repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
sequence | docstring
stringlengths 1
46.9k
| docstring_tokens
sequence | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
sveetch/boussole | boussole/conf/post_processor.py | https://github.com/sveetch/boussole/blob/22cc644e9d633f41ebfc167d427a71c1726cee21/boussole/conf/post_processor.py#L103-L126 | def _validate_path(self, settings, name, value):
"""
Validate path exists
Args:
settings (dict): Current settings.
name (str): Setting name.
value (str): Path to validate.
Raises:
boussole.exceptions.SettingsInvalidError: If path does not exists.
Returns:
str: Validated path.
"""
if not os.path.exists(value):
raise SettingsInvalidError("Path from setting '{name}' does not "
"exists: {value}".format(
name=name,
value=value
))
return value | [
"def",
"_validate_path",
"(",
"self",
",",
"settings",
",",
"name",
",",
"value",
")",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"value",
")",
":",
"raise",
"SettingsInvalidError",
"(",
"\"Path from setting '{name}' does not \"",
"\"exists: {value}\"",
".",
"format",
"(",
"name",
"=",
"name",
",",
"value",
"=",
"value",
")",
")",
"return",
"value"
] | Validate path exists
Args:
settings (dict): Current settings.
name (str): Setting name.
value (str): Path to validate.
Raises:
boussole.exceptions.SettingsInvalidError: If path does not exists.
Returns:
str: Validated path. | [
"Validate",
"path",
"exists"
] | python | train |
wonambi-python/wonambi | wonambi/ioeeg/ktlx.py | https://github.com/wonambi-python/wonambi/blob/1d8e3d7e53df8017c199f703bcab582914676e76/wonambi/ioeeg/ktlx.py#L626-L665 | def _read_snc(snc_file):
"""Read Synchronization File and return sample stamp and time
Returns
-------
sampleStamp : list of int
Sample number from start of study
sampleTime : list of datetime.datetime
File time representation of sampleStamp
Notes
-----
The synchronization file is used to calculate a FILETIME given a sample
stamp (and vise-versa). Theoretically, it is possible to calculate a sample
stamp's FILETIME given the FILETIME of sample stamp zero (when sampling
started) and the sample rate. However, because the sample rate cannot be
represented with full precision the accuracy of the FILETIME calculation is
affected.
To compensate for the lack of accuracy, the synchronization file maintains
a sample stamp-to-computer time (called, MasterTime) mapping. Interpolation
is then used to calculate a FILETIME given a sample stamp (and vise-versa).
The attributes, sampleStamp and sampleTime, are used to predict (using
interpolation) the FILETIME based upon a given sample stamp (and
vise-versa). Currently, the only use for this conversion process is to
enable correlation of EEG (sample_stamp) data with other sources of data
such as Video (which works in FILETIME).
"""
snc_raw_dtype = dtype([('sampleStamp', '<i'),
('sampleTime', '<q')])
with snc_file.open('rb') as f:
f.seek(352) # end of header
snc_raw = fromfile(f, dtype=snc_raw_dtype)
sampleStamp = snc_raw['sampleStamp']
sampleTime = asarray([_filetime_to_dt(x) for x in snc_raw['sampleTime']])
return sampleStamp, sampleTime | [
"def",
"_read_snc",
"(",
"snc_file",
")",
":",
"snc_raw_dtype",
"=",
"dtype",
"(",
"[",
"(",
"'sampleStamp'",
",",
"'<i'",
")",
",",
"(",
"'sampleTime'",
",",
"'<q'",
")",
"]",
")",
"with",
"snc_file",
".",
"open",
"(",
"'rb'",
")",
"as",
"f",
":",
"f",
".",
"seek",
"(",
"352",
")",
"# end of header",
"snc_raw",
"=",
"fromfile",
"(",
"f",
",",
"dtype",
"=",
"snc_raw_dtype",
")",
"sampleStamp",
"=",
"snc_raw",
"[",
"'sampleStamp'",
"]",
"sampleTime",
"=",
"asarray",
"(",
"[",
"_filetime_to_dt",
"(",
"x",
")",
"for",
"x",
"in",
"snc_raw",
"[",
"'sampleTime'",
"]",
"]",
")",
"return",
"sampleStamp",
",",
"sampleTime"
] | Read Synchronization File and return sample stamp and time
Returns
-------
sampleStamp : list of int
Sample number from start of study
sampleTime : list of datetime.datetime
File time representation of sampleStamp
Notes
-----
The synchronization file is used to calculate a FILETIME given a sample
stamp (and vise-versa). Theoretically, it is possible to calculate a sample
stamp's FILETIME given the FILETIME of sample stamp zero (when sampling
started) and the sample rate. However, because the sample rate cannot be
represented with full precision the accuracy of the FILETIME calculation is
affected.
To compensate for the lack of accuracy, the synchronization file maintains
a sample stamp-to-computer time (called, MasterTime) mapping. Interpolation
is then used to calculate a FILETIME given a sample stamp (and vise-versa).
The attributes, sampleStamp and sampleTime, are used to predict (using
interpolation) the FILETIME based upon a given sample stamp (and
vise-versa). Currently, the only use for this conversion process is to
enable correlation of EEG (sample_stamp) data with other sources of data
such as Video (which works in FILETIME). | [
"Read",
"Synchronization",
"File",
"and",
"return",
"sample",
"stamp",
"and",
"time"
] | python | train |
pip-services3-python/pip-services3-commons-python | pip_services3_commons/random/RandomText.py | https://github.com/pip-services3-python/pip-services3-commons-python/blob/22cbbb3e91e49717f65c083d36147fdb07ba9e3b/pip_services3_commons/random/RandomText.py#L148-L165 | def name():
"""
Generates a random person's name which has the following structure
<optional prefix> <first name> <second name> <optional suffix>
:return: a random name.
"""
result = ""
if RandomBoolean.chance(3, 5):
result += random.choice(_name_prefixes) + " "
result += random.choice(_first_names) + " " + random.choice(_last_names)
if RandomBoolean.chance(5, 10):
result += " " + random.choice(_name_suffixes)
return result | [
"def",
"name",
"(",
")",
":",
"result",
"=",
"\"\"",
"if",
"RandomBoolean",
".",
"chance",
"(",
"3",
",",
"5",
")",
":",
"result",
"+=",
"random",
".",
"choice",
"(",
"_name_prefixes",
")",
"+",
"\" \"",
"result",
"+=",
"random",
".",
"choice",
"(",
"_first_names",
")",
"+",
"\" \"",
"+",
"random",
".",
"choice",
"(",
"_last_names",
")",
"if",
"RandomBoolean",
".",
"chance",
"(",
"5",
",",
"10",
")",
":",
"result",
"+=",
"\" \"",
"+",
"random",
".",
"choice",
"(",
"_name_suffixes",
")",
"return",
"result"
] | Generates a random person's name which has the following structure
<optional prefix> <first name> <second name> <optional suffix>
:return: a random name. | [
"Generates",
"a",
"random",
"person",
"s",
"name",
"which",
"has",
"the",
"following",
"structure",
"<optional",
"prefix",
">",
"<first",
"name",
">",
"<second",
"name",
">",
"<optional",
"suffix",
">"
] | python | train |
allenai/allennlp | allennlp/state_machines/states/lambda_grammar_statelet.py | https://github.com/allenai/allennlp/blob/648a36f77db7e45784c047176074f98534c76636/allennlp/state_machines/states/lambda_grammar_statelet.py#L102-L158 | def take_action(self, production_rule: str) -> 'LambdaGrammarStatelet':
"""
Takes an action in the current grammar state, returning a new grammar state with whatever
updates are necessary. The production rule is assumed to be formatted as "LHS -> RHS".
This will update the non-terminal stack and the context-dependent actions. Updating the
non-terminal stack involves popping the non-terminal that was expanded off of the stack,
then pushing on any non-terminals in the production rule back on the stack. We push the
non-terminals on in `reverse` order, so that the first non-terminal in the production rule
gets popped off the stack first.
For example, if our current ``nonterminal_stack`` is ``["r", "<e,r>", "d"]``, and
``action`` is ``d -> [<e,d>, e]``, the resulting stack will be ``["r", "<e,r>", "e",
"<e,d>"]``.
"""
left_side, right_side = production_rule.split(' -> ')
assert self._nonterminal_stack[-1] == left_side, (f"Tried to expand {self._nonterminal_stack[-1]}"
f"but got rule {left_side} -> {right_side}")
assert all(self._lambda_stacks[key][-1] == left_side for key in self._lambda_stacks)
new_stack = self._nonterminal_stack[:-1]
new_lambda_stacks = {key: self._lambda_stacks[key][:-1] for key in self._lambda_stacks}
productions = self._get_productions_from_string(right_side)
# Looking for lambda productions, but not for cells or columns with the word "lambda" in
# them.
if 'lambda' in productions[0] and 'fb:' not in productions[0]:
production = productions[0]
if production[0] == "'" and production[-1] == "'":
# The production rule with a lambda is typically "<t,d> -> ['lambda x', d]". We
# need to strip the quotes.
production = production[1:-1]
lambda_variable = production.split(' ')[1]
# The left side must be formatted as "<t,d>", where "t" is the type of the lambda
# variable, and "d" is the return type of the lambda function. We need to pull out the
# "t" here. TODO(mattg): this is pretty limiting, but I'm not sure how general we
# should make this.
if len(left_side) != 5:
raise NotImplementedError("Can't handle this type yet:", left_side)
lambda_type = left_side[1]
new_lambda_stacks[(lambda_type, lambda_variable)] = []
for production in reversed(productions):
if self._is_nonterminal(production):
new_stack.append(production)
for lambda_stack in new_lambda_stacks.values():
lambda_stack.append(production)
# If any of the lambda stacks have now become empty, we remove them from our dictionary.
new_lambda_stacks = {key: new_lambda_stacks[key]
for key in new_lambda_stacks if new_lambda_stacks[key]}
return LambdaGrammarStatelet(nonterminal_stack=new_stack,
lambda_stacks=new_lambda_stacks,
valid_actions=self._valid_actions,
context_actions=self._context_actions,
is_nonterminal=self._is_nonterminal) | [
"def",
"take_action",
"(",
"self",
",",
"production_rule",
":",
"str",
")",
"->",
"'LambdaGrammarStatelet'",
":",
"left_side",
",",
"right_side",
"=",
"production_rule",
".",
"split",
"(",
"' -> '",
")",
"assert",
"self",
".",
"_nonterminal_stack",
"[",
"-",
"1",
"]",
"==",
"left_side",
",",
"(",
"f\"Tried to expand {self._nonterminal_stack[-1]}\"",
"f\"but got rule {left_side} -> {right_side}\"",
")",
"assert",
"all",
"(",
"self",
".",
"_lambda_stacks",
"[",
"key",
"]",
"[",
"-",
"1",
"]",
"==",
"left_side",
"for",
"key",
"in",
"self",
".",
"_lambda_stacks",
")",
"new_stack",
"=",
"self",
".",
"_nonterminal_stack",
"[",
":",
"-",
"1",
"]",
"new_lambda_stacks",
"=",
"{",
"key",
":",
"self",
".",
"_lambda_stacks",
"[",
"key",
"]",
"[",
":",
"-",
"1",
"]",
"for",
"key",
"in",
"self",
".",
"_lambda_stacks",
"}",
"productions",
"=",
"self",
".",
"_get_productions_from_string",
"(",
"right_side",
")",
"# Looking for lambda productions, but not for cells or columns with the word \"lambda\" in",
"# them.",
"if",
"'lambda'",
"in",
"productions",
"[",
"0",
"]",
"and",
"'fb:'",
"not",
"in",
"productions",
"[",
"0",
"]",
":",
"production",
"=",
"productions",
"[",
"0",
"]",
"if",
"production",
"[",
"0",
"]",
"==",
"\"'\"",
"and",
"production",
"[",
"-",
"1",
"]",
"==",
"\"'\"",
":",
"# The production rule with a lambda is typically \"<t,d> -> ['lambda x', d]\". We",
"# need to strip the quotes.",
"production",
"=",
"production",
"[",
"1",
":",
"-",
"1",
"]",
"lambda_variable",
"=",
"production",
".",
"split",
"(",
"' '",
")",
"[",
"1",
"]",
"# The left side must be formatted as \"<t,d>\", where \"t\" is the type of the lambda",
"# variable, and \"d\" is the return type of the lambda function. We need to pull out the",
"# \"t\" here. TODO(mattg): this is pretty limiting, but I'm not sure how general we",
"# should make this.",
"if",
"len",
"(",
"left_side",
")",
"!=",
"5",
":",
"raise",
"NotImplementedError",
"(",
"\"Can't handle this type yet:\"",
",",
"left_side",
")",
"lambda_type",
"=",
"left_side",
"[",
"1",
"]",
"new_lambda_stacks",
"[",
"(",
"lambda_type",
",",
"lambda_variable",
")",
"]",
"=",
"[",
"]",
"for",
"production",
"in",
"reversed",
"(",
"productions",
")",
":",
"if",
"self",
".",
"_is_nonterminal",
"(",
"production",
")",
":",
"new_stack",
".",
"append",
"(",
"production",
")",
"for",
"lambda_stack",
"in",
"new_lambda_stacks",
".",
"values",
"(",
")",
":",
"lambda_stack",
".",
"append",
"(",
"production",
")",
"# If any of the lambda stacks have now become empty, we remove them from our dictionary.",
"new_lambda_stacks",
"=",
"{",
"key",
":",
"new_lambda_stacks",
"[",
"key",
"]",
"for",
"key",
"in",
"new_lambda_stacks",
"if",
"new_lambda_stacks",
"[",
"key",
"]",
"}",
"return",
"LambdaGrammarStatelet",
"(",
"nonterminal_stack",
"=",
"new_stack",
",",
"lambda_stacks",
"=",
"new_lambda_stacks",
",",
"valid_actions",
"=",
"self",
".",
"_valid_actions",
",",
"context_actions",
"=",
"self",
".",
"_context_actions",
",",
"is_nonterminal",
"=",
"self",
".",
"_is_nonterminal",
")"
] | Takes an action in the current grammar state, returning a new grammar state with whatever
updates are necessary. The production rule is assumed to be formatted as "LHS -> RHS".
This will update the non-terminal stack and the context-dependent actions. Updating the
non-terminal stack involves popping the non-terminal that was expanded off of the stack,
then pushing on any non-terminals in the production rule back on the stack. We push the
non-terminals on in `reverse` order, so that the first non-terminal in the production rule
gets popped off the stack first.
For example, if our current ``nonterminal_stack`` is ``["r", "<e,r>", "d"]``, and
``action`` is ``d -> [<e,d>, e]``, the resulting stack will be ``["r", "<e,r>", "e",
"<e,d>"]``. | [
"Takes",
"an",
"action",
"in",
"the",
"current",
"grammar",
"state",
"returning",
"a",
"new",
"grammar",
"state",
"with",
"whatever",
"updates",
"are",
"necessary",
".",
"The",
"production",
"rule",
"is",
"assumed",
"to",
"be",
"formatted",
"as",
"LHS",
"-",
">",
"RHS",
"."
] | python | train |
serkanyersen/underscore.py | src/underscore.py | https://github.com/serkanyersen/underscore.py/blob/07c25c3f0f789536e4ad47aa315faccc0da9602f/src/underscore.py#L718-L732 | def lastIndexOf(self, item):
"""
Return the position of the last occurrence of an
item in an array, or -1 if the item is not included in the array.
"""
array = self.obj
i = len(array) - 1
if not (self._clean.isList() or self._clean.isTuple()):
return self._wrap(-1)
while i > -1:
if array[i] is item:
return self._wrap(i)
i -= 1
return self._wrap(-1) | [
"def",
"lastIndexOf",
"(",
"self",
",",
"item",
")",
":",
"array",
"=",
"self",
".",
"obj",
"i",
"=",
"len",
"(",
"array",
")",
"-",
"1",
"if",
"not",
"(",
"self",
".",
"_clean",
".",
"isList",
"(",
")",
"or",
"self",
".",
"_clean",
".",
"isTuple",
"(",
")",
")",
":",
"return",
"self",
".",
"_wrap",
"(",
"-",
"1",
")",
"while",
"i",
">",
"-",
"1",
":",
"if",
"array",
"[",
"i",
"]",
"is",
"item",
":",
"return",
"self",
".",
"_wrap",
"(",
"i",
")",
"i",
"-=",
"1",
"return",
"self",
".",
"_wrap",
"(",
"-",
"1",
")"
] | Return the position of the last occurrence of an
item in an array, or -1 if the item is not included in the array. | [
"Return",
"the",
"position",
"of",
"the",
"last",
"occurrence",
"of",
"an",
"item",
"in",
"an",
"array",
"or",
"-",
"1",
"if",
"the",
"item",
"is",
"not",
"included",
"in",
"the",
"array",
"."
] | python | train |
IdentityPython/pysaml2 | src/saml2/client.py | https://github.com/IdentityPython/pysaml2/blob/d3aa78eeb7d37c12688f783cb4db1c7263a14ad6/src/saml2/client.py#L287-L293 | def is_logged_in(self, name_id):
""" Check if user is in the cache
:param name_id: The identifier of the subject
"""
identity = self.users.get_identity(name_id)[0]
return bool(identity) | [
"def",
"is_logged_in",
"(",
"self",
",",
"name_id",
")",
":",
"identity",
"=",
"self",
".",
"users",
".",
"get_identity",
"(",
"name_id",
")",
"[",
"0",
"]",
"return",
"bool",
"(",
"identity",
")"
] | Check if user is in the cache
:param name_id: The identifier of the subject | [
"Check",
"if",
"user",
"is",
"in",
"the",
"cache"
] | python | train |
kcallin/mqtt-codec | mqtt_codec/io.py | https://github.com/kcallin/mqtt-codec/blob/0f754250cc3f44f4376777e7e8b3676c5a4d413a/mqtt_codec/io.py#L439-L463 | def read(self, max_bytes=1):
"""Read at most `max_bytes` from internal buffer.
Parameters
-----------
max_bytes: int
Maximum number of bytes to read.
Returns
--------
bytes
Bytes extracted from internal buffer. Length may be less
than ``max_bytes``. On end-of file returns a bytes object
with zero-length.
"""
if self.limit is None:
b = self.__f.read(max_bytes)
else:
if self.__num_bytes_consumed + max_bytes > self.limit:
max_bytes = self.limit - self.__num_bytes_consumed
b = self.__f.read(max_bytes)
self.__num_bytes_consumed += len(b)
return b | [
"def",
"read",
"(",
"self",
",",
"max_bytes",
"=",
"1",
")",
":",
"if",
"self",
".",
"limit",
"is",
"None",
":",
"b",
"=",
"self",
".",
"__f",
".",
"read",
"(",
"max_bytes",
")",
"else",
":",
"if",
"self",
".",
"__num_bytes_consumed",
"+",
"max_bytes",
">",
"self",
".",
"limit",
":",
"max_bytes",
"=",
"self",
".",
"limit",
"-",
"self",
".",
"__num_bytes_consumed",
"b",
"=",
"self",
".",
"__f",
".",
"read",
"(",
"max_bytes",
")",
"self",
".",
"__num_bytes_consumed",
"+=",
"len",
"(",
"b",
")",
"return",
"b"
] | Read at most `max_bytes` from internal buffer.
Parameters
-----------
max_bytes: int
Maximum number of bytes to read.
Returns
--------
bytes
Bytes extracted from internal buffer. Length may be less
than ``max_bytes``. On end-of file returns a bytes object
with zero-length. | [
"Read",
"at",
"most",
"max_bytes",
"from",
"internal",
"buffer",
"."
] | python | train |
openai/baselines | baselines/her/her_sampler.py | https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/her_sampler.py#L4-L63 | def make_sample_her_transitions(replay_strategy, replay_k, reward_fun):
"""Creates a sample function that can be used for HER experience replay.
Args:
replay_strategy (in ['future', 'none']): the HER replay strategy; if set to 'none',
regular DDPG experience replay is used
replay_k (int): the ratio between HER replays and regular replays (e.g. k = 4 -> 4 times
as many HER replays as regular replays are used)
reward_fun (function): function to re-compute the reward with substituted goals
"""
if replay_strategy == 'future':
future_p = 1 - (1. / (1 + replay_k))
else: # 'replay_strategy' == 'none'
future_p = 0
def _sample_her_transitions(episode_batch, batch_size_in_transitions):
"""episode_batch is {key: array(buffer_size x T x dim_key)}
"""
T = episode_batch['u'].shape[1]
rollout_batch_size = episode_batch['u'].shape[0]
batch_size = batch_size_in_transitions
# Select which episodes and time steps to use.
episode_idxs = np.random.randint(0, rollout_batch_size, batch_size)
t_samples = np.random.randint(T, size=batch_size)
transitions = {key: episode_batch[key][episode_idxs, t_samples].copy()
for key in episode_batch.keys()}
# Select future time indexes proportional with probability future_p. These
# will be used for HER replay by substituting in future goals.
her_indexes = np.where(np.random.uniform(size=batch_size) < future_p)
future_offset = np.random.uniform(size=batch_size) * (T - t_samples)
future_offset = future_offset.astype(int)
future_t = (t_samples + 1 + future_offset)[her_indexes]
# Replace goal with achieved goal but only for the previously-selected
# HER transitions (as defined by her_indexes). For the other transitions,
# keep the original goal.
future_ag = episode_batch['ag'][episode_idxs[her_indexes], future_t]
transitions['g'][her_indexes] = future_ag
# Reconstruct info dictionary for reward computation.
info = {}
for key, value in transitions.items():
if key.startswith('info_'):
info[key.replace('info_', '')] = value
# Re-compute reward since we may have substituted the goal.
reward_params = {k: transitions[k] for k in ['ag_2', 'g']}
reward_params['info'] = info
transitions['r'] = reward_fun(**reward_params)
transitions = {k: transitions[k].reshape(batch_size, *transitions[k].shape[1:])
for k in transitions.keys()}
assert(transitions['u'].shape[0] == batch_size_in_transitions)
return transitions
return _sample_her_transitions | [
"def",
"make_sample_her_transitions",
"(",
"replay_strategy",
",",
"replay_k",
",",
"reward_fun",
")",
":",
"if",
"replay_strategy",
"==",
"'future'",
":",
"future_p",
"=",
"1",
"-",
"(",
"1.",
"/",
"(",
"1",
"+",
"replay_k",
")",
")",
"else",
":",
"# 'replay_strategy' == 'none'",
"future_p",
"=",
"0",
"def",
"_sample_her_transitions",
"(",
"episode_batch",
",",
"batch_size_in_transitions",
")",
":",
"\"\"\"episode_batch is {key: array(buffer_size x T x dim_key)}\n \"\"\"",
"T",
"=",
"episode_batch",
"[",
"'u'",
"]",
".",
"shape",
"[",
"1",
"]",
"rollout_batch_size",
"=",
"episode_batch",
"[",
"'u'",
"]",
".",
"shape",
"[",
"0",
"]",
"batch_size",
"=",
"batch_size_in_transitions",
"# Select which episodes and time steps to use.",
"episode_idxs",
"=",
"np",
".",
"random",
".",
"randint",
"(",
"0",
",",
"rollout_batch_size",
",",
"batch_size",
")",
"t_samples",
"=",
"np",
".",
"random",
".",
"randint",
"(",
"T",
",",
"size",
"=",
"batch_size",
")",
"transitions",
"=",
"{",
"key",
":",
"episode_batch",
"[",
"key",
"]",
"[",
"episode_idxs",
",",
"t_samples",
"]",
".",
"copy",
"(",
")",
"for",
"key",
"in",
"episode_batch",
".",
"keys",
"(",
")",
"}",
"# Select future time indexes proportional with probability future_p. These",
"# will be used for HER replay by substituting in future goals.",
"her_indexes",
"=",
"np",
".",
"where",
"(",
"np",
".",
"random",
".",
"uniform",
"(",
"size",
"=",
"batch_size",
")",
"<",
"future_p",
")",
"future_offset",
"=",
"np",
".",
"random",
".",
"uniform",
"(",
"size",
"=",
"batch_size",
")",
"*",
"(",
"T",
"-",
"t_samples",
")",
"future_offset",
"=",
"future_offset",
".",
"astype",
"(",
"int",
")",
"future_t",
"=",
"(",
"t_samples",
"+",
"1",
"+",
"future_offset",
")",
"[",
"her_indexes",
"]",
"# Replace goal with achieved goal but only for the previously-selected",
"# HER transitions (as defined by her_indexes). For the other transitions,",
"# keep the original goal.",
"future_ag",
"=",
"episode_batch",
"[",
"'ag'",
"]",
"[",
"episode_idxs",
"[",
"her_indexes",
"]",
",",
"future_t",
"]",
"transitions",
"[",
"'g'",
"]",
"[",
"her_indexes",
"]",
"=",
"future_ag",
"# Reconstruct info dictionary for reward computation.",
"info",
"=",
"{",
"}",
"for",
"key",
",",
"value",
"in",
"transitions",
".",
"items",
"(",
")",
":",
"if",
"key",
".",
"startswith",
"(",
"'info_'",
")",
":",
"info",
"[",
"key",
".",
"replace",
"(",
"'info_'",
",",
"''",
")",
"]",
"=",
"value",
"# Re-compute reward since we may have substituted the goal.",
"reward_params",
"=",
"{",
"k",
":",
"transitions",
"[",
"k",
"]",
"for",
"k",
"in",
"[",
"'ag_2'",
",",
"'g'",
"]",
"}",
"reward_params",
"[",
"'info'",
"]",
"=",
"info",
"transitions",
"[",
"'r'",
"]",
"=",
"reward_fun",
"(",
"*",
"*",
"reward_params",
")",
"transitions",
"=",
"{",
"k",
":",
"transitions",
"[",
"k",
"]",
".",
"reshape",
"(",
"batch_size",
",",
"*",
"transitions",
"[",
"k",
"]",
".",
"shape",
"[",
"1",
":",
"]",
")",
"for",
"k",
"in",
"transitions",
".",
"keys",
"(",
")",
"}",
"assert",
"(",
"transitions",
"[",
"'u'",
"]",
".",
"shape",
"[",
"0",
"]",
"==",
"batch_size_in_transitions",
")",
"return",
"transitions",
"return",
"_sample_her_transitions"
] | Creates a sample function that can be used for HER experience replay.
Args:
replay_strategy (in ['future', 'none']): the HER replay strategy; if set to 'none',
regular DDPG experience replay is used
replay_k (int): the ratio between HER replays and regular replays (e.g. k = 4 -> 4 times
as many HER replays as regular replays are used)
reward_fun (function): function to re-compute the reward with substituted goals | [
"Creates",
"a",
"sample",
"function",
"that",
"can",
"be",
"used",
"for",
"HER",
"experience",
"replay",
"."
] | python | valid |
linkhub-sdk/popbill.py | popbill/closedownService.py | https://github.com/linkhub-sdk/popbill.py/blob/68a0dd7f7a937603318e93be321fde73c50b96cc/popbill/closedownService.py#L39-L51 | def getUnitCost(self, CorpNum):
""" 휴폐업조회 단가 확인.
args
CorpNum : 팝빌회원 사업자번호
return
발행단가 by float
raise
PopbillException
"""
result = self._httpget('/CloseDown/UnitCost', CorpNum)
return float(result.unitCost) | [
"def",
"getUnitCost",
"(",
"self",
",",
"CorpNum",
")",
":",
"result",
"=",
"self",
".",
"_httpget",
"(",
"'/CloseDown/UnitCost'",
",",
"CorpNum",
")",
"return",
"float",
"(",
"result",
".",
"unitCost",
")"
] | 휴폐업조회 단가 확인.
args
CorpNum : 팝빌회원 사업자번호
return
발행단가 by float
raise
PopbillException | [
"휴폐업조회",
"단가",
"확인",
".",
"args",
"CorpNum",
":",
"팝빌회원",
"사업자번호",
"return",
"발행단가",
"by",
"float",
"raise",
"PopbillException"
] | python | train |
horazont/aioxmpp | aioxmpp/stream.py | https://github.com/horazont/aioxmpp/blob/22a68e5e1d23f2a4dee470092adbd4672f9ef061/aioxmpp/stream.py#L1894-L1909 | def stop(self):
"""
Send a signal to the main broker task to terminate. You have to check
:attr:`running` and possibly wait for it to become :data:`False` ---
the task takes at least one loop through the event loop to terminate.
It is guarenteed that the task will not attempt to send stanzas over
the existing `xmlstream` after a call to :meth:`stop` has been made.
It is legal to call :meth:`stop` even if the task is already
stopped. It is a no-op in that case.
"""
if not self.running:
return
self._logger.debug("sending stop signal to task")
self._task.cancel() | [
"def",
"stop",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"running",
":",
"return",
"self",
".",
"_logger",
".",
"debug",
"(",
"\"sending stop signal to task\"",
")",
"self",
".",
"_task",
".",
"cancel",
"(",
")"
] | Send a signal to the main broker task to terminate. You have to check
:attr:`running` and possibly wait for it to become :data:`False` ---
the task takes at least one loop through the event loop to terminate.
It is guarenteed that the task will not attempt to send stanzas over
the existing `xmlstream` after a call to :meth:`stop` has been made.
It is legal to call :meth:`stop` even if the task is already
stopped. It is a no-op in that case. | [
"Send",
"a",
"signal",
"to",
"the",
"main",
"broker",
"task",
"to",
"terminate",
".",
"You",
"have",
"to",
"check",
":",
"attr",
":",
"running",
"and",
"possibly",
"wait",
"for",
"it",
"to",
"become",
":",
"data",
":",
"False",
"---",
"the",
"task",
"takes",
"at",
"least",
"one",
"loop",
"through",
"the",
"event",
"loop",
"to",
"terminate",
"."
] | python | train |
PredixDev/predixpy | predix/admin/cf/services.py | https://github.com/PredixDev/predixpy/blob/a0cb34cf40f716229351bb6d90d6ecace958c81f/predix/admin/cf/services.py#L50-L55 | def delete_service_bindings(self, service_name):
"""
Remove service bindings to applications.
"""
instance = self.get_instance(service_name)
return self.api.delete(instance['service_bindings_url']) | [
"def",
"delete_service_bindings",
"(",
"self",
",",
"service_name",
")",
":",
"instance",
"=",
"self",
".",
"get_instance",
"(",
"service_name",
")",
"return",
"self",
".",
"api",
".",
"delete",
"(",
"instance",
"[",
"'service_bindings_url'",
"]",
")"
] | Remove service bindings to applications. | [
"Remove",
"service",
"bindings",
"to",
"applications",
"."
] | python | train |
thecynic/pylutron | pylutron/__init__.py | https://github.com/thecynic/pylutron/blob/4d9222c96ef7ac7ac458031c058ad93ec31cebbf/pylutron/__init__.py#L192-L227 | def _parse_area(self, area_xml):
"""Parses an Area tag, which is effectively a room, depending on how the
Lutron controller programming was done."""
area = Area(self._lutron,
name=area_xml.get('Name'),
integration_id=int(area_xml.get('IntegrationID')),
occupancy_group_id=area_xml.get('OccupancyGroupAssignedToID'))
for output_xml in area_xml.find('Outputs'):
output = self._parse_output(output_xml)
area.add_output(output)
# device group in our case means keypad
# device_group.get('Name') is the location of the keypad
for device_group in area_xml.find('DeviceGroups'):
if device_group.tag == 'DeviceGroup':
devs = device_group.find('Devices')
elif device_group.tag == 'Device':
devs = [device_group]
else:
_LOGGER.info("Unknown tag in DeviceGroups child %s" % devs)
devs = []
for device_xml in devs:
if device_xml.tag != 'Device':
continue
if device_xml.get('DeviceType') in (
'SEETOUCH_KEYPAD',
'SEETOUCH_TABLETOP_KEYPAD',
'PICO_KEYPAD',
'HYBRID_SEETOUCH_KEYPAD',
'MAIN_REPEATER'):
keypad = self._parse_keypad(device_xml)
area.add_keypad(keypad)
elif device_xml.get('DeviceType') == 'MOTION_SENSOR':
motion_sensor = self._parse_motion_sensor(device_xml)
area.add_sensor(motion_sensor)
#elif device_xml.get('DeviceType') == 'VISOR_CONTROL_RECEIVER':
return area | [
"def",
"_parse_area",
"(",
"self",
",",
"area_xml",
")",
":",
"area",
"=",
"Area",
"(",
"self",
".",
"_lutron",
",",
"name",
"=",
"area_xml",
".",
"get",
"(",
"'Name'",
")",
",",
"integration_id",
"=",
"int",
"(",
"area_xml",
".",
"get",
"(",
"'IntegrationID'",
")",
")",
",",
"occupancy_group_id",
"=",
"area_xml",
".",
"get",
"(",
"'OccupancyGroupAssignedToID'",
")",
")",
"for",
"output_xml",
"in",
"area_xml",
".",
"find",
"(",
"'Outputs'",
")",
":",
"output",
"=",
"self",
".",
"_parse_output",
"(",
"output_xml",
")",
"area",
".",
"add_output",
"(",
"output",
")",
"# device group in our case means keypad",
"# device_group.get('Name') is the location of the keypad",
"for",
"device_group",
"in",
"area_xml",
".",
"find",
"(",
"'DeviceGroups'",
")",
":",
"if",
"device_group",
".",
"tag",
"==",
"'DeviceGroup'",
":",
"devs",
"=",
"device_group",
".",
"find",
"(",
"'Devices'",
")",
"elif",
"device_group",
".",
"tag",
"==",
"'Device'",
":",
"devs",
"=",
"[",
"device_group",
"]",
"else",
":",
"_LOGGER",
".",
"info",
"(",
"\"Unknown tag in DeviceGroups child %s\"",
"%",
"devs",
")",
"devs",
"=",
"[",
"]",
"for",
"device_xml",
"in",
"devs",
":",
"if",
"device_xml",
".",
"tag",
"!=",
"'Device'",
":",
"continue",
"if",
"device_xml",
".",
"get",
"(",
"'DeviceType'",
")",
"in",
"(",
"'SEETOUCH_KEYPAD'",
",",
"'SEETOUCH_TABLETOP_KEYPAD'",
",",
"'PICO_KEYPAD'",
",",
"'HYBRID_SEETOUCH_KEYPAD'",
",",
"'MAIN_REPEATER'",
")",
":",
"keypad",
"=",
"self",
".",
"_parse_keypad",
"(",
"device_xml",
")",
"area",
".",
"add_keypad",
"(",
"keypad",
")",
"elif",
"device_xml",
".",
"get",
"(",
"'DeviceType'",
")",
"==",
"'MOTION_SENSOR'",
":",
"motion_sensor",
"=",
"self",
".",
"_parse_motion_sensor",
"(",
"device_xml",
")",
"area",
".",
"add_sensor",
"(",
"motion_sensor",
")",
"#elif device_xml.get('DeviceType') == 'VISOR_CONTROL_RECEIVER':",
"return",
"area"
] | Parses an Area tag, which is effectively a room, depending on how the
Lutron controller programming was done. | [
"Parses",
"an",
"Area",
"tag",
"which",
"is",
"effectively",
"a",
"room",
"depending",
"on",
"how",
"the",
"Lutron",
"controller",
"programming",
"was",
"done",
"."
] | python | train |
OnroerendErfgoed/crabpy_pyramid | crabpy_pyramid/renderers/crab.py | https://github.com/OnroerendErfgoed/crabpy_pyramid/blob/b727ea55838d71575db96e987b536a0bac9f6a7a/crabpy_pyramid/renderers/crab.py#L252-L264 | def item_deelgemeente_adapter(obj, request):
"""
Adapter for rendering a object of
:class:`crabpy.gateway.crab.Deelgemeente` to json.
"""
return {
'id': obj.id,
'naam': obj.naam,
'gemeente': {
'id': obj.gemeente.id,
'naam': obj.gemeente.naam
}
} | [
"def",
"item_deelgemeente_adapter",
"(",
"obj",
",",
"request",
")",
":",
"return",
"{",
"'id'",
":",
"obj",
".",
"id",
",",
"'naam'",
":",
"obj",
".",
"naam",
",",
"'gemeente'",
":",
"{",
"'id'",
":",
"obj",
".",
"gemeente",
".",
"id",
",",
"'naam'",
":",
"obj",
".",
"gemeente",
".",
"naam",
"}",
"}"
] | Adapter for rendering a object of
:class:`crabpy.gateway.crab.Deelgemeente` to json. | [
"Adapter",
"for",
"rendering",
"a",
"object",
"of",
":",
"class",
":",
"crabpy",
".",
"gateway",
".",
"crab",
".",
"Deelgemeente",
"to",
"json",
"."
] | python | train |
jtpaasch/simplygithub | simplygithub/internals/api.py | https://github.com/jtpaasch/simplygithub/blob/b77506275ec276ce90879bf1ea9299a79448b903/simplygithub/internals/api.py#L46-L71 | def post_merge_request(profile, payload):
"""Do a POST request to Github's API to merge.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
payload
A dict of information to pass to Github's API as the payload for
a merge request, something like this::
{ "base": <base>, "head": <head>, "commit_message": <mesg>}
Returns:
The response returned by the ``requests`` library when it does the
POST request.
"""
repo = profile["repo"]
url = GITHUB_API_BASE_URL + "repos/" + repo + "/merges"
headers = get_headers(profile)
response = requests.post(url, json=payload, headers=headers)
return response | [
"def",
"post_merge_request",
"(",
"profile",
",",
"payload",
")",
":",
"repo",
"=",
"profile",
"[",
"\"repo\"",
"]",
"url",
"=",
"GITHUB_API_BASE_URL",
"+",
"\"repos/\"",
"+",
"repo",
"+",
"\"/merges\"",
"headers",
"=",
"get_headers",
"(",
"profile",
")",
"response",
"=",
"requests",
".",
"post",
"(",
"url",
",",
"json",
"=",
"payload",
",",
"headers",
"=",
"headers",
")",
"return",
"response"
] | Do a POST request to Github's API to merge.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
payload
A dict of information to pass to Github's API as the payload for
a merge request, something like this::
{ "base": <base>, "head": <head>, "commit_message": <mesg>}
Returns:
The response returned by the ``requests`` library when it does the
POST request. | [
"Do",
"a",
"POST",
"request",
"to",
"Github",
"s",
"API",
"to",
"merge",
"."
] | python | train |
saltstack/salt | salt/states/file.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/file.py#L6945-L7046 | def accumulated(name, filename, text, **kwargs):
'''
Prepare accumulator which can be used in template in file.managed state.
Accumulator dictionary becomes available in template. It can also be used
in file.blockreplace.
name
Accumulator name
filename
Filename which would receive this accumulator (see file.managed state
documentation about ``name``)
text
String or list for adding in accumulator
require_in / watch_in
One of them required for sure we fill up accumulator before we manage
the file. Probably the same as filename
Example:
Given the following:
.. code-block:: yaml
animals_doing_things:
file.accumulated:
- filename: /tmp/animal_file.txt
- text: ' jumps over the lazy dog.'
- require_in:
- file: animal_file
animal_file:
file.managed:
- name: /tmp/animal_file.txt
- source: salt://animal_file.txt
- template: jinja
One might write a template for ``animal_file.txt`` like the following:
.. code-block:: jinja
The quick brown fox{% for animal in accumulator['animals_doing_things'] %}{{ animal }}{% endfor %}
Collectively, the above states and template file will produce:
.. code-block:: text
The quick brown fox jumps over the lazy dog.
Multiple accumulators can be "chained" together.
.. note::
The 'accumulator' data structure is a Python dictionary.
Do not expect any loop over the keys in a deterministic order!
'''
ret = {
'name': name,
'changes': {},
'result': True,
'comment': ''
}
if not name:
return _error(ret, 'Must provide name to file.accumulated')
if text is None:
ret['result'] = False
ret['comment'] = 'No text supplied for accumulator'
return ret
require_in = __low__.get('require_in', [])
watch_in = __low__.get('watch_in', [])
deps = require_in + watch_in
if not [x for x in deps if 'file' in x]:
ret['result'] = False
ret['comment'] = 'Orphaned accumulator {0} in {1}:{2}'.format(
name,
__low__['__sls__'],
__low__['__id__']
)
return ret
if isinstance(text, six.string_types):
text = (text,)
elif isinstance(text, dict):
text = (text,)
accum_data, accum_deps = _load_accumulators()
if filename not in accum_data:
accum_data[filename] = {}
if filename not in accum_deps:
accum_deps[filename] = {}
if name not in accum_deps[filename]:
accum_deps[filename][name] = []
for accumulator in deps:
accum_deps[filename][name].extend(six.itervalues(accumulator))
if name not in accum_data[filename]:
accum_data[filename][name] = []
for chunk in text:
if chunk not in accum_data[filename][name]:
accum_data[filename][name].append(chunk)
ret['comment'] = ('Accumulator {0} for file {1} '
'was charged by text'.format(name, filename))
_persist_accummulators(accum_data, accum_deps)
return ret | [
"def",
"accumulated",
"(",
"name",
",",
"filename",
",",
"text",
",",
"*",
"*",
"kwargs",
")",
":",
"ret",
"=",
"{",
"'name'",
":",
"name",
",",
"'changes'",
":",
"{",
"}",
",",
"'result'",
":",
"True",
",",
"'comment'",
":",
"''",
"}",
"if",
"not",
"name",
":",
"return",
"_error",
"(",
"ret",
",",
"'Must provide name to file.accumulated'",
")",
"if",
"text",
"is",
"None",
":",
"ret",
"[",
"'result'",
"]",
"=",
"False",
"ret",
"[",
"'comment'",
"]",
"=",
"'No text supplied for accumulator'",
"return",
"ret",
"require_in",
"=",
"__low__",
".",
"get",
"(",
"'require_in'",
",",
"[",
"]",
")",
"watch_in",
"=",
"__low__",
".",
"get",
"(",
"'watch_in'",
",",
"[",
"]",
")",
"deps",
"=",
"require_in",
"+",
"watch_in",
"if",
"not",
"[",
"x",
"for",
"x",
"in",
"deps",
"if",
"'file'",
"in",
"x",
"]",
":",
"ret",
"[",
"'result'",
"]",
"=",
"False",
"ret",
"[",
"'comment'",
"]",
"=",
"'Orphaned accumulator {0} in {1}:{2}'",
".",
"format",
"(",
"name",
",",
"__low__",
"[",
"'__sls__'",
"]",
",",
"__low__",
"[",
"'__id__'",
"]",
")",
"return",
"ret",
"if",
"isinstance",
"(",
"text",
",",
"six",
".",
"string_types",
")",
":",
"text",
"=",
"(",
"text",
",",
")",
"elif",
"isinstance",
"(",
"text",
",",
"dict",
")",
":",
"text",
"=",
"(",
"text",
",",
")",
"accum_data",
",",
"accum_deps",
"=",
"_load_accumulators",
"(",
")",
"if",
"filename",
"not",
"in",
"accum_data",
":",
"accum_data",
"[",
"filename",
"]",
"=",
"{",
"}",
"if",
"filename",
"not",
"in",
"accum_deps",
":",
"accum_deps",
"[",
"filename",
"]",
"=",
"{",
"}",
"if",
"name",
"not",
"in",
"accum_deps",
"[",
"filename",
"]",
":",
"accum_deps",
"[",
"filename",
"]",
"[",
"name",
"]",
"=",
"[",
"]",
"for",
"accumulator",
"in",
"deps",
":",
"accum_deps",
"[",
"filename",
"]",
"[",
"name",
"]",
".",
"extend",
"(",
"six",
".",
"itervalues",
"(",
"accumulator",
")",
")",
"if",
"name",
"not",
"in",
"accum_data",
"[",
"filename",
"]",
":",
"accum_data",
"[",
"filename",
"]",
"[",
"name",
"]",
"=",
"[",
"]",
"for",
"chunk",
"in",
"text",
":",
"if",
"chunk",
"not",
"in",
"accum_data",
"[",
"filename",
"]",
"[",
"name",
"]",
":",
"accum_data",
"[",
"filename",
"]",
"[",
"name",
"]",
".",
"append",
"(",
"chunk",
")",
"ret",
"[",
"'comment'",
"]",
"=",
"(",
"'Accumulator {0} for file {1} '",
"'was charged by text'",
".",
"format",
"(",
"name",
",",
"filename",
")",
")",
"_persist_accummulators",
"(",
"accum_data",
",",
"accum_deps",
")",
"return",
"ret"
] | Prepare accumulator which can be used in template in file.managed state.
Accumulator dictionary becomes available in template. It can also be used
in file.blockreplace.
name
Accumulator name
filename
Filename which would receive this accumulator (see file.managed state
documentation about ``name``)
text
String or list for adding in accumulator
require_in / watch_in
One of them required for sure we fill up accumulator before we manage
the file. Probably the same as filename
Example:
Given the following:
.. code-block:: yaml
animals_doing_things:
file.accumulated:
- filename: /tmp/animal_file.txt
- text: ' jumps over the lazy dog.'
- require_in:
- file: animal_file
animal_file:
file.managed:
- name: /tmp/animal_file.txt
- source: salt://animal_file.txt
- template: jinja
One might write a template for ``animal_file.txt`` like the following:
.. code-block:: jinja
The quick brown fox{% for animal in accumulator['animals_doing_things'] %}{{ animal }}{% endfor %}
Collectively, the above states and template file will produce:
.. code-block:: text
The quick brown fox jumps over the lazy dog.
Multiple accumulators can be "chained" together.
.. note::
The 'accumulator' data structure is a Python dictionary.
Do not expect any loop over the keys in a deterministic order! | [
"Prepare",
"accumulator",
"which",
"can",
"be",
"used",
"in",
"template",
"in",
"file",
".",
"managed",
"state",
".",
"Accumulator",
"dictionary",
"becomes",
"available",
"in",
"template",
".",
"It",
"can",
"also",
"be",
"used",
"in",
"file",
".",
"blockreplace",
"."
] | python | train |
HumanCellAtlas/cloud-blobstore | cloud_blobstore/s3.py | https://github.com/HumanCellAtlas/cloud-blobstore/blob/b8a60e8e8c0da0e39dda084cb467a34cd2d1ef0a/cloud_blobstore/s3.py#L226-L246 | def get_all_metadata(
self,
bucket: str,
key: str
) -> dict:
"""
Retrieves all the metadata for a given object in a given bucket.
:param bucket: the bucket the object resides in.
:param key: the key of the object for which metadata is being retrieved.
:return: the metadata
"""
try:
return self.s3_client.head_object(
Bucket=bucket,
Key=key
)
except botocore.exceptions.ClientError as ex:
if str(ex.response['Error']['Code']) == \
str(requests.codes.not_found):
raise BlobNotFoundError(f"Could not find s3://{bucket}/{key}") from ex
raise BlobStoreUnknownError(ex) | [
"def",
"get_all_metadata",
"(",
"self",
",",
"bucket",
":",
"str",
",",
"key",
":",
"str",
")",
"->",
"dict",
":",
"try",
":",
"return",
"self",
".",
"s3_client",
".",
"head_object",
"(",
"Bucket",
"=",
"bucket",
",",
"Key",
"=",
"key",
")",
"except",
"botocore",
".",
"exceptions",
".",
"ClientError",
"as",
"ex",
":",
"if",
"str",
"(",
"ex",
".",
"response",
"[",
"'Error'",
"]",
"[",
"'Code'",
"]",
")",
"==",
"str",
"(",
"requests",
".",
"codes",
".",
"not_found",
")",
":",
"raise",
"BlobNotFoundError",
"(",
"f\"Could not find s3://{bucket}/{key}\"",
")",
"from",
"ex",
"raise",
"BlobStoreUnknownError",
"(",
"ex",
")"
] | Retrieves all the metadata for a given object in a given bucket.
:param bucket: the bucket the object resides in.
:param key: the key of the object for which metadata is being retrieved.
:return: the metadata | [
"Retrieves",
"all",
"the",
"metadata",
"for",
"a",
"given",
"object",
"in",
"a",
"given",
"bucket",
".",
":",
"param",
"bucket",
":",
"the",
"bucket",
"the",
"object",
"resides",
"in",
".",
":",
"param",
"key",
":",
"the",
"key",
"of",
"the",
"object",
"for",
"which",
"metadata",
"is",
"being",
"retrieved",
".",
":",
"return",
":",
"the",
"metadata"
] | python | train |
briandilley/ebs-deploy | ebs_deploy/__init__.py | https://github.com/briandilley/ebs-deploy/blob/4178c9c1282a9025fb987dab3470bea28c202e10/ebs_deploy/__init__.py#L43-L55 | def get(vals, key, default_val=None):
"""
Returns a dictionary value
"""
val = vals
for part in key.split('.'):
if isinstance(val, dict):
val = val.get(part, None)
if val is None:
return default_val
else:
return default_val
return val | [
"def",
"get",
"(",
"vals",
",",
"key",
",",
"default_val",
"=",
"None",
")",
":",
"val",
"=",
"vals",
"for",
"part",
"in",
"key",
".",
"split",
"(",
"'.'",
")",
":",
"if",
"isinstance",
"(",
"val",
",",
"dict",
")",
":",
"val",
"=",
"val",
".",
"get",
"(",
"part",
",",
"None",
")",
"if",
"val",
"is",
"None",
":",
"return",
"default_val",
"else",
":",
"return",
"default_val",
"return",
"val"
] | Returns a dictionary value | [
"Returns",
"a",
"dictionary",
"value"
] | python | valid |
geophysics-ubonn/reda | lib/reda/importers/sip04.py | https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/importers/sip04.py#L30-L91 | def import_sip04_data(data_filename):
"""Import RELEVANT data from the result files. Refer to the function
:func:`reda.importers.sip04.import_sip04_data_all` for an importer that
imports ALL data.
Exported parameters:
================== ========================================================
key description
================== ========================================================
a First current electrode
b Second current electrode
m First potential electrode
n Second potential electrode
frequency Measurement frequency
Temp_1 Temperature sensor 1 (optional)
Temp_2 Temperature sensor 2 (optional)
zt Complex Transfer Impedance (the measurement), mean value
r Magnitude of mean measurements (=|zt|)
rpha Resistance phase [mrad]
zt_1 Complex Transfer Impedance, first repetition
zt_2 Complex Transfer Impedance, second repetition
zt_3 Complex Transfer Impedance, third repetition
ContactResistance Contact resistance (mean value)
ShuntResistance Shunt resistance used [Ohm]
================== ========================================================
Parameters
----------
data_filename : string
Path to .mat or .csv file containing SIP-04 measurement results. Note
that the .csv file does not contain all data contained in the .mat
file!
Returns
-------
df : :py:class:`pandas.DataFrame`
The data, contained in a DataFrame
"""
df_all = import_sip04_data_all(data_filename)
columns_to_keep = [
'a', 'b', 'm', 'n',
'frequency',
'Temp_1', 'Temp_2',
'Zm_1', 'Zm_2', 'Zm_3',
'Zg_m',
'zt',
'Rs',
'r',
'rpha',
]
df = df_all[columns_to_keep]
df = df.rename(columns={
'Rs': 'ShuntResistance',
'Zg_m': 'ContactResistance',
'Zm_1': 'zt_1',
'Zm_2': 'zt_2',
'Zm_3': 'zt_3',
})
return df | [
"def",
"import_sip04_data",
"(",
"data_filename",
")",
":",
"df_all",
"=",
"import_sip04_data_all",
"(",
"data_filename",
")",
"columns_to_keep",
"=",
"[",
"'a'",
",",
"'b'",
",",
"'m'",
",",
"'n'",
",",
"'frequency'",
",",
"'Temp_1'",
",",
"'Temp_2'",
",",
"'Zm_1'",
",",
"'Zm_2'",
",",
"'Zm_3'",
",",
"'Zg_m'",
",",
"'zt'",
",",
"'Rs'",
",",
"'r'",
",",
"'rpha'",
",",
"]",
"df",
"=",
"df_all",
"[",
"columns_to_keep",
"]",
"df",
"=",
"df",
".",
"rename",
"(",
"columns",
"=",
"{",
"'Rs'",
":",
"'ShuntResistance'",
",",
"'Zg_m'",
":",
"'ContactResistance'",
",",
"'Zm_1'",
":",
"'zt_1'",
",",
"'Zm_2'",
":",
"'zt_2'",
",",
"'Zm_3'",
":",
"'zt_3'",
",",
"}",
")",
"return",
"df"
] | Import RELEVANT data from the result files. Refer to the function
:func:`reda.importers.sip04.import_sip04_data_all` for an importer that
imports ALL data.
Exported parameters:
================== ========================================================
key description
================== ========================================================
a First current electrode
b Second current electrode
m First potential electrode
n Second potential electrode
frequency Measurement frequency
Temp_1 Temperature sensor 1 (optional)
Temp_2 Temperature sensor 2 (optional)
zt Complex Transfer Impedance (the measurement), mean value
r Magnitude of mean measurements (=|zt|)
rpha Resistance phase [mrad]
zt_1 Complex Transfer Impedance, first repetition
zt_2 Complex Transfer Impedance, second repetition
zt_3 Complex Transfer Impedance, third repetition
ContactResistance Contact resistance (mean value)
ShuntResistance Shunt resistance used [Ohm]
================== ========================================================
Parameters
----------
data_filename : string
Path to .mat or .csv file containing SIP-04 measurement results. Note
that the .csv file does not contain all data contained in the .mat
file!
Returns
-------
df : :py:class:`pandas.DataFrame`
The data, contained in a DataFrame | [
"Import",
"RELEVANT",
"data",
"from",
"the",
"result",
"files",
".",
"Refer",
"to",
"the",
"function",
":",
"func",
":",
"reda",
".",
"importers",
".",
"sip04",
".",
"import_sip04_data_all",
"for",
"an",
"importer",
"that",
"imports",
"ALL",
"data",
"."
] | python | train |
mbedmicro/pyOCD | pyocd/probe/stlink/detect/linux.py | https://github.com/mbedmicro/pyOCD/blob/41a174718a9739f3cbe785c2ba21cb7fd1310c6f/pyocd/probe/stlink/detect/linux.py#L87-L98 | def _fat_mounts(self):
"""! Lists mounted devices with vfat file system (potential mbeds)
@result Returns list of all mounted vfat devices
@details Uses Linux shell command: 'mount'
"""
_stdout, _, retval = self._run_cli_process("mount")
if not retval:
for line in _stdout.splitlines():
if b"vfat" in line:
match = self.mmp.search(line.decode("utf-8"))
if match:
yield match.group("dev"), match.group("dir") | [
"def",
"_fat_mounts",
"(",
"self",
")",
":",
"_stdout",
",",
"_",
",",
"retval",
"=",
"self",
".",
"_run_cli_process",
"(",
"\"mount\"",
")",
"if",
"not",
"retval",
":",
"for",
"line",
"in",
"_stdout",
".",
"splitlines",
"(",
")",
":",
"if",
"b\"vfat\"",
"in",
"line",
":",
"match",
"=",
"self",
".",
"mmp",
".",
"search",
"(",
"line",
".",
"decode",
"(",
"\"utf-8\"",
")",
")",
"if",
"match",
":",
"yield",
"match",
".",
"group",
"(",
"\"dev\"",
")",
",",
"match",
".",
"group",
"(",
"\"dir\"",
")"
] | ! Lists mounted devices with vfat file system (potential mbeds)
@result Returns list of all mounted vfat devices
@details Uses Linux shell command: 'mount' | [
"!",
"Lists",
"mounted",
"devices",
"with",
"vfat",
"file",
"system",
"(",
"potential",
"mbeds",
")"
] | python | train |
addisonlynch/iexfinance | iexfinance/__init__.py | https://github.com/addisonlynch/iexfinance/blob/40f0bdcc51b329031d06178020fd774494250456/iexfinance/__init__.py#L136-L142 | def get_market_last(symbols=None, **kwargs):
"""
MOVED to iexfinance.iexdata.get_last
"""
import warnings
warnings.warn(WNG_MSG % ("get_market_last", "iexdata.get_last"))
return Last(symbols, **kwargs).fetch() | [
"def",
"get_market_last",
"(",
"symbols",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"import",
"warnings",
"warnings",
".",
"warn",
"(",
"WNG_MSG",
"%",
"(",
"\"get_market_last\"",
",",
"\"iexdata.get_last\"",
")",
")",
"return",
"Last",
"(",
"symbols",
",",
"*",
"*",
"kwargs",
")",
".",
"fetch",
"(",
")"
] | MOVED to iexfinance.iexdata.get_last | [
"MOVED",
"to",
"iexfinance",
".",
"iexdata",
".",
"get_last"
] | python | train |
ravenac95/lxc4u | lxc4u/lxc.py | https://github.com/ravenac95/lxc4u/blob/4b5a9c8e25af97e5637db2f4c0c67d319ab0ed32/lxc4u/lxc.py#L56-L60 | def start(self):
"""Start this LXC"""
if self.status == 'RUNNING':
raise LXCAlreadyStarted(self.name)
self._service.start(self.name) | [
"def",
"start",
"(",
"self",
")",
":",
"if",
"self",
".",
"status",
"==",
"'RUNNING'",
":",
"raise",
"LXCAlreadyStarted",
"(",
"self",
".",
"name",
")",
"self",
".",
"_service",
".",
"start",
"(",
"self",
".",
"name",
")"
] | Start this LXC | [
"Start",
"this",
"LXC"
] | python | train |
miLibris/flask-rest-jsonapi | flask_rest_jsonapi/api.py | https://github.com/miLibris/flask-rest-jsonapi/blob/ecc8f2cd2b54cc0bfae7acd6cffcda0ba1140c43/flask_rest_jsonapi/api.py#L93-L124 | def oauth_manager(self, oauth_manager):
"""Use the oauth manager to enable oauth for API
:param oauth_manager: the oauth manager
"""
@self.app.before_request
def before_request():
endpoint = request.endpoint
resource = self.app.view_functions[endpoint].view_class
if not getattr(resource, 'disable_oauth'):
scopes = request.args.get('scopes')
if getattr(resource, 'schema'):
scopes = [self.build_scope(resource, request.method)]
elif scopes:
scopes = scopes.split(',')
if scopes:
scopes = scopes.split(',')
valid, req = oauth_manager.verify_request(scopes)
for func in oauth_manager._after_request_funcs:
valid, req = func(valid, req)
if not valid:
if oauth_manager._invalid_response:
return oauth_manager._invalid_response(req)
return abort(401)
request.oauth = req | [
"def",
"oauth_manager",
"(",
"self",
",",
"oauth_manager",
")",
":",
"@",
"self",
".",
"app",
".",
"before_request",
"def",
"before_request",
"(",
")",
":",
"endpoint",
"=",
"request",
".",
"endpoint",
"resource",
"=",
"self",
".",
"app",
".",
"view_functions",
"[",
"endpoint",
"]",
".",
"view_class",
"if",
"not",
"getattr",
"(",
"resource",
",",
"'disable_oauth'",
")",
":",
"scopes",
"=",
"request",
".",
"args",
".",
"get",
"(",
"'scopes'",
")",
"if",
"getattr",
"(",
"resource",
",",
"'schema'",
")",
":",
"scopes",
"=",
"[",
"self",
".",
"build_scope",
"(",
"resource",
",",
"request",
".",
"method",
")",
"]",
"elif",
"scopes",
":",
"scopes",
"=",
"scopes",
".",
"split",
"(",
"','",
")",
"if",
"scopes",
":",
"scopes",
"=",
"scopes",
".",
"split",
"(",
"','",
")",
"valid",
",",
"req",
"=",
"oauth_manager",
".",
"verify_request",
"(",
"scopes",
")",
"for",
"func",
"in",
"oauth_manager",
".",
"_after_request_funcs",
":",
"valid",
",",
"req",
"=",
"func",
"(",
"valid",
",",
"req",
")",
"if",
"not",
"valid",
":",
"if",
"oauth_manager",
".",
"_invalid_response",
":",
"return",
"oauth_manager",
".",
"_invalid_response",
"(",
"req",
")",
"return",
"abort",
"(",
"401",
")",
"request",
".",
"oauth",
"=",
"req"
] | Use the oauth manager to enable oauth for API
:param oauth_manager: the oauth manager | [
"Use",
"the",
"oauth",
"manager",
"to",
"enable",
"oauth",
"for",
"API"
] | python | train |
oceanprotocol/squid-py | squid_py/keeper/diagnostics.py | https://github.com/oceanprotocol/squid-py/blob/43a5b7431627e4c9ab7382ed9eb8153e96ed4483/squid_py/keeper/diagnostics.py#L19-L66 | def verify_contracts():
"""
Verify that the contracts are deployed correctly in the network.
:raise Exception: raise exception if the contracts are not deployed correctly.
"""
artifacts_path = ConfigProvider.get_config().keeper_path
logger.info(f'Keeper contract artifacts (JSON abi files) at: {artifacts_path}')
if os.environ.get('KEEPER_NETWORK_NAME'):
logger.warning(f'The `KEEPER_NETWORK_NAME` env var is set to '
f'{os.environ.get("KEEPER_NETWORK_NAME")}. '
f'This enables the user to override the method of how the network name '
f'is inferred from network id.')
# try to find contract with this network name
contract_name = Diagnostics.TEST_CONTRACT_NAME
network_id = Keeper.get_network_id()
network_name = Keeper.get_network_name(network_id)
logger.info(f'Using keeper contracts from network {network_name}, '
f'network id is {network_id}')
logger.info(f'Looking for keeper contracts ending with ".{network_name}.json", '
f'e.g. "{contract_name}.{network_name}.json".')
existing_contract_names = os.listdir(artifacts_path)
try:
ContractHandler.get(contract_name)
except Exception as e:
logger.error(e)
logger.error(f'Cannot find the keeper contracts. \n'
f'Current network id is {network_id} and network name is {network_name}.'
f'Expected to find contracts ending with ".{network_name}.json",'
f' e.g. "{contract_name}.{network_name}.json"')
raise OceanKeeperContractsNotFound(
f'Keeper contracts for keeper network {network_name} were not found '
f'in {artifacts_path}. \n'
f'Found the following contracts: \n\t{existing_contract_names}'
)
keeper = Keeper.get_instance()
contracts = [keeper.dispenser, keeper.token, keeper.did_registry,
keeper.agreement_manager, keeper.template_manager, keeper.condition_manager,
keeper.access_secret_store_condition, keeper.sign_condition,
keeper.lock_reward_condition, keeper.escrow_access_secretstore_template,
keeper.escrow_reward_condition, keeper.hash_lock_condition
]
addresses = '\n'.join([f'\t{c.name}: {c.address}' for c in contracts])
logging.info('Finished loading keeper contracts:\n'
'%s', addresses) | [
"def",
"verify_contracts",
"(",
")",
":",
"artifacts_path",
"=",
"ConfigProvider",
".",
"get_config",
"(",
")",
".",
"keeper_path",
"logger",
".",
"info",
"(",
"f'Keeper contract artifacts (JSON abi files) at: {artifacts_path}'",
")",
"if",
"os",
".",
"environ",
".",
"get",
"(",
"'KEEPER_NETWORK_NAME'",
")",
":",
"logger",
".",
"warning",
"(",
"f'The `KEEPER_NETWORK_NAME` env var is set to '",
"f'{os.environ.get(\"KEEPER_NETWORK_NAME\")}. '",
"f'This enables the user to override the method of how the network name '",
"f'is inferred from network id.'",
")",
"# try to find contract with this network name",
"contract_name",
"=",
"Diagnostics",
".",
"TEST_CONTRACT_NAME",
"network_id",
"=",
"Keeper",
".",
"get_network_id",
"(",
")",
"network_name",
"=",
"Keeper",
".",
"get_network_name",
"(",
"network_id",
")",
"logger",
".",
"info",
"(",
"f'Using keeper contracts from network {network_name}, '",
"f'network id is {network_id}'",
")",
"logger",
".",
"info",
"(",
"f'Looking for keeper contracts ending with \".{network_name}.json\", '",
"f'e.g. \"{contract_name}.{network_name}.json\".'",
")",
"existing_contract_names",
"=",
"os",
".",
"listdir",
"(",
"artifacts_path",
")",
"try",
":",
"ContractHandler",
".",
"get",
"(",
"contract_name",
")",
"except",
"Exception",
"as",
"e",
":",
"logger",
".",
"error",
"(",
"e",
")",
"logger",
".",
"error",
"(",
"f'Cannot find the keeper contracts. \\n'",
"f'Current network id is {network_id} and network name is {network_name}.'",
"f'Expected to find contracts ending with \".{network_name}.json\",'",
"f' e.g. \"{contract_name}.{network_name}.json\"'",
")",
"raise",
"OceanKeeperContractsNotFound",
"(",
"f'Keeper contracts for keeper network {network_name} were not found '",
"f'in {artifacts_path}. \\n'",
"f'Found the following contracts: \\n\\t{existing_contract_names}'",
")",
"keeper",
"=",
"Keeper",
".",
"get_instance",
"(",
")",
"contracts",
"=",
"[",
"keeper",
".",
"dispenser",
",",
"keeper",
".",
"token",
",",
"keeper",
".",
"did_registry",
",",
"keeper",
".",
"agreement_manager",
",",
"keeper",
".",
"template_manager",
",",
"keeper",
".",
"condition_manager",
",",
"keeper",
".",
"access_secret_store_condition",
",",
"keeper",
".",
"sign_condition",
",",
"keeper",
".",
"lock_reward_condition",
",",
"keeper",
".",
"escrow_access_secretstore_template",
",",
"keeper",
".",
"escrow_reward_condition",
",",
"keeper",
".",
"hash_lock_condition",
"]",
"addresses",
"=",
"'\\n'",
".",
"join",
"(",
"[",
"f'\\t{c.name}: {c.address}'",
"for",
"c",
"in",
"contracts",
"]",
")",
"logging",
".",
"info",
"(",
"'Finished loading keeper contracts:\\n'",
"'%s'",
",",
"addresses",
")"
] | Verify that the contracts are deployed correctly in the network.
:raise Exception: raise exception if the contracts are not deployed correctly. | [
"Verify",
"that",
"the",
"contracts",
"are",
"deployed",
"correctly",
"in",
"the",
"network",
"."
] | python | train |
samjabrahams/anchorhub | anchorhub/util/hasattrs.py | https://github.com/samjabrahams/anchorhub/blob/5ade359b08297d4003a5f477389c01de9e634b54/anchorhub/util/hasattrs.py#L8-L21 | def hasattrs(object, *names):
"""
Takes in an object and a variable length amount of named attributes,
and checks to see if the object has each property. If any of the
attributes are missing, this returns false.
:param object: an object that may or may not contain the listed attributes
:param names: a variable amount of attribute names to check for
:return: True if the object contains each named attribute, false otherwise
"""
for name in names:
if not hasattr(object, name):
return False
return True | [
"def",
"hasattrs",
"(",
"object",
",",
"*",
"names",
")",
":",
"for",
"name",
"in",
"names",
":",
"if",
"not",
"hasattr",
"(",
"object",
",",
"name",
")",
":",
"return",
"False",
"return",
"True"
] | Takes in an object and a variable length amount of named attributes,
and checks to see if the object has each property. If any of the
attributes are missing, this returns false.
:param object: an object that may or may not contain the listed attributes
:param names: a variable amount of attribute names to check for
:return: True if the object contains each named attribute, false otherwise | [
"Takes",
"in",
"an",
"object",
"and",
"a",
"variable",
"length",
"amount",
"of",
"named",
"attributes",
"and",
"checks",
"to",
"see",
"if",
"the",
"object",
"has",
"each",
"property",
".",
"If",
"any",
"of",
"the",
"attributes",
"are",
"missing",
"this",
"returns",
"false",
"."
] | python | train |
msmbuilder/msmbuilder | msmbuilder/tpt/path.py | https://github.com/msmbuilder/msmbuilder/blob/556a93a170782f47be53f4a1e9d740fb1c8272b3/msmbuilder/tpt/path.py#L195-L318 | def paths(sources, sinks, net_flux, remove_path='subtract',
num_paths=np.inf, flux_cutoff=(1-1E-10)):
"""
Get the top N paths by iteratively performing Dijkstra's
algorithm.
Parameters
----------
sources : array_like, int
One-dimensional list of nodes to define the source states.
sinks : array_like, int
One-dimensional list of nodes to define the sink states.
net_flux : np.ndarray
Net flux of the MSM
remove_path : str or callable, optional
Function for removing a path from the net flux matrix.
(if str, one of {'subtract', 'bottleneck'})
See note below for more details.
num_paths : int, optional
Number of paths to find
flux_cutoff : float, optional
Quit looking for paths once the explained flux is greater
than this cutoff (as a percentage of the total).
Returns
-------
paths : list
List of paths. Each item is an array of nodes visited
in the path.
fluxes : np.ndarray, shape = [n_paths,]
Flux of each path returned.
Notes
-----
The Dijkstra algorithm only allows for computing the
*single* top flux pathway through the net flux matrix. If
we want many paths, there are many ways of finding the
*second* highest flux pathway.
The algorithm proceeds as follows:
1. Using the Djikstra algorithm, find the highest flux
pathway from the sources to the sink states
2. Remove that pathway from the net flux matrix by
some criterion
3. Repeat (1) with the modified net flux matrix
Currently, there are two schemes for step (2):
- 'subtract' : Remove the path by subtracting the flux
of the path from every edge in the path. This was
suggested by Metzner, Schutte, and Vanden-Eijnden.
Transition Path Theory for Markov Jump Processes.
Multiscale Model. Simul. 7, 1192-1219 (2009).
- 'bottleneck' : Remove the path by only removing
the edge that corresponds to the bottleneck of the
path.
If a new scheme is desired, the user may pass a function
that takes the net_flux and the path to remove and returns
the new net flux matrix.
See Also
--------
msmbuilder.tpt.top_path : function for computing the single
highest flux pathway through a network.
References
----------
.. [1] Weinan, E. and Vanden-Eijnden, E. Towards a theory of
transition paths. J. Stat. Phys. 123, 503-523 (2006).
.. [2] Metzner, P., Schutte, C. & Vanden-Eijnden, E.
Transition path theory for Markov jump processes.
Multiscale Model. Simul. 7, 1192-1219 (2009).
.. [3] Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive
flux and folding pathways in network models of
coarse-grained protein dynamics. J. Chem. Phys.
130, 205102 (2009).
.. [4] Dijkstra, E. W. A Note on Two Problems in Connexion with Graphs.
Numeriche Mathematik 1, 269-271 (1959).
.. [5] Noe, Frank, et al. "Constructing the equilibrium ensemble of folding
pathways from short off-equilibrium simulations." PNAS 106.45 (2009):
19011-19016.
"""
if not callable(remove_path):
if remove_path == 'subtract':
remove_path = _subtract_path_flux
elif remove_path == 'bottleneck':
remove_path = _remove_bottleneck
else:
raise ValueError("remove_path_func (%s) must be a callable or one of ['subtract', 'bottleneck']" % str(remove_path))
net_flux = copy.copy(net_flux)
paths = []
fluxes = []
total_flux = net_flux[sources, :].sum()
# total flux is the total flux coming from the sources (or going into the sinks)
not_done = True
counter = 0
expl_flux = 0.0
while not_done:
path, flux = top_path(sources, sinks, net_flux)
if np.isinf(flux):
break
paths.append(path)
fluxes.append(flux)
expl_flux += flux / total_flux
counter += 1
if counter >= num_paths or expl_flux >= flux_cutoff:
break
# modify the net_flux matrix
net_flux = remove_path(net_flux, path)
fluxes = np.array(fluxes)
return paths, fluxes | [
"def",
"paths",
"(",
"sources",
",",
"sinks",
",",
"net_flux",
",",
"remove_path",
"=",
"'subtract'",
",",
"num_paths",
"=",
"np",
".",
"inf",
",",
"flux_cutoff",
"=",
"(",
"1",
"-",
"1E-10",
")",
")",
":",
"if",
"not",
"callable",
"(",
"remove_path",
")",
":",
"if",
"remove_path",
"==",
"'subtract'",
":",
"remove_path",
"=",
"_subtract_path_flux",
"elif",
"remove_path",
"==",
"'bottleneck'",
":",
"remove_path",
"=",
"_remove_bottleneck",
"else",
":",
"raise",
"ValueError",
"(",
"\"remove_path_func (%s) must be a callable or one of ['subtract', 'bottleneck']\"",
"%",
"str",
"(",
"remove_path",
")",
")",
"net_flux",
"=",
"copy",
".",
"copy",
"(",
"net_flux",
")",
"paths",
"=",
"[",
"]",
"fluxes",
"=",
"[",
"]",
"total_flux",
"=",
"net_flux",
"[",
"sources",
",",
":",
"]",
".",
"sum",
"(",
")",
"# total flux is the total flux coming from the sources (or going into the sinks)",
"not_done",
"=",
"True",
"counter",
"=",
"0",
"expl_flux",
"=",
"0.0",
"while",
"not_done",
":",
"path",
",",
"flux",
"=",
"top_path",
"(",
"sources",
",",
"sinks",
",",
"net_flux",
")",
"if",
"np",
".",
"isinf",
"(",
"flux",
")",
":",
"break",
"paths",
".",
"append",
"(",
"path",
")",
"fluxes",
".",
"append",
"(",
"flux",
")",
"expl_flux",
"+=",
"flux",
"/",
"total_flux",
"counter",
"+=",
"1",
"if",
"counter",
">=",
"num_paths",
"or",
"expl_flux",
">=",
"flux_cutoff",
":",
"break",
"# modify the net_flux matrix",
"net_flux",
"=",
"remove_path",
"(",
"net_flux",
",",
"path",
")",
"fluxes",
"=",
"np",
".",
"array",
"(",
"fluxes",
")",
"return",
"paths",
",",
"fluxes"
] | Get the top N paths by iteratively performing Dijkstra's
algorithm.
Parameters
----------
sources : array_like, int
One-dimensional list of nodes to define the source states.
sinks : array_like, int
One-dimensional list of nodes to define the sink states.
net_flux : np.ndarray
Net flux of the MSM
remove_path : str or callable, optional
Function for removing a path from the net flux matrix.
(if str, one of {'subtract', 'bottleneck'})
See note below for more details.
num_paths : int, optional
Number of paths to find
flux_cutoff : float, optional
Quit looking for paths once the explained flux is greater
than this cutoff (as a percentage of the total).
Returns
-------
paths : list
List of paths. Each item is an array of nodes visited
in the path.
fluxes : np.ndarray, shape = [n_paths,]
Flux of each path returned.
Notes
-----
The Dijkstra algorithm only allows for computing the
*single* top flux pathway through the net flux matrix. If
we want many paths, there are many ways of finding the
*second* highest flux pathway.
The algorithm proceeds as follows:
1. Using the Djikstra algorithm, find the highest flux
pathway from the sources to the sink states
2. Remove that pathway from the net flux matrix by
some criterion
3. Repeat (1) with the modified net flux matrix
Currently, there are two schemes for step (2):
- 'subtract' : Remove the path by subtracting the flux
of the path from every edge in the path. This was
suggested by Metzner, Schutte, and Vanden-Eijnden.
Transition Path Theory for Markov Jump Processes.
Multiscale Model. Simul. 7, 1192-1219 (2009).
- 'bottleneck' : Remove the path by only removing
the edge that corresponds to the bottleneck of the
path.
If a new scheme is desired, the user may pass a function
that takes the net_flux and the path to remove and returns
the new net flux matrix.
See Also
--------
msmbuilder.tpt.top_path : function for computing the single
highest flux pathway through a network.
References
----------
.. [1] Weinan, E. and Vanden-Eijnden, E. Towards a theory of
transition paths. J. Stat. Phys. 123, 503-523 (2006).
.. [2] Metzner, P., Schutte, C. & Vanden-Eijnden, E.
Transition path theory for Markov jump processes.
Multiscale Model. Simul. 7, 1192-1219 (2009).
.. [3] Berezhkovskii, A., Hummer, G. & Szabo, A. Reactive
flux and folding pathways in network models of
coarse-grained protein dynamics. J. Chem. Phys.
130, 205102 (2009).
.. [4] Dijkstra, E. W. A Note on Two Problems in Connexion with Graphs.
Numeriche Mathematik 1, 269-271 (1959).
.. [5] Noe, Frank, et al. "Constructing the equilibrium ensemble of folding
pathways from short off-equilibrium simulations." PNAS 106.45 (2009):
19011-19016. | [
"Get",
"the",
"top",
"N",
"paths",
"by",
"iteratively",
"performing",
"Dijkstra",
"s",
"algorithm",
"."
] | python | train |
avalente/appmetrics | appmetrics/statistics.py | https://github.com/avalente/appmetrics/blob/366fc7e1ca897e49a2227cbfa43bfa02a47f1acc/appmetrics/statistics.py#L458-L484 | def get_histogram(data):
"""Return the histogram relative to the given data
Assume that the data are already sorted
"""
count = len(data)
if count < 2:
raise StatisticsError('Too few data points ({}) for get_histogram'.format(count))
min_ = data[0]
max_ = data[-1]
std = stdev(data)
bins = get_histogram_bins(min_, max_, std, count)
res = {x: 0 for x in bins}
for value in data:
for bin_ in bins:
if value <= bin_:
res[bin_] += 1
break
return sorted(iteritems(res)) | [
"def",
"get_histogram",
"(",
"data",
")",
":",
"count",
"=",
"len",
"(",
"data",
")",
"if",
"count",
"<",
"2",
":",
"raise",
"StatisticsError",
"(",
"'Too few data points ({}) for get_histogram'",
".",
"format",
"(",
"count",
")",
")",
"min_",
"=",
"data",
"[",
"0",
"]",
"max_",
"=",
"data",
"[",
"-",
"1",
"]",
"std",
"=",
"stdev",
"(",
"data",
")",
"bins",
"=",
"get_histogram_bins",
"(",
"min_",
",",
"max_",
",",
"std",
",",
"count",
")",
"res",
"=",
"{",
"x",
":",
"0",
"for",
"x",
"in",
"bins",
"}",
"for",
"value",
"in",
"data",
":",
"for",
"bin_",
"in",
"bins",
":",
"if",
"value",
"<=",
"bin_",
":",
"res",
"[",
"bin_",
"]",
"+=",
"1",
"break",
"return",
"sorted",
"(",
"iteritems",
"(",
"res",
")",
")"
] | Return the histogram relative to the given data
Assume that the data are already sorted | [
"Return",
"the",
"histogram",
"relative",
"to",
"the",
"given",
"data"
] | python | train |
log2timeline/plaso | plaso/parsers/esedb.py | https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/parsers/esedb.py#L63-L104 | def ParseFileObject(self, parser_mediator, file_object):
"""Parses an ESE database file-like object.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): file-like object.
"""
esedb_file = pyesedb.file()
try:
esedb_file.open_file_object(file_object)
except IOError as exception:
parser_mediator.ProduceExtractionWarning(
'unable to open file with error: {0!s}'.format(exception))
return
# Compare the list of available plugin objects.
cache = ESEDBCache()
try:
table_names = frozenset(self._GetTableNames(esedb_file))
for plugin in self._plugins:
if parser_mediator.abort:
break
if not plugin.required_tables.issubset(table_names):
continue
try:
plugin.UpdateChainAndProcess(
parser_mediator, cache=cache, database=esedb_file)
except Exception as exception: # pylint: disable=broad-except
parser_mediator.ProduceExtractionWarning((
'plugin: {0:s} unable to parse ESE database with error: '
'{1!s}').format(plugin.NAME, exception))
finally:
# TODO: explicitly clean up cache.
esedb_file.close() | [
"def",
"ParseFileObject",
"(",
"self",
",",
"parser_mediator",
",",
"file_object",
")",
":",
"esedb_file",
"=",
"pyesedb",
".",
"file",
"(",
")",
"try",
":",
"esedb_file",
".",
"open_file_object",
"(",
"file_object",
")",
"except",
"IOError",
"as",
"exception",
":",
"parser_mediator",
".",
"ProduceExtractionWarning",
"(",
"'unable to open file with error: {0!s}'",
".",
"format",
"(",
"exception",
")",
")",
"return",
"# Compare the list of available plugin objects.",
"cache",
"=",
"ESEDBCache",
"(",
")",
"try",
":",
"table_names",
"=",
"frozenset",
"(",
"self",
".",
"_GetTableNames",
"(",
"esedb_file",
")",
")",
"for",
"plugin",
"in",
"self",
".",
"_plugins",
":",
"if",
"parser_mediator",
".",
"abort",
":",
"break",
"if",
"not",
"plugin",
".",
"required_tables",
".",
"issubset",
"(",
"table_names",
")",
":",
"continue",
"try",
":",
"plugin",
".",
"UpdateChainAndProcess",
"(",
"parser_mediator",
",",
"cache",
"=",
"cache",
",",
"database",
"=",
"esedb_file",
")",
"except",
"Exception",
"as",
"exception",
":",
"# pylint: disable=broad-except",
"parser_mediator",
".",
"ProduceExtractionWarning",
"(",
"(",
"'plugin: {0:s} unable to parse ESE database with error: '",
"'{1!s}'",
")",
".",
"format",
"(",
"plugin",
".",
"NAME",
",",
"exception",
")",
")",
"finally",
":",
"# TODO: explicitly clean up cache.",
"esedb_file",
".",
"close",
"(",
")"
] | Parses an ESE database file-like object.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): file-like object. | [
"Parses",
"an",
"ESE",
"database",
"file",
"-",
"like",
"object",
"."
] | python | train |
spotify/luigi | luigi/setup_logging.py | https://github.com/spotify/luigi/blob/c5eca1c3c3ee2a7eb612486192a0da146710a1e9/luigi/setup_logging.py#L157-L168 | def _conf(cls, opts):
"""Setup logging via ini-file from logging_conf_file option."""
if not opts.logging_conf_file:
return False
if not os.path.exists(opts.logging_conf_file):
# FileNotFoundError added only in Python 3.3
# https://docs.python.org/3/whatsnew/3.3.html#pep-3151-reworking-the-os-and-io-exception-hierarchy
raise OSError("Error: Unable to locate specified logging configuration file!")
logging.config.fileConfig(opts.logging_conf_file, disable_existing_loggers=False)
return True | [
"def",
"_conf",
"(",
"cls",
",",
"opts",
")",
":",
"if",
"not",
"opts",
".",
"logging_conf_file",
":",
"return",
"False",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"opts",
".",
"logging_conf_file",
")",
":",
"# FileNotFoundError added only in Python 3.3",
"# https://docs.python.org/3/whatsnew/3.3.html#pep-3151-reworking-the-os-and-io-exception-hierarchy",
"raise",
"OSError",
"(",
"\"Error: Unable to locate specified logging configuration file!\"",
")",
"logging",
".",
"config",
".",
"fileConfig",
"(",
"opts",
".",
"logging_conf_file",
",",
"disable_existing_loggers",
"=",
"False",
")",
"return",
"True"
] | Setup logging via ini-file from logging_conf_file option. | [
"Setup",
"logging",
"via",
"ini",
"-",
"file",
"from",
"logging_conf_file",
"option",
"."
] | python | train |
lrq3000/pyFileFixity | pyFileFixity/lib/aux_funcs.py | https://github.com/lrq3000/pyFileFixity/blob/fd5ef23bb13835faf1e3baa773619b86a1cc9bdf/pyFileFixity/lib/aux_funcs.py#L331-L336 | def group_files_by_size_simple(fileslist, nbgroups): # pragma: no cover
""" Simple and fast files grouping strategy: just order by size, and group files n-by-n, so that files with the closest sizes are grouped together.
In this strategy, there is only one file per subgroup, and thus there will often be remaining space left because there is no filling strategy here, but it's very fast. """
ford = sorted(fileslist.iteritems(), key=lambda x: x[1], reverse=True)
ford = [[x[0]] for x in ford]
return [group for group in grouper(nbgroups, ford)] | [
"def",
"group_files_by_size_simple",
"(",
"fileslist",
",",
"nbgroups",
")",
":",
"# pragma: no cover",
"ford",
"=",
"sorted",
"(",
"fileslist",
".",
"iteritems",
"(",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
",",
"reverse",
"=",
"True",
")",
"ford",
"=",
"[",
"[",
"x",
"[",
"0",
"]",
"]",
"for",
"x",
"in",
"ford",
"]",
"return",
"[",
"group",
"for",
"group",
"in",
"grouper",
"(",
"nbgroups",
",",
"ford",
")",
"]"
] | Simple and fast files grouping strategy: just order by size, and group files n-by-n, so that files with the closest sizes are grouped together.
In this strategy, there is only one file per subgroup, and thus there will often be remaining space left because there is no filling strategy here, but it's very fast. | [
"Simple",
"and",
"fast",
"files",
"grouping",
"strategy",
":",
"just",
"order",
"by",
"size",
"and",
"group",
"files",
"n",
"-",
"by",
"-",
"n",
"so",
"that",
"files",
"with",
"the",
"closest",
"sizes",
"are",
"grouped",
"together",
".",
"In",
"this",
"strategy",
"there",
"is",
"only",
"one",
"file",
"per",
"subgroup",
"and",
"thus",
"there",
"will",
"often",
"be",
"remaining",
"space",
"left",
"because",
"there",
"is",
"no",
"filling",
"strategy",
"here",
"but",
"it",
"s",
"very",
"fast",
"."
] | python | train |
elliterate/capybara.py | capybara/server.py | https://github.com/elliterate/capybara.py/blob/0c6ae449cc37e4445ec3cd6af95674533beedc6c/capybara/server.py#L68-L98 | def boot(self):
"""
Boots a server for the app, if it isn't already booted.
Returns:
Server: This server.
"""
if not self.responsive:
# Remember the port so we can reuse it if we try to serve this same app again.
type(self)._ports[self.port_key] = self.port
init_func = capybara.servers[capybara.server_name]
init_args = (self.middleware, self.port, self.host)
self.server_thread = Thread(target=init_func, args=init_args)
# Inform Python that it shouldn't wait for this thread to terminate before
# exiting. (It will still be appropriately terminated when the process exits.)
self.server_thread.daemon = True
self.server_thread.start()
# Make sure the server actually starts and becomes responsive.
timer = Timer(60)
while not self.responsive:
if timer.expired:
raise RuntimeError("WSGI application timed out during boot")
self.server_thread.join(0.1)
return self | [
"def",
"boot",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"responsive",
":",
"# Remember the port so we can reuse it if we try to serve this same app again.",
"type",
"(",
"self",
")",
".",
"_ports",
"[",
"self",
".",
"port_key",
"]",
"=",
"self",
".",
"port",
"init_func",
"=",
"capybara",
".",
"servers",
"[",
"capybara",
".",
"server_name",
"]",
"init_args",
"=",
"(",
"self",
".",
"middleware",
",",
"self",
".",
"port",
",",
"self",
".",
"host",
")",
"self",
".",
"server_thread",
"=",
"Thread",
"(",
"target",
"=",
"init_func",
",",
"args",
"=",
"init_args",
")",
"# Inform Python that it shouldn't wait for this thread to terminate before",
"# exiting. (It will still be appropriately terminated when the process exits.)",
"self",
".",
"server_thread",
".",
"daemon",
"=",
"True",
"self",
".",
"server_thread",
".",
"start",
"(",
")",
"# Make sure the server actually starts and becomes responsive.",
"timer",
"=",
"Timer",
"(",
"60",
")",
"while",
"not",
"self",
".",
"responsive",
":",
"if",
"timer",
".",
"expired",
":",
"raise",
"RuntimeError",
"(",
"\"WSGI application timed out during boot\"",
")",
"self",
".",
"server_thread",
".",
"join",
"(",
"0.1",
")",
"return",
"self"
] | Boots a server for the app, if it isn't already booted.
Returns:
Server: This server. | [
"Boots",
"a",
"server",
"for",
"the",
"app",
"if",
"it",
"isn",
"t",
"already",
"booted",
"."
] | python | test |
6809/MC6809 | MC6809/components/mc6809_ops_logic.py | https://github.com/6809/MC6809/blob/6ba2f5106df46689017b5d0b6d84d43b7ee6a240/MC6809/components/mc6809_ops_logic.py#L172-L182 | def instruction_LSL_memory(self, opcode, ea, m):
"""
Logical shift left memory location / Arithmetic shift of memory left
"""
r = self.LSL(m)
# log.debug("$%x LSL memory value $%x << 1 = $%x and write it to $%x \t| %s" % (
# self.program_counter,
# m, r, ea,
# self.cfg.mem_info.get_shortest(ea)
# ))
return ea, r & 0xff | [
"def",
"instruction_LSL_memory",
"(",
"self",
",",
"opcode",
",",
"ea",
",",
"m",
")",
":",
"r",
"=",
"self",
".",
"LSL",
"(",
"m",
")",
"# log.debug(\"$%x LSL memory value $%x << 1 = $%x and write it to $%x \\t| %s\" % (",
"# self.program_counter,",
"# m, r, ea,",
"# self.cfg.mem_info.get_shortest(ea)",
"# ))",
"return",
"ea",
",",
"r",
"&",
"0xff"
] | Logical shift left memory location / Arithmetic shift of memory left | [
"Logical",
"shift",
"left",
"memory",
"location",
"/",
"Arithmetic",
"shift",
"of",
"memory",
"left"
] | python | train |
ska-sa/katversion | katversion/build.py | https://github.com/ska-sa/katversion/blob/f507e46e6c5610aec89a08dd480c9b3721da0f8a/katversion/build.py#L32-L58 | def patch_init_py(base_dir, name, version):
"""Patch __init__.py to remove version check and append hard-coded version."""
# Ensure main package dir is there (may be absent in script-only packages)
package_dir = os.path.join(base_dir, name)
if not os.path.isdir(package_dir):
os.makedirs(package_dir)
# Open top-level __init__.py and read whole file
init_py = os.path.join(package_dir, '__init__.py')
log.info("patching %s to bake in version '%s'" % (init_py, version))
with open(init_py, 'r+') as init_file:
lines = init_file.readlines()
# Search for sentinels indicating version checking block
try:
begin = lines.index("# BEGIN VERSION CHECK\n")
end = lines.index("# END VERSION CHECK\n")
except ValueError:
begin = end = len(lines)
# Delete existing repo version checking block in file
init_file.seek(0)
init_file.writelines(lines[:begin] + lines[end+1:])
# Append new version attribute to ensure it is authoritative, but only
# if it is not already there (this happens in pip sdist installs)
version_cmd = "__version__ = '{0}'\n".format(version)
if not lines or lines[-1] != version_cmd:
init_file.write("\n# Automatically added by katversion\n")
init_file.write(version_cmd)
init_file.truncate() | [
"def",
"patch_init_py",
"(",
"base_dir",
",",
"name",
",",
"version",
")",
":",
"# Ensure main package dir is there (may be absent in script-only packages)",
"package_dir",
"=",
"os",
".",
"path",
".",
"join",
"(",
"base_dir",
",",
"name",
")",
"if",
"not",
"os",
".",
"path",
".",
"isdir",
"(",
"package_dir",
")",
":",
"os",
".",
"makedirs",
"(",
"package_dir",
")",
"# Open top-level __init__.py and read whole file",
"init_py",
"=",
"os",
".",
"path",
".",
"join",
"(",
"package_dir",
",",
"'__init__.py'",
")",
"log",
".",
"info",
"(",
"\"patching %s to bake in version '%s'\"",
"%",
"(",
"init_py",
",",
"version",
")",
")",
"with",
"open",
"(",
"init_py",
",",
"'r+'",
")",
"as",
"init_file",
":",
"lines",
"=",
"init_file",
".",
"readlines",
"(",
")",
"# Search for sentinels indicating version checking block",
"try",
":",
"begin",
"=",
"lines",
".",
"index",
"(",
"\"# BEGIN VERSION CHECK\\n\"",
")",
"end",
"=",
"lines",
".",
"index",
"(",
"\"# END VERSION CHECK\\n\"",
")",
"except",
"ValueError",
":",
"begin",
"=",
"end",
"=",
"len",
"(",
"lines",
")",
"# Delete existing repo version checking block in file",
"init_file",
".",
"seek",
"(",
"0",
")",
"init_file",
".",
"writelines",
"(",
"lines",
"[",
":",
"begin",
"]",
"+",
"lines",
"[",
"end",
"+",
"1",
":",
"]",
")",
"# Append new version attribute to ensure it is authoritative, but only",
"# if it is not already there (this happens in pip sdist installs)",
"version_cmd",
"=",
"\"__version__ = '{0}'\\n\"",
".",
"format",
"(",
"version",
")",
"if",
"not",
"lines",
"or",
"lines",
"[",
"-",
"1",
"]",
"!=",
"version_cmd",
":",
"init_file",
".",
"write",
"(",
"\"\\n# Automatically added by katversion\\n\"",
")",
"init_file",
".",
"write",
"(",
"version_cmd",
")",
"init_file",
".",
"truncate",
"(",
")"
] | Patch __init__.py to remove version check and append hard-coded version. | [
"Patch",
"__init__",
".",
"py",
"to",
"remove",
"version",
"check",
"and",
"append",
"hard",
"-",
"coded",
"version",
"."
] | python | train |
spacetelescope/synphot_refactor | synphot/utils.py | https://github.com/spacetelescope/synphot_refactor/blob/9c064f3cff0c41dd8acadc0f67c6350931275b9f/synphot/utils.py#L54-L73 | def validate_totalflux(totalflux):
"""Check integrated flux for invalid values.
Parameters
----------
totalflux : float
Integrated flux.
Raises
------
synphot.exceptions.SynphotError
Input is zero, negative, or not a number.
"""
if totalflux <= 0.0:
raise exceptions.SynphotError('Integrated flux is <= 0')
elif np.isnan(totalflux):
raise exceptions.SynphotError('Integrated flux is NaN')
elif np.isinf(totalflux):
raise exceptions.SynphotError('Integrated flux is infinite') | [
"def",
"validate_totalflux",
"(",
"totalflux",
")",
":",
"if",
"totalflux",
"<=",
"0.0",
":",
"raise",
"exceptions",
".",
"SynphotError",
"(",
"'Integrated flux is <= 0'",
")",
"elif",
"np",
".",
"isnan",
"(",
"totalflux",
")",
":",
"raise",
"exceptions",
".",
"SynphotError",
"(",
"'Integrated flux is NaN'",
")",
"elif",
"np",
".",
"isinf",
"(",
"totalflux",
")",
":",
"raise",
"exceptions",
".",
"SynphotError",
"(",
"'Integrated flux is infinite'",
")"
] | Check integrated flux for invalid values.
Parameters
----------
totalflux : float
Integrated flux.
Raises
------
synphot.exceptions.SynphotError
Input is zero, negative, or not a number. | [
"Check",
"integrated",
"flux",
"for",
"invalid",
"values",
"."
] | python | train |
etingof/pysnmp | pysnmp/entity/rfc3413/cmdrsp.py | https://github.com/etingof/pysnmp/blob/cde062dd42f67dfd2d7686286a322d40e9c3a4b7/pysnmp/entity/rfc3413/cmdrsp.py#L339-L375 | def _getManagedObjectsInstances(self, varBinds, **context):
"""Iterate over Managed Objects fulfilling SNMP query.
Returns
-------
:py:class:`list` - List of Managed Objects Instances to respond with or
`None` to indicate that not all objects have been gathered
so far.
"""
rspVarBinds = context['rspVarBinds']
varBindsMap = context['varBindsMap']
rtrVarBinds = []
for idx, varBind in enumerate(varBinds):
name, val = varBind
if (exval.noSuchObject.isSameTypeWith(val) or
exval.noSuchInstance.isSameTypeWith(val)):
varBindsMap[len(rtrVarBinds)] = varBindsMap.pop(idx, idx)
rtrVarBinds.append(varBind)
else:
rspVarBinds[varBindsMap.pop(idx, idx)] = varBind
if rtrVarBinds:
snmpEngine = context['snmpEngine']
# Need to unwind stack, can't recurse any more
def callLater(*args):
snmpEngine.transportDispatcher.unregisterTimerCbFun(callLater)
mgmtFun = context['mgmtFun']
mgmtFun(*varBinds, **context)
snmpEngine.transportDispatcher.registerTimerCbFun(callLater, 0.01)
else:
return rspVarBinds | [
"def",
"_getManagedObjectsInstances",
"(",
"self",
",",
"varBinds",
",",
"*",
"*",
"context",
")",
":",
"rspVarBinds",
"=",
"context",
"[",
"'rspVarBinds'",
"]",
"varBindsMap",
"=",
"context",
"[",
"'varBindsMap'",
"]",
"rtrVarBinds",
"=",
"[",
"]",
"for",
"idx",
",",
"varBind",
"in",
"enumerate",
"(",
"varBinds",
")",
":",
"name",
",",
"val",
"=",
"varBind",
"if",
"(",
"exval",
".",
"noSuchObject",
".",
"isSameTypeWith",
"(",
"val",
")",
"or",
"exval",
".",
"noSuchInstance",
".",
"isSameTypeWith",
"(",
"val",
")",
")",
":",
"varBindsMap",
"[",
"len",
"(",
"rtrVarBinds",
")",
"]",
"=",
"varBindsMap",
".",
"pop",
"(",
"idx",
",",
"idx",
")",
"rtrVarBinds",
".",
"append",
"(",
"varBind",
")",
"else",
":",
"rspVarBinds",
"[",
"varBindsMap",
".",
"pop",
"(",
"idx",
",",
"idx",
")",
"]",
"=",
"varBind",
"if",
"rtrVarBinds",
":",
"snmpEngine",
"=",
"context",
"[",
"'snmpEngine'",
"]",
"# Need to unwind stack, can't recurse any more",
"def",
"callLater",
"(",
"*",
"args",
")",
":",
"snmpEngine",
".",
"transportDispatcher",
".",
"unregisterTimerCbFun",
"(",
"callLater",
")",
"mgmtFun",
"=",
"context",
"[",
"'mgmtFun'",
"]",
"mgmtFun",
"(",
"*",
"varBinds",
",",
"*",
"*",
"context",
")",
"snmpEngine",
".",
"transportDispatcher",
".",
"registerTimerCbFun",
"(",
"callLater",
",",
"0.01",
")",
"else",
":",
"return",
"rspVarBinds"
] | Iterate over Managed Objects fulfilling SNMP query.
Returns
-------
:py:class:`list` - List of Managed Objects Instances to respond with or
`None` to indicate that not all objects have been gathered
so far. | [
"Iterate",
"over",
"Managed",
"Objects",
"fulfilling",
"SNMP",
"query",
"."
] | python | train |
twilio/twilio-python | twilio/rest/api/v2010/account/signing_key.py | https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/api/v2010/account/signing_key.py#L168-L177 | def get_instance(self, payload):
"""
Build an instance of SigningKeyInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.api.v2010.account.signing_key.SigningKeyInstance
:rtype: twilio.rest.api.v2010.account.signing_key.SigningKeyInstance
"""
return SigningKeyInstance(self._version, payload, account_sid=self._solution['account_sid'], ) | [
"def",
"get_instance",
"(",
"self",
",",
"payload",
")",
":",
"return",
"SigningKeyInstance",
"(",
"self",
".",
"_version",
",",
"payload",
",",
"account_sid",
"=",
"self",
".",
"_solution",
"[",
"'account_sid'",
"]",
",",
")"
] | Build an instance of SigningKeyInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.api.v2010.account.signing_key.SigningKeyInstance
:rtype: twilio.rest.api.v2010.account.signing_key.SigningKeyInstance | [
"Build",
"an",
"instance",
"of",
"SigningKeyInstance"
] | python | train |
INM-6/hybridLFPy | examples/Hagen_et_al_2016_cercor/plot_methods.py | https://github.com/INM-6/hybridLFPy/blob/c38bdf38982c4624c2f70caeb50c40f1d5980abd/examples/Hagen_et_al_2016_cercor/plot_methods.py#L738-L853 | def plot_signal_sum(ax, params, fname='LFPsum.h5', unit='mV', scaling_factor=1.,
ylabels=True, scalebar=True, vlimround=None,
T=[800, 1000], ylim=[-1500, 0], color='k', fancy=False,
label='', transient=200, clip_on=False, rasterized=True,
**kwargs):
'''
on axes plot the summed LFP contributions
args:
::
ax : matplotlib.axes.AxesSubplot object
fname : str/np.ndarray, path to h5 file or ndim=2 numpy.ndarray
unit : str, scalebar unit
scaling_factor : float, scaling factor (e.g. to scale 10% data set up)
ylabels : bool, show labels on y-axis
scalebar : bool, show scalebar in plot
vlimround : None/float, override autoscaling of data and scalebar
T : list, [tstart, tstop], which timeinterval
ylim : list of floats, see plt.gca().set_ylim
color : str/colorspec tuple, color of shown lines
fancy : bool,
label : str, line labels
rasterized : bool, rasterize line plots if true
kwargs : additional keyword arguments passed to ax.plot()
returns:
::
vlimround : float, scalebar scaling factor, i.e., to match up plots
'''
if type(fname) == str and os.path.isfile(fname):
f = h5py.File(fname)
#load data
data = f['data'].value
tvec = np.arange(data.shape[1]) * 1000. / f['srate'].value
#for mean subtraction
datameanaxis1 = f['data'].value[:, tvec >= transient].mean(axis=1)
#close dataset
f.close()
elif type(fname) == np.ndarray and fname.ndim==2:
data = fname
tvec = np.arange(data.shape[1]) * params.dt_output
datameanaxis1 = data[:, tvec >= transient].mean(axis=1)
else:
raise Exception, 'type(fname)={} not str or numpy.ndarray'.format(type(fname))
# slice
slica = (tvec <= T[1]) & (tvec >= T[0])
data = data[:,slica]
#subtract mean in each channel
#dataT = data.T - data.mean(axis=1)
dataT = data.T - datameanaxis1
data = dataT.T
# normalize
data = data*scaling_factor
zvec = np.r_[params.electrodeParams['z']]
zvec = np.r_[zvec, zvec[-1] + np.diff(zvec)[-1]]
vlim = abs(data).max()
if vlimround is None:
vlimround = 2.**np.round(np.log2(vlim))
else:
pass
yticklabels=[]
yticks = []
if fancy:
colors=phlp.get_colors(data.shape[0])
else:
colors = [color]*data.shape[0]
for i, z in enumerate(params.electrodeParams['z']):
if i == 0:
ax.plot(tvec[slica], data[i] * 100 / vlimround + z,
color=colors[i], rasterized=rasterized, label=label,
clip_on=clip_on, **kwargs)
else:
ax.plot(tvec[slica], data[i] * 100 / vlimround + z,
color=colors[i], rasterized=rasterized, clip_on=clip_on,
**kwargs)
yticklabels.append('ch. %i' % (i+1))
yticks.append(z)
if scalebar:
ax.plot([tvec[slica][-1], tvec[slica][-1]],
[-1300, -1400], lw=2, color='k', clip_on=False)
ax.text(tvec[slica][-1]+np.diff(T)*0.02, -1350,
r'%g %s' % (vlimround, unit),
color='k', rotation='vertical',
va='center')
ax.axis(ax.axis('tight'))
ax.yaxis.set_ticks(yticks)
if ylabels:
ax.yaxis.set_ticklabels(yticklabels)
else:
ax.yaxis.set_ticklabels([])
for loc, spine in ax.spines.iteritems():
if loc in ['right', 'top']:
spine.set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.set_xlabel(r'$t$ (ms)', labelpad=0.1)
ax.set_ylim(ylim)
return vlimround | [
"def",
"plot_signal_sum",
"(",
"ax",
",",
"params",
",",
"fname",
"=",
"'LFPsum.h5'",
",",
"unit",
"=",
"'mV'",
",",
"scaling_factor",
"=",
"1.",
",",
"ylabels",
"=",
"True",
",",
"scalebar",
"=",
"True",
",",
"vlimround",
"=",
"None",
",",
"T",
"=",
"[",
"800",
",",
"1000",
"]",
",",
"ylim",
"=",
"[",
"-",
"1500",
",",
"0",
"]",
",",
"color",
"=",
"'k'",
",",
"fancy",
"=",
"False",
",",
"label",
"=",
"''",
",",
"transient",
"=",
"200",
",",
"clip_on",
"=",
"False",
",",
"rasterized",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"type",
"(",
"fname",
")",
"==",
"str",
"and",
"os",
".",
"path",
".",
"isfile",
"(",
"fname",
")",
":",
"f",
"=",
"h5py",
".",
"File",
"(",
"fname",
")",
"#load data",
"data",
"=",
"f",
"[",
"'data'",
"]",
".",
"value",
"tvec",
"=",
"np",
".",
"arange",
"(",
"data",
".",
"shape",
"[",
"1",
"]",
")",
"*",
"1000.",
"/",
"f",
"[",
"'srate'",
"]",
".",
"value",
"#for mean subtraction",
"datameanaxis1",
"=",
"f",
"[",
"'data'",
"]",
".",
"value",
"[",
":",
",",
"tvec",
">=",
"transient",
"]",
".",
"mean",
"(",
"axis",
"=",
"1",
")",
"#close dataset",
"f",
".",
"close",
"(",
")",
"elif",
"type",
"(",
"fname",
")",
"==",
"np",
".",
"ndarray",
"and",
"fname",
".",
"ndim",
"==",
"2",
":",
"data",
"=",
"fname",
"tvec",
"=",
"np",
".",
"arange",
"(",
"data",
".",
"shape",
"[",
"1",
"]",
")",
"*",
"params",
".",
"dt_output",
"datameanaxis1",
"=",
"data",
"[",
":",
",",
"tvec",
">=",
"transient",
"]",
".",
"mean",
"(",
"axis",
"=",
"1",
")",
"else",
":",
"raise",
"Exception",
",",
"'type(fname)={} not str or numpy.ndarray'",
".",
"format",
"(",
"type",
"(",
"fname",
")",
")",
"# slice",
"slica",
"=",
"(",
"tvec",
"<=",
"T",
"[",
"1",
"]",
")",
"&",
"(",
"tvec",
">=",
"T",
"[",
"0",
"]",
")",
"data",
"=",
"data",
"[",
":",
",",
"slica",
"]",
"#subtract mean in each channel",
"#dataT = data.T - data.mean(axis=1)",
"dataT",
"=",
"data",
".",
"T",
"-",
"datameanaxis1",
"data",
"=",
"dataT",
".",
"T",
"# normalize",
"data",
"=",
"data",
"*",
"scaling_factor",
"zvec",
"=",
"np",
".",
"r_",
"[",
"params",
".",
"electrodeParams",
"[",
"'z'",
"]",
"]",
"zvec",
"=",
"np",
".",
"r_",
"[",
"zvec",
",",
"zvec",
"[",
"-",
"1",
"]",
"+",
"np",
".",
"diff",
"(",
"zvec",
")",
"[",
"-",
"1",
"]",
"]",
"vlim",
"=",
"abs",
"(",
"data",
")",
".",
"max",
"(",
")",
"if",
"vlimround",
"is",
"None",
":",
"vlimround",
"=",
"2.",
"**",
"np",
".",
"round",
"(",
"np",
".",
"log2",
"(",
"vlim",
")",
")",
"else",
":",
"pass",
"yticklabels",
"=",
"[",
"]",
"yticks",
"=",
"[",
"]",
"if",
"fancy",
":",
"colors",
"=",
"phlp",
".",
"get_colors",
"(",
"data",
".",
"shape",
"[",
"0",
"]",
")",
"else",
":",
"colors",
"=",
"[",
"color",
"]",
"*",
"data",
".",
"shape",
"[",
"0",
"]",
"for",
"i",
",",
"z",
"in",
"enumerate",
"(",
"params",
".",
"electrodeParams",
"[",
"'z'",
"]",
")",
":",
"if",
"i",
"==",
"0",
":",
"ax",
".",
"plot",
"(",
"tvec",
"[",
"slica",
"]",
",",
"data",
"[",
"i",
"]",
"*",
"100",
"/",
"vlimround",
"+",
"z",
",",
"color",
"=",
"colors",
"[",
"i",
"]",
",",
"rasterized",
"=",
"rasterized",
",",
"label",
"=",
"label",
",",
"clip_on",
"=",
"clip_on",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"ax",
".",
"plot",
"(",
"tvec",
"[",
"slica",
"]",
",",
"data",
"[",
"i",
"]",
"*",
"100",
"/",
"vlimround",
"+",
"z",
",",
"color",
"=",
"colors",
"[",
"i",
"]",
",",
"rasterized",
"=",
"rasterized",
",",
"clip_on",
"=",
"clip_on",
",",
"*",
"*",
"kwargs",
")",
"yticklabels",
".",
"append",
"(",
"'ch. %i'",
"%",
"(",
"i",
"+",
"1",
")",
")",
"yticks",
".",
"append",
"(",
"z",
")",
"if",
"scalebar",
":",
"ax",
".",
"plot",
"(",
"[",
"tvec",
"[",
"slica",
"]",
"[",
"-",
"1",
"]",
",",
"tvec",
"[",
"slica",
"]",
"[",
"-",
"1",
"]",
"]",
",",
"[",
"-",
"1300",
",",
"-",
"1400",
"]",
",",
"lw",
"=",
"2",
",",
"color",
"=",
"'k'",
",",
"clip_on",
"=",
"False",
")",
"ax",
".",
"text",
"(",
"tvec",
"[",
"slica",
"]",
"[",
"-",
"1",
"]",
"+",
"np",
".",
"diff",
"(",
"T",
")",
"*",
"0.02",
",",
"-",
"1350",
",",
"r'%g %s'",
"%",
"(",
"vlimround",
",",
"unit",
")",
",",
"color",
"=",
"'k'",
",",
"rotation",
"=",
"'vertical'",
",",
"va",
"=",
"'center'",
")",
"ax",
".",
"axis",
"(",
"ax",
".",
"axis",
"(",
"'tight'",
")",
")",
"ax",
".",
"yaxis",
".",
"set_ticks",
"(",
"yticks",
")",
"if",
"ylabels",
":",
"ax",
".",
"yaxis",
".",
"set_ticklabels",
"(",
"yticklabels",
")",
"else",
":",
"ax",
".",
"yaxis",
".",
"set_ticklabels",
"(",
"[",
"]",
")",
"for",
"loc",
",",
"spine",
"in",
"ax",
".",
"spines",
".",
"iteritems",
"(",
")",
":",
"if",
"loc",
"in",
"[",
"'right'",
",",
"'top'",
"]",
":",
"spine",
".",
"set_color",
"(",
"'none'",
")",
"ax",
".",
"xaxis",
".",
"set_ticks_position",
"(",
"'bottom'",
")",
"ax",
".",
"yaxis",
".",
"set_ticks_position",
"(",
"'left'",
")",
"ax",
".",
"set_xlabel",
"(",
"r'$t$ (ms)'",
",",
"labelpad",
"=",
"0.1",
")",
"ax",
".",
"set_ylim",
"(",
"ylim",
")",
"return",
"vlimround"
] | on axes plot the summed LFP contributions
args:
::
ax : matplotlib.axes.AxesSubplot object
fname : str/np.ndarray, path to h5 file or ndim=2 numpy.ndarray
unit : str, scalebar unit
scaling_factor : float, scaling factor (e.g. to scale 10% data set up)
ylabels : bool, show labels on y-axis
scalebar : bool, show scalebar in plot
vlimround : None/float, override autoscaling of data and scalebar
T : list, [tstart, tstop], which timeinterval
ylim : list of floats, see plt.gca().set_ylim
color : str/colorspec tuple, color of shown lines
fancy : bool,
label : str, line labels
rasterized : bool, rasterize line plots if true
kwargs : additional keyword arguments passed to ax.plot()
returns:
::
vlimround : float, scalebar scaling factor, i.e., to match up plots | [
"on",
"axes",
"plot",
"the",
"summed",
"LFP",
"contributions",
"args",
":",
"::",
"ax",
":",
"matplotlib",
".",
"axes",
".",
"AxesSubplot",
"object",
"fname",
":",
"str",
"/",
"np",
".",
"ndarray",
"path",
"to",
"h5",
"file",
"or",
"ndim",
"=",
"2",
"numpy",
".",
"ndarray",
"unit",
":",
"str",
"scalebar",
"unit",
"scaling_factor",
":",
"float",
"scaling",
"factor",
"(",
"e",
".",
"g",
".",
"to",
"scale",
"10%",
"data",
"set",
"up",
")",
"ylabels",
":",
"bool",
"show",
"labels",
"on",
"y",
"-",
"axis",
"scalebar",
":",
"bool",
"show",
"scalebar",
"in",
"plot",
"vlimround",
":",
"None",
"/",
"float",
"override",
"autoscaling",
"of",
"data",
"and",
"scalebar",
"T",
":",
"list",
"[",
"tstart",
"tstop",
"]",
"which",
"timeinterval",
"ylim",
":",
"list",
"of",
"floats",
"see",
"plt",
".",
"gca",
"()",
".",
"set_ylim",
"color",
":",
"str",
"/",
"colorspec",
"tuple",
"color",
"of",
"shown",
"lines",
"fancy",
":",
"bool",
"label",
":",
"str",
"line",
"labels",
"rasterized",
":",
"bool",
"rasterize",
"line",
"plots",
"if",
"true",
"kwargs",
":",
"additional",
"keyword",
"arguments",
"passed",
"to",
"ax",
".",
"plot",
"()",
"returns",
":",
"::",
"vlimround",
":",
"float",
"scalebar",
"scaling",
"factor",
"i",
".",
"e",
".",
"to",
"match",
"up",
"plots"
] | python | train |
ajyoon/blur | examples/softlife/softlife.py | https://github.com/ajyoon/blur/blob/25fcf083af112bb003956a7a7e1c6ff7d8fef279/examples/softlife/softlife.py#L89-L97 | def draw_canvas():
"""Render the tkinter canvas based on the state of ``world``"""
for x in range(len(world)):
for y in range(len(world[x])):
if world[x][y].value:
color = world[x][y].color_alive.get_as_hex()
else:
color = world[x][y].color_dead.get_as_hex()
canvas.itemconfig(canvas_grid[x][y], fill=color) | [
"def",
"draw_canvas",
"(",
")",
":",
"for",
"x",
"in",
"range",
"(",
"len",
"(",
"world",
")",
")",
":",
"for",
"y",
"in",
"range",
"(",
"len",
"(",
"world",
"[",
"x",
"]",
")",
")",
":",
"if",
"world",
"[",
"x",
"]",
"[",
"y",
"]",
".",
"value",
":",
"color",
"=",
"world",
"[",
"x",
"]",
"[",
"y",
"]",
".",
"color_alive",
".",
"get_as_hex",
"(",
")",
"else",
":",
"color",
"=",
"world",
"[",
"x",
"]",
"[",
"y",
"]",
".",
"color_dead",
".",
"get_as_hex",
"(",
")",
"canvas",
".",
"itemconfig",
"(",
"canvas_grid",
"[",
"x",
"]",
"[",
"y",
"]",
",",
"fill",
"=",
"color",
")"
] | Render the tkinter canvas based on the state of ``world`` | [
"Render",
"the",
"tkinter",
"canvas",
"based",
"on",
"the",
"state",
"of",
"world"
] | python | train |
secdev/scapy | scapy/layers/tls/record_tls13.py | https://github.com/secdev/scapy/blob/3ffe757c184017dd46464593a8f80f85abc1e79a/scapy/layers/tls/record_tls13.py#L172-L179 | def _tls_auth_encrypt(self, s):
"""
Return the TLSCiphertext.encrypted_record for AEAD ciphers.
"""
wcs = self.tls_session.wcs
write_seq_num = struct.pack("!Q", wcs.seq_num)
wcs.seq_num += 1
return wcs.cipher.auth_encrypt(s, b"", write_seq_num) | [
"def",
"_tls_auth_encrypt",
"(",
"self",
",",
"s",
")",
":",
"wcs",
"=",
"self",
".",
"tls_session",
".",
"wcs",
"write_seq_num",
"=",
"struct",
".",
"pack",
"(",
"\"!Q\"",
",",
"wcs",
".",
"seq_num",
")",
"wcs",
".",
"seq_num",
"+=",
"1",
"return",
"wcs",
".",
"cipher",
".",
"auth_encrypt",
"(",
"s",
",",
"b\"\"",
",",
"write_seq_num",
")"
] | Return the TLSCiphertext.encrypted_record for AEAD ciphers. | [
"Return",
"the",
"TLSCiphertext",
".",
"encrypted_record",
"for",
"AEAD",
"ciphers",
"."
] | python | train |
earwig/mwparserfromhell | mwparserfromhell/parser/tokenizer.py | https://github.com/earwig/mwparserfromhell/blob/98dc30902d35c714a70aca8e6616f49d71cb24cc/mwparserfromhell/parser/tokenizer.py#L903-L913 | def _parse_tag(self):
"""Parse an HTML tag at the head of the wikicode string."""
reset = self._head
self._head += 1
try:
tag = self._really_parse_tag()
except BadRoute:
self._head = reset
self._emit_text("<")
else:
self._emit_all(tag) | [
"def",
"_parse_tag",
"(",
"self",
")",
":",
"reset",
"=",
"self",
".",
"_head",
"self",
".",
"_head",
"+=",
"1",
"try",
":",
"tag",
"=",
"self",
".",
"_really_parse_tag",
"(",
")",
"except",
"BadRoute",
":",
"self",
".",
"_head",
"=",
"reset",
"self",
".",
"_emit_text",
"(",
"\"<\"",
")",
"else",
":",
"self",
".",
"_emit_all",
"(",
"tag",
")"
] | Parse an HTML tag at the head of the wikicode string. | [
"Parse",
"an",
"HTML",
"tag",
"at",
"the",
"head",
"of",
"the",
"wikicode",
"string",
"."
] | python | train |
SALib/SALib | src/SALib/analyze/rbd_fast.py | https://github.com/SALib/SALib/blob/9744d73bb17cfcffc8282c7dc4a727efdc4bea3f/src/SALib/analyze/rbd_fast.py#L85-L99 | def permute_outputs(Y, X):
"""
Permute the output according to one of the inputs as in [_2]
References
----------
.. [2] Elmar Plischke (2010) "An effective algorithm for computing global
sensitivity indices (EASI) Reliability Engineering & System Safety",
95:4, 354-360. doi:10.1016/j.ress.2009.11.005
"""
permutation_index = np.argsort(X)
permutation_index = np.concatenate([permutation_index[::2],
permutation_index[1::2][::-1]])
return Y[permutation_index] | [
"def",
"permute_outputs",
"(",
"Y",
",",
"X",
")",
":",
"permutation_index",
"=",
"np",
".",
"argsort",
"(",
"X",
")",
"permutation_index",
"=",
"np",
".",
"concatenate",
"(",
"[",
"permutation_index",
"[",
":",
":",
"2",
"]",
",",
"permutation_index",
"[",
"1",
":",
":",
"2",
"]",
"[",
":",
":",
"-",
"1",
"]",
"]",
")",
"return",
"Y",
"[",
"permutation_index",
"]"
] | Permute the output according to one of the inputs as in [_2]
References
----------
.. [2] Elmar Plischke (2010) "An effective algorithm for computing global
sensitivity indices (EASI) Reliability Engineering & System Safety",
95:4, 354-360. doi:10.1016/j.ress.2009.11.005 | [
"Permute",
"the",
"output",
"according",
"to",
"one",
"of",
"the",
"inputs",
"as",
"in",
"[",
"_2",
"]",
"References",
"----------",
"..",
"[",
"2",
"]",
"Elmar",
"Plischke",
"(",
"2010",
")",
"An",
"effective",
"algorithm",
"for",
"computing",
"global",
"sensitivity",
"indices",
"(",
"EASI",
")",
"Reliability",
"Engineering",
"&",
"System",
"Safety",
"95",
":",
"4",
"354",
"-",
"360",
".",
"doi",
":",
"10",
".",
"1016",
"/",
"j",
".",
"ress",
".",
"2009",
".",
"11",
".",
"005"
] | python | train |
tensorflow/tensor2tensor | tensor2tensor/data_generators/algorithmic_math.py | https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/data_generators/algorithmic_math.py#L439-L477 | def algebra_inverse(alphabet_size=26, min_depth=0, max_depth=2,
nbr_cases=10000):
"""Generate the algebra inverse dataset.
Each sample is a symbolic math equation involving unknown variables. The
task is to solve for the given variable. The target is the resulting
expression.
Args:
alphabet_size: How many possible variables there are. Max 52.
min_depth: Minimum depth of the expression trees on both sides of the
equals sign in the equation.
max_depth: Maximum depth of the expression trees on both sides of the
equals sign in the equation.
nbr_cases: The number of cases to generate.
Yields:
A dictionary {"inputs": input-list, "targets": target-list} where
input-list are the tokens encoding the variable to solve for and the math
equation, and target-list is a list of tokens encoding the resulting math
expression after solving for the variable.
Raises:
ValueError: If `max_depth` < `min_depth`.
"""
if max_depth < min_depth:
raise ValueError("max_depth must be greater than or equal to min_depth. "
"Got max_depth=%s, min_depth=%s" % (max_depth, min_depth))
alg_cfg = math_dataset_init(alphabet_size)
for _ in range(nbr_cases):
sample, target = generate_algebra_inverse_sample(
alg_cfg.vlist,
list(alg_cfg.ops.values()), alg_cfg.solve_ops, min_depth, max_depth)
yield {
"inputs": alg_cfg.int_encoder(sample),
"targets": alg_cfg.int_encoder(target)
} | [
"def",
"algebra_inverse",
"(",
"alphabet_size",
"=",
"26",
",",
"min_depth",
"=",
"0",
",",
"max_depth",
"=",
"2",
",",
"nbr_cases",
"=",
"10000",
")",
":",
"if",
"max_depth",
"<",
"min_depth",
":",
"raise",
"ValueError",
"(",
"\"max_depth must be greater than or equal to min_depth. \"",
"\"Got max_depth=%s, min_depth=%s\"",
"%",
"(",
"max_depth",
",",
"min_depth",
")",
")",
"alg_cfg",
"=",
"math_dataset_init",
"(",
"alphabet_size",
")",
"for",
"_",
"in",
"range",
"(",
"nbr_cases",
")",
":",
"sample",
",",
"target",
"=",
"generate_algebra_inverse_sample",
"(",
"alg_cfg",
".",
"vlist",
",",
"list",
"(",
"alg_cfg",
".",
"ops",
".",
"values",
"(",
")",
")",
",",
"alg_cfg",
".",
"solve_ops",
",",
"min_depth",
",",
"max_depth",
")",
"yield",
"{",
"\"inputs\"",
":",
"alg_cfg",
".",
"int_encoder",
"(",
"sample",
")",
",",
"\"targets\"",
":",
"alg_cfg",
".",
"int_encoder",
"(",
"target",
")",
"}"
] | Generate the algebra inverse dataset.
Each sample is a symbolic math equation involving unknown variables. The
task is to solve for the given variable. The target is the resulting
expression.
Args:
alphabet_size: How many possible variables there are. Max 52.
min_depth: Minimum depth of the expression trees on both sides of the
equals sign in the equation.
max_depth: Maximum depth of the expression trees on both sides of the
equals sign in the equation.
nbr_cases: The number of cases to generate.
Yields:
A dictionary {"inputs": input-list, "targets": target-list} where
input-list are the tokens encoding the variable to solve for and the math
equation, and target-list is a list of tokens encoding the resulting math
expression after solving for the variable.
Raises:
ValueError: If `max_depth` < `min_depth`. | [
"Generate",
"the",
"algebra",
"inverse",
"dataset",
"."
] | python | train |
scot-dev/scot | scot/plainica.py | https://github.com/scot-dev/scot/blob/48598b79d4400dad893b134cd2194715511facda/scot/plainica.py#L29-L77 | def plainica(x, reducedim=0.99, backend=None, random_state=None):
""" Source decomposition with ICA.
Apply ICA to the data x, with optional PCA dimensionality reduction.
Parameters
----------
x : array, shape (n_trials, n_channels, n_samples) or (n_channels, n_samples)
data set
reducedim : {int, float, 'no_pca'}, optional
A number of less than 1 in interpreted as the fraction of variance that should remain in the data. All
components that describe in total less than `1-reducedim` of the variance are removed by the PCA step.
An integer numer of 1 or greater is interpreted as the number of components to keep after applying the PCA.
If set to 'no_pca' the PCA step is skipped.
backend : dict-like, optional
Specify backend to use. When set to None the backend configured in config.backend is used.
Returns
-------
result : ResultICA
Source decomposition
"""
x = atleast_3d(x)
t, m, l = np.shape(x)
if backend is None:
backend = scotbackend
# pre-transform the data with PCA
if reducedim == 'no pca':
c = np.eye(m)
d = np.eye(m)
xpca = x
else:
c, d, xpca = backend['pca'](x, reducedim)
# run on residuals ICA to estimate volume conduction
mx, ux = backend['ica'](cat_trials(xpca), random_state=random_state)
# correct (un)mixing matrix estimatees
mx = mx.dot(d)
ux = c.dot(ux)
class Result:
unmixing = ux
mixing = mx
return Result | [
"def",
"plainica",
"(",
"x",
",",
"reducedim",
"=",
"0.99",
",",
"backend",
"=",
"None",
",",
"random_state",
"=",
"None",
")",
":",
"x",
"=",
"atleast_3d",
"(",
"x",
")",
"t",
",",
"m",
",",
"l",
"=",
"np",
".",
"shape",
"(",
"x",
")",
"if",
"backend",
"is",
"None",
":",
"backend",
"=",
"scotbackend",
"# pre-transform the data with PCA",
"if",
"reducedim",
"==",
"'no pca'",
":",
"c",
"=",
"np",
".",
"eye",
"(",
"m",
")",
"d",
"=",
"np",
".",
"eye",
"(",
"m",
")",
"xpca",
"=",
"x",
"else",
":",
"c",
",",
"d",
",",
"xpca",
"=",
"backend",
"[",
"'pca'",
"]",
"(",
"x",
",",
"reducedim",
")",
"# run on residuals ICA to estimate volume conduction",
"mx",
",",
"ux",
"=",
"backend",
"[",
"'ica'",
"]",
"(",
"cat_trials",
"(",
"xpca",
")",
",",
"random_state",
"=",
"random_state",
")",
"# correct (un)mixing matrix estimatees",
"mx",
"=",
"mx",
".",
"dot",
"(",
"d",
")",
"ux",
"=",
"c",
".",
"dot",
"(",
"ux",
")",
"class",
"Result",
":",
"unmixing",
"=",
"ux",
"mixing",
"=",
"mx",
"return",
"Result"
] | Source decomposition with ICA.
Apply ICA to the data x, with optional PCA dimensionality reduction.
Parameters
----------
x : array, shape (n_trials, n_channels, n_samples) or (n_channels, n_samples)
data set
reducedim : {int, float, 'no_pca'}, optional
A number of less than 1 in interpreted as the fraction of variance that should remain in the data. All
components that describe in total less than `1-reducedim` of the variance are removed by the PCA step.
An integer numer of 1 or greater is interpreted as the number of components to keep after applying the PCA.
If set to 'no_pca' the PCA step is skipped.
backend : dict-like, optional
Specify backend to use. When set to None the backend configured in config.backend is used.
Returns
-------
result : ResultICA
Source decomposition | [
"Source",
"decomposition",
"with",
"ICA",
"."
] | python | train |
rackerlabs/simpl | simpl/config.py | https://github.com/rackerlabs/simpl/blob/60ed3336a931cd6a7a7246e60f26165d9dc7c99c/simpl/config.py#L378-L382 | def init(cls, *args, **kwargs):
"""Initialize the config like as you would a regular dict."""
instance = cls()
instance._values.update(dict(*args, **kwargs))
return instance | [
"def",
"init",
"(",
"cls",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"instance",
"=",
"cls",
"(",
")",
"instance",
".",
"_values",
".",
"update",
"(",
"dict",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
")",
"return",
"instance"
] | Initialize the config like as you would a regular dict. | [
"Initialize",
"the",
"config",
"like",
"as",
"you",
"would",
"a",
"regular",
"dict",
"."
] | python | train |
sony/nnabla | python/src/nnabla/functions.py | https://github.com/sony/nnabla/blob/aaf3d33b7cbb38f2a03aa754178ba8f7c8481320/python/src/nnabla/functions.py#L62-L109 | def max(x, axis=None, keepdims=False, with_index=False, only_index=False):
"""Reduce the input N-D array `x` along the given `axis` using the max
operation. The `axis` argument may be a single integer to reduce
over one axis, a tuple of integers to reduce over multiple axes,
or ``None`` to reduce over all axes. If `keepdims` is ``True``,
the output will keep all reduced dimensions with size 1. If
`with_index` is True, result is a tuple ``(sorted, indices)`` or
only ``indices`` if `only_index` is True. Setting `only_index` to
True implies that `with_index` is also True.
.. code-block:: python
import numpy as np
import nnabla as nn
import nnabla.functions as F
nn.set_auto_forward(True)
x = nn.Variable.from_numpy_array(np.random.rand(2, 3, 4))
maxval = F.max(x, axis=1)
assert np.allclose(maxval.d, np.max(x.d, axis=1))
maxval, indices = F.max(x, axis=1, with_index=True)
assert np.allclose(maxval.d, np.max(x.d, axis=1))
assert np.all(indices.d == np.argmax(x.d, axis=1))
indices = F.max(x, axis=1, only_index=True)
assert np.all(indices.d == np.argmax(x.d, axis=1))
Args:
x (Variable): An input variable.
axis (None, int or tuple of ints): Axis or axes along which max is
calculated. The default value `None` will reduce all dimensions.
keepdims(bool): Keep reduced axes as dimension with 1 element.
with_index(bool): Return tuple of max values and index.
only_index(bool): Return only the index of max values.
Returns:
~nnabla.Variable: N-D array.
"""
from .function_bases import max as max_base
if axis is None:
axis = range(x.ndim)
elif not hasattr(axis, '__iter__'):
axis = [axis]
n_outputs = 2 if with_index and not only_index else 1
return max_base(x, axis, keepdims, with_index, only_index, n_outputs) | [
"def",
"max",
"(",
"x",
",",
"axis",
"=",
"None",
",",
"keepdims",
"=",
"False",
",",
"with_index",
"=",
"False",
",",
"only_index",
"=",
"False",
")",
":",
"from",
".",
"function_bases",
"import",
"max",
"as",
"max_base",
"if",
"axis",
"is",
"None",
":",
"axis",
"=",
"range",
"(",
"x",
".",
"ndim",
")",
"elif",
"not",
"hasattr",
"(",
"axis",
",",
"'__iter__'",
")",
":",
"axis",
"=",
"[",
"axis",
"]",
"n_outputs",
"=",
"2",
"if",
"with_index",
"and",
"not",
"only_index",
"else",
"1",
"return",
"max_base",
"(",
"x",
",",
"axis",
",",
"keepdims",
",",
"with_index",
",",
"only_index",
",",
"n_outputs",
")"
] | Reduce the input N-D array `x` along the given `axis` using the max
operation. The `axis` argument may be a single integer to reduce
over one axis, a tuple of integers to reduce over multiple axes,
or ``None`` to reduce over all axes. If `keepdims` is ``True``,
the output will keep all reduced dimensions with size 1. If
`with_index` is True, result is a tuple ``(sorted, indices)`` or
only ``indices`` if `only_index` is True. Setting `only_index` to
True implies that `with_index` is also True.
.. code-block:: python
import numpy as np
import nnabla as nn
import nnabla.functions as F
nn.set_auto_forward(True)
x = nn.Variable.from_numpy_array(np.random.rand(2, 3, 4))
maxval = F.max(x, axis=1)
assert np.allclose(maxval.d, np.max(x.d, axis=1))
maxval, indices = F.max(x, axis=1, with_index=True)
assert np.allclose(maxval.d, np.max(x.d, axis=1))
assert np.all(indices.d == np.argmax(x.d, axis=1))
indices = F.max(x, axis=1, only_index=True)
assert np.all(indices.d == np.argmax(x.d, axis=1))
Args:
x (Variable): An input variable.
axis (None, int or tuple of ints): Axis or axes along which max is
calculated. The default value `None` will reduce all dimensions.
keepdims(bool): Keep reduced axes as dimension with 1 element.
with_index(bool): Return tuple of max values and index.
only_index(bool): Return only the index of max values.
Returns:
~nnabla.Variable: N-D array. | [
"Reduce",
"the",
"input",
"N",
"-",
"D",
"array",
"x",
"along",
"the",
"given",
"axis",
"using",
"the",
"max",
"operation",
".",
"The",
"axis",
"argument",
"may",
"be",
"a",
"single",
"integer",
"to",
"reduce",
"over",
"one",
"axis",
"a",
"tuple",
"of",
"integers",
"to",
"reduce",
"over",
"multiple",
"axes",
"or",
"None",
"to",
"reduce",
"over",
"all",
"axes",
".",
"If",
"keepdims",
"is",
"True",
"the",
"output",
"will",
"keep",
"all",
"reduced",
"dimensions",
"with",
"size",
"1",
".",
"If",
"with_index",
"is",
"True",
"result",
"is",
"a",
"tuple",
"(",
"sorted",
"indices",
")",
"or",
"only",
"indices",
"if",
"only_index",
"is",
"True",
".",
"Setting",
"only_index",
"to",
"True",
"implies",
"that",
"with_index",
"is",
"also",
"True",
"."
] | python | train |
classam/silly | silly/main.py | https://github.com/classam/silly/blob/f3202e997d5ebc9e4f98370b08665fd1178a9556/silly/main.py#L691-L730 | def datetime(past=True, random=random):
"""
Returns a random datetime from the past... or the future!
>>> mock_random.seed(0)
>>> datetime(random=mock_random).isoformat()
'1950-02-03T03:04:05'
"""
def year():
if past:
return random.choice(range(1950,2005))
else:
return _datetime.datetime.now().year + random.choice(range(1, 50))
def month():
return random.choice(range(1,12))
def day():
return random.choice(range(1,31))
def hour():
return random.choice(range(0,23))
def minute():
return random.choice(range(0,59))
def second():
return random.choice(range(0,59))
try:
return _datetime.datetime(year=year(),
month=month(),
day=day(),
hour=hour(),
minute=minute(),
second=second())
except ValueError:
return datetime(past=past) | [
"def",
"datetime",
"(",
"past",
"=",
"True",
",",
"random",
"=",
"random",
")",
":",
"def",
"year",
"(",
")",
":",
"if",
"past",
":",
"return",
"random",
".",
"choice",
"(",
"range",
"(",
"1950",
",",
"2005",
")",
")",
"else",
":",
"return",
"_datetime",
".",
"datetime",
".",
"now",
"(",
")",
".",
"year",
"+",
"random",
".",
"choice",
"(",
"range",
"(",
"1",
",",
"50",
")",
")",
"def",
"month",
"(",
")",
":",
"return",
"random",
".",
"choice",
"(",
"range",
"(",
"1",
",",
"12",
")",
")",
"def",
"day",
"(",
")",
":",
"return",
"random",
".",
"choice",
"(",
"range",
"(",
"1",
",",
"31",
")",
")",
"def",
"hour",
"(",
")",
":",
"return",
"random",
".",
"choice",
"(",
"range",
"(",
"0",
",",
"23",
")",
")",
"def",
"minute",
"(",
")",
":",
"return",
"random",
".",
"choice",
"(",
"range",
"(",
"0",
",",
"59",
")",
")",
"def",
"second",
"(",
")",
":",
"return",
"random",
".",
"choice",
"(",
"range",
"(",
"0",
",",
"59",
")",
")",
"try",
":",
"return",
"_datetime",
".",
"datetime",
"(",
"year",
"=",
"year",
"(",
")",
",",
"month",
"=",
"month",
"(",
")",
",",
"day",
"=",
"day",
"(",
")",
",",
"hour",
"=",
"hour",
"(",
")",
",",
"minute",
"=",
"minute",
"(",
")",
",",
"second",
"=",
"second",
"(",
")",
")",
"except",
"ValueError",
":",
"return",
"datetime",
"(",
"past",
"=",
"past",
")"
] | Returns a random datetime from the past... or the future!
>>> mock_random.seed(0)
>>> datetime(random=mock_random).isoformat()
'1950-02-03T03:04:05' | [
"Returns",
"a",
"random",
"datetime",
"from",
"the",
"past",
"...",
"or",
"the",
"future!"
] | python | train |
PierreRust/apigpio | apigpio/apigpio.py | https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L767-L782 | def set_bank_1(self, bits):
"""
Sets gpios 0-31 if the corresponding bit in bits is set.
bits:= a 32 bit mask with 1 set if the corresponding gpio is
to be set.
A returned status of PI_SOME_PERMITTED indicates that the user
is not allowed to write to one or more of the gpios.
...
pi.set_bank_1(int("111110010000",2))
...
"""
res = yield from self._pigpio_aio_command(_PI_CMD_BS1, bits, 0)
return _u2i(res) | [
"def",
"set_bank_1",
"(",
"self",
",",
"bits",
")",
":",
"res",
"=",
"yield",
"from",
"self",
".",
"_pigpio_aio_command",
"(",
"_PI_CMD_BS1",
",",
"bits",
",",
"0",
")",
"return",
"_u2i",
"(",
"res",
")"
] | Sets gpios 0-31 if the corresponding bit in bits is set.
bits:= a 32 bit mask with 1 set if the corresponding gpio is
to be set.
A returned status of PI_SOME_PERMITTED indicates that the user
is not allowed to write to one or more of the gpios.
...
pi.set_bank_1(int("111110010000",2))
... | [
"Sets",
"gpios",
"0",
"-",
"31",
"if",
"the",
"corresponding",
"bit",
"in",
"bits",
"is",
"set",
"."
] | python | train |
Ezhil-Language-Foundation/open-tamil | tamil/utf8.py | https://github.com/Ezhil-Language-Foundation/open-tamil/blob/b7556e88878d29bbc6c944ee17cdd3f75b8ea9f0/tamil/utf8.py#L33-L37 | def to_unicode_repr( _letter ):
""" helpful in situations where browser/app may recognize Unicode encoding
in the \u0b8e type syntax but not actual unicode glyph/code-point"""
# Python 2-3 compatible
return u"u'"+ u"".join( [ u"\\u%04x"%ord(l) for l in _letter ] ) + u"'" | [
"def",
"to_unicode_repr",
"(",
"_letter",
")",
":",
"# Python 2-3 compatible",
"return",
"u\"u'\"",
"+",
"u\"\"",
".",
"join",
"(",
"[",
"u\"\\\\u%04x\"",
"%",
"ord",
"(",
"l",
")",
"for",
"l",
"in",
"_letter",
"]",
")",
"+",
"u\"'\""
] | helpful in situations where browser/app may recognize Unicode encoding
in the \u0b8e type syntax but not actual unicode glyph/code-point | [
"helpful",
"in",
"situations",
"where",
"browser",
"/",
"app",
"may",
"recognize",
"Unicode",
"encoding",
"in",
"the",
"\\",
"u0b8e",
"type",
"syntax",
"but",
"not",
"actual",
"unicode",
"glyph",
"/",
"code",
"-",
"point"
] | python | train |
necaris/python3-openid | openid/consumer/consumer.py | https://github.com/necaris/python3-openid/blob/4911bbc196dfd6f9eda7155df9903d668720ecbf/openid/consumer/consumer.py#L1187-L1223 | def _negotiateAssociation(self, endpoint):
"""Make association requests to the server, attempting to
create a new association.
@returns: a new association object
@rtype: L{openid.association.Association}
"""
# Get our preferred session/association type from the negotiatior.
assoc_type, session_type = self.negotiator.getAllowedType()
try:
assoc = self._requestAssociation(endpoint, assoc_type,
session_type)
except ServerError as why:
supportedTypes = self._extractSupportedAssociationType(
why, endpoint, assoc_type)
if supportedTypes is not None:
assoc_type, session_type = supportedTypes
# Attempt to create an association from the assoc_type
# and session_type that the server told us it
# supported.
try:
assoc = self._requestAssociation(endpoint, assoc_type,
session_type)
except ServerError as why:
# Do not keep trying, since it rejected the
# association type that it told us to use.
logging.error(
'Server %s refused its suggested association '
'type: session_type=%s, assoc_type=%s' % (
endpoint.server_url, session_type, assoc_type))
return None
else:
return assoc
else:
return assoc | [
"def",
"_negotiateAssociation",
"(",
"self",
",",
"endpoint",
")",
":",
"# Get our preferred session/association type from the negotiatior.",
"assoc_type",
",",
"session_type",
"=",
"self",
".",
"negotiator",
".",
"getAllowedType",
"(",
")",
"try",
":",
"assoc",
"=",
"self",
".",
"_requestAssociation",
"(",
"endpoint",
",",
"assoc_type",
",",
"session_type",
")",
"except",
"ServerError",
"as",
"why",
":",
"supportedTypes",
"=",
"self",
".",
"_extractSupportedAssociationType",
"(",
"why",
",",
"endpoint",
",",
"assoc_type",
")",
"if",
"supportedTypes",
"is",
"not",
"None",
":",
"assoc_type",
",",
"session_type",
"=",
"supportedTypes",
"# Attempt to create an association from the assoc_type",
"# and session_type that the server told us it",
"# supported.",
"try",
":",
"assoc",
"=",
"self",
".",
"_requestAssociation",
"(",
"endpoint",
",",
"assoc_type",
",",
"session_type",
")",
"except",
"ServerError",
"as",
"why",
":",
"# Do not keep trying, since it rejected the",
"# association type that it told us to use.",
"logging",
".",
"error",
"(",
"'Server %s refused its suggested association '",
"'type: session_type=%s, assoc_type=%s'",
"%",
"(",
"endpoint",
".",
"server_url",
",",
"session_type",
",",
"assoc_type",
")",
")",
"return",
"None",
"else",
":",
"return",
"assoc",
"else",
":",
"return",
"assoc"
] | Make association requests to the server, attempting to
create a new association.
@returns: a new association object
@rtype: L{openid.association.Association} | [
"Make",
"association",
"requests",
"to",
"the",
"server",
"attempting",
"to",
"create",
"a",
"new",
"association",
"."
] | python | train |
JnyJny/Geometry | Geometry/ellipse.py | https://github.com/JnyJny/Geometry/blob/3500f815fa56c535b36d1b6fd0afe69ce5d055be/Geometry/ellipse.py#L118-L122 | def xAxisIsMinor(self):
'''
Returns True if the minor axis is parallel to the X axis, boolean.
'''
return min(self.radius.x, self.radius.y) == self.radius.x | [
"def",
"xAxisIsMinor",
"(",
"self",
")",
":",
"return",
"min",
"(",
"self",
".",
"radius",
".",
"x",
",",
"self",
".",
"radius",
".",
"y",
")",
"==",
"self",
".",
"radius",
".",
"x"
] | Returns True if the minor axis is parallel to the X axis, boolean. | [
"Returns",
"True",
"if",
"the",
"minor",
"axis",
"is",
"parallel",
"to",
"the",
"X",
"axis",
"boolean",
"."
] | python | train |
ly0/baidupcsapi | baidupcsapi/api.py | https://github.com/ly0/baidupcsapi/blob/6f6feeef0767a75b3b968924727460eb09242d76/baidupcsapi/api.py#L1348-L1393 | def share(self, file_ids, pwd=None, **kwargs):
"""
创建一个文件的分享链接
:param file_ids: 要分享的文件fid列表
:type file_ids: list
:param pwd: 分享密码,没有则没有密码
:type pwd: str
:return: requests.Response 对象
.. note::
返回正确
{
"errno": 0,
"request_id": 请求识别号,
"shareid": 分享识别号,
"link": "分享地址",
"shorturl": "段网址",
"ctime": 创建时间,
"premis": false
}
"""
if pwd:
data = {
'fid_list': json.dumps([int(fid) for fid in file_ids]),
'pwd': pwd,
'schannel': 4,
'channel_list': json.dumps([])
}
else:
data = {
'fid_list': json.dumps([int(fid) for fid in file_ids]),
'schannel': 0,
'channel_list': json.dumps([])
}
url = 'http://pan.baidu.com/share/set'
return self._request('share/set', '', url=url, data=data, **kwargs) | [
"def",
"share",
"(",
"self",
",",
"file_ids",
",",
"pwd",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"pwd",
":",
"data",
"=",
"{",
"'fid_list'",
":",
"json",
".",
"dumps",
"(",
"[",
"int",
"(",
"fid",
")",
"for",
"fid",
"in",
"file_ids",
"]",
")",
",",
"'pwd'",
":",
"pwd",
",",
"'schannel'",
":",
"4",
",",
"'channel_list'",
":",
"json",
".",
"dumps",
"(",
"[",
"]",
")",
"}",
"else",
":",
"data",
"=",
"{",
"'fid_list'",
":",
"json",
".",
"dumps",
"(",
"[",
"int",
"(",
"fid",
")",
"for",
"fid",
"in",
"file_ids",
"]",
")",
",",
"'schannel'",
":",
"0",
",",
"'channel_list'",
":",
"json",
".",
"dumps",
"(",
"[",
"]",
")",
"}",
"url",
"=",
"'http://pan.baidu.com/share/set'",
"return",
"self",
".",
"_request",
"(",
"'share/set'",
",",
"''",
",",
"url",
"=",
"url",
",",
"data",
"=",
"data",
",",
"*",
"*",
"kwargs",
")"
] | 创建一个文件的分享链接
:param file_ids: 要分享的文件fid列表
:type file_ids: list
:param pwd: 分享密码,没有则没有密码
:type pwd: str
:return: requests.Response 对象
.. note::
返回正确
{
"errno": 0,
"request_id": 请求识别号,
"shareid": 分享识别号,
"link": "分享地址",
"shorturl": "段网址",
"ctime": 创建时间,
"premis": false
} | [
"创建一个文件的分享链接"
] | python | train |
ereOn/azmq | azmq/socket.py | https://github.com/ereOn/azmq/blob/9f40d6d721eea7f7659ec6cc668811976db59854/azmq/socket.py#L445-L456 | async def _fair_recv(self):
"""
Receive from all the existing peers, rotating the list of peers every
time.
:returns: The frames.
"""
with await self._read_lock:
peer = await self._fair_get_in_peer()
result = peer.inbox.read_nowait()
return result | [
"async",
"def",
"_fair_recv",
"(",
"self",
")",
":",
"with",
"await",
"self",
".",
"_read_lock",
":",
"peer",
"=",
"await",
"self",
".",
"_fair_get_in_peer",
"(",
")",
"result",
"=",
"peer",
".",
"inbox",
".",
"read_nowait",
"(",
")",
"return",
"result"
] | Receive from all the existing peers, rotating the list of peers every
time.
:returns: The frames. | [
"Receive",
"from",
"all",
"the",
"existing",
"peers",
"rotating",
"the",
"list",
"of",
"peers",
"every",
"time",
"."
] | python | train |
icgood/pymap | pymap/parsing/primitives.py | https://github.com/icgood/pymap/blob/e77d9a54d760e3cbe044a548883bb4299ed61dc2/pymap/parsing/primitives.py#L188-L227 | def build(cls, value: object, binary: bool = False,
fallback: object = None) -> Union[Nil, 'String']:
"""Produce either a :class:`QuotedString` or :class:`LiteralString`
based on the contents of ``data``. This is useful to improve
readability of response data.
Args:
value: The string to serialize.
binary: True if the string should be transmitted as binary.
fallback: The default value to use if ``value`` is None.
"""
if value is None:
if fallback is None:
return Nil()
else:
return cls.build(fallback, binary)
elif not value:
return QuotedString(b'')
elif isinstance(value, bytes):
ascii_ = value
elif isinstance(value, memoryview):
ascii_ = bytes(value)
elif hasattr(value, '__bytes__'):
ascii_ = bytes(cast(SupportsBytes, value))
elif isinstance(value, str) or hasattr(value, '__str__'):
value = str(value)
try:
ascii_ = bytes(value, 'ascii')
except UnicodeEncodeError:
ascii_ = bytes(value, 'utf-8', 'replace')
return LiteralString(ascii_, binary)
else:
raise TypeError(value)
if not binary and len(ascii_) < 64 \
and b'\n' not in ascii_ \
and b'\x00' not in ascii_:
return QuotedString(ascii_)
else:
return LiteralString(ascii_, binary) | [
"def",
"build",
"(",
"cls",
",",
"value",
":",
"object",
",",
"binary",
":",
"bool",
"=",
"False",
",",
"fallback",
":",
"object",
"=",
"None",
")",
"->",
"Union",
"[",
"Nil",
",",
"'String'",
"]",
":",
"if",
"value",
"is",
"None",
":",
"if",
"fallback",
"is",
"None",
":",
"return",
"Nil",
"(",
")",
"else",
":",
"return",
"cls",
".",
"build",
"(",
"fallback",
",",
"binary",
")",
"elif",
"not",
"value",
":",
"return",
"QuotedString",
"(",
"b''",
")",
"elif",
"isinstance",
"(",
"value",
",",
"bytes",
")",
":",
"ascii_",
"=",
"value",
"elif",
"isinstance",
"(",
"value",
",",
"memoryview",
")",
":",
"ascii_",
"=",
"bytes",
"(",
"value",
")",
"elif",
"hasattr",
"(",
"value",
",",
"'__bytes__'",
")",
":",
"ascii_",
"=",
"bytes",
"(",
"cast",
"(",
"SupportsBytes",
",",
"value",
")",
")",
"elif",
"isinstance",
"(",
"value",
",",
"str",
")",
"or",
"hasattr",
"(",
"value",
",",
"'__str__'",
")",
":",
"value",
"=",
"str",
"(",
"value",
")",
"try",
":",
"ascii_",
"=",
"bytes",
"(",
"value",
",",
"'ascii'",
")",
"except",
"UnicodeEncodeError",
":",
"ascii_",
"=",
"bytes",
"(",
"value",
",",
"'utf-8'",
",",
"'replace'",
")",
"return",
"LiteralString",
"(",
"ascii_",
",",
"binary",
")",
"else",
":",
"raise",
"TypeError",
"(",
"value",
")",
"if",
"not",
"binary",
"and",
"len",
"(",
"ascii_",
")",
"<",
"64",
"and",
"b'\\n'",
"not",
"in",
"ascii_",
"and",
"b'\\x00'",
"not",
"in",
"ascii_",
":",
"return",
"QuotedString",
"(",
"ascii_",
")",
"else",
":",
"return",
"LiteralString",
"(",
"ascii_",
",",
"binary",
")"
] | Produce either a :class:`QuotedString` or :class:`LiteralString`
based on the contents of ``data``. This is useful to improve
readability of response data.
Args:
value: The string to serialize.
binary: True if the string should be transmitted as binary.
fallback: The default value to use if ``value`` is None. | [
"Produce",
"either",
"a",
":",
"class",
":",
"QuotedString",
"or",
":",
"class",
":",
"LiteralString",
"based",
"on",
"the",
"contents",
"of",
"data",
".",
"This",
"is",
"useful",
"to",
"improve",
"readability",
"of",
"response",
"data",
"."
] | python | train |
apache/incubator-mxnet | example/gluon/lipnet/utils/align.py | https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/example/gluon/lipnet/utils/align.py#L36-L52 | def build(self, align_path):
"""
Build the align array
"""
file = open(align_path, 'r')
lines = file.readlines()
file.close()
# words: list([op, ed, word])
words = []
for line in lines:
_op, _ed, word = line.strip().split(' ')
if word not in Align.skip_list:
words.append((int(_op), int(_ed), word))
self.words = words
self.n_words = len(words)
self.sentence_str = " ".join([w[2] for w in self.words])
self.sentence_length = len(self.sentence_str) | [
"def",
"build",
"(",
"self",
",",
"align_path",
")",
":",
"file",
"=",
"open",
"(",
"align_path",
",",
"'r'",
")",
"lines",
"=",
"file",
".",
"readlines",
"(",
")",
"file",
".",
"close",
"(",
")",
"# words: list([op, ed, word])",
"words",
"=",
"[",
"]",
"for",
"line",
"in",
"lines",
":",
"_op",
",",
"_ed",
",",
"word",
"=",
"line",
".",
"strip",
"(",
")",
".",
"split",
"(",
"' '",
")",
"if",
"word",
"not",
"in",
"Align",
".",
"skip_list",
":",
"words",
".",
"append",
"(",
"(",
"int",
"(",
"_op",
")",
",",
"int",
"(",
"_ed",
")",
",",
"word",
")",
")",
"self",
".",
"words",
"=",
"words",
"self",
".",
"n_words",
"=",
"len",
"(",
"words",
")",
"self",
".",
"sentence_str",
"=",
"\" \"",
".",
"join",
"(",
"[",
"w",
"[",
"2",
"]",
"for",
"w",
"in",
"self",
".",
"words",
"]",
")",
"self",
".",
"sentence_length",
"=",
"len",
"(",
"self",
".",
"sentence_str",
")"
] | Build the align array | [
"Build",
"the",
"align",
"array"
] | python | train |
HewlettPackard/python-hpOneView | hpOneView/resources/uncategorized/os_deployment_servers.py | https://github.com/HewlettPackard/python-hpOneView/blob/3c6219723ef25e6e0c83d44a89007f89bc325b89/hpOneView/resources/uncategorized/os_deployment_servers.py#L134-L151 | def update(self, resource, force=False, timeout=-1):
"""
Updates the Deployment Server resource. The properties that are omitted (not included as part
of the request body) are ignored.
Args:
resource (dict): Object to update.
force:
If set to true, the operation completes despite any problems with network connectivity or errors on
the resource itself. The default is false.
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView, just stops waiting for its completion.
Returns:
Updated resource.
"""
return self._client.update(resource, timeout=timeout, force=force) | [
"def",
"update",
"(",
"self",
",",
"resource",
",",
"force",
"=",
"False",
",",
"timeout",
"=",
"-",
"1",
")",
":",
"return",
"self",
".",
"_client",
".",
"update",
"(",
"resource",
",",
"timeout",
"=",
"timeout",
",",
"force",
"=",
"force",
")"
] | Updates the Deployment Server resource. The properties that are omitted (not included as part
of the request body) are ignored.
Args:
resource (dict): Object to update.
force:
If set to true, the operation completes despite any problems with network connectivity or errors on
the resource itself. The default is false.
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView, just stops waiting for its completion.
Returns:
Updated resource. | [
"Updates",
"the",
"Deployment",
"Server",
"resource",
".",
"The",
"properties",
"that",
"are",
"omitted",
"(",
"not",
"included",
"as",
"part",
"of",
"the",
"request",
"body",
")",
"are",
"ignored",
"."
] | python | train |
saltstack/salt | salt/renderers/stateconf.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/renderers/stateconf.py#L310-L331 | def nvlist(thelist, names=None):
'''
Given a list of items::
- whatever
- name1: value1
- name2:
- key: value
- key: value
return a generator that yields each (item, key, value) tuple, skipping
items that are not name-value's(dictionaries) or those not in the
list of matching names. The item in the returned tuple is the single-key
dictionary.
'''
# iterate over the list under the state dict.
for nvitem in thelist:
if isinstance(nvitem, dict):
# then nvitem is a name-value item(a dict) of the list.
name, value = next(six.iteritems(nvitem))
if names is None or name in names:
yield nvitem, name, value | [
"def",
"nvlist",
"(",
"thelist",
",",
"names",
"=",
"None",
")",
":",
"# iterate over the list under the state dict.",
"for",
"nvitem",
"in",
"thelist",
":",
"if",
"isinstance",
"(",
"nvitem",
",",
"dict",
")",
":",
"# then nvitem is a name-value item(a dict) of the list.",
"name",
",",
"value",
"=",
"next",
"(",
"six",
".",
"iteritems",
"(",
"nvitem",
")",
")",
"if",
"names",
"is",
"None",
"or",
"name",
"in",
"names",
":",
"yield",
"nvitem",
",",
"name",
",",
"value"
] | Given a list of items::
- whatever
- name1: value1
- name2:
- key: value
- key: value
return a generator that yields each (item, key, value) tuple, skipping
items that are not name-value's(dictionaries) or those not in the
list of matching names. The item in the returned tuple is the single-key
dictionary. | [
"Given",
"a",
"list",
"of",
"items",
"::"
] | python | train |
nerdvegas/rez | src/build_utils/virtualenv/virtualenv.py | https://github.com/nerdvegas/rez/blob/1d3b846d53b5b5404edfe8ddb9083f9ceec8c5e7/src/build_utils/virtualenv/virtualenv.py#L913-L937 | def find_wheels(projects, search_dirs):
"""Find wheels from which we can import PROJECTS.
Scan through SEARCH_DIRS for a wheel for each PROJECT in turn. Return
a list of the first wheel found for each PROJECT
"""
wheels = []
# Look through SEARCH_DIRS for the first suitable wheel. Don't bother
# about version checking here, as this is simply to get something we can
# then use to install the correct version.
for project in projects:
for dirname in search_dirs:
# This relies on only having "universal" wheels available.
# The pattern could be tightened to require -py2.py3-none-any.whl.
files = glob.glob(os.path.join(dirname, project + '-*.whl'))
if files:
wheels.append(os.path.abspath(files[0]))
break
else:
# We're out of luck, so quit with a suitable error
logger.fatal('Cannot find a wheel for %s' % (project,))
return wheels | [
"def",
"find_wheels",
"(",
"projects",
",",
"search_dirs",
")",
":",
"wheels",
"=",
"[",
"]",
"# Look through SEARCH_DIRS for the first suitable wheel. Don't bother",
"# about version checking here, as this is simply to get something we can",
"# then use to install the correct version.",
"for",
"project",
"in",
"projects",
":",
"for",
"dirname",
"in",
"search_dirs",
":",
"# This relies on only having \"universal\" wheels available.",
"# The pattern could be tightened to require -py2.py3-none-any.whl.",
"files",
"=",
"glob",
".",
"glob",
"(",
"os",
".",
"path",
".",
"join",
"(",
"dirname",
",",
"project",
"+",
"'-*.whl'",
")",
")",
"if",
"files",
":",
"wheels",
".",
"append",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"files",
"[",
"0",
"]",
")",
")",
"break",
"else",
":",
"# We're out of luck, so quit with a suitable error",
"logger",
".",
"fatal",
"(",
"'Cannot find a wheel for %s'",
"%",
"(",
"project",
",",
")",
")",
"return",
"wheels"
] | Find wheels from which we can import PROJECTS.
Scan through SEARCH_DIRS for a wheel for each PROJECT in turn. Return
a list of the first wheel found for each PROJECT | [
"Find",
"wheels",
"from",
"which",
"we",
"can",
"import",
"PROJECTS",
"."
] | python | train |
cloud-custodian/cloud-custodian | c7n/utils.py | https://github.com/cloud-custodian/cloud-custodian/blob/52ef732eb3d7bc939d1579faf519314814695c08/c7n/utils.py#L242-L251 | def query_instances(session, client=None, **query):
"""Return a list of ec2 instances for the query.
"""
if client is None:
client = session.client('ec2')
p = client.get_paginator('describe_instances')
results = p.paginate(**query)
return list(itertools.chain(
*[r["Instances"] for r in itertools.chain(
*[pp['Reservations'] for pp in results])])) | [
"def",
"query_instances",
"(",
"session",
",",
"client",
"=",
"None",
",",
"*",
"*",
"query",
")",
":",
"if",
"client",
"is",
"None",
":",
"client",
"=",
"session",
".",
"client",
"(",
"'ec2'",
")",
"p",
"=",
"client",
".",
"get_paginator",
"(",
"'describe_instances'",
")",
"results",
"=",
"p",
".",
"paginate",
"(",
"*",
"*",
"query",
")",
"return",
"list",
"(",
"itertools",
".",
"chain",
"(",
"*",
"[",
"r",
"[",
"\"Instances\"",
"]",
"for",
"r",
"in",
"itertools",
".",
"chain",
"(",
"*",
"[",
"pp",
"[",
"'Reservations'",
"]",
"for",
"pp",
"in",
"results",
"]",
")",
"]",
")",
")"
] | Return a list of ec2 instances for the query. | [
"Return",
"a",
"list",
"of",
"ec2",
"instances",
"for",
"the",
"query",
"."
] | python | train |
acristoffers/ahio | ahio/abstract_driver.py | https://github.com/acristoffers/ahio/blob/5d47f1697c173bd1cbdeac930546f97ad8570a38/ahio/abstract_driver.py#L418-L444 | def set_pwm_frequency(self, frequency, pin=None):
"""Sets PWM frequency, if supported by hardware
If the driver supports per pin frequency setting, set pin to the
desired frequency. If not, passing None means set to all. If only per
pin frequency is supported and pin is None, raise RuntimeError.
If you're developing a driver, implement
_set_pwm_frequency(self, frequency, pin). Raise RuntimeError if pin
was set but is not supported by the platform.
@arg frequency pwm frequency to be set, in Hz
@arg pin if the the driver supports it, the pin that will use
`frequency` as pwm frequency. None for all/global.
@throw RuntimeError if pin is None on a per pin only hardware, or if
it's a valid pin on a global only hardware.
@throw KeyError if pin isn't mapped.
"""
if pin is None:
self._set_pwm_frequency(frequency, None)
else:
pin_id = self._pin_mapping.get(pin, None)
if pin_id:
self._set_pwm_frequency(frequency, pin_id)
else:
raise KeyError('Requested pin is not mapped: %s' % pin) | [
"def",
"set_pwm_frequency",
"(",
"self",
",",
"frequency",
",",
"pin",
"=",
"None",
")",
":",
"if",
"pin",
"is",
"None",
":",
"self",
".",
"_set_pwm_frequency",
"(",
"frequency",
",",
"None",
")",
"else",
":",
"pin_id",
"=",
"self",
".",
"_pin_mapping",
".",
"get",
"(",
"pin",
",",
"None",
")",
"if",
"pin_id",
":",
"self",
".",
"_set_pwm_frequency",
"(",
"frequency",
",",
"pin_id",
")",
"else",
":",
"raise",
"KeyError",
"(",
"'Requested pin is not mapped: %s'",
"%",
"pin",
")"
] | Sets PWM frequency, if supported by hardware
If the driver supports per pin frequency setting, set pin to the
desired frequency. If not, passing None means set to all. If only per
pin frequency is supported and pin is None, raise RuntimeError.
If you're developing a driver, implement
_set_pwm_frequency(self, frequency, pin). Raise RuntimeError if pin
was set but is not supported by the platform.
@arg frequency pwm frequency to be set, in Hz
@arg pin if the the driver supports it, the pin that will use
`frequency` as pwm frequency. None for all/global.
@throw RuntimeError if pin is None on a per pin only hardware, or if
it's a valid pin on a global only hardware.
@throw KeyError if pin isn't mapped. | [
"Sets",
"PWM",
"frequency",
"if",
"supported",
"by",
"hardware"
] | python | valid |
CLARIAH/grlc | src/pagination.py | https://github.com/CLARIAH/grlc/blob/f5664e34f039010c00ef8ebb69917c05e8ce75d7/src/pagination.py#L12-L35 | def buildPaginationHeader(resultCount, resultsPerPage, pageArg, url):
'''Build link header for result pagination'''
lastPage = resultCount / resultsPerPage
if pageArg:
page = int(pageArg)
next_url = re.sub("page=[0-9]+", "page={}".format(page + 1), url)
prev_url = re.sub("page=[0-9]+", "page={}".format(page - 1), url)
first_url = re.sub("page=[0-9]+", "page=1", url)
last_url = re.sub("page=[0-9]+", "page={}".format(lastPage), url)
else:
page = 1
next_url = url + "?page=2"
prev_url = ""
first_url = url + "?page=1"
last_url = url + "?page={}".format(lastPage)
if page == 1:
headerLink = "<{}>; rel=next, <{}>; rel=last".format(next_url, last_url)
elif page == lastPage:
headerLink = "<{}>; rel=prev, <{}>; rel=first".format(prev_url, first_url)
else:
headerLink = "<{}>; rel=next, <{}>; rel=prev, <{}>; rel=first, <{}>; rel=last".format(next_url, prev_url, first_url, last_url)
return headerLink | [
"def",
"buildPaginationHeader",
"(",
"resultCount",
",",
"resultsPerPage",
",",
"pageArg",
",",
"url",
")",
":",
"lastPage",
"=",
"resultCount",
"/",
"resultsPerPage",
"if",
"pageArg",
":",
"page",
"=",
"int",
"(",
"pageArg",
")",
"next_url",
"=",
"re",
".",
"sub",
"(",
"\"page=[0-9]+\"",
",",
"\"page={}\"",
".",
"format",
"(",
"page",
"+",
"1",
")",
",",
"url",
")",
"prev_url",
"=",
"re",
".",
"sub",
"(",
"\"page=[0-9]+\"",
",",
"\"page={}\"",
".",
"format",
"(",
"page",
"-",
"1",
")",
",",
"url",
")",
"first_url",
"=",
"re",
".",
"sub",
"(",
"\"page=[0-9]+\"",
",",
"\"page=1\"",
",",
"url",
")",
"last_url",
"=",
"re",
".",
"sub",
"(",
"\"page=[0-9]+\"",
",",
"\"page={}\"",
".",
"format",
"(",
"lastPage",
")",
",",
"url",
")",
"else",
":",
"page",
"=",
"1",
"next_url",
"=",
"url",
"+",
"\"?page=2\"",
"prev_url",
"=",
"\"\"",
"first_url",
"=",
"url",
"+",
"\"?page=1\"",
"last_url",
"=",
"url",
"+",
"\"?page={}\"",
".",
"format",
"(",
"lastPage",
")",
"if",
"page",
"==",
"1",
":",
"headerLink",
"=",
"\"<{}>; rel=next, <{}>; rel=last\"",
".",
"format",
"(",
"next_url",
",",
"last_url",
")",
"elif",
"page",
"==",
"lastPage",
":",
"headerLink",
"=",
"\"<{}>; rel=prev, <{}>; rel=first\"",
".",
"format",
"(",
"prev_url",
",",
"first_url",
")",
"else",
":",
"headerLink",
"=",
"\"<{}>; rel=next, <{}>; rel=prev, <{}>; rel=first, <{}>; rel=last\"",
".",
"format",
"(",
"next_url",
",",
"prev_url",
",",
"first_url",
",",
"last_url",
")",
"return",
"headerLink"
] | Build link header for result pagination | [
"Build",
"link",
"header",
"for",
"result",
"pagination"
] | python | train |
mongodb/mongo-python-driver | gridfs/__init__.py | https://github.com/mongodb/mongo-python-driver/blob/c29c21449e3aae74154207058cf85fd94018d4cd/gridfs/__init__.py#L578-L619 | def upload_from_stream(self, filename, source, chunk_size_bytes=None,
metadata=None, session=None):
"""Uploads a user file to a GridFS bucket.
Reads the contents of the user file from `source` and uploads
it to the file `filename`. Source can be a string or file-like object.
For example::
my_db = MongoClient().test
fs = GridFSBucket(my_db)
file_id = fs.upload_from_stream(
"test_file",
"data I want to store!",
chunk_size_bytes=4,
metadata={"contentType": "text/plain"})
Returns the _id of the uploaded file.
Raises :exc:`~gridfs.errors.NoFile` if no such version of
that file exists.
Raises :exc:`~ValueError` if `filename` is not a string.
:Parameters:
- `filename`: The name of the file to upload.
- `source`: The source stream of the content to be uploaded. Must be
a file-like object that implements :meth:`read` or a string.
- `chunk_size_bytes` (options): The number of bytes per chunk of this
file. Defaults to the chunk_size_bytes of :class:`GridFSBucket`.
- `metadata` (optional): User data for the 'metadata' field of the
files collection document. If not provided the metadata field will
be omitted from the files collection document.
- `session` (optional): a
:class:`~pymongo.client_session.ClientSession`
.. versionchanged:: 3.6
Added ``session`` parameter.
"""
with self.open_upload_stream(
filename, chunk_size_bytes, metadata, session=session) as gin:
gin.write(source)
return gin._id | [
"def",
"upload_from_stream",
"(",
"self",
",",
"filename",
",",
"source",
",",
"chunk_size_bytes",
"=",
"None",
",",
"metadata",
"=",
"None",
",",
"session",
"=",
"None",
")",
":",
"with",
"self",
".",
"open_upload_stream",
"(",
"filename",
",",
"chunk_size_bytes",
",",
"metadata",
",",
"session",
"=",
"session",
")",
"as",
"gin",
":",
"gin",
".",
"write",
"(",
"source",
")",
"return",
"gin",
".",
"_id"
] | Uploads a user file to a GridFS bucket.
Reads the contents of the user file from `source` and uploads
it to the file `filename`. Source can be a string or file-like object.
For example::
my_db = MongoClient().test
fs = GridFSBucket(my_db)
file_id = fs.upload_from_stream(
"test_file",
"data I want to store!",
chunk_size_bytes=4,
metadata={"contentType": "text/plain"})
Returns the _id of the uploaded file.
Raises :exc:`~gridfs.errors.NoFile` if no such version of
that file exists.
Raises :exc:`~ValueError` if `filename` is not a string.
:Parameters:
- `filename`: The name of the file to upload.
- `source`: The source stream of the content to be uploaded. Must be
a file-like object that implements :meth:`read` or a string.
- `chunk_size_bytes` (options): The number of bytes per chunk of this
file. Defaults to the chunk_size_bytes of :class:`GridFSBucket`.
- `metadata` (optional): User data for the 'metadata' field of the
files collection document. If not provided the metadata field will
be omitted from the files collection document.
- `session` (optional): a
:class:`~pymongo.client_session.ClientSession`
.. versionchanged:: 3.6
Added ``session`` parameter. | [
"Uploads",
"a",
"user",
"file",
"to",
"a",
"GridFS",
"bucket",
"."
] | python | train |
SeleniumHQ/selenium | py/selenium/webdriver/remote/webdriver.py | https://github.com/SeleniumHQ/selenium/blob/df40c28b41d4b3953f90eaff84838a9ac052b84a/py/selenium/webdriver/remote/webdriver.py#L1016-L1045 | def find_elements(self, by=By.ID, value=None):
"""
Find elements given a By strategy and locator. Prefer the find_elements_by_* methods when
possible.
:Usage:
::
elements = driver.find_elements(By.CLASS_NAME, 'foo')
:rtype: list of WebElement
"""
if self.w3c:
if by == By.ID:
by = By.CSS_SELECTOR
value = '[id="%s"]' % value
elif by == By.TAG_NAME:
by = By.CSS_SELECTOR
elif by == By.CLASS_NAME:
by = By.CSS_SELECTOR
value = ".%s" % value
elif by == By.NAME:
by = By.CSS_SELECTOR
value = '[name="%s"]' % value
# Return empty list if driver returns null
# See https://github.com/SeleniumHQ/selenium/issues/4555
return self.execute(Command.FIND_ELEMENTS, {
'using': by,
'value': value})['value'] or [] | [
"def",
"find_elements",
"(",
"self",
",",
"by",
"=",
"By",
".",
"ID",
",",
"value",
"=",
"None",
")",
":",
"if",
"self",
".",
"w3c",
":",
"if",
"by",
"==",
"By",
".",
"ID",
":",
"by",
"=",
"By",
".",
"CSS_SELECTOR",
"value",
"=",
"'[id=\"%s\"]'",
"%",
"value",
"elif",
"by",
"==",
"By",
".",
"TAG_NAME",
":",
"by",
"=",
"By",
".",
"CSS_SELECTOR",
"elif",
"by",
"==",
"By",
".",
"CLASS_NAME",
":",
"by",
"=",
"By",
".",
"CSS_SELECTOR",
"value",
"=",
"\".%s\"",
"%",
"value",
"elif",
"by",
"==",
"By",
".",
"NAME",
":",
"by",
"=",
"By",
".",
"CSS_SELECTOR",
"value",
"=",
"'[name=\"%s\"]'",
"%",
"value",
"# Return empty list if driver returns null",
"# See https://github.com/SeleniumHQ/selenium/issues/4555",
"return",
"self",
".",
"execute",
"(",
"Command",
".",
"FIND_ELEMENTS",
",",
"{",
"'using'",
":",
"by",
",",
"'value'",
":",
"value",
"}",
")",
"[",
"'value'",
"]",
"or",
"[",
"]"
] | Find elements given a By strategy and locator. Prefer the find_elements_by_* methods when
possible.
:Usage:
::
elements = driver.find_elements(By.CLASS_NAME, 'foo')
:rtype: list of WebElement | [
"Find",
"elements",
"given",
"a",
"By",
"strategy",
"and",
"locator",
".",
"Prefer",
"the",
"find_elements_by_",
"*",
"methods",
"when",
"possible",
"."
] | python | train |
RudolfCardinal/pythonlib | cardinal_pythonlib/sqlalchemy/orm_query.py | https://github.com/RudolfCardinal/pythonlib/blob/0b84cb35f38bd7d8723958dae51b480a829b7227/cardinal_pythonlib/sqlalchemy/orm_query.py#L202-L208 | def count_star(self) -> int:
"""
Implements the ``COUNT(*)`` specialization.
"""
count_query = (self.statement.with_only_columns([func.count()])
.order_by(None))
return self.session.execute(count_query).scalar() | [
"def",
"count_star",
"(",
"self",
")",
"->",
"int",
":",
"count_query",
"=",
"(",
"self",
".",
"statement",
".",
"with_only_columns",
"(",
"[",
"func",
".",
"count",
"(",
")",
"]",
")",
".",
"order_by",
"(",
"None",
")",
")",
"return",
"self",
".",
"session",
".",
"execute",
"(",
"count_query",
")",
".",
"scalar",
"(",
")"
] | Implements the ``COUNT(*)`` specialization. | [
"Implements",
"the",
"COUNT",
"(",
"*",
")",
"specialization",
"."
] | python | train |
openxc/openxc-python | openxc/sinks/notifier.py | https://github.com/openxc/openxc-python/blob/4becb4a6310bd658c125195ef6ffea4deaf7d7e7/openxc/sinks/notifier.py#L33-L40 | def unregister(self, measurement_class, callback):
"""Stop notifying ``callback`` of new values of ``measurement_class``.
If the callback wasn't previously registered, this method will have no
effect.
"""
self.callbacks[Measurement.name_from_class(measurement_class)
].remove(callback) | [
"def",
"unregister",
"(",
"self",
",",
"measurement_class",
",",
"callback",
")",
":",
"self",
".",
"callbacks",
"[",
"Measurement",
".",
"name_from_class",
"(",
"measurement_class",
")",
"]",
".",
"remove",
"(",
"callback",
")"
] | Stop notifying ``callback`` of new values of ``measurement_class``.
If the callback wasn't previously registered, this method will have no
effect. | [
"Stop",
"notifying",
"callback",
"of",
"new",
"values",
"of",
"measurement_class",
"."
] | python | train |
moonso/vcftoolbox | vcftoolbox/header_parser.py | https://github.com/moonso/vcftoolbox/blob/438fb1d85a83812c389774b94802eb5921c89e3a/vcftoolbox/header_parser.py#L138-L240 | def parse_meta_data(self, line):
"""Parse a vcf metadataline"""
line = line.rstrip()
logger.debug("Parsing metadata line:{0}".format(line))
line_info = line[2:].split('=')
match = False
if line_info[0] == 'fileformat':
logger.debug("Parsing fileformat")
try:
self.fileformat = line_info[1]
logger.debug("Found fileformat {0}".format(self.fileformat))
except IndexError:
raise SyntaxError("fileformat must have a value")
elif line_info[0] == 'INFO':
match = self.info_pattern.match(line)
if not match:
raise SyntaxError("One of the INFO lines is malformed:{0}".format(line))
matches = [
match.group('id'), match.group('number'),
match.group('type'), match.group('desc')
]
# extra_info is a dictionary to check the metadata about the INFO values:
self.extra_info[matches[0]] = dict(
zip(self.header_keys['info'][1:], matches[1:])
)
info_line = dict(list(zip(self.header_keys['info'],matches)))
if len(info_line['Description'].split('Format:')) > 1:
info_line['Format'] = [
info.strip() for info in info_line['Description'].split('Format:')
][-1]
self.info_lines.append(info_line)
# Store the vep columns:
if info_line['ID'] == 'CSQ':
self.vep_columns = info_line.get('Format', '').split('|')
if info_line['ID'] == 'ANN':
self.snpeff_columns = [
annotation.strip("' ") for annotation in
info_line.get('Description', '').split(':')[-1].split('|')]
self.info_dict[match.group('id')] = line
elif line_info[0] == 'FILTER':
match = self.filter_pattern.match(line)
if not match:
raise SyntaxError("One of the FILTER lines is malformed: {0}".format(line))
matches = [match.group('id'), match.group('desc')]
self.filter_lines.append(dict(
list(zip(self.header_keys['filt'],matches)))
)
self.filter_dict[match.group('id')] = line
elif line_info[0] == 'contig':
match = self.contig_pattern.match(line)
if not match:
print()
raise SyntaxError("One of the contig lines is malformed: {0}".format(line))
matches = [match.group('id'), match.group('length')]
self.contig_lines.append(dict(
list(zip(self.header_keys['contig'],matches)))
)
self.contig_dict[match.group('id')] = line
elif line_info[0] == 'FORMAT':
match = self.format_pattern.match(line)
if not match:
raise SyntaxError("One of the FORMAT lines is malformed: {0}".format(line))
matches = [
match.group('id'), match.group('number'),
match.group('type'), match.group('desc')
]
self.format_lines.append(dict(
list(zip(self.header_keys['form'],matches)))
)
self.format_dict[match.group('id')] = line
elif line_info[0] == 'ALT':
match = self.alt_pattern.match(line)
if not match:
raise SyntaxError("One of the ALT lines is malformed: {0}".format(line))
matches = [match.group('id'), match.group('desc')]
self.alt_lines.append(dict(
list(zip(self.header_keys['alt'],matches)))
)
self.alt_dict[match.group('id')] = line
else:
match = self.meta_pattern.match(line)
if not match:
raise SyntaxError("One of the meta data lines is malformed: {0}".format(line))
self.other_lines.append({match.group('key'): match.group('val')})
self.other_dict[match.group('key')] = line | [
"def",
"parse_meta_data",
"(",
"self",
",",
"line",
")",
":",
"line",
"=",
"line",
".",
"rstrip",
"(",
")",
"logger",
".",
"debug",
"(",
"\"Parsing metadata line:{0}\"",
".",
"format",
"(",
"line",
")",
")",
"line_info",
"=",
"line",
"[",
"2",
":",
"]",
".",
"split",
"(",
"'='",
")",
"match",
"=",
"False",
"if",
"line_info",
"[",
"0",
"]",
"==",
"'fileformat'",
":",
"logger",
".",
"debug",
"(",
"\"Parsing fileformat\"",
")",
"try",
":",
"self",
".",
"fileformat",
"=",
"line_info",
"[",
"1",
"]",
"logger",
".",
"debug",
"(",
"\"Found fileformat {0}\"",
".",
"format",
"(",
"self",
".",
"fileformat",
")",
")",
"except",
"IndexError",
":",
"raise",
"SyntaxError",
"(",
"\"fileformat must have a value\"",
")",
"elif",
"line_info",
"[",
"0",
"]",
"==",
"'INFO'",
":",
"match",
"=",
"self",
".",
"info_pattern",
".",
"match",
"(",
"line",
")",
"if",
"not",
"match",
":",
"raise",
"SyntaxError",
"(",
"\"One of the INFO lines is malformed:{0}\"",
".",
"format",
"(",
"line",
")",
")",
"matches",
"=",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
",",
"match",
".",
"group",
"(",
"'number'",
")",
",",
"match",
".",
"group",
"(",
"'type'",
")",
",",
"match",
".",
"group",
"(",
"'desc'",
")",
"]",
"# extra_info is a dictionary to check the metadata about the INFO values:",
"self",
".",
"extra_info",
"[",
"matches",
"[",
"0",
"]",
"]",
"=",
"dict",
"(",
"zip",
"(",
"self",
".",
"header_keys",
"[",
"'info'",
"]",
"[",
"1",
":",
"]",
",",
"matches",
"[",
"1",
":",
"]",
")",
")",
"info_line",
"=",
"dict",
"(",
"list",
"(",
"zip",
"(",
"self",
".",
"header_keys",
"[",
"'info'",
"]",
",",
"matches",
")",
")",
")",
"if",
"len",
"(",
"info_line",
"[",
"'Description'",
"]",
".",
"split",
"(",
"'Format:'",
")",
")",
">",
"1",
":",
"info_line",
"[",
"'Format'",
"]",
"=",
"[",
"info",
".",
"strip",
"(",
")",
"for",
"info",
"in",
"info_line",
"[",
"'Description'",
"]",
".",
"split",
"(",
"'Format:'",
")",
"]",
"[",
"-",
"1",
"]",
"self",
".",
"info_lines",
".",
"append",
"(",
"info_line",
")",
"# Store the vep columns:",
"if",
"info_line",
"[",
"'ID'",
"]",
"==",
"'CSQ'",
":",
"self",
".",
"vep_columns",
"=",
"info_line",
".",
"get",
"(",
"'Format'",
",",
"''",
")",
".",
"split",
"(",
"'|'",
")",
"if",
"info_line",
"[",
"'ID'",
"]",
"==",
"'ANN'",
":",
"self",
".",
"snpeff_columns",
"=",
"[",
"annotation",
".",
"strip",
"(",
"\"' \"",
")",
"for",
"annotation",
"in",
"info_line",
".",
"get",
"(",
"'Description'",
",",
"''",
")",
".",
"split",
"(",
"':'",
")",
"[",
"-",
"1",
"]",
".",
"split",
"(",
"'|'",
")",
"]",
"self",
".",
"info_dict",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
"]",
"=",
"line",
"elif",
"line_info",
"[",
"0",
"]",
"==",
"'FILTER'",
":",
"match",
"=",
"self",
".",
"filter_pattern",
".",
"match",
"(",
"line",
")",
"if",
"not",
"match",
":",
"raise",
"SyntaxError",
"(",
"\"One of the FILTER lines is malformed: {0}\"",
".",
"format",
"(",
"line",
")",
")",
"matches",
"=",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
",",
"match",
".",
"group",
"(",
"'desc'",
")",
"]",
"self",
".",
"filter_lines",
".",
"append",
"(",
"dict",
"(",
"list",
"(",
"zip",
"(",
"self",
".",
"header_keys",
"[",
"'filt'",
"]",
",",
"matches",
")",
")",
")",
")",
"self",
".",
"filter_dict",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
"]",
"=",
"line",
"elif",
"line_info",
"[",
"0",
"]",
"==",
"'contig'",
":",
"match",
"=",
"self",
".",
"contig_pattern",
".",
"match",
"(",
"line",
")",
"if",
"not",
"match",
":",
"print",
"(",
")",
"raise",
"SyntaxError",
"(",
"\"One of the contig lines is malformed: {0}\"",
".",
"format",
"(",
"line",
")",
")",
"matches",
"=",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
",",
"match",
".",
"group",
"(",
"'length'",
")",
"]",
"self",
".",
"contig_lines",
".",
"append",
"(",
"dict",
"(",
"list",
"(",
"zip",
"(",
"self",
".",
"header_keys",
"[",
"'contig'",
"]",
",",
"matches",
")",
")",
")",
")",
"self",
".",
"contig_dict",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
"]",
"=",
"line",
"elif",
"line_info",
"[",
"0",
"]",
"==",
"'FORMAT'",
":",
"match",
"=",
"self",
".",
"format_pattern",
".",
"match",
"(",
"line",
")",
"if",
"not",
"match",
":",
"raise",
"SyntaxError",
"(",
"\"One of the FORMAT lines is malformed: {0}\"",
".",
"format",
"(",
"line",
")",
")",
"matches",
"=",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
",",
"match",
".",
"group",
"(",
"'number'",
")",
",",
"match",
".",
"group",
"(",
"'type'",
")",
",",
"match",
".",
"group",
"(",
"'desc'",
")",
"]",
"self",
".",
"format_lines",
".",
"append",
"(",
"dict",
"(",
"list",
"(",
"zip",
"(",
"self",
".",
"header_keys",
"[",
"'form'",
"]",
",",
"matches",
")",
")",
")",
")",
"self",
".",
"format_dict",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
"]",
"=",
"line",
"elif",
"line_info",
"[",
"0",
"]",
"==",
"'ALT'",
":",
"match",
"=",
"self",
".",
"alt_pattern",
".",
"match",
"(",
"line",
")",
"if",
"not",
"match",
":",
"raise",
"SyntaxError",
"(",
"\"One of the ALT lines is malformed: {0}\"",
".",
"format",
"(",
"line",
")",
")",
"matches",
"=",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
",",
"match",
".",
"group",
"(",
"'desc'",
")",
"]",
"self",
".",
"alt_lines",
".",
"append",
"(",
"dict",
"(",
"list",
"(",
"zip",
"(",
"self",
".",
"header_keys",
"[",
"'alt'",
"]",
",",
"matches",
")",
")",
")",
")",
"self",
".",
"alt_dict",
"[",
"match",
".",
"group",
"(",
"'id'",
")",
"]",
"=",
"line",
"else",
":",
"match",
"=",
"self",
".",
"meta_pattern",
".",
"match",
"(",
"line",
")",
"if",
"not",
"match",
":",
"raise",
"SyntaxError",
"(",
"\"One of the meta data lines is malformed: {0}\"",
".",
"format",
"(",
"line",
")",
")",
"self",
".",
"other_lines",
".",
"append",
"(",
"{",
"match",
".",
"group",
"(",
"'key'",
")",
":",
"match",
".",
"group",
"(",
"'val'",
")",
"}",
")",
"self",
".",
"other_dict",
"[",
"match",
".",
"group",
"(",
"'key'",
")",
"]",
"=",
"line"
] | Parse a vcf metadataline | [
"Parse",
"a",
"vcf",
"metadataline"
] | python | train |
xlorepdarkhelm/config | xdh/_config.py | https://github.com/xlorepdarkhelm/config/blob/c973d02f6500c7719441e016bc9c3df84104e392/xdh/_config.py#L288-L302 | def _attr_data_(self):
"Special property containing the memoized data."
try:
return self.__attr_data
except AttributeError:
self.__attr_data = type(
''.join([type(self).__name__, 'EmptyData']),
(),
{
'__module__': type(self).__module__,
'__slots__': ()
}
)()
return self.__attr_data | [
"def",
"_attr_data_",
"(",
"self",
")",
":",
"try",
":",
"return",
"self",
".",
"__attr_data",
"except",
"AttributeError",
":",
"self",
".",
"__attr_data",
"=",
"type",
"(",
"''",
".",
"join",
"(",
"[",
"type",
"(",
"self",
")",
".",
"__name__",
",",
"'EmptyData'",
"]",
")",
",",
"(",
")",
",",
"{",
"'__module__'",
":",
"type",
"(",
"self",
")",
".",
"__module__",
",",
"'__slots__'",
":",
"(",
")",
"}",
")",
"(",
")",
"return",
"self",
".",
"__attr_data"
] | Special property containing the memoized data. | [
"Special",
"property",
"containing",
"the",
"memoized",
"data",
"."
] | python | train |
ml4ai/delphi | delphi/translators/for2py/arrays.py | https://github.com/ml4ai/delphi/blob/6d03d8aafeab99610387c51b89c99738ff2abbe3/delphi/translators/for2py/arrays.py#L152-L162 | def all_subs(bounds):
"""given a list of tuples specifying the bounds of an array, all_subs()
returns a list of all the tuples of subscripts for that array."""
idx_list = []
for i in range(len(bounds)):
this_dim = bounds[i]
lo,hi = this_dim[0],this_dim[1] # bounds for this dimension
this_dim_idxs = range(lo,hi+1) # indexes for this dimension
idx_list.append(this_dim_idxs)
return idx2subs(idx_list) | [
"def",
"all_subs",
"(",
"bounds",
")",
":",
"idx_list",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"bounds",
")",
")",
":",
"this_dim",
"=",
"bounds",
"[",
"i",
"]",
"lo",
",",
"hi",
"=",
"this_dim",
"[",
"0",
"]",
",",
"this_dim",
"[",
"1",
"]",
"# bounds for this dimension",
"this_dim_idxs",
"=",
"range",
"(",
"lo",
",",
"hi",
"+",
"1",
")",
"# indexes for this dimension",
"idx_list",
".",
"append",
"(",
"this_dim_idxs",
")",
"return",
"idx2subs",
"(",
"idx_list",
")"
] | given a list of tuples specifying the bounds of an array, all_subs()
returns a list of all the tuples of subscripts for that array. | [
"given",
"a",
"list",
"of",
"tuples",
"specifying",
"the",
"bounds",
"of",
"an",
"array",
"all_subs",
"()",
"returns",
"a",
"list",
"of",
"all",
"the",
"tuples",
"of",
"subscripts",
"for",
"that",
"array",
"."
] | python | train |
EventRegistry/event-registry-python | eventregistry/examples/TopicPagesExamples.py | https://github.com/EventRegistry/event-registry-python/blob/534d20b616de02f5e1cd73665a02d189645dbeb6/eventregistry/examples/TopicPagesExamples.py#L30-L63 | def createTopicPage2():
"""
create a topic page directly, set the article threshold, restrict results to set concepts and keywords
"""
topic = TopicPage(er)
topic.addCategory(er.getCategoryUri("renewable"), 50)
topic.addKeyword("renewable energy", 30)
topic.addConcept(er.getConceptUri("biofuel"), 50)
topic.addConcept(er.getConceptUri("solar energy"), 50)
# require that the results will mention at least one of the concepts and keywords specified
# (even though they might have the category about renewable energy, that will not be enough
# for an article to be among the results)
topic.restrictToSetConceptsAndKeywords(True)
# limit results to English, German and Spanish results
topic.setLanguages(["eng", "deu", "spa"])
# get results that are at most 3 days old
topic.setMaxDaysBack(3)
# require that the articles that will be returned should get at least a total score of 30 points or more
# based on the specified list of conditions
topic.setArticleThreshold(30)
# get first page of articles sorted by date (from most recent backward) to the topic page
arts1 = topic.getArticles(page=1,
sortBy="date",
returnInfo=ReturnInfo(
articleInfo = ArticleInfoFlags(concepts=True, categories=True)
))
for art in arts1.get("articles", {}).get("results", []):
print(art) | [
"def",
"createTopicPage2",
"(",
")",
":",
"topic",
"=",
"TopicPage",
"(",
"er",
")",
"topic",
".",
"addCategory",
"(",
"er",
".",
"getCategoryUri",
"(",
"\"renewable\"",
")",
",",
"50",
")",
"topic",
".",
"addKeyword",
"(",
"\"renewable energy\"",
",",
"30",
")",
"topic",
".",
"addConcept",
"(",
"er",
".",
"getConceptUri",
"(",
"\"biofuel\"",
")",
",",
"50",
")",
"topic",
".",
"addConcept",
"(",
"er",
".",
"getConceptUri",
"(",
"\"solar energy\"",
")",
",",
"50",
")",
"# require that the results will mention at least one of the concepts and keywords specified",
"# (even though they might have the category about renewable energy, that will not be enough",
"# for an article to be among the results)",
"topic",
".",
"restrictToSetConceptsAndKeywords",
"(",
"True",
")",
"# limit results to English, German and Spanish results",
"topic",
".",
"setLanguages",
"(",
"[",
"\"eng\"",
",",
"\"deu\"",
",",
"\"spa\"",
"]",
")",
"# get results that are at most 3 days old",
"topic",
".",
"setMaxDaysBack",
"(",
"3",
")",
"# require that the articles that will be returned should get at least a total score of 30 points or more",
"# based on the specified list of conditions",
"topic",
".",
"setArticleThreshold",
"(",
"30",
")",
"# get first page of articles sorted by date (from most recent backward) to the topic page",
"arts1",
"=",
"topic",
".",
"getArticles",
"(",
"page",
"=",
"1",
",",
"sortBy",
"=",
"\"date\"",
",",
"returnInfo",
"=",
"ReturnInfo",
"(",
"articleInfo",
"=",
"ArticleInfoFlags",
"(",
"concepts",
"=",
"True",
",",
"categories",
"=",
"True",
")",
")",
")",
"for",
"art",
"in",
"arts1",
".",
"get",
"(",
"\"articles\"",
",",
"{",
"}",
")",
".",
"get",
"(",
"\"results\"",
",",
"[",
"]",
")",
":",
"print",
"(",
"art",
")"
] | create a topic page directly, set the article threshold, restrict results to set concepts and keywords | [
"create",
"a",
"topic",
"page",
"directly",
"set",
"the",
"article",
"threshold",
"restrict",
"results",
"to",
"set",
"concepts",
"and",
"keywords"
] | python | train |
lepture/terminal | terminal/log.py | https://github.com/lepture/terminal/blob/5226d1cac53077f12624aa51f64de7b5b05d9cb8/terminal/log.py#L100-L113 | def verbose(self):
"""
Make it the verbose log.
A verbose log can be only shown when user want to see more logs.
It works as::
log.verbose.warn('this is a verbose warn')
log.verbose.info('this is a verbose info')
"""
log = copy.copy(self)
log._is_verbose = True
return log | [
"def",
"verbose",
"(",
"self",
")",
":",
"log",
"=",
"copy",
".",
"copy",
"(",
"self",
")",
"log",
".",
"_is_verbose",
"=",
"True",
"return",
"log"
] | Make it the verbose log.
A verbose log can be only shown when user want to see more logs.
It works as::
log.verbose.warn('this is a verbose warn')
log.verbose.info('this is a verbose info') | [
"Make",
"it",
"the",
"verbose",
"log",
"."
] | python | train |
evansde77/dockerstache | src/dockerstache/templates.py | https://github.com/evansde77/dockerstache/blob/929c102e9fffde322dbf17f8e69533a00976aacb/src/dockerstache/templates.py#L59-L81 | def find_templates(input_dir):
"""
_find_templates_
traverse the input_dir structure and return a list
of template files ending with .mustache
:param input_dir: Path to start recursive search for
mustache templates
:returns: List of file paths corresponding to templates
"""
templates = []
def template_finder(result, dirname):
for obj in os.listdir(dirname):
if obj.endswith('.mustache'):
result.append(os.path.join(dirname, obj))
dir_visitor(
input_dir,
functools.partial(template_finder, templates)
)
return templates | [
"def",
"find_templates",
"(",
"input_dir",
")",
":",
"templates",
"=",
"[",
"]",
"def",
"template_finder",
"(",
"result",
",",
"dirname",
")",
":",
"for",
"obj",
"in",
"os",
".",
"listdir",
"(",
"dirname",
")",
":",
"if",
"obj",
".",
"endswith",
"(",
"'.mustache'",
")",
":",
"result",
".",
"append",
"(",
"os",
".",
"path",
".",
"join",
"(",
"dirname",
",",
"obj",
")",
")",
"dir_visitor",
"(",
"input_dir",
",",
"functools",
".",
"partial",
"(",
"template_finder",
",",
"templates",
")",
")",
"return",
"templates"
] | _find_templates_
traverse the input_dir structure and return a list
of template files ending with .mustache
:param input_dir: Path to start recursive search for
mustache templates
:returns: List of file paths corresponding to templates | [
"_find_templates_"
] | python | train |
SuperCowPowers/workbench | workbench/workers/view_customer.py | https://github.com/SuperCowPowers/workbench/blob/710232756dd717f734253315e3d0b33c9628dafb/workbench/workers/view_customer.py#L7-L13 | def execute(self, input_data):
''' Execute Method '''
# View on all the meta data files in the sample
fields = ['filename', 'md5', 'length', 'customer', 'import_time', 'type_tag']
view = {key:input_data['meta'][key] for key in fields}
return view | [
"def",
"execute",
"(",
"self",
",",
"input_data",
")",
":",
"# View on all the meta data files in the sample",
"fields",
"=",
"[",
"'filename'",
",",
"'md5'",
",",
"'length'",
",",
"'customer'",
",",
"'import_time'",
",",
"'type_tag'",
"]",
"view",
"=",
"{",
"key",
":",
"input_data",
"[",
"'meta'",
"]",
"[",
"key",
"]",
"for",
"key",
"in",
"fields",
"}",
"return",
"view"
] | Execute Method | [
"Execute",
"Method"
] | python | train |
ambitioninc/django-manager-utils | manager_utils/manager_utils.py | https://github.com/ambitioninc/django-manager-utils/blob/1f111cb4846ed6cd6b78eca320a9dcc27826bf97/manager_utils/manager_utils.py#L375-L398 | def sync(queryset, model_objs, unique_fields, update_fields=None, **kwargs):
"""
Performs a sync operation on a queryset, making the contents of the
queryset match the contents of model_objs.
This function calls bulk_upsert underneath the hood with sync=True.
:type model_objs: list of :class:`Models<django:django.db.models.Model>`
:param model_objs: The models to sync
:type update_fields: list of str
:param unique_fields: A list of fields that are used to determine if an
object in objs matches a model from the queryset.
:type update_fields: list of str
:param update_fields: A list of fields used from the objects in objs as fields when updating existing
models. If None, this function will only perform a bulk create for model_objs that do not
currently exist in the database.
:type native: bool
:param native: A flag specifying whether to use postgres insert on conflict (upsert) when performing
bulk upsert.
"""
return bulk_upsert(queryset, model_objs, unique_fields, update_fields=update_fields, sync=True, **kwargs) | [
"def",
"sync",
"(",
"queryset",
",",
"model_objs",
",",
"unique_fields",
",",
"update_fields",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"bulk_upsert",
"(",
"queryset",
",",
"model_objs",
",",
"unique_fields",
",",
"update_fields",
"=",
"update_fields",
",",
"sync",
"=",
"True",
",",
"*",
"*",
"kwargs",
")"
] | Performs a sync operation on a queryset, making the contents of the
queryset match the contents of model_objs.
This function calls bulk_upsert underneath the hood with sync=True.
:type model_objs: list of :class:`Models<django:django.db.models.Model>`
:param model_objs: The models to sync
:type update_fields: list of str
:param unique_fields: A list of fields that are used to determine if an
object in objs matches a model from the queryset.
:type update_fields: list of str
:param update_fields: A list of fields used from the objects in objs as fields when updating existing
models. If None, this function will only perform a bulk create for model_objs that do not
currently exist in the database.
:type native: bool
:param native: A flag specifying whether to use postgres insert on conflict (upsert) when performing
bulk upsert. | [
"Performs",
"a",
"sync",
"operation",
"on",
"a",
"queryset",
"making",
"the",
"contents",
"of",
"the",
"queryset",
"match",
"the",
"contents",
"of",
"model_objs",
"."
] | python | train |
biocore/burrito-fillings | bfillings/mothur.py | https://github.com/biocore/burrito-fillings/blob/02ab71a46119b40793bd56a4ae00ca15f6dc3329/bfillings/mothur.py#L252-L275 | def _derive_log_path(self):
"""Guess logfile path produced by Mothur
This method checks the working directory for log files
generated by Mothur. It will raise an ApplicationError if no
log file can be found.
Mothur generates log files named in a nondeterministic way,
using the current time. We return the log file with the most
recent time, although this may lead to incorrect log file
detection if you are running many instances of mothur
simultaneously.
"""
filenames = listdir(self.WorkingDir)
lognames = [
x for x in filenames if re.match(
"^mothur\.\d+\.logfile$",
x)]
if not lognames:
raise ApplicationError(
'No log file detected in directory %s. Contents: \n\t%s' % (
input_dir, '\n\t'.join(possible_logfiles)))
most_recent_logname = sorted(lognames, reverse=True)[0]
return path.join(self.WorkingDir, most_recent_logname) | [
"def",
"_derive_log_path",
"(",
"self",
")",
":",
"filenames",
"=",
"listdir",
"(",
"self",
".",
"WorkingDir",
")",
"lognames",
"=",
"[",
"x",
"for",
"x",
"in",
"filenames",
"if",
"re",
".",
"match",
"(",
"\"^mothur\\.\\d+\\.logfile$\"",
",",
"x",
")",
"]",
"if",
"not",
"lognames",
":",
"raise",
"ApplicationError",
"(",
"'No log file detected in directory %s. Contents: \\n\\t%s'",
"%",
"(",
"input_dir",
",",
"'\\n\\t'",
".",
"join",
"(",
"possible_logfiles",
")",
")",
")",
"most_recent_logname",
"=",
"sorted",
"(",
"lognames",
",",
"reverse",
"=",
"True",
")",
"[",
"0",
"]",
"return",
"path",
".",
"join",
"(",
"self",
".",
"WorkingDir",
",",
"most_recent_logname",
")"
] | Guess logfile path produced by Mothur
This method checks the working directory for log files
generated by Mothur. It will raise an ApplicationError if no
log file can be found.
Mothur generates log files named in a nondeterministic way,
using the current time. We return the log file with the most
recent time, although this may lead to incorrect log file
detection if you are running many instances of mothur
simultaneously. | [
"Guess",
"logfile",
"path",
"produced",
"by",
"Mothur"
] | python | train |
dnanexus/dx-toolkit | src/python/dxpy/workflow_builder.py | https://github.com/dnanexus/dx-toolkit/blob/74befb53ad90fcf902d8983ae6d74580f402d619/src/python/dxpy/workflow_builder.py#L140-L163 | def _version_exists(json_spec, name=None, version=None):
"""
Returns True if a global workflow with the given name and version
already exists in the platform and the user has developer rights
to the workflow. "name" and "version" can be passed if we already
made a "describe" API call on the global workflow and so know the
requested name and version already exists.
"""
requested_name = json_spec['name']
requested_version = json_spec['version']
if requested_name == name and requested_version == version:
return True
else:
try:
desc_output = dxpy.api.global_workflow_describe('globalworkflow-' + json_spec['name'],
alias=json_spec['version'],
input_params={"fields": {"name": True,
"version": True}})
return desc_output['name'] == json_spec['name'] and desc_output['version'] == json_spec['version']
except dxpy.exceptions.DXAPIError:
return False
except:
raise | [
"def",
"_version_exists",
"(",
"json_spec",
",",
"name",
"=",
"None",
",",
"version",
"=",
"None",
")",
":",
"requested_name",
"=",
"json_spec",
"[",
"'name'",
"]",
"requested_version",
"=",
"json_spec",
"[",
"'version'",
"]",
"if",
"requested_name",
"==",
"name",
"and",
"requested_version",
"==",
"version",
":",
"return",
"True",
"else",
":",
"try",
":",
"desc_output",
"=",
"dxpy",
".",
"api",
".",
"global_workflow_describe",
"(",
"'globalworkflow-'",
"+",
"json_spec",
"[",
"'name'",
"]",
",",
"alias",
"=",
"json_spec",
"[",
"'version'",
"]",
",",
"input_params",
"=",
"{",
"\"fields\"",
":",
"{",
"\"name\"",
":",
"True",
",",
"\"version\"",
":",
"True",
"}",
"}",
")",
"return",
"desc_output",
"[",
"'name'",
"]",
"==",
"json_spec",
"[",
"'name'",
"]",
"and",
"desc_output",
"[",
"'version'",
"]",
"==",
"json_spec",
"[",
"'version'",
"]",
"except",
"dxpy",
".",
"exceptions",
".",
"DXAPIError",
":",
"return",
"False",
"except",
":",
"raise"
] | Returns True if a global workflow with the given name and version
already exists in the platform and the user has developer rights
to the workflow. "name" and "version" can be passed if we already
made a "describe" API call on the global workflow and so know the
requested name and version already exists. | [
"Returns",
"True",
"if",
"a",
"global",
"workflow",
"with",
"the",
"given",
"name",
"and",
"version",
"already",
"exists",
"in",
"the",
"platform",
"and",
"the",
"user",
"has",
"developer",
"rights",
"to",
"the",
"workflow",
".",
"name",
"and",
"version",
"can",
"be",
"passed",
"if",
"we",
"already",
"made",
"a",
"describe",
"API",
"call",
"on",
"the",
"global",
"workflow",
"and",
"so",
"know",
"the",
"requested",
"name",
"and",
"version",
"already",
"exists",
"."
] | python | train |
chaoss/grimoirelab-cereslib | cereslib/events/events.py | https://github.com/chaoss/grimoirelab-cereslib/blob/5110e6ca490a4f24bec3124286ebf51fd4e08bdd/cereslib/events/events.py#L464-L600 | def eventize(self, granularity):
""" This splits the JSON information found at self.events into the
several events. For this there are three different levels of time
consuming actions: 1-soft, 2-medium and 3-hard.
Level 1 provides events about commits
Level 2 provides events about files
Level 3 provides other events (not used so far)
:param granularity: Levels of time consuming actions to calculate events
:type granularity: integer
:returns: Pandas dataframe with splitted events.
:rtype: pandas.DataFrame
"""
df_columns = {}
# Init common columns
self._init_common_fields(df_columns)
# First level granularity
df_columns[Git.COMMIT_ID] = []
df_columns[Git.COMMIT_EVENT] = []
df_columns[Git.COMMIT_DATE] = []
df_columns[Git.COMMIT_OWNER] = []
df_columns[Git.COMMIT_COMMITTER] = []
df_columns[Git.COMMIT_COMMITTER_DATE] = []
df_columns[Git.COMMIT_REPOSITORY] = []
df_columns[Git.COMMIT_MESSAGE] = []
df_columns[Git.COMMIT_NUM_FILES] = []
df_columns[Git.COMMIT_ADDED_LINES] = []
df_columns[Git.COMMIT_REMOVED_LINES] = []
df_columns[Git.COMMIT_HASH] = []
df_columns[Git.AUTHOR_DOMAIN] = []
# Second level of granularity
df_columns[Git.FILE_FILES] = []
df_columns[Git.FILE_EVENT] = []
df_columns[Git.FILE_PATH] = []
df_columns[Git.FILE_ADDED_LINES] = []
df_columns[Git.FILE_REMOVED_LINES] = []
events = pandas.DataFrame()
for item in self.items:
commit_data = item["data"]
if granularity == 1:
self._add_common_fields(df_columns, item)
self.__add_commit_info(df_columns, item)
added_lines = 0
removed_lines = 0
files = commit_data["files"]
df_columns[Git.COMMIT_NUM_FILES] = int(len(files))
for f in files:
if "added" in f.keys() and f["added"] != "-":
added_lines = added_lines + int(f["added"])
if "removed" in f.keys() and f["removed"] != "-":
removed_lines = removed_lines + int(f["removed"])
df_columns[Git.COMMIT_ADDED_LINES] = added_lines
df_columns[Git.COMMIT_REMOVED_LINES] = removed_lines
# TODO: this will fail if no files are found in a commit (eg: merge)
if granularity == 2:
# Add extra info about files actions, if there were any
if "files" in commit_data.keys():
files = commit_data["files"]
nfiles = 0
for f in files:
if "action" in f.keys():
nfiles += 1
for f in files:
self._add_common_fields(df_columns, item)
self.__add_commit_info(df_columns, item)
df_columns[Git.FILE_FILES].append(nfiles)
if "action" in f.keys():
df_columns[Git.FILE_EVENT].append(Git.EVENT_FILE + f["action"])
else:
df_columns[Git.FILE_EVENT].append("-")
if "file" in f.keys():
df_columns[Git.FILE_PATH].append(f["file"])
else:
df_columns[Git.FILE_PATH].append("-")
if "added" in f.keys():
if f["added"] == "-":
df_columns[Git.FILE_ADDED_LINES].append(0)
else:
df_columns[Git.FILE_ADDED_LINES].append(int(f["added"]))
else:
df_columns[Git.FILE_ADDED_LINES].append(0)
if "removed" in f.keys():
if f["removed"] == "-":
df_columns[Git.FILE_REMOVED_LINES].append(0)
else:
df_columns[Git.FILE_REMOVED_LINES].append(int(f["removed"]))
else:
df_columns[Git.FILE_REMOVED_LINES].append(0)
else:
print("Merge found, doing nothing...")
if granularity == 3:
# TDB
pass
# Done in this way to have an order (and not a direct cast)
self._add_common_events(events, df_columns)
events[Git.COMMIT_ID] = df_columns[Git.COMMIT_ID]
events[Git.COMMIT_EVENT] = df_columns[Git.COMMIT_EVENT]
events[Git.COMMIT_DATE] = df_columns[Git.COMMIT_DATE]
events[Git.COMMIT_OWNER] = df_columns[Git.COMMIT_OWNER]
events[Git.COMMIT_COMMITTER] = df_columns[Git.COMMIT_COMMITTER]
events[Git.COMMIT_COMMITTER_DATE] = df_columns[Git.COMMIT_COMMITTER_DATE]
events[Git.COMMIT_REPOSITORY] = df_columns[Git.COMMIT_REPOSITORY]
events[Git.COMMIT_MESSAGE] = df_columns[Git.COMMIT_MESSAGE]
events[Git.COMMIT_HASH] = df_columns[Git.COMMIT_HASH]
events[Git.AUTHOR_DOMAIN] = df_columns[Git.AUTHOR_DOMAIN]
if granularity == 1:
events[Git.COMMIT_NUM_FILES] = df_columns[Git.COMMIT_NUM_FILES]
events[Git.COMMIT_ADDED_LINES] = df_columns[Git.COMMIT_ADDED_LINES]
events[Git.COMMIT_REMOVED_LINES] = df_columns[Git.COMMIT_REMOVED_LINES]
if granularity == 2:
events[Git.FILE_FILES] = df_columns[Git.FILE_FILES]
events[Git.FILE_EVENT] = df_columns[Git.FILE_EVENT]
events[Git.FILE_PATH] = df_columns[Git.FILE_PATH]
events[Git.FILE_ADDED_LINES] = df_columns[Git.FILE_ADDED_LINES]
events[Git.FILE_REMOVED_LINES] = df_columns[Git.FILE_REMOVED_LINES]
return events | [
"def",
"eventize",
"(",
"self",
",",
"granularity",
")",
":",
"df_columns",
"=",
"{",
"}",
"# Init common columns",
"self",
".",
"_init_common_fields",
"(",
"df_columns",
")",
"# First level granularity",
"df_columns",
"[",
"Git",
".",
"COMMIT_ID",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_EVENT",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_DATE",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_OWNER",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_COMMITTER",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_COMMITTER_DATE",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_REPOSITORY",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_MESSAGE",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_NUM_FILES",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_ADDED_LINES",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_REMOVED_LINES",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_HASH",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"AUTHOR_DOMAIN",
"]",
"=",
"[",
"]",
"# Second level of granularity",
"df_columns",
"[",
"Git",
".",
"FILE_FILES",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"FILE_EVENT",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"FILE_PATH",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"FILE_ADDED_LINES",
"]",
"=",
"[",
"]",
"df_columns",
"[",
"Git",
".",
"FILE_REMOVED_LINES",
"]",
"=",
"[",
"]",
"events",
"=",
"pandas",
".",
"DataFrame",
"(",
")",
"for",
"item",
"in",
"self",
".",
"items",
":",
"commit_data",
"=",
"item",
"[",
"\"data\"",
"]",
"if",
"granularity",
"==",
"1",
":",
"self",
".",
"_add_common_fields",
"(",
"df_columns",
",",
"item",
")",
"self",
".",
"__add_commit_info",
"(",
"df_columns",
",",
"item",
")",
"added_lines",
"=",
"0",
"removed_lines",
"=",
"0",
"files",
"=",
"commit_data",
"[",
"\"files\"",
"]",
"df_columns",
"[",
"Git",
".",
"COMMIT_NUM_FILES",
"]",
"=",
"int",
"(",
"len",
"(",
"files",
")",
")",
"for",
"f",
"in",
"files",
":",
"if",
"\"added\"",
"in",
"f",
".",
"keys",
"(",
")",
"and",
"f",
"[",
"\"added\"",
"]",
"!=",
"\"-\"",
":",
"added_lines",
"=",
"added_lines",
"+",
"int",
"(",
"f",
"[",
"\"added\"",
"]",
")",
"if",
"\"removed\"",
"in",
"f",
".",
"keys",
"(",
")",
"and",
"f",
"[",
"\"removed\"",
"]",
"!=",
"\"-\"",
":",
"removed_lines",
"=",
"removed_lines",
"+",
"int",
"(",
"f",
"[",
"\"removed\"",
"]",
")",
"df_columns",
"[",
"Git",
".",
"COMMIT_ADDED_LINES",
"]",
"=",
"added_lines",
"df_columns",
"[",
"Git",
".",
"COMMIT_REMOVED_LINES",
"]",
"=",
"removed_lines",
"# TODO: this will fail if no files are found in a commit (eg: merge)",
"if",
"granularity",
"==",
"2",
":",
"# Add extra info about files actions, if there were any",
"if",
"\"files\"",
"in",
"commit_data",
".",
"keys",
"(",
")",
":",
"files",
"=",
"commit_data",
"[",
"\"files\"",
"]",
"nfiles",
"=",
"0",
"for",
"f",
"in",
"files",
":",
"if",
"\"action\"",
"in",
"f",
".",
"keys",
"(",
")",
":",
"nfiles",
"+=",
"1",
"for",
"f",
"in",
"files",
":",
"self",
".",
"_add_common_fields",
"(",
"df_columns",
",",
"item",
")",
"self",
".",
"__add_commit_info",
"(",
"df_columns",
",",
"item",
")",
"df_columns",
"[",
"Git",
".",
"FILE_FILES",
"]",
".",
"append",
"(",
"nfiles",
")",
"if",
"\"action\"",
"in",
"f",
".",
"keys",
"(",
")",
":",
"df_columns",
"[",
"Git",
".",
"FILE_EVENT",
"]",
".",
"append",
"(",
"Git",
".",
"EVENT_FILE",
"+",
"f",
"[",
"\"action\"",
"]",
")",
"else",
":",
"df_columns",
"[",
"Git",
".",
"FILE_EVENT",
"]",
".",
"append",
"(",
"\"-\"",
")",
"if",
"\"file\"",
"in",
"f",
".",
"keys",
"(",
")",
":",
"df_columns",
"[",
"Git",
".",
"FILE_PATH",
"]",
".",
"append",
"(",
"f",
"[",
"\"file\"",
"]",
")",
"else",
":",
"df_columns",
"[",
"Git",
".",
"FILE_PATH",
"]",
".",
"append",
"(",
"\"-\"",
")",
"if",
"\"added\"",
"in",
"f",
".",
"keys",
"(",
")",
":",
"if",
"f",
"[",
"\"added\"",
"]",
"==",
"\"-\"",
":",
"df_columns",
"[",
"Git",
".",
"FILE_ADDED_LINES",
"]",
".",
"append",
"(",
"0",
")",
"else",
":",
"df_columns",
"[",
"Git",
".",
"FILE_ADDED_LINES",
"]",
".",
"append",
"(",
"int",
"(",
"f",
"[",
"\"added\"",
"]",
")",
")",
"else",
":",
"df_columns",
"[",
"Git",
".",
"FILE_ADDED_LINES",
"]",
".",
"append",
"(",
"0",
")",
"if",
"\"removed\"",
"in",
"f",
".",
"keys",
"(",
")",
":",
"if",
"f",
"[",
"\"removed\"",
"]",
"==",
"\"-\"",
":",
"df_columns",
"[",
"Git",
".",
"FILE_REMOVED_LINES",
"]",
".",
"append",
"(",
"0",
")",
"else",
":",
"df_columns",
"[",
"Git",
".",
"FILE_REMOVED_LINES",
"]",
".",
"append",
"(",
"int",
"(",
"f",
"[",
"\"removed\"",
"]",
")",
")",
"else",
":",
"df_columns",
"[",
"Git",
".",
"FILE_REMOVED_LINES",
"]",
".",
"append",
"(",
"0",
")",
"else",
":",
"print",
"(",
"\"Merge found, doing nothing...\"",
")",
"if",
"granularity",
"==",
"3",
":",
"# TDB",
"pass",
"# Done in this way to have an order (and not a direct cast)",
"self",
".",
"_add_common_events",
"(",
"events",
",",
"df_columns",
")",
"events",
"[",
"Git",
".",
"COMMIT_ID",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_ID",
"]",
"events",
"[",
"Git",
".",
"COMMIT_EVENT",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_EVENT",
"]",
"events",
"[",
"Git",
".",
"COMMIT_DATE",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_DATE",
"]",
"events",
"[",
"Git",
".",
"COMMIT_OWNER",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_OWNER",
"]",
"events",
"[",
"Git",
".",
"COMMIT_COMMITTER",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_COMMITTER",
"]",
"events",
"[",
"Git",
".",
"COMMIT_COMMITTER_DATE",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_COMMITTER_DATE",
"]",
"events",
"[",
"Git",
".",
"COMMIT_REPOSITORY",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_REPOSITORY",
"]",
"events",
"[",
"Git",
".",
"COMMIT_MESSAGE",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_MESSAGE",
"]",
"events",
"[",
"Git",
".",
"COMMIT_HASH",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_HASH",
"]",
"events",
"[",
"Git",
".",
"AUTHOR_DOMAIN",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"AUTHOR_DOMAIN",
"]",
"if",
"granularity",
"==",
"1",
":",
"events",
"[",
"Git",
".",
"COMMIT_NUM_FILES",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_NUM_FILES",
"]",
"events",
"[",
"Git",
".",
"COMMIT_ADDED_LINES",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_ADDED_LINES",
"]",
"events",
"[",
"Git",
".",
"COMMIT_REMOVED_LINES",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"COMMIT_REMOVED_LINES",
"]",
"if",
"granularity",
"==",
"2",
":",
"events",
"[",
"Git",
".",
"FILE_FILES",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"FILE_FILES",
"]",
"events",
"[",
"Git",
".",
"FILE_EVENT",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"FILE_EVENT",
"]",
"events",
"[",
"Git",
".",
"FILE_PATH",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"FILE_PATH",
"]",
"events",
"[",
"Git",
".",
"FILE_ADDED_LINES",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"FILE_ADDED_LINES",
"]",
"events",
"[",
"Git",
".",
"FILE_REMOVED_LINES",
"]",
"=",
"df_columns",
"[",
"Git",
".",
"FILE_REMOVED_LINES",
"]",
"return",
"events"
] | This splits the JSON information found at self.events into the
several events. For this there are three different levels of time
consuming actions: 1-soft, 2-medium and 3-hard.
Level 1 provides events about commits
Level 2 provides events about files
Level 3 provides other events (not used so far)
:param granularity: Levels of time consuming actions to calculate events
:type granularity: integer
:returns: Pandas dataframe with splitted events.
:rtype: pandas.DataFrame | [
"This",
"splits",
"the",
"JSON",
"information",
"found",
"at",
"self",
".",
"events",
"into",
"the",
"several",
"events",
".",
"For",
"this",
"there",
"are",
"three",
"different",
"levels",
"of",
"time",
"consuming",
"actions",
":",
"1",
"-",
"soft",
"2",
"-",
"medium",
"and",
"3",
"-",
"hard",
"."
] | python | train |
aio-libs/aiomysql | aiomysql/sa/result.py | https://github.com/aio-libs/aiomysql/blob/131fb9f914739ff01a24b402d29bfd719f2d1a8b/aiomysql/sa/result.py#L379-L388 | async def fetchall(self):
"""Fetch all rows, just like DB-API cursor.fetchall()."""
try:
rows = await self._cursor.fetchall()
except AttributeError:
self._non_result()
else:
ret = self._process_rows(rows)
await self.close()
return ret | [
"async",
"def",
"fetchall",
"(",
"self",
")",
":",
"try",
":",
"rows",
"=",
"await",
"self",
".",
"_cursor",
".",
"fetchall",
"(",
")",
"except",
"AttributeError",
":",
"self",
".",
"_non_result",
"(",
")",
"else",
":",
"ret",
"=",
"self",
".",
"_process_rows",
"(",
"rows",
")",
"await",
"self",
".",
"close",
"(",
")",
"return",
"ret"
] | Fetch all rows, just like DB-API cursor.fetchall(). | [
"Fetch",
"all",
"rows",
"just",
"like",
"DB",
"-",
"API",
"cursor",
".",
"fetchall",
"()",
"."
] | python | train |
kkroening/ffmpeg-python | ffmpeg/_filters.py | https://github.com/kkroening/ffmpeg-python/blob/ac111dc3a976ddbb872bc7d6d4fe24a267c1a956/ffmpeg/_filters.py#L216-L354 | def drawtext(stream, text=None, x=0, y=0, escape_text=True, **kwargs):
"""Draw a text string or text from a specified file on top of a video, using the libfreetype library.
To enable compilation of this filter, you need to configure FFmpeg with ``--enable-libfreetype``. To enable default
font fallback and the font option you need to configure FFmpeg with ``--enable-libfontconfig``. To enable the
text_shaping option, you need to configure FFmpeg with ``--enable-libfribidi``.
Args:
box: Used to draw a box around text using the background color. The value must be either 1 (enable) or 0
(disable). The default value of box is 0.
boxborderw: Set the width of the border to be drawn around the box using boxcolor. The default value of
boxborderw is 0.
boxcolor: The color to be used for drawing box around text. For the syntax of this option, check the "Color"
section in the ffmpeg-utils manual. The default value of boxcolor is "white".
line_spacing: Set the line spacing in pixels of the border to be drawn around the box using box. The default
value of line_spacing is 0.
borderw: Set the width of the border to be drawn around the text using bordercolor. The default value of
borderw is 0.
bordercolor: Set the color to be used for drawing border around text. For the syntax of this option, check the
"Color" section in the ffmpeg-utils manual. The default value of bordercolor is "black".
expansion: Select how the text is expanded. Can be either none, strftime (deprecated) or normal (default). See
the Text expansion section below for details.
basetime: Set a start time for the count. Value is in microseconds. Only applied in the deprecated strftime
expansion mode. To emulate in normal expansion mode use the pts function, supplying the start time (in
seconds) as the second argument.
fix_bounds: If true, check and fix text coords to avoid clipping.
fontcolor: The color to be used for drawing fonts. For the syntax of this option, check the "Color" section in
the ffmpeg-utils manual. The default value of fontcolor is "black".
fontcolor_expr: String which is expanded the same way as text to obtain dynamic fontcolor value. By default
this option has empty value and is not processed. When this option is set, it overrides fontcolor option.
font: The font family to be used for drawing text. By default Sans.
fontfile: The font file to be used for drawing text. The path must be included. This parameter is mandatory if
the fontconfig support is disabled.
alpha: Draw the text applying alpha blending. The value can be a number between 0.0 and 1.0. The expression
accepts the same variables x, y as well. The default value is 1. Please see fontcolor_expr.
fontsize: The font size to be used for drawing text. The default value of fontsize is 16.
text_shaping: If set to 1, attempt to shape the text (for example, reverse the order of right-to-left text and
join Arabic characters) before drawing it. Otherwise, just draw the text exactly as given. By default 1 (if
supported).
ft_load_flags: The flags to be used for loading the fonts. The flags map the corresponding flags supported by
libfreetype, and are a combination of the following values:
* ``default``
* ``no_scale``
* ``no_hinting``
* ``render``
* ``no_bitmap``
* ``vertical_layout``
* ``force_autohint``
* ``crop_bitmap``
* ``pedantic``
* ``ignore_global_advance_width``
* ``no_recurse``
* ``ignore_transform``
* ``monochrome``
* ``linear_design``
* ``no_autohint``
Default value is "default". For more information consult the documentation for the FT_LOAD_* libfreetype
flags.
shadowcolor: The color to be used for drawing a shadow behind the drawn text. For the syntax of this option,
check the "Color" section in the ffmpeg-utils manual. The default value of shadowcolor is "black".
shadowx: The x offset for the text shadow position with respect to the position of the text. It can be either
positive or negative values. The default value is "0".
shadowy: The y offset for the text shadow position with respect to the position of the text. It can be either
positive or negative values. The default value is "0".
start_number: The starting frame number for the n/frame_num variable. The default value is "0".
tabsize: The size in number of spaces to use for rendering the tab. Default value is 4.
timecode: Set the initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used with or without
text parameter. timecode_rate option must be specified.
rate: Set the timecode frame rate (timecode only).
timecode_rate: Alias for ``rate``.
r: Alias for ``rate``.
tc24hmax: If set to 1, the output of the timecode option will wrap around at 24 hours. Default is 0 (disabled).
text: The text string to be drawn. The text must be a sequence of UTF-8 encoded characters. This parameter is
mandatory if no file is specified with the parameter textfile.
textfile: A text file containing text to be drawn. The text must be a sequence of UTF-8 encoded characters.
This parameter is mandatory if no text string is specified with the parameter text. If both text and
textfile are specified, an error is thrown.
reload: If set to 1, the textfile will be reloaded before each frame. Be sure to update it atomically, or it
may be read partially, or even fail.
x: The expression which specifies the offset where text will be drawn within the video frame. It is relative to
the left border of the output image. The default value is "0".
y: The expression which specifies the offset where text will be drawn within the video frame. It is relative to
the top border of the output image. The default value is "0". See below for the list of accepted constants
and functions.
Expression constants:
The parameters for x and y are expressions containing the following constants and functions:
- dar: input display aspect ratio, it is the same as ``(w / h) * sar``
- hsub: horizontal chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub
is 1.
- vsub: vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub
is 1.
- line_h: the height of each text line
- lh: Alias for ``line_h``.
- main_h: the input height
- h: Alias for ``main_h``.
- H: Alias for ``main_h``.
- main_w: the input width
- w: Alias for ``main_w``.
- W: Alias for ``main_w``.
- ascent: the maximum distance from the baseline to the highest/upper grid coordinate used to place a glyph
outline point, for all the rendered glyphs. It is a positive value, due to the grid's orientation with the Y
axis upwards.
- max_glyph_a: Alias for ``ascent``.
- descent: the maximum distance from the baseline to the lowest grid coordinate used to place a glyph outline
point, for all the rendered glyphs. This is a negative value, due to the grid's orientation, with the Y axis
upwards.
- max_glyph_d: Alias for ``descent``.
- max_glyph_h: maximum glyph height, that is the maximum height for all the glyphs contained in the rendered
text, it is equivalent to ascent - descent.
- max_glyph_w: maximum glyph width, that is the maximum width for all the glyphs contained in the rendered
text.
- n: the number of input frame, starting from 0
- rand(min, max): return a random number included between min and max
- sar: The input sample aspect ratio.
- t: timestamp expressed in seconds, NAN if the input timestamp is unknown
- text_h: the height of the rendered text
- th: Alias for ``text_h``.
- text_w: the width of the rendered text
- tw: Alias for ``text_w``.
- x: the x offset coordinates where the text is drawn.
- y: the y offset coordinates where the text is drawn.
These parameters allow the x and y expressions to refer each other, so you can for example specify
``y=x/dar``.
Official documentation: `drawtext <https://ffmpeg.org/ffmpeg-filters.html#drawtext>`__
"""
if text is not None:
if escape_text:
text = escape_chars(text, '\\\'%')
kwargs['text'] = text
if x != 0:
kwargs['x'] = x
if y != 0:
kwargs['y'] = y
return filter(stream, drawtext.__name__, **kwargs) | [
"def",
"drawtext",
"(",
"stream",
",",
"text",
"=",
"None",
",",
"x",
"=",
"0",
",",
"y",
"=",
"0",
",",
"escape_text",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"text",
"is",
"not",
"None",
":",
"if",
"escape_text",
":",
"text",
"=",
"escape_chars",
"(",
"text",
",",
"'\\\\\\'%'",
")",
"kwargs",
"[",
"'text'",
"]",
"=",
"text",
"if",
"x",
"!=",
"0",
":",
"kwargs",
"[",
"'x'",
"]",
"=",
"x",
"if",
"y",
"!=",
"0",
":",
"kwargs",
"[",
"'y'",
"]",
"=",
"y",
"return",
"filter",
"(",
"stream",
",",
"drawtext",
".",
"__name__",
",",
"*",
"*",
"kwargs",
")"
] | Draw a text string or text from a specified file on top of a video, using the libfreetype library.
To enable compilation of this filter, you need to configure FFmpeg with ``--enable-libfreetype``. To enable default
font fallback and the font option you need to configure FFmpeg with ``--enable-libfontconfig``. To enable the
text_shaping option, you need to configure FFmpeg with ``--enable-libfribidi``.
Args:
box: Used to draw a box around text using the background color. The value must be either 1 (enable) or 0
(disable). The default value of box is 0.
boxborderw: Set the width of the border to be drawn around the box using boxcolor. The default value of
boxborderw is 0.
boxcolor: The color to be used for drawing box around text. For the syntax of this option, check the "Color"
section in the ffmpeg-utils manual. The default value of boxcolor is "white".
line_spacing: Set the line spacing in pixels of the border to be drawn around the box using box. The default
value of line_spacing is 0.
borderw: Set the width of the border to be drawn around the text using bordercolor. The default value of
borderw is 0.
bordercolor: Set the color to be used for drawing border around text. For the syntax of this option, check the
"Color" section in the ffmpeg-utils manual. The default value of bordercolor is "black".
expansion: Select how the text is expanded. Can be either none, strftime (deprecated) or normal (default). See
the Text expansion section below for details.
basetime: Set a start time for the count. Value is in microseconds. Only applied in the deprecated strftime
expansion mode. To emulate in normal expansion mode use the pts function, supplying the start time (in
seconds) as the second argument.
fix_bounds: If true, check and fix text coords to avoid clipping.
fontcolor: The color to be used for drawing fonts. For the syntax of this option, check the "Color" section in
the ffmpeg-utils manual. The default value of fontcolor is "black".
fontcolor_expr: String which is expanded the same way as text to obtain dynamic fontcolor value. By default
this option has empty value and is not processed. When this option is set, it overrides fontcolor option.
font: The font family to be used for drawing text. By default Sans.
fontfile: The font file to be used for drawing text. The path must be included. This parameter is mandatory if
the fontconfig support is disabled.
alpha: Draw the text applying alpha blending. The value can be a number between 0.0 and 1.0. The expression
accepts the same variables x, y as well. The default value is 1. Please see fontcolor_expr.
fontsize: The font size to be used for drawing text. The default value of fontsize is 16.
text_shaping: If set to 1, attempt to shape the text (for example, reverse the order of right-to-left text and
join Arabic characters) before drawing it. Otherwise, just draw the text exactly as given. By default 1 (if
supported).
ft_load_flags: The flags to be used for loading the fonts. The flags map the corresponding flags supported by
libfreetype, and are a combination of the following values:
* ``default``
* ``no_scale``
* ``no_hinting``
* ``render``
* ``no_bitmap``
* ``vertical_layout``
* ``force_autohint``
* ``crop_bitmap``
* ``pedantic``
* ``ignore_global_advance_width``
* ``no_recurse``
* ``ignore_transform``
* ``monochrome``
* ``linear_design``
* ``no_autohint``
Default value is "default". For more information consult the documentation for the FT_LOAD_* libfreetype
flags.
shadowcolor: The color to be used for drawing a shadow behind the drawn text. For the syntax of this option,
check the "Color" section in the ffmpeg-utils manual. The default value of shadowcolor is "black".
shadowx: The x offset for the text shadow position with respect to the position of the text. It can be either
positive or negative values. The default value is "0".
shadowy: The y offset for the text shadow position with respect to the position of the text. It can be either
positive or negative values. The default value is "0".
start_number: The starting frame number for the n/frame_num variable. The default value is "0".
tabsize: The size in number of spaces to use for rendering the tab. Default value is 4.
timecode: Set the initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used with or without
text parameter. timecode_rate option must be specified.
rate: Set the timecode frame rate (timecode only).
timecode_rate: Alias for ``rate``.
r: Alias for ``rate``.
tc24hmax: If set to 1, the output of the timecode option will wrap around at 24 hours. Default is 0 (disabled).
text: The text string to be drawn. The text must be a sequence of UTF-8 encoded characters. This parameter is
mandatory if no file is specified with the parameter textfile.
textfile: A text file containing text to be drawn. The text must be a sequence of UTF-8 encoded characters.
This parameter is mandatory if no text string is specified with the parameter text. If both text and
textfile are specified, an error is thrown.
reload: If set to 1, the textfile will be reloaded before each frame. Be sure to update it atomically, or it
may be read partially, or even fail.
x: The expression which specifies the offset where text will be drawn within the video frame. It is relative to
the left border of the output image. The default value is "0".
y: The expression which specifies the offset where text will be drawn within the video frame. It is relative to
the top border of the output image. The default value is "0". See below for the list of accepted constants
and functions.
Expression constants:
The parameters for x and y are expressions containing the following constants and functions:
- dar: input display aspect ratio, it is the same as ``(w / h) * sar``
- hsub: horizontal chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub
is 1.
- vsub: vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2 and vsub
is 1.
- line_h: the height of each text line
- lh: Alias for ``line_h``.
- main_h: the input height
- h: Alias for ``main_h``.
- H: Alias for ``main_h``.
- main_w: the input width
- w: Alias for ``main_w``.
- W: Alias for ``main_w``.
- ascent: the maximum distance from the baseline to the highest/upper grid coordinate used to place a glyph
outline point, for all the rendered glyphs. It is a positive value, due to the grid's orientation with the Y
axis upwards.
- max_glyph_a: Alias for ``ascent``.
- descent: the maximum distance from the baseline to the lowest grid coordinate used to place a glyph outline
point, for all the rendered glyphs. This is a negative value, due to the grid's orientation, with the Y axis
upwards.
- max_glyph_d: Alias for ``descent``.
- max_glyph_h: maximum glyph height, that is the maximum height for all the glyphs contained in the rendered
text, it is equivalent to ascent - descent.
- max_glyph_w: maximum glyph width, that is the maximum width for all the glyphs contained in the rendered
text.
- n: the number of input frame, starting from 0
- rand(min, max): return a random number included between min and max
- sar: The input sample aspect ratio.
- t: timestamp expressed in seconds, NAN if the input timestamp is unknown
- text_h: the height of the rendered text
- th: Alias for ``text_h``.
- text_w: the width of the rendered text
- tw: Alias for ``text_w``.
- x: the x offset coordinates where the text is drawn.
- y: the y offset coordinates where the text is drawn.
These parameters allow the x and y expressions to refer each other, so you can for example specify
``y=x/dar``.
Official documentation: `drawtext <https://ffmpeg.org/ffmpeg-filters.html#drawtext>`__ | [
"Draw",
"a",
"text",
"string",
"or",
"text",
"from",
"a",
"specified",
"file",
"on",
"top",
"of",
"a",
"video",
"using",
"the",
"libfreetype",
"library",
"."
] | python | train |
xtream1101/web-wrapper | web_wrapper/driver_selenium_phantomjs.py | https://github.com/xtream1101/web-wrapper/blob/2bfc63caa7d316564088951f01a490db493ea240/web_wrapper/driver_selenium_phantomjs.py#L92-L100 | def _create_session(self):
"""
Creates a fresh session with no/default headers and proxies
"""
logger.debug("Create new phantomjs web driver")
self.driver = webdriver.PhantomJS(desired_capabilities=self.dcap,
**self.driver_args)
self.set_cookies(self.current_cookies)
self.driver.set_window_size(1920, 1080) | [
"def",
"_create_session",
"(",
"self",
")",
":",
"logger",
".",
"debug",
"(",
"\"Create new phantomjs web driver\"",
")",
"self",
".",
"driver",
"=",
"webdriver",
".",
"PhantomJS",
"(",
"desired_capabilities",
"=",
"self",
".",
"dcap",
",",
"*",
"*",
"self",
".",
"driver_args",
")",
"self",
".",
"set_cookies",
"(",
"self",
".",
"current_cookies",
")",
"self",
".",
"driver",
".",
"set_window_size",
"(",
"1920",
",",
"1080",
")"
] | Creates a fresh session with no/default headers and proxies | [
"Creates",
"a",
"fresh",
"session",
"with",
"no",
"/",
"default",
"headers",
"and",
"proxies"
] | python | train |
Valassis-Digital-Media/spylon | spylon/spark/launcher.py | https://github.com/Valassis-Digital-Media/spylon/blob/ac00e285fa1c790674606b793819c3e5baee0d48/spylon/spark/launcher.py#L497-L522 | def spark_context(self, application_name):
"""Create a spark context given the parameters configured in this class.
The caller is responsible for calling ``.close`` on the resulting spark context
Parameters
----------
application_name : string
Returns
-------
sc : SparkContext
"""
# initialize the spark configuration
self._init_spark()
import pyspark
import pyspark.sql
# initialize conf
spark_conf = pyspark.SparkConf()
for k, v in self._spark_conf_helper._conf_dict.items():
spark_conf.set(k, v)
log.info("Starting SparkContext")
return pyspark.SparkContext(appName=application_name, conf=spark_conf) | [
"def",
"spark_context",
"(",
"self",
",",
"application_name",
")",
":",
"# initialize the spark configuration",
"self",
".",
"_init_spark",
"(",
")",
"import",
"pyspark",
"import",
"pyspark",
".",
"sql",
"# initialize conf",
"spark_conf",
"=",
"pyspark",
".",
"SparkConf",
"(",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"_spark_conf_helper",
".",
"_conf_dict",
".",
"items",
"(",
")",
":",
"spark_conf",
".",
"set",
"(",
"k",
",",
"v",
")",
"log",
".",
"info",
"(",
"\"Starting SparkContext\"",
")",
"return",
"pyspark",
".",
"SparkContext",
"(",
"appName",
"=",
"application_name",
",",
"conf",
"=",
"spark_conf",
")"
] | Create a spark context given the parameters configured in this class.
The caller is responsible for calling ``.close`` on the resulting spark context
Parameters
----------
application_name : string
Returns
-------
sc : SparkContext | [
"Create",
"a",
"spark",
"context",
"given",
"the",
"parameters",
"configured",
"in",
"this",
"class",
"."
] | python | train |
aio-libs/aioredis | aioredis/commands/hash.py | https://github.com/aio-libs/aioredis/blob/e8c33e39558d4cc91cf70dde490d8b330c97dc2e/aioredis/commands/hash.py#L124-L135 | def ihscan(self, key, *, match=None, count=None):
"""Incrementally iterate sorted set items using async for.
Usage example:
>>> async for name, val in redis.ihscan(key, match='something*'):
... print('Matched:', name, '->', val)
"""
return _ScanIter(lambda cur: self.hscan(key, cur,
match=match,
count=count)) | [
"def",
"ihscan",
"(",
"self",
",",
"key",
",",
"*",
",",
"match",
"=",
"None",
",",
"count",
"=",
"None",
")",
":",
"return",
"_ScanIter",
"(",
"lambda",
"cur",
":",
"self",
".",
"hscan",
"(",
"key",
",",
"cur",
",",
"match",
"=",
"match",
",",
"count",
"=",
"count",
")",
")"
] | Incrementally iterate sorted set items using async for.
Usage example:
>>> async for name, val in redis.ihscan(key, match='something*'):
... print('Matched:', name, '->', val) | [
"Incrementally",
"iterate",
"sorted",
"set",
"items",
"using",
"async",
"for",
"."
] | python | train |
saltstack/salt | salt/states/boto_apigateway.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/boto_apigateway.py#L953-L965 | def deployment_label(self):
'''
this property returns the deployment label dictionary (mainly used by
stage description)
'''
label = dict()
label['swagger_info_object'] = self.info
label['api_name'] = self.rest_api_name
label['swagger_file'] = os.path.basename(self._swagger_file)
label['swagger_file_md5sum'] = self.md5_filehash
return label | [
"def",
"deployment_label",
"(",
"self",
")",
":",
"label",
"=",
"dict",
"(",
")",
"label",
"[",
"'swagger_info_object'",
"]",
"=",
"self",
".",
"info",
"label",
"[",
"'api_name'",
"]",
"=",
"self",
".",
"rest_api_name",
"label",
"[",
"'swagger_file'",
"]",
"=",
"os",
".",
"path",
".",
"basename",
"(",
"self",
".",
"_swagger_file",
")",
"label",
"[",
"'swagger_file_md5sum'",
"]",
"=",
"self",
".",
"md5_filehash",
"return",
"label"
] | this property returns the deployment label dictionary (mainly used by
stage description) | [
"this",
"property",
"returns",
"the",
"deployment",
"label",
"dictionary",
"(",
"mainly",
"used",
"by",
"stage",
"description",
")"
] | python | train |
pypa/pipenv | pipenv/vendor/jinja2/utils.py | https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/vendor/jinja2/utils.py#L287-L303 | def unicode_urlencode(obj, charset='utf-8', for_qs=False):
"""URL escapes a single bytestring or unicode string with the
given charset if applicable to URL safe quoting under all rules
that need to be considered under all supported Python versions.
If non strings are provided they are converted to their unicode
representation first.
"""
if not isinstance(obj, string_types):
obj = text_type(obj)
if isinstance(obj, text_type):
obj = obj.encode(charset)
safe = not for_qs and b'/' or b''
rv = text_type(url_quote(obj, safe))
if for_qs:
rv = rv.replace('%20', '+')
return rv | [
"def",
"unicode_urlencode",
"(",
"obj",
",",
"charset",
"=",
"'utf-8'",
",",
"for_qs",
"=",
"False",
")",
":",
"if",
"not",
"isinstance",
"(",
"obj",
",",
"string_types",
")",
":",
"obj",
"=",
"text_type",
"(",
"obj",
")",
"if",
"isinstance",
"(",
"obj",
",",
"text_type",
")",
":",
"obj",
"=",
"obj",
".",
"encode",
"(",
"charset",
")",
"safe",
"=",
"not",
"for_qs",
"and",
"b'/'",
"or",
"b''",
"rv",
"=",
"text_type",
"(",
"url_quote",
"(",
"obj",
",",
"safe",
")",
")",
"if",
"for_qs",
":",
"rv",
"=",
"rv",
".",
"replace",
"(",
"'%20'",
",",
"'+'",
")",
"return",
"rv"
] | URL escapes a single bytestring or unicode string with the
given charset if applicable to URL safe quoting under all rules
that need to be considered under all supported Python versions.
If non strings are provided they are converted to their unicode
representation first. | [
"URL",
"escapes",
"a",
"single",
"bytestring",
"or",
"unicode",
"string",
"with",
"the",
"given",
"charset",
"if",
"applicable",
"to",
"URL",
"safe",
"quoting",
"under",
"all",
"rules",
"that",
"need",
"to",
"be",
"considered",
"under",
"all",
"supported",
"Python",
"versions",
"."
] | python | train |
dwavesystems/dimod | dimod/reference/composites/roofduality.py | https://github.com/dwavesystems/dimod/blob/beff1b7f86b559d923ac653c1de6d593876d6d38/dimod/reference/composites/roofduality.py#L54-L79 | def sample(self, bqm, sampling_mode=True, **parameters):
"""Sample from the provided binary quadratic model.
Uses the :func:`~dimod.roof_duality.fix_variables` function to determine
which variables to fix.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
sampling_mode (bool, optional, default=True):
In sampling mode, only roof-duality is used. When
`sampling_mode` is false, strongly connected components are used
to fix more variables, but in some optimal solutions these
variables may take different values.
**parameters:
Parameters for the child sampler.
Returns:
:obj:`dimod.SampleSet`
"""
# use roof-duality to decide which variables to fix
parameters['fixed_variables'] = fix_variables(bqm, sampling_mode=sampling_mode)
return super(RoofDualityComposite, self).sample(bqm, **parameters) | [
"def",
"sample",
"(",
"self",
",",
"bqm",
",",
"sampling_mode",
"=",
"True",
",",
"*",
"*",
"parameters",
")",
":",
"# use roof-duality to decide which variables to fix",
"parameters",
"[",
"'fixed_variables'",
"]",
"=",
"fix_variables",
"(",
"bqm",
",",
"sampling_mode",
"=",
"sampling_mode",
")",
"return",
"super",
"(",
"RoofDualityComposite",
",",
"self",
")",
".",
"sample",
"(",
"bqm",
",",
"*",
"*",
"parameters",
")"
] | Sample from the provided binary quadratic model.
Uses the :func:`~dimod.roof_duality.fix_variables` function to determine
which variables to fix.
Args:
bqm (:obj:`dimod.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
sampling_mode (bool, optional, default=True):
In sampling mode, only roof-duality is used. When
`sampling_mode` is false, strongly connected components are used
to fix more variables, but in some optimal solutions these
variables may take different values.
**parameters:
Parameters for the child sampler.
Returns:
:obj:`dimod.SampleSet` | [
"Sample",
"from",
"the",
"provided",
"binary",
"quadratic",
"model",
"."
] | python | train |
LonamiWebs/Telethon | telethon/extensions/binaryreader.py | https://github.com/LonamiWebs/Telethon/blob/1ead9757d366b58c1e0567cddb0196e20f1a445f/telethon/extensions/binaryreader.py#L60-L73 | def read(self, length=None):
"""Read the given amount of bytes."""
if length is None:
return self.reader.read()
result = self.reader.read(length)
if len(result) != length:
raise BufferError(
'No more data left to read (need {}, got {}: {}); last read {}'
.format(length, len(result), repr(result), repr(self._last))
)
self._last = result
return result | [
"def",
"read",
"(",
"self",
",",
"length",
"=",
"None",
")",
":",
"if",
"length",
"is",
"None",
":",
"return",
"self",
".",
"reader",
".",
"read",
"(",
")",
"result",
"=",
"self",
".",
"reader",
".",
"read",
"(",
"length",
")",
"if",
"len",
"(",
"result",
")",
"!=",
"length",
":",
"raise",
"BufferError",
"(",
"'No more data left to read (need {}, got {}: {}); last read {}'",
".",
"format",
"(",
"length",
",",
"len",
"(",
"result",
")",
",",
"repr",
"(",
"result",
")",
",",
"repr",
"(",
"self",
".",
"_last",
")",
")",
")",
"self",
".",
"_last",
"=",
"result",
"return",
"result"
] | Read the given amount of bytes. | [
"Read",
"the",
"given",
"amount",
"of",
"bytes",
"."
] | python | train |
vertexproject/synapse | synapse/lib/migrate.py | https://github.com/vertexproject/synapse/blob/22e67c5a8f6d7caddbcf34b39ab1bd2d6c4a6e0b/synapse/lib/migrate.py#L97-L112 | async def setFormName(self, oldn, newn):
'''
Rename a form within all the layers.
'''
logger.info(f'Migrating [{oldn}] to [{newn}]')
async with self.getTempSlab():
i = 0
async for buid, valu in self.getFormTodo(oldn):
await self.editNodeNdef((oldn, valu), (newn, valu))
i = i + 1
if i and i % _progress == 0:
logger.info(f'Migrated {i} buids.') | [
"async",
"def",
"setFormName",
"(",
"self",
",",
"oldn",
",",
"newn",
")",
":",
"logger",
".",
"info",
"(",
"f'Migrating [{oldn}] to [{newn}]'",
")",
"async",
"with",
"self",
".",
"getTempSlab",
"(",
")",
":",
"i",
"=",
"0",
"async",
"for",
"buid",
",",
"valu",
"in",
"self",
".",
"getFormTodo",
"(",
"oldn",
")",
":",
"await",
"self",
".",
"editNodeNdef",
"(",
"(",
"oldn",
",",
"valu",
")",
",",
"(",
"newn",
",",
"valu",
")",
")",
"i",
"=",
"i",
"+",
"1",
"if",
"i",
"and",
"i",
"%",
"_progress",
"==",
"0",
":",
"logger",
".",
"info",
"(",
"f'Migrated {i} buids.'",
")"
] | Rename a form within all the layers. | [
"Rename",
"a",
"form",
"within",
"all",
"the",
"layers",
"."
] | python | train |
fboender/ansible-cmdb | lib/mako/_ast_util.py | https://github.com/fboender/ansible-cmdb/blob/ebd960ac10684e8c9ec2b12751bba2c4c9504ab7/lib/mako/_ast_util.py#L87-L104 | def to_source(node, indent_with=' ' * 4):
"""
This function can convert a node tree back into python sourcecode. This
is useful for debugging purposes, especially if you're dealing with custom
asts not generated by python itself.
It could be that the sourcecode is evaluable when the AST itself is not
compilable / evaluable. The reason for this is that the AST contains some
more data than regular sourcecode does, which is dropped during
conversion.
Each level of indentation is replaced with `indent_with`. Per default this
parameter is equal to four spaces as suggested by PEP 8, but it might be
adjusted to match the application's styleguide.
"""
generator = SourceGenerator(indent_with)
generator.visit(node)
return ''.join(generator.result) | [
"def",
"to_source",
"(",
"node",
",",
"indent_with",
"=",
"' '",
"*",
"4",
")",
":",
"generator",
"=",
"SourceGenerator",
"(",
"indent_with",
")",
"generator",
".",
"visit",
"(",
"node",
")",
"return",
"''",
".",
"join",
"(",
"generator",
".",
"result",
")"
] | This function can convert a node tree back into python sourcecode. This
is useful for debugging purposes, especially if you're dealing with custom
asts not generated by python itself.
It could be that the sourcecode is evaluable when the AST itself is not
compilable / evaluable. The reason for this is that the AST contains some
more data than regular sourcecode does, which is dropped during
conversion.
Each level of indentation is replaced with `indent_with`. Per default this
parameter is equal to four spaces as suggested by PEP 8, but it might be
adjusted to match the application's styleguide. | [
"This",
"function",
"can",
"convert",
"a",
"node",
"tree",
"back",
"into",
"python",
"sourcecode",
".",
"This",
"is",
"useful",
"for",
"debugging",
"purposes",
"especially",
"if",
"you",
"re",
"dealing",
"with",
"custom",
"asts",
"not",
"generated",
"by",
"python",
"itself",
"."
] | python | train |
SoCo/SoCo | soco/music_services/music_service.py | https://github.com/SoCo/SoCo/blob/671937e07d7973b78c0cbee153d4f3ad68ec48c6/soco/music_services/music_service.py#L488-L505 | def get_data_for_name(cls, service_name):
"""Get the data relating to a named music service.
Args:
service_name (str): The name of the music service for which data
is required.
Returns:
dict: Data relating to the music service.
Raises:
`MusicServiceException`: if the music service cannot be found.
"""
for service in cls._get_music_services_data().values():
if service_name == service["Name"]:
return service
raise MusicServiceException(
"Unknown music service: '%s'" % service_name) | [
"def",
"get_data_for_name",
"(",
"cls",
",",
"service_name",
")",
":",
"for",
"service",
"in",
"cls",
".",
"_get_music_services_data",
"(",
")",
".",
"values",
"(",
")",
":",
"if",
"service_name",
"==",
"service",
"[",
"\"Name\"",
"]",
":",
"return",
"service",
"raise",
"MusicServiceException",
"(",
"\"Unknown music service: '%s'\"",
"%",
"service_name",
")"
] | Get the data relating to a named music service.
Args:
service_name (str): The name of the music service for which data
is required.
Returns:
dict: Data relating to the music service.
Raises:
`MusicServiceException`: if the music service cannot be found. | [
"Get",
"the",
"data",
"relating",
"to",
"a",
"named",
"music",
"service",
"."
] | python | train |
sethmlarson/virtualbox-python | virtualbox/library.py | https://github.com/sethmlarson/virtualbox-python/blob/706c8e3f6e3aee17eb06458e73cbb4bc2d37878b/virtualbox/library.py#L26366-L26383 | def dump_guest_core(self, filename, compression):
"""Takes a core dump of the guest.
See include/VBox/dbgfcorefmt.h for details on the file format.
in filename of type str
The name of the output file. The file must not exist.
in compression of type str
Reserved for future compression method indicator.
"""
if not isinstance(filename, basestring):
raise TypeError("filename can only be an instance of type basestring")
if not isinstance(compression, basestring):
raise TypeError("compression can only be an instance of type basestring")
self._call("dumpGuestCore",
in_p=[filename, compression]) | [
"def",
"dump_guest_core",
"(",
"self",
",",
"filename",
",",
"compression",
")",
":",
"if",
"not",
"isinstance",
"(",
"filename",
",",
"basestring",
")",
":",
"raise",
"TypeError",
"(",
"\"filename can only be an instance of type basestring\"",
")",
"if",
"not",
"isinstance",
"(",
"compression",
",",
"basestring",
")",
":",
"raise",
"TypeError",
"(",
"\"compression can only be an instance of type basestring\"",
")",
"self",
".",
"_call",
"(",
"\"dumpGuestCore\"",
",",
"in_p",
"=",
"[",
"filename",
",",
"compression",
"]",
")"
] | Takes a core dump of the guest.
See include/VBox/dbgfcorefmt.h for details on the file format.
in filename of type str
The name of the output file. The file must not exist.
in compression of type str
Reserved for future compression method indicator. | [
"Takes",
"a",
"core",
"dump",
"of",
"the",
"guest",
".",
"See",
"include",
"/",
"VBox",
"/",
"dbgfcorefmt",
".",
"h",
"for",
"details",
"on",
"the",
"file",
"format",
"."
] | python | train |
pywbem/pywbem | pywbem/mof_compiler.py | https://github.com/pywbem/pywbem/blob/e54ecb82c2211e289a268567443d60fdd489f1e4/pywbem/mof_compiler.py#L490-L614 | def p_mp_createClass(p):
"""mp_createClass : classDeclaration
"""
# pylint: disable=too-many-branches,too-many-statements,too-many-locals
ns = p.parser.handle.default_namespace
cc = p[1]
try:
fixedNS = fixedRefs = fixedSuper = False
while not fixedNS or not fixedRefs or not fixedSuper:
try:
if p.parser.verbose:
p.parser.log(
_format("Creating class {0!A}:{1!A}", ns, cc.classname))
p.parser.handle.CreateClass(cc)
if p.parser.verbose:
p.parser.log(
_format("Created class {0!A}:{1!A}", ns, cc.classname))
p.parser.classnames[ns].append(cc.classname.lower())
break
except CIMError as ce:
ce.file_line = (p.parser.file, p.lexer.lineno)
errcode = ce.status_code
if errcode == CIM_ERR_INVALID_NAMESPACE:
if fixedNS:
raise
if p.parser.verbose:
p.parser.log(
_format("Creating namespace {0!A}", ns))
p.parser.server.create_namespace(ns)
fixedNS = True
continue
if not p.parser.search_paths:
raise
if errcode == CIM_ERR_INVALID_SUPERCLASS:
if fixedSuper:
raise
moffile = p.parser.mofcomp.find_mof(cc.superclass)
if not moffile:
raise
p.parser.mofcomp.compile_file(moffile, ns)
fixedSuper = True
elif errcode in [CIM_ERR_INVALID_PARAMETER,
CIM_ERR_NOT_FOUND,
CIM_ERR_FAILED]:
if fixedRefs:
raise
if not p.parser.qualcache[ns]:
for fname in ['qualifiers', 'qualifiers_optional']:
qualfile = p.parser.mofcomp.find_mof(fname)
if qualfile:
p.parser.mofcomp.compile_file(qualfile, ns)
if not p.parser.qualcache[ns]:
# can't find qualifiers
raise
objects = list(cc.properties.values())
for meth in cc.methods.values():
objects += list(meth.parameters.values())
dep_classes = NocaseDict() # dict dep_class, ce
for obj in objects:
if obj.type not in ['reference', 'string']:
continue
if obj.type == 'reference':
if obj.reference_class not in dep_classes:
dep_classes[obj.reference_class] = ce
elif obj.type == 'string':
try:
embedded_inst = \
obj.qualifiers['embeddedinstance']
except KeyError:
continue
if embedded_inst.value not in dep_classes:
dep_classes[embedded_inst.value] = ce
continue
for cln, err in dep_classes.items():
if cln in p.parser.classnames[ns]:
continue
try:
# don't limit it with LocalOnly=True,
# PropertyList, IncludeQualifiers=False, ...
# because of caching in case we're using the
# special WBEMConnection subclass used for
# removing schema elements
p.parser.handle.GetClass(cln,
LocalOnly=False,
IncludeQualifiers=True)
p.parser.classnames[ns].append(cln)
except CIMError:
moffile = p.parser.mofcomp.find_mof(cln)
if not moffile:
raise err
try:
if p.parser.verbose:
p.parser.log(
_format("Class {0!A} namespace {1!A} "
"depends on class {2!A} which "
"is not in repository.",
cc.classname, ns, cln))
p.parser.mofcomp.compile_file(moffile, ns)
except CIMError as ce:
if ce.status_code == CIM_ERR_NOT_FOUND:
raise err
raise
p.parser.classnames[ns].append(cln)
fixedRefs = True
else:
raise
except CIMError as ce:
ce.file_line = (p.parser.file, p.lexer.lineno)
if ce.status_code != CIM_ERR_ALREADY_EXISTS:
raise
if p.parser.verbose:
p.parser.log(
_format("Class {0!A} already exist. Modifying...",
cc.classname))
try:
p.parser.handle.ModifyClass(cc, ns)
except CIMError as ce:
p.parser.log(
_format("Error modifying class {0!A}: {1}, {2}",
cc.classname, ce.status_code, ce.status_description)) | [
"def",
"p_mp_createClass",
"(",
"p",
")",
":",
"# pylint: disable=too-many-branches,too-many-statements,too-many-locals",
"ns",
"=",
"p",
".",
"parser",
".",
"handle",
".",
"default_namespace",
"cc",
"=",
"p",
"[",
"1",
"]",
"try",
":",
"fixedNS",
"=",
"fixedRefs",
"=",
"fixedSuper",
"=",
"False",
"while",
"not",
"fixedNS",
"or",
"not",
"fixedRefs",
"or",
"not",
"fixedSuper",
":",
"try",
":",
"if",
"p",
".",
"parser",
".",
"verbose",
":",
"p",
".",
"parser",
".",
"log",
"(",
"_format",
"(",
"\"Creating class {0!A}:{1!A}\"",
",",
"ns",
",",
"cc",
".",
"classname",
")",
")",
"p",
".",
"parser",
".",
"handle",
".",
"CreateClass",
"(",
"cc",
")",
"if",
"p",
".",
"parser",
".",
"verbose",
":",
"p",
".",
"parser",
".",
"log",
"(",
"_format",
"(",
"\"Created class {0!A}:{1!A}\"",
",",
"ns",
",",
"cc",
".",
"classname",
")",
")",
"p",
".",
"parser",
".",
"classnames",
"[",
"ns",
"]",
".",
"append",
"(",
"cc",
".",
"classname",
".",
"lower",
"(",
")",
")",
"break",
"except",
"CIMError",
"as",
"ce",
":",
"ce",
".",
"file_line",
"=",
"(",
"p",
".",
"parser",
".",
"file",
",",
"p",
".",
"lexer",
".",
"lineno",
")",
"errcode",
"=",
"ce",
".",
"status_code",
"if",
"errcode",
"==",
"CIM_ERR_INVALID_NAMESPACE",
":",
"if",
"fixedNS",
":",
"raise",
"if",
"p",
".",
"parser",
".",
"verbose",
":",
"p",
".",
"parser",
".",
"log",
"(",
"_format",
"(",
"\"Creating namespace {0!A}\"",
",",
"ns",
")",
")",
"p",
".",
"parser",
".",
"server",
".",
"create_namespace",
"(",
"ns",
")",
"fixedNS",
"=",
"True",
"continue",
"if",
"not",
"p",
".",
"parser",
".",
"search_paths",
":",
"raise",
"if",
"errcode",
"==",
"CIM_ERR_INVALID_SUPERCLASS",
":",
"if",
"fixedSuper",
":",
"raise",
"moffile",
"=",
"p",
".",
"parser",
".",
"mofcomp",
".",
"find_mof",
"(",
"cc",
".",
"superclass",
")",
"if",
"not",
"moffile",
":",
"raise",
"p",
".",
"parser",
".",
"mofcomp",
".",
"compile_file",
"(",
"moffile",
",",
"ns",
")",
"fixedSuper",
"=",
"True",
"elif",
"errcode",
"in",
"[",
"CIM_ERR_INVALID_PARAMETER",
",",
"CIM_ERR_NOT_FOUND",
",",
"CIM_ERR_FAILED",
"]",
":",
"if",
"fixedRefs",
":",
"raise",
"if",
"not",
"p",
".",
"parser",
".",
"qualcache",
"[",
"ns",
"]",
":",
"for",
"fname",
"in",
"[",
"'qualifiers'",
",",
"'qualifiers_optional'",
"]",
":",
"qualfile",
"=",
"p",
".",
"parser",
".",
"mofcomp",
".",
"find_mof",
"(",
"fname",
")",
"if",
"qualfile",
":",
"p",
".",
"parser",
".",
"mofcomp",
".",
"compile_file",
"(",
"qualfile",
",",
"ns",
")",
"if",
"not",
"p",
".",
"parser",
".",
"qualcache",
"[",
"ns",
"]",
":",
"# can't find qualifiers",
"raise",
"objects",
"=",
"list",
"(",
"cc",
".",
"properties",
".",
"values",
"(",
")",
")",
"for",
"meth",
"in",
"cc",
".",
"methods",
".",
"values",
"(",
")",
":",
"objects",
"+=",
"list",
"(",
"meth",
".",
"parameters",
".",
"values",
"(",
")",
")",
"dep_classes",
"=",
"NocaseDict",
"(",
")",
"# dict dep_class, ce",
"for",
"obj",
"in",
"objects",
":",
"if",
"obj",
".",
"type",
"not",
"in",
"[",
"'reference'",
",",
"'string'",
"]",
":",
"continue",
"if",
"obj",
".",
"type",
"==",
"'reference'",
":",
"if",
"obj",
".",
"reference_class",
"not",
"in",
"dep_classes",
":",
"dep_classes",
"[",
"obj",
".",
"reference_class",
"]",
"=",
"ce",
"elif",
"obj",
".",
"type",
"==",
"'string'",
":",
"try",
":",
"embedded_inst",
"=",
"obj",
".",
"qualifiers",
"[",
"'embeddedinstance'",
"]",
"except",
"KeyError",
":",
"continue",
"if",
"embedded_inst",
".",
"value",
"not",
"in",
"dep_classes",
":",
"dep_classes",
"[",
"embedded_inst",
".",
"value",
"]",
"=",
"ce",
"continue",
"for",
"cln",
",",
"err",
"in",
"dep_classes",
".",
"items",
"(",
")",
":",
"if",
"cln",
"in",
"p",
".",
"parser",
".",
"classnames",
"[",
"ns",
"]",
":",
"continue",
"try",
":",
"# don't limit it with LocalOnly=True,",
"# PropertyList, IncludeQualifiers=False, ...",
"# because of caching in case we're using the",
"# special WBEMConnection subclass used for",
"# removing schema elements",
"p",
".",
"parser",
".",
"handle",
".",
"GetClass",
"(",
"cln",
",",
"LocalOnly",
"=",
"False",
",",
"IncludeQualifiers",
"=",
"True",
")",
"p",
".",
"parser",
".",
"classnames",
"[",
"ns",
"]",
".",
"append",
"(",
"cln",
")",
"except",
"CIMError",
":",
"moffile",
"=",
"p",
".",
"parser",
".",
"mofcomp",
".",
"find_mof",
"(",
"cln",
")",
"if",
"not",
"moffile",
":",
"raise",
"err",
"try",
":",
"if",
"p",
".",
"parser",
".",
"verbose",
":",
"p",
".",
"parser",
".",
"log",
"(",
"_format",
"(",
"\"Class {0!A} namespace {1!A} \"",
"\"depends on class {2!A} which \"",
"\"is not in repository.\"",
",",
"cc",
".",
"classname",
",",
"ns",
",",
"cln",
")",
")",
"p",
".",
"parser",
".",
"mofcomp",
".",
"compile_file",
"(",
"moffile",
",",
"ns",
")",
"except",
"CIMError",
"as",
"ce",
":",
"if",
"ce",
".",
"status_code",
"==",
"CIM_ERR_NOT_FOUND",
":",
"raise",
"err",
"raise",
"p",
".",
"parser",
".",
"classnames",
"[",
"ns",
"]",
".",
"append",
"(",
"cln",
")",
"fixedRefs",
"=",
"True",
"else",
":",
"raise",
"except",
"CIMError",
"as",
"ce",
":",
"ce",
".",
"file_line",
"=",
"(",
"p",
".",
"parser",
".",
"file",
",",
"p",
".",
"lexer",
".",
"lineno",
")",
"if",
"ce",
".",
"status_code",
"!=",
"CIM_ERR_ALREADY_EXISTS",
":",
"raise",
"if",
"p",
".",
"parser",
".",
"verbose",
":",
"p",
".",
"parser",
".",
"log",
"(",
"_format",
"(",
"\"Class {0!A} already exist. Modifying...\"",
",",
"cc",
".",
"classname",
")",
")",
"try",
":",
"p",
".",
"parser",
".",
"handle",
".",
"ModifyClass",
"(",
"cc",
",",
"ns",
")",
"except",
"CIMError",
"as",
"ce",
":",
"p",
".",
"parser",
".",
"log",
"(",
"_format",
"(",
"\"Error modifying class {0!A}: {1}, {2}\"",
",",
"cc",
".",
"classname",
",",
"ce",
".",
"status_code",
",",
"ce",
".",
"status_description",
")",
")"
] | mp_createClass : classDeclaration | [
"mp_createClass",
":",
"classDeclaration"
] | python | train |
plaid/plaid-python | plaid/api/institutions.py | https://github.com/plaid/plaid-python/blob/c549c3108790266a3b344c47e0c83fff59146eeb/plaid/api/institutions.py#L26-L37 | def get_by_id(self, institution_id, _options=None):
'''
Fetch a single institution by id.
:param str institution_id:
'''
options = _options or {}
return self.client.post_public_key('/institutions/get_by_id', {
'institution_id': institution_id,
'options': options,
}) | [
"def",
"get_by_id",
"(",
"self",
",",
"institution_id",
",",
"_options",
"=",
"None",
")",
":",
"options",
"=",
"_options",
"or",
"{",
"}",
"return",
"self",
".",
"client",
".",
"post_public_key",
"(",
"'/institutions/get_by_id'",
",",
"{",
"'institution_id'",
":",
"institution_id",
",",
"'options'",
":",
"options",
",",
"}",
")"
] | Fetch a single institution by id.
:param str institution_id: | [
"Fetch",
"a",
"single",
"institution",
"by",
"id",
"."
] | python | train |
pycontribs/pyrax | pyrax/utils.py | https://github.com/pycontribs/pyrax/blob/9ddfd5064b3a292d7337906f3b2d5dce95b50b99/pyrax/utils.py#L277-L287 | def random_unicode(length=20):
"""
Generates a random name; useful for testing.
Returns an encoded string of the specified length containing unicode values
up to code point 1000.
"""
def get_char():
return six.unichr(random.randint(32, 1000))
chars = u"".join([get_char() for ii in six.moves.range(length)])
return _join_chars(chars, length) | [
"def",
"random_unicode",
"(",
"length",
"=",
"20",
")",
":",
"def",
"get_char",
"(",
")",
":",
"return",
"six",
".",
"unichr",
"(",
"random",
".",
"randint",
"(",
"32",
",",
"1000",
")",
")",
"chars",
"=",
"u\"\"",
".",
"join",
"(",
"[",
"get_char",
"(",
")",
"for",
"ii",
"in",
"six",
".",
"moves",
".",
"range",
"(",
"length",
")",
"]",
")",
"return",
"_join_chars",
"(",
"chars",
",",
"length",
")"
] | Generates a random name; useful for testing.
Returns an encoded string of the specified length containing unicode values
up to code point 1000. | [
"Generates",
"a",
"random",
"name",
";",
"useful",
"for",
"testing",
"."
] | python | train |
hollenstein/maspy | maspy_resources/pparse.py | https://github.com/hollenstein/maspy/blob/f15fcfd24df306d8420540460d902aa3073ec133/maspy_resources/pparse.py#L167-L205 | def cleanUpPparse(outputpath, rawfilename, mgf=False):
"""Delete temporary files generated by pparse, including the filetypes
".csv", ".ms1", ".ms2", ".xtract", the files "pParsePlusLog.txt" and
"pParse.para" and optionally also the ".mgf" file generated by pParse.
.. warning:
When the parameter "mgf" is set to "True" all files ending with ".mgf"
and containing the specified "filename" are deleted. This could
potentially also affect MGF files not generated by pParse.
:param outputpath: path to the output directory of pParse
:param rawfilename: filename of the thermo ".raw" file
:param mgf: bool, if True the ".mgf" file generated by pParse is also
removed
"""
extensions = ['csv', 'ms1', 'ms2', 'xtract']
filename, fileext = os.path.splitext(os.path.basename(rawfilename))
additionalFiles = [aux.joinpath(outputpath, 'pParsePlusLog.txt'),
aux.joinpath(outputpath, filename+'.pparse.para'),
]
for ext in extensions:
filepath = aux.joinpath(outputpath, '.'.join([filename, ext]))
if os.path.isfile(filepath):
print('Removing file: ', filepath)
os.remove(filepath)
for filepath in additionalFiles:
if os.path.isfile(filepath):
print('Removing file: ', filepath)
os.remove(filepath)
if mgf:
for _filename in os.listdir(outputpath):
_basename, _fileext = os.path.splitext(_filename)
if _fileext.lower() != '.mgf':
continue
if _basename.find(basename) != -1 and _basename != basename:
filepath = aux.joinpath(outputpath, _filename)
print('Removing file: ', filepath)
os.remove(filepath) | [
"def",
"cleanUpPparse",
"(",
"outputpath",
",",
"rawfilename",
",",
"mgf",
"=",
"False",
")",
":",
"extensions",
"=",
"[",
"'csv'",
",",
"'ms1'",
",",
"'ms2'",
",",
"'xtract'",
"]",
"filename",
",",
"fileext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"os",
".",
"path",
".",
"basename",
"(",
"rawfilename",
")",
")",
"additionalFiles",
"=",
"[",
"aux",
".",
"joinpath",
"(",
"outputpath",
",",
"'pParsePlusLog.txt'",
")",
",",
"aux",
".",
"joinpath",
"(",
"outputpath",
",",
"filename",
"+",
"'.pparse.para'",
")",
",",
"]",
"for",
"ext",
"in",
"extensions",
":",
"filepath",
"=",
"aux",
".",
"joinpath",
"(",
"outputpath",
",",
"'.'",
".",
"join",
"(",
"[",
"filename",
",",
"ext",
"]",
")",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"filepath",
")",
":",
"print",
"(",
"'Removing file: '",
",",
"filepath",
")",
"os",
".",
"remove",
"(",
"filepath",
")",
"for",
"filepath",
"in",
"additionalFiles",
":",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"filepath",
")",
":",
"print",
"(",
"'Removing file: '",
",",
"filepath",
")",
"os",
".",
"remove",
"(",
"filepath",
")",
"if",
"mgf",
":",
"for",
"_filename",
"in",
"os",
".",
"listdir",
"(",
"outputpath",
")",
":",
"_basename",
",",
"_fileext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"_filename",
")",
"if",
"_fileext",
".",
"lower",
"(",
")",
"!=",
"'.mgf'",
":",
"continue",
"if",
"_basename",
".",
"find",
"(",
"basename",
")",
"!=",
"-",
"1",
"and",
"_basename",
"!=",
"basename",
":",
"filepath",
"=",
"aux",
".",
"joinpath",
"(",
"outputpath",
",",
"_filename",
")",
"print",
"(",
"'Removing file: '",
",",
"filepath",
")",
"os",
".",
"remove",
"(",
"filepath",
")"
] | Delete temporary files generated by pparse, including the filetypes
".csv", ".ms1", ".ms2", ".xtract", the files "pParsePlusLog.txt" and
"pParse.para" and optionally also the ".mgf" file generated by pParse.
.. warning:
When the parameter "mgf" is set to "True" all files ending with ".mgf"
and containing the specified "filename" are deleted. This could
potentially also affect MGF files not generated by pParse.
:param outputpath: path to the output directory of pParse
:param rawfilename: filename of the thermo ".raw" file
:param mgf: bool, if True the ".mgf" file generated by pParse is also
removed | [
"Delete",
"temporary",
"files",
"generated",
"by",
"pparse",
"including",
"the",
"filetypes",
".",
"csv",
".",
"ms1",
".",
"ms2",
".",
"xtract",
"the",
"files",
"pParsePlusLog",
".",
"txt",
"and",
"pParse",
".",
"para",
"and",
"optionally",
"also",
"the",
".",
"mgf",
"file",
"generated",
"by",
"pParse",
"."
] | python | train |
diamondman/proteusisc | proteusisc/drivers/digilentdriver.py | https://github.com/diamondman/proteusisc/blob/7622b7b04e63f9dc0f5a04429ff78d9a490c9c5c/proteusisc/drivers/digilentdriver.py#L170-L188 | def _get_adv_trans_stats(self, cmd, return_tdo=False):
"""Utility function to fetch the transfer statistics for the last
advanced transfer. Checking the stats appears to sync the
controller. For details on the advanced transfer please refer
to the documentation at
http://diamondman.github.io/Adapt/cable_digilent_adept.html#bulk-requests
"""
t = time()
code, res = self.bulkCommand(b'\x03\x02%c\x00'%(0x80|cmd), 10)
if self._scanchain and self._scanchain._print_statistics:
print("GET STATS TIME", time()-t)#pragma: no cover
if len(res) == 4:
count = struct.unpack('<I', res)[0]
return count
elif len(res) == 8:
written, read = struct.unpack('<II', res)
return written, read
return res | [
"def",
"_get_adv_trans_stats",
"(",
"self",
",",
"cmd",
",",
"return_tdo",
"=",
"False",
")",
":",
"t",
"=",
"time",
"(",
")",
"code",
",",
"res",
"=",
"self",
".",
"bulkCommand",
"(",
"b'\\x03\\x02%c\\x00'",
"%",
"(",
"0x80",
"|",
"cmd",
")",
",",
"10",
")",
"if",
"self",
".",
"_scanchain",
"and",
"self",
".",
"_scanchain",
".",
"_print_statistics",
":",
"print",
"(",
"\"GET STATS TIME\"",
",",
"time",
"(",
")",
"-",
"t",
")",
"#pragma: no cover",
"if",
"len",
"(",
"res",
")",
"==",
"4",
":",
"count",
"=",
"struct",
".",
"unpack",
"(",
"'<I'",
",",
"res",
")",
"[",
"0",
"]",
"return",
"count",
"elif",
"len",
"(",
"res",
")",
"==",
"8",
":",
"written",
",",
"read",
"=",
"struct",
".",
"unpack",
"(",
"'<II'",
",",
"res",
")",
"return",
"written",
",",
"read",
"return",
"res"
] | Utility function to fetch the transfer statistics for the last
advanced transfer. Checking the stats appears to sync the
controller. For details on the advanced transfer please refer
to the documentation at
http://diamondman.github.io/Adapt/cable_digilent_adept.html#bulk-requests | [
"Utility",
"function",
"to",
"fetch",
"the",
"transfer",
"statistics",
"for",
"the",
"last",
"advanced",
"transfer",
".",
"Checking",
"the",
"stats",
"appears",
"to",
"sync",
"the",
"controller",
".",
"For",
"details",
"on",
"the",
"advanced",
"transfer",
"please",
"refer",
"to",
"the",
"documentation",
"at",
"http",
":",
"//",
"diamondman",
".",
"github",
".",
"io",
"/",
"Adapt",
"/",
"cable_digilent_adept",
".",
"html#bulk",
"-",
"requests"
] | python | train |
spencerahill/aospy | aospy/automate.py | https://github.com/spencerahill/aospy/blob/2f6e775b9b9956c54af117fdcdce2c87196afb6c/aospy/automate.py#L302-L339 | def _exec_calcs(calcs, parallelize=False, client=None, **compute_kwargs):
"""Execute the given calculations.
Parameters
----------
calcs : Sequence of ``aospy.Calc`` objects
parallelize : bool, default False
Whether to submit the calculations in parallel or not
client : distributed.Client or None
The distributed Client used if parallelize is set to True; if None
a distributed LocalCluster is used.
compute_kwargs : dict of keyword arguments passed to ``Calc.compute``
Returns
-------
A list of the values returned by each Calc object that was executed.
"""
if parallelize:
def func(calc):
"""Wrap _compute_or_skip_on_error to require only the calc
argument"""
if 'write_to_tar' in compute_kwargs:
compute_kwargs['write_to_tar'] = False
return _compute_or_skip_on_error(calc, compute_kwargs)
if client is None:
n_workers = _n_workers_for_local_cluster(calcs)
with distributed.LocalCluster(n_workers=n_workers) as cluster:
with distributed.Client(cluster) as client:
result = _submit_calcs_on_client(calcs, client, func)
else:
result = _submit_calcs_on_client(calcs, client, func)
if compute_kwargs['write_to_tar']:
_serial_write_to_tar(calcs)
return result
else:
return [_compute_or_skip_on_error(calc, compute_kwargs)
for calc in calcs] | [
"def",
"_exec_calcs",
"(",
"calcs",
",",
"parallelize",
"=",
"False",
",",
"client",
"=",
"None",
",",
"*",
"*",
"compute_kwargs",
")",
":",
"if",
"parallelize",
":",
"def",
"func",
"(",
"calc",
")",
":",
"\"\"\"Wrap _compute_or_skip_on_error to require only the calc\n argument\"\"\"",
"if",
"'write_to_tar'",
"in",
"compute_kwargs",
":",
"compute_kwargs",
"[",
"'write_to_tar'",
"]",
"=",
"False",
"return",
"_compute_or_skip_on_error",
"(",
"calc",
",",
"compute_kwargs",
")",
"if",
"client",
"is",
"None",
":",
"n_workers",
"=",
"_n_workers_for_local_cluster",
"(",
"calcs",
")",
"with",
"distributed",
".",
"LocalCluster",
"(",
"n_workers",
"=",
"n_workers",
")",
"as",
"cluster",
":",
"with",
"distributed",
".",
"Client",
"(",
"cluster",
")",
"as",
"client",
":",
"result",
"=",
"_submit_calcs_on_client",
"(",
"calcs",
",",
"client",
",",
"func",
")",
"else",
":",
"result",
"=",
"_submit_calcs_on_client",
"(",
"calcs",
",",
"client",
",",
"func",
")",
"if",
"compute_kwargs",
"[",
"'write_to_tar'",
"]",
":",
"_serial_write_to_tar",
"(",
"calcs",
")",
"return",
"result",
"else",
":",
"return",
"[",
"_compute_or_skip_on_error",
"(",
"calc",
",",
"compute_kwargs",
")",
"for",
"calc",
"in",
"calcs",
"]"
] | Execute the given calculations.
Parameters
----------
calcs : Sequence of ``aospy.Calc`` objects
parallelize : bool, default False
Whether to submit the calculations in parallel or not
client : distributed.Client or None
The distributed Client used if parallelize is set to True; if None
a distributed LocalCluster is used.
compute_kwargs : dict of keyword arguments passed to ``Calc.compute``
Returns
-------
A list of the values returned by each Calc object that was executed. | [
"Execute",
"the",
"given",
"calculations",
"."
] | python | train |
victorlei/smop | smop/parse.py | https://github.com/victorlei/smop/blob/bdad96b715d1dd75ce8ab4724f76b9b1bb1f61cd/smop/parse.py#L119-L140 | def p_case_list(p):
"""
case_list :
| CASE expr sep stmt_list_opt case_list
| CASE expr error stmt_list_opt case_list
| OTHERWISE stmt_list
"""
if len(p) == 1:
p[0] = node.stmt_list()
elif len(p) == 3:
assert isinstance(p[2], node.stmt_list)
p[0] = p[2]
elif len(p) == 6:
p[0] = node.if_stmt(
cond_expr=node.expr(
op="==", args=node.expr_list([p[2]])),
then_stmt=p[4],
else_stmt=p[5])
p[0].cond_expr.args.append(
None) # None will be replaced using backpatch()
else:
assert 0 | [
"def",
"p_case_list",
"(",
"p",
")",
":",
"if",
"len",
"(",
"p",
")",
"==",
"1",
":",
"p",
"[",
"0",
"]",
"=",
"node",
".",
"stmt_list",
"(",
")",
"elif",
"len",
"(",
"p",
")",
"==",
"3",
":",
"assert",
"isinstance",
"(",
"p",
"[",
"2",
"]",
",",
"node",
".",
"stmt_list",
")",
"p",
"[",
"0",
"]",
"=",
"p",
"[",
"2",
"]",
"elif",
"len",
"(",
"p",
")",
"==",
"6",
":",
"p",
"[",
"0",
"]",
"=",
"node",
".",
"if_stmt",
"(",
"cond_expr",
"=",
"node",
".",
"expr",
"(",
"op",
"=",
"\"==\"",
",",
"args",
"=",
"node",
".",
"expr_list",
"(",
"[",
"p",
"[",
"2",
"]",
"]",
")",
")",
",",
"then_stmt",
"=",
"p",
"[",
"4",
"]",
",",
"else_stmt",
"=",
"p",
"[",
"5",
"]",
")",
"p",
"[",
"0",
"]",
".",
"cond_expr",
".",
"args",
".",
"append",
"(",
"None",
")",
"# None will be replaced using backpatch()",
"else",
":",
"assert",
"0"
] | case_list :
| CASE expr sep stmt_list_opt case_list
| CASE expr error stmt_list_opt case_list
| OTHERWISE stmt_list | [
"case_list",
":",
"|",
"CASE",
"expr",
"sep",
"stmt_list_opt",
"case_list",
"|",
"CASE",
"expr",
"error",
"stmt_list_opt",
"case_list",
"|",
"OTHERWISE",
"stmt_list"
] | python | train |
knipknap/exscript | Exscript/util/mail.py | https://github.com/knipknap/exscript/blob/72718eee3e87b345d5a5255be9824e867e42927b/Exscript/util/mail.py#L417-L430 | def from_template(filename, **kwargs):
"""
Like from_template_string(), but reads the template from the file with
the given name instead.
:type filename: string
:param filename: The name of the template file.
:type kwargs: str
:param kwargs: Variables to replace in the template.
:rtype: Mail
:return: The resulting mail.
"""
with open(filename) as fp:
return from_template_string(fp.read(), **kwargs) | [
"def",
"from_template",
"(",
"filename",
",",
"*",
"*",
"kwargs",
")",
":",
"with",
"open",
"(",
"filename",
")",
"as",
"fp",
":",
"return",
"from_template_string",
"(",
"fp",
".",
"read",
"(",
")",
",",
"*",
"*",
"kwargs",
")"
] | Like from_template_string(), but reads the template from the file with
the given name instead.
:type filename: string
:param filename: The name of the template file.
:type kwargs: str
:param kwargs: Variables to replace in the template.
:rtype: Mail
:return: The resulting mail. | [
"Like",
"from_template_string",
"()",
"but",
"reads",
"the",
"template",
"from",
"the",
"file",
"with",
"the",
"given",
"name",
"instead",
"."
] | python | train |
eyeseast/python-metalsmyth | metalsmyth/plugins/template.py | https://github.com/eyeseast/python-metalsmyth/blob/8c99746d4987ab8ec88d6ba84b6092c51dfbbe3e/metalsmyth/plugins/template.py#L33-L54 | def run(self, files, stack):
"Render templates"
# make stack available to all templates
self.env.globals['stack'] = stack
for filename, post in files.items():
# render content first
post.content = self.env.from_string(post.content).render(post.metadata)
# check for a template field
if "template" in post.metadata:
template = self.env.get_template(post['template'])
# or use the default template
elif hasattr(self, 'default_template'):
template = self.default_template
else: # no template, so bail
continue
# at this point, we have a template, so render
post.content = template.render(post=post) | [
"def",
"run",
"(",
"self",
",",
"files",
",",
"stack",
")",
":",
"# make stack available to all templates",
"self",
".",
"env",
".",
"globals",
"[",
"'stack'",
"]",
"=",
"stack",
"for",
"filename",
",",
"post",
"in",
"files",
".",
"items",
"(",
")",
":",
"# render content first",
"post",
".",
"content",
"=",
"self",
".",
"env",
".",
"from_string",
"(",
"post",
".",
"content",
")",
".",
"render",
"(",
"post",
".",
"metadata",
")",
"# check for a template field",
"if",
"\"template\"",
"in",
"post",
".",
"metadata",
":",
"template",
"=",
"self",
".",
"env",
".",
"get_template",
"(",
"post",
"[",
"'template'",
"]",
")",
"# or use the default template",
"elif",
"hasattr",
"(",
"self",
",",
"'default_template'",
")",
":",
"template",
"=",
"self",
".",
"default_template",
"else",
":",
"# no template, so bail",
"continue",
"# at this point, we have a template, so render",
"post",
".",
"content",
"=",
"template",
".",
"render",
"(",
"post",
"=",
"post",
")"
] | Render templates | [
"Render",
"templates"
] | python | train |
jobovy/galpy | galpy/potential/BurkertPotential.py | https://github.com/jobovy/galpy/blob/9c5b9fe65d58835624dffe432be282060918ee08/galpy/potential/BurkertPotential.py#L178-L210 | def _surfdens(self,R,z,phi=0.,t=0.):
"""
NAME:
_surfdens
PURPOSE:
evaluate the surface density for this potential
INPUT:
R - Galactocentric cylindrical radius
z - vertical height
phi - azimuth
t - time
OUTPUT:
the surface density
HISTORY:
2018-08-19 - Written - Bovy (UofT)
"""
r= numpy.sqrt(R**2.+z**2.)
x= r/self.a
Rpa= numpy.sqrt(R**2.+self.a**2.)
Rma= numpy.sqrt(R**2.-self.a**2.+0j)
if Rma == 0:
za= z/self.a
return self.a**2./2.*((2.-2.*numpy.sqrt(za**2.+1)
+numpy.sqrt(2.)*za\
*numpy.arctan(za/numpy.sqrt(2.)))/z
+numpy.sqrt(2*za**2.+2.)\
*numpy.arctanh(za/numpy.sqrt(2.*(za**2.+1)))
/numpy.sqrt(self.a**2.+z**2.))
else:
return self.a**2.*(numpy.arctan(z/x/Rma)/Rma
+numpy.arctanh(z/x/Rpa)/Rpa
-numpy.arctan(z/Rma)/Rma
+numpy.arctan(z/Rpa)/Rpa).real | [
"def",
"_surfdens",
"(",
"self",
",",
"R",
",",
"z",
",",
"phi",
"=",
"0.",
",",
"t",
"=",
"0.",
")",
":",
"r",
"=",
"numpy",
".",
"sqrt",
"(",
"R",
"**",
"2.",
"+",
"z",
"**",
"2.",
")",
"x",
"=",
"r",
"/",
"self",
".",
"a",
"Rpa",
"=",
"numpy",
".",
"sqrt",
"(",
"R",
"**",
"2.",
"+",
"self",
".",
"a",
"**",
"2.",
")",
"Rma",
"=",
"numpy",
".",
"sqrt",
"(",
"R",
"**",
"2.",
"-",
"self",
".",
"a",
"**",
"2.",
"+",
"0j",
")",
"if",
"Rma",
"==",
"0",
":",
"za",
"=",
"z",
"/",
"self",
".",
"a",
"return",
"self",
".",
"a",
"**",
"2.",
"/",
"2.",
"*",
"(",
"(",
"2.",
"-",
"2.",
"*",
"numpy",
".",
"sqrt",
"(",
"za",
"**",
"2.",
"+",
"1",
")",
"+",
"numpy",
".",
"sqrt",
"(",
"2.",
")",
"*",
"za",
"*",
"numpy",
".",
"arctan",
"(",
"za",
"/",
"numpy",
".",
"sqrt",
"(",
"2.",
")",
")",
")",
"/",
"z",
"+",
"numpy",
".",
"sqrt",
"(",
"2",
"*",
"za",
"**",
"2.",
"+",
"2.",
")",
"*",
"numpy",
".",
"arctanh",
"(",
"za",
"/",
"numpy",
".",
"sqrt",
"(",
"2.",
"*",
"(",
"za",
"**",
"2.",
"+",
"1",
")",
")",
")",
"/",
"numpy",
".",
"sqrt",
"(",
"self",
".",
"a",
"**",
"2.",
"+",
"z",
"**",
"2.",
")",
")",
"else",
":",
"return",
"self",
".",
"a",
"**",
"2.",
"*",
"(",
"numpy",
".",
"arctan",
"(",
"z",
"/",
"x",
"/",
"Rma",
")",
"/",
"Rma",
"+",
"numpy",
".",
"arctanh",
"(",
"z",
"/",
"x",
"/",
"Rpa",
")",
"/",
"Rpa",
"-",
"numpy",
".",
"arctan",
"(",
"z",
"/",
"Rma",
")",
"/",
"Rma",
"+",
"numpy",
".",
"arctan",
"(",
"z",
"/",
"Rpa",
")",
"/",
"Rpa",
")",
".",
"real"
] | NAME:
_surfdens
PURPOSE:
evaluate the surface density for this potential
INPUT:
R - Galactocentric cylindrical radius
z - vertical height
phi - azimuth
t - time
OUTPUT:
the surface density
HISTORY:
2018-08-19 - Written - Bovy (UofT) | [
"NAME",
":",
"_surfdens",
"PURPOSE",
":",
"evaluate",
"the",
"surface",
"density",
"for",
"this",
"potential",
"INPUT",
":",
"R",
"-",
"Galactocentric",
"cylindrical",
"radius",
"z",
"-",
"vertical",
"height",
"phi",
"-",
"azimuth",
"t",
"-",
"time",
"OUTPUT",
":",
"the",
"surface",
"density",
"HISTORY",
":",
"2018",
"-",
"08",
"-",
"19",
"-",
"Written",
"-",
"Bovy",
"(",
"UofT",
")"
] | python | train |
kervi/kervi-core | kervi/values/__init__.py | https://github.com/kervi/kervi-core/blob/3c1e3c8a17a7b4d085d8a28b99180ff2a96b0e23/kervi/values/__init__.py#L401-L409 | def value(self, new_value):
"""
Updates the value.
If the change exceeds the change delta observers and linked values are notified.
"""
datetime_value = None
if new_value:
datetime_value = new_value.strftime("%Y-%M-%dT%H:%M:%SZ")
self._set_value(datetime_value) | [
"def",
"value",
"(",
"self",
",",
"new_value",
")",
":",
"datetime_value",
"=",
"None",
"if",
"new_value",
":",
"datetime_value",
"=",
"new_value",
".",
"strftime",
"(",
"\"%Y-%M-%dT%H:%M:%SZ\"",
")",
"self",
".",
"_set_value",
"(",
"datetime_value",
")"
] | Updates the value.
If the change exceeds the change delta observers and linked values are notified. | [
"Updates",
"the",
"value",
".",
"If",
"the",
"change",
"exceeds",
"the",
"change",
"delta",
"observers",
"and",
"linked",
"values",
"are",
"notified",
"."
] | python | train |
apache/incubator-mxnet | python/mxnet/symbol/symbol.py | https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/python/mxnet/symbol/symbol.py#L817-L839 | def list_inputs(self):
"""Lists all arguments and auxiliary states of this Symbol.
Returns
-------
inputs : list of str
List of all inputs.
Examples
--------
>>> bn = mx.sym.BatchNorm(name='bn')
>>> bn.list_arguments()
['bn_data', 'bn_gamma', 'bn_beta']
>>> bn.list_auxiliary_states()
['bn_moving_mean', 'bn_moving_var']
>>> bn.list_inputs()
['bn_data', 'bn_gamma', 'bn_beta', 'bn_moving_mean', 'bn_moving_var']
"""
size = ctypes.c_uint()
sarr = ctypes.POINTER(ctypes.c_char_p)()
check_call(_LIB.NNSymbolListInputNames(
self.handle, 0, ctypes.byref(size), ctypes.byref(sarr)))
return [py_str(sarr[i]) for i in range(size.value)] | [
"def",
"list_inputs",
"(",
"self",
")",
":",
"size",
"=",
"ctypes",
".",
"c_uint",
"(",
")",
"sarr",
"=",
"ctypes",
".",
"POINTER",
"(",
"ctypes",
".",
"c_char_p",
")",
"(",
")",
"check_call",
"(",
"_LIB",
".",
"NNSymbolListInputNames",
"(",
"self",
".",
"handle",
",",
"0",
",",
"ctypes",
".",
"byref",
"(",
"size",
")",
",",
"ctypes",
".",
"byref",
"(",
"sarr",
")",
")",
")",
"return",
"[",
"py_str",
"(",
"sarr",
"[",
"i",
"]",
")",
"for",
"i",
"in",
"range",
"(",
"size",
".",
"value",
")",
"]"
] | Lists all arguments and auxiliary states of this Symbol.
Returns
-------
inputs : list of str
List of all inputs.
Examples
--------
>>> bn = mx.sym.BatchNorm(name='bn')
>>> bn.list_arguments()
['bn_data', 'bn_gamma', 'bn_beta']
>>> bn.list_auxiliary_states()
['bn_moving_mean', 'bn_moving_var']
>>> bn.list_inputs()
['bn_data', 'bn_gamma', 'bn_beta', 'bn_moving_mean', 'bn_moving_var'] | [
"Lists",
"all",
"arguments",
"and",
"auxiliary",
"states",
"of",
"this",
"Symbol",
"."
] | python | train |
mardix/Mocha | mocha/extras/md.py | https://github.com/mardix/Mocha/blob/bce481cb31a0972061dd99bc548701411dcb9de3/mocha/extras/md.py#L25-L29 | def run(self, root):
"Find all images and append to markdown.images. "
self.markdown.images = []
for image in root.getiterator("img"):
self.markdown.images.append(image.attrib["src"]) | [
"def",
"run",
"(",
"self",
",",
"root",
")",
":",
"self",
".",
"markdown",
".",
"images",
"=",
"[",
"]",
"for",
"image",
"in",
"root",
".",
"getiterator",
"(",
"\"img\"",
")",
":",
"self",
".",
"markdown",
".",
"images",
".",
"append",
"(",
"image",
".",
"attrib",
"[",
"\"src\"",
"]",
")"
] | Find all images and append to markdown.images. | [
"Find",
"all",
"images",
"and",
"append",
"to",
"markdown",
".",
"images",
"."
] | python | train |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.