repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
sequence | docstring
stringlengths 1
46.9k
| docstring_tokens
sequence | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
tnkteja/myhelp | virtualEnvironment/lib/python2.7/site-packages/coverage/data.py | https://github.com/tnkteja/myhelp/blob/fb3a4809d448ad14d5b2e6ddf2e7e89ad52b71cb/virtualEnvironment/lib/python2.7/site-packages/coverage/data.py#L213-L220 | def add_arc_data(self, arc_data):
"""Add measured arc data.
`arc_data` is { filename: { (l1,l2): None, ... }, ...}
"""
for filename, arcs in iitems(arc_data):
self.arcs.setdefault(filename, {}).update(arcs) | [
"def",
"add_arc_data",
"(",
"self",
",",
"arc_data",
")",
":",
"for",
"filename",
",",
"arcs",
"in",
"iitems",
"(",
"arc_data",
")",
":",
"self",
".",
"arcs",
".",
"setdefault",
"(",
"filename",
",",
"{",
"}",
")",
".",
"update",
"(",
"arcs",
")"
] | Add measured arc data.
`arc_data` is { filename: { (l1,l2): None, ... }, ...} | [
"Add",
"measured",
"arc",
"data",
"."
] | python | test |
PMBio/limix-backup | limix/varDecomp/varianceDecomposition.py | https://github.com/PMBio/limix-backup/blob/1e201fdb5c694d0d5506f207f3de65d8ef66146c/limix/varDecomp/varianceDecomposition.py#L900-L915 | def _getScalesRand(self):
"""
Internal function for parameter initialization
Return a vector of random scales
"""
if self.P>1:
scales = []
for term_i in range(self.n_randEffs):
_scales = sp.randn(self.diag[term_i].shape[0])
if self.jitter[term_i]>0:
_scales = sp.concatenate((_scales,sp.array([sp.sqrt(self.jitter[term_i])])))
scales.append(_scales)
scales = sp.concatenate(scales)
else:
scales=sp.randn(self.vd.getNumberScales())
return scales | [
"def",
"_getScalesRand",
"(",
"self",
")",
":",
"if",
"self",
".",
"P",
">",
"1",
":",
"scales",
"=",
"[",
"]",
"for",
"term_i",
"in",
"range",
"(",
"self",
".",
"n_randEffs",
")",
":",
"_scales",
"=",
"sp",
".",
"randn",
"(",
"self",
".",
"diag",
"[",
"term_i",
"]",
".",
"shape",
"[",
"0",
"]",
")",
"if",
"self",
".",
"jitter",
"[",
"term_i",
"]",
">",
"0",
":",
"_scales",
"=",
"sp",
".",
"concatenate",
"(",
"(",
"_scales",
",",
"sp",
".",
"array",
"(",
"[",
"sp",
".",
"sqrt",
"(",
"self",
".",
"jitter",
"[",
"term_i",
"]",
")",
"]",
")",
")",
")",
"scales",
".",
"append",
"(",
"_scales",
")",
"scales",
"=",
"sp",
".",
"concatenate",
"(",
"scales",
")",
"else",
":",
"scales",
"=",
"sp",
".",
"randn",
"(",
"self",
".",
"vd",
".",
"getNumberScales",
"(",
")",
")",
"return",
"scales"
] | Internal function for parameter initialization
Return a vector of random scales | [
"Internal",
"function",
"for",
"parameter",
"initialization",
"Return",
"a",
"vector",
"of",
"random",
"scales"
] | python | train |
mathiasertl/django-ca | ca/django_ca/models.py | https://github.com/mathiasertl/django-ca/blob/976d7ea05276320f20daed2a6d59c8f5660fe976/ca/django_ca/models.py#L306-L308 | def subject(self):
"""The certificates subject as :py:class:`~django_ca.subject.Subject`."""
return Subject([(s.oid, s.value) for s in self.x509.subject]) | [
"def",
"subject",
"(",
"self",
")",
":",
"return",
"Subject",
"(",
"[",
"(",
"s",
".",
"oid",
",",
"s",
".",
"value",
")",
"for",
"s",
"in",
"self",
".",
"x509",
".",
"subject",
"]",
")"
] | The certificates subject as :py:class:`~django_ca.subject.Subject`. | [
"The",
"certificates",
"subject",
"as",
":",
"py",
":",
"class",
":",
"~django_ca",
".",
"subject",
".",
"Subject",
"."
] | python | train |
ThreatConnect-Inc/tcex | tcex/tcex_resources.py | https://github.com/ThreatConnect-Inc/tcex/blob/dd4d7a1ef723af1561687120191886b9a2fd4b47/tcex/tcex_resources.py#L524-L547 | def copy(self):
"""Return a "clean" copy of this instance.
Return:
(instance): A clean copy of this instance.
"""
resource = copy.copy(self)
# workaround for bytes/str issue in Py3 with copy of instance
# TypeError: a bytes-like object is required, not 'str' (ssl.py)
resource._request = self.tcex.request(self.tcex.session)
# reset properties of resource
resource.copy_reset()
# Preserve settings
resource.http_method = self.http_method
if self._request.payload.get('owner') is not None:
resource.owner = self._request.payload.get('owner')
# future bcs - these should not need to be reset. correct?
# resource._request_entity = self._api_entity
# resource._request_uri = self._api_uri
return resource | [
"def",
"copy",
"(",
"self",
")",
":",
"resource",
"=",
"copy",
".",
"copy",
"(",
"self",
")",
"# workaround for bytes/str issue in Py3 with copy of instance",
"# TypeError: a bytes-like object is required, not 'str' (ssl.py)",
"resource",
".",
"_request",
"=",
"self",
".",
"tcex",
".",
"request",
"(",
"self",
".",
"tcex",
".",
"session",
")",
"# reset properties of resource",
"resource",
".",
"copy_reset",
"(",
")",
"# Preserve settings",
"resource",
".",
"http_method",
"=",
"self",
".",
"http_method",
"if",
"self",
".",
"_request",
".",
"payload",
".",
"get",
"(",
"'owner'",
")",
"is",
"not",
"None",
":",
"resource",
".",
"owner",
"=",
"self",
".",
"_request",
".",
"payload",
".",
"get",
"(",
"'owner'",
")",
"# future bcs - these should not need to be reset. correct?",
"# resource._request_entity = self._api_entity",
"# resource._request_uri = self._api_uri",
"return",
"resource"
] | Return a "clean" copy of this instance.
Return:
(instance): A clean copy of this instance. | [
"Return",
"a",
"clean",
"copy",
"of",
"this",
"instance",
"."
] | python | train |
loganasherjones/yapconf | yapconf/spec.py | https://github.com/loganasherjones/yapconf/blob/d2970e6e7e3334615d4d978d8b0ca33006d79d16/yapconf/spec.py#L329-L357 | def spawn_watcher(self, label, target=None, eternal=False):
"""Spawns a config watcher in a separate daemon thread.
If a particular config value changes, and the item has a
``watch_target`` defined, then that method will be called.
If a ``target`` is passed in, then it will call the ``target``
anytime the config changes.
Args:
label (str): Should match a label added through ``add_source``
target (func): Should be a function that takes two arguments,
the old configuration and the new configuration.
eternal (bool): Determines if watcher threads should be restarted
if they die.
Returns:
The thread that was spawned.
"""
if label not in self._sources:
raise YapconfSourceError(
'Cannot watch %s no source named %s' % (label, label)
)
current_config = self._sources[label].get_data()
handler = ConfigChangeHandler(current_config, self, target)
return self._sources[label].watch(handler, eternal) | [
"def",
"spawn_watcher",
"(",
"self",
",",
"label",
",",
"target",
"=",
"None",
",",
"eternal",
"=",
"False",
")",
":",
"if",
"label",
"not",
"in",
"self",
".",
"_sources",
":",
"raise",
"YapconfSourceError",
"(",
"'Cannot watch %s no source named %s'",
"%",
"(",
"label",
",",
"label",
")",
")",
"current_config",
"=",
"self",
".",
"_sources",
"[",
"label",
"]",
".",
"get_data",
"(",
")",
"handler",
"=",
"ConfigChangeHandler",
"(",
"current_config",
",",
"self",
",",
"target",
")",
"return",
"self",
".",
"_sources",
"[",
"label",
"]",
".",
"watch",
"(",
"handler",
",",
"eternal",
")"
] | Spawns a config watcher in a separate daemon thread.
If a particular config value changes, and the item has a
``watch_target`` defined, then that method will be called.
If a ``target`` is passed in, then it will call the ``target``
anytime the config changes.
Args:
label (str): Should match a label added through ``add_source``
target (func): Should be a function that takes two arguments,
the old configuration and the new configuration.
eternal (bool): Determines if watcher threads should be restarted
if they die.
Returns:
The thread that was spawned. | [
"Spawns",
"a",
"config",
"watcher",
"in",
"a",
"separate",
"daemon",
"thread",
"."
] | python | train |
fhcrc/taxtastic | taxtastic/refpkg.py | https://github.com/fhcrc/taxtastic/blob/4e874b7f2cc146178828bfba386314f8c342722b/taxtastic/refpkg.py#L227-L231 | def open(self, name, *mode):
"""
Return an open file object for a file in the reference package.
"""
return self.file_factory(self.file_path(name), *mode) | [
"def",
"open",
"(",
"self",
",",
"name",
",",
"*",
"mode",
")",
":",
"return",
"self",
".",
"file_factory",
"(",
"self",
".",
"file_path",
"(",
"name",
")",
",",
"*",
"mode",
")"
] | Return an open file object for a file in the reference package. | [
"Return",
"an",
"open",
"file",
"object",
"for",
"a",
"file",
"in",
"the",
"reference",
"package",
"."
] | python | train |
geophysics-ubonn/crtomo_tools | src/sens_center_plot.py | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/src/sens_center_plot.py#L293-L328 | def compute_sens(self, elem_file, elec_file, configs):
"""
Compute the sensitivities for the given input data.
A CRMod instance is called to create the sensitivity files.
"""
CRMod_config = CRMod.config()
# activate 2D mode and set sink nr
if self.options.sink is not None:
print('2D mode with sink {0}'.format(self.options.sink))
CRMod_config['2D'] = 0
CRMod_config['fictitious_sink'] = 'T'
CRMod_config['sink_node'] = self.options.sink
CRMod_config['write_sens'] = 'T'
CRMod_instance = CRMod.CRMod(CRMod_config)
CRMod_instance.elemfile = elem_file
CRMod_instance.elecfile = elec_file
CRMod_instance.configdata = configs
resistivity = 100
# get number of elements
fid = open(elem_file, 'r')
fid.readline()
elements = int(fid.readline().strip().split()[1])
fid.close()
# create rho.dat file
rhodata = '{0}\n'.format(elements)
for i in range(0, elements):
rhodata += '{0} 0\n'.format(resistivity)
CRMod_instance.rhodata = rhodata
CRMod_instance.run_in_tempdir()
volt_file = CRMod_instance.volt_file
sens_files = CRMod_instance.sens_files
return sens_files, volt_file, CRMod_instance.temp_dir | [
"def",
"compute_sens",
"(",
"self",
",",
"elem_file",
",",
"elec_file",
",",
"configs",
")",
":",
"CRMod_config",
"=",
"CRMod",
".",
"config",
"(",
")",
"# activate 2D mode and set sink nr",
"if",
"self",
".",
"options",
".",
"sink",
"is",
"not",
"None",
":",
"print",
"(",
"'2D mode with sink {0}'",
".",
"format",
"(",
"self",
".",
"options",
".",
"sink",
")",
")",
"CRMod_config",
"[",
"'2D'",
"]",
"=",
"0",
"CRMod_config",
"[",
"'fictitious_sink'",
"]",
"=",
"'T'",
"CRMod_config",
"[",
"'sink_node'",
"]",
"=",
"self",
".",
"options",
".",
"sink",
"CRMod_config",
"[",
"'write_sens'",
"]",
"=",
"'T'",
"CRMod_instance",
"=",
"CRMod",
".",
"CRMod",
"(",
"CRMod_config",
")",
"CRMod_instance",
".",
"elemfile",
"=",
"elem_file",
"CRMod_instance",
".",
"elecfile",
"=",
"elec_file",
"CRMod_instance",
".",
"configdata",
"=",
"configs",
"resistivity",
"=",
"100",
"# get number of elements",
"fid",
"=",
"open",
"(",
"elem_file",
",",
"'r'",
")",
"fid",
".",
"readline",
"(",
")",
"elements",
"=",
"int",
"(",
"fid",
".",
"readline",
"(",
")",
".",
"strip",
"(",
")",
".",
"split",
"(",
")",
"[",
"1",
"]",
")",
"fid",
".",
"close",
"(",
")",
"# create rho.dat file",
"rhodata",
"=",
"'{0}\\n'",
".",
"format",
"(",
"elements",
")",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"elements",
")",
":",
"rhodata",
"+=",
"'{0} 0\\n'",
".",
"format",
"(",
"resistivity",
")",
"CRMod_instance",
".",
"rhodata",
"=",
"rhodata",
"CRMod_instance",
".",
"run_in_tempdir",
"(",
")",
"volt_file",
"=",
"CRMod_instance",
".",
"volt_file",
"sens_files",
"=",
"CRMod_instance",
".",
"sens_files",
"return",
"sens_files",
",",
"volt_file",
",",
"CRMod_instance",
".",
"temp_dir"
] | Compute the sensitivities for the given input data.
A CRMod instance is called to create the sensitivity files. | [
"Compute",
"the",
"sensitivities",
"for",
"the",
"given",
"input",
"data",
".",
"A",
"CRMod",
"instance",
"is",
"called",
"to",
"create",
"the",
"sensitivity",
"files",
"."
] | python | train |
Nukesor/pueue | pueue/daemon/process_handler.py | https://github.com/Nukesor/pueue/blob/f1d276360454d4dd2738658a13df1e20caa4b926/pueue/daemon/process_handler.py#L226-L238 | def start_process(self, key):
"""Start a specific processes."""
if key in self.processes and key in self.paused:
os.killpg(os.getpgid(self.processes[key].pid), signal.SIGCONT)
self.queue[key]['status'] = 'running'
self.paused.remove(key)
return True
elif key not in self.processes:
if self.queue[key]['status'] in ['queued', 'stashed']:
self.spawn_new(key)
return True
return False | [
"def",
"start_process",
"(",
"self",
",",
"key",
")",
":",
"if",
"key",
"in",
"self",
".",
"processes",
"and",
"key",
"in",
"self",
".",
"paused",
":",
"os",
".",
"killpg",
"(",
"os",
".",
"getpgid",
"(",
"self",
".",
"processes",
"[",
"key",
"]",
".",
"pid",
")",
",",
"signal",
".",
"SIGCONT",
")",
"self",
".",
"queue",
"[",
"key",
"]",
"[",
"'status'",
"]",
"=",
"'running'",
"self",
".",
"paused",
".",
"remove",
"(",
"key",
")",
"return",
"True",
"elif",
"key",
"not",
"in",
"self",
".",
"processes",
":",
"if",
"self",
".",
"queue",
"[",
"key",
"]",
"[",
"'status'",
"]",
"in",
"[",
"'queued'",
",",
"'stashed'",
"]",
":",
"self",
".",
"spawn_new",
"(",
"key",
")",
"return",
"True",
"return",
"False"
] | Start a specific processes. | [
"Start",
"a",
"specific",
"processes",
"."
] | python | train |
aio-libs/aiodocker | aiodocker/nodes.py | https://github.com/aio-libs/aiodocker/blob/88d0285ddba8e606ff684278e0a831347209189c/aiodocker/nodes.py#L43-L69 | async def update(
self, *, node_id: str, version: int, spec: Mapping[str, Any]
) -> Mapping[str, Any]:
"""
Update the spec of a node.
Args:
node_id: The ID or name of the node
version: version number of the node being updated
spec: fields to be updated
"""
params = {"version": version}
if "Role" in spec:
assert spec["Role"] in {"worker", "manager"}
if "Availability" in spec:
assert spec["Availability"] in {"active", "pause", "drain"}
response = await self.docker._query_json(
"nodes/{node_id}/update".format(node_id=node_id),
method="POST",
params=params,
data=spec,
)
return response | [
"async",
"def",
"update",
"(",
"self",
",",
"*",
",",
"node_id",
":",
"str",
",",
"version",
":",
"int",
",",
"spec",
":",
"Mapping",
"[",
"str",
",",
"Any",
"]",
")",
"->",
"Mapping",
"[",
"str",
",",
"Any",
"]",
":",
"params",
"=",
"{",
"\"version\"",
":",
"version",
"}",
"if",
"\"Role\"",
"in",
"spec",
":",
"assert",
"spec",
"[",
"\"Role\"",
"]",
"in",
"{",
"\"worker\"",
",",
"\"manager\"",
"}",
"if",
"\"Availability\"",
"in",
"spec",
":",
"assert",
"spec",
"[",
"\"Availability\"",
"]",
"in",
"{",
"\"active\"",
",",
"\"pause\"",
",",
"\"drain\"",
"}",
"response",
"=",
"await",
"self",
".",
"docker",
".",
"_query_json",
"(",
"\"nodes/{node_id}/update\"",
".",
"format",
"(",
"node_id",
"=",
"node_id",
")",
",",
"method",
"=",
"\"POST\"",
",",
"params",
"=",
"params",
",",
"data",
"=",
"spec",
",",
")",
"return",
"response"
] | Update the spec of a node.
Args:
node_id: The ID or name of the node
version: version number of the node being updated
spec: fields to be updated | [
"Update",
"the",
"spec",
"of",
"a",
"node",
"."
] | python | train |
bids-standard/pybids | bids/layout/layout.py | https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L31-L74 | def parse_file_entities(filename, entities=None, config=None,
include_unmatched=False):
""" Parse the passed filename for entity/value pairs.
Args:
filename (str): The filename to parse for entity values
entities (list): An optional list of Entity instances to use in
extraction. If passed, the config argument is ignored.
config (str, Config, list): One or more Config objects or names of
configurations to use in matching. Each element must be a Config
object, or a valid Config name (e.g., 'bids' or 'derivatives').
If None, all available configs are used.
include_unmatched (bool): If True, unmatched entities are included
in the returned dict, with values set to None. If False
(default), unmatched entities are ignored.
Returns: A dict, where keys are Entity names and values are the
values extracted from the filename.
"""
# Load Configs if needed
if entities is None:
if config is None:
config = ['bids', 'derivatives']
config = [Config.load(c) if not isinstance(c, Config) else c
for c in listify(config)]
# Consolidate entities from all Configs into a single dict
entities = {}
for c in config:
entities.update(c.entities)
entities = entities.values()
# Extract matches
bf = BIDSFile(filename)
ent_vals = {}
for ent in entities:
match = ent.match_file(bf)
if match is not None or include_unmatched:
ent_vals[ent.name] = match
return ent_vals | [
"def",
"parse_file_entities",
"(",
"filename",
",",
"entities",
"=",
"None",
",",
"config",
"=",
"None",
",",
"include_unmatched",
"=",
"False",
")",
":",
"# Load Configs if needed",
"if",
"entities",
"is",
"None",
":",
"if",
"config",
"is",
"None",
":",
"config",
"=",
"[",
"'bids'",
",",
"'derivatives'",
"]",
"config",
"=",
"[",
"Config",
".",
"load",
"(",
"c",
")",
"if",
"not",
"isinstance",
"(",
"c",
",",
"Config",
")",
"else",
"c",
"for",
"c",
"in",
"listify",
"(",
"config",
")",
"]",
"# Consolidate entities from all Configs into a single dict",
"entities",
"=",
"{",
"}",
"for",
"c",
"in",
"config",
":",
"entities",
".",
"update",
"(",
"c",
".",
"entities",
")",
"entities",
"=",
"entities",
".",
"values",
"(",
")",
"# Extract matches",
"bf",
"=",
"BIDSFile",
"(",
"filename",
")",
"ent_vals",
"=",
"{",
"}",
"for",
"ent",
"in",
"entities",
":",
"match",
"=",
"ent",
".",
"match_file",
"(",
"bf",
")",
"if",
"match",
"is",
"not",
"None",
"or",
"include_unmatched",
":",
"ent_vals",
"[",
"ent",
".",
"name",
"]",
"=",
"match",
"return",
"ent_vals"
] | Parse the passed filename for entity/value pairs.
Args:
filename (str): The filename to parse for entity values
entities (list): An optional list of Entity instances to use in
extraction. If passed, the config argument is ignored.
config (str, Config, list): One or more Config objects or names of
configurations to use in matching. Each element must be a Config
object, or a valid Config name (e.g., 'bids' or 'derivatives').
If None, all available configs are used.
include_unmatched (bool): If True, unmatched entities are included
in the returned dict, with values set to None. If False
(default), unmatched entities are ignored.
Returns: A dict, where keys are Entity names and values are the
values extracted from the filename. | [
"Parse",
"the",
"passed",
"filename",
"for",
"entity",
"/",
"value",
"pairs",
"."
] | python | train |
gamechanger/mongothon | mongothon/model.py | https://github.com/gamechanger/mongothon/blob/5305bdae8e38d09bfe7881f1edc99ac0a2e6b96b/mongothon/model.py#L267-L270 | def static_method(cls, f):
"""Decorator which dynamically binds static methods to the model for later use."""
setattr(cls, f.__name__, staticmethod(f))
return f | [
"def",
"static_method",
"(",
"cls",
",",
"f",
")",
":",
"setattr",
"(",
"cls",
",",
"f",
".",
"__name__",
",",
"staticmethod",
"(",
"f",
")",
")",
"return",
"f"
] | Decorator which dynamically binds static methods to the model for later use. | [
"Decorator",
"which",
"dynamically",
"binds",
"static",
"methods",
"to",
"the",
"model",
"for",
"later",
"use",
"."
] | python | train |
rikrd/inspire | inspirespeech/__init__.py | https://github.com/rikrd/inspire/blob/e281c0266a9a9633f34ab70f9c3ad58036c19b59/inspirespeech/__init__.py#L325-L371 | def what_task(self, token_id, presented_pronunciation, index, phonemes, phonemes_probability,
warn=True, default=True):
"""Provide the prediction of the what task.
This function is used to predict the probability of a given phoneme being reported at a given index
for a given token.
:param token_id: The token for which the prediction is provided
:param index: The index of the token for which the prediction is provided
:param phonemes: The phoneme or phoneme sequence for which the prediction is being made
(as a space separated string)
:param phonemes_probability: The probability of the phoneme or phoneme sequence
:param warn: Set to False in order to avoid warnings about 0 or 1 probabilities
:param default: Set to False in order to avoid generating the default probabilities
"""
if phonemes_probability is not None and not 0. < phonemes_probability < 1. and warn:
logging.warning('Setting a probability of [{}] to phonemes [{}] for token [{}].\n '
'Using probabilities of 0.0 or 1.0 '
'may lead to likelihoods of -Infinity'.format(phonemes_probability,
phonemes,
token_id))
default_preds = self._what_default(presented_pronunciation) if default else {}
self['tokens'].setdefault(token_id, {}) \
.setdefault('what', default_preds)
if index is not None:
self['tokens'][token_id]['what'].setdefault(str(index), {})
if phonemes is not None:
if phonemes_probability is not None and index is not None:
self['tokens'][token_id]['what'][str(index)][phonemes] = phonemes_probability
else:
if index is not None:
if phonemes in default_preds[str(index)]:
self['tokens'][token_id]['what'][str(index)][phonemes] = default_preds[str(index)][phonemes]
else:
self['tokens'][token_id]['what'][str(index)].pop(phonemes)
else:
if str(index) in default_preds:
self['tokens'][token_id]['what'][str(index)] = default_preds[str(index)]
else:
self['tokens'][token_id]['what'].pop(str(index)) | [
"def",
"what_task",
"(",
"self",
",",
"token_id",
",",
"presented_pronunciation",
",",
"index",
",",
"phonemes",
",",
"phonemes_probability",
",",
"warn",
"=",
"True",
",",
"default",
"=",
"True",
")",
":",
"if",
"phonemes_probability",
"is",
"not",
"None",
"and",
"not",
"0.",
"<",
"phonemes_probability",
"<",
"1.",
"and",
"warn",
":",
"logging",
".",
"warning",
"(",
"'Setting a probability of [{}] to phonemes [{}] for token [{}].\\n '",
"'Using probabilities of 0.0 or 1.0 '",
"'may lead to likelihoods of -Infinity'",
".",
"format",
"(",
"phonemes_probability",
",",
"phonemes",
",",
"token_id",
")",
")",
"default_preds",
"=",
"self",
".",
"_what_default",
"(",
"presented_pronunciation",
")",
"if",
"default",
"else",
"{",
"}",
"self",
"[",
"'tokens'",
"]",
".",
"setdefault",
"(",
"token_id",
",",
"{",
"}",
")",
".",
"setdefault",
"(",
"'what'",
",",
"default_preds",
")",
"if",
"index",
"is",
"not",
"None",
":",
"self",
"[",
"'tokens'",
"]",
"[",
"token_id",
"]",
"[",
"'what'",
"]",
".",
"setdefault",
"(",
"str",
"(",
"index",
")",
",",
"{",
"}",
")",
"if",
"phonemes",
"is",
"not",
"None",
":",
"if",
"phonemes_probability",
"is",
"not",
"None",
"and",
"index",
"is",
"not",
"None",
":",
"self",
"[",
"'tokens'",
"]",
"[",
"token_id",
"]",
"[",
"'what'",
"]",
"[",
"str",
"(",
"index",
")",
"]",
"[",
"phonemes",
"]",
"=",
"phonemes_probability",
"else",
":",
"if",
"index",
"is",
"not",
"None",
":",
"if",
"phonemes",
"in",
"default_preds",
"[",
"str",
"(",
"index",
")",
"]",
":",
"self",
"[",
"'tokens'",
"]",
"[",
"token_id",
"]",
"[",
"'what'",
"]",
"[",
"str",
"(",
"index",
")",
"]",
"[",
"phonemes",
"]",
"=",
"default_preds",
"[",
"str",
"(",
"index",
")",
"]",
"[",
"phonemes",
"]",
"else",
":",
"self",
"[",
"'tokens'",
"]",
"[",
"token_id",
"]",
"[",
"'what'",
"]",
"[",
"str",
"(",
"index",
")",
"]",
".",
"pop",
"(",
"phonemes",
")",
"else",
":",
"if",
"str",
"(",
"index",
")",
"in",
"default_preds",
":",
"self",
"[",
"'tokens'",
"]",
"[",
"token_id",
"]",
"[",
"'what'",
"]",
"[",
"str",
"(",
"index",
")",
"]",
"=",
"default_preds",
"[",
"str",
"(",
"index",
")",
"]",
"else",
":",
"self",
"[",
"'tokens'",
"]",
"[",
"token_id",
"]",
"[",
"'what'",
"]",
".",
"pop",
"(",
"str",
"(",
"index",
")",
")"
] | Provide the prediction of the what task.
This function is used to predict the probability of a given phoneme being reported at a given index
for a given token.
:param token_id: The token for which the prediction is provided
:param index: The index of the token for which the prediction is provided
:param phonemes: The phoneme or phoneme sequence for which the prediction is being made
(as a space separated string)
:param phonemes_probability: The probability of the phoneme or phoneme sequence
:param warn: Set to False in order to avoid warnings about 0 or 1 probabilities
:param default: Set to False in order to avoid generating the default probabilities | [
"Provide",
"the",
"prediction",
"of",
"the",
"what",
"task",
"."
] | python | train |
trailofbits/manticore | manticore/native/cpu/x86.py | https://github.com/trailofbits/manticore/blob/54c5a15b1119c523ae54c09972413e8b97f11629/manticore/native/cpu/x86.py#L4632-L4650 | def PXOR(cpu, dest, src):
"""
Logical exclusive OR.
Performs a bitwise logical exclusive-OR (XOR) operation on the quadword
source (second) and destination (first) operands and stores the result
in the destination operand location. The source operand can be an MMX(TM)
technology register or a quadword memory location; the destination operand
must be an MMX register. Each bit of the result is 1 if the corresponding
bits of the two operands are different; each bit is 0 if the corresponding
bits of the operands are the same::
DEST = DEST XOR SRC;
:param cpu: current CPU.
:param dest: destination operand.
:param src: quadword source operand.
"""
res = dest.write(dest.read() ^ src.read()) | [
"def",
"PXOR",
"(",
"cpu",
",",
"dest",
",",
"src",
")",
":",
"res",
"=",
"dest",
".",
"write",
"(",
"dest",
".",
"read",
"(",
")",
"^",
"src",
".",
"read",
"(",
")",
")"
] | Logical exclusive OR.
Performs a bitwise logical exclusive-OR (XOR) operation on the quadword
source (second) and destination (first) operands and stores the result
in the destination operand location. The source operand can be an MMX(TM)
technology register or a quadword memory location; the destination operand
must be an MMX register. Each bit of the result is 1 if the corresponding
bits of the two operands are different; each bit is 0 if the corresponding
bits of the operands are the same::
DEST = DEST XOR SRC;
:param cpu: current CPU.
:param dest: destination operand.
:param src: quadword source operand. | [
"Logical",
"exclusive",
"OR",
"."
] | python | valid |
wal-e/wal-e | wal_e/worker/upload_pool.py | https://github.com/wal-e/wal-e/blob/027263860e72a403bc0e1497bb3e67523138e7a2/wal_e/worker/upload_pool.py#L56-L69 | def _wait(self):
"""Block until an upload finishes
Raise an exception if that tar volume failed with an error.
"""
val = self.wait_change.get()
if isinstance(val, Exception):
# Don't other uncharging, because execution is going to stop
raise val
else:
# Uncharge for resources.
self.member_burden -= len(val)
self.concurrency_burden -= 1 | [
"def",
"_wait",
"(",
"self",
")",
":",
"val",
"=",
"self",
".",
"wait_change",
".",
"get",
"(",
")",
"if",
"isinstance",
"(",
"val",
",",
"Exception",
")",
":",
"# Don't other uncharging, because execution is going to stop",
"raise",
"val",
"else",
":",
"# Uncharge for resources.",
"self",
".",
"member_burden",
"-=",
"len",
"(",
"val",
")",
"self",
".",
"concurrency_burden",
"-=",
"1"
] | Block until an upload finishes
Raise an exception if that tar volume failed with an error. | [
"Block",
"until",
"an",
"upload",
"finishes"
] | python | train |
lemieuxl/pyGenClean | pyGenClean/DupSNPs/duplicated_snps.py | https://github.com/lemieuxl/pyGenClean/blob/6173a48ccc0cf3a3bd711b1f2a1fa16248b8bf55/pyGenClean/DupSNPs/duplicated_snps.py#L727-L930 | def printProblems(completion, concordance, tped, snps, frequencies, prefix,
diffFreq):
"""Print the statistics.
:param completion: the completion of each duplicated markers.
:param concordance: the pairwise concordance between duplicated markers.
:param tped: a representation of the ``tped`` of duplicated markers.
:param snps: the positions of the duplicated markers in the ``tped``
:param frequencies: the frequency of each of the duplicated markers.
:param prefix: the prefix of the output files.
:param diffFreq: the frequency difference threshold.
:type completion: numpy.array
:type concordance: dict
:type tped: numpy.array
:type snps: dict
:type frequencies: dict
:type prefix: str
:type diffFreq: float
:returns: a :py:class:`set` containing duplicated markers to complete.
Creates a summary file (``prefix.summary``) containing information about
duplicated markers: chromosome, position, name, alleles, status, completion
percentage, completion number and mean concordance.
The frequency and the minor allele are used to be certain that two
duplicated markers are exactly the same marker (and not a tri-allelic one,
for example).
For each duplicated markers:
1. Constructs the set of available alleles for the first marker.
2. Constructs the set of available alleles for the second marker.
3. If the two sets are different, but the number of alleles is the same, we
try to flip one of the marker. If the two sets are the same, but the
number of alleles is 1, we set the status to ``homo_flip``. If the
markers are heterozygous, we set the status to ``flip``.
4. If there is a difference in the number of alleles (one is homozygous,
the other, heterozygous), and that there is on allele in common, we set
the status to ``homo_hetero``. If there are no allele in common, we try
to flip one. If the new sets have one allele in common, we set the
status to ``homo_hetero_flip``.
5. If the sets of available alleles are the same (without flip), we check
the frequency and the minor alleles. If the minor allele is different,
we set the status to ``diff_minor_allele``. If the difference in
frequencies is higher than a threshold, we set the status to
``diff_frequency``.
6. If all of the above fail, we set the status to ``problem``.
Problems are written in the ``prefix.problems`` file, and contains the
following columns: chromosome, position, name and status. This file
contains all the markers with a status, as explained above.
"""
completionPercentage = np.true_divide(completion[0], completion[1])
outSummary = None
try:
outSummary = open(prefix + ".summary", "w")
except IOError:
msg = "%s: can't write file" % prefix + ".summary"
raise ProgramError
# Prints the header of the summary file
print >>outSummary, "\t".join(["chr", "pos", "name", "alleles", "status",
"% completion", "completion",
"mean concordance"])
# The data structure containing the problems
problems = {}
for snpID, indexes in snps.iteritems():
for i, index in enumerate(indexes):
# The SNP information (chromosome and position)
toPrint = list(snpID)
# The name of the SNP
snpName = tped[index, 1]
toPrint.append(snpName)
# The frequency of the SNP
snpFreq, mafAlleles = frequencies[snpName]
# A list of the other SNP name with problems
otherSnpNameWithProblem = set()
# The alleles
alleles = set()
otherAlleles = set()
status = []
for genotype in np.unique(tped[index, 4:]):
alleles |= set(genotype.split(" "))
if "0" in alleles:
alleles.remove("0")
for j in xrange(i+1, len(indexes)):
otherIndex = indexes[j]
otherSnpName = tped[otherIndex, 1]
# The frequency of the other SNP
otherSnpFreq, otherMafAlleles = frequencies[otherSnpName]
# Checking the alleles
for genotype in np.unique(tped[otherIndex, 4:]):
otherAlleles |= set(genotype.split(" "))
if "0" in otherAlleles:
otherAlleles.remove("0")
if alleles != otherAlleles:
if len(alleles) == len(otherAlleles):
# Same number of alleles
# Try the flipped ones
otherAlleles = flipGenotype(otherAlleles)
if alleles == otherAlleles:
if len(alleles) == 1:
status.append("homo_flip")
otherSnpNameWithProblem.add(otherSnpName)
else:
status.append("flip")
otherSnpNameWithProblem.add(otherSnpName)
else:
status.append("problem")
otherSnpNameWithProblem.add(otherSnpName)
else:
# Different number of alleles
if len(alleles & otherAlleles) == 1:
status.append("homo_hetero")
otherSnpNameWithProblem.add(otherSnpName)
else:
# Try the flipped one
otherAlleles = flipGenotype(otherAlleles)
if len(alleles & otherAlleles) == 1:
status.append("homo_hetero_flip")
otherSnpNameWithProblem.add(otherSnpName)
else:
status.append("problem")
otherSnpNameWithProblem.add(otherSnpName)
else:
# The alleles are the same, so we check the frequency
if mafAlleles[0] != otherMafAlleles[0]:
# They don't have the same minor allele
status.append("diff_minor_allele")
otherSnpNameWithProblem.add(otherSnpName)
elif math.fabs(snpFreq - otherSnpFreq) > diffFreq:
# They don't have same frequency
status.append("diff_frequency")
otherSnpNameWithProblem.add(otherSnpName)
alleles = list(alleles)
alleles.sort()
if len(alleles) == 1:
alleles.append(alleles[0])
toPrint.append(" ".join(alleles))
toPrint.append(";".join(status))
# The completion
toPrint.append("%.8f" % completionPercentage[index])
toPrint.append("%d/%d" % (completion[0][index],
completion[1][index]))
# The concordance
indexToKeep = list(set(range(len(indexes))) - set([i]))
currConcordance = np.true_divide(
concordance[snpID][0][i, indexToKeep],
concordance[snpID][1][i, indexToKeep],
)
currConcordance = np.mean(currConcordance)
toPrint.append("%.8f" % currConcordance)
print >>outSummary, "\t".join(toPrint)
# Now updating the problems data structure
if len(status) != len(otherSnpNameWithProblem):
msg = "There is a problem with the problematic SNPs"
raise ProgramError(msg)
if len(status) > 0:
if snpID not in problems:
tmp = {"snpNames": {snpName}, "problems": set()}
problems[snpID] = tmp
# We have problems
problems[snpID]["snpNames"] |= otherSnpNameWithProblem
problems[snpID]["problems"] |= set(status)
outSummary.close()
outProblems = None
try:
outProblems = open(prefix + ".problems", "w")
except IOError:
msg = "%s: can't write file" % prefix + ".problems"
raise ProgramError
# Printing the header of the problem file...
print >>outProblems, "\t".join(["chr", "pos", "name", "status"])
for snpID in problems.iterkeys():
toPrint = list(snpID)
toPrint.append(";".join(list(problems[snpID]["snpNames"])))
toPrint.append(";".join(list(problems[snpID]["problems"])))
print >>outProblems, "\t".join(toPrint)
outProblems.close()
# Returning the SNPs to complete
return set(snps.keys()) - set(problems.keys()) | [
"def",
"printProblems",
"(",
"completion",
",",
"concordance",
",",
"tped",
",",
"snps",
",",
"frequencies",
",",
"prefix",
",",
"diffFreq",
")",
":",
"completionPercentage",
"=",
"np",
".",
"true_divide",
"(",
"completion",
"[",
"0",
"]",
",",
"completion",
"[",
"1",
"]",
")",
"outSummary",
"=",
"None",
"try",
":",
"outSummary",
"=",
"open",
"(",
"prefix",
"+",
"\".summary\"",
",",
"\"w\"",
")",
"except",
"IOError",
":",
"msg",
"=",
"\"%s: can't write file\"",
"%",
"prefix",
"+",
"\".summary\"",
"raise",
"ProgramError",
"# Prints the header of the summary file",
"print",
">>",
"outSummary",
",",
"\"\\t\"",
".",
"join",
"(",
"[",
"\"chr\"",
",",
"\"pos\"",
",",
"\"name\"",
",",
"\"alleles\"",
",",
"\"status\"",
",",
"\"% completion\"",
",",
"\"completion\"",
",",
"\"mean concordance\"",
"]",
")",
"# The data structure containing the problems",
"problems",
"=",
"{",
"}",
"for",
"snpID",
",",
"indexes",
"in",
"snps",
".",
"iteritems",
"(",
")",
":",
"for",
"i",
",",
"index",
"in",
"enumerate",
"(",
"indexes",
")",
":",
"# The SNP information (chromosome and position)",
"toPrint",
"=",
"list",
"(",
"snpID",
")",
"# The name of the SNP",
"snpName",
"=",
"tped",
"[",
"index",
",",
"1",
"]",
"toPrint",
".",
"append",
"(",
"snpName",
")",
"# The frequency of the SNP",
"snpFreq",
",",
"mafAlleles",
"=",
"frequencies",
"[",
"snpName",
"]",
"# A list of the other SNP name with problems",
"otherSnpNameWithProblem",
"=",
"set",
"(",
")",
"# The alleles",
"alleles",
"=",
"set",
"(",
")",
"otherAlleles",
"=",
"set",
"(",
")",
"status",
"=",
"[",
"]",
"for",
"genotype",
"in",
"np",
".",
"unique",
"(",
"tped",
"[",
"index",
",",
"4",
":",
"]",
")",
":",
"alleles",
"|=",
"set",
"(",
"genotype",
".",
"split",
"(",
"\" \"",
")",
")",
"if",
"\"0\"",
"in",
"alleles",
":",
"alleles",
".",
"remove",
"(",
"\"0\"",
")",
"for",
"j",
"in",
"xrange",
"(",
"i",
"+",
"1",
",",
"len",
"(",
"indexes",
")",
")",
":",
"otherIndex",
"=",
"indexes",
"[",
"j",
"]",
"otherSnpName",
"=",
"tped",
"[",
"otherIndex",
",",
"1",
"]",
"# The frequency of the other SNP",
"otherSnpFreq",
",",
"otherMafAlleles",
"=",
"frequencies",
"[",
"otherSnpName",
"]",
"# Checking the alleles",
"for",
"genotype",
"in",
"np",
".",
"unique",
"(",
"tped",
"[",
"otherIndex",
",",
"4",
":",
"]",
")",
":",
"otherAlleles",
"|=",
"set",
"(",
"genotype",
".",
"split",
"(",
"\" \"",
")",
")",
"if",
"\"0\"",
"in",
"otherAlleles",
":",
"otherAlleles",
".",
"remove",
"(",
"\"0\"",
")",
"if",
"alleles",
"!=",
"otherAlleles",
":",
"if",
"len",
"(",
"alleles",
")",
"==",
"len",
"(",
"otherAlleles",
")",
":",
"# Same number of alleles",
"# Try the flipped ones",
"otherAlleles",
"=",
"flipGenotype",
"(",
"otherAlleles",
")",
"if",
"alleles",
"==",
"otherAlleles",
":",
"if",
"len",
"(",
"alleles",
")",
"==",
"1",
":",
"status",
".",
"append",
"(",
"\"homo_flip\"",
")",
"otherSnpNameWithProblem",
".",
"add",
"(",
"otherSnpName",
")",
"else",
":",
"status",
".",
"append",
"(",
"\"flip\"",
")",
"otherSnpNameWithProblem",
".",
"add",
"(",
"otherSnpName",
")",
"else",
":",
"status",
".",
"append",
"(",
"\"problem\"",
")",
"otherSnpNameWithProblem",
".",
"add",
"(",
"otherSnpName",
")",
"else",
":",
"# Different number of alleles",
"if",
"len",
"(",
"alleles",
"&",
"otherAlleles",
")",
"==",
"1",
":",
"status",
".",
"append",
"(",
"\"homo_hetero\"",
")",
"otherSnpNameWithProblem",
".",
"add",
"(",
"otherSnpName",
")",
"else",
":",
"# Try the flipped one",
"otherAlleles",
"=",
"flipGenotype",
"(",
"otherAlleles",
")",
"if",
"len",
"(",
"alleles",
"&",
"otherAlleles",
")",
"==",
"1",
":",
"status",
".",
"append",
"(",
"\"homo_hetero_flip\"",
")",
"otherSnpNameWithProblem",
".",
"add",
"(",
"otherSnpName",
")",
"else",
":",
"status",
".",
"append",
"(",
"\"problem\"",
")",
"otherSnpNameWithProblem",
".",
"add",
"(",
"otherSnpName",
")",
"else",
":",
"# The alleles are the same, so we check the frequency",
"if",
"mafAlleles",
"[",
"0",
"]",
"!=",
"otherMafAlleles",
"[",
"0",
"]",
":",
"# They don't have the same minor allele",
"status",
".",
"append",
"(",
"\"diff_minor_allele\"",
")",
"otherSnpNameWithProblem",
".",
"add",
"(",
"otherSnpName",
")",
"elif",
"math",
".",
"fabs",
"(",
"snpFreq",
"-",
"otherSnpFreq",
")",
">",
"diffFreq",
":",
"# They don't have same frequency",
"status",
".",
"append",
"(",
"\"diff_frequency\"",
")",
"otherSnpNameWithProblem",
".",
"add",
"(",
"otherSnpName",
")",
"alleles",
"=",
"list",
"(",
"alleles",
")",
"alleles",
".",
"sort",
"(",
")",
"if",
"len",
"(",
"alleles",
")",
"==",
"1",
":",
"alleles",
".",
"append",
"(",
"alleles",
"[",
"0",
"]",
")",
"toPrint",
".",
"append",
"(",
"\" \"",
".",
"join",
"(",
"alleles",
")",
")",
"toPrint",
".",
"append",
"(",
"\";\"",
".",
"join",
"(",
"status",
")",
")",
"# The completion",
"toPrint",
".",
"append",
"(",
"\"%.8f\"",
"%",
"completionPercentage",
"[",
"index",
"]",
")",
"toPrint",
".",
"append",
"(",
"\"%d/%d\"",
"%",
"(",
"completion",
"[",
"0",
"]",
"[",
"index",
"]",
",",
"completion",
"[",
"1",
"]",
"[",
"index",
"]",
")",
")",
"# The concordance",
"indexToKeep",
"=",
"list",
"(",
"set",
"(",
"range",
"(",
"len",
"(",
"indexes",
")",
")",
")",
"-",
"set",
"(",
"[",
"i",
"]",
")",
")",
"currConcordance",
"=",
"np",
".",
"true_divide",
"(",
"concordance",
"[",
"snpID",
"]",
"[",
"0",
"]",
"[",
"i",
",",
"indexToKeep",
"]",
",",
"concordance",
"[",
"snpID",
"]",
"[",
"1",
"]",
"[",
"i",
",",
"indexToKeep",
"]",
",",
")",
"currConcordance",
"=",
"np",
".",
"mean",
"(",
"currConcordance",
")",
"toPrint",
".",
"append",
"(",
"\"%.8f\"",
"%",
"currConcordance",
")",
"print",
">>",
"outSummary",
",",
"\"\\t\"",
".",
"join",
"(",
"toPrint",
")",
"# Now updating the problems data structure",
"if",
"len",
"(",
"status",
")",
"!=",
"len",
"(",
"otherSnpNameWithProblem",
")",
":",
"msg",
"=",
"\"There is a problem with the problematic SNPs\"",
"raise",
"ProgramError",
"(",
"msg",
")",
"if",
"len",
"(",
"status",
")",
">",
"0",
":",
"if",
"snpID",
"not",
"in",
"problems",
":",
"tmp",
"=",
"{",
"\"snpNames\"",
":",
"{",
"snpName",
"}",
",",
"\"problems\"",
":",
"set",
"(",
")",
"}",
"problems",
"[",
"snpID",
"]",
"=",
"tmp",
"# We have problems",
"problems",
"[",
"snpID",
"]",
"[",
"\"snpNames\"",
"]",
"|=",
"otherSnpNameWithProblem",
"problems",
"[",
"snpID",
"]",
"[",
"\"problems\"",
"]",
"|=",
"set",
"(",
"status",
")",
"outSummary",
".",
"close",
"(",
")",
"outProblems",
"=",
"None",
"try",
":",
"outProblems",
"=",
"open",
"(",
"prefix",
"+",
"\".problems\"",
",",
"\"w\"",
")",
"except",
"IOError",
":",
"msg",
"=",
"\"%s: can't write file\"",
"%",
"prefix",
"+",
"\".problems\"",
"raise",
"ProgramError",
"# Printing the header of the problem file...",
"print",
">>",
"outProblems",
",",
"\"\\t\"",
".",
"join",
"(",
"[",
"\"chr\"",
",",
"\"pos\"",
",",
"\"name\"",
",",
"\"status\"",
"]",
")",
"for",
"snpID",
"in",
"problems",
".",
"iterkeys",
"(",
")",
":",
"toPrint",
"=",
"list",
"(",
"snpID",
")",
"toPrint",
".",
"append",
"(",
"\";\"",
".",
"join",
"(",
"list",
"(",
"problems",
"[",
"snpID",
"]",
"[",
"\"snpNames\"",
"]",
")",
")",
")",
"toPrint",
".",
"append",
"(",
"\";\"",
".",
"join",
"(",
"list",
"(",
"problems",
"[",
"snpID",
"]",
"[",
"\"problems\"",
"]",
")",
")",
")",
"print",
">>",
"outProblems",
",",
"\"\\t\"",
".",
"join",
"(",
"toPrint",
")",
"outProblems",
".",
"close",
"(",
")",
"# Returning the SNPs to complete",
"return",
"set",
"(",
"snps",
".",
"keys",
"(",
")",
")",
"-",
"set",
"(",
"problems",
".",
"keys",
"(",
")",
")"
] | Print the statistics.
:param completion: the completion of each duplicated markers.
:param concordance: the pairwise concordance between duplicated markers.
:param tped: a representation of the ``tped`` of duplicated markers.
:param snps: the positions of the duplicated markers in the ``tped``
:param frequencies: the frequency of each of the duplicated markers.
:param prefix: the prefix of the output files.
:param diffFreq: the frequency difference threshold.
:type completion: numpy.array
:type concordance: dict
:type tped: numpy.array
:type snps: dict
:type frequencies: dict
:type prefix: str
:type diffFreq: float
:returns: a :py:class:`set` containing duplicated markers to complete.
Creates a summary file (``prefix.summary``) containing information about
duplicated markers: chromosome, position, name, alleles, status, completion
percentage, completion number and mean concordance.
The frequency and the minor allele are used to be certain that two
duplicated markers are exactly the same marker (and not a tri-allelic one,
for example).
For each duplicated markers:
1. Constructs the set of available alleles for the first marker.
2. Constructs the set of available alleles for the second marker.
3. If the two sets are different, but the number of alleles is the same, we
try to flip one of the marker. If the two sets are the same, but the
number of alleles is 1, we set the status to ``homo_flip``. If the
markers are heterozygous, we set the status to ``flip``.
4. If there is a difference in the number of alleles (one is homozygous,
the other, heterozygous), and that there is on allele in common, we set
the status to ``homo_hetero``. If there are no allele in common, we try
to flip one. If the new sets have one allele in common, we set the
status to ``homo_hetero_flip``.
5. If the sets of available alleles are the same (without flip), we check
the frequency and the minor alleles. If the minor allele is different,
we set the status to ``diff_minor_allele``. If the difference in
frequencies is higher than a threshold, we set the status to
``diff_frequency``.
6. If all of the above fail, we set the status to ``problem``.
Problems are written in the ``prefix.problems`` file, and contains the
following columns: chromosome, position, name and status. This file
contains all the markers with a status, as explained above. | [
"Print",
"the",
"statistics",
"."
] | python | train |
mitsei/dlkit | dlkit/services/relationship.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/services/relationship.py#L905-L913 | def use_comparative_relationship_view(self):
"""Pass through to provider RelationshipLookupSession.use_comparative_relationship_view"""
self._object_views['relationship'] = COMPARATIVE
# self._get_provider_session('relationship_lookup_session') # To make sure the session is tracked
for session in self._get_provider_sessions():
try:
session.use_comparative_relationship_view()
except AttributeError:
pass | [
"def",
"use_comparative_relationship_view",
"(",
"self",
")",
":",
"self",
".",
"_object_views",
"[",
"'relationship'",
"]",
"=",
"COMPARATIVE",
"# self._get_provider_session('relationship_lookup_session') # To make sure the session is tracked",
"for",
"session",
"in",
"self",
".",
"_get_provider_sessions",
"(",
")",
":",
"try",
":",
"session",
".",
"use_comparative_relationship_view",
"(",
")",
"except",
"AttributeError",
":",
"pass"
] | Pass through to provider RelationshipLookupSession.use_comparative_relationship_view | [
"Pass",
"through",
"to",
"provider",
"RelationshipLookupSession",
".",
"use_comparative_relationship_view"
] | python | train |
OpenTreeOfLife/peyotl | peyotl/utility/get_config.py | https://github.com/OpenTreeOfLife/peyotl/blob/5e4e52a0fdbd17f490aa644ad79fda6ea2eda7c0/peyotl/utility/get_config.py#L315-L324 | def get_config_object():
"""Thread-safe accessor for the immutable default ConfigWrapper object"""
global _DEFAULT_CONFIG_WRAPPER
if _DEFAULT_CONFIG_WRAPPER is not None:
return _DEFAULT_CONFIG_WRAPPER
with _DEFAULT_CONFIG_WRAPPER_LOCK:
if _DEFAULT_CONFIG_WRAPPER is not None:
return _DEFAULT_CONFIG_WRAPPER
_DEFAULT_CONFIG_WRAPPER = ConfigWrapper()
return _DEFAULT_CONFIG_WRAPPER | [
"def",
"get_config_object",
"(",
")",
":",
"global",
"_DEFAULT_CONFIG_WRAPPER",
"if",
"_DEFAULT_CONFIG_WRAPPER",
"is",
"not",
"None",
":",
"return",
"_DEFAULT_CONFIG_WRAPPER",
"with",
"_DEFAULT_CONFIG_WRAPPER_LOCK",
":",
"if",
"_DEFAULT_CONFIG_WRAPPER",
"is",
"not",
"None",
":",
"return",
"_DEFAULT_CONFIG_WRAPPER",
"_DEFAULT_CONFIG_WRAPPER",
"=",
"ConfigWrapper",
"(",
")",
"return",
"_DEFAULT_CONFIG_WRAPPER"
] | Thread-safe accessor for the immutable default ConfigWrapper object | [
"Thread",
"-",
"safe",
"accessor",
"for",
"the",
"immutable",
"default",
"ConfigWrapper",
"object"
] | python | train |
lsst-sqre/ltd-conveyor | ltdconveyor/keeper/build.py | https://github.com/lsst-sqre/ltd-conveyor/blob/c492937c4c1e050ccc4a0b9dcc38f9980d57e305/ltdconveyor/keeper/build.py#L60-L87 | def confirm_build(build_url, keeper_token):
"""Confirm a build upload is complete.
Wraps ``PATCH /builds/{build}``.
Parameters
----------
build_url : `str`
URL of the build resource. Given a build resource, this URL is
available from the ``self_url`` field.
keeper_token : `str`
Auth token (`ltdconveyor.keeper.get_keeper_token`).
Raises
------
ltdconveyor.keeper.KeeperError
Raised if there is an error communicating with the LTD Keeper API.
"""
data = {
'uploaded': True
}
r = requests.patch(
build_url,
auth=(keeper_token, ''),
json=data)
if r.status_code != 200:
raise KeeperError(r) | [
"def",
"confirm_build",
"(",
"build_url",
",",
"keeper_token",
")",
":",
"data",
"=",
"{",
"'uploaded'",
":",
"True",
"}",
"r",
"=",
"requests",
".",
"patch",
"(",
"build_url",
",",
"auth",
"=",
"(",
"keeper_token",
",",
"''",
")",
",",
"json",
"=",
"data",
")",
"if",
"r",
".",
"status_code",
"!=",
"200",
":",
"raise",
"KeeperError",
"(",
"r",
")"
] | Confirm a build upload is complete.
Wraps ``PATCH /builds/{build}``.
Parameters
----------
build_url : `str`
URL of the build resource. Given a build resource, this URL is
available from the ``self_url`` field.
keeper_token : `str`
Auth token (`ltdconveyor.keeper.get_keeper_token`).
Raises
------
ltdconveyor.keeper.KeeperError
Raised if there is an error communicating with the LTD Keeper API. | [
"Confirm",
"a",
"build",
"upload",
"is",
"complete",
"."
] | python | test |
myaooo/pysbrl | pysbrl/train.py | https://github.com/myaooo/pysbrl/blob/74bba8c6913a7f82e32313108f8c3e025b89d9c7/pysbrl/train.py#L11-L46 | def train_sbrl(data_file, label_file, lambda_=20, eta=2, max_iters=300000, n_chains=20, alpha=1, seed=None, verbose=0):
"""
The basic training function of the scalable bayesian rule list.
Users are suggested to use SBRL instead of this function.
It takes the paths of the pre-processed data and label files as input,
and return the parameters of the trained rule list.
Check pysbrl.utils:categorical2pysbrl_data to see how to convert categorical data to the required format
:param data_file: The data file
:param label_file: The label file
:param lambda_: A hyper parameter, the prior representing the expected length of the rule list
:param eta: A hyper parameter, the prior representing the expected length of each rule
:param max_iters: The maximum iteration of the algo
:param n_chains: The number of markov chains to run
:param alpha: The prior of the output probability distribution, see the paper for more detail.
:return: A tuple of (`rule_ids`, `outputs`, `rule_strings`)
`rule_ids`: the list of ids of rules
`outputs`: the outputs matrix (prob distribution as a vector per rule)
`rule_strings`: the whole list of rules in the format of strings like `u'{c2=x,c4=o,c5=b}'`.
"""
if isinstance(alpha, int):
alphas = np.array([alpha], dtype=np.int32)
elif isinstance(alpha, list):
for a in alpha:
assert isinstance(a, int)
alphas = np.array(alpha, dtype=np.int32)
else:
raise ValueError('the argument alpha can only be int or List[int]')
if seed is None:
seed = -1
if not os.path.isfile(data_file):
raise FileNotFoundError('data file %s does not exists!' % data_file)
if not os.path.isfile(label_file):
raise FileNotFoundError('label file %s does not exists!' % label_file)
return _train(data_file, label_file, lambda_, eta, max_iters, n_chains, alphas, seed, verbose) | [
"def",
"train_sbrl",
"(",
"data_file",
",",
"label_file",
",",
"lambda_",
"=",
"20",
",",
"eta",
"=",
"2",
",",
"max_iters",
"=",
"300000",
",",
"n_chains",
"=",
"20",
",",
"alpha",
"=",
"1",
",",
"seed",
"=",
"None",
",",
"verbose",
"=",
"0",
")",
":",
"if",
"isinstance",
"(",
"alpha",
",",
"int",
")",
":",
"alphas",
"=",
"np",
".",
"array",
"(",
"[",
"alpha",
"]",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
"elif",
"isinstance",
"(",
"alpha",
",",
"list",
")",
":",
"for",
"a",
"in",
"alpha",
":",
"assert",
"isinstance",
"(",
"a",
",",
"int",
")",
"alphas",
"=",
"np",
".",
"array",
"(",
"alpha",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
"else",
":",
"raise",
"ValueError",
"(",
"'the argument alpha can only be int or List[int]'",
")",
"if",
"seed",
"is",
"None",
":",
"seed",
"=",
"-",
"1",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"data_file",
")",
":",
"raise",
"FileNotFoundError",
"(",
"'data file %s does not exists!'",
"%",
"data_file",
")",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"label_file",
")",
":",
"raise",
"FileNotFoundError",
"(",
"'label file %s does not exists!'",
"%",
"label_file",
")",
"return",
"_train",
"(",
"data_file",
",",
"label_file",
",",
"lambda_",
",",
"eta",
",",
"max_iters",
",",
"n_chains",
",",
"alphas",
",",
"seed",
",",
"verbose",
")"
] | The basic training function of the scalable bayesian rule list.
Users are suggested to use SBRL instead of this function.
It takes the paths of the pre-processed data and label files as input,
and return the parameters of the trained rule list.
Check pysbrl.utils:categorical2pysbrl_data to see how to convert categorical data to the required format
:param data_file: The data file
:param label_file: The label file
:param lambda_: A hyper parameter, the prior representing the expected length of the rule list
:param eta: A hyper parameter, the prior representing the expected length of each rule
:param max_iters: The maximum iteration of the algo
:param n_chains: The number of markov chains to run
:param alpha: The prior of the output probability distribution, see the paper for more detail.
:return: A tuple of (`rule_ids`, `outputs`, `rule_strings`)
`rule_ids`: the list of ids of rules
`outputs`: the outputs matrix (prob distribution as a vector per rule)
`rule_strings`: the whole list of rules in the format of strings like `u'{c2=x,c4=o,c5=b}'`. | [
"The",
"basic",
"training",
"function",
"of",
"the",
"scalable",
"bayesian",
"rule",
"list",
".",
"Users",
"are",
"suggested",
"to",
"use",
"SBRL",
"instead",
"of",
"this",
"function",
".",
"It",
"takes",
"the",
"paths",
"of",
"the",
"pre",
"-",
"processed",
"data",
"and",
"label",
"files",
"as",
"input",
"and",
"return",
"the",
"parameters",
"of",
"the",
"trained",
"rule",
"list",
"."
] | python | train |
numat/midas | midas/util.py | https://github.com/numat/midas/blob/c3a97a6cd67df1283831c3c78bf3f984212e97a8/midas/util.py#L36-L43 | async def _connect(self):
"""Start asynchronous reconnect loop."""
self.waiting = True
await self.client.start(self.ip)
self.waiting = False
if self.client.protocol is None:
raise IOError("Could not connect to '{}'.".format(self.ip))
self.open = True | [
"async",
"def",
"_connect",
"(",
"self",
")",
":",
"self",
".",
"waiting",
"=",
"True",
"await",
"self",
".",
"client",
".",
"start",
"(",
"self",
".",
"ip",
")",
"self",
".",
"waiting",
"=",
"False",
"if",
"self",
".",
"client",
".",
"protocol",
"is",
"None",
":",
"raise",
"IOError",
"(",
"\"Could not connect to '{}'.\"",
".",
"format",
"(",
"self",
".",
"ip",
")",
")",
"self",
".",
"open",
"=",
"True"
] | Start asynchronous reconnect loop. | [
"Start",
"asynchronous",
"reconnect",
"loop",
"."
] | python | train |
monarch-initiative/dipper | dipper/utils/CurieUtil.py | https://github.com/monarch-initiative/dipper/blob/24cc80db355bbe15776edc5c7b41e0886959ba41/dipper/utils/CurieUtil.py#L46-L60 | def get_uri(self, curie):
''' Get a URI from a CURIE '''
if curie is None:
return None
parts = curie.split(':')
if len(parts) == 1:
if curie != '':
LOG.error("Not a properly formed curie: \"%s\"", curie)
return None
prefix = parts[0]
if prefix in self.curie_map:
return '%s%s' % (self.curie_map.get(prefix),
curie[(curie.index(':') + 1):])
LOG.error("Curie prefix not defined for %s", curie)
return None | [
"def",
"get_uri",
"(",
"self",
",",
"curie",
")",
":",
"if",
"curie",
"is",
"None",
":",
"return",
"None",
"parts",
"=",
"curie",
".",
"split",
"(",
"':'",
")",
"if",
"len",
"(",
"parts",
")",
"==",
"1",
":",
"if",
"curie",
"!=",
"''",
":",
"LOG",
".",
"error",
"(",
"\"Not a properly formed curie: \\\"%s\\\"\"",
",",
"curie",
")",
"return",
"None",
"prefix",
"=",
"parts",
"[",
"0",
"]",
"if",
"prefix",
"in",
"self",
".",
"curie_map",
":",
"return",
"'%s%s'",
"%",
"(",
"self",
".",
"curie_map",
".",
"get",
"(",
"prefix",
")",
",",
"curie",
"[",
"(",
"curie",
".",
"index",
"(",
"':'",
")",
"+",
"1",
")",
":",
"]",
")",
"LOG",
".",
"error",
"(",
"\"Curie prefix not defined for %s\"",
",",
"curie",
")",
"return",
"None"
] | Get a URI from a CURIE | [
"Get",
"a",
"URI",
"from",
"a",
"CURIE"
] | python | train |
mfussenegger/cr8 | cr8/clients.py | https://github.com/mfussenegger/cr8/blob/a37d6049f1f9fee2d0556efae2b7b7f8761bffe8/cr8/clients.py#L146-L176 | def _to_dsn(hosts):
"""Convert a host URI into a dsn for aiopg.
>>> _to_dsn('aiopg://myhostname:4242/mydb')
'postgres://crate@myhostname:4242/mydb'
>>> _to_dsn('aiopg://myhostname:4242')
'postgres://crate@myhostname:4242/doc'
>>> _to_dsn('aiopg://hoschi:pw@myhostname:4242/doc?sslmode=require')
'postgres://hoschi:pw@myhostname:4242/doc?sslmode=require'
>>> _to_dsn('aiopg://myhostname')
'postgres://crate@myhostname:5432/doc'
"""
p = urlparse(hosts)
try:
user_and_pw, netloc = p.netloc.split('@', maxsplit=1)
except ValueError:
netloc = p.netloc
user_and_pw = 'crate'
try:
host, port = netloc.split(':', maxsplit=1)
except ValueError:
host = netloc
port = 5432
dbname = p.path[1:] if p.path else 'doc'
dsn = f'postgres://{user_and_pw}@{host}:{port}/{dbname}'
if p.query:
dsn += '?' + '&'.join(k + '=' + v[0] for k, v in parse_qs(p.query).items())
return dsn | [
"def",
"_to_dsn",
"(",
"hosts",
")",
":",
"p",
"=",
"urlparse",
"(",
"hosts",
")",
"try",
":",
"user_and_pw",
",",
"netloc",
"=",
"p",
".",
"netloc",
".",
"split",
"(",
"'@'",
",",
"maxsplit",
"=",
"1",
")",
"except",
"ValueError",
":",
"netloc",
"=",
"p",
".",
"netloc",
"user_and_pw",
"=",
"'crate'",
"try",
":",
"host",
",",
"port",
"=",
"netloc",
".",
"split",
"(",
"':'",
",",
"maxsplit",
"=",
"1",
")",
"except",
"ValueError",
":",
"host",
"=",
"netloc",
"port",
"=",
"5432",
"dbname",
"=",
"p",
".",
"path",
"[",
"1",
":",
"]",
"if",
"p",
".",
"path",
"else",
"'doc'",
"dsn",
"=",
"f'postgres://{user_and_pw}@{host}:{port}/{dbname}'",
"if",
"p",
".",
"query",
":",
"dsn",
"+=",
"'?'",
"+",
"'&'",
".",
"join",
"(",
"k",
"+",
"'='",
"+",
"v",
"[",
"0",
"]",
"for",
"k",
",",
"v",
"in",
"parse_qs",
"(",
"p",
".",
"query",
")",
".",
"items",
"(",
")",
")",
"return",
"dsn"
] | Convert a host URI into a dsn for aiopg.
>>> _to_dsn('aiopg://myhostname:4242/mydb')
'postgres://crate@myhostname:4242/mydb'
>>> _to_dsn('aiopg://myhostname:4242')
'postgres://crate@myhostname:4242/doc'
>>> _to_dsn('aiopg://hoschi:pw@myhostname:4242/doc?sslmode=require')
'postgres://hoschi:pw@myhostname:4242/doc?sslmode=require'
>>> _to_dsn('aiopg://myhostname')
'postgres://crate@myhostname:5432/doc' | [
"Convert",
"a",
"host",
"URI",
"into",
"a",
"dsn",
"for",
"aiopg",
"."
] | python | train |
clalancette/pycdlib | pycdlib/pycdlib.py | https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/pycdlib.py#L1887-L1907 | def _add_to_ptr_size(self, ptr):
# type: (path_table_record.PathTableRecord) -> int
'''
An internal method to add a PTR to a VD, adding space to the VD if
necessary.
Parameters:
ptr - The PTR to add to the vd.
Returns:
The number of additional bytes that are needed to fit the new PTR
(this may be zero).
'''
num_bytes_to_add = 0
for pvd in self.pvds:
# The add_to_ptr_size() method returns True if the PVD needs
# additional space in the PTR to store this directory. We always
# add 4 additional extents for that (2 for LE, 2 for BE).
if pvd.add_to_ptr_size(path_table_record.PathTableRecord.record_length(ptr.len_di)):
num_bytes_to_add += 4 * self.pvd.logical_block_size()
return num_bytes_to_add | [
"def",
"_add_to_ptr_size",
"(",
"self",
",",
"ptr",
")",
":",
"# type: (path_table_record.PathTableRecord) -> int",
"num_bytes_to_add",
"=",
"0",
"for",
"pvd",
"in",
"self",
".",
"pvds",
":",
"# The add_to_ptr_size() method returns True if the PVD needs",
"# additional space in the PTR to store this directory. We always",
"# add 4 additional extents for that (2 for LE, 2 for BE).",
"if",
"pvd",
".",
"add_to_ptr_size",
"(",
"path_table_record",
".",
"PathTableRecord",
".",
"record_length",
"(",
"ptr",
".",
"len_di",
")",
")",
":",
"num_bytes_to_add",
"+=",
"4",
"*",
"self",
".",
"pvd",
".",
"logical_block_size",
"(",
")",
"return",
"num_bytes_to_add"
] | An internal method to add a PTR to a VD, adding space to the VD if
necessary.
Parameters:
ptr - The PTR to add to the vd.
Returns:
The number of additional bytes that are needed to fit the new PTR
(this may be zero). | [
"An",
"internal",
"method",
"to",
"add",
"a",
"PTR",
"to",
"a",
"VD",
"adding",
"space",
"to",
"the",
"VD",
"if",
"necessary",
"."
] | python | train |
pantsbuild/pants | src/python/pants/task/scm_publish_mixin.py | https://github.com/pantsbuild/pants/blob/b72e650da0df685824ffdcc71988b8c282d0962d/src/python/pants/task/scm_publish_mixin.py#L212-L221 | def publish_pushdb_changes_to_remote_scm(self, pushdb_file, coordinate, tag_name, tag_message,
postscript=None):
"""Push pushdb changes to the remote scm repository, and then tag the commit if it succeeds."""
self._add_pushdb(pushdb_file)
self.commit_pushdb(coordinate, postscript=postscript)
self._push_and_tag_changes(
tag_name=tag_name,
tag_message='{message}{postscript}'.format(message=tag_message, postscript=postscript or '')
) | [
"def",
"publish_pushdb_changes_to_remote_scm",
"(",
"self",
",",
"pushdb_file",
",",
"coordinate",
",",
"tag_name",
",",
"tag_message",
",",
"postscript",
"=",
"None",
")",
":",
"self",
".",
"_add_pushdb",
"(",
"pushdb_file",
")",
"self",
".",
"commit_pushdb",
"(",
"coordinate",
",",
"postscript",
"=",
"postscript",
")",
"self",
".",
"_push_and_tag_changes",
"(",
"tag_name",
"=",
"tag_name",
",",
"tag_message",
"=",
"'{message}{postscript}'",
".",
"format",
"(",
"message",
"=",
"tag_message",
",",
"postscript",
"=",
"postscript",
"or",
"''",
")",
")"
] | Push pushdb changes to the remote scm repository, and then tag the commit if it succeeds. | [
"Push",
"pushdb",
"changes",
"to",
"the",
"remote",
"scm",
"repository",
"and",
"then",
"tag",
"the",
"commit",
"if",
"it",
"succeeds",
"."
] | python | train |
balloob/pychromecast | pychromecast/socket_client.py | https://github.com/balloob/pychromecast/blob/831b09c4fed185a7bffe0ea330b7849d5f4e36b6/pychromecast/socket_client.py#L550-L584 | def _route_message(self, message, data):
""" Route message to any handlers on the message namespace """
# route message to handlers
if message.namespace in self._handlers:
# debug messages
if message.namespace != NS_HEARTBEAT:
self.logger.debug(
"[%s:%s] Received: %s", self.fn or self.host, self.port,
_message_to_string(message, data))
# message handlers
try:
handled = \
self._handlers[message.namespace].receive_message(
message, data)
if not handled:
if data.get(REQUEST_ID) not in self._request_callbacks:
self.logger.debug(
"[%s:%s] Message unhandled: %s",
self.fn or self.host, self.port,
_message_to_string(message, data))
except Exception: # pylint: disable=broad-except
self.logger.exception(
("[%s:%s] Exception caught while sending message to "
"controller %s: %s"), self.fn or self.host, self.port,
type(self._handlers[message.namespace]).__name__,
_message_to_string(message, data))
else:
self.logger.debug(
"[%s:%s] Received unknown namespace: %s",
self.fn or self.host, self.port,
_message_to_string(message, data)) | [
"def",
"_route_message",
"(",
"self",
",",
"message",
",",
"data",
")",
":",
"# route message to handlers",
"if",
"message",
".",
"namespace",
"in",
"self",
".",
"_handlers",
":",
"# debug messages",
"if",
"message",
".",
"namespace",
"!=",
"NS_HEARTBEAT",
":",
"self",
".",
"logger",
".",
"debug",
"(",
"\"[%s:%s] Received: %s\"",
",",
"self",
".",
"fn",
"or",
"self",
".",
"host",
",",
"self",
".",
"port",
",",
"_message_to_string",
"(",
"message",
",",
"data",
")",
")",
"# message handlers",
"try",
":",
"handled",
"=",
"self",
".",
"_handlers",
"[",
"message",
".",
"namespace",
"]",
".",
"receive_message",
"(",
"message",
",",
"data",
")",
"if",
"not",
"handled",
":",
"if",
"data",
".",
"get",
"(",
"REQUEST_ID",
")",
"not",
"in",
"self",
".",
"_request_callbacks",
":",
"self",
".",
"logger",
".",
"debug",
"(",
"\"[%s:%s] Message unhandled: %s\"",
",",
"self",
".",
"fn",
"or",
"self",
".",
"host",
",",
"self",
".",
"port",
",",
"_message_to_string",
"(",
"message",
",",
"data",
")",
")",
"except",
"Exception",
":",
"# pylint: disable=broad-except",
"self",
".",
"logger",
".",
"exception",
"(",
"(",
"\"[%s:%s] Exception caught while sending message to \"",
"\"controller %s: %s\"",
")",
",",
"self",
".",
"fn",
"or",
"self",
".",
"host",
",",
"self",
".",
"port",
",",
"type",
"(",
"self",
".",
"_handlers",
"[",
"message",
".",
"namespace",
"]",
")",
".",
"__name__",
",",
"_message_to_string",
"(",
"message",
",",
"data",
")",
")",
"else",
":",
"self",
".",
"logger",
".",
"debug",
"(",
"\"[%s:%s] Received unknown namespace: %s\"",
",",
"self",
".",
"fn",
"or",
"self",
".",
"host",
",",
"self",
".",
"port",
",",
"_message_to_string",
"(",
"message",
",",
"data",
")",
")"
] | Route message to any handlers on the message namespace | [
"Route",
"message",
"to",
"any",
"handlers",
"on",
"the",
"message",
"namespace"
] | python | train |
underworldcode/stripy | stripy-src/stripy/cartesian.py | https://github.com/underworldcode/stripy/blob/d4c3480c3e58c88489ded695eadbe7cd5bf94b48/stripy-src/stripy/cartesian.py#L507-L575 | def interpolate_cubic(self, xi, yi, zdata, gradz=None, derivatives=False):
"""
Cubic spline interpolation/extrapolation to arbirary point(s).
This method has C^1 continuity.
Parameters
----------
xi : float / array of floats, shape (l,)
x coordinates on the Cartesian plane
yi : float / array of floats, shape (l,)
y coordinates on the Cartesian plane
zdata : array of floats, shape (n,)
value at each point in the triangulation
must be the same size of the mesh
gradz (optional) : array of floats, shape (2,n)
derivative at each point in the triangulation in the
x-direction (first row), y-direction (second row)
if not supplied it is evaluated using self.gradient
derivatives (optional) : bool (default: False)
optionally returns the first derivatives at point(s) (xi,yi)
Returns
-------
zi : float / array of floats, shape (l,)
interpolated value(s) of (xi,yi)
err : int / array of ints, shape (l,)
whether interpolation (0), extrapolation (1) or error (other)
dzx, dzy (optional) : float, array of floats, shape(l,)
first partial derivatives in x and y direction at (xi,yi)
"""
if zdata.size != self.npoints:
raise ValueError('zdata should be same size as mesh')
if type(gradz) == type(None):
gradX, gradY = self.gradient(zdata)
gradX, gradY = self._shuffle_field(gradX, gradY)
elif np.array(gradz).shape == (2,self.npoints):
gradX, gradY = self._shuffle_field(gradz[0], gradz[1])
else:
raise ValueError("gradz must be of shape {}".format((2,self.npoints)))
iflgs = 0
dflag = 1
sigma = 0.0
xi = np.array(xi)
yi = np.array(yi)
size = xi.size
zi = np.empty(size)
dzx = np.empty(size)
dzy = np.empty(size)
zierr = np.empty(size, dtype=np.int)
gradZ = np.vstack([gradX, gradY])
zdata = self._shuffle_field(zdata)
for i in range(0, size):
ist = np.abs(self._x - xi[i]).argmin() + 1
zi[i], dzx[i], dzy[i], zierr[i] = _srfpack.intrc1(xi[i], yi[i], self._x, self._y, zdata,\
self.lst, self.lptr, self.lend, iflgs, sigma, gradZ, dflag, ist)
if derivatives:
return zi, zierr, (dzx, dzy)
else:
return zi, zierr | [
"def",
"interpolate_cubic",
"(",
"self",
",",
"xi",
",",
"yi",
",",
"zdata",
",",
"gradz",
"=",
"None",
",",
"derivatives",
"=",
"False",
")",
":",
"if",
"zdata",
".",
"size",
"!=",
"self",
".",
"npoints",
":",
"raise",
"ValueError",
"(",
"'zdata should be same size as mesh'",
")",
"if",
"type",
"(",
"gradz",
")",
"==",
"type",
"(",
"None",
")",
":",
"gradX",
",",
"gradY",
"=",
"self",
".",
"gradient",
"(",
"zdata",
")",
"gradX",
",",
"gradY",
"=",
"self",
".",
"_shuffle_field",
"(",
"gradX",
",",
"gradY",
")",
"elif",
"np",
".",
"array",
"(",
"gradz",
")",
".",
"shape",
"==",
"(",
"2",
",",
"self",
".",
"npoints",
")",
":",
"gradX",
",",
"gradY",
"=",
"self",
".",
"_shuffle_field",
"(",
"gradz",
"[",
"0",
"]",
",",
"gradz",
"[",
"1",
"]",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"gradz must be of shape {}\"",
".",
"format",
"(",
"(",
"2",
",",
"self",
".",
"npoints",
")",
")",
")",
"iflgs",
"=",
"0",
"dflag",
"=",
"1",
"sigma",
"=",
"0.0",
"xi",
"=",
"np",
".",
"array",
"(",
"xi",
")",
"yi",
"=",
"np",
".",
"array",
"(",
"yi",
")",
"size",
"=",
"xi",
".",
"size",
"zi",
"=",
"np",
".",
"empty",
"(",
"size",
")",
"dzx",
"=",
"np",
".",
"empty",
"(",
"size",
")",
"dzy",
"=",
"np",
".",
"empty",
"(",
"size",
")",
"zierr",
"=",
"np",
".",
"empty",
"(",
"size",
",",
"dtype",
"=",
"np",
".",
"int",
")",
"gradZ",
"=",
"np",
".",
"vstack",
"(",
"[",
"gradX",
",",
"gradY",
"]",
")",
"zdata",
"=",
"self",
".",
"_shuffle_field",
"(",
"zdata",
")",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"size",
")",
":",
"ist",
"=",
"np",
".",
"abs",
"(",
"self",
".",
"_x",
"-",
"xi",
"[",
"i",
"]",
")",
".",
"argmin",
"(",
")",
"+",
"1",
"zi",
"[",
"i",
"]",
",",
"dzx",
"[",
"i",
"]",
",",
"dzy",
"[",
"i",
"]",
",",
"zierr",
"[",
"i",
"]",
"=",
"_srfpack",
".",
"intrc1",
"(",
"xi",
"[",
"i",
"]",
",",
"yi",
"[",
"i",
"]",
",",
"self",
".",
"_x",
",",
"self",
".",
"_y",
",",
"zdata",
",",
"self",
".",
"lst",
",",
"self",
".",
"lptr",
",",
"self",
".",
"lend",
",",
"iflgs",
",",
"sigma",
",",
"gradZ",
",",
"dflag",
",",
"ist",
")",
"if",
"derivatives",
":",
"return",
"zi",
",",
"zierr",
",",
"(",
"dzx",
",",
"dzy",
")",
"else",
":",
"return",
"zi",
",",
"zierr"
] | Cubic spline interpolation/extrapolation to arbirary point(s).
This method has C^1 continuity.
Parameters
----------
xi : float / array of floats, shape (l,)
x coordinates on the Cartesian plane
yi : float / array of floats, shape (l,)
y coordinates on the Cartesian plane
zdata : array of floats, shape (n,)
value at each point in the triangulation
must be the same size of the mesh
gradz (optional) : array of floats, shape (2,n)
derivative at each point in the triangulation in the
x-direction (first row), y-direction (second row)
if not supplied it is evaluated using self.gradient
derivatives (optional) : bool (default: False)
optionally returns the first derivatives at point(s) (xi,yi)
Returns
-------
zi : float / array of floats, shape (l,)
interpolated value(s) of (xi,yi)
err : int / array of ints, shape (l,)
whether interpolation (0), extrapolation (1) or error (other)
dzx, dzy (optional) : float, array of floats, shape(l,)
first partial derivatives in x and y direction at (xi,yi) | [
"Cubic",
"spline",
"interpolation",
"/",
"extrapolation",
"to",
"arbirary",
"point",
"(",
"s",
")",
".",
"This",
"method",
"has",
"C^1",
"continuity",
"."
] | python | train |
IDSIA/sacred | sacred/experiment.py | https://github.com/IDSIA/sacred/blob/72633776bed9b5bddf93ae7d215188e61970973a/sacred/experiment.py#L408-L418 | def _gather(self, func):
"""
Removes the experiment's path (prefix) from the names of the gathered
items. This means that, for example, 'experiment.print_config' becomes
'print_config'.
"""
for ingredient, _ in self.traverse_ingredients():
for name, item in func(ingredient):
if ingredient == self:
name = name[len(self.path) + 1:]
yield name, item | [
"def",
"_gather",
"(",
"self",
",",
"func",
")",
":",
"for",
"ingredient",
",",
"_",
"in",
"self",
".",
"traverse_ingredients",
"(",
")",
":",
"for",
"name",
",",
"item",
"in",
"func",
"(",
"ingredient",
")",
":",
"if",
"ingredient",
"==",
"self",
":",
"name",
"=",
"name",
"[",
"len",
"(",
"self",
".",
"path",
")",
"+",
"1",
":",
"]",
"yield",
"name",
",",
"item"
] | Removes the experiment's path (prefix) from the names of the gathered
items. This means that, for example, 'experiment.print_config' becomes
'print_config'. | [
"Removes",
"the",
"experiment",
"s",
"path",
"(",
"prefix",
")",
"from",
"the",
"names",
"of",
"the",
"gathered",
"items",
".",
"This",
"means",
"that",
"for",
"example",
"experiment",
".",
"print_config",
"becomes",
"print_config",
"."
] | python | train |
Skype4Py/Skype4Py | Skype4Py/skype.py | https://github.com/Skype4Py/Skype4Py/blob/c48d83f7034109fe46315d45a066126002c6e0d4/Skype4Py/skype.py#L588-L600 | def CreateSms(self, MessageType, *TargetNumbers):
"""Creates an SMS message.
:Parameters:
MessageType : `enums`.smsMessageType*
Message type.
TargetNumbers : str
One or more target SMS numbers.
:return: An sms message object.
:rtype: `SmsMessage`
"""
return SmsMessage(self, chop(self._DoCommand('CREATE SMS %s %s' % (MessageType, ', '.join(TargetNumbers))), 2)[1]) | [
"def",
"CreateSms",
"(",
"self",
",",
"MessageType",
",",
"*",
"TargetNumbers",
")",
":",
"return",
"SmsMessage",
"(",
"self",
",",
"chop",
"(",
"self",
".",
"_DoCommand",
"(",
"'CREATE SMS %s %s'",
"%",
"(",
"MessageType",
",",
"', '",
".",
"join",
"(",
"TargetNumbers",
")",
")",
")",
",",
"2",
")",
"[",
"1",
"]",
")"
] | Creates an SMS message.
:Parameters:
MessageType : `enums`.smsMessageType*
Message type.
TargetNumbers : str
One or more target SMS numbers.
:return: An sms message object.
:rtype: `SmsMessage` | [
"Creates",
"an",
"SMS",
"message",
"."
] | python | train |
dh1tw/pyhamtools | pyhamtools/callinfo.py | https://github.com/dh1tw/pyhamtools/blob/ee7e4b8732e23c298da10e07163748156c16d0fa/pyhamtools/callinfo.py#L341-L376 | def get_lat_long(self, callsign, timestamp=timestamp_now):
""" Returns Latitude and Longitude for a callsign
Args:
callsign (str): Amateur Radio callsign
timestamp (datetime, optional): datetime in UTC (tzinfo=pytz.UTC)
Returns:
dict: Containing Latitude and Longitude
Raises:
KeyError: No data found for callsign
Example:
The following code returns Latitude & Longitude for "DH1TW"
>>> from pyhamtools import LookupLib, Callinfo
>>> my_lookuplib = LookupLib(lookuptype="countryfile")
>>> cic = Callinfo(my_lookuplib)
>>> cic.get_lat_long("DH1TW")
{
'latitude': 51.0,
'longitude': -10.0
}
Note:
Unfortunately, in most cases the returned Latitude and Longitude are not very precise.
Clublog and Country-files.com use the country's capital coordinates in most cases, if no
dedicated entry in the database exists. Best results will be retrieved with QRZ.com Lookup.
"""
callsign_data = self.get_all(callsign, timestamp=timestamp)
return {
const.LATITUDE: callsign_data[const.LATITUDE],
const.LONGITUDE: callsign_data[const.LONGITUDE]
} | [
"def",
"get_lat_long",
"(",
"self",
",",
"callsign",
",",
"timestamp",
"=",
"timestamp_now",
")",
":",
"callsign_data",
"=",
"self",
".",
"get_all",
"(",
"callsign",
",",
"timestamp",
"=",
"timestamp",
")",
"return",
"{",
"const",
".",
"LATITUDE",
":",
"callsign_data",
"[",
"const",
".",
"LATITUDE",
"]",
",",
"const",
".",
"LONGITUDE",
":",
"callsign_data",
"[",
"const",
".",
"LONGITUDE",
"]",
"}"
] | Returns Latitude and Longitude for a callsign
Args:
callsign (str): Amateur Radio callsign
timestamp (datetime, optional): datetime in UTC (tzinfo=pytz.UTC)
Returns:
dict: Containing Latitude and Longitude
Raises:
KeyError: No data found for callsign
Example:
The following code returns Latitude & Longitude for "DH1TW"
>>> from pyhamtools import LookupLib, Callinfo
>>> my_lookuplib = LookupLib(lookuptype="countryfile")
>>> cic = Callinfo(my_lookuplib)
>>> cic.get_lat_long("DH1TW")
{
'latitude': 51.0,
'longitude': -10.0
}
Note:
Unfortunately, in most cases the returned Latitude and Longitude are not very precise.
Clublog and Country-files.com use the country's capital coordinates in most cases, if no
dedicated entry in the database exists. Best results will be retrieved with QRZ.com Lookup. | [
"Returns",
"Latitude",
"and",
"Longitude",
"for",
"a",
"callsign"
] | python | train |
daskol/nls | nls/animation.py | https://github.com/daskol/nls/blob/00bb4555e4f56e222dc6f54faf2e286567519626/nls/animation.py#L30-L41 | def render(self, filename):
"""Perform initialization of render, set quality and size video attributes and then call template method that
is defined in child class.
"""
self.elapsed_time = -time()
dpi = 100
fig = figure(figsize=(16, 9), dpi=dpi)
with self.writer.saving(fig, filename, dpi):
for frame_id in xrange(self.frames + 1):
self.renderFrame(frame_id)
self.writer.grab_frame()
self.elapsed_time += time() | [
"def",
"render",
"(",
"self",
",",
"filename",
")",
":",
"self",
".",
"elapsed_time",
"=",
"-",
"time",
"(",
")",
"dpi",
"=",
"100",
"fig",
"=",
"figure",
"(",
"figsize",
"=",
"(",
"16",
",",
"9",
")",
",",
"dpi",
"=",
"dpi",
")",
"with",
"self",
".",
"writer",
".",
"saving",
"(",
"fig",
",",
"filename",
",",
"dpi",
")",
":",
"for",
"frame_id",
"in",
"xrange",
"(",
"self",
".",
"frames",
"+",
"1",
")",
":",
"self",
".",
"renderFrame",
"(",
"frame_id",
")",
"self",
".",
"writer",
".",
"grab_frame",
"(",
")",
"self",
".",
"elapsed_time",
"+=",
"time",
"(",
")"
] | Perform initialization of render, set quality and size video attributes and then call template method that
is defined in child class. | [
"Perform",
"initialization",
"of",
"render",
"set",
"quality",
"and",
"size",
"video",
"attributes",
"and",
"then",
"call",
"template",
"method",
"that",
"is",
"defined",
"in",
"child",
"class",
"."
] | python | train |
wreckage/django-happenings | happenings/utils/calendars.py | https://github.com/wreckage/django-happenings/blob/7bca5576efa6cd4c4e87356bf9e5b8cd538ae91d/happenings/utils/calendars.py#L380-L398 | def formatday(self, day, weekday):
"""Return a day as a table cell."""
super(MiniEventCalendar, self).formatday(day, weekday)
now = get_now()
self.day = day
if day == 0:
return '<td class="noday"> </td>' # day outside month
elif now.month == self.mo and now.year == self.yr and day == now.day:
if day in self.count:
self.popover_helper()
return self.wkday_today + self.anch + self.cal_event + self.end
else:
return self.wkday_today + self.anch + self.end
elif day in self.count:
self.popover_helper()
return self.wkday_not_today + self.anch + self.cal_event + self.end
else:
return self.wkday_not_today + self.anch + self.end | [
"def",
"formatday",
"(",
"self",
",",
"day",
",",
"weekday",
")",
":",
"super",
"(",
"MiniEventCalendar",
",",
"self",
")",
".",
"formatday",
"(",
"day",
",",
"weekday",
")",
"now",
"=",
"get_now",
"(",
")",
"self",
".",
"day",
"=",
"day",
"if",
"day",
"==",
"0",
":",
"return",
"'<td class=\"noday\"> </td>'",
"# day outside month",
"elif",
"now",
".",
"month",
"==",
"self",
".",
"mo",
"and",
"now",
".",
"year",
"==",
"self",
".",
"yr",
"and",
"day",
"==",
"now",
".",
"day",
":",
"if",
"day",
"in",
"self",
".",
"count",
":",
"self",
".",
"popover_helper",
"(",
")",
"return",
"self",
".",
"wkday_today",
"+",
"self",
".",
"anch",
"+",
"self",
".",
"cal_event",
"+",
"self",
".",
"end",
"else",
":",
"return",
"self",
".",
"wkday_today",
"+",
"self",
".",
"anch",
"+",
"self",
".",
"end",
"elif",
"day",
"in",
"self",
".",
"count",
":",
"self",
".",
"popover_helper",
"(",
")",
"return",
"self",
".",
"wkday_not_today",
"+",
"self",
".",
"anch",
"+",
"self",
".",
"cal_event",
"+",
"self",
".",
"end",
"else",
":",
"return",
"self",
".",
"wkday_not_today",
"+",
"self",
".",
"anch",
"+",
"self",
".",
"end"
] | Return a day as a table cell. | [
"Return",
"a",
"day",
"as",
"a",
"table",
"cell",
"."
] | python | test |
flowersteam/explauto | explauto/models/pydmps/dmp_rhythmic.py | https://github.com/flowersteam/explauto/blob/cf0f81ecb9f6412f7276a95bd27359000e1e26b6/explauto/models/pydmps/dmp_rhythmic.py#L61-L75 | def gen_goal(self, y_des):
"""Generate the goal for path imitation.
For rhythmic DMPs the goal is the average of the
desired trajectory.
y_des np.array: the desired trajectory to follow
"""
goal = np.zeros(self.dmps)
for n in range(self.dmps):
num_idx = ~np.isnan(y_des[n]) # ignore nan's when calculating goal
goal[n] = .5 * (y_des[n,num_idx].min() + \
y_des[n,num_idx].max())
return goal | [
"def",
"gen_goal",
"(",
"self",
",",
"y_des",
")",
":",
"goal",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"dmps",
")",
"for",
"n",
"in",
"range",
"(",
"self",
".",
"dmps",
")",
":",
"num_idx",
"=",
"~",
"np",
".",
"isnan",
"(",
"y_des",
"[",
"n",
"]",
")",
"# ignore nan's when calculating goal",
"goal",
"[",
"n",
"]",
"=",
".5",
"*",
"(",
"y_des",
"[",
"n",
",",
"num_idx",
"]",
".",
"min",
"(",
")",
"+",
"y_des",
"[",
"n",
",",
"num_idx",
"]",
".",
"max",
"(",
")",
")",
"return",
"goal"
] | Generate the goal for path imitation.
For rhythmic DMPs the goal is the average of the
desired trajectory.
y_des np.array: the desired trajectory to follow | [
"Generate",
"the",
"goal",
"for",
"path",
"imitation",
".",
"For",
"rhythmic",
"DMPs",
"the",
"goal",
"is",
"the",
"average",
"of",
"the",
"desired",
"trajectory",
".",
"y_des",
"np",
".",
"array",
":",
"the",
"desired",
"trajectory",
"to",
"follow"
] | python | train |
ampl/amplpy | amplpy/ampl.py | https://github.com/ampl/amplpy/blob/39df6954049a11a8f666aed26853259b4687099a/amplpy/ampl.py#L710-L729 | def setOutputHandler(self, outputhandler):
"""
Sets a new output handler.
Args:
outputhandler: The function handling the AMPL output derived from
interpreting user commands.
"""
class OutputHandlerInternal(amplpython.OutputHandler):
def output(self, kind, msg):
outputhandler.output(kind, msg)
self._outputhandler = outputhandler
self._outputhandler_internal = OutputHandlerInternal()
lock_and_call(
lambda: self._impl.setOutputHandler(
self._outputhandler_internal
),
self._lock
) | [
"def",
"setOutputHandler",
"(",
"self",
",",
"outputhandler",
")",
":",
"class",
"OutputHandlerInternal",
"(",
"amplpython",
".",
"OutputHandler",
")",
":",
"def",
"output",
"(",
"self",
",",
"kind",
",",
"msg",
")",
":",
"outputhandler",
".",
"output",
"(",
"kind",
",",
"msg",
")",
"self",
".",
"_outputhandler",
"=",
"outputhandler",
"self",
".",
"_outputhandler_internal",
"=",
"OutputHandlerInternal",
"(",
")",
"lock_and_call",
"(",
"lambda",
":",
"self",
".",
"_impl",
".",
"setOutputHandler",
"(",
"self",
".",
"_outputhandler_internal",
")",
",",
"self",
".",
"_lock",
")"
] | Sets a new output handler.
Args:
outputhandler: The function handling the AMPL output derived from
interpreting user commands. | [
"Sets",
"a",
"new",
"output",
"handler",
"."
] | python | train |
CivicSpleen/ambry | ambry/orm/source.py | https://github.com/CivicSpleen/ambry/blob/d7f2be4bf1f7ffd086f3fadd4fcae60c32473e42/ambry/orm/source.py#L271-L310 | def update_table(self, unknown_type='str'):
"""Update the source table from the datafile"""
from ambry_sources.intuit import TypeIntuiter
st = self.source_table
if self.reftype == 'partition':
for c in self.partition.table.columns:
st.add_column(c.sequence_id, source_header=c.name, dest_header=c.name,
datatype=c.datatype, description = c.description)
elif self.datafile.exists:
with self.datafile.reader as r:
names = set()
for col in r.columns:
name = col['name']
if name in names: # Handle duplicate names.
name = name+"_"+str(col['pos'])
names.add(name)
c = st.column(name)
dt = col['resolved_type'] if col['resolved_type'] != 'unknown' else unknown_type
if c:
c.datatype = TypeIntuiter.promote_type(c.datatype, col['resolved_type'])
else:
c = st.add_column(col['pos'],
source_header=name,
dest_header=name,
datatype=col['resolved_type'],
description=col['description'],
has_codes=col['has_codes']) | [
"def",
"update_table",
"(",
"self",
",",
"unknown_type",
"=",
"'str'",
")",
":",
"from",
"ambry_sources",
".",
"intuit",
"import",
"TypeIntuiter",
"st",
"=",
"self",
".",
"source_table",
"if",
"self",
".",
"reftype",
"==",
"'partition'",
":",
"for",
"c",
"in",
"self",
".",
"partition",
".",
"table",
".",
"columns",
":",
"st",
".",
"add_column",
"(",
"c",
".",
"sequence_id",
",",
"source_header",
"=",
"c",
".",
"name",
",",
"dest_header",
"=",
"c",
".",
"name",
",",
"datatype",
"=",
"c",
".",
"datatype",
",",
"description",
"=",
"c",
".",
"description",
")",
"elif",
"self",
".",
"datafile",
".",
"exists",
":",
"with",
"self",
".",
"datafile",
".",
"reader",
"as",
"r",
":",
"names",
"=",
"set",
"(",
")",
"for",
"col",
"in",
"r",
".",
"columns",
":",
"name",
"=",
"col",
"[",
"'name'",
"]",
"if",
"name",
"in",
"names",
":",
"# Handle duplicate names.",
"name",
"=",
"name",
"+",
"\"_\"",
"+",
"str",
"(",
"col",
"[",
"'pos'",
"]",
")",
"names",
".",
"add",
"(",
"name",
")",
"c",
"=",
"st",
".",
"column",
"(",
"name",
")",
"dt",
"=",
"col",
"[",
"'resolved_type'",
"]",
"if",
"col",
"[",
"'resolved_type'",
"]",
"!=",
"'unknown'",
"else",
"unknown_type",
"if",
"c",
":",
"c",
".",
"datatype",
"=",
"TypeIntuiter",
".",
"promote_type",
"(",
"c",
".",
"datatype",
",",
"col",
"[",
"'resolved_type'",
"]",
")",
"else",
":",
"c",
"=",
"st",
".",
"add_column",
"(",
"col",
"[",
"'pos'",
"]",
",",
"source_header",
"=",
"name",
",",
"dest_header",
"=",
"name",
",",
"datatype",
"=",
"col",
"[",
"'resolved_type'",
"]",
",",
"description",
"=",
"col",
"[",
"'description'",
"]",
",",
"has_codes",
"=",
"col",
"[",
"'has_codes'",
"]",
")"
] | Update the source table from the datafile | [
"Update",
"the",
"source",
"table",
"from",
"the",
"datafile"
] | python | train |
coldfix/udiskie | udiskie/tray.py | https://github.com/coldfix/udiskie/blob/804c9d27df6f7361fec3097c432398f2d702f911/udiskie/tray.py#L337-L342 | def _create_statusicon(self):
"""Return a new Gtk.StatusIcon."""
statusicon = Gtk.StatusIcon()
statusicon.set_from_gicon(self._icons.get_gicon('media'))
statusicon.set_tooltip_text(_("udiskie"))
return statusicon | [
"def",
"_create_statusicon",
"(",
"self",
")",
":",
"statusicon",
"=",
"Gtk",
".",
"StatusIcon",
"(",
")",
"statusicon",
".",
"set_from_gicon",
"(",
"self",
".",
"_icons",
".",
"get_gicon",
"(",
"'media'",
")",
")",
"statusicon",
".",
"set_tooltip_text",
"(",
"_",
"(",
"\"udiskie\"",
")",
")",
"return",
"statusicon"
] | Return a new Gtk.StatusIcon. | [
"Return",
"a",
"new",
"Gtk",
".",
"StatusIcon",
"."
] | python | train |
saltstack/salt | salt/modules/netbsd_sysctl.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/netbsd_sysctl.py#L30-L66 | def show(config_file=False):
'''
Return a list of sysctl parameters for this minion
CLI Example:
.. code-block:: bash
salt '*' sysctl.show
'''
roots = (
'kern',
'vm',
'vfs',
'net',
'hw',
'machdep',
'user',
'ddb',
'proc',
'emul',
'security',
'init'
)
cmd = 'sysctl -ae'
ret = {}
out = __salt__['cmd.run'](cmd, output_loglevel='trace')
comps = ['']
for line in out.splitlines():
if any([line.startswith('{0}.'.format(root)) for root in roots]):
comps = re.split('[=:]', line, 1)
ret[comps[0]] = comps[1]
elif comps[0]:
ret[comps[0]] += '{0}\n'.format(line)
else:
continue
return ret | [
"def",
"show",
"(",
"config_file",
"=",
"False",
")",
":",
"roots",
"=",
"(",
"'kern'",
",",
"'vm'",
",",
"'vfs'",
",",
"'net'",
",",
"'hw'",
",",
"'machdep'",
",",
"'user'",
",",
"'ddb'",
",",
"'proc'",
",",
"'emul'",
",",
"'security'",
",",
"'init'",
")",
"cmd",
"=",
"'sysctl -ae'",
"ret",
"=",
"{",
"}",
"out",
"=",
"__salt__",
"[",
"'cmd.run'",
"]",
"(",
"cmd",
",",
"output_loglevel",
"=",
"'trace'",
")",
"comps",
"=",
"[",
"''",
"]",
"for",
"line",
"in",
"out",
".",
"splitlines",
"(",
")",
":",
"if",
"any",
"(",
"[",
"line",
".",
"startswith",
"(",
"'{0}.'",
".",
"format",
"(",
"root",
")",
")",
"for",
"root",
"in",
"roots",
"]",
")",
":",
"comps",
"=",
"re",
".",
"split",
"(",
"'[=:]'",
",",
"line",
",",
"1",
")",
"ret",
"[",
"comps",
"[",
"0",
"]",
"]",
"=",
"comps",
"[",
"1",
"]",
"elif",
"comps",
"[",
"0",
"]",
":",
"ret",
"[",
"comps",
"[",
"0",
"]",
"]",
"+=",
"'{0}\\n'",
".",
"format",
"(",
"line",
")",
"else",
":",
"continue",
"return",
"ret"
] | Return a list of sysctl parameters for this minion
CLI Example:
.. code-block:: bash
salt '*' sysctl.show | [
"Return",
"a",
"list",
"of",
"sysctl",
"parameters",
"for",
"this",
"minion"
] | python | train |
moonso/vcf_parser | vcf_parser/header_parser.py | https://github.com/moonso/vcf_parser/blob/8e2b6724e31995e0d43af501f25974310c6b843b/vcf_parser/header_parser.py#L238-L254 | def add_info(self, info_id, number, entry_type, description):
"""
Add an info line to the header.
Arguments:
info_id (str): The id of the info line
number (str): Integer or any of [A,R,G,.]
entry_type (str): Any of [Integer,Float,Flag,Character,String]
description (str): A description of the info line
"""
info_line = '##INFO=<ID={0},Number={1},Type={2},Description="{3}">'.format(
info_id, number, entry_type, description
)
self.logger.info("Adding info line to vcf: {0}".format(info_line))
self.parse_meta_data(info_line)
return | [
"def",
"add_info",
"(",
"self",
",",
"info_id",
",",
"number",
",",
"entry_type",
",",
"description",
")",
":",
"info_line",
"=",
"'##INFO=<ID={0},Number={1},Type={2},Description=\"{3}\">'",
".",
"format",
"(",
"info_id",
",",
"number",
",",
"entry_type",
",",
"description",
")",
"self",
".",
"logger",
".",
"info",
"(",
"\"Adding info line to vcf: {0}\"",
".",
"format",
"(",
"info_line",
")",
")",
"self",
".",
"parse_meta_data",
"(",
"info_line",
")",
"return"
] | Add an info line to the header.
Arguments:
info_id (str): The id of the info line
number (str): Integer or any of [A,R,G,.]
entry_type (str): Any of [Integer,Float,Flag,Character,String]
description (str): A description of the info line | [
"Add",
"an",
"info",
"line",
"to",
"the",
"header",
".",
"Arguments",
":",
"info_id",
"(",
"str",
")",
":",
"The",
"id",
"of",
"the",
"info",
"line",
"number",
"(",
"str",
")",
":",
"Integer",
"or",
"any",
"of",
"[",
"A",
"R",
"G",
".",
"]",
"entry_type",
"(",
"str",
")",
":",
"Any",
"of",
"[",
"Integer",
"Float",
"Flag",
"Character",
"String",
"]",
"description",
"(",
"str",
")",
":",
"A",
"description",
"of",
"the",
"info",
"line"
] | python | train |
IdentityPython/SATOSA | src/satosa/frontends/saml2.py | https://github.com/IdentityPython/SATOSA/blob/49da5d4c0ac1a5ebf1a71b4f7aaf04f0e52d8fdb/src/satosa/frontends/saml2.py#L439-L464 | def _register_endpoints(self, providers):
"""
Register methods to endpoints
:type providers: list[str]
:rtype: list[(str, ((satosa.context.Context, Any) -> satosa.response.Response, Any))]
:param providers: A list of backend providers
:return: A list of endpoint/method pairs
"""
url_map = []
for endp_category in self.endpoints:
for binding, endp in self.endpoints[endp_category].items():
valid_providers = ""
for provider in providers:
valid_providers = "{}|^{}".format(valid_providers, provider)
valid_providers = valid_providers.lstrip("|")
parsed_endp = urlparse(endp)
url_map.append(("(%s)/%s$" % (valid_providers, parsed_endp.path),
functools.partial(self.handle_authn_request, binding_in=binding)))
if self.expose_entityid_endpoint():
parsed_entity_id = urlparse(self.idp.config.entityid)
url_map.append(("^{0}".format(parsed_entity_id.path[1:]),
self._metadata_endpoint))
return url_map | [
"def",
"_register_endpoints",
"(",
"self",
",",
"providers",
")",
":",
"url_map",
"=",
"[",
"]",
"for",
"endp_category",
"in",
"self",
".",
"endpoints",
":",
"for",
"binding",
",",
"endp",
"in",
"self",
".",
"endpoints",
"[",
"endp_category",
"]",
".",
"items",
"(",
")",
":",
"valid_providers",
"=",
"\"\"",
"for",
"provider",
"in",
"providers",
":",
"valid_providers",
"=",
"\"{}|^{}\"",
".",
"format",
"(",
"valid_providers",
",",
"provider",
")",
"valid_providers",
"=",
"valid_providers",
".",
"lstrip",
"(",
"\"|\"",
")",
"parsed_endp",
"=",
"urlparse",
"(",
"endp",
")",
"url_map",
".",
"append",
"(",
"(",
"\"(%s)/%s$\"",
"%",
"(",
"valid_providers",
",",
"parsed_endp",
".",
"path",
")",
",",
"functools",
".",
"partial",
"(",
"self",
".",
"handle_authn_request",
",",
"binding_in",
"=",
"binding",
")",
")",
")",
"if",
"self",
".",
"expose_entityid_endpoint",
"(",
")",
":",
"parsed_entity_id",
"=",
"urlparse",
"(",
"self",
".",
"idp",
".",
"config",
".",
"entityid",
")",
"url_map",
".",
"append",
"(",
"(",
"\"^{0}\"",
".",
"format",
"(",
"parsed_entity_id",
".",
"path",
"[",
"1",
":",
"]",
")",
",",
"self",
".",
"_metadata_endpoint",
")",
")",
"return",
"url_map"
] | Register methods to endpoints
:type providers: list[str]
:rtype: list[(str, ((satosa.context.Context, Any) -> satosa.response.Response, Any))]
:param providers: A list of backend providers
:return: A list of endpoint/method pairs | [
"Register",
"methods",
"to",
"endpoints",
":",
"type",
"providers",
":",
"list",
"[",
"str",
"]",
":",
"rtype",
":",
"list",
"[",
"(",
"str",
"((",
"satosa",
".",
"context",
".",
"Context",
"Any",
")",
"-",
">",
"satosa",
".",
"response",
".",
"Response",
"Any",
"))",
"]",
":",
"param",
"providers",
":",
"A",
"list",
"of",
"backend",
"providers",
":",
"return",
":",
"A",
"list",
"of",
"endpoint",
"/",
"method",
"pairs"
] | python | train |
talkincode/txradius | txradius/radius/packet.py | https://github.com/talkincode/txradius/blob/b86fdbc9be41183680b82b07d3a8e8ea10926e01/txradius/radius/packet.py#L564-L571 | def CreateReply(self, **attributes):
"""Create a new packet as a reply to this one. This method
makes sure the authenticator and secret are copied over
to the new instance.
"""
return CoAPacket(CoAACK, self.id,
self.secret, self.authenticator, dict=self.dict,
**attributes) | [
"def",
"CreateReply",
"(",
"self",
",",
"*",
"*",
"attributes",
")",
":",
"return",
"CoAPacket",
"(",
"CoAACK",
",",
"self",
".",
"id",
",",
"self",
".",
"secret",
",",
"self",
".",
"authenticator",
",",
"dict",
"=",
"self",
".",
"dict",
",",
"*",
"*",
"attributes",
")"
] | Create a new packet as a reply to this one. This method
makes sure the authenticator and secret are copied over
to the new instance. | [
"Create",
"a",
"new",
"packet",
"as",
"a",
"reply",
"to",
"this",
"one",
".",
"This",
"method",
"makes",
"sure",
"the",
"authenticator",
"and",
"secret",
"are",
"copied",
"over",
"to",
"the",
"new",
"instance",
"."
] | python | train |
mitsei/dlkit | dlkit/records/assessment/qti/ordered_choice_records.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/records/assessment/qti/ordered_choice_records.py#L40-L45 | def is_response_correct(self, response):
"""returns True if response evaluates to an Item Answer that is 100 percent correct"""
for answer in self.my_osid_object.get_answers():
if self._is_match(response, answer):
return True
return False | [
"def",
"is_response_correct",
"(",
"self",
",",
"response",
")",
":",
"for",
"answer",
"in",
"self",
".",
"my_osid_object",
".",
"get_answers",
"(",
")",
":",
"if",
"self",
".",
"_is_match",
"(",
"response",
",",
"answer",
")",
":",
"return",
"True",
"return",
"False"
] | returns True if response evaluates to an Item Answer that is 100 percent correct | [
"returns",
"True",
"if",
"response",
"evaluates",
"to",
"an",
"Item",
"Answer",
"that",
"is",
"100",
"percent",
"correct"
] | python | train |
PagerDuty/pagerduty-api-python-client | pypd/models/notification.py | https://github.com/PagerDuty/pagerduty-api-python-client/blob/f420b34ca9b29689cc2ecc9adca6dc5d56ae7161/pypd/models/notification.py#L14-L46 | def find(cls, *args, **kwargs):
"""
Find notifications.
Optional kwargs are:
since:
datetime instance
until:
datetime instance
If not specified, until will default to now(), and since will default
to 30 days prior to until.
As per PD spec, date range must not exceed 1 month.
"""
seconds = 60 * 60 * 24 * 30 # seconds in 30 days
until = kwargs.pop('until', None)
since = kwargs.pop('since', None)
if until is None:
until = datetime.datetime.now()
if since is None:
since = until - datetime.timedelta(seconds=seconds)
dt = until - since
if dt > datetime.timedelta(seconds=seconds):
raise InvalidArguments(until, since)
kwargs['since'] = since.isoformat()
kwargs['until'] = until.isoformat()
return getattr(Entity, 'find').__func__(cls, *args, **kwargs) | [
"def",
"find",
"(",
"cls",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"seconds",
"=",
"60",
"*",
"60",
"*",
"24",
"*",
"30",
"# seconds in 30 days",
"until",
"=",
"kwargs",
".",
"pop",
"(",
"'until'",
",",
"None",
")",
"since",
"=",
"kwargs",
".",
"pop",
"(",
"'since'",
",",
"None",
")",
"if",
"until",
"is",
"None",
":",
"until",
"=",
"datetime",
".",
"datetime",
".",
"now",
"(",
")",
"if",
"since",
"is",
"None",
":",
"since",
"=",
"until",
"-",
"datetime",
".",
"timedelta",
"(",
"seconds",
"=",
"seconds",
")",
"dt",
"=",
"until",
"-",
"since",
"if",
"dt",
">",
"datetime",
".",
"timedelta",
"(",
"seconds",
"=",
"seconds",
")",
":",
"raise",
"InvalidArguments",
"(",
"until",
",",
"since",
")",
"kwargs",
"[",
"'since'",
"]",
"=",
"since",
".",
"isoformat",
"(",
")",
"kwargs",
"[",
"'until'",
"]",
"=",
"until",
".",
"isoformat",
"(",
")",
"return",
"getattr",
"(",
"Entity",
",",
"'find'",
")",
".",
"__func__",
"(",
"cls",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] | Find notifications.
Optional kwargs are:
since:
datetime instance
until:
datetime instance
If not specified, until will default to now(), and since will default
to 30 days prior to until.
As per PD spec, date range must not exceed 1 month. | [
"Find",
"notifications",
"."
] | python | train |
ucbvislab/radiotool | radiotool/composer/composition.py | https://github.com/ucbvislab/radiotool/blob/01c9d878a811cf400b1482896d641d9c95e83ded/radiotool/composer/composition.py#L98-L105 | def add_segments(self, segments):
"""Add a list of segments to the composition
:param segments: Segments to add to composition
:type segments: list of :py:class:`radiotool.composer.Segment`
"""
self.tracks.update([seg.track for seg in segments])
self.segments.extend(segments) | [
"def",
"add_segments",
"(",
"self",
",",
"segments",
")",
":",
"self",
".",
"tracks",
".",
"update",
"(",
"[",
"seg",
".",
"track",
"for",
"seg",
"in",
"segments",
"]",
")",
"self",
".",
"segments",
".",
"extend",
"(",
"segments",
")"
] | Add a list of segments to the composition
:param segments: Segments to add to composition
:type segments: list of :py:class:`radiotool.composer.Segment` | [
"Add",
"a",
"list",
"of",
"segments",
"to",
"the",
"composition"
] | python | train |
Esri/ArcREST | src/arcrest/hostedservice/service.py | https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/hostedservice/service.py#L535-L552 | def refresh(self, serviceDefinition=True):
"""
The refresh operation refreshes a service, which clears the web
server cache for the service.
"""
url = self._url + "/MapServer/refresh"
params = {
"f" : "json",
"serviceDefinition" : serviceDefinition
}
res = self._post(url=self._url,
param_dict=params,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port)
self.__init()
return res | [
"def",
"refresh",
"(",
"self",
",",
"serviceDefinition",
"=",
"True",
")",
":",
"url",
"=",
"self",
".",
"_url",
"+",
"\"/MapServer/refresh\"",
"params",
"=",
"{",
"\"f\"",
":",
"\"json\"",
",",
"\"serviceDefinition\"",
":",
"serviceDefinition",
"}",
"res",
"=",
"self",
".",
"_post",
"(",
"url",
"=",
"self",
".",
"_url",
",",
"param_dict",
"=",
"params",
",",
"securityHandler",
"=",
"self",
".",
"_securityHandler",
",",
"proxy_url",
"=",
"self",
".",
"_proxy_url",
",",
"proxy_port",
"=",
"self",
".",
"_proxy_port",
")",
"self",
".",
"__init",
"(",
")",
"return",
"res"
] | The refresh operation refreshes a service, which clears the web
server cache for the service. | [
"The",
"refresh",
"operation",
"refreshes",
"a",
"service",
"which",
"clears",
"the",
"web",
"server",
"cache",
"for",
"the",
"service",
"."
] | python | train |
census-instrumentation/opencensus-python | contrib/opencensus-ext-google-cloud-clientlibs/opencensus/ext/google_cloud_clientlibs/trace.py | https://github.com/census-instrumentation/opencensus-python/blob/992b223f7e34c5dcb65922b7d5c827e7a1351e7d/contrib/opencensus-ext-google-cloud-clientlibs/opencensus/ext/google_cloud_clientlibs/trace.py#L50-L76 | def trace_grpc(tracer=None):
"""Integrate with gRPC."""
# Wrap google.cloud._helpers.make_secure_channel
make_secure_channel_func = getattr(_helpers, MAKE_SECURE_CHANNEL)
make_secure_channel_wrapped = wrap_make_secure_channel(
make_secure_channel_func, tracer)
setattr(
_helpers,
MAKE_SECURE_CHANNEL,
make_secure_channel_wrapped)
# Wrap the grpc.insecure_channel.
insecure_channel_func = getattr(grpc, INSECURE_CHANNEL)
insecure_channel_wrapped = wrap_insecure_channel(
insecure_channel_func, tracer)
setattr(
grpc,
INSECURE_CHANNEL,
insecure_channel_wrapped)
# Wrap google.api_core.grpc_helpers.create_channel
create_channel_func = getattr(grpc_helpers, CREATE_CHANNEL)
create_channel_wrapped = wrap_create_channel(create_channel_func, tracer)
setattr(
grpc_helpers,
CREATE_CHANNEL,
create_channel_wrapped) | [
"def",
"trace_grpc",
"(",
"tracer",
"=",
"None",
")",
":",
"# Wrap google.cloud._helpers.make_secure_channel",
"make_secure_channel_func",
"=",
"getattr",
"(",
"_helpers",
",",
"MAKE_SECURE_CHANNEL",
")",
"make_secure_channel_wrapped",
"=",
"wrap_make_secure_channel",
"(",
"make_secure_channel_func",
",",
"tracer",
")",
"setattr",
"(",
"_helpers",
",",
"MAKE_SECURE_CHANNEL",
",",
"make_secure_channel_wrapped",
")",
"# Wrap the grpc.insecure_channel.",
"insecure_channel_func",
"=",
"getattr",
"(",
"grpc",
",",
"INSECURE_CHANNEL",
")",
"insecure_channel_wrapped",
"=",
"wrap_insecure_channel",
"(",
"insecure_channel_func",
",",
"tracer",
")",
"setattr",
"(",
"grpc",
",",
"INSECURE_CHANNEL",
",",
"insecure_channel_wrapped",
")",
"# Wrap google.api_core.grpc_helpers.create_channel",
"create_channel_func",
"=",
"getattr",
"(",
"grpc_helpers",
",",
"CREATE_CHANNEL",
")",
"create_channel_wrapped",
"=",
"wrap_create_channel",
"(",
"create_channel_func",
",",
"tracer",
")",
"setattr",
"(",
"grpc_helpers",
",",
"CREATE_CHANNEL",
",",
"create_channel_wrapped",
")"
] | Integrate with gRPC. | [
"Integrate",
"with",
"gRPC",
"."
] | python | train |
StorjOld/plowshare-wrapper | plowshare/plowshare.py | https://github.com/StorjOld/plowshare-wrapper/blob/edb38d01fd1decabf92cc4f536d7404dca6a977c/plowshare/plowshare.py#L258-L273 | def parse_output(self, hostname, output):
"""Parse plowup's output.
For now, we just return the last line.
:param hostname: Name of host you are working with.
:type hostname: str
:param output: Dictionary containing information about a plowshare
action.
:type output: dict
:returns: Parsed and decoded output list.
:rtype: list
"""
if isinstance(output, bytes):
output = output.decode('utf-8')
return output.split()[-1] | [
"def",
"parse_output",
"(",
"self",
",",
"hostname",
",",
"output",
")",
":",
"if",
"isinstance",
"(",
"output",
",",
"bytes",
")",
":",
"output",
"=",
"output",
".",
"decode",
"(",
"'utf-8'",
")",
"return",
"output",
".",
"split",
"(",
")",
"[",
"-",
"1",
"]"
] | Parse plowup's output.
For now, we just return the last line.
:param hostname: Name of host you are working with.
:type hostname: str
:param output: Dictionary containing information about a plowshare
action.
:type output: dict
:returns: Parsed and decoded output list.
:rtype: list | [
"Parse",
"plowup",
"s",
"output",
"."
] | python | train |
mila-iqia/fuel | fuel/converters/ilsvrc2010.py | https://github.com/mila-iqia/fuel/blob/1d6292dc25e3a115544237e392e61bff6631d23c/fuel/converters/ilsvrc2010.py#L390-L426 | def load_from_tar_or_patch(tar, image_filename, patch_images):
"""Do everything necessary to process an image inside a TAR.
Parameters
----------
tar : `TarFile` instance
The tar from which to read `image_filename`.
image_filename : str
Fully-qualified path inside of `tar` from which to read an
image file.
patch_images : dict
A dictionary containing filenames (without path) of replacements
to be substituted in place of the version of the same file found
in `tar`.
Returns
-------
image_data : bytes
The JPEG bytes representing either the image from the TAR archive
or its replacement from the patch dictionary.
patched : bool
True if the image was retrieved from the patch dictionary. False
if it was retrieved from the TAR file.
"""
patched = True
image_bytes = patch_images.get(os.path.basename(image_filename), None)
if image_bytes is None:
patched = False
try:
image_bytes = tar.extractfile(image_filename).read()
numpy.array(Image.open(io.BytesIO(image_bytes)))
except (IOError, OSError):
with gzip.GzipFile(fileobj=tar.extractfile(image_filename)) as gz:
image_bytes = gz.read()
numpy.array(Image.open(io.BytesIO(image_bytes)))
return image_bytes, patched | [
"def",
"load_from_tar_or_patch",
"(",
"tar",
",",
"image_filename",
",",
"patch_images",
")",
":",
"patched",
"=",
"True",
"image_bytes",
"=",
"patch_images",
".",
"get",
"(",
"os",
".",
"path",
".",
"basename",
"(",
"image_filename",
")",
",",
"None",
")",
"if",
"image_bytes",
"is",
"None",
":",
"patched",
"=",
"False",
"try",
":",
"image_bytes",
"=",
"tar",
".",
"extractfile",
"(",
"image_filename",
")",
".",
"read",
"(",
")",
"numpy",
".",
"array",
"(",
"Image",
".",
"open",
"(",
"io",
".",
"BytesIO",
"(",
"image_bytes",
")",
")",
")",
"except",
"(",
"IOError",
",",
"OSError",
")",
":",
"with",
"gzip",
".",
"GzipFile",
"(",
"fileobj",
"=",
"tar",
".",
"extractfile",
"(",
"image_filename",
")",
")",
"as",
"gz",
":",
"image_bytes",
"=",
"gz",
".",
"read",
"(",
")",
"numpy",
".",
"array",
"(",
"Image",
".",
"open",
"(",
"io",
".",
"BytesIO",
"(",
"image_bytes",
")",
")",
")",
"return",
"image_bytes",
",",
"patched"
] | Do everything necessary to process an image inside a TAR.
Parameters
----------
tar : `TarFile` instance
The tar from which to read `image_filename`.
image_filename : str
Fully-qualified path inside of `tar` from which to read an
image file.
patch_images : dict
A dictionary containing filenames (without path) of replacements
to be substituted in place of the version of the same file found
in `tar`.
Returns
-------
image_data : bytes
The JPEG bytes representing either the image from the TAR archive
or its replacement from the patch dictionary.
patched : bool
True if the image was retrieved from the patch dictionary. False
if it was retrieved from the TAR file. | [
"Do",
"everything",
"necessary",
"to",
"process",
"an",
"image",
"inside",
"a",
"TAR",
"."
] | python | train |
apache/incubator-heron | third_party/python/cpplint/cpplint.py | https://github.com/apache/incubator-heron/blob/ad10325a0febe89ad337e561ebcbe37ec5d9a5ac/third_party/python/cpplint/cpplint.py#L5479-L5498 | def ExpectingFunctionArgs(clean_lines, linenum):
"""Checks whether where function type arguments are expected.
Args:
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
Returns:
True if the line at 'linenum' is inside something that expects arguments
of function types.
"""
line = clean_lines.elided[linenum]
return (Match(r'^\s*MOCK_(CONST_)?METHOD\d+(_T)?\(', line) or
(linenum >= 2 and
(Match(r'^\s*MOCK_(?:CONST_)?METHOD\d+(?:_T)?\((?:\S+,)?\s*$',
clean_lines.elided[linenum - 1]) or
Match(r'^\s*MOCK_(?:CONST_)?METHOD\d+(?:_T)?\(\s*$',
clean_lines.elided[linenum - 2]) or
Search(r'\bstd::m?function\s*\<\s*$',
clean_lines.elided[linenum - 1])))) | [
"def",
"ExpectingFunctionArgs",
"(",
"clean_lines",
",",
"linenum",
")",
":",
"line",
"=",
"clean_lines",
".",
"elided",
"[",
"linenum",
"]",
"return",
"(",
"Match",
"(",
"r'^\\s*MOCK_(CONST_)?METHOD\\d+(_T)?\\('",
",",
"line",
")",
"or",
"(",
"linenum",
">=",
"2",
"and",
"(",
"Match",
"(",
"r'^\\s*MOCK_(?:CONST_)?METHOD\\d+(?:_T)?\\((?:\\S+,)?\\s*$'",
",",
"clean_lines",
".",
"elided",
"[",
"linenum",
"-",
"1",
"]",
")",
"or",
"Match",
"(",
"r'^\\s*MOCK_(?:CONST_)?METHOD\\d+(?:_T)?\\(\\s*$'",
",",
"clean_lines",
".",
"elided",
"[",
"linenum",
"-",
"2",
"]",
")",
"or",
"Search",
"(",
"r'\\bstd::m?function\\s*\\<\\s*$'",
",",
"clean_lines",
".",
"elided",
"[",
"linenum",
"-",
"1",
"]",
")",
")",
")",
")"
] | Checks whether where function type arguments are expected.
Args:
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
Returns:
True if the line at 'linenum' is inside something that expects arguments
of function types. | [
"Checks",
"whether",
"where",
"function",
"type",
"arguments",
"are",
"expected",
"."
] | python | valid |
townsenddw/jhubctl | jhubctl/hubs/hubs.py | https://github.com/townsenddw/jhubctl/blob/c8c20f86a16e9d01dd90e4607d81423417cc773b/jhubctl/hubs/hubs.py#L22-L41 | def get_hubs(self):
"""Get a list of hubs names.
Returns
-------
hubs : list
List of hub names
"""
# Use helm to get a list of hubs.
output = helm(
'list',
'-q'
)
# Check if an error occurred.
if output.returncode != 0:
print("Something went wrong!")
print(output.stderr)
else:
hubs = output.stdout.split()
return hubs | [
"def",
"get_hubs",
"(",
"self",
")",
":",
"# Use helm to get a list of hubs.",
"output",
"=",
"helm",
"(",
"'list'",
",",
"'-q'",
")",
"# Check if an error occurred.",
"if",
"output",
".",
"returncode",
"!=",
"0",
":",
"print",
"(",
"\"Something went wrong!\"",
")",
"print",
"(",
"output",
".",
"stderr",
")",
"else",
":",
"hubs",
"=",
"output",
".",
"stdout",
".",
"split",
"(",
")",
"return",
"hubs"
] | Get a list of hubs names.
Returns
-------
hubs : list
List of hub names | [
"Get",
"a",
"list",
"of",
"hubs",
"names",
".",
"Returns",
"-------",
"hubs",
":",
"list",
"List",
"of",
"hub",
"names"
] | python | train |
BD2KGenomics/protect | src/protect/addons/assess_immunotherapy_resistance.py | https://github.com/BD2KGenomics/protect/blob/06310682c50dcf8917b912c8e551299ff7ee41ce/src/protect/addons/assess_immunotherapy_resistance.py#L40-L130 | def assess_itx_resistance(job, gene_expression, univ_options, reports_options):
"""
Assess the prevalence of the various genes in various cancer pathways and return a report in the txt
format.
:param toil.fileStore.FileID gene_expression: fsID for the rsem gene expression file
:param dict univ_options: Dict of universal options used by almost all tools
:param dict reports_options: Options specific to reporting modules
:return: The fsID for the itx resistance report file
:rtype: toil.fileStore.FileID
"""
work_dir = os.getcwd()
tumor_type = univ_options['tumor_type']
# Get the input files
input_files = {
'rsem_quant.tsv': gene_expression,
'itx_resistance.tsv.tar.gz': reports_options['itx_resistance_file'],
'immune_resistance_pathways.json.tar.gz': reports_options['immune_resistance_pathways_file']}
input_files = get_files_from_filestore(job, input_files, work_dir, docker=False)
input_files['itx_resistance.tsv'] = untargz(input_files['itx_resistance.tsv.tar.gz'], work_dir)
input_files['immune_resistance_pathways.json'] = untargz(input_files['immune_resistance_pathways.json.tar.gz'], work_dir)
full_data = pd.read_table(input_files['itx_resistance.tsv'], index_col=0)
# Read pathways descriptions and cancer pathway data
with open(input_files['immune_resistance_pathways.json']) as json_file:
json_data = json.load(json_file)
# Read patient file
patient_df = pd.read_csv('rsem_quant.tsv', sep=' ', delimiter='\t', header='infer', index_col=0)
patient_df.index = (patient_df.index).str.replace('\\..*$', '')
with open('immunotherapy_resistance_report.txt', 'w') as report_file:
# Check if data exsits for specified tumor type
try:
pathways = json_data['Cancer_to_pathway'][tumor_type]
except KeyError:
print('Data not available for ' + tumor_type, file=report_file)
else:
# If data exists, write a report
for pathway in pathways:
up_is_good = json_data['Pathways'][pathway]['up_is_good']
if up_is_good:
comp_fn = lambda x, y: x >= y
else:
comp_fn = lambda x, y: x < y
# Describe pathway and genes for it
print('Pathway: ' + pathway + '\n', file=report_file)
print ('Papers: ' + json_data['Pathways'][pathway]['paper'], file=report_file)
description = json_data['Pathways'][pathway]['description']
print('Description of pathway:\n' + textwrap.fill(description, width=100),
file=report_file)
print('Pathway genes: ', file=report_file)
print('\t{:10}{:<20}{:<20}{:<12}'.format('Gene', 'GTEX Median',
'TCGA N Median', 'Observed'),
file=report_file)
status = []
# Write TCGA, GTEX, and observed values
for gene in json_data['Pathways'][pathway]['genes']:
gtex = '{0:.2f}'.format(
float(full_data.loc[gene, TCGAToGTEx[tumor_type]])) \
if gene in full_data.index else 'NA'
tcga = '{0:.2f}'.format(
float(full_data.loc[gene, tumor_type + ' normal'])) \
if gene in full_data.index else 'NA'
tpm_value = '{0:.2f}'.format(float(patient_df.loc[gene, 'TPM'])) \
if gene in patient_df.index else 'NA'
ensg = json_data['Pathways'][pathway]['genes'][gene]
print('\t{:10}{:<20}{:<20}{:<12}'.format(ensg, gtex, tcga, tpm_value),
file=report_file)
if gtex != 'NA' and tpm_value != 'NA':
tcga_bool = comp_fn(float(tpm_value), float(tcga))
gtex_bool = comp_fn(float(tpm_value), float(gtex))
status.append(tcga_bool and gtex_bool)
else:
status.append(False)
# Based on the number of genes with expression values above normal, assess the status
print ('Status: ' + json_data['Pathways'][pathway]['status'][
str(sum(status) >= 0.75 * len(status))] + '\n', file=report_file)
output_file = job.fileStore.writeGlobalFile(report_file.name)
export_results(job, output_file, report_file.name, univ_options, subfolder='reports')
job.fileStore.logToMaster('Ran create immunotherapy resistance report on %s successfully'
% univ_options['patient'])
return output_file | [
"def",
"assess_itx_resistance",
"(",
"job",
",",
"gene_expression",
",",
"univ_options",
",",
"reports_options",
")",
":",
"work_dir",
"=",
"os",
".",
"getcwd",
"(",
")",
"tumor_type",
"=",
"univ_options",
"[",
"'tumor_type'",
"]",
"# Get the input files",
"input_files",
"=",
"{",
"'rsem_quant.tsv'",
":",
"gene_expression",
",",
"'itx_resistance.tsv.tar.gz'",
":",
"reports_options",
"[",
"'itx_resistance_file'",
"]",
",",
"'immune_resistance_pathways.json.tar.gz'",
":",
"reports_options",
"[",
"'immune_resistance_pathways_file'",
"]",
"}",
"input_files",
"=",
"get_files_from_filestore",
"(",
"job",
",",
"input_files",
",",
"work_dir",
",",
"docker",
"=",
"False",
")",
"input_files",
"[",
"'itx_resistance.tsv'",
"]",
"=",
"untargz",
"(",
"input_files",
"[",
"'itx_resistance.tsv.tar.gz'",
"]",
",",
"work_dir",
")",
"input_files",
"[",
"'immune_resistance_pathways.json'",
"]",
"=",
"untargz",
"(",
"input_files",
"[",
"'immune_resistance_pathways.json.tar.gz'",
"]",
",",
"work_dir",
")",
"full_data",
"=",
"pd",
".",
"read_table",
"(",
"input_files",
"[",
"'itx_resistance.tsv'",
"]",
",",
"index_col",
"=",
"0",
")",
"# Read pathways descriptions and cancer pathway data",
"with",
"open",
"(",
"input_files",
"[",
"'immune_resistance_pathways.json'",
"]",
")",
"as",
"json_file",
":",
"json_data",
"=",
"json",
".",
"load",
"(",
"json_file",
")",
"# Read patient file",
"patient_df",
"=",
"pd",
".",
"read_csv",
"(",
"'rsem_quant.tsv'",
",",
"sep",
"=",
"' '",
",",
"delimiter",
"=",
"'\\t'",
",",
"header",
"=",
"'infer'",
",",
"index_col",
"=",
"0",
")",
"patient_df",
".",
"index",
"=",
"(",
"patient_df",
".",
"index",
")",
".",
"str",
".",
"replace",
"(",
"'\\\\..*$'",
",",
"''",
")",
"with",
"open",
"(",
"'immunotherapy_resistance_report.txt'",
",",
"'w'",
")",
"as",
"report_file",
":",
"# Check if data exsits for specified tumor type",
"try",
":",
"pathways",
"=",
"json_data",
"[",
"'Cancer_to_pathway'",
"]",
"[",
"tumor_type",
"]",
"except",
"KeyError",
":",
"print",
"(",
"'Data not available for '",
"+",
"tumor_type",
",",
"file",
"=",
"report_file",
")",
"else",
":",
"# If data exists, write a report",
"for",
"pathway",
"in",
"pathways",
":",
"up_is_good",
"=",
"json_data",
"[",
"'Pathways'",
"]",
"[",
"pathway",
"]",
"[",
"'up_is_good'",
"]",
"if",
"up_is_good",
":",
"comp_fn",
"=",
"lambda",
"x",
",",
"y",
":",
"x",
">=",
"y",
"else",
":",
"comp_fn",
"=",
"lambda",
"x",
",",
"y",
":",
"x",
"<",
"y",
"# Describe pathway and genes for it",
"print",
"(",
"'Pathway: '",
"+",
"pathway",
"+",
"'\\n'",
",",
"file",
"=",
"report_file",
")",
"print",
"(",
"'Papers: '",
"+",
"json_data",
"[",
"'Pathways'",
"]",
"[",
"pathway",
"]",
"[",
"'paper'",
"]",
",",
"file",
"=",
"report_file",
")",
"description",
"=",
"json_data",
"[",
"'Pathways'",
"]",
"[",
"pathway",
"]",
"[",
"'description'",
"]",
"print",
"(",
"'Description of pathway:\\n'",
"+",
"textwrap",
".",
"fill",
"(",
"description",
",",
"width",
"=",
"100",
")",
",",
"file",
"=",
"report_file",
")",
"print",
"(",
"'Pathway genes: '",
",",
"file",
"=",
"report_file",
")",
"print",
"(",
"'\\t{:10}{:<20}{:<20}{:<12}'",
".",
"format",
"(",
"'Gene'",
",",
"'GTEX Median'",
",",
"'TCGA N Median'",
",",
"'Observed'",
")",
",",
"file",
"=",
"report_file",
")",
"status",
"=",
"[",
"]",
"# Write TCGA, GTEX, and observed values",
"for",
"gene",
"in",
"json_data",
"[",
"'Pathways'",
"]",
"[",
"pathway",
"]",
"[",
"'genes'",
"]",
":",
"gtex",
"=",
"'{0:.2f}'",
".",
"format",
"(",
"float",
"(",
"full_data",
".",
"loc",
"[",
"gene",
",",
"TCGAToGTEx",
"[",
"tumor_type",
"]",
"]",
")",
")",
"if",
"gene",
"in",
"full_data",
".",
"index",
"else",
"'NA'",
"tcga",
"=",
"'{0:.2f}'",
".",
"format",
"(",
"float",
"(",
"full_data",
".",
"loc",
"[",
"gene",
",",
"tumor_type",
"+",
"' normal'",
"]",
")",
")",
"if",
"gene",
"in",
"full_data",
".",
"index",
"else",
"'NA'",
"tpm_value",
"=",
"'{0:.2f}'",
".",
"format",
"(",
"float",
"(",
"patient_df",
".",
"loc",
"[",
"gene",
",",
"'TPM'",
"]",
")",
")",
"if",
"gene",
"in",
"patient_df",
".",
"index",
"else",
"'NA'",
"ensg",
"=",
"json_data",
"[",
"'Pathways'",
"]",
"[",
"pathway",
"]",
"[",
"'genes'",
"]",
"[",
"gene",
"]",
"print",
"(",
"'\\t{:10}{:<20}{:<20}{:<12}'",
".",
"format",
"(",
"ensg",
",",
"gtex",
",",
"tcga",
",",
"tpm_value",
")",
",",
"file",
"=",
"report_file",
")",
"if",
"gtex",
"!=",
"'NA'",
"and",
"tpm_value",
"!=",
"'NA'",
":",
"tcga_bool",
"=",
"comp_fn",
"(",
"float",
"(",
"tpm_value",
")",
",",
"float",
"(",
"tcga",
")",
")",
"gtex_bool",
"=",
"comp_fn",
"(",
"float",
"(",
"tpm_value",
")",
",",
"float",
"(",
"gtex",
")",
")",
"status",
".",
"append",
"(",
"tcga_bool",
"and",
"gtex_bool",
")",
"else",
":",
"status",
".",
"append",
"(",
"False",
")",
"# Based on the number of genes with expression values above normal, assess the status",
"print",
"(",
"'Status: '",
"+",
"json_data",
"[",
"'Pathways'",
"]",
"[",
"pathway",
"]",
"[",
"'status'",
"]",
"[",
"str",
"(",
"sum",
"(",
"status",
")",
">=",
"0.75",
"*",
"len",
"(",
"status",
")",
")",
"]",
"+",
"'\\n'",
",",
"file",
"=",
"report_file",
")",
"output_file",
"=",
"job",
".",
"fileStore",
".",
"writeGlobalFile",
"(",
"report_file",
".",
"name",
")",
"export_results",
"(",
"job",
",",
"output_file",
",",
"report_file",
".",
"name",
",",
"univ_options",
",",
"subfolder",
"=",
"'reports'",
")",
"job",
".",
"fileStore",
".",
"logToMaster",
"(",
"'Ran create immunotherapy resistance report on %s successfully'",
"%",
"univ_options",
"[",
"'patient'",
"]",
")",
"return",
"output_file"
] | Assess the prevalence of the various genes in various cancer pathways and return a report in the txt
format.
:param toil.fileStore.FileID gene_expression: fsID for the rsem gene expression file
:param dict univ_options: Dict of universal options used by almost all tools
:param dict reports_options: Options specific to reporting modules
:return: The fsID for the itx resistance report file
:rtype: toil.fileStore.FileID | [
"Assess",
"the",
"prevalence",
"of",
"the",
"various",
"genes",
"in",
"various",
"cancer",
"pathways",
"and",
"return",
"a",
"report",
"in",
"the",
"txt",
"format",
"."
] | python | train |
woolfson-group/isambard | isambard/optimisation/evo_optimizers.py | https://github.com/woolfson-group/isambard/blob/ebc33b48a28ad217e18f93b910dfba46e6e71e07/isambard/optimisation/evo_optimizers.py#L366-L374 | def _initialize_pop(self, pop_size):
"""Assigns indices to individuals in population."""
self.toolbox.register("individual", self._generate)
self.toolbox.register("population", tools.initRepeat,
list, self.toolbox.individual)
self.population = self.toolbox.population(n=pop_size)
self.assign_fitnesses(self.population)
self._model_count += len(self.population)
return | [
"def",
"_initialize_pop",
"(",
"self",
",",
"pop_size",
")",
":",
"self",
".",
"toolbox",
".",
"register",
"(",
"\"individual\"",
",",
"self",
".",
"_generate",
")",
"self",
".",
"toolbox",
".",
"register",
"(",
"\"population\"",
",",
"tools",
".",
"initRepeat",
",",
"list",
",",
"self",
".",
"toolbox",
".",
"individual",
")",
"self",
".",
"population",
"=",
"self",
".",
"toolbox",
".",
"population",
"(",
"n",
"=",
"pop_size",
")",
"self",
".",
"assign_fitnesses",
"(",
"self",
".",
"population",
")",
"self",
".",
"_model_count",
"+=",
"len",
"(",
"self",
".",
"population",
")",
"return"
] | Assigns indices to individuals in population. | [
"Assigns",
"indices",
"to",
"individuals",
"in",
"population",
"."
] | python | train |
kgiusti/pyngus | pyngus/connection.py | https://github.com/kgiusti/pyngus/blob/5392392046989f1bb84ba938c30e4d48311075f1/pyngus/connection.py#L856-L861 | def _ep_active(self):
"""Both ends of the Endpoint have become active."""
LOG.debug("Connection is up")
if self._handler:
with self._callback_lock:
self._handler.connection_active(self) | [
"def",
"_ep_active",
"(",
"self",
")",
":",
"LOG",
".",
"debug",
"(",
"\"Connection is up\"",
")",
"if",
"self",
".",
"_handler",
":",
"with",
"self",
".",
"_callback_lock",
":",
"self",
".",
"_handler",
".",
"connection_active",
"(",
"self",
")"
] | Both ends of the Endpoint have become active. | [
"Both",
"ends",
"of",
"the",
"Endpoint",
"have",
"become",
"active",
"."
] | python | test |
seequent/properties | properties/base/base.py | https://github.com/seequent/properties/blob/096b07012fff86b0a880c8c018320c3b512751b9/properties/base/base.py#L592-L603 | def _deserialize_class(cls, input_cls_name, trusted, strict):
"""Returns the HasProperties class to use for deserialization"""
if not input_cls_name or input_cls_name == cls.__name__:
return cls
if trusted and input_cls_name in cls._REGISTRY:
return cls._REGISTRY[input_cls_name]
if strict:
raise ValueError(
'Class name {} from deserialization input dictionary does '
'not match input class {}'.format(input_cls_name, cls.__name__)
)
return cls | [
"def",
"_deserialize_class",
"(",
"cls",
",",
"input_cls_name",
",",
"trusted",
",",
"strict",
")",
":",
"if",
"not",
"input_cls_name",
"or",
"input_cls_name",
"==",
"cls",
".",
"__name__",
":",
"return",
"cls",
"if",
"trusted",
"and",
"input_cls_name",
"in",
"cls",
".",
"_REGISTRY",
":",
"return",
"cls",
".",
"_REGISTRY",
"[",
"input_cls_name",
"]",
"if",
"strict",
":",
"raise",
"ValueError",
"(",
"'Class name {} from deserialization input dictionary does '",
"'not match input class {}'",
".",
"format",
"(",
"input_cls_name",
",",
"cls",
".",
"__name__",
")",
")",
"return",
"cls"
] | Returns the HasProperties class to use for deserialization | [
"Returns",
"the",
"HasProperties",
"class",
"to",
"use",
"for",
"deserialization"
] | python | train |
JdeRobot/base | src/drivers/MAVLinkServer/MAVProxy/tools/MAVExplorer.py | https://github.com/JdeRobot/base/blob/303b18992785b2fe802212f2d758a60873007f1f/src/drivers/MAVLinkServer/MAVProxy/tools/MAVExplorer.py#L74-L89 | def menu_callback(m):
'''called on menu selection'''
if m.returnkey.startswith('# '):
cmd = m.returnkey[2:]
if m.handler is not None:
if m.handler_result is None:
return
cmd += m.handler_result
process_stdin(cmd)
elif m.returnkey == 'menuSettings':
wxsettings.WXSettings(mestate.settings)
elif m.returnkey.startswith("mode-"):
idx = int(m.returnkey[5:])
mestate.flightmode_selections[idx] = m.IsChecked()
else:
print('Unknown menu selection: %s' % m.returnkey) | [
"def",
"menu_callback",
"(",
"m",
")",
":",
"if",
"m",
".",
"returnkey",
".",
"startswith",
"(",
"'# '",
")",
":",
"cmd",
"=",
"m",
".",
"returnkey",
"[",
"2",
":",
"]",
"if",
"m",
".",
"handler",
"is",
"not",
"None",
":",
"if",
"m",
".",
"handler_result",
"is",
"None",
":",
"return",
"cmd",
"+=",
"m",
".",
"handler_result",
"process_stdin",
"(",
"cmd",
")",
"elif",
"m",
".",
"returnkey",
"==",
"'menuSettings'",
":",
"wxsettings",
".",
"WXSettings",
"(",
"mestate",
".",
"settings",
")",
"elif",
"m",
".",
"returnkey",
".",
"startswith",
"(",
"\"mode-\"",
")",
":",
"idx",
"=",
"int",
"(",
"m",
".",
"returnkey",
"[",
"5",
":",
"]",
")",
"mestate",
".",
"flightmode_selections",
"[",
"idx",
"]",
"=",
"m",
".",
"IsChecked",
"(",
")",
"else",
":",
"print",
"(",
"'Unknown menu selection: %s'",
"%",
"m",
".",
"returnkey",
")"
] | called on menu selection | [
"called",
"on",
"menu",
"selection"
] | python | train |
rueckstiess/mtools | mtools/util/logevent.py | https://github.com/rueckstiess/mtools/blob/a6a22910c3569c0c8a3908660ca218a4557e4249/mtools/util/logevent.py#L282-L333 | def _match_datetime_pattern(self, tokens):
"""
Match the datetime pattern at the beginning of the token list.
There are several formats that this method needs to understand
and distinguish between (see MongoDB's SERVER-7965):
ctime-pre2.4 Wed Dec 31 19:00:00
ctime Wed Dec 31 19:00:00.000
iso8601-utc 1970-01-01T00:00:00.000Z
iso8601-local 1969-12-31T19:00:00.000+0500
"""
# first check: less than 4 tokens can't be ctime
assume_iso8601_format = len(tokens) < 4
# check for ctime-pre-2.4 or ctime format
if not assume_iso8601_format:
weekday, month, day, time = tokens[:4]
if (len(tokens) < 4 or (weekday not in self.weekdays) or
(month not in self.months) or not day.isdigit()):
assume_iso8601_format = True
if assume_iso8601_format:
# sanity check, because the dateutil parser could interpret
# any numbers as a valid date
if not re.match(r'\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}.\d{3}',
tokens[0]):
return None
# convinced that this is a ISO-8601 format, the dateutil parser
# will do the rest
dt = dateutil.parser.parse(tokens[0])
self._datetime_format = "iso8601-utc" \
if tokens[0].endswith('Z') else "iso8601-local"
else:
# assume current year unless self.year_rollover
# is set (from LogFile)
year = datetime.now().year
dt = dateutil.parser.parse(' '.join(tokens[: 4]),
default=datetime(year, 1, 1))
if dt.tzinfo is None:
dt = dt.replace(tzinfo=tzutc())
if self._year_rollover and dt > self._year_rollover:
dt = dt.replace(year=year - 1)
self._datetime_format = "ctime" \
if '.' in tokens[3] else "ctime-pre2.4"
return dt | [
"def",
"_match_datetime_pattern",
"(",
"self",
",",
"tokens",
")",
":",
"# first check: less than 4 tokens can't be ctime",
"assume_iso8601_format",
"=",
"len",
"(",
"tokens",
")",
"<",
"4",
"# check for ctime-pre-2.4 or ctime format",
"if",
"not",
"assume_iso8601_format",
":",
"weekday",
",",
"month",
",",
"day",
",",
"time",
"=",
"tokens",
"[",
":",
"4",
"]",
"if",
"(",
"len",
"(",
"tokens",
")",
"<",
"4",
"or",
"(",
"weekday",
"not",
"in",
"self",
".",
"weekdays",
")",
"or",
"(",
"month",
"not",
"in",
"self",
".",
"months",
")",
"or",
"not",
"day",
".",
"isdigit",
"(",
")",
")",
":",
"assume_iso8601_format",
"=",
"True",
"if",
"assume_iso8601_format",
":",
"# sanity check, because the dateutil parser could interpret",
"# any numbers as a valid date",
"if",
"not",
"re",
".",
"match",
"(",
"r'\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}.\\d{3}'",
",",
"tokens",
"[",
"0",
"]",
")",
":",
"return",
"None",
"# convinced that this is a ISO-8601 format, the dateutil parser",
"# will do the rest",
"dt",
"=",
"dateutil",
".",
"parser",
".",
"parse",
"(",
"tokens",
"[",
"0",
"]",
")",
"self",
".",
"_datetime_format",
"=",
"\"iso8601-utc\"",
"if",
"tokens",
"[",
"0",
"]",
".",
"endswith",
"(",
"'Z'",
")",
"else",
"\"iso8601-local\"",
"else",
":",
"# assume current year unless self.year_rollover",
"# is set (from LogFile)",
"year",
"=",
"datetime",
".",
"now",
"(",
")",
".",
"year",
"dt",
"=",
"dateutil",
".",
"parser",
".",
"parse",
"(",
"' '",
".",
"join",
"(",
"tokens",
"[",
":",
"4",
"]",
")",
",",
"default",
"=",
"datetime",
"(",
"year",
",",
"1",
",",
"1",
")",
")",
"if",
"dt",
".",
"tzinfo",
"is",
"None",
":",
"dt",
"=",
"dt",
".",
"replace",
"(",
"tzinfo",
"=",
"tzutc",
"(",
")",
")",
"if",
"self",
".",
"_year_rollover",
"and",
"dt",
">",
"self",
".",
"_year_rollover",
":",
"dt",
"=",
"dt",
".",
"replace",
"(",
"year",
"=",
"year",
"-",
"1",
")",
"self",
".",
"_datetime_format",
"=",
"\"ctime\"",
"if",
"'.'",
"in",
"tokens",
"[",
"3",
"]",
"else",
"\"ctime-pre2.4\"",
"return",
"dt"
] | Match the datetime pattern at the beginning of the token list.
There are several formats that this method needs to understand
and distinguish between (see MongoDB's SERVER-7965):
ctime-pre2.4 Wed Dec 31 19:00:00
ctime Wed Dec 31 19:00:00.000
iso8601-utc 1970-01-01T00:00:00.000Z
iso8601-local 1969-12-31T19:00:00.000+0500 | [
"Match",
"the",
"datetime",
"pattern",
"at",
"the",
"beginning",
"of",
"the",
"token",
"list",
"."
] | python | train |
mozilla/socorrolib | socorrolib/lib/transform_rules.py | https://github.com/mozilla/socorrolib/blob/4ec08c6a4ee2c8a69150268afdd324f5f22b90c8/socorrolib/lib/transform_rules.py#L254-L278 | def act(self, *args, **kwargs):
"""gather a rules parameters together and run the predicate. If that
returns True, then go on and run the action function
returns:
a tuple indicating the results of applying the predicate and the
action function:
(False, None) - the predicate failed, action function not run
(True, True) - the predicate and action functions succeeded
(True, False) - the predicate succeeded, but the action function
failed"""
pred_args = tuple(args) + tuple(self.predicate_args)
pred_kwargs = kwargs.copy()
pred_kwargs.update(self.predicate_kwargs)
if self.function_invocation_proxy(self.predicate,
pred_args,
pred_kwargs):
act_args = tuple(args) + tuple(self.action_args)
act_kwargs = kwargs.copy()
act_kwargs.update(self.action_kwargs)
bool_result = self.function_invocation_proxy(self.action, act_args,
act_kwargs)
return (True, bool_result)
else:
return (False, None) | [
"def",
"act",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"pred_args",
"=",
"tuple",
"(",
"args",
")",
"+",
"tuple",
"(",
"self",
".",
"predicate_args",
")",
"pred_kwargs",
"=",
"kwargs",
".",
"copy",
"(",
")",
"pred_kwargs",
".",
"update",
"(",
"self",
".",
"predicate_kwargs",
")",
"if",
"self",
".",
"function_invocation_proxy",
"(",
"self",
".",
"predicate",
",",
"pred_args",
",",
"pred_kwargs",
")",
":",
"act_args",
"=",
"tuple",
"(",
"args",
")",
"+",
"tuple",
"(",
"self",
".",
"action_args",
")",
"act_kwargs",
"=",
"kwargs",
".",
"copy",
"(",
")",
"act_kwargs",
".",
"update",
"(",
"self",
".",
"action_kwargs",
")",
"bool_result",
"=",
"self",
".",
"function_invocation_proxy",
"(",
"self",
".",
"action",
",",
"act_args",
",",
"act_kwargs",
")",
"return",
"(",
"True",
",",
"bool_result",
")",
"else",
":",
"return",
"(",
"False",
",",
"None",
")"
] | gather a rules parameters together and run the predicate. If that
returns True, then go on and run the action function
returns:
a tuple indicating the results of applying the predicate and the
action function:
(False, None) - the predicate failed, action function not run
(True, True) - the predicate and action functions succeeded
(True, False) - the predicate succeeded, but the action function
failed | [
"gather",
"a",
"rules",
"parameters",
"together",
"and",
"run",
"the",
"predicate",
".",
"If",
"that",
"returns",
"True",
"then",
"go",
"on",
"and",
"run",
"the",
"action",
"function"
] | python | train |
ARMmbed/mbed-cloud-sdk-python | src/mbed_cloud/certificates/certificates.py | https://github.com/ARMmbed/mbed-cloud-sdk-python/blob/c0af86fb2cdd4dc7ed26f236139241067d293509/src/mbed_cloud/certificates/certificates.py#L176-L195 | def update_certificate(self, certificate_id, **kwargs):
"""Update a certificate.
:param str certificate_id: The certificate id (Required)
:param str certificate_data: X509.v3 trusted certificate in PEM format.
:param str signature: This parameter has been DEPRECATED in the API and does not need to
be provided.
:param str type: type of the certificate. Values: lwm2m or bootstrap.
:param str status: Status of the certificate.
Allowed values: "ACTIVE" | "INACTIVE".
:param str description: Human readable description of this certificate,
not longer than 500 characters.
:returns: Certificate object
:rtype: Certificate
"""
api = self._get_api(iam.DeveloperApi)
cert = Certificate._create_request_map(kwargs)
body = iam.TrustedCertificateReq(**cert)
certificate = Certificate(api.update_certificate(certificate_id, body))
return self.get_certificate(certificate.id) | [
"def",
"update_certificate",
"(",
"self",
",",
"certificate_id",
",",
"*",
"*",
"kwargs",
")",
":",
"api",
"=",
"self",
".",
"_get_api",
"(",
"iam",
".",
"DeveloperApi",
")",
"cert",
"=",
"Certificate",
".",
"_create_request_map",
"(",
"kwargs",
")",
"body",
"=",
"iam",
".",
"TrustedCertificateReq",
"(",
"*",
"*",
"cert",
")",
"certificate",
"=",
"Certificate",
"(",
"api",
".",
"update_certificate",
"(",
"certificate_id",
",",
"body",
")",
")",
"return",
"self",
".",
"get_certificate",
"(",
"certificate",
".",
"id",
")"
] | Update a certificate.
:param str certificate_id: The certificate id (Required)
:param str certificate_data: X509.v3 trusted certificate in PEM format.
:param str signature: This parameter has been DEPRECATED in the API and does not need to
be provided.
:param str type: type of the certificate. Values: lwm2m or bootstrap.
:param str status: Status of the certificate.
Allowed values: "ACTIVE" | "INACTIVE".
:param str description: Human readable description of this certificate,
not longer than 500 characters.
:returns: Certificate object
:rtype: Certificate | [
"Update",
"a",
"certificate",
"."
] | python | train |
mlperf/training | translation/tensorflow/transformer/transformer_main.py | https://github.com/mlperf/training/blob/1c6ae725a81d15437a2b2df05cac0673fde5c3a4/translation/tensorflow/transformer/transformer_main.py#L187-L289 | def train_schedule(
estimator, train_eval_iterations, single_iteration_train_steps=None,
single_iteration_train_epochs=None, bleu_source=None, bleu_ref=None,
bleu_threshold=None):
"""Train and evaluate model, and optionally compute model's BLEU score.
**Step vs. Epoch vs. Iteration**
Steps and epochs are canonical terms used in TensorFlow and general machine
learning. They are used to describe running a single process (train/eval):
- Step refers to running the process through a single or batch of examples.
- Epoch refers to running the process through an entire dataset.
E.g. training a dataset with 100 examples. The dataset is
divided into 20 batches with 5 examples per batch. A single training step
trains the model on one batch. After 20 training steps, the model will have
trained on every batch in the dataset, or, in other words, one epoch.
Meanwhile, iteration is used in this implementation to describe running
multiple processes (training and eval).
- A single iteration:
1. trains the model for a specific number of steps or epochs.
2. evaluates the model.
3. (if source and ref files are provided) compute BLEU score.
This function runs through multiple train+eval+bleu iterations.
Args:
estimator: tf.Estimator containing model to train.
train_eval_iterations: Number of times to repeat the train+eval iteration.
single_iteration_train_steps: Number of steps to train in one iteration.
single_iteration_train_epochs: Number of epochs to train in one iteration.
bleu_source: File containing text to be translated for BLEU calculation.
bleu_ref: File containing reference translations for BLEU calculation.
bleu_threshold: minimum BLEU score before training is stopped.
Raises:
ValueError: if both or none of single_iteration_train_steps and
single_iteration_train_epochs were defined.
"""
# Ensure that exactly one of single_iteration_train_steps and
# single_iteration_train_epochs is defined.
if single_iteration_train_steps is None:
if single_iteration_train_epochs is None:
raise ValueError(
"Exactly one of single_iteration_train_steps or "
"single_iteration_train_epochs must be defined. Both were none.")
else:
if single_iteration_train_epochs is not None:
raise ValueError(
"Exactly one of single_iteration_train_steps or "
"single_iteration_train_epochs must be defined. Both were defined.")
evaluate_bleu = bleu_source is not None and bleu_ref is not None
# Print out training schedule
print("Training schedule:")
if single_iteration_train_epochs is not None:
print("\t1. Train for %d epochs." % single_iteration_train_epochs)
else:
print("\t1. Train for %d steps." % single_iteration_train_steps)
print("\t2. Evaluate model.")
if evaluate_bleu:
print("\t3. Compute BLEU score.")
if bleu_threshold is not None:
print("Repeat above steps until the BLEU score reaches", bleu_threshold)
if not evaluate_bleu or bleu_threshold is None:
print("Repeat above steps %d times." % train_eval_iterations)
if evaluate_bleu:
# Set summary writer to log bleu score.
bleu_writer = tf.summary.FileWriter(
os.path.join(estimator.model_dir, BLEU_DIR))
if bleu_threshold is not None:
# Change loop stopping condition if bleu_threshold is defined.
train_eval_iterations = INF
# Loop training/evaluation/bleu cycles
mlperf_log.transformer_print(key=mlperf_log.TRAIN_LOOP)
for i in xrange(train_eval_iterations):
print("Starting iteration", i + 1)
mlperf_log.transformer_print(key=mlperf_log.TRAIN_EPOCH,
value=i * single_iteration_train_epochs + 1)
# Train the model for single_iteration_train_steps or until the input fn
# runs out of examples (if single_iteration_train_steps is None).
estimator.train(dataset.train_input_fn, steps=single_iteration_train_steps)
mlperf_log.transformer_print(key=mlperf_log.EVAL_START)
eval_results = estimator.evaluate(dataset.eval_input_fn)
print("Evaluation results (iter %d/%d):" % (i + 1, train_eval_iterations),
eval_results)
if evaluate_bleu:
uncased_score, _ = evaluate_and_log_bleu(
estimator, bleu_writer, bleu_source, bleu_ref)
if bleu_threshold is not None and uncased_score > bleu_threshold:
bleu_writer.close()
break
mlperf_log.transformer_print(key=mlperf_log.EVAL_TARGET, value=bleu_threshold)
mlperf_log.transformer_print(key=mlperf_log.EVAL_ACCURACY, value=uncased_score)
mlperf_log.transformer_print(key=mlperf_log.EVAL_STOP) | [
"def",
"train_schedule",
"(",
"estimator",
",",
"train_eval_iterations",
",",
"single_iteration_train_steps",
"=",
"None",
",",
"single_iteration_train_epochs",
"=",
"None",
",",
"bleu_source",
"=",
"None",
",",
"bleu_ref",
"=",
"None",
",",
"bleu_threshold",
"=",
"None",
")",
":",
"# Ensure that exactly one of single_iteration_train_steps and",
"# single_iteration_train_epochs is defined.",
"if",
"single_iteration_train_steps",
"is",
"None",
":",
"if",
"single_iteration_train_epochs",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"\"Exactly one of single_iteration_train_steps or \"",
"\"single_iteration_train_epochs must be defined. Both were none.\"",
")",
"else",
":",
"if",
"single_iteration_train_epochs",
"is",
"not",
"None",
":",
"raise",
"ValueError",
"(",
"\"Exactly one of single_iteration_train_steps or \"",
"\"single_iteration_train_epochs must be defined. Both were defined.\"",
")",
"evaluate_bleu",
"=",
"bleu_source",
"is",
"not",
"None",
"and",
"bleu_ref",
"is",
"not",
"None",
"# Print out training schedule",
"print",
"(",
"\"Training schedule:\"",
")",
"if",
"single_iteration_train_epochs",
"is",
"not",
"None",
":",
"print",
"(",
"\"\\t1. Train for %d epochs.\"",
"%",
"single_iteration_train_epochs",
")",
"else",
":",
"print",
"(",
"\"\\t1. Train for %d steps.\"",
"%",
"single_iteration_train_steps",
")",
"print",
"(",
"\"\\t2. Evaluate model.\"",
")",
"if",
"evaluate_bleu",
":",
"print",
"(",
"\"\\t3. Compute BLEU score.\"",
")",
"if",
"bleu_threshold",
"is",
"not",
"None",
":",
"print",
"(",
"\"Repeat above steps until the BLEU score reaches\"",
",",
"bleu_threshold",
")",
"if",
"not",
"evaluate_bleu",
"or",
"bleu_threshold",
"is",
"None",
":",
"print",
"(",
"\"Repeat above steps %d times.\"",
"%",
"train_eval_iterations",
")",
"if",
"evaluate_bleu",
":",
"# Set summary writer to log bleu score.",
"bleu_writer",
"=",
"tf",
".",
"summary",
".",
"FileWriter",
"(",
"os",
".",
"path",
".",
"join",
"(",
"estimator",
".",
"model_dir",
",",
"BLEU_DIR",
")",
")",
"if",
"bleu_threshold",
"is",
"not",
"None",
":",
"# Change loop stopping condition if bleu_threshold is defined.",
"train_eval_iterations",
"=",
"INF",
"# Loop training/evaluation/bleu cycles",
"mlperf_log",
".",
"transformer_print",
"(",
"key",
"=",
"mlperf_log",
".",
"TRAIN_LOOP",
")",
"for",
"i",
"in",
"xrange",
"(",
"train_eval_iterations",
")",
":",
"print",
"(",
"\"Starting iteration\"",
",",
"i",
"+",
"1",
")",
"mlperf_log",
".",
"transformer_print",
"(",
"key",
"=",
"mlperf_log",
".",
"TRAIN_EPOCH",
",",
"value",
"=",
"i",
"*",
"single_iteration_train_epochs",
"+",
"1",
")",
"# Train the model for single_iteration_train_steps or until the input fn",
"# runs out of examples (if single_iteration_train_steps is None).",
"estimator",
".",
"train",
"(",
"dataset",
".",
"train_input_fn",
",",
"steps",
"=",
"single_iteration_train_steps",
")",
"mlperf_log",
".",
"transformer_print",
"(",
"key",
"=",
"mlperf_log",
".",
"EVAL_START",
")",
"eval_results",
"=",
"estimator",
".",
"evaluate",
"(",
"dataset",
".",
"eval_input_fn",
")",
"print",
"(",
"\"Evaluation results (iter %d/%d):\"",
"%",
"(",
"i",
"+",
"1",
",",
"train_eval_iterations",
")",
",",
"eval_results",
")",
"if",
"evaluate_bleu",
":",
"uncased_score",
",",
"_",
"=",
"evaluate_and_log_bleu",
"(",
"estimator",
",",
"bleu_writer",
",",
"bleu_source",
",",
"bleu_ref",
")",
"if",
"bleu_threshold",
"is",
"not",
"None",
"and",
"uncased_score",
">",
"bleu_threshold",
":",
"bleu_writer",
".",
"close",
"(",
")",
"break",
"mlperf_log",
".",
"transformer_print",
"(",
"key",
"=",
"mlperf_log",
".",
"EVAL_TARGET",
",",
"value",
"=",
"bleu_threshold",
")",
"mlperf_log",
".",
"transformer_print",
"(",
"key",
"=",
"mlperf_log",
".",
"EVAL_ACCURACY",
",",
"value",
"=",
"uncased_score",
")",
"mlperf_log",
".",
"transformer_print",
"(",
"key",
"=",
"mlperf_log",
".",
"EVAL_STOP",
")"
] | Train and evaluate model, and optionally compute model's BLEU score.
**Step vs. Epoch vs. Iteration**
Steps and epochs are canonical terms used in TensorFlow and general machine
learning. They are used to describe running a single process (train/eval):
- Step refers to running the process through a single or batch of examples.
- Epoch refers to running the process through an entire dataset.
E.g. training a dataset with 100 examples. The dataset is
divided into 20 batches with 5 examples per batch. A single training step
trains the model on one batch. After 20 training steps, the model will have
trained on every batch in the dataset, or, in other words, one epoch.
Meanwhile, iteration is used in this implementation to describe running
multiple processes (training and eval).
- A single iteration:
1. trains the model for a specific number of steps or epochs.
2. evaluates the model.
3. (if source and ref files are provided) compute BLEU score.
This function runs through multiple train+eval+bleu iterations.
Args:
estimator: tf.Estimator containing model to train.
train_eval_iterations: Number of times to repeat the train+eval iteration.
single_iteration_train_steps: Number of steps to train in one iteration.
single_iteration_train_epochs: Number of epochs to train in one iteration.
bleu_source: File containing text to be translated for BLEU calculation.
bleu_ref: File containing reference translations for BLEU calculation.
bleu_threshold: minimum BLEU score before training is stopped.
Raises:
ValueError: if both or none of single_iteration_train_steps and
single_iteration_train_epochs were defined. | [
"Train",
"and",
"evaluate",
"model",
"and",
"optionally",
"compute",
"model",
"s",
"BLEU",
"score",
"."
] | python | train |
saltstack/salt | salt/modules/openvswitch.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/openvswitch.py#L607-L635 | def db_set(table, record, column, value, if_exists=False):
'''
Sets a column's value for a specific record.
Args:
table: A string - name of the database table.
record: A string - identifier of the record.
column: A string - name of the column.
value: A string - the value to be set
if_exists: A boolean - if True, it is not an error if the record does
not exist.
Returns:
None on success and an error message on failure.
CLI Example:
.. code-block:: bash
salt '*' openvswitch.db_set Interface br0 mac 02:03:04:05:06:07
'''
cmd = ['ovs-vsctl']
if if_exists:
cmd += ['--if-exists']
cmd += ['set', table, record, '{0}={1}'.format(column, json.dumps(value))]
result = __salt__['cmd.run_all'](cmd)
if result['retcode'] != 0:
return result['stderr']
else:
return None | [
"def",
"db_set",
"(",
"table",
",",
"record",
",",
"column",
",",
"value",
",",
"if_exists",
"=",
"False",
")",
":",
"cmd",
"=",
"[",
"'ovs-vsctl'",
"]",
"if",
"if_exists",
":",
"cmd",
"+=",
"[",
"'--if-exists'",
"]",
"cmd",
"+=",
"[",
"'set'",
",",
"table",
",",
"record",
",",
"'{0}={1}'",
".",
"format",
"(",
"column",
",",
"json",
".",
"dumps",
"(",
"value",
")",
")",
"]",
"result",
"=",
"__salt__",
"[",
"'cmd.run_all'",
"]",
"(",
"cmd",
")",
"if",
"result",
"[",
"'retcode'",
"]",
"!=",
"0",
":",
"return",
"result",
"[",
"'stderr'",
"]",
"else",
":",
"return",
"None"
] | Sets a column's value for a specific record.
Args:
table: A string - name of the database table.
record: A string - identifier of the record.
column: A string - name of the column.
value: A string - the value to be set
if_exists: A boolean - if True, it is not an error if the record does
not exist.
Returns:
None on success and an error message on failure.
CLI Example:
.. code-block:: bash
salt '*' openvswitch.db_set Interface br0 mac 02:03:04:05:06:07 | [
"Sets",
"a",
"column",
"s",
"value",
"for",
"a",
"specific",
"record",
"."
] | python | train |
huge-success/sanic | sanic/blueprints.py | https://github.com/huge-success/sanic/blob/6a4a3f617fdbe1d3ee8bdc9d1b12ad2d0b34acdd/sanic/blueprints.py#L260-L282 | def websocket(
self, uri, host=None, strict_slashes=None, version=None, name=None
):
"""Create a blueprint websocket route from a decorated function.
:param uri: endpoint at which the route will be accessible.
:param host: IP Address of FQDN for the sanic server to use.
:param strict_slashes: Enforce the API urls are requested with a
training */*
:param version: Blueprint Version
:param name: Unique name to identify the Websocket Route
"""
if strict_slashes is None:
strict_slashes = self.strict_slashes
def decorator(handler):
route = FutureRoute(
handler, uri, [], host, strict_slashes, False, version, name
)
self.websocket_routes.append(route)
return handler
return decorator | [
"def",
"websocket",
"(",
"self",
",",
"uri",
",",
"host",
"=",
"None",
",",
"strict_slashes",
"=",
"None",
",",
"version",
"=",
"None",
",",
"name",
"=",
"None",
")",
":",
"if",
"strict_slashes",
"is",
"None",
":",
"strict_slashes",
"=",
"self",
".",
"strict_slashes",
"def",
"decorator",
"(",
"handler",
")",
":",
"route",
"=",
"FutureRoute",
"(",
"handler",
",",
"uri",
",",
"[",
"]",
",",
"host",
",",
"strict_slashes",
",",
"False",
",",
"version",
",",
"name",
")",
"self",
".",
"websocket_routes",
".",
"append",
"(",
"route",
")",
"return",
"handler",
"return",
"decorator"
] | Create a blueprint websocket route from a decorated function.
:param uri: endpoint at which the route will be accessible.
:param host: IP Address of FQDN for the sanic server to use.
:param strict_slashes: Enforce the API urls are requested with a
training */*
:param version: Blueprint Version
:param name: Unique name to identify the Websocket Route | [
"Create",
"a",
"blueprint",
"websocket",
"route",
"from",
"a",
"decorated",
"function",
"."
] | python | train |
ssato/python-anyconfig | src/anyconfig/utils.py | https://github.com/ssato/python-anyconfig/blob/f2f4fb8d8e232aadea866c202e1dd7a5967e2877/src/anyconfig/utils.py#L192-L217 | def is_path_like_object(obj, marker='*'):
"""
Is given object 'obj' a path string, a pathlib.Path, a file / file-like
(stream) or IOInfo namedtuple object?
:param obj:
a path string, pathlib.Path object, a file / file-like or 'IOInfo'
object
:return:
True if 'obj' is a path string or a pathlib.Path object or a file
(stream) object
>>> assert is_path_like_object(__file__)
>>> assert not is_path_like_object("/a/b/c/*.json", '*')
>>> from anyconfig.compat import pathlib
>>> if pathlib is not None:
... assert is_path_like_object(pathlib.Path("a.ini"))
... assert not is_path_like_object(pathlib.Path("x.ini"), 'x')
>>> assert is_path_like_object(open(__file__))
"""
return ((is_path(obj) and marker not in obj) or
(is_path_obj(obj) and marker not in obj.as_posix()) or
is_file_stream(obj) or is_ioinfo(obj)) | [
"def",
"is_path_like_object",
"(",
"obj",
",",
"marker",
"=",
"'*'",
")",
":",
"return",
"(",
"(",
"is_path",
"(",
"obj",
")",
"and",
"marker",
"not",
"in",
"obj",
")",
"or",
"(",
"is_path_obj",
"(",
"obj",
")",
"and",
"marker",
"not",
"in",
"obj",
".",
"as_posix",
"(",
")",
")",
"or",
"is_file_stream",
"(",
"obj",
")",
"or",
"is_ioinfo",
"(",
"obj",
")",
")"
] | Is given object 'obj' a path string, a pathlib.Path, a file / file-like
(stream) or IOInfo namedtuple object?
:param obj:
a path string, pathlib.Path object, a file / file-like or 'IOInfo'
object
:return:
True if 'obj' is a path string or a pathlib.Path object or a file
(stream) object
>>> assert is_path_like_object(__file__)
>>> assert not is_path_like_object("/a/b/c/*.json", '*')
>>> from anyconfig.compat import pathlib
>>> if pathlib is not None:
... assert is_path_like_object(pathlib.Path("a.ini"))
... assert not is_path_like_object(pathlib.Path("x.ini"), 'x')
>>> assert is_path_like_object(open(__file__)) | [
"Is",
"given",
"object",
"obj",
"a",
"path",
"string",
"a",
"pathlib",
".",
"Path",
"a",
"file",
"/",
"file",
"-",
"like",
"(",
"stream",
")",
"or",
"IOInfo",
"namedtuple",
"object?"
] | python | train |
thespacedoctor/fundamentals | fundamentals/mysql/database.py | https://github.com/thespacedoctor/fundamentals/blob/1d2c007ac74442ec2eabde771cfcacdb9c1ab382/fundamentals/mysql/database.py#L85-L125 | def connect(self):
"""connect to the database
**Return:**
- ``dbConn`` -- the database connection
See the class docstring for usage
"""
self.log.debug('starting the ``get`` method')
dbSettings = self.dbSettings
port = False
if "tunnel" in dbSettings and dbSettings["tunnel"]:
port = self._setup_tunnel(
tunnelParameters=dbSettings["tunnel"]
)
# SETUP A DATABASE CONNECTION
host = dbSettings["host"]
user = dbSettings["user"]
passwd = dbSettings["password"]
dbName = dbSettings["db"]
dbConn = ms.connect(
host=host,
user=user,
passwd=passwd,
db=dbName,
port=port,
use_unicode=True,
charset='utf8',
local_infile=1,
client_flag=ms.constants.CLIENT.MULTI_STATEMENTS,
connect_timeout=36000,
max_allowed_packet=51200000
)
if self.autocommit:
dbConn.autocommit(True)
self.log.debug('completed the ``get`` method')
return dbConn | [
"def",
"connect",
"(",
"self",
")",
":",
"self",
".",
"log",
".",
"debug",
"(",
"'starting the ``get`` method'",
")",
"dbSettings",
"=",
"self",
".",
"dbSettings",
"port",
"=",
"False",
"if",
"\"tunnel\"",
"in",
"dbSettings",
"and",
"dbSettings",
"[",
"\"tunnel\"",
"]",
":",
"port",
"=",
"self",
".",
"_setup_tunnel",
"(",
"tunnelParameters",
"=",
"dbSettings",
"[",
"\"tunnel\"",
"]",
")",
"# SETUP A DATABASE CONNECTION",
"host",
"=",
"dbSettings",
"[",
"\"host\"",
"]",
"user",
"=",
"dbSettings",
"[",
"\"user\"",
"]",
"passwd",
"=",
"dbSettings",
"[",
"\"password\"",
"]",
"dbName",
"=",
"dbSettings",
"[",
"\"db\"",
"]",
"dbConn",
"=",
"ms",
".",
"connect",
"(",
"host",
"=",
"host",
",",
"user",
"=",
"user",
",",
"passwd",
"=",
"passwd",
",",
"db",
"=",
"dbName",
",",
"port",
"=",
"port",
",",
"use_unicode",
"=",
"True",
",",
"charset",
"=",
"'utf8'",
",",
"local_infile",
"=",
"1",
",",
"client_flag",
"=",
"ms",
".",
"constants",
".",
"CLIENT",
".",
"MULTI_STATEMENTS",
",",
"connect_timeout",
"=",
"36000",
",",
"max_allowed_packet",
"=",
"51200000",
")",
"if",
"self",
".",
"autocommit",
":",
"dbConn",
".",
"autocommit",
"(",
"True",
")",
"self",
".",
"log",
".",
"debug",
"(",
"'completed the ``get`` method'",
")",
"return",
"dbConn"
] | connect to the database
**Return:**
- ``dbConn`` -- the database connection
See the class docstring for usage | [
"connect",
"to",
"the",
"database"
] | python | train |
chaoss/grimoirelab-kingarthur | arthur/scheduler.py | https://github.com/chaoss/grimoirelab-kingarthur/blob/9d6a638bee68d5e5c511f045eeebf06340fd3252/arthur/scheduler.py#L361-L366 | def _handle_failed_job(self, job):
"""Handle failed jobs"""
task_id = job.kwargs['task_id']
logger.error("Job #%s (task: %s) failed; cancelled",
job.id, task_id) | [
"def",
"_handle_failed_job",
"(",
"self",
",",
"job",
")",
":",
"task_id",
"=",
"job",
".",
"kwargs",
"[",
"'task_id'",
"]",
"logger",
".",
"error",
"(",
"\"Job #%s (task: %s) failed; cancelled\"",
",",
"job",
".",
"id",
",",
"task_id",
")"
] | Handle failed jobs | [
"Handle",
"failed",
"jobs"
] | python | test |
openstax/cnx-archive | cnxarchive/search.py | https://github.com/openstax/cnx-archive/blob/d31d34aa8bbc8a9fde6cd4227a0df92726e8daf4/cnxarchive/search.py#L195-L208 | def highlighted_fulltext(self):
"""Highlight the found terms in the fulltext."""
terms = self.fields.get('fulltext', [])
if not terms:
return None
arguments = {'id': self['id'],
'query': ' & '.join(terms),
}
with db_connect() as db_connection:
with db_connection.cursor() as cursor:
cursor.execute(_read_sql_file('highlighted-fulltext'),
arguments)
hl_fulltext = cursor.fetchone()[0]
return hl_fulltext | [
"def",
"highlighted_fulltext",
"(",
"self",
")",
":",
"terms",
"=",
"self",
".",
"fields",
".",
"get",
"(",
"'fulltext'",
",",
"[",
"]",
")",
"if",
"not",
"terms",
":",
"return",
"None",
"arguments",
"=",
"{",
"'id'",
":",
"self",
"[",
"'id'",
"]",
",",
"'query'",
":",
"' & '",
".",
"join",
"(",
"terms",
")",
",",
"}",
"with",
"db_connect",
"(",
")",
"as",
"db_connection",
":",
"with",
"db_connection",
".",
"cursor",
"(",
")",
"as",
"cursor",
":",
"cursor",
".",
"execute",
"(",
"_read_sql_file",
"(",
"'highlighted-fulltext'",
")",
",",
"arguments",
")",
"hl_fulltext",
"=",
"cursor",
".",
"fetchone",
"(",
")",
"[",
"0",
"]",
"return",
"hl_fulltext"
] | Highlight the found terms in the fulltext. | [
"Highlight",
"the",
"found",
"terms",
"in",
"the",
"fulltext",
"."
] | python | train |
daler/trackhub | trackhub/track.py | https://github.com/daler/trackhub/blob/e4655f79177822529f80b923df117e38e28df702/trackhub/track.py#L454-L472 | def add_subgroups(self, subgroups):
"""
Add a list of SubGroupDefinition objects to this composite.
Note that in contrast to :meth:`BaseTrack`, which takes a single
dictionary indicating the particular subgroups for the track, this
method takes a list of :class:`SubGroupDefinition` objects representing
the allowed subgroups for the composite.
:param subgroups:
List of SubGroupDefinition objects.
"""
if subgroups is None:
subgroups = {}
_subgroups = {}
for sg in subgroups:
assert isinstance(sg, SubGroupDefinition)
_subgroups[sg.name] = sg
self.subgroups = _subgroups | [
"def",
"add_subgroups",
"(",
"self",
",",
"subgroups",
")",
":",
"if",
"subgroups",
"is",
"None",
":",
"subgroups",
"=",
"{",
"}",
"_subgroups",
"=",
"{",
"}",
"for",
"sg",
"in",
"subgroups",
":",
"assert",
"isinstance",
"(",
"sg",
",",
"SubGroupDefinition",
")",
"_subgroups",
"[",
"sg",
".",
"name",
"]",
"=",
"sg",
"self",
".",
"subgroups",
"=",
"_subgroups"
] | Add a list of SubGroupDefinition objects to this composite.
Note that in contrast to :meth:`BaseTrack`, which takes a single
dictionary indicating the particular subgroups for the track, this
method takes a list of :class:`SubGroupDefinition` objects representing
the allowed subgroups for the composite.
:param subgroups:
List of SubGroupDefinition objects. | [
"Add",
"a",
"list",
"of",
"SubGroupDefinition",
"objects",
"to",
"this",
"composite",
"."
] | python | train |
QInfer/python-qinfer | src/qinfer/utils.py | https://github.com/QInfer/python-qinfer/blob/8170c84a0be1723f8c6b09e0d3c7a40a886f1fe3/src/qinfer/utils.py#L163-L202 | def sample_multinomial(N, p, size=None):
r"""
Draws fixed number of samples N from different
multinomial distributions (with the same number dice sides).
:param int N: How many samples to draw from each distribution.
:param np.ndarray p: Probabilities specifying each distribution.
Sum along axis 0 should be 1.
:param size: Output shape. ``int`` or tuple of
``int``s. If the given shape is,
e.g., ``(m, n, k)``, then m * n * k samples are drawn
for each distribution.
Default is None, in which case a single value
is returned for each distribution.
:rtype: np.ndarray
:return: Array of shape ``(p.shape, size)`` or p.shape if
size is ``None``.
"""
# ensure s is array
s = np.array([1]) if size is None else np.array([size]).flatten()
def take_samples(ps):
# we have to flatten to make apply_along_axis work.
return np.random.multinomial(N, ps, np.prod(s)).flatten()
# should have shape (prod(size)*ps.shape[0], ps.shape[1:])
samples = np.apply_along_axis(take_samples, 0, p)
# should have shape (size, p.shape)
samples = samples.reshape(np.concatenate([s, p.shape]))
# should have shape (p.shape, size)
samples = samples.transpose(np.concatenate(
[np.arange(s.ndim, p.ndim+s.ndim), np.arange(s.ndim)]
))
if size is None:
# get rid of trailing singleton dimension.
samples = samples[...,0]
return samples | [
"def",
"sample_multinomial",
"(",
"N",
",",
"p",
",",
"size",
"=",
"None",
")",
":",
"# ensure s is array",
"s",
"=",
"np",
".",
"array",
"(",
"[",
"1",
"]",
")",
"if",
"size",
"is",
"None",
"else",
"np",
".",
"array",
"(",
"[",
"size",
"]",
")",
".",
"flatten",
"(",
")",
"def",
"take_samples",
"(",
"ps",
")",
":",
"# we have to flatten to make apply_along_axis work.",
"return",
"np",
".",
"random",
".",
"multinomial",
"(",
"N",
",",
"ps",
",",
"np",
".",
"prod",
"(",
"s",
")",
")",
".",
"flatten",
"(",
")",
"# should have shape (prod(size)*ps.shape[0], ps.shape[1:])",
"samples",
"=",
"np",
".",
"apply_along_axis",
"(",
"take_samples",
",",
"0",
",",
"p",
")",
"# should have shape (size, p.shape)",
"samples",
"=",
"samples",
".",
"reshape",
"(",
"np",
".",
"concatenate",
"(",
"[",
"s",
",",
"p",
".",
"shape",
"]",
")",
")",
"# should have shape (p.shape, size)",
"samples",
"=",
"samples",
".",
"transpose",
"(",
"np",
".",
"concatenate",
"(",
"[",
"np",
".",
"arange",
"(",
"s",
".",
"ndim",
",",
"p",
".",
"ndim",
"+",
"s",
".",
"ndim",
")",
",",
"np",
".",
"arange",
"(",
"s",
".",
"ndim",
")",
"]",
")",
")",
"if",
"size",
"is",
"None",
":",
"# get rid of trailing singleton dimension.",
"samples",
"=",
"samples",
"[",
"...",
",",
"0",
"]",
"return",
"samples"
] | r"""
Draws fixed number of samples N from different
multinomial distributions (with the same number dice sides).
:param int N: How many samples to draw from each distribution.
:param np.ndarray p: Probabilities specifying each distribution.
Sum along axis 0 should be 1.
:param size: Output shape. ``int`` or tuple of
``int``s. If the given shape is,
e.g., ``(m, n, k)``, then m * n * k samples are drawn
for each distribution.
Default is None, in which case a single value
is returned for each distribution.
:rtype: np.ndarray
:return: Array of shape ``(p.shape, size)`` or p.shape if
size is ``None``. | [
"r",
"Draws",
"fixed",
"number",
"of",
"samples",
"N",
"from",
"different",
"multinomial",
"distributions",
"(",
"with",
"the",
"same",
"number",
"dice",
"sides",
")",
"."
] | python | train |
theislab/scanpy | scanpy/preprocessing/_bbknn.py | https://github.com/theislab/scanpy/blob/9e4e5ee02e04cf618872d9b098e24f0542e8b227/scanpy/preprocessing/_bbknn.py#L1-L84 | def bbknn(adata, batch_key='batch', save_knn=False, copy=False, **kwargs):
"""\
Batch balanced kNN [Park18]_.
Batch balanced kNN alters the kNN procedure to identify each
cell's top neighbours in each batch separately instead of the
entire cell pool with no accounting for batch. Aligns batches in a
quick and lightweight manner.
For use in the scanpy workflow as an alternative to :func:`scanpi.pp.neighbors`.
.. note::
This is just a wrapper of :func:`bbknn.bbknn`: more information
and bug reports `here <https://github.com/Teichlab/bbknn>`__.
Params
------
adata : ``AnnData``
Needs the PCA computed and stored in ``adata.obsm["X_pca"]``.
batch_key : ``str``, optional (default: "batch")
``adata.obs`` column name discriminating between your batches.
neighbors_within_batch : ``int``, optional (default: 3)
How many top neighbours to report for each batch; total number of neighbours
will be this number times the number of batches.
n_pcs : ``int``, optional (default: 50)
How many principal components to use in the analysis.
trim : ``int`` or ``None``, optional (default: ``None``)
If not ``None``, trim the neighbours of each cell to these
many top connectivities. May help with population
independence and improve the tidiness of clustering.
approx : ``bool``, optional (default: ``True``)
If ``True``, use annoy's approximate neighbour finding. This
results in a quicker run time for large datasets while also
potentially increasing the degree of batch correction.
n_trees : ``int``, optional (default: 10)
Only used when ``approx=True``. The number of trees to
construct in the annoy forest. More trees give higher
precision when querying, at the cost of increased run time and
resource intensity.
use_faiss : ``bool``, optional (default: ``True``)
If ``approx=False`` and the metric is "euclidean", use the
faiss package to compute nearest neighbours if installed. This
improves performance at a minor cost to numerical precision as
faiss operates on float32.
metric : ``str`` or ``sklearn.neighbors.DistanceMetric``, optional (default: "angular")
What distance metric to use. If using ``approx=True``, the
options are "angular", "euclidean", "manhattan" and
"hamming". Otherwise, the options are "euclidean", a member of
the ``sklearn.neighbors.KDTree.valid_metrics`` list, or
parameterised ``sklearn.neighbors.DistanceMetric`` `objects
<https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html>`_::
>>> from sklearn import neighbors
>>> neighbors.KDTree.valid_metrics
['p', 'chebyshev', 'cityblock', 'minkowski', 'infinity',
'l2', 'euclidean', 'manhattan', 'l1']
>>> pass_as_metric = neighbors.DistanceMetric.get_metric('minkowski', p=3)
bandwidth : ``float``, optional (default: 1)
``scanpy.neighbors.compute_connectivities_umap`` parameter,
higher values result in a gentler slope of the connectivities
exponentials (i.e. larger connectivity values being returned)
local_connectivity : ``int``, optional (default: 1)
``scanpy.neighbors.compute_connectivities_umap`` parameter,
how many nearest neighbors of each cell are assumed to be
fully connected (and given a connectivity value of 1)
save_knn : ``bool``, optional (default: ``False``)
If ``True``, save the indices of the nearest neighbours for
each cell in ``adata.uns['bbknn']``.
copy : ``bool``, optional (default: ``False``)
If ``True``, return a copy instead of writing to the supplied adata.
Returns
-------
The `adata` with the batch-corrected graph.
"""
params = locals() # Has to be first
kwargs = params.pop('kwargs')
try:
from bbknn import bbknn
except ImportError:
raise ImportError('Please install bbknn: `pip install bbknn`.')
return bbknn(**params, **kwargs) | [
"def",
"bbknn",
"(",
"adata",
",",
"batch_key",
"=",
"'batch'",
",",
"save_knn",
"=",
"False",
",",
"copy",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"params",
"=",
"locals",
"(",
")",
"# Has to be first",
"kwargs",
"=",
"params",
".",
"pop",
"(",
"'kwargs'",
")",
"try",
":",
"from",
"bbknn",
"import",
"bbknn",
"except",
"ImportError",
":",
"raise",
"ImportError",
"(",
"'Please install bbknn: `pip install bbknn`.'",
")",
"return",
"bbknn",
"(",
"*",
"*",
"params",
",",
"*",
"*",
"kwargs",
")"
] | \
Batch balanced kNN [Park18]_.
Batch balanced kNN alters the kNN procedure to identify each
cell's top neighbours in each batch separately instead of the
entire cell pool with no accounting for batch. Aligns batches in a
quick and lightweight manner.
For use in the scanpy workflow as an alternative to :func:`scanpi.pp.neighbors`.
.. note::
This is just a wrapper of :func:`bbknn.bbknn`: more information
and bug reports `here <https://github.com/Teichlab/bbknn>`__.
Params
------
adata : ``AnnData``
Needs the PCA computed and stored in ``adata.obsm["X_pca"]``.
batch_key : ``str``, optional (default: "batch")
``adata.obs`` column name discriminating between your batches.
neighbors_within_batch : ``int``, optional (default: 3)
How many top neighbours to report for each batch; total number of neighbours
will be this number times the number of batches.
n_pcs : ``int``, optional (default: 50)
How many principal components to use in the analysis.
trim : ``int`` or ``None``, optional (default: ``None``)
If not ``None``, trim the neighbours of each cell to these
many top connectivities. May help with population
independence and improve the tidiness of clustering.
approx : ``bool``, optional (default: ``True``)
If ``True``, use annoy's approximate neighbour finding. This
results in a quicker run time for large datasets while also
potentially increasing the degree of batch correction.
n_trees : ``int``, optional (default: 10)
Only used when ``approx=True``. The number of trees to
construct in the annoy forest. More trees give higher
precision when querying, at the cost of increased run time and
resource intensity.
use_faiss : ``bool``, optional (default: ``True``)
If ``approx=False`` and the metric is "euclidean", use the
faiss package to compute nearest neighbours if installed. This
improves performance at a minor cost to numerical precision as
faiss operates on float32.
metric : ``str`` or ``sklearn.neighbors.DistanceMetric``, optional (default: "angular")
What distance metric to use. If using ``approx=True``, the
options are "angular", "euclidean", "manhattan" and
"hamming". Otherwise, the options are "euclidean", a member of
the ``sklearn.neighbors.KDTree.valid_metrics`` list, or
parameterised ``sklearn.neighbors.DistanceMetric`` `objects
<https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html>`_::
>>> from sklearn import neighbors
>>> neighbors.KDTree.valid_metrics
['p', 'chebyshev', 'cityblock', 'minkowski', 'infinity',
'l2', 'euclidean', 'manhattan', 'l1']
>>> pass_as_metric = neighbors.DistanceMetric.get_metric('minkowski', p=3)
bandwidth : ``float``, optional (default: 1)
``scanpy.neighbors.compute_connectivities_umap`` parameter,
higher values result in a gentler slope of the connectivities
exponentials (i.e. larger connectivity values being returned)
local_connectivity : ``int``, optional (default: 1)
``scanpy.neighbors.compute_connectivities_umap`` parameter,
how many nearest neighbors of each cell are assumed to be
fully connected (and given a connectivity value of 1)
save_knn : ``bool``, optional (default: ``False``)
If ``True``, save the indices of the nearest neighbours for
each cell in ``adata.uns['bbknn']``.
copy : ``bool``, optional (default: ``False``)
If ``True``, return a copy instead of writing to the supplied adata.
Returns
-------
The `adata` with the batch-corrected graph. | [
"\\",
"Batch",
"balanced",
"kNN",
"[",
"Park18",
"]",
"_",
"."
] | python | train |
apache/incubator-mxnet | python/mxnet/module/module.py | https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/python/mxnet/module/module.py#L722-L743 | def get_states(self, merge_multi_context=True):
"""Gets states from all devices.
If `merge_multi_context` is ``True``, it is like ``[out1, out2]``. Otherwise, it
is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output
elements are `NDArray`.
Parameters
----------
merge_multi_context : bool
Default is ``True``. In the case when data-parallelism is used, the states
will be collected from multiple devices. A ``True`` value indicate that we
should merge the collected results so that they look like from a single
executor.
Returns
-------
list of NDArray or list of list of NDArray
States
"""
assert self.binded and self.params_initialized
return self._exec_group.get_states(merge_multi_context=merge_multi_context) | [
"def",
"get_states",
"(",
"self",
",",
"merge_multi_context",
"=",
"True",
")",
":",
"assert",
"self",
".",
"binded",
"and",
"self",
".",
"params_initialized",
"return",
"self",
".",
"_exec_group",
".",
"get_states",
"(",
"merge_multi_context",
"=",
"merge_multi_context",
")"
] | Gets states from all devices.
If `merge_multi_context` is ``True``, it is like ``[out1, out2]``. Otherwise, it
is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output
elements are `NDArray`.
Parameters
----------
merge_multi_context : bool
Default is ``True``. In the case when data-parallelism is used, the states
will be collected from multiple devices. A ``True`` value indicate that we
should merge the collected results so that they look like from a single
executor.
Returns
-------
list of NDArray or list of list of NDArray
States | [
"Gets",
"states",
"from",
"all",
"devices",
"."
] | python | train |
JustinLovinger/optimal | optimal/algorithms/pbil.py | https://github.com/JustinLovinger/optimal/blob/ab48a4961697338cc32d50e3a6b06ac989e39c3f/optimal/algorithms/pbil.py#L126-L129 | def _sample(probability_vec):
"""Return random binary string, with given probabilities."""
return map(int,
numpy.random.random(probability_vec.size) <= probability_vec) | [
"def",
"_sample",
"(",
"probability_vec",
")",
":",
"return",
"map",
"(",
"int",
",",
"numpy",
".",
"random",
".",
"random",
"(",
"probability_vec",
".",
"size",
")",
"<=",
"probability_vec",
")"
] | Return random binary string, with given probabilities. | [
"Return",
"random",
"binary",
"string",
"with",
"given",
"probabilities",
"."
] | python | train |
B2W-BIT/aiologger | aiologger/handlers/files.py | https://github.com/B2W-BIT/aiologger/blob/0b366597a8305d5577a267305e81d5e4784cd398/aiologger/handlers/files.py#L276-L356 | def compute_rollover(self, current_time: int) -> int:
"""
Work out the rollover time based on the specified time.
If we are rolling over at midnight or weekly, then the interval is
already known. need to figure out is WHEN the next interval is.
In other words, if you are rolling over at midnight, then your base
interval is 1 day, but you want to start that one day clock at midnight,
not now. So, we have to fudge the `rollover_at` value in order to trigger
the first rollover at the right time. After that, the regular interval
will take care of the rest. Note that this code doesn't care about
leap seconds. :)
"""
result = current_time + self.interval
if (
self.when == RolloverInterval.MIDNIGHT
or self.when in RolloverInterval.WEEK_DAYS
):
if self.utc:
t = time.gmtime(current_time)
else:
t = time.localtime(current_time)
current_hour = t[3]
current_minute = t[4]
current_second = t[5]
current_day = t[6]
# r is the number of seconds left between now and the next rotation
if self.at_time is None:
rotate_ts = ONE_DAY_IN_SECONDS
else:
rotate_ts = (
self.at_time.hour * 60 + self.at_time.minute
) * 60 + self.at_time.second
r = rotate_ts - (
(current_hour * 60 + current_minute) * 60 + current_second
)
if r < 0:
# Rotate time is before the current time (for example when
# self.rotateAt is 13:45 and it now 14:15), rotation is
# tomorrow.
r += ONE_DAY_IN_SECONDS
current_day = (current_day + 1) % 7
result = current_time + r
# If we are rolling over on a certain day, add in the number of days until
# the next rollover, but offset by 1 since we just calculated the time
# until the next day starts. There are three cases:
# Case 1) The day to rollover is today; in this case, do nothing
# Case 2) The day to rollover is further in the interval (i.e., today is
# day 2 (Wednesday) and rollover is on day 6 (Sunday). Days to
# next rollover is simply 6 - 2 - 1, or 3.
# Case 3) The day to rollover is behind us in the interval (i.e., today
# is day 5 (Saturday) and rollover is on day 3 (Thursday).
# Days to rollover is 6 - 5 + 3, or 4. In this case, it's the
# number of days left in the current week (1) plus the number
# of days in the next week until the rollover day (3).
# The calculations described in 2) and 3) above need to have a day added.
# This is because the above time calculation takes us to midnight on this
# day, i.e. the start of the next day.
if self.when in RolloverInterval.WEEK_DAYS:
day = current_day # 0 is Monday
if day != self.day_of_week:
if day < self.day_of_week:
days_to_wait = self.day_of_week - day
else:
days_to_wait = 6 - day + self.day_of_week + 1
new_rollover_at = result + (days_to_wait * (60 * 60 * 24))
if not self.utc:
dst_now = t[-1]
dst_at_rollover = time.localtime(new_rollover_at)[-1]
if dst_now != dst_at_rollover:
if not dst_now:
# DST kicks in before next rollover, so we need to deduct an hour
addend = -ONE_HOUR_IN_SECONDS
else:
# DST bows out before next rollover, so we need to add an hour
addend = ONE_HOUR_IN_SECONDS
new_rollover_at += addend
result = new_rollover_at
return result | [
"def",
"compute_rollover",
"(",
"self",
",",
"current_time",
":",
"int",
")",
"->",
"int",
":",
"result",
"=",
"current_time",
"+",
"self",
".",
"interval",
"if",
"(",
"self",
".",
"when",
"==",
"RolloverInterval",
".",
"MIDNIGHT",
"or",
"self",
".",
"when",
"in",
"RolloverInterval",
".",
"WEEK_DAYS",
")",
":",
"if",
"self",
".",
"utc",
":",
"t",
"=",
"time",
".",
"gmtime",
"(",
"current_time",
")",
"else",
":",
"t",
"=",
"time",
".",
"localtime",
"(",
"current_time",
")",
"current_hour",
"=",
"t",
"[",
"3",
"]",
"current_minute",
"=",
"t",
"[",
"4",
"]",
"current_second",
"=",
"t",
"[",
"5",
"]",
"current_day",
"=",
"t",
"[",
"6",
"]",
"# r is the number of seconds left between now and the next rotation",
"if",
"self",
".",
"at_time",
"is",
"None",
":",
"rotate_ts",
"=",
"ONE_DAY_IN_SECONDS",
"else",
":",
"rotate_ts",
"=",
"(",
"self",
".",
"at_time",
".",
"hour",
"*",
"60",
"+",
"self",
".",
"at_time",
".",
"minute",
")",
"*",
"60",
"+",
"self",
".",
"at_time",
".",
"second",
"r",
"=",
"rotate_ts",
"-",
"(",
"(",
"current_hour",
"*",
"60",
"+",
"current_minute",
")",
"*",
"60",
"+",
"current_second",
")",
"if",
"r",
"<",
"0",
":",
"# Rotate time is before the current time (for example when",
"# self.rotateAt is 13:45 and it now 14:15), rotation is",
"# tomorrow.",
"r",
"+=",
"ONE_DAY_IN_SECONDS",
"current_day",
"=",
"(",
"current_day",
"+",
"1",
")",
"%",
"7",
"result",
"=",
"current_time",
"+",
"r",
"# If we are rolling over on a certain day, add in the number of days until",
"# the next rollover, but offset by 1 since we just calculated the time",
"# until the next day starts. There are three cases:",
"# Case 1) The day to rollover is today; in this case, do nothing",
"# Case 2) The day to rollover is further in the interval (i.e., today is",
"# day 2 (Wednesday) and rollover is on day 6 (Sunday). Days to",
"# next rollover is simply 6 - 2 - 1, or 3.",
"# Case 3) The day to rollover is behind us in the interval (i.e., today",
"# is day 5 (Saturday) and rollover is on day 3 (Thursday).",
"# Days to rollover is 6 - 5 + 3, or 4. In this case, it's the",
"# number of days left in the current week (1) plus the number",
"# of days in the next week until the rollover day (3).",
"# The calculations described in 2) and 3) above need to have a day added.",
"# This is because the above time calculation takes us to midnight on this",
"# day, i.e. the start of the next day.",
"if",
"self",
".",
"when",
"in",
"RolloverInterval",
".",
"WEEK_DAYS",
":",
"day",
"=",
"current_day",
"# 0 is Monday",
"if",
"day",
"!=",
"self",
".",
"day_of_week",
":",
"if",
"day",
"<",
"self",
".",
"day_of_week",
":",
"days_to_wait",
"=",
"self",
".",
"day_of_week",
"-",
"day",
"else",
":",
"days_to_wait",
"=",
"6",
"-",
"day",
"+",
"self",
".",
"day_of_week",
"+",
"1",
"new_rollover_at",
"=",
"result",
"+",
"(",
"days_to_wait",
"*",
"(",
"60",
"*",
"60",
"*",
"24",
")",
")",
"if",
"not",
"self",
".",
"utc",
":",
"dst_now",
"=",
"t",
"[",
"-",
"1",
"]",
"dst_at_rollover",
"=",
"time",
".",
"localtime",
"(",
"new_rollover_at",
")",
"[",
"-",
"1",
"]",
"if",
"dst_now",
"!=",
"dst_at_rollover",
":",
"if",
"not",
"dst_now",
":",
"# DST kicks in before next rollover, so we need to deduct an hour",
"addend",
"=",
"-",
"ONE_HOUR_IN_SECONDS",
"else",
":",
"# DST bows out before next rollover, so we need to add an hour",
"addend",
"=",
"ONE_HOUR_IN_SECONDS",
"new_rollover_at",
"+=",
"addend",
"result",
"=",
"new_rollover_at",
"return",
"result"
] | Work out the rollover time based on the specified time.
If we are rolling over at midnight or weekly, then the interval is
already known. need to figure out is WHEN the next interval is.
In other words, if you are rolling over at midnight, then your base
interval is 1 day, but you want to start that one day clock at midnight,
not now. So, we have to fudge the `rollover_at` value in order to trigger
the first rollover at the right time. After that, the regular interval
will take care of the rest. Note that this code doesn't care about
leap seconds. :) | [
"Work",
"out",
"the",
"rollover",
"time",
"based",
"on",
"the",
"specified",
"time",
"."
] | python | train |
spacetelescope/drizzlepac | drizzlepac/wcs_functions.py | https://github.com/spacetelescope/drizzlepac/blob/15bec3c929a6a869d9e71b9398ced43ede0620f1/drizzlepac/wcs_functions.py#L64-L70 | def backward(self,pixx,pixy):
""" Transform pixx,pixy positions from the output frame back onto their
original positions in the input frame.
"""
skyx,skyy = self.output.wcs_pix2world(pixx,pixy,self.origin)
result = self.input.all_world2pix(skyx,skyy,self.origin)
return result | [
"def",
"backward",
"(",
"self",
",",
"pixx",
",",
"pixy",
")",
":",
"skyx",
",",
"skyy",
"=",
"self",
".",
"output",
".",
"wcs_pix2world",
"(",
"pixx",
",",
"pixy",
",",
"self",
".",
"origin",
")",
"result",
"=",
"self",
".",
"input",
".",
"all_world2pix",
"(",
"skyx",
",",
"skyy",
",",
"self",
".",
"origin",
")",
"return",
"result"
] | Transform pixx,pixy positions from the output frame back onto their
original positions in the input frame. | [
"Transform",
"pixx",
"pixy",
"positions",
"from",
"the",
"output",
"frame",
"back",
"onto",
"their",
"original",
"positions",
"in",
"the",
"input",
"frame",
"."
] | python | train |
MartinThoma/hwrt | hwrt/utils.py | https://github.com/MartinThoma/hwrt/blob/725c21a3d0f5a30b8492cbc184b3688ceb364e1c/hwrt/utils.py#L448-L482 | def load_model(model_file):
"""Load a model by its file. This includes the model itself, but also
the preprocessing queue, the feature list and the output semantics.
"""
# Extract tar
with tarfile.open(model_file) as tar:
tarfolder = tempfile.mkdtemp()
tar.extractall(path=tarfolder)
from . import features
from . import preprocessing
# Get the preprocessing
with open(os.path.join(tarfolder, "preprocessing.yml"), 'r') as ymlfile:
preprocessing_description = yaml.load(ymlfile)
preprocessing_queue = preprocessing.get_preprocessing_queue(
preprocessing_description['queue'])
# Get the features
with open(os.path.join(tarfolder, "features.yml"), 'r') as ymlfile:
feature_description = yaml.load(ymlfile)
feature_str_list = feature_description['features']
feature_list = features.get_features(feature_str_list)
# Get the model
import nntoolkit.utils
model = nntoolkit.utils.get_model(model_file)
output_semantics_file = os.path.join(tarfolder, 'output_semantics.csv')
output_semantics = nntoolkit.utils.get_outputs(output_semantics_file)
# Cleanup
shutil.rmtree(tarfolder)
return (preprocessing_queue, feature_list, model, output_semantics) | [
"def",
"load_model",
"(",
"model_file",
")",
":",
"# Extract tar",
"with",
"tarfile",
".",
"open",
"(",
"model_file",
")",
"as",
"tar",
":",
"tarfolder",
"=",
"tempfile",
".",
"mkdtemp",
"(",
")",
"tar",
".",
"extractall",
"(",
"path",
"=",
"tarfolder",
")",
"from",
".",
"import",
"features",
"from",
".",
"import",
"preprocessing",
"# Get the preprocessing",
"with",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"tarfolder",
",",
"\"preprocessing.yml\"",
")",
",",
"'r'",
")",
"as",
"ymlfile",
":",
"preprocessing_description",
"=",
"yaml",
".",
"load",
"(",
"ymlfile",
")",
"preprocessing_queue",
"=",
"preprocessing",
".",
"get_preprocessing_queue",
"(",
"preprocessing_description",
"[",
"'queue'",
"]",
")",
"# Get the features",
"with",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"tarfolder",
",",
"\"features.yml\"",
")",
",",
"'r'",
")",
"as",
"ymlfile",
":",
"feature_description",
"=",
"yaml",
".",
"load",
"(",
"ymlfile",
")",
"feature_str_list",
"=",
"feature_description",
"[",
"'features'",
"]",
"feature_list",
"=",
"features",
".",
"get_features",
"(",
"feature_str_list",
")",
"# Get the model",
"import",
"nntoolkit",
".",
"utils",
"model",
"=",
"nntoolkit",
".",
"utils",
".",
"get_model",
"(",
"model_file",
")",
"output_semantics_file",
"=",
"os",
".",
"path",
".",
"join",
"(",
"tarfolder",
",",
"'output_semantics.csv'",
")",
"output_semantics",
"=",
"nntoolkit",
".",
"utils",
".",
"get_outputs",
"(",
"output_semantics_file",
")",
"# Cleanup",
"shutil",
".",
"rmtree",
"(",
"tarfolder",
")",
"return",
"(",
"preprocessing_queue",
",",
"feature_list",
",",
"model",
",",
"output_semantics",
")"
] | Load a model by its file. This includes the model itself, but also
the preprocessing queue, the feature list and the output semantics. | [
"Load",
"a",
"model",
"by",
"its",
"file",
".",
"This",
"includes",
"the",
"model",
"itself",
"but",
"also",
"the",
"preprocessing",
"queue",
"the",
"feature",
"list",
"and",
"the",
"output",
"semantics",
"."
] | python | train |
madprime/cgivar2gvcf | cgivar2gvcf/__init__.py | https://github.com/madprime/cgivar2gvcf/blob/13b4cd8da08669f7e4b0ceed77a7a17082f91037/cgivar2gvcf/__init__.py#L65-L117 | def process_full_position(data, header, var_only=False):
"""
Return genetic data when all alleles called on same line.
Returns an array containing one item, a tuple of five items:
(string) chromosome
(string) start position (1-based)
(array of strings) matching dbSNP entries
(string) reference allele sequence
(array of strings) the genome's allele sequences
"""
feature_type = data[header['varType']]
# Skip unmatchable, uncovered, or pseudoautosomal-in-X
if (feature_type == 'no-ref' or feature_type.startswith('PAR-called-in-X')):
return None
if var_only and feature_type in ['no-call', 'ref']:
return None
filters = []
if feature_type == 'no-call':
filters.append('NOCALL')
if 'varQuality' in header:
if 'VQLOW' in data[header['varQuality']]:
filters.append('VQLOW')
else:
var_filter = data[header['varFilter']]
if var_filter and not var_filter == "PASS":
filters = filters + var_filter.split(';')
chrom = data[header['chromosome']]
start = data[header['begin']]
ref_allele = data[header['reference']]
alleles = [data[header['alleleSeq']]]
dbsnp_data = []
dbsnp_data = data[header['xRef']].split(';')
assert data[header['ploidy']] in ['1', '2']
if feature_type == 'ref' or feature_type == 'no-call':
return [{'chrom': chrom,
'start': start,
'dbsnp_data': dbsnp_data,
'ref_seq': ref_allele,
'alleles': alleles,
'allele_count': data[header['ploidy']],
'filters': filters,
'end': data[header['end']]}]
else:
return [{'chrom': chrom,
'start': start,
'dbsnp_data': dbsnp_data,
'ref_seq': ref_allele,
'alleles': alleles,
'allele_count': data[header['ploidy']],
'filters': filters}] | [
"def",
"process_full_position",
"(",
"data",
",",
"header",
",",
"var_only",
"=",
"False",
")",
":",
"feature_type",
"=",
"data",
"[",
"header",
"[",
"'varType'",
"]",
"]",
"# Skip unmatchable, uncovered, or pseudoautosomal-in-X",
"if",
"(",
"feature_type",
"==",
"'no-ref'",
"or",
"feature_type",
".",
"startswith",
"(",
"'PAR-called-in-X'",
")",
")",
":",
"return",
"None",
"if",
"var_only",
"and",
"feature_type",
"in",
"[",
"'no-call'",
",",
"'ref'",
"]",
":",
"return",
"None",
"filters",
"=",
"[",
"]",
"if",
"feature_type",
"==",
"'no-call'",
":",
"filters",
".",
"append",
"(",
"'NOCALL'",
")",
"if",
"'varQuality'",
"in",
"header",
":",
"if",
"'VQLOW'",
"in",
"data",
"[",
"header",
"[",
"'varQuality'",
"]",
"]",
":",
"filters",
".",
"append",
"(",
"'VQLOW'",
")",
"else",
":",
"var_filter",
"=",
"data",
"[",
"header",
"[",
"'varFilter'",
"]",
"]",
"if",
"var_filter",
"and",
"not",
"var_filter",
"==",
"\"PASS\"",
":",
"filters",
"=",
"filters",
"+",
"var_filter",
".",
"split",
"(",
"';'",
")",
"chrom",
"=",
"data",
"[",
"header",
"[",
"'chromosome'",
"]",
"]",
"start",
"=",
"data",
"[",
"header",
"[",
"'begin'",
"]",
"]",
"ref_allele",
"=",
"data",
"[",
"header",
"[",
"'reference'",
"]",
"]",
"alleles",
"=",
"[",
"data",
"[",
"header",
"[",
"'alleleSeq'",
"]",
"]",
"]",
"dbsnp_data",
"=",
"[",
"]",
"dbsnp_data",
"=",
"data",
"[",
"header",
"[",
"'xRef'",
"]",
"]",
".",
"split",
"(",
"';'",
")",
"assert",
"data",
"[",
"header",
"[",
"'ploidy'",
"]",
"]",
"in",
"[",
"'1'",
",",
"'2'",
"]",
"if",
"feature_type",
"==",
"'ref'",
"or",
"feature_type",
"==",
"'no-call'",
":",
"return",
"[",
"{",
"'chrom'",
":",
"chrom",
",",
"'start'",
":",
"start",
",",
"'dbsnp_data'",
":",
"dbsnp_data",
",",
"'ref_seq'",
":",
"ref_allele",
",",
"'alleles'",
":",
"alleles",
",",
"'allele_count'",
":",
"data",
"[",
"header",
"[",
"'ploidy'",
"]",
"]",
",",
"'filters'",
":",
"filters",
",",
"'end'",
":",
"data",
"[",
"header",
"[",
"'end'",
"]",
"]",
"}",
"]",
"else",
":",
"return",
"[",
"{",
"'chrom'",
":",
"chrom",
",",
"'start'",
":",
"start",
",",
"'dbsnp_data'",
":",
"dbsnp_data",
",",
"'ref_seq'",
":",
"ref_allele",
",",
"'alleles'",
":",
"alleles",
",",
"'allele_count'",
":",
"data",
"[",
"header",
"[",
"'ploidy'",
"]",
"]",
",",
"'filters'",
":",
"filters",
"}",
"]"
] | Return genetic data when all alleles called on same line.
Returns an array containing one item, a tuple of five items:
(string) chromosome
(string) start position (1-based)
(array of strings) matching dbSNP entries
(string) reference allele sequence
(array of strings) the genome's allele sequences | [
"Return",
"genetic",
"data",
"when",
"all",
"alleles",
"called",
"on",
"same",
"line",
"."
] | python | train |
bukun/TorCMS | torcms/model/wiki_hist_model.py | https://github.com/bukun/TorCMS/blob/6567c7fe2604a1d646d4570c017840958630ed2b/torcms/model/wiki_hist_model.py#L11-L19 | def get_last(postid):
'''
Get the last wiki in history.
'''
recs = TabWikiHist.select().where(
TabWikiHist.wiki_id == postid
).order_by(TabWikiHist.time_update.desc())
return None if recs.count() == 0 else recs.get() | [
"def",
"get_last",
"(",
"postid",
")",
":",
"recs",
"=",
"TabWikiHist",
".",
"select",
"(",
")",
".",
"where",
"(",
"TabWikiHist",
".",
"wiki_id",
"==",
"postid",
")",
".",
"order_by",
"(",
"TabWikiHist",
".",
"time_update",
".",
"desc",
"(",
")",
")",
"return",
"None",
"if",
"recs",
".",
"count",
"(",
")",
"==",
"0",
"else",
"recs",
".",
"get",
"(",
")"
] | Get the last wiki in history. | [
"Get",
"the",
"last",
"wiki",
"in",
"history",
"."
] | python | train |
xeroc/python-graphenelib | graphenecommon/transactionbuilder.py | https://github.com/xeroc/python-graphenelib/blob/8bb5396bc79998ee424cf3813af478304173f3a6/graphenecommon/transactionbuilder.py#L329-L339 | def set_fee_asset(self, fee_asset):
""" Set asset to fee
"""
if isinstance(fee_asset, self.amount_class):
self.fee_asset_id = fee_asset["id"]
elif isinstance(fee_asset, self.asset_class):
self.fee_asset_id = fee_asset["id"]
elif fee_asset:
self.fee_asset_id = fee_asset
else:
self.fee_asset_id = "1.3.0" | [
"def",
"set_fee_asset",
"(",
"self",
",",
"fee_asset",
")",
":",
"if",
"isinstance",
"(",
"fee_asset",
",",
"self",
".",
"amount_class",
")",
":",
"self",
".",
"fee_asset_id",
"=",
"fee_asset",
"[",
"\"id\"",
"]",
"elif",
"isinstance",
"(",
"fee_asset",
",",
"self",
".",
"asset_class",
")",
":",
"self",
".",
"fee_asset_id",
"=",
"fee_asset",
"[",
"\"id\"",
"]",
"elif",
"fee_asset",
":",
"self",
".",
"fee_asset_id",
"=",
"fee_asset",
"else",
":",
"self",
".",
"fee_asset_id",
"=",
"\"1.3.0\""
] | Set asset to fee | [
"Set",
"asset",
"to",
"fee"
] | python | valid |
ellmetha/django-machina | machina/core/loading.py | https://github.com/ellmetha/django-machina/blob/89ac083c1eaf1cfdeae6686ee094cc86362e8c69/machina/core/loading.py#L82-L98 | def _pick_up_classes(modules, classnames):
""" Given a list of class names to retrieve, try to fetch them from the specified list of
modules and returns the list of the fetched classes.
"""
klasses = []
for classname in classnames:
klass = None
for module in modules:
if hasattr(module, classname):
klass = getattr(module, classname)
break
if not klass:
raise ClassNotFoundError('Error fetching \'{}\' in {}'.format(
classname, str([module.__name__ for module in modules]))
)
klasses.append(klass)
return klasses | [
"def",
"_pick_up_classes",
"(",
"modules",
",",
"classnames",
")",
":",
"klasses",
"=",
"[",
"]",
"for",
"classname",
"in",
"classnames",
":",
"klass",
"=",
"None",
"for",
"module",
"in",
"modules",
":",
"if",
"hasattr",
"(",
"module",
",",
"classname",
")",
":",
"klass",
"=",
"getattr",
"(",
"module",
",",
"classname",
")",
"break",
"if",
"not",
"klass",
":",
"raise",
"ClassNotFoundError",
"(",
"'Error fetching \\'{}\\' in {}'",
".",
"format",
"(",
"classname",
",",
"str",
"(",
"[",
"module",
".",
"__name__",
"for",
"module",
"in",
"modules",
"]",
")",
")",
")",
"klasses",
".",
"append",
"(",
"klass",
")",
"return",
"klasses"
] | Given a list of class names to retrieve, try to fetch them from the specified list of
modules and returns the list of the fetched classes. | [
"Given",
"a",
"list",
"of",
"class",
"names",
"to",
"retrieve",
"try",
"to",
"fetch",
"them",
"from",
"the",
"specified",
"list",
"of",
"modules",
"and",
"returns",
"the",
"list",
"of",
"the",
"fetched",
"classes",
"."
] | python | train |
scieloorg/accessstatsapi | accessstats/queries.py | https://github.com/scieloorg/accessstatsapi/blob/8092d76bedab9e82efce4005f9bcd21fb94e8e98/accessstats/queries.py#L38-L115 | def downloads_per_year(collection, code, raw=False):
"""
This method retrieve the total of downloads per year.
arguments
collection: SciELO 3 letters Acronym
code: (Journal ISSN, Issue PID, Article PID)
return
[
("2017", "20101"),
("2016", "11201"),
("2015", "12311"),
...
]
"""
tc = ThriftClient()
body = {"query": {"filtered": {}}}
fltr = {}
query = {
"query": {
"bool": {
"must": [
{
"match": {
"collection": collection
}
}
]
}
}
}
aggs = {
"aggs": {
"access_year": {
"terms": {
"field": "access_year",
"size": 0,
"order": {
"_term": "asc"
}
},
"aggs": {
"access_total": {
"sum": {
"field": "access_total"
}
}
}
}
}
}
body['query']['filtered'].update(fltr)
body['query']['filtered'].update(query)
body.update(aggs)
code_type = _code_type(code)
if code_type:
query["query"]["bool"]["must"].append({
"match": {
code_type: code
}
})
query_parameters = [
('size', '0')
]
query_result = tc.search(json.dumps(body), query_parameters)
return query_result if raw is True else _compute_downloads_per_year(query_result) | [
"def",
"downloads_per_year",
"(",
"collection",
",",
"code",
",",
"raw",
"=",
"False",
")",
":",
"tc",
"=",
"ThriftClient",
"(",
")",
"body",
"=",
"{",
"\"query\"",
":",
"{",
"\"filtered\"",
":",
"{",
"}",
"}",
"}",
"fltr",
"=",
"{",
"}",
"query",
"=",
"{",
"\"query\"",
":",
"{",
"\"bool\"",
":",
"{",
"\"must\"",
":",
"[",
"{",
"\"match\"",
":",
"{",
"\"collection\"",
":",
"collection",
"}",
"}",
"]",
"}",
"}",
"}",
"aggs",
"=",
"{",
"\"aggs\"",
":",
"{",
"\"access_year\"",
":",
"{",
"\"terms\"",
":",
"{",
"\"field\"",
":",
"\"access_year\"",
",",
"\"size\"",
":",
"0",
",",
"\"order\"",
":",
"{",
"\"_term\"",
":",
"\"asc\"",
"}",
"}",
",",
"\"aggs\"",
":",
"{",
"\"access_total\"",
":",
"{",
"\"sum\"",
":",
"{",
"\"field\"",
":",
"\"access_total\"",
"}",
"}",
"}",
"}",
"}",
"}",
"body",
"[",
"'query'",
"]",
"[",
"'filtered'",
"]",
".",
"update",
"(",
"fltr",
")",
"body",
"[",
"'query'",
"]",
"[",
"'filtered'",
"]",
".",
"update",
"(",
"query",
")",
"body",
".",
"update",
"(",
"aggs",
")",
"code_type",
"=",
"_code_type",
"(",
"code",
")",
"if",
"code_type",
":",
"query",
"[",
"\"query\"",
"]",
"[",
"\"bool\"",
"]",
"[",
"\"must\"",
"]",
".",
"append",
"(",
"{",
"\"match\"",
":",
"{",
"code_type",
":",
"code",
"}",
"}",
")",
"query_parameters",
"=",
"[",
"(",
"'size'",
",",
"'0'",
")",
"]",
"query_result",
"=",
"tc",
".",
"search",
"(",
"json",
".",
"dumps",
"(",
"body",
")",
",",
"query_parameters",
")",
"return",
"query_result",
"if",
"raw",
"is",
"True",
"else",
"_compute_downloads_per_year",
"(",
"query_result",
")"
] | This method retrieve the total of downloads per year.
arguments
collection: SciELO 3 letters Acronym
code: (Journal ISSN, Issue PID, Article PID)
return
[
("2017", "20101"),
("2016", "11201"),
("2015", "12311"),
...
] | [
"This",
"method",
"retrieve",
"the",
"total",
"of",
"downloads",
"per",
"year",
"."
] | python | train |
pyviz/holoviews | holoviews/core/dimension.py | https://github.com/pyviz/holoviews/blob/ae0dd2f3de448b0ca5e9065aabd6ef8d84c7e655/holoviews/core/dimension.py#L97-L129 | def process_dimensions(kdims, vdims):
"""Converts kdims and vdims to Dimension objects.
Args:
kdims: List or single key dimension(s) specified as strings,
tuples dicts or Dimension objects.
vdims: List or single value dimension(s) specified as strings,
tuples dicts or Dimension objects.
Returns:
Dictionary containing kdims and vdims converted to Dimension
objects:
{'kdims': [Dimension('x')], 'vdims': [Dimension('y')]
"""
dimensions = {}
for group, dims in [('kdims', kdims), ('vdims', vdims)]:
if dims is None:
continue
elif isinstance(dims, (tuple, basestring, Dimension, dict)):
dims = [dims]
elif not isinstance(dims, list):
raise ValueError("%s argument expects a Dimension or list of dimensions, "
"specified as tuples, strings, dictionaries or Dimension "
"instances, not a %s type. Ensure you passed the data as the "
"first argument." % (group, type(dims).__name__))
for dim in dims:
if not isinstance(dim, (tuple, basestring, Dimension, dict)):
raise ValueError('Dimensions must be defined as a tuple, '
'string, dictionary or Dimension instance, '
'found a %s type.' % type(dim).__name__)
dimensions[group] = [asdim(d) for d in dims]
return dimensions | [
"def",
"process_dimensions",
"(",
"kdims",
",",
"vdims",
")",
":",
"dimensions",
"=",
"{",
"}",
"for",
"group",
",",
"dims",
"in",
"[",
"(",
"'kdims'",
",",
"kdims",
")",
",",
"(",
"'vdims'",
",",
"vdims",
")",
"]",
":",
"if",
"dims",
"is",
"None",
":",
"continue",
"elif",
"isinstance",
"(",
"dims",
",",
"(",
"tuple",
",",
"basestring",
",",
"Dimension",
",",
"dict",
")",
")",
":",
"dims",
"=",
"[",
"dims",
"]",
"elif",
"not",
"isinstance",
"(",
"dims",
",",
"list",
")",
":",
"raise",
"ValueError",
"(",
"\"%s argument expects a Dimension or list of dimensions, \"",
"\"specified as tuples, strings, dictionaries or Dimension \"",
"\"instances, not a %s type. Ensure you passed the data as the \"",
"\"first argument.\"",
"%",
"(",
"group",
",",
"type",
"(",
"dims",
")",
".",
"__name__",
")",
")",
"for",
"dim",
"in",
"dims",
":",
"if",
"not",
"isinstance",
"(",
"dim",
",",
"(",
"tuple",
",",
"basestring",
",",
"Dimension",
",",
"dict",
")",
")",
":",
"raise",
"ValueError",
"(",
"'Dimensions must be defined as a tuple, '",
"'string, dictionary or Dimension instance, '",
"'found a %s type.'",
"%",
"type",
"(",
"dim",
")",
".",
"__name__",
")",
"dimensions",
"[",
"group",
"]",
"=",
"[",
"asdim",
"(",
"d",
")",
"for",
"d",
"in",
"dims",
"]",
"return",
"dimensions"
] | Converts kdims and vdims to Dimension objects.
Args:
kdims: List or single key dimension(s) specified as strings,
tuples dicts or Dimension objects.
vdims: List or single value dimension(s) specified as strings,
tuples dicts or Dimension objects.
Returns:
Dictionary containing kdims and vdims converted to Dimension
objects:
{'kdims': [Dimension('x')], 'vdims': [Dimension('y')] | [
"Converts",
"kdims",
"and",
"vdims",
"to",
"Dimension",
"objects",
"."
] | python | train |
manns/pyspread | pyspread/src/actions/_main_window_actions.py | https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/actions/_main_window_actions.py#L803-L853 | def launch_help(self, helpname, filename):
"""Generic help launcher
Launches HTMLWindow that shows content of filename
or the Internet page with the filename url
Parameters
----------
filename: String
\thtml file or url
"""
# Set up window
position = config["help_window_position"]
size = config["help_window_size"]
self.help_window = wx.Frame(self.main_window, -1,
helpname, position, size)
self.help_htmlwindow = wx.html.HtmlWindow(self.help_window, -1,
(0, 0), size)
self.help_window.Bind(wx.EVT_MOVE, self.OnHelpMove)
self.help_window.Bind(wx.EVT_SIZE, self.OnHelpSize)
self.help_htmlwindow.Bind(wx.EVT_RIGHT_DOWN, self.OnHelpBack)
self.help_htmlwindow.Bind(wx.html.EVT_HTML_LINK_CLICKED,
lambda e: self.open_external_links(e))
self.help_htmlwindow.Bind(wx.EVT_MOUSEWHEEL,
lambda e: self.zoom_html(e))
# Get help data
current_path = os.getcwd()
os.chdir(get_help_path())
try:
if os.path.isfile(filename):
self.help_htmlwindow.LoadFile(filename)
else:
self.help_htmlwindow.LoadPage(filename)
except IOError:
self.help_htmlwindow.LoadPage(filename)
# Show tutorial window
self.help_window.Show()
os.chdir(current_path) | [
"def",
"launch_help",
"(",
"self",
",",
"helpname",
",",
"filename",
")",
":",
"# Set up window",
"position",
"=",
"config",
"[",
"\"help_window_position\"",
"]",
"size",
"=",
"config",
"[",
"\"help_window_size\"",
"]",
"self",
".",
"help_window",
"=",
"wx",
".",
"Frame",
"(",
"self",
".",
"main_window",
",",
"-",
"1",
",",
"helpname",
",",
"position",
",",
"size",
")",
"self",
".",
"help_htmlwindow",
"=",
"wx",
".",
"html",
".",
"HtmlWindow",
"(",
"self",
".",
"help_window",
",",
"-",
"1",
",",
"(",
"0",
",",
"0",
")",
",",
"size",
")",
"self",
".",
"help_window",
".",
"Bind",
"(",
"wx",
".",
"EVT_MOVE",
",",
"self",
".",
"OnHelpMove",
")",
"self",
".",
"help_window",
".",
"Bind",
"(",
"wx",
".",
"EVT_SIZE",
",",
"self",
".",
"OnHelpSize",
")",
"self",
".",
"help_htmlwindow",
".",
"Bind",
"(",
"wx",
".",
"EVT_RIGHT_DOWN",
",",
"self",
".",
"OnHelpBack",
")",
"self",
".",
"help_htmlwindow",
".",
"Bind",
"(",
"wx",
".",
"html",
".",
"EVT_HTML_LINK_CLICKED",
",",
"lambda",
"e",
":",
"self",
".",
"open_external_links",
"(",
"e",
")",
")",
"self",
".",
"help_htmlwindow",
".",
"Bind",
"(",
"wx",
".",
"EVT_MOUSEWHEEL",
",",
"lambda",
"e",
":",
"self",
".",
"zoom_html",
"(",
"e",
")",
")",
"# Get help data",
"current_path",
"=",
"os",
".",
"getcwd",
"(",
")",
"os",
".",
"chdir",
"(",
"get_help_path",
"(",
")",
")",
"try",
":",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"filename",
")",
":",
"self",
".",
"help_htmlwindow",
".",
"LoadFile",
"(",
"filename",
")",
"else",
":",
"self",
".",
"help_htmlwindow",
".",
"LoadPage",
"(",
"filename",
")",
"except",
"IOError",
":",
"self",
".",
"help_htmlwindow",
".",
"LoadPage",
"(",
"filename",
")",
"# Show tutorial window",
"self",
".",
"help_window",
".",
"Show",
"(",
")",
"os",
".",
"chdir",
"(",
"current_path",
")"
] | Generic help launcher
Launches HTMLWindow that shows content of filename
or the Internet page with the filename url
Parameters
----------
filename: String
\thtml file or url | [
"Generic",
"help",
"launcher"
] | python | train |
log2timeline/plaso | plaso/storage/sqlite/sqlite_file.py | https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/storage/sqlite/sqlite_file.py#L652-L667 | def AddEventTags(self, event_tags):
"""Adds event tags.
Args:
event_tags (list[EventTag]): event tags.
Raises:
IOError: when the storage file is closed or read-only or
if the event tags cannot be serialized.
OSError: when the storage file is closed or read-only or
if the event tags cannot be serialized.
"""
self._RaiseIfNotWritable()
for event_tag in event_tags:
self.AddEventTag(event_tag) | [
"def",
"AddEventTags",
"(",
"self",
",",
"event_tags",
")",
":",
"self",
".",
"_RaiseIfNotWritable",
"(",
")",
"for",
"event_tag",
"in",
"event_tags",
":",
"self",
".",
"AddEventTag",
"(",
"event_tag",
")"
] | Adds event tags.
Args:
event_tags (list[EventTag]): event tags.
Raises:
IOError: when the storage file is closed or read-only or
if the event tags cannot be serialized.
OSError: when the storage file is closed or read-only or
if the event tags cannot be serialized. | [
"Adds",
"event",
"tags",
"."
] | python | train |
django-danceschool/django-danceschool | danceschool/private_lessons/models.py | https://github.com/django-danceschool/django-danceschool/blob/bb08cbf39017a812a5a94bdb4ea34170bf1a30ba/danceschool/private_lessons/models.py#L48-L56 | def getBasePrice(self,**kwargs):
'''
This method overrides the method of the base Event class by
checking the pricingTier associated with this PrivateLessonEvent and getting
the appropriate price for it.
'''
if not self.pricingTier:
return None
return self.pricingTier.getBasePrice(**kwargs) * max(self.numSlots,1) | [
"def",
"getBasePrice",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"self",
".",
"pricingTier",
":",
"return",
"None",
"return",
"self",
".",
"pricingTier",
".",
"getBasePrice",
"(",
"*",
"*",
"kwargs",
")",
"*",
"max",
"(",
"self",
".",
"numSlots",
",",
"1",
")"
] | This method overrides the method of the base Event class by
checking the pricingTier associated with this PrivateLessonEvent and getting
the appropriate price for it. | [
"This",
"method",
"overrides",
"the",
"method",
"of",
"the",
"base",
"Event",
"class",
"by",
"checking",
"the",
"pricingTier",
"associated",
"with",
"this",
"PrivateLessonEvent",
"and",
"getting",
"the",
"appropriate",
"price",
"for",
"it",
"."
] | python | train |
spookey/photon | photon/util/locations.py | https://github.com/spookey/photon/blob/57212a26ce713ab7723910ee49e3d0ba1697799f/photon/util/locations.py#L73-L102 | def make_locations(locations=None, verbose=True):
'''
Creates folders
:param locations:
A list of folders to create (can be a dictionary, see note below)
:param verbose:
Warn if any folders were created
.. note::
* |params_locations_dict|
* |param_locations_none|
'''
from photon.util.structures import to_list
from photon.util.system import shell_notify
if not locations:
locations = get_locations().values()
locations = to_list(locations)
r = list()
for p in reversed(sorted(locations)):
if not _path.exists(p):
_makedirs(p)
r.append(p)
if verbose and r:
shell_notify('path created', state=None, more=r)
return r | [
"def",
"make_locations",
"(",
"locations",
"=",
"None",
",",
"verbose",
"=",
"True",
")",
":",
"from",
"photon",
".",
"util",
".",
"structures",
"import",
"to_list",
"from",
"photon",
".",
"util",
".",
"system",
"import",
"shell_notify",
"if",
"not",
"locations",
":",
"locations",
"=",
"get_locations",
"(",
")",
".",
"values",
"(",
")",
"locations",
"=",
"to_list",
"(",
"locations",
")",
"r",
"=",
"list",
"(",
")",
"for",
"p",
"in",
"reversed",
"(",
"sorted",
"(",
"locations",
")",
")",
":",
"if",
"not",
"_path",
".",
"exists",
"(",
"p",
")",
":",
"_makedirs",
"(",
"p",
")",
"r",
".",
"append",
"(",
"p",
")",
"if",
"verbose",
"and",
"r",
":",
"shell_notify",
"(",
"'path created'",
",",
"state",
"=",
"None",
",",
"more",
"=",
"r",
")",
"return",
"r"
] | Creates folders
:param locations:
A list of folders to create (can be a dictionary, see note below)
:param verbose:
Warn if any folders were created
.. note::
* |params_locations_dict|
* |param_locations_none| | [
"Creates",
"folders"
] | python | train |
MisterY/asset-allocation | asset_allocation/formatters.py | https://github.com/MisterY/asset-allocation/blob/72239aa20762cda67c091f27b86e65d61bf3b613/asset_allocation/formatters.py#L129-L132 | def append_text_column(self, text: str, index: int):
""" Add value to the output row, width based on index """
width = self.columns[index]["width"]
return f"{text:<{width}}" | [
"def",
"append_text_column",
"(",
"self",
",",
"text",
":",
"str",
",",
"index",
":",
"int",
")",
":",
"width",
"=",
"self",
".",
"columns",
"[",
"index",
"]",
"[",
"\"width\"",
"]",
"return",
"f\"{text:<{width}}\""
] | Add value to the output row, width based on index | [
"Add",
"value",
"to",
"the",
"output",
"row",
"width",
"based",
"on",
"index"
] | python | train |
f3at/feat | src/feat/models/call.py | https://github.com/f3at/feat/blob/15da93fc9d6ec8154f52a9172824e25821195ef8/src/feat/models/call.py#L155-L167 | def action_filter(method_name, *args, **kwargs):
"""
Creates an effect that will call the action's method with the current
value and specified arguments and keywords.
@param method_name: the name of method belonging to the action.
@type method_name: str
"""
def action_filter(value, context, **_params):
method = getattr(context["action"], method_name)
return _filter(method, value, args, kwargs)
return action_filter | [
"def",
"action_filter",
"(",
"method_name",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"def",
"action_filter",
"(",
"value",
",",
"context",
",",
"*",
"*",
"_params",
")",
":",
"method",
"=",
"getattr",
"(",
"context",
"[",
"\"action\"",
"]",
",",
"method_name",
")",
"return",
"_filter",
"(",
"method",
",",
"value",
",",
"args",
",",
"kwargs",
")",
"return",
"action_filter"
] | Creates an effect that will call the action's method with the current
value and specified arguments and keywords.
@param method_name: the name of method belonging to the action.
@type method_name: str | [
"Creates",
"an",
"effect",
"that",
"will",
"call",
"the",
"action",
"s",
"method",
"with",
"the",
"current",
"value",
"and",
"specified",
"arguments",
"and",
"keywords",
"."
] | python | train |
kennethreitz/maya | maya/core.py | https://github.com/kennethreitz/maya/blob/774b141d91a83a5d77cb5351db3d02bf50564b21/maya/core.py#L142-L146 | def add(self, **kwargs):
"""Returns a new MayaDT object with the given offsets."""
return self.from_datetime(
pendulum.instance(self.datetime()).add(**kwargs)
) | [
"def",
"add",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"from_datetime",
"(",
"pendulum",
".",
"instance",
"(",
"self",
".",
"datetime",
"(",
")",
")",
".",
"add",
"(",
"*",
"*",
"kwargs",
")",
")"
] | Returns a new MayaDT object with the given offsets. | [
"Returns",
"a",
"new",
"MayaDT",
"object",
"with",
"the",
"given",
"offsets",
"."
] | python | train |
ladybug-tools/uwg | uwg/uwg.py | https://github.com/ladybug-tools/uwg/blob/fb71f656b3cb69e7ccf1d851dff862e14fa210fc/uwg/uwg.py#L612-L727 | def init_input_obj(self):
"""Section 4 - Create uwg objects from input parameters
self.simTime # simulation time parameter obj
self.weather # weather obj for simulation time period
self.forcIP # Forcing obj
self.forc # Empty forcing obj
self.geoParam # geographic parameters obj
self.RSM # Rural site & vertical diffusion model obj
self.USM # Urban site & vertical diffusion model obj
self.UCM # Urban canopy model obj
self.UBL # Urban boundary layer model
self.road # urban road element
self.rural # rural road element
self.soilindex1 # soil index for urban rsoad depth
self.soilindex2 # soil index for rural road depth
self.Sch # list of Schedule objects
"""
climate_file_path = os.path.join(self.epwDir, self.epwFileName)
self.simTime = SimParam(self.dtSim, self.dtWeather, self.Month,
self.Day, self.nDay) # simulation time parametrs
# weather file data for simulation time period
self.weather = Weather(climate_file_path, self.simTime.timeInitial, self.simTime.timeFinal)
self.forcIP = Forcing(self.weather.staTemp, self.weather) # initialized Forcing class
self.forc = Forcing() # empty forcing class
# Initialize geographic Param and Urban Boundary Layer Objects
nightStart = 18. # arbitrary values for begin/end hour for night setpoint
nightEnd = 8.
maxdx = 250. # max dx (m)
self.geoParam = Param(self.h_ubl1, self.h_ubl2, self.h_ref, self.h_temp, self.h_wind, self.c_circ,
self.maxDay, self.maxNight, self.latTree, self.latGrss, self.albVeg, self.vegStart, self.vegEnd,
nightStart, nightEnd, self.windMin, self.WGMAX, self.c_exch, maxdx, self.G, self.CP, self.VK, self.R,
self.RV, self.LV, math.pi, self.SIGMA, self.WATERDENS, self.LVTT, self.TT, self.ESTT, self.CL,
self.CPV, self.B, self.CM, self.COLBURN)
self.UBL = UBLDef(
'C', self.charLength, self.weather.staTemp[0], maxdx, self.geoParam.dayBLHeight, self.geoParam.nightBLHeight)
# Defining road
emis = 0.93
asphalt = Material(self.kRoad, self.cRoad, 'asphalt')
road_T_init = 293.
road_horizontal = 1
# fraction of surface vegetation coverage
road_veg_coverage = min(self.vegCover/(1-self.bldDensity), 1.)
# define road layers
road_layer_num = int(math.ceil(self.d_road/0.05))
# 0.5/0.05 ~ 10 x 1 matrix of 0.05 thickness
thickness_vector = [0.05 for r in range(road_layer_num)]
material_vector = [asphalt for r in range(road_layer_num)]
self.road = Element(self.alb_road, emis, thickness_vector, material_vector, road_veg_coverage,
road_T_init, road_horizontal, name="urban_road")
self.rural = copy.deepcopy(self.road)
self.rural.vegCoverage = self.rurVegCover
self.rural._name = "rural_road"
# Reference site class (also include VDM)
self.RSM = RSMDef(self.lat, self.lon, self.GMT, self.h_obs,
self.weather.staTemp[0], self.weather.staPres[0], self.geoParam, self.z_meso_dir_path)
self.USM = RSMDef(self.lat, self.lon, self.GMT, self.bldHeight/10.,
self.weather.staTemp[0], self.weather.staPres[0], self.geoParam, self.z_meso_dir_path)
T_init = self.weather.staTemp[0]
H_init = self.weather.staHum[0]
self.UCM = UCMDef(self.bldHeight, self.bldDensity, self.verToHor, self.treeCoverage, self.sensAnth, self.latAnth, T_init, H_init,
self.weather.staUmod[0], self.geoParam, self.r_glaze_total, self.SHGC_total, self.alb_wall_total, self.road)
self.UCM.h_mix = self.h_mix
# Define Road Element & buffer to match ground temperature depth
roadMat, newthickness = procMat(self.road, self.MAXTHICKNESS, self.MINTHICKNESS)
for i in range(self.nSoil):
# if soil depth is greater then the thickness of the road
# we add new slices of soil at max thickness until road is greater or equal
is_soildepth_equal = self.is_near_zero(self.depth_soil[i][0] - sum(newthickness), 1e-15)
if is_soildepth_equal or (self.depth_soil[i][0] > sum(newthickness)):
while self.depth_soil[i][0] > sum(newthickness):
newthickness.append(self.MAXTHICKNESS)
roadMat.append(self.SOIL)
self.soilindex1 = i
break
self.road = Element(self.road.albedo, self.road.emissivity, newthickness, roadMat,
self.road.vegCoverage, self.road.layerTemp[0], self.road.horizontal, self.road._name)
# Define Rural Element
ruralMat, newthickness = procMat(self.rural, self.MAXTHICKNESS, self.MINTHICKNESS)
for i in range(self.nSoil):
# if soil depth is greater then the thickness of the road
# we add new slices of soil at max thickness until road is greater or equal
is_soildepth_equal = self.is_near_zero(self.depth_soil[i][0] - sum(newthickness), 1e-15)
if is_soildepth_equal or (self.depth_soil[i][0] > sum(newthickness)):
while self.depth_soil[i][0] > sum(newthickness):
newthickness.append(self.MAXTHICKNESS)
ruralMat.append(self.SOIL)
self.soilindex2 = i
break
self.rural = Element(self.rural.albedo, self.rural.emissivity, newthickness,
ruralMat, self.rural.vegCoverage, self.rural.layerTemp[0], self.rural.horizontal, self.rural._name) | [
"def",
"init_input_obj",
"(",
"self",
")",
":",
"climate_file_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"epwDir",
",",
"self",
".",
"epwFileName",
")",
"self",
".",
"simTime",
"=",
"SimParam",
"(",
"self",
".",
"dtSim",
",",
"self",
".",
"dtWeather",
",",
"self",
".",
"Month",
",",
"self",
".",
"Day",
",",
"self",
".",
"nDay",
")",
"# simulation time parametrs\r",
"# weather file data for simulation time period\r",
"self",
".",
"weather",
"=",
"Weather",
"(",
"climate_file_path",
",",
"self",
".",
"simTime",
".",
"timeInitial",
",",
"self",
".",
"simTime",
".",
"timeFinal",
")",
"self",
".",
"forcIP",
"=",
"Forcing",
"(",
"self",
".",
"weather",
".",
"staTemp",
",",
"self",
".",
"weather",
")",
"# initialized Forcing class\r",
"self",
".",
"forc",
"=",
"Forcing",
"(",
")",
"# empty forcing class\r",
"# Initialize geographic Param and Urban Boundary Layer Objects\r",
"nightStart",
"=",
"18.",
"# arbitrary values for begin/end hour for night setpoint\r",
"nightEnd",
"=",
"8.",
"maxdx",
"=",
"250.",
"# max dx (m)\r",
"self",
".",
"geoParam",
"=",
"Param",
"(",
"self",
".",
"h_ubl1",
",",
"self",
".",
"h_ubl2",
",",
"self",
".",
"h_ref",
",",
"self",
".",
"h_temp",
",",
"self",
".",
"h_wind",
",",
"self",
".",
"c_circ",
",",
"self",
".",
"maxDay",
",",
"self",
".",
"maxNight",
",",
"self",
".",
"latTree",
",",
"self",
".",
"latGrss",
",",
"self",
".",
"albVeg",
",",
"self",
".",
"vegStart",
",",
"self",
".",
"vegEnd",
",",
"nightStart",
",",
"nightEnd",
",",
"self",
".",
"windMin",
",",
"self",
".",
"WGMAX",
",",
"self",
".",
"c_exch",
",",
"maxdx",
",",
"self",
".",
"G",
",",
"self",
".",
"CP",
",",
"self",
".",
"VK",
",",
"self",
".",
"R",
",",
"self",
".",
"RV",
",",
"self",
".",
"LV",
",",
"math",
".",
"pi",
",",
"self",
".",
"SIGMA",
",",
"self",
".",
"WATERDENS",
",",
"self",
".",
"LVTT",
",",
"self",
".",
"TT",
",",
"self",
".",
"ESTT",
",",
"self",
".",
"CL",
",",
"self",
".",
"CPV",
",",
"self",
".",
"B",
",",
"self",
".",
"CM",
",",
"self",
".",
"COLBURN",
")",
"self",
".",
"UBL",
"=",
"UBLDef",
"(",
"'C'",
",",
"self",
".",
"charLength",
",",
"self",
".",
"weather",
".",
"staTemp",
"[",
"0",
"]",
",",
"maxdx",
",",
"self",
".",
"geoParam",
".",
"dayBLHeight",
",",
"self",
".",
"geoParam",
".",
"nightBLHeight",
")",
"# Defining road\r",
"emis",
"=",
"0.93",
"asphalt",
"=",
"Material",
"(",
"self",
".",
"kRoad",
",",
"self",
".",
"cRoad",
",",
"'asphalt'",
")",
"road_T_init",
"=",
"293.",
"road_horizontal",
"=",
"1",
"# fraction of surface vegetation coverage\r",
"road_veg_coverage",
"=",
"min",
"(",
"self",
".",
"vegCover",
"/",
"(",
"1",
"-",
"self",
".",
"bldDensity",
")",
",",
"1.",
")",
"# define road layers\r",
"road_layer_num",
"=",
"int",
"(",
"math",
".",
"ceil",
"(",
"self",
".",
"d_road",
"/",
"0.05",
")",
")",
"# 0.5/0.05 ~ 10 x 1 matrix of 0.05 thickness\r",
"thickness_vector",
"=",
"[",
"0.05",
"for",
"r",
"in",
"range",
"(",
"road_layer_num",
")",
"]",
"material_vector",
"=",
"[",
"asphalt",
"for",
"r",
"in",
"range",
"(",
"road_layer_num",
")",
"]",
"self",
".",
"road",
"=",
"Element",
"(",
"self",
".",
"alb_road",
",",
"emis",
",",
"thickness_vector",
",",
"material_vector",
",",
"road_veg_coverage",
",",
"road_T_init",
",",
"road_horizontal",
",",
"name",
"=",
"\"urban_road\"",
")",
"self",
".",
"rural",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
".",
"road",
")",
"self",
".",
"rural",
".",
"vegCoverage",
"=",
"self",
".",
"rurVegCover",
"self",
".",
"rural",
".",
"_name",
"=",
"\"rural_road\"",
"# Reference site class (also include VDM)\r",
"self",
".",
"RSM",
"=",
"RSMDef",
"(",
"self",
".",
"lat",
",",
"self",
".",
"lon",
",",
"self",
".",
"GMT",
",",
"self",
".",
"h_obs",
",",
"self",
".",
"weather",
".",
"staTemp",
"[",
"0",
"]",
",",
"self",
".",
"weather",
".",
"staPres",
"[",
"0",
"]",
",",
"self",
".",
"geoParam",
",",
"self",
".",
"z_meso_dir_path",
")",
"self",
".",
"USM",
"=",
"RSMDef",
"(",
"self",
".",
"lat",
",",
"self",
".",
"lon",
",",
"self",
".",
"GMT",
",",
"self",
".",
"bldHeight",
"/",
"10.",
",",
"self",
".",
"weather",
".",
"staTemp",
"[",
"0",
"]",
",",
"self",
".",
"weather",
".",
"staPres",
"[",
"0",
"]",
",",
"self",
".",
"geoParam",
",",
"self",
".",
"z_meso_dir_path",
")",
"T_init",
"=",
"self",
".",
"weather",
".",
"staTemp",
"[",
"0",
"]",
"H_init",
"=",
"self",
".",
"weather",
".",
"staHum",
"[",
"0",
"]",
"self",
".",
"UCM",
"=",
"UCMDef",
"(",
"self",
".",
"bldHeight",
",",
"self",
".",
"bldDensity",
",",
"self",
".",
"verToHor",
",",
"self",
".",
"treeCoverage",
",",
"self",
".",
"sensAnth",
",",
"self",
".",
"latAnth",
",",
"T_init",
",",
"H_init",
",",
"self",
".",
"weather",
".",
"staUmod",
"[",
"0",
"]",
",",
"self",
".",
"geoParam",
",",
"self",
".",
"r_glaze_total",
",",
"self",
".",
"SHGC_total",
",",
"self",
".",
"alb_wall_total",
",",
"self",
".",
"road",
")",
"self",
".",
"UCM",
".",
"h_mix",
"=",
"self",
".",
"h_mix",
"# Define Road Element & buffer to match ground temperature depth\r",
"roadMat",
",",
"newthickness",
"=",
"procMat",
"(",
"self",
".",
"road",
",",
"self",
".",
"MAXTHICKNESS",
",",
"self",
".",
"MINTHICKNESS",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"nSoil",
")",
":",
"# if soil depth is greater then the thickness of the road\r",
"# we add new slices of soil at max thickness until road is greater or equal\r",
"is_soildepth_equal",
"=",
"self",
".",
"is_near_zero",
"(",
"self",
".",
"depth_soil",
"[",
"i",
"]",
"[",
"0",
"]",
"-",
"sum",
"(",
"newthickness",
")",
",",
"1e-15",
")",
"if",
"is_soildepth_equal",
"or",
"(",
"self",
".",
"depth_soil",
"[",
"i",
"]",
"[",
"0",
"]",
">",
"sum",
"(",
"newthickness",
")",
")",
":",
"while",
"self",
".",
"depth_soil",
"[",
"i",
"]",
"[",
"0",
"]",
">",
"sum",
"(",
"newthickness",
")",
":",
"newthickness",
".",
"append",
"(",
"self",
".",
"MAXTHICKNESS",
")",
"roadMat",
".",
"append",
"(",
"self",
".",
"SOIL",
")",
"self",
".",
"soilindex1",
"=",
"i",
"break",
"self",
".",
"road",
"=",
"Element",
"(",
"self",
".",
"road",
".",
"albedo",
",",
"self",
".",
"road",
".",
"emissivity",
",",
"newthickness",
",",
"roadMat",
",",
"self",
".",
"road",
".",
"vegCoverage",
",",
"self",
".",
"road",
".",
"layerTemp",
"[",
"0",
"]",
",",
"self",
".",
"road",
".",
"horizontal",
",",
"self",
".",
"road",
".",
"_name",
")",
"# Define Rural Element\r",
"ruralMat",
",",
"newthickness",
"=",
"procMat",
"(",
"self",
".",
"rural",
",",
"self",
".",
"MAXTHICKNESS",
",",
"self",
".",
"MINTHICKNESS",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"nSoil",
")",
":",
"# if soil depth is greater then the thickness of the road\r",
"# we add new slices of soil at max thickness until road is greater or equal\r",
"is_soildepth_equal",
"=",
"self",
".",
"is_near_zero",
"(",
"self",
".",
"depth_soil",
"[",
"i",
"]",
"[",
"0",
"]",
"-",
"sum",
"(",
"newthickness",
")",
",",
"1e-15",
")",
"if",
"is_soildepth_equal",
"or",
"(",
"self",
".",
"depth_soil",
"[",
"i",
"]",
"[",
"0",
"]",
">",
"sum",
"(",
"newthickness",
")",
")",
":",
"while",
"self",
".",
"depth_soil",
"[",
"i",
"]",
"[",
"0",
"]",
">",
"sum",
"(",
"newthickness",
")",
":",
"newthickness",
".",
"append",
"(",
"self",
".",
"MAXTHICKNESS",
")",
"ruralMat",
".",
"append",
"(",
"self",
".",
"SOIL",
")",
"self",
".",
"soilindex2",
"=",
"i",
"break",
"self",
".",
"rural",
"=",
"Element",
"(",
"self",
".",
"rural",
".",
"albedo",
",",
"self",
".",
"rural",
".",
"emissivity",
",",
"newthickness",
",",
"ruralMat",
",",
"self",
".",
"rural",
".",
"vegCoverage",
",",
"self",
".",
"rural",
".",
"layerTemp",
"[",
"0",
"]",
",",
"self",
".",
"rural",
".",
"horizontal",
",",
"self",
".",
"rural",
".",
"_name",
")"
] | Section 4 - Create uwg objects from input parameters
self.simTime # simulation time parameter obj
self.weather # weather obj for simulation time period
self.forcIP # Forcing obj
self.forc # Empty forcing obj
self.geoParam # geographic parameters obj
self.RSM # Rural site & vertical diffusion model obj
self.USM # Urban site & vertical diffusion model obj
self.UCM # Urban canopy model obj
self.UBL # Urban boundary layer model
self.road # urban road element
self.rural # rural road element
self.soilindex1 # soil index for urban rsoad depth
self.soilindex2 # soil index for rural road depth
self.Sch # list of Schedule objects | [
"Section",
"4",
"-",
"Create",
"uwg",
"objects",
"from",
"input",
"parameters",
"self",
".",
"simTime",
"#",
"simulation",
"time",
"parameter",
"obj",
"self",
".",
"weather",
"#",
"weather",
"obj",
"for",
"simulation",
"time",
"period",
"self",
".",
"forcIP",
"#",
"Forcing",
"obj",
"self",
".",
"forc",
"#",
"Empty",
"forcing",
"obj",
"self",
".",
"geoParam",
"#",
"geographic",
"parameters",
"obj",
"self",
".",
"RSM",
"#",
"Rural",
"site",
"&",
"vertical",
"diffusion",
"model",
"obj",
"self",
".",
"USM",
"#",
"Urban",
"site",
"&",
"vertical",
"diffusion",
"model",
"obj",
"self",
".",
"UCM",
"#",
"Urban",
"canopy",
"model",
"obj",
"self",
".",
"UBL",
"#",
"Urban",
"boundary",
"layer",
"model",
"self",
".",
"road",
"#",
"urban",
"road",
"element",
"self",
".",
"rural",
"#",
"rural",
"road",
"element",
"self",
".",
"soilindex1",
"#",
"soil",
"index",
"for",
"urban",
"rsoad",
"depth",
"self",
".",
"soilindex2",
"#",
"soil",
"index",
"for",
"rural",
"road",
"depth",
"self",
".",
"Sch",
"#",
"list",
"of",
"Schedule",
"objects"
] | python | train |
wummel/linkchecker | linkcheck/url.py | https://github.com/wummel/linkchecker/blob/c2ce810c3fb00b895a841a7be6b2e78c64e7b042/linkcheck/url.py#L431-L441 | def match_host (host, domainlist):
"""Return True if host matches an entry in given domain list."""
if not host:
return False
for domain in domainlist:
if domain.startswith('.'):
if host.endswith(domain):
return True
elif host == domain:
return True
return False | [
"def",
"match_host",
"(",
"host",
",",
"domainlist",
")",
":",
"if",
"not",
"host",
":",
"return",
"False",
"for",
"domain",
"in",
"domainlist",
":",
"if",
"domain",
".",
"startswith",
"(",
"'.'",
")",
":",
"if",
"host",
".",
"endswith",
"(",
"domain",
")",
":",
"return",
"True",
"elif",
"host",
"==",
"domain",
":",
"return",
"True",
"return",
"False"
] | Return True if host matches an entry in given domain list. | [
"Return",
"True",
"if",
"host",
"matches",
"an",
"entry",
"in",
"given",
"domain",
"list",
"."
] | python | train |
wummel/linkchecker | third_party/dnspython/dns/name.py | https://github.com/wummel/linkchecker/blob/c2ce810c3fb00b895a841a7be6b2e78c64e7b042/third_party/dnspython/dns/name.py#L534-L594 | def from_unicode(text, origin = root):
"""Convert unicode text into a Name object.
Lables are encoded in IDN ACE form.
@rtype: dns.name.Name object
"""
if not isinstance(text, unicode):
raise ValueError("input to from_unicode() must be a unicode string")
if not (origin is None or isinstance(origin, Name)):
raise ValueError("origin must be a Name or None")
labels = []
label = u''
escaping = False
edigits = 0
total = 0
if text == u'@':
text = u''
if text:
if text == u'.':
return Name(['']) # no Unicode "u" on this constant!
for c in text:
if escaping:
if edigits == 0:
if c.isdigit():
total = int(c)
edigits += 1
else:
label += c
escaping = False
else:
if not c.isdigit():
raise BadEscape
total *= 10
total += int(c)
edigits += 1
if edigits == 3:
escaping = False
label += chr(total)
elif c == u'.' or c == u'\u3002' or \
c == u'\uff0e' or c == u'\uff61':
if len(label) == 0:
raise EmptyLabel
labels.append(encodings.idna.ToASCII(label))
label = u''
elif c == u'\\':
escaping = True
edigits = 0
total = 0
else:
label += c
if escaping:
raise BadEscape
if len(label) > 0:
labels.append(encodings.idna.ToASCII(label))
else:
labels.append('')
if (len(labels) == 0 or labels[-1] != '') and not origin is None:
labels.extend(list(origin.labels))
return Name(labels) | [
"def",
"from_unicode",
"(",
"text",
",",
"origin",
"=",
"root",
")",
":",
"if",
"not",
"isinstance",
"(",
"text",
",",
"unicode",
")",
":",
"raise",
"ValueError",
"(",
"\"input to from_unicode() must be a unicode string\"",
")",
"if",
"not",
"(",
"origin",
"is",
"None",
"or",
"isinstance",
"(",
"origin",
",",
"Name",
")",
")",
":",
"raise",
"ValueError",
"(",
"\"origin must be a Name or None\"",
")",
"labels",
"=",
"[",
"]",
"label",
"=",
"u''",
"escaping",
"=",
"False",
"edigits",
"=",
"0",
"total",
"=",
"0",
"if",
"text",
"==",
"u'@'",
":",
"text",
"=",
"u''",
"if",
"text",
":",
"if",
"text",
"==",
"u'.'",
":",
"return",
"Name",
"(",
"[",
"''",
"]",
")",
"# no Unicode \"u\" on this constant!",
"for",
"c",
"in",
"text",
":",
"if",
"escaping",
":",
"if",
"edigits",
"==",
"0",
":",
"if",
"c",
".",
"isdigit",
"(",
")",
":",
"total",
"=",
"int",
"(",
"c",
")",
"edigits",
"+=",
"1",
"else",
":",
"label",
"+=",
"c",
"escaping",
"=",
"False",
"else",
":",
"if",
"not",
"c",
".",
"isdigit",
"(",
")",
":",
"raise",
"BadEscape",
"total",
"*=",
"10",
"total",
"+=",
"int",
"(",
"c",
")",
"edigits",
"+=",
"1",
"if",
"edigits",
"==",
"3",
":",
"escaping",
"=",
"False",
"label",
"+=",
"chr",
"(",
"total",
")",
"elif",
"c",
"==",
"u'.'",
"or",
"c",
"==",
"u'\\u3002'",
"or",
"c",
"==",
"u'\\uff0e'",
"or",
"c",
"==",
"u'\\uff61'",
":",
"if",
"len",
"(",
"label",
")",
"==",
"0",
":",
"raise",
"EmptyLabel",
"labels",
".",
"append",
"(",
"encodings",
".",
"idna",
".",
"ToASCII",
"(",
"label",
")",
")",
"label",
"=",
"u''",
"elif",
"c",
"==",
"u'\\\\'",
":",
"escaping",
"=",
"True",
"edigits",
"=",
"0",
"total",
"=",
"0",
"else",
":",
"label",
"+=",
"c",
"if",
"escaping",
":",
"raise",
"BadEscape",
"if",
"len",
"(",
"label",
")",
">",
"0",
":",
"labels",
".",
"append",
"(",
"encodings",
".",
"idna",
".",
"ToASCII",
"(",
"label",
")",
")",
"else",
":",
"labels",
".",
"append",
"(",
"''",
")",
"if",
"(",
"len",
"(",
"labels",
")",
"==",
"0",
"or",
"labels",
"[",
"-",
"1",
"]",
"!=",
"''",
")",
"and",
"not",
"origin",
"is",
"None",
":",
"labels",
".",
"extend",
"(",
"list",
"(",
"origin",
".",
"labels",
")",
")",
"return",
"Name",
"(",
"labels",
")"
] | Convert unicode text into a Name object.
Lables are encoded in IDN ACE form.
@rtype: dns.name.Name object | [
"Convert",
"unicode",
"text",
"into",
"a",
"Name",
"object",
"."
] | python | train |
fprimex/zdesk | zdesk/zdesk_api.py | https://github.com/fprimex/zdesk/blob/851611c13b4d530e9df31390b3ec709baf0a0188/zdesk/zdesk_api.py#L184-L187 | def any_channel_validate_token_create(self, data, **kwargs):
"https://developer.zendesk.com/rest_api/docs/core/channel_framework#validate-token"
api_path = "/api/v2/any_channel/validate_token"
return self.call(api_path, method="POST", data=data, **kwargs) | [
"def",
"any_channel_validate_token_create",
"(",
"self",
",",
"data",
",",
"*",
"*",
"kwargs",
")",
":",
"api_path",
"=",
"\"/api/v2/any_channel/validate_token\"",
"return",
"self",
".",
"call",
"(",
"api_path",
",",
"method",
"=",
"\"POST\"",
",",
"data",
"=",
"data",
",",
"*",
"*",
"kwargs",
")"
] | https://developer.zendesk.com/rest_api/docs/core/channel_framework#validate-token | [
"https",
":",
"//",
"developer",
".",
"zendesk",
".",
"com",
"/",
"rest_api",
"/",
"docs",
"/",
"core",
"/",
"channel_framework#validate",
"-",
"token"
] | python | train |
carlitux/turboengine | src/turboengine/decorators.py | https://github.com/carlitux/turboengine/blob/627b6dbc400d8c16e2ff7e17afd01915371ea287/src/turboengine/decorators.py#L29-L39 | def login_required(method):
"""A decorator that control if a user is logged."""
def wrapper(self, *arg, **karg):
if not self.user:
if self.request.method == "GET":
self.redirect(settings.LOGIN_PATH)
else:
self.error(403)
else:
method(self, *arg, **karg)
return wrapper | [
"def",
"login_required",
"(",
"method",
")",
":",
"def",
"wrapper",
"(",
"self",
",",
"*",
"arg",
",",
"*",
"*",
"karg",
")",
":",
"if",
"not",
"self",
".",
"user",
":",
"if",
"self",
".",
"request",
".",
"method",
"==",
"\"GET\"",
":",
"self",
".",
"redirect",
"(",
"settings",
".",
"LOGIN_PATH",
")",
"else",
":",
"self",
".",
"error",
"(",
"403",
")",
"else",
":",
"method",
"(",
"self",
",",
"*",
"arg",
",",
"*",
"*",
"karg",
")",
"return",
"wrapper"
] | A decorator that control if a user is logged. | [
"A",
"decorator",
"that",
"control",
"if",
"a",
"user",
"is",
"logged",
"."
] | python | train |
vinci1it2000/schedula | schedula/utils/dsp.py | https://github.com/vinci1it2000/schedula/blob/addb9fd685be81544b796c51383ac00a31543ce9/schedula/utils/dsp.py#L567-L603 | def combine_nested_dicts(*nested_dicts, depth=-1, base=None):
"""
Merge nested-dictionaries.
:param nested_dicts:
Nested dictionaries.
:type nested_dicts: dict
:param depth:
Maximum keys depth.
:type depth: int, optional
:param base:
Base dict where combine multiple dicts in one.
:type base: dict, optional
:return:
Combined nested-dictionary.
:rtype: dict
"""
if base is None:
base = {}
for nested_dict in nested_dicts:
for k, v in stack_nested_keys(nested_dict, depth=depth):
while k:
# noinspection PyBroadException
try:
get_nested_dicts(base, *k[:-1])[k[-1]] = v
break
except Exception:
# A branch of the nested_dict is longer than the base.
k = k[:-1]
v = get_nested_dicts(nested_dict, *k)
return base | [
"def",
"combine_nested_dicts",
"(",
"*",
"nested_dicts",
",",
"depth",
"=",
"-",
"1",
",",
"base",
"=",
"None",
")",
":",
"if",
"base",
"is",
"None",
":",
"base",
"=",
"{",
"}",
"for",
"nested_dict",
"in",
"nested_dicts",
":",
"for",
"k",
",",
"v",
"in",
"stack_nested_keys",
"(",
"nested_dict",
",",
"depth",
"=",
"depth",
")",
":",
"while",
"k",
":",
"# noinspection PyBroadException",
"try",
":",
"get_nested_dicts",
"(",
"base",
",",
"*",
"k",
"[",
":",
"-",
"1",
"]",
")",
"[",
"k",
"[",
"-",
"1",
"]",
"]",
"=",
"v",
"break",
"except",
"Exception",
":",
"# A branch of the nested_dict is longer than the base.",
"k",
"=",
"k",
"[",
":",
"-",
"1",
"]",
"v",
"=",
"get_nested_dicts",
"(",
"nested_dict",
",",
"*",
"k",
")",
"return",
"base"
] | Merge nested-dictionaries.
:param nested_dicts:
Nested dictionaries.
:type nested_dicts: dict
:param depth:
Maximum keys depth.
:type depth: int, optional
:param base:
Base dict where combine multiple dicts in one.
:type base: dict, optional
:return:
Combined nested-dictionary.
:rtype: dict | [
"Merge",
"nested",
"-",
"dictionaries",
"."
] | python | train |
aouyar/PyMunin | pysysinfo/ntp.py | https://github.com/aouyar/PyMunin/blob/4f58a64b6b37c85a84cc7e1e07aafaa0321b249d/pysysinfo/ntp.py#L29-L49 | def getPeerStats(self):
"""Get NTP Peer Stats for localhost by querying local NTP Server.
@return: Dictionary of NTP stats converted to seconds.
"""
info_dict = {}
output = util.exec_command([ntpqCmd, '-n', '-c', 'peers'])
for line in output.splitlines():
mobj = re.match('\*(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\s+', line)
if mobj:
info_dict['ip'] = mobj.group(1)
cols = line.split()
info_dict['stratum'] = int(cols[2])
info_dict['delay'] = float(cols[7]) / 1000.0
info_dict['offset'] = float(cols[8]) / 1000.0
info_dict['jitter'] = float(cols[9]) / 1000.0
return info_dict
else:
raise Exception("Execution of command failed: %s" % ntpqCmd)
return info_dict | [
"def",
"getPeerStats",
"(",
"self",
")",
":",
"info_dict",
"=",
"{",
"}",
"output",
"=",
"util",
".",
"exec_command",
"(",
"[",
"ntpqCmd",
",",
"'-n'",
",",
"'-c'",
",",
"'peers'",
"]",
")",
"for",
"line",
"in",
"output",
".",
"splitlines",
"(",
")",
":",
"mobj",
"=",
"re",
".",
"match",
"(",
"'\\*(\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3})\\s+'",
",",
"line",
")",
"if",
"mobj",
":",
"info_dict",
"[",
"'ip'",
"]",
"=",
"mobj",
".",
"group",
"(",
"1",
")",
"cols",
"=",
"line",
".",
"split",
"(",
")",
"info_dict",
"[",
"'stratum'",
"]",
"=",
"int",
"(",
"cols",
"[",
"2",
"]",
")",
"info_dict",
"[",
"'delay'",
"]",
"=",
"float",
"(",
"cols",
"[",
"7",
"]",
")",
"/",
"1000.0",
"info_dict",
"[",
"'offset'",
"]",
"=",
"float",
"(",
"cols",
"[",
"8",
"]",
")",
"/",
"1000.0",
"info_dict",
"[",
"'jitter'",
"]",
"=",
"float",
"(",
"cols",
"[",
"9",
"]",
")",
"/",
"1000.0",
"return",
"info_dict",
"else",
":",
"raise",
"Exception",
"(",
"\"Execution of command failed: %s\"",
"%",
"ntpqCmd",
")",
"return",
"info_dict"
] | Get NTP Peer Stats for localhost by querying local NTP Server.
@return: Dictionary of NTP stats converted to seconds. | [
"Get",
"NTP",
"Peer",
"Stats",
"for",
"localhost",
"by",
"querying",
"local",
"NTP",
"Server",
".",
"@return",
":",
"Dictionary",
"of",
"NTP",
"stats",
"converted",
"to",
"seconds",
"."
] | python | train |
mushkevych/scheduler | synergy/scheduler/tree.py | https://github.com/mushkevych/scheduler/blob/6740331360f49083c208085fb5a60ce80ebf418b/synergy/scheduler/tree.py#L191-L197 | def get_next_node(self, process_name):
""" :return: <AbstractTreeNode> next node to process by a process with process_name """
if process_name not in self.process_hierarchy:
raise ValueError('unable to compute the next_node due to unknown process: {0}'.format(process_name))
time_qualifier = self.process_hierarchy[process_name].process_entry.time_qualifier
return self._get_next_node(time_qualifier) | [
"def",
"get_next_node",
"(",
"self",
",",
"process_name",
")",
":",
"if",
"process_name",
"not",
"in",
"self",
".",
"process_hierarchy",
":",
"raise",
"ValueError",
"(",
"'unable to compute the next_node due to unknown process: {0}'",
".",
"format",
"(",
"process_name",
")",
")",
"time_qualifier",
"=",
"self",
".",
"process_hierarchy",
"[",
"process_name",
"]",
".",
"process_entry",
".",
"time_qualifier",
"return",
"self",
".",
"_get_next_node",
"(",
"time_qualifier",
")"
] | :return: <AbstractTreeNode> next node to process by a process with process_name | [
":",
"return",
":",
"<AbstractTreeNode",
">",
"next",
"node",
"to",
"process",
"by",
"a",
"process",
"with",
"process_name"
] | python | train |
devassistant/devassistant | devassistant/yaml_checker.py | https://github.com/devassistant/devassistant/blob/2dbfeaa666a64127263664d18969c55d19ecc83e/devassistant/yaml_checker.py#L242-L273 | def _assert_struct_type(self, struct, name, types, path=None, extra_info=None):
"""Asserts that given structure is of any of given types.
Args:
struct: structure to check
name: displayable name of the checked structure (e.g. "run_foo" for section run_foo)
types: list/tuple of types that are allowed for given struct
path: list with a source file as a first element and previous names
(as in name argument to this method) as other elements
extra_info: extra information to print if error is found (e.g. hint how to fix this)
Raises:
YamlTypeError: if given struct is not of any given type; error message contains
source file and a "path" (e.g. args -> somearg -> flags) specifying
where the problem is
"""
wanted_yaml_typenames = set()
for t in types:
wanted_yaml_typenames.add(self._get_yaml_typename(t))
wanted_yaml_typenames = ' or '.join(wanted_yaml_typenames)
actual_yaml_typename = self._get_yaml_typename(type(struct))
if not isinstance(struct, types):
err = []
if path:
err.append(self._format_error_path(path + [name]))
err.append(' Expected {w} value for "{n}", got value of type {a}: "{v}"'.
format(w=wanted_yaml_typenames,
n=name,
a=actual_yaml_typename,
v=struct))
if extra_info:
err.append('Tip: ' + extra_info)
raise exceptions.YamlTypeError('\n'.join(err)) | [
"def",
"_assert_struct_type",
"(",
"self",
",",
"struct",
",",
"name",
",",
"types",
",",
"path",
"=",
"None",
",",
"extra_info",
"=",
"None",
")",
":",
"wanted_yaml_typenames",
"=",
"set",
"(",
")",
"for",
"t",
"in",
"types",
":",
"wanted_yaml_typenames",
".",
"add",
"(",
"self",
".",
"_get_yaml_typename",
"(",
"t",
")",
")",
"wanted_yaml_typenames",
"=",
"' or '",
".",
"join",
"(",
"wanted_yaml_typenames",
")",
"actual_yaml_typename",
"=",
"self",
".",
"_get_yaml_typename",
"(",
"type",
"(",
"struct",
")",
")",
"if",
"not",
"isinstance",
"(",
"struct",
",",
"types",
")",
":",
"err",
"=",
"[",
"]",
"if",
"path",
":",
"err",
".",
"append",
"(",
"self",
".",
"_format_error_path",
"(",
"path",
"+",
"[",
"name",
"]",
")",
")",
"err",
".",
"append",
"(",
"' Expected {w} value for \"{n}\", got value of type {a}: \"{v}\"'",
".",
"format",
"(",
"w",
"=",
"wanted_yaml_typenames",
",",
"n",
"=",
"name",
",",
"a",
"=",
"actual_yaml_typename",
",",
"v",
"=",
"struct",
")",
")",
"if",
"extra_info",
":",
"err",
".",
"append",
"(",
"'Tip: '",
"+",
"extra_info",
")",
"raise",
"exceptions",
".",
"YamlTypeError",
"(",
"'\\n'",
".",
"join",
"(",
"err",
")",
")"
] | Asserts that given structure is of any of given types.
Args:
struct: structure to check
name: displayable name of the checked structure (e.g. "run_foo" for section run_foo)
types: list/tuple of types that are allowed for given struct
path: list with a source file as a first element and previous names
(as in name argument to this method) as other elements
extra_info: extra information to print if error is found (e.g. hint how to fix this)
Raises:
YamlTypeError: if given struct is not of any given type; error message contains
source file and a "path" (e.g. args -> somearg -> flags) specifying
where the problem is | [
"Asserts",
"that",
"given",
"structure",
"is",
"of",
"any",
"of",
"given",
"types",
"."
] | python | train |
spyder-ide/spyder | spyder/plugins/editor/extensions/docstring.py | https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/plugins/editor/extensions/docstring.py#L779-L829 | def parse_body(self, text):
"""Parse the function body text."""
re_raise = re.findall(r'[ \t]raise ([a-zA-Z0-9_]*)', text)
if len(re_raise) > 0:
self.raise_list = [x.strip() for x in re_raise]
# remove duplicates from list while keeping it in the order
# in python 2.7
# stackoverflow.com/questions/7961363/removing-duplicates-in-lists
self.raise_list = list(OrderedDict.fromkeys(self.raise_list))
re_yield = re.search(r'[ \t]yield ', text)
if re_yield:
self.has_yield = True
# get return value
pattern_return = r'return |yield '
line_list = text.split('\n')
is_found_return = False
line_return_tmp = ''
for line in line_list:
line = line.strip()
if is_found_return is False:
if re.match(pattern_return, line):
is_found_return = True
if is_found_return:
line_return_tmp += line
# check the integrity of line
try:
pos_quote = self._find_quote_position(line_return_tmp)
if line_return_tmp[-1] == '\\':
line_return_tmp = line_return_tmp[:-1]
continue
self._find_bracket_position(line_return_tmp, '(', ')',
pos_quote)
self._find_bracket_position(line_return_tmp, '{', '}',
pos_quote)
self._find_bracket_position(line_return_tmp, '[', ']',
pos_quote)
except IndexError:
continue
return_value = re.sub(pattern_return, '', line_return_tmp)
self.return_value_in_body.append(return_value)
is_found_return = False
line_return_tmp = '' | [
"def",
"parse_body",
"(",
"self",
",",
"text",
")",
":",
"re_raise",
"=",
"re",
".",
"findall",
"(",
"r'[ \\t]raise ([a-zA-Z0-9_]*)'",
",",
"text",
")",
"if",
"len",
"(",
"re_raise",
")",
">",
"0",
":",
"self",
".",
"raise_list",
"=",
"[",
"x",
".",
"strip",
"(",
")",
"for",
"x",
"in",
"re_raise",
"]",
"# remove duplicates from list while keeping it in the order\r",
"# in python 2.7\r",
"# stackoverflow.com/questions/7961363/removing-duplicates-in-lists\r",
"self",
".",
"raise_list",
"=",
"list",
"(",
"OrderedDict",
".",
"fromkeys",
"(",
"self",
".",
"raise_list",
")",
")",
"re_yield",
"=",
"re",
".",
"search",
"(",
"r'[ \\t]yield '",
",",
"text",
")",
"if",
"re_yield",
":",
"self",
".",
"has_yield",
"=",
"True",
"# get return value\r",
"pattern_return",
"=",
"r'return |yield '",
"line_list",
"=",
"text",
".",
"split",
"(",
"'\\n'",
")",
"is_found_return",
"=",
"False",
"line_return_tmp",
"=",
"''",
"for",
"line",
"in",
"line_list",
":",
"line",
"=",
"line",
".",
"strip",
"(",
")",
"if",
"is_found_return",
"is",
"False",
":",
"if",
"re",
".",
"match",
"(",
"pattern_return",
",",
"line",
")",
":",
"is_found_return",
"=",
"True",
"if",
"is_found_return",
":",
"line_return_tmp",
"+=",
"line",
"# check the integrity of line\r",
"try",
":",
"pos_quote",
"=",
"self",
".",
"_find_quote_position",
"(",
"line_return_tmp",
")",
"if",
"line_return_tmp",
"[",
"-",
"1",
"]",
"==",
"'\\\\'",
":",
"line_return_tmp",
"=",
"line_return_tmp",
"[",
":",
"-",
"1",
"]",
"continue",
"self",
".",
"_find_bracket_position",
"(",
"line_return_tmp",
",",
"'('",
",",
"')'",
",",
"pos_quote",
")",
"self",
".",
"_find_bracket_position",
"(",
"line_return_tmp",
",",
"'{'",
",",
"'}'",
",",
"pos_quote",
")",
"self",
".",
"_find_bracket_position",
"(",
"line_return_tmp",
",",
"'['",
",",
"']'",
",",
"pos_quote",
")",
"except",
"IndexError",
":",
"continue",
"return_value",
"=",
"re",
".",
"sub",
"(",
"pattern_return",
",",
"''",
",",
"line_return_tmp",
")",
"self",
".",
"return_value_in_body",
".",
"append",
"(",
"return_value",
")",
"is_found_return",
"=",
"False",
"line_return_tmp",
"=",
"''"
] | Parse the function body text. | [
"Parse",
"the",
"function",
"body",
"text",
"."
] | python | train |
consbio/parserutils | parserutils/numbers.py | https://github.com/consbio/parserutils/blob/f13f80db99ed43479336b116e38512e3566e4623/parserutils/numbers.py#L4-L15 | def is_number(num, if_bool=False):
""" :return: True if num is either an actual number, or an object that converts to one """
if isinstance(num, bool):
return if_bool
elif isinstance(num, int):
return True
try:
number = float(num)
return not (isnan(number) or isinf(number))
except (TypeError, ValueError):
return False | [
"def",
"is_number",
"(",
"num",
",",
"if_bool",
"=",
"False",
")",
":",
"if",
"isinstance",
"(",
"num",
",",
"bool",
")",
":",
"return",
"if_bool",
"elif",
"isinstance",
"(",
"num",
",",
"int",
")",
":",
"return",
"True",
"try",
":",
"number",
"=",
"float",
"(",
"num",
")",
"return",
"not",
"(",
"isnan",
"(",
"number",
")",
"or",
"isinf",
"(",
"number",
")",
")",
"except",
"(",
"TypeError",
",",
"ValueError",
")",
":",
"return",
"False"
] | :return: True if num is either an actual number, or an object that converts to one | [
":",
"return",
":",
"True",
"if",
"num",
"is",
"either",
"an",
"actual",
"number",
"or",
"an",
"object",
"that",
"converts",
"to",
"one"
] | python | train |
bcbio/bcbio-nextgen | bcbio/distributed/runfn.py | https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/distributed/runfn.py#L500-L510 | def _combine_cwl_records(recs, record_name, parallel):
"""Provide a list of nexted CWL records keyed by output key.
Handles batches, where we return a list of records, and single items
where we return one record.
"""
if parallel not in ["multi-batch", "single-split", "multi-combined", "batch-single"]:
assert len(recs) == 1, pprint.pformat(recs)
return {record_name: recs[0]}
else:
return {record_name: recs} | [
"def",
"_combine_cwl_records",
"(",
"recs",
",",
"record_name",
",",
"parallel",
")",
":",
"if",
"parallel",
"not",
"in",
"[",
"\"multi-batch\"",
",",
"\"single-split\"",
",",
"\"multi-combined\"",
",",
"\"batch-single\"",
"]",
":",
"assert",
"len",
"(",
"recs",
")",
"==",
"1",
",",
"pprint",
".",
"pformat",
"(",
"recs",
")",
"return",
"{",
"record_name",
":",
"recs",
"[",
"0",
"]",
"}",
"else",
":",
"return",
"{",
"record_name",
":",
"recs",
"}"
] | Provide a list of nexted CWL records keyed by output key.
Handles batches, where we return a list of records, and single items
where we return one record. | [
"Provide",
"a",
"list",
"of",
"nexted",
"CWL",
"records",
"keyed",
"by",
"output",
"key",
"."
] | python | train |
unitedstack/steth | stetho/agent/common/utils.py | https://github.com/unitedstack/steth/blob/955884ceebf3bdc474c93cc5cf555e67d16458f1/stetho/agent/common/utils.py#L62-L75 | def create_deamon(cmd, shell=False, root=False):
"""Usage:
Create servcice process.
"""
try:
if root:
cmd.insert(0, 'sudo')
LOG.info(cmd)
subproc = subprocess.Popen(cmd, shell=shell, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
return subproc.pid
except Exception as e:
LOG.error(e)
raise | [
"def",
"create_deamon",
"(",
"cmd",
",",
"shell",
"=",
"False",
",",
"root",
"=",
"False",
")",
":",
"try",
":",
"if",
"root",
":",
"cmd",
".",
"insert",
"(",
"0",
",",
"'sudo'",
")",
"LOG",
".",
"info",
"(",
"cmd",
")",
"subproc",
"=",
"subprocess",
".",
"Popen",
"(",
"cmd",
",",
"shell",
"=",
"shell",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
")",
"return",
"subproc",
".",
"pid",
"except",
"Exception",
"as",
"e",
":",
"LOG",
".",
"error",
"(",
"e",
")",
"raise"
] | Usage:
Create servcice process. | [
"Usage",
":",
"Create",
"servcice",
"process",
"."
] | python | train |
sio2project/filetracker | filetracker/servers/storage.py | https://github.com/sio2project/filetracker/blob/359b474850622e3d0c25ee2596d7242c02f84efb/filetracker/servers/storage.py#L289-L294 | def stored_version(self, name):
"""Returns the version of file `name` or None if it doesn't exist."""
link_path = self._link_path(name)
if not _path_exists(link_path):
return None
return _file_version(link_path) | [
"def",
"stored_version",
"(",
"self",
",",
"name",
")",
":",
"link_path",
"=",
"self",
".",
"_link_path",
"(",
"name",
")",
"if",
"not",
"_path_exists",
"(",
"link_path",
")",
":",
"return",
"None",
"return",
"_file_version",
"(",
"link_path",
")"
] | Returns the version of file `name` or None if it doesn't exist. | [
"Returns",
"the",
"version",
"of",
"file",
"name",
"or",
"None",
"if",
"it",
"doesn",
"t",
"exist",
"."
] | python | train |
saltstack/salt | salt/cloud/clouds/vultrpy.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/cloud/clouds/vultrpy.py#L175-L192 | def list_nodes_full(**kwargs):
'''
Return all data on nodes
'''
nodes = _query('server/list')
ret = {}
for node in nodes:
name = nodes[node]['label']
ret[name] = nodes[node].copy()
ret[name]['id'] = node
ret[name]['image'] = nodes[node]['os']
ret[name]['size'] = nodes[node]['VPSPLANID']
ret[name]['state'] = nodes[node]['status']
ret[name]['private_ips'] = nodes[node]['internal_ip']
ret[name]['public_ips'] = nodes[node]['main_ip']
return ret | [
"def",
"list_nodes_full",
"(",
"*",
"*",
"kwargs",
")",
":",
"nodes",
"=",
"_query",
"(",
"'server/list'",
")",
"ret",
"=",
"{",
"}",
"for",
"node",
"in",
"nodes",
":",
"name",
"=",
"nodes",
"[",
"node",
"]",
"[",
"'label'",
"]",
"ret",
"[",
"name",
"]",
"=",
"nodes",
"[",
"node",
"]",
".",
"copy",
"(",
")",
"ret",
"[",
"name",
"]",
"[",
"'id'",
"]",
"=",
"node",
"ret",
"[",
"name",
"]",
"[",
"'image'",
"]",
"=",
"nodes",
"[",
"node",
"]",
"[",
"'os'",
"]",
"ret",
"[",
"name",
"]",
"[",
"'size'",
"]",
"=",
"nodes",
"[",
"node",
"]",
"[",
"'VPSPLANID'",
"]",
"ret",
"[",
"name",
"]",
"[",
"'state'",
"]",
"=",
"nodes",
"[",
"node",
"]",
"[",
"'status'",
"]",
"ret",
"[",
"name",
"]",
"[",
"'private_ips'",
"]",
"=",
"nodes",
"[",
"node",
"]",
"[",
"'internal_ip'",
"]",
"ret",
"[",
"name",
"]",
"[",
"'public_ips'",
"]",
"=",
"nodes",
"[",
"node",
"]",
"[",
"'main_ip'",
"]",
"return",
"ret"
] | Return all data on nodes | [
"Return",
"all",
"data",
"on",
"nodes"
] | python | train |
ucbvislab/radiotool | radiotool/composer/segment.py | https://github.com/ucbvislab/radiotool/blob/01c9d878a811cf400b1482896d641d9c95e83ded/radiotool/composer/segment.py#L59-L75 | def get_frames(self, channels=2):
"""Get numpy array of frames corresponding to the segment.
:param integer channels: Number of channels in output array
:returns: Array of frames in the segment
:rtype: numpy array
"""
tmp_frame = self.track.current_frame
self.track.current_frame = self.start
frames = self.track.read_frames(self.duration, channels=channels)
self.track.current_frame = tmp_frame
for effect in self.effects:
frames = effect.apply_to(frames, self.samplerate)
return frames.copy() | [
"def",
"get_frames",
"(",
"self",
",",
"channels",
"=",
"2",
")",
":",
"tmp_frame",
"=",
"self",
".",
"track",
".",
"current_frame",
"self",
".",
"track",
".",
"current_frame",
"=",
"self",
".",
"start",
"frames",
"=",
"self",
".",
"track",
".",
"read_frames",
"(",
"self",
".",
"duration",
",",
"channels",
"=",
"channels",
")",
"self",
".",
"track",
".",
"current_frame",
"=",
"tmp_frame",
"for",
"effect",
"in",
"self",
".",
"effects",
":",
"frames",
"=",
"effect",
".",
"apply_to",
"(",
"frames",
",",
"self",
".",
"samplerate",
")",
"return",
"frames",
".",
"copy",
"(",
")"
] | Get numpy array of frames corresponding to the segment.
:param integer channels: Number of channels in output array
:returns: Array of frames in the segment
:rtype: numpy array | [
"Get",
"numpy",
"array",
"of",
"frames",
"corresponding",
"to",
"the",
"segment",
"."
] | python | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.