_path", "=", "app", ".", "_tempfile_as_multiline_string", "(", "aln1_int_map", ".", "toFasta", "(", ")", ")", "aln2_path", "=", "app", ".", "_tempfile_as_multiline_string", "(", "aln2_int_map", ".", "toFasta", "(", ")", ")", "filepaths", "=", "[", "aln1_path", ",", "aln2_path", "]", "#Get results using int_map as input to app", "res", "=", "app", "(", "filepaths", ")", "#Get alignment as dict out of results", "alignment", "=", "dict", "(", "parse_fasta", "(", "res", "[", "'StdOut'", "]", ")", ")", "#Make new dict mapping original IDs", "new_alignment", "=", "{", "}", "for", "k", ",", "v", "in", "alignment", ".", "items", "(", ")", ":", "key", "=", "k", ".", "replace", "(", "'_seed_'", ",", "''", ")", "new_alignment", "[", "aln1_int_keys", "[", "key", "]", "]", "=", "v", "#Create an Alignment object from alignment dict", "new_alignment", "=", "Alignment", "(", "new_alignment", ",", "MolType", "=", "moltype", ")", "#Clean up", "res", ".", "cleanUp", "(", ")", "remove", "(", "aln1_path", ")", "remove", "(", "aln2_path", ")", "remove", "(", "'pre'", ")", "remove", "(", "'trace'", ")", "del", "(", "aln1", ",", "aln1_int_map", ",", "aln1_int_keys", ",", "aln2", ",", "aln2_int_map", ",", "aln2_int_keys", ",", "app", ",", "res", ",", "alignment", ")", "return", "new_alignment" ]
Returns an Alignment object from two existing Alignments. aln1, aln2: cogent.core.alignment.Alignment objects, or data that can be used to build them. - Mafft profile alignment only works with aligned sequences. Alignment object used to handle unaligned sequences. params: dict of parameters to pass in to the Mafft app controller.
[ "Returns", "an", "Alignment", "object", "from", "two", "existing", "Alignments", "." ]
python
train
plivo/plivohelper-python
plivohelper.py
https://github.com/plivo/plivohelper-python/blob/a2f706d69e2138fbb973f792041341f662072d26/plivohelper.py#L181-L186
def hangup_all_calls(self): """REST Hangup All Live Calls Helper """ path = '/' + self.api_version + '/HangupAllCalls/' method = 'POST' return self.request(path, method)
[ "def", "hangup_all_calls", "(", "self", ")", ":", "path", "=", "'/'", "+", "self", ".", "api_version", "+", "'/HangupAllCalls/'", "method", "=", "'POST'", "return", "self", ".", "request", "(", "path", ",", "method", ")" ]
REST Hangup All Live Calls Helper
[ "REST", "Hangup", "All", "Live", "Calls", "Helper" ]
python
valid
opencobra/cobrapy
cobra/io/sbml.py
https://github.com/opencobra/cobrapy/blob/9d1987cdb3a395cf4125a3439c3b002ff2be2009/cobra/io/sbml.py#L100-L102
def _clip(sid, prefix): """Clips a prefix from the beginning of a string if it exists.""" return sid[len(prefix):] if sid.startswith(prefix) else sid
[ "def", "_clip", "(", "sid", ",", "prefix", ")", ":", "return", "sid", "[", "len", "(", "prefix", ")", ":", "]", "if", "sid", ".", "startswith", "(", "prefix", ")", "else", "sid" ]
Clips a prefix from the beginning of a string if it exists.
[ "Clips", "a", "prefix", "from", "the", "beginning", "of", "a", "string", "if", "it", "exists", "." ]
python
valid
Qiskit/qiskit-terra
qiskit/pulse/samplers/decorators.py
https://github.com/Qiskit/qiskit-terra/blob/d4f58d903bc96341b816f7c35df936d6421267d1/qiskit/pulse/samplers/decorators.py#L184-L227
def sampler(sample_function: Callable) -> Callable: """Sampler decorator base method. Samplers are used for converting an continuous function to a discretized pulse. They operate on a function with the signature: `def f(times: np.ndarray, *args, **kwargs) -> np.ndarray` Where `times` is a numpy array of floats with length n_times and the output array is a complex numpy array with length n_times. The output of the decorator is an instance of `FunctionalPulse` with signature: `def g(duration: int, *args, **kwargs) -> SamplePulse` Note if your continuous pulse function outputs a `complex` scalar rather than a `np.ndarray`, you should first vectorize it before applying a sampler. This class implements the sampler boilerplate for the sampler. Args: sample_function: A sampler function to be decorated. """ def generate_sampler(continuous_pulse: Callable) -> Callable: """Return a decorated sampler function.""" @functools.wraps(continuous_pulse) def call_sampler(duration: int, *args, **kwargs) -> commands.SamplePulse: """Replace the call to the continuous function with a call to the sampler applied to the anlytic pulse function.""" sampled_pulse = sample_function(continuous_pulse, duration, *args, **kwargs) return np.asarray(sampled_pulse, dtype=np.complex_) # Update type annotations for wrapped continuous function to be discrete call_sampler = _update_annotations(call_sampler) # Update docstring with that of the sampler and include sampled function documentation. call_sampler = _update_docstring(call_sampler, sample_function) # Unset wrapped to return base sampler signature # but still get rest of benefits of wraps # such as __name__, __qualname__ call_sampler.__dict__.pop('__wrapped__') # wrap with functional pulse return commands.functional_pulse(call_sampler) return generate_sampler
[ "def", "sampler", "(", "sample_function", ":", "Callable", ")", "->", "Callable", ":", "def", "generate_sampler", "(", "continuous_pulse", ":", "Callable", ")", "->", "Callable", ":", "\"\"\"Return a decorated sampler function.\"\"\"", "@", "functools", ".", "wraps", "(", "continuous_pulse", ")", "def", "call_sampler", "(", "duration", ":", "int", ",", "*", "args", ",", "*", "*", "kwargs", ")", "->", "commands", ".", "SamplePulse", ":", "\"\"\"Replace the call to the continuous function with a call to the sampler applied\n to the anlytic pulse function.\"\"\"", "sampled_pulse", "=", "sample_function", "(", "continuous_pulse", ",", "duration", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "np", ".", "asarray", "(", "sampled_pulse", ",", "dtype", "=", "np", ".", "complex_", ")", "# Update type annotations for wrapped continuous function to be discrete", "call_sampler", "=", "_update_annotations", "(", "call_sampler", ")", "# Update docstring with that of the sampler and include sampled function documentation.", "call_sampler", "=", "_update_docstring", "(", "call_sampler", ",", "sample_function", ")", "# Unset wrapped to return base sampler signature", "# but still get rest of benefits of wraps", "# such as __name__, __qualname__", "call_sampler", ".", "__dict__", ".", "pop", "(", "'__wrapped__'", ")", "# wrap with functional pulse", "return", "commands", ".", "functional_pulse", "(", "call_sampler", ")", "return", "generate_sampler" ]
Sampler decorator base method. Samplers are used for converting an continuous function to a discretized pulse. They operate on a function with the signature: `def f(times: np.ndarray, *args, **kwargs) -> np.ndarray` Where `times` is a numpy array of floats with length n_times and the output array is a complex numpy array with length n_times. The output of the decorator is an instance of `FunctionalPulse` with signature: `def g(duration: int, *args, **kwargs) -> SamplePulse` Note if your continuous pulse function outputs a `complex` scalar rather than a `np.ndarray`, you should first vectorize it before applying a sampler. This class implements the sampler boilerplate for the sampler. Args: sample_function: A sampler function to be decorated.
[ "Sampler", "decorator", "base", "method", "." ]
python
test
python-xlib/python-xlib
Xlib/display.py
https://github.com/python-xlib/python-xlib/blob/8901e831737e79fe5645f48089d70e1d1046d2f2/Xlib/display.py#L637-L643
def list_fonts(self, pattern, max_names): """Return a list of font names matching pattern. No more than max_names will be returned.""" r = request.ListFonts(display = self.display, max_names = max_names, pattern = pattern) return r.fonts
[ "def", "list_fonts", "(", "self", ",", "pattern", ",", "max_names", ")", ":", "r", "=", "request", ".", "ListFonts", "(", "display", "=", "self", ".", "display", ",", "max_names", "=", "max_names", ",", "pattern", "=", "pattern", ")", "return", "r", ".", "fonts" ]
Return a list of font names matching pattern. No more than max_names will be returned.
[ "Return", "a", "list", "of", "font", "names", "matching", "pattern", ".", "No", "more", "than", "max_names", "will", "be", "returned", "." ]
python
train
phoebe-project/phoebe2
phoebe/utils/__init__.py
https://github.com/phoebe-project/phoebe2/blob/e64b8be683977064e2d55dd1b3ac400f64c3e379/phoebe/utils/__init__.py#L3-L97
def get_basic_logger(clevel='WARNING',flevel='DEBUG', style="default",filename=None,filemode='w'): """ Return a basic logger via a log file and/or terminal. Example 1: log only to the console, accepting levels "INFO" and above >>> logger = utils.get_basic_logger() Example 2: log only to the console, accepting levels "DEBUG" and above >>> logger = utils.get_basic_logger(clevel='DEBUG') Example 3: log only to a file, accepting levels "DEBUG" and above >>> logger = utils.get_basic_logger(clevel=None,filename='mylog.log') Example 4: log only to a file, accepting levels "INFO" and above >>> logger = utils.get_basic_logger(clevel=None,flevel='INFO',filename='mylog.log') Example 5: log to the terminal (INFO and above) and file (DEBUG and above) >>> logger = utils.get_basic_logger(filename='mylog.log') The different logging styles are: C{style='default'}:: Wed, 13 Feb 2013 08:47 root INFO Some information C{style='grandpa'}:: # INFO Some information C{style='minimal'}:: Some information @param style: logger style @type style: str, one of 'default','grandpa','minimal' """ name = "" #-- define formats if style=='default': format = '%(asctime)s %(name)-12s %(levelname)-7s %(message)s' datefmt = '%a, %d %b %Y %H:%M' elif style=='grandpa': format = '# %(levelname)-7s %(message)s' datefmt = '%a, %d %b %Y %H:%M' elif style=='minimal': format = '' datefmt = '%a, %d %b %Y %H:%M' if style=='trace': formatter = MyFormatter() else: formatter = logging.Formatter(fmt=format,datefmt=datefmt) if clevel: clevel = logging.__dict__[clevel.upper()] if flevel: flevel = logging.__dict__[flevel.upper()] #-- set up basic configuration. # The basicConfig sets up one default logger. If you give a filename, it's # a FileHandler, otherwise a StreamHandler. #-- If we want console and filename, first set up a basic FileHandler, then # add terminal StreamHandler if filename is not None: if flevel is None: level = clevel else: level = flevel logging.basicConfig(level=level, format=format,datefmt=datefmt, filename=filename,filemode=filemode) fh = logging.FileHandler(filename) fh.setLevel(flevel) fh.setFormatter(formatter) logging.getLogger(name).addHandler(fh) if filename is not None and clevel: # define a Handler which writes INFO messages or higher to the sys.stderr ch = logging.StreamHandler() ch.setLevel(clevel) # tell the handler to use this format ch.setFormatter(formatter) logging.getLogger(name).addHandler(ch) #-- If we only want a console: else: logging.basicConfig(level=clevel,format=format,datefmt=datefmt, filename=filename,filemode=filemode) #-- fix filename logging if filename is not None: logging.getLogger(name).handlers[0].level = flevel return logging.getLogger(name)
[ "def", "get_basic_logger", "(", "clevel", "=", "'WARNING'", ",", "flevel", "=", "'DEBUG'", ",", "style", "=", "\"default\"", ",", "filename", "=", "None", ",", "filemode", "=", "'w'", ")", ":", "name", "=", "\"\"", "#-- define formats", "if", "style", "==", "'default'", ":", "format", "=", "'%(asctime)s %(name)-12s %(levelname)-7s %(message)s'", "datefmt", "=", "'%a, %d %b %Y %H:%M'", "elif", "style", "==", "'grandpa'", ":", "format", "=", "'# %(levelname)-7s %(message)s'", "datefmt", "=", "'%a, %d %b %Y %H:%M'", "elif", "style", "==", "'minimal'", ":", "format", "=", "''", "datefmt", "=", "'%a, %d %b %Y %H:%M'", "if", "style", "==", "'trace'", ":", "formatter", "=", "MyFormatter", "(", ")", "else", ":", "formatter", "=", "logging", ".", "Formatter", "(", "fmt", "=", "format", ",", "datefmt", "=", "datefmt", ")", "if", "clevel", ":", "clevel", "=", "logging", ".", "__dict__", "[", "clevel", ".", "upper", "(", ")", "]", "if", "flevel", ":", "flevel", "=", "logging", ".", "__dict__", "[", "flevel", ".", "upper", "(", ")", "]", "#-- set up basic configuration.", "# The basicConfig sets up one default logger. If you give a filename, it's", "# a FileHandler, otherwise a StreamHandler.", "#-- If we want console and filename, first set up a basic FileHandler, then", "# add terminal StreamHandler", "if", "filename", "is", "not", "None", ":", "if", "flevel", "is", "None", ":", "level", "=", "clevel", "else", ":", "level", "=", "flevel", "logging", ".", "basicConfig", "(", "level", "=", "level", ",", "format", "=", "format", ",", "datefmt", "=", "datefmt", ",", "filename", "=", "filename", ",", "filemode", "=", "filemode", ")", "fh", "=", "logging", ".", "FileHandler", "(", "filename", ")", "fh", ".", "setLevel", "(", "flevel", ")", "fh", ".", "setFormatter", "(", "formatter", ")", "logging", ".", "getLogger", "(", "name", ")", ".", "addHandler", "(", "fh", ")", "if", "filename", "is", "not", "None", "and", "clevel", ":", "# define a Handler which writes INFO messages or higher to the sys.stderr", "ch", "=", "logging", ".", "StreamHandler", "(", ")", "ch", ".", "setLevel", "(", "clevel", ")", "# tell the handler to use this format", "ch", ".", "setFormatter", "(", "formatter", ")", "logging", ".", "getLogger", "(", "name", ")", ".", "addHandler", "(", "ch", ")", "#-- If we only want a console:", "else", ":", "logging", ".", "basicConfig", "(", "level", "=", "clevel", ",", "format", "=", "format", ",", "datefmt", "=", "datefmt", ",", "filename", "=", "filename", ",", "filemode", "=", "filemode", ")", "#-- fix filename logging", "if", "filename", "is", "not", "None", ":", "logging", ".", "getLogger", "(", "name", ")", ".", "handlers", "[", "0", "]", ".", "level", "=", "flevel", "return", "logging", ".", "getLogger", "(", "name", ")" ]
Return a basic logger via a log file and/or terminal. Example 1: log only to the console, accepting levels "INFO" and above >>> logger = utils.get_basic_logger() Example 2: log only to the console, accepting levels "DEBUG" and above >>> logger = utils.get_basic_logger(clevel='DEBUG') Example 3: log only to a file, accepting levels "DEBUG" and above >>> logger = utils.get_basic_logger(clevel=None,filename='mylog.log') Example 4: log only to a file, accepting levels "INFO" and above >>> logger = utils.get_basic_logger(clevel=None,flevel='INFO',filename='mylog.log') Example 5: log to the terminal (INFO and above) and file (DEBUG and above) >>> logger = utils.get_basic_logger(filename='mylog.log') The different logging styles are: C{style='default'}:: Wed, 13 Feb 2013 08:47 root INFO Some information C{style='grandpa'}:: # INFO Some information C{style='minimal'}:: Some information @param style: logger style @type style: str, one of 'default','grandpa','minimal'
[ "Return", "a", "basic", "logger", "via", "a", "log", "file", "and", "/", "or", "terminal", "." ]
python
train
icgood/pymap
pymap/flags.py
https://github.com/icgood/pymap/blob/e77d9a54d760e3cbe044a548883bb4299ed61dc2/pymap/flags.py#L149-L158
def remove(self, uids: Iterable[int]) -> None: """Remove any session flags for the given message. Args: uids: The message UID values. """ for uid in uids: self._recent.discard(uid) self._flags.pop(uid, None)
[ "def", "remove", "(", "self", ",", "uids", ":", "Iterable", "[", "int", "]", ")", "->", "None", ":", "for", "uid", "in", "uids", ":", "self", ".", "_recent", ".", "discard", "(", "uid", ")", "self", ".", "_flags", ".", "pop", "(", "uid", ",", "None", ")" ]
Remove any session flags for the given message. Args: uids: The message UID values.
[ "Remove", "any", "session", "flags", "for", "the", "given", "message", "." ]
python
train
fitnr/convertdate
convertdate/gregorian.py
https://github.com/fitnr/convertdate/blob/e920f168a87f99183b0aa7290d6c3af222582d43/convertdate/gregorian.py#L80-L118
def from_jd(jd): '''Return Gregorian date in a (Y, M, D) tuple''' wjd = floor(jd - 0.5) + 0.5 depoch = wjd - EPOCH quadricent = floor(depoch / INTERCALATION_CYCLE_DAYS) dqc = depoch % INTERCALATION_CYCLE_DAYS cent = floor(dqc / LEAP_SUPPRESSION_DAYS) dcent = dqc % LEAP_SUPPRESSION_DAYS quad = floor(dcent / LEAP_CYCLE_DAYS) dquad = dcent % LEAP_CYCLE_DAYS yindex = floor(dquad / YEAR_DAYS) year = ( quadricent * INTERCALATION_CYCLE_YEARS + cent * LEAP_SUPPRESSION_YEARS + quad * LEAP_CYCLE_YEARS + yindex ) if not (cent == 4 or yindex == 4): year += 1 yearday = wjd - to_jd(year, 1, 1) leap = isleap(year) if yearday < 58 + leap: leap_adj = 0 elif leap: leap_adj = 1 else: leap_adj = 2 month = floor((((yearday + leap_adj) * 12) + 373) / 367) day = int(wjd - to_jd(year, month, 1)) + 1 return (year, month, day)
[ "def", "from_jd", "(", "jd", ")", ":", "wjd", "=", "floor", "(", "jd", "-", "0.5", ")", "+", "0.5", "depoch", "=", "wjd", "-", "EPOCH", "quadricent", "=", "floor", "(", "depoch", "/", "INTERCALATION_CYCLE_DAYS", ")", "dqc", "=", "depoch", "%", "INTERCALATION_CYCLE_DAYS", "cent", "=", "floor", "(", "dqc", "/", "LEAP_SUPPRESSION_DAYS", ")", "dcent", "=", "dqc", "%", "LEAP_SUPPRESSION_DAYS", "quad", "=", "floor", "(", "dcent", "/", "LEAP_CYCLE_DAYS", ")", "dquad", "=", "dcent", "%", "LEAP_CYCLE_DAYS", "yindex", "=", "floor", "(", "dquad", "/", "YEAR_DAYS", ")", "year", "=", "(", "quadricent", "*", "INTERCALATION_CYCLE_YEARS", "+", "cent", "*", "LEAP_SUPPRESSION_YEARS", "+", "quad", "*", "LEAP_CYCLE_YEARS", "+", "yindex", ")", "if", "not", "(", "cent", "==", "4", "or", "yindex", "==", "4", ")", ":", "year", "+=", "1", "yearday", "=", "wjd", "-", "to_jd", "(", "year", ",", "1", ",", "1", ")", "leap", "=", "isleap", "(", "year", ")", "if", "yearday", "<", "58", "+", "leap", ":", "leap_adj", "=", "0", "elif", "leap", ":", "leap_adj", "=", "1", "else", ":", "leap_adj", "=", "2", "month", "=", "floor", "(", "(", "(", "(", "yearday", "+", "leap_adj", ")", "*", "12", ")", "+", "373", ")", "/", "367", ")", "day", "=", "int", "(", "wjd", "-", "to_jd", "(", "year", ",", "month", ",", "1", ")", ")", "+", "1", "return", "(", "year", ",", "month", ",", "day", ")" ]
Return Gregorian date in a (Y, M, D) tuple
[ "Return", "Gregorian", "date", "in", "a", "(", "Y", "M", "D", ")", "tuple" ]
python
train
Chilipp/psy-simple
psy_simple/plotters.py
https://github.com/Chilipp/psy-simple/blob/7d916406a6d3c3c27c0b7102f98fef07a4da0a61/psy_simple/plotters.py#L3350-L3352
def ycoord(self): """The y coordinate :class:`xarray.Variable`""" return self.decoder.get_y(self.data, coords=self.data.coords)
[ "def", "ycoord", "(", "self", ")", ":", "return", "self", ".", "decoder", ".", "get_y", "(", "self", ".", "data", ",", "coords", "=", "self", ".", "data", ".", "coords", ")" ]
The y coordinate :class:`xarray.Variable`
[ "The", "y", "coordinate", ":", "class", ":", "xarray", ".", "Variable" ]
python
train
pgmpy/pgmpy
pgmpy/factors/discrete/DiscreteFactor.py
https://github.com/pgmpy/pgmpy/blob/9381a66aba3c3871d3ccd00672b148d17d63239e/pgmpy/factors/discrete/DiscreteFactor.py#L682-L711
def copy(self): """ Returns a copy of the factor. Returns ------- DiscreteFactor: copy of the factor Examples -------- >>> import numpy as np >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 3], np.arange(18)) >>> phi_copy = phi.copy() >>> phi_copy.variables ['x1', 'x2', 'x3'] >>> phi_copy.cardinality array([2, 3, 3]) >>> phi_copy.values array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]]]) """ # not creating a new copy of self.values and self.cardinality # because __init__ methods does that. return DiscreteFactor(self.scope(), self.cardinality, self.values, state_names=self.state_names)
[ "def", "copy", "(", "self", ")", ":", "# not creating a new copy of self.values and self.cardinality", "# because __init__ methods does that.", "return", "DiscreteFactor", "(", "self", ".", "scope", "(", ")", ",", "self", ".", "cardinality", ",", "self", ".", "values", ",", "state_names", "=", "self", ".", "state_names", ")" ]
Returns a copy of the factor. Returns ------- DiscreteFactor: copy of the factor Examples -------- >>> import numpy as np >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 3], np.arange(18)) >>> phi_copy = phi.copy() >>> phi_copy.variables ['x1', 'x2', 'x3'] >>> phi_copy.cardinality array([2, 3, 3]) >>> phi_copy.values array([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]]])
[ "Returns", "a", "copy", "of", "the", "factor", "." ]
python
train
nccgroup/Scout2
AWSScout2/services/emr.py
https://github.com/nccgroup/Scout2/blob/5d86d46d7ed91a92000496189e9cfa6b98243937/AWSScout2/services/emr.py#L19-L33
def parse_cluster(self, global_params, region, cluster): """ Parse a single EMR cluster :param global_params: Parameters shared for all regions :param region: Name of the AWS region :param cluster: EMR cluster """ cluster_id = cluster['Id'] cluster = api_clients[region].describe_cluster(ClusterId = cluster_id)['Cluster'] cluster['id'] = cluster.pop('Id') cluster['name'] = cluster.pop('Name') vpc_id = 'TODO' # The EMR API won't disclose the VPC ID, so wait until all configs have been fetch and look up the VPC based on the subnet ID manage_dictionary(self.vpcs, vpc_id, VPCConfig(self.vpc_resource_types)) self.vpcs[vpc_id].clusters[cluster_id] = cluster
[ "def", "parse_cluster", "(", "self", ",", "global_params", ",", "region", ",", "cluster", ")", ":", "cluster_id", "=", "cluster", "[", "'Id'", "]", "cluster", "=", "api_clients", "[", "region", "]", ".", "describe_cluster", "(", "ClusterId", "=", "cluster_id", ")", "[", "'Cluster'", "]", "cluster", "[", "'id'", "]", "=", "cluster", ".", "pop", "(", "'Id'", ")", "cluster", "[", "'name'", "]", "=", "cluster", ".", "pop", "(", "'Name'", ")", "vpc_id", "=", "'TODO'", "# The EMR API won't disclose the VPC ID, so wait until all configs have been fetch and look up the VPC based on the subnet ID", "manage_dictionary", "(", "self", ".", "vpcs", ",", "vpc_id", ",", "VPCConfig", "(", "self", ".", "vpc_resource_types", ")", ")", "self", ".", "vpcs", "[", "vpc_id", "]", ".", "clusters", "[", "cluster_id", "]", "=", "cluster" ]
Parse a single EMR cluster :param global_params: Parameters shared for all regions :param region: Name of the AWS region :param cluster: EMR cluster
[ "Parse", "a", "single", "EMR", "cluster" ]
python
train
tornadoweb/tornado
tornado/http1connection.py
https://github.com/tornadoweb/tornado/blob/b8b481770bcdb333a69afde5cce7eaa449128326/tornado/http1connection.py#L376-L465
def write_headers( self, start_line: Union[httputil.RequestStartLine, httputil.ResponseStartLine], headers: httputil.HTTPHeaders, chunk: bytes = None, ) -> "Future[None]": """Implements `.HTTPConnection.write_headers`.""" lines = [] if self.is_client: assert isinstance(start_line, httputil.RequestStartLine) self._request_start_line = start_line lines.append(utf8("%s %s HTTP/1.1" % (start_line[0], start_line[1]))) # Client requests with a non-empty body must have either a # Content-Length or a Transfer-Encoding. self._chunking_output = ( start_line.method in ("POST", "PUT", "PATCH") and "Content-Length" not in headers and ( "Transfer-Encoding" not in headers or headers["Transfer-Encoding"] == "chunked" ) ) else: assert isinstance(start_line, httputil.ResponseStartLine) assert self._request_start_line is not None assert self._request_headers is not None self._response_start_line = start_line lines.append(utf8("HTTP/1.1 %d %s" % (start_line[1], start_line[2]))) self._chunking_output = ( # TODO: should this use # self._request_start_line.version or # start_line.version? self._request_start_line.version == "HTTP/1.1" # 1xx, 204 and 304 responses have no body (not even a zero-length # body), and so should not have either Content-Length or # Transfer-Encoding headers. and start_line.code not in (204, 304) and (start_line.code < 100 or start_line.code >= 200) # No need to chunk the output if a Content-Length is specified. and "Content-Length" not in headers # Applications are discouraged from touching Transfer-Encoding, # but if they do, leave it alone. and "Transfer-Encoding" not in headers ) # If connection to a 1.1 client will be closed, inform client if ( self._request_start_line.version == "HTTP/1.1" and self._disconnect_on_finish ): headers["Connection"] = "close" # If a 1.0 client asked for keep-alive, add the header. if ( self._request_start_line.version == "HTTP/1.0" and self._request_headers.get("Connection", "").lower() == "keep-alive" ): headers["Connection"] = "Keep-Alive" if self._chunking_output: headers["Transfer-Encoding"] = "chunked" if not self.is_client and ( self._request_start_line.method == "HEAD" or cast(httputil.ResponseStartLine, start_line).code == 304 ): self._expected_content_remaining = 0 elif "Content-Length" in headers: self._expected_content_remaining = int(headers["Content-Length"]) else: self._expected_content_remaining = None # TODO: headers are supposed to be of type str, but we still have some # cases that let bytes slip through. Remove these native_str calls when those # are fixed. header_lines = ( native_str(n) + ": " + native_str(v) for n, v in headers.get_all() ) lines.extend(l.encode("latin1") for l in header_lines) for line in lines: if b"\n" in line: raise ValueError("Newline in header: " + repr(line)) future = None if self.stream.closed(): future = self._write_future = Future() future.set_exception(iostream.StreamClosedError()) future.exception() else: future = self._write_future = Future() data = b"\r\n".join(lines) + b"\r\n\r\n" if chunk: data += self._format_chunk(chunk) self._pending_write = self.stream.write(data) future_add_done_callback(self._pending_write, self._on_write_complete) return future
[ "def", "write_headers", "(", "self", ",", "start_line", ":", "Union", "[", "httputil", ".", "RequestStartLine", ",", "httputil", ".", "ResponseStartLine", "]", ",", "headers", ":", "httputil", ".", "HTTPHeaders", ",", "chunk", ":", "bytes", "=", "None", ",", ")", "->", "\"Future[None]\"", ":", "lines", "=", "[", "]", "if", "self", ".", "is_client", ":", "assert", "isinstance", "(", "start_line", ",", "httputil", ".", "RequestStartLine", ")", "self", ".", "_request_start_line", "=", "start_line", "lines", ".", "append", "(", "utf8", "(", "\"%s %s HTTP/1.1\"", "%", "(", "start_line", "[", "0", "]", ",", "start_line", "[", "1", "]", ")", ")", ")", "# Client requests with a non-empty body must have either a", "# Content-Length or a Transfer-Encoding.", "self", ".", "_chunking_output", "=", "(", "start_line", ".", "method", "in", "(", "\"POST\"", ",", "\"PUT\"", ",", "\"PATCH\"", ")", "and", "\"Content-Length\"", "not", "in", "headers", "and", "(", "\"Transfer-Encoding\"", "not", "in", "headers", "or", "headers", "[", "\"Transfer-Encoding\"", "]", "==", "\"chunked\"", ")", ")", "else", ":", "assert", "isinstance", "(", "start_line", ",", "httputil", ".", "ResponseStartLine", ")", "assert", "self", ".", "_request_start_line", "is", "not", "None", "assert", "self", ".", "_request_headers", "is", "not", "None", "self", ".", "_response_start_line", "=", "start_line", "lines", ".", "append", "(", "utf8", "(", "\"HTTP/1.1 %d %s\"", "%", "(", "start_line", "[", "1", "]", ",", "start_line", "[", "2", "]", ")", ")", ")", "self", ".", "_chunking_output", "=", "(", "# TODO: should this use", "# self._request_start_line.version or", "# start_line.version?", "self", ".", "_request_start_line", ".", "version", "==", "\"HTTP/1.1\"", "# 1xx, 204 and 304 responses have no body (not even a zero-length", "# body), and so should not have either Content-Length or", "# Transfer-Encoding headers.", "and", "start_line", ".", "code", "not", "in", "(", "204", ",", "304", ")", "and", "(", "start_line", ".", "code", "<", "100", "or", "start_line", ".", "code", ">=", "200", ")", "# No need to chunk the output if a Content-Length is specified.", "and", "\"Content-Length\"", "not", "in", "headers", "# Applications are discouraged from touching Transfer-Encoding,", "# but if they do, leave it alone.", "and", "\"Transfer-Encoding\"", "not", "in", "headers", ")", "# If connection to a 1.1 client will be closed, inform client", "if", "(", "self", ".", "_request_start_line", ".", "version", "==", "\"HTTP/1.1\"", "and", "self", ".", "_disconnect_on_finish", ")", ":", "headers", "[", "\"Connection\"", "]", "=", "\"close\"", "# If a 1.0 client asked for keep-alive, add the header.", "if", "(", "self", ".", "_request_start_line", ".", "version", "==", "\"HTTP/1.0\"", "and", "self", ".", "_request_headers", ".", "get", "(", "\"Connection\"", ",", "\"\"", ")", ".", "lower", "(", ")", "==", "\"keep-alive\"", ")", ":", "headers", "[", "\"Connection\"", "]", "=", "\"Keep-Alive\"", "if", "self", ".", "_chunking_output", ":", "headers", "[", "\"Transfer-Encoding\"", "]", "=", "\"chunked\"", "if", "not", "self", ".", "is_client", "and", "(", "self", ".", "_request_start_line", ".", "method", "==", "\"HEAD\"", "or", "cast", "(", "httputil", ".", "ResponseStartLine", ",", "start_line", ")", ".", "code", "==", "304", ")", ":", "self", ".", "_expected_content_remaining", "=", "0", "elif", "\"Content-Length\"", "in", "headers", ":", "self", ".", "_expected_content_remaining", "=", "int", "(", "headers", "[", "\"Content-Length\"", "]", ")", "else", ":", "self", ".", "_expected_content_remaining", "=", "None", "# TODO: headers are supposed to be of type str, but we still have some", "# cases that let bytes slip through. Remove these native_str calls when those", "# are fixed.", "header_lines", "=", "(", "native_str", "(", "n", ")", "+", "\": \"", "+", "native_str", "(", "v", ")", "for", "n", ",", "v", "in", "headers", ".", "get_all", "(", ")", ")", "lines", ".", "extend", "(", "l", ".", "encode", "(", "\"latin1\"", ")", "for", "l", "in", "header_lines", ")", "for", "line", "in", "lines", ":", "if", "b\"\\n\"", "in", "line", ":", "raise", "ValueError", "(", "\"Newline in header: \"", "+", "repr", "(", "line", ")", ")", "future", "=", "None", "if", "self", ".", "stream", ".", "closed", "(", ")", ":", "future", "=", "self", ".", "_write_future", "=", "Future", "(", ")", "future", ".", "set_exception", "(", "iostream", ".", "StreamClosedError", "(", ")", ")", "future", ".", "exception", "(", ")", "else", ":", "future", "=", "self", ".", "_write_future", "=", "Future", "(", ")", "data", "=", "b\"\\r\\n\"", ".", "join", "(", "lines", ")", "+", "b\"\\r\\n\\r\\n\"", "if", "chunk", ":", "data", "+=", "self", ".", "_format_chunk", "(", "chunk", ")", "self", ".", "_pending_write", "=", "self", ".", "stream", ".", "write", "(", "data", ")", "future_add_done_callback", "(", "self", ".", "_pending_write", ",", "self", ".", "_on_write_complete", ")", "return", "future" ]
Implements `.HTTPConnection.write_headers`.
[ "Implements", ".", "HTTPConnection", ".", "write_headers", "." ]
python
train
tcalmant/ipopo
pelix/ipopo/decorators.py
https://github.com/tcalmant/ipopo/blob/2f9ae0c44cd9c34ef1a9d50837b3254e75678eb1/pelix/ipopo/decorators.py#L260-L317
def _ipopo_setup_field_callback(cls, context): # type: (type, FactoryContext) -> None """ Sets up the class _field_callback dictionary :param cls: The class to handle :param context: The factory class context """ assert inspect.isclass(cls) assert isinstance(context, FactoryContext) if context.field_callbacks is not None: callbacks = context.field_callbacks.copy() else: callbacks = {} functions = inspect.getmembers(cls, inspect.isroutine) for name, func in functions: if not hasattr(func, constants.IPOPO_METHOD_FIELD_CALLBACKS): # No attribute, get the next member continue method_callbacks = getattr(func, constants.IPOPO_METHOD_FIELD_CALLBACKS) if not isinstance(method_callbacks, list): # Invalid content _logger.warning( "Invalid attribute %s in %s", constants.IPOPO_METHOD_FIELD_CALLBACKS, name, ) continue # Keeping it allows inheritance : by removing it, only the first # child will see the attribute -> Don't remove it # Store the call backs for kind, field, if_valid in method_callbacks: fields_cbs = callbacks.setdefault(field, {}) if kind in fields_cbs and not is_from_parent( cls, fields_cbs[kind][0].__name__ ): _logger.warning( "Redefining the callback %s in '%s'. " "Previous callback : '%s' (%s). " "New callback : %s", kind, name, fields_cbs[kind][0].__name__, fields_cbs[kind][0], func, ) fields_cbs[kind] = (func, if_valid) # Update the factory context context.field_callbacks.clear() context.field_callbacks.update(callbacks)
[ "def", "_ipopo_setup_field_callback", "(", "cls", ",", "context", ")", ":", "# type: (type, FactoryContext) -> None", "assert", "inspect", ".", "isclass", "(", "cls", ")", "assert", "isinstance", "(", "context", ",", "FactoryContext", ")", "if", "context", ".", "field_callbacks", "is", "not", "None", ":", "callbacks", "=", "context", ".", "field_callbacks", ".", "copy", "(", ")", "else", ":", "callbacks", "=", "{", "}", "functions", "=", "inspect", ".", "getmembers", "(", "cls", ",", "inspect", ".", "isroutine", ")", "for", "name", ",", "func", "in", "functions", ":", "if", "not", "hasattr", "(", "func", ",", "constants", ".", "IPOPO_METHOD_FIELD_CALLBACKS", ")", ":", "# No attribute, get the next member", "continue", "method_callbacks", "=", "getattr", "(", "func", ",", "constants", ".", "IPOPO_METHOD_FIELD_CALLBACKS", ")", "if", "not", "isinstance", "(", "method_callbacks", ",", "list", ")", ":", "# Invalid content", "_logger", ".", "warning", "(", "\"Invalid attribute %s in %s\"", ",", "constants", ".", "IPOPO_METHOD_FIELD_CALLBACKS", ",", "name", ",", ")", "continue", "# Keeping it allows inheritance : by removing it, only the first", "# child will see the attribute -> Don't remove it", "# Store the call backs", "for", "kind", ",", "field", ",", "if_valid", "in", "method_callbacks", ":", "fields_cbs", "=", "callbacks", ".", "setdefault", "(", "field", ",", "{", "}", ")", "if", "kind", "in", "fields_cbs", "and", "not", "is_from_parent", "(", "cls", ",", "fields_cbs", "[", "kind", "]", "[", "0", "]", ".", "__name__", ")", ":", "_logger", ".", "warning", "(", "\"Redefining the callback %s in '%s'. \"", "\"Previous callback : '%s' (%s). \"", "\"New callback : %s\"", ",", "kind", ",", "name", ",", "fields_cbs", "[", "kind", "]", "[", "0", "]", ".", "__name__", ",", "fields_cbs", "[", "kind", "]", "[", "0", "]", ",", "func", ",", ")", "fields_cbs", "[", "kind", "]", "=", "(", "func", ",", "if_valid", ")", "# Update the factory context", "context", ".", "field_callbacks", ".", "clear", "(", ")", "context", ".", "field_callbacks", ".", "update", "(", "callbacks", ")" ]
Sets up the class _field_callback dictionary :param cls: The class to handle :param context: The factory class context
[ "Sets", "up", "the", "class", "_field_callback", "dictionary" ]
python
train
ARMmbed/mbed-cloud-sdk-python
src/mbed_cloud/_backends/device_directory/apis/default_api.py
https://github.com/ARMmbed/mbed-cloud-sdk-python/blob/c0af86fb2cdd4dc7ed26f236139241067d293509/src/mbed_cloud/_backends/device_directory/apis/default_api.py#L36-L56
def device_create(self, device, **kwargs): # noqa: E501 """Create a device # noqa: E501 Create a new device. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.device_create(device, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param DeviceDataPostRequest device: (required) :return: DeviceData If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('asynchronous'): return self.device_create_with_http_info(device, **kwargs) # noqa: E501 else: (data) = self.device_create_with_http_info(device, **kwargs) # noqa: E501 return data
[ "def", "device_create", "(", "self", ",", "device", ",", "*", "*", "kwargs", ")", ":", "# noqa: E501", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'asynchronous'", ")", ":", "return", "self", ".", "device_create_with_http_info", "(", "device", ",", "*", "*", "kwargs", ")", "# noqa: E501", "else", ":", "(", "data", ")", "=", "self", ".", "device_create_with_http_info", "(", "device", ",", "*", "*", "kwargs", ")", "# noqa: E501", "return", "data" ]
Create a device # noqa: E501 Create a new device. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.device_create(device, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param DeviceDataPostRequest device: (required) :return: DeviceData If the method is called asynchronously, returns the request thread.
[ "Create", "a", "device", "#", "noqa", ":", "E501" ]
python
train
cloudbase/python-hnvclient
hnv/client.py
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/client.py#L2023-L2045
def process_raw_data(cls, raw_data): """Create a new model using raw API response.""" properties = raw_data.get("properties", {}) backend_ip_configurations = [] for raw_content in properties.get("backendIPConfigurations", []): resource = Resource.from_raw_data(raw_content) backend_ip_configurations.append(resource) properties["backendIPConfigurations"] = backend_ip_configurations load_balancing_rules = [] for raw_content in properties.get("loadBalancingRules", []): resource = Resource.from_raw_data(raw_content) load_balancing_rules.append(resource) properties["loadBalancingRules"] = load_balancing_rules outbound_nat_rules = [] for raw_content in properties.get("outboundNatRules", []): resource = Resource.from_raw_data(raw_content) outbound_nat_rules.append(resource) properties["outboundNatRules"] = outbound_nat_rules return super(BackendAddressPools, cls).process_raw_data(raw_data)
[ "def", "process_raw_data", "(", "cls", ",", "raw_data", ")", ":", "properties", "=", "raw_data", ".", "get", "(", "\"properties\"", ",", "{", "}", ")", "backend_ip_configurations", "=", "[", "]", "for", "raw_content", "in", "properties", ".", "get", "(", "\"backendIPConfigurations\"", ",", "[", "]", ")", ":", "resource", "=", "Resource", ".", "from_raw_data", "(", "raw_content", ")", "backend_ip_configurations", ".", "append", "(", "resource", ")", "properties", "[", "\"backendIPConfigurations\"", "]", "=", "backend_ip_configurations", "load_balancing_rules", "=", "[", "]", "for", "raw_content", "in", "properties", ".", "get", "(", "\"loadBalancingRules\"", ",", "[", "]", ")", ":", "resource", "=", "Resource", ".", "from_raw_data", "(", "raw_content", ")", "load_balancing_rules", ".", "append", "(", "resource", ")", "properties", "[", "\"loadBalancingRules\"", "]", "=", "load_balancing_rules", "outbound_nat_rules", "=", "[", "]", "for", "raw_content", "in", "properties", ".", "get", "(", "\"outboundNatRules\"", ",", "[", "]", ")", ":", "resource", "=", "Resource", ".", "from_raw_data", "(", "raw_content", ")", "outbound_nat_rules", ".", "append", "(", "resource", ")", "properties", "[", "\"outboundNatRules\"", "]", "=", "outbound_nat_rules", "return", "super", "(", "BackendAddressPools", ",", "cls", ")", ".", "process_raw_data", "(", "raw_data", ")" ]
Create a new model using raw API response.
[ "Create", "a", "new", "model", "using", "raw", "API", "response", "." ]
python
train
iotile/coretools
iotilebuild/iotile/build/config/scons-local-3.0.1/SCons/Tool/sgilink.py
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilebuild/iotile/build/config/scons-local-3.0.1/SCons/Tool/sgilink.py#L42-L53
def generate(env): """Add Builders and construction variables for MIPSPro to an Environment.""" link.generate(env) env['LINK'] = env.Detect(linkers) or 'cc' env['SHLINKFLAGS'] = SCons.Util.CLVar('$LINKFLAGS -shared') # __RPATH is set to $_RPATH in the platform specification if that # platform supports it. env['RPATHPREFIX'] = '-rpath ' env['RPATHSUFFIX'] = '' env['_RPATH'] = '${_concat(RPATHPREFIX, RPATH, RPATHSUFFIX, __env__)}'
[ "def", "generate", "(", "env", ")", ":", "link", ".", "generate", "(", "env", ")", "env", "[", "'LINK'", "]", "=", "env", ".", "Detect", "(", "linkers", ")", "or", "'cc'", "env", "[", "'SHLINKFLAGS'", "]", "=", "SCons", ".", "Util", ".", "CLVar", "(", "'$LINKFLAGS -shared'", ")", "# __RPATH is set to $_RPATH in the platform specification if that", "# platform supports it.", "env", "[", "'RPATHPREFIX'", "]", "=", "'-rpath '", "env", "[", "'RPATHSUFFIX'", "]", "=", "''", "env", "[", "'_RPATH'", "]", "=", "'${_concat(RPATHPREFIX, RPATH, RPATHSUFFIX, __env__)}'" ]
Add Builders and construction variables for MIPSPro to an Environment.
[ "Add", "Builders", "and", "construction", "variables", "for", "MIPSPro", "to", "an", "Environment", "." ]
python
train
tango-controls/pytango
tango/utils.py
https://github.com/tango-controls/pytango/blob/9cf78c517c9cdc1081ff6d080a9646a740cc1d36/tango/utils.py#L1578-L1596
def _get_value(self, evt): """Internal usage only""" if evt.err: e = evt.errors[0] return "[%s] %s" % (e.reason, e.desc) if isinstance(evt, EventData): return "[%s] %s" % ( evt.attr_value.quality, str(evt.attr_value.value)) elif isinstance(evt, AttrConfEventData): cfg = evt.attr_conf return "label='%s'; unit='%s'" % (cfg.label, cfg.unit) elif isinstance(evt, DataReadyEventData): return "" elif isinstance(evt, PipeEventData): return evt.pipe_value elif isinstance(evt, DevIntrChangeEventData): print("utils::_get_value()") return
[ "def", "_get_value", "(", "self", ",", "evt", ")", ":", "if", "evt", ".", "err", ":", "e", "=", "evt", ".", "errors", "[", "0", "]", "return", "\"[%s] %s\"", "%", "(", "e", ".", "reason", ",", "e", ".", "desc", ")", "if", "isinstance", "(", "evt", ",", "EventData", ")", ":", "return", "\"[%s] %s\"", "%", "(", "evt", ".", "attr_value", ".", "quality", ",", "str", "(", "evt", ".", "attr_value", ".", "value", ")", ")", "elif", "isinstance", "(", "evt", ",", "AttrConfEventData", ")", ":", "cfg", "=", "evt", ".", "attr_conf", "return", "\"label='%s'; unit='%s'\"", "%", "(", "cfg", ".", "label", ",", "cfg", ".", "unit", ")", "elif", "isinstance", "(", "evt", ",", "DataReadyEventData", ")", ":", "return", "\"\"", "elif", "isinstance", "(", "evt", ",", "PipeEventData", ")", ":", "return", "evt", ".", "pipe_value", "elif", "isinstance", "(", "evt", ",", "DevIntrChangeEventData", ")", ":", "print", "(", "\"utils::_get_value()\"", ")", "return" ]
Internal usage only
[ "Internal", "usage", "only" ]
python
train
horazont/aioxmpp
aioxmpp/service.py
https://github.com/horazont/aioxmpp/blob/22a68e5e1d23f2a4dee470092adbd4672f9ef061/aioxmpp/service.py#L1073-L1080
def presence_handler(type_, from_): """ Deprecated alias of :func:`.dispatcher.presence_handler`. .. deprecated:: 0.9 """ import aioxmpp.dispatcher return aioxmpp.dispatcher.presence_handler(type_, from_)
[ "def", "presence_handler", "(", "type_", ",", "from_", ")", ":", "import", "aioxmpp", ".", "dispatcher", "return", "aioxmpp", ".", "dispatcher", ".", "presence_handler", "(", "type_", ",", "from_", ")" ]
Deprecated alias of :func:`.dispatcher.presence_handler`. .. deprecated:: 0.9
[ "Deprecated", "alias", "of", ":", "func", ":", ".", "dispatcher", ".", "presence_handler", "." ]
python
train
GPflow/GPflow
gpflow/expectations.py
https://github.com/GPflow/GPflow/blob/549394f0b1b0696c7b521a065e49bdae6e7acf27/gpflow/expectations.py#L237-L245
def _expectation(p, kern, none1, none2, none3, nghp=None): """ Compute the expectation: <diag(K_{X, X})>_p(X) - K_{.,.} :: RBF kernel :return: N """ return kern.Kdiag(p.mu)
[ "def", "_expectation", "(", "p", ",", "kern", ",", "none1", ",", "none2", ",", "none3", ",", "nghp", "=", "None", ")", ":", "return", "kern", ".", "Kdiag", "(", "p", ".", "mu", ")" ]
Compute the expectation: <diag(K_{X, X})>_p(X) - K_{.,.} :: RBF kernel :return: N
[ "Compute", "the", "expectation", ":", "<diag", "(", "K_", "{", "X", "X", "}", ")", ">", "_p", "(", "X", ")", "-", "K_", "{", ".", ".", "}", "::", "RBF", "kernel" ]
python
train
mieubrisse/wunderpy2
wunderpy2/wunderclient.py
https://github.com/mieubrisse/wunderpy2/blob/7106b6c13ca45ef4d56f805753c93258d5b822c2/wunderpy2/wunderclient.py#L79-L85
def update_task(self, task_id, revision, title=None, assignee_id=None, completed=None, recurrence_type=None, recurrence_count=None, due_date=None, starred=None, remove=None): ''' Updates the task with the given ID to have the given information NOTE: The 'remove' parameter is an optional list of parameters to remove from the given task, e.g. ['due_date'] ''' return tasks_endpoint.update_task(self, task_id, revision, title=title, assignee_id=assignee_id, completed=completed, recurrence_type=recurrence_type, recurrence_count=recurrence_count, due_date=due_date, starred=starred, remove=remove)
[ "def", "update_task", "(", "self", ",", "task_id", ",", "revision", ",", "title", "=", "None", ",", "assignee_id", "=", "None", ",", "completed", "=", "None", ",", "recurrence_type", "=", "None", ",", "recurrence_count", "=", "None", ",", "due_date", "=", "None", ",", "starred", "=", "None", ",", "remove", "=", "None", ")", ":", "return", "tasks_endpoint", ".", "update_task", "(", "self", ",", "task_id", ",", "revision", ",", "title", "=", "title", ",", "assignee_id", "=", "assignee_id", ",", "completed", "=", "completed", ",", "recurrence_type", "=", "recurrence_type", ",", "recurrence_count", "=", "recurrence_count", ",", "due_date", "=", "due_date", ",", "starred", "=", "starred", ",", "remove", "=", "remove", ")" ]
Updates the task with the given ID to have the given information NOTE: The 'remove' parameter is an optional list of parameters to remove from the given task, e.g. ['due_date']
[ "Updates", "the", "task", "with", "the", "given", "ID", "to", "have", "the", "given", "information", "NOTE", ":", "The", "remove", "parameter", "is", "an", "optional", "list", "of", "parameters", "to", "remove", "from", "the", "given", "task", "e", ".", "g", ".", "[", "due_date", "]" ]
python
train
CloudGenix/sdk-python
cloudgenix/interactive.py
https://github.com/CloudGenix/sdk-python/blob/1b2f92582b6a19769134914793bfd00e4caa074b/cloudgenix/interactive.py#L634-L666
def quick_confirm(prompt, default_value): """ Function to display a quick confirmation for user input **Parameters:** - **prompt:** Text to display before confirm - **default_value:** Default value for no entry **Returns:** 'y', 'n', or Default value. """ valid = False value = default_value.lower() while not valid: input_val = compat_input(prompt + "[{0}]: ".format(default_value)) if input_val == "": value = default_value.lower() valid = True else: try: if input_val.lower() in ['y', 'n']: value = input_val.lower() valid = True else: print("ERROR: enter 'Y' or 'N'.") valid = False except ValueError: print("ERROR: enter 'Y' or 'N'.") valid = False return value
[ "def", "quick_confirm", "(", "prompt", ",", "default_value", ")", ":", "valid", "=", "False", "value", "=", "default_value", ".", "lower", "(", ")", "while", "not", "valid", ":", "input_val", "=", "compat_input", "(", "prompt", "+", "\"[{0}]: \"", ".", "format", "(", "default_value", ")", ")", "if", "input_val", "==", "\"\"", ":", "value", "=", "default_value", ".", "lower", "(", ")", "valid", "=", "True", "else", ":", "try", ":", "if", "input_val", ".", "lower", "(", ")", "in", "[", "'y'", ",", "'n'", "]", ":", "value", "=", "input_val", ".", "lower", "(", ")", "valid", "=", "True", "else", ":", "print", "(", "\"ERROR: enter 'Y' or 'N'.\"", ")", "valid", "=", "False", "except", "ValueError", ":", "print", "(", "\"ERROR: enter 'Y' or 'N'.\"", ")", "valid", "=", "False", "return", "value" ]
Function to display a quick confirmation for user input **Parameters:** - **prompt:** Text to display before confirm - **default_value:** Default value for no entry **Returns:** 'y', 'n', or Default value.
[ "Function", "to", "display", "a", "quick", "confirmation", "for", "user", "input" ]
python
train
eng-tools/sfsimodels
sfsimodels/loader.py
https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/loader.py#L114-L138
def load_frame_building_sample_data(): """ Sample data for the BuildingFrame object :return: """ number_of_storeys = 6 interstorey_height = 3.4 # m masses = 40.0e3 # kg n_bays = 3 fb = models.BuildingFrame(number_of_storeys, n_bays) fb.interstorey_heights = interstorey_height * np.ones(number_of_storeys) fb.floor_length = 18.0 # m fb.floor_width = 16.0 # m fb.storey_masses = masses * np.ones(number_of_storeys) # kg fb.bay_lengths = [6., 6.0, 6.0] fb.set_beam_prop("depth", [0.5, 0.5, 0.5], repeat="up") fb.set_beam_prop("width", [0.4, 0.4, 0.4], repeat="up") fb.set_column_prop("width", [0.5, 0.5, 0.5, 0.5], repeat="up") fb.set_column_prop("depth", [0.5, 0.5, 0.5, 0.5], repeat="up") fb.n_seismic_frames = 3 fb.n_gravity_frames = 0 return fb
[ "def", "load_frame_building_sample_data", "(", ")", ":", "number_of_storeys", "=", "6", "interstorey_height", "=", "3.4", "# m", "masses", "=", "40.0e3", "# kg", "n_bays", "=", "3", "fb", "=", "models", ".", "BuildingFrame", "(", "number_of_storeys", ",", "n_bays", ")", "fb", ".", "interstorey_heights", "=", "interstorey_height", "*", "np", ".", "ones", "(", "number_of_storeys", ")", "fb", ".", "floor_length", "=", "18.0", "# m", "fb", ".", "floor_width", "=", "16.0", "# m", "fb", ".", "storey_masses", "=", "masses", "*", "np", ".", "ones", "(", "number_of_storeys", ")", "# kg", "fb", ".", "bay_lengths", "=", "[", "6.", ",", "6.0", ",", "6.0", "]", "fb", ".", "set_beam_prop", "(", "\"depth\"", ",", "[", "0.5", ",", "0.5", ",", "0.5", "]", ",", "repeat", "=", "\"up\"", ")", "fb", ".", "set_beam_prop", "(", "\"width\"", ",", "[", "0.4", ",", "0.4", ",", "0.4", "]", ",", "repeat", "=", "\"up\"", ")", "fb", ".", "set_column_prop", "(", "\"width\"", ",", "[", "0.5", ",", "0.5", ",", "0.5", ",", "0.5", "]", ",", "repeat", "=", "\"up\"", ")", "fb", ".", "set_column_prop", "(", "\"depth\"", ",", "[", "0.5", ",", "0.5", ",", "0.5", ",", "0.5", "]", ",", "repeat", "=", "\"up\"", ")", "fb", ".", "n_seismic_frames", "=", "3", "fb", ".", "n_gravity_frames", "=", "0", "return", "fb" ]
Sample data for the BuildingFrame object :return:
[ "Sample", "data", "for", "the", "BuildingFrame", "object" ]
python
train
quantumlib/Cirq
cirq/_compat.py
https://github.com/quantumlib/Cirq/blob/0827da80dd7880e5b923eb69407e980ed9bc0bd2/cirq/_compat.py#L22-L40
def proper_repr(value: Any) -> str: """Overrides sympy and numpy returning repr strings that don't parse.""" if isinstance(value, sympy.Basic): result = sympy.srepr(value) # HACK: work around https://github.com/sympy/sympy/issues/16074 # (only handles a few cases) fixed_tokens = [ 'Symbol', 'pi', 'Mul', 'Add', 'Mod', 'Integer', 'Float', 'Rational' ] for token in fixed_tokens: result = result.replace(token, 'sympy.' + token) return result if isinstance(value, np.ndarray): return 'np.array({!r})'.format(value.tolist()) return repr(value)
[ "def", "proper_repr", "(", "value", ":", "Any", ")", "->", "str", ":", "if", "isinstance", "(", "value", ",", "sympy", ".", "Basic", ")", ":", "result", "=", "sympy", ".", "srepr", "(", "value", ")", "# HACK: work around https://github.com/sympy/sympy/issues/16074", "# (only handles a few cases)", "fixed_tokens", "=", "[", "'Symbol'", ",", "'pi'", ",", "'Mul'", ",", "'Add'", ",", "'Mod'", ",", "'Integer'", ",", "'Float'", ",", "'Rational'", "]", "for", "token", "in", "fixed_tokens", ":", "result", "=", "result", ".", "replace", "(", "token", ",", "'sympy.'", "+", "token", ")", "return", "result", "if", "isinstance", "(", "value", ",", "np", ".", "ndarray", ")", ":", "return", "'np.array({!r})'", ".", "format", "(", "value", ".", "tolist", "(", ")", ")", "return", "repr", "(", "value", ")" ]
Overrides sympy and numpy returning repr strings that don't parse.
[ "Overrides", "sympy", "and", "numpy", "returning", "repr", "strings", "that", "don", "t", "parse", "." ]
python
train
Midnighter/dependency-info
src/depinfo/info.py
https://github.com/Midnighter/dependency-info/blob/15bcada0a1d6c047cbe10b844d5bd909ea8cc752/src/depinfo/info.py#L47-L65
def get_pkg_info( package_name, additional=("pip", "flit", "pbr", "setuptools", "wheel") ): """Return build and package dependencies as a dict.""" dist_index = build_dist_index(pkg_resources.working_set) root = dist_index[package_name] tree = construct_tree(dist_index) dependencies = {pkg.name: pkg.installed_version for pkg in tree[root]} # Add the initial package itself. root = root.as_requirement() dependencies[root.name] = root.installed_version # Retrieve information on additional packages such as build tools. for name in additional: try: pkg = dist_index[name].as_requirement() dependencies[pkg.name] = pkg.installed_version except KeyError: continue return dependencies
[ "def", "get_pkg_info", "(", "package_name", ",", "additional", "=", "(", "\"pip\"", ",", "\"flit\"", ",", "\"pbr\"", ",", "\"setuptools\"", ",", "\"wheel\"", ")", ")", ":", "dist_index", "=", "build_dist_index", "(", "pkg_resources", ".", "working_set", ")", "root", "=", "dist_index", "[", "package_name", "]", "tree", "=", "construct_tree", "(", "dist_index", ")", "dependencies", "=", "{", "pkg", ".", "name", ":", "pkg", ".", "installed_version", "for", "pkg", "in", "tree", "[", "root", "]", "}", "# Add the initial package itself.", "root", "=", "root", ".", "as_requirement", "(", ")", "dependencies", "[", "root", ".", "name", "]", "=", "root", ".", "installed_version", "# Retrieve information on additional packages such as build tools.", "for", "name", "in", "additional", ":", "try", ":", "pkg", "=", "dist_index", "[", "name", "]", ".", "as_requirement", "(", ")", "dependencies", "[", "pkg", ".", "name", "]", "=", "pkg", ".", "installed_version", "except", "KeyError", ":", "continue", "return", "dependencies" ]
Return build and package dependencies as a dict.
[ "Return", "build", "and", "package", "dependencies", "as", "a", "dict", "." ]
python
train
dcramer/mock-django
mock_django/query.py
https://github.com/dcramer/mock-django/blob/1168d3255e0d67fbf74a9c71feaccbdafef59d21/mock_django/query.py#L21-L109
def QuerySetMock(model, *return_value): """ Get a SharedMock that returns self for most attributes and a new copy of itself for any method that ordinarily generates QuerySets. Set the results to two items: >>> class Post(object): pass >>> objects = QuerySetMock(Post, 'return', 'values') >>> assert list(objects.filter()) == list(objects.all()) Force an exception: >>> objects = QuerySetMock(Post, Exception()) Chain calls: >>> objects.all().filter(filter_arg='dummy') """ def make_get(self, model): def _get(*a, **k): results = list(self) if len(results) > 1: raise model.MultipleObjectsReturned try: return results[0] except IndexError: raise model.DoesNotExist return _get def make_qs_returning_method(self): def _qs_returning_method(*a, **k): return copy.deepcopy(self) return _qs_returning_method def make_getitem(self): def _getitem(k): if isinstance(k, slice): self.__start = k.start self.__stop = k.stop else: return list(self)[k] return self return _getitem def make_iterator(self): def _iterator(*a, **k): if len(return_value) == 1 and isinstance(return_value[0], Exception): raise return_value[0] start = getattr(self, '__start', None) stop = getattr(self, '__stop', None) for x in return_value[start:stop]: yield x return _iterator actual_model = model if actual_model: model = mock.MagicMock(spec=actual_model()) else: model = mock.MagicMock() m = SharedMock(reserved=['count', 'exists'] + QUERYSET_RETURNING_METHODS) m.__start = None m.__stop = None m.__iter__.side_effect = lambda: iter(m.iterator()) m.__getitem__.side_effect = make_getitem(m) if hasattr(m, "__nonzero__"): # Python 2 m.__nonzero__.side_effect = lambda: bool(return_value) m.exists.side_effect = m.__nonzero__ else: # Python 3 m.__bool__.side_effect = lambda: bool(return_value) m.exists.side_effect = m.__bool__ m.__len__.side_effect = lambda: len(return_value) m.count.side_effect = m.__len__ m.model = model m.get = make_get(m, actual_model) for method_name in QUERYSET_RETURNING_METHODS: setattr(m, method_name, make_qs_returning_method(m)) # Note since this is a SharedMock, *all* auto-generated child # attributes will have the same side_effect ... might not make # sense for some like count(). m.iterator.side_effect = make_iterator(m) return m
[ "def", "QuerySetMock", "(", "model", ",", "*", "return_value", ")", ":", "def", "make_get", "(", "self", ",", "model", ")", ":", "def", "_get", "(", "*", "a", ",", "*", "*", "k", ")", ":", "results", "=", "list", "(", "self", ")", "if", "len", "(", "results", ")", ">", "1", ":", "raise", "model", ".", "MultipleObjectsReturned", "try", ":", "return", "results", "[", "0", "]", "except", "IndexError", ":", "raise", "model", ".", "DoesNotExist", "return", "_get", "def", "make_qs_returning_method", "(", "self", ")", ":", "def", "_qs_returning_method", "(", "*", "a", ",", "*", "*", "k", ")", ":", "return", "copy", ".", "deepcopy", "(", "self", ")", "return", "_qs_returning_method", "def", "make_getitem", "(", "self", ")", ":", "def", "_getitem", "(", "k", ")", ":", "if", "isinstance", "(", "k", ",", "slice", ")", ":", "self", ".", "__start", "=", "k", ".", "start", "self", ".", "__stop", "=", "k", ".", "stop", "else", ":", "return", "list", "(", "self", ")", "[", "k", "]", "return", "self", "return", "_getitem", "def", "make_iterator", "(", "self", ")", ":", "def", "_iterator", "(", "*", "a", ",", "*", "*", "k", ")", ":", "if", "len", "(", "return_value", ")", "==", "1", "and", "isinstance", "(", "return_value", "[", "0", "]", ",", "Exception", ")", ":", "raise", "return_value", "[", "0", "]", "start", "=", "getattr", "(", "self", ",", "'__start'", ",", "None", ")", "stop", "=", "getattr", "(", "self", ",", "'__stop'", ",", "None", ")", "for", "x", "in", "return_value", "[", "start", ":", "stop", "]", ":", "yield", "x", "return", "_iterator", "actual_model", "=", "model", "if", "actual_model", ":", "model", "=", "mock", ".", "MagicMock", "(", "spec", "=", "actual_model", "(", ")", ")", "else", ":", "model", "=", "mock", ".", "MagicMock", "(", ")", "m", "=", "SharedMock", "(", "reserved", "=", "[", "'count'", ",", "'exists'", "]", "+", "QUERYSET_RETURNING_METHODS", ")", "m", ".", "__start", "=", "None", "m", ".", "__stop", "=", "None", "m", ".", "__iter__", ".", "side_effect", "=", "lambda", ":", "iter", "(", "m", ".", "iterator", "(", ")", ")", "m", ".", "__getitem__", ".", "side_effect", "=", "make_getitem", "(", "m", ")", "if", "hasattr", "(", "m", ",", "\"__nonzero__\"", ")", ":", "# Python 2", "m", ".", "__nonzero__", ".", "side_effect", "=", "lambda", ":", "bool", "(", "return_value", ")", "m", ".", "exists", ".", "side_effect", "=", "m", ".", "__nonzero__", "else", ":", "# Python 3", "m", ".", "__bool__", ".", "side_effect", "=", "lambda", ":", "bool", "(", "return_value", ")", "m", ".", "exists", ".", "side_effect", "=", "m", ".", "__bool__", "m", ".", "__len__", ".", "side_effect", "=", "lambda", ":", "len", "(", "return_value", ")", "m", ".", "count", ".", "side_effect", "=", "m", ".", "__len__", "m", ".", "model", "=", "model", "m", ".", "get", "=", "make_get", "(", "m", ",", "actual_model", ")", "for", "method_name", "in", "QUERYSET_RETURNING_METHODS", ":", "setattr", "(", "m", ",", "method_name", ",", "make_qs_returning_method", "(", "m", ")", ")", "# Note since this is a SharedMock, *all* auto-generated child", "# attributes will have the same side_effect ... might not make", "# sense for some like count().", "m", ".", "iterator", ".", "side_effect", "=", "make_iterator", "(", "m", ")", "return", "m" ]
Get a SharedMock that returns self for most attributes and a new copy of itself for any method that ordinarily generates QuerySets. Set the results to two items: >>> class Post(object): pass >>> objects = QuerySetMock(Post, 'return', 'values') >>> assert list(objects.filter()) == list(objects.all()) Force an exception: >>> objects = QuerySetMock(Post, Exception()) Chain calls: >>> objects.all().filter(filter_arg='dummy')
[ "Get", "a", "SharedMock", "that", "returns", "self", "for", "most", "attributes", "and", "a", "new", "copy", "of", "itself", "for", "any", "method", "that", "ordinarily", "generates", "QuerySets", "." ]
python
train
miyakogi/wdom
wdom/element.py
https://github.com/miyakogi/wdom/blob/a21bcd23e94baceee71161829f6897bee3fd39c1/wdom/element.py#L212-L218
def html(self) -> str: """Return html representation.""" if isinstance(self.value, bool): val = 'true' if self.value else 'false' else: val = str(self.value) return 'draggable="{}"'.format(val)
[ "def", "html", "(", "self", ")", "->", "str", ":", "if", "isinstance", "(", "self", ".", "value", ",", "bool", ")", ":", "val", "=", "'true'", "if", "self", ".", "value", "else", "'false'", "else", ":", "val", "=", "str", "(", "self", ".", "value", ")", "return", "'draggable=\"{}\"'", ".", "format", "(", "val", ")" ]
Return html representation.
[ "Return", "html", "representation", "." ]
python
train
edelbluth/blackred
src/blackred/blackred.py
https://github.com/edelbluth/blackred/blob/57a655e4d4eca60ce16e7b338079355049a87b49/src/blackred/blackred.py#L289-L299
def get_watchlist_ttl(self, item: str) -> int: """ Get the amount of time a specific item will remain on the watchlist. :param str item: The item to get the TTL for on the watchlist :return: Time in seconds. Returns None for a non-existing element :rtype: int """ assert item is not None item = self._encode_item(item) return self.__get_ttl(self.__redis_conf['watchlist_template'].format(item))
[ "def", "get_watchlist_ttl", "(", "self", ",", "item", ":", "str", ")", "->", "int", ":", "assert", "item", "is", "not", "None", "item", "=", "self", ".", "_encode_item", "(", "item", ")", "return", "self", ".", "__get_ttl", "(", "self", ".", "__redis_conf", "[", "'watchlist_template'", "]", ".", "format", "(", "item", ")", ")" ]
Get the amount of time a specific item will remain on the watchlist. :param str item: The item to get the TTL for on the watchlist :return: Time in seconds. Returns None for a non-existing element :rtype: int
[ "Get", "the", "amount", "of", "time", "a", "specific", "item", "will", "remain", "on", "the", "watchlist", "." ]
python
train
atztogo/phonopy
phonopy/harmonic/dynmat_to_fc.py
https://github.com/atztogo/phonopy/blob/869cc2ba9e7d495d5f4cf6942415ab3fc9e2a10f/phonopy/harmonic/dynmat_to_fc.py#L42-L62
def get_commensurate_points(supercell_matrix): # wrt primitive cell """Commensurate q-points are returned. Parameters ---------- supercell_matrix : array_like Supercell matrix with respect to primitive cell basis vectors. shape=(3, 3) dtype=intc """ smat = np.array(supercell_matrix, dtype=int) rec_primitive = PhonopyAtoms(numbers=[1], scaled_positions=[[0, 0, 0]], cell=np.diag([1, 1, 1]), pbc=True) rec_supercell = get_supercell(rec_primitive, smat.T) q_pos = rec_supercell.get_scaled_positions() return np.array(np.where(q_pos > 1 - 1e-15, q_pos - 1, q_pos), dtype='double', order='C')
[ "def", "get_commensurate_points", "(", "supercell_matrix", ")", ":", "# wrt primitive cell", "smat", "=", "np", ".", "array", "(", "supercell_matrix", ",", "dtype", "=", "int", ")", "rec_primitive", "=", "PhonopyAtoms", "(", "numbers", "=", "[", "1", "]", ",", "scaled_positions", "=", "[", "[", "0", ",", "0", ",", "0", "]", "]", ",", "cell", "=", "np", ".", "diag", "(", "[", "1", ",", "1", ",", "1", "]", ")", ",", "pbc", "=", "True", ")", "rec_supercell", "=", "get_supercell", "(", "rec_primitive", ",", "smat", ".", "T", ")", "q_pos", "=", "rec_supercell", ".", "get_scaled_positions", "(", ")", "return", "np", ".", "array", "(", "np", ".", "where", "(", "q_pos", ">", "1", "-", "1e-15", ",", "q_pos", "-", "1", ",", "q_pos", ")", ",", "dtype", "=", "'double'", ",", "order", "=", "'C'", ")" ]
Commensurate q-points are returned. Parameters ---------- supercell_matrix : array_like Supercell matrix with respect to primitive cell basis vectors. shape=(3, 3) dtype=intc
[ "Commensurate", "q", "-", "points", "are", "returned", "." ]
python
train
spyder-ide/spyder
spyder/plugins/variableexplorer/widgets/dataframeeditor.py
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/plugins/variableexplorer/widgets/dataframeeditor.py#L655-L663
def columnCount(self, index=QModelIndex()): """DataFrame column number""" if self.axis == 0: if self.total_cols <= self.cols_loaded: return self.total_cols else: return self.cols_loaded else: return max(1, self._shape[1])
[ "def", "columnCount", "(", "self", ",", "index", "=", "QModelIndex", "(", ")", ")", ":", "if", "self", ".", "axis", "==", "0", ":", "if", "self", ".", "total_cols", "<=", "self", ".", "cols_loaded", ":", "return", "self", ".", "total_cols", "else", ":", "return", "self", ".", "cols_loaded", "else", ":", "return", "max", "(", "1", ",", "self", ".", "_shape", "[", "1", "]", ")" ]
DataFrame column number
[ "DataFrame", "column", "number" ]
python
train
OpenGov/python_data_wrap
datawrap/tableloader.py
https://github.com/OpenGov/python_data_wrap/blob/7de38bb30d7a500adc336a4a7999528d753e5600/datawrap/tableloader.py#L16-L51
def read(file_name, file_contents=None, on_demand=False): ''' Loads an arbitrary file type (xlsx, xls, or csv like) and returns a list of 2D tables. For csv files this will be a list of one table, but excel formats can have many tables/worksheets. TODO: Add wrapper which can be closed/exited on each file type which cleans up the file handler. Args: file_name: The name of the local file, or the holder for the extension type when the file_contents are supplied. file_contents: The file-like object holding contents of file_name. If left as None, then file_name is directly loaded. on_demand: Requests that a yielder be used in place of a full data copy. ''' try: if re.search(XML_EXT_REGEX, file_name): return get_data_excel_xml(file_name, file_contents=file_contents, on_demand=on_demand) if re.search(XLSX_EXT_REGEX, file_name): return get_data_xlsx(file_name, file_contents=file_contents, on_demand=on_demand) elif re.search(XLS_EXT_REGEX, file_name): return get_data_xls(file_name, file_contents=file_contents, on_demand=on_demand) elif re.search(CSV_EXT_REGEX, file_name): return get_data_csv(file_name, file_contents=file_contents, on_demand=on_demand) else: try: return get_data_csv(file_name, file_contents=file_contents, on_demand=on_demand) except: raise ValueError("Unable to load file '{}' as csv".format(file_name)) except xlrd.XLRDError as e: if "<?xml" in str(e): return get_data_excel_xml(file_name, file_contents=file_contents, on_demand=on_demand) raise
[ "def", "read", "(", "file_name", ",", "file_contents", "=", "None", ",", "on_demand", "=", "False", ")", ":", "try", ":", "if", "re", ".", "search", "(", "XML_EXT_REGEX", ",", "file_name", ")", ":", "return", "get_data_excel_xml", "(", "file_name", ",", "file_contents", "=", "file_contents", ",", "on_demand", "=", "on_demand", ")", "if", "re", ".", "search", "(", "XLSX_EXT_REGEX", ",", "file_name", ")", ":", "return", "get_data_xlsx", "(", "file_name", ",", "file_contents", "=", "file_contents", ",", "on_demand", "=", "on_demand", ")", "elif", "re", ".", "search", "(", "XLS_EXT_REGEX", ",", "file_name", ")", ":", "return", "get_data_xls", "(", "file_name", ",", "file_contents", "=", "file_contents", ",", "on_demand", "=", "on_demand", ")", "elif", "re", ".", "search", "(", "CSV_EXT_REGEX", ",", "file_name", ")", ":", "return", "get_data_csv", "(", "file_name", ",", "file_contents", "=", "file_contents", ",", "on_demand", "=", "on_demand", ")", "else", ":", "try", ":", "return", "get_data_csv", "(", "file_name", ",", "file_contents", "=", "file_contents", ",", "on_demand", "=", "on_demand", ")", "except", ":", "raise", "ValueError", "(", "\"Unable to load file '{}' as csv\"", ".", "format", "(", "file_name", ")", ")", "except", "xlrd", ".", "XLRDError", "as", "e", ":", "if", "\"<?xml\"", "in", "str", "(", "e", ")", ":", "return", "get_data_excel_xml", "(", "file_name", ",", "file_contents", "=", "file_contents", ",", "on_demand", "=", "on_demand", ")", "raise" ]
Loads an arbitrary file type (xlsx, xls, or csv like) and returns a list of 2D tables. For csv files this will be a list of one table, but excel formats can have many tables/worksheets. TODO: Add wrapper which can be closed/exited on each file type which cleans up the file handler. Args: file_name: The name of the local file, or the holder for the extension type when the file_contents are supplied. file_contents: The file-like object holding contents of file_name. If left as None, then file_name is directly loaded. on_demand: Requests that a yielder be used in place of a full data copy.
[ "Loads", "an", "arbitrary", "file", "type", "(", "xlsx", "xls", "or", "csv", "like", ")", "and", "returns", "a", "list", "of", "2D", "tables", ".", "For", "csv", "files", "this", "will", "be", "a", "list", "of", "one", "table", "but", "excel", "formats", "can", "have", "many", "tables", "/", "worksheets", "." ]
python
train
fastai/fastai
fastai/callbacks/tensorboard.py
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/callbacks/tensorboard.py#L120-L124
def _write_gen_model_stats(self, iteration:int)->None: "Writes gradient statistics for generator to Tensorboard." generator = self.learn.gan_trainer.generator self.stats_writer.write(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats') self.gen_stats_updated = True
[ "def", "_write_gen_model_stats", "(", "self", ",", "iteration", ":", "int", ")", "->", "None", ":", "generator", "=", "self", ".", "learn", ".", "gan_trainer", ".", "generator", "self", ".", "stats_writer", ".", "write", "(", "model", "=", "generator", ",", "iteration", "=", "iteration", ",", "tbwriter", "=", "self", ".", "tbwriter", ",", "name", "=", "'gen_model_stats'", ")", "self", ".", "gen_stats_updated", "=", "True" ]
Writes gradient statistics for generator to Tensorboard.
[ "Writes", "gradient", "statistics", "for", "generator", "to", "Tensorboard", "." ]
python
train
UDST/orca
orca/orca.py
https://github.com/UDST/orca/blob/07b34aeef13cc87c966b2e30cbe7e76cc9d3622c/orca/orca.py#L1908-L2007
def run(steps, iter_vars=None, data_out=None, out_interval=1, out_base_tables=None, out_run_tables=None, compress=False, out_base_local=True, out_run_local=True): """ Run steps in series, optionally repeatedly over some sequence. The current iteration variable is set as a global injectable called ``iter_var``. Parameters ---------- steps : list of str List of steps to run identified by their name. iter_vars : iterable, optional The values of `iter_vars` will be made available as an injectable called ``iter_var`` when repeatedly running `steps`. data_out : str, optional An optional filename to which all tables injected into any step in `steps` will be saved every `out_interval` iterations. File will be a pandas HDF data store. out_interval : int, optional Iteration interval on which to save data to `data_out`. For example, 2 will save out every 2 iterations, 5 every 5 iterations. Default is every iteration. The results of the first and last iterations are always included. The input (base) tables are also included and prefixed with `base/`, these represent the state of the system before any steps have been executed. The interval is defined relative to the first iteration. For example, a run begining in 2015 with an out_interval of 2, will write out results for 2015, 2017, etc. out_base_tables: list of str, optional, default None List of base tables to write. If not provided, tables injected into 'steps' will be written. out_run_tables: list of str, optional, default None List of run tables to write. If not provided, tables injected into 'steps' will be written. compress: boolean, optional, default False Whether to compress output file using standard HDF5 zlib compression. Compression yields much smaller files using slightly more CPU. out_base_local: boolean, optional, default True For tables in out_base_tables, whether to store only local columns (True) or both, local and computed columns (False). out_run_local: boolean, optional, default True For tables in out_run_tables, whether to store only local columns (True) or both, local and computed columns (False). """ iter_vars = iter_vars or [None] max_i = len(iter_vars) # get the tables to write out if out_base_tables is None or out_run_tables is None: step_tables = get_step_table_names(steps) if out_base_tables is None: out_base_tables = step_tables if out_run_tables is None: out_run_tables = step_tables # write out the base (inputs) if data_out: add_injectable('iter_var', iter_vars[0]) write_tables(data_out, out_base_tables, 'base', compress=compress, local=out_base_local) # run the steps for i, var in enumerate(iter_vars, start=1): add_injectable('iter_var', var) if var is not None: print('Running iteration {} with iteration value {!r}'.format( i, var)) logger.debug( 'running iteration {} with iteration value {!r}'.format( i, var)) t1 = time.time() for j, step_name in enumerate(steps): add_injectable('iter_step', iter_step(j, step_name)) print('Running step {!r}'.format(step_name)) with log_start_finish( 'run step {!r}'.format(step_name), logger, logging.INFO): step = get_step(step_name) t2 = time.time() step() print("Time to execute step '{}': {:.2f} s".format( step_name, time.time() - t2)) clear_cache(scope=_CS_STEP) print( ('Total time to execute iteration {} ' 'with iteration value {!r}: ' '{:.2f} s').format(i, var, time.time() - t1)) # write out the results for the current iteration if data_out: if (i - 1) % out_interval == 0 or i == max_i: write_tables(data_out, out_run_tables, var, compress=compress, local=out_run_local) clear_cache(scope=_CS_ITER)
[ "def", "run", "(", "steps", ",", "iter_vars", "=", "None", ",", "data_out", "=", "None", ",", "out_interval", "=", "1", ",", "out_base_tables", "=", "None", ",", "out_run_tables", "=", "None", ",", "compress", "=", "False", ",", "out_base_local", "=", "True", ",", "out_run_local", "=", "True", ")", ":", "iter_vars", "=", "iter_vars", "or", "[", "None", "]", "max_i", "=", "len", "(", "iter_vars", ")", "# get the tables to write out", "if", "out_base_tables", "is", "None", "or", "out_run_tables", "is", "None", ":", "step_tables", "=", "get_step_table_names", "(", "steps", ")", "if", "out_base_tables", "is", "None", ":", "out_base_tables", "=", "step_tables", "if", "out_run_tables", "is", "None", ":", "out_run_tables", "=", "step_tables", "# write out the base (inputs)", "if", "data_out", ":", "add_injectable", "(", "'iter_var'", ",", "iter_vars", "[", "0", "]", ")", "write_tables", "(", "data_out", ",", "out_base_tables", ",", "'base'", ",", "compress", "=", "compress", ",", "local", "=", "out_base_local", ")", "# run the steps", "for", "i", ",", "var", "in", "enumerate", "(", "iter_vars", ",", "start", "=", "1", ")", ":", "add_injectable", "(", "'iter_var'", ",", "var", ")", "if", "var", "is", "not", "None", ":", "print", "(", "'Running iteration {} with iteration value {!r}'", ".", "format", "(", "i", ",", "var", ")", ")", "logger", ".", "debug", "(", "'running iteration {} with iteration value {!r}'", ".", "format", "(", "i", ",", "var", ")", ")", "t1", "=", "time", ".", "time", "(", ")", "for", "j", ",", "step_name", "in", "enumerate", "(", "steps", ")", ":", "add_injectable", "(", "'iter_step'", ",", "iter_step", "(", "j", ",", "step_name", ")", ")", "print", "(", "'Running step {!r}'", ".", "format", "(", "step_name", ")", ")", "with", "log_start_finish", "(", "'run step {!r}'", ".", "format", "(", "step_name", ")", ",", "logger", ",", "logging", ".", "INFO", ")", ":", "step", "=", "get_step", "(", "step_name", ")", "t2", "=", "time", ".", "time", "(", ")", "step", "(", ")", "print", "(", "\"Time to execute step '{}': {:.2f} s\"", ".", "format", "(", "step_name", ",", "time", ".", "time", "(", ")", "-", "t2", ")", ")", "clear_cache", "(", "scope", "=", "_CS_STEP", ")", "print", "(", "(", "'Total time to execute iteration {} '", "'with iteration value {!r}: '", "'{:.2f} s'", ")", ".", "format", "(", "i", ",", "var", ",", "time", ".", "time", "(", ")", "-", "t1", ")", ")", "# write out the results for the current iteration", "if", "data_out", ":", "if", "(", "i", "-", "1", ")", "%", "out_interval", "==", "0", "or", "i", "==", "max_i", ":", "write_tables", "(", "data_out", ",", "out_run_tables", ",", "var", ",", "compress", "=", "compress", ",", "local", "=", "out_run_local", ")", "clear_cache", "(", "scope", "=", "_CS_ITER", ")" ]
Run steps in series, optionally repeatedly over some sequence. The current iteration variable is set as a global injectable called ``iter_var``. Parameters ---------- steps : list of str List of steps to run identified by their name. iter_vars : iterable, optional The values of `iter_vars` will be made available as an injectable called ``iter_var`` when repeatedly running `steps`. data_out : str, optional An optional filename to which all tables injected into any step in `steps` will be saved every `out_interval` iterations. File will be a pandas HDF data store. out_interval : int, optional Iteration interval on which to save data to `data_out`. For example, 2 will save out every 2 iterations, 5 every 5 iterations. Default is every iteration. The results of the first and last iterations are always included. The input (base) tables are also included and prefixed with `base/`, these represent the state of the system before any steps have been executed. The interval is defined relative to the first iteration. For example, a run begining in 2015 with an out_interval of 2, will write out results for 2015, 2017, etc. out_base_tables: list of str, optional, default None List of base tables to write. If not provided, tables injected into 'steps' will be written. out_run_tables: list of str, optional, default None List of run tables to write. If not provided, tables injected into 'steps' will be written. compress: boolean, optional, default False Whether to compress output file using standard HDF5 zlib compression. Compression yields much smaller files using slightly more CPU. out_base_local: boolean, optional, default True For tables in out_base_tables, whether to store only local columns (True) or both, local and computed columns (False). out_run_local: boolean, optional, default True For tables in out_run_tables, whether to store only local columns (True) or both, local and computed columns (False).
[ "Run", "steps", "in", "series", "optionally", "repeatedly", "over", "some", "sequence", ".", "The", "current", "iteration", "variable", "is", "set", "as", "a", "global", "injectable", "called", "iter_var", "." ]
python
train
quantmind/pulsar
pulsar/apps/data/channels.py
https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/pulsar/apps/data/channels.py#L329-L341
def register(self, event, callback): """Register a ``callback`` for ``event`` """ pattern = self.channels.event_pattern(event) entry = self.callbacks.get(pattern) if not entry: entry = event_callbacks(event, pattern, re.compile(pattern), []) self.callbacks[entry.pattern] = entry if callback not in entry.callbacks: entry.callbacks.append(callback) return entry
[ "def", "register", "(", "self", ",", "event", ",", "callback", ")", ":", "pattern", "=", "self", ".", "channels", ".", "event_pattern", "(", "event", ")", "entry", "=", "self", ".", "callbacks", ".", "get", "(", "pattern", ")", "if", "not", "entry", ":", "entry", "=", "event_callbacks", "(", "event", ",", "pattern", ",", "re", ".", "compile", "(", "pattern", ")", ",", "[", "]", ")", "self", ".", "callbacks", "[", "entry", ".", "pattern", "]", "=", "entry", "if", "callback", "not", "in", "entry", ".", "callbacks", ":", "entry", ".", "callbacks", ".", "append", "(", "callback", ")", "return", "entry" ]
Register a ``callback`` for ``event``
[ "Register", "a", "callback", "for", "event" ]
python
train
librosa/librosa
librosa/effects.py
https://github.com/librosa/librosa/blob/180e8e6eb8f958fa6b20b8cba389f7945d508247/librosa/effects.py#L310-L387
def remix(y, intervals, align_zeros=True): '''Remix an audio signal by re-ordering time intervals. Parameters ---------- y : np.ndarray [shape=(t,) or (2, t)] Audio time series intervals : iterable of tuples (start, end) An iterable (list-like or generator) where the `i`th item `intervals[i]` indicates the start and end (in samples) of a slice of `y`. align_zeros : boolean If `True`, interval boundaries are mapped to the closest zero-crossing in `y`. If `y` is stereo, zero-crossings are computed after converting to mono. Returns ------- y_remix : np.ndarray [shape=(d,) or (2, d)] `y` remixed in the order specified by `intervals` Examples -------- Load in the example track and reverse the beats >>> y, sr = librosa.load(librosa.util.example_audio_file()) Compute beats >>> _, beat_frames = librosa.beat.beat_track(y=y, sr=sr, ... hop_length=512) Convert from frames to sample indices >>> beat_samples = librosa.frames_to_samples(beat_frames) Generate intervals from consecutive events >>> intervals = librosa.util.frame(beat_samples, frame_length=2, ... hop_length=1).T Reverse the beat intervals >>> y_out = librosa.effects.remix(y, intervals[::-1]) ''' # Validate the audio buffer util.valid_audio(y, mono=False) y_out = [] if align_zeros: y_mono = core.to_mono(y) zeros = np.nonzero(core.zero_crossings(y_mono))[-1] # Force end-of-signal onto zeros zeros = np.append(zeros, [len(y_mono)]) clip = [slice(None)] * y.ndim for interval in intervals: if align_zeros: interval = zeros[util.match_events(interval, zeros)] clip[-1] = slice(interval[0], interval[1]) y_out.append(y[tuple(clip)]) return np.concatenate(y_out, axis=-1)
[ "def", "remix", "(", "y", ",", "intervals", ",", "align_zeros", "=", "True", ")", ":", "# Validate the audio buffer", "util", ".", "valid_audio", "(", "y", ",", "mono", "=", "False", ")", "y_out", "=", "[", "]", "if", "align_zeros", ":", "y_mono", "=", "core", ".", "to_mono", "(", "y", ")", "zeros", "=", "np", ".", "nonzero", "(", "core", ".", "zero_crossings", "(", "y_mono", ")", ")", "[", "-", "1", "]", "# Force end-of-signal onto zeros", "zeros", "=", "np", ".", "append", "(", "zeros", ",", "[", "len", "(", "y_mono", ")", "]", ")", "clip", "=", "[", "slice", "(", "None", ")", "]", "*", "y", ".", "ndim", "for", "interval", "in", "intervals", ":", "if", "align_zeros", ":", "interval", "=", "zeros", "[", "util", ".", "match_events", "(", "interval", ",", "zeros", ")", "]", "clip", "[", "-", "1", "]", "=", "slice", "(", "interval", "[", "0", "]", ",", "interval", "[", "1", "]", ")", "y_out", ".", "append", "(", "y", "[", "tuple", "(", "clip", ")", "]", ")", "return", "np", ".", "concatenate", "(", "y_out", ",", "axis", "=", "-", "1", ")" ]
Remix an audio signal by re-ordering time intervals. Parameters ---------- y : np.ndarray [shape=(t,) or (2, t)] Audio time series intervals : iterable of tuples (start, end) An iterable (list-like or generator) where the `i`th item `intervals[i]` indicates the start and end (in samples) of a slice of `y`. align_zeros : boolean If `True`, interval boundaries are mapped to the closest zero-crossing in `y`. If `y` is stereo, zero-crossings are computed after converting to mono. Returns ------- y_remix : np.ndarray [shape=(d,) or (2, d)] `y` remixed in the order specified by `intervals` Examples -------- Load in the example track and reverse the beats >>> y, sr = librosa.load(librosa.util.example_audio_file()) Compute beats >>> _, beat_frames = librosa.beat.beat_track(y=y, sr=sr, ... hop_length=512) Convert from frames to sample indices >>> beat_samples = librosa.frames_to_samples(beat_frames) Generate intervals from consecutive events >>> intervals = librosa.util.frame(beat_samples, frame_length=2, ... hop_length=1).T Reverse the beat intervals >>> y_out = librosa.effects.remix(y, intervals[::-1])
[ "Remix", "an", "audio", "signal", "by", "re", "-", "ordering", "time", "intervals", "." ]
python
test
Nike-Inc/cerberus-python-client
cerberus/client.py
https://github.com/Nike-Inc/cerberus-python-client/blob/ef38356822e722fcb6a6ed4a1b38a5b493e753ae/cerberus/client.py#L95-L104
def get_roles(self): """Return all the roles (IAM or User Groups) that can be granted to a safe deposit box. Roles are permission levels that are granted to IAM or User Groups. Associating the id for the write role would allow that IAM or User Group to write in the safe deposit box.""" roles_resp = get_with_retry(self.cerberus_url + '/v1/role', headers=self.HEADERS) throw_if_bad_response(roles_resp) return roles_resp.json()
[ "def", "get_roles", "(", "self", ")", ":", "roles_resp", "=", "get_with_retry", "(", "self", ".", "cerberus_url", "+", "'/v1/role'", ",", "headers", "=", "self", ".", "HEADERS", ")", "throw_if_bad_response", "(", "roles_resp", ")", "return", "roles_resp", ".", "json", "(", ")" ]
Return all the roles (IAM or User Groups) that can be granted to a safe deposit box. Roles are permission levels that are granted to IAM or User Groups. Associating the id for the write role would allow that IAM or User Group to write in the safe deposit box.
[ "Return", "all", "the", "roles", "(", "IAM", "or", "User", "Groups", ")", "that", "can", "be", "granted", "to", "a", "safe", "deposit", "box", "." ]
python
train
linkhub-sdk/popbill.py
popbill/statementService.py
https://github.com/linkhub-sdk/popbill.py/blob/68a0dd7f7a937603318e93be321fde73c50b96cc/popbill/statementService.py#L237-L263
def cancel(self, CorpNum, ItemCode, MgtKey, Memo=None, UserID=None): """ 발행취소 args CorpNum : 팝빌회원 사업자번호 ItemCode : 명세서 종류 코드 [121 - 거래명세서], [122 - 청구서], [123 - 견적서], [124 - 발주서], [125 - 입금표], [126 - 영수증] MgtKey : 파트너 문서관리번호 Memo : 처리메모 UserID : 팝빌회원 아이디 return 처리결과. consist of code and message raise PopbillException """ if MgtKey == None or MgtKey == "": raise PopbillException(-99999999, "관리번호가 입력되지 않았습니다.") if ItemCode == None or ItemCode == "": raise PopbillException(-99999999, "명세서 종류 코드가 입력되지 않았습니다.") postData = '' if Memo != None and Memo != '': postData = self._stringtify({"memo": Memo}) return self._httppost('/Statement/' + str(ItemCode) + '/' + MgtKey, postData, CorpNum, UserID, "CANCEL")
[ "def", "cancel", "(", "self", ",", "CorpNum", ",", "ItemCode", ",", "MgtKey", ",", "Memo", "=", "None", ",", "UserID", "=", "None", ")", ":", "if", "MgtKey", "==", "None", "or", "MgtKey", "==", "\"\"", ":", "raise", "PopbillException", "(", "-", "99999999", ",", "\"관리번호가 입력되지 않았습니다.\")\r", "", "if", "ItemCode", "==", "None", "or", "ItemCode", "==", "\"\"", ":", "raise", "PopbillException", "(", "-", "99999999", ",", "\"명세서 종류 코드가 입력되지 않았습니다.\")\r", "", "postData", "=", "''", "if", "Memo", "!=", "None", "and", "Memo", "!=", "''", ":", "postData", "=", "self", ".", "_stringtify", "(", "{", "\"memo\"", ":", "Memo", "}", ")", "return", "self", ".", "_httppost", "(", "'/Statement/'", "+", "str", "(", "ItemCode", ")", "+", "'/'", "+", "MgtKey", ",", "postData", ",", "CorpNum", ",", "UserID", ",", "\"CANCEL\"", ")" ]
발행취소 args CorpNum : 팝빌회원 사업자번호 ItemCode : 명세서 종류 코드 [121 - 거래명세서], [122 - 청구서], [123 - 견적서], [124 - 발주서], [125 - 입금표], [126 - 영수증] MgtKey : 파트너 문서관리번호 Memo : 처리메모 UserID : 팝빌회원 아이디 return 처리결과. consist of code and message raise PopbillException
[ "발행취소", "args", "CorpNum", ":", "팝빌회원", "사업자번호", "ItemCode", ":", "명세서", "종류", "코드", "[", "121", "-", "거래명세서", "]", "[", "122", "-", "청구서", "]", "[", "123", "-", "견적서", "]", "[", "124", "-", "발주서", "]", "[", "125", "-", "입금표", "]", "[", "126", "-", "영수증", "]", "MgtKey", ":", "파트너", "문서관리번호", "Memo", ":", "처리메모", "UserID", ":", "팝빌회원", "아이디", "return", "처리결과", ".", "consist", "of", "code", "and", "message", "raise", "PopbillException" ]
python
train
chaoss/grimoirelab-perceval
perceval/backends/core/github.py
https://github.com/chaoss/grimoirelab-perceval/blob/41c908605e88b7ebc3a536c643fa0f212eaf9e0e/perceval/backends/core/github.py#L367-L374
def __get_issue_assignees(self, raw_assignees): """Get issue assignees""" assignees = [] for ra in raw_assignees: assignees.append(self.__get_user(ra['login'])) return assignees
[ "def", "__get_issue_assignees", "(", "self", ",", "raw_assignees", ")", ":", "assignees", "=", "[", "]", "for", "ra", "in", "raw_assignees", ":", "assignees", ".", "append", "(", "self", ".", "__get_user", "(", "ra", "[", "'login'", "]", ")", ")", "return", "assignees" ]
Get issue assignees
[ "Get", "issue", "assignees" ]
python
test
MacHu-GWU/angora-project
angora/filesystem/filesystem.py
https://github.com/MacHu-GWU/angora-project/blob/689a60da51cd88680ddbe26e28dbe81e6b01d275/angora/filesystem/filesystem.py#L852-L878
def from_path_by_size(dir_path, min_size=0, max_size=1 << 40): """Create a new FileCollection, and select all files that size in a range:: dir_path = "your/path" # select by file size larger than 100MB fc = FileCollection.from_path_by_size( dir_path, min_size=100*1024*1024) # select by file size smaller than 100MB fc = FileCollection.from_path_by_size( dir_path, max_size=100*1024*1024) # select by file size from 1MB to 100MB fc = FileCollection.from_path_by_size( dir_path, min_size=1024*1024, max_size=100*1024*1024) """ def filter(winfile): if (winfile.size_on_disk >= min_size) and \ (winfile.size_on_disk <= max_size): return True else: return False return FileCollection.from_path_by_criterion( dir_path, filter, keepboth=False)
[ "def", "from_path_by_size", "(", "dir_path", ",", "min_size", "=", "0", ",", "max_size", "=", "1", "<<", "40", ")", ":", "def", "filter", "(", "winfile", ")", ":", "if", "(", "winfile", ".", "size_on_disk", ">=", "min_size", ")", "and", "(", "winfile", ".", "size_on_disk", "<=", "max_size", ")", ":", "return", "True", "else", ":", "return", "False", "return", "FileCollection", ".", "from_path_by_criterion", "(", "dir_path", ",", "filter", ",", "keepboth", "=", "False", ")" ]
Create a new FileCollection, and select all files that size in a range:: dir_path = "your/path" # select by file size larger than 100MB fc = FileCollection.from_path_by_size( dir_path, min_size=100*1024*1024) # select by file size smaller than 100MB fc = FileCollection.from_path_by_size( dir_path, max_size=100*1024*1024) # select by file size from 1MB to 100MB fc = FileCollection.from_path_by_size( dir_path, min_size=1024*1024, max_size=100*1024*1024)
[ "Create", "a", "new", "FileCollection", "and", "select", "all", "files", "that", "size", "in", "a", "range", "::", "dir_path", "=", "your", "/", "path", "#", "select", "by", "file", "size", "larger", "than", "100MB", "fc", "=", "FileCollection", ".", "from_path_by_size", "(", "dir_path", "min_size", "=", "100", "*", "1024", "*", "1024", ")", "#", "select", "by", "file", "size", "smaller", "than", "100MB", "fc", "=", "FileCollection", ".", "from_path_by_size", "(", "dir_path", "max_size", "=", "100", "*", "1024", "*", "1024", ")", "#", "select", "by", "file", "size", "from", "1MB", "to", "100MB", "fc", "=", "FileCollection", ".", "from_path_by_size", "(", "dir_path", "min_size", "=", "1024", "*", "1024", "max_size", "=", "100", "*", "1024", "*", "1024", ")" ]
python
train
rollbar/pyrollbar
rollbar/__init__.py
https://github.com/rollbar/pyrollbar/blob/33ef2e723a33d09dd6302f978f4a3908be95b9d2/rollbar/__init__.py#L140-L161
def get_request(): """ Get the current request object. Implementation varies on library support. Modified below when we know which framework is being used. """ # TODO(cory): add in a generic _get_locals_request() which # will iterate up through the call stack and look for a variable # that appears to be valid request object. for fn in (_get_bottle_request, _get_flask_request, _get_pyramid_request, _get_pylons_request): try: req = fn() if req is not None: return req except: pass return None
[ "def", "get_request", "(", ")", ":", "# TODO(cory): add in a generic _get_locals_request() which", "# will iterate up through the call stack and look for a variable", "# that appears to be valid request object.", "for", "fn", "in", "(", "_get_bottle_request", ",", "_get_flask_request", ",", "_get_pyramid_request", ",", "_get_pylons_request", ")", ":", "try", ":", "req", "=", "fn", "(", ")", "if", "req", "is", "not", "None", ":", "return", "req", "except", ":", "pass", "return", "None" ]
Get the current request object. Implementation varies on library support. Modified below when we know which framework is being used.
[ "Get", "the", "current", "request", "object", ".", "Implementation", "varies", "on", "library", "support", ".", "Modified", "below", "when", "we", "know", "which", "framework", "is", "being", "used", "." ]
python
test
cisco-sas/kitty
kitty/model/low_level/aliases.py
https://github.com/cisco-sas/kitty/blob/cb0760989dcdfe079e43ac574d872d0b18953a32/kitty/model/low_level/aliases.py#L144-L146
def BE8(value, min_value=None, max_value=None, fuzzable=True, name=None, full_range=False): '''8-bit field, Big endian encoded''' return UInt8(value, min_value=min_value, max_value=max_value, encoder=ENC_INT_BE, fuzzable=fuzzable, name=name, full_range=full_range)
[ "def", "BE8", "(", "value", ",", "min_value", "=", "None", ",", "max_value", "=", "None", ",", "fuzzable", "=", "True", ",", "name", "=", "None", ",", "full_range", "=", "False", ")", ":", "return", "UInt8", "(", "value", ",", "min_value", "=", "min_value", ",", "max_value", "=", "max_value", ",", "encoder", "=", "ENC_INT_BE", ",", "fuzzable", "=", "fuzzable", ",", "name", "=", "name", ",", "full_range", "=", "full_range", ")" ]
8-bit field, Big endian encoded
[ "8", "-", "bit", "field", "Big", "endian", "encoded" ]
python
train
rndusr/torf
torf/_torrent.py
https://github.com/rndusr/torf/blob/df0363232daacd3f8c91aafddaa0623b8c28cbd2/torf/_torrent.py#L593-L641
def generate(self, callback=None, interval=0): """ Hash pieces and report progress to `callback` This method sets ``pieces`` in :attr:`metainfo`\ ``['info']`` when all pieces are hashed successfully. :param callable callback: Callable with signature ``(torrent, filepath, pieces_done, pieces_total)``; if `callback` returns anything else than None, hashing is canceled :param float interval: Minimum number of seconds between calls to `callback` (if 0, `callback` is called once per piece) :raises PathEmptyError: if :attr:`path` contains only empty files/directories :raises PathNotFoundError: if :attr:`path` does not exist :raises ReadError: if :attr:`path` or any file beneath it is not readable :return: ``True`` if all pieces were successfully hashed, ``False`` otherwise """ if self.path is None: raise RuntimeError('generate() called with no path specified') elif self.size <= 0: raise error.PathEmptyError(self.path) elif not os.path.exists(self.path): raise error.PathNotFoundError(self.path) if callback is not None: cancel = lambda *status: callback(*status) is not None else: cancel = lambda *status: False if os.path.isfile(self.path): pieces = self._set_pieces_singlefile() elif os.path.isdir(self.path): pieces = self._set_pieces_multifile() # Iterate over hashed pieces and send status information last_cb_call = 0 for filepath,pieces_done,pieces_total in pieces: now = time.time() if now - last_cb_call >= interval or \ pieces_done >= pieces_total: last_cb_call = now if cancel(self, filepath, pieces_done, pieces_total): return False return True
[ "def", "generate", "(", "self", ",", "callback", "=", "None", ",", "interval", "=", "0", ")", ":", "if", "self", ".", "path", "is", "None", ":", "raise", "RuntimeError", "(", "'generate() called with no path specified'", ")", "elif", "self", ".", "size", "<=", "0", ":", "raise", "error", ".", "PathEmptyError", "(", "self", ".", "path", ")", "elif", "not", "os", ".", "path", ".", "exists", "(", "self", ".", "path", ")", ":", "raise", "error", ".", "PathNotFoundError", "(", "self", ".", "path", ")", "if", "callback", "is", "not", "None", ":", "cancel", "=", "lambda", "*", "status", ":", "callback", "(", "*", "status", ")", "is", "not", "None", "else", ":", "cancel", "=", "lambda", "*", "status", ":", "False", "if", "os", ".", "path", ".", "isfile", "(", "self", ".", "path", ")", ":", "pieces", "=", "self", ".", "_set_pieces_singlefile", "(", ")", "elif", "os", ".", "path", ".", "isdir", "(", "self", ".", "path", ")", ":", "pieces", "=", "self", ".", "_set_pieces_multifile", "(", ")", "# Iterate over hashed pieces and send status information", "last_cb_call", "=", "0", "for", "filepath", ",", "pieces_done", ",", "pieces_total", "in", "pieces", ":", "now", "=", "time", ".", "time", "(", ")", "if", "now", "-", "last_cb_call", ">=", "interval", "or", "pieces_done", ">=", "pieces_total", ":", "last_cb_call", "=", "now", "if", "cancel", "(", "self", ",", "filepath", ",", "pieces_done", ",", "pieces_total", ")", ":", "return", "False", "return", "True" ]
Hash pieces and report progress to `callback` This method sets ``pieces`` in :attr:`metainfo`\ ``['info']`` when all pieces are hashed successfully. :param callable callback: Callable with signature ``(torrent, filepath, pieces_done, pieces_total)``; if `callback` returns anything else than None, hashing is canceled :param float interval: Minimum number of seconds between calls to `callback` (if 0, `callback` is called once per piece) :raises PathEmptyError: if :attr:`path` contains only empty files/directories :raises PathNotFoundError: if :attr:`path` does not exist :raises ReadError: if :attr:`path` or any file beneath it is not readable :return: ``True`` if all pieces were successfully hashed, ``False`` otherwise
[ "Hash", "pieces", "and", "report", "progress", "to", "callback" ]
python
train
tk0miya/tk.phpautodoc
src/phply/phpparse.py
https://github.com/tk0miya/tk.phpautodoc/blob/cf789f64abaf76351485cee231a075227e665fb6/src/phply/phpparse.py#L378-L384
def p_foreach_statement(p): '''foreach_statement : statement | COLON inner_statement_list ENDFOREACH SEMI''' if len(p) == 2: p[0] = p[1] else: p[0] = ast.Block(p[2], lineno=p.lineno(1))
[ "def", "p_foreach_statement", "(", "p", ")", ":", "if", "len", "(", "p", ")", "==", "2", ":", "p", "[", "0", "]", "=", "p", "[", "1", "]", "else", ":", "p", "[", "0", "]", "=", "ast", ".", "Block", "(", "p", "[", "2", "]", ",", "lineno", "=", "p", ".", "lineno", "(", "1", ")", ")" ]
foreach_statement : statement | COLON inner_statement_list ENDFOREACH SEMI
[ "foreach_statement", ":", "statement", "|", "COLON", "inner_statement_list", "ENDFOREACH", "SEMI" ]
python
train
mitsei/dlkit
dlkit/services/relationship.py
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/services/relationship.py#L1129-L1136
def save_relationship(self, relationship_form, *args, **kwargs): """Pass through to provider RelationshipAdminSession.update_relationship""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.update_resource if relationship_form.is_for_update(): return self.update_relationship(relationship_form, *args, **kwargs) else: return self.create_relationship(relationship_form, *args, **kwargs)
[ "def", "save_relationship", "(", "self", ",", "relationship_form", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# Implemented from kitosid template for -", "# osid.resource.ResourceAdminSession.update_resource", "if", "relationship_form", ".", "is_for_update", "(", ")", ":", "return", "self", ".", "update_relationship", "(", "relationship_form", ",", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "return", "self", ".", "create_relationship", "(", "relationship_form", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Pass through to provider RelationshipAdminSession.update_relationship
[ "Pass", "through", "to", "provider", "RelationshipAdminSession", ".", "update_relationship" ]
python
train
biolink/biolink-model
metamodel/utils/generator.py
https://github.com/biolink/biolink-model/blob/f379e28d5d4085e1115798c6cb28e5acc4dba8b4/metamodel/utils/generator.py#L230-L238
def aliased_slot_name(self, slot: SLOT_OR_SLOTNAME) -> str: """ Return the overloaded slot name -- the alias if one exists otherwise the actual name @param slot: either a slot name or a definition @return: overloaded name """ if isinstance(slot, str): slot = self.schema.slots[slot] return slot.alias if slot.alias else slot.name
[ "def", "aliased_slot_name", "(", "self", ",", "slot", ":", "SLOT_OR_SLOTNAME", ")", "->", "str", ":", "if", "isinstance", "(", "slot", ",", "str", ")", ":", "slot", "=", "self", ".", "schema", ".", "slots", "[", "slot", "]", "return", "slot", ".", "alias", "if", "slot", ".", "alias", "else", "slot", ".", "name" ]
Return the overloaded slot name -- the alias if one exists otherwise the actual name @param slot: either a slot name or a definition @return: overloaded name
[ "Return", "the", "overloaded", "slot", "name", "--", "the", "alias", "if", "one", "exists", "otherwise", "the", "actual", "name" ]
python
train
googleapis/gax-python
google/gax/utils/protobuf.py
https://github.com/googleapis/gax-python/blob/309aedfcfd48e4c8fa22dd60e9c84c3cc71bb20e/google/gax/utils/protobuf.py#L42-L91
def get(pb_or_dict, key, default=_SENTINEL): """Retrieve the given key off of the object. If a default is specified, return it if the key is not found, otherwise raise KeyError. Args: pb_or_dict (Union[~google.protobuf.message.Message, Mapping]): the object. key (str): The key to retrieve from the object in question. default (Any): If the key is not present on the object, and a default is set, returns that default instead. A type-appropriate falsy default is generally recommended, as protobuf messages almost always have default values for unset values and it is not always possible to tell the difference between a falsy value and an unset one. If no default is set, raises KeyError for not found values. Returns: Any: The return value from the underlying message or dict. Raises: KeyError: If the key is not found. Note that, for unset values, messages and dictionaries may not have consistent behavior. TypeError: If pb_or_dict is not a Message or Mapping. """ # We may need to get a nested key. Resolve this. key, subkey = _resolve_subkeys(key) # Attempt to get the value from the two types of objects we know baout. # If we get something else, complain. if isinstance(pb_or_dict, Message): answer = getattr(pb_or_dict, key, default) elif isinstance(pb_or_dict, collections.Mapping): answer = pb_or_dict.get(key, default) else: raise TypeError('Tried to fetch a key %s on an invalid object; ' 'expected a dict or protobuf message.') # If the object we got back is our sentinel, raise KeyError; this is # a "not found" case. if answer is _SENTINEL: raise KeyError(key) # If a subkey exists, call this method recursively against the answer. if subkey and answer is not default: return get(answer, subkey, default=default) # Return the value. return answer
[ "def", "get", "(", "pb_or_dict", ",", "key", ",", "default", "=", "_SENTINEL", ")", ":", "# We may need to get a nested key. Resolve this.", "key", ",", "subkey", "=", "_resolve_subkeys", "(", "key", ")", "# Attempt to get the value from the two types of objects we know baout.", "# If we get something else, complain.", "if", "isinstance", "(", "pb_or_dict", ",", "Message", ")", ":", "answer", "=", "getattr", "(", "pb_or_dict", ",", "key", ",", "default", ")", "elif", "isinstance", "(", "pb_or_dict", ",", "collections", ".", "Mapping", ")", ":", "answer", "=", "pb_or_dict", ".", "get", "(", "key", ",", "default", ")", "else", ":", "raise", "TypeError", "(", "'Tried to fetch a key %s on an invalid object; '", "'expected a dict or protobuf message.'", ")", "# If the object we got back is our sentinel, raise KeyError; this is", "# a \"not found\" case.", "if", "answer", "is", "_SENTINEL", ":", "raise", "KeyError", "(", "key", ")", "# If a subkey exists, call this method recursively against the answer.", "if", "subkey", "and", "answer", "is", "not", "default", ":", "return", "get", "(", "answer", ",", "subkey", ",", "default", "=", "default", ")", "# Return the value.", "return", "answer" ]
Retrieve the given key off of the object. If a default is specified, return it if the key is not found, otherwise raise KeyError. Args: pb_or_dict (Union[~google.protobuf.message.Message, Mapping]): the object. key (str): The key to retrieve from the object in question. default (Any): If the key is not present on the object, and a default is set, returns that default instead. A type-appropriate falsy default is generally recommended, as protobuf messages almost always have default values for unset values and it is not always possible to tell the difference between a falsy value and an unset one. If no default is set, raises KeyError for not found values. Returns: Any: The return value from the underlying message or dict. Raises: KeyError: If the key is not found. Note that, for unset values, messages and dictionaries may not have consistent behavior. TypeError: If pb_or_dict is not a Message or Mapping.
[ "Retrieve", "the", "given", "key", "off", "of", "the", "object", "." ]
python
train
msikma/kanaconv
kanaconv/converter.py
https://github.com/msikma/kanaconv/blob/194f142e616ab5dd6d13a687b96b9f8abd1b4ea8/kanaconv/converter.py#L435-L445
def _add_unknown_char(self, string): ''' Adds an unknown character to the stack. ''' if self.has_xvowel: # Ensure an xvowel gets printed if we've got an active # one right now. self._promote_solitary_xvowel() self.unknown_char = string self._flush_char()
[ "def", "_add_unknown_char", "(", "self", ",", "string", ")", ":", "if", "self", ".", "has_xvowel", ":", "# Ensure an xvowel gets printed if we've got an active", "# one right now.", "self", ".", "_promote_solitary_xvowel", "(", ")", "self", ".", "unknown_char", "=", "string", "self", ".", "_flush_char", "(", ")" ]
Adds an unknown character to the stack.
[ "Adds", "an", "unknown", "character", "to", "the", "stack", "." ]
python
train
pydata/xarray
xarray/core/rolling.py
https://github.com/pydata/xarray/blob/6d93a95d05bdbfc33fff24064f67d29dd891ab58/xarray/core/rolling.py#L249-L301
def _bottleneck_reduce(cls, func): """ Methods to return a wrapped function for any function `func` for bottoleneck method, except for `median`. """ def wrapped_func(self, **kwargs): from .dataarray import DataArray # bottleneck doesn't allow min_count to be 0, although it should # work the same as if min_count = 1 if self.min_periods is not None and self.min_periods == 0: min_count = 1 else: min_count = self.min_periods axis = self.obj.get_axis_num(self.dim) padded = self.obj.variable if self.center: if (LooseVersion(np.__version__) < LooseVersion('1.13') and self.obj.dtype.kind == 'b'): # with numpy < 1.13 bottleneck cannot handle np.nan-Boolean # mixed array correctly. We cast boolean array to float. padded = padded.astype(float) if isinstance(padded.data, dask_array_type): # Workaround to make the padded chunk size is larger than # self.window-1 shift = - (self.window + 1) // 2 offset = (self.window - 1) // 2 valid = (slice(None), ) * axis + ( slice(offset, offset + self.obj.shape[axis]), ) else: shift = (-self.window // 2) + 1 valid = (slice(None), ) * axis + (slice(-shift, None), ) padded = padded.pad_with_fill_value({self.dim: (0, -shift)}) if isinstance(padded.data, dask_array_type): values = dask_rolling_wrapper(func, padded, window=self.window, min_count=min_count, axis=axis) else: values = func(padded.data, window=self.window, min_count=min_count, axis=axis) if self.center: values = values[valid] result = DataArray(values, self.obj.coords) return result return wrapped_func
[ "def", "_bottleneck_reduce", "(", "cls", ",", "func", ")", ":", "def", "wrapped_func", "(", "self", ",", "*", "*", "kwargs", ")", ":", "from", ".", "dataarray", "import", "DataArray", "# bottleneck doesn't allow min_count to be 0, although it should", "# work the same as if min_count = 1", "if", "self", ".", "min_periods", "is", "not", "None", "and", "self", ".", "min_periods", "==", "0", ":", "min_count", "=", "1", "else", ":", "min_count", "=", "self", ".", "min_periods", "axis", "=", "self", ".", "obj", ".", "get_axis_num", "(", "self", ".", "dim", ")", "padded", "=", "self", ".", "obj", ".", "variable", "if", "self", ".", "center", ":", "if", "(", "LooseVersion", "(", "np", ".", "__version__", ")", "<", "LooseVersion", "(", "'1.13'", ")", "and", "self", ".", "obj", ".", "dtype", ".", "kind", "==", "'b'", ")", ":", "# with numpy < 1.13 bottleneck cannot handle np.nan-Boolean", "# mixed array correctly. We cast boolean array to float.", "padded", "=", "padded", ".", "astype", "(", "float", ")", "if", "isinstance", "(", "padded", ".", "data", ",", "dask_array_type", ")", ":", "# Workaround to make the padded chunk size is larger than", "# self.window-1", "shift", "=", "-", "(", "self", ".", "window", "+", "1", ")", "//", "2", "offset", "=", "(", "self", ".", "window", "-", "1", ")", "//", "2", "valid", "=", "(", "slice", "(", "None", ")", ",", ")", "*", "axis", "+", "(", "slice", "(", "offset", ",", "offset", "+", "self", ".", "obj", ".", "shape", "[", "axis", "]", ")", ",", ")", "else", ":", "shift", "=", "(", "-", "self", ".", "window", "//", "2", ")", "+", "1", "valid", "=", "(", "slice", "(", "None", ")", ",", ")", "*", "axis", "+", "(", "slice", "(", "-", "shift", ",", "None", ")", ",", ")", "padded", "=", "padded", ".", "pad_with_fill_value", "(", "{", "self", ".", "dim", ":", "(", "0", ",", "-", "shift", ")", "}", ")", "if", "isinstance", "(", "padded", ".", "data", ",", "dask_array_type", ")", ":", "values", "=", "dask_rolling_wrapper", "(", "func", ",", "padded", ",", "window", "=", "self", ".", "window", ",", "min_count", "=", "min_count", ",", "axis", "=", "axis", ")", "else", ":", "values", "=", "func", "(", "padded", ".", "data", ",", "window", "=", "self", ".", "window", ",", "min_count", "=", "min_count", ",", "axis", "=", "axis", ")", "if", "self", ".", "center", ":", "values", "=", "values", "[", "valid", "]", "result", "=", "DataArray", "(", "values", ",", "self", ".", "obj", ".", "coords", ")", "return", "result", "return", "wrapped_func" ]
Methods to return a wrapped function for any function `func` for bottoleneck method, except for `median`.
[ "Methods", "to", "return", "a", "wrapped", "function", "for", "any", "function", "func", "for", "bottoleneck", "method", "except", "for", "median", "." ]
python
train
RPi-Distro/python-gpiozero
gpiozero/boards.py
https://github.com/RPi-Distro/python-gpiozero/blob/7b67374fd0c8c4fde5586d9bad9531f076db9c0c/gpiozero/boards.py#L110-L116
def on(self): """ Turn all the output devices on. """ for device in self: if isinstance(device, (OutputDevice, CompositeOutputDevice)): device.on()
[ "def", "on", "(", "self", ")", ":", "for", "device", "in", "self", ":", "if", "isinstance", "(", "device", ",", "(", "OutputDevice", ",", "CompositeOutputDevice", ")", ")", ":", "device", ".", "on", "(", ")" ]
Turn all the output devices on.
[ "Turn", "all", "the", "output", "devices", "on", "." ]
python
train
radjkarl/imgProcessor
imgProcessor/measure/linePlot.py
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/measure/linePlot.py#L10-L28
def linePlot(img, x0, y0, x1, y1, resolution=None, order=3): ''' returns [img] intensity values along line defined by [x0, y0, x1, y1] resolution ... number or data points to evaluate order ... interpolation precision ''' if resolution is None: resolution = int( ((x1-x0)**2 + (y1-y0)**2 )**0.5 ) if order == 0: x = np.linspace(x0, x1, resolution, dtype=int) y = np.linspace(y0, y1, resolution, dtype=int) return img[y, x] x = np.linspace(x0, x1, resolution) y = np.linspace(y0, y1, resolution) return map_coordinates(img, np.vstack((y,x)), order=order)
[ "def", "linePlot", "(", "img", ",", "x0", ",", "y0", ",", "x1", ",", "y1", ",", "resolution", "=", "None", ",", "order", "=", "3", ")", ":", "if", "resolution", "is", "None", ":", "resolution", "=", "int", "(", "(", "(", "x1", "-", "x0", ")", "**", "2", "+", "(", "y1", "-", "y0", ")", "**", "2", ")", "**", "0.5", ")", "if", "order", "==", "0", ":", "x", "=", "np", ".", "linspace", "(", "x0", ",", "x1", ",", "resolution", ",", "dtype", "=", "int", ")", "y", "=", "np", ".", "linspace", "(", "y0", ",", "y1", ",", "resolution", ",", "dtype", "=", "int", ")", "return", "img", "[", "y", ",", "x", "]", "x", "=", "np", ".", "linspace", "(", "x0", ",", "x1", ",", "resolution", ")", "y", "=", "np", ".", "linspace", "(", "y0", ",", "y1", ",", "resolution", ")", "return", "map_coordinates", "(", "img", ",", "np", ".", "vstack", "(", "(", "y", ",", "x", ")", ")", ",", "order", "=", "order", ")" ]
returns [img] intensity values along line defined by [x0, y0, x1, y1] resolution ... number or data points to evaluate order ... interpolation precision
[ "returns", "[", "img", "]", "intensity", "values", "along", "line", "defined", "by", "[", "x0", "y0", "x1", "y1", "]", "resolution", "...", "number", "or", "data", "points", "to", "evaluate", "order", "...", "interpolation", "precision" ]
python
train
hollenstein/maspy
maspy/sil.py
https://github.com/hollenstein/maspy/blob/f15fcfd24df306d8420540460d902aa3073ec133/maspy/sil.py#L235-L250
def modSymbolsFromLabelInfo(labelDescriptor): """Returns a set of all modiciation symbols which were used in the labelDescriptor :param labelDescriptor: :class:`LabelDescriptor` describes the label setup of an experiment :returns: #TODO: docstring """ modSymbols = set() for labelStateEntry in viewvalues(labelDescriptor.labels): for labelPositionEntry in viewvalues(labelStateEntry['aminoAcidLabels']): for modSymbol in aux.toList(labelPositionEntry): if modSymbol != '': modSymbols.add(modSymbol) return modSymbols
[ "def", "modSymbolsFromLabelInfo", "(", "labelDescriptor", ")", ":", "modSymbols", "=", "set", "(", ")", "for", "labelStateEntry", "in", "viewvalues", "(", "labelDescriptor", ".", "labels", ")", ":", "for", "labelPositionEntry", "in", "viewvalues", "(", "labelStateEntry", "[", "'aminoAcidLabels'", "]", ")", ":", "for", "modSymbol", "in", "aux", ".", "toList", "(", "labelPositionEntry", ")", ":", "if", "modSymbol", "!=", "''", ":", "modSymbols", ".", "add", "(", "modSymbol", ")", "return", "modSymbols" ]
Returns a set of all modiciation symbols which were used in the labelDescriptor :param labelDescriptor: :class:`LabelDescriptor` describes the label setup of an experiment :returns: #TODO: docstring
[ "Returns", "a", "set", "of", "all", "modiciation", "symbols", "which", "were", "used", "in", "the", "labelDescriptor" ]
python
train
FNNDSC/med2image
med2image/systemMisc.py
https://github.com/FNNDSC/med2image/blob/638d5d230de47608af20f9764acf8e382c2bf2ff/med2image/systemMisc.py#L160-L181
def com_find(ar_grid): """ Find the center of mass in array grid <ar_grid>. Mass elements are grid index values. Return an array, in format (x, y), i.e. col, row! """ f_x = 0 f_y = 0 f_m = 0 for i in range(len(ar_grid)): for j in range(len(ar_grid[i])): if ar_grid[i][j]: # Since python arrays are zero indexed, we need to offset # the loop counters by 1 to account for mass in the 1st # column. f_x += (j+1) * ar_grid[i][j] f_y += (i+1) * ar_grid[i][j] f_m += ar_grid[i][j] f_com = array( (float(f_x)/f_m , float(f_y)/f_m) ) return f_com
[ "def", "com_find", "(", "ar_grid", ")", ":", "f_x", "=", "0", "f_y", "=", "0", "f_m", "=", "0", "for", "i", "in", "range", "(", "len", "(", "ar_grid", ")", ")", ":", "for", "j", "in", "range", "(", "len", "(", "ar_grid", "[", "i", "]", ")", ")", ":", "if", "ar_grid", "[", "i", "]", "[", "j", "]", ":", "# Since python arrays are zero indexed, we need to offset", "# the loop counters by 1 to account for mass in the 1st", "# column.", "f_x", "+=", "(", "j", "+", "1", ")", "*", "ar_grid", "[", "i", "]", "[", "j", "]", "f_y", "+=", "(", "i", "+", "1", ")", "*", "ar_grid", "[", "i", "]", "[", "j", "]", "f_m", "+=", "ar_grid", "[", "i", "]", "[", "j", "]", "f_com", "=", "array", "(", "(", "float", "(", "f_x", ")", "/", "f_m", ",", "float", "(", "f_y", ")", "/", "f_m", ")", ")", "return", "f_com" ]
Find the center of mass in array grid <ar_grid>. Mass elements are grid index values. Return an array, in format (x, y), i.e. col, row!
[ "Find", "the", "center", "of", "mass", "in", "array", "grid", "<ar_grid", ">", ".", "Mass", "elements", "are", "grid", "index", "values", "." ]
python
train
Chilipp/psyplot
psyplot/data.py
https://github.com/Chilipp/psyplot/blob/75a0a15a9a1dd018e79d2df270d56c4bf5f311d5/psyplot/data.py#L52-L74
def _no_auto_update_getter(self): """:class:`bool`. Boolean controlling whether the :meth:`start_update` method is automatically called by the :meth:`update` method Examples -------- You can disable the automatic update via >>> with data.no_auto_update: ... data.update(time=1) ... data.start_update() To permanently disable the automatic update, simply set >>> data.no_auto_update = True >>> data.update(time=1) >>> data.no_auto_update = False # reenable automatical update""" if getattr(self, '_no_auto_update', None) is not None: return self._no_auto_update else: self._no_auto_update = utils._TempBool() return self._no_auto_update
[ "def", "_no_auto_update_getter", "(", "self", ")", ":", "if", "getattr", "(", "self", ",", "'_no_auto_update'", ",", "None", ")", "is", "not", "None", ":", "return", "self", ".", "_no_auto_update", "else", ":", "self", ".", "_no_auto_update", "=", "utils", ".", "_TempBool", "(", ")", "return", "self", ".", "_no_auto_update" ]
:class:`bool`. Boolean controlling whether the :meth:`start_update` method is automatically called by the :meth:`update` method Examples -------- You can disable the automatic update via >>> with data.no_auto_update: ... data.update(time=1) ... data.start_update() To permanently disable the automatic update, simply set >>> data.no_auto_update = True >>> data.update(time=1) >>> data.no_auto_update = False # reenable automatical update
[ ":", "class", ":", "bool", ".", "Boolean", "controlling", "whether", "the", ":", "meth", ":", "start_update", "method", "is", "automatically", "called", "by", "the", ":", "meth", ":", "update", "method" ]
python
train
crs4/pydoop
pydoop/hdfs/__init__.py
https://github.com/crs4/pydoop/blob/f375be2a06f9c67eaae3ce6f605195dbca143b2b/pydoop/hdfs/__init__.py#L129-L143
def dump(data, hdfs_path, **kwargs): """\ Write ``data`` to ``hdfs_path``. Keyword arguments are passed to :func:`open`, except for ``mode``, which is forced to ``"w"`` (or ``"wt"`` for text data). """ kwargs["mode"] = "w" if isinstance(data, bintype) else "wt" with open(hdfs_path, **kwargs) as fo: i = 0 bufsize = common.BUFSIZE while i < len(data): fo.write(data[i: i + bufsize]) i += bufsize fo.fs.close()
[ "def", "dump", "(", "data", ",", "hdfs_path", ",", "*", "*", "kwargs", ")", ":", "kwargs", "[", "\"mode\"", "]", "=", "\"w\"", "if", "isinstance", "(", "data", ",", "bintype", ")", "else", "\"wt\"", "with", "open", "(", "hdfs_path", ",", "*", "*", "kwargs", ")", "as", "fo", ":", "i", "=", "0", "bufsize", "=", "common", ".", "BUFSIZE", "while", "i", "<", "len", "(", "data", ")", ":", "fo", ".", "write", "(", "data", "[", "i", ":", "i", "+", "bufsize", "]", ")", "i", "+=", "bufsize", "fo", ".", "fs", ".", "close", "(", ")" ]
\ Write ``data`` to ``hdfs_path``. Keyword arguments are passed to :func:`open`, except for ``mode``, which is forced to ``"w"`` (or ``"wt"`` for text data).
[ "\\", "Write", "data", "to", "hdfs_path", "." ]
python
train
quantumlib/Cirq
cirq/experiments/qubit_characterizations.py
https://github.com/quantumlib/Cirq/blob/0827da80dd7880e5b923eb69407e980ed9bc0bd2/cirq/experiments/qubit_characterizations.py#L82-L94
def plot(self, **plot_kwargs: Any) -> None: """Plots the average ground state probability vs the number of Cliffords in the RB study. Args: **plot_kwargs: Arguments to be passed to matplotlib.pyplot.plot. """ fig = plt.figure() plt.plot(self._num_cfds_seq, self._gnd_state_probs, 'ro-', figure=fig, **plot_kwargs) plt.xlabel(r"Number of Cliffords", figure=fig) plt.ylabel('Ground State Probability', figure=fig) fig.show()
[ "def", "plot", "(", "self", ",", "*", "*", "plot_kwargs", ":", "Any", ")", "->", "None", ":", "fig", "=", "plt", ".", "figure", "(", ")", "plt", ".", "plot", "(", "self", ".", "_num_cfds_seq", ",", "self", ".", "_gnd_state_probs", ",", "'ro-'", ",", "figure", "=", "fig", ",", "*", "*", "plot_kwargs", ")", "plt", ".", "xlabel", "(", "r\"Number of Cliffords\"", ",", "figure", "=", "fig", ")", "plt", ".", "ylabel", "(", "'Ground State Probability'", ",", "figure", "=", "fig", ")", "fig", ".", "show", "(", ")" ]
Plots the average ground state probability vs the number of Cliffords in the RB study. Args: **plot_kwargs: Arguments to be passed to matplotlib.pyplot.plot.
[ "Plots", "the", "average", "ground", "state", "probability", "vs", "the", "number", "of", "Cliffords", "in", "the", "RB", "study", "." ]
python
train
BYU-PCCL/holodeck
holodeck/command.py
https://github.com/BYU-PCCL/holodeck/blob/01acd4013f5acbd9f61fbc9caaafe19975e8b121/holodeck/command.py#L122-L130
def set_type(self, agent_type): """Set the type of agent to spawn in Holodeck. Currently accepted agents are: DiscreteSphereAgent, UAVAgent, and AndroidAgent. Args: agent_type (str): The type of agent to spawn. """ type_str = SpawnAgentCommand.__type_keys[agent_type] self.add_string_parameters(type_str)
[ "def", "set_type", "(", "self", ",", "agent_type", ")", ":", "type_str", "=", "SpawnAgentCommand", ".", "__type_keys", "[", "agent_type", "]", "self", ".", "add_string_parameters", "(", "type_str", ")" ]
Set the type of agent to spawn in Holodeck. Currently accepted agents are: DiscreteSphereAgent, UAVAgent, and AndroidAgent. Args: agent_type (str): The type of agent to spawn.
[ "Set", "the", "type", "of", "agent", "to", "spawn", "in", "Holodeck", ".", "Currently", "accepted", "agents", "are", ":", "DiscreteSphereAgent", "UAVAgent", "and", "AndroidAgent", "." ]
python
train
pydanny/cookiecutter-django
hooks/post_gen_project.py
https://github.com/pydanny/cookiecutter-django/blob/bb9b482e96d1966e20745eeea87a8aa10ed1c861/hooks/post_gen_project.py#L107-L129
def generate_random_string( length, using_digits=False, using_ascii_letters=False, using_punctuation=False ): """ Example: opting out for 50 symbol-long, [a-z][A-Z][0-9] string would yield log_2((26+26+50)^50) ~= 334 bit strength. """ if not using_sysrandom: return None symbols = [] if using_digits: symbols += string.digits if using_ascii_letters: symbols += string.ascii_letters if using_punctuation: all_punctuation = set(string.punctuation) # These symbols can cause issues in environment variables unsuitable = {"'", '"', "\\", "$"} suitable = all_punctuation.difference(unsuitable) symbols += "".join(suitable) return "".join([random.choice(symbols) for _ in range(length)])
[ "def", "generate_random_string", "(", "length", ",", "using_digits", "=", "False", ",", "using_ascii_letters", "=", "False", ",", "using_punctuation", "=", "False", ")", ":", "if", "not", "using_sysrandom", ":", "return", "None", "symbols", "=", "[", "]", "if", "using_digits", ":", "symbols", "+=", "string", ".", "digits", "if", "using_ascii_letters", ":", "symbols", "+=", "string", ".", "ascii_letters", "if", "using_punctuation", ":", "all_punctuation", "=", "set", "(", "string", ".", "punctuation", ")", "# These symbols can cause issues in environment variables", "unsuitable", "=", "{", "\"'\"", ",", "'\"'", ",", "\"\\\\\"", ",", "\"$\"", "}", "suitable", "=", "all_punctuation", ".", "difference", "(", "unsuitable", ")", "symbols", "+=", "\"\"", ".", "join", "(", "suitable", ")", "return", "\"\"", ".", "join", "(", "[", "random", ".", "choice", "(", "symbols", ")", "for", "_", "in", "range", "(", "length", ")", "]", ")" ]
Example: opting out for 50 symbol-long, [a-z][A-Z][0-9] string would yield log_2((26+26+50)^50) ~= 334 bit strength.
[ "Example", ":", "opting", "out", "for", "50", "symbol", "-", "long", "[", "a", "-", "z", "]", "[", "A", "-", "Z", "]", "[", "0", "-", "9", "]", "string", "would", "yield", "log_2", "((", "26", "+", "26", "+", "50", ")", "^50", ")", "~", "=", "334", "bit", "strength", "." ]
python
test
kolypto/py-exdoc
exdoc/py/__init__.py
https://github.com/kolypto/py-exdoc/blob/516526c01c203271410e7d7340024ef9f0bfa46a/exdoc/py/__init__.py#L159-L181
def _docspec(func, module=None, qualname=None, of_class=None): """ For a callable, get the full spec by merging doc_parse() and argspec() :type func: Callable :rtype: data.FDocstring """ sp = _argspec(func) doc = _doc_parse(getdoc(func), module=module, qualname=qualname) # Merge args doc_map = {a.name: a for a in doc.args} doc.args = [data.Argument(a, doc_map.get(a.name.lstrip('*'), None)) for a in sp] # Args shift: dump `self` if (six.PY2 and inspect.ismethod(func)) or \ (six.PY3 and (inspect.isroutine(func) and of_class is not None) and (of_class is not None and not is_method_static(of_class, func.__name__))): doc.args = doc.args[1:] # Signature doc.update_signature() # Finish return doc
[ "def", "_docspec", "(", "func", ",", "module", "=", "None", ",", "qualname", "=", "None", ",", "of_class", "=", "None", ")", ":", "sp", "=", "_argspec", "(", "func", ")", "doc", "=", "_doc_parse", "(", "getdoc", "(", "func", ")", ",", "module", "=", "module", ",", "qualname", "=", "qualname", ")", "# Merge args", "doc_map", "=", "{", "a", ".", "name", ":", "a", "for", "a", "in", "doc", ".", "args", "}", "doc", ".", "args", "=", "[", "data", ".", "Argument", "(", "a", ",", "doc_map", ".", "get", "(", "a", ".", "name", ".", "lstrip", "(", "'*'", ")", ",", "None", ")", ")", "for", "a", "in", "sp", "]", "# Args shift: dump `self`", "if", "(", "six", ".", "PY2", "and", "inspect", ".", "ismethod", "(", "func", ")", ")", "or", "(", "six", ".", "PY3", "and", "(", "inspect", ".", "isroutine", "(", "func", ")", "and", "of_class", "is", "not", "None", ")", "and", "(", "of_class", "is", "not", "None", "and", "not", "is_method_static", "(", "of_class", ",", "func", ".", "__name__", ")", ")", ")", ":", "doc", ".", "args", "=", "doc", ".", "args", "[", "1", ":", "]", "# Signature", "doc", ".", "update_signature", "(", ")", "# Finish", "return", "doc" ]
For a callable, get the full spec by merging doc_parse() and argspec() :type func: Callable :rtype: data.FDocstring
[ "For", "a", "callable", "get", "the", "full", "spec", "by", "merging", "doc_parse", "()", "and", "argspec", "()" ]
python
train
epfl-idevelop/epfl-ldap
epflldap/ldap_search.py
https://github.com/epfl-idevelop/epfl-ldap/blob/bebb94da3609d358bd83f31672eeaddcda872c5d/epflldap/ldap_search.py#L137-L150
def get_username(sciper): """ Return username of user """ attribute = 'uid' response = LDAP_search( pattern_search='(uniqueIdentifier={})'.format(sciper), attribute=attribute ) try: username = get_attribute(response, attribute) except Exception: raise EpflLdapException("No username corresponds to sciper {}".format(sciper)) return username
[ "def", "get_username", "(", "sciper", ")", ":", "attribute", "=", "'uid'", "response", "=", "LDAP_search", "(", "pattern_search", "=", "'(uniqueIdentifier={})'", ".", "format", "(", "sciper", ")", ",", "attribute", "=", "attribute", ")", "try", ":", "username", "=", "get_attribute", "(", "response", ",", "attribute", ")", "except", "Exception", ":", "raise", "EpflLdapException", "(", "\"No username corresponds to sciper {}\"", ".", "format", "(", "sciper", ")", ")", "return", "username" ]
Return username of user
[ "Return", "username", "of", "user" ]
python
train
jason-weirather/py-seq-tools
seqtools/format/sam/bam/bamindex.py
https://github.com/jason-weirather/py-seq-tools/blob/f642c2c73ffef2acc83656a78059a476fc734ca1/seqtools/format/sam/bam/bamindex.py#L163-L171
def get_range_start_line_number(self,rng): """ .. warning:: not implemented """ sys.stderr.write("error unimplemented get_range_start_line\n") sys.exit() for i in range(0,len(self._lines)): if rng.cmp(self._lines[i]['rng'])==0: return i+1 return None
[ "def", "get_range_start_line_number", "(", "self", ",", "rng", ")", ":", "sys", ".", "stderr", ".", "write", "(", "\"error unimplemented get_range_start_line\\n\"", ")", "sys", ".", "exit", "(", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "self", ".", "_lines", ")", ")", ":", "if", "rng", ".", "cmp", "(", "self", ".", "_lines", "[", "i", "]", "[", "'rng'", "]", ")", "==", "0", ":", "return", "i", "+", "1", "return", "None" ]
.. warning:: not implemented
[ "..", "warning", "::", "not", "implemented" ]
python
train
Rapptz/discord.py
discord/client.py
https://github.com/Rapptz/discord.py/blob/05d4f7f9620ef33635d6ac965b26528e09cdaf5b/discord/client.py#L881-L913
async def fetch_guild(self, guild_id): """|coro| Retrieves a :class:`.Guild` from an ID. .. note:: Using this, you will not receive :attr:`.Guild.channels`, :class:`.Guild.members`, :attr:`.Member.activity` and :attr:`.Member.voice` per :class:`.Member`. .. note:: This method is an API call. For general usage, consider :meth:`get_guild` instead. Parameters ----------- guild_id: :class:`int` The guild's ID to fetch from. Raises ------ Forbidden You do not have access to the guild. HTTPException Getting the guild failed. Returns -------- :class:`.Guild` The guild from the ID. """ data = await self.http.get_guild(guild_id) return Guild(data=data, state=self._connection)
[ "async", "def", "fetch_guild", "(", "self", ",", "guild_id", ")", ":", "data", "=", "await", "self", ".", "http", ".", "get_guild", "(", "guild_id", ")", "return", "Guild", "(", "data", "=", "data", ",", "state", "=", "self", ".", "_connection", ")" ]
|coro| Retrieves a :class:`.Guild` from an ID. .. note:: Using this, you will not receive :attr:`.Guild.channels`, :class:`.Guild.members`, :attr:`.Member.activity` and :attr:`.Member.voice` per :class:`.Member`. .. note:: This method is an API call. For general usage, consider :meth:`get_guild` instead. Parameters ----------- guild_id: :class:`int` The guild's ID to fetch from. Raises ------ Forbidden You do not have access to the guild. HTTPException Getting the guild failed. Returns -------- :class:`.Guild` The guild from the ID.
[ "|coro|" ]
python
train
ssokolow/fastdupes
fastdupes.py
https://github.com/ssokolow/fastdupes/blob/0334545885445834307c075a445fba9fe6f0c9e7/fastdupes.py#L217-L263
def groupBy(groups_in, classifier, fun_desc='?', keep_uniques=False, *args, **kwargs): """Subdivide groups of paths according to a function. :param groups_in: Grouped sets of paths. :type groups_in: :class:`~__builtins__.dict` of iterables :param classifier: Function to group a list of paths by some attribute. :type classifier: ``function(list, *args, **kwargs) -> str`` :param fun_desc: Human-readable term for what the classifier operates on. (Used in log messages) :type fun_desc: :class:`~__builtins__.str` :param keep_uniques: If ``False``, discard groups with only one member. :type keep_uniques: :class:`~__builtins__.bool` :returns: A dict mapping classifier keys to groups of matches. :rtype: :class:`~__builtins__.dict` :attention: Grouping functions generally use a :class:`~__builtins__.set` ``groups`` as extra protection against accidentally counting a given file twice. (Complimentary to use of :func:`os.path.realpath` in :func:`~fastdupes.getPaths`) .. todo:: Find some way to bring back the file-by-file status text """ groups, count, group_count = {}, 0, len(groups_in) for pos, paths in enumerate(groups_in.values()): out.write("Subdividing group %d of %d by %s... (%d files examined, %d " "in current group)" % ( pos + 1, group_count, fun_desc, count, len(paths) )) for key, group in classifier(paths, *args, **kwargs).items(): groups.setdefault(key, set()).update(group) count += len(group) if not keep_uniques: # Return only the groups with more than one file. groups = dict([(x, groups[x]) for x in groups if len(groups[x]) > 1]) out.write("Found %s sets of files with identical %s. (%d files examined)" % (len(groups), fun_desc, count), newline=True) return groups
[ "def", "groupBy", "(", "groups_in", ",", "classifier", ",", "fun_desc", "=", "'?'", ",", "keep_uniques", "=", "False", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "groups", ",", "count", ",", "group_count", "=", "{", "}", ",", "0", ",", "len", "(", "groups_in", ")", "for", "pos", ",", "paths", "in", "enumerate", "(", "groups_in", ".", "values", "(", ")", ")", ":", "out", ".", "write", "(", "\"Subdividing group %d of %d by %s... (%d files examined, %d \"", "\"in current group)\"", "%", "(", "pos", "+", "1", ",", "group_count", ",", "fun_desc", ",", "count", ",", "len", "(", "paths", ")", ")", ")", "for", "key", ",", "group", "in", "classifier", "(", "paths", ",", "*", "args", ",", "*", "*", "kwargs", ")", ".", "items", "(", ")", ":", "groups", ".", "setdefault", "(", "key", ",", "set", "(", ")", ")", ".", "update", "(", "group", ")", "count", "+=", "len", "(", "group", ")", "if", "not", "keep_uniques", ":", "# Return only the groups with more than one file.", "groups", "=", "dict", "(", "[", "(", "x", ",", "groups", "[", "x", "]", ")", "for", "x", "in", "groups", "if", "len", "(", "groups", "[", "x", "]", ")", ">", "1", "]", ")", "out", ".", "write", "(", "\"Found %s sets of files with identical %s. (%d files examined)\"", "%", "(", "len", "(", "groups", ")", ",", "fun_desc", ",", "count", ")", ",", "newline", "=", "True", ")", "return", "groups" ]
Subdivide groups of paths according to a function. :param groups_in: Grouped sets of paths. :type groups_in: :class:`~__builtins__.dict` of iterables :param classifier: Function to group a list of paths by some attribute. :type classifier: ``function(list, *args, **kwargs) -> str`` :param fun_desc: Human-readable term for what the classifier operates on. (Used in log messages) :type fun_desc: :class:`~__builtins__.str` :param keep_uniques: If ``False``, discard groups with only one member. :type keep_uniques: :class:`~__builtins__.bool` :returns: A dict mapping classifier keys to groups of matches. :rtype: :class:`~__builtins__.dict` :attention: Grouping functions generally use a :class:`~__builtins__.set` ``groups`` as extra protection against accidentally counting a given file twice. (Complimentary to use of :func:`os.path.realpath` in :func:`~fastdupes.getPaths`) .. todo:: Find some way to bring back the file-by-file status text
[ "Subdivide", "groups", "of", "paths", "according", "to", "a", "function", "." ]
python
valid
koszullab/metaTOR
metator/scripts/hicstuff.py
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L174-L205
def bin_sparse(M, subsampling_factor=3): """Perform the bin_dense procedure for sparse matrices. Remaining rows and cols are lumped with the rest at the end. """ try: from scipy.sparse import coo_matrix except ImportError as e: print(str(e)) print("I am peforming dense binning by default.") return bin_dense(M.todense()) N = M.tocoo() n, m = N.shape row, col, data = N.row, N.col, N.data # Divide row and column indices - duplicate coordinates are added in # sparse matrix construction binned_row = row // subsampling_factor binned_col = col // subsampling_factor binned_n = n // subsampling_factor binned_m = m // subsampling_factor # Attach remaining columns and rows to the last one binned_row[binned_row >= binned_n] -= n % subsampling_factor binned_col[binned_col >= binned_m] -= m % subsampling_factor result = coo_matrix((data, (binned_row, binned_col)), shape=(binned_n, binned_m)) return result
[ "def", "bin_sparse", "(", "M", ",", "subsampling_factor", "=", "3", ")", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "coo_matrix", "except", "ImportError", "as", "e", ":", "print", "(", "str", "(", "e", ")", ")", "print", "(", "\"I am peforming dense binning by default.\"", ")", "return", "bin_dense", "(", "M", ".", "todense", "(", ")", ")", "N", "=", "M", ".", "tocoo", "(", ")", "n", ",", "m", "=", "N", ".", "shape", "row", ",", "col", ",", "data", "=", "N", ".", "row", ",", "N", ".", "col", ",", "N", ".", "data", "# Divide row and column indices - duplicate coordinates are added in", "# sparse matrix construction", "binned_row", "=", "row", "//", "subsampling_factor", "binned_col", "=", "col", "//", "subsampling_factor", "binned_n", "=", "n", "//", "subsampling_factor", "binned_m", "=", "m", "//", "subsampling_factor", "# Attach remaining columns and rows to the last one", "binned_row", "[", "binned_row", ">=", "binned_n", "]", "-=", "n", "%", "subsampling_factor", "binned_col", "[", "binned_col", ">=", "binned_m", "]", "-=", "m", "%", "subsampling_factor", "result", "=", "coo_matrix", "(", "(", "data", ",", "(", "binned_row", ",", "binned_col", ")", ")", ",", "shape", "=", "(", "binned_n", ",", "binned_m", ")", ")", "return", "result" ]
Perform the bin_dense procedure for sparse matrices. Remaining rows and cols are lumped with the rest at the end.
[ "Perform", "the", "bin_dense", "procedure", "for", "sparse", "matrices", ".", "Remaining", "rows", "and", "cols", "are", "lumped", "with", "the", "rest", "at", "the", "end", "." ]
python
train
bokeh/bokeh
bokeh/sphinxext/bokehjs_content.py
https://github.com/bokeh/bokeh/blob/dc8cf49e4e4302fd38537ad089ece81fbcca4737/bokeh/sphinxext/bokehjs_content.py#L268-L277
def setup(app): ''' Required Sphinx extension setup function. ''' app.add_node( bokehjs_content, html=( html_visit_bokehjs_content, html_depart_bokehjs_content ) ) app.add_directive('bokehjs-content', BokehJSContent)
[ "def", "setup", "(", "app", ")", ":", "app", ".", "add_node", "(", "bokehjs_content", ",", "html", "=", "(", "html_visit_bokehjs_content", ",", "html_depart_bokehjs_content", ")", ")", "app", ".", "add_directive", "(", "'bokehjs-content'", ",", "BokehJSContent", ")" ]
Required Sphinx extension setup function.
[ "Required", "Sphinx", "extension", "setup", "function", "." ]
python
train
xeroc/python-graphenelib
graphenecommon/price.py
https://github.com/xeroc/python-graphenelib/blob/8bb5396bc79998ee424cf3813af478304173f3a6/graphenecommon/price.py#L291-L306
def json(self): """ return { "base": self["base"].json(), "quote": self["quote"].json() } """ quote = self["quote"] base = self["base"] frac = Fraction(int(quote) / int(base)).limit_denominator( 10 ** base["asset"]["precision"] ) return { "base": {"amount": int(frac.denominator), "asset_id": base["asset"]["id"]}, "quote": {"amount": int(frac.numerator), "asset_id": quote["asset"]["id"]}, }
[ "def", "json", "(", "self", ")", ":", "quote", "=", "self", "[", "\"quote\"", "]", "base", "=", "self", "[", "\"base\"", "]", "frac", "=", "Fraction", "(", "int", "(", "quote", ")", "/", "int", "(", "base", ")", ")", ".", "limit_denominator", "(", "10", "**", "base", "[", "\"asset\"", "]", "[", "\"precision\"", "]", ")", "return", "{", "\"base\"", ":", "{", "\"amount\"", ":", "int", "(", "frac", ".", "denominator", ")", ",", "\"asset_id\"", ":", "base", "[", "\"asset\"", "]", "[", "\"id\"", "]", "}", ",", "\"quote\"", ":", "{", "\"amount\"", ":", "int", "(", "frac", ".", "numerator", ")", ",", "\"asset_id\"", ":", "quote", "[", "\"asset\"", "]", "[", "\"id\"", "]", "}", ",", "}" ]
return { "base": self["base"].json(), "quote": self["quote"].json() }
[ "return", "{", "base", ":", "self", "[", "base", "]", ".", "json", "()", "quote", ":", "self", "[", "quote", "]", ".", "json", "()", "}" ]
python
valid
KrishnaswamyLab/graphtools
graphtools/base.py
https://github.com/KrishnaswamyLab/graphtools/blob/44685352be7df2005d44722903092207967457f2/graphtools/base.py#L40-L66
def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] # Extract and sort argument names excluding 'self' parameters = set([p.name for p in parameters]) # recurse for superclass in cls.__bases__: try: parameters.update(superclass._get_param_names()) except AttributeError: # object and pygsp.graphs.Graph don't have this method pass return parameters
[ "def", "_get_param_names", "(", "cls", ")", ":", "# fetch the constructor or the original constructor before", "# deprecation wrapping if any", "init", "=", "getattr", "(", "cls", ".", "__init__", ",", "'deprecated_original'", ",", "cls", ".", "__init__", ")", "if", "init", "is", "object", ".", "__init__", ":", "# No explicit constructor to introspect", "return", "[", "]", "# introspect the constructor arguments to find the model parameters", "# to represent", "init_signature", "=", "signature", "(", "init", ")", "# Consider the constructor parameters excluding 'self'", "parameters", "=", "[", "p", "for", "p", "in", "init_signature", ".", "parameters", ".", "values", "(", ")", "if", "p", ".", "name", "!=", "'self'", "and", "p", ".", "kind", "!=", "p", ".", "VAR_KEYWORD", "]", "# Extract and sort argument names excluding 'self'", "parameters", "=", "set", "(", "[", "p", ".", "name", "for", "p", "in", "parameters", "]", ")", "# recurse", "for", "superclass", "in", "cls", ".", "__bases__", ":", "try", ":", "parameters", ".", "update", "(", "superclass", ".", "_get_param_names", "(", ")", ")", "except", "AttributeError", ":", "# object and pygsp.graphs.Graph don't have this method", "pass", "return", "parameters" ]
Get parameter names for the estimator
[ "Get", "parameter", "names", "for", "the", "estimator" ]
python
train
knipknap/SpiffWorkflow
SpiffWorkflow/util/event.py
https://github.com/knipknap/SpiffWorkflow/blob/f0af7f59a332e0619e4f3c00a7d4a3d230760e00/SpiffWorkflow/util/event.py#L89-L120
def listen(self, callback, *args, **kwargs): """ Like :class:`connect()`, but uses a weak reference instead of a normal reference. The signal is automatically disconnected as soon as the handler is garbage collected. .. note:: Storing signal handlers as weak references means that if your handler is a local function, it may be garbage collected. To prevent this, use :class:`connect()` instead. :type callback: object :param callback: The callback function. :type args: tuple :param args: Optional arguments passed to the callback. :type kwargs: dict :param kwargs: Optional keyword arguments passed to the callback. :rtype: :class:`Exscript.util.weakmethod.WeakMethod` :returns: The newly created weak reference to the callback. """ if self.lock is None: self.lock = Lock() with self.lock: if self.is_connected(callback): raise AttributeError('callback is already connected') if self.weak_subscribers is None: self.weak_subscribers = [] ref = weakmethod.ref(callback, self._try_disconnect) self.weak_subscribers.append((ref, args, kwargs)) return ref
[ "def", "listen", "(", "self", ",", "callback", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "lock", "is", "None", ":", "self", ".", "lock", "=", "Lock", "(", ")", "with", "self", ".", "lock", ":", "if", "self", ".", "is_connected", "(", "callback", ")", ":", "raise", "AttributeError", "(", "'callback is already connected'", ")", "if", "self", ".", "weak_subscribers", "is", "None", ":", "self", ".", "weak_subscribers", "=", "[", "]", "ref", "=", "weakmethod", ".", "ref", "(", "callback", ",", "self", ".", "_try_disconnect", ")", "self", ".", "weak_subscribers", ".", "append", "(", "(", "ref", ",", "args", ",", "kwargs", ")", ")", "return", "ref" ]
Like :class:`connect()`, but uses a weak reference instead of a normal reference. The signal is automatically disconnected as soon as the handler is garbage collected. .. note:: Storing signal handlers as weak references means that if your handler is a local function, it may be garbage collected. To prevent this, use :class:`connect()` instead. :type callback: object :param callback: The callback function. :type args: tuple :param args: Optional arguments passed to the callback. :type kwargs: dict :param kwargs: Optional keyword arguments passed to the callback. :rtype: :class:`Exscript.util.weakmethod.WeakMethod` :returns: The newly created weak reference to the callback.
[ "Like", ":", "class", ":", "connect", "()", "but", "uses", "a", "weak", "reference", "instead", "of", "a", "normal", "reference", ".", "The", "signal", "is", "automatically", "disconnected", "as", "soon", "as", "the", "handler", "is", "garbage", "collected", "." ]
python
valid
SUSE-Enceladus/ipa
ipa/ipa_cloud.py
https://github.com/SUSE-Enceladus/ipa/blob/0845eed0ea25a27dbb059ad1016105fa60002228/ipa/ipa_cloud.py#L351-L360
def _set_distro(self): """Determine distro for image and create instance of class.""" if self.distro_name == 'sles': self.distro = SLES() elif self.distro_name == 'opensuse_leap': self.distro = openSUSE_Leap() else: raise IpaCloudException( 'Distribution: %s, not supported.' % self.distro_name )
[ "def", "_set_distro", "(", "self", ")", ":", "if", "self", ".", "distro_name", "==", "'sles'", ":", "self", ".", "distro", "=", "SLES", "(", ")", "elif", "self", ".", "distro_name", "==", "'opensuse_leap'", ":", "self", ".", "distro", "=", "openSUSE_Leap", "(", ")", "else", ":", "raise", "IpaCloudException", "(", "'Distribution: %s, not supported.'", "%", "self", ".", "distro_name", ")" ]
Determine distro for image and create instance of class.
[ "Determine", "distro", "for", "image", "and", "create", "instance", "of", "class", "." ]
python
train
Yubico/python-yubico
yubico/yubikey_config.py
https://github.com/Yubico/python-yubico/blob/a72e8eddb90da6ee96e29f60912ca1f2872c9aea/yubico/yubikey_config.py#L408-L429
def extended_flag(self, which, new=None): """ Get or set a extended flag. 'which' can be either a string ('SERIAL_API_VISIBLE' etc.), or an integer. You should ALWAYS use a string, unless you really know what you are doing. """ flag = _get_flag(which, ExtendedFlags) if flag: if not self.capabilities.have_extended_flag(flag): raise yubikey_base.YubiKeyVersionError('Extended flag %s requires %s, and this is %s %d.%d' % (which, flag.req_string(self.capabilities.model), \ self.capabilities.model, self.ykver[0], self.ykver[1])) req_major, req_minor = flag.req_version() self._require_version(major=req_major, minor=req_minor) value = flag.to_integer() else: if type(which) is not int: raise yubico_exception.InputError('Unknown non-integer ExtendedFlag (%s)' % which) value = which return self.extended_flags.get_set(value, new)
[ "def", "extended_flag", "(", "self", ",", "which", ",", "new", "=", "None", ")", ":", "flag", "=", "_get_flag", "(", "which", ",", "ExtendedFlags", ")", "if", "flag", ":", "if", "not", "self", ".", "capabilities", ".", "have_extended_flag", "(", "flag", ")", ":", "raise", "yubikey_base", ".", "YubiKeyVersionError", "(", "'Extended flag %s requires %s, and this is %s %d.%d'", "%", "(", "which", ",", "flag", ".", "req_string", "(", "self", ".", "capabilities", ".", "model", ")", ",", "self", ".", "capabilities", ".", "model", ",", "self", ".", "ykver", "[", "0", "]", ",", "self", ".", "ykver", "[", "1", "]", ")", ")", "req_major", ",", "req_minor", "=", "flag", ".", "req_version", "(", ")", "self", ".", "_require_version", "(", "major", "=", "req_major", ",", "minor", "=", "req_minor", ")", "value", "=", "flag", ".", "to_integer", "(", ")", "else", ":", "if", "type", "(", "which", ")", "is", "not", "int", ":", "raise", "yubico_exception", ".", "InputError", "(", "'Unknown non-integer ExtendedFlag (%s)'", "%", "which", ")", "value", "=", "which", "return", "self", ".", "extended_flags", ".", "get_set", "(", "value", ",", "new", ")" ]
Get or set a extended flag. 'which' can be either a string ('SERIAL_API_VISIBLE' etc.), or an integer. You should ALWAYS use a string, unless you really know what you are doing.
[ "Get", "or", "set", "a", "extended", "flag", "." ]
python
train
saltstack/salt
salt/modules/x509.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/x509.py#L401-L407
def _get_pubkey_hash(cert): ''' Returns the sha1 hash of the modulus of a public key in a cert Used for generating subject key identifiers ''' sha_hash = hashlib.sha1(cert.get_pubkey().get_modulus()).hexdigest() return _pretty_hex(sha_hash)
[ "def", "_get_pubkey_hash", "(", "cert", ")", ":", "sha_hash", "=", "hashlib", ".", "sha1", "(", "cert", ".", "get_pubkey", "(", ")", ".", "get_modulus", "(", ")", ")", ".", "hexdigest", "(", ")", "return", "_pretty_hex", "(", "sha_hash", ")" ]
Returns the sha1 hash of the modulus of a public key in a cert Used for generating subject key identifiers
[ "Returns", "the", "sha1", "hash", "of", "the", "modulus", "of", "a", "public", "key", "in", "a", "cert", "Used", "for", "generating", "subject", "key", "identifiers" ]
python
train
dhhagan/py-opc
opc/__init__.py
https://github.com/dhhagan/py-opc/blob/2c8f19530fb64bf5fd4ee0d694a47850161ed8a7/opc/__init__.py#L951-L959
def off(self): """Turn OFF the OPC (fan and laser) :returns: boolean success state """ b1 = self.cnxn.xfer([0x03])[0] # send the command byte sleep(9e-3) # sleep for 9 ms return True if b1 == 0xF3 else False
[ "def", "off", "(", "self", ")", ":", "b1", "=", "self", ".", "cnxn", ".", "xfer", "(", "[", "0x03", "]", ")", "[", "0", "]", "# send the command byte", "sleep", "(", "9e-3", ")", "# sleep for 9 ms", "return", "True", "if", "b1", "==", "0xF3", "else", "False" ]
Turn OFF the OPC (fan and laser) :returns: boolean success state
[ "Turn", "OFF", "the", "OPC", "(", "fan", "and", "laser", ")" ]
python
valid
saltstack/salt
salt/utils/pkg/rpm.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/utils/pkg/rpm.py#L98-L123
def parse_pkginfo(line, osarch=None): ''' A small helper to parse an rpm/repoquery command's output. Returns a pkginfo namedtuple. ''' try: name, epoch, version, release, arch, repoid, install_time = line.split('_|-') # Handle unpack errors (should never happen with the queryformat we are # using, but can't hurt to be careful). except ValueError: return None name = resolve_name(name, arch, osarch) if release: version += '-{0}'.format(release) if epoch not in ('(none)', '0'): version = ':'.join((epoch, version)) if install_time not in ('(none)', '0'): install_date = datetime.datetime.utcfromtimestamp(int(install_time)).isoformat() + "Z" install_date_time_t = int(install_time) else: install_date = None install_date_time_t = None return pkginfo(name, version, arch, repoid, install_date, install_date_time_t)
[ "def", "parse_pkginfo", "(", "line", ",", "osarch", "=", "None", ")", ":", "try", ":", "name", ",", "epoch", ",", "version", ",", "release", ",", "arch", ",", "repoid", ",", "install_time", "=", "line", ".", "split", "(", "'_|-'", ")", "# Handle unpack errors (should never happen with the queryformat we are", "# using, but can't hurt to be careful).", "except", "ValueError", ":", "return", "None", "name", "=", "resolve_name", "(", "name", ",", "arch", ",", "osarch", ")", "if", "release", ":", "version", "+=", "'-{0}'", ".", "format", "(", "release", ")", "if", "epoch", "not", "in", "(", "'(none)'", ",", "'0'", ")", ":", "version", "=", "':'", ".", "join", "(", "(", "epoch", ",", "version", ")", ")", "if", "install_time", "not", "in", "(", "'(none)'", ",", "'0'", ")", ":", "install_date", "=", "datetime", ".", "datetime", ".", "utcfromtimestamp", "(", "int", "(", "install_time", ")", ")", ".", "isoformat", "(", ")", "+", "\"Z\"", "install_date_time_t", "=", "int", "(", "install_time", ")", "else", ":", "install_date", "=", "None", "install_date_time_t", "=", "None", "return", "pkginfo", "(", "name", ",", "version", ",", "arch", ",", "repoid", ",", "install_date", ",", "install_date_time_t", ")" ]
A small helper to parse an rpm/repoquery command's output. Returns a pkginfo namedtuple.
[ "A", "small", "helper", "to", "parse", "an", "rpm", "/", "repoquery", "command", "s", "output", ".", "Returns", "a", "pkginfo", "namedtuple", "." ]
python
train
has2k1/plotnine
plotnine/facets/layout.py
https://github.com/has2k1/plotnine/blob/566e579af705367e584fb27a74e6c5199624ca89/plotnine/facets/layout.py#L205-L223
def xlabel(self, labels): """ Determine x-axis label Parameters ---------- labels : dict Labels as specified by the user through the ``labs`` or ``xlab`` calls. Returns ------- out : str x-axis label """ if self.panel_scales_x[0].name is not None: return self.panel_scales_x[0].name else: return labels.get('x', '')
[ "def", "xlabel", "(", "self", ",", "labels", ")", ":", "if", "self", ".", "panel_scales_x", "[", "0", "]", ".", "name", "is", "not", "None", ":", "return", "self", ".", "panel_scales_x", "[", "0", "]", ".", "name", "else", ":", "return", "labels", ".", "get", "(", "'x'", ",", "''", ")" ]
Determine x-axis label Parameters ---------- labels : dict Labels as specified by the user through the ``labs`` or ``xlab`` calls. Returns ------- out : str x-axis label
[ "Determine", "x", "-", "axis", "label" ]
python
train
openego/eDisGo
edisgo/grid/components.py
https://github.com/openego/eDisGo/blob/e6245bdaf236f9c49dbda5a18c1c458290f41e2b/edisgo/grid/components.py#L344-L368
def power_factor(self): """ Power factor of load Parameters ----------- power_factor : :obj:`float` Ratio of real power to apparent power. Returns -------- :obj:`float` Ratio of real power to apparent power. If power factor is not set it is retrieved from the network config object depending on the grid level the load is in. """ if self._power_factor is None: if isinstance(self.grid, MVGrid): self._power_factor = self.grid.network.config[ 'reactive_power_factor']['mv_load'] elif isinstance(self.grid, LVGrid): self._power_factor = self.grid.network.config[ 'reactive_power_factor']['lv_load'] return self._power_factor
[ "def", "power_factor", "(", "self", ")", ":", "if", "self", ".", "_power_factor", "is", "None", ":", "if", "isinstance", "(", "self", ".", "grid", ",", "MVGrid", ")", ":", "self", ".", "_power_factor", "=", "self", ".", "grid", ".", "network", ".", "config", "[", "'reactive_power_factor'", "]", "[", "'mv_load'", "]", "elif", "isinstance", "(", "self", ".", "grid", ",", "LVGrid", ")", ":", "self", ".", "_power_factor", "=", "self", ".", "grid", ".", "network", ".", "config", "[", "'reactive_power_factor'", "]", "[", "'lv_load'", "]", "return", "self", ".", "_power_factor" ]
Power factor of load Parameters ----------- power_factor : :obj:`float` Ratio of real power to apparent power. Returns -------- :obj:`float` Ratio of real power to apparent power. If power factor is not set it is retrieved from the network config object depending on the grid level the load is in.
[ "Power", "factor", "of", "load" ]
python
train
numba/llvmlite
llvmlite/binding/value.py
https://github.com/numba/llvmlite/blob/fcadf8af11947f3fd041c5d6526c5bf231564883/llvmlite/binding/value.py#L282-L293
def operands(self): """ Return an iterator over this instruction's operands. The iterator will yield a ValueRef for each operand. """ if not self.is_instruction: raise ValueError('expected instruction value, got %s' % (self._kind,)) it = ffi.lib.LLVMPY_InstructionOperandsIter(self) parents = self._parents.copy() parents.update(instruction=self) return _OperandsIterator(it, parents)
[ "def", "operands", "(", "self", ")", ":", "if", "not", "self", ".", "is_instruction", ":", "raise", "ValueError", "(", "'expected instruction value, got %s'", "%", "(", "self", ".", "_kind", ",", ")", ")", "it", "=", "ffi", ".", "lib", ".", "LLVMPY_InstructionOperandsIter", "(", "self", ")", "parents", "=", "self", ".", "_parents", ".", "copy", "(", ")", "parents", ".", "update", "(", "instruction", "=", "self", ")", "return", "_OperandsIterator", "(", "it", ",", "parents", ")" ]
Return an iterator over this instruction's operands. The iterator will yield a ValueRef for each operand.
[ "Return", "an", "iterator", "over", "this", "instruction", "s", "operands", ".", "The", "iterator", "will", "yield", "a", "ValueRef", "for", "each", "operand", "." ]
python
train
klahnakoski/pyLibrary
mo_dots/__init__.py
https://github.com/klahnakoski/pyLibrary/blob/fa2dcbc48fda8d26999baef400e9a98149e0b982/mo_dots/__init__.py#L307-L319
def set_attr(obj, path, value): """ SAME AS object.__setattr__(), BUT USES DOT-DELIMITED path RETURN OLD VALUE """ try: return _set_attr(obj, split_field(path), value) except Exception as e: Log = get_logger() if PATH_NOT_FOUND in e: Log.warning(PATH_NOT_FOUND + ": {{path}}", path=path, cause=e) else: Log.error("Problem setting value", cause=e)
[ "def", "set_attr", "(", "obj", ",", "path", ",", "value", ")", ":", "try", ":", "return", "_set_attr", "(", "obj", ",", "split_field", "(", "path", ")", ",", "value", ")", "except", "Exception", "as", "e", ":", "Log", "=", "get_logger", "(", ")", "if", "PATH_NOT_FOUND", "in", "e", ":", "Log", ".", "warning", "(", "PATH_NOT_FOUND", "+", "\": {{path}}\"", ",", "path", "=", "path", ",", "cause", "=", "e", ")", "else", ":", "Log", ".", "error", "(", "\"Problem setting value\"", ",", "cause", "=", "e", ")" ]
SAME AS object.__setattr__(), BUT USES DOT-DELIMITED path RETURN OLD VALUE
[ "SAME", "AS", "object", ".", "__setattr__", "()", "BUT", "USES", "DOT", "-", "DELIMITED", "path", "RETURN", "OLD", "VALUE" ]
python
train
tanghaibao/goatools
goatools/rpt/rpt_lev_depth.py
https://github.com/tanghaibao/goatools/blob/407682e573a108864a79031f8ca19ee3bf377626/goatools/rpt/rpt_lev_depth.py#L149-L156
def get_cnts_levels_depths_recs(recs): """Collect counts of levels and depths in a Group of GO Terms.""" cnts = cx.defaultdict(lambda: cx.defaultdict(cx.Counter)) for rec in recs: if rec is not None and not rec.is_obsolete: cnts['level'][rec.level][rec.namespace] += 1 cnts['depth'][rec.depth][rec.namespace] += 1 return cnts
[ "def", "get_cnts_levels_depths_recs", "(", "recs", ")", ":", "cnts", "=", "cx", ".", "defaultdict", "(", "lambda", ":", "cx", ".", "defaultdict", "(", "cx", ".", "Counter", ")", ")", "for", "rec", "in", "recs", ":", "if", "rec", "is", "not", "None", "and", "not", "rec", ".", "is_obsolete", ":", "cnts", "[", "'level'", "]", "[", "rec", ".", "level", "]", "[", "rec", ".", "namespace", "]", "+=", "1", "cnts", "[", "'depth'", "]", "[", "rec", ".", "depth", "]", "[", "rec", ".", "namespace", "]", "+=", "1", "return", "cnts" ]
Collect counts of levels and depths in a Group of GO Terms.
[ "Collect", "counts", "of", "levels", "and", "depths", "in", "a", "Group", "of", "GO", "Terms", "." ]
python
train
saulpw/visidata
visidata/cmdlog.py
https://github.com/saulpw/visidata/blob/32771e0cea6c24fc7902683d14558391395c591f/visidata/cmdlog.py#L171-L218
def moveToReplayContext(self, r): 'set the sheet/row/col to the values in the replay row. return sheet' if not r.sheet: # assert not r.col and not r.row return self # any old sheet should do, row/column don't matter try: sheetidx = int(r.sheet) vs = vd().sheets[sheetidx] except ValueError: vs = vd().getSheet(r.sheet) or error('no sheet named %s' % r.sheet) if r.row: try: rowidx = int(r.row) except ValueError: rowidx = indexMatch(vs.rows, lambda r,vs=vs,k=r.row: keystr(vs.rowkey(r)) == k) if rowidx is None: error('no "%s" row' % r.row) if options.replay_movement: while vs.cursorRowIndex != rowidx: vs.cursorRowIndex += 1 if (rowidx - vs.cursorRowIndex) > 0 else -1 while not self.delay(0.5): pass else: vs.cursorRowIndex = rowidx if r.col: try: vcolidx = int(r.col) except ValueError: vcolidx = indexMatch(vs.visibleCols, lambda c,name=r.col: name == c.name) if vcolidx is None: error('no "%s" column' % r.col) if options.replay_movement: while vs.cursorVisibleColIndex != vcolidx: vs.cursorVisibleColIndex += 1 if (vcolidx - vs.cursorVisibleColIndex) > 0 else -1 while not self.delay(0.5): pass assert vs.cursorVisibleColIndex == vcolidx else: vs.cursorVisibleColIndex = vcolidx return vs
[ "def", "moveToReplayContext", "(", "self", ",", "r", ")", ":", "if", "not", "r", ".", "sheet", ":", "# assert not r.col and not r.row", "return", "self", "# any old sheet should do, row/column don't matter", "try", ":", "sheetidx", "=", "int", "(", "r", ".", "sheet", ")", "vs", "=", "vd", "(", ")", ".", "sheets", "[", "sheetidx", "]", "except", "ValueError", ":", "vs", "=", "vd", "(", ")", ".", "getSheet", "(", "r", ".", "sheet", ")", "or", "error", "(", "'no sheet named %s'", "%", "r", ".", "sheet", ")", "if", "r", ".", "row", ":", "try", ":", "rowidx", "=", "int", "(", "r", ".", "row", ")", "except", "ValueError", ":", "rowidx", "=", "indexMatch", "(", "vs", ".", "rows", ",", "lambda", "r", ",", "vs", "=", "vs", ",", "k", "=", "r", ".", "row", ":", "keystr", "(", "vs", ".", "rowkey", "(", "r", ")", ")", "==", "k", ")", "if", "rowidx", "is", "None", ":", "error", "(", "'no \"%s\" row'", "%", "r", ".", "row", ")", "if", "options", ".", "replay_movement", ":", "while", "vs", ".", "cursorRowIndex", "!=", "rowidx", ":", "vs", ".", "cursorRowIndex", "+=", "1", "if", "(", "rowidx", "-", "vs", ".", "cursorRowIndex", ")", ">", "0", "else", "-", "1", "while", "not", "self", ".", "delay", "(", "0.5", ")", ":", "pass", "else", ":", "vs", ".", "cursorRowIndex", "=", "rowidx", "if", "r", ".", "col", ":", "try", ":", "vcolidx", "=", "int", "(", "r", ".", "col", ")", "except", "ValueError", ":", "vcolidx", "=", "indexMatch", "(", "vs", ".", "visibleCols", ",", "lambda", "c", ",", "name", "=", "r", ".", "col", ":", "name", "==", "c", ".", "name", ")", "if", "vcolidx", "is", "None", ":", "error", "(", "'no \"%s\" column'", "%", "r", ".", "col", ")", "if", "options", ".", "replay_movement", ":", "while", "vs", ".", "cursorVisibleColIndex", "!=", "vcolidx", ":", "vs", ".", "cursorVisibleColIndex", "+=", "1", "if", "(", "vcolidx", "-", "vs", ".", "cursorVisibleColIndex", ")", ">", "0", "else", "-", "1", "while", "not", "self", ".", "delay", "(", "0.5", ")", ":", "pass", "assert", "vs", ".", "cursorVisibleColIndex", "==", "vcolidx", "else", ":", "vs", ".", "cursorVisibleColIndex", "=", "vcolidx", "return", "vs" ]
set the sheet/row/col to the values in the replay row. return sheet
[ "set", "the", "sheet", "/", "row", "/", "col", "to", "the", "values", "in", "the", "replay", "row", ".", "return", "sheet" ]
python
train
merry-bits/DBQuery
src/dbquery/query.py
https://github.com/merry-bits/DBQuery/blob/5f46dc94e2721129f8a799b5f613373e6cd9cb73/src/dbquery/query.py#L113-L125
def show(self, *args, **kwds): """ Show how the SQL looks like when executed by the DB. This might not be supported by all connection types. For example: PostgreSQL does support it, SQLite does not. :rtype: str """ # Same as in __call__, arguments win over keywords arg = args if not arg: arg = kwds # pylint: disable=redefined-variable-type return self._db.show(self._sql, arg)
[ "def", "show", "(", "self", ",", "*", "args", ",", "*", "*", "kwds", ")", ":", "# Same as in __call__, arguments win over keywords", "arg", "=", "args", "if", "not", "arg", ":", "arg", "=", "kwds", "# pylint: disable=redefined-variable-type", "return", "self", ".", "_db", ".", "show", "(", "self", ".", "_sql", ",", "arg", ")" ]
Show how the SQL looks like when executed by the DB. This might not be supported by all connection types. For example: PostgreSQL does support it, SQLite does not. :rtype: str
[ "Show", "how", "the", "SQL", "looks", "like", "when", "executed", "by", "the", "DB", "." ]
python
train
ARMmbed/yotta
yotta/lib/component.py
https://github.com/ARMmbed/yotta/blob/56bc1e56c602fa20307b23fe27518e9cd6c11af1/yotta/lib/component.py#L250-L277
def getDependencies(self, available_components = None, search_dirs = None, target = None, available_only = False, test = False, warnings = True ): ''' Returns {component_name:component} ''' if search_dirs is None: search_dirs = [self.modulesPath()] available_components = self.ensureOrderedDict(available_components) components, errors = self.__getDependenciesWithProvider( available_components = available_components, search_dirs = search_dirs, target = target, update_installed = False, provider = self.provideInstalled, test = test ) if warnings: for error in errors: logger.warning(error) if available_only: components = OrderedDict((k, v) for k, v in components.items() if v) return components
[ "def", "getDependencies", "(", "self", ",", "available_components", "=", "None", ",", "search_dirs", "=", "None", ",", "target", "=", "None", ",", "available_only", "=", "False", ",", "test", "=", "False", ",", "warnings", "=", "True", ")", ":", "if", "search_dirs", "is", "None", ":", "search_dirs", "=", "[", "self", ".", "modulesPath", "(", ")", "]", "available_components", "=", "self", ".", "ensureOrderedDict", "(", "available_components", ")", "components", ",", "errors", "=", "self", ".", "__getDependenciesWithProvider", "(", "available_components", "=", "available_components", ",", "search_dirs", "=", "search_dirs", ",", "target", "=", "target", ",", "update_installed", "=", "False", ",", "provider", "=", "self", ".", "provideInstalled", ",", "test", "=", "test", ")", "if", "warnings", ":", "for", "error", "in", "errors", ":", "logger", ".", "warning", "(", "error", ")", "if", "available_only", ":", "components", "=", "OrderedDict", "(", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "components", ".", "items", "(", ")", "if", "v", ")", "return", "components" ]
Returns {component_name:component}
[ "Returns", "{", "component_name", ":", "component", "}" ]
python
valid
treycucco/bidon
bidon/field_mapping.py
https://github.com/treycucco/bidon/blob/d9f24596841d0e69e8ac70a1d1a1deecea95e340/bidon/field_mapping.py#L19-L40
def get_value(self, source): """Apply self.convert to the source. The parameter passed to convert depends on self.source_name. If source_name is given, self.convert(getattr(source, source_name)) is called, otherwise self.convert(source) is called. """ if self.source_name is None: present, value = True, self.convert(source) converted = True else: present, value = has_value(source, self.source_name) converted = False if not present or value is None: if self.is_required: raise ValueError("required value not present") else: return None else: if converted: return value else: return self.convert(value)
[ "def", "get_value", "(", "self", ",", "source", ")", ":", "if", "self", ".", "source_name", "is", "None", ":", "present", ",", "value", "=", "True", ",", "self", ".", "convert", "(", "source", ")", "converted", "=", "True", "else", ":", "present", ",", "value", "=", "has_value", "(", "source", ",", "self", ".", "source_name", ")", "converted", "=", "False", "if", "not", "present", "or", "value", "is", "None", ":", "if", "self", ".", "is_required", ":", "raise", "ValueError", "(", "\"required value not present\"", ")", "else", ":", "return", "None", "else", ":", "if", "converted", ":", "return", "value", "else", ":", "return", "self", ".", "convert", "(", "value", ")" ]
Apply self.convert to the source. The parameter passed to convert depends on self.source_name. If source_name is given, self.convert(getattr(source, source_name)) is called, otherwise self.convert(source) is called.
[ "Apply", "self", ".", "convert", "to", "the", "source", ".", "The", "parameter", "passed", "to", "convert", "depends", "on", "self", ".", "source_name", ".", "If", "source_name", "is", "given", "self", ".", "convert", "(", "getattr", "(", "source", "source_name", "))", "is", "called", "otherwise", "self", ".", "convert", "(", "source", ")", "is", "called", "." ]
python
train
swisscom/cleanerversion
versions/admin.py
https://github.com/swisscom/cleanerversion/blob/becadbab5d7b474a0e9a596b99e97682402d2f2c/versions/admin.py#L261-L295
def history_view(self, request, object_id, extra_context=None): "The 'history' admin view for this model." from django.contrib.admin.models import LogEntry # First check if the user can see this history. model = self.model obj = get_object_or_404(self.get_queryset(request), pk=unquote(object_id)) if not self.has_change_permission(request, obj): raise PermissionDenied # Then get the history for this object. opts = model._meta app_label = opts.app_label action_list = LogEntry.objects.filter( object_id=unquote(str(obj.identity)), # this is the change for our override; content_type=get_content_type_for_model(model) ).select_related().order_by('action_time') ctx = self.admin_site.each_context(request) context = dict(ctx, title=('Change history: %s') % force_text(obj), action_list=action_list, module_name=capfirst( force_text(opts.verbose_name_plural)), object=obj, opts=opts, preserved_filters=self.get_preserved_filters(request), ) context.update(extra_context or {}) return TemplateResponse(request, self.object_history_template or [ "admin/%s/%s/object_history.html" % (app_label, opts.model_name), "admin/%s/object_history.html" % app_label, "admin/object_history.html" ], context)
[ "def", "history_view", "(", "self", ",", "request", ",", "object_id", ",", "extra_context", "=", "None", ")", ":", "from", "django", ".", "contrib", ".", "admin", ".", "models", "import", "LogEntry", "# First check if the user can see this history.", "model", "=", "self", ".", "model", "obj", "=", "get_object_or_404", "(", "self", ".", "get_queryset", "(", "request", ")", ",", "pk", "=", "unquote", "(", "object_id", ")", ")", "if", "not", "self", ".", "has_change_permission", "(", "request", ",", "obj", ")", ":", "raise", "PermissionDenied", "# Then get the history for this object.", "opts", "=", "model", ".", "_meta", "app_label", "=", "opts", ".", "app_label", "action_list", "=", "LogEntry", ".", "objects", ".", "filter", "(", "object_id", "=", "unquote", "(", "str", "(", "obj", ".", "identity", ")", ")", ",", "# this is the change for our override;", "content_type", "=", "get_content_type_for_model", "(", "model", ")", ")", ".", "select_related", "(", ")", ".", "order_by", "(", "'action_time'", ")", "ctx", "=", "self", ".", "admin_site", ".", "each_context", "(", "request", ")", "context", "=", "dict", "(", "ctx", ",", "title", "=", "(", "'Change history: %s'", ")", "%", "force_text", "(", "obj", ")", ",", "action_list", "=", "action_list", ",", "module_name", "=", "capfirst", "(", "force_text", "(", "opts", ".", "verbose_name_plural", ")", ")", ",", "object", "=", "obj", ",", "opts", "=", "opts", ",", "preserved_filters", "=", "self", ".", "get_preserved_filters", "(", "request", ")", ",", ")", "context", ".", "update", "(", "extra_context", "or", "{", "}", ")", "return", "TemplateResponse", "(", "request", ",", "self", ".", "object_history_template", "or", "[", "\"admin/%s/%s/object_history.html\"", "%", "(", "app_label", ",", "opts", ".", "model_name", ")", ",", "\"admin/%s/object_history.html\"", "%", "app_label", ",", "\"admin/object_history.html\"", "]", ",", "context", ")" ]
The 'history' admin view for this model.
[ "The", "history", "admin", "view", "for", "this", "model", "." ]
python
train
SBRG/ssbio
ssbio/protein/structure/properties/fatcat.py
https://github.com/SBRG/ssbio/blob/e9449e64ffc1a1f5ad07e5849aa12a650095f8a2/ssbio/protein/structure/properties/fatcat.py#L14-L43
def run_fatcat(structure_path_1, structure_path_2, fatcat_sh, outdir='', silent=False, print_cmd=False, force_rerun=False): """Run FATCAT on two PDB files, and return the path of the XML result file. Args: structure_path_1 (str): Path to PDB file structure_path_2 (str): Path to PDB file fatcat_sh (str): Path to "runFATCAT.sh" executable script outdir (str): Path to where FATCAT XML output files will be saved silent (bool): If stdout should be silenced from showing up in Python console output print_cmd (bool): If command to run FATCAT should be printed to stdout force_rerun (bool): If FATCAT should be run even if XML output files already exist Returns: str: Path to XML output file """ filename1 = op.splitext(op.basename(structure_path_1))[0] filename2 = op.splitext(op.basename(structure_path_2))[0] if not op.exists(outdir): os.mkdir(outdir) outfile = op.join(outdir, filename1 + '__' + filename2 + '.xml') # Run FATCAT on the structures, print the XML of the result to stdout fatcat_cmd = '{} -file1 {} -file2 {} -outFile {}'.format(fatcat_sh, structure_path_1, structure_path_2, outfile) if print_cmd: print(fatcat_cmd) ssbio.utils.command_runner(fatcat_cmd, force_rerun_flag=force_rerun, outfile_checker=outfile, silent=silent) return outfile
[ "def", "run_fatcat", "(", "structure_path_1", ",", "structure_path_2", ",", "fatcat_sh", ",", "outdir", "=", "''", ",", "silent", "=", "False", ",", "print_cmd", "=", "False", ",", "force_rerun", "=", "False", ")", ":", "filename1", "=", "op", ".", "splitext", "(", "op", ".", "basename", "(", "structure_path_1", ")", ")", "[", "0", "]", "filename2", "=", "op", ".", "splitext", "(", "op", ".", "basename", "(", "structure_path_2", ")", ")", "[", "0", "]", "if", "not", "op", ".", "exists", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "outfile", "=", "op", ".", "join", "(", "outdir", ",", "filename1", "+", "'__'", "+", "filename2", "+", "'.xml'", ")", "# Run FATCAT on the structures, print the XML of the result to stdout", "fatcat_cmd", "=", "'{} -file1 {} -file2 {} -outFile {}'", ".", "format", "(", "fatcat_sh", ",", "structure_path_1", ",", "structure_path_2", ",", "outfile", ")", "if", "print_cmd", ":", "print", "(", "fatcat_cmd", ")", "ssbio", ".", "utils", ".", "command_runner", "(", "fatcat_cmd", ",", "force_rerun_flag", "=", "force_rerun", ",", "outfile_checker", "=", "outfile", ",", "silent", "=", "silent", ")", "return", "outfile" ]
Run FATCAT on two PDB files, and return the path of the XML result file. Args: structure_path_1 (str): Path to PDB file structure_path_2 (str): Path to PDB file fatcat_sh (str): Path to "runFATCAT.sh" executable script outdir (str): Path to where FATCAT XML output files will be saved silent (bool): If stdout should be silenced from showing up in Python console output print_cmd (bool): If command to run FATCAT should be printed to stdout force_rerun (bool): If FATCAT should be run even if XML output files already exist Returns: str: Path to XML output file
[ "Run", "FATCAT", "on", "two", "PDB", "files", "and", "return", "the", "path", "of", "the", "XML", "result", "file", ".", "Args", ":", "structure_path_1", "(", "str", ")", ":", "Path", "to", "PDB", "file", "structure_path_2", "(", "str", ")", ":", "Path", "to", "PDB", "file", "fatcat_sh", "(", "str", ")", ":", "Path", "to", "runFATCAT", ".", "sh", "executable", "script", "outdir", "(", "str", ")", ":", "Path", "to", "where", "FATCAT", "XML", "output", "files", "will", "be", "saved", "silent", "(", "bool", ")", ":", "If", "stdout", "should", "be", "silenced", "from", "showing", "up", "in", "Python", "console", "output", "print_cmd", "(", "bool", ")", ":", "If", "command", "to", "run", "FATCAT", "should", "be", "printed", "to", "stdout", "force_rerun", "(", "bool", ")", ":", "If", "FATCAT", "should", "be", "run", "even", "if", "XML", "output", "files", "already", "exist" ]
python
train
Azure/azure-cosmos-python
azure/cosmos/execution_context/query_execution_info.py
https://github.com/Azure/azure-cosmos-python/blob/dd01b3c5d308c6da83cfcaa0ab7083351a476353/azure/cosmos/execution_context/query_execution_info.py#L67-L74
def get_rewritten_query(self): """Returns rewritten query or None (if any) """ rewrittenQuery = self._extract(_PartitionedQueryExecutionInfo.RewrittenQueryPath) if rewrittenQuery is not None: # Hardcode formattable filter to true for now rewrittenQuery = rewrittenQuery.replace('{documentdb-formattableorderbyquery-filter}', 'true') return rewrittenQuery
[ "def", "get_rewritten_query", "(", "self", ")", ":", "rewrittenQuery", "=", "self", ".", "_extract", "(", "_PartitionedQueryExecutionInfo", ".", "RewrittenQueryPath", ")", "if", "rewrittenQuery", "is", "not", "None", ":", "# Hardcode formattable filter to true for now ", "rewrittenQuery", "=", "rewrittenQuery", ".", "replace", "(", "'{documentdb-formattableorderbyquery-filter}'", ",", "'true'", ")", "return", "rewrittenQuery" ]
Returns rewritten query or None (if any)
[ "Returns", "rewritten", "query", "or", "None", "(", "if", "any", ")" ]
python
train
pyroscope/pyrocore
src/pyrocore/torrent/rtorrent.py
https://github.com/pyroscope/pyrocore/blob/89ad01346a570943d20311a0b488440975876612/src/pyrocore/torrent/rtorrent.py#L122-L133
def _memoize(self, name, getter, *args, **kwargs): """ Cache a stable expensive-to-get item value for later (optimized) retrieval. """ field = "custom_m_" + name cached = self.fetch(field) if cached: value = cached else: value = getter(*args, **kwargs) self._make_it_so("caching %s=%r for" % (name, value,), ["custom.set"], field[7:], value) self._fields[field] = value return value
[ "def", "_memoize", "(", "self", ",", "name", ",", "getter", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "field", "=", "\"custom_m_\"", "+", "name", "cached", "=", "self", ".", "fetch", "(", "field", ")", "if", "cached", ":", "value", "=", "cached", "else", ":", "value", "=", "getter", "(", "*", "args", ",", "*", "*", "kwargs", ")", "self", ".", "_make_it_so", "(", "\"caching %s=%r for\"", "%", "(", "name", ",", "value", ",", ")", ",", "[", "\"custom.set\"", "]", ",", "field", "[", "7", ":", "]", ",", "value", ")", "self", ".", "_fields", "[", "field", "]", "=", "value", "return", "value" ]
Cache a stable expensive-to-get item value for later (optimized) retrieval.
[ "Cache", "a", "stable", "expensive", "-", "to", "-", "get", "item", "value", "for", "later", "(", "optimized", ")", "retrieval", "." ]
python
train
jdrumgoole/mongodbshell
mongodbshell/__init__.py
https://github.com/jdrumgoole/mongodbshell/blob/7e194247ea2adc1f124532935507cdffafa2c1f6/mongodbshell/__init__.py#L454-L536
def pager(self, lines): """ Outputs lines to a terminal. It uses `shutil.get_terminal_size` to determine the height of the terminal. It expects an iterator that returns a line at a time and those lines should be terminated by a valid newline sequence. Behaviour is controlled by a number of external class properties. `paginate` : Is on by default and triggers pagination. Without `paginate` all output is written straight to the screen. `output_file` : By assigning a name to this property we can ensure that all output is sent to the corresponding file. Prompts are not output. `pretty_print` : If this is set (default is on) then all output is pretty printed with `pprint`. If it is off then the output is just written to the screen. `overlap` : The number of lines to overlap between one page and the next. :param lines: :return: paginated output """ try: line_count = 0 if self._output_filename: print(f"Output is also going to '{self.output_file}'") self._output_file = open(self._output_filename, "a+") terminal_columns, terminal_lines = shutil.get_terminal_size(fallback=(80, 24)) lines_left = terminal_lines for i, l in enumerate(lines, 1): line_residue = 0 if self.line_numbers: output_line = f"{i:<4} {l}" else: output_line = l line_overflow = int(len(output_line) / terminal_columns) if line_overflow: line_residue = len(output_line) % terminal_columns if line_overflow >= 1: lines_left = lines_left - line_overflow else: lines_left = lines_left - 1 if line_residue > 1: lines_left = lines_left - 1 # line_count = line_count + 1 print(output_line) if self._output_file: self._output_file.write(f"{l}\n") self._output_file.flush() #print(lines_left) if (lines_left - self.overlap - 1) <= 0: # -1 to leave room for prompt if self.paginate: print("Hit Return to continue (q or quit to exit)", end="") user_input = input() if user_input.lower().strip() in ["q", "quit", "exit"]: break terminal_columns, terminal_lines = shutil.get_terminal_size(fallback=(80, 24)) lines_left = terminal_lines # end for if self._output_file: self._output_file.close() except KeyboardInterrupt: print("ctrl-C...") if self._output_file: self._output_file.close()
[ "def", "pager", "(", "self", ",", "lines", ")", ":", "try", ":", "line_count", "=", "0", "if", "self", ".", "_output_filename", ":", "print", "(", "f\"Output is also going to '{self.output_file}'\"", ")", "self", ".", "_output_file", "=", "open", "(", "self", ".", "_output_filename", ",", "\"a+\"", ")", "terminal_columns", ",", "terminal_lines", "=", "shutil", ".", "get_terminal_size", "(", "fallback", "=", "(", "80", ",", "24", ")", ")", "lines_left", "=", "terminal_lines", "for", "i", ",", "l", "in", "enumerate", "(", "lines", ",", "1", ")", ":", "line_residue", "=", "0", "if", "self", ".", "line_numbers", ":", "output_line", "=", "f\"{i:<4} {l}\"", "else", ":", "output_line", "=", "l", "line_overflow", "=", "int", "(", "len", "(", "output_line", ")", "/", "terminal_columns", ")", "if", "line_overflow", ":", "line_residue", "=", "len", "(", "output_line", ")", "%", "terminal_columns", "if", "line_overflow", ">=", "1", ":", "lines_left", "=", "lines_left", "-", "line_overflow", "else", ":", "lines_left", "=", "lines_left", "-", "1", "if", "line_residue", ">", "1", ":", "lines_left", "=", "lines_left", "-", "1", "# line_count = line_count + 1", "print", "(", "output_line", ")", "if", "self", ".", "_output_file", ":", "self", ".", "_output_file", ".", "write", "(", "f\"{l}\\n\"", ")", "self", ".", "_output_file", ".", "flush", "(", ")", "#print(lines_left)", "if", "(", "lines_left", "-", "self", ".", "overlap", "-", "1", ")", "<=", "0", ":", "# -1 to leave room for prompt", "if", "self", ".", "paginate", ":", "print", "(", "\"Hit Return to continue (q or quit to exit)\"", ",", "end", "=", "\"\"", ")", "user_input", "=", "input", "(", ")", "if", "user_input", ".", "lower", "(", ")", ".", "strip", "(", ")", "in", "[", "\"q\"", ",", "\"quit\"", ",", "\"exit\"", "]", ":", "break", "terminal_columns", ",", "terminal_lines", "=", "shutil", ".", "get_terminal_size", "(", "fallback", "=", "(", "80", ",", "24", ")", ")", "lines_left", "=", "terminal_lines", "# end for", "if", "self", ".", "_output_file", ":", "self", ".", "_output_file", ".", "close", "(", ")", "except", "KeyboardInterrupt", ":", "print", "(", "\"ctrl-C...\"", ")", "if", "self", ".", "_output_file", ":", "self", ".", "_output_file", ".", "close", "(", ")" ]
Outputs lines to a terminal. It uses `shutil.get_terminal_size` to determine the height of the terminal. It expects an iterator that returns a line at a time and those lines should be terminated by a valid newline sequence. Behaviour is controlled by a number of external class properties. `paginate` : Is on by default and triggers pagination. Without `paginate` all output is written straight to the screen. `output_file` : By assigning a name to this property we can ensure that all output is sent to the corresponding file. Prompts are not output. `pretty_print` : If this is set (default is on) then all output is pretty printed with `pprint`. If it is off then the output is just written to the screen. `overlap` : The number of lines to overlap between one page and the next. :param lines: :return: paginated output
[ "Outputs", "lines", "to", "a", "terminal", ".", "It", "uses", "shutil", ".", "get_terminal_size", "to", "determine", "the", "height", "of", "the", "terminal", ".", "It", "expects", "an", "iterator", "that", "returns", "a", "line", "at", "a", "time", "and", "those", "lines", "should", "be", "terminated", "by", "a", "valid", "newline", "sequence", "." ]
python
train
tnkteja/myhelp
virtualEnvironment/lib/python2.7/site-packages/coverage/execfile.py
https://github.com/tnkteja/myhelp/blob/fb3a4809d448ad14d5b2e6ddf2e7e89ad52b71cb/virtualEnvironment/lib/python2.7/site-packages/coverage/execfile.py#L23-L70
def run_python_module(modulename, args): """Run a python module, as though with ``python -m name args...``. `modulename` is the name of the module, possibly a dot-separated name. `args` is the argument array to present as sys.argv, including the first element naming the module being executed. """ openfile = None glo, loc = globals(), locals() try: try: # Search for the module - inside its parent package, if any - using # standard import mechanics. if '.' in modulename: packagename, name = rsplit1(modulename, '.') package = __import__(packagename, glo, loc, ['__path__']) searchpath = package.__path__ else: packagename, name = None, modulename searchpath = None # "top-level search" in imp.find_module() openfile, pathname, _ = imp.find_module(name, searchpath) # Complain if this is a magic non-file module. if openfile is None and pathname is None: raise NoSource( "module does not live in a file: %r" % modulename ) # If `modulename` is actually a package, not a mere module, then we # pretend to be Python 2.7 and try running its __main__.py script. if openfile is None: packagename = modulename name = '__main__' package = __import__(packagename, glo, loc, ['__path__']) searchpath = package.__path__ openfile, pathname, _ = imp.find_module(name, searchpath) except ImportError: _, err, _ = sys.exc_info() raise NoSource(str(err)) finally: if openfile: openfile.close() # Finally, hand the file off to run_python_file for execution. pathname = os.path.abspath(pathname) args[0] = pathname run_python_file(pathname, args, package=packagename)
[ "def", "run_python_module", "(", "modulename", ",", "args", ")", ":", "openfile", "=", "None", "glo", ",", "loc", "=", "globals", "(", ")", ",", "locals", "(", ")", "try", ":", "try", ":", "# Search for the module - inside its parent package, if any - using", "# standard import mechanics.", "if", "'.'", "in", "modulename", ":", "packagename", ",", "name", "=", "rsplit1", "(", "modulename", ",", "'.'", ")", "package", "=", "__import__", "(", "packagename", ",", "glo", ",", "loc", ",", "[", "'__path__'", "]", ")", "searchpath", "=", "package", ".", "__path__", "else", ":", "packagename", ",", "name", "=", "None", ",", "modulename", "searchpath", "=", "None", "# \"top-level search\" in imp.find_module()", "openfile", ",", "pathname", ",", "_", "=", "imp", ".", "find_module", "(", "name", ",", "searchpath", ")", "# Complain if this is a magic non-file module.", "if", "openfile", "is", "None", "and", "pathname", "is", "None", ":", "raise", "NoSource", "(", "\"module does not live in a file: %r\"", "%", "modulename", ")", "# If `modulename` is actually a package, not a mere module, then we", "# pretend to be Python 2.7 and try running its __main__.py script.", "if", "openfile", "is", "None", ":", "packagename", "=", "modulename", "name", "=", "'__main__'", "package", "=", "__import__", "(", "packagename", ",", "glo", ",", "loc", ",", "[", "'__path__'", "]", ")", "searchpath", "=", "package", ".", "__path__", "openfile", ",", "pathname", ",", "_", "=", "imp", ".", "find_module", "(", "name", ",", "searchpath", ")", "except", "ImportError", ":", "_", ",", "err", ",", "_", "=", "sys", ".", "exc_info", "(", ")", "raise", "NoSource", "(", "str", "(", "err", ")", ")", "finally", ":", "if", "openfile", ":", "openfile", ".", "close", "(", ")", "# Finally, hand the file off to run_python_file for execution.", "pathname", "=", "os", ".", "path", ".", "abspath", "(", "pathname", ")", "args", "[", "0", "]", "=", "pathname", "run_python_file", "(", "pathname", ",", "args", ",", "package", "=", "packagename", ")" ]
Run a python module, as though with ``python -m name args...``. `modulename` is the name of the module, possibly a dot-separated name. `args` is the argument array to present as sys.argv, including the first element naming the module being executed.
[ "Run", "a", "python", "module", "as", "though", "with", "python", "-", "m", "name", "args", "...", "." ]
python
test
allenai/allennlp
allennlp/data/dataset_readers/dataset_reader.py
https://github.com/allenai/allennlp/blob/648a36f77db7e45784c047176074f98534c76636/allennlp/data/dataset_readers/dataset_reader.py#L91-L145
def read(self, file_path: str) -> Iterable[Instance]: """ Returns an ``Iterable`` containing all the instances in the specified dataset. If ``self.lazy`` is False, this calls ``self._read()``, ensures that the result is a list, then returns the resulting list. If ``self.lazy`` is True, this returns an object whose ``__iter__`` method calls ``self._read()`` each iteration. In this case your implementation of ``_read()`` must also be lazy (that is, not load all instances into memory at once), otherwise you will get a ``ConfigurationError``. In either case, the returned ``Iterable`` can be iterated over multiple times. It's unlikely you want to override this function, but if you do your result should likewise be repeatedly iterable. """ lazy = getattr(self, 'lazy', None) if lazy is None: logger.warning("DatasetReader.lazy is not set, " "did you forget to call the superclass constructor?") if self._cache_directory: cache_file = self._get_cache_location_for_file_path(file_path) else: cache_file = None if lazy: return _LazyInstances(lambda: self._read(file_path), cache_file, self.deserialize_instance, self.serialize_instance) else: # First we read the instances, either from a cache or from the original file. if cache_file and os.path.exists(cache_file): instances = self._instances_from_cache_file(cache_file) else: instances = self._read(file_path) # Then some validation. if not isinstance(instances, list): instances = [instance for instance in Tqdm.tqdm(instances)] if not instances: raise ConfigurationError("No instances were read from the given filepath {}. " "Is the path correct?".format(file_path)) # And finally we write to the cache if we need to. if cache_file and not os.path.exists(cache_file): logger.info(f"Caching instances to {cache_file}") with open(cache_file, 'w') as cache: for instance in Tqdm.tqdm(instances): cache.write(self.serialize_instance(instance) + '\n') return instances
[ "def", "read", "(", "self", ",", "file_path", ":", "str", ")", "->", "Iterable", "[", "Instance", "]", ":", "lazy", "=", "getattr", "(", "self", ",", "'lazy'", ",", "None", ")", "if", "lazy", "is", "None", ":", "logger", ".", "warning", "(", "\"DatasetReader.lazy is not set, \"", "\"did you forget to call the superclass constructor?\"", ")", "if", "self", ".", "_cache_directory", ":", "cache_file", "=", "self", ".", "_get_cache_location_for_file_path", "(", "file_path", ")", "else", ":", "cache_file", "=", "None", "if", "lazy", ":", "return", "_LazyInstances", "(", "lambda", ":", "self", ".", "_read", "(", "file_path", ")", ",", "cache_file", ",", "self", ".", "deserialize_instance", ",", "self", ".", "serialize_instance", ")", "else", ":", "# First we read the instances, either from a cache or from the original file.", "if", "cache_file", "and", "os", ".", "path", ".", "exists", "(", "cache_file", ")", ":", "instances", "=", "self", ".", "_instances_from_cache_file", "(", "cache_file", ")", "else", ":", "instances", "=", "self", ".", "_read", "(", "file_path", ")", "# Then some validation.", "if", "not", "isinstance", "(", "instances", ",", "list", ")", ":", "instances", "=", "[", "instance", "for", "instance", "in", "Tqdm", ".", "tqdm", "(", "instances", ")", "]", "if", "not", "instances", ":", "raise", "ConfigurationError", "(", "\"No instances were read from the given filepath {}. \"", "\"Is the path correct?\"", ".", "format", "(", "file_path", ")", ")", "# And finally we write to the cache if we need to.", "if", "cache_file", "and", "not", "os", ".", "path", ".", "exists", "(", "cache_file", ")", ":", "logger", ".", "info", "(", "f\"Caching instances to {cache_file}\"", ")", "with", "open", "(", "cache_file", ",", "'w'", ")", "as", "cache", ":", "for", "instance", "in", "Tqdm", ".", "tqdm", "(", "instances", ")", ":", "cache", ".", "write", "(", "self", ".", "serialize_instance", "(", "instance", ")", "+", "'\\n'", ")", "return", "instances" ]
Returns an ``Iterable`` containing all the instances in the specified dataset. If ``self.lazy`` is False, this calls ``self._read()``, ensures that the result is a list, then returns the resulting list. If ``self.lazy`` is True, this returns an object whose ``__iter__`` method calls ``self._read()`` each iteration. In this case your implementation of ``_read()`` must also be lazy (that is, not load all instances into memory at once), otherwise you will get a ``ConfigurationError``. In either case, the returned ``Iterable`` can be iterated over multiple times. It's unlikely you want to override this function, but if you do your result should likewise be repeatedly iterable.
[ "Returns", "an", "Iterable", "containing", "all", "the", "instances", "in", "the", "specified", "dataset", "." ]
python
train
schlamar/latexmk.py
latexmake.py
https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L160-L169
def _is_toc_changed(self, toc_file): ''' Test if the *.toc file has changed during the first latex run. ''' fname = '%s.toc' % self.project_name if os.path.isfile(fname): with open(fname) as fobj: if fobj.read() != toc_file: return True
[ "def", "_is_toc_changed", "(", "self", ",", "toc_file", ")", ":", "fname", "=", "'%s.toc'", "%", "self", ".", "project_name", "if", "os", ".", "path", ".", "isfile", "(", "fname", ")", ":", "with", "open", "(", "fname", ")", "as", "fobj", ":", "if", "fobj", ".", "read", "(", ")", "!=", "toc_file", ":", "return", "True" ]
Test if the *.toc file has changed during the first latex run.
[ "Test", "if", "the", "*", ".", "toc", "file", "has", "changed", "during", "the", "first", "latex", "run", "." ]
python
train
coordt/django-alphabetfilter
alphafilter/templatetags/alphafilter.py
https://github.com/coordt/django-alphabetfilter/blob/a7bc21c0ea985c2021a4668241bf643c615c6c1f/alphafilter/templatetags/alphafilter.py#L177-L202
def qs_alphabet_filter(parser, token): """ The parser/tokenizer for the queryset alphabet filter. {% qs_alphabet_filter <queryset> <field name> [<template name>] [strip_params=comma,delim,list] %} {% qs_alphabet_filter objects lastname myapp/template.html %} The template name is optional and uses alphafilter/alphabet.html if not specified """ bits = token.split_contents() if len(bits) == 3: return AlphabetFilterNode(bits[1], bits[2]) elif len(bits) == 4: if "=" in bits[3]: key, val = bits[3].split('=') return AlphabetFilterNode(bits[1], bits[2], strip_params=val) else: return AlphabetFilterNode(bits[1], bits[2], template_name=bits[3]) elif len(bits) == 5: key, val = bits[4].split('=') return AlphabetFilterNode(bits[1], bits[2], bits[3], bits[4]) else: raise TemplateSyntaxError("%s is called with a queryset and field " "name, and optionally a template." % bits[0])
[ "def", "qs_alphabet_filter", "(", "parser", ",", "token", ")", ":", "bits", "=", "token", ".", "split_contents", "(", ")", "if", "len", "(", "bits", ")", "==", "3", ":", "return", "AlphabetFilterNode", "(", "bits", "[", "1", "]", ",", "bits", "[", "2", "]", ")", "elif", "len", "(", "bits", ")", "==", "4", ":", "if", "\"=\"", "in", "bits", "[", "3", "]", ":", "key", ",", "val", "=", "bits", "[", "3", "]", ".", "split", "(", "'='", ")", "return", "AlphabetFilterNode", "(", "bits", "[", "1", "]", ",", "bits", "[", "2", "]", ",", "strip_params", "=", "val", ")", "else", ":", "return", "AlphabetFilterNode", "(", "bits", "[", "1", "]", ",", "bits", "[", "2", "]", ",", "template_name", "=", "bits", "[", "3", "]", ")", "elif", "len", "(", "bits", ")", "==", "5", ":", "key", ",", "val", "=", "bits", "[", "4", "]", ".", "split", "(", "'='", ")", "return", "AlphabetFilterNode", "(", "bits", "[", "1", "]", ",", "bits", "[", "2", "]", ",", "bits", "[", "3", "]", ",", "bits", "[", "4", "]", ")", "else", ":", "raise", "TemplateSyntaxError", "(", "\"%s is called with a queryset and field \"", "\"name, and optionally a template.\"", "%", "bits", "[", "0", "]", ")" ]
The parser/tokenizer for the queryset alphabet filter. {% qs_alphabet_filter <queryset> <field name> [<template name>] [strip_params=comma,delim,list] %} {% qs_alphabet_filter objects lastname myapp/template.html %} The template name is optional and uses alphafilter/alphabet.html if not specified
[ "The", "parser", "/", "tokenizer", "for", "the", "queryset", "alphabet", "filter", "." ]
python
train
saltstack/salt
salt/modules/ddns.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/ddns.py#L55-L68
def _config(name, key=None, **kwargs): ''' Return a value for 'name' from command line args then config file options. Specify 'key' if the config file option is not the same as 'name'. ''' if key is None: key = name if name in kwargs: value = kwargs[name] else: value = __salt__['config.option']('ddns.{0}'.format(key)) if not value: value = None return value
[ "def", "_config", "(", "name", ",", "key", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "key", "is", "None", ":", "key", "=", "name", "if", "name", "in", "kwargs", ":", "value", "=", "kwargs", "[", "name", "]", "else", ":", "value", "=", "__salt__", "[", "'config.option'", "]", "(", "'ddns.{0}'", ".", "format", "(", "key", ")", ")", "if", "not", "value", ":", "value", "=", "None", "return", "value" ]
Return a value for 'name' from command line args then config file options. Specify 'key' if the config file option is not the same as 'name'.
[ "Return", "a", "value", "for", "name", "from", "command", "line", "args", "then", "config", "file", "options", ".", "Specify", "key", "if", "the", "config", "file", "option", "is", "not", "the", "same", "as", "name", "." ]
python
train
rkhleics/wagtailmodeladmin
wagtailmodeladmin/options.py
https://github.com/rkhleics/wagtailmodeladmin/blob/7fddc853bab2ff3868b8c7a03329308c55f16358/wagtailmodeladmin/options.py#L481-L490
def get_permissions_for_registration(self): """ Utilised by Wagtail's 'register_permissions' hook to allow permissions for a model to be assigned to groups in settings. This is only required if the model isn't a Page model, and isn't registered as a Snippet """ from wagtail.wagtailsnippets.models import SNIPPET_MODELS if not self.is_pagemodel and self.model not in SNIPPET_MODELS: return self.permission_helper.get_all_model_permissions() return Permission.objects.none()
[ "def", "get_permissions_for_registration", "(", "self", ")", ":", "from", "wagtail", ".", "wagtailsnippets", ".", "models", "import", "SNIPPET_MODELS", "if", "not", "self", ".", "is_pagemodel", "and", "self", ".", "model", "not", "in", "SNIPPET_MODELS", ":", "return", "self", ".", "permission_helper", ".", "get_all_model_permissions", "(", ")", "return", "Permission", ".", "objects", ".", "none", "(", ")" ]
Utilised by Wagtail's 'register_permissions' hook to allow permissions for a model to be assigned to groups in settings. This is only required if the model isn't a Page model, and isn't registered as a Snippet
[ "Utilised", "by", "Wagtail", "s", "register_permissions", "hook", "to", "allow", "permissions", "for", "a", "model", "to", "be", "assigned", "to", "groups", "in", "settings", ".", "This", "is", "only", "required", "if", "the", "model", "isn", "t", "a", "Page", "model", "and", "isn", "t", "registered", "as", "a", "Snippet" ]
python
train
susam/ice
ice.py
https://github.com/susam/ice/blob/532e685c504ea96f9e42833594585159ac1d2068/ice.py#L50-L91
def cube(): """Return an Ice application with a default home page. Create :class:`Ice` object, add a route to return the default page when a client requests the server root, i.e. /, using HTTP GET method, add an error handler to return HTTP error pages when an error occurs and return this object. The returned object can be used as a WSGI application. Returns: Ice: WSGI application. """ app = Ice() @app.get('/') def default_home_page(): """Return a default home page.""" return simple_html('It works!', '<h1>It works!</h1>\n' '<p>This is the default ice web page.</p>') @app.error() def generic_error_page(): """Return a simple and generic error page.""" return simple_html(app.response.status_line, '<h1>{title}</h1>\n' '<p>{description}</p>\n' '<hr>\n' '<address>Ice/{version}</address>'.format( title=app.response.status_line, description=app.response.status_detail, version=__version__)) def simple_html(title, body): """Return a simple HTML page.""" return ( '<!DOCTYPE html>\n' '<html>\n<head><title>{title}</title></head>\n' '<body>\n{body}\n</body>\n</html>\n' ).format(title=title, body=body) return app
[ "def", "cube", "(", ")", ":", "app", "=", "Ice", "(", ")", "@", "app", ".", "get", "(", "'/'", ")", "def", "default_home_page", "(", ")", ":", "\"\"\"Return a default home page.\"\"\"", "return", "simple_html", "(", "'It works!'", ",", "'<h1>It works!</h1>\\n'", "'<p>This is the default ice web page.</p>'", ")", "@", "app", ".", "error", "(", ")", "def", "generic_error_page", "(", ")", ":", "\"\"\"Return a simple and generic error page.\"\"\"", "return", "simple_html", "(", "app", ".", "response", ".", "status_line", ",", "'<h1>{title}</h1>\\n'", "'<p>{description}</p>\\n'", "'<hr>\\n'", "'<address>Ice/{version}</address>'", ".", "format", "(", "title", "=", "app", ".", "response", ".", "status_line", ",", "description", "=", "app", ".", "response", ".", "status_detail", ",", "version", "=", "__version__", ")", ")", "def", "simple_html", "(", "title", ",", "body", ")", ":", "\"\"\"Return a simple HTML page.\"\"\"", "return", "(", "'<!DOCTYPE html>\\n'", "'<html>\\n<head><title>{title}</title></head>\\n'", "'<body>\\n{body}\\n</body>\\n</html>\\n'", ")", ".", "format", "(", "title", "=", "title", ",", "body", "=", "body", ")", "return", "app" ]
Return an Ice application with a default home page. Create :class:`Ice` object, add a route to return the default page when a client requests the server root, i.e. /, using HTTP GET method, add an error handler to return HTTP error pages when an error occurs and return this object. The returned object can be used as a WSGI application. Returns: Ice: WSGI application.
[ "Return", "an", "Ice", "application", "with", "a", "default", "home", "page", "." ]
python
test
pycontribs/jira
jira/client.py
https://github.com/pycontribs/jira/blob/397db5d78441ed6a680a9b7db4c62030ade1fd8a/jira/client.py#L1821-L1828
def add_vote(self, issue): """Register a vote for the current authenticated user on an issue. :param issue: ID or key of the issue to vote on :rtype: Response """ url = self._get_url('issue/' + str(issue) + '/votes') return self._session.post(url)
[ "def", "add_vote", "(", "self", ",", "issue", ")", ":", "url", "=", "self", ".", "_get_url", "(", "'issue/'", "+", "str", "(", "issue", ")", "+", "'/votes'", ")", "return", "self", ".", "_session", ".", "post", "(", "url", ")" ]
Register a vote for the current authenticated user on an issue. :param issue: ID or key of the issue to vote on :rtype: Response
[ "Register", "a", "vote", "for", "the", "current", "authenticated", "user", "on", "an", "issue", "." ]
python
train