repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
sequence
docstring
stringlengths
1
46.9k
docstring_tokens
sequence
language
stringclasses
1 value
partition
stringclasses
3 values
barrust/mediawiki
mediawiki/mediawikipage.py
https://github.com/barrust/mediawiki/blob/292e0be6c752409062dceed325d74839caf16a9b/mediawiki/mediawikipage.py#L552-L578
def _handle_redirect(self, redirect, preload, query, page): """ handle redirect """ if redirect: redirects = query["redirects"][0] if "normalized" in query: normalized = query["normalized"][0] if normalized["from"] != self.title: raise MediaWikiException(ODD_ERROR_MESSAGE) from_title = normalized["to"] else: if not getattr(self, "title", None): self.title = redirects["from"] delattr(self, "pageid") from_title = self.title if redirects["from"] != from_title: raise MediaWikiException(ODD_ERROR_MESSAGE) # change the title and reload the whole object self.__init__( self.mediawiki, title=redirects["to"], redirect=redirect, preload=preload, ) else: raise RedirectError(getattr(self, "title", page["title"]))
[ "def", "_handle_redirect", "(", "self", ",", "redirect", ",", "preload", ",", "query", ",", "page", ")", ":", "if", "redirect", ":", "redirects", "=", "query", "[", "\"redirects\"", "]", "[", "0", "]", "if", "\"normalized\"", "in", "query", ":", "normalized", "=", "query", "[", "\"normalized\"", "]", "[", "0", "]", "if", "normalized", "[", "\"from\"", "]", "!=", "self", ".", "title", ":", "raise", "MediaWikiException", "(", "ODD_ERROR_MESSAGE", ")", "from_title", "=", "normalized", "[", "\"to\"", "]", "else", ":", "if", "not", "getattr", "(", "self", ",", "\"title\"", ",", "None", ")", ":", "self", ".", "title", "=", "redirects", "[", "\"from\"", "]", "delattr", "(", "self", ",", "\"pageid\"", ")", "from_title", "=", "self", ".", "title", "if", "redirects", "[", "\"from\"", "]", "!=", "from_title", ":", "raise", "MediaWikiException", "(", "ODD_ERROR_MESSAGE", ")", "# change the title and reload the whole object", "self", ".", "__init__", "(", "self", ".", "mediawiki", ",", "title", "=", "redirects", "[", "\"to\"", "]", ",", "redirect", "=", "redirect", ",", "preload", "=", "preload", ",", ")", "else", ":", "raise", "RedirectError", "(", "getattr", "(", "self", ",", "\"title\"", ",", "page", "[", "\"title\"", "]", ")", ")" ]
handle redirect
[ "handle", "redirect" ]
python
train
productml/blurr
blurr/core/base.py
https://github.com/productml/blurr/blob/1b688b2c4a9bbbb2139c58bf0682ddc05a6c24fa/blurr/core/base.py#L147-L154
def _needs_evaluation(self) -> bool: """ Returns True when: 1. Where clause is not specified 2. Where WHERE clause is specified and it evaluates to True Returns false if a where clause is specified and it evaluates to False """ return self._schema.when is None or self._schema.when.evaluate(self._evaluation_context)
[ "def", "_needs_evaluation", "(", "self", ")", "->", "bool", ":", "return", "self", ".", "_schema", ".", "when", "is", "None", "or", "self", ".", "_schema", ".", "when", ".", "evaluate", "(", "self", ".", "_evaluation_context", ")" ]
Returns True when: 1. Where clause is not specified 2. Where WHERE clause is specified and it evaluates to True Returns false if a where clause is specified and it evaluates to False
[ "Returns", "True", "when", ":", "1", ".", "Where", "clause", "is", "not", "specified", "2", ".", "Where", "WHERE", "clause", "is", "specified", "and", "it", "evaluates", "to", "True", "Returns", "false", "if", "a", "where", "clause", "is", "specified", "and", "it", "evaluates", "to", "False" ]
python
train
apache/incubator-mxnet
tools/diagnose.py
https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/tools/diagnose.py#L33-L48
def parse_args(): """Parse arguments.""" parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='Diagnose script for checking the current system.') choices = ['python', 'pip', 'mxnet', 'os', 'hardware', 'network'] for choice in choices: parser.add_argument('--' + choice, default=1, type=int, help='Diagnose {}.'.format(choice)) parser.add_argument('--region', default='', type=str, help="Additional sites in which region(s) to test. \ Specify 'cn' for example to test mirror sites in China.") parser.add_argument('--timeout', default=10, type=int, help="Connection test timeout threshold, 0 to disable.") args = parser.parse_args() return args
[ "def", "parse_args", "(", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "formatter_class", "=", "argparse", ".", "ArgumentDefaultsHelpFormatter", ",", "description", "=", "'Diagnose script for checking the current system.'", ")", "choices", "=", "[", "'python'", ",", "'pip'", ",", "'mxnet'", ",", "'os'", ",", "'hardware'", ",", "'network'", "]", "for", "choice", "in", "choices", ":", "parser", ".", "add_argument", "(", "'--'", "+", "choice", ",", "default", "=", "1", ",", "type", "=", "int", ",", "help", "=", "'Diagnose {}.'", ".", "format", "(", "choice", ")", ")", "parser", ".", "add_argument", "(", "'--region'", ",", "default", "=", "''", ",", "type", "=", "str", ",", "help", "=", "\"Additional sites in which region(s) to test. \\\n Specify 'cn' for example to test mirror sites in China.\"", ")", "parser", ".", "add_argument", "(", "'--timeout'", ",", "default", "=", "10", ",", "type", "=", "int", ",", "help", "=", "\"Connection test timeout threshold, 0 to disable.\"", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "return", "args" ]
Parse arguments.
[ "Parse", "arguments", "." ]
python
train
SKA-ScienceDataProcessor/integration-prototype
sip/execution_control/configuration_db/sip_config_db/_config_db_redis.py
https://github.com/SKA-ScienceDataProcessor/integration-prototype/blob/8c8006de6ad71dcd44114b0338780738079c87d4/sip/execution_control/configuration_db/sip_config_db/_config_db_redis.py#L152-L177
def _load_dict_hierarchical(self, db_key: str) -> dict: """Load a dictionary stored hierarchically at db_key.""" db_keys = self._db.keys(pattern=db_key + '*') my_dict = {} for _db_key in db_keys: if self._db.type(_db_key) == 'list': db_values = self._db.lrange(_db_key, 0, -1) for i, value in enumerate(db_values): try: db_values[i] = ast.literal_eval(value) except SyntaxError: pass except ValueError: pass else: # self._db.type == 'hash' db_values = self._db.hgetall(_db_key) for _key, _value in db_values.items(): try: db_values[_key] = ast.literal_eval(_value) except SyntaxError: pass except ValueError: pass my_dict = self._build_dict(my_dict, _db_key.split(':'), db_values) return my_dict[db_key]
[ "def", "_load_dict_hierarchical", "(", "self", ",", "db_key", ":", "str", ")", "->", "dict", ":", "db_keys", "=", "self", ".", "_db", ".", "keys", "(", "pattern", "=", "db_key", "+", "'*'", ")", "my_dict", "=", "{", "}", "for", "_db_key", "in", "db_keys", ":", "if", "self", ".", "_db", ".", "type", "(", "_db_key", ")", "==", "'list'", ":", "db_values", "=", "self", ".", "_db", ".", "lrange", "(", "_db_key", ",", "0", ",", "-", "1", ")", "for", "i", ",", "value", "in", "enumerate", "(", "db_values", ")", ":", "try", ":", "db_values", "[", "i", "]", "=", "ast", ".", "literal_eval", "(", "value", ")", "except", "SyntaxError", ":", "pass", "except", "ValueError", ":", "pass", "else", ":", "# self._db.type == 'hash'", "db_values", "=", "self", ".", "_db", ".", "hgetall", "(", "_db_key", ")", "for", "_key", ",", "_value", "in", "db_values", ".", "items", "(", ")", ":", "try", ":", "db_values", "[", "_key", "]", "=", "ast", ".", "literal_eval", "(", "_value", ")", "except", "SyntaxError", ":", "pass", "except", "ValueError", ":", "pass", "my_dict", "=", "self", ".", "_build_dict", "(", "my_dict", ",", "_db_key", ".", "split", "(", "':'", ")", ",", "db_values", ")", "return", "my_dict", "[", "db_key", "]" ]
Load a dictionary stored hierarchically at db_key.
[ "Load", "a", "dictionary", "stored", "hierarchically", "at", "db_key", "." ]
python
train
pantsbuild/pex
pex/package.py
https://github.com/pantsbuild/pex/blob/87b2129d860250d3b9edce75b9cb62f9789ee521/pex/package.py#L107-L125
def split_fragment(cls, fragment): """A heuristic used to split a string into version name/fragment: >>> SourcePackage.split_fragment('pysolr-2.1.0-beta') ('pysolr', '2.1.0-beta') >>> SourcePackage.split_fragment('cElementTree-1.0.5-20051216') ('cElementTree', '1.0.5-20051216') >>> SourcePackage.split_fragment('pil-1.1.7b1-20090412') ('pil', '1.1.7b1-20090412') >>> SourcePackage.split_fragment('django-plugin-2-2.3') ('django-plugin-2', '2.3') """ def likely_version_component(enumerated_fragment): return sum(bool(v and v[0].isdigit()) for v in enumerated_fragment[1].split('.')) fragments = fragment.split('-') if len(fragments) == 1: return fragment, '' max_index, _ = max(enumerate(fragments), key=likely_version_component) return '-'.join(fragments[0:max_index]), '-'.join(fragments[max_index:])
[ "def", "split_fragment", "(", "cls", ",", "fragment", ")", ":", "def", "likely_version_component", "(", "enumerated_fragment", ")", ":", "return", "sum", "(", "bool", "(", "v", "and", "v", "[", "0", "]", ".", "isdigit", "(", ")", ")", "for", "v", "in", "enumerated_fragment", "[", "1", "]", ".", "split", "(", "'.'", ")", ")", "fragments", "=", "fragment", ".", "split", "(", "'-'", ")", "if", "len", "(", "fragments", ")", "==", "1", ":", "return", "fragment", ",", "''", "max_index", ",", "_", "=", "max", "(", "enumerate", "(", "fragments", ")", ",", "key", "=", "likely_version_component", ")", "return", "'-'", ".", "join", "(", "fragments", "[", "0", ":", "max_index", "]", ")", ",", "'-'", ".", "join", "(", "fragments", "[", "max_index", ":", "]", ")" ]
A heuristic used to split a string into version name/fragment: >>> SourcePackage.split_fragment('pysolr-2.1.0-beta') ('pysolr', '2.1.0-beta') >>> SourcePackage.split_fragment('cElementTree-1.0.5-20051216') ('cElementTree', '1.0.5-20051216') >>> SourcePackage.split_fragment('pil-1.1.7b1-20090412') ('pil', '1.1.7b1-20090412') >>> SourcePackage.split_fragment('django-plugin-2-2.3') ('django-plugin-2', '2.3')
[ "A", "heuristic", "used", "to", "split", "a", "string", "into", "version", "name", "/", "fragment", ":" ]
python
train
cons3rt/pycons3rt
pycons3rt/deployment.py
https://github.com/cons3rt/pycons3rt/blob/f004ab3a35c5bff2f698131fef3b2a8ed5a7596d/pycons3rt/deployment.py#L527-L534
def set_deployment_run_name(self): """Sets the deployment run name from deployment properties :return: None """ log = logging.getLogger(self.cls_logger + '.set_deployment_run_name') self.deployment_run_name = self.get_value('cons3rt.deploymentRun.name') log.info('Found deployment run name: {n}'.format(n=self.deployment_run_name))
[ "def", "set_deployment_run_name", "(", "self", ")", ":", "log", "=", "logging", ".", "getLogger", "(", "self", ".", "cls_logger", "+", "'.set_deployment_run_name'", ")", "self", ".", "deployment_run_name", "=", "self", ".", "get_value", "(", "'cons3rt.deploymentRun.name'", ")", "log", ".", "info", "(", "'Found deployment run name: {n}'", ".", "format", "(", "n", "=", "self", ".", "deployment_run_name", ")", ")" ]
Sets the deployment run name from deployment properties :return: None
[ "Sets", "the", "deployment", "run", "name", "from", "deployment", "properties" ]
python
train
merll/docker-fabric
dockerfabric/utils/users.py
https://github.com/merll/docker-fabric/blob/785d84e40e17265b667d8b11a6e30d8e6b2bf8d4/dockerfabric/utils/users.py#L101-L122
def get_or_create_group(groupname, gid_preset, system=False, id_dependent=True): """ Returns the id for the given group, and creates it first in case it does not exist. :param groupname: Group name. :type groupname: unicode :param gid_preset: Group id to set if a new group is created. :type gid_preset: int or unicode :param system: Create a system group. :type system: bool :param id_dependent: If the group exists, but its id does not match `gid_preset`, an error is thrown. :type id_dependent: bool :return: Group id of the existing or new group. :rtype: int """ gid = get_group_id(groupname) if gid is None: create_group(groupname, gid_preset, system) return gid_preset elif id_dependent and gid != gid_preset: error("Present group id '{0}' does not match the required id of the environment '{1}'.".format(gid, gid_preset)) return gid
[ "def", "get_or_create_group", "(", "groupname", ",", "gid_preset", ",", "system", "=", "False", ",", "id_dependent", "=", "True", ")", ":", "gid", "=", "get_group_id", "(", "groupname", ")", "if", "gid", "is", "None", ":", "create_group", "(", "groupname", ",", "gid_preset", ",", "system", ")", "return", "gid_preset", "elif", "id_dependent", "and", "gid", "!=", "gid_preset", ":", "error", "(", "\"Present group id '{0}' does not match the required id of the environment '{1}'.\"", ".", "format", "(", "gid", ",", "gid_preset", ")", ")", "return", "gid" ]
Returns the id for the given group, and creates it first in case it does not exist. :param groupname: Group name. :type groupname: unicode :param gid_preset: Group id to set if a new group is created. :type gid_preset: int or unicode :param system: Create a system group. :type system: bool :param id_dependent: If the group exists, but its id does not match `gid_preset`, an error is thrown. :type id_dependent: bool :return: Group id of the existing or new group. :rtype: int
[ "Returns", "the", "id", "for", "the", "given", "group", "and", "creates", "it", "first", "in", "case", "it", "does", "not", "exist", "." ]
python
train
kata198/AdvancedHTMLParser
AdvancedHTMLParser/Parser.py
https://github.com/kata198/AdvancedHTMLParser/blob/06aeea5d8e2ea86e155aae0fc237623d3e9b7f9d/AdvancedHTMLParser/Parser.py#L527-L539
def containsUid(self, uid): ''' Check if #uid is found anywhere within this element tree @param uid <uuid.UUID> - Uid @return <bool> - If #uid is found within this tree ''' for rootNode in self.getRootNodes(): if rootNode.containsUid(uid): return True return False
[ "def", "containsUid", "(", "self", ",", "uid", ")", ":", "for", "rootNode", "in", "self", ".", "getRootNodes", "(", ")", ":", "if", "rootNode", ".", "containsUid", "(", "uid", ")", ":", "return", "True", "return", "False" ]
Check if #uid is found anywhere within this element tree @param uid <uuid.UUID> - Uid @return <bool> - If #uid is found within this tree
[ "Check", "if", "#uid", "is", "found", "anywhere", "within", "this", "element", "tree" ]
python
train
SpotlightData/preprocessing
preprocessing/text.py
https://github.com/SpotlightData/preprocessing/blob/180c6472bc2642afbd7a1ece08d0b0d14968a708/preprocessing/text.py#L75-L98
def correct_spelling(text_string): ''' Splits string and converts words not found within a pre-built dictionary to their most likely actual word based on a relative probability dictionary. Returns edited string as type str. Keyword argument: - text_string: string instance Exceptions raised: - InputError: occurs should a string or NoneType not be passed as an argument ''' if text_string is None or text_string == "": return "" elif isinstance(text_string, str): word_list = text_string.split() spellchecked_word_list = [] for word in word_list: spellchecked_word_list.append(spellcheck.correct_word(word)) return " ".join(spellchecked_word_list) else: raise InputError("none type or string not passed as an argument")
[ "def", "correct_spelling", "(", "text_string", ")", ":", "if", "text_string", "is", "None", "or", "text_string", "==", "\"\"", ":", "return", "\"\"", "elif", "isinstance", "(", "text_string", ",", "str", ")", ":", "word_list", "=", "text_string", ".", "split", "(", ")", "spellchecked_word_list", "=", "[", "]", "for", "word", "in", "word_list", ":", "spellchecked_word_list", ".", "append", "(", "spellcheck", ".", "correct_word", "(", "word", ")", ")", "return", "\" \"", ".", "join", "(", "spellchecked_word_list", ")", "else", ":", "raise", "InputError", "(", "\"none type or string not passed as an argument\"", ")" ]
Splits string and converts words not found within a pre-built dictionary to their most likely actual word based on a relative probability dictionary. Returns edited string as type str. Keyword argument: - text_string: string instance Exceptions raised: - InputError: occurs should a string or NoneType not be passed as an argument
[ "Splits", "string", "and", "converts", "words", "not", "found", "within", "a", "pre", "-", "built", "dictionary", "to", "their", "most", "likely", "actual", "word", "based", "on", "a", "relative", "probability", "dictionary", ".", "Returns", "edited", "string", "as", "type", "str", "." ]
python
train
brocade/pynos
pynos/versions/ver_6/ver_6_0_1/yang/ietf_netconf_notifications.py
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/ietf_netconf_notifications.py#L256-L265
def netconf_confirmed_commit_session_id(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") netconf_confirmed_commit = ET.SubElement(config, "netconf-confirmed-commit", xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-notifications") session_id = ET.SubElement(netconf_confirmed_commit, "session-id") session_id.text = kwargs.pop('session_id') callback = kwargs.pop('callback', self._callback) return callback(config)
[ "def", "netconf_confirmed_commit_session_id", "(", "self", ",", "*", "*", "kwargs", ")", ":", "config", "=", "ET", ".", "Element", "(", "\"config\"", ")", "netconf_confirmed_commit", "=", "ET", ".", "SubElement", "(", "config", ",", "\"netconf-confirmed-commit\"", ",", "xmlns", "=", "\"urn:ietf:params:xml:ns:yang:ietf-netconf-notifications\"", ")", "session_id", "=", "ET", ".", "SubElement", "(", "netconf_confirmed_commit", ",", "\"session-id\"", ")", "session_id", ".", "text", "=", "kwargs", ".", "pop", "(", "'session_id'", ")", "callback", "=", "kwargs", ".", "pop", "(", "'callback'", ",", "self", ".", "_callback", ")", "return", "callback", "(", "config", ")" ]
Auto Generated Code
[ "Auto", "Generated", "Code" ]
python
train
boriel/zxbasic
asmparse.py
https://github.com/boriel/zxbasic/blob/23b28db10e41117805bdb3c0f78543590853b132/asmparse.py#L377-L383
def set_org(self, value, lineno): """ Sets a new ORG value """ if value < 0 or value > MAX_MEM: error(lineno, "Memory ORG out of range [0 .. 65535]. Current value: %i" % value) self.index = self.ORG = value
[ "def", "set_org", "(", "self", ",", "value", ",", "lineno", ")", ":", "if", "value", "<", "0", "or", "value", ">", "MAX_MEM", ":", "error", "(", "lineno", ",", "\"Memory ORG out of range [0 .. 65535]. Current value: %i\"", "%", "value", ")", "self", ".", "index", "=", "self", ".", "ORG", "=", "value" ]
Sets a new ORG value
[ "Sets", "a", "new", "ORG", "value" ]
python
train
twilio/twilio-python
twilio/rest/studio/v1/flow/__init__.py
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/studio/v1/flow/__init__.py#L239-L248
def engagements(self): """ Access the engagements :returns: twilio.rest.studio.v1.flow.engagement.EngagementList :rtype: twilio.rest.studio.v1.flow.engagement.EngagementList """ if self._engagements is None: self._engagements = EngagementList(self._version, flow_sid=self._solution['sid'], ) return self._engagements
[ "def", "engagements", "(", "self", ")", ":", "if", "self", ".", "_engagements", "is", "None", ":", "self", ".", "_engagements", "=", "EngagementList", "(", "self", ".", "_version", ",", "flow_sid", "=", "self", ".", "_solution", "[", "'sid'", "]", ",", ")", "return", "self", ".", "_engagements" ]
Access the engagements :returns: twilio.rest.studio.v1.flow.engagement.EngagementList :rtype: twilio.rest.studio.v1.flow.engagement.EngagementList
[ "Access", "the", "engagements" ]
python
train
pkgw/pwkit
pwkit/__init__.py
https://github.com/pkgw/pwkit/blob/d40957a1c3d2ea34e7ceac2267ee9635135f2793/pwkit/__init__.py#L205-L211
def copy(self): """Return a shallow copy of this object. """ new = self.__class__() new.__dict__ = dict(self.__dict__) return new
[ "def", "copy", "(", "self", ")", ":", "new", "=", "self", ".", "__class__", "(", ")", "new", ".", "__dict__", "=", "dict", "(", "self", ".", "__dict__", ")", "return", "new" ]
Return a shallow copy of this object.
[ "Return", "a", "shallow", "copy", "of", "this", "object", "." ]
python
train
BenDoan/perform
perform.py
https://github.com/BenDoan/perform/blob/3434c5c68fb7661d74f03404c71bb5fbebe1900f/perform.py#L157-L164
def refresh_listing(): """Refreshes the list of programs attached to the perform module from the path""" for program in get_programs(): if re.match(r'^[a-zA-Z_][a-zA-Z_0-9]*$', program) is not None: globals()[program] = partial(_run_program, program) globals()["_"] = _underscore_run_program
[ "def", "refresh_listing", "(", ")", ":", "for", "program", "in", "get_programs", "(", ")", ":", "if", "re", ".", "match", "(", "r'^[a-zA-Z_][a-zA-Z_0-9]*$'", ",", "program", ")", "is", "not", "None", ":", "globals", "(", ")", "[", "program", "]", "=", "partial", "(", "_run_program", ",", "program", ")", "globals", "(", ")", "[", "\"_\"", "]", "=", "_underscore_run_program" ]
Refreshes the list of programs attached to the perform module from the path
[ "Refreshes", "the", "list", "of", "programs", "attached", "to", "the", "perform", "module", "from", "the", "path" ]
python
train
ebu/PlugIt
plugit_proxy/views.py
https://github.com/ebu/PlugIt/blob/de5f1e870f67caaef7a4a58e4bb1ed54d9c5dc53/plugit_proxy/views.py#L654-L679
def get_current_orga(request, hproject, availableOrga): """Return the current orga to use""" # If nothing available return 404 if len(availableOrga) == 0: raise Http404 # Find the current orga currentOrgaId = request.session.get('plugit-orgapk-' + str(hproject.pk), None) # If we don't have a current one select the first available if currentOrgaId is None: (tmpOrga, _) = availableOrga[0] currentOrgaId = tmpOrga.pk else: # If the current Orga is not among the available ones reset to the first one availableOrgaIds = [o.pk for (o, r) in availableOrga] if currentOrgaId not in availableOrgaIds: (tmpOrga, _) = availableOrga[0] currentOrgaId = tmpOrga.pk from organizations.models import Organization realCurrentOrga = get_object_or_404(Organization, pk=currentOrgaId) return realCurrentOrga
[ "def", "get_current_orga", "(", "request", ",", "hproject", ",", "availableOrga", ")", ":", "# If nothing available return 404", "if", "len", "(", "availableOrga", ")", "==", "0", ":", "raise", "Http404", "# Find the current orga", "currentOrgaId", "=", "request", ".", "session", ".", "get", "(", "'plugit-orgapk-'", "+", "str", "(", "hproject", ".", "pk", ")", ",", "None", ")", "# If we don't have a current one select the first available", "if", "currentOrgaId", "is", "None", ":", "(", "tmpOrga", ",", "_", ")", "=", "availableOrga", "[", "0", "]", "currentOrgaId", "=", "tmpOrga", ".", "pk", "else", ":", "# If the current Orga is not among the available ones reset to the first one", "availableOrgaIds", "=", "[", "o", ".", "pk", "for", "(", "o", ",", "r", ")", "in", "availableOrga", "]", "if", "currentOrgaId", "not", "in", "availableOrgaIds", ":", "(", "tmpOrga", ",", "_", ")", "=", "availableOrga", "[", "0", "]", "currentOrgaId", "=", "tmpOrga", ".", "pk", "from", "organizations", ".", "models", "import", "Organization", "realCurrentOrga", "=", "get_object_or_404", "(", "Organization", ",", "pk", "=", "currentOrgaId", ")", "return", "realCurrentOrga" ]
Return the current orga to use
[ "Return", "the", "current", "orga", "to", "use" ]
python
train
Rapptz/discord.py
discord/ext/commands/core.py
https://github.com/Rapptz/discord.py/blob/05d4f7f9620ef33635d6ac965b26528e09cdaf5b/discord/ext/commands/core.py#L277-L284
def update(self, **kwargs): """Updates :class:`Command` instance with updated attribute. This works similarly to the :func:`.command` decorator in terms of parameters in that they are passed to the :class:`Command` or subclass constructors, sans the name and callback. """ self.__init__(self.callback, **dict(self.__original_kwargs__, **kwargs))
[ "def", "update", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "__init__", "(", "self", ".", "callback", ",", "*", "*", "dict", "(", "self", ".", "__original_kwargs__", ",", "*", "*", "kwargs", ")", ")" ]
Updates :class:`Command` instance with updated attribute. This works similarly to the :func:`.command` decorator in terms of parameters in that they are passed to the :class:`Command` or subclass constructors, sans the name and callback.
[ "Updates", ":", "class", ":", "Command", "instance", "with", "updated", "attribute", "." ]
python
train
bdastur/rex
rex.py
https://github.com/bdastur/rex/blob/e45173aa93f05a1d2ee65746e6f6cc6d829daf60/rex.py#L338-L380
def parse_tabular_string(search_string, header_keys, delimiter=None, merge_list=None): ''' Given a string in a tabular format, parse it and return a dictionary @args: search_string: This is a string in tabular format (e.g.: output of df command) header_keys: This is a list of strings for the headers. delimiter(optional): Default is None, which translates to spaces merge_list(optional): In some cases 2 fields need to be merged as they are one value. ''' first_line = True parsed_results = [] for line in search_string.splitlines(): if first_line: first_line = False else: result = {} row = line.split() if merge_list: for mergeset in merge_list: fidx = mergeset[0] lidx = mergeset[1] try: row[fidx] = "_".join(row[fidx:(lidx+1)]) row.remove(row[lidx]) except IndexError: pass if len(row) != len(header_keys): print "Incorrect fields len " continue key_count = 0 for column in row: result[header_keys[key_count]] = column key_count += 1 parsed_results.append(result) return parsed_results
[ "def", "parse_tabular_string", "(", "search_string", ",", "header_keys", ",", "delimiter", "=", "None", ",", "merge_list", "=", "None", ")", ":", "first_line", "=", "True", "parsed_results", "=", "[", "]", "for", "line", "in", "search_string", ".", "splitlines", "(", ")", ":", "if", "first_line", ":", "first_line", "=", "False", "else", ":", "result", "=", "{", "}", "row", "=", "line", ".", "split", "(", ")", "if", "merge_list", ":", "for", "mergeset", "in", "merge_list", ":", "fidx", "=", "mergeset", "[", "0", "]", "lidx", "=", "mergeset", "[", "1", "]", "try", ":", "row", "[", "fidx", "]", "=", "\"_\"", ".", "join", "(", "row", "[", "fidx", ":", "(", "lidx", "+", "1", ")", "]", ")", "row", ".", "remove", "(", "row", "[", "lidx", "]", ")", "except", "IndexError", ":", "pass", "if", "len", "(", "row", ")", "!=", "len", "(", "header_keys", ")", ":", "print", "\"Incorrect fields len \"", "continue", "key_count", "=", "0", "for", "column", "in", "row", ":", "result", "[", "header_keys", "[", "key_count", "]", "]", "=", "column", "key_count", "+=", "1", "parsed_results", ".", "append", "(", "result", ")", "return", "parsed_results" ]
Given a string in a tabular format, parse it and return a dictionary @args: search_string: This is a string in tabular format (e.g.: output of df command) header_keys: This is a list of strings for the headers. delimiter(optional): Default is None, which translates to spaces merge_list(optional): In some cases 2 fields need to be merged as they are one value.
[ "Given", "a", "string", "in", "a", "tabular", "format", "parse", "it", "and", "return", "a", "dictionary" ]
python
train
nerox8664/pytorch2keras
pytorch2keras/normalization_layers.py
https://github.com/nerox8664/pytorch2keras/blob/750eaf747323580e6732d0c5ba9f2f39cb096764/pytorch2keras/normalization_layers.py#L115-L138
def convert_dropout(params, w_name, scope_name, inputs, layers, weights, names): """ Convert dropout. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers """ print('Converting dropout ...') if names == 'short': tf_name = 'DO' + random_string(6) elif names == 'keep': tf_name = w_name else: tf_name = w_name + str(random.random()) dropout = keras.layers.Dropout(rate=params['ratio'], name=tf_name) layers[scope_name] = dropout(layers[inputs[0]])
[ "def", "convert_dropout", "(", "params", ",", "w_name", ",", "scope_name", ",", "inputs", ",", "layers", ",", "weights", ",", "names", ")", ":", "print", "(", "'Converting dropout ...'", ")", "if", "names", "==", "'short'", ":", "tf_name", "=", "'DO'", "+", "random_string", "(", "6", ")", "elif", "names", "==", "'keep'", ":", "tf_name", "=", "w_name", "else", ":", "tf_name", "=", "w_name", "+", "str", "(", "random", ".", "random", "(", ")", ")", "dropout", "=", "keras", ".", "layers", ".", "Dropout", "(", "rate", "=", "params", "[", "'ratio'", "]", ",", "name", "=", "tf_name", ")", "layers", "[", "scope_name", "]", "=", "dropout", "(", "layers", "[", "inputs", "[", "0", "]", "]", ")" ]
Convert dropout. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
[ "Convert", "dropout", "." ]
python
valid
saulpw/visidata
visidata/vdtui.py
https://github.com/saulpw/visidata/blob/32771e0cea6c24fc7902683d14558391395c591f/visidata/vdtui.py#L608-L616
def callHook(self, hookname, *args, **kwargs): 'Call all functions registered with `addHook` for the given hookname.' r = [] for f in self.hooks[hookname]: try: r.append(f(*args, **kwargs)) except Exception as e: exceptionCaught(e) return r
[ "def", "callHook", "(", "self", ",", "hookname", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "r", "=", "[", "]", "for", "f", "in", "self", ".", "hooks", "[", "hookname", "]", ":", "try", ":", "r", ".", "append", "(", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", ")", "except", "Exception", "as", "e", ":", "exceptionCaught", "(", "e", ")", "return", "r" ]
Call all functions registered with `addHook` for the given hookname.
[ "Call", "all", "functions", "registered", "with", "addHook", "for", "the", "given", "hookname", "." ]
python
train
google/prettytensor
prettytensor/pretty_tensor_sparse_methods.py
https://github.com/google/prettytensor/blob/75daa0b11252590f548da5647addc0ea610c4c45/prettytensor/pretty_tensor_sparse_methods.py#L22-L61
def to_dense_one_hot(labels, class_count): """Converts a vector that specified one-hot per batch into a dense version. Args: labels: The labels input. class_count: The number of classes as an int. Returns: One dense vector for each item in the batch. Raises: ValueError: If labels is not rank 1. TypeError: If class_count is not an integer or labels is not an integer Tensor. """ if not isinstance(class_count, tf.compat.integral_types): raise TypeError('class_count must be an integer type.') if labels.dtype.base_dtype not in (tf.int32, tf.int64): raise TypeError('Labels must be an integer: %s' % labels.dtype) if labels.get_shape().ndims != 1: raise ValueError('Labels must be a rank 1 tensor: %s' % labels.get_shape()) dtype = labels.dtype.base_dtype class_tensor = tf.convert_to_tensor( class_count, dtype=dtype, name='class_count') # Extract the batch from the shape so this is batch independent. batch = tf.gather(tf.shape(labels), 0) count = tf.expand_dims(tf.range(0, limit=batch), 1) labels = tf.expand_dims(labels, 1) batch = tf.gather(tf.shape(labels), 0) if dtype != tf.int32: count = tf.cast(count, dtype) batch = tf.cast(batch, dtype) result = tf.sparse_to_dense( tf.concat([count, labels], 1), tf.concat([tf.expand_dims(batch, 0), tf.expand_dims(class_tensor, 0)], 0), 1.0, 0.0) result.set_shape([labels.get_shape().dims[0], class_count]) return result
[ "def", "to_dense_one_hot", "(", "labels", ",", "class_count", ")", ":", "if", "not", "isinstance", "(", "class_count", ",", "tf", ".", "compat", ".", "integral_types", ")", ":", "raise", "TypeError", "(", "'class_count must be an integer type.'", ")", "if", "labels", ".", "dtype", ".", "base_dtype", "not", "in", "(", "tf", ".", "int32", ",", "tf", ".", "int64", ")", ":", "raise", "TypeError", "(", "'Labels must be an integer: %s'", "%", "labels", ".", "dtype", ")", "if", "labels", ".", "get_shape", "(", ")", ".", "ndims", "!=", "1", ":", "raise", "ValueError", "(", "'Labels must be a rank 1 tensor: %s'", "%", "labels", ".", "get_shape", "(", ")", ")", "dtype", "=", "labels", ".", "dtype", ".", "base_dtype", "class_tensor", "=", "tf", ".", "convert_to_tensor", "(", "class_count", ",", "dtype", "=", "dtype", ",", "name", "=", "'class_count'", ")", "# Extract the batch from the shape so this is batch independent.", "batch", "=", "tf", ".", "gather", "(", "tf", ".", "shape", "(", "labels", ")", ",", "0", ")", "count", "=", "tf", ".", "expand_dims", "(", "tf", ".", "range", "(", "0", ",", "limit", "=", "batch", ")", ",", "1", ")", "labels", "=", "tf", ".", "expand_dims", "(", "labels", ",", "1", ")", "batch", "=", "tf", ".", "gather", "(", "tf", ".", "shape", "(", "labels", ")", ",", "0", ")", "if", "dtype", "!=", "tf", ".", "int32", ":", "count", "=", "tf", ".", "cast", "(", "count", ",", "dtype", ")", "batch", "=", "tf", ".", "cast", "(", "batch", ",", "dtype", ")", "result", "=", "tf", ".", "sparse_to_dense", "(", "tf", ".", "concat", "(", "[", "count", ",", "labels", "]", ",", "1", ")", ",", "tf", ".", "concat", "(", "[", "tf", ".", "expand_dims", "(", "batch", ",", "0", ")", ",", "tf", ".", "expand_dims", "(", "class_tensor", ",", "0", ")", "]", ",", "0", ")", ",", "1.0", ",", "0.0", ")", "result", ".", "set_shape", "(", "[", "labels", ".", "get_shape", "(", ")", ".", "dims", "[", "0", "]", ",", "class_count", "]", ")", "return", "result" ]
Converts a vector that specified one-hot per batch into a dense version. Args: labels: The labels input. class_count: The number of classes as an int. Returns: One dense vector for each item in the batch. Raises: ValueError: If labels is not rank 1. TypeError: If class_count is not an integer or labels is not an integer Tensor.
[ "Converts", "a", "vector", "that", "specified", "one", "-", "hot", "per", "batch", "into", "a", "dense", "version", "." ]
python
train
QuantEcon/QuantEcon.py
quantecon/robustlq.py
https://github.com/QuantEcon/QuantEcon.py/blob/26a66c552f2a73967d7efb6e1f4b4c4985a12643/quantecon/robustlq.py#L359-L402
def evaluate_F(self, F): """ Given a fixed policy F, with the interpretation :math:`u = -F x`, this function computes the matrix :math:`P_F` and constant :math:`d_F` associated with discounted cost :math:`J_F(x) = x' P_F x + d_F` Parameters ---------- F : array_like(float, ndim=2) The policy function, a k x n array Returns ------- P_F : array_like(float, ndim=2) Matrix for discounted cost d_F : scalar(float) Constant for discounted cost K_F : array_like(float, ndim=2) Worst case policy O_F : array_like(float, ndim=2) Matrix for discounted entropy o_F : scalar(float) Constant for discounted entropy """ # == Simplify names == # Q, R, A, B, C = self.Q, self.R, self.A, self.B, self.C beta, theta = self.beta, self.theta # == Solve for policies and costs using agent 2's problem == # K_F, P_F = self.F_to_K(F) I = np.identity(self.j) H = inv(I - C.T.dot(P_F.dot(C)) / theta) d_F = log(det(H)) # == Compute O_F and o_F == # sig = -1.0 / theta AO = sqrt(beta) * (A - dot(B, F) + dot(C, K_F)) O_F = solve_discrete_lyapunov(AO.T, beta * dot(K_F.T, K_F)) ho = (trace(H - 1) - d_F) / 2.0 tr = trace(dot(O_F, C.dot(H.dot(C.T)))) o_F = (ho + beta * tr) / (1 - beta) return K_F, P_F, d_F, O_F, o_F
[ "def", "evaluate_F", "(", "self", ",", "F", ")", ":", "# == Simplify names == #", "Q", ",", "R", ",", "A", ",", "B", ",", "C", "=", "self", ".", "Q", ",", "self", ".", "R", ",", "self", ".", "A", ",", "self", ".", "B", ",", "self", ".", "C", "beta", ",", "theta", "=", "self", ".", "beta", ",", "self", ".", "theta", "# == Solve for policies and costs using agent 2's problem == #", "K_F", ",", "P_F", "=", "self", ".", "F_to_K", "(", "F", ")", "I", "=", "np", ".", "identity", "(", "self", ".", "j", ")", "H", "=", "inv", "(", "I", "-", "C", ".", "T", ".", "dot", "(", "P_F", ".", "dot", "(", "C", ")", ")", "/", "theta", ")", "d_F", "=", "log", "(", "det", "(", "H", ")", ")", "# == Compute O_F and o_F == #", "sig", "=", "-", "1.0", "/", "theta", "AO", "=", "sqrt", "(", "beta", ")", "*", "(", "A", "-", "dot", "(", "B", ",", "F", ")", "+", "dot", "(", "C", ",", "K_F", ")", ")", "O_F", "=", "solve_discrete_lyapunov", "(", "AO", ".", "T", ",", "beta", "*", "dot", "(", "K_F", ".", "T", ",", "K_F", ")", ")", "ho", "=", "(", "trace", "(", "H", "-", "1", ")", "-", "d_F", ")", "/", "2.0", "tr", "=", "trace", "(", "dot", "(", "O_F", ",", "C", ".", "dot", "(", "H", ".", "dot", "(", "C", ".", "T", ")", ")", ")", ")", "o_F", "=", "(", "ho", "+", "beta", "*", "tr", ")", "/", "(", "1", "-", "beta", ")", "return", "K_F", ",", "P_F", ",", "d_F", ",", "O_F", ",", "o_F" ]
Given a fixed policy F, with the interpretation :math:`u = -F x`, this function computes the matrix :math:`P_F` and constant :math:`d_F` associated with discounted cost :math:`J_F(x) = x' P_F x + d_F` Parameters ---------- F : array_like(float, ndim=2) The policy function, a k x n array Returns ------- P_F : array_like(float, ndim=2) Matrix for discounted cost d_F : scalar(float) Constant for discounted cost K_F : array_like(float, ndim=2) Worst case policy O_F : array_like(float, ndim=2) Matrix for discounted entropy o_F : scalar(float) Constant for discounted entropy
[ "Given", "a", "fixed", "policy", "F", "with", "the", "interpretation", ":", "math", ":", "u", "=", "-", "F", "x", "this", "function", "computes", "the", "matrix", ":", "math", ":", "P_F", "and", "constant", ":", "math", ":", "d_F", "associated", "with", "discounted", "cost", ":", "math", ":", "J_F", "(", "x", ")", "=", "x", "P_F", "x", "+", "d_F" ]
python
train
inspirehep/refextract
refextract/documents/pdf.py
https://github.com/inspirehep/refextract/blob/d70e3787be3c495a3a07d1517b53f81d51c788c7/refextract/documents/pdf.py#L434-L449
def replace_undesirable_characters(line): """ Replace certain bad characters in a text line. @param line: (string) the text line in which bad characters are to be replaced. @return: (string) the text line after the bad characters have been replaced. """ # These are separate because we want a particular order for bad_string, replacement in UNDESIRABLE_STRING_REPLACEMENTS: line = line.replace(bad_string, replacement) for bad_char, replacement in iteritems(UNDESIRABLE_CHAR_REPLACEMENTS): line = line.replace(bad_char, replacement) return line
[ "def", "replace_undesirable_characters", "(", "line", ")", ":", "# These are separate because we want a particular order", "for", "bad_string", ",", "replacement", "in", "UNDESIRABLE_STRING_REPLACEMENTS", ":", "line", "=", "line", ".", "replace", "(", "bad_string", ",", "replacement", ")", "for", "bad_char", ",", "replacement", "in", "iteritems", "(", "UNDESIRABLE_CHAR_REPLACEMENTS", ")", ":", "line", "=", "line", ".", "replace", "(", "bad_char", ",", "replacement", ")", "return", "line" ]
Replace certain bad characters in a text line. @param line: (string) the text line in which bad characters are to be replaced. @return: (string) the text line after the bad characters have been replaced.
[ "Replace", "certain", "bad", "characters", "in", "a", "text", "line", "." ]
python
train
thunder-project/thunder
thunder/series/series.py
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/series/series.py#L292-L348
def select(self, crit): """ Select subset of values that match a given index criterion. Parameters ---------- crit : function, list, str, int Criterion function to map to indices, specific index value, or list of indices. """ import types # handle lists, strings, and ints if not isinstance(crit, types.FunctionType): # set("foo") -> {"f", "o"}; wrap in list to prevent: if isinstance(crit, string_types): critlist = set([crit]) else: try: critlist = set(crit) except TypeError: # typically means crit is not an iterable type; for instance, crit is an int critlist = set([crit]) crit = lambda x: x in critlist # if only one index, return it directly or throw an error index = self.index if size(index) == 1: if crit(index[0]): return self else: raise Exception('No indices found matching criterion') # determine new index and check the result newindex = [i for i in index if crit(i)] if len(newindex) == 0: raise Exception('No indices found matching criterion') if array(newindex == index).all(): return self # use fast logical indexing to get the new values subinds = where([crit(i) for i in index]) new = self.map(lambda x: x[subinds], index=newindex) # if singleton, need to check whether it's an array or a scalar/int # if array, recompute a new set of indices if len(newindex) == 1: new = new.map(lambda x: x[0], index=newindex) val = new.first() if size(val) == 1: newindex = [newindex[0]] else: newindex = arange(0, size(val)) new._index = newindex return new
[ "def", "select", "(", "self", ",", "crit", ")", ":", "import", "types", "# handle lists, strings, and ints", "if", "not", "isinstance", "(", "crit", ",", "types", ".", "FunctionType", ")", ":", "# set(\"foo\") -> {\"f\", \"o\"}; wrap in list to prevent:", "if", "isinstance", "(", "crit", ",", "string_types", ")", ":", "critlist", "=", "set", "(", "[", "crit", "]", ")", "else", ":", "try", ":", "critlist", "=", "set", "(", "crit", ")", "except", "TypeError", ":", "# typically means crit is not an iterable type; for instance, crit is an int", "critlist", "=", "set", "(", "[", "crit", "]", ")", "crit", "=", "lambda", "x", ":", "x", "in", "critlist", "# if only one index, return it directly or throw an error", "index", "=", "self", ".", "index", "if", "size", "(", "index", ")", "==", "1", ":", "if", "crit", "(", "index", "[", "0", "]", ")", ":", "return", "self", "else", ":", "raise", "Exception", "(", "'No indices found matching criterion'", ")", "# determine new index and check the result", "newindex", "=", "[", "i", "for", "i", "in", "index", "if", "crit", "(", "i", ")", "]", "if", "len", "(", "newindex", ")", "==", "0", ":", "raise", "Exception", "(", "'No indices found matching criterion'", ")", "if", "array", "(", "newindex", "==", "index", ")", ".", "all", "(", ")", ":", "return", "self", "# use fast logical indexing to get the new values", "subinds", "=", "where", "(", "[", "crit", "(", "i", ")", "for", "i", "in", "index", "]", ")", "new", "=", "self", ".", "map", "(", "lambda", "x", ":", "x", "[", "subinds", "]", ",", "index", "=", "newindex", ")", "# if singleton, need to check whether it's an array or a scalar/int", "# if array, recompute a new set of indices", "if", "len", "(", "newindex", ")", "==", "1", ":", "new", "=", "new", ".", "map", "(", "lambda", "x", ":", "x", "[", "0", "]", ",", "index", "=", "newindex", ")", "val", "=", "new", ".", "first", "(", ")", "if", "size", "(", "val", ")", "==", "1", ":", "newindex", "=", "[", "newindex", "[", "0", "]", "]", "else", ":", "newindex", "=", "arange", "(", "0", ",", "size", "(", "val", ")", ")", "new", ".", "_index", "=", "newindex", "return", "new" ]
Select subset of values that match a given index criterion. Parameters ---------- crit : function, list, str, int Criterion function to map to indices, specific index value, or list of indices.
[ "Select", "subset", "of", "values", "that", "match", "a", "given", "index", "criterion", "." ]
python
train
klavinslab/coral
coral/analysis/_sequencing/sanger.py
https://github.com/klavinslab/coral/blob/17f59591211562a59a051f474cd6cecba4829df9/coral/analysis/_sequencing/sanger.py#L72-L80
def nonmatches(self): '''Report mismatches, indels, and coverage.''' # For every result, keep a dictionary of mismatches, insertions, and # deletions report = [] for result in self.aligned_results: report.append(self._analyze_single(self.aligned_reference, result)) return report
[ "def", "nonmatches", "(", "self", ")", ":", "# For every result, keep a dictionary of mismatches, insertions, and", "# deletions", "report", "=", "[", "]", "for", "result", "in", "self", ".", "aligned_results", ":", "report", ".", "append", "(", "self", ".", "_analyze_single", "(", "self", ".", "aligned_reference", ",", "result", ")", ")", "return", "report" ]
Report mismatches, indels, and coverage.
[ "Report", "mismatches", "indels", "and", "coverage", "." ]
python
train
gatkin/declxml
declxml.py
https://github.com/gatkin/declxml/blob/3a2324b43aee943e82a04587fbb68932c6f392ba/declxml.py#L476-L499
def dictionary( element_name, # type: Text children, # type: List[Processor] required=True, # type: bool alias=None, # type: Optional[Text] hooks=None # type: Optional[Hooks] ): # type: (...) -> RootProcessor """ Create a processor for dictionary values. :param element_name: Name of the XML element containing the dictionary value. Can also be specified using supported XPath syntax. :param children: List of declxml processor objects for processing the children contained within the dictionary. :param required: Indicates whether the value is required when parsing and serializing. :param alias: If specified, then this is used as the name of the value when read from XML. If not specified, then the element_name is used as the name of the value. :param hooks: A Hooks object. :return: A declxml processor object. """ processor = _Dictionary(element_name, children, required, alias) return _processor_wrap_if_hooks(processor, hooks)
[ "def", "dictionary", "(", "element_name", ",", "# type: Text", "children", ",", "# type: List[Processor]", "required", "=", "True", ",", "# type: bool", "alias", "=", "None", ",", "# type: Optional[Text]", "hooks", "=", "None", "# type: Optional[Hooks]", ")", ":", "# type: (...) -> RootProcessor", "processor", "=", "_Dictionary", "(", "element_name", ",", "children", ",", "required", ",", "alias", ")", "return", "_processor_wrap_if_hooks", "(", "processor", ",", "hooks", ")" ]
Create a processor for dictionary values. :param element_name: Name of the XML element containing the dictionary value. Can also be specified using supported XPath syntax. :param children: List of declxml processor objects for processing the children contained within the dictionary. :param required: Indicates whether the value is required when parsing and serializing. :param alias: If specified, then this is used as the name of the value when read from XML. If not specified, then the element_name is used as the name of the value. :param hooks: A Hooks object. :return: A declxml processor object.
[ "Create", "a", "processor", "for", "dictionary", "values", "." ]
python
train
spacetelescope/drizzlepac
drizzlepac/imgclasses.py
https://github.com/spacetelescope/drizzlepac/blob/15bec3c929a6a869d9e71b9398ced43ede0620f1/drizzlepac/imgclasses.py#L1613-L1672
def _estimate_2dhist_shift(imgxy, refxy, searchrad=3.0): """ Create a 2D matrix-histogram which contains the delta between each XY position and each UV position. Then estimate initial offset between catalogs. """ print("Computing initial guess for X and Y shifts...") # create ZP matrix zpmat = _xy_2dhist(imgxy, refxy, r=searchrad) nonzeros = np.count_nonzero(zpmat) if nonzeros == 0: # no matches within search radius. Return (0, 0): print("WARNING: No matches found within a search radius of {:g} " "pixels.".format(searchrad)) return 0.0, 0.0, 0, 0, zpmat, False elif nonzeros == 1: # only one non-zero bin: yp, xp = np.unravel_index(np.argmax(zpmat), zpmat.shape) maxval = int(np.ceil(zpmat[yp, xp])) xp -= searchrad yp -= searchrad print("Found initial X and Y shifts of {:.4g}, {:.4g} " "based on a single non-zero bin and {} matches" .format(xp, yp, maxval)) return xp, yp, maxval, maxval, zpmat, True (xp, yp), fit_status, fit_sl = _find_peak(zpmat, peak_fit_box=5, mask=zpmat > 0) if fit_status.startswith('ERROR'): print("WARNING: No valid shift found within a search radius of {:g} " "pixels.".format(searchrad)) maxval = int(np.ceil(zpmat.max())) return 0.0, 0.0, maxval, maxval, zpmat, False xp -= searchrad yp -= searchrad if fit_status == 'WARNING:EDGE': print( "WARNING: Found peak in the 2D histogram lies at the edge of " "the histogram. Try increasing 'searchrad' for improved results." ) # Attempt to estimate "significance of detection": maxval = zpmat.max() zpmat_mask = (zpmat > 0) & (zpmat < maxval) if np.any(zpmat_mask): bkg = zpmat[zpmat_mask].mean() sig = maxval / np.sqrt(bkg) flux = int(zpmat[fit_sl].sum()) print("Found initial X and Y shifts of {:.4g}, {:.4g} " "with significance of {:.4g} and {:d} matches" .format(xp, yp, sig, flux)) return xp, yp, int(np.ceil(maxval)), flux, zpmat, True
[ "def", "_estimate_2dhist_shift", "(", "imgxy", ",", "refxy", ",", "searchrad", "=", "3.0", ")", ":", "print", "(", "\"Computing initial guess for X and Y shifts...\"", ")", "# create ZP matrix", "zpmat", "=", "_xy_2dhist", "(", "imgxy", ",", "refxy", ",", "r", "=", "searchrad", ")", "nonzeros", "=", "np", ".", "count_nonzero", "(", "zpmat", ")", "if", "nonzeros", "==", "0", ":", "# no matches within search radius. Return (0, 0):", "print", "(", "\"WARNING: No matches found within a search radius of {:g} \"", "\"pixels.\"", ".", "format", "(", "searchrad", ")", ")", "return", "0.0", ",", "0.0", ",", "0", ",", "0", ",", "zpmat", ",", "False", "elif", "nonzeros", "==", "1", ":", "# only one non-zero bin:", "yp", ",", "xp", "=", "np", ".", "unravel_index", "(", "np", ".", "argmax", "(", "zpmat", ")", ",", "zpmat", ".", "shape", ")", "maxval", "=", "int", "(", "np", ".", "ceil", "(", "zpmat", "[", "yp", ",", "xp", "]", ")", ")", "xp", "-=", "searchrad", "yp", "-=", "searchrad", "print", "(", "\"Found initial X and Y shifts of {:.4g}, {:.4g} \"", "\"based on a single non-zero bin and {} matches\"", ".", "format", "(", "xp", ",", "yp", ",", "maxval", ")", ")", "return", "xp", ",", "yp", ",", "maxval", ",", "maxval", ",", "zpmat", ",", "True", "(", "xp", ",", "yp", ")", ",", "fit_status", ",", "fit_sl", "=", "_find_peak", "(", "zpmat", ",", "peak_fit_box", "=", "5", ",", "mask", "=", "zpmat", ">", "0", ")", "if", "fit_status", ".", "startswith", "(", "'ERROR'", ")", ":", "print", "(", "\"WARNING: No valid shift found within a search radius of {:g} \"", "\"pixels.\"", ".", "format", "(", "searchrad", ")", ")", "maxval", "=", "int", "(", "np", ".", "ceil", "(", "zpmat", ".", "max", "(", ")", ")", ")", "return", "0.0", ",", "0.0", ",", "maxval", ",", "maxval", ",", "zpmat", ",", "False", "xp", "-=", "searchrad", "yp", "-=", "searchrad", "if", "fit_status", "==", "'WARNING:EDGE'", ":", "print", "(", "\"WARNING: Found peak in the 2D histogram lies at the edge of \"", "\"the histogram. Try increasing 'searchrad' for improved results.\"", ")", "# Attempt to estimate \"significance of detection\":", "maxval", "=", "zpmat", ".", "max", "(", ")", "zpmat_mask", "=", "(", "zpmat", ">", "0", ")", "&", "(", "zpmat", "<", "maxval", ")", "if", "np", ".", "any", "(", "zpmat_mask", ")", ":", "bkg", "=", "zpmat", "[", "zpmat_mask", "]", ".", "mean", "(", ")", "sig", "=", "maxval", "/", "np", ".", "sqrt", "(", "bkg", ")", "flux", "=", "int", "(", "zpmat", "[", "fit_sl", "]", ".", "sum", "(", ")", ")", "print", "(", "\"Found initial X and Y shifts of {:.4g}, {:.4g} \"", "\"with significance of {:.4g} and {:d} matches\"", ".", "format", "(", "xp", ",", "yp", ",", "sig", ",", "flux", ")", ")", "return", "xp", ",", "yp", ",", "int", "(", "np", ".", "ceil", "(", "maxval", ")", ")", ",", "flux", ",", "zpmat", ",", "True" ]
Create a 2D matrix-histogram which contains the delta between each XY position and each UV position. Then estimate initial offset between catalogs.
[ "Create", "a", "2D", "matrix", "-", "histogram", "which", "contains", "the", "delta", "between", "each", "XY", "position", "and", "each", "UV", "position", ".", "Then", "estimate", "initial", "offset", "between", "catalogs", "." ]
python
train
ebu/PlugIt
examples/simple_service_proxy_mode/server.py
https://github.com/ebu/PlugIt/blob/de5f1e870f67caaef7a4a58e4bb1ed54d9c5dc53/examples/simple_service_proxy_mode/server.py#L10-L21
def get_ebuio_headers(request): """Return a dict with ebuio headers""" retour = {} for (key, value) in request.headers: if key.startswith('X-Plugit-'): key = key[9:] retour[key] = value return retour
[ "def", "get_ebuio_headers", "(", "request", ")", ":", "retour", "=", "{", "}", "for", "(", "key", ",", "value", ")", "in", "request", ".", "headers", ":", "if", "key", ".", "startswith", "(", "'X-Plugit-'", ")", ":", "key", "=", "key", "[", "9", ":", "]", "retour", "[", "key", "]", "=", "value", "return", "retour" ]
Return a dict with ebuio headers
[ "Return", "a", "dict", "with", "ebuio", "headers" ]
python
train
phoebe-project/phoebe2
phoebe/frontend/bundle.py
https://github.com/phoebe-project/phoebe2/blob/e64b8be683977064e2d55dd1b3ac400f64c3e379/phoebe/frontend/bundle.py#L2040-L2048
def remove_envelope(self, component=None, **kwargs): """ [NOT SUPPORTED] [NOT IMPLEMENTED] Shortcut to :meth:`remove_component` but with kind='envelope' """ kwargs.setdefault('kind', 'envelope') return self.remove_component(component, **kwargs)
[ "def", "remove_envelope", "(", "self", ",", "component", "=", "None", ",", "*", "*", "kwargs", ")", ":", "kwargs", ".", "setdefault", "(", "'kind'", ",", "'envelope'", ")", "return", "self", ".", "remove_component", "(", "component", ",", "*", "*", "kwargs", ")" ]
[NOT SUPPORTED] [NOT IMPLEMENTED] Shortcut to :meth:`remove_component` but with kind='envelope'
[ "[", "NOT", "SUPPORTED", "]", "[", "NOT", "IMPLEMENTED", "]" ]
python
train
cqparts/cqparts
src/cqparts/codec/gltf.py
https://github.com/cqparts/cqparts/blob/018e87e14c2c4d1d40b4bfe6a7e22bcf9baf0a53/src/cqparts/codec/gltf.py#L187-L195
def add_poly_index(self, i, j, k): """ Add 3 ``SCALAR`` of ``uint`` to the ``idx_data`` buffer. """ self.idx_data.write( struct.pack(self.idx_fmt, i) + struct.pack(self.idx_fmt, j) + struct.pack(self.idx_fmt, k) )
[ "def", "add_poly_index", "(", "self", ",", "i", ",", "j", ",", "k", ")", ":", "self", ".", "idx_data", ".", "write", "(", "struct", ".", "pack", "(", "self", ".", "idx_fmt", ",", "i", ")", "+", "struct", ".", "pack", "(", "self", ".", "idx_fmt", ",", "j", ")", "+", "struct", ".", "pack", "(", "self", ".", "idx_fmt", ",", "k", ")", ")" ]
Add 3 ``SCALAR`` of ``uint`` to the ``idx_data`` buffer.
[ "Add", "3", "SCALAR", "of", "uint", "to", "the", "idx_data", "buffer", "." ]
python
train
data-8/datascience
datascience/tables.py
https://github.com/data-8/datascience/blob/4cee38266903ca169cea4a53b8cc39502d85c464/datascience/tables.py#L2831-L2843
def _varargs_labels_as_list(label_list): """Return a list of labels for a list of labels or singleton list of list of labels.""" if len(label_list) == 0: return [] elif not _is_non_string_iterable(label_list[0]): # Assume everything is a label. If not, it'll be caught later. return label_list elif len(label_list) == 1: return label_list[0] else: raise ValueError("Labels {} contain more than list.".format(label_list), "Pass just one list of labels.")
[ "def", "_varargs_labels_as_list", "(", "label_list", ")", ":", "if", "len", "(", "label_list", ")", "==", "0", ":", "return", "[", "]", "elif", "not", "_is_non_string_iterable", "(", "label_list", "[", "0", "]", ")", ":", "# Assume everything is a label. If not, it'll be caught later.", "return", "label_list", "elif", "len", "(", "label_list", ")", "==", "1", ":", "return", "label_list", "[", "0", "]", "else", ":", "raise", "ValueError", "(", "\"Labels {} contain more than list.\"", ".", "format", "(", "label_list", ")", ",", "\"Pass just one list of labels.\"", ")" ]
Return a list of labels for a list of labels or singleton list of list of labels.
[ "Return", "a", "list", "of", "labels", "for", "a", "list", "of", "labels", "or", "singleton", "list", "of", "list", "of", "labels", "." ]
python
train
3DLIRIOUS/MeshLabXML
meshlabxml/remesh.py
https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/remesh.py#L437-L486
def curvature_flipping(script, angle_threshold=1.0, curve_type=0, selected=False): """ Use the points and normals to build a surface using the Poisson Surface reconstruction approach. Args: script: the FilterScript object or script filename to write the filter to. angle_threshold (float): To avoid excessive flipping/swapping we consider only couple of faces with a significant diedral angle (e.g. greater than the indicated threshold). curve_type (int): Choose a metric to compute surface curvature on vertices H = mean curv, K = gaussian curv, A = area per vertex 1: Mean curvature = H 2: Norm squared mean curvature = (H * H) / A 3: Absolute curvature: if(K >= 0) return 2 * H else return 2 * sqrt(H ^ 2 - A * K) Layer stack: No impacts MeshLab versions: 2016.12 1.3.4BETA """ filter_xml = ''.join([ ' <filter name="Curvature flipping optimization">\n', ' <Param name="selection" ', 'value="{}" '.format(str(selected).lower()), 'description="Update selection" ', 'type="RichBool" ', '/>\n', ' <Param name="pthreshold" ', 'value="{}" '.format(angle_threshold), 'description="Angle Thr (deg)" ', 'type="RichFloat" ', '/>\n', ' <Param name="curvtype" ', 'value="{:d}" '.format(curve_type), 'description="Curvature metric" ', 'enum_val0="mean" ', 'enum_val1="norm squared" ', 'enum_val2="absolute" ', 'enum_cardinality="3" ', 'type="RichEnum" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) return None
[ "def", "curvature_flipping", "(", "script", ",", "angle_threshold", "=", "1.0", ",", "curve_type", "=", "0", ",", "selected", "=", "False", ")", ":", "filter_xml", "=", "''", ".", "join", "(", "[", "' <filter name=\"Curvature flipping optimization\">\\n'", ",", "' <Param name=\"selection\" '", ",", "'value=\"{}\" '", ".", "format", "(", "str", "(", "selected", ")", ".", "lower", "(", ")", ")", ",", "'description=\"Update selection\" '", ",", "'type=\"RichBool\" '", ",", "'/>\\n'", ",", "' <Param name=\"pthreshold\" '", ",", "'value=\"{}\" '", ".", "format", "(", "angle_threshold", ")", ",", "'description=\"Angle Thr (deg)\" '", ",", "'type=\"RichFloat\" '", ",", "'/>\\n'", ",", "' <Param name=\"curvtype\" '", ",", "'value=\"{:d}\" '", ".", "format", "(", "curve_type", ")", ",", "'description=\"Curvature metric\" '", ",", "'enum_val0=\"mean\" '", ",", "'enum_val1=\"norm squared\" '", ",", "'enum_val2=\"absolute\" '", ",", "'enum_cardinality=\"3\" '", ",", "'type=\"RichEnum\" '", ",", "'/>\\n'", ",", "' </filter>\\n'", "]", ")", "util", ".", "write_filter", "(", "script", ",", "filter_xml", ")", "return", "None" ]
Use the points and normals to build a surface using the Poisson Surface reconstruction approach. Args: script: the FilterScript object or script filename to write the filter to. angle_threshold (float): To avoid excessive flipping/swapping we consider only couple of faces with a significant diedral angle (e.g. greater than the indicated threshold). curve_type (int): Choose a metric to compute surface curvature on vertices H = mean curv, K = gaussian curv, A = area per vertex 1: Mean curvature = H 2: Norm squared mean curvature = (H * H) / A 3: Absolute curvature: if(K >= 0) return 2 * H else return 2 * sqrt(H ^ 2 - A * K) Layer stack: No impacts MeshLab versions: 2016.12 1.3.4BETA
[ "Use", "the", "points", "and", "normals", "to", "build", "a", "surface", "using", "the", "Poisson", "Surface", "reconstruction", "approach", "." ]
python
test
sernst/cauldron
cauldron/cli/__init__.py
https://github.com/sernst/cauldron/blob/4086aec9c038c402ea212c79fe8bd0d27104f9cf/cauldron/cli/__init__.py#L53-L63
def reformat(source: str) -> str: """ Formats the source string to strip newlines on both ends and dedents the the entire string :param source: The string to reformat """ value = source if source else '' return dedent(value.strip('\n')).strip()
[ "def", "reformat", "(", "source", ":", "str", ")", "->", "str", ":", "value", "=", "source", "if", "source", "else", "''", "return", "dedent", "(", "value", ".", "strip", "(", "'\\n'", ")", ")", ".", "strip", "(", ")" ]
Formats the source string to strip newlines on both ends and dedents the the entire string :param source: The string to reformat
[ "Formats", "the", "source", "string", "to", "strip", "newlines", "on", "both", "ends", "and", "dedents", "the", "the", "entire", "string" ]
python
train
ratt-ru/PyMORESANE
pymoresane/iuwt.py
https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt.py#L17-L41
def iuwt_decomposition(in1, scale_count, scale_adjust=0, mode='ser', core_count=2, store_smoothed=False, store_on_gpu=False): """ This function serves as a handler for the different implementations of the IUWT decomposition. It allows the different methods to be used almost interchangeably. INPUTS: in1 (no default): Array on which the decomposition is to be performed. scale_count (no default): Maximum scale to be considered. scale_adjust (default=0): Adjustment to scale value if first scales are of no interest. mode (default='ser'): Implementation of the IUWT to be used - 'ser', 'mp' or 'gpu'. core_count (default=1): Additional option for multiprocessing - specifies core count. store_smoothed (default=False): Boolean specifier for whether the smoothed image is stored or not. store_on_gpu (default=False): Boolean specifier for whether the decomposition is stored on the gpu or not. OUTPUTS: Returns the decomposition with the additional smoothed coefficients if specified. """ if mode=='ser': return ser_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed) elif mode=='mp': return mp_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed, core_count) elif mode=='gpu': return gpu_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed, store_on_gpu)
[ "def", "iuwt_decomposition", "(", "in1", ",", "scale_count", ",", "scale_adjust", "=", "0", ",", "mode", "=", "'ser'", ",", "core_count", "=", "2", ",", "store_smoothed", "=", "False", ",", "store_on_gpu", "=", "False", ")", ":", "if", "mode", "==", "'ser'", ":", "return", "ser_iuwt_decomposition", "(", "in1", ",", "scale_count", ",", "scale_adjust", ",", "store_smoothed", ")", "elif", "mode", "==", "'mp'", ":", "return", "mp_iuwt_decomposition", "(", "in1", ",", "scale_count", ",", "scale_adjust", ",", "store_smoothed", ",", "core_count", ")", "elif", "mode", "==", "'gpu'", ":", "return", "gpu_iuwt_decomposition", "(", "in1", ",", "scale_count", ",", "scale_adjust", ",", "store_smoothed", ",", "store_on_gpu", ")" ]
This function serves as a handler for the different implementations of the IUWT decomposition. It allows the different methods to be used almost interchangeably. INPUTS: in1 (no default): Array on which the decomposition is to be performed. scale_count (no default): Maximum scale to be considered. scale_adjust (default=0): Adjustment to scale value if first scales are of no interest. mode (default='ser'): Implementation of the IUWT to be used - 'ser', 'mp' or 'gpu'. core_count (default=1): Additional option for multiprocessing - specifies core count. store_smoothed (default=False): Boolean specifier for whether the smoothed image is stored or not. store_on_gpu (default=False): Boolean specifier for whether the decomposition is stored on the gpu or not. OUTPUTS: Returns the decomposition with the additional smoothed coefficients if specified.
[ "This", "function", "serves", "as", "a", "handler", "for", "the", "different", "implementations", "of", "the", "IUWT", "decomposition", ".", "It", "allows", "the", "different", "methods", "to", "be", "used", "almost", "interchangeably", "." ]
python
train
libyal/dtfabric
dtfabric/runtime/data_maps.py
https://github.com/libyal/dtfabric/blob/0d2b5719fa257f6e5c661a406737ebcf8c8db266/dtfabric/runtime/data_maps.py#L1584-L1686
def _CompositeMapByteStream( self, byte_stream, byte_offset=0, context=None, **unused_kwargs): """Maps a sequence of composite data types on a byte stream. Args: byte_stream (bytes): byte stream. byte_offset (Optional[int]): offset into the byte stream where to start. context (Optional[DataTypeMapContext]): data type map context. Returns: object: mapped value. Raises: MappingError: if the data type definition cannot be mapped on the byte stream. """ context_state = getattr(context, 'state', {}) attribute_index = context_state.get('attribute_index', 0) mapped_values = context_state.get('mapped_values', None) subcontext = context_state.get('context', None) if not mapped_values: mapped_values = self._structure_values_class() if not subcontext: subcontext = DataTypeMapContext(values={ type(mapped_values).__name__: mapped_values}) members_data_size = 0 for attribute_index in range(attribute_index, self._number_of_attributes): attribute_name = self._attribute_names[attribute_index] data_type_map = self._data_type_maps[attribute_index] member_definition = self._data_type_definition.members[attribute_index] condition = getattr(member_definition, 'condition', None) if condition: namespace = dict(subcontext.values) # Make sure __builtins__ contains an empty dictionary. namespace['__builtins__'] = {} try: condition_result = eval(condition, namespace) # pylint: disable=eval-used except Exception as exception: raise errors.MappingError( 'Unable to evaluate condition with error: {0!s}'.format( exception)) if not isinstance(condition_result, bool): raise errors.MappingError( 'Condition does not result in a boolean value') if not condition_result: continue if isinstance(member_definition, data_types.PaddingDefinition): _, byte_size = divmod( members_data_size, member_definition.alignment_size) if byte_size > 0: byte_size = member_definition.alignment_size - byte_size data_type_map.byte_size = byte_size try: value = data_type_map.MapByteStream( byte_stream, byte_offset=byte_offset, context=subcontext) setattr(mapped_values, attribute_name, value) except errors.ByteStreamTooSmallError as exception: context_state['attribute_index'] = attribute_index context_state['context'] = subcontext context_state['mapped_values'] = mapped_values raise errors.ByteStreamTooSmallError(exception) except Exception as exception: raise errors.MappingError(exception) supported_values = getattr(member_definition, 'values', None) if supported_values and value not in supported_values: raise errors.MappingError( 'Value: {0!s} not in supported values: {1:s}'.format( value, ', '.join([ '{0!s}'.format(value) for value in supported_values]))) byte_offset += subcontext.byte_size members_data_size += subcontext.byte_size if attribute_index != (self._number_of_attributes - 1): context_state['attribute_index'] = attribute_index context_state['context'] = subcontext context_state['mapped_values'] = mapped_values error_string = ( 'Unable to read: {0:s} from byte stream at offset: {1:d} ' 'with error: missing attribute: {2:d}').format( self._data_type_definition.name, byte_offset, attribute_index) raise errors.ByteStreamTooSmallError(error_string) if context: context.byte_size = members_data_size context.state = {} return mapped_values
[ "def", "_CompositeMapByteStream", "(", "self", ",", "byte_stream", ",", "byte_offset", "=", "0", ",", "context", "=", "None", ",", "*", "*", "unused_kwargs", ")", ":", "context_state", "=", "getattr", "(", "context", ",", "'state'", ",", "{", "}", ")", "attribute_index", "=", "context_state", ".", "get", "(", "'attribute_index'", ",", "0", ")", "mapped_values", "=", "context_state", ".", "get", "(", "'mapped_values'", ",", "None", ")", "subcontext", "=", "context_state", ".", "get", "(", "'context'", ",", "None", ")", "if", "not", "mapped_values", ":", "mapped_values", "=", "self", ".", "_structure_values_class", "(", ")", "if", "not", "subcontext", ":", "subcontext", "=", "DataTypeMapContext", "(", "values", "=", "{", "type", "(", "mapped_values", ")", ".", "__name__", ":", "mapped_values", "}", ")", "members_data_size", "=", "0", "for", "attribute_index", "in", "range", "(", "attribute_index", ",", "self", ".", "_number_of_attributes", ")", ":", "attribute_name", "=", "self", ".", "_attribute_names", "[", "attribute_index", "]", "data_type_map", "=", "self", ".", "_data_type_maps", "[", "attribute_index", "]", "member_definition", "=", "self", ".", "_data_type_definition", ".", "members", "[", "attribute_index", "]", "condition", "=", "getattr", "(", "member_definition", ",", "'condition'", ",", "None", ")", "if", "condition", ":", "namespace", "=", "dict", "(", "subcontext", ".", "values", ")", "# Make sure __builtins__ contains an empty dictionary.", "namespace", "[", "'__builtins__'", "]", "=", "{", "}", "try", ":", "condition_result", "=", "eval", "(", "condition", ",", "namespace", ")", "# pylint: disable=eval-used", "except", "Exception", "as", "exception", ":", "raise", "errors", ".", "MappingError", "(", "'Unable to evaluate condition with error: {0!s}'", ".", "format", "(", "exception", ")", ")", "if", "not", "isinstance", "(", "condition_result", ",", "bool", ")", ":", "raise", "errors", ".", "MappingError", "(", "'Condition does not result in a boolean value'", ")", "if", "not", "condition_result", ":", "continue", "if", "isinstance", "(", "member_definition", ",", "data_types", ".", "PaddingDefinition", ")", ":", "_", ",", "byte_size", "=", "divmod", "(", "members_data_size", ",", "member_definition", ".", "alignment_size", ")", "if", "byte_size", ">", "0", ":", "byte_size", "=", "member_definition", ".", "alignment_size", "-", "byte_size", "data_type_map", ".", "byte_size", "=", "byte_size", "try", ":", "value", "=", "data_type_map", ".", "MapByteStream", "(", "byte_stream", ",", "byte_offset", "=", "byte_offset", ",", "context", "=", "subcontext", ")", "setattr", "(", "mapped_values", ",", "attribute_name", ",", "value", ")", "except", "errors", ".", "ByteStreamTooSmallError", "as", "exception", ":", "context_state", "[", "'attribute_index'", "]", "=", "attribute_index", "context_state", "[", "'context'", "]", "=", "subcontext", "context_state", "[", "'mapped_values'", "]", "=", "mapped_values", "raise", "errors", ".", "ByteStreamTooSmallError", "(", "exception", ")", "except", "Exception", "as", "exception", ":", "raise", "errors", ".", "MappingError", "(", "exception", ")", "supported_values", "=", "getattr", "(", "member_definition", ",", "'values'", ",", "None", ")", "if", "supported_values", "and", "value", "not", "in", "supported_values", ":", "raise", "errors", ".", "MappingError", "(", "'Value: {0!s} not in supported values: {1:s}'", ".", "format", "(", "value", ",", "', '", ".", "join", "(", "[", "'{0!s}'", ".", "format", "(", "value", ")", "for", "value", "in", "supported_values", "]", ")", ")", ")", "byte_offset", "+=", "subcontext", ".", "byte_size", "members_data_size", "+=", "subcontext", ".", "byte_size", "if", "attribute_index", "!=", "(", "self", ".", "_number_of_attributes", "-", "1", ")", ":", "context_state", "[", "'attribute_index'", "]", "=", "attribute_index", "context_state", "[", "'context'", "]", "=", "subcontext", "context_state", "[", "'mapped_values'", "]", "=", "mapped_values", "error_string", "=", "(", "'Unable to read: {0:s} from byte stream at offset: {1:d} '", "'with error: missing attribute: {2:d}'", ")", ".", "format", "(", "self", ".", "_data_type_definition", ".", "name", ",", "byte_offset", ",", "attribute_index", ")", "raise", "errors", ".", "ByteStreamTooSmallError", "(", "error_string", ")", "if", "context", ":", "context", ".", "byte_size", "=", "members_data_size", "context", ".", "state", "=", "{", "}", "return", "mapped_values" ]
Maps a sequence of composite data types on a byte stream. Args: byte_stream (bytes): byte stream. byte_offset (Optional[int]): offset into the byte stream where to start. context (Optional[DataTypeMapContext]): data type map context. Returns: object: mapped value. Raises: MappingError: if the data type definition cannot be mapped on the byte stream.
[ "Maps", "a", "sequence", "of", "composite", "data", "types", "on", "a", "byte", "stream", "." ]
python
train
saltstack/salt
salt/cli/support/collector.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/cli/support/collector.py#L421-L434
def _cleanup(self): ''' Cleanup if crash/exception :return: ''' if (hasattr(self, 'config') and self.config.get('support_archive') and os.path.exists(self.config['support_archive'])): self.out.warning('Terminated earlier, cleaning up') try: os.unlink(self.config['support_archive']) except Exception as err: log.debug(err) self.out.error('{} while cleaning up.'.format(err))
[ "def", "_cleanup", "(", "self", ")", ":", "if", "(", "hasattr", "(", "self", ",", "'config'", ")", "and", "self", ".", "config", ".", "get", "(", "'support_archive'", ")", "and", "os", ".", "path", ".", "exists", "(", "self", ".", "config", "[", "'support_archive'", "]", ")", ")", ":", "self", ".", "out", ".", "warning", "(", "'Terminated earlier, cleaning up'", ")", "try", ":", "os", ".", "unlink", "(", "self", ".", "config", "[", "'support_archive'", "]", ")", "except", "Exception", "as", "err", ":", "log", ".", "debug", "(", "err", ")", "self", ".", "out", ".", "error", "(", "'{} while cleaning up.'", ".", "format", "(", "err", ")", ")" ]
Cleanup if crash/exception :return:
[ "Cleanup", "if", "crash", "/", "exception", ":", "return", ":" ]
python
train
msmbuilder/msmbuilder
msmbuilder/msm/core.py
https://github.com/msmbuilder/msmbuilder/blob/556a93a170782f47be53f4a1e9d740fb1c8272b3/msmbuilder/msm/core.py#L311-L356
def _solve_ratemat_eigensystem(theta, k, n): """Find the dominant eigenpairs of a reversible rate matrix (master equation) Parameters ---------- theta : ndarray, shape=(n_params,) The free parameters of the rate matrix k : int The number of eigenpairs to find n : int The number of states Notes ----- Normalize the left (:math:`\phi`) and right (:math:``\psi``) eigenfunctions according to the following criteria. * The first left eigenvector, \phi_1, _is_ the stationary distribution, and thus should be normalized to sum to 1. * The left-right eigenpairs should be biorthonormal: <\phi_i, \psi_j> = \delta_{ij} * The left eigenvectors should satisfy <\phi_i, \phi_i>_{\mu^{-1}} = 1 * The right eigenvectors should satisfy <\psi_i, \psi_i>_{\mu} = 1 Returns ------- eigvals : np.ndarray, shape=(k,) The largest `k` eigenvalues lv : np.ndarray, shape=(n_states, k) The normalized left eigenvectors (:math:`\phi`) of the rate matrix. rv : np.ndarray, shape=(n_states, k) The normalized right eigenvectors (:math:`\psi`) of the rate matrix. """ S = np.zeros((n, n)) pi = np.exp(theta[-n:]) pi = pi / pi.sum() _ratematrix.build_ratemat(theta, n, S, which='S') u, lv, rv = map(np.asarray, _ratematrix.eig_K(S, n, pi, 'S')) order = np.argsort(-u) u = u[order[:k]] lv = lv[:, order[:k]] rv = rv[:, order[:k]] return _normalize_eigensystem(u, lv, rv)
[ "def", "_solve_ratemat_eigensystem", "(", "theta", ",", "k", ",", "n", ")", ":", "S", "=", "np", ".", "zeros", "(", "(", "n", ",", "n", ")", ")", "pi", "=", "np", ".", "exp", "(", "theta", "[", "-", "n", ":", "]", ")", "pi", "=", "pi", "/", "pi", ".", "sum", "(", ")", "_ratematrix", ".", "build_ratemat", "(", "theta", ",", "n", ",", "S", ",", "which", "=", "'S'", ")", "u", ",", "lv", ",", "rv", "=", "map", "(", "np", ".", "asarray", ",", "_ratematrix", ".", "eig_K", "(", "S", ",", "n", ",", "pi", ",", "'S'", ")", ")", "order", "=", "np", ".", "argsort", "(", "-", "u", ")", "u", "=", "u", "[", "order", "[", ":", "k", "]", "]", "lv", "=", "lv", "[", ":", ",", "order", "[", ":", "k", "]", "]", "rv", "=", "rv", "[", ":", ",", "order", "[", ":", "k", "]", "]", "return", "_normalize_eigensystem", "(", "u", ",", "lv", ",", "rv", ")" ]
Find the dominant eigenpairs of a reversible rate matrix (master equation) Parameters ---------- theta : ndarray, shape=(n_params,) The free parameters of the rate matrix k : int The number of eigenpairs to find n : int The number of states Notes ----- Normalize the left (:math:`\phi`) and right (:math:``\psi``) eigenfunctions according to the following criteria. * The first left eigenvector, \phi_1, _is_ the stationary distribution, and thus should be normalized to sum to 1. * The left-right eigenpairs should be biorthonormal: <\phi_i, \psi_j> = \delta_{ij} * The left eigenvectors should satisfy <\phi_i, \phi_i>_{\mu^{-1}} = 1 * The right eigenvectors should satisfy <\psi_i, \psi_i>_{\mu} = 1 Returns ------- eigvals : np.ndarray, shape=(k,) The largest `k` eigenvalues lv : np.ndarray, shape=(n_states, k) The normalized left eigenvectors (:math:`\phi`) of the rate matrix. rv : np.ndarray, shape=(n_states, k) The normalized right eigenvectors (:math:`\psi`) of the rate matrix.
[ "Find", "the", "dominant", "eigenpairs", "of", "a", "reversible", "rate", "matrix", "(", "master", "equation", ")" ]
python
train
mitsei/dlkit
dlkit/json_/osid/objects.py
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/osid/objects.py#L1425-L1440
def set_sequestered(self, sequestered): """Sets the sequestered flag. arg: sequestered (boolean): the new sequestered flag raise: InvalidArgument - ``sequestered`` is invalid raise: NoAccess - ``Metadata.isReadOnly()`` is ``true`` *compliance: mandatory -- This method must be implemented.* """ if sequestered is None: raise errors.NullArgument() if self.get_sequestered_metadata().is_read_only(): raise errors.NoAccess() if not isinstance(sequestered, bool): raise errors.InvalidArgument() self._my_map['sequestered'] = sequestered
[ "def", "set_sequestered", "(", "self", ",", "sequestered", ")", ":", "if", "sequestered", "is", "None", ":", "raise", "errors", ".", "NullArgument", "(", ")", "if", "self", ".", "get_sequestered_metadata", "(", ")", ".", "is_read_only", "(", ")", ":", "raise", "errors", ".", "NoAccess", "(", ")", "if", "not", "isinstance", "(", "sequestered", ",", "bool", ")", ":", "raise", "errors", ".", "InvalidArgument", "(", ")", "self", ".", "_my_map", "[", "'sequestered'", "]", "=", "sequestered" ]
Sets the sequestered flag. arg: sequestered (boolean): the new sequestered flag raise: InvalidArgument - ``sequestered`` is invalid raise: NoAccess - ``Metadata.isReadOnly()`` is ``true`` *compliance: mandatory -- This method must be implemented.*
[ "Sets", "the", "sequestered", "flag", "." ]
python
train
dustinmm80/healthy
pylint_runner.py
https://github.com/dustinmm80/healthy/blob/b59016c3f578ca45b6ce857a2d5c4584b8542288/pylint_runner.py#L22-L44
def score(package_path): """ Runs pylint on a package and returns a score Lower score is better :param package_path: path of the package to score :return: number of score """ python_files = find_files(package_path, '*.py') total_counter = Counter() for python_file in python_files: output = run_pylint(python_file) counter = parse_pylint_output(output) total_counter += counter score_value = 0 for count, stat in enumerate(total_counter): score_value += SCORING_VALUES[stat] * count return score_value / 5
[ "def", "score", "(", "package_path", ")", ":", "python_files", "=", "find_files", "(", "package_path", ",", "'*.py'", ")", "total_counter", "=", "Counter", "(", ")", "for", "python_file", "in", "python_files", ":", "output", "=", "run_pylint", "(", "python_file", ")", "counter", "=", "parse_pylint_output", "(", "output", ")", "total_counter", "+=", "counter", "score_value", "=", "0", "for", "count", ",", "stat", "in", "enumerate", "(", "total_counter", ")", ":", "score_value", "+=", "SCORING_VALUES", "[", "stat", "]", "*", "count", "return", "score_value", "/", "5" ]
Runs pylint on a package and returns a score Lower score is better :param package_path: path of the package to score :return: number of score
[ "Runs", "pylint", "on", "a", "package", "and", "returns", "a", "score", "Lower", "score", "is", "better" ]
python
train
bitesofcode/projexui
projexui/widgets/xganttwidget/xganttscene.py
https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xganttwidget/xganttscene.py#L224-L250
def drawBackground(self, painter, rect): """ Draws the background for this scene. :param painter | <QPainter> rect | <QRect> """ if self._dirty: self.rebuild() # draw the alternating rects gantt = self.ganttWidget() # draw the alternating rects painter.setPen(Qt.NoPen) painter.setBrush(gantt.alternateBrush()) for rect in self._alternateRects: painter.drawRect(rect) # draw the weekends painter.setBrush(gantt.weekendBrush()) for rect in self._weekendRects: painter.drawRect(rect) # draw the default background painter.setPen(gantt.gridPen()) painter.drawLines(self._hlines + self._vlines)
[ "def", "drawBackground", "(", "self", ",", "painter", ",", "rect", ")", ":", "if", "self", ".", "_dirty", ":", "self", ".", "rebuild", "(", ")", "# draw the alternating rects\r", "gantt", "=", "self", ".", "ganttWidget", "(", ")", "# draw the alternating rects\r", "painter", ".", "setPen", "(", "Qt", ".", "NoPen", ")", "painter", ".", "setBrush", "(", "gantt", ".", "alternateBrush", "(", ")", ")", "for", "rect", "in", "self", ".", "_alternateRects", ":", "painter", ".", "drawRect", "(", "rect", ")", "# draw the weekends\r", "painter", ".", "setBrush", "(", "gantt", ".", "weekendBrush", "(", ")", ")", "for", "rect", "in", "self", ".", "_weekendRects", ":", "painter", ".", "drawRect", "(", "rect", ")", "# draw the default background\r", "painter", ".", "setPen", "(", "gantt", ".", "gridPen", "(", ")", ")", "painter", ".", "drawLines", "(", "self", ".", "_hlines", "+", "self", ".", "_vlines", ")" ]
Draws the background for this scene. :param painter | <QPainter> rect | <QRect>
[ "Draws", "the", "background", "for", "this", "scene", ".", ":", "param", "painter", "|", "<QPainter", ">", "rect", "|", "<QRect", ">" ]
python
train
polyaxon/polyaxon
polyaxon/k8s_events_handlers/tasks/statuses.py
https://github.com/polyaxon/polyaxon/blob/e1724f0756b1a42f9e7aa08a976584a84ef7f016/polyaxon/k8s_events_handlers/tasks/statuses.py#L71-L100
def k8s_events_handle_job_statuses(self: 'celery_app.task', payload: Dict) -> None: """Project jobs statuses""" details = payload['details'] job_uuid = details['labels']['job_uuid'] job_name = details['labels']['job_name'] project_name = details['labels'].get('project_name') logger.debug('handling events status for job %s', job_name) try: job = Job.objects.get(uuid=job_uuid) except Job.DoesNotExist: logger.debug('Job `%s` does not exist', job_name) return try: job.project except Project.DoesNotExist: logger.debug('Project for job `%s` does not exist', project_name) return # Set the new status try: set_node_scheduling(job, details['node_name']) job.set_status(status=payload['status'], message=payload['message'], traceback=payload.get('traceback'), details=details) except IntegrityError: # Due to concurrency this could happen, we just retry it self.retry(countdown=Intervals.EXPERIMENTS_SCHEDULER)
[ "def", "k8s_events_handle_job_statuses", "(", "self", ":", "'celery_app.task'", ",", "payload", ":", "Dict", ")", "->", "None", ":", "details", "=", "payload", "[", "'details'", "]", "job_uuid", "=", "details", "[", "'labels'", "]", "[", "'job_uuid'", "]", "job_name", "=", "details", "[", "'labels'", "]", "[", "'job_name'", "]", "project_name", "=", "details", "[", "'labels'", "]", ".", "get", "(", "'project_name'", ")", "logger", ".", "debug", "(", "'handling events status for job %s'", ",", "job_name", ")", "try", ":", "job", "=", "Job", ".", "objects", ".", "get", "(", "uuid", "=", "job_uuid", ")", "except", "Job", ".", "DoesNotExist", ":", "logger", ".", "debug", "(", "'Job `%s` does not exist'", ",", "job_name", ")", "return", "try", ":", "job", ".", "project", "except", "Project", ".", "DoesNotExist", ":", "logger", ".", "debug", "(", "'Project for job `%s` does not exist'", ",", "project_name", ")", "return", "# Set the new status", "try", ":", "set_node_scheduling", "(", "job", ",", "details", "[", "'node_name'", "]", ")", "job", ".", "set_status", "(", "status", "=", "payload", "[", "'status'", "]", ",", "message", "=", "payload", "[", "'message'", "]", ",", "traceback", "=", "payload", ".", "get", "(", "'traceback'", ")", ",", "details", "=", "details", ")", "except", "IntegrityError", ":", "# Due to concurrency this could happen, we just retry it", "self", ".", "retry", "(", "countdown", "=", "Intervals", ".", "EXPERIMENTS_SCHEDULER", ")" ]
Project jobs statuses
[ "Project", "jobs", "statuses" ]
python
train
jaraco/tempora
tempora/__init__.py
https://github.com/jaraco/tempora/blob/f0a9ab636103fe829aa9b495c93f5249aac5f2b8/tempora/__init__.py#L467-L481
def divide_timedelta(td1, td2): """ Get the ratio of two timedeltas >>> one_day = datetime.timedelta(days=1) >>> one_hour = datetime.timedelta(hours=1) >>> divide_timedelta(one_hour, one_day) == 1 / 24 True """ try: return td1 / td2 except TypeError: # Python 3.2 gets division # http://bugs.python.org/issue2706 return td1.total_seconds() / td2.total_seconds()
[ "def", "divide_timedelta", "(", "td1", ",", "td2", ")", ":", "try", ":", "return", "td1", "/", "td2", "except", "TypeError", ":", "# Python 3.2 gets division", "# http://bugs.python.org/issue2706", "return", "td1", ".", "total_seconds", "(", ")", "/", "td2", ".", "total_seconds", "(", ")" ]
Get the ratio of two timedeltas >>> one_day = datetime.timedelta(days=1) >>> one_hour = datetime.timedelta(hours=1) >>> divide_timedelta(one_hour, one_day) == 1 / 24 True
[ "Get", "the", "ratio", "of", "two", "timedeltas" ]
python
valid
sorgerlab/indra
indra/preassembler/ontology_mapper.py
https://github.com/sorgerlab/indra/blob/79a70415832c5702d7a820c7c9ccc8e25010124b/indra/preassembler/ontology_mapper.py#L45-L74
def map_statements(self): """Run the ontology mapping on the statements.""" for stmt in self.statements: for agent in stmt.agent_list(): if agent is None: continue all_mappings = [] for db_name, db_id in agent.db_refs.items(): if isinstance(db_id, list): db_id = db_id[0][0] mappings = self._map_id(db_name, db_id) all_mappings += mappings for map_db_name, map_db_id, score, orig_db_name in all_mappings: if map_db_name in agent.db_refs: continue if self.scored: # If the original one is a scored grounding, # we take that score and multiply it with the mapping # score. Otherwise we assume the original score is 1. try: orig_score = agent.db_refs[orig_db_name][0][1] except Exception: orig_score = 1.0 agent.db_refs[map_db_name] = \ [(map_db_id, score * orig_score)] else: if map_db_name in ('UN', 'HUME'): agent.db_refs[map_db_name] = [(map_db_id, 1.0)] else: agent.db_refs[map_db_name] = map_db_id
[ "def", "map_statements", "(", "self", ")", ":", "for", "stmt", "in", "self", ".", "statements", ":", "for", "agent", "in", "stmt", ".", "agent_list", "(", ")", ":", "if", "agent", "is", "None", ":", "continue", "all_mappings", "=", "[", "]", "for", "db_name", ",", "db_id", "in", "agent", ".", "db_refs", ".", "items", "(", ")", ":", "if", "isinstance", "(", "db_id", ",", "list", ")", ":", "db_id", "=", "db_id", "[", "0", "]", "[", "0", "]", "mappings", "=", "self", ".", "_map_id", "(", "db_name", ",", "db_id", ")", "all_mappings", "+=", "mappings", "for", "map_db_name", ",", "map_db_id", ",", "score", ",", "orig_db_name", "in", "all_mappings", ":", "if", "map_db_name", "in", "agent", ".", "db_refs", ":", "continue", "if", "self", ".", "scored", ":", "# If the original one is a scored grounding,", "# we take that score and multiply it with the mapping", "# score. Otherwise we assume the original score is 1.", "try", ":", "orig_score", "=", "agent", ".", "db_refs", "[", "orig_db_name", "]", "[", "0", "]", "[", "1", "]", "except", "Exception", ":", "orig_score", "=", "1.0", "agent", ".", "db_refs", "[", "map_db_name", "]", "=", "[", "(", "map_db_id", ",", "score", "*", "orig_score", ")", "]", "else", ":", "if", "map_db_name", "in", "(", "'UN'", ",", "'HUME'", ")", ":", "agent", ".", "db_refs", "[", "map_db_name", "]", "=", "[", "(", "map_db_id", ",", "1.0", ")", "]", "else", ":", "agent", ".", "db_refs", "[", "map_db_name", "]", "=", "map_db_id" ]
Run the ontology mapping on the statements.
[ "Run", "the", "ontology", "mapping", "on", "the", "statements", "." ]
python
train
google/grr
grr/client/grr_response_client/client_actions/file_finder.py
https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/client/grr_response_client/client_actions/file_finder.py#L28-L55
def FileFinderOSFromClient(args): """This function expands paths from the args and returns related stat entries. Args: args: An `rdf_file_finder.FileFinderArgs` object. Yields: `rdf_paths.PathSpec` instances. """ stat_cache = filesystem.StatCache() opts = args.action.stat for path in GetExpandedPaths(args): try: content_conditions = conditions.ContentCondition.Parse(args.conditions) for content_condition in content_conditions: with io.open(path, "rb") as fd: result = list(content_condition.Search(fd)) if not result: raise _SkipFileException() # TODO: `opts.resolve_links` has type `RDFBool`, not `bool`. stat = stat_cache.Get(path, follow_symlink=bool(opts.resolve_links)) stat_entry = client_utils.StatEntryFromStatPathSpec( stat, ext_attrs=opts.collect_ext_attrs) yield stat_entry except _SkipFileException: pass
[ "def", "FileFinderOSFromClient", "(", "args", ")", ":", "stat_cache", "=", "filesystem", ".", "StatCache", "(", ")", "opts", "=", "args", ".", "action", ".", "stat", "for", "path", "in", "GetExpandedPaths", "(", "args", ")", ":", "try", ":", "content_conditions", "=", "conditions", ".", "ContentCondition", ".", "Parse", "(", "args", ".", "conditions", ")", "for", "content_condition", "in", "content_conditions", ":", "with", "io", ".", "open", "(", "path", ",", "\"rb\"", ")", "as", "fd", ":", "result", "=", "list", "(", "content_condition", ".", "Search", "(", "fd", ")", ")", "if", "not", "result", ":", "raise", "_SkipFileException", "(", ")", "# TODO: `opts.resolve_links` has type `RDFBool`, not `bool`.", "stat", "=", "stat_cache", ".", "Get", "(", "path", ",", "follow_symlink", "=", "bool", "(", "opts", ".", "resolve_links", ")", ")", "stat_entry", "=", "client_utils", ".", "StatEntryFromStatPathSpec", "(", "stat", ",", "ext_attrs", "=", "opts", ".", "collect_ext_attrs", ")", "yield", "stat_entry", "except", "_SkipFileException", ":", "pass" ]
This function expands paths from the args and returns related stat entries. Args: args: An `rdf_file_finder.FileFinderArgs` object. Yields: `rdf_paths.PathSpec` instances.
[ "This", "function", "expands", "paths", "from", "the", "args", "and", "returns", "related", "stat", "entries", "." ]
python
train
jilljenn/tryalgo
tryalgo/three_partition.py
https://github.com/jilljenn/tryalgo/blob/89a4dd9655e7b6b0a176f72b4c60d0196420dfe1/tryalgo/three_partition.py#L8-L23
def three_partition(x): """partition a set of integers in 3 parts of same total value :param x: table of non negative values :returns: triplet of the integers encoding the sets, or None otherwise :complexity: :math:`O(2^{2n})` """ f = [0] * (1 << len(x)) for i in range(len(x)): for S in range(1 << i): f[S | (1 << i)] = f[S] + x[i] for A in range(1 << len(x)): for B in range(1 << len(x)): if A & B == 0 and f[A] == f[B] and 3 * f[A] == f[-1]: return (A, B, ((1 << len(x)) - 1) ^ A ^ B) return None
[ "def", "three_partition", "(", "x", ")", ":", "f", "=", "[", "0", "]", "*", "(", "1", "<<", "len", "(", "x", ")", ")", "for", "i", "in", "range", "(", "len", "(", "x", ")", ")", ":", "for", "S", "in", "range", "(", "1", "<<", "i", ")", ":", "f", "[", "S", "|", "(", "1", "<<", "i", ")", "]", "=", "f", "[", "S", "]", "+", "x", "[", "i", "]", "for", "A", "in", "range", "(", "1", "<<", "len", "(", "x", ")", ")", ":", "for", "B", "in", "range", "(", "1", "<<", "len", "(", "x", ")", ")", ":", "if", "A", "&", "B", "==", "0", "and", "f", "[", "A", "]", "==", "f", "[", "B", "]", "and", "3", "*", "f", "[", "A", "]", "==", "f", "[", "-", "1", "]", ":", "return", "(", "A", ",", "B", ",", "(", "(", "1", "<<", "len", "(", "x", ")", ")", "-", "1", ")", "^", "A", "^", "B", ")", "return", "None" ]
partition a set of integers in 3 parts of same total value :param x: table of non negative values :returns: triplet of the integers encoding the sets, or None otherwise :complexity: :math:`O(2^{2n})`
[ "partition", "a", "set", "of", "integers", "in", "3", "parts", "of", "same", "total", "value" ]
python
train
RJT1990/pyflux
pyflux/ssm/llm.py
https://github.com/RJT1990/pyflux/blob/297f2afc2095acd97c12e827dd500e8ea5da0c0f/pyflux/ssm/llm.py#L179-L262
def plot_predict(self, h=5, past_values=20, intervals=True, **kwargs): """ Makes forecast with the estimated model Parameters ---------- h : int (default : 5) How many steps ahead would you like to forecast? past_values : int (default : 20) How many past observations to show on the forecast graph? intervals : Boolean Would you like to show prediction intervals for the forecast? Returns ---------- - Plot of the forecast """ import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize',(10,7)) nsims = kwargs.get('nsims', 200) if self.latent_variables.estimated is False: raise Exception("No latent variables estimated!") else: # Retrieve data, dates and (transformed) latent variables if self.latent_variables.estimation_method in ['M-H']: lower_final = 0 upper_final = 0 plot_values_final = 0 date_index = self.shift_dates(h) plot_index = date_index[-h-past_values:] for i in range(nsims): t_params = self.draw_latent_variables(nsims=1).T[0] a, P = self._forecast_model(t_params, h) plot_values = a[0][-h-past_values:] forecasted_values = a[0][-h:] lower = forecasted_values - 1.96*np.power(P[0][0][-h:] + self.latent_variables.z_list[0].prior.transform(t_params[0]),0.5) upper = forecasted_values + 1.96*np.power(P[0][0][-h:] + self.latent_variables.z_list[0].prior.transform(t_params[0]),0.5) lower_final += np.append(plot_values[-h-1], lower) upper_final += np.append(plot_values[-h-1], upper) plot_values_final += plot_values plot_values_final = plot_values_final / nsims lower_final = lower_final / nsims upper_final = upper_final / nsims plt.figure(figsize=figsize) if intervals == True: plt.fill_between(date_index[-h-1:], lower_final, upper_final, alpha=0.2) plt.plot(plot_index, plot_values_final) plt.title("Forecast for " + self.data_name) plt.xlabel("Time") plt.ylabel(self.data_name) plt.show() else: a, P = self._forecast_model(self.latent_variables.get_z_values(),h) date_index = self.shift_dates(h) plot_values = a[0][-h-past_values:] forecasted_values = a[0][-h:] lower = forecasted_values - 1.96*np.power(P[0][0][-h:] + self.latent_variables.z_list[0].prior.transform(self.latent_variables.get_z_values()[0]),0.5) upper = forecasted_values + 1.96*np.power(P[0][0][-h:] + self.latent_variables.z_list[0].prior.transform(self.latent_variables.get_z_values()[0]),0.5) lower = np.append(plot_values[-h-1],lower) upper = np.append(plot_values[-h-1],upper) plot_index = date_index[-h-past_values:] plt.figure(figsize=figsize) if intervals == True: plt.fill_between(date_index[-h-1:], lower, upper, alpha=0.2) plt.plot(plot_index,plot_values) plt.title("Forecast for " + self.data_name) plt.xlabel("Time") plt.ylabel(self.data_name) plt.show()
[ "def", "plot_predict", "(", "self", ",", "h", "=", "5", ",", "past_values", "=", "20", ",", "intervals", "=", "True", ",", "*", "*", "kwargs", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "import", "seaborn", "as", "sns", "figsize", "=", "kwargs", ".", "get", "(", "'figsize'", ",", "(", "10", ",", "7", ")", ")", "nsims", "=", "kwargs", ".", "get", "(", "'nsims'", ",", "200", ")", "if", "self", ".", "latent_variables", ".", "estimated", "is", "False", ":", "raise", "Exception", "(", "\"No latent variables estimated!\"", ")", "else", ":", "# Retrieve data, dates and (transformed) latent variables ", "if", "self", ".", "latent_variables", ".", "estimation_method", "in", "[", "'M-H'", "]", ":", "lower_final", "=", "0", "upper_final", "=", "0", "plot_values_final", "=", "0", "date_index", "=", "self", ".", "shift_dates", "(", "h", ")", "plot_index", "=", "date_index", "[", "-", "h", "-", "past_values", ":", "]", "for", "i", "in", "range", "(", "nsims", ")", ":", "t_params", "=", "self", ".", "draw_latent_variables", "(", "nsims", "=", "1", ")", ".", "T", "[", "0", "]", "a", ",", "P", "=", "self", ".", "_forecast_model", "(", "t_params", ",", "h", ")", "plot_values", "=", "a", "[", "0", "]", "[", "-", "h", "-", "past_values", ":", "]", "forecasted_values", "=", "a", "[", "0", "]", "[", "-", "h", ":", "]", "lower", "=", "forecasted_values", "-", "1.96", "*", "np", ".", "power", "(", "P", "[", "0", "]", "[", "0", "]", "[", "-", "h", ":", "]", "+", "self", ".", "latent_variables", ".", "z_list", "[", "0", "]", ".", "prior", ".", "transform", "(", "t_params", "[", "0", "]", ")", ",", "0.5", ")", "upper", "=", "forecasted_values", "+", "1.96", "*", "np", ".", "power", "(", "P", "[", "0", "]", "[", "0", "]", "[", "-", "h", ":", "]", "+", "self", ".", "latent_variables", ".", "z_list", "[", "0", "]", ".", "prior", ".", "transform", "(", "t_params", "[", "0", "]", ")", ",", "0.5", ")", "lower_final", "+=", "np", ".", "append", "(", "plot_values", "[", "-", "h", "-", "1", "]", ",", "lower", ")", "upper_final", "+=", "np", ".", "append", "(", "plot_values", "[", "-", "h", "-", "1", "]", ",", "upper", ")", "plot_values_final", "+=", "plot_values", "plot_values_final", "=", "plot_values_final", "/", "nsims", "lower_final", "=", "lower_final", "/", "nsims", "upper_final", "=", "upper_final", "/", "nsims", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "if", "intervals", "==", "True", ":", "plt", ".", "fill_between", "(", "date_index", "[", "-", "h", "-", "1", ":", "]", ",", "lower_final", ",", "upper_final", ",", "alpha", "=", "0.2", ")", "plt", ".", "plot", "(", "plot_index", ",", "plot_values_final", ")", "plt", ".", "title", "(", "\"Forecast for \"", "+", "self", ".", "data_name", ")", "plt", ".", "xlabel", "(", "\"Time\"", ")", "plt", ".", "ylabel", "(", "self", ".", "data_name", ")", "plt", ".", "show", "(", ")", "else", ":", "a", ",", "P", "=", "self", ".", "_forecast_model", "(", "self", ".", "latent_variables", ".", "get_z_values", "(", ")", ",", "h", ")", "date_index", "=", "self", ".", "shift_dates", "(", "h", ")", "plot_values", "=", "a", "[", "0", "]", "[", "-", "h", "-", "past_values", ":", "]", "forecasted_values", "=", "a", "[", "0", "]", "[", "-", "h", ":", "]", "lower", "=", "forecasted_values", "-", "1.96", "*", "np", ".", "power", "(", "P", "[", "0", "]", "[", "0", "]", "[", "-", "h", ":", "]", "+", "self", ".", "latent_variables", ".", "z_list", "[", "0", "]", ".", "prior", ".", "transform", "(", "self", ".", "latent_variables", ".", "get_z_values", "(", ")", "[", "0", "]", ")", ",", "0.5", ")", "upper", "=", "forecasted_values", "+", "1.96", "*", "np", ".", "power", "(", "P", "[", "0", "]", "[", "0", "]", "[", "-", "h", ":", "]", "+", "self", ".", "latent_variables", ".", "z_list", "[", "0", "]", ".", "prior", ".", "transform", "(", "self", ".", "latent_variables", ".", "get_z_values", "(", ")", "[", "0", "]", ")", ",", "0.5", ")", "lower", "=", "np", ".", "append", "(", "plot_values", "[", "-", "h", "-", "1", "]", ",", "lower", ")", "upper", "=", "np", ".", "append", "(", "plot_values", "[", "-", "h", "-", "1", "]", ",", "upper", ")", "plot_index", "=", "date_index", "[", "-", "h", "-", "past_values", ":", "]", "plt", ".", "figure", "(", "figsize", "=", "figsize", ")", "if", "intervals", "==", "True", ":", "plt", ".", "fill_between", "(", "date_index", "[", "-", "h", "-", "1", ":", "]", ",", "lower", ",", "upper", ",", "alpha", "=", "0.2", ")", "plt", ".", "plot", "(", "plot_index", ",", "plot_values", ")", "plt", ".", "title", "(", "\"Forecast for \"", "+", "self", ".", "data_name", ")", "plt", ".", "xlabel", "(", "\"Time\"", ")", "plt", ".", "ylabel", "(", "self", ".", "data_name", ")", "plt", ".", "show", "(", ")" ]
Makes forecast with the estimated model Parameters ---------- h : int (default : 5) How many steps ahead would you like to forecast? past_values : int (default : 20) How many past observations to show on the forecast graph? intervals : Boolean Would you like to show prediction intervals for the forecast? Returns ---------- - Plot of the forecast
[ "Makes", "forecast", "with", "the", "estimated", "model" ]
python
train
edeposit/edeposit.amqp.ftp
src/edeposit/amqp/ftp/decoders/validator.py
https://github.com/edeposit/edeposit.amqp.ftp/blob/fcdcbffb6e5d194e1bb4f85f0b8eaa9dbb08aa71/src/edeposit/amqp/ftp/decoders/validator.py#L158-L169
def process(self, key, val): """ Try to look for `key` in all required and optional fields. If found, set the `val`. """ for field in self.fields: if field.check(key, val): return for field in self.optional: if field.check(key, val): return
[ "def", "process", "(", "self", ",", "key", ",", "val", ")", ":", "for", "field", "in", "self", ".", "fields", ":", "if", "field", ".", "check", "(", "key", ",", "val", ")", ":", "return", "for", "field", "in", "self", ".", "optional", ":", "if", "field", ".", "check", "(", "key", ",", "val", ")", ":", "return" ]
Try to look for `key` in all required and optional fields. If found, set the `val`.
[ "Try", "to", "look", "for", "key", "in", "all", "required", "and", "optional", "fields", ".", "If", "found", "set", "the", "val", "." ]
python
train
gwww/elkm1
elkm1_lib/areas.py
https://github.com/gwww/elkm1/blob/078d0de30840c3fab46f1f8534d98df557931e91/elkm1_lib/areas.py#L20-L22
def arm(self, level, code): """(Helper) Arm system at specified level (away, vacation, etc)""" self._elk.send(al_encode(level, self._index, code))
[ "def", "arm", "(", "self", ",", "level", ",", "code", ")", ":", "self", ".", "_elk", ".", "send", "(", "al_encode", "(", "level", ",", "self", ".", "_index", ",", "code", ")", ")" ]
(Helper) Arm system at specified level (away, vacation, etc)
[ "(", "Helper", ")", "Arm", "system", "at", "specified", "level", "(", "away", "vacation", "etc", ")" ]
python
train
mattja/nsim
nsim/analyses1/epochs.py
https://github.com/mattja/nsim/blob/ed62c41cd56b918fd97e09f7ad73c12c76a8c3e0/nsim/analyses1/epochs.py#L187-L273
def epochs(ts, variability=None, threshold=0.0, minlength=1.0, plot=True): """Identify "stationary" epochs within a time series, based on a continuous measure of variability. Epochs are defined to contain the points of minimal variability, and to extend as wide as possible with variability not exceeding the threshold. Args: ts Timeseries of m variables, shape (n, m). variability (optional) Timeseries of shape (n, m, q), giving q scalar measures of the variability of timeseries `ts` near each point in time. (if None, we will use variability_fp()) Epochs require the mean of these to be below the threshold. threshold The maximum variability permitted in stationary epochs. minlength Shortest acceptable epoch length (in seconds) plot bool Whether to display the output Returns: (variability, allchannels_epochs) variability: as above allchannels_epochs: (list of) list of tuples For each variable, a list of tuples (start, end) that give the starting and ending indices of stationary epochs. (epochs are inclusive of start point but not the end point) """ if variability is None: variability = ts.variability_fp(plot=False) orig_ndim = ts.ndim if ts.ndim is 1: ts = ts[:, np.newaxis] if variability.ndim is 1: variability = variability[:, np.newaxis, np.newaxis] elif variability.ndim is 2: variability = variability[:, np.newaxis, :] channels = ts.shape[1] n = len(ts) dt = (1.0*ts.tspan[-1] - ts.tspan[0]) / (n - 1) fs = 1.0 / dt allchannels_epochs = [] for i in range(channels): v = variability[:, i, :] v = np.nanmean(v, axis=1) # mean of q different variability measures # then smooth the variability with a low-pass filter nonnan_ix = np.nonzero(~np.isnan(v))[0] nonnans = slice(nonnan_ix.min(), nonnan_ix.max()) crit_freq = 1.0 # Hz b, a = signal.butter(3, 2.0 * crit_freq / fs) #v[nonnans] = signal.filtfilt(b, a, v[nonnans]) v[nonnan_ix] = signal.filtfilt(b, a, v[nonnan_ix]) # find all local minima of the variability not exceeding the threshold m = v[1:-1] l = v[0:-2] r = v[2:] minima = np.nonzero(~np.isnan(m) & ~np.isnan(l) & ~np.isnan(r) & (m <= threshold) & (m-l < 0) & (r-m > 0))[0] + 1 if len(minima) is 0: print(u'Channel %d: no epochs found using threshold %g' % ( i, threshold)) allchannels_epochs.append([]) else: # Sort the list of minima by ascending variability minima = minima[np.argsort(v[minima])] epochs = [] for m in minima: # Check this minimum is not inside an existing epoch overlap = False for e in epochs: if m >= e[0] and m <= e[1]: overlap = True break if not overlap: # Get largest subthreshold interval surrounding the minimum startix = m - 1 endix = m + 1 for startix in range(m - 1, 0, -1): if np.isnan(v[startix]) or v[startix] > threshold: startix += 1 break for endix in range(m + 1, len(v), 1): if np.isnan(v[endix]) or v[endix] > threshold: break if (endix - startix) * dt >= minlength: epochs.append((startix, endix)) allchannels_epochs.append(epochs) if plot: _plot_variability(ts, variability, threshold, allchannels_epochs) if orig_ndim is 1: allchannels_epochs = allchannels_epochs[0] return (variability, allchannels_epochs)
[ "def", "epochs", "(", "ts", ",", "variability", "=", "None", ",", "threshold", "=", "0.0", ",", "minlength", "=", "1.0", ",", "plot", "=", "True", ")", ":", "if", "variability", "is", "None", ":", "variability", "=", "ts", ".", "variability_fp", "(", "plot", "=", "False", ")", "orig_ndim", "=", "ts", ".", "ndim", "if", "ts", ".", "ndim", "is", "1", ":", "ts", "=", "ts", "[", ":", ",", "np", ".", "newaxis", "]", "if", "variability", ".", "ndim", "is", "1", ":", "variability", "=", "variability", "[", ":", ",", "np", ".", "newaxis", ",", "np", ".", "newaxis", "]", "elif", "variability", ".", "ndim", "is", "2", ":", "variability", "=", "variability", "[", ":", ",", "np", ".", "newaxis", ",", ":", "]", "channels", "=", "ts", ".", "shape", "[", "1", "]", "n", "=", "len", "(", "ts", ")", "dt", "=", "(", "1.0", "*", "ts", ".", "tspan", "[", "-", "1", "]", "-", "ts", ".", "tspan", "[", "0", "]", ")", "/", "(", "n", "-", "1", ")", "fs", "=", "1.0", "/", "dt", "allchannels_epochs", "=", "[", "]", "for", "i", "in", "range", "(", "channels", ")", ":", "v", "=", "variability", "[", ":", ",", "i", ",", ":", "]", "v", "=", "np", ".", "nanmean", "(", "v", ",", "axis", "=", "1", ")", "# mean of q different variability measures", "# then smooth the variability with a low-pass filter", "nonnan_ix", "=", "np", ".", "nonzero", "(", "~", "np", ".", "isnan", "(", "v", ")", ")", "[", "0", "]", "nonnans", "=", "slice", "(", "nonnan_ix", ".", "min", "(", ")", ",", "nonnan_ix", ".", "max", "(", ")", ")", "crit_freq", "=", "1.0", "# Hz", "b", ",", "a", "=", "signal", ".", "butter", "(", "3", ",", "2.0", "*", "crit_freq", "/", "fs", ")", "#v[nonnans] = signal.filtfilt(b, a, v[nonnans])", "v", "[", "nonnan_ix", "]", "=", "signal", ".", "filtfilt", "(", "b", ",", "a", ",", "v", "[", "nonnan_ix", "]", ")", "# find all local minima of the variability not exceeding the threshold", "m", "=", "v", "[", "1", ":", "-", "1", "]", "l", "=", "v", "[", "0", ":", "-", "2", "]", "r", "=", "v", "[", "2", ":", "]", "minima", "=", "np", ".", "nonzero", "(", "~", "np", ".", "isnan", "(", "m", ")", "&", "~", "np", ".", "isnan", "(", "l", ")", "&", "~", "np", ".", "isnan", "(", "r", ")", "&", "(", "m", "<=", "threshold", ")", "&", "(", "m", "-", "l", "<", "0", ")", "&", "(", "r", "-", "m", ">", "0", ")", ")", "[", "0", "]", "+", "1", "if", "len", "(", "minima", ")", "is", "0", ":", "print", "(", "u'Channel %d: no epochs found using threshold %g'", "%", "(", "i", ",", "threshold", ")", ")", "allchannels_epochs", ".", "append", "(", "[", "]", ")", "else", ":", "# Sort the list of minima by ascending variability", "minima", "=", "minima", "[", "np", ".", "argsort", "(", "v", "[", "minima", "]", ")", "]", "epochs", "=", "[", "]", "for", "m", "in", "minima", ":", "# Check this minimum is not inside an existing epoch", "overlap", "=", "False", "for", "e", "in", "epochs", ":", "if", "m", ">=", "e", "[", "0", "]", "and", "m", "<=", "e", "[", "1", "]", ":", "overlap", "=", "True", "break", "if", "not", "overlap", ":", "# Get largest subthreshold interval surrounding the minimum", "startix", "=", "m", "-", "1", "endix", "=", "m", "+", "1", "for", "startix", "in", "range", "(", "m", "-", "1", ",", "0", ",", "-", "1", ")", ":", "if", "np", ".", "isnan", "(", "v", "[", "startix", "]", ")", "or", "v", "[", "startix", "]", ">", "threshold", ":", "startix", "+=", "1", "break", "for", "endix", "in", "range", "(", "m", "+", "1", ",", "len", "(", "v", ")", ",", "1", ")", ":", "if", "np", ".", "isnan", "(", "v", "[", "endix", "]", ")", "or", "v", "[", "endix", "]", ">", "threshold", ":", "break", "if", "(", "endix", "-", "startix", ")", "*", "dt", ">=", "minlength", ":", "epochs", ".", "append", "(", "(", "startix", ",", "endix", ")", ")", "allchannels_epochs", ".", "append", "(", "epochs", ")", "if", "plot", ":", "_plot_variability", "(", "ts", ",", "variability", ",", "threshold", ",", "allchannels_epochs", ")", "if", "orig_ndim", "is", "1", ":", "allchannels_epochs", "=", "allchannels_epochs", "[", "0", "]", "return", "(", "variability", ",", "allchannels_epochs", ")" ]
Identify "stationary" epochs within a time series, based on a continuous measure of variability. Epochs are defined to contain the points of minimal variability, and to extend as wide as possible with variability not exceeding the threshold. Args: ts Timeseries of m variables, shape (n, m). variability (optional) Timeseries of shape (n, m, q), giving q scalar measures of the variability of timeseries `ts` near each point in time. (if None, we will use variability_fp()) Epochs require the mean of these to be below the threshold. threshold The maximum variability permitted in stationary epochs. minlength Shortest acceptable epoch length (in seconds) plot bool Whether to display the output Returns: (variability, allchannels_epochs) variability: as above allchannels_epochs: (list of) list of tuples For each variable, a list of tuples (start, end) that give the starting and ending indices of stationary epochs. (epochs are inclusive of start point but not the end point)
[ "Identify", "stationary", "epochs", "within", "a", "time", "series", "based", "on", "a", "continuous", "measure", "of", "variability", ".", "Epochs", "are", "defined", "to", "contain", "the", "points", "of", "minimal", "variability", "and", "to", "extend", "as", "wide", "as", "possible", "with", "variability", "not", "exceeding", "the", "threshold", "." ]
python
train
koriakin/binflakes
binflakes/types/word.py
https://github.com/koriakin/binflakes/blob/f059cecadf1c605802a713c62375b5bd5606d53f/binflakes/types/word.py#L328-L333
def sge(self, other): """Compares two equal-sized BinWords, treating them as signed integers, and returning True if the first is bigger or equal. """ self._check_match(other) return self.to_sint() >= other.to_sint()
[ "def", "sge", "(", "self", ",", "other", ")", ":", "self", ".", "_check_match", "(", "other", ")", "return", "self", ".", "to_sint", "(", ")", ">=", "other", ".", "to_sint", "(", ")" ]
Compares two equal-sized BinWords, treating them as signed integers, and returning True if the first is bigger or equal.
[ "Compares", "two", "equal", "-", "sized", "BinWords", "treating", "them", "as", "signed", "integers", "and", "returning", "True", "if", "the", "first", "is", "bigger", "or", "equal", "." ]
python
train
gem/oq-engine
openquake/hazardlib/gsim/campbell_bozorgnia_2014.py
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/gsim/campbell_bozorgnia_2014.py#L161-L166
def _get_geometric_attenuation_term(self, C, mag, rrup): """ Returns the geometric attenuation term defined in equation 3 """ return (C["c5"] + C["c6"] * mag) * np.log(np.sqrt((rrup ** 2.) + (C["c7"] ** 2.)))
[ "def", "_get_geometric_attenuation_term", "(", "self", ",", "C", ",", "mag", ",", "rrup", ")", ":", "return", "(", "C", "[", "\"c5\"", "]", "+", "C", "[", "\"c6\"", "]", "*", "mag", ")", "*", "np", ".", "log", "(", "np", ".", "sqrt", "(", "(", "rrup", "**", "2.", ")", "+", "(", "C", "[", "\"c7\"", "]", "**", "2.", ")", ")", ")" ]
Returns the geometric attenuation term defined in equation 3
[ "Returns", "the", "geometric", "attenuation", "term", "defined", "in", "equation", "3" ]
python
train
pyQode/pyqode.core
pyqode/core/widgets/tabs.py
https://github.com/pyQode/pyqode.core/blob/a99ec6cd22d519394f613309412f8329dc4e90cb/pyqode/core/widgets/tabs.py#L349-L366
def removeTab(self, index): """ Removes tab at index ``index``. This method will emits tab_closed for the removed tab. :param index: index of the tab to remove. """ widget = self.widget(index) try: self._widgets.remove(widget) except ValueError: pass self.tab_closed.emit(widget) self._del_code_edit(widget) QTabWidget.removeTab(self, index) if widget == self._current: self._current = None
[ "def", "removeTab", "(", "self", ",", "index", ")", ":", "widget", "=", "self", ".", "widget", "(", "index", ")", "try", ":", "self", ".", "_widgets", ".", "remove", "(", "widget", ")", "except", "ValueError", ":", "pass", "self", ".", "tab_closed", ".", "emit", "(", "widget", ")", "self", ".", "_del_code_edit", "(", "widget", ")", "QTabWidget", ".", "removeTab", "(", "self", ",", "index", ")", "if", "widget", "==", "self", ".", "_current", ":", "self", ".", "_current", "=", "None" ]
Removes tab at index ``index``. This method will emits tab_closed for the removed tab. :param index: index of the tab to remove.
[ "Removes", "tab", "at", "index", "index", "." ]
python
train
manns/pyspread
pyspread/src/lib/_grid_cairo_renderer.py
https://github.com/manns/pyspread/blob/0e2fd44c2e0f06605efc3058c20a43a8c1f9e7e0/pyspread/src/lib/_grid_cairo_renderer.py#L1051-L1061
def get_right_key_rect(self): """Returns tuple key rect of right cell""" key_right = self.row, self.col + 1, self.tab border_width_right = \ float(self.cell_attributes[self.key]["borderwidth_right"]) / 2.0 rect_right = (self.x+self.width, self.y, border_width_right, self.height) return key_right, rect_right
[ "def", "get_right_key_rect", "(", "self", ")", ":", "key_right", "=", "self", ".", "row", ",", "self", ".", "col", "+", "1", ",", "self", ".", "tab", "border_width_right", "=", "float", "(", "self", ".", "cell_attributes", "[", "self", ".", "key", "]", "[", "\"borderwidth_right\"", "]", ")", "/", "2.0", "rect_right", "=", "(", "self", ".", "x", "+", "self", ".", "width", ",", "self", ".", "y", ",", "border_width_right", ",", "self", ".", "height", ")", "return", "key_right", ",", "rect_right" ]
Returns tuple key rect of right cell
[ "Returns", "tuple", "key", "rect", "of", "right", "cell" ]
python
train
thunder-project/thunder
thunder/blocks/blocks.py
https://github.com/thunder-project/thunder/blob/967ff8f3e7c2fabe1705743d95eb2746d4329786/thunder/blocks/blocks.py#L75-L87
def toimages(self): """ Convert blocks to images. """ from thunder.images.images import Images if self.mode == 'spark': values = self.values.values_to_keys((0,)).unchunk() if self.mode == 'local': values = self.values.unchunk() return Images(values)
[ "def", "toimages", "(", "self", ")", ":", "from", "thunder", ".", "images", ".", "images", "import", "Images", "if", "self", ".", "mode", "==", "'spark'", ":", "values", "=", "self", ".", "values", ".", "values_to_keys", "(", "(", "0", ",", ")", ")", ".", "unchunk", "(", ")", "if", "self", ".", "mode", "==", "'local'", ":", "values", "=", "self", ".", "values", ".", "unchunk", "(", ")", "return", "Images", "(", "values", ")" ]
Convert blocks to images.
[ "Convert", "blocks", "to", "images", "." ]
python
train
bovee/Aston
aston/spectra/isotopes.py
https://github.com/bovee/Aston/blob/007630fdf074690373d03398fe818260d3d3cf5a/aston/spectra/isotopes.py#L34-L74
def delta13c_craig(r45sam, r46sam, d13cstd, r45std, r46std, ks='Craig', d18ostd=23.5): """ Algorithm from Craig 1957. From the original Craig paper, we can set up a pair of equations and solve for d13C and d18O simultaneously: d45 * r45 = r13 * d13 + 0.5 * r17 * d18 d46 = r13 * ((r17**2 + r17 - r18) / a) * d13 + 1 - 0.5 * r17 * ((r13**2 + r13 - r18) / a) * d18 where a = r18 + r13 * r17 and b = 1 + r13 + r17 """ # the constants for the calculations # originally r13, r17, r18 = 1123.72e-5, 759.9e-6, 415.8e-5 k = delta13c_constants()[ks] # TODO: not clear why need to multiply by 2? r13, r18 = k['S13'], 2 * k['S18'] r17 = 2 * (k['K'] * k['S18'] ** k['A']) a = (r18 + r13 * r17) * (1. + r13 + r17) # the coefficients for the calculations eqn_mat = np.array([[r13, 0.5 * r17], [r13 * ((r17 ** 2 + r17 - r18) / a), 1 - 0.5 * r17 * ((r13 ** 2 + r13 - r18) / a)]]) # precalculate the d45 and d46 of the standard versus PDB r45d45std = (eqn_mat[0, 0] * d13cstd + eqn_mat[0, 1] * d18ostd) d46std = eqn_mat[1, 0] * d13cstd + eqn_mat[1, 1] * d18ostd # calculate the d45 and d46 of our sample versus PDB # in r45d45, r45 of PDB = r13 + r17 of PDB r45d45 = 1000. * (r45sam / r45std - 1.) * \ (r13 + r17 + 0.001 * r45d45std) + r45d45std d46 = 1000. * (r46sam / r46std - 1.) * (1. + 0.001 * d46std) + d46std # solve the system of equations x = np.linalg.solve(eqn_mat, np.array([r45d45, d46])) return x[0]
[ "def", "delta13c_craig", "(", "r45sam", ",", "r46sam", ",", "d13cstd", ",", "r45std", ",", "r46std", ",", "ks", "=", "'Craig'", ",", "d18ostd", "=", "23.5", ")", ":", "# the constants for the calculations", "# originally r13, r17, r18 = 1123.72e-5, 759.9e-6, 415.8e-5", "k", "=", "delta13c_constants", "(", ")", "[", "ks", "]", "# TODO: not clear why need to multiply by 2?", "r13", ",", "r18", "=", "k", "[", "'S13'", "]", ",", "2", "*", "k", "[", "'S18'", "]", "r17", "=", "2", "*", "(", "k", "[", "'K'", "]", "*", "k", "[", "'S18'", "]", "**", "k", "[", "'A'", "]", ")", "a", "=", "(", "r18", "+", "r13", "*", "r17", ")", "*", "(", "1.", "+", "r13", "+", "r17", ")", "# the coefficients for the calculations", "eqn_mat", "=", "np", ".", "array", "(", "[", "[", "r13", ",", "0.5", "*", "r17", "]", ",", "[", "r13", "*", "(", "(", "r17", "**", "2", "+", "r17", "-", "r18", ")", "/", "a", ")", ",", "1", "-", "0.5", "*", "r17", "*", "(", "(", "r13", "**", "2", "+", "r13", "-", "r18", ")", "/", "a", ")", "]", "]", ")", "# precalculate the d45 and d46 of the standard versus PDB", "r45d45std", "=", "(", "eqn_mat", "[", "0", ",", "0", "]", "*", "d13cstd", "+", "eqn_mat", "[", "0", ",", "1", "]", "*", "d18ostd", ")", "d46std", "=", "eqn_mat", "[", "1", ",", "0", "]", "*", "d13cstd", "+", "eqn_mat", "[", "1", ",", "1", "]", "*", "d18ostd", "# calculate the d45 and d46 of our sample versus PDB", "# in r45d45, r45 of PDB = r13 + r17 of PDB", "r45d45", "=", "1000.", "*", "(", "r45sam", "/", "r45std", "-", "1.", ")", "*", "(", "r13", "+", "r17", "+", "0.001", "*", "r45d45std", ")", "+", "r45d45std", "d46", "=", "1000.", "*", "(", "r46sam", "/", "r46std", "-", "1.", ")", "*", "(", "1.", "+", "0.001", "*", "d46std", ")", "+", "d46std", "# solve the system of equations", "x", "=", "np", ".", "linalg", ".", "solve", "(", "eqn_mat", ",", "np", ".", "array", "(", "[", "r45d45", ",", "d46", "]", ")", ")", "return", "x", "[", "0", "]" ]
Algorithm from Craig 1957. From the original Craig paper, we can set up a pair of equations and solve for d13C and d18O simultaneously: d45 * r45 = r13 * d13 + 0.5 * r17 * d18 d46 = r13 * ((r17**2 + r17 - r18) / a) * d13 + 1 - 0.5 * r17 * ((r13**2 + r13 - r18) / a) * d18 where a = r18 + r13 * r17 and b = 1 + r13 + r17
[ "Algorithm", "from", "Craig", "1957", "." ]
python
train
newville/asteval
asteval/asteval.py
https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L535-L539
def on_slice(self, node): # ():('lower', 'upper', 'step') """Simple slice.""" return slice(self.run(node.lower), self.run(node.upper), self.run(node.step))
[ "def", "on_slice", "(", "self", ",", "node", ")", ":", "# ():('lower', 'upper', 'step')", "return", "slice", "(", "self", ".", "run", "(", "node", ".", "lower", ")", ",", "self", ".", "run", "(", "node", ".", "upper", ")", ",", "self", ".", "run", "(", "node", ".", "step", ")", ")" ]
Simple slice.
[ "Simple", "slice", "." ]
python
train
Devoxin/Lavalink.py
lavalink/Client.py
https://github.com/Devoxin/Lavalink.py/blob/63f55c3d726d24c4cfd3674d3cd6aab6f5be110d/lavalink/Client.py#L173-L177
def destroy(self): """ Destroys the Lavalink client. """ self.ws.destroy() self.bot.remove_listener(self.on_socket_response) self.hooks.clear()
[ "def", "destroy", "(", "self", ")", ":", "self", ".", "ws", ".", "destroy", "(", ")", "self", ".", "bot", ".", "remove_listener", "(", "self", ".", "on_socket_response", ")", "self", ".", "hooks", ".", "clear", "(", ")" ]
Destroys the Lavalink client.
[ "Destroys", "the", "Lavalink", "client", "." ]
python
valid
b3j0f/schema
b3j0f/schema/lang/python.py
https://github.com/b3j0f/schema/blob/1c88c23337f5fef50254e65bd407112c43396dd9/b3j0f/schema/lang/python.py#L303-L462
def _getparams_rtype(cls, function): """Get function params from input function and rtype. :return: OrderedDict, rtype, vargs and kwargs. :rtype: tuple """ try: args, vargs, kwargs, default = getargspec(function) except TypeError: args, vargs, kwargs, default = (), (), (), () indexlen = len(args) - (0 if default is None else len(default)) params = OrderedDict() for index, arg in enumerate(args): pkwargs = { 'name': arg, 'mandatory': True } # param kwargs if index >= indexlen: # has default value value = default[index - indexlen] pkwargs['default'] = value pkwargs['ref'] = None if value is None else data2schema(value) pkwargs['mandatory'] = False params[arg] = pkwargs rtype = None # parse docstring if function.__doc__ is not None and not isbuiltin(function): scope = get_function_globals(function) for match in cls._REC.findall(function.__doc__): if rtype is None: rrtype = match[4].strip() or None if rrtype: rtypes = rrtype.split(',') schemas = [] for rtype_ in rtypes: rtype_ = rtype_.strip() islist = False try: lkrtype = lookup(rtype_, scope=scope) except ImportError: islist = True try: if rtype_[-1] == 's': lkrtype = lookup( rtype_[:-1], scope=scope ) elif rtype_.startswith('list of '): lkrtype = lookup( rtype_[8:], scope=scope ) else: raise except ImportError: msg = 'rtype "{0}" ({1}) from {2} not found.' raise ImportError( msg.format(rtype_, rrtype, function) ) try: schemacls = datatype2schemacls(lkrtype) except TypeError: schemacls = ParamTypeSchema(type=lkrtype) rschema = schemacls() if islist: rschema = ArraySchema(itemtype=rschema) schemas.append(rschema) if len(rtypes) > 1: rtype = OneOfSchema(schemas=schemas, nullable=True) else: rtype = schemas[0] continue pname = (match[1] or match[2]).strip() if pname and pname in params: ptype = (match[0] or match[3]).strip() ptypes = ptype.split(',') schemas = [] for ptype in ptypes: ptype = ptype.strip() islist = False try: lkptype = lookup(ptype, scope=scope) except ImportError: islist = True try: if ptype[-1] == 's': lkptype = lookup(ptype[:-1], scope=scope) elif ptype.startswith('list of '): lkptype = lookup(ptype[8:], scope=scope) else: raise except ImportError: msg = 'Error on ptype "{0}" ({1}) from {2} not found.' raise ImportError( msg.format(pname, ptype, function) ) try: schemacls = datatype2schemacls(lkptype) except TypeError: schemacls = ParamTypeSchema(type=lkptype) pschema = schemacls() if islist: pschema = ArraySchema(itemtype=pschema) schemas.append(pschema) if len(ptypes) > 1: pschema = OneOfSchema(schemas=schemas, nullable=True) else: pschema = schemas[0] params[pname]['ref'] = pschema return params, rtype, vargs, kwargs
[ "def", "_getparams_rtype", "(", "cls", ",", "function", ")", ":", "try", ":", "args", ",", "vargs", ",", "kwargs", ",", "default", "=", "getargspec", "(", "function", ")", "except", "TypeError", ":", "args", ",", "vargs", ",", "kwargs", ",", "default", "=", "(", ")", ",", "(", ")", ",", "(", ")", ",", "(", ")", "indexlen", "=", "len", "(", "args", ")", "-", "(", "0", "if", "default", "is", "None", "else", "len", "(", "default", ")", ")", "params", "=", "OrderedDict", "(", ")", "for", "index", ",", "arg", "in", "enumerate", "(", "args", ")", ":", "pkwargs", "=", "{", "'name'", ":", "arg", ",", "'mandatory'", ":", "True", "}", "# param kwargs", "if", "index", ">=", "indexlen", ":", "# has default value", "value", "=", "default", "[", "index", "-", "indexlen", "]", "pkwargs", "[", "'default'", "]", "=", "value", "pkwargs", "[", "'ref'", "]", "=", "None", "if", "value", "is", "None", "else", "data2schema", "(", "value", ")", "pkwargs", "[", "'mandatory'", "]", "=", "False", "params", "[", "arg", "]", "=", "pkwargs", "rtype", "=", "None", "# parse docstring", "if", "function", ".", "__doc__", "is", "not", "None", "and", "not", "isbuiltin", "(", "function", ")", ":", "scope", "=", "get_function_globals", "(", "function", ")", "for", "match", "in", "cls", ".", "_REC", ".", "findall", "(", "function", ".", "__doc__", ")", ":", "if", "rtype", "is", "None", ":", "rrtype", "=", "match", "[", "4", "]", ".", "strip", "(", ")", "or", "None", "if", "rrtype", ":", "rtypes", "=", "rrtype", ".", "split", "(", "','", ")", "schemas", "=", "[", "]", "for", "rtype_", "in", "rtypes", ":", "rtype_", "=", "rtype_", ".", "strip", "(", ")", "islist", "=", "False", "try", ":", "lkrtype", "=", "lookup", "(", "rtype_", ",", "scope", "=", "scope", ")", "except", "ImportError", ":", "islist", "=", "True", "try", ":", "if", "rtype_", "[", "-", "1", "]", "==", "'s'", ":", "lkrtype", "=", "lookup", "(", "rtype_", "[", ":", "-", "1", "]", ",", "scope", "=", "scope", ")", "elif", "rtype_", ".", "startswith", "(", "'list of '", ")", ":", "lkrtype", "=", "lookup", "(", "rtype_", "[", "8", ":", "]", ",", "scope", "=", "scope", ")", "else", ":", "raise", "except", "ImportError", ":", "msg", "=", "'rtype \"{0}\" ({1}) from {2} not found.'", "raise", "ImportError", "(", "msg", ".", "format", "(", "rtype_", ",", "rrtype", ",", "function", ")", ")", "try", ":", "schemacls", "=", "datatype2schemacls", "(", "lkrtype", ")", "except", "TypeError", ":", "schemacls", "=", "ParamTypeSchema", "(", "type", "=", "lkrtype", ")", "rschema", "=", "schemacls", "(", ")", "if", "islist", ":", "rschema", "=", "ArraySchema", "(", "itemtype", "=", "rschema", ")", "schemas", ".", "append", "(", "rschema", ")", "if", "len", "(", "rtypes", ")", ">", "1", ":", "rtype", "=", "OneOfSchema", "(", "schemas", "=", "schemas", ",", "nullable", "=", "True", ")", "else", ":", "rtype", "=", "schemas", "[", "0", "]", "continue", "pname", "=", "(", "match", "[", "1", "]", "or", "match", "[", "2", "]", ")", ".", "strip", "(", ")", "if", "pname", "and", "pname", "in", "params", ":", "ptype", "=", "(", "match", "[", "0", "]", "or", "match", "[", "3", "]", ")", ".", "strip", "(", ")", "ptypes", "=", "ptype", ".", "split", "(", "','", ")", "schemas", "=", "[", "]", "for", "ptype", "in", "ptypes", ":", "ptype", "=", "ptype", ".", "strip", "(", ")", "islist", "=", "False", "try", ":", "lkptype", "=", "lookup", "(", "ptype", ",", "scope", "=", "scope", ")", "except", "ImportError", ":", "islist", "=", "True", "try", ":", "if", "ptype", "[", "-", "1", "]", "==", "'s'", ":", "lkptype", "=", "lookup", "(", "ptype", "[", ":", "-", "1", "]", ",", "scope", "=", "scope", ")", "elif", "ptype", ".", "startswith", "(", "'list of '", ")", ":", "lkptype", "=", "lookup", "(", "ptype", "[", "8", ":", "]", ",", "scope", "=", "scope", ")", "else", ":", "raise", "except", "ImportError", ":", "msg", "=", "'Error on ptype \"{0}\" ({1}) from {2} not found.'", "raise", "ImportError", "(", "msg", ".", "format", "(", "pname", ",", "ptype", ",", "function", ")", ")", "try", ":", "schemacls", "=", "datatype2schemacls", "(", "lkptype", ")", "except", "TypeError", ":", "schemacls", "=", "ParamTypeSchema", "(", "type", "=", "lkptype", ")", "pschema", "=", "schemacls", "(", ")", "if", "islist", ":", "pschema", "=", "ArraySchema", "(", "itemtype", "=", "pschema", ")", "schemas", ".", "append", "(", "pschema", ")", "if", "len", "(", "ptypes", ")", ">", "1", ":", "pschema", "=", "OneOfSchema", "(", "schemas", "=", "schemas", ",", "nullable", "=", "True", ")", "else", ":", "pschema", "=", "schemas", "[", "0", "]", "params", "[", "pname", "]", "[", "'ref'", "]", "=", "pschema", "return", "params", ",", "rtype", ",", "vargs", ",", "kwargs" ]
Get function params from input function and rtype. :return: OrderedDict, rtype, vargs and kwargs. :rtype: tuple
[ "Get", "function", "params", "from", "input", "function", "and", "rtype", "." ]
python
train
pywbem/pywbem
attic/cim_provider2.py
https://github.com/pywbem/pywbem/blob/e54ecb82c2211e289a268567443d60fdd489f1e4/attic/cim_provider2.py#L562-L590
def MI_createInstance(self, env, instance): # pylint: disable=invalid-name """Create a CIM instance, and return its instance name Implements the WBEM operation CreateInstance in terms of the set_instance method. A derived class will not normally override this method. """ logger = env.get_logger() logger.log_debug('CIMProvider2 MI_createInstance called...') rval = None ''' ch = env.get_cimom_handle() cimClass = ch.GetClass(instance.classname, instance.path.namespace, LocalOnly=False, IncludeQualifiers=True) ''' # CIMOM has already filled in default property values for # props with default values, if values not supplied by client. rval = self.set_instance(env=env, instance=instance, modify_existing=False) logger.log_debug('CIMProvider2 MI_createInstance returning') return rval.path
[ "def", "MI_createInstance", "(", "self", ",", "env", ",", "instance", ")", ":", "# pylint: disable=invalid-name", "logger", "=", "env", ".", "get_logger", "(", ")", "logger", ".", "log_debug", "(", "'CIMProvider2 MI_createInstance called...'", ")", "rval", "=", "None", "'''\n ch = env.get_cimom_handle()\n cimClass = ch.GetClass(instance.classname,\n instance.path.namespace,\n LocalOnly=False,\n IncludeQualifiers=True)\n '''", "# CIMOM has already filled in default property values for", "# props with default values, if values not supplied by client.", "rval", "=", "self", ".", "set_instance", "(", "env", "=", "env", ",", "instance", "=", "instance", ",", "modify_existing", "=", "False", ")", "logger", ".", "log_debug", "(", "'CIMProvider2 MI_createInstance returning'", ")", "return", "rval", ".", "path" ]
Create a CIM instance, and return its instance name Implements the WBEM operation CreateInstance in terms of the set_instance method. A derived class will not normally override this method.
[ "Create", "a", "CIM", "instance", "and", "return", "its", "instance", "name" ]
python
train
kalbhor/MusicNow
musicnow/repair.py
https://github.com/kalbhor/MusicNow/blob/12ff1ed2ea2bb7dbbfd925d7998b3ea1e20de291/musicnow/repair.py#L106-L130
def get_lyrics_genius(song_title): ''' Scrapes the lyrics from Genius.com ''' base_url = "http://api.genius.com" headers = {'Authorization': 'Bearer %s' %(GENIUS_KEY)} search_url = base_url + "/search" data = {'q': song_title} response = requests.get(search_url, data=data, headers=headers) json = response.json() song_api_path = json["response"]["hits"][0]["result"]["api_path"] song_url = base_url + song_api_path response = requests.get(song_url, headers=headers) json = response.json() path = json["response"]["song"]["path"] page_url = "http://genius.com" + path page = requests.get(page_url) soup = BeautifulSoup(page.text, "html.parser") div = soup.find('div',{'class': 'song_body-lyrics'}) lyrics = div.find('p').getText() return lyrics
[ "def", "get_lyrics_genius", "(", "song_title", ")", ":", "base_url", "=", "\"http://api.genius.com\"", "headers", "=", "{", "'Authorization'", ":", "'Bearer %s'", "%", "(", "GENIUS_KEY", ")", "}", "search_url", "=", "base_url", "+", "\"/search\"", "data", "=", "{", "'q'", ":", "song_title", "}", "response", "=", "requests", ".", "get", "(", "search_url", ",", "data", "=", "data", ",", "headers", "=", "headers", ")", "json", "=", "response", ".", "json", "(", ")", "song_api_path", "=", "json", "[", "\"response\"", "]", "[", "\"hits\"", "]", "[", "0", "]", "[", "\"result\"", "]", "[", "\"api_path\"", "]", "song_url", "=", "base_url", "+", "song_api_path", "response", "=", "requests", ".", "get", "(", "song_url", ",", "headers", "=", "headers", ")", "json", "=", "response", ".", "json", "(", ")", "path", "=", "json", "[", "\"response\"", "]", "[", "\"song\"", "]", "[", "\"path\"", "]", "page_url", "=", "\"http://genius.com\"", "+", "path", "page", "=", "requests", ".", "get", "(", "page_url", ")", "soup", "=", "BeautifulSoup", "(", "page", ".", "text", ",", "\"html.parser\"", ")", "div", "=", "soup", ".", "find", "(", "'div'", ",", "{", "'class'", ":", "'song_body-lyrics'", "}", ")", "lyrics", "=", "div", ".", "find", "(", "'p'", ")", ".", "getText", "(", ")", "return", "lyrics" ]
Scrapes the lyrics from Genius.com
[ "Scrapes", "the", "lyrics", "from", "Genius", ".", "com" ]
python
train
xolox/python-coloredlogs
coloredlogs/demo.py
https://github.com/xolox/python-coloredlogs/blob/1cbf0c6bbee400c6ddbc43008143809934ec3e79/coloredlogs/demo.py#L29-L49
def demonstrate_colored_logging(): """Interactively demonstrate the :mod:`coloredlogs` package.""" # Determine the available logging levels and order them by numeric value. decorated_levels = [] defined_levels = coloredlogs.find_defined_levels() normalizer = coloredlogs.NameNormalizer() for name, level in defined_levels.items(): if name != 'NOTSET': item = (level, normalizer.normalize_name(name)) if item not in decorated_levels: decorated_levels.append(item) ordered_levels = sorted(decorated_levels) # Initialize colored output to the terminal, default to the most # verbose logging level but enable the user the customize it. coloredlogs.install(level=os.environ.get('COLOREDLOGS_LOG_LEVEL', ordered_levels[0][1])) # Print some examples with different timestamps. for level, name in ordered_levels: log_method = getattr(logger, name, None) if log_method: log_method("message with level %s (%i)", name, level) time.sleep(DEMO_DELAY)
[ "def", "demonstrate_colored_logging", "(", ")", ":", "# Determine the available logging levels and order them by numeric value.", "decorated_levels", "=", "[", "]", "defined_levels", "=", "coloredlogs", ".", "find_defined_levels", "(", ")", "normalizer", "=", "coloredlogs", ".", "NameNormalizer", "(", ")", "for", "name", ",", "level", "in", "defined_levels", ".", "items", "(", ")", ":", "if", "name", "!=", "'NOTSET'", ":", "item", "=", "(", "level", ",", "normalizer", ".", "normalize_name", "(", "name", ")", ")", "if", "item", "not", "in", "decorated_levels", ":", "decorated_levels", ".", "append", "(", "item", ")", "ordered_levels", "=", "sorted", "(", "decorated_levels", ")", "# Initialize colored output to the terminal, default to the most", "# verbose logging level but enable the user the customize it.", "coloredlogs", ".", "install", "(", "level", "=", "os", ".", "environ", ".", "get", "(", "'COLOREDLOGS_LOG_LEVEL'", ",", "ordered_levels", "[", "0", "]", "[", "1", "]", ")", ")", "# Print some examples with different timestamps.", "for", "level", ",", "name", "in", "ordered_levels", ":", "log_method", "=", "getattr", "(", "logger", ",", "name", ",", "None", ")", "if", "log_method", ":", "log_method", "(", "\"message with level %s (%i)\"", ",", "name", ",", "level", ")", "time", ".", "sleep", "(", "DEMO_DELAY", ")" ]
Interactively demonstrate the :mod:`coloredlogs` package.
[ "Interactively", "demonstrate", "the", ":", "mod", ":", "coloredlogs", "package", "." ]
python
train
inveniosoftware/invenio-i18n
invenio_i18n/ext.py
https://github.com/inveniosoftware/invenio-i18n/blob/3119bb7db3369b8ae0aecce5d7d7c79f807e2763/invenio_i18n/ext.py#L32-L46
def get_lazystring_encoder(app): """Return a JSONEncoder for handling lazy strings from Babel. Installed on Flask application by default by :class:`InvenioI18N`. """ from speaklater import _LazyString class JSONEncoder(app.json_encoder): def default(self, o): if isinstance(o, _LazyString): return text_type(o) return super(JSONEncoder, self).default(o) return JSONEncoder
[ "def", "get_lazystring_encoder", "(", "app", ")", ":", "from", "speaklater", "import", "_LazyString", "class", "JSONEncoder", "(", "app", ".", "json_encoder", ")", ":", "def", "default", "(", "self", ",", "o", ")", ":", "if", "isinstance", "(", "o", ",", "_LazyString", ")", ":", "return", "text_type", "(", "o", ")", "return", "super", "(", "JSONEncoder", ",", "self", ")", ".", "default", "(", "o", ")", "return", "JSONEncoder" ]
Return a JSONEncoder for handling lazy strings from Babel. Installed on Flask application by default by :class:`InvenioI18N`.
[ "Return", "a", "JSONEncoder", "for", "handling", "lazy", "strings", "from", "Babel", "." ]
python
train
twisted/mantissa
xmantissa/publicweb.py
https://github.com/twisted/mantissa/blob/53e5502aba23ce99be78b27f923a276593033fe8/xmantissa/publicweb.py#L841-L858
def fromRequest(cls, store, request): """ Return a L{LoginPage} which will present the user with a login prompt. @type store: L{Store} @param store: A I{site} store. @type request: L{nevow.inevow.IRequest} @param request: The HTTP request which encountered a need for authentication. This will be effectively re-issued after login succeeds. @return: A L{LoginPage} and the remaining segments to be processed. """ location = URL.fromRequest(request) segments = location.pathList(unquote=True, copy=False) segments.append(request.postpath[0]) return cls(store, segments, request.args)
[ "def", "fromRequest", "(", "cls", ",", "store", ",", "request", ")", ":", "location", "=", "URL", ".", "fromRequest", "(", "request", ")", "segments", "=", "location", ".", "pathList", "(", "unquote", "=", "True", ",", "copy", "=", "False", ")", "segments", ".", "append", "(", "request", ".", "postpath", "[", "0", "]", ")", "return", "cls", "(", "store", ",", "segments", ",", "request", ".", "args", ")" ]
Return a L{LoginPage} which will present the user with a login prompt. @type store: L{Store} @param store: A I{site} store. @type request: L{nevow.inevow.IRequest} @param request: The HTTP request which encountered a need for authentication. This will be effectively re-issued after login succeeds. @return: A L{LoginPage} and the remaining segments to be processed.
[ "Return", "a", "L", "{", "LoginPage", "}", "which", "will", "present", "the", "user", "with", "a", "login", "prompt", "." ]
python
train
tamasgal/km3pipe
km3pipe/math.py
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/math.py#L494-L536
def intersect_3d(p1, p2): """Find the closes point for a given set of lines in 3D. Parameters ---------- p1 : (M, N) array_like Starting points p2 : (M, N) array_like End points. Returns ------- x : (N,) ndarray Least-squares solution - the closest point of the intersections. Raises ------ numpy.linalg.LinAlgError If computation does not converge. """ v = p2 - p1 normed_v = unit_vector(v) nx = normed_v[:, 0] ny = normed_v[:, 1] nz = normed_v[:, 2] xx = np.sum(nx**2 - 1) yy = np.sum(ny**2 - 1) zz = np.sum(nz**2 - 1) xy = np.sum(nx * ny) xz = np.sum(nx * nz) yz = np.sum(ny * nz) M = np.array([(xx, xy, xz), (xy, yy, yz), (xz, yz, zz)]) x = np.sum( p1[:, 0] * (nx**2 - 1) + p1[:, 1] * (nx * ny) + p1[:, 2] * (nx * nz) ) y = np.sum( p1[:, 0] * (nx * ny) + p1[:, 1] * (ny * ny - 1) + p1[:, 2] * (ny * nz) ) z = np.sum( p1[:, 0] * (nx * nz) + p1[:, 1] * (ny * nz) + p1[:, 2] * (nz**2 - 1) ) return np.linalg.lstsq(M, np.array((x, y, z)), rcond=None)[0]
[ "def", "intersect_3d", "(", "p1", ",", "p2", ")", ":", "v", "=", "p2", "-", "p1", "normed_v", "=", "unit_vector", "(", "v", ")", "nx", "=", "normed_v", "[", ":", ",", "0", "]", "ny", "=", "normed_v", "[", ":", ",", "1", "]", "nz", "=", "normed_v", "[", ":", ",", "2", "]", "xx", "=", "np", ".", "sum", "(", "nx", "**", "2", "-", "1", ")", "yy", "=", "np", ".", "sum", "(", "ny", "**", "2", "-", "1", ")", "zz", "=", "np", ".", "sum", "(", "nz", "**", "2", "-", "1", ")", "xy", "=", "np", ".", "sum", "(", "nx", "*", "ny", ")", "xz", "=", "np", ".", "sum", "(", "nx", "*", "nz", ")", "yz", "=", "np", ".", "sum", "(", "ny", "*", "nz", ")", "M", "=", "np", ".", "array", "(", "[", "(", "xx", ",", "xy", ",", "xz", ")", ",", "(", "xy", ",", "yy", ",", "yz", ")", ",", "(", "xz", ",", "yz", ",", "zz", ")", "]", ")", "x", "=", "np", ".", "sum", "(", "p1", "[", ":", ",", "0", "]", "*", "(", "nx", "**", "2", "-", "1", ")", "+", "p1", "[", ":", ",", "1", "]", "*", "(", "nx", "*", "ny", ")", "+", "p1", "[", ":", ",", "2", "]", "*", "(", "nx", "*", "nz", ")", ")", "y", "=", "np", ".", "sum", "(", "p1", "[", ":", ",", "0", "]", "*", "(", "nx", "*", "ny", ")", "+", "p1", "[", ":", ",", "1", "]", "*", "(", "ny", "*", "ny", "-", "1", ")", "+", "p1", "[", ":", ",", "2", "]", "*", "(", "ny", "*", "nz", ")", ")", "z", "=", "np", ".", "sum", "(", "p1", "[", ":", ",", "0", "]", "*", "(", "nx", "*", "nz", ")", "+", "p1", "[", ":", ",", "1", "]", "*", "(", "ny", "*", "nz", ")", "+", "p1", "[", ":", ",", "2", "]", "*", "(", "nz", "**", "2", "-", "1", ")", ")", "return", "np", ".", "linalg", ".", "lstsq", "(", "M", ",", "np", ".", "array", "(", "(", "x", ",", "y", ",", "z", ")", ")", ",", "rcond", "=", "None", ")", "[", "0", "]" ]
Find the closes point for a given set of lines in 3D. Parameters ---------- p1 : (M, N) array_like Starting points p2 : (M, N) array_like End points. Returns ------- x : (N,) ndarray Least-squares solution - the closest point of the intersections. Raises ------ numpy.linalg.LinAlgError If computation does not converge.
[ "Find", "the", "closes", "point", "for", "a", "given", "set", "of", "lines", "in", "3D", "." ]
python
train
hfaran/Tornado-JSON
tornado_json/schema.py
https://github.com/hfaran/Tornado-JSON/blob/8d8b35ff77f13cb3ab1a606bd2083b26cc69c54f/tornado_json/schema.py#L82-L201
def validate(input_schema=None, output_schema=None, input_example=None, output_example=None, validator_cls=None, format_checker=None, on_empty_404=False, use_defaults=False): """Parameterized decorator for schema validation :type validator_cls: IValidator class :type format_checker: jsonschema.FormatChecker or None :type on_empty_404: bool :param on_empty_404: If this is set, and the result from the decorated method is a falsy value, a 404 will be raised. :type use_defaults: bool :param use_defaults: If this is set, will put 'default' keys from schema to self.body (If schema type is object). Example: { 'published': {'type': 'bool', 'default': False} } self.body will contains 'published' key with value False if no one comes from request, also works with nested schemas. """ @container def _validate(rh_method): """Decorator for RequestHandler schema validation This decorator: - Validates request body against input schema of the method - Calls the ``rh_method`` and gets output from it - Validates output against output schema of the method - Calls ``JSendMixin.success`` to write the validated output :type rh_method: function :param rh_method: The RequestHandler method to be decorated :returns: The decorated method :raises ValidationError: If input is invalid as per the schema or malformed :raises TypeError: If the output is invalid as per the schema or malformed :raises APIError: If the output is a falsy value and on_empty_404 is True, an HTTP 404 error is returned """ @wraps(rh_method) @tornado.gen.coroutine def _wrapper(self, *args, **kwargs): # In case the specified input_schema is ``None``, we # don't json.loads the input, but just set it to ``None`` # instead. if input_schema is not None: # Attempt to json.loads the input try: # TODO: Assuming UTF-8 encoding for all requests, # find a nice way of determining this from charset # in headers if provided encoding = "UTF-8" input_ = json.loads(self.request.body.decode(encoding)) except ValueError as e: raise jsonschema.ValidationError( "Input is malformed; could not decode JSON object." ) if use_defaults: input_ = input_schema_clean(input_, input_schema) # Validate the received input jsonschema.validate( input_, input_schema, cls=validator_cls, format_checker=format_checker ) else: input_ = None # A json.loads'd version of self.request["body"] is now available # as self.body setattr(self, "body", input_) # Call the requesthandler method output = rh_method(self, *args, **kwargs) # If the rh_method returned a Future a la `raise Return(value)` # we grab the output. if is_future(output): output = yield output # if output is empty, auto return the error 404. if not output and on_empty_404: raise APIError(404, "Resource not found.") if output_schema is not None: # We wrap output in an object before validating in case # output is a string (and ergo not a validatable JSON object) try: jsonschema.validate( {"result": output}, { "type": "object", "properties": { "result": output_schema }, "required": ["result"] } ) except jsonschema.ValidationError as e: # We essentially re-raise this as a TypeError because # we don't want this error data passed back to the client # because it's a fault on our end. The client should # only see a 500 - Internal Server Error. raise TypeError(str(e)) # If no ValidationError has been raised up until here, we write # back output self.success(output) setattr(_wrapper, "input_schema", input_schema) setattr(_wrapper, "output_schema", output_schema) setattr(_wrapper, "input_example", input_example) setattr(_wrapper, "output_example", output_example) return _wrapper return _validate
[ "def", "validate", "(", "input_schema", "=", "None", ",", "output_schema", "=", "None", ",", "input_example", "=", "None", ",", "output_example", "=", "None", ",", "validator_cls", "=", "None", ",", "format_checker", "=", "None", ",", "on_empty_404", "=", "False", ",", "use_defaults", "=", "False", ")", ":", "@", "container", "def", "_validate", "(", "rh_method", ")", ":", "\"\"\"Decorator for RequestHandler schema validation\n\n This decorator:\n\n - Validates request body against input schema of the method\n - Calls the ``rh_method`` and gets output from it\n - Validates output against output schema of the method\n - Calls ``JSendMixin.success`` to write the validated output\n\n :type rh_method: function\n :param rh_method: The RequestHandler method to be decorated\n :returns: The decorated method\n :raises ValidationError: If input is invalid as per the schema\n or malformed\n :raises TypeError: If the output is invalid as per the schema\n or malformed\n :raises APIError: If the output is a falsy value and\n on_empty_404 is True, an HTTP 404 error is returned\n \"\"\"", "@", "wraps", "(", "rh_method", ")", "@", "tornado", ".", "gen", ".", "coroutine", "def", "_wrapper", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# In case the specified input_schema is ``None``, we", "# don't json.loads the input, but just set it to ``None``", "# instead.", "if", "input_schema", "is", "not", "None", ":", "# Attempt to json.loads the input", "try", ":", "# TODO: Assuming UTF-8 encoding for all requests,", "# find a nice way of determining this from charset", "# in headers if provided", "encoding", "=", "\"UTF-8\"", "input_", "=", "json", ".", "loads", "(", "self", ".", "request", ".", "body", ".", "decode", "(", "encoding", ")", ")", "except", "ValueError", "as", "e", ":", "raise", "jsonschema", ".", "ValidationError", "(", "\"Input is malformed; could not decode JSON object.\"", ")", "if", "use_defaults", ":", "input_", "=", "input_schema_clean", "(", "input_", ",", "input_schema", ")", "# Validate the received input", "jsonschema", ".", "validate", "(", "input_", ",", "input_schema", ",", "cls", "=", "validator_cls", ",", "format_checker", "=", "format_checker", ")", "else", ":", "input_", "=", "None", "# A json.loads'd version of self.request[\"body\"] is now available", "# as self.body", "setattr", "(", "self", ",", "\"body\"", ",", "input_", ")", "# Call the requesthandler method", "output", "=", "rh_method", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", "# If the rh_method returned a Future a la `raise Return(value)`", "# we grab the output.", "if", "is_future", "(", "output", ")", ":", "output", "=", "yield", "output", "# if output is empty, auto return the error 404.", "if", "not", "output", "and", "on_empty_404", ":", "raise", "APIError", "(", "404", ",", "\"Resource not found.\"", ")", "if", "output_schema", "is", "not", "None", ":", "# We wrap output in an object before validating in case", "# output is a string (and ergo not a validatable JSON object)", "try", ":", "jsonschema", ".", "validate", "(", "{", "\"result\"", ":", "output", "}", ",", "{", "\"type\"", ":", "\"object\"", ",", "\"properties\"", ":", "{", "\"result\"", ":", "output_schema", "}", ",", "\"required\"", ":", "[", "\"result\"", "]", "}", ")", "except", "jsonschema", ".", "ValidationError", "as", "e", ":", "# We essentially re-raise this as a TypeError because", "# we don't want this error data passed back to the client", "# because it's a fault on our end. The client should", "# only see a 500 - Internal Server Error.", "raise", "TypeError", "(", "str", "(", "e", ")", ")", "# If no ValidationError has been raised up until here, we write", "# back output", "self", ".", "success", "(", "output", ")", "setattr", "(", "_wrapper", ",", "\"input_schema\"", ",", "input_schema", ")", "setattr", "(", "_wrapper", ",", "\"output_schema\"", ",", "output_schema", ")", "setattr", "(", "_wrapper", ",", "\"input_example\"", ",", "input_example", ")", "setattr", "(", "_wrapper", ",", "\"output_example\"", ",", "output_example", ")", "return", "_wrapper", "return", "_validate" ]
Parameterized decorator for schema validation :type validator_cls: IValidator class :type format_checker: jsonschema.FormatChecker or None :type on_empty_404: bool :param on_empty_404: If this is set, and the result from the decorated method is a falsy value, a 404 will be raised. :type use_defaults: bool :param use_defaults: If this is set, will put 'default' keys from schema to self.body (If schema type is object). Example: { 'published': {'type': 'bool', 'default': False} } self.body will contains 'published' key with value False if no one comes from request, also works with nested schemas.
[ "Parameterized", "decorator", "for", "schema", "validation" ]
python
train
pjuren/pyokit
src/pyokit/interface/cli.py
https://github.com/pjuren/pyokit/blob/fddae123b5d817daa39496183f19c000d9c3791f/src/pyokit/interface/cli.py#L231-L242
def getOption(self, name): """ Get the the Option object associated with the given name. :param name: the name of the option to retrieve; can be short or long name. :raise InterfaceException: if the named option doesn't exist. """ name = name.strip() for o in self.options: if o.short == name or o.long == name: return o raise InterfaceException("No such option: " + name)
[ "def", "getOption", "(", "self", ",", "name", ")", ":", "name", "=", "name", ".", "strip", "(", ")", "for", "o", "in", "self", ".", "options", ":", "if", "o", ".", "short", "==", "name", "or", "o", ".", "long", "==", "name", ":", "return", "o", "raise", "InterfaceException", "(", "\"No such option: \"", "+", "name", ")" ]
Get the the Option object associated with the given name. :param name: the name of the option to retrieve; can be short or long name. :raise InterfaceException: if the named option doesn't exist.
[ "Get", "the", "the", "Option", "object", "associated", "with", "the", "given", "name", "." ]
python
train
MaT1g3R/option
option/result.py
https://github.com/MaT1g3R/option/blob/37c954e6e74273d48649b3236bc881a1286107d6/option/result.py#L255-L276
def unwrap_or(self, optb: T) -> T: """ Returns the success value in the :class:`Result` or ``optb``. Args: optb: The default return value. Returns: The success value in the :class:`Result` if it is a :meth:`Result.Ok` value, otherwise ``optb``. Notes: If you wish to use a result of a function call as the default, it is recommnded to use :meth:`unwrap_or_else` instead. Examples: >>> Ok(1).unwrap_or(2) 1 >>> Err(1).unwrap_or(2) 2 """ return cast(T, self._val) if self._is_ok else optb
[ "def", "unwrap_or", "(", "self", ",", "optb", ":", "T", ")", "->", "T", ":", "return", "cast", "(", "T", ",", "self", ".", "_val", ")", "if", "self", ".", "_is_ok", "else", "optb" ]
Returns the success value in the :class:`Result` or ``optb``. Args: optb: The default return value. Returns: The success value in the :class:`Result` if it is a :meth:`Result.Ok` value, otherwise ``optb``. Notes: If you wish to use a result of a function call as the default, it is recommnded to use :meth:`unwrap_or_else` instead. Examples: >>> Ok(1).unwrap_or(2) 1 >>> Err(1).unwrap_or(2) 2
[ "Returns", "the", "success", "value", "in", "the", ":", "class", ":", "Result", "or", "optb", "." ]
python
train
ipazc/mtcnn
mtcnn/mtcnn.py
https://github.com/ipazc/mtcnn/blob/17029fe453a435f50c472ae2fd1c493341b5ede3/mtcnn/mtcnn.py#L549-L613
def __stage3(self, img, total_boxes, stage_status: StageStatus): """ Third stage of the MTCNN. :param img: :param total_boxes: :param stage_status: :return: """ num_boxes = total_boxes.shape[0] if num_boxes == 0: return total_boxes, np.empty(shape=(0,)) total_boxes = np.fix(total_boxes).astype(np.int32) status = StageStatus(self.__pad(total_boxes.copy(), stage_status.width, stage_status.height), width=stage_status.width, height=stage_status.height) tempimg = np.zeros((48, 48, 3, num_boxes)) for k in range(0, num_boxes): tmp = np.zeros((int(status.tmph[k]), int(status.tmpw[k]), 3)) tmp[status.dy[k] - 1:status.edy[k], status.dx[k] - 1:status.edx[k], :] = \ img[status.y[k] - 1:status.ey[k], status.x[k] - 1:status.ex[k], :] if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: tempimg[:, :, :, k] = cv2.resize(tmp, (48, 48), interpolation=cv2.INTER_AREA) else: return np.empty(shape=(0,)), np.empty(shape=(0,)) tempimg = (tempimg - 127.5) * 0.0078125 tempimg1 = np.transpose(tempimg, (3, 1, 0, 2)) out = self.__onet.feed(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) out2 = np.transpose(out[2]) score = out2[1, :] points = out1 ipass = np.where(score > self.__steps_threshold[2]) points = points[:, ipass[0]] total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)]) mv = out0[:, ipass[0]] w = total_boxes[:, 2] - total_boxes[:, 0] + 1 h = total_boxes[:, 3] - total_boxes[:, 1] + 1 points[0:5, :] = np.tile(w, (5, 1)) * points[0:5, :] + np.tile(total_boxes[:, 0], (5, 1)) - 1 points[5:10, :] = np.tile(h, (5, 1)) * points[5:10, :] + np.tile(total_boxes[:, 1], (5, 1)) - 1 if total_boxes.shape[0] > 0: total_boxes = self.__bbreg(total_boxes.copy(), np.transpose(mv)) pick = self.__nms(total_boxes.copy(), 0.7, 'Min') total_boxes = total_boxes[pick, :] points = points[:, pick] return total_boxes, points
[ "def", "__stage3", "(", "self", ",", "img", ",", "total_boxes", ",", "stage_status", ":", "StageStatus", ")", ":", "num_boxes", "=", "total_boxes", ".", "shape", "[", "0", "]", "if", "num_boxes", "==", "0", ":", "return", "total_boxes", ",", "np", ".", "empty", "(", "shape", "=", "(", "0", ",", ")", ")", "total_boxes", "=", "np", ".", "fix", "(", "total_boxes", ")", ".", "astype", "(", "np", ".", "int32", ")", "status", "=", "StageStatus", "(", "self", ".", "__pad", "(", "total_boxes", ".", "copy", "(", ")", ",", "stage_status", ".", "width", ",", "stage_status", ".", "height", ")", ",", "width", "=", "stage_status", ".", "width", ",", "height", "=", "stage_status", ".", "height", ")", "tempimg", "=", "np", ".", "zeros", "(", "(", "48", ",", "48", ",", "3", ",", "num_boxes", ")", ")", "for", "k", "in", "range", "(", "0", ",", "num_boxes", ")", ":", "tmp", "=", "np", ".", "zeros", "(", "(", "int", "(", "status", ".", "tmph", "[", "k", "]", ")", ",", "int", "(", "status", ".", "tmpw", "[", "k", "]", ")", ",", "3", ")", ")", "tmp", "[", "status", ".", "dy", "[", "k", "]", "-", "1", ":", "status", ".", "edy", "[", "k", "]", ",", "status", ".", "dx", "[", "k", "]", "-", "1", ":", "status", ".", "edx", "[", "k", "]", ",", ":", "]", "=", "img", "[", "status", ".", "y", "[", "k", "]", "-", "1", ":", "status", ".", "ey", "[", "k", "]", ",", "status", ".", "x", "[", "k", "]", "-", "1", ":", "status", ".", "ex", "[", "k", "]", ",", ":", "]", "if", "tmp", ".", "shape", "[", "0", "]", ">", "0", "and", "tmp", ".", "shape", "[", "1", "]", ">", "0", "or", "tmp", ".", "shape", "[", "0", "]", "==", "0", "and", "tmp", ".", "shape", "[", "1", "]", "==", "0", ":", "tempimg", "[", ":", ",", ":", ",", ":", ",", "k", "]", "=", "cv2", ".", "resize", "(", "tmp", ",", "(", "48", ",", "48", ")", ",", "interpolation", "=", "cv2", ".", "INTER_AREA", ")", "else", ":", "return", "np", ".", "empty", "(", "shape", "=", "(", "0", ",", ")", ")", ",", "np", ".", "empty", "(", "shape", "=", "(", "0", ",", ")", ")", "tempimg", "=", "(", "tempimg", "-", "127.5", ")", "*", "0.0078125", "tempimg1", "=", "np", ".", "transpose", "(", "tempimg", ",", "(", "3", ",", "1", ",", "0", ",", "2", ")", ")", "out", "=", "self", ".", "__onet", ".", "feed", "(", "tempimg1", ")", "out0", "=", "np", ".", "transpose", "(", "out", "[", "0", "]", ")", "out1", "=", "np", ".", "transpose", "(", "out", "[", "1", "]", ")", "out2", "=", "np", ".", "transpose", "(", "out", "[", "2", "]", ")", "score", "=", "out2", "[", "1", ",", ":", "]", "points", "=", "out1", "ipass", "=", "np", ".", "where", "(", "score", ">", "self", ".", "__steps_threshold", "[", "2", "]", ")", "points", "=", "points", "[", ":", ",", "ipass", "[", "0", "]", "]", "total_boxes", "=", "np", ".", "hstack", "(", "[", "total_boxes", "[", "ipass", "[", "0", "]", ",", "0", ":", "4", "]", ".", "copy", "(", ")", ",", "np", ".", "expand_dims", "(", "score", "[", "ipass", "]", ".", "copy", "(", ")", ",", "1", ")", "]", ")", "mv", "=", "out0", "[", ":", ",", "ipass", "[", "0", "]", "]", "w", "=", "total_boxes", "[", ":", ",", "2", "]", "-", "total_boxes", "[", ":", ",", "0", "]", "+", "1", "h", "=", "total_boxes", "[", ":", ",", "3", "]", "-", "total_boxes", "[", ":", ",", "1", "]", "+", "1", "points", "[", "0", ":", "5", ",", ":", "]", "=", "np", ".", "tile", "(", "w", ",", "(", "5", ",", "1", ")", ")", "*", "points", "[", "0", ":", "5", ",", ":", "]", "+", "np", ".", "tile", "(", "total_boxes", "[", ":", ",", "0", "]", ",", "(", "5", ",", "1", ")", ")", "-", "1", "points", "[", "5", ":", "10", ",", ":", "]", "=", "np", ".", "tile", "(", "h", ",", "(", "5", ",", "1", ")", ")", "*", "points", "[", "5", ":", "10", ",", ":", "]", "+", "np", ".", "tile", "(", "total_boxes", "[", ":", ",", "1", "]", ",", "(", "5", ",", "1", ")", ")", "-", "1", "if", "total_boxes", ".", "shape", "[", "0", "]", ">", "0", ":", "total_boxes", "=", "self", ".", "__bbreg", "(", "total_boxes", ".", "copy", "(", ")", ",", "np", ".", "transpose", "(", "mv", ")", ")", "pick", "=", "self", ".", "__nms", "(", "total_boxes", ".", "copy", "(", ")", ",", "0.7", ",", "'Min'", ")", "total_boxes", "=", "total_boxes", "[", "pick", ",", ":", "]", "points", "=", "points", "[", ":", ",", "pick", "]", "return", "total_boxes", ",", "points" ]
Third stage of the MTCNN. :param img: :param total_boxes: :param stage_status: :return:
[ "Third", "stage", "of", "the", "MTCNN", "." ]
python
train
NaPs/Kolekto
kolekto/profiles/__init__.py
https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/profiles/__init__.py#L19-L32
def load_commands(self, parser): """ Load commands of this profile. :param parser: argparse parser on which to add commands """ entrypoints = self._get_entrypoints() already_loaded = set() for entrypoint in entrypoints: if entrypoint.name not in already_loaded: command_class = entrypoint.load() command_class(entrypoint.name, self, parser).prepare() already_loaded.add(entrypoint.name)
[ "def", "load_commands", "(", "self", ",", "parser", ")", ":", "entrypoints", "=", "self", ".", "_get_entrypoints", "(", ")", "already_loaded", "=", "set", "(", ")", "for", "entrypoint", "in", "entrypoints", ":", "if", "entrypoint", ".", "name", "not", "in", "already_loaded", ":", "command_class", "=", "entrypoint", ".", "load", "(", ")", "command_class", "(", "entrypoint", ".", "name", ",", "self", ",", "parser", ")", ".", "prepare", "(", ")", "already_loaded", ".", "add", "(", "entrypoint", ".", "name", ")" ]
Load commands of this profile. :param parser: argparse parser on which to add commands
[ "Load", "commands", "of", "this", "profile", "." ]
python
train
google/grr
grr/core/grr_response_core/lib/rdfvalues/paths.py
https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/core/grr_response_core/lib/rdfvalues/paths.py#L281-L284
def Validate(self): """GlobExpression is valid.""" if len(self.RECURSION_REGEX.findall(self._value)) > 1: raise ValueError("Only one ** is permitted per path: %s." % self._value)
[ "def", "Validate", "(", "self", ")", ":", "if", "len", "(", "self", ".", "RECURSION_REGEX", ".", "findall", "(", "self", ".", "_value", ")", ")", ">", "1", ":", "raise", "ValueError", "(", "\"Only one ** is permitted per path: %s.\"", "%", "self", ".", "_value", ")" ]
GlobExpression is valid.
[ "GlobExpression", "is", "valid", "." ]
python
train
NiklasRosenstein-Python/nr-deprecated
nr/path.py
https://github.com/NiklasRosenstein-Python/nr-deprecated/blob/f9f8b89ea1b084841a8ab65784eaf68852686b2a/nr/path.py#L246-L254
def rmvsuffix(subject): """ Remove the suffix from *subject*. """ index = subject.rfind('.') if index > subject.replace('\\', '/').rfind('/'): subject = subject[:index] return subject
[ "def", "rmvsuffix", "(", "subject", ")", ":", "index", "=", "subject", ".", "rfind", "(", "'.'", ")", "if", "index", ">", "subject", ".", "replace", "(", "'\\\\'", ",", "'/'", ")", ".", "rfind", "(", "'/'", ")", ":", "subject", "=", "subject", "[", ":", "index", "]", "return", "subject" ]
Remove the suffix from *subject*.
[ "Remove", "the", "suffix", "from", "*", "subject", "*", "." ]
python
train
tanghaibao/jcvi
jcvi/apps/biomart.py
https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/apps/biomart.py#L297-L324
def bed(args): """ %prog bed genes.ids Get gene bed from phytozome. `genes.ids` contains the list of gene you want to pull from Phytozome. Write output to .bed file. """ p = OptionParser(bed.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) idsfile, = args ids = set(x.strip() for x in open(idsfile)) data = get_bed_from_phytozome(list(ids)) pf = idsfile.rsplit(".", 1)[0] bedfile = pf + ".bed" fw = open(bedfile, "w") for i, row in enumerate(data): row = row.strip() if row == "": continue print(row, file=fw) logging.debug("A total of {0} records written to `{1}`.".format(i + 1, bedfile))
[ "def", "bed", "(", "args", ")", ":", "p", "=", "OptionParser", "(", "bed", ".", "__doc__", ")", "opts", ",", "args", "=", "p", ".", "parse_args", "(", "args", ")", "if", "len", "(", "args", ")", "!=", "1", ":", "sys", ".", "exit", "(", "not", "p", ".", "print_help", "(", ")", ")", "idsfile", ",", "=", "args", "ids", "=", "set", "(", "x", ".", "strip", "(", ")", "for", "x", "in", "open", "(", "idsfile", ")", ")", "data", "=", "get_bed_from_phytozome", "(", "list", "(", "ids", ")", ")", "pf", "=", "idsfile", ".", "rsplit", "(", "\".\"", ",", "1", ")", "[", "0", "]", "bedfile", "=", "pf", "+", "\".bed\"", "fw", "=", "open", "(", "bedfile", ",", "\"w\"", ")", "for", "i", ",", "row", "in", "enumerate", "(", "data", ")", ":", "row", "=", "row", ".", "strip", "(", ")", "if", "row", "==", "\"\"", ":", "continue", "print", "(", "row", ",", "file", "=", "fw", ")", "logging", ".", "debug", "(", "\"A total of {0} records written to `{1}`.\"", ".", "format", "(", "i", "+", "1", ",", "bedfile", ")", ")" ]
%prog bed genes.ids Get gene bed from phytozome. `genes.ids` contains the list of gene you want to pull from Phytozome. Write output to .bed file.
[ "%prog", "bed", "genes", ".", "ids" ]
python
train
fabioz/PyDev.Debugger
pydevd_attach_to_process/winappdbg/interactive.py
https://github.com/fabioz/PyDev.Debugger/blob/ed9c4307662a5593b8a7f1f3389ecd0e79b8c503/pydevd_attach_to_process/winappdbg/interactive.py#L2012-L2050
def do_register(self, arg): """ [~thread] r - print(the value of all registers [~thread] r <register> - print(the value of a register [~thread] r <register>=<value> - change the value of a register [~thread] register - print(the value of all registers [~thread] register <register> - print(the value of a register [~thread] register <register>=<value> - change the value of a register """ arg = arg.strip() if not arg: self.print_current_location() else: equ = arg.find('=') if equ >= 0: register = arg[:equ].strip() value = arg[equ+1:].strip() if not value: value = '0' self.change_register(register, value) else: value = self.input_register(arg) if value is None: raise CmdError("unknown register: %s" % arg) try: label = None thread = self.get_thread_from_prefix() process = thread.get_process() module = process.get_module_at_address(value) if module: label = module.get_label_at_address(value) except RuntimeError: label = None reg = arg.upper() val = HexDump.address(value) if label: print("%s: %s (%s)" % (reg, val, label)) else: print("%s: %s" % (reg, val))
[ "def", "do_register", "(", "self", ",", "arg", ")", ":", "arg", "=", "arg", ".", "strip", "(", ")", "if", "not", "arg", ":", "self", ".", "print_current_location", "(", ")", "else", ":", "equ", "=", "arg", ".", "find", "(", "'='", ")", "if", "equ", ">=", "0", ":", "register", "=", "arg", "[", ":", "equ", "]", ".", "strip", "(", ")", "value", "=", "arg", "[", "equ", "+", "1", ":", "]", ".", "strip", "(", ")", "if", "not", "value", ":", "value", "=", "'0'", "self", ".", "change_register", "(", "register", ",", "value", ")", "else", ":", "value", "=", "self", ".", "input_register", "(", "arg", ")", "if", "value", "is", "None", ":", "raise", "CmdError", "(", "\"unknown register: %s\"", "%", "arg", ")", "try", ":", "label", "=", "None", "thread", "=", "self", ".", "get_thread_from_prefix", "(", ")", "process", "=", "thread", ".", "get_process", "(", ")", "module", "=", "process", ".", "get_module_at_address", "(", "value", ")", "if", "module", ":", "label", "=", "module", ".", "get_label_at_address", "(", "value", ")", "except", "RuntimeError", ":", "label", "=", "None", "reg", "=", "arg", ".", "upper", "(", ")", "val", "=", "HexDump", ".", "address", "(", "value", ")", "if", "label", ":", "print", "(", "\"%s: %s (%s)\"", "%", "(", "reg", ",", "val", ",", "label", ")", ")", "else", ":", "print", "(", "\"%s: %s\"", "%", "(", "reg", ",", "val", ")", ")" ]
[~thread] r - print(the value of all registers [~thread] r <register> - print(the value of a register [~thread] r <register>=<value> - change the value of a register [~thread] register - print(the value of all registers [~thread] register <register> - print(the value of a register [~thread] register <register>=<value> - change the value of a register
[ "[", "~thread", "]", "r", "-", "print", "(", "the", "value", "of", "all", "registers", "[", "~thread", "]", "r", "<register", ">", "-", "print", "(", "the", "value", "of", "a", "register", "[", "~thread", "]", "r", "<register", ">", "=", "<value", ">", "-", "change", "the", "value", "of", "a", "register", "[", "~thread", "]", "register", "-", "print", "(", "the", "value", "of", "all", "registers", "[", "~thread", "]", "register", "<register", ">", "-", "print", "(", "the", "value", "of", "a", "register", "[", "~thread", "]", "register", "<register", ">", "=", "<value", ">", "-", "change", "the", "value", "of", "a", "register" ]
python
train
sbuss/pypercube
pypercube/metric.py
https://github.com/sbuss/pypercube/blob/e9d2cca9c004b8bad6d1e0b68b080f887a186a22/pypercube/metric.py#L25-L48
def from_json(cls, json_obj): """Build a MetricResponse from JSON. :param json_obj: JSON data representing a Cube Metric. :type json_obj: `String` or `json` :throws: `InvalidMetricError` when any of {type,time,data} fields are not present in json_obj. """ if isinstance(json_obj, str): json_obj = json.loads(json_obj) time = None value = None if cls.TIME_FIELD_NAME in json_obj: time = json_obj[cls.TIME_FIELD_NAME] else: raise InvalidMetricError("{field} must be present!".format( field=cls.TIME_FIELD_NAME)) if cls.VALUE_FIELD_NAME in json_obj: value = json_obj[cls.VALUE_FIELD_NAME] return cls(time, value)
[ "def", "from_json", "(", "cls", ",", "json_obj", ")", ":", "if", "isinstance", "(", "json_obj", ",", "str", ")", ":", "json_obj", "=", "json", ".", "loads", "(", "json_obj", ")", "time", "=", "None", "value", "=", "None", "if", "cls", ".", "TIME_FIELD_NAME", "in", "json_obj", ":", "time", "=", "json_obj", "[", "cls", ".", "TIME_FIELD_NAME", "]", "else", ":", "raise", "InvalidMetricError", "(", "\"{field} must be present!\"", ".", "format", "(", "field", "=", "cls", ".", "TIME_FIELD_NAME", ")", ")", "if", "cls", ".", "VALUE_FIELD_NAME", "in", "json_obj", ":", "value", "=", "json_obj", "[", "cls", ".", "VALUE_FIELD_NAME", "]", "return", "cls", "(", "time", ",", "value", ")" ]
Build a MetricResponse from JSON. :param json_obj: JSON data representing a Cube Metric. :type json_obj: `String` or `json` :throws: `InvalidMetricError` when any of {type,time,data} fields are not present in json_obj.
[ "Build", "a", "MetricResponse", "from", "JSON", "." ]
python
train
HttpRunner/HttpRunner
httprunner/client.py
https://github.com/HttpRunner/HttpRunner/blob/f259551bf9c8ba905eae5c1afcf2efea20ae0871/httprunner/client.py#L64-L126
def get_req_resp_record(self, resp_obj): """ get request and response info from Response() object. """ def log_print(req_resp_dict, r_type): msg = "\n================== {} details ==================\n".format(r_type) for key, value in req_resp_dict[r_type].items(): msg += "{:<16} : {}\n".format(key, repr(value)) logger.log_debug(msg) req_resp_dict = { "request": {}, "response": {} } # record actual request info req_resp_dict["request"]["url"] = resp_obj.request.url req_resp_dict["request"]["method"] = resp_obj.request.method req_resp_dict["request"]["headers"] = dict(resp_obj.request.headers) request_body = resp_obj.request.body if request_body: request_content_type = lower_dict_keys( req_resp_dict["request"]["headers"] ).get("content-type") if request_content_type and "multipart/form-data" in request_content_type: # upload file type req_resp_dict["request"]["body"] = "upload file stream (OMITTED)" else: req_resp_dict["request"]["body"] = request_body # log request details in debug mode log_print(req_resp_dict, "request") # record response info req_resp_dict["response"]["ok"] = resp_obj.ok req_resp_dict["response"]["url"] = resp_obj.url req_resp_dict["response"]["status_code"] = resp_obj.status_code req_resp_dict["response"]["reason"] = resp_obj.reason req_resp_dict["response"]["cookies"] = resp_obj.cookies or {} req_resp_dict["response"]["encoding"] = resp_obj.encoding resp_headers = dict(resp_obj.headers) req_resp_dict["response"]["headers"] = resp_headers lower_resp_headers = lower_dict_keys(resp_headers) content_type = lower_resp_headers.get("content-type", "") req_resp_dict["response"]["content_type"] = content_type if "image" in content_type: # response is image type, record bytes content only req_resp_dict["response"]["content"] = resp_obj.content else: try: # try to record json data req_resp_dict["response"]["json"] = resp_obj.json() except ValueError: # only record at most 512 text charactors resp_text = resp_obj.text req_resp_dict["response"]["text"] = omit_long_data(resp_text) # log response details in debug mode log_print(req_resp_dict, "response") return req_resp_dict
[ "def", "get_req_resp_record", "(", "self", ",", "resp_obj", ")", ":", "def", "log_print", "(", "req_resp_dict", ",", "r_type", ")", ":", "msg", "=", "\"\\n================== {} details ==================\\n\"", ".", "format", "(", "r_type", ")", "for", "key", ",", "value", "in", "req_resp_dict", "[", "r_type", "]", ".", "items", "(", ")", ":", "msg", "+=", "\"{:<16} : {}\\n\"", ".", "format", "(", "key", ",", "repr", "(", "value", ")", ")", "logger", ".", "log_debug", "(", "msg", ")", "req_resp_dict", "=", "{", "\"request\"", ":", "{", "}", ",", "\"response\"", ":", "{", "}", "}", "# record actual request info", "req_resp_dict", "[", "\"request\"", "]", "[", "\"url\"", "]", "=", "resp_obj", ".", "request", ".", "url", "req_resp_dict", "[", "\"request\"", "]", "[", "\"method\"", "]", "=", "resp_obj", ".", "request", ".", "method", "req_resp_dict", "[", "\"request\"", "]", "[", "\"headers\"", "]", "=", "dict", "(", "resp_obj", ".", "request", ".", "headers", ")", "request_body", "=", "resp_obj", ".", "request", ".", "body", "if", "request_body", ":", "request_content_type", "=", "lower_dict_keys", "(", "req_resp_dict", "[", "\"request\"", "]", "[", "\"headers\"", "]", ")", ".", "get", "(", "\"content-type\"", ")", "if", "request_content_type", "and", "\"multipart/form-data\"", "in", "request_content_type", ":", "# upload file type", "req_resp_dict", "[", "\"request\"", "]", "[", "\"body\"", "]", "=", "\"upload file stream (OMITTED)\"", "else", ":", "req_resp_dict", "[", "\"request\"", "]", "[", "\"body\"", "]", "=", "request_body", "# log request details in debug mode", "log_print", "(", "req_resp_dict", ",", "\"request\"", ")", "# record response info", "req_resp_dict", "[", "\"response\"", "]", "[", "\"ok\"", "]", "=", "resp_obj", ".", "ok", "req_resp_dict", "[", "\"response\"", "]", "[", "\"url\"", "]", "=", "resp_obj", ".", "url", "req_resp_dict", "[", "\"response\"", "]", "[", "\"status_code\"", "]", "=", "resp_obj", ".", "status_code", "req_resp_dict", "[", "\"response\"", "]", "[", "\"reason\"", "]", "=", "resp_obj", ".", "reason", "req_resp_dict", "[", "\"response\"", "]", "[", "\"cookies\"", "]", "=", "resp_obj", ".", "cookies", "or", "{", "}", "req_resp_dict", "[", "\"response\"", "]", "[", "\"encoding\"", "]", "=", "resp_obj", ".", "encoding", "resp_headers", "=", "dict", "(", "resp_obj", ".", "headers", ")", "req_resp_dict", "[", "\"response\"", "]", "[", "\"headers\"", "]", "=", "resp_headers", "lower_resp_headers", "=", "lower_dict_keys", "(", "resp_headers", ")", "content_type", "=", "lower_resp_headers", ".", "get", "(", "\"content-type\"", ",", "\"\"", ")", "req_resp_dict", "[", "\"response\"", "]", "[", "\"content_type\"", "]", "=", "content_type", "if", "\"image\"", "in", "content_type", ":", "# response is image type, record bytes content only", "req_resp_dict", "[", "\"response\"", "]", "[", "\"content\"", "]", "=", "resp_obj", ".", "content", "else", ":", "try", ":", "# try to record json data", "req_resp_dict", "[", "\"response\"", "]", "[", "\"json\"", "]", "=", "resp_obj", ".", "json", "(", ")", "except", "ValueError", ":", "# only record at most 512 text charactors", "resp_text", "=", "resp_obj", ".", "text", "req_resp_dict", "[", "\"response\"", "]", "[", "\"text\"", "]", "=", "omit_long_data", "(", "resp_text", ")", "# log response details in debug mode", "log_print", "(", "req_resp_dict", ",", "\"response\"", ")", "return", "req_resp_dict" ]
get request and response info from Response() object.
[ "get", "request", "and", "response", "info", "from", "Response", "()", "object", "." ]
python
train
RI-imaging/qpsphere
qpsphere/models/mod_rytov.py
https://github.com/RI-imaging/qpsphere/blob/3cfa0e9fb8e81be8c820abbeccd47242e7972ac1/qpsphere/models/mod_rytov.py#L108-L238
def sphere_prop_fslice_bessel(radius, sphere_index, medium_index, wavelength=550e-9, pixel_size=1e-7, grid_size=(80, 80), lD=0, approx="rytov", zeropad=5, oversample=1 ): """Compute the projection of a disc using the Fourier slice theorem and the Bessel function of the first kind of order 1. Parameters ---------- radius: float Radius of the sphere [m] sphere_index: float Refractive index of the sphere medium_index: float Refractive index of the surrounding medium wavelength: float Vacuum wavelength of the imaging light [m] pixel_size: float Pixel size [m] grid_size: tuple of floats Resulting image size in x and y [px] center: tuple of floats Center position in image coordinates [px] lD: float The axial distance [m] from the center of the sphere at which the field is computed. approx: str Which approximation to use (either "born" or "rytov") zeropad: int Zero-padding factor oversample: int Oversampling factor """ assert approx in ["born", "rytov"] assert oversample > 0 assert zeropad > 0 assert isinstance(oversample, int) assert isinstance(zeropad, int) # convert everything to pixels radius /= pixel_size wavelength /= pixel_size lD /= pixel_size # apply over-sampling and zero-padding wavelength *= oversample opad_size = np.array(grid_size) * zeropad * oversample assert (int(s) == s for s in opad_size), "grid_size must be integer type" opad_size = np.array(np.round(opad_size), dtype=int) grid_size = np.array(np.round(grid_size), dtype=int) kx = 2 * np.pi * \ np.fft.ifftshift(np.fft.fftfreq(opad_size[0])).reshape(-1, 1) ky = 2 * np.pi * \ np.fft.ifftshift(np.fft.fftfreq(opad_size[1])).reshape(1, -1) km = 2 * np.pi * medium_index / wavelength filter_klp = (kx**2 + ky**2 < km**2) kz = np.sqrt((km**2 - kx**2 - ky**2) * filter_klp) - km r = np.sqrt((kx**2 + ky**2 + kz**2) * filter_klp) / (2 * np.pi) comp_id = r != 0 F = np.zeros_like(r) F[comp_id] = spspec.spherical_jn(1, r[comp_id] * radius * np.pi * 2) \ * radius**2 / r[comp_id] * 2 # center has analytical value center_fft = np.where(np.abs(kx) + np.abs(ky) + np.abs(kz) == 0) F[center_fft] = 4 / 3 * np.pi * radius**3 # object amplitude F *= km**2 * ((sphere_index / medium_index)**2 - 1) # prefactor A M = 1. / km * np.sqrt((km**2 - kx**2 - ky**2) * filter_klp) # division factor A = -2j * km * M * np.exp(-1j * km * M * lD) # rotate phase by half a pixel so the ifft is centered in real space if grid_size[0] % 2: doffx = 0 else: doffx = .5 if grid_size[1] % 2: doffy = 0 else: doffy = .5 transl = np.exp(1j * ((doffx) * kx + (doffy) * ky)) valid = F != 0 Fconv = np.zeros((opad_size[0], opad_size[1]), dtype=complex) Fconv[valid] = F[valid] / A[valid] * transl[valid] p = np.fft.ifftn(np.fft.fftshift(Fconv)) p = np.fft.ifftshift(p) if oversample > 1: p = p[::oversample, ::oversample] if zeropad > 1: # Slice a0, a1 = np.array(np.floor(opad_size / 2), dtype=int) // oversample b0, b1 = np.array(np.floor(grid_size / 2), dtype=int) if grid_size[0] % 2 != 0: of0 = 1 a0 += 1 else: of0 = 0 if grid_size[1] % 2 != 0: of1 = 1 a1 += 1 else: of1 = 0 # remove zero-padding p = p[a0 - b0:a0 + b0 + of0, a1 - b1:a1 + b1 + of1] if approx == "born": # norm = (u0 + ub)/u0 # norm = 1 + ub/u0 return 1 + p / np.exp(1j * km * lD) elif approx == "rytov": # norm = (u0 + ur)/u0 # ur = u0 ( exp(ub/u0) -1 ) # norm = ( u0 + u0 *(exp(ub/u0)-1) )/u0 # norm = exp(ub/u0) return np.exp(p / np.exp(1j * km * lD))
[ "def", "sphere_prop_fslice_bessel", "(", "radius", ",", "sphere_index", ",", "medium_index", ",", "wavelength", "=", "550e-9", ",", "pixel_size", "=", "1e-7", ",", "grid_size", "=", "(", "80", ",", "80", ")", ",", "lD", "=", "0", ",", "approx", "=", "\"rytov\"", ",", "zeropad", "=", "5", ",", "oversample", "=", "1", ")", ":", "assert", "approx", "in", "[", "\"born\"", ",", "\"rytov\"", "]", "assert", "oversample", ">", "0", "assert", "zeropad", ">", "0", "assert", "isinstance", "(", "oversample", ",", "int", ")", "assert", "isinstance", "(", "zeropad", ",", "int", ")", "# convert everything to pixels", "radius", "/=", "pixel_size", "wavelength", "/=", "pixel_size", "lD", "/=", "pixel_size", "# apply over-sampling and zero-padding", "wavelength", "*=", "oversample", "opad_size", "=", "np", ".", "array", "(", "grid_size", ")", "*", "zeropad", "*", "oversample", "assert", "(", "int", "(", "s", ")", "==", "s", "for", "s", "in", "opad_size", ")", ",", "\"grid_size must be integer type\"", "opad_size", "=", "np", ".", "array", "(", "np", ".", "round", "(", "opad_size", ")", ",", "dtype", "=", "int", ")", "grid_size", "=", "np", ".", "array", "(", "np", ".", "round", "(", "grid_size", ")", ",", "dtype", "=", "int", ")", "kx", "=", "2", "*", "np", ".", "pi", "*", "np", ".", "fft", ".", "ifftshift", "(", "np", ".", "fft", ".", "fftfreq", "(", "opad_size", "[", "0", "]", ")", ")", ".", "reshape", "(", "-", "1", ",", "1", ")", "ky", "=", "2", "*", "np", ".", "pi", "*", "np", ".", "fft", ".", "ifftshift", "(", "np", ".", "fft", ".", "fftfreq", "(", "opad_size", "[", "1", "]", ")", ")", ".", "reshape", "(", "1", ",", "-", "1", ")", "km", "=", "2", "*", "np", ".", "pi", "*", "medium_index", "/", "wavelength", "filter_klp", "=", "(", "kx", "**", "2", "+", "ky", "**", "2", "<", "km", "**", "2", ")", "kz", "=", "np", ".", "sqrt", "(", "(", "km", "**", "2", "-", "kx", "**", "2", "-", "ky", "**", "2", ")", "*", "filter_klp", ")", "-", "km", "r", "=", "np", ".", "sqrt", "(", "(", "kx", "**", "2", "+", "ky", "**", "2", "+", "kz", "**", "2", ")", "*", "filter_klp", ")", "/", "(", "2", "*", "np", ".", "pi", ")", "comp_id", "=", "r", "!=", "0", "F", "=", "np", ".", "zeros_like", "(", "r", ")", "F", "[", "comp_id", "]", "=", "spspec", ".", "spherical_jn", "(", "1", ",", "r", "[", "comp_id", "]", "*", "radius", "*", "np", ".", "pi", "*", "2", ")", "*", "radius", "**", "2", "/", "r", "[", "comp_id", "]", "*", "2", "# center has analytical value", "center_fft", "=", "np", ".", "where", "(", "np", ".", "abs", "(", "kx", ")", "+", "np", ".", "abs", "(", "ky", ")", "+", "np", ".", "abs", "(", "kz", ")", "==", "0", ")", "F", "[", "center_fft", "]", "=", "4", "/", "3", "*", "np", ".", "pi", "*", "radius", "**", "3", "# object amplitude", "F", "*=", "km", "**", "2", "*", "(", "(", "sphere_index", "/", "medium_index", ")", "**", "2", "-", "1", ")", "# prefactor A", "M", "=", "1.", "/", "km", "*", "np", ".", "sqrt", "(", "(", "km", "**", "2", "-", "kx", "**", "2", "-", "ky", "**", "2", ")", "*", "filter_klp", ")", "# division factor", "A", "=", "-", "2j", "*", "km", "*", "M", "*", "np", ".", "exp", "(", "-", "1j", "*", "km", "*", "M", "*", "lD", ")", "# rotate phase by half a pixel so the ifft is centered in real space", "if", "grid_size", "[", "0", "]", "%", "2", ":", "doffx", "=", "0", "else", ":", "doffx", "=", ".5", "if", "grid_size", "[", "1", "]", "%", "2", ":", "doffy", "=", "0", "else", ":", "doffy", "=", ".5", "transl", "=", "np", ".", "exp", "(", "1j", "*", "(", "(", "doffx", ")", "*", "kx", "+", "(", "doffy", ")", "*", "ky", ")", ")", "valid", "=", "F", "!=", "0", "Fconv", "=", "np", ".", "zeros", "(", "(", "opad_size", "[", "0", "]", ",", "opad_size", "[", "1", "]", ")", ",", "dtype", "=", "complex", ")", "Fconv", "[", "valid", "]", "=", "F", "[", "valid", "]", "/", "A", "[", "valid", "]", "*", "transl", "[", "valid", "]", "p", "=", "np", ".", "fft", ".", "ifftn", "(", "np", ".", "fft", ".", "fftshift", "(", "Fconv", ")", ")", "p", "=", "np", ".", "fft", ".", "ifftshift", "(", "p", ")", "if", "oversample", ">", "1", ":", "p", "=", "p", "[", ":", ":", "oversample", ",", ":", ":", "oversample", "]", "if", "zeropad", ">", "1", ":", "# Slice", "a0", ",", "a1", "=", "np", ".", "array", "(", "np", ".", "floor", "(", "opad_size", "/", "2", ")", ",", "dtype", "=", "int", ")", "//", "oversample", "b0", ",", "b1", "=", "np", ".", "array", "(", "np", ".", "floor", "(", "grid_size", "/", "2", ")", ",", "dtype", "=", "int", ")", "if", "grid_size", "[", "0", "]", "%", "2", "!=", "0", ":", "of0", "=", "1", "a0", "+=", "1", "else", ":", "of0", "=", "0", "if", "grid_size", "[", "1", "]", "%", "2", "!=", "0", ":", "of1", "=", "1", "a1", "+=", "1", "else", ":", "of1", "=", "0", "# remove zero-padding", "p", "=", "p", "[", "a0", "-", "b0", ":", "a0", "+", "b0", "+", "of0", ",", "a1", "-", "b1", ":", "a1", "+", "b1", "+", "of1", "]", "if", "approx", "==", "\"born\"", ":", "# norm = (u0 + ub)/u0", "# norm = 1 + ub/u0", "return", "1", "+", "p", "/", "np", ".", "exp", "(", "1j", "*", "km", "*", "lD", ")", "elif", "approx", "==", "\"rytov\"", ":", "# norm = (u0 + ur)/u0", "# ur = u0 ( exp(ub/u0) -1 )", "# norm = ( u0 + u0 *(exp(ub/u0)-1) )/u0", "# norm = exp(ub/u0)", "return", "np", ".", "exp", "(", "p", "/", "np", ".", "exp", "(", "1j", "*", "km", "*", "lD", ")", ")" ]
Compute the projection of a disc using the Fourier slice theorem and the Bessel function of the first kind of order 1. Parameters ---------- radius: float Radius of the sphere [m] sphere_index: float Refractive index of the sphere medium_index: float Refractive index of the surrounding medium wavelength: float Vacuum wavelength of the imaging light [m] pixel_size: float Pixel size [m] grid_size: tuple of floats Resulting image size in x and y [px] center: tuple of floats Center position in image coordinates [px] lD: float The axial distance [m] from the center of the sphere at which the field is computed. approx: str Which approximation to use (either "born" or "rytov") zeropad: int Zero-padding factor oversample: int Oversampling factor
[ "Compute", "the", "projection", "of", "a", "disc", "using", "the", "Fourier", "slice", "theorem", "and", "the", "Bessel", "function", "of", "the", "first", "kind", "of", "order", "1", "." ]
python
train
keon/algorithms
algorithms/sort/top_sort.py
https://github.com/keon/algorithms/blob/4d6569464a62a75c1357acc97e2dd32ee2f9f4a3/algorithms/sort/top_sort.py#L26-L66
def top_sort(graph): """ Time complexity is the same as DFS, which is O(V + E) Space complexity: O(V) """ order, enter, state = [], set(graph), {} def is_ready(node): lst = graph.get(node, ()) if len(lst) == 0: return True for k in lst: sk = state.get(k, None) if sk == GRAY: raise ValueError("cycle") if sk != BLACK: return False return True while enter: node = enter.pop() stack = [] while True: state[node] = GRAY stack.append(node) for k in graph.get(node, ()): sk = state.get(k, None) if sk == GRAY: raise ValueError("cycle") if sk == BLACK: continue enter.discard(k) stack.append(k) while stack and is_ready(stack[-1]): node = stack.pop() order.append(node) state[node] = BLACK if len(stack) == 0: break node = stack.pop() return order
[ "def", "top_sort", "(", "graph", ")", ":", "order", ",", "enter", ",", "state", "=", "[", "]", ",", "set", "(", "graph", ")", ",", "{", "}", "def", "is_ready", "(", "node", ")", ":", "lst", "=", "graph", ".", "get", "(", "node", ",", "(", ")", ")", "if", "len", "(", "lst", ")", "==", "0", ":", "return", "True", "for", "k", "in", "lst", ":", "sk", "=", "state", ".", "get", "(", "k", ",", "None", ")", "if", "sk", "==", "GRAY", ":", "raise", "ValueError", "(", "\"cycle\"", ")", "if", "sk", "!=", "BLACK", ":", "return", "False", "return", "True", "while", "enter", ":", "node", "=", "enter", ".", "pop", "(", ")", "stack", "=", "[", "]", "while", "True", ":", "state", "[", "node", "]", "=", "GRAY", "stack", ".", "append", "(", "node", ")", "for", "k", "in", "graph", ".", "get", "(", "node", ",", "(", ")", ")", ":", "sk", "=", "state", ".", "get", "(", "k", ",", "None", ")", "if", "sk", "==", "GRAY", ":", "raise", "ValueError", "(", "\"cycle\"", ")", "if", "sk", "==", "BLACK", ":", "continue", "enter", ".", "discard", "(", "k", ")", "stack", ".", "append", "(", "k", ")", "while", "stack", "and", "is_ready", "(", "stack", "[", "-", "1", "]", ")", ":", "node", "=", "stack", ".", "pop", "(", ")", "order", ".", "append", "(", "node", ")", "state", "[", "node", "]", "=", "BLACK", "if", "len", "(", "stack", ")", "==", "0", ":", "break", "node", "=", "stack", ".", "pop", "(", ")", "return", "order" ]
Time complexity is the same as DFS, which is O(V + E) Space complexity: O(V)
[ "Time", "complexity", "is", "the", "same", "as", "DFS", "which", "is", "O", "(", "V", "+", "E", ")", "Space", "complexity", ":", "O", "(", "V", ")" ]
python
train
dj-stripe/dj-stripe
djstripe/models/core.py
https://github.com/dj-stripe/dj-stripe/blob/a5308a3808cd6e2baba49482f7a699f3a8992518/djstripe/models/core.py#L303-L321
def refund(self, amount=None, reason=None): """ Initiate a refund. If amount is not provided, then this will be a full refund. :param amount: A positive decimal amount representing how much of this charge to refund. Can only refund up to the unrefunded amount remaining of the charge. :trye amount: Decimal :param reason: String indicating the reason for the refund. If set, possible values are ``duplicate``, ``fraudulent``, and ``requested_by_customer``. Specifying ``fraudulent`` as the reason when you believe the charge to be fraudulent will help Stripe improve their fraud detection algorithms. :return: Stripe charge object :rtype: dict """ charge_obj = self.api_retrieve().refund( amount=self._calculate_refund_amount(amount=amount), reason=reason ) return self.__class__.sync_from_stripe_data(charge_obj)
[ "def", "refund", "(", "self", ",", "amount", "=", "None", ",", "reason", "=", "None", ")", ":", "charge_obj", "=", "self", ".", "api_retrieve", "(", ")", ".", "refund", "(", "amount", "=", "self", ".", "_calculate_refund_amount", "(", "amount", "=", "amount", ")", ",", "reason", "=", "reason", ")", "return", "self", ".", "__class__", ".", "sync_from_stripe_data", "(", "charge_obj", ")" ]
Initiate a refund. If amount is not provided, then this will be a full refund. :param amount: A positive decimal amount representing how much of this charge to refund. Can only refund up to the unrefunded amount remaining of the charge. :trye amount: Decimal :param reason: String indicating the reason for the refund. If set, possible values are ``duplicate``, ``fraudulent``, and ``requested_by_customer``. Specifying ``fraudulent`` as the reason when you believe the charge to be fraudulent will help Stripe improve their fraud detection algorithms. :return: Stripe charge object :rtype: dict
[ "Initiate", "a", "refund", ".", "If", "amount", "is", "not", "provided", "then", "this", "will", "be", "a", "full", "refund", "." ]
python
train
Aluriak/bubble-tools
bubbletools/utils.py
https://github.com/Aluriak/bubble-tools/blob/f014f4a1986abefc80dc418feaa05ed258c2221a/bubbletools/utils.py#L19-L22
def infer_format(filename:str) -> str: """Return extension identifying format of given filename""" _, ext = os.path.splitext(filename) return ext
[ "def", "infer_format", "(", "filename", ":", "str", ")", "->", "str", ":", "_", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "return", "ext" ]
Return extension identifying format of given filename
[ "Return", "extension", "identifying", "format", "of", "given", "filename" ]
python
train
ArangoDB-Community/pyArango
pyArango/collection.py
https://github.com/ArangoDB-Community/pyArango/blob/dd72e5f6c540e5e148943d615ddf7553bb78ce0b/pyArango/collection.py#L498-L528
def bulkSave(self, docs, onDuplicate="error", **params) : """Parameter docs must be either an iterrable of documents or dictionnaries. This function will return the number of documents, created and updated, and will raise an UpdateError exception if there's at least one error. params are any parameters from arango's documentation""" payload = [] for d in docs : if type(d) is dict : payload.append(json.dumps(d, default=str)) else : try: payload.append(d.toJson()) except Exception as e: payload.append(json.dumps(d.getStore(), default=str)) payload = '\n'.join(payload) params["type"] = "documents" params["onDuplicate"] = onDuplicate params["collection"] = self.name URL = "%s/import" % self.database.URL r = self.connection.session.post(URL, params = params, data = payload) data = r.json() if (r.status_code == 201) and "error" not in data : return True else : if data["errors"] > 0 : raise UpdateError("%d documents could not be created" % data["errors"], data) return data["updated"] + data["created"]
[ "def", "bulkSave", "(", "self", ",", "docs", ",", "onDuplicate", "=", "\"error\"", ",", "*", "*", "params", ")", ":", "payload", "=", "[", "]", "for", "d", "in", "docs", ":", "if", "type", "(", "d", ")", "is", "dict", ":", "payload", ".", "append", "(", "json", ".", "dumps", "(", "d", ",", "default", "=", "str", ")", ")", "else", ":", "try", ":", "payload", ".", "append", "(", "d", ".", "toJson", "(", ")", ")", "except", "Exception", "as", "e", ":", "payload", ".", "append", "(", "json", ".", "dumps", "(", "d", ".", "getStore", "(", ")", ",", "default", "=", "str", ")", ")", "payload", "=", "'\\n'", ".", "join", "(", "payload", ")", "params", "[", "\"type\"", "]", "=", "\"documents\"", "params", "[", "\"onDuplicate\"", "]", "=", "onDuplicate", "params", "[", "\"collection\"", "]", "=", "self", ".", "name", "URL", "=", "\"%s/import\"", "%", "self", ".", "database", ".", "URL", "r", "=", "self", ".", "connection", ".", "session", ".", "post", "(", "URL", ",", "params", "=", "params", ",", "data", "=", "payload", ")", "data", "=", "r", ".", "json", "(", ")", "if", "(", "r", ".", "status_code", "==", "201", ")", "and", "\"error\"", "not", "in", "data", ":", "return", "True", "else", ":", "if", "data", "[", "\"errors\"", "]", ">", "0", ":", "raise", "UpdateError", "(", "\"%d documents could not be created\"", "%", "data", "[", "\"errors\"", "]", ",", "data", ")", "return", "data", "[", "\"updated\"", "]", "+", "data", "[", "\"created\"", "]" ]
Parameter docs must be either an iterrable of documents or dictionnaries. This function will return the number of documents, created and updated, and will raise an UpdateError exception if there's at least one error. params are any parameters from arango's documentation
[ "Parameter", "docs", "must", "be", "either", "an", "iterrable", "of", "documents", "or", "dictionnaries", ".", "This", "function", "will", "return", "the", "number", "of", "documents", "created", "and", "updated", "and", "will", "raise", "an", "UpdateError", "exception", "if", "there", "s", "at", "least", "one", "error", ".", "params", "are", "any", "parameters", "from", "arango", "s", "documentation" ]
python
train
gem/oq-engine
openquake/hazardlib/sourcewriter.py
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/sourcewriter.py#L442-L467
def build_rupture_node(rupt, probs_occur): """ :param rupt: a hazardlib rupture object :param probs_occur: a list of floats with sum 1 """ s = sum(probs_occur) if abs(s - 1) > pmf.PRECISION: raise ValueError('The sum of %s is not 1: %s' % (probs_occur, s)) h = rupt.hypocenter hp_dict = dict(lon=h.longitude, lat=h.latitude, depth=h.depth) rupt_nodes = [Node('magnitude', {}, rupt.mag), Node('rake', {}, rupt.rake), Node('hypocenter', hp_dict)] rupt_nodes.extend(rupt.surface.surface_nodes) geom = rupt.surface.surface_nodes[0].tag if len(rupt.surface.surface_nodes) > 1: name = 'multiPlanesRupture' elif geom == 'planarSurface': name = 'singlePlaneRupture' elif geom == 'simpleFaultGeometry': name = 'simpleFaultRupture' elif geom == 'complexFaultGeometry': name = 'complexFaultRupture' elif geom == 'griddedSurface': name = 'griddedRupture' return Node(name, {'probs_occur': probs_occur}, nodes=rupt_nodes)
[ "def", "build_rupture_node", "(", "rupt", ",", "probs_occur", ")", ":", "s", "=", "sum", "(", "probs_occur", ")", "if", "abs", "(", "s", "-", "1", ")", ">", "pmf", ".", "PRECISION", ":", "raise", "ValueError", "(", "'The sum of %s is not 1: %s'", "%", "(", "probs_occur", ",", "s", ")", ")", "h", "=", "rupt", ".", "hypocenter", "hp_dict", "=", "dict", "(", "lon", "=", "h", ".", "longitude", ",", "lat", "=", "h", ".", "latitude", ",", "depth", "=", "h", ".", "depth", ")", "rupt_nodes", "=", "[", "Node", "(", "'magnitude'", ",", "{", "}", ",", "rupt", ".", "mag", ")", ",", "Node", "(", "'rake'", ",", "{", "}", ",", "rupt", ".", "rake", ")", ",", "Node", "(", "'hypocenter'", ",", "hp_dict", ")", "]", "rupt_nodes", ".", "extend", "(", "rupt", ".", "surface", ".", "surface_nodes", ")", "geom", "=", "rupt", ".", "surface", ".", "surface_nodes", "[", "0", "]", ".", "tag", "if", "len", "(", "rupt", ".", "surface", ".", "surface_nodes", ")", ">", "1", ":", "name", "=", "'multiPlanesRupture'", "elif", "geom", "==", "'planarSurface'", ":", "name", "=", "'singlePlaneRupture'", "elif", "geom", "==", "'simpleFaultGeometry'", ":", "name", "=", "'simpleFaultRupture'", "elif", "geom", "==", "'complexFaultGeometry'", ":", "name", "=", "'complexFaultRupture'", "elif", "geom", "==", "'griddedSurface'", ":", "name", "=", "'griddedRupture'", "return", "Node", "(", "name", ",", "{", "'probs_occur'", ":", "probs_occur", "}", ",", "nodes", "=", "rupt_nodes", ")" ]
:param rupt: a hazardlib rupture object :param probs_occur: a list of floats with sum 1
[ ":", "param", "rupt", ":", "a", "hazardlib", "rupture", "object", ":", "param", "probs_occur", ":", "a", "list", "of", "floats", "with", "sum", "1" ]
python
train
FNNDSC/pfmisc
pfmisc/C_snode.py
https://github.com/FNNDSC/pfmisc/blob/960b4d6135fcc50bed0a8e55db2ab1ddad9b99d8/pfmisc/C_snode.py#L644-L660
def paths_update(self, al_branchNodes): """ Add each node in <al_branchNodes> to the self.ml_cwd and append the combined list to ml_allPaths. This method is typically not called by a user, but by other methods in this module. Returns the list of all paths. """ for node in al_branchNodes: #print "appending %s" % node l_pwd = self.l_cwd[:] l_pwd.append(node) #print "l_pwd: %s" % l_pwd #print "ml_cwd: %s" % self.ml_cwd self.l_allPaths.append(l_pwd) return self.l_allPaths
[ "def", "paths_update", "(", "self", ",", "al_branchNodes", ")", ":", "for", "node", "in", "al_branchNodes", ":", "#print \"appending %s\" % node", "l_pwd", "=", "self", ".", "l_cwd", "[", ":", "]", "l_pwd", ".", "append", "(", "node", ")", "#print \"l_pwd: %s\" % l_pwd", "#print \"ml_cwd: %s\" % self.ml_cwd", "self", ".", "l_allPaths", ".", "append", "(", "l_pwd", ")", "return", "self", ".", "l_allPaths" ]
Add each node in <al_branchNodes> to the self.ml_cwd and append the combined list to ml_allPaths. This method is typically not called by a user, but by other methods in this module. Returns the list of all paths.
[ "Add", "each", "node", "in", "<al_branchNodes", ">", "to", "the", "self", ".", "ml_cwd", "and", "append", "the", "combined", "list", "to", "ml_allPaths", ".", "This", "method", "is", "typically", "not", "called", "by", "a", "user", "but", "by", "other", "methods", "in", "this", "module", "." ]
python
train
rohankapoorcom/zm-py
zoneminder/monitor.py
https://github.com/rohankapoorcom/zm-py/blob/bd3a9f6b2f7b84b37589e2939f628b479a5531bf/zoneminder/monitor.py#L41-L49
def get_time_period(value): """Get the corresponding TimePeriod from the value. Example values: 'all', 'hour', 'day', 'week', or 'month'. """ for time_period in TimePeriod: if time_period.period == value: return time_period raise ValueError('{} is not a valid TimePeriod'.format(value))
[ "def", "get_time_period", "(", "value", ")", ":", "for", "time_period", "in", "TimePeriod", ":", "if", "time_period", ".", "period", "==", "value", ":", "return", "time_period", "raise", "ValueError", "(", "'{} is not a valid TimePeriod'", ".", "format", "(", "value", ")", ")" ]
Get the corresponding TimePeriod from the value. Example values: 'all', 'hour', 'day', 'week', or 'month'.
[ "Get", "the", "corresponding", "TimePeriod", "from", "the", "value", "." ]
python
train
Unidata/MetPy
metpy/interpolate/grid.py
https://github.com/Unidata/MetPy/blob/16f68a94919b9a82dcf9cada2169cf039129e67b/metpy/interpolate/grid.py#L67-L84
def get_xy_range(bbox): r"""Return x and y ranges in meters based on bounding box. bbox: dictionary dictionary containing coordinates for corners of study area Returns ------- x_range: float Range in meters in x dimension. y_range: float Range in meters in y dimension. """ x_range = bbox['east'] - bbox['west'] y_range = bbox['north'] - bbox['south'] return x_range, y_range
[ "def", "get_xy_range", "(", "bbox", ")", ":", "x_range", "=", "bbox", "[", "'east'", "]", "-", "bbox", "[", "'west'", "]", "y_range", "=", "bbox", "[", "'north'", "]", "-", "bbox", "[", "'south'", "]", "return", "x_range", ",", "y_range" ]
r"""Return x and y ranges in meters based on bounding box. bbox: dictionary dictionary containing coordinates for corners of study area Returns ------- x_range: float Range in meters in x dimension. y_range: float Range in meters in y dimension.
[ "r", "Return", "x", "and", "y", "ranges", "in", "meters", "based", "on", "bounding", "box", "." ]
python
train
dwavesystems/dwave-cloud-client
dwave/cloud/config.py
https://github.com/dwavesystems/dwave-cloud-client/blob/df3221a8385dc0c04d7b4d84f740bf3ad6706230/dwave/cloud/config.py#L239-L304
def get_configfile_paths(system=True, user=True, local=True, only_existing=True): """Return a list of local configuration file paths. Search paths for configuration files on the local system are based on homebase_ and depend on operating system; for example, for Linux systems these might include ``dwave.conf`` in the current working directory (CWD), user-local ``.config/dwave/``, and system-wide ``/etc/dwave/``. .. _homebase: https://github.com/dwavesystems/homebase Args: system (boolean, default=True): Search for system-wide configuration files. user (boolean, default=True): Search for user-local configuration files. local (boolean, default=True): Search for local configuration files (in CWD). only_existing (boolean, default=True): Return only paths for files that exist on the local system. Returns: list[str]: List of configuration file paths. Examples: This example displays all paths to configuration files on a Windows system running Python 2.7 and then finds the single existing configuration file. >>> import dwave.cloud as dc >>> # Display paths >>> dc.config.get_configfile_paths(only_existing=False) # doctest: +SKIP [u'C:\\ProgramData\\dwavesystem\\dwave\\dwave.conf', u'C:\\Users\\jane\\AppData\\Local\\dwavesystem\\dwave\\dwave.conf', '.\\dwave.conf'] >>> # Find existing files >>> dc.config.get_configfile_paths() # doctest: +SKIP [u'C:\\Users\\jane\\AppData\\Local\\dwavesystem\\dwave\\dwave.conf'] """ candidates = [] # system-wide has the lowest priority, `/etc/dwave/dwave.conf` if system: candidates.extend(homebase.site_config_dir_list( app_author=CONF_AUTHOR, app_name=CONF_APP, use_virtualenv=False, create=False)) # user-local will override it, `~/.config/dwave/dwave.conf` if user: candidates.append(homebase.user_config_dir( app_author=CONF_AUTHOR, app_name=CONF_APP, roaming=False, use_virtualenv=False, create=False)) # highest priority (overrides all): `./dwave.conf` if local: candidates.append(".") paths = [os.path.join(base, CONF_FILENAME) for base in candidates] if only_existing: paths = list(filter(os.path.exists, paths)) return paths
[ "def", "get_configfile_paths", "(", "system", "=", "True", ",", "user", "=", "True", ",", "local", "=", "True", ",", "only_existing", "=", "True", ")", ":", "candidates", "=", "[", "]", "# system-wide has the lowest priority, `/etc/dwave/dwave.conf`", "if", "system", ":", "candidates", ".", "extend", "(", "homebase", ".", "site_config_dir_list", "(", "app_author", "=", "CONF_AUTHOR", ",", "app_name", "=", "CONF_APP", ",", "use_virtualenv", "=", "False", ",", "create", "=", "False", ")", ")", "# user-local will override it, `~/.config/dwave/dwave.conf`", "if", "user", ":", "candidates", ".", "append", "(", "homebase", ".", "user_config_dir", "(", "app_author", "=", "CONF_AUTHOR", ",", "app_name", "=", "CONF_APP", ",", "roaming", "=", "False", ",", "use_virtualenv", "=", "False", ",", "create", "=", "False", ")", ")", "# highest priority (overrides all): `./dwave.conf`", "if", "local", ":", "candidates", ".", "append", "(", "\".\"", ")", "paths", "=", "[", "os", ".", "path", ".", "join", "(", "base", ",", "CONF_FILENAME", ")", "for", "base", "in", "candidates", "]", "if", "only_existing", ":", "paths", "=", "list", "(", "filter", "(", "os", ".", "path", ".", "exists", ",", "paths", ")", ")", "return", "paths" ]
Return a list of local configuration file paths. Search paths for configuration files on the local system are based on homebase_ and depend on operating system; for example, for Linux systems these might include ``dwave.conf`` in the current working directory (CWD), user-local ``.config/dwave/``, and system-wide ``/etc/dwave/``. .. _homebase: https://github.com/dwavesystems/homebase Args: system (boolean, default=True): Search for system-wide configuration files. user (boolean, default=True): Search for user-local configuration files. local (boolean, default=True): Search for local configuration files (in CWD). only_existing (boolean, default=True): Return only paths for files that exist on the local system. Returns: list[str]: List of configuration file paths. Examples: This example displays all paths to configuration files on a Windows system running Python 2.7 and then finds the single existing configuration file. >>> import dwave.cloud as dc >>> # Display paths >>> dc.config.get_configfile_paths(only_existing=False) # doctest: +SKIP [u'C:\\ProgramData\\dwavesystem\\dwave\\dwave.conf', u'C:\\Users\\jane\\AppData\\Local\\dwavesystem\\dwave\\dwave.conf', '.\\dwave.conf'] >>> # Find existing files >>> dc.config.get_configfile_paths() # doctest: +SKIP [u'C:\\Users\\jane\\AppData\\Local\\dwavesystem\\dwave\\dwave.conf']
[ "Return", "a", "list", "of", "local", "configuration", "file", "paths", "." ]
python
train
atdt/afraid
afraid/__init__.py
https://github.com/atdt/afraid/blob/d74b2d4e41ed14e420da2793a89bef5d9b26ea26/afraid/__init__.py#L106-L114
def update_continuously(records, update_interval=600): """Update `records` every `update_interval` seconds""" while True: for record in records: try: record.update() except (ApiError, RequestException): pass time.sleep(update_interval)
[ "def", "update_continuously", "(", "records", ",", "update_interval", "=", "600", ")", ":", "while", "True", ":", "for", "record", "in", "records", ":", "try", ":", "record", ".", "update", "(", ")", "except", "(", "ApiError", ",", "RequestException", ")", ":", "pass", "time", ".", "sleep", "(", "update_interval", ")" ]
Update `records` every `update_interval` seconds
[ "Update", "records", "every", "update_interval", "seconds" ]
python
train
geophysics-ubonn/crtomo_tools
lib/crtomo/eitManager.py
https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/eitManager.py#L220-L271
def load_data_crt_files(self, data_dict): """Load sEIT data from .ctr files (volt.dat files readable by CRTomo, produced by CRMod) Parameters ---------- data_dict : dict Data files that are imported. See example down below Examples -------- >>> import glob data_files = {} data_files['frequencies'] = 'data/frequencies.dat' files = sorted(glob.glob('data/volt_*.crt')) data_files['crt'] = files """ if isinstance(data_dict, str): raise Exception('Parameter must be a dict!') frequency_data = data_dict['frequencies'] if isinstance(frequency_data, str): frequencies = np.loadtxt(data_dict['frequencies']) else: # if this is not a string, assume it to be the data frequencies = frequency_data if frequencies.size != len(data_dict['crt']): raise Exception( 'number of frequencies does not match the number of data files' ) self._init_frequencies(frequencies) for frequency, filename in zip(frequencies, data_dict['crt']): subdata = np.atleast_2d(np.loadtxt(filename, skiprows=1)) if subdata.size == 0: continue # extract configurations A = (subdata[:, 0] / 1e4).astype(int) B = (subdata[:, 0] % 1e4).astype(int) M = (subdata[:, 1] / 1e4).astype(int) N = (subdata[:, 1] % 1e4).astype(int) ABMN = np.vstack((A, B, M, N)).T magnitudes = subdata[:, 2] phases = subdata[:, 3] self.tds[frequency].configs.add_to_configs(ABMN) self.tds[frequency].register_measurements(magnitudes, phases)
[ "def", "load_data_crt_files", "(", "self", ",", "data_dict", ")", ":", "if", "isinstance", "(", "data_dict", ",", "str", ")", ":", "raise", "Exception", "(", "'Parameter must be a dict!'", ")", "frequency_data", "=", "data_dict", "[", "'frequencies'", "]", "if", "isinstance", "(", "frequency_data", ",", "str", ")", ":", "frequencies", "=", "np", ".", "loadtxt", "(", "data_dict", "[", "'frequencies'", "]", ")", "else", ":", "# if this is not a string, assume it to be the data", "frequencies", "=", "frequency_data", "if", "frequencies", ".", "size", "!=", "len", "(", "data_dict", "[", "'crt'", "]", ")", ":", "raise", "Exception", "(", "'number of frequencies does not match the number of data files'", ")", "self", ".", "_init_frequencies", "(", "frequencies", ")", "for", "frequency", ",", "filename", "in", "zip", "(", "frequencies", ",", "data_dict", "[", "'crt'", "]", ")", ":", "subdata", "=", "np", ".", "atleast_2d", "(", "np", ".", "loadtxt", "(", "filename", ",", "skiprows", "=", "1", ")", ")", "if", "subdata", ".", "size", "==", "0", ":", "continue", "# extract configurations", "A", "=", "(", "subdata", "[", ":", ",", "0", "]", "/", "1e4", ")", ".", "astype", "(", "int", ")", "B", "=", "(", "subdata", "[", ":", ",", "0", "]", "%", "1e4", ")", ".", "astype", "(", "int", ")", "M", "=", "(", "subdata", "[", ":", ",", "1", "]", "/", "1e4", ")", ".", "astype", "(", "int", ")", "N", "=", "(", "subdata", "[", ":", ",", "1", "]", "%", "1e4", ")", ".", "astype", "(", "int", ")", "ABMN", "=", "np", ".", "vstack", "(", "(", "A", ",", "B", ",", "M", ",", "N", ")", ")", ".", "T", "magnitudes", "=", "subdata", "[", ":", ",", "2", "]", "phases", "=", "subdata", "[", ":", ",", "3", "]", "self", ".", "tds", "[", "frequency", "]", ".", "configs", ".", "add_to_configs", "(", "ABMN", ")", "self", ".", "tds", "[", "frequency", "]", ".", "register_measurements", "(", "magnitudes", ",", "phases", ")" ]
Load sEIT data from .ctr files (volt.dat files readable by CRTomo, produced by CRMod) Parameters ---------- data_dict : dict Data files that are imported. See example down below Examples -------- >>> import glob data_files = {} data_files['frequencies'] = 'data/frequencies.dat' files = sorted(glob.glob('data/volt_*.crt')) data_files['crt'] = files
[ "Load", "sEIT", "data", "from", ".", "ctr", "files", "(", "volt", ".", "dat", "files", "readable", "by", "CRTomo", "produced", "by", "CRMod", ")" ]
python
train
pycontribs/pyrax
pyrax/clouddatabases.py
https://github.com/pycontribs/pyrax/blob/9ddfd5064b3a292d7337906f3b2d5dce95b50b99/pyrax/clouddatabases.py#L649-L653
def revoke_user_access(self, db_names, strict=True): """ Revokes access to the databases listed in `db_names` for the user. """ return self.manager.revoke_user_access(self, db_names, strict=strict)
[ "def", "revoke_user_access", "(", "self", ",", "db_names", ",", "strict", "=", "True", ")", ":", "return", "self", ".", "manager", ".", "revoke_user_access", "(", "self", ",", "db_names", ",", "strict", "=", "strict", ")" ]
Revokes access to the databases listed in `db_names` for the user.
[ "Revokes", "access", "to", "the", "databases", "listed", "in", "db_names", "for", "the", "user", "." ]
python
train
tensorpack/tensorpack
tensorpack/tfutils/varmanip.py
https://github.com/tensorpack/tensorpack/blob/d7a13cb74c9066bc791d7aafc3b744b60ee79a9f/tensorpack/tfutils/varmanip.py#L18-L35
def get_savename_from_varname( varname, varname_prefix=None, savename_prefix=None): """ Args: varname(str): a variable name in the graph varname_prefix(str): an optional prefix that may need to be removed in varname savename_prefix(str): an optional prefix to append to all savename Returns: str: the name used to save the variable """ name = varname if varname_prefix is not None \ and name.startswith(varname_prefix): name = name[len(varname_prefix) + 1:] if savename_prefix is not None: name = savename_prefix + '/' + name return name
[ "def", "get_savename_from_varname", "(", "varname", ",", "varname_prefix", "=", "None", ",", "savename_prefix", "=", "None", ")", ":", "name", "=", "varname", "if", "varname_prefix", "is", "not", "None", "and", "name", ".", "startswith", "(", "varname_prefix", ")", ":", "name", "=", "name", "[", "len", "(", "varname_prefix", ")", "+", "1", ":", "]", "if", "savename_prefix", "is", "not", "None", ":", "name", "=", "savename_prefix", "+", "'/'", "+", "name", "return", "name" ]
Args: varname(str): a variable name in the graph varname_prefix(str): an optional prefix that may need to be removed in varname savename_prefix(str): an optional prefix to append to all savename Returns: str: the name used to save the variable
[ "Args", ":", "varname", "(", "str", ")", ":", "a", "variable", "name", "in", "the", "graph", "varname_prefix", "(", "str", ")", ":", "an", "optional", "prefix", "that", "may", "need", "to", "be", "removed", "in", "varname", "savename_prefix", "(", "str", ")", ":", "an", "optional", "prefix", "to", "append", "to", "all", "savename", "Returns", ":", "str", ":", "the", "name", "used", "to", "save", "the", "variable" ]
python
train
wbond/asn1crypto
asn1crypto/core.py
https://github.com/wbond/asn1crypto/blob/ecda20176f55d37021cbca1f6da9083a8e491197/asn1crypto/core.py#L4671-L4690
def set(self, value): """ Sets the value of the object :param value: A unicode string or a datetime.datetime object :raises: ValueError - when an invalid value is passed """ if isinstance(value, datetime): value = value.strftime('%y%m%d%H%M%SZ') if _PY2: value = value.decode('ascii') AbstractString.set(self, value) # Set it to None and let the class take care of converting the next # time that .native is called self._native = None
[ "def", "set", "(", "self", ",", "value", ")", ":", "if", "isinstance", "(", "value", ",", "datetime", ")", ":", "value", "=", "value", ".", "strftime", "(", "'%y%m%d%H%M%SZ'", ")", "if", "_PY2", ":", "value", "=", "value", ".", "decode", "(", "'ascii'", ")", "AbstractString", ".", "set", "(", "self", ",", "value", ")", "# Set it to None and let the class take care of converting the next", "# time that .native is called", "self", ".", "_native", "=", "None" ]
Sets the value of the object :param value: A unicode string or a datetime.datetime object :raises: ValueError - when an invalid value is passed
[ "Sets", "the", "value", "of", "the", "object" ]
python
train
wonambi-python/wonambi
wonambi/widgets/notes.py
https://github.com/wonambi-python/wonambi/blob/1d8e3d7e53df8017c199f703bcab582914676e76/wonambi/widgets/notes.py#L1078-L1089
def set_quality_index(self): """Set the current signal quality in combobox.""" window_start = self.parent.value('window_start') window_length = self.parent.value('window_length') qual = self.annot.get_stage_for_epoch(window_start, window_length, attr='quality') #lg.info('winstart: ' + str(window_start) + ', quality: ' + str(qual)) if qual is None: self.idx_quality.setCurrentIndex(-1) else: self.idx_quality.setCurrentIndex(QUALIFIERS.index(qual))
[ "def", "set_quality_index", "(", "self", ")", ":", "window_start", "=", "self", ".", "parent", ".", "value", "(", "'window_start'", ")", "window_length", "=", "self", ".", "parent", ".", "value", "(", "'window_length'", ")", "qual", "=", "self", ".", "annot", ".", "get_stage_for_epoch", "(", "window_start", ",", "window_length", ",", "attr", "=", "'quality'", ")", "#lg.info('winstart: ' + str(window_start) + ', quality: ' + str(qual))", "if", "qual", "is", "None", ":", "self", ".", "idx_quality", ".", "setCurrentIndex", "(", "-", "1", ")", "else", ":", "self", ".", "idx_quality", ".", "setCurrentIndex", "(", "QUALIFIERS", ".", "index", "(", "qual", ")", ")" ]
Set the current signal quality in combobox.
[ "Set", "the", "current", "signal", "quality", "in", "combobox", "." ]
python
train
OSSOS/MOP
src/ossos/core/ossos/plant.py
https://github.com/OSSOS/MOP/blob/94f91d32ad5ec081d5a1ebd67604a838003465af/src/ossos/core/ossos/plant.py#L114-L124
def next(self): """ :return: a set of values that can be used for an planted object builder. """ # x y mag pix rate angle ''/h rate id # 912.48 991.06 22.01 57.32 -45.23 10.60 0 self._n -= 1 if self._n < 0: raise StopIteration() return {'x': self.x(), 'y': self.y(), 'mag': self.mag(), 'sky_rate': self.rate(), 'angle': self.angle(), 'id': self.id}
[ "def", "next", "(", "self", ")", ":", "# x y mag pix rate angle ''/h rate id", "# 912.48 991.06 22.01 57.32 -45.23 10.60 0", "self", ".", "_n", "-=", "1", "if", "self", ".", "_n", "<", "0", ":", "raise", "StopIteration", "(", ")", "return", "{", "'x'", ":", "self", ".", "x", "(", ")", ",", "'y'", ":", "self", ".", "y", "(", ")", ",", "'mag'", ":", "self", ".", "mag", "(", ")", ",", "'sky_rate'", ":", "self", ".", "rate", "(", ")", ",", "'angle'", ":", "self", ".", "angle", "(", ")", ",", "'id'", ":", "self", ".", "id", "}" ]
:return: a set of values that can be used for an planted object builder.
[ ":", "return", ":", "a", "set", "of", "values", "that", "can", "be", "used", "for", "an", "planted", "object", "builder", "." ]
python
train
chaoss/grimoirelab-sirmordred
sirmordred/eclipse_projects_lib.py
https://github.com/chaoss/grimoirelab-sirmordred/blob/d6ac94d28d707fae23170064d078f1edf937d13e/sirmordred/eclipse_projects_lib.py#L134-L149
def compose_github(projects, data): """ Compose projects.json for github :param projects: projects.json :param data: eclipse JSON :return: projects.json with github """ for p in [project for project in data if len(data[project]['github_repos']) > 0]: if 'github' not in projects[p]: projects[p]['github'] = [] urls = [url['url'] for url in data[p]['github_repos'] if url['url'] not in projects[p]['github']] projects[p]['github'] += urls return projects
[ "def", "compose_github", "(", "projects", ",", "data", ")", ":", "for", "p", "in", "[", "project", "for", "project", "in", "data", "if", "len", "(", "data", "[", "project", "]", "[", "'github_repos'", "]", ")", ">", "0", "]", ":", "if", "'github'", "not", "in", "projects", "[", "p", "]", ":", "projects", "[", "p", "]", "[", "'github'", "]", "=", "[", "]", "urls", "=", "[", "url", "[", "'url'", "]", "for", "url", "in", "data", "[", "p", "]", "[", "'github_repos'", "]", "if", "url", "[", "'url'", "]", "not", "in", "projects", "[", "p", "]", "[", "'github'", "]", "]", "projects", "[", "p", "]", "[", "'github'", "]", "+=", "urls", "return", "projects" ]
Compose projects.json for github :param projects: projects.json :param data: eclipse JSON :return: projects.json with github
[ "Compose", "projects", ".", "json", "for", "github" ]
python
valid
SoCo/SoCo
soco/data_structures.py
https://github.com/SoCo/SoCo/blob/671937e07d7973b78c0cbee153d4f3ad68ec48c6/soco/data_structures.py#L591-L617
def to_dict(self, remove_nones=False): """Return the dict representation of the instance. Args: remove_nones (bool, optional): Optionally remove dictionary elements when their value is `None`. Returns: dict: a dict representation of the `DidlObject`. """ content = {} # Get the value of each attribute listed in _translation, and add it # to the content dict for key in self._translation: if hasattr(self, key): content[key] = getattr(self, key) # also add parent_id, item_id, restricted, title and resources because # they are not listed in _translation content['parent_id'] = self.parent_id content['item_id'] = self.item_id content['restricted'] = self.restricted content['title'] = self.title if self.resources != []: content['resources'] = [resource.to_dict(remove_nones=remove_nones) for resource in self.resources] content['desc'] = self.desc return content
[ "def", "to_dict", "(", "self", ",", "remove_nones", "=", "False", ")", ":", "content", "=", "{", "}", "# Get the value of each attribute listed in _translation, and add it", "# to the content dict", "for", "key", "in", "self", ".", "_translation", ":", "if", "hasattr", "(", "self", ",", "key", ")", ":", "content", "[", "key", "]", "=", "getattr", "(", "self", ",", "key", ")", "# also add parent_id, item_id, restricted, title and resources because", "# they are not listed in _translation", "content", "[", "'parent_id'", "]", "=", "self", ".", "parent_id", "content", "[", "'item_id'", "]", "=", "self", ".", "item_id", "content", "[", "'restricted'", "]", "=", "self", ".", "restricted", "content", "[", "'title'", "]", "=", "self", ".", "title", "if", "self", ".", "resources", "!=", "[", "]", ":", "content", "[", "'resources'", "]", "=", "[", "resource", ".", "to_dict", "(", "remove_nones", "=", "remove_nones", ")", "for", "resource", "in", "self", ".", "resources", "]", "content", "[", "'desc'", "]", "=", "self", ".", "desc", "return", "content" ]
Return the dict representation of the instance. Args: remove_nones (bool, optional): Optionally remove dictionary elements when their value is `None`. Returns: dict: a dict representation of the `DidlObject`.
[ "Return", "the", "dict", "representation", "of", "the", "instance", "." ]
python
train
benmontet/f3
f3/photometry.py
https://github.com/benmontet/f3/blob/b2e1dc250e4e3e884a54c501cd35cf02d5b8719e/f3/photometry.py#L301-L329
def do_photometry(self): """ Does photometry and estimates uncertainties by calculating the scatter around a linear fit to the data in each orientation. This function is called by other functions and generally the user will not need to interact with it directly. """ std_f = np.zeros(4) data_save = np.zeros_like(self.postcard) self.obs_flux = np.zeros_like(self.reference_flux) for i in range(4): g = np.where(self.qs == i)[0] wh = np.where(self.times[g] > 54947) data_save[g] = np.roll(self.postcard[g], int(self.roll_best[i,0]), axis=1) data_save[g] = np.roll(data_save[g], int(self.roll_best[i,1]), axis=2) self.target_flux_pixels = data_save[:,self.targets == 1] self.target_flux = np.sum(self.target_flux_pixels, axis=1) self.obs_flux[g] = self.target_flux[g] / self.reference_flux[g] self.obs_flux[g] /= np.median(self.obs_flux[g[wh]]) fitline = np.polyfit(self.times[g][wh], self.obs_flux[g][wh], 1) std_f[i] = np.max([np.std(self.obs_flux[g][wh]/(fitline[0]*self.times[g][wh]+fitline[1])), 0.001]) self.flux_uncert = std_f
[ "def", "do_photometry", "(", "self", ")", ":", "std_f", "=", "np", ".", "zeros", "(", "4", ")", "data_save", "=", "np", ".", "zeros_like", "(", "self", ".", "postcard", ")", "self", ".", "obs_flux", "=", "np", ".", "zeros_like", "(", "self", ".", "reference_flux", ")", "for", "i", "in", "range", "(", "4", ")", ":", "g", "=", "np", ".", "where", "(", "self", ".", "qs", "==", "i", ")", "[", "0", "]", "wh", "=", "np", ".", "where", "(", "self", ".", "times", "[", "g", "]", ">", "54947", ")", "data_save", "[", "g", "]", "=", "np", ".", "roll", "(", "self", ".", "postcard", "[", "g", "]", ",", "int", "(", "self", ".", "roll_best", "[", "i", ",", "0", "]", ")", ",", "axis", "=", "1", ")", "data_save", "[", "g", "]", "=", "np", ".", "roll", "(", "data_save", "[", "g", "]", ",", "int", "(", "self", ".", "roll_best", "[", "i", ",", "1", "]", ")", ",", "axis", "=", "2", ")", "self", ".", "target_flux_pixels", "=", "data_save", "[", ":", ",", "self", ".", "targets", "==", "1", "]", "self", ".", "target_flux", "=", "np", ".", "sum", "(", "self", ".", "target_flux_pixels", ",", "axis", "=", "1", ")", "self", ".", "obs_flux", "[", "g", "]", "=", "self", ".", "target_flux", "[", "g", "]", "/", "self", ".", "reference_flux", "[", "g", "]", "self", ".", "obs_flux", "[", "g", "]", "/=", "np", ".", "median", "(", "self", ".", "obs_flux", "[", "g", "[", "wh", "]", "]", ")", "fitline", "=", "np", ".", "polyfit", "(", "self", ".", "times", "[", "g", "]", "[", "wh", "]", ",", "self", ".", "obs_flux", "[", "g", "]", "[", "wh", "]", ",", "1", ")", "std_f", "[", "i", "]", "=", "np", ".", "max", "(", "[", "np", ".", "std", "(", "self", ".", "obs_flux", "[", "g", "]", "[", "wh", "]", "/", "(", "fitline", "[", "0", "]", "*", "self", ".", "times", "[", "g", "]", "[", "wh", "]", "+", "fitline", "[", "1", "]", ")", ")", ",", "0.001", "]", ")", "self", ".", "flux_uncert", "=", "std_f" ]
Does photometry and estimates uncertainties by calculating the scatter around a linear fit to the data in each orientation. This function is called by other functions and generally the user will not need to interact with it directly.
[ "Does", "photometry", "and", "estimates", "uncertainties", "by", "calculating", "the", "scatter", "around", "a", "linear", "fit", "to", "the", "data", "in", "each", "orientation", ".", "This", "function", "is", "called", "by", "other", "functions", "and", "generally", "the", "user", "will", "not", "need", "to", "interact", "with", "it", "directly", "." ]
python
valid
sosy-lab/benchexec
benchexec/util.py
https://github.com/sosy-lab/benchexec/blob/44428f67f41384c03aea13e7e25f884764653617/benchexec/util.py#L84-L95
def is_code(filename): """ This function returns True, if a line of the file contains bracket '{'. """ with open(filename, "r") as file: for line in file: # ignore comments and empty lines if not is_comment(line) \ and '{' in line: # <-- simple indicator for code if '${' not in line: # <-- ${abc} variable to substitute return True return False
[ "def", "is_code", "(", "filename", ")", ":", "with", "open", "(", "filename", ",", "\"r\"", ")", "as", "file", ":", "for", "line", "in", "file", ":", "# ignore comments and empty lines", "if", "not", "is_comment", "(", "line", ")", "and", "'{'", "in", "line", ":", "# <-- simple indicator for code", "if", "'${'", "not", "in", "line", ":", "# <-- ${abc} variable to substitute", "return", "True", "return", "False" ]
This function returns True, if a line of the file contains bracket '{'.
[ "This", "function", "returns", "True", "if", "a", "line", "of", "the", "file", "contains", "bracket", "{", "." ]
python
train
pypa/pipenv
pipenv/patched/notpip/_vendor/ipaddress.py
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/patched/notpip/_vendor/ipaddress.py#L480-L502
def get_mixed_type_key(obj): """Return a key suitable for sorting between networks and addresses. Address and Network objects are not sortable by default; they're fundamentally different so the expression IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24') doesn't make any sense. There are some times however, where you may wish to have ipaddress sort these for you anyway. If you need to do this, you can use this function as the key= argument to sorted(). Args: obj: either a Network or Address object. Returns: appropriate key. """ if isinstance(obj, _BaseNetwork): return obj._get_networks_key() elif isinstance(obj, _BaseAddress): return obj._get_address_key() return NotImplemented
[ "def", "get_mixed_type_key", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "_BaseNetwork", ")", ":", "return", "obj", ".", "_get_networks_key", "(", ")", "elif", "isinstance", "(", "obj", ",", "_BaseAddress", ")", ":", "return", "obj", ".", "_get_address_key", "(", ")", "return", "NotImplemented" ]
Return a key suitable for sorting between networks and addresses. Address and Network objects are not sortable by default; they're fundamentally different so the expression IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24') doesn't make any sense. There are some times however, where you may wish to have ipaddress sort these for you anyway. If you need to do this, you can use this function as the key= argument to sorted(). Args: obj: either a Network or Address object. Returns: appropriate key.
[ "Return", "a", "key", "suitable", "for", "sorting", "between", "networks", "and", "addresses", "." ]
python
train
readbeyond/aeneas
aeneas/tools/run_sd.py
https://github.com/readbeyond/aeneas/blob/9d95535ad63eef4a98530cfdff033b8c35315ee1/aeneas/tools/run_sd.py#L171-L203
def print_result(self, audio_len, start, end): """ Print result of SD. :param audio_len: the length of the entire audio file, in seconds :type audio_len: float :param start: the start position of the spoken text :type start: float :param end: the end position of the spoken text :type end: float """ msg = [] zero = 0 head_len = start text_len = end - start tail_len = audio_len - end msg.append(u"") msg.append(u"Head: %.3f %.3f (%.3f)" % (zero, start, head_len)) msg.append(u"Text: %.3f %.3f (%.3f)" % (start, end, text_len)) msg.append(u"Tail: %.3f %.3f (%.3f)" % (end, audio_len, tail_len)) msg.append(u"") zero_h = gf.time_to_hhmmssmmm(0) start_h = gf.time_to_hhmmssmmm(start) end_h = gf.time_to_hhmmssmmm(end) audio_len_h = gf.time_to_hhmmssmmm(audio_len) head_len_h = gf.time_to_hhmmssmmm(head_len) text_len_h = gf.time_to_hhmmssmmm(text_len) tail_len_h = gf.time_to_hhmmssmmm(tail_len) msg.append("Head: %s %s (%s)" % (zero_h, start_h, head_len_h)) msg.append("Text: %s %s (%s)" % (start_h, end_h, text_len_h)) msg.append("Tail: %s %s (%s)" % (end_h, audio_len_h, tail_len_h)) msg.append(u"") self.print_info(u"\n".join(msg))
[ "def", "print_result", "(", "self", ",", "audio_len", ",", "start", ",", "end", ")", ":", "msg", "=", "[", "]", "zero", "=", "0", "head_len", "=", "start", "text_len", "=", "end", "-", "start", "tail_len", "=", "audio_len", "-", "end", "msg", ".", "append", "(", "u\"\"", ")", "msg", ".", "append", "(", "u\"Head: %.3f %.3f (%.3f)\"", "%", "(", "zero", ",", "start", ",", "head_len", ")", ")", "msg", ".", "append", "(", "u\"Text: %.3f %.3f (%.3f)\"", "%", "(", "start", ",", "end", ",", "text_len", ")", ")", "msg", ".", "append", "(", "u\"Tail: %.3f %.3f (%.3f)\"", "%", "(", "end", ",", "audio_len", ",", "tail_len", ")", ")", "msg", ".", "append", "(", "u\"\"", ")", "zero_h", "=", "gf", ".", "time_to_hhmmssmmm", "(", "0", ")", "start_h", "=", "gf", ".", "time_to_hhmmssmmm", "(", "start", ")", "end_h", "=", "gf", ".", "time_to_hhmmssmmm", "(", "end", ")", "audio_len_h", "=", "gf", ".", "time_to_hhmmssmmm", "(", "audio_len", ")", "head_len_h", "=", "gf", ".", "time_to_hhmmssmmm", "(", "head_len", ")", "text_len_h", "=", "gf", ".", "time_to_hhmmssmmm", "(", "text_len", ")", "tail_len_h", "=", "gf", ".", "time_to_hhmmssmmm", "(", "tail_len", ")", "msg", ".", "append", "(", "\"Head: %s %s (%s)\"", "%", "(", "zero_h", ",", "start_h", ",", "head_len_h", ")", ")", "msg", ".", "append", "(", "\"Text: %s %s (%s)\"", "%", "(", "start_h", ",", "end_h", ",", "text_len_h", ")", ")", "msg", ".", "append", "(", "\"Tail: %s %s (%s)\"", "%", "(", "end_h", ",", "audio_len_h", ",", "tail_len_h", ")", ")", "msg", ".", "append", "(", "u\"\"", ")", "self", ".", "print_info", "(", "u\"\\n\"", ".", "join", "(", "msg", ")", ")" ]
Print result of SD. :param audio_len: the length of the entire audio file, in seconds :type audio_len: float :param start: the start position of the spoken text :type start: float :param end: the end position of the spoken text :type end: float
[ "Print", "result", "of", "SD", "." ]
python
train
DLR-RM/RAFCON
source/rafcon/gui/controllers/state_machines_editor.py
https://github.com/DLR-RM/RAFCON/blob/24942ef1a904531f49ab8830a1dbb604441be498/source/rafcon/gui/controllers/state_machines_editor.py#L134-L141
def register_view(self, view): """Called when the View was registered""" super(StateMachinesEditorController, self).register_view(view) self.view['notebook'].connect('switch-page', self.on_switch_page) # Add all already open state machines for state_machine in self.model.state_machines.values(): self.add_graphical_state_machine_editor(state_machine)
[ "def", "register_view", "(", "self", ",", "view", ")", ":", "super", "(", "StateMachinesEditorController", ",", "self", ")", ".", "register_view", "(", "view", ")", "self", ".", "view", "[", "'notebook'", "]", ".", "connect", "(", "'switch-page'", ",", "self", ".", "on_switch_page", ")", "# Add all already open state machines", "for", "state_machine", "in", "self", ".", "model", ".", "state_machines", ".", "values", "(", ")", ":", "self", ".", "add_graphical_state_machine_editor", "(", "state_machine", ")" ]
Called when the View was registered
[ "Called", "when", "the", "View", "was", "registered" ]
python
train
TomAugspurger/engarde
docs/sphinxext/ipython_directive.py
https://github.com/TomAugspurger/engarde/blob/e7ea040cf0d20aee7ca4375b8c27caa2d9e43945/docs/sphinxext/ipython_directive.py#L386-L499
def process_input(self, data, input_prompt, lineno): """ Process data block for INPUT token. """ decorator, input, rest = data image_file = None image_directive = None is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = (decorator is not None and \ decorator.startswith('@doctest')) or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_okexcept = decorator=='@okexcept' or self.is_okexcept is_okwarning = decorator=='@okwarning' or self.is_okwarning is_savefig = decorator is not None and \ decorator.startswith('@savefig') # set the encodings to be used by DecodingStringIO # to convert the execution output into unicode if # needed. this attrib is set by IpythonDirective.run() # based on the specified block options, defaulting to ['ut self.cout.set_encodings(self.output_encoding) input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False # Hold the execution count, if requested to do so. if is_suppress and self.hold_count: store_history = False else: store_history = True # Note: catch_warnings is not thread safe with warnings.catch_warnings(record=True) as ws: for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i == 0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') # context information filename = self.state.document.current_source lineno = self.state.document.current_line # output any exceptions raised during execution to stdout # unless :okexcept: has been specified. if not is_okexcept and "Traceback" in output: s = "\nException in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okexcept: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write(output) sys.stdout.write('<<<' + ('-' * 73) + '\n\n') # output any warning raised during execution to stdout # unless :okwarning: has been specified. if not is_okwarning: for w in ws: s = "\nWarning in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okwarning: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write('-' * 76 + '\n') s=warnings.formatwarning(w.message, w.category, w.filename, w.lineno, w.line) sys.stdout.write(s) sys.stdout.write('<<<' + ('-' * 73) + '\n') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, decorator, image_file, image_directive)
[ "def", "process_input", "(", "self", ",", "data", ",", "input_prompt", ",", "lineno", ")", ":", "decorator", ",", "input", ",", "rest", "=", "data", "image_file", "=", "None", "image_directive", "=", "None", "is_verbatim", "=", "decorator", "==", "'@verbatim'", "or", "self", ".", "is_verbatim", "is_doctest", "=", "(", "decorator", "is", "not", "None", "and", "decorator", ".", "startswith", "(", "'@doctest'", ")", ")", "or", "self", ".", "is_doctest", "is_suppress", "=", "decorator", "==", "'@suppress'", "or", "self", ".", "is_suppress", "is_okexcept", "=", "decorator", "==", "'@okexcept'", "or", "self", ".", "is_okexcept", "is_okwarning", "=", "decorator", "==", "'@okwarning'", "or", "self", ".", "is_okwarning", "is_savefig", "=", "decorator", "is", "not", "None", "and", "decorator", ".", "startswith", "(", "'@savefig'", ")", "# set the encodings to be used by DecodingStringIO", "# to convert the execution output into unicode if", "# needed. this attrib is set by IpythonDirective.run()", "# based on the specified block options, defaulting to ['ut", "self", ".", "cout", ".", "set_encodings", "(", "self", ".", "output_encoding", ")", "input_lines", "=", "input", ".", "split", "(", "'\\n'", ")", "if", "len", "(", "input_lines", ")", ">", "1", ":", "if", "input_lines", "[", "-", "1", "]", "!=", "\"\"", ":", "input_lines", ".", "append", "(", "''", ")", "# make sure there's a blank line", "# so splitter buffer gets reset", "continuation", "=", "' %s:'", "%", "''", ".", "join", "(", "[", "'.'", "]", "*", "(", "len", "(", "str", "(", "lineno", ")", ")", "+", "2", ")", ")", "if", "is_savefig", ":", "image_file", ",", "image_directive", "=", "self", ".", "process_image", "(", "decorator", ")", "ret", "=", "[", "]", "is_semicolon", "=", "False", "# Hold the execution count, if requested to do so.", "if", "is_suppress", "and", "self", ".", "hold_count", ":", "store_history", "=", "False", "else", ":", "store_history", "=", "True", "# Note: catch_warnings is not thread safe", "with", "warnings", ".", "catch_warnings", "(", "record", "=", "True", ")", "as", "ws", ":", "for", "i", ",", "line", "in", "enumerate", "(", "input_lines", ")", ":", "if", "line", ".", "endswith", "(", "';'", ")", ":", "is_semicolon", "=", "True", "if", "i", "==", "0", ":", "# process the first input line", "if", "is_verbatim", ":", "self", ".", "process_input_line", "(", "''", ")", "self", ".", "IP", ".", "execution_count", "+=", "1", "# increment it anyway", "else", ":", "# only submit the line in non-verbatim mode", "self", ".", "process_input_line", "(", "line", ",", "store_history", "=", "store_history", ")", "formatted_line", "=", "'%s %s'", "%", "(", "input_prompt", ",", "line", ")", "else", ":", "# process a continuation line", "if", "not", "is_verbatim", ":", "self", ".", "process_input_line", "(", "line", ",", "store_history", "=", "store_history", ")", "formatted_line", "=", "'%s %s'", "%", "(", "continuation", ",", "line", ")", "if", "not", "is_suppress", ":", "ret", ".", "append", "(", "formatted_line", ")", "if", "not", "is_suppress", "and", "len", "(", "rest", ".", "strip", "(", ")", ")", "and", "is_verbatim", ":", "# the \"rest\" is the standard output of the", "# input, which needs to be added in", "# verbatim mode", "ret", ".", "append", "(", "rest", ")", "self", ".", "cout", ".", "seek", "(", "0", ")", "output", "=", "self", ".", "cout", ".", "read", "(", ")", "if", "not", "is_suppress", "and", "not", "is_semicolon", ":", "ret", ".", "append", "(", "output", ")", "elif", "is_semicolon", ":", "# get spacing right", "ret", ".", "append", "(", "''", ")", "# context information", "filename", "=", "self", ".", "state", ".", "document", ".", "current_source", "lineno", "=", "self", ".", "state", ".", "document", ".", "current_line", "# output any exceptions raised during execution to stdout", "# unless :okexcept: has been specified.", "if", "not", "is_okexcept", "and", "\"Traceback\"", "in", "output", ":", "s", "=", "\"\\nException in %s at block ending on line %s\\n\"", "%", "(", "filename", ",", "lineno", ")", "s", "+=", "\"Specify :okexcept: as an option in the ipython:: block to suppress this message\\n\"", "sys", ".", "stdout", ".", "write", "(", "'\\n\\n>>>'", "+", "(", "'-'", "*", "73", ")", ")", "sys", ".", "stdout", ".", "write", "(", "s", ")", "sys", ".", "stdout", ".", "write", "(", "output", ")", "sys", ".", "stdout", ".", "write", "(", "'<<<'", "+", "(", "'-'", "*", "73", ")", "+", "'\\n\\n'", ")", "# output any warning raised during execution to stdout", "# unless :okwarning: has been specified.", "if", "not", "is_okwarning", ":", "for", "w", "in", "ws", ":", "s", "=", "\"\\nWarning in %s at block ending on line %s\\n\"", "%", "(", "filename", ",", "lineno", ")", "s", "+=", "\"Specify :okwarning: as an option in the ipython:: block to suppress this message\\n\"", "sys", ".", "stdout", ".", "write", "(", "'\\n\\n>>>'", "+", "(", "'-'", "*", "73", ")", ")", "sys", ".", "stdout", ".", "write", "(", "s", ")", "sys", ".", "stdout", ".", "write", "(", "'-'", "*", "76", "+", "'\\n'", ")", "s", "=", "warnings", ".", "formatwarning", "(", "w", ".", "message", ",", "w", ".", "category", ",", "w", ".", "filename", ",", "w", ".", "lineno", ",", "w", ".", "line", ")", "sys", ".", "stdout", ".", "write", "(", "s", ")", "sys", ".", "stdout", ".", "write", "(", "'<<<'", "+", "(", "'-'", "*", "73", ")", "+", "'\\n'", ")", "self", ".", "cout", ".", "truncate", "(", "0", ")", "return", "(", "ret", ",", "input_lines", ",", "output", ",", "is_doctest", ",", "decorator", ",", "image_file", ",", "image_directive", ")" ]
Process data block for INPUT token.
[ "Process", "data", "block", "for", "INPUT", "token", "." ]
python
train
jtwhite79/pyemu
pyemu/en.py
https://github.com/jtwhite79/pyemu/blob/c504d8e7a4097cec07655a6318d275739bd8148a/pyemu/en.py#L478-L494
def from_binary(cls,pst,filename): """instantiate an observation obsemble from a jco-type file Parameters ---------- pst : pyemu.Pst a Pst instance filename : str the binary file name Returns ------- oe : ObservationEnsemble """ m = Matrix.from_binary(filename) return ObservationEnsemble(data=m.x,pst=pst, index=m.row_names)
[ "def", "from_binary", "(", "cls", ",", "pst", ",", "filename", ")", ":", "m", "=", "Matrix", ".", "from_binary", "(", "filename", ")", "return", "ObservationEnsemble", "(", "data", "=", "m", ".", "x", ",", "pst", "=", "pst", ",", "index", "=", "m", ".", "row_names", ")" ]
instantiate an observation obsemble from a jco-type file Parameters ---------- pst : pyemu.Pst a Pst instance filename : str the binary file name Returns ------- oe : ObservationEnsemble
[ "instantiate", "an", "observation", "obsemble", "from", "a", "jco", "-", "type", "file" ]
python
train