repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
django-auth-ldap/django-auth-ldap
django_auth_ldap/backend.py
https://github.com/django-auth-ldap/django-auth-ldap/blob/9ce3c2825527f8faa1793958b041816e63d839af/django_auth_ldap/backend.py#L526-L543
def _search_for_user_dn(self): """ Searches the directory for a user matching AUTH_LDAP_USER_SEARCH. Populates self._user_dn and self._user_attrs. """ search = self.settings.USER_SEARCH if search is None: raise ImproperlyConfigured( "AUTH_LDAP_USER_SEARCH must be an LDAPSearch instance." ) results = search.execute(self.connection, {"user": self._username}) if results is not None and len(results) == 1: (user_dn, self._user_attrs) = next(iter(results)) else: user_dn = None return user_dn
[ "def", "_search_for_user_dn", "(", "self", ")", ":", "search", "=", "self", ".", "settings", ".", "USER_SEARCH", "if", "search", "is", "None", ":", "raise", "ImproperlyConfigured", "(", "\"AUTH_LDAP_USER_SEARCH must be an LDAPSearch instance.\"", ")", "results", "=", "search", ".", "execute", "(", "self", ".", "connection", ",", "{", "\"user\"", ":", "self", ".", "_username", "}", ")", "if", "results", "is", "not", "None", "and", "len", "(", "results", ")", "==", "1", ":", "(", "user_dn", ",", "self", ".", "_user_attrs", ")", "=", "next", "(", "iter", "(", "results", ")", ")", "else", ":", "user_dn", "=", "None", "return", "user_dn" ]
Searches the directory for a user matching AUTH_LDAP_USER_SEARCH. Populates self._user_dn and self._user_attrs.
[ "Searches", "the", "directory", "for", "a", "user", "matching", "AUTH_LDAP_USER_SEARCH", ".", "Populates", "self", ".", "_user_dn", "and", "self", ".", "_user_attrs", "." ]
python
train
tensorpack/tensorpack
examples/DynamicFilterNetwork/steering-filter.py
https://github.com/tensorpack/tensorpack/blob/d7a13cb74c9066bc791d7aafc3b744b60ee79a9f/examples/DynamicFilterNetwork/steering-filter.py#L24-L59
def DynamicConvFilter(inputs, filters, out_channel, kernel_shape, stride=1, padding='SAME'): """ see "Dynamic Filter Networks" (NIPS 2016) by Bert De Brabandere*, Xu Jia*, Tinne Tuytelaars and Luc Van Gool Remarks: This is the convolution version of a dynamic filter. Args: inputs : unfiltered input [b, h, w, 1] only grayscale images. filters : learned filters of [b, k, k, 1] (dynamically generated by the network). out_channel (int): number of output channel. kernel_shape: (h, w) tuple or a int. stride: (h, w) tuple or a int. padding (str): 'valid' or 'same'. Case insensitive. Returns tf.Tensor named ``output``. """ # tf.unstack only works with known batch_size :-( batch_size, h, w, in_channel = inputs.get_shape().as_list() stride = shape4d(stride) inputs = tf.unstack(inputs) filters = tf.reshape(filters, [batch_size] + shape2d(kernel_shape) + [in_channel, out_channel]) filters = tf.unstack(filters) # this is ok as TF uses the cuda stream context rsl = [tf.nn.conv2d(tf.reshape(d, [1, h, w, in_channel]), tf.reshape(k, [kernel_shape, kernel_shape, in_channel, out_channel]), stride, padding="SAME") for d, k in zip(inputs, filters)] rsl = tf.concat(rsl, axis=0, name='output') return rsl
[ "def", "DynamicConvFilter", "(", "inputs", ",", "filters", ",", "out_channel", ",", "kernel_shape", ",", "stride", "=", "1", ",", "padding", "=", "'SAME'", ")", ":", "# tf.unstack only works with known batch_size :-(", "batch_size", ",", "h", ",", "w", ",", "in_channel", "=", "inputs", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "stride", "=", "shape4d", "(", "stride", ")", "inputs", "=", "tf", ".", "unstack", "(", "inputs", ")", "filters", "=", "tf", ".", "reshape", "(", "filters", ",", "[", "batch_size", "]", "+", "shape2d", "(", "kernel_shape", ")", "+", "[", "in_channel", ",", "out_channel", "]", ")", "filters", "=", "tf", ".", "unstack", "(", "filters", ")", "# this is ok as TF uses the cuda stream context", "rsl", "=", "[", "tf", ".", "nn", ".", "conv2d", "(", "tf", ".", "reshape", "(", "d", ",", "[", "1", ",", "h", ",", "w", ",", "in_channel", "]", ")", ",", "tf", ".", "reshape", "(", "k", ",", "[", "kernel_shape", ",", "kernel_shape", ",", "in_channel", ",", "out_channel", "]", ")", ",", "stride", ",", "padding", "=", "\"SAME\"", ")", "for", "d", ",", "k", "in", "zip", "(", "inputs", ",", "filters", ")", "]", "rsl", "=", "tf", ".", "concat", "(", "rsl", ",", "axis", "=", "0", ",", "name", "=", "'output'", ")", "return", "rsl" ]
see "Dynamic Filter Networks" (NIPS 2016) by Bert De Brabandere*, Xu Jia*, Tinne Tuytelaars and Luc Van Gool Remarks: This is the convolution version of a dynamic filter. Args: inputs : unfiltered input [b, h, w, 1] only grayscale images. filters : learned filters of [b, k, k, 1] (dynamically generated by the network). out_channel (int): number of output channel. kernel_shape: (h, w) tuple or a int. stride: (h, w) tuple or a int. padding (str): 'valid' or 'same'. Case insensitive. Returns tf.Tensor named ``output``.
[ "see", "Dynamic", "Filter", "Networks", "(", "NIPS", "2016", ")", "by", "Bert", "De", "Brabandere", "*", "Xu", "Jia", "*", "Tinne", "Tuytelaars", "and", "Luc", "Van", "Gool" ]
python
train
readbeyond/aeneas
aeneas/globalfunctions.py
https://github.com/readbeyond/aeneas/blob/9d95535ad63eef4a98530cfdff033b8c35315ee1/aeneas/globalfunctions.py#L446-L469
def config_dict_to_string(dictionary): """ Convert a given config dictionary :: dictionary[key_1] = value_1 dictionary[key_2] = value_2 ... dictionary[key_n] = value_n into the corresponding string :: key_1=value_1|key_2=value_2|...|key_n=value_n :param dict dictionary: the config dictionary :rtype: string """ parameters = [] for key in dictionary: parameters.append(u"%s%s%s" % ( key, gc.CONFIG_STRING_ASSIGNMENT_SYMBOL, dictionary[key] )) return gc.CONFIG_STRING_SEPARATOR_SYMBOL.join(parameters)
[ "def", "config_dict_to_string", "(", "dictionary", ")", ":", "parameters", "=", "[", "]", "for", "key", "in", "dictionary", ":", "parameters", ".", "append", "(", "u\"%s%s%s\"", "%", "(", "key", ",", "gc", ".", "CONFIG_STRING_ASSIGNMENT_SYMBOL", ",", "dictionary", "[", "key", "]", ")", ")", "return", "gc", ".", "CONFIG_STRING_SEPARATOR_SYMBOL", ".", "join", "(", "parameters", ")" ]
Convert a given config dictionary :: dictionary[key_1] = value_1 dictionary[key_2] = value_2 ... dictionary[key_n] = value_n into the corresponding string :: key_1=value_1|key_2=value_2|...|key_n=value_n :param dict dictionary: the config dictionary :rtype: string
[ "Convert", "a", "given", "config", "dictionary", "::" ]
python
train
languitar/pass-git-helper
passgithelper.py
https://github.com/languitar/pass-git-helper/blob/f84376d9ed6f7c47454a499da103da6fc2575a25/passgithelper.py#L206-L214
def get_value(self, entry_name: Text, entry_lines: Sequence[Text]) -> Optional[Text]: """See base class method.""" raw_value = self._get_raw(entry_name, entry_lines) if raw_value is not None: return raw_value[self._prefix_length:] else: return None
[ "def", "get_value", "(", "self", ",", "entry_name", ":", "Text", ",", "entry_lines", ":", "Sequence", "[", "Text", "]", ")", "->", "Optional", "[", "Text", "]", ":", "raw_value", "=", "self", ".", "_get_raw", "(", "entry_name", ",", "entry_lines", ")", "if", "raw_value", "is", "not", "None", ":", "return", "raw_value", "[", "self", ".", "_prefix_length", ":", "]", "else", ":", "return", "None" ]
See base class method.
[ "See", "base", "class", "method", "." ]
python
train
kobejohn/PQHelper
pqhelper/versus.py
https://github.com/kobejohn/PQHelper/blob/d2b78a22dcb631794295e6a159b06f39c3f10db6/pqhelper/versus.py#L114-L130
def _summarize_result(self, root_action, leaf_eot): """Return a dict with useful information that summarizes this action.""" root_board = root_action.parent.board action_detail = root_action.position_pair score = self._relative_score(root_action, leaf_eot, root_action.parent.player, root_action.parent.opponent) # mana drain info total_leaves = 0 mana_drain_leaves = 0 for leaf in root_action.leaves(): total_leaves += 1 if leaf.is_mana_drain: mana_drain_leaves += 1 summary = base.Summary(root_board, action_detail, score, mana_drain_leaves, total_leaves) return summary
[ "def", "_summarize_result", "(", "self", ",", "root_action", ",", "leaf_eot", ")", ":", "root_board", "=", "root_action", ".", "parent", ".", "board", "action_detail", "=", "root_action", ".", "position_pair", "score", "=", "self", ".", "_relative_score", "(", "root_action", ",", "leaf_eot", ",", "root_action", ".", "parent", ".", "player", ",", "root_action", ".", "parent", ".", "opponent", ")", "# mana drain info", "total_leaves", "=", "0", "mana_drain_leaves", "=", "0", "for", "leaf", "in", "root_action", ".", "leaves", "(", ")", ":", "total_leaves", "+=", "1", "if", "leaf", ".", "is_mana_drain", ":", "mana_drain_leaves", "+=", "1", "summary", "=", "base", ".", "Summary", "(", "root_board", ",", "action_detail", ",", "score", ",", "mana_drain_leaves", ",", "total_leaves", ")", "return", "summary" ]
Return a dict with useful information that summarizes this action.
[ "Return", "a", "dict", "with", "useful", "information", "that", "summarizes", "this", "action", "." ]
python
train
saltstack/salt
salt/cloud/__init__.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/cloud/__init__.py#L532-L543
def get_configured_providers(self): ''' Return the configured providers ''' providers = set() for alias, drivers in six.iteritems(self.opts['providers']): if len(drivers) > 1: for driver in drivers: providers.add('{0}:{1}'.format(alias, driver)) continue providers.add(alias) return providers
[ "def", "get_configured_providers", "(", "self", ")", ":", "providers", "=", "set", "(", ")", "for", "alias", ",", "drivers", "in", "six", ".", "iteritems", "(", "self", ".", "opts", "[", "'providers'", "]", ")", ":", "if", "len", "(", "drivers", ")", ">", "1", ":", "for", "driver", "in", "drivers", ":", "providers", ".", "add", "(", "'{0}:{1}'", ".", "format", "(", "alias", ",", "driver", ")", ")", "continue", "providers", ".", "add", "(", "alias", ")", "return", "providers" ]
Return the configured providers
[ "Return", "the", "configured", "providers" ]
python
train
atlassian-api/atlassian-python-api
examples/confluence-trash-cleaner.py
https://github.com/atlassian-api/atlassian-python-api/blob/540d269905c3e7547b666fe30c647b2d512cf358/examples/confluence-trash-cleaner.py#L33-L51
def clean_all_trash_pages_from_all_spaces(confluence): """ Main function for retrieve space keys and provide space for cleaner :param confluence: :return: """ limit = 50 flag = True i = 0 while flag: space_lists = confluence.get_all_spaces(start=i * limit, limit=limit) if space_lists and len(space_lists) != 0: i += 1 for space_list in space_lists: print("Start review the space with key = " + space_list['key']) clean_pages_from_space(confluence=confluence, space_key=space_list['key']) else: flag = False return 0
[ "def", "clean_all_trash_pages_from_all_spaces", "(", "confluence", ")", ":", "limit", "=", "50", "flag", "=", "True", "i", "=", "0", "while", "flag", ":", "space_lists", "=", "confluence", ".", "get_all_spaces", "(", "start", "=", "i", "*", "limit", ",", "limit", "=", "limit", ")", "if", "space_lists", "and", "len", "(", "space_lists", ")", "!=", "0", ":", "i", "+=", "1", "for", "space_list", "in", "space_lists", ":", "print", "(", "\"Start review the space with key = \"", "+", "space_list", "[", "'key'", "]", ")", "clean_pages_from_space", "(", "confluence", "=", "confluence", ",", "space_key", "=", "space_list", "[", "'key'", "]", ")", "else", ":", "flag", "=", "False", "return", "0" ]
Main function for retrieve space keys and provide space for cleaner :param confluence: :return:
[ "Main", "function", "for", "retrieve", "space", "keys", "and", "provide", "space", "for", "cleaner", ":", "param", "confluence", ":", ":", "return", ":" ]
python
train
UCL-INGI/INGInious
inginious/client/_zeromq_client.py
https://github.com/UCL-INGI/INGInious/blob/cbda9a9c7f2b8e8eb1e6d7d51f0d18092086300c/inginious/client/_zeromq_client.py#L152-L178
async def _reconnect(self): """ Called when the remote server is innacessible and the connection has to be restarted """ # 1. Close all transactions for msg_class in self._transactions: _1, _2, _3, coroutine_abrt, _4 = self._msgs_registered[msg_class] if coroutine_abrt is not None: for key in self._transactions[msg_class]: for args, kwargs in self._transactions[msg_class][key]: self._loop.create_task(coroutine_abrt(key, *args, **kwargs)) self._transactions[msg_class] = {} # 2. Call on_disconnect await self._on_disconnect() # 3. Stop tasks for task in self._restartable_tasks: task.cancel() self._restartable_tasks = [] # 4. Restart socket self._socket.disconnect(self._router_addr) # 5. Re-do start sequence await self.client_start()
[ "async", "def", "_reconnect", "(", "self", ")", ":", "# 1. Close all transactions", "for", "msg_class", "in", "self", ".", "_transactions", ":", "_1", ",", "_2", ",", "_3", ",", "coroutine_abrt", ",", "_4", "=", "self", ".", "_msgs_registered", "[", "msg_class", "]", "if", "coroutine_abrt", "is", "not", "None", ":", "for", "key", "in", "self", ".", "_transactions", "[", "msg_class", "]", ":", "for", "args", ",", "kwargs", "in", "self", ".", "_transactions", "[", "msg_class", "]", "[", "key", "]", ":", "self", ".", "_loop", ".", "create_task", "(", "coroutine_abrt", "(", "key", ",", "*", "args", ",", "*", "*", "kwargs", ")", ")", "self", ".", "_transactions", "[", "msg_class", "]", "=", "{", "}", "# 2. Call on_disconnect", "await", "self", ".", "_on_disconnect", "(", ")", "# 3. Stop tasks", "for", "task", "in", "self", ".", "_restartable_tasks", ":", "task", ".", "cancel", "(", ")", "self", ".", "_restartable_tasks", "=", "[", "]", "# 4. Restart socket", "self", ".", "_socket", ".", "disconnect", "(", "self", ".", "_router_addr", ")", "# 5. Re-do start sequence", "await", "self", ".", "client_start", "(", ")" ]
Called when the remote server is innacessible and the connection has to be restarted
[ "Called", "when", "the", "remote", "server", "is", "innacessible", "and", "the", "connection", "has", "to", "be", "restarted" ]
python
train
python-gitlab/python-gitlab
gitlab/v4/objects.py
https://github.com/python-gitlab/python-gitlab/blob/16de1b03fde3dbbe8f851614dd1d8c09de102fe5/gitlab/v4/objects.py#L3776-L3791
def transfer_project(self, to_namespace, **kwargs): """Transfer a project to the given namespace ID Args: to_namespace (str): ID or path of the namespace to transfer the project to **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTransferProjectError: If the project could not be transfered """ path = '/projects/%s/transfer' % (self.id,) self.manager.gitlab.http_put(path, post_data={"namespace": to_namespace}, **kwargs)
[ "def", "transfer_project", "(", "self", ",", "to_namespace", ",", "*", "*", "kwargs", ")", ":", "path", "=", "'/projects/%s/transfer'", "%", "(", "self", ".", "id", ",", ")", "self", ".", "manager", ".", "gitlab", ".", "http_put", "(", "path", ",", "post_data", "=", "{", "\"namespace\"", ":", "to_namespace", "}", ",", "*", "*", "kwargs", ")" ]
Transfer a project to the given namespace ID Args: to_namespace (str): ID or path of the namespace to transfer the project to **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTransferProjectError: If the project could not be transfered
[ "Transfer", "a", "project", "to", "the", "given", "namespace", "ID" ]
python
train
pennlabs/penn-sdk-python
penn/studyspaces.py
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L30-L48
def _obtain_token(self): """Obtain an auth token from client id and client secret.""" # don't renew token if hasn't expired yet if self.expiration and self.expiration > datetime.datetime.now(): return resp = requests.post("{}/1.1/oauth/token".format(API_URL), data={ "client_id": self.client_id, "client_secret": self.client_secret, "grant_type": "client_credentials" }).json() if "error" in resp: raise APIError("LibCal Auth Failed: {}, {}".format(resp["error"], resp.get("error_description"))) self.expiration = datetime.datetime.now() + datetime.timedelta(seconds=resp["expires_in"]) self.token = resp["access_token"] print(self.token)
[ "def", "_obtain_token", "(", "self", ")", ":", "# don't renew token if hasn't expired yet", "if", "self", ".", "expiration", "and", "self", ".", "expiration", ">", "datetime", ".", "datetime", ".", "now", "(", ")", ":", "return", "resp", "=", "requests", ".", "post", "(", "\"{}/1.1/oauth/token\"", ".", "format", "(", "API_URL", ")", ",", "data", "=", "{", "\"client_id\"", ":", "self", ".", "client_id", ",", "\"client_secret\"", ":", "self", ".", "client_secret", ",", "\"grant_type\"", ":", "\"client_credentials\"", "}", ")", ".", "json", "(", ")", "if", "\"error\"", "in", "resp", ":", "raise", "APIError", "(", "\"LibCal Auth Failed: {}, {}\"", ".", "format", "(", "resp", "[", "\"error\"", "]", ",", "resp", ".", "get", "(", "\"error_description\"", ")", ")", ")", "self", ".", "expiration", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "+", "datetime", ".", "timedelta", "(", "seconds", "=", "resp", "[", "\"expires_in\"", "]", ")", "self", ".", "token", "=", "resp", "[", "\"access_token\"", "]", "print", "(", "self", ".", "token", ")" ]
Obtain an auth token from client id and client secret.
[ "Obtain", "an", "auth", "token", "from", "client", "id", "and", "client", "secret", "." ]
python
train
rwl/godot
godot/run.py
https://github.com/rwl/godot/blob/013687c9e8983d2aa2ceebb8a76c5c4f1e37c90f/godot/run.py#L25-L35
def main(): """ Runs Godot. """ application = GodotApplication( id="godot", plugins=[CorePlugin(), PuddlePlugin(), WorkbenchPlugin(), ResourcePlugin(), GodotPlugin()] ) application.run()
[ "def", "main", "(", ")", ":", "application", "=", "GodotApplication", "(", "id", "=", "\"godot\"", ",", "plugins", "=", "[", "CorePlugin", "(", ")", ",", "PuddlePlugin", "(", ")", ",", "WorkbenchPlugin", "(", ")", ",", "ResourcePlugin", "(", ")", ",", "GodotPlugin", "(", ")", "]", ")", "application", ".", "run", "(", ")" ]
Runs Godot.
[ "Runs", "Godot", "." ]
python
test
peri-source/peri
peri/conf.py
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/conf.py#L55-L61
def read_environment(): """ Read all environment variables to see if they contain PERI """ out = {} for k,v in iteritems(os.environ): if transform(k) in default_conf: out[transform(k)] = v return out
[ "def", "read_environment", "(", ")", ":", "out", "=", "{", "}", "for", "k", ",", "v", "in", "iteritems", "(", "os", ".", "environ", ")", ":", "if", "transform", "(", "k", ")", "in", "default_conf", ":", "out", "[", "transform", "(", "k", ")", "]", "=", "v", "return", "out" ]
Read all environment variables to see if they contain PERI
[ "Read", "all", "environment", "variables", "to", "see", "if", "they", "contain", "PERI" ]
python
valid
mcs07/ChemDataExtractor
chemdataextractor/cli/__init__.py
https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/cli/__init__.py#L60-L66
def read(ctx, input, output): """Output processed document elements.""" log.info('chemdataextractor.read') log.info('Reading %s' % input.name) doc = Document.from_file(input) for element in doc.elements: output.write(u'%s : %s\n=====\n' % (element.__class__.__name__, six.text_type(element)))
[ "def", "read", "(", "ctx", ",", "input", ",", "output", ")", ":", "log", ".", "info", "(", "'chemdataextractor.read'", ")", "log", ".", "info", "(", "'Reading %s'", "%", "input", ".", "name", ")", "doc", "=", "Document", ".", "from_file", "(", "input", ")", "for", "element", "in", "doc", ".", "elements", ":", "output", ".", "write", "(", "u'%s : %s\\n=====\\n'", "%", "(", "element", ".", "__class__", ".", "__name__", ",", "six", ".", "text_type", "(", "element", ")", ")", ")" ]
Output processed document elements.
[ "Output", "processed", "document", "elements", "." ]
python
train
PaulHancock/Aegean
AegeanTools/angle_tools.py
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L38-L59
def dec2dec(dec): """ Convert sexegessimal RA string into a float in degrees. Parameters ---------- dec : string A string separated representing the Dec. Expected format is `[+- ]hh:mm[:ss.s]` Colons can be replaced with any whit space character. Returns ------- dec : float The Dec in degrees. """ d = dec.replace(':', ' ').split() if len(d) == 2: d.append(0.0) if d[0].startswith('-') or float(d[0]) < 0: return float(d[0]) - float(d[1]) / 60.0 - float(d[2]) / 3600.0 return float(d[0]) + float(d[1]) / 60.0 + float(d[2]) / 3600.0
[ "def", "dec2dec", "(", "dec", ")", ":", "d", "=", "dec", ".", "replace", "(", "':'", ",", "' '", ")", ".", "split", "(", ")", "if", "len", "(", "d", ")", "==", "2", ":", "d", ".", "append", "(", "0.0", ")", "if", "d", "[", "0", "]", ".", "startswith", "(", "'-'", ")", "or", "float", "(", "d", "[", "0", "]", ")", "<", "0", ":", "return", "float", "(", "d", "[", "0", "]", ")", "-", "float", "(", "d", "[", "1", "]", ")", "/", "60.0", "-", "float", "(", "d", "[", "2", "]", ")", "/", "3600.0", "return", "float", "(", "d", "[", "0", "]", ")", "+", "float", "(", "d", "[", "1", "]", ")", "/", "60.0", "+", "float", "(", "d", "[", "2", "]", ")", "/", "3600.0" ]
Convert sexegessimal RA string into a float in degrees. Parameters ---------- dec : string A string separated representing the Dec. Expected format is `[+- ]hh:mm[:ss.s]` Colons can be replaced with any whit space character. Returns ------- dec : float The Dec in degrees.
[ "Convert", "sexegessimal", "RA", "string", "into", "a", "float", "in", "degrees", "." ]
python
train
spencerahill/aospy
aospy/calc.py
https://github.com/spencerahill/aospy/blob/2f6e775b9b9956c54af117fdcdce2c87196afb6c/aospy/calc.py#L297-L329
def _get_input_data(self, var, start_date, end_date): """Get the data for a single variable over the desired date range.""" logging.info(self._print_verbose("Getting input data:", var)) if isinstance(var, (float, int)): return var else: cond_pfull = ((not hasattr(self, internal_names.PFULL_STR)) and var.def_vert and self.dtype_in_vert == internal_names.ETA_STR) data = self.data_loader.recursively_compute_variable( var, start_date, end_date, self.time_offset, self.model, **self.data_loader_attrs) name = data.name data = self._add_grid_attributes(data.to_dataset(name=data.name)) data = data[name] if cond_pfull: try: self.pfull_coord = data[internal_names.PFULL_STR] except KeyError: pass # Force all data to be at full pressure levels, not half levels. bool_to_pfull = (self.dtype_in_vert == internal_names.ETA_STR and var.def_vert == internal_names.PHALF_STR) if bool_to_pfull: data = utils.vertcoord.to_pfull_from_phalf(data, self.pfull_coord) if var.def_time: # Restrict to the desired dates within each year. if self.dtype_in_time != 'av': return self._to_desired_dates(data) else: return data
[ "def", "_get_input_data", "(", "self", ",", "var", ",", "start_date", ",", "end_date", ")", ":", "logging", ".", "info", "(", "self", ".", "_print_verbose", "(", "\"Getting input data:\"", ",", "var", ")", ")", "if", "isinstance", "(", "var", ",", "(", "float", ",", "int", ")", ")", ":", "return", "var", "else", ":", "cond_pfull", "=", "(", "(", "not", "hasattr", "(", "self", ",", "internal_names", ".", "PFULL_STR", ")", ")", "and", "var", ".", "def_vert", "and", "self", ".", "dtype_in_vert", "==", "internal_names", ".", "ETA_STR", ")", "data", "=", "self", ".", "data_loader", ".", "recursively_compute_variable", "(", "var", ",", "start_date", ",", "end_date", ",", "self", ".", "time_offset", ",", "self", ".", "model", ",", "*", "*", "self", ".", "data_loader_attrs", ")", "name", "=", "data", ".", "name", "data", "=", "self", ".", "_add_grid_attributes", "(", "data", ".", "to_dataset", "(", "name", "=", "data", ".", "name", ")", ")", "data", "=", "data", "[", "name", "]", "if", "cond_pfull", ":", "try", ":", "self", ".", "pfull_coord", "=", "data", "[", "internal_names", ".", "PFULL_STR", "]", "except", "KeyError", ":", "pass", "# Force all data to be at full pressure levels, not half levels.", "bool_to_pfull", "=", "(", "self", ".", "dtype_in_vert", "==", "internal_names", ".", "ETA_STR", "and", "var", ".", "def_vert", "==", "internal_names", ".", "PHALF_STR", ")", "if", "bool_to_pfull", ":", "data", "=", "utils", ".", "vertcoord", ".", "to_pfull_from_phalf", "(", "data", ",", "self", ".", "pfull_coord", ")", "if", "var", ".", "def_time", ":", "# Restrict to the desired dates within each year.", "if", "self", ".", "dtype_in_time", "!=", "'av'", ":", "return", "self", ".", "_to_desired_dates", "(", "data", ")", "else", ":", "return", "data" ]
Get the data for a single variable over the desired date range.
[ "Get", "the", "data", "for", "a", "single", "variable", "over", "the", "desired", "date", "range", "." ]
python
train
thespacedoctor/polyglot
polyglot/printpdf.py
https://github.com/thespacedoctor/polyglot/blob/98038d746aa67e343b73b3ccee1e02d31dab81ec/polyglot/printpdf.py#L169-L203
def _print_original_webpage( self): """*print the original webpage* **Return:** - ``pdfPath`` -- the path to the generated PDF """ self.log.debug('starting the ``_print_original_webpage`` method') if not self.title: r = requests.get(self.url) title = bs4.BeautifulSoup(r.text).title.text print title else: title = self.title # CONVERT TO PDF WITH ELECTON PDF url = self.url pdfPath = self.folderpath + "/" + title + self.append + ".pdf" electron = self.settings["executables"]["electron path"] cmd = """%(electron)s -i "%(url)s" -o "%(pdfPath)s" --printBackground """ % locals() p = Popen(cmd, stdout=PIPE, stderr=PIPE, shell=True) stdout, stderr = p.communicate() self.log.debug('output: %(stdout)s' % locals()) if len(stderr): print stderr exists = os.path.exists(pdfPath) if not exists: print "%(pdfPath)s was not generated for some reason - please investigate" % locals() sys.exit(0) self.log.debug('completed the ``_print_original_webpage`` method') return pdfPath
[ "def", "_print_original_webpage", "(", "self", ")", ":", "self", ".", "log", ".", "debug", "(", "'starting the ``_print_original_webpage`` method'", ")", "if", "not", "self", ".", "title", ":", "r", "=", "requests", ".", "get", "(", "self", ".", "url", ")", "title", "=", "bs4", ".", "BeautifulSoup", "(", "r", ".", "text", ")", ".", "title", ".", "text", "print", "title", "else", ":", "title", "=", "self", ".", "title", "# CONVERT TO PDF WITH ELECTON PDF", "url", "=", "self", ".", "url", "pdfPath", "=", "self", ".", "folderpath", "+", "\"/\"", "+", "title", "+", "self", ".", "append", "+", "\".pdf\"", "electron", "=", "self", ".", "settings", "[", "\"executables\"", "]", "[", "\"electron path\"", "]", "cmd", "=", "\"\"\"%(electron)s -i \"%(url)s\" -o \"%(pdfPath)s\" --printBackground \"\"\"", "%", "locals", "(", ")", "p", "=", "Popen", "(", "cmd", ",", "stdout", "=", "PIPE", ",", "stderr", "=", "PIPE", ",", "shell", "=", "True", ")", "stdout", ",", "stderr", "=", "p", ".", "communicate", "(", ")", "self", ".", "log", ".", "debug", "(", "'output: %(stdout)s'", "%", "locals", "(", ")", ")", "if", "len", "(", "stderr", ")", ":", "print", "stderr", "exists", "=", "os", ".", "path", ".", "exists", "(", "pdfPath", ")", "if", "not", "exists", ":", "print", "\"%(pdfPath)s was not generated for some reason - please investigate\"", "%", "locals", "(", ")", "sys", ".", "exit", "(", "0", ")", "self", ".", "log", ".", "debug", "(", "'completed the ``_print_original_webpage`` method'", ")", "return", "pdfPath" ]
*print the original webpage* **Return:** - ``pdfPath`` -- the path to the generated PDF
[ "*", "print", "the", "original", "webpage", "*" ]
python
train
raiden-network/raiden
raiden/waiting.py
https://github.com/raiden-network/raiden/blob/407ba15c72074e9de88771d6b9661ff4dc36bef5/raiden/waiting.py#L70-L105
def wait_for_participant_newbalance( raiden: 'RaidenService', payment_network_id: PaymentNetworkID, token_address: TokenAddress, partner_address: Address, target_address: Address, target_balance: TokenAmount, retry_timeout: float, ) -> None: """Wait until a given channels balance exceeds the target balance. Note: This does not time out, use gevent.Timeout. """ if target_address == raiden.address: balance = lambda channel_state: channel_state.our_state.contract_balance elif target_address == partner_address: balance = lambda channel_state: channel_state.partner_state.contract_balance else: raise ValueError('target_address must be one of the channel participants') channel_state = views.get_channelstate_for( views.state_from_raiden(raiden), payment_network_id, token_address, partner_address, ) while balance(channel_state) < target_balance: gevent.sleep(retry_timeout) channel_state = views.get_channelstate_for( views.state_from_raiden(raiden), payment_network_id, token_address, partner_address, )
[ "def", "wait_for_participant_newbalance", "(", "raiden", ":", "'RaidenService'", ",", "payment_network_id", ":", "PaymentNetworkID", ",", "token_address", ":", "TokenAddress", ",", "partner_address", ":", "Address", ",", "target_address", ":", "Address", ",", "target_balance", ":", "TokenAmount", ",", "retry_timeout", ":", "float", ",", ")", "->", "None", ":", "if", "target_address", "==", "raiden", ".", "address", ":", "balance", "=", "lambda", "channel_state", ":", "channel_state", ".", "our_state", ".", "contract_balance", "elif", "target_address", "==", "partner_address", ":", "balance", "=", "lambda", "channel_state", ":", "channel_state", ".", "partner_state", ".", "contract_balance", "else", ":", "raise", "ValueError", "(", "'target_address must be one of the channel participants'", ")", "channel_state", "=", "views", ".", "get_channelstate_for", "(", "views", ".", "state_from_raiden", "(", "raiden", ")", ",", "payment_network_id", ",", "token_address", ",", "partner_address", ",", ")", "while", "balance", "(", "channel_state", ")", "<", "target_balance", ":", "gevent", ".", "sleep", "(", "retry_timeout", ")", "channel_state", "=", "views", ".", "get_channelstate_for", "(", "views", ".", "state_from_raiden", "(", "raiden", ")", ",", "payment_network_id", ",", "token_address", ",", "partner_address", ",", ")" ]
Wait until a given channels balance exceeds the target balance. Note: This does not time out, use gevent.Timeout.
[ "Wait", "until", "a", "given", "channels", "balance", "exceeds", "the", "target", "balance", "." ]
python
train
launchdarkly/relayCommander
relay_commander/validator.py
https://github.com/launchdarkly/relayCommander/blob/eee7fa22f04edc3854dd53c3ec2db8c599ad1e89/relay_commander/validator.py#L61-L74
def valid_env_vars() -> bool: """Validate that required env vars exist. :returns: True if required env vars exist. .. versionadded:: 0.0.12 """ for envvar in _REQUIRED_ENV_VARS: try: _check_env_var(envvar) except KeyError as ex: LOG.error(ex) sys.exit(1) return True
[ "def", "valid_env_vars", "(", ")", "->", "bool", ":", "for", "envvar", "in", "_REQUIRED_ENV_VARS", ":", "try", ":", "_check_env_var", "(", "envvar", ")", "except", "KeyError", "as", "ex", ":", "LOG", ".", "error", "(", "ex", ")", "sys", ".", "exit", "(", "1", ")", "return", "True" ]
Validate that required env vars exist. :returns: True if required env vars exist. .. versionadded:: 0.0.12
[ "Validate", "that", "required", "env", "vars", "exist", "." ]
python
train
cackharot/suds-py3
suds/bindings/binding.py
https://github.com/cackharot/suds-py3/blob/7387ec7806e9be29aad0a711bea5cb3c9396469c/suds/bindings/binding.py#L206-L245
def replycomposite(self, rtypes, nodes): """ Construct a I{composite} reply. This method is called when it has been detected that the reply has multiple root nodes. @param rtypes: A list of known return I{types}. @type rtypes: [L{suds.xsd.sxbase.SchemaObject},...] @param nodes: A collection of XML nodes. @type nodes: [L{Element},...] @return: The I{unmarshalled} composite object. @rtype: L{Object},... """ dictionary = {} for rt in rtypes: dictionary[rt.name] = rt unmarshaller = self.unmarshaller() composite = Factory.object('reply') for node in nodes: tag = node.name rt = dictionary.get(tag, None) if rt is None: if node.get('id') is None: raise Exception('<%s/> not mapped to message part' % tag) else: continue resolved = rt.resolve(nobuiltin=True) sobject = unmarshaller.process(node, resolved) value = getattr(composite, tag, None) if value is None: if rt.unbounded(): value = [] setattr(composite, tag, value) value.append(sobject) else: setattr(composite, tag, sobject) else: if not isinstance(value, list): value = [value, ] setattr(composite, tag, value) value.append(sobject) return composite
[ "def", "replycomposite", "(", "self", ",", "rtypes", ",", "nodes", ")", ":", "dictionary", "=", "{", "}", "for", "rt", "in", "rtypes", ":", "dictionary", "[", "rt", ".", "name", "]", "=", "rt", "unmarshaller", "=", "self", ".", "unmarshaller", "(", ")", "composite", "=", "Factory", ".", "object", "(", "'reply'", ")", "for", "node", "in", "nodes", ":", "tag", "=", "node", ".", "name", "rt", "=", "dictionary", ".", "get", "(", "tag", ",", "None", ")", "if", "rt", "is", "None", ":", "if", "node", ".", "get", "(", "'id'", ")", "is", "None", ":", "raise", "Exception", "(", "'<%s/> not mapped to message part'", "%", "tag", ")", "else", ":", "continue", "resolved", "=", "rt", ".", "resolve", "(", "nobuiltin", "=", "True", ")", "sobject", "=", "unmarshaller", ".", "process", "(", "node", ",", "resolved", ")", "value", "=", "getattr", "(", "composite", ",", "tag", ",", "None", ")", "if", "value", "is", "None", ":", "if", "rt", ".", "unbounded", "(", ")", ":", "value", "=", "[", "]", "setattr", "(", "composite", ",", "tag", ",", "value", ")", "value", ".", "append", "(", "sobject", ")", "else", ":", "setattr", "(", "composite", ",", "tag", ",", "sobject", ")", "else", ":", "if", "not", "isinstance", "(", "value", ",", "list", ")", ":", "value", "=", "[", "value", ",", "]", "setattr", "(", "composite", ",", "tag", ",", "value", ")", "value", ".", "append", "(", "sobject", ")", "return", "composite" ]
Construct a I{composite} reply. This method is called when it has been detected that the reply has multiple root nodes. @param rtypes: A list of known return I{types}. @type rtypes: [L{suds.xsd.sxbase.SchemaObject},...] @param nodes: A collection of XML nodes. @type nodes: [L{Element},...] @return: The I{unmarshalled} composite object. @rtype: L{Object},...
[ "Construct", "a", "I", "{", "composite", "}", "reply", ".", "This", "method", "is", "called", "when", "it", "has", "been", "detected", "that", "the", "reply", "has", "multiple", "root", "nodes", "." ]
python
train
CyberZHG/keras-word-char-embd
keras_wc_embd/wrapper.py
https://github.com/CyberZHG/keras-word-char-embd/blob/cca6ddff01b6264dd0d12613bb9ed308e1367b8c/keras_wc_embd/wrapper.py#L30-L36
def update_dicts(self, sentence): """Add new sentence to generate dictionaries. :param sentence: A list of strings representing the sentence. """ self.dict_generator(sentence=sentence) self.word_dict, self.char_dict = None, None
[ "def", "update_dicts", "(", "self", ",", "sentence", ")", ":", "self", ".", "dict_generator", "(", "sentence", "=", "sentence", ")", "self", ".", "word_dict", ",", "self", ".", "char_dict", "=", "None", ",", "None" ]
Add new sentence to generate dictionaries. :param sentence: A list of strings representing the sentence.
[ "Add", "new", "sentence", "to", "generate", "dictionaries", "." ]
python
train
twidi/py-dataql
dataql/solvers/filters.py
https://github.com/twidi/py-dataql/blob/5841a3fd559829193ed709c255166085bdde1c52/dataql/solvers/filters.py#L153-L187
def solve(self, value, filter_): """Returns the value of an attribute of the value, or the result of a call to a function. Arguments --------- value : ? A value to solve in combination with the given filter. filter_ : dataql.resource.Filter An instance of ``Filter`` to solve with the given value. Returns ------- Depending on the source, the filter may ask for an attribute of the value, or for the result of a call to a standalone function taking the value as first argument. This method returns this attribute or result. Example ------- >>> from dataql.solvers.registry import Registry >>> registry = Registry() >>> from datetime import date >>> registry.register(date, ['day', 'strftime']) >>> solver = FilterSolver(registry) >>> solver.solve(date(2015, 6, 1), Filter(name='day')) 1 >>> from dataql.resources import PosArg >>> solver.solve(date(2015, 6, 1), Filter(name='strftime', args=[PosArg('%F')])) '2015-06-01' """ args, kwargs = filter_.get_args_and_kwargs() source = self.registry[value] return source.solve(value, filter_.name, args, kwargs)
[ "def", "solve", "(", "self", ",", "value", ",", "filter_", ")", ":", "args", ",", "kwargs", "=", "filter_", ".", "get_args_and_kwargs", "(", ")", "source", "=", "self", ".", "registry", "[", "value", "]", "return", "source", ".", "solve", "(", "value", ",", "filter_", ".", "name", ",", "args", ",", "kwargs", ")" ]
Returns the value of an attribute of the value, or the result of a call to a function. Arguments --------- value : ? A value to solve in combination with the given filter. filter_ : dataql.resource.Filter An instance of ``Filter`` to solve with the given value. Returns ------- Depending on the source, the filter may ask for an attribute of the value, or for the result of a call to a standalone function taking the value as first argument. This method returns this attribute or result. Example ------- >>> from dataql.solvers.registry import Registry >>> registry = Registry() >>> from datetime import date >>> registry.register(date, ['day', 'strftime']) >>> solver = FilterSolver(registry) >>> solver.solve(date(2015, 6, 1), Filter(name='day')) 1 >>> from dataql.resources import PosArg >>> solver.solve(date(2015, 6, 1), Filter(name='strftime', args=[PosArg('%F')])) '2015-06-01'
[ "Returns", "the", "value", "of", "an", "attribute", "of", "the", "value", "or", "the", "result", "of", "a", "call", "to", "a", "function", "." ]
python
train
XuShaohua/bcloud
bcloud/DownloadPage.py
https://github.com/XuShaohua/bcloud/blob/4b54e0fdccf2b3013285fef05c97354cfa31697b/bcloud/DownloadPage.py#L288-L318
def init_db(self): '''这个任务数据库只在程序开始时读入, 在程序关闭时导出. 因为Gtk没有像在Qt中那么方便的使用SQLite, 而必须将所有数据读入一个 liststore中才行. ''' cache_path = os.path.join(Config.CACHE_DIR, self.app.profile['username']) if not os.path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) db = os.path.join(cache_path, TASK_FILE) self.conn = sqlite3.connect(db) self.cursor = self.conn.cursor() sql = '''CREATE TABLE IF NOT EXISTS tasks ( name CHAR NOT NULL, path CHAR NOT NULL, fsid CHAR NOT NULL, size INTEGER NOT NULL, currsize INTEGER NOT NULL, link CHAR, isdir INTEGER, savename CHAR NOT NULL, savedir CHAR NOT NULL, state INT NOT NULL, statename CHAR NOT NULL, humansize CHAR NOT NULL, percent INT NOT NULL, tooltip CHAR ) ''' self.cursor.execute(sql)
[ "def", "init_db", "(", "self", ")", ":", "cache_path", "=", "os", ".", "path", ".", "join", "(", "Config", ".", "CACHE_DIR", ",", "self", ".", "app", ".", "profile", "[", "'username'", "]", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "cache_path", ")", ":", "os", ".", "makedirs", "(", "cache_path", ",", "exist_ok", "=", "True", ")", "db", "=", "os", ".", "path", ".", "join", "(", "cache_path", ",", "TASK_FILE", ")", "self", ".", "conn", "=", "sqlite3", ".", "connect", "(", "db", ")", "self", ".", "cursor", "=", "self", ".", "conn", ".", "cursor", "(", ")", "sql", "=", "'''CREATE TABLE IF NOT EXISTS tasks (\n name CHAR NOT NULL,\n path CHAR NOT NULL,\n fsid CHAR NOT NULL,\n size INTEGER NOT NULL,\n currsize INTEGER NOT NULL,\n link CHAR,\n isdir INTEGER,\n savename CHAR NOT NULL,\n savedir CHAR NOT NULL,\n state INT NOT NULL,\n statename CHAR NOT NULL,\n humansize CHAR NOT NULL,\n percent INT NOT NULL,\n tooltip CHAR\n )\n '''", "self", ".", "cursor", ".", "execute", "(", "sql", ")" ]
这个任务数据库只在程序开始时读入, 在程序关闭时导出. 因为Gtk没有像在Qt中那么方便的使用SQLite, 而必须将所有数据读入一个 liststore中才行.
[ "这个任务数据库只在程序开始时读入", "在程序关闭时导出", "." ]
python
train
sam-cox/pytides
pytides/tide.py
https://github.com/sam-cox/pytides/blob/63a2507299002f1979ea55a17a82561158d685f7/pytides/tide.py#L271-L406
def decompose( cls, heights, t = None, t0 = None, interval = None, constituents = constituent.noaa, initial = None, n_period = 2, callback = None, full_output = False ): """ Return an instance of Tide which has been fitted to a series of tidal observations. Arguments: It is not necessary to provide t0 or interval if t is provided. heights -- ndarray of tidal observation heights t -- ndarray of tidal observation times t0 -- datetime representing the time at which heights[0] was recorded interval -- hourly interval between readings constituents -- list of constituents to use in the fit (default: constituent.noaa) initial -- optional Tide instance to use as first guess for least squares solver n_period -- only include constituents which complete at least this many periods (default: 2) callback -- optional function to be called at each iteration of the solver full_output -- whether to return the output of scipy's leastsq solver (default: False) """ if t is not None: if isinstance(t[0], datetime): hours = Tide._hours(t[0], t) t0 = t[0] elif t0 is not None: hours = t else: raise ValueError("t can be an array of datetimes, or an array " "of hours since t0 in which case t0 must be " "specified.") elif None not in [t0, interval]: hours = np.arange(len(heights)) * interval else: raise ValueError("Must provide t(datetimes), or t(hours) and " "t0(datetime), or interval(hours) and t0(datetime) " "so that each height can be identified with an " "instant in time.") #Remove duplicate constituents (those which travel at exactly the same #speed, irrespective of phase) constituents = list(OrderedDict.fromkeys(constituents)) #No need for least squares to find the mean water level constituent z0, #work relative to mean constituents = [c for c in constituents if not c == constituent._Z0] z0 = np.mean(heights) heights = heights - z0 #Only analyse frequencies which complete at least n_period cycles over #the data period. constituents = [ c for c in constituents if 360.0 * n_period < hours[-1] * c.speed(astro(t0)) ] n = len(constituents) sort = np.argsort(hours) hours = hours[sort] heights = heights[sort] #We partition our time/height data into intervals over which we consider #the values of u and f to assume a constant value (that is, their true #value at the midpoint of the interval). Constituent #speeds change much more slowly than the node factors, so we will #consider these constant and equal to their speed at t0, regardless of #the length of the time series. partition = 240.0 t = Tide._partition(hours, partition) times = Tide._times(t0, [(i + 0.5)*partition for i in range(len(t))]) speed, u, f, V0 = Tide._prepare(constituents, t0, times, radians = True) #Residual to be minimised by variation of parameters (amplitudes, phases) def residual(hp): H, p = hp[:n, np.newaxis], hp[n:, np.newaxis] s = np.concatenate([ Tide._tidal_series(t_i, H, p, speed, u_i, f_i, V0) for t_i, u_i, f_i in izip(t, u, f) ]) res = heights - s if callback: callback(res) return res #Analytic Jacobian of the residual - this makes solving significantly #faster than just using gradient approximation, especially with many #measurements / constituents. def D_residual(hp): H, p = hp[:n, np.newaxis], hp[n:, np.newaxis] ds_dH = np.concatenate([ f_i*np.cos(speed*t_i+u_i+V0-p) for t_i, u_i, f_i in izip(t, u, f)], axis = 1) ds_dp = np.concatenate([ H*f_i*np.sin(speed*t_i+u_i+V0-p) for t_i, u_i, f_i in izip(t, u, f)], axis = 1) return np.append(-ds_dH, -ds_dp, axis=0) #Initial guess for solver, haven't done any analysis on this since the #solver seems to converge well regardless of the initial guess We do #however scale the initial amplitude guess with some measure of the #variation amplitudes = np.ones(n) * (np.sqrt(np.dot(heights, heights)) / len(heights)) phases = np.ones(n) if initial: for (c0, amplitude, phase) in initial.model: for i, c in enumerate(constituents): if c0 == c: amplitudes[i] = amplitude phases[i] = d2r*phase initial = np.append(amplitudes, phases) lsq = leastsq(residual, initial, Dfun=D_residual, col_deriv=True, ftol=1e-7) model = np.zeros(1+n, dtype=cls.dtype) model[0] = (constituent._Z0, z0, 0) model[1:]['constituent'] = constituents[:] model[1:]['amplitude'] = lsq[0][:n] model[1:]['phase'] = lsq[0][n:] if full_output: return cls(model = model, radians = True), lsq return cls(model = model, radians = True)
[ "def", "decompose", "(", "cls", ",", "heights", ",", "t", "=", "None", ",", "t0", "=", "None", ",", "interval", "=", "None", ",", "constituents", "=", "constituent", ".", "noaa", ",", "initial", "=", "None", ",", "n_period", "=", "2", ",", "callback", "=", "None", ",", "full_output", "=", "False", ")", ":", "if", "t", "is", "not", "None", ":", "if", "isinstance", "(", "t", "[", "0", "]", ",", "datetime", ")", ":", "hours", "=", "Tide", ".", "_hours", "(", "t", "[", "0", "]", ",", "t", ")", "t0", "=", "t", "[", "0", "]", "elif", "t0", "is", "not", "None", ":", "hours", "=", "t", "else", ":", "raise", "ValueError", "(", "\"t can be an array of datetimes, or an array \"", "\"of hours since t0 in which case t0 must be \"", "\"specified.\"", ")", "elif", "None", "not", "in", "[", "t0", ",", "interval", "]", ":", "hours", "=", "np", ".", "arange", "(", "len", "(", "heights", ")", ")", "*", "interval", "else", ":", "raise", "ValueError", "(", "\"Must provide t(datetimes), or t(hours) and \"", "\"t0(datetime), or interval(hours) and t0(datetime) \"", "\"so that each height can be identified with an \"", "\"instant in time.\"", ")", "#Remove duplicate constituents (those which travel at exactly the same", "#speed, irrespective of phase)", "constituents", "=", "list", "(", "OrderedDict", ".", "fromkeys", "(", "constituents", ")", ")", "#No need for least squares to find the mean water level constituent z0,", "#work relative to mean", "constituents", "=", "[", "c", "for", "c", "in", "constituents", "if", "not", "c", "==", "constituent", ".", "_Z0", "]", "z0", "=", "np", ".", "mean", "(", "heights", ")", "heights", "=", "heights", "-", "z0", "#Only analyse frequencies which complete at least n_period cycles over", "#the data period.", "constituents", "=", "[", "c", "for", "c", "in", "constituents", "if", "360.0", "*", "n_period", "<", "hours", "[", "-", "1", "]", "*", "c", ".", "speed", "(", "astro", "(", "t0", ")", ")", "]", "n", "=", "len", "(", "constituents", ")", "sort", "=", "np", ".", "argsort", "(", "hours", ")", "hours", "=", "hours", "[", "sort", "]", "heights", "=", "heights", "[", "sort", "]", "#We partition our time/height data into intervals over which we consider", "#the values of u and f to assume a constant value (that is, their true", "#value at the midpoint of the interval). Constituent", "#speeds change much more slowly than the node factors, so we will", "#consider these constant and equal to their speed at t0, regardless of", "#the length of the time series.", "partition", "=", "240.0", "t", "=", "Tide", ".", "_partition", "(", "hours", ",", "partition", ")", "times", "=", "Tide", ".", "_times", "(", "t0", ",", "[", "(", "i", "+", "0.5", ")", "*", "partition", "for", "i", "in", "range", "(", "len", "(", "t", ")", ")", "]", ")", "speed", ",", "u", ",", "f", ",", "V0", "=", "Tide", ".", "_prepare", "(", "constituents", ",", "t0", ",", "times", ",", "radians", "=", "True", ")", "#Residual to be minimised by variation of parameters (amplitudes, phases)", "def", "residual", "(", "hp", ")", ":", "H", ",", "p", "=", "hp", "[", ":", "n", ",", "np", ".", "newaxis", "]", ",", "hp", "[", "n", ":", ",", "np", ".", "newaxis", "]", "s", "=", "np", ".", "concatenate", "(", "[", "Tide", ".", "_tidal_series", "(", "t_i", ",", "H", ",", "p", ",", "speed", ",", "u_i", ",", "f_i", ",", "V0", ")", "for", "t_i", ",", "u_i", ",", "f_i", "in", "izip", "(", "t", ",", "u", ",", "f", ")", "]", ")", "res", "=", "heights", "-", "s", "if", "callback", ":", "callback", "(", "res", ")", "return", "res", "#Analytic Jacobian of the residual - this makes solving significantly", "#faster than just using gradient approximation, especially with many", "#measurements / constituents.", "def", "D_residual", "(", "hp", ")", ":", "H", ",", "p", "=", "hp", "[", ":", "n", ",", "np", ".", "newaxis", "]", ",", "hp", "[", "n", ":", ",", "np", ".", "newaxis", "]", "ds_dH", "=", "np", ".", "concatenate", "(", "[", "f_i", "*", "np", ".", "cos", "(", "speed", "*", "t_i", "+", "u_i", "+", "V0", "-", "p", ")", "for", "t_i", ",", "u_i", ",", "f_i", "in", "izip", "(", "t", ",", "u", ",", "f", ")", "]", ",", "axis", "=", "1", ")", "ds_dp", "=", "np", ".", "concatenate", "(", "[", "H", "*", "f_i", "*", "np", ".", "sin", "(", "speed", "*", "t_i", "+", "u_i", "+", "V0", "-", "p", ")", "for", "t_i", ",", "u_i", ",", "f_i", "in", "izip", "(", "t", ",", "u", ",", "f", ")", "]", ",", "axis", "=", "1", ")", "return", "np", ".", "append", "(", "-", "ds_dH", ",", "-", "ds_dp", ",", "axis", "=", "0", ")", "#Initial guess for solver, haven't done any analysis on this since the", "#solver seems to converge well regardless of the initial guess We do", "#however scale the initial amplitude guess with some measure of the", "#variation", "amplitudes", "=", "np", ".", "ones", "(", "n", ")", "*", "(", "np", ".", "sqrt", "(", "np", ".", "dot", "(", "heights", ",", "heights", ")", ")", "/", "len", "(", "heights", ")", ")", "phases", "=", "np", ".", "ones", "(", "n", ")", "if", "initial", ":", "for", "(", "c0", ",", "amplitude", ",", "phase", ")", "in", "initial", ".", "model", ":", "for", "i", ",", "c", "in", "enumerate", "(", "constituents", ")", ":", "if", "c0", "==", "c", ":", "amplitudes", "[", "i", "]", "=", "amplitude", "phases", "[", "i", "]", "=", "d2r", "*", "phase", "initial", "=", "np", ".", "append", "(", "amplitudes", ",", "phases", ")", "lsq", "=", "leastsq", "(", "residual", ",", "initial", ",", "Dfun", "=", "D_residual", ",", "col_deriv", "=", "True", ",", "ftol", "=", "1e-7", ")", "model", "=", "np", ".", "zeros", "(", "1", "+", "n", ",", "dtype", "=", "cls", ".", "dtype", ")", "model", "[", "0", "]", "=", "(", "constituent", ".", "_Z0", ",", "z0", ",", "0", ")", "model", "[", "1", ":", "]", "[", "'constituent'", "]", "=", "constituents", "[", ":", "]", "model", "[", "1", ":", "]", "[", "'amplitude'", "]", "=", "lsq", "[", "0", "]", "[", ":", "n", "]", "model", "[", "1", ":", "]", "[", "'phase'", "]", "=", "lsq", "[", "0", "]", "[", "n", ":", "]", "if", "full_output", ":", "return", "cls", "(", "model", "=", "model", ",", "radians", "=", "True", ")", ",", "lsq", "return", "cls", "(", "model", "=", "model", ",", "radians", "=", "True", ")" ]
Return an instance of Tide which has been fitted to a series of tidal observations. Arguments: It is not necessary to provide t0 or interval if t is provided. heights -- ndarray of tidal observation heights t -- ndarray of tidal observation times t0 -- datetime representing the time at which heights[0] was recorded interval -- hourly interval between readings constituents -- list of constituents to use in the fit (default: constituent.noaa) initial -- optional Tide instance to use as first guess for least squares solver n_period -- only include constituents which complete at least this many periods (default: 2) callback -- optional function to be called at each iteration of the solver full_output -- whether to return the output of scipy's leastsq solver (default: False)
[ "Return", "an", "instance", "of", "Tide", "which", "has", "been", "fitted", "to", "a", "series", "of", "tidal", "observations", ".", "Arguments", ":", "It", "is", "not", "necessary", "to", "provide", "t0", "or", "interval", "if", "t", "is", "provided", ".", "heights", "--", "ndarray", "of", "tidal", "observation", "heights", "t", "--", "ndarray", "of", "tidal", "observation", "times", "t0", "--", "datetime", "representing", "the", "time", "at", "which", "heights", "[", "0", "]", "was", "recorded", "interval", "--", "hourly", "interval", "between", "readings", "constituents", "--", "list", "of", "constituents", "to", "use", "in", "the", "fit", "(", "default", ":", "constituent", ".", "noaa", ")", "initial", "--", "optional", "Tide", "instance", "to", "use", "as", "first", "guess", "for", "least", "squares", "solver", "n_period", "--", "only", "include", "constituents", "which", "complete", "at", "least", "this", "many", "periods", "(", "default", ":", "2", ")", "callback", "--", "optional", "function", "to", "be", "called", "at", "each", "iteration", "of", "the", "solver", "full_output", "--", "whether", "to", "return", "the", "output", "of", "scipy", "s", "leastsq", "solver", "(", "default", ":", "False", ")" ]
python
train
diffeo/rejester
rejester/workers.py
https://github.com/diffeo/rejester/blob/5438a4a18be2801d7826c46e2079ba9639d2ecb4/rejester/workers.py#L934-L948
def stop_gracefully(self): '''Refuse to start more processes. This runs in response to SIGINT or SIGTERM; if this isn't a background process, control-C and a normal ``kill`` command cause this. ''' if self.shutting_down: self.log(logging.INFO, 'second shutdown request, shutting down now') self.scram() else: self.log(logging.INFO, 'shutting down after current jobs finish') self.shutting_down = True
[ "def", "stop_gracefully", "(", "self", ")", ":", "if", "self", ".", "shutting_down", ":", "self", ".", "log", "(", "logging", ".", "INFO", ",", "'second shutdown request, shutting down now'", ")", "self", ".", "scram", "(", ")", "else", ":", "self", ".", "log", "(", "logging", ".", "INFO", ",", "'shutting down after current jobs finish'", ")", "self", ".", "shutting_down", "=", "True" ]
Refuse to start more processes. This runs in response to SIGINT or SIGTERM; if this isn't a background process, control-C and a normal ``kill`` command cause this.
[ "Refuse", "to", "start", "more", "processes", "." ]
python
train
ashmastaflash/kal-wrapper
kalibrate/fn.py
https://github.com/ashmastaflash/kal-wrapper/blob/80ee03ab7bd3172ac26b769d6b442960f3424b0e/kalibrate/fn.py#L28-L35
def build_kal_scan_channel_string(kal_bin, channel, args): """Return string for CLI invocation of kal, for channel scan.""" option_mapping = {"gain": "-g", "device": "-d", "error": "-e"} base_string = "%s -v -c %s" % (kal_bin, channel) base_string += options_string_builder(option_mapping, args) return(base_string)
[ "def", "build_kal_scan_channel_string", "(", "kal_bin", ",", "channel", ",", "args", ")", ":", "option_mapping", "=", "{", "\"gain\"", ":", "\"-g\"", ",", "\"device\"", ":", "\"-d\"", ",", "\"error\"", ":", "\"-e\"", "}", "base_string", "=", "\"%s -v -c %s\"", "%", "(", "kal_bin", ",", "channel", ")", "base_string", "+=", "options_string_builder", "(", "option_mapping", ",", "args", ")", "return", "(", "base_string", ")" ]
Return string for CLI invocation of kal, for channel scan.
[ "Return", "string", "for", "CLI", "invocation", "of", "kal", "for", "channel", "scan", "." ]
python
train
Julius2342/pyvlx
pyvlx/frames/frame_command_send.py
https://github.com/Julius2342/pyvlx/blob/ee78e1324bcb1be5b8d1a9d05ab5496b72eae848/pyvlx/frames/frame_command_send.py#L52-L65
def from_payload(self, payload): """Init frame from binary data.""" self.session_id = payload[0]*256 + payload[1] self.originator = Originator(payload[2]) self.priority = Priority(payload[3]) len_node_ids = payload[41] if len_node_ids > 20: raise PyVLXException("command_send_request_wrong_node_length") self.node_ids = [] for i in range(len_node_ids): self.node_ids.append(payload[42] + i) self.parameter = Parameter(payload[7:9])
[ "def", "from_payload", "(", "self", ",", "payload", ")", ":", "self", ".", "session_id", "=", "payload", "[", "0", "]", "*", "256", "+", "payload", "[", "1", "]", "self", ".", "originator", "=", "Originator", "(", "payload", "[", "2", "]", ")", "self", ".", "priority", "=", "Priority", "(", "payload", "[", "3", "]", ")", "len_node_ids", "=", "payload", "[", "41", "]", "if", "len_node_ids", ">", "20", ":", "raise", "PyVLXException", "(", "\"command_send_request_wrong_node_length\"", ")", "self", ".", "node_ids", "=", "[", "]", "for", "i", "in", "range", "(", "len_node_ids", ")", ":", "self", ".", "node_ids", ".", "append", "(", "payload", "[", "42", "]", "+", "i", ")", "self", ".", "parameter", "=", "Parameter", "(", "payload", "[", "7", ":", "9", "]", ")" ]
Init frame from binary data.
[ "Init", "frame", "from", "binary", "data", "." ]
python
train
inveniosoftware/invenio-oauthclient
invenio_oauthclient/contrib/github.py
https://github.com/inveniosoftware/invenio-oauthclient/blob/2500dc6935738107617aeade79e050d7608004bb/invenio_oauthclient/contrib/github.py#L110-L113
def _extract_email(gh): """Get user email from github.""" return next( (x.email for x in gh.emails() if x.verified and x.primary), None)
[ "def", "_extract_email", "(", "gh", ")", ":", "return", "next", "(", "(", "x", ".", "email", "for", "x", "in", "gh", ".", "emails", "(", ")", "if", "x", ".", "verified", "and", "x", ".", "primary", ")", ",", "None", ")" ]
Get user email from github.
[ "Get", "user", "email", "from", "github", "." ]
python
train
numba/llvmlite
llvmlite/binding/module.py
https://github.com/numba/llvmlite/blob/fcadf8af11947f3fd041c5d6526c5bf231564883/llvmlite/binding/module.py#L184-L190
def functions(self): """ Return an iterator over this module's functions. The iterator will yield a ValueRef for each function. """ it = ffi.lib.LLVMPY_ModuleFunctionsIter(self) return _FunctionsIterator(it, dict(module=self))
[ "def", "functions", "(", "self", ")", ":", "it", "=", "ffi", ".", "lib", ".", "LLVMPY_ModuleFunctionsIter", "(", "self", ")", "return", "_FunctionsIterator", "(", "it", ",", "dict", "(", "module", "=", "self", ")", ")" ]
Return an iterator over this module's functions. The iterator will yield a ValueRef for each function.
[ "Return", "an", "iterator", "over", "this", "module", "s", "functions", ".", "The", "iterator", "will", "yield", "a", "ValueRef", "for", "each", "function", "." ]
python
train
asifpy/django-crudbuilder
crudbuilder/helpers.py
https://github.com/asifpy/django-crudbuilder/blob/9de1c6fa555086673dd7ccc351d4b771c6192489/crudbuilder/helpers.py#L19-L80
def plural(text): """ >>> plural('activity') 'activities' """ aberrant = { 'knife': 'knives', 'self': 'selves', 'elf': 'elves', 'life': 'lives', 'hoof': 'hooves', 'leaf': 'leaves', 'echo': 'echoes', 'embargo': 'embargoes', 'hero': 'heroes', 'potato': 'potatoes', 'tomato': 'tomatoes', 'torpedo': 'torpedoes', 'veto': 'vetoes', 'child': 'children', 'woman': 'women', 'man': 'men', 'person': 'people', 'goose': 'geese', 'mouse': 'mice', 'barracks': 'barracks', 'deer': 'deer', 'nucleus': 'nuclei', 'syllabus': 'syllabi', 'focus': 'foci', 'fungus': 'fungi', 'cactus': 'cacti', 'phenomenon': 'phenomena', 'index': 'indices', 'appendix': 'appendices', 'criterion': 'criteria', } if text in aberrant: result = '%s' % aberrant[text] else: postfix = 's' if len(text) > 2: vowels = 'aeiou' if text[-2:] in ('ch', 'sh'): postfix = 'es' elif text[-1:] == 'y': if (text[-2:-1] in vowels) or (text[0] in string.ascii_uppercase): postfix = 's' else: postfix = 'ies' text = text[:-1] elif text[-2:] == 'is': postfix = 'es' text = text[:-2] elif text[-1:] in ('s', 'z', 'x'): postfix = 'es' result = '%s%s' % (text, postfix) return result
[ "def", "plural", "(", "text", ")", ":", "aberrant", "=", "{", "'knife'", ":", "'knives'", ",", "'self'", ":", "'selves'", ",", "'elf'", ":", "'elves'", ",", "'life'", ":", "'lives'", ",", "'hoof'", ":", "'hooves'", ",", "'leaf'", ":", "'leaves'", ",", "'echo'", ":", "'echoes'", ",", "'embargo'", ":", "'embargoes'", ",", "'hero'", ":", "'heroes'", ",", "'potato'", ":", "'potatoes'", ",", "'tomato'", ":", "'tomatoes'", ",", "'torpedo'", ":", "'torpedoes'", ",", "'veto'", ":", "'vetoes'", ",", "'child'", ":", "'children'", ",", "'woman'", ":", "'women'", ",", "'man'", ":", "'men'", ",", "'person'", ":", "'people'", ",", "'goose'", ":", "'geese'", ",", "'mouse'", ":", "'mice'", ",", "'barracks'", ":", "'barracks'", ",", "'deer'", ":", "'deer'", ",", "'nucleus'", ":", "'nuclei'", ",", "'syllabus'", ":", "'syllabi'", ",", "'focus'", ":", "'foci'", ",", "'fungus'", ":", "'fungi'", ",", "'cactus'", ":", "'cacti'", ",", "'phenomenon'", ":", "'phenomena'", ",", "'index'", ":", "'indices'", ",", "'appendix'", ":", "'appendices'", ",", "'criterion'", ":", "'criteria'", ",", "}", "if", "text", "in", "aberrant", ":", "result", "=", "'%s'", "%", "aberrant", "[", "text", "]", "else", ":", "postfix", "=", "'s'", "if", "len", "(", "text", ")", ">", "2", ":", "vowels", "=", "'aeiou'", "if", "text", "[", "-", "2", ":", "]", "in", "(", "'ch'", ",", "'sh'", ")", ":", "postfix", "=", "'es'", "elif", "text", "[", "-", "1", ":", "]", "==", "'y'", ":", "if", "(", "text", "[", "-", "2", ":", "-", "1", "]", "in", "vowels", ")", "or", "(", "text", "[", "0", "]", "in", "string", ".", "ascii_uppercase", ")", ":", "postfix", "=", "'s'", "else", ":", "postfix", "=", "'ies'", "text", "=", "text", "[", ":", "-", "1", "]", "elif", "text", "[", "-", "2", ":", "]", "==", "'is'", ":", "postfix", "=", "'es'", "text", "=", "text", "[", ":", "-", "2", "]", "elif", "text", "[", "-", "1", ":", "]", "in", "(", "'s'", ",", "'z'", ",", "'x'", ")", ":", "postfix", "=", "'es'", "result", "=", "'%s%s'", "%", "(", "text", ",", "postfix", ")", "return", "result" ]
>>> plural('activity') 'activities'
[ ">>>", "plural", "(", "activity", ")", "activities" ]
python
train
biolink/ontobio
bin/qbiogolr.py
https://github.com/biolink/ontobio/blob/4e512a7831cfe6bc1b32f2c3be2ba41bc5cf7345/bin/qbiogolr.py#L26-L155
def main(): """ Wrapper for OGR """ parser = argparse.ArgumentParser( description='Command line interface to python-ontobio.golr library' """ Provides command line interface onto the ontobio.golr python library, a high level abstraction layer over Monarch and GO solr indices. """, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-r', '--resource', type=str, required=False, help='Name of ontology') parser.add_argument('-d', '--display', type=str, default='o', required=False, help='What to display: some combination of o, s, r. o=object ancestors, s=subject ancestors. If r present, draws s<->o relations ') parser.add_argument('-o', '--outfile', type=str, required=False, help='Path to output file') parser.add_argument('-t', '--to', type=str, required=False, help='Output to (tree, dot, ...)') parser.add_argument('-C', '--category', type=str, required=False, help='Category') parser.add_argument('-c', '--container_properties', nargs='*', type=str, required=False, help='Properties to nest in graph') parser.add_argument('-s', '--species', type=str, required=False, help='NCBITaxon ID') parser.add_argument('-e', '--evidence', type=str, required=False, help='ECO ID') parser.add_argument('-G', '--graph', type=str, default='', required=False, help='Graph type. m=minimal') parser.add_argument('-S', '--slim', nargs='*', type=str, required=False, help='Slim IDs') parser.add_argument('-M', '--mapids', type=str, required=False, help='Map identifiers to this ID space, e.g. ENSEMBL') parser.add_argument('-p', '--properties', nargs='*', type=str, required=False, help='Properties') parser.add_argument('-v', '--verbosity', default=0, action='count', help='Increase output verbosity') parser.add_argument('ids',nargs='*') # ontology args = parser.parse_args() if args.verbosity >= 2: logging.basicConfig(level=logging.DEBUG) elif args.verbosity == 1: logging.basicConfig(level=logging.INFO) else: logging.basicConfig(level=logging.WARNING) logging.info("Welcome!") ont = None g = None handle = args.resource if handle is not None: logging.info("Handle: {}".format(handle)) factory = OntologyFactory() logging.info("Factory: {}".format(factory)) ont = factory.create(handle) logging.info("Created ont: {}".format(ont)) g = ont.get_filtered_graph(relations=args.properties) w = GraphRenderer.create(args.to) nodes = set() display = args.display # query all IDs, gathering associations assocs = [] for id in args.ids: this_assocs, facets = search_golr_wrap(id, args.category, subject_taxon=args.species, rows=1000, slim=args.slim, evidence=args.evidence, map_identifiers=args.mapids) assocs += this_assocs logging.info("Num assocs: {}".format(len(assocs))) for a in assocs: print("{}\t{}\t{}\t{}".format(a['subject'], a['subject_label'], a['relation'], ";".join(a['objects']))) if ont is not None: # gather all ontology classes used for a in assocs: objs = a['objects'] if display.find('r') > -1: pass if display.find('o') > -1: for obj in objs: nodes.add(obj) if ont is not None: nodes.update(ont.ancestors(obj)) if display.find('s') > -1: sub = a['subject'] nodes.add(sub) if ont is not None: nodes.update(ont.ancestors(sub)) # create a subgraph subg = g.subgraph(nodes) # optionally add edges between subj and obj nodes if display.find('r') > -1: for a in assocs: rel = a['relation'] sub = a['subject'] objs = a['objects'] if rel is None: rel = 'rdfs:seeAlso' for obj in objs: logging.info("Adding assoc rel {} {} {}".format(sub,obj,rel)) subg.add_edge(obj,sub,pred=rel) # display tree/graph show_graph(subg, nodes, objs, args)
[ "def", "main", "(", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "'Command line interface to python-ontobio.golr library'", "\"\"\"\n\n Provides command line interface onto the ontobio.golr python library, a high level\n abstraction layer over Monarch and GO solr indices.\n \"\"\"", ",", "formatter_class", "=", "argparse", ".", "RawTextHelpFormatter", ")", "parser", ".", "add_argument", "(", "'-r'", ",", "'--resource'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'Name of ontology'", ")", "parser", ".", "add_argument", "(", "'-d'", ",", "'--display'", ",", "type", "=", "str", ",", "default", "=", "'o'", ",", "required", "=", "False", ",", "help", "=", "'What to display: some combination of o, s, r. o=object ancestors, s=subject ancestors. If r present, draws s<->o relations '", ")", "parser", ".", "add_argument", "(", "'-o'", ",", "'--outfile'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'Path to output file'", ")", "parser", ".", "add_argument", "(", "'-t'", ",", "'--to'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'Output to (tree, dot, ...)'", ")", "parser", ".", "add_argument", "(", "'-C'", ",", "'--category'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'Category'", ")", "parser", ".", "add_argument", "(", "'-c'", ",", "'--container_properties'", ",", "nargs", "=", "'*'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'Properties to nest in graph'", ")", "parser", ".", "add_argument", "(", "'-s'", ",", "'--species'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'NCBITaxon ID'", ")", "parser", ".", "add_argument", "(", "'-e'", ",", "'--evidence'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'ECO ID'", ")", "parser", ".", "add_argument", "(", "'-G'", ",", "'--graph'", ",", "type", "=", "str", ",", "default", "=", "''", ",", "required", "=", "False", ",", "help", "=", "'Graph type. m=minimal'", ")", "parser", ".", "add_argument", "(", "'-S'", ",", "'--slim'", ",", "nargs", "=", "'*'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'Slim IDs'", ")", "parser", ".", "add_argument", "(", "'-M'", ",", "'--mapids'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'Map identifiers to this ID space, e.g. ENSEMBL'", ")", "parser", ".", "add_argument", "(", "'-p'", ",", "'--properties'", ",", "nargs", "=", "'*'", ",", "type", "=", "str", ",", "required", "=", "False", ",", "help", "=", "'Properties'", ")", "parser", ".", "add_argument", "(", "'-v'", ",", "'--verbosity'", ",", "default", "=", "0", ",", "action", "=", "'count'", ",", "help", "=", "'Increase output verbosity'", ")", "parser", ".", "add_argument", "(", "'ids'", ",", "nargs", "=", "'*'", ")", "# ontology", "args", "=", "parser", ".", "parse_args", "(", ")", "if", "args", ".", "verbosity", ">=", "2", ":", "logging", ".", "basicConfig", "(", "level", "=", "logging", ".", "DEBUG", ")", "elif", "args", ".", "verbosity", "==", "1", ":", "logging", ".", "basicConfig", "(", "level", "=", "logging", ".", "INFO", ")", "else", ":", "logging", ".", "basicConfig", "(", "level", "=", "logging", ".", "WARNING", ")", "logging", ".", "info", "(", "\"Welcome!\"", ")", "ont", "=", "None", "g", "=", "None", "handle", "=", "args", ".", "resource", "if", "handle", "is", "not", "None", ":", "logging", ".", "info", "(", "\"Handle: {}\"", ".", "format", "(", "handle", ")", ")", "factory", "=", "OntologyFactory", "(", ")", "logging", ".", "info", "(", "\"Factory: {}\"", ".", "format", "(", "factory", ")", ")", "ont", "=", "factory", ".", "create", "(", "handle", ")", "logging", ".", "info", "(", "\"Created ont: {}\"", ".", "format", "(", "ont", ")", ")", "g", "=", "ont", ".", "get_filtered_graph", "(", "relations", "=", "args", ".", "properties", ")", "w", "=", "GraphRenderer", ".", "create", "(", "args", ".", "to", ")", "nodes", "=", "set", "(", ")", "display", "=", "args", ".", "display", "# query all IDs, gathering associations", "assocs", "=", "[", "]", "for", "id", "in", "args", ".", "ids", ":", "this_assocs", ",", "facets", "=", "search_golr_wrap", "(", "id", ",", "args", ".", "category", ",", "subject_taxon", "=", "args", ".", "species", ",", "rows", "=", "1000", ",", "slim", "=", "args", ".", "slim", ",", "evidence", "=", "args", ".", "evidence", ",", "map_identifiers", "=", "args", ".", "mapids", ")", "assocs", "+=", "this_assocs", "logging", ".", "info", "(", "\"Num assocs: {}\"", ".", "format", "(", "len", "(", "assocs", ")", ")", ")", "for", "a", "in", "assocs", ":", "print", "(", "\"{}\\t{}\\t{}\\t{}\"", ".", "format", "(", "a", "[", "'subject'", "]", ",", "a", "[", "'subject_label'", "]", ",", "a", "[", "'relation'", "]", ",", "\";\"", ".", "join", "(", "a", "[", "'objects'", "]", ")", ")", ")", "if", "ont", "is", "not", "None", ":", "# gather all ontology classes used", "for", "a", "in", "assocs", ":", "objs", "=", "a", "[", "'objects'", "]", "if", "display", ".", "find", "(", "'r'", ")", ">", "-", "1", ":", "pass", "if", "display", ".", "find", "(", "'o'", ")", ">", "-", "1", ":", "for", "obj", "in", "objs", ":", "nodes", ".", "add", "(", "obj", ")", "if", "ont", "is", "not", "None", ":", "nodes", ".", "update", "(", "ont", ".", "ancestors", "(", "obj", ")", ")", "if", "display", ".", "find", "(", "'s'", ")", ">", "-", "1", ":", "sub", "=", "a", "[", "'subject'", "]", "nodes", ".", "add", "(", "sub", ")", "if", "ont", "is", "not", "None", ":", "nodes", ".", "update", "(", "ont", ".", "ancestors", "(", "sub", ")", ")", "# create a subgraph", "subg", "=", "g", ".", "subgraph", "(", "nodes", ")", "# optionally add edges between subj and obj nodes", "if", "display", ".", "find", "(", "'r'", ")", ">", "-", "1", ":", "for", "a", "in", "assocs", ":", "rel", "=", "a", "[", "'relation'", "]", "sub", "=", "a", "[", "'subject'", "]", "objs", "=", "a", "[", "'objects'", "]", "if", "rel", "is", "None", ":", "rel", "=", "'rdfs:seeAlso'", "for", "obj", "in", "objs", ":", "logging", ".", "info", "(", "\"Adding assoc rel {} {} {}\"", ".", "format", "(", "sub", ",", "obj", ",", "rel", ")", ")", "subg", ".", "add_edge", "(", "obj", ",", "sub", ",", "pred", "=", "rel", ")", "# display tree/graph", "show_graph", "(", "subg", ",", "nodes", ",", "objs", ",", "args", ")" ]
Wrapper for OGR
[ "Wrapper", "for", "OGR" ]
python
train
tomplus/kubernetes_asyncio
kubernetes_asyncio/client/api/core_v1_api.py
https://github.com/tomplus/kubernetes_asyncio/blob/f9ab15317ec921409714c7afef11aeb0f579985d/kubernetes_asyncio/client/api/core_v1_api.py#L2363-L2385
def connect_options_namespaced_pod_proxy(self, name, namespace, **kwargs): # noqa: E501 """connect_options_namespaced_pod_proxy # noqa: E501 connect OPTIONS requests to proxy of Pod # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_options_namespaced_pod_proxy(name, namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PodProxyOptions (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str path: Path is the URL path to use for the current proxy request to pod. :return: str If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.connect_options_namespaced_pod_proxy_with_http_info(name, namespace, **kwargs) # noqa: E501 else: (data) = self.connect_options_namespaced_pod_proxy_with_http_info(name, namespace, **kwargs) # noqa: E501 return data
[ "def", "connect_options_namespaced_pod_proxy", "(", "self", ",", "name", ",", "namespace", ",", "*", "*", "kwargs", ")", ":", "# noqa: E501", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'async_req'", ")", ":", "return", "self", ".", "connect_options_namespaced_pod_proxy_with_http_info", "(", "name", ",", "namespace", ",", "*", "*", "kwargs", ")", "# noqa: E501", "else", ":", "(", "data", ")", "=", "self", ".", "connect_options_namespaced_pod_proxy_with_http_info", "(", "name", ",", "namespace", ",", "*", "*", "kwargs", ")", "# noqa: E501", "return", "data" ]
connect_options_namespaced_pod_proxy # noqa: E501 connect OPTIONS requests to proxy of Pod # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_options_namespaced_pod_proxy(name, namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the PodProxyOptions (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str path: Path is the URL path to use for the current proxy request to pod. :return: str If the method is called asynchronously, returns the request thread.
[ "connect_options_namespaced_pod_proxy", "#", "noqa", ":", "E501" ]
python
train
pypa/pipenv
pipenv/vendor/cerberus/schema.py
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/vendor/cerberus/schema.py#L116-L133
def _expand_logical_shortcuts(cls, schema): """ Expand agglutinated rules in a definition-schema. :param schema: The schema-definition to expand. :return: The expanded schema-definition. """ def is_of_rule(x): return isinstance(x, _str_type) and \ x.startswith(('allof_', 'anyof_', 'noneof_', 'oneof_')) for field in schema: for of_rule in (x for x in schema[field] if is_of_rule(x)): operator, rule = of_rule.split('_') schema[field].update({operator: []}) for value in schema[field][of_rule]: schema[field][operator].append({rule: value}) del schema[field][of_rule] return schema
[ "def", "_expand_logical_shortcuts", "(", "cls", ",", "schema", ")", ":", "def", "is_of_rule", "(", "x", ")", ":", "return", "isinstance", "(", "x", ",", "_str_type", ")", "and", "x", ".", "startswith", "(", "(", "'allof_'", ",", "'anyof_'", ",", "'noneof_'", ",", "'oneof_'", ")", ")", "for", "field", "in", "schema", ":", "for", "of_rule", "in", "(", "x", "for", "x", "in", "schema", "[", "field", "]", "if", "is_of_rule", "(", "x", ")", ")", ":", "operator", ",", "rule", "=", "of_rule", ".", "split", "(", "'_'", ")", "schema", "[", "field", "]", ".", "update", "(", "{", "operator", ":", "[", "]", "}", ")", "for", "value", "in", "schema", "[", "field", "]", "[", "of_rule", "]", ":", "schema", "[", "field", "]", "[", "operator", "]", ".", "append", "(", "{", "rule", ":", "value", "}", ")", "del", "schema", "[", "field", "]", "[", "of_rule", "]", "return", "schema" ]
Expand agglutinated rules in a definition-schema. :param schema: The schema-definition to expand. :return: The expanded schema-definition.
[ "Expand", "agglutinated", "rules", "in", "a", "definition", "-", "schema", "." ]
python
train
dossier/dossier.store
dossier/store/store.py
https://github.com/dossier/dossier.store/blob/b22ffe2470bba9fcc98a30cb55b437bfa1521e7f/dossier/store/store.py#L490-L501
def _index(self, name): '''Returns index transforms for ``name``. :type name: unicode :rtype: ``{ create |--> function, transform |--> function }`` ''' name = name.decode('utf-8') try: return self._indexes[name] except KeyError: raise KeyError('Index "%s" has not been registered with ' 'this FC store.' % name)
[ "def", "_index", "(", "self", ",", "name", ")", ":", "name", "=", "name", ".", "decode", "(", "'utf-8'", ")", "try", ":", "return", "self", ".", "_indexes", "[", "name", "]", "except", "KeyError", ":", "raise", "KeyError", "(", "'Index \"%s\" has not been registered with '", "'this FC store.'", "%", "name", ")" ]
Returns index transforms for ``name``. :type name: unicode :rtype: ``{ create |--> function, transform |--> function }``
[ "Returns", "index", "transforms", "for", "name", "." ]
python
test
zyga/python-glibc
pyglibc/selectors.py
https://github.com/zyga/python-glibc/blob/d6fdb306b123a995471584a5201155c60a34448a/pyglibc/selectors.py#L229-L238
def get_epoll_events(self): """ Create a bit mask using ``EPOLL*`` family of constants. """ epoll_events = 0 if self & EVENT_READ: epoll_events |= select.EPOLLIN if self & EVENT_WRITE: epoll_events |= select.EPOLLOUT return epoll_events
[ "def", "get_epoll_events", "(", "self", ")", ":", "epoll_events", "=", "0", "if", "self", "&", "EVENT_READ", ":", "epoll_events", "|=", "select", ".", "EPOLLIN", "if", "self", "&", "EVENT_WRITE", ":", "epoll_events", "|=", "select", ".", "EPOLLOUT", "return", "epoll_events" ]
Create a bit mask using ``EPOLL*`` family of constants.
[ "Create", "a", "bit", "mask", "using", "EPOLL", "*", "family", "of", "constants", "." ]
python
train
bionikspoon/pureyaml
pureyaml/grammar/productions.py
https://github.com/bionikspoon/pureyaml/blob/784830b907ca14525c4cecdb6ae35306f6f8a877/pureyaml/grammar/productions.py#L275-L287
def p_scalar_group(self, p): """ scalar_group : SCALAR | scalar_group SCALAR """ if len(p) == 2: p[0] = (str(p[1]),) if len(p) == 3: p[0] = p[1] + (str(p[2]),) if len(p) == 4: p[0] = p[1] + (str(p[3]),)
[ "def", "p_scalar_group", "(", "self", ",", "p", ")", ":", "if", "len", "(", "p", ")", "==", "2", ":", "p", "[", "0", "]", "=", "(", "str", "(", "p", "[", "1", "]", ")", ",", ")", "if", "len", "(", "p", ")", "==", "3", ":", "p", "[", "0", "]", "=", "p", "[", "1", "]", "+", "(", "str", "(", "p", "[", "2", "]", ")", ",", ")", "if", "len", "(", "p", ")", "==", "4", ":", "p", "[", "0", "]", "=", "p", "[", "1", "]", "+", "(", "str", "(", "p", "[", "3", "]", ")", ",", ")" ]
scalar_group : SCALAR | scalar_group SCALAR
[ "scalar_group", ":", "SCALAR", "|", "scalar_group", "SCALAR" ]
python
train
postlund/pyatv
pyatv/__main__.py
https://github.com/postlund/pyatv/blob/655dfcda4e2f9d1c501540e18da4f480d8bf0e70/pyatv/__main__.py#L242-L319
async def cli_handler(loop): """Application starts here.""" parser = argparse.ArgumentParser() parser.add_argument('command', nargs='+', help='commands, help, ...') parser.add_argument('--name', help='apple tv name', dest='name', default='Apple TV') parser.add_argument('--address', help='device ip address or hostname', dest='address', default=None) parser.add_argument('--protocol', action=TransformProtocol, help='protocol to use (values: dmap, mrp)', dest='protocol', default=None) parser.add_argument('--port', help='port when connecting', dest='port', type=_in_range(0, 65535), default=0) parser.add_argument('-t', '--scan-timeout', help='timeout when scanning', dest='scan_timeout', type=_in_range(1, 100), metavar='TIMEOUT', default=3) parser.add_argument('--version', action='version', help='version of atvremote and pyatv', version='%(prog)s {0}'.format(const.__version__)) pairing = parser.add_argument_group('pairing') pairing.add_argument('--remote-name', help='remote pairing name', dest='remote_name', default='pyatv') pairing.add_argument('-p', '--pin', help='pairing pin code', dest='pin_code', metavar='PIN', default=1234, type=_in_range(0, 9999, allow_none=True)) pairing.add_argument('--pairing-guid', help='pairing guid (16 chars hex)', dest='pairing_guid', default=None) parser.add_argument('-a', '--autodiscover', action='store_true', help='automatically find a device', dest='autodiscover', default=False) parser.add_argument('--device_credentials', help='credentials to device', dest='device_credentials', default=None) airplay = parser.add_argument_group('airplay') airplay.add_argument('--airplay_credentials', help='credentials for airplay', dest='airplay_credentials', default=None) debug = parser.add_argument_group('debugging') debug.add_argument('-v', '--verbose', help='increase output verbosity', action='store_true', dest='verbose') debug.add_argument('--debug', help='print debug information', action='store_true', dest='debug') args = parser.parse_args() loglevel = logging.WARNING if args.verbose: loglevel = logging.INFO if args.debug: loglevel = logging.DEBUG logging.basicConfig(level=loglevel, format='%(levelname)s: %(message)s') logging.getLogger('requests').setLevel(logging.WARNING) cmds = retrieve_commands(GlobalCommands) if args.command[0] in cmds: glob_cmds = GlobalCommands(args, loop) return (await _exec_command( glob_cmds, args.command[0], print_result=False)) if args.autodiscover: if not await _autodiscover_device(args, loop): return 1 return await _handle_commands(args, loop) if args.address: return await _handle_commands(args, loop) logging.error('To autodiscover an Apple TV, add -a') return 1
[ "async", "def", "cli_handler", "(", "loop", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", ")", "parser", ".", "add_argument", "(", "'command'", ",", "nargs", "=", "'+'", ",", "help", "=", "'commands, help, ...'", ")", "parser", ".", "add_argument", "(", "'--name'", ",", "help", "=", "'apple tv name'", ",", "dest", "=", "'name'", ",", "default", "=", "'Apple TV'", ")", "parser", ".", "add_argument", "(", "'--address'", ",", "help", "=", "'device ip address or hostname'", ",", "dest", "=", "'address'", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--protocol'", ",", "action", "=", "TransformProtocol", ",", "help", "=", "'protocol to use (values: dmap, mrp)'", ",", "dest", "=", "'protocol'", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--port'", ",", "help", "=", "'port when connecting'", ",", "dest", "=", "'port'", ",", "type", "=", "_in_range", "(", "0", ",", "65535", ")", ",", "default", "=", "0", ")", "parser", ".", "add_argument", "(", "'-t'", ",", "'--scan-timeout'", ",", "help", "=", "'timeout when scanning'", ",", "dest", "=", "'scan_timeout'", ",", "type", "=", "_in_range", "(", "1", ",", "100", ")", ",", "metavar", "=", "'TIMEOUT'", ",", "default", "=", "3", ")", "parser", ".", "add_argument", "(", "'--version'", ",", "action", "=", "'version'", ",", "help", "=", "'version of atvremote and pyatv'", ",", "version", "=", "'%(prog)s {0}'", ".", "format", "(", "const", ".", "__version__", ")", ")", "pairing", "=", "parser", ".", "add_argument_group", "(", "'pairing'", ")", "pairing", ".", "add_argument", "(", "'--remote-name'", ",", "help", "=", "'remote pairing name'", ",", "dest", "=", "'remote_name'", ",", "default", "=", "'pyatv'", ")", "pairing", ".", "add_argument", "(", "'-p'", ",", "'--pin'", ",", "help", "=", "'pairing pin code'", ",", "dest", "=", "'pin_code'", ",", "metavar", "=", "'PIN'", ",", "default", "=", "1234", ",", "type", "=", "_in_range", "(", "0", ",", "9999", ",", "allow_none", "=", "True", ")", ")", "pairing", ".", "add_argument", "(", "'--pairing-guid'", ",", "help", "=", "'pairing guid (16 chars hex)'", ",", "dest", "=", "'pairing_guid'", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'-a'", ",", "'--autodiscover'", ",", "action", "=", "'store_true'", ",", "help", "=", "'automatically find a device'", ",", "dest", "=", "'autodiscover'", ",", "default", "=", "False", ")", "parser", ".", "add_argument", "(", "'--device_credentials'", ",", "help", "=", "'credentials to device'", ",", "dest", "=", "'device_credentials'", ",", "default", "=", "None", ")", "airplay", "=", "parser", ".", "add_argument_group", "(", "'airplay'", ")", "airplay", ".", "add_argument", "(", "'--airplay_credentials'", ",", "help", "=", "'credentials for airplay'", ",", "dest", "=", "'airplay_credentials'", ",", "default", "=", "None", ")", "debug", "=", "parser", ".", "add_argument_group", "(", "'debugging'", ")", "debug", ".", "add_argument", "(", "'-v'", ",", "'--verbose'", ",", "help", "=", "'increase output verbosity'", ",", "action", "=", "'store_true'", ",", "dest", "=", "'verbose'", ")", "debug", ".", "add_argument", "(", "'--debug'", ",", "help", "=", "'print debug information'", ",", "action", "=", "'store_true'", ",", "dest", "=", "'debug'", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "loglevel", "=", "logging", ".", "WARNING", "if", "args", ".", "verbose", ":", "loglevel", "=", "logging", ".", "INFO", "if", "args", ".", "debug", ":", "loglevel", "=", "logging", ".", "DEBUG", "logging", ".", "basicConfig", "(", "level", "=", "loglevel", ",", "format", "=", "'%(levelname)s: %(message)s'", ")", "logging", ".", "getLogger", "(", "'requests'", ")", ".", "setLevel", "(", "logging", ".", "WARNING", ")", "cmds", "=", "retrieve_commands", "(", "GlobalCommands", ")", "if", "args", ".", "command", "[", "0", "]", "in", "cmds", ":", "glob_cmds", "=", "GlobalCommands", "(", "args", ",", "loop", ")", "return", "(", "await", "_exec_command", "(", "glob_cmds", ",", "args", ".", "command", "[", "0", "]", ",", "print_result", "=", "False", ")", ")", "if", "args", ".", "autodiscover", ":", "if", "not", "await", "_autodiscover_device", "(", "args", ",", "loop", ")", ":", "return", "1", "return", "await", "_handle_commands", "(", "args", ",", "loop", ")", "if", "args", ".", "address", ":", "return", "await", "_handle_commands", "(", "args", ",", "loop", ")", "logging", ".", "error", "(", "'To autodiscover an Apple TV, add -a'", ")", "return", "1" ]
Application starts here.
[ "Application", "starts", "here", "." ]
python
train
PmagPy/PmagPy
programs/magic_gui.py
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/programs/magic_gui.py#L446-L460
def highlight_button(self, event): """ Draw a red highlight line around the event object """ wind = event.GetEventObject() pos = wind.GetPosition() size = wind.GetSize() try: dc = wx.PaintDC(self) except wx._core.PyAssertionError: # if it's not a native paint event, we can't us wx.PaintDC dc = wx.ClientDC(self) dc.SetPen(wx.Pen('red', 5, wx.SOLID)) dc.DrawRectangle(pos[0], pos[1], size[0], size[1]) event.Skip()
[ "def", "highlight_button", "(", "self", ",", "event", ")", ":", "wind", "=", "event", ".", "GetEventObject", "(", ")", "pos", "=", "wind", ".", "GetPosition", "(", ")", "size", "=", "wind", ".", "GetSize", "(", ")", "try", ":", "dc", "=", "wx", ".", "PaintDC", "(", "self", ")", "except", "wx", ".", "_core", ".", "PyAssertionError", ":", "# if it's not a native paint event, we can't us wx.PaintDC", "dc", "=", "wx", ".", "ClientDC", "(", "self", ")", "dc", ".", "SetPen", "(", "wx", ".", "Pen", "(", "'red'", ",", "5", ",", "wx", ".", "SOLID", ")", ")", "dc", ".", "DrawRectangle", "(", "pos", "[", "0", "]", ",", "pos", "[", "1", "]", ",", "size", "[", "0", "]", ",", "size", "[", "1", "]", ")", "event", ".", "Skip", "(", ")" ]
Draw a red highlight line around the event object
[ "Draw", "a", "red", "highlight", "line", "around", "the", "event", "object" ]
python
train
oscarbranson/latools
latools/latools.py
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3506-L3594
def sample_stats(self, analytes=None, filt=True, stats=['mean', 'std'], eachtrace=True, csf_dict={}): """ Calculate sample statistics. Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Included stat functions: * :func:`~latools.stat_fns.mean`: arithmetic mean * :func:`~latools.stat_fns.std`: arithmetic standard deviation * :func:`~latools.stat_fns.se`: arithmetic standard error * :func:`~latools.stat_fns.H15_mean`: Huber mean (outlier removal) * :func:`~latools.stat_fns.H15_std`: Huber standard deviation (outlier removal) * :func:`~latools.stat_fns.H15_se`: Huber standard error (outlier removal) Parameters ---------- analytes : optional, array_like or str The analyte(s) to calculate statistics for. Defaults to all analytes. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. stats : array_like take a single array_like input, and return a single statistic. list of functions or names (see above) or functions that Function should be able to cope with NaN values. eachtrace : bool Whether to calculate the statistics for each analysis spot individually, or to produce per - sample means. Default is True. Returns ------- None Adds dict to analyse object containing samples, analytes and functions and data. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] self.stats = Bunch() self.stats_calced = [] stat_fns = Bunch() stat_dict = {'mean': np.nanmean, 'std': np.nanstd, 'nanmean': np.nanmean, 'nanstd': np.nanstd, 'se': stderr, 'H15_mean': H15_mean, 'H15_std': H15_std, 'H15_se': H15_se} for s in stats: if isinstance(s, str): if s in stat_dict.keys(): self.stats_calced.append(s) stat_fns[s] = stat_dict[s] if s in csf_dict.keys(): self.stats_calced.append(s) exec(csf_dict[s]) stat_fns[s] = eval(s) elif callable(s): self.stats_calced.append(s.__name__) stat_fns[s.__name__] = s if not hasattr(self, 'custom_stat_functions'): self.custom_stat_functions = '' self.custom_stat_functions += inspect.getsource(s) + '\n\n\n\n' # calculate stats for each sample with self.pbar.set(total=len(self.samples), desc='Calculating Stats') as prog: for s in self.samples: if self.srm_identifier not in s: self.data[s].sample_stats(analytes, filt=filt, stat_fns=stat_fns, eachtrace=eachtrace) self.stats[s] = self.data[s].stats prog.update()
[ "def", "sample_stats", "(", "self", ",", "analytes", "=", "None", ",", "filt", "=", "True", ",", "stats", "=", "[", "'mean'", ",", "'std'", "]", ",", "eachtrace", "=", "True", ",", "csf_dict", "=", "{", "}", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "self", ".", "stats", "=", "Bunch", "(", ")", "self", ".", "stats_calced", "=", "[", "]", "stat_fns", "=", "Bunch", "(", ")", "stat_dict", "=", "{", "'mean'", ":", "np", ".", "nanmean", ",", "'std'", ":", "np", ".", "nanstd", ",", "'nanmean'", ":", "np", ".", "nanmean", ",", "'nanstd'", ":", "np", ".", "nanstd", ",", "'se'", ":", "stderr", ",", "'H15_mean'", ":", "H15_mean", ",", "'H15_std'", ":", "H15_std", ",", "'H15_se'", ":", "H15_se", "}", "for", "s", "in", "stats", ":", "if", "isinstance", "(", "s", ",", "str", ")", ":", "if", "s", "in", "stat_dict", ".", "keys", "(", ")", ":", "self", ".", "stats_calced", ".", "append", "(", "s", ")", "stat_fns", "[", "s", "]", "=", "stat_dict", "[", "s", "]", "if", "s", "in", "csf_dict", ".", "keys", "(", ")", ":", "self", ".", "stats_calced", ".", "append", "(", "s", ")", "exec", "(", "csf_dict", "[", "s", "]", ")", "stat_fns", "[", "s", "]", "=", "eval", "(", "s", ")", "elif", "callable", "(", "s", ")", ":", "self", ".", "stats_calced", ".", "append", "(", "s", ".", "__name__", ")", "stat_fns", "[", "s", ".", "__name__", "]", "=", "s", "if", "not", "hasattr", "(", "self", ",", "'custom_stat_functions'", ")", ":", "self", ".", "custom_stat_functions", "=", "''", "self", ".", "custom_stat_functions", "+=", "inspect", ".", "getsource", "(", "s", ")", "+", "'\\n\\n\\n\\n'", "# calculate stats for each sample", "with", "self", ".", "pbar", ".", "set", "(", "total", "=", "len", "(", "self", ".", "samples", ")", ",", "desc", "=", "'Calculating Stats'", ")", "as", "prog", ":", "for", "s", "in", "self", ".", "samples", ":", "if", "self", ".", "srm_identifier", "not", "in", "s", ":", "self", ".", "data", "[", "s", "]", ".", "sample_stats", "(", "analytes", ",", "filt", "=", "filt", ",", "stat_fns", "=", "stat_fns", ",", "eachtrace", "=", "eachtrace", ")", "self", ".", "stats", "[", "s", "]", "=", "self", ".", "data", "[", "s", "]", ".", "stats", "prog", ".", "update", "(", ")" ]
Calculate sample statistics. Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated from the 'focus' data variable, so output depends on how the data have been processed. Included stat functions: * :func:`~latools.stat_fns.mean`: arithmetic mean * :func:`~latools.stat_fns.std`: arithmetic standard deviation * :func:`~latools.stat_fns.se`: arithmetic standard error * :func:`~latools.stat_fns.H15_mean`: Huber mean (outlier removal) * :func:`~latools.stat_fns.H15_std`: Huber standard deviation (outlier removal) * :func:`~latools.stat_fns.H15_se`: Huber standard error (outlier removal) Parameters ---------- analytes : optional, array_like or str The analyte(s) to calculate statistics for. Defaults to all analytes. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. stats : array_like take a single array_like input, and return a single statistic. list of functions or names (see above) or functions that Function should be able to cope with NaN values. eachtrace : bool Whether to calculate the statistics for each analysis spot individually, or to produce per - sample means. Default is True. Returns ------- None Adds dict to analyse object containing samples, analytes and functions and data.
[ "Calculate", "sample", "statistics", "." ]
python
test
ouroboroscoding/format-oc-python
FormatOC/__init__.py
https://github.com/ouroboroscoding/format-oc-python/blob/c160b46fe4ff2c92333c776991c712de23991225/FormatOC/__init__.py#L1200-L1378
def minmax(self, minimum=None, maximum=None): """Min/Max Sets or gets the minimum and/or maximum values for the Node. For getting, returns {"minimum":mixed,"maximum":mixed} Arguments: minimum {mixed} -- The minimum value maximum {mixed} -- The maximum value Raises: TypeError, ValueError Returns: None | dict """ # If neither min or max is set, this is a getter if minimum is None and maximum is None: return {"minimum": self._minimum, "maximum": self._maximum}; # If the minimum is set if minimum != None: # If the current type is a date, datetime, ip, or time if self._type in ['base64', 'date', 'datetime', 'ip', 'time']: # Make sure the value is valid for the type if not isinstance(minimum, basestring) \ or not _typeToRegex[self._type].match(minimum): raise ValueError('__minimum__') # Else if the type is an int (unsigned, timestamp), or a string in # which the min/max are lengths elif self._type in ['int', 'string', 'timestamp', 'uint']: # If the value is not a valid int or long if not isinstance(minimum, (int, long)): # If it's a valid representation of an integer if isinstance(minimum, basestring) \ and _typeToRegex['int'].match(minimum): # Convert it minimum = int(minimum, 0) # Else, raise an error else: raise ValueError('__minimum__') # If the type is meant to be unsigned if self._type in ['base64', 'string', 'timestamp', 'uint']: # And it's below zero if minimum < 0: raise ValueError('__minimum__') # Else if the type is decimal elif self._type == 'decimal': # Store it if it's valid, else throw a ValueError try: minimum = Decimal(minimum) except ValueError: raise ValueError('__minimum__') # Else if the type is float elif self._type == 'float': # Store it if it's valid, else throw a ValueError try: minimum = float(minimum) except ValueError: raise ValueError('__minimum__') # Else if the type is price elif self._type == 'price': # If it's not a valid representation of a price if not isinstance(minimum, basestring) or not _typeToRegex['price'].match(minimum): raise ValueError('__minimum__') # Store it as a Decimal minimum = Decimal(minimum) # Else we can't have a minimum else: raise TypeError('can not set __minimum__ for ' + self._type) # Store the minimum self._minimum = minimum # If the maximum is set if maximum != None: # If the current type is a date, datetime, ip, or time if self._type in ['date', 'datetime', 'ip', 'time']: # Make sure the value is valid for the type if not isinstance(maximum, basestring) \ or not _typeToRegex[self._type].match(maximum): raise ValueError('__maximum__') # Else if the type is an int (unsigned, timestamp), or a string in # which the min/max are lengths elif self._type in ['int', 'string', 'timestamp', 'uint']: # If the value is not a valid int or long if not isinstance(maximum, (int, long)): # If it's a valid representation of an integer if isinstance(maximum, basestring) \ and _typeToRegex['int'].match(maximum): # Convert it maximum = int(maximum, 0) # Else, raise an error else: raise ValueError('__minimum__') # If the type is meant to be unsigned if self._type in ['string', 'timestamp', 'uint']: # And it's below zero if maximum < 0: raise ValueError('__maximum__') # Else if the type is decimal elif self._type == 'decimal': # Store it if it's valid, else throw a ValueError try: maximum = Decimal(maximum) except ValueError: raise ValueError('__maximum__') # Else if the type is float elif self._type == 'float': # Store it if it's valid, else throw a ValueError try: minimum = float(minimum) except ValueError: raise ValueError('__maximum__') # Else if the type is price elif self._type == 'price': # If it's not a valid representation of a price if not isinstance(maximum, basestring) or not _typeToRegex['price'].match(maximum): raise ValueError('__maximum__') # Store it as a Decimal maximum = Decimal(maximum) # Else we can't have a maximum else: raise TypeError('can not set __maximum__ for ' + self._type) # If we also have a minimum if self._minimum is not None: # If the type is an IP if self._type == 'ip': # If the min is above the max, we have a problem if self.__compare_ips(self._minimum, maximum) == 1: raise ValueError('__maximum__') # Else any other data type else: # If the min is above the max, we have a problem if self._minimum > maximum: raise ValueError('__maximum__') # Store the maximum self._maximum = maximum
[ "def", "minmax", "(", "self", ",", "minimum", "=", "None", ",", "maximum", "=", "None", ")", ":", "# If neither min or max is set, this is a getter", "if", "minimum", "is", "None", "and", "maximum", "is", "None", ":", "return", "{", "\"minimum\"", ":", "self", ".", "_minimum", ",", "\"maximum\"", ":", "self", ".", "_maximum", "}", "# If the minimum is set", "if", "minimum", "!=", "None", ":", "# If the current type is a date, datetime, ip, or time", "if", "self", ".", "_type", "in", "[", "'base64'", ",", "'date'", ",", "'datetime'", ",", "'ip'", ",", "'time'", "]", ":", "# Make sure the value is valid for the type", "if", "not", "isinstance", "(", "minimum", ",", "basestring", ")", "or", "not", "_typeToRegex", "[", "self", ".", "_type", "]", ".", "match", "(", "minimum", ")", ":", "raise", "ValueError", "(", "'__minimum__'", ")", "# Else if the type is an int (unsigned, timestamp), or a string in", "# \twhich the min/max are lengths", "elif", "self", ".", "_type", "in", "[", "'int'", ",", "'string'", ",", "'timestamp'", ",", "'uint'", "]", ":", "# If the value is not a valid int or long", "if", "not", "isinstance", "(", "minimum", ",", "(", "int", ",", "long", ")", ")", ":", "# If it's a valid representation of an integer", "if", "isinstance", "(", "minimum", ",", "basestring", ")", "and", "_typeToRegex", "[", "'int'", "]", ".", "match", "(", "minimum", ")", ":", "# Convert it", "minimum", "=", "int", "(", "minimum", ",", "0", ")", "# Else, raise an error", "else", ":", "raise", "ValueError", "(", "'__minimum__'", ")", "# If the type is meant to be unsigned", "if", "self", ".", "_type", "in", "[", "'base64'", ",", "'string'", ",", "'timestamp'", ",", "'uint'", "]", ":", "# And it's below zero", "if", "minimum", "<", "0", ":", "raise", "ValueError", "(", "'__minimum__'", ")", "# Else if the type is decimal", "elif", "self", ".", "_type", "==", "'decimal'", ":", "# Store it if it's valid, else throw a ValueError", "try", ":", "minimum", "=", "Decimal", "(", "minimum", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'__minimum__'", ")", "# Else if the type is float", "elif", "self", ".", "_type", "==", "'float'", ":", "# Store it if it's valid, else throw a ValueError", "try", ":", "minimum", "=", "float", "(", "minimum", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'__minimum__'", ")", "# Else if the type is price", "elif", "self", ".", "_type", "==", "'price'", ":", "# If it's not a valid representation of a price", "if", "not", "isinstance", "(", "minimum", ",", "basestring", ")", "or", "not", "_typeToRegex", "[", "'price'", "]", ".", "match", "(", "minimum", ")", ":", "raise", "ValueError", "(", "'__minimum__'", ")", "# Store it as a Decimal", "minimum", "=", "Decimal", "(", "minimum", ")", "# Else we can't have a minimum", "else", ":", "raise", "TypeError", "(", "'can not set __minimum__ for '", "+", "self", ".", "_type", ")", "# Store the minimum", "self", ".", "_minimum", "=", "minimum", "# If the maximum is set", "if", "maximum", "!=", "None", ":", "# If the current type is a date, datetime, ip, or time", "if", "self", ".", "_type", "in", "[", "'date'", ",", "'datetime'", ",", "'ip'", ",", "'time'", "]", ":", "# Make sure the value is valid for the type", "if", "not", "isinstance", "(", "maximum", ",", "basestring", ")", "or", "not", "_typeToRegex", "[", "self", ".", "_type", "]", ".", "match", "(", "maximum", ")", ":", "raise", "ValueError", "(", "'__maximum__'", ")", "# Else if the type is an int (unsigned, timestamp), or a string in", "# \twhich the min/max are lengths", "elif", "self", ".", "_type", "in", "[", "'int'", ",", "'string'", ",", "'timestamp'", ",", "'uint'", "]", ":", "# If the value is not a valid int or long", "if", "not", "isinstance", "(", "maximum", ",", "(", "int", ",", "long", ")", ")", ":", "# If it's a valid representation of an integer", "if", "isinstance", "(", "maximum", ",", "basestring", ")", "and", "_typeToRegex", "[", "'int'", "]", ".", "match", "(", "maximum", ")", ":", "# Convert it", "maximum", "=", "int", "(", "maximum", ",", "0", ")", "# Else, raise an error", "else", ":", "raise", "ValueError", "(", "'__minimum__'", ")", "# If the type is meant to be unsigned", "if", "self", ".", "_type", "in", "[", "'string'", ",", "'timestamp'", ",", "'uint'", "]", ":", "# And it's below zero", "if", "maximum", "<", "0", ":", "raise", "ValueError", "(", "'__maximum__'", ")", "# Else if the type is decimal", "elif", "self", ".", "_type", "==", "'decimal'", ":", "# Store it if it's valid, else throw a ValueError", "try", ":", "maximum", "=", "Decimal", "(", "maximum", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'__maximum__'", ")", "# Else if the type is float", "elif", "self", ".", "_type", "==", "'float'", ":", "# Store it if it's valid, else throw a ValueError", "try", ":", "minimum", "=", "float", "(", "minimum", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'__maximum__'", ")", "# Else if the type is price", "elif", "self", ".", "_type", "==", "'price'", ":", "# If it's not a valid representation of a price", "if", "not", "isinstance", "(", "maximum", ",", "basestring", ")", "or", "not", "_typeToRegex", "[", "'price'", "]", ".", "match", "(", "maximum", ")", ":", "raise", "ValueError", "(", "'__maximum__'", ")", "# Store it as a Decimal", "maximum", "=", "Decimal", "(", "maximum", ")", "# Else we can't have a maximum", "else", ":", "raise", "TypeError", "(", "'can not set __maximum__ for '", "+", "self", ".", "_type", ")", "# If we also have a minimum", "if", "self", ".", "_minimum", "is", "not", "None", ":", "# If the type is an IP", "if", "self", ".", "_type", "==", "'ip'", ":", "# If the min is above the max, we have a problem", "if", "self", ".", "__compare_ips", "(", "self", ".", "_minimum", ",", "maximum", ")", "==", "1", ":", "raise", "ValueError", "(", "'__maximum__'", ")", "# Else any other data type", "else", ":", "# If the min is above the max, we have a problem", "if", "self", ".", "_minimum", ">", "maximum", ":", "raise", "ValueError", "(", "'__maximum__'", ")", "# Store the maximum", "self", ".", "_maximum", "=", "maximum" ]
Min/Max Sets or gets the minimum and/or maximum values for the Node. For getting, returns {"minimum":mixed,"maximum":mixed} Arguments: minimum {mixed} -- The minimum value maximum {mixed} -- The maximum value Raises: TypeError, ValueError Returns: None | dict
[ "Min", "/", "Max" ]
python
train
rflamary/POT
ot/bregman.py
https://github.com/rflamary/POT/blob/c5108efc7b6702e1af3928bef1032e6b37734d1c/ot/bregman.py#L796-L965
def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInnerItermax=100, tau=1e3, stopThr=1e-9, warmstart=None, verbose=False, print_period=10, log=False, **kwargs): """ Solve the entropic regularization optimal transport problem with log stabilization and epsilon scaling. The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [2]_ but with the log stabilization proposed in [10]_ and the log scaling proposed in [9]_ algorithm 3.2 Parameters ---------- a : np.ndarray (ns,) samples weights in the source domain b : np.ndarray (nt,) samples in the target domain M : np.ndarray (ns,nt) loss matrix reg : float Regularization term >0 tau : float thershold for max value in u or v for log scaling tau : float thershold for max value in u or v for log scaling warmstart : tible of vectors if given then sarting values for alpha an beta log scalings numItermax : int, optional Max number of iterations numInnerItermax : int, optional Max number of iterationsin the inner slog stabilized sinkhorn epsilon0 : int, optional first epsilon regularization value (then exponential decrease to reg) stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns x nt) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters Examples -------- >>> import ot >>> a=[.5,.5] >>> b=[.5,.5] >>> M=[[0.,1.],[1.,0.]] >>> ot.bregman.sinkhorn_epsilon_scaling(a,b,M,1) array([[ 0.36552929, 0.13447071], [ 0.13447071, 0.36552929]]) References ---------- .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519. See Also -------- ot.lp.emd : Unregularized OT ot.optim.cg : General regularized OT """ a = np.asarray(a, dtype=np.float64) b = np.asarray(b, dtype=np.float64) M = np.asarray(M, dtype=np.float64) if len(a) == 0: a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0] if len(b) == 0: b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1] # init data na = len(a) nb = len(b) # nrelative umerical precision with 64 bits numItermin = 35 numItermax = max(numItermin, numItermax) # ensure that last velue is exact cpt = 0 if log: log = {'err': []} # we assume that no distances are null except those of the diagonal of # distances if warmstart is None: alpha, beta = np.zeros(na), np.zeros(nb) else: alpha, beta = warmstart def get_K(alpha, beta): """log space computation""" return np.exp(-(M - alpha.reshape((na, 1)) - beta.reshape((1, nb))) / reg) # print(np.min(K)) def get_reg(n): # exponential decreasing return (epsilon0 - reg) * np.exp(-n) + reg loop = 1 cpt = 0 err = 1 while loop: regi = get_reg(cpt) G, logi = sinkhorn_stabilized(a, b, M, regi, numItermax=numInnerItermax, stopThr=1e-9, warmstart=( alpha, beta), verbose=False, print_period=20, tau=tau, log=True) alpha = logi['alpha'] beta = logi['beta'] if cpt >= numItermax: loop = False if cpt % (print_period) == 0: # spsion nearly converged # we can speed up the process by checking for the error only all # the 10th iterations transp = G err = np.linalg.norm( (np.sum(transp, axis=0) - b))**2 + np.linalg.norm((np.sum(transp, axis=1) - a))**2 if log: log['err'].append(err) if verbose: if cpt % (print_period * 10) == 0: print( '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19) print('{:5d}|{:8e}|'.format(cpt, err)) if err <= stopThr and cpt > numItermin: loop = False cpt = cpt + 1 # print('err=',err,' cpt=',cpt) if log: log['alpha'] = alpha log['beta'] = beta log['warmstart'] = (log['alpha'], log['beta']) return G, log else: return G
[ "def", "sinkhorn_epsilon_scaling", "(", "a", ",", "b", ",", "M", ",", "reg", ",", "numItermax", "=", "100", ",", "epsilon0", "=", "1e4", ",", "numInnerItermax", "=", "100", ",", "tau", "=", "1e3", ",", "stopThr", "=", "1e-9", ",", "warmstart", "=", "None", ",", "verbose", "=", "False", ",", "print_period", "=", "10", ",", "log", "=", "False", ",", "*", "*", "kwargs", ")", ":", "a", "=", "np", ".", "asarray", "(", "a", ",", "dtype", "=", "np", ".", "float64", ")", "b", "=", "np", ".", "asarray", "(", "b", ",", "dtype", "=", "np", ".", "float64", ")", "M", "=", "np", ".", "asarray", "(", "M", ",", "dtype", "=", "np", ".", "float64", ")", "if", "len", "(", "a", ")", "==", "0", ":", "a", "=", "np", ".", "ones", "(", "(", "M", ".", "shape", "[", "0", "]", ",", ")", ",", "dtype", "=", "np", ".", "float64", ")", "/", "M", ".", "shape", "[", "0", "]", "if", "len", "(", "b", ")", "==", "0", ":", "b", "=", "np", ".", "ones", "(", "(", "M", ".", "shape", "[", "1", "]", ",", ")", ",", "dtype", "=", "np", ".", "float64", ")", "/", "M", ".", "shape", "[", "1", "]", "# init data", "na", "=", "len", "(", "a", ")", "nb", "=", "len", "(", "b", ")", "# nrelative umerical precision with 64 bits", "numItermin", "=", "35", "numItermax", "=", "max", "(", "numItermin", ",", "numItermax", ")", "# ensure that last velue is exact", "cpt", "=", "0", "if", "log", ":", "log", "=", "{", "'err'", ":", "[", "]", "}", "# we assume that no distances are null except those of the diagonal of", "# distances", "if", "warmstart", "is", "None", ":", "alpha", ",", "beta", "=", "np", ".", "zeros", "(", "na", ")", ",", "np", ".", "zeros", "(", "nb", ")", "else", ":", "alpha", ",", "beta", "=", "warmstart", "def", "get_K", "(", "alpha", ",", "beta", ")", ":", "\"\"\"log space computation\"\"\"", "return", "np", ".", "exp", "(", "-", "(", "M", "-", "alpha", ".", "reshape", "(", "(", "na", ",", "1", ")", ")", "-", "beta", ".", "reshape", "(", "(", "1", ",", "nb", ")", ")", ")", "/", "reg", ")", "# print(np.min(K))", "def", "get_reg", "(", "n", ")", ":", "# exponential decreasing", "return", "(", "epsilon0", "-", "reg", ")", "*", "np", ".", "exp", "(", "-", "n", ")", "+", "reg", "loop", "=", "1", "cpt", "=", "0", "err", "=", "1", "while", "loop", ":", "regi", "=", "get_reg", "(", "cpt", ")", "G", ",", "logi", "=", "sinkhorn_stabilized", "(", "a", ",", "b", ",", "M", ",", "regi", ",", "numItermax", "=", "numInnerItermax", ",", "stopThr", "=", "1e-9", ",", "warmstart", "=", "(", "alpha", ",", "beta", ")", ",", "verbose", "=", "False", ",", "print_period", "=", "20", ",", "tau", "=", "tau", ",", "log", "=", "True", ")", "alpha", "=", "logi", "[", "'alpha'", "]", "beta", "=", "logi", "[", "'beta'", "]", "if", "cpt", ">=", "numItermax", ":", "loop", "=", "False", "if", "cpt", "%", "(", "print_period", ")", "==", "0", ":", "# spsion nearly converged", "# we can speed up the process by checking for the error only all", "# the 10th iterations", "transp", "=", "G", "err", "=", "np", ".", "linalg", ".", "norm", "(", "(", "np", ".", "sum", "(", "transp", ",", "axis", "=", "0", ")", "-", "b", ")", ")", "**", "2", "+", "np", ".", "linalg", ".", "norm", "(", "(", "np", ".", "sum", "(", "transp", ",", "axis", "=", "1", ")", "-", "a", ")", ")", "**", "2", "if", "log", ":", "log", "[", "'err'", "]", ".", "append", "(", "err", ")", "if", "verbose", ":", "if", "cpt", "%", "(", "print_period", "*", "10", ")", "==", "0", ":", "print", "(", "'{:5s}|{:12s}'", ".", "format", "(", "'It.'", ",", "'Err'", ")", "+", "'\\n'", "+", "'-'", "*", "19", ")", "print", "(", "'{:5d}|{:8e}|'", ".", "format", "(", "cpt", ",", "err", ")", ")", "if", "err", "<=", "stopThr", "and", "cpt", ">", "numItermin", ":", "loop", "=", "False", "cpt", "=", "cpt", "+", "1", "# print('err=',err,' cpt=',cpt)", "if", "log", ":", "log", "[", "'alpha'", "]", "=", "alpha", "log", "[", "'beta'", "]", "=", "beta", "log", "[", "'warmstart'", "]", "=", "(", "log", "[", "'alpha'", "]", ",", "log", "[", "'beta'", "]", ")", "return", "G", ",", "log", "else", ":", "return", "G" ]
Solve the entropic regularization optimal transport problem with log stabilization and epsilon scaling. The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [2]_ but with the log stabilization proposed in [10]_ and the log scaling proposed in [9]_ algorithm 3.2 Parameters ---------- a : np.ndarray (ns,) samples weights in the source domain b : np.ndarray (nt,) samples in the target domain M : np.ndarray (ns,nt) loss matrix reg : float Regularization term >0 tau : float thershold for max value in u or v for log scaling tau : float thershold for max value in u or v for log scaling warmstart : tible of vectors if given then sarting values for alpha an beta log scalings numItermax : int, optional Max number of iterations numInnerItermax : int, optional Max number of iterationsin the inner slog stabilized sinkhorn epsilon0 : int, optional first epsilon regularization value (then exponential decrease to reg) stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns x nt) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters Examples -------- >>> import ot >>> a=[.5,.5] >>> b=[.5,.5] >>> M=[[0.,1.],[1.,0.]] >>> ot.bregman.sinkhorn_epsilon_scaling(a,b,M,1) array([[ 0.36552929, 0.13447071], [ 0.13447071, 0.36552929]]) References ---------- .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519. See Also -------- ot.lp.emd : Unregularized OT ot.optim.cg : General regularized OT
[ "Solve", "the", "entropic", "regularization", "optimal", "transport", "problem", "with", "log", "stabilization", "and", "epsilon", "scaling", "." ]
python
train
fuzeman/PyUPnP
pyupnp/util.py
https://github.com/fuzeman/PyUPnP/blob/6dea64be299952346a14300ab6cc7dac42736433/pyupnp/util.py#L24-L32
def twisted_absolute_path(path, request): """Hack to fix twisted not accepting absolute URIs""" parsed = urlparse.urlparse(request.uri) if parsed.scheme != '': path_parts = parsed.path.lstrip('/').split('/') request.prepath = path_parts[0:1] request.postpath = path_parts[1:] path = request.prepath[0] return path, request
[ "def", "twisted_absolute_path", "(", "path", ",", "request", ")", ":", "parsed", "=", "urlparse", ".", "urlparse", "(", "request", ".", "uri", ")", "if", "parsed", ".", "scheme", "!=", "''", ":", "path_parts", "=", "parsed", ".", "path", ".", "lstrip", "(", "'/'", ")", ".", "split", "(", "'/'", ")", "request", ".", "prepath", "=", "path_parts", "[", "0", ":", "1", "]", "request", ".", "postpath", "=", "path_parts", "[", "1", ":", "]", "path", "=", "request", ".", "prepath", "[", "0", "]", "return", "path", ",", "request" ]
Hack to fix twisted not accepting absolute URIs
[ "Hack", "to", "fix", "twisted", "not", "accepting", "absolute", "URIs" ]
python
train
michael-lazar/rtv
rtv/packages/praw/objects.py
https://github.com/michael-lazar/rtv/blob/ccef2af042566ad384977028cf0bde01bc524dda/rtv/packages/praw/objects.py#L1281-L1292
def lock(self): """Lock thread. Requires that the currently authenticated user has the modposts oauth scope or has user/password authentication as a mod of the subreddit. :returns: The json response from the server. """ url = self.reddit_session.config['lock'] data = {'id': self.fullname} return self.reddit_session.request_json(url, data=data)
[ "def", "lock", "(", "self", ")", ":", "url", "=", "self", ".", "reddit_session", ".", "config", "[", "'lock'", "]", "data", "=", "{", "'id'", ":", "self", ".", "fullname", "}", "return", "self", ".", "reddit_session", ".", "request_json", "(", "url", ",", "data", "=", "data", ")" ]
Lock thread. Requires that the currently authenticated user has the modposts oauth scope or has user/password authentication as a mod of the subreddit. :returns: The json response from the server.
[ "Lock", "thread", "." ]
python
train
PlaidWeb/Publ
publ/index.py
https://github.com/PlaidWeb/Publ/blob/ce7893632ddc3cb70b4978a41ffd7dd06fa13565/publ/index.py#L169-L173
def on_modified(self, event): """ on_modified handler """ logger.debug("file modified: %s", event.src_path) if not event.is_directory: self.update_file(event.src_path)
[ "def", "on_modified", "(", "self", ",", "event", ")", ":", "logger", ".", "debug", "(", "\"file modified: %s\"", ",", "event", ".", "src_path", ")", "if", "not", "event", ".", "is_directory", ":", "self", ".", "update_file", "(", "event", ".", "src_path", ")" ]
on_modified handler
[ "on_modified", "handler" ]
python
train
quantumlib/Cirq
cirq/circuits/text_diagram_drawer.py
https://github.com/quantumlib/Cirq/blob/0827da80dd7880e5b923eb69407e980ed9bc0bd2/cirq/circuits/text_diagram_drawer.py#L134-L142
def horizontal_line(self, y: Union[int, float], x1: Union[int, float], x2: Union[int, float], emphasize: bool = False ) -> None: """Adds a line from (x1, y) to (x2, y).""" x1, x2 = sorted([x1, x2]) self.horizontal_lines.append(_HorizontalLine(y, x1, x2, emphasize))
[ "def", "horizontal_line", "(", "self", ",", "y", ":", "Union", "[", "int", ",", "float", "]", ",", "x1", ":", "Union", "[", "int", ",", "float", "]", ",", "x2", ":", "Union", "[", "int", ",", "float", "]", ",", "emphasize", ":", "bool", "=", "False", ")", "->", "None", ":", "x1", ",", "x2", "=", "sorted", "(", "[", "x1", ",", "x2", "]", ")", "self", ".", "horizontal_lines", ".", "append", "(", "_HorizontalLine", "(", "y", ",", "x1", ",", "x2", ",", "emphasize", ")", ")" ]
Adds a line from (x1, y) to (x2, y).
[ "Adds", "a", "line", "from", "(", "x1", "y", ")", "to", "(", "x2", "y", ")", "." ]
python
train
cltk/cltk
cltk/tokenize/word.py
https://github.com/cltk/cltk/blob/ed9c025b7ec43c949481173251b70e05e4dffd27/cltk/tokenize/word.py#L433-L445
def tokenize_middle_high_german_words(text): """Tokenizes MHG text""" assert isinstance(text, str) # As far as I know, hyphens were never used for compounds, so the tokenizer treats all hyphens as line-breaks text = re.sub(r'-\n',r'-', text) text = re.sub(r'\n', r' ', text) text = re.sub(r'(?<=.)(?=[\.\";\,\:\[\]\(\)!&?])',r' ', text) text = re.sub(r'(?<=[\.\";\,\:\[\]\(\)!&?])(?=.)',r' ', text) text = re.sub(r'\s+',r' ', text) text = str.split(text) return text
[ "def", "tokenize_middle_high_german_words", "(", "text", ")", ":", "assert", "isinstance", "(", "text", ",", "str", ")", "# As far as I know, hyphens were never used for compounds, so the tokenizer treats all hyphens as line-breaks", "text", "=", "re", ".", "sub", "(", "r'-\\n'", ",", "r'-'", ",", "text", ")", "text", "=", "re", ".", "sub", "(", "r'\\n'", ",", "r' '", ",", "text", ")", "text", "=", "re", ".", "sub", "(", "r'(?<=.)(?=[\\.\\\";\\,\\:\\[\\]\\(\\)!&?])'", ",", "r' '", ",", "text", ")", "text", "=", "re", ".", "sub", "(", "r'(?<=[\\.\\\";\\,\\:\\[\\]\\(\\)!&?])(?=.)'", ",", "r' '", ",", "text", ")", "text", "=", "re", ".", "sub", "(", "r'\\s+'", ",", "r' '", ",", "text", ")", "text", "=", "str", ".", "split", "(", "text", ")", "return", "text" ]
Tokenizes MHG text
[ "Tokenizes", "MHG", "text" ]
python
train
Becksteinlab/GromacsWrapper
gromacs/config.py
https://github.com/Becksteinlab/GromacsWrapper/blob/d4f9a8cb6f48292732cf7c7e4ef4a6d2ccbc51b9/gromacs/config.py#L356-L361
def resource_basename(resource): """Last component of a resource (which always uses '/' as sep).""" if resource.endswith('/'): resource = resource[:-1] parts = resource.split('/') return parts[-1]
[ "def", "resource_basename", "(", "resource", ")", ":", "if", "resource", ".", "endswith", "(", "'/'", ")", ":", "resource", "=", "resource", "[", ":", "-", "1", "]", "parts", "=", "resource", ".", "split", "(", "'/'", ")", "return", "parts", "[", "-", "1", "]" ]
Last component of a resource (which always uses '/' as sep).
[ "Last", "component", "of", "a", "resource", "(", "which", "always", "uses", "/", "as", "sep", ")", "." ]
python
valid
nion-software/nionswift-io
nionswift_plugin/TIFF_IO/tifffile.py
https://github.com/nion-software/nionswift-io/blob/e9ae37f01faa9332c48b647f93afd5ef2166b155/nionswift_plugin/TIFF_IO/tifffile.py#L4808-L4846
def _gettags(self, codes=None, lock=None): """Return list of (code, TiffTag) from file.""" fh = self.parent.filehandle tiff = self.parent.tiff unpack = struct.unpack lock = NullContext() if lock is None else lock tags = [] with lock: fh.seek(self.offset) try: tagno = unpack(tiff.tagnoformat, fh.read(tiff.tagnosize))[0] if tagno > 4096: raise TiffFileError('suspicious number of tags') except Exception: raise TiffFileError( 'corrupted page list at offset %i' % self.offset) tagoffset = self.offset + tiff.tagnosize # fh.tell() tagsize = tiff.tagsize tagindex = -tagsize codeformat = tiff.tagformat1[:2] tagbytes = fh.read(tagsize * tagno) for _ in range(tagno): tagindex += tagsize code = unpack(codeformat, tagbytes[tagindex:tagindex+2])[0] if codes and code not in codes: continue try: tag = TiffTag(self.parent, tagbytes[tagindex:tagindex+tagsize], tagoffset+tagindex) except TiffFileError as exc: log.warning('%s: %s', exc.__class__.__name__, exc) continue tags.append((code, tag)) return tags
[ "def", "_gettags", "(", "self", ",", "codes", "=", "None", ",", "lock", "=", "None", ")", ":", "fh", "=", "self", ".", "parent", ".", "filehandle", "tiff", "=", "self", ".", "parent", ".", "tiff", "unpack", "=", "struct", ".", "unpack", "lock", "=", "NullContext", "(", ")", "if", "lock", "is", "None", "else", "lock", "tags", "=", "[", "]", "with", "lock", ":", "fh", ".", "seek", "(", "self", ".", "offset", ")", "try", ":", "tagno", "=", "unpack", "(", "tiff", ".", "tagnoformat", ",", "fh", ".", "read", "(", "tiff", ".", "tagnosize", ")", ")", "[", "0", "]", "if", "tagno", ">", "4096", ":", "raise", "TiffFileError", "(", "'suspicious number of tags'", ")", "except", "Exception", ":", "raise", "TiffFileError", "(", "'corrupted page list at offset %i'", "%", "self", ".", "offset", ")", "tagoffset", "=", "self", ".", "offset", "+", "tiff", ".", "tagnosize", "# fh.tell()", "tagsize", "=", "tiff", ".", "tagsize", "tagindex", "=", "-", "tagsize", "codeformat", "=", "tiff", ".", "tagformat1", "[", ":", "2", "]", "tagbytes", "=", "fh", ".", "read", "(", "tagsize", "*", "tagno", ")", "for", "_", "in", "range", "(", "tagno", ")", ":", "tagindex", "+=", "tagsize", "code", "=", "unpack", "(", "codeformat", ",", "tagbytes", "[", "tagindex", ":", "tagindex", "+", "2", "]", ")", "[", "0", "]", "if", "codes", "and", "code", "not", "in", "codes", ":", "continue", "try", ":", "tag", "=", "TiffTag", "(", "self", ".", "parent", ",", "tagbytes", "[", "tagindex", ":", "tagindex", "+", "tagsize", "]", ",", "tagoffset", "+", "tagindex", ")", "except", "TiffFileError", "as", "exc", ":", "log", ".", "warning", "(", "'%s: %s'", ",", "exc", ".", "__class__", ".", "__name__", ",", "exc", ")", "continue", "tags", ".", "append", "(", "(", "code", ",", "tag", ")", ")", "return", "tags" ]
Return list of (code, TiffTag) from file.
[ "Return", "list", "of", "(", "code", "TiffTag", ")", "from", "file", "." ]
python
train
rndusr/torf
torf/_torrent.py
https://github.com/rndusr/torf/blob/df0363232daacd3f8c91aafddaa0623b8c28cbd2/torf/_torrent.py#L555-L559
def infohash_base32(self): """Base32 encoded SHA1 info hash""" self.validate() info = self.convert()[b'info'] return b32encode(sha1(bencode(info)).digest())
[ "def", "infohash_base32", "(", "self", ")", ":", "self", ".", "validate", "(", ")", "info", "=", "self", ".", "convert", "(", ")", "[", "b'info'", "]", "return", "b32encode", "(", "sha1", "(", "bencode", "(", "info", ")", ")", ".", "digest", "(", ")", ")" ]
Base32 encoded SHA1 info hash
[ "Base32", "encoded", "SHA1", "info", "hash" ]
python
train
Infinidat/infi.clickhouse_orm
src/infi/clickhouse_orm/database.py
https://github.com/Infinidat/infi.clickhouse_orm/blob/595f2023e334e3925a5c3fbfdd6083a5992a7169/src/infi/clickhouse_orm/database.py#L154-L161
def does_table_exist(self, model_class): ''' Checks whether a table for the given model class already exists. Note that this only checks for existence of a table with the expected name. ''' sql = "SELECT count() FROM system.tables WHERE database = '%s' AND name = '%s'" r = self._send(sql % (self.db_name, model_class.table_name())) return r.text.strip() == '1'
[ "def", "does_table_exist", "(", "self", ",", "model_class", ")", ":", "sql", "=", "\"SELECT count() FROM system.tables WHERE database = '%s' AND name = '%s'\"", "r", "=", "self", ".", "_send", "(", "sql", "%", "(", "self", ".", "db_name", ",", "model_class", ".", "table_name", "(", ")", ")", ")", "return", "r", ".", "text", ".", "strip", "(", ")", "==", "'1'" ]
Checks whether a table for the given model class already exists. Note that this only checks for existence of a table with the expected name.
[ "Checks", "whether", "a", "table", "for", "the", "given", "model", "class", "already", "exists", ".", "Note", "that", "this", "only", "checks", "for", "existence", "of", "a", "table", "with", "the", "expected", "name", "." ]
python
train
SUSE-Enceladus/ipa
ipa/ipa_distro.py
https://github.com/SUSE-Enceladus/ipa/blob/0845eed0ea25a27dbb059ad1016105fa60002228/ipa/ipa_distro.py#L150-L168
def update(self, client): """Execute update command on instance.""" update_cmd = "{sudo} '{refresh};{update}'".format( sudo=self.get_sudo_exec_wrapper(), refresh=self.get_refresh_repo_cmd(), update=self.get_update_cmd() ) out = '' try: out = ipa_utils.execute_ssh_command( client, update_cmd ) except Exception as error: raise IpaDistroException( 'An error occurred updating instance: %s' % error ) return out
[ "def", "update", "(", "self", ",", "client", ")", ":", "update_cmd", "=", "\"{sudo} '{refresh};{update}'\"", ".", "format", "(", "sudo", "=", "self", ".", "get_sudo_exec_wrapper", "(", ")", ",", "refresh", "=", "self", ".", "get_refresh_repo_cmd", "(", ")", ",", "update", "=", "self", ".", "get_update_cmd", "(", ")", ")", "out", "=", "''", "try", ":", "out", "=", "ipa_utils", ".", "execute_ssh_command", "(", "client", ",", "update_cmd", ")", "except", "Exception", "as", "error", ":", "raise", "IpaDistroException", "(", "'An error occurred updating instance: %s'", "%", "error", ")", "return", "out" ]
Execute update command on instance.
[ "Execute", "update", "command", "on", "instance", "." ]
python
train
jrspruitt/ubi_reader
ubireader/ubi/block/layout.py
https://github.com/jrspruitt/ubi_reader/blob/7079dd380c1c9896bced30d6d34e8780b9181597/ubireader/ubi/block/layout.py#L74-L91
def associate_blocks(blocks, layout_pairs, start_peb_num): """Group block indexes with appropriate layout pairs Arguments: List:blocks -- List of block objects List:layout_pairs -- List of grouped layout blocks Int:start_peb_num -- Number of the PEB to start from. Returns: List -- Layout block pairs grouped with associated block ranges. """ seq_blocks = [] for layout_pair in layout_pairs: seq_blocks = sort.by_image_seq(blocks, blocks[layout_pair[0]].ec_hdr.image_seq) layout_pair.append(seq_blocks) return layout_pairs
[ "def", "associate_blocks", "(", "blocks", ",", "layout_pairs", ",", "start_peb_num", ")", ":", "seq_blocks", "=", "[", "]", "for", "layout_pair", "in", "layout_pairs", ":", "seq_blocks", "=", "sort", ".", "by_image_seq", "(", "blocks", ",", "blocks", "[", "layout_pair", "[", "0", "]", "]", ".", "ec_hdr", ".", "image_seq", ")", "layout_pair", ".", "append", "(", "seq_blocks", ")", "return", "layout_pairs" ]
Group block indexes with appropriate layout pairs Arguments: List:blocks -- List of block objects List:layout_pairs -- List of grouped layout blocks Int:start_peb_num -- Number of the PEB to start from. Returns: List -- Layout block pairs grouped with associated block ranges.
[ "Group", "block", "indexes", "with", "appropriate", "layout", "pairs" ]
python
train
rocky/python3-trepan
trepan/post_mortem.py
https://github.com/rocky/python3-trepan/blob/14e91bc0acce090d67be145b1ac040cab92ac5f3/trepan/post_mortem.py#L80-L168
def post_mortem(exc=None, frameno=1, dbg=None): """Enter debugger read loop after your program has crashed. exc is a triple like you get back from sys.exc_info. If no exc parameter, is supplied, the values from sys.last_type, sys.last_value, sys.last_traceback are used. And if these don't exist either we'll assume that sys.exc_info() contains what we want and frameno is the index location of where we want to start. 'frameno' specifies how many frames to ignore in the traceback. The default is 1, that is, we don't need to show the immediate call into post_mortem. If you have wrapper functions that call this one, you may want to increase frameno. """ if dbg is None: # Check for a global debugger object if Mdebugger.debugger_obj is None: Mdebugger.debugger_obj = Mdebugger.Trepan() pass dbg = Mdebugger.debugger_obj pass re_bogus_file = re.compile("^<.+>$") if exc[0] is None: # frameno+1 because we are about to add one more level of call # in get_last_or_frame_exception exc = get_last_or_frame_exception() if exc[0] is None: print("Can't find traceback for post_mortem " "in sys.last_traceback or sys.exec_info()") return pass exc_type, exc_value, exc_tb = exc dbg.core.execution_status = ('Terminated with unhandled exception %s' % exc_type) # tb has least-recent traceback entry first. We want the most-recent # entry. Also we'll pick out a mainpyfile name if it hasn't previously # been set. if exc_tb is not None: while exc_tb.tb_next is not None: filename = exc_tb.tb_frame.f_code.co_filename if (dbg.mainpyfile and 0 == len(dbg.mainpyfile) and not re_bogus_file.match(filename)): dbg.mainpyfile = filename pass exc_tb = exc_tb.tb_next pass dbg.core.processor.curframe = exc_tb.tb_frame pass if 0 == len(dbg.program_sys_argv): # Fake program (run command) args since we weren't called with any dbg.program_sys_argv = list(sys.argv[1:]) dbg.program_sys_argv[:0] = [dbg.mainpyfile] # if 0 == len(dbg._sys_argv): # # Fake script invocation (restart) args since we don't have any # dbg._sys_argv = list(dbg.program_sys_argv) # dbg._sys_argv[:0] = [__title__] try: # # FIXME: This can be called from except hook in which case we # # need this. Dunno why though. # try: # _pydb_trace.set_trace(t.tb_frame) # except: # pass # Possibly a bug in Python 2.5. Why f.f_lineno is # not always equal to t.tb_lineno, I don't know. f = exc_tb.tb_frame if f and f.f_lineno != exc_tb.tb_lineno : f = f.f_back dbg.core.processor.event_processor(f, 'exception', exc, 'Trepan3k:pm') except DebuggerRestart: while True: sys.argv = list(dbg._program_sys_argv) dbg.msg("Restarting %s with arguments:\n\t%s" % (dbg.filename(dbg.mainpyfile), " ".join(dbg._program_sys_argv[1:]))) try: dbg.run_script(dbg.mainpyfile) except DebuggerRestart: pass pass except DebuggerQuit: pass return
[ "def", "post_mortem", "(", "exc", "=", "None", ",", "frameno", "=", "1", ",", "dbg", "=", "None", ")", ":", "if", "dbg", "is", "None", ":", "# Check for a global debugger object", "if", "Mdebugger", ".", "debugger_obj", "is", "None", ":", "Mdebugger", ".", "debugger_obj", "=", "Mdebugger", ".", "Trepan", "(", ")", "pass", "dbg", "=", "Mdebugger", ".", "debugger_obj", "pass", "re_bogus_file", "=", "re", ".", "compile", "(", "\"^<.+>$\"", ")", "if", "exc", "[", "0", "]", "is", "None", ":", "# frameno+1 because we are about to add one more level of call", "# in get_last_or_frame_exception", "exc", "=", "get_last_or_frame_exception", "(", ")", "if", "exc", "[", "0", "]", "is", "None", ":", "print", "(", "\"Can't find traceback for post_mortem \"", "\"in sys.last_traceback or sys.exec_info()\"", ")", "return", "pass", "exc_type", ",", "exc_value", ",", "exc_tb", "=", "exc", "dbg", ".", "core", ".", "execution_status", "=", "(", "'Terminated with unhandled exception %s'", "%", "exc_type", ")", "# tb has least-recent traceback entry first. We want the most-recent", "# entry. Also we'll pick out a mainpyfile name if it hasn't previously", "# been set.", "if", "exc_tb", "is", "not", "None", ":", "while", "exc_tb", ".", "tb_next", "is", "not", "None", ":", "filename", "=", "exc_tb", ".", "tb_frame", ".", "f_code", ".", "co_filename", "if", "(", "dbg", ".", "mainpyfile", "and", "0", "==", "len", "(", "dbg", ".", "mainpyfile", ")", "and", "not", "re_bogus_file", ".", "match", "(", "filename", ")", ")", ":", "dbg", ".", "mainpyfile", "=", "filename", "pass", "exc_tb", "=", "exc_tb", ".", "tb_next", "pass", "dbg", ".", "core", ".", "processor", ".", "curframe", "=", "exc_tb", ".", "tb_frame", "pass", "if", "0", "==", "len", "(", "dbg", ".", "program_sys_argv", ")", ":", "# Fake program (run command) args since we weren't called with any", "dbg", ".", "program_sys_argv", "=", "list", "(", "sys", ".", "argv", "[", "1", ":", "]", ")", "dbg", ".", "program_sys_argv", "[", ":", "0", "]", "=", "[", "dbg", ".", "mainpyfile", "]", "# if 0 == len(dbg._sys_argv):", "# # Fake script invocation (restart) args since we don't have any", "# dbg._sys_argv = list(dbg.program_sys_argv)", "# dbg._sys_argv[:0] = [__title__]", "try", ":", "# # FIXME: This can be called from except hook in which case we", "# # need this. Dunno why though.", "# try:", "# _pydb_trace.set_trace(t.tb_frame)", "# except:", "# pass", "# Possibly a bug in Python 2.5. Why f.f_lineno is", "# not always equal to t.tb_lineno, I don't know.", "f", "=", "exc_tb", ".", "tb_frame", "if", "f", "and", "f", ".", "f_lineno", "!=", "exc_tb", ".", "tb_lineno", ":", "f", "=", "f", ".", "f_back", "dbg", ".", "core", ".", "processor", ".", "event_processor", "(", "f", ",", "'exception'", ",", "exc", ",", "'Trepan3k:pm'", ")", "except", "DebuggerRestart", ":", "while", "True", ":", "sys", ".", "argv", "=", "list", "(", "dbg", ".", "_program_sys_argv", ")", "dbg", ".", "msg", "(", "\"Restarting %s with arguments:\\n\\t%s\"", "%", "(", "dbg", ".", "filename", "(", "dbg", ".", "mainpyfile", ")", ",", "\" \"", ".", "join", "(", "dbg", ".", "_program_sys_argv", "[", "1", ":", "]", ")", ")", ")", "try", ":", "dbg", ".", "run_script", "(", "dbg", ".", "mainpyfile", ")", "except", "DebuggerRestart", ":", "pass", "pass", "except", "DebuggerQuit", ":", "pass", "return" ]
Enter debugger read loop after your program has crashed. exc is a triple like you get back from sys.exc_info. If no exc parameter, is supplied, the values from sys.last_type, sys.last_value, sys.last_traceback are used. And if these don't exist either we'll assume that sys.exc_info() contains what we want and frameno is the index location of where we want to start. 'frameno' specifies how many frames to ignore in the traceback. The default is 1, that is, we don't need to show the immediate call into post_mortem. If you have wrapper functions that call this one, you may want to increase frameno.
[ "Enter", "debugger", "read", "loop", "after", "your", "program", "has", "crashed", "." ]
python
test
dmaust/rounding
rounding/stochastic.py
https://github.com/dmaust/rounding/blob/06731dff803c30c0741e3199888e7e5266ad99cc/rounding/stochastic.py#L58-L66
def sround(x, precision=0): """ Round a single number using default non-deterministic generator. @param x: to round. @param precision: decimal places to round. """ sr = StochasticRound(precision=precision) return sr.round(x)
[ "def", "sround", "(", "x", ",", "precision", "=", "0", ")", ":", "sr", "=", "StochasticRound", "(", "precision", "=", "precision", ")", "return", "sr", ".", "round", "(", "x", ")" ]
Round a single number using default non-deterministic generator. @param x: to round. @param precision: decimal places to round.
[ "Round", "a", "single", "number", "using", "default", "non", "-", "deterministic", "generator", "." ]
python
train
exosite-labs/pyonep
pyonep/onep.py
https://github.com/exosite-labs/pyonep/blob/d27b621b00688a542e0adcc01f3e3354c05238a1/pyonep/onep.py#L501-L512
def wait(self, auth, resource, options, defer=False): """ This is a HTTP Long Polling API which allows a user to wait on specific resources to be updated. Args: auth: <cik> for authentication resource: <ResourceID> to specify what resource to wait on. options: Options for the wait including a timeout (in ms), (max 5min) and start time (null acts as when request is recieved) """ # let the server control the timeout return self._call('wait', auth, [resource, options], defer, notimeout=True)
[ "def", "wait", "(", "self", ",", "auth", ",", "resource", ",", "options", ",", "defer", "=", "False", ")", ":", "# let the server control the timeout", "return", "self", ".", "_call", "(", "'wait'", ",", "auth", ",", "[", "resource", ",", "options", "]", ",", "defer", ",", "notimeout", "=", "True", ")" ]
This is a HTTP Long Polling API which allows a user to wait on specific resources to be updated. Args: auth: <cik> for authentication resource: <ResourceID> to specify what resource to wait on. options: Options for the wait including a timeout (in ms), (max 5min) and start time (null acts as when request is recieved)
[ "This", "is", "a", "HTTP", "Long", "Polling", "API", "which", "allows", "a", "user", "to", "wait", "on", "specific", "resources", "to", "be", "updated", "." ]
python
train
commontk/ctk-cli
ctk_cli/module.py
https://github.com/commontk/ctk-cli/blob/ddd8de62b586491ad6e6750133cc1f0e11f37b11/ctk_cli/module.py#L259-L265
def parseValue(self, value): """Parse the given value and return result.""" if self.isVector(): return list(map(self._pythonType, value.split(','))) if self.typ == 'boolean': return _parseBool(value) return self._pythonType(value)
[ "def", "parseValue", "(", "self", ",", "value", ")", ":", "if", "self", ".", "isVector", "(", ")", ":", "return", "list", "(", "map", "(", "self", ".", "_pythonType", ",", "value", ".", "split", "(", "','", ")", ")", ")", "if", "self", ".", "typ", "==", "'boolean'", ":", "return", "_parseBool", "(", "value", ")", "return", "self", ".", "_pythonType", "(", "value", ")" ]
Parse the given value and return result.
[ "Parse", "the", "given", "value", "and", "return", "result", "." ]
python
train
dddomodossola/remi
remi/gui.py
https://github.com/dddomodossola/remi/blob/85206f62220662bb7ecd471042268def71ccad28/remi/gui.py#L955-L967
def repr(self, changed_widgets=None): """It is used to automatically represent the object to HTML format packs all the attributes, children and so on. Args: changed_widgets (dict): A dictionary containing a collection of tags that have to be updated. The tag that have to be updated is the key, and the value is its textual repr. """ if changed_widgets is None: changed_widgets={} local_changed_widgets = {} self._set_updated() return ''.join(('<', self.type, '>\n', self.innerHTML(local_changed_widgets), '\n</', self.type, '>'))
[ "def", "repr", "(", "self", ",", "changed_widgets", "=", "None", ")", ":", "if", "changed_widgets", "is", "None", ":", "changed_widgets", "=", "{", "}", "local_changed_widgets", "=", "{", "}", "self", ".", "_set_updated", "(", ")", "return", "''", ".", "join", "(", "(", "'<'", ",", "self", ".", "type", ",", "'>\\n'", ",", "self", ".", "innerHTML", "(", "local_changed_widgets", ")", ",", "'\\n</'", ",", "self", ".", "type", ",", "'>'", ")", ")" ]
It is used to automatically represent the object to HTML format packs all the attributes, children and so on. Args: changed_widgets (dict): A dictionary containing a collection of tags that have to be updated. The tag that have to be updated is the key, and the value is its textual repr.
[ "It", "is", "used", "to", "automatically", "represent", "the", "object", "to", "HTML", "format", "packs", "all", "the", "attributes", "children", "and", "so", "on", "." ]
python
train
hover2pi/svo_filters
svo_filters/svo.py
https://github.com/hover2pi/svo_filters/blob/f0587c4908baf636d4bdf030fa95029e8f31b975/svo_filters/svo.py#L393-L415
def flux_units(self, units): """ A setter for the flux units Parameters ---------- units: str, astropy.units.core.PrefixUnit The desired units of the zeropoint flux density """ # Check that the units are valid dtypes = (q.core.PrefixUnit, q.quantity.Quantity, q.core.CompositeUnit) if not isinstance(units, dtypes): raise ValueError(units, "units not understood.") # Check that the units changed if units != self.flux_units: # Convert to new units sfd = q.spectral_density(self.wave_eff) self.zp = self.zp.to(units, equivalencies=sfd) # Store new units self._flux_units = units
[ "def", "flux_units", "(", "self", ",", "units", ")", ":", "# Check that the units are valid", "dtypes", "=", "(", "q", ".", "core", ".", "PrefixUnit", ",", "q", ".", "quantity", ".", "Quantity", ",", "q", ".", "core", ".", "CompositeUnit", ")", "if", "not", "isinstance", "(", "units", ",", "dtypes", ")", ":", "raise", "ValueError", "(", "units", ",", "\"units not understood.\"", ")", "# Check that the units changed", "if", "units", "!=", "self", ".", "flux_units", ":", "# Convert to new units", "sfd", "=", "q", ".", "spectral_density", "(", "self", ".", "wave_eff", ")", "self", ".", "zp", "=", "self", ".", "zp", ".", "to", "(", "units", ",", "equivalencies", "=", "sfd", ")", "# Store new units", "self", ".", "_flux_units", "=", "units" ]
A setter for the flux units Parameters ---------- units: str, astropy.units.core.PrefixUnit The desired units of the zeropoint flux density
[ "A", "setter", "for", "the", "flux", "units" ]
python
train
apache/incubator-heron
heron/tools/tracker/src/python/handlers/topologieshandler.py
https://github.com/apache/incubator-heron/blob/ad10325a0febe89ad337e561ebcbe37ec5d9a5ac/heron/tools/tracker/src/python/handlers/topologieshandler.py#L60-L108
def get(self): """ get method """ # Get all the values for parameter "cluster". clusters = self.get_arguments(constants.PARAM_CLUSTER) # Get all the values for parameter "environ". environs = self.get_arguments(constants.PARAM_ENVIRON) # Get role role = self.get_argument_role() ret = {} topologies = self.tracker.topologies for topology in topologies: cluster = topology.cluster environ = topology.environ execution_state = topology.execution_state if not cluster or not execution_state or not environ: continue topo_role = execution_state.role if not topo_role: continue # This cluster is not asked for. # Note that "if not clusters", then # we show for all the clusters. if clusters and cluster not in clusters: continue # This environ is not asked for. # Note that "if not environs", then # we show for all the environs. if environs and environ not in environs: continue # This role is not asked for. # Note that "if not role", then # we show for all the roles. if role and role != topo_role: continue if cluster not in ret: ret[cluster] = {} if topo_role not in ret[cluster]: ret[cluster][topo_role] = {} if environ not in ret[cluster][topo_role]: ret[cluster][topo_role][environ] = [] ret[cluster][topo_role][environ].append(topology.name) self.write_success_response(ret)
[ "def", "get", "(", "self", ")", ":", "# Get all the values for parameter \"cluster\".", "clusters", "=", "self", ".", "get_arguments", "(", "constants", ".", "PARAM_CLUSTER", ")", "# Get all the values for parameter \"environ\".", "environs", "=", "self", ".", "get_arguments", "(", "constants", ".", "PARAM_ENVIRON", ")", "# Get role", "role", "=", "self", ".", "get_argument_role", "(", ")", "ret", "=", "{", "}", "topologies", "=", "self", ".", "tracker", ".", "topologies", "for", "topology", "in", "topologies", ":", "cluster", "=", "topology", ".", "cluster", "environ", "=", "topology", ".", "environ", "execution_state", "=", "topology", ".", "execution_state", "if", "not", "cluster", "or", "not", "execution_state", "or", "not", "environ", ":", "continue", "topo_role", "=", "execution_state", ".", "role", "if", "not", "topo_role", ":", "continue", "# This cluster is not asked for.", "# Note that \"if not clusters\", then", "# we show for all the clusters.", "if", "clusters", "and", "cluster", "not", "in", "clusters", ":", "continue", "# This environ is not asked for.", "# Note that \"if not environs\", then", "# we show for all the environs.", "if", "environs", "and", "environ", "not", "in", "environs", ":", "continue", "# This role is not asked for.", "# Note that \"if not role\", then", "# we show for all the roles.", "if", "role", "and", "role", "!=", "topo_role", ":", "continue", "if", "cluster", "not", "in", "ret", ":", "ret", "[", "cluster", "]", "=", "{", "}", "if", "topo_role", "not", "in", "ret", "[", "cluster", "]", ":", "ret", "[", "cluster", "]", "[", "topo_role", "]", "=", "{", "}", "if", "environ", "not", "in", "ret", "[", "cluster", "]", "[", "topo_role", "]", ":", "ret", "[", "cluster", "]", "[", "topo_role", "]", "[", "environ", "]", "=", "[", "]", "ret", "[", "cluster", "]", "[", "topo_role", "]", "[", "environ", "]", ".", "append", "(", "topology", ".", "name", ")", "self", ".", "write_success_response", "(", "ret", ")" ]
get method
[ "get", "method" ]
python
valid
jmfederico/django-use-email-as-username
django_use_email_as_username/management/commands/create_custom_user_app.py
https://github.com/jmfederico/django-use-email-as-username/blob/401e404b822f7ba5b3ef34b06ce095e564f32912/django_use_email_as_username/management/commands/create_custom_user_app.py#L26-L30
def handle(self, **options): """Call "startapp" to generate app with custom user model.""" template = os.path.dirname(os.path.abspath(__file__)) + "/app_template" name = options.pop("name") call_command("startapp", name, template=template, **options)
[ "def", "handle", "(", "self", ",", "*", "*", "options", ")", ":", "template", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "__file__", ")", ")", "+", "\"/app_template\"", "name", "=", "options", ".", "pop", "(", "\"name\"", ")", "call_command", "(", "\"startapp\"", ",", "name", ",", "template", "=", "template", ",", "*", "*", "options", ")" ]
Call "startapp" to generate app with custom user model.
[ "Call", "startapp", "to", "generate", "app", "with", "custom", "user", "model", "." ]
python
train
matousc89/padasip
padasip/filters/ap.py
https://github.com/matousc89/padasip/blob/c969eadd7fa181a84da0554d737fc13c6450d16f/padasip/filters/ap.py#L229-L285
def run(self, d, x): """ This function filters multiple samples in a row. **Args:** * `d` : desired value (1 dimensional array) * `x` : input matrix (2-dimensional array). Rows are samples, columns are input arrays. **Returns:** * `y` : output value (1 dimensional array). The size corresponds with the desired value. * `e` : filter error for every sample (1 dimensional array). The size corresponds with the desired value. * `w` : history of all weights (2 dimensional array). Every row is set of the weights for given sample. """ # measure the data and check if the dimmension agree N = len(x) if not len(d) == N: raise ValueError('The length of vector d and matrix x must agree.') self.n = len(x[0]) # prepare data try: x = np.array(x) d = np.array(d) except: raise ValueError('Impossible to convert x or d to a numpy array') # create empty arrays y = np.zeros(N) e = np.zeros(N) self.w_history = np.zeros((N,self.n)) # adaptation loop for k in range(N): self.w_history[k,:] = self.w # create input matrix and target vector self.x_mem[:,1:] = self.x_mem[:,:-1] self.x_mem[:,0] = x[k] self.d_mem[1:] = self.d_mem[:-1] self.d_mem[0] = d[k] # estimate output and error self.y_mem = np.dot(self.x_mem.T, self.w) self.e_mem = self.d_mem - self.y_mem y[k] = self.y_mem[0] e[k] = self.e_mem[0] # update dw_part1 = np.dot(self.x_mem.T, self.x_mem) + self.ide_eps dw_part2 = np.linalg.solve(dw_part1, self.ide) dw = np.dot(self.x_mem, np.dot(dw_part2, self.e_mem)) self.w += self.mu * dw return y, e, self.w_history
[ "def", "run", "(", "self", ",", "d", ",", "x", ")", ":", "# measure the data and check if the dimmension agree", "N", "=", "len", "(", "x", ")", "if", "not", "len", "(", "d", ")", "==", "N", ":", "raise", "ValueError", "(", "'The length of vector d and matrix x must agree.'", ")", "self", ".", "n", "=", "len", "(", "x", "[", "0", "]", ")", "# prepare data", "try", ":", "x", "=", "np", ".", "array", "(", "x", ")", "d", "=", "np", ".", "array", "(", "d", ")", "except", ":", "raise", "ValueError", "(", "'Impossible to convert x or d to a numpy array'", ")", "# create empty arrays", "y", "=", "np", ".", "zeros", "(", "N", ")", "e", "=", "np", ".", "zeros", "(", "N", ")", "self", ".", "w_history", "=", "np", ".", "zeros", "(", "(", "N", ",", "self", ".", "n", ")", ")", "# adaptation loop", "for", "k", "in", "range", "(", "N", ")", ":", "self", ".", "w_history", "[", "k", ",", ":", "]", "=", "self", ".", "w", "# create input matrix and target vector", "self", ".", "x_mem", "[", ":", ",", "1", ":", "]", "=", "self", ".", "x_mem", "[", ":", ",", ":", "-", "1", "]", "self", ".", "x_mem", "[", ":", ",", "0", "]", "=", "x", "[", "k", "]", "self", ".", "d_mem", "[", "1", ":", "]", "=", "self", ".", "d_mem", "[", ":", "-", "1", "]", "self", ".", "d_mem", "[", "0", "]", "=", "d", "[", "k", "]", "# estimate output and error", "self", ".", "y_mem", "=", "np", ".", "dot", "(", "self", ".", "x_mem", ".", "T", ",", "self", ".", "w", ")", "self", ".", "e_mem", "=", "self", ".", "d_mem", "-", "self", ".", "y_mem", "y", "[", "k", "]", "=", "self", ".", "y_mem", "[", "0", "]", "e", "[", "k", "]", "=", "self", ".", "e_mem", "[", "0", "]", "# update", "dw_part1", "=", "np", ".", "dot", "(", "self", ".", "x_mem", ".", "T", ",", "self", ".", "x_mem", ")", "+", "self", ".", "ide_eps", "dw_part2", "=", "np", ".", "linalg", ".", "solve", "(", "dw_part1", ",", "self", ".", "ide", ")", "dw", "=", "np", ".", "dot", "(", "self", ".", "x_mem", ",", "np", ".", "dot", "(", "dw_part2", ",", "self", ".", "e_mem", ")", ")", "self", ".", "w", "+=", "self", ".", "mu", "*", "dw", "return", "y", ",", "e", ",", "self", ".", "w_history" ]
This function filters multiple samples in a row. **Args:** * `d` : desired value (1 dimensional array) * `x` : input matrix (2-dimensional array). Rows are samples, columns are input arrays. **Returns:** * `y` : output value (1 dimensional array). The size corresponds with the desired value. * `e` : filter error for every sample (1 dimensional array). The size corresponds with the desired value. * `w` : history of all weights (2 dimensional array). Every row is set of the weights for given sample.
[ "This", "function", "filters", "multiple", "samples", "in", "a", "row", "." ]
python
train
GearPlug/payu-python
payu/recurring.py
https://github.com/GearPlug/payu-python/blob/47ec5c9fc89f1f89a53ec0a68c84f358bbe3394e/payu/recurring.py#L240-L303
def create_subscription(self, *, customer_id, credit_card_token, plan_code, quantity=None, installments=None, trial_days=None, immediate_payment=None, extra1=None, extra2=None, delivery_address=None, notify_url=None, recurring_bill_items=None): """ Creating a new subscription of a client to a plan. Args: customer_id: Customer that will be associated to the subscription. You can find more information in the "Customer" section of this page. credit_card_token: Customer's credit card that is selected to make the payment. You can find more information in the "Credit card" section of this page. plan_code: Plan that will be associated to the subscription. You can find more information in the "Plan" section of this page. quantity: Total amount of plans that will be acquired with the subscription. Numeric. installments: Total amount of installments to defer the payment. Numeric. trial_days: Total amount of trial days of the subscription. This variable has preference over the plan's trial days. Numeric. immediate_payment: extra1: extra2: delivery_address: notify_url: recurring_bill_items: Returns: """ payload = { "quantity": quantity, "installments": installments, "trialDays": trial_days, "immediatePayment": immediate_payment, "extra1": extra1, "extra2": extra2, "customer": { "id": customer_id, "creditCards": [ { "token": credit_card_token } ] }, "plan": { "planCode": plan_code }, "deliveryAddress": delivery_address, "notifyUrl": notify_url, "recurringBillItems": recurring_bill_items } return self.client._post(self.url + 'subscriptions', json=payload, headers=self.get_headers())
[ "def", "create_subscription", "(", "self", ",", "*", ",", "customer_id", ",", "credit_card_token", ",", "plan_code", ",", "quantity", "=", "None", ",", "installments", "=", "None", ",", "trial_days", "=", "None", ",", "immediate_payment", "=", "None", ",", "extra1", "=", "None", ",", "extra2", "=", "None", ",", "delivery_address", "=", "None", ",", "notify_url", "=", "None", ",", "recurring_bill_items", "=", "None", ")", ":", "payload", "=", "{", "\"quantity\"", ":", "quantity", ",", "\"installments\"", ":", "installments", ",", "\"trialDays\"", ":", "trial_days", ",", "\"immediatePayment\"", ":", "immediate_payment", ",", "\"extra1\"", ":", "extra1", ",", "\"extra2\"", ":", "extra2", ",", "\"customer\"", ":", "{", "\"id\"", ":", "customer_id", ",", "\"creditCards\"", ":", "[", "{", "\"token\"", ":", "credit_card_token", "}", "]", "}", ",", "\"plan\"", ":", "{", "\"planCode\"", ":", "plan_code", "}", ",", "\"deliveryAddress\"", ":", "delivery_address", ",", "\"notifyUrl\"", ":", "notify_url", ",", "\"recurringBillItems\"", ":", "recurring_bill_items", "}", "return", "self", ".", "client", ".", "_post", "(", "self", ".", "url", "+", "'subscriptions'", ",", "json", "=", "payload", ",", "headers", "=", "self", ".", "get_headers", "(", ")", ")" ]
Creating a new subscription of a client to a plan. Args: customer_id: Customer that will be associated to the subscription. You can find more information in the "Customer" section of this page. credit_card_token: Customer's credit card that is selected to make the payment. You can find more information in the "Credit card" section of this page. plan_code: Plan that will be associated to the subscription. You can find more information in the "Plan" section of this page. quantity: Total amount of plans that will be acquired with the subscription. Numeric. installments: Total amount of installments to defer the payment. Numeric. trial_days: Total amount of trial days of the subscription. This variable has preference over the plan's trial days. Numeric. immediate_payment: extra1: extra2: delivery_address: notify_url: recurring_bill_items: Returns:
[ "Creating", "a", "new", "subscription", "of", "a", "client", "to", "a", "plan", "." ]
python
train
jwodder/txtble
txtble/util.py
https://github.com/jwodder/txtble/blob/31d39ed6c15df13599c704a757cd36e1cd57cdd1/txtble/util.py#L94-L111
def with_color_stripped(f): """ A function decorator for applying to `len` or imitators thereof that strips ANSI color sequences from a string before passing it on. If any color sequences are not followed by a reset sequence, an `UnterminatedColorError` is raised. """ @wraps(f) def colored_len(s): s2 = re.sub( COLOR_BEGIN_RGX + '(.*?)' + COLOR_END_RGX, lambda m: re.sub(COLOR_BEGIN_RGX, '', m.group(1)), s, ) if re.search(COLOR_BEGIN_RGX, s2): raise UnterminatedColorError(s) return f(re.sub(COLOR_END_RGX, '', s2)) return colored_len
[ "def", "with_color_stripped", "(", "f", ")", ":", "@", "wraps", "(", "f", ")", "def", "colored_len", "(", "s", ")", ":", "s2", "=", "re", ".", "sub", "(", "COLOR_BEGIN_RGX", "+", "'(.*?)'", "+", "COLOR_END_RGX", ",", "lambda", "m", ":", "re", ".", "sub", "(", "COLOR_BEGIN_RGX", ",", "''", ",", "m", ".", "group", "(", "1", ")", ")", ",", "s", ",", ")", "if", "re", ".", "search", "(", "COLOR_BEGIN_RGX", ",", "s2", ")", ":", "raise", "UnterminatedColorError", "(", "s", ")", "return", "f", "(", "re", ".", "sub", "(", "COLOR_END_RGX", ",", "''", ",", "s2", ")", ")", "return", "colored_len" ]
A function decorator for applying to `len` or imitators thereof that strips ANSI color sequences from a string before passing it on. If any color sequences are not followed by a reset sequence, an `UnterminatedColorError` is raised.
[ "A", "function", "decorator", "for", "applying", "to", "len", "or", "imitators", "thereof", "that", "strips", "ANSI", "color", "sequences", "from", "a", "string", "before", "passing", "it", "on", ".", "If", "any", "color", "sequences", "are", "not", "followed", "by", "a", "reset", "sequence", "an", "UnterminatedColorError", "is", "raised", "." ]
python
train
spacetelescope/acstools
acstools/acszpt.py
https://github.com/spacetelescope/acstools/blob/bbf8dd080cefcbf88529ec87c420f9e1b8002554/acstools/acszpt.py#L206-L248
def _check_inputs(self): """Check the inputs to ensure they are valid. Returns ------- status : bool True if all inputs are valid, False if one is not. """ valid_detector = True valid_filter = True valid_date = True # Determine the submitted detector is valid if self.detector not in self._valid_detectors: msg = ('{} is not a valid detector option.\n' 'Please choose one of the following:\n{}\n' '{}'.format(self.detector, '\n'.join(self._valid_detectors), self._msg_div)) LOG.error(msg) valid_detector = False # Determine if the submitted filter is valid if (self.filt is not None and valid_detector and self.filt not in self.valid_filters[self.detector]): msg = ('{} is not a valid filter for {}\n' 'Please choose one of the following:\n{}\n' '{}'.format(self.filt, self.detector, '\n'.join(self.valid_filters[self.detector]), self._msg_div)) LOG.error(msg) valid_filter = False # Determine if the submitted date is valid date_check = self._check_date() if date_check is not None: LOG.error('{}\n{}'.format(date_check, self._msg_div)) valid_date = False if not valid_detector or not valid_filter or not valid_date: return False return True
[ "def", "_check_inputs", "(", "self", ")", ":", "valid_detector", "=", "True", "valid_filter", "=", "True", "valid_date", "=", "True", "# Determine the submitted detector is valid", "if", "self", ".", "detector", "not", "in", "self", ".", "_valid_detectors", ":", "msg", "=", "(", "'{} is not a valid detector option.\\n'", "'Please choose one of the following:\\n{}\\n'", "'{}'", ".", "format", "(", "self", ".", "detector", ",", "'\\n'", ".", "join", "(", "self", ".", "_valid_detectors", ")", ",", "self", ".", "_msg_div", ")", ")", "LOG", ".", "error", "(", "msg", ")", "valid_detector", "=", "False", "# Determine if the submitted filter is valid", "if", "(", "self", ".", "filt", "is", "not", "None", "and", "valid_detector", "and", "self", ".", "filt", "not", "in", "self", ".", "valid_filters", "[", "self", ".", "detector", "]", ")", ":", "msg", "=", "(", "'{} is not a valid filter for {}\\n'", "'Please choose one of the following:\\n{}\\n'", "'{}'", ".", "format", "(", "self", ".", "filt", ",", "self", ".", "detector", ",", "'\\n'", ".", "join", "(", "self", ".", "valid_filters", "[", "self", ".", "detector", "]", ")", ",", "self", ".", "_msg_div", ")", ")", "LOG", ".", "error", "(", "msg", ")", "valid_filter", "=", "False", "# Determine if the submitted date is valid", "date_check", "=", "self", ".", "_check_date", "(", ")", "if", "date_check", "is", "not", "None", ":", "LOG", ".", "error", "(", "'{}\\n{}'", ".", "format", "(", "date_check", ",", "self", ".", "_msg_div", ")", ")", "valid_date", "=", "False", "if", "not", "valid_detector", "or", "not", "valid_filter", "or", "not", "valid_date", ":", "return", "False", "return", "True" ]
Check the inputs to ensure they are valid. Returns ------- status : bool True if all inputs are valid, False if one is not.
[ "Check", "the", "inputs", "to", "ensure", "they", "are", "valid", "." ]
python
train
productml/blurr
blurr/runner/spark_runner.py
https://github.com/productml/blurr/blob/1b688b2c4a9bbbb2139c58bf0682ddc05a6c24fa/blurr/runner/spark_runner.py#L95-L115
def get_record_rdd_from_json_files(self, json_files: List[str], data_processor: DataProcessor = SimpleJsonDataProcessor(), spark_session: Optional['SparkSession'] = None) -> 'RDD': """ Reads the data from the given json_files path and converts them into the `Record`s format for processing. `data_processor` is used to process the per event data in those files to convert them into `Record`. :param json_files: List of json file paths. Regular Spark path wildcards are accepted. :param data_processor: `DataProcessor` to process each event in the json files. :param spark_session: `SparkSession` to use for execution. If None is provided then a basic `SparkSession` is created. :return: RDD containing Tuple[Identity, List[TimeAndRecord]] which can be used in `execute()` """ spark_context = get_spark_session(spark_session).sparkContext raw_records: 'RDD' = spark_context.union( [spark_context.textFile(file) for file in json_files]) return raw_records.mapPartitions( lambda x: self.get_per_identity_records(x, data_processor)).groupByKey().mapValues(list)
[ "def", "get_record_rdd_from_json_files", "(", "self", ",", "json_files", ":", "List", "[", "str", "]", ",", "data_processor", ":", "DataProcessor", "=", "SimpleJsonDataProcessor", "(", ")", ",", "spark_session", ":", "Optional", "[", "'SparkSession'", "]", "=", "None", ")", "->", "'RDD'", ":", "spark_context", "=", "get_spark_session", "(", "spark_session", ")", ".", "sparkContext", "raw_records", ":", "'RDD'", "=", "spark_context", ".", "union", "(", "[", "spark_context", ".", "textFile", "(", "file", ")", "for", "file", "in", "json_files", "]", ")", "return", "raw_records", ".", "mapPartitions", "(", "lambda", "x", ":", "self", ".", "get_per_identity_records", "(", "x", ",", "data_processor", ")", ")", ".", "groupByKey", "(", ")", ".", "mapValues", "(", "list", ")" ]
Reads the data from the given json_files path and converts them into the `Record`s format for processing. `data_processor` is used to process the per event data in those files to convert them into `Record`. :param json_files: List of json file paths. Regular Spark path wildcards are accepted. :param data_processor: `DataProcessor` to process each event in the json files. :param spark_session: `SparkSession` to use for execution. If None is provided then a basic `SparkSession` is created. :return: RDD containing Tuple[Identity, List[TimeAndRecord]] which can be used in `execute()`
[ "Reads", "the", "data", "from", "the", "given", "json_files", "path", "and", "converts", "them", "into", "the", "Record", "s", "format", "for", "processing", ".", "data_processor", "is", "used", "to", "process", "the", "per", "event", "data", "in", "those", "files", "to", "convert", "them", "into", "Record", "." ]
python
train
frictionlessdata/datapackage-pipelines
datapackage_pipelines/web/server.py
https://github.com/frictionlessdata/datapackage-pipelines/blob/3a34bbdf042d13c3bec5eef46ff360ee41403874/datapackage_pipelines/web/server.py#L292-L326
def badge_collection(pipeline_path): '''Status badge for a collection of pipelines.''' all_pipeline_ids = sorted(status.all_pipeline_ids()) if not pipeline_path.startswith('./'): pipeline_path = './' + pipeline_path # Filter pipeline ids to only include those that start with pipeline_path. path_pipeline_ids = \ [p for p in all_pipeline_ids if p.startswith(pipeline_path)] statuses = [] for pipeline_id in path_pipeline_ids: pipeline_status = status.get(pipeline_id) if pipeline_status is None: abort(404) status_text = pipeline_status.state().lower() statuses.append(status_text) status_color = 'lightgray' status_counter = Counter(statuses) if status_counter: if len(status_counter) == 1 and status_counter['succeeded'] > 0: status_color = 'brightgreen' elif status_counter['failed'] > 0: status_color = 'red' elif status_counter['failed'] == 0: status_color = 'yellow' status_text = \ ', '.join(['{} {}'.format(v, k) for k, v in status_counter.items()]) else: status_text = "not found" return _make_badge_response('pipelines', status_text, status_color)
[ "def", "badge_collection", "(", "pipeline_path", ")", ":", "all_pipeline_ids", "=", "sorted", "(", "status", ".", "all_pipeline_ids", "(", ")", ")", "if", "not", "pipeline_path", ".", "startswith", "(", "'./'", ")", ":", "pipeline_path", "=", "'./'", "+", "pipeline_path", "# Filter pipeline ids to only include those that start with pipeline_path.", "path_pipeline_ids", "=", "[", "p", "for", "p", "in", "all_pipeline_ids", "if", "p", ".", "startswith", "(", "pipeline_path", ")", "]", "statuses", "=", "[", "]", "for", "pipeline_id", "in", "path_pipeline_ids", ":", "pipeline_status", "=", "status", ".", "get", "(", "pipeline_id", ")", "if", "pipeline_status", "is", "None", ":", "abort", "(", "404", ")", "status_text", "=", "pipeline_status", ".", "state", "(", ")", ".", "lower", "(", ")", "statuses", ".", "append", "(", "status_text", ")", "status_color", "=", "'lightgray'", "status_counter", "=", "Counter", "(", "statuses", ")", "if", "status_counter", ":", "if", "len", "(", "status_counter", ")", "==", "1", "and", "status_counter", "[", "'succeeded'", "]", ">", "0", ":", "status_color", "=", "'brightgreen'", "elif", "status_counter", "[", "'failed'", "]", ">", "0", ":", "status_color", "=", "'red'", "elif", "status_counter", "[", "'failed'", "]", "==", "0", ":", "status_color", "=", "'yellow'", "status_text", "=", "', '", ".", "join", "(", "[", "'{} {}'", ".", "format", "(", "v", ",", "k", ")", "for", "k", ",", "v", "in", "status_counter", ".", "items", "(", ")", "]", ")", "else", ":", "status_text", "=", "\"not found\"", "return", "_make_badge_response", "(", "'pipelines'", ",", "status_text", ",", "status_color", ")" ]
Status badge for a collection of pipelines.
[ "Status", "badge", "for", "a", "collection", "of", "pipelines", "." ]
python
train
mwarkentin/django-watchman
watchman/decorators.py
https://github.com/mwarkentin/django-watchman/blob/6ef98ba54dc52f27e7b42d42028b59dc67550268/watchman/decorators.py#L57-L111
def token_required(view_func): """ Decorator which ensures that one of the WATCHMAN_TOKENS is provided if set. WATCHMAN_TOKEN_NAME can also be set if the token GET parameter must be customized. """ def _parse_auth_header(auth_header): """ Parse the `Authorization` header Expected format: `WATCHMAN-TOKEN Token="ABC123"` """ # TODO: Figure out full set of allowed characters # http://stackoverflow.com/questions/19028068/illegal-characters-in-http-headers # https://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2 # https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2 reg = re.compile('(\w+)[=] ?"?([\w-]+)"?') header_dict = dict(reg.findall(auth_header)) return header_dict['Token'] def _get_passed_token(request): """ Try to get the passed token, starting with the header and fall back to `GET` param """ try: auth_header = request.META['HTTP_AUTHORIZATION'] token = _parse_auth_header(auth_header) except KeyError: token = request.GET.get(settings.WATCHMAN_TOKEN_NAME) return token def _validate_token(request): if settings.WATCHMAN_TOKENS: watchman_tokens = settings.WATCHMAN_TOKENS.split(',') elif settings.WATCHMAN_TOKEN: watchman_tokens = [settings.WATCHMAN_TOKEN, ] else: return True return _get_passed_token(request) in watchman_tokens @csrf_exempt @wraps(view_func) def _wrapped_view(request, *args, **kwargs): if _validate_token(request): return view_func(request, *args, **kwargs) return HttpResponseForbidden() return _wrapped_view
[ "def", "token_required", "(", "view_func", ")", ":", "def", "_parse_auth_header", "(", "auth_header", ")", ":", "\"\"\"\n Parse the `Authorization` header\n\n Expected format: `WATCHMAN-TOKEN Token=\"ABC123\"`\n \"\"\"", "# TODO: Figure out full set of allowed characters", "# http://stackoverflow.com/questions/19028068/illegal-characters-in-http-headers", "# https://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2", "# https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2", "reg", "=", "re", ".", "compile", "(", "'(\\w+)[=] ?\"?([\\w-]+)\"?'", ")", "header_dict", "=", "dict", "(", "reg", ".", "findall", "(", "auth_header", ")", ")", "return", "header_dict", "[", "'Token'", "]", "def", "_get_passed_token", "(", "request", ")", ":", "\"\"\"\n Try to get the passed token, starting with the header and fall back to `GET` param\n \"\"\"", "try", ":", "auth_header", "=", "request", ".", "META", "[", "'HTTP_AUTHORIZATION'", "]", "token", "=", "_parse_auth_header", "(", "auth_header", ")", "except", "KeyError", ":", "token", "=", "request", ".", "GET", ".", "get", "(", "settings", ".", "WATCHMAN_TOKEN_NAME", ")", "return", "token", "def", "_validate_token", "(", "request", ")", ":", "if", "settings", ".", "WATCHMAN_TOKENS", ":", "watchman_tokens", "=", "settings", ".", "WATCHMAN_TOKENS", ".", "split", "(", "','", ")", "elif", "settings", ".", "WATCHMAN_TOKEN", ":", "watchman_tokens", "=", "[", "settings", ".", "WATCHMAN_TOKEN", ",", "]", "else", ":", "return", "True", "return", "_get_passed_token", "(", "request", ")", "in", "watchman_tokens", "@", "csrf_exempt", "@", "wraps", "(", "view_func", ")", "def", "_wrapped_view", "(", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "_validate_token", "(", "request", ")", ":", "return", "view_func", "(", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "HttpResponseForbidden", "(", ")", "return", "_wrapped_view" ]
Decorator which ensures that one of the WATCHMAN_TOKENS is provided if set. WATCHMAN_TOKEN_NAME can also be set if the token GET parameter must be customized.
[ "Decorator", "which", "ensures", "that", "one", "of", "the", "WATCHMAN_TOKENS", "is", "provided", "if", "set", "." ]
python
test
DataBiosphere/dsub
dsub/lib/dsub_util.py
https://github.com/DataBiosphere/dsub/blob/443ce31daa6023dc2fd65ef2051796e19d18d5a7/dsub/lib/dsub_util.py#L233-L246
def file_exists(file_path, credentials=None): """Check whether the file exists, on local disk or GCS. Args: file_path: The target file path; should have the 'gs://' prefix if in gcs. credentials: Optional credential to be used to load the file from gcs. Returns: True if the file's there. """ if file_path.startswith('gs://'): return _file_exists_in_gcs(file_path, credentials) else: return os.path.isfile(file_path)
[ "def", "file_exists", "(", "file_path", ",", "credentials", "=", "None", ")", ":", "if", "file_path", ".", "startswith", "(", "'gs://'", ")", ":", "return", "_file_exists_in_gcs", "(", "file_path", ",", "credentials", ")", "else", ":", "return", "os", ".", "path", ".", "isfile", "(", "file_path", ")" ]
Check whether the file exists, on local disk or GCS. Args: file_path: The target file path; should have the 'gs://' prefix if in gcs. credentials: Optional credential to be used to load the file from gcs. Returns: True if the file's there.
[ "Check", "whether", "the", "file", "exists", "on", "local", "disk", "or", "GCS", "." ]
python
valid
sci-bots/pygtkhelpers
pygtkhelpers/ui/extra_dialogs.py
https://github.com/sci-bots/pygtkhelpers/blob/3a6e6d6340221c686229cd1c951d7537dae81b07/pygtkhelpers/ui/extra_dialogs.py#L27-L39
def combobox_set_model_from_list(cb, items): """Setup a ComboBox or ComboBoxEntry based on a list of strings.""" cb.clear() model = gtk.ListStore(str) for i in items: model.append([i]) cb.set_model(model) if type(cb) == gtk.ComboBoxEntry: cb.set_text_column(0) elif type(cb) == gtk.ComboBox: cell = gtk.CellRendererText() cb.pack_start(cell, True) cb.add_attribute(cell, 'text', 0)
[ "def", "combobox_set_model_from_list", "(", "cb", ",", "items", ")", ":", "cb", ".", "clear", "(", ")", "model", "=", "gtk", ".", "ListStore", "(", "str", ")", "for", "i", "in", "items", ":", "model", ".", "append", "(", "[", "i", "]", ")", "cb", ".", "set_model", "(", "model", ")", "if", "type", "(", "cb", ")", "==", "gtk", ".", "ComboBoxEntry", ":", "cb", ".", "set_text_column", "(", "0", ")", "elif", "type", "(", "cb", ")", "==", "gtk", ".", "ComboBox", ":", "cell", "=", "gtk", ".", "CellRendererText", "(", ")", "cb", ".", "pack_start", "(", "cell", ",", "True", ")", "cb", ".", "add_attribute", "(", "cell", ",", "'text'", ",", "0", ")" ]
Setup a ComboBox or ComboBoxEntry based on a list of strings.
[ "Setup", "a", "ComboBox", "or", "ComboBoxEntry", "based", "on", "a", "list", "of", "strings", "." ]
python
train
pyopenapi/pyswagger
pyswagger/spec/base.py
https://github.com/pyopenapi/pyswagger/blob/333c4ca08e758cd2194943d9904a3eda3fe43977/pyswagger/spec/base.py#L246-L257
def update_field(self, f, obj): """ update a field :param str f: name of field to be updated. :param obj: value of field to be updated. """ n = self.get_private_name(f) if not hasattr(self, n): raise AttributeError('{0} is not in {1}'.format(n, self.__class__.__name__)) setattr(self, n, obj) self.__origin_keys.add(f)
[ "def", "update_field", "(", "self", ",", "f", ",", "obj", ")", ":", "n", "=", "self", ".", "get_private_name", "(", "f", ")", "if", "not", "hasattr", "(", "self", ",", "n", ")", ":", "raise", "AttributeError", "(", "'{0} is not in {1}'", ".", "format", "(", "n", ",", "self", ".", "__class__", ".", "__name__", ")", ")", "setattr", "(", "self", ",", "n", ",", "obj", ")", "self", ".", "__origin_keys", ".", "add", "(", "f", ")" ]
update a field :param str f: name of field to be updated. :param obj: value of field to be updated.
[ "update", "a", "field" ]
python
train
polysquare/polysquare-setuptools-lint
polysquare_setuptools_lint/__init__.py
https://github.com/polysquare/polysquare-setuptools-lint/blob/5df5a6401c7ad6a90b42230eeb99c82cc56952b6/polysquare_setuptools_lint/__init__.py#L161-L166
def _run_flake8(filename, stamp_file_name, show_lint_files): """Run flake8, cached by stamp_file_name.""" _debug_linter_status("flake8", filename, show_lint_files) return _stamped_deps(stamp_file_name, _run_flake8_internal, filename)
[ "def", "_run_flake8", "(", "filename", ",", "stamp_file_name", ",", "show_lint_files", ")", ":", "_debug_linter_status", "(", "\"flake8\"", ",", "filename", ",", "show_lint_files", ")", "return", "_stamped_deps", "(", "stamp_file_name", ",", "_run_flake8_internal", ",", "filename", ")" ]
Run flake8, cached by stamp_file_name.
[ "Run", "flake8", "cached", "by", "stamp_file_name", "." ]
python
train
cltk/cltk
cltk/prosody/old_norse/verse.py
https://github.com/cltk/cltk/blob/ed9c025b7ec43c949481173251b70e05e4dffd27/cltk/prosody/old_norse/verse.py#L293-L314
def to_phonetics(self): """ Transcribing words in verse helps find alliteration. """ if len(self.long_lines) == 0: logger.error("No text was imported") self.syllabified_text = [] else: transcriber = Transcriber(DIPHTHONGS_IPA, DIPHTHONGS_IPA_class, IPA_class, old_norse_rules) transcribed_text = [] phonological_features_text = [] for i, long_line in enumerate(self.long_lines): transcribed_text.append([]) phonological_features_text.append([]) for short_line in long_line: assert isinstance(short_line, ShortLine) or isinstance(short_line, LongLine) short_line.to_phonetics(transcriber) transcribed_text[i].append(short_line.transcribed) phonological_features_text[i].append(short_line.phonological_features_text) self.transcribed_text = transcribed_text self.phonological_features_text = phonological_features_text
[ "def", "to_phonetics", "(", "self", ")", ":", "if", "len", "(", "self", ".", "long_lines", ")", "==", "0", ":", "logger", ".", "error", "(", "\"No text was imported\"", ")", "self", ".", "syllabified_text", "=", "[", "]", "else", ":", "transcriber", "=", "Transcriber", "(", "DIPHTHONGS_IPA", ",", "DIPHTHONGS_IPA_class", ",", "IPA_class", ",", "old_norse_rules", ")", "transcribed_text", "=", "[", "]", "phonological_features_text", "=", "[", "]", "for", "i", ",", "long_line", "in", "enumerate", "(", "self", ".", "long_lines", ")", ":", "transcribed_text", ".", "append", "(", "[", "]", ")", "phonological_features_text", ".", "append", "(", "[", "]", ")", "for", "short_line", "in", "long_line", ":", "assert", "isinstance", "(", "short_line", ",", "ShortLine", ")", "or", "isinstance", "(", "short_line", ",", "LongLine", ")", "short_line", ".", "to_phonetics", "(", "transcriber", ")", "transcribed_text", "[", "i", "]", ".", "append", "(", "short_line", ".", "transcribed", ")", "phonological_features_text", "[", "i", "]", ".", "append", "(", "short_line", ".", "phonological_features_text", ")", "self", ".", "transcribed_text", "=", "transcribed_text", "self", ".", "phonological_features_text", "=", "phonological_features_text" ]
Transcribing words in verse helps find alliteration.
[ "Transcribing", "words", "in", "verse", "helps", "find", "alliteration", "." ]
python
train
has2k1/plotnine
plotnine/guides/guide_colorbar.py
https://github.com/has2k1/plotnine/blob/566e579af705367e584fb27a74e6c5199624ca89/plotnine/guides/guide_colorbar.py#L295-L321
def add_segmented_colorbar(da, colors, direction): """ Add 'non-rastered' colorbar to DrawingArea """ nbreak = len(colors) if direction == 'vertical': linewidth = da.height/nbreak verts = [None] * nbreak x1, x2 = 0, da.width for i, color in enumerate(colors): y1 = i * linewidth y2 = y1 + linewidth verts[i] = ((x1, y1), (x1, y2), (x2, y2), (x2, y1)) else: linewidth = da.width/nbreak verts = [None] * nbreak y1, y2 = 0, da.height for i, color in enumerate(colors): x1 = i * linewidth x2 = x1 + linewidth verts[i] = ((x1, y1), (x1, y2), (x2, y2), (x2, y1)) coll = mcoll.PolyCollection(verts, facecolors=colors, linewidth=0, antialiased=False) da.add_artist(coll)
[ "def", "add_segmented_colorbar", "(", "da", ",", "colors", ",", "direction", ")", ":", "nbreak", "=", "len", "(", "colors", ")", "if", "direction", "==", "'vertical'", ":", "linewidth", "=", "da", ".", "height", "/", "nbreak", "verts", "=", "[", "None", "]", "*", "nbreak", "x1", ",", "x2", "=", "0", ",", "da", ".", "width", "for", "i", ",", "color", "in", "enumerate", "(", "colors", ")", ":", "y1", "=", "i", "*", "linewidth", "y2", "=", "y1", "+", "linewidth", "verts", "[", "i", "]", "=", "(", "(", "x1", ",", "y1", ")", ",", "(", "x1", ",", "y2", ")", ",", "(", "x2", ",", "y2", ")", ",", "(", "x2", ",", "y1", ")", ")", "else", ":", "linewidth", "=", "da", ".", "width", "/", "nbreak", "verts", "=", "[", "None", "]", "*", "nbreak", "y1", ",", "y2", "=", "0", ",", "da", ".", "height", "for", "i", ",", "color", "in", "enumerate", "(", "colors", ")", ":", "x1", "=", "i", "*", "linewidth", "x2", "=", "x1", "+", "linewidth", "verts", "[", "i", "]", "=", "(", "(", "x1", ",", "y1", ")", ",", "(", "x1", ",", "y2", ")", ",", "(", "x2", ",", "y2", ")", ",", "(", "x2", ",", "y1", ")", ")", "coll", "=", "mcoll", ".", "PolyCollection", "(", "verts", ",", "facecolors", "=", "colors", ",", "linewidth", "=", "0", ",", "antialiased", "=", "False", ")", "da", ".", "add_artist", "(", "coll", ")" ]
Add 'non-rastered' colorbar to DrawingArea
[ "Add", "non", "-", "rastered", "colorbar", "to", "DrawingArea" ]
python
train
psss/did
did/utils.py
https://github.com/psss/did/blob/04e4ee6f1aa14c0cae3ba9f9803871f3f98279cb/did/utils.py#L382-L387
def enabled(self): """ True if coloring is currently enabled """ # In auto-detection mode color enabled when terminal attached if self._mode == COLOR_AUTO: return sys.stdout.isatty() return self._mode == COLOR_ON
[ "def", "enabled", "(", "self", ")", ":", "# In auto-detection mode color enabled when terminal attached", "if", "self", ".", "_mode", "==", "COLOR_AUTO", ":", "return", "sys", ".", "stdout", ".", "isatty", "(", ")", "return", "self", ".", "_mode", "==", "COLOR_ON" ]
True if coloring is currently enabled
[ "True", "if", "coloring", "is", "currently", "enabled" ]
python
train
ellmetha/django-machina
machina/apps/forum_conversation/views.py
https://github.com/ellmetha/django-machina/blob/89ac083c1eaf1cfdeae6686ee094cc86362e8c69/machina/apps/forum_conversation/views.py#L756-L776
def get_success_url(self): """ Returns the URL to redirect the user to upon valid form processing. """ messages.success(self.request, self.success_message) if self.object.is_topic_head and self.object.is_topic_tail: return reverse( 'forum:forum', kwargs={ 'slug': self.object.topic.forum.slug, 'pk': self.object.topic.forum.pk, }, ) return reverse( 'forum_conversation:topic', kwargs={ 'forum_slug': self.object.topic.forum.slug, 'forum_pk': self.object.topic.forum.pk, 'slug': self.object.topic.slug, 'pk': self.object.topic.pk, }, )
[ "def", "get_success_url", "(", "self", ")", ":", "messages", ".", "success", "(", "self", ".", "request", ",", "self", ".", "success_message", ")", "if", "self", ".", "object", ".", "is_topic_head", "and", "self", ".", "object", ".", "is_topic_tail", ":", "return", "reverse", "(", "'forum:forum'", ",", "kwargs", "=", "{", "'slug'", ":", "self", ".", "object", ".", "topic", ".", "forum", ".", "slug", ",", "'pk'", ":", "self", ".", "object", ".", "topic", ".", "forum", ".", "pk", ",", "}", ",", ")", "return", "reverse", "(", "'forum_conversation:topic'", ",", "kwargs", "=", "{", "'forum_slug'", ":", "self", ".", "object", ".", "topic", ".", "forum", ".", "slug", ",", "'forum_pk'", ":", "self", ".", "object", ".", "topic", ".", "forum", ".", "pk", ",", "'slug'", ":", "self", ".", "object", ".", "topic", ".", "slug", ",", "'pk'", ":", "self", ".", "object", ".", "topic", ".", "pk", ",", "}", ",", ")" ]
Returns the URL to redirect the user to upon valid form processing.
[ "Returns", "the", "URL", "to", "redirect", "the", "user", "to", "upon", "valid", "form", "processing", "." ]
python
train
emory-libraries/eulxml
eulxml/xmlmap/cerp.py
https://github.com/emory-libraries/eulxml/blob/17d71c7d98c0cebda9932b7f13e72093805e1fe2/eulxml/xmlmap/cerp.py#L219-L314
def from_email_message(cls, message, local_id=None): ''' Convert an :class:`email.message.Message` or compatible message object into a CERP XML :class:`eulxml.xmlmap.cerp.Message`. If an id is specified, it will be stored in the Message <LocalId>. :param message: `email.message.Message` object :param id: optional message id to be set as `local_id` :returns: :class:`eulxml.xmlmap.cerp.Message` instance populated with message information ''' result = cls() if local_id is not None: result.local_id = id message_id = message.get('Message-Id') if message_id: result.message_id_supplied = True result.message_id = message_id result.mime_version = message.get('MIME-Version') dates = message.get_all('Date', []) result.orig_date_list.extend([parse_mail_date(d) for d in dates]) result.from_list.extend(message.get_all('From', [])) result.sender_list.extend(message.get_all('From', [])) try: result.to_list.extend(message.get_all('To', [])) except UnicodeError: print(repr(message['To'])) raise result.cc_list.extend(message.get_all('Cc', [])) result.bcc_list.extend(message.get_all('Bcc', [])) result.in_reply_to_list.extend(message.get_all('In-Reply-To', [])) result.references_list.extend(message.get_all('References', [])) result.subject_list.extend(message.get_all('Subject', [])) result.comments_list.extend(message.get_all('Comments', [])) result.keywords_list.extend(message.get_all('Keywords', [])) headers = [ Header(name=key, value=val) for key, val in message.items() ] result.headers.extend(headers) # FIXME: skip multipart messages for now if not message.is_multipart(): result.create_single_body() # FIXME: this is a small subset of the actual elements CERP allows. # we should add the rest of them, too. # message.get_content_type() always returns something. only # put it in the CERP if a Content-Type was explicitly specified. if message['Content-Type']: result.single_body.content_type_list.append(message.get_content_type()) if message.get_content_charset(): result.single_body.charset_list.append(message.get_content_charset()) if message.get_filename(): result.single_body.content_name_list.append(message.get_filename()) # FIXME: attaching the body_content only makes sense for text # content types. we'll eventually need a better solution for # non-text messages result.single_body.create_body_content() payload = message.get_payload(decode=False) # if not unicode, attempt to convert if isinstance(payload, six.binary_type): charset = message.get_charset() # decode according to the specified character set, if any if charset is not None: charset_decoder = codecs.getdecoder(str(charset)) payload, length = charset_decoder(payload) # otherwise, just try to convert else: payload = u(payload) # remove any control characters not allowed in XML control_char_map = dict.fromkeys(range(32)) for i in [9, 10, 13]: # preserve horizontal tab, line feed, carriage return del control_char_map[i] payload = u(payload).translate(control_char_map) result.single_body.body_content.content = payload else: # TODO: handle multipart logger.warn('CERP conversion does not yet handle multipart') # assume we've normalized newlines: result.eol = EOLMAP[os.linesep] return result
[ "def", "from_email_message", "(", "cls", ",", "message", ",", "local_id", "=", "None", ")", ":", "result", "=", "cls", "(", ")", "if", "local_id", "is", "not", "None", ":", "result", ".", "local_id", "=", "id", "message_id", "=", "message", ".", "get", "(", "'Message-Id'", ")", "if", "message_id", ":", "result", ".", "message_id_supplied", "=", "True", "result", ".", "message_id", "=", "message_id", "result", ".", "mime_version", "=", "message", ".", "get", "(", "'MIME-Version'", ")", "dates", "=", "message", ".", "get_all", "(", "'Date'", ",", "[", "]", ")", "result", ".", "orig_date_list", ".", "extend", "(", "[", "parse_mail_date", "(", "d", ")", "for", "d", "in", "dates", "]", ")", "result", ".", "from_list", ".", "extend", "(", "message", ".", "get_all", "(", "'From'", ",", "[", "]", ")", ")", "result", ".", "sender_list", ".", "extend", "(", "message", ".", "get_all", "(", "'From'", ",", "[", "]", ")", ")", "try", ":", "result", ".", "to_list", ".", "extend", "(", "message", ".", "get_all", "(", "'To'", ",", "[", "]", ")", ")", "except", "UnicodeError", ":", "print", "(", "repr", "(", "message", "[", "'To'", "]", ")", ")", "raise", "result", ".", "cc_list", ".", "extend", "(", "message", ".", "get_all", "(", "'Cc'", ",", "[", "]", ")", ")", "result", ".", "bcc_list", ".", "extend", "(", "message", ".", "get_all", "(", "'Bcc'", ",", "[", "]", ")", ")", "result", ".", "in_reply_to_list", ".", "extend", "(", "message", ".", "get_all", "(", "'In-Reply-To'", ",", "[", "]", ")", ")", "result", ".", "references_list", ".", "extend", "(", "message", ".", "get_all", "(", "'References'", ",", "[", "]", ")", ")", "result", ".", "subject_list", ".", "extend", "(", "message", ".", "get_all", "(", "'Subject'", ",", "[", "]", ")", ")", "result", ".", "comments_list", ".", "extend", "(", "message", ".", "get_all", "(", "'Comments'", ",", "[", "]", ")", ")", "result", ".", "keywords_list", ".", "extend", "(", "message", ".", "get_all", "(", "'Keywords'", ",", "[", "]", ")", ")", "headers", "=", "[", "Header", "(", "name", "=", "key", ",", "value", "=", "val", ")", "for", "key", ",", "val", "in", "message", ".", "items", "(", ")", "]", "result", ".", "headers", ".", "extend", "(", "headers", ")", "# FIXME: skip multipart messages for now", "if", "not", "message", ".", "is_multipart", "(", ")", ":", "result", ".", "create_single_body", "(", ")", "# FIXME: this is a small subset of the actual elements CERP allows.", "# we should add the rest of them, too.", "# message.get_content_type() always returns something. only", "# put it in the CERP if a Content-Type was explicitly specified.", "if", "message", "[", "'Content-Type'", "]", ":", "result", ".", "single_body", ".", "content_type_list", ".", "append", "(", "message", ".", "get_content_type", "(", ")", ")", "if", "message", ".", "get_content_charset", "(", ")", ":", "result", ".", "single_body", ".", "charset_list", ".", "append", "(", "message", ".", "get_content_charset", "(", ")", ")", "if", "message", ".", "get_filename", "(", ")", ":", "result", ".", "single_body", ".", "content_name_list", ".", "append", "(", "message", ".", "get_filename", "(", ")", ")", "# FIXME: attaching the body_content only makes sense for text", "# content types. we'll eventually need a better solution for", "# non-text messages", "result", ".", "single_body", ".", "create_body_content", "(", ")", "payload", "=", "message", ".", "get_payload", "(", "decode", "=", "False", ")", "# if not unicode, attempt to convert", "if", "isinstance", "(", "payload", ",", "six", ".", "binary_type", ")", ":", "charset", "=", "message", ".", "get_charset", "(", ")", "# decode according to the specified character set, if any", "if", "charset", "is", "not", "None", ":", "charset_decoder", "=", "codecs", ".", "getdecoder", "(", "str", "(", "charset", ")", ")", "payload", ",", "length", "=", "charset_decoder", "(", "payload", ")", "# otherwise, just try to convert", "else", ":", "payload", "=", "u", "(", "payload", ")", "# remove any control characters not allowed in XML", "control_char_map", "=", "dict", ".", "fromkeys", "(", "range", "(", "32", ")", ")", "for", "i", "in", "[", "9", ",", "10", ",", "13", "]", ":", "# preserve horizontal tab, line feed, carriage return", "del", "control_char_map", "[", "i", "]", "payload", "=", "u", "(", "payload", ")", ".", "translate", "(", "control_char_map", ")", "result", ".", "single_body", ".", "body_content", ".", "content", "=", "payload", "else", ":", "# TODO: handle multipart", "logger", ".", "warn", "(", "'CERP conversion does not yet handle multipart'", ")", "# assume we've normalized newlines:", "result", ".", "eol", "=", "EOLMAP", "[", "os", ".", "linesep", "]", "return", "result" ]
Convert an :class:`email.message.Message` or compatible message object into a CERP XML :class:`eulxml.xmlmap.cerp.Message`. If an id is specified, it will be stored in the Message <LocalId>. :param message: `email.message.Message` object :param id: optional message id to be set as `local_id` :returns: :class:`eulxml.xmlmap.cerp.Message` instance populated with message information
[ "Convert", "an", ":", "class", ":", "email", ".", "message", ".", "Message", "or", "compatible", "message", "object", "into", "a", "CERP", "XML", ":", "class", ":", "eulxml", ".", "xmlmap", ".", "cerp", ".", "Message", ".", "If", "an", "id", "is", "specified", "it", "will", "be", "stored", "in", "the", "Message", "<LocalId", ">", "." ]
python
train
jupyterhub/jupyter-server-proxy
jupyter_server_proxy/handlers.py
https://github.com/jupyterhub/jupyter-server-proxy/blob/f12a090babe3c6e37a777b7e54c7b415de5c7e18/jupyter_server_proxy/handlers.py#L343-L377
async def ensure_process(self): """ Start the process """ # We don't want multiple requests trying to start the process at the same time # FIXME: Make sure this times out properly? # Invariant here should be: when lock isn't being held, either 'proc' is in state & # running, or not. with (await self.state['proc_lock']): if 'proc' not in self.state: # FIXME: Prevent races here # FIXME: Handle graceful exits of spawned processes here cmd = self.get_cmd() server_env = os.environ.copy() # Set up extra environment variables for process server_env.update(self.get_env()) timeout = self.get_timeout() proc = SupervisedProcess(self.name, *cmd, env=server_env, ready_func=self._http_ready_func, ready_timeout=timeout, log=self.log) self.state['proc'] = proc try: await proc.start() is_ready = await proc.ready() if not is_ready: await proc.kill() raise web.HTTPError(500, 'could not start {} in time'.format(self.name)) except: # Make sure we remove proc from state in any error condition del self.state['proc'] raise
[ "async", "def", "ensure_process", "(", "self", ")", ":", "# We don't want multiple requests trying to start the process at the same time", "# FIXME: Make sure this times out properly?", "# Invariant here should be: when lock isn't being held, either 'proc' is in state &", "# running, or not.", "with", "(", "await", "self", ".", "state", "[", "'proc_lock'", "]", ")", ":", "if", "'proc'", "not", "in", "self", ".", "state", ":", "# FIXME: Prevent races here", "# FIXME: Handle graceful exits of spawned processes here", "cmd", "=", "self", ".", "get_cmd", "(", ")", "server_env", "=", "os", ".", "environ", ".", "copy", "(", ")", "# Set up extra environment variables for process", "server_env", ".", "update", "(", "self", ".", "get_env", "(", ")", ")", "timeout", "=", "self", ".", "get_timeout", "(", ")", "proc", "=", "SupervisedProcess", "(", "self", ".", "name", ",", "*", "cmd", ",", "env", "=", "server_env", ",", "ready_func", "=", "self", ".", "_http_ready_func", ",", "ready_timeout", "=", "timeout", ",", "log", "=", "self", ".", "log", ")", "self", ".", "state", "[", "'proc'", "]", "=", "proc", "try", ":", "await", "proc", ".", "start", "(", ")", "is_ready", "=", "await", "proc", ".", "ready", "(", ")", "if", "not", "is_ready", ":", "await", "proc", ".", "kill", "(", ")", "raise", "web", ".", "HTTPError", "(", "500", ",", "'could not start {} in time'", ".", "format", "(", "self", ".", "name", ")", ")", "except", ":", "# Make sure we remove proc from state in any error condition", "del", "self", ".", "state", "[", "'proc'", "]", "raise" ]
Start the process
[ "Start", "the", "process" ]
python
train
BerkeleyAutomation/perception
perception/kinect2_sensor.py
https://github.com/BerkeleyAutomation/perception/blob/03d9b37dd6b66896cdfe173905c9413c8c3c5df6/perception/kinect2_sensor.py#L279-L339
def _frames_and_index_map(self, skip_registration=False): """Retrieve a new frame from the Kinect and return a ColorImage, DepthImage, IrImage, and a map from depth pixels to color pixel indices. Parameters ---------- skip_registration : bool If True, the registration step is skipped. Returns ------- :obj:`tuple` of :obj:`ColorImage`, :obj:`DepthImage`, :obj:`IrImage`, :obj:`numpy.ndarray` The ColorImage, DepthImage, and IrImage of the current frame, and an ndarray that maps pixels of the depth image to the index of the corresponding pixel in the color image. Raises ------ RuntimeError If the Kinect stream is not running. """ if not self._running: raise RuntimeError('Kinect2 device %s not runnning. Cannot read frames' %(self._device_num)) # read frames frames = self._listener.waitForNewFrame() unregistered_color = frames['color'] distorted_depth = frames['depth'] ir = frames['ir'] # apply color to depth registration color_frame = self._color_frame color = unregistered_color depth = distorted_depth color_depth_map = np.zeros([depth.height, depth.width]).astype(np.int32).ravel() if not skip_registration and self._registration_mode == Kinect2RegistrationMode.COLOR_TO_DEPTH: color_frame = self._ir_frame depth = lf2.Frame(depth.width, depth.height, 4, lf2.FrameType.Depth) color = lf2.Frame(depth.width, depth.height, 4, lf2.FrameType.Color) self._registration.apply(unregistered_color, distorted_depth, depth, color, color_depth_map=color_depth_map) # convert to array (copy needed to prevent reference of deleted data color_arr = copy.copy(color.asarray()) color_arr[:,:,[0,2]] = color_arr[:,:,[2,0]] # convert BGR to RGB color_arr[:,:,0] = np.fliplr(color_arr[:,:,0]) color_arr[:,:,1] = np.fliplr(color_arr[:,:,1]) color_arr[:,:,2] = np.fliplr(color_arr[:,:,2]) color_arr[:,:,3] = np.fliplr(color_arr[:,:,3]) depth_arr = np.fliplr(copy.copy(depth.asarray())) ir_arr = np.fliplr(copy.copy(ir.asarray())) # convert meters if self._depth_mode == Kinect2DepthMode.METERS: depth_arr = depth_arr * MM_TO_METERS # Release and return self._listener.release(frames) return (ColorImage(color_arr[:,:,:3], color_frame), DepthImage(depth_arr, self._ir_frame), IrImage(ir_arr.astype(np.uint16), self._ir_frame), color_depth_map)
[ "def", "_frames_and_index_map", "(", "self", ",", "skip_registration", "=", "False", ")", ":", "if", "not", "self", ".", "_running", ":", "raise", "RuntimeError", "(", "'Kinect2 device %s not runnning. Cannot read frames'", "%", "(", "self", ".", "_device_num", ")", ")", "# read frames", "frames", "=", "self", ".", "_listener", ".", "waitForNewFrame", "(", ")", "unregistered_color", "=", "frames", "[", "'color'", "]", "distorted_depth", "=", "frames", "[", "'depth'", "]", "ir", "=", "frames", "[", "'ir'", "]", "# apply color to depth registration", "color_frame", "=", "self", ".", "_color_frame", "color", "=", "unregistered_color", "depth", "=", "distorted_depth", "color_depth_map", "=", "np", ".", "zeros", "(", "[", "depth", ".", "height", ",", "depth", ".", "width", "]", ")", ".", "astype", "(", "np", ".", "int32", ")", ".", "ravel", "(", ")", "if", "not", "skip_registration", "and", "self", ".", "_registration_mode", "==", "Kinect2RegistrationMode", ".", "COLOR_TO_DEPTH", ":", "color_frame", "=", "self", ".", "_ir_frame", "depth", "=", "lf2", ".", "Frame", "(", "depth", ".", "width", ",", "depth", ".", "height", ",", "4", ",", "lf2", ".", "FrameType", ".", "Depth", ")", "color", "=", "lf2", ".", "Frame", "(", "depth", ".", "width", ",", "depth", ".", "height", ",", "4", ",", "lf2", ".", "FrameType", ".", "Color", ")", "self", ".", "_registration", ".", "apply", "(", "unregistered_color", ",", "distorted_depth", ",", "depth", ",", "color", ",", "color_depth_map", "=", "color_depth_map", ")", "# convert to array (copy needed to prevent reference of deleted data", "color_arr", "=", "copy", ".", "copy", "(", "color", ".", "asarray", "(", ")", ")", "color_arr", "[", ":", ",", ":", ",", "[", "0", ",", "2", "]", "]", "=", "color_arr", "[", ":", ",", ":", ",", "[", "2", ",", "0", "]", "]", "# convert BGR to RGB", "color_arr", "[", ":", ",", ":", ",", "0", "]", "=", "np", ".", "fliplr", "(", "color_arr", "[", ":", ",", ":", ",", "0", "]", ")", "color_arr", "[", ":", ",", ":", ",", "1", "]", "=", "np", ".", "fliplr", "(", "color_arr", "[", ":", ",", ":", ",", "1", "]", ")", "color_arr", "[", ":", ",", ":", ",", "2", "]", "=", "np", ".", "fliplr", "(", "color_arr", "[", ":", ",", ":", ",", "2", "]", ")", "color_arr", "[", ":", ",", ":", ",", "3", "]", "=", "np", ".", "fliplr", "(", "color_arr", "[", ":", ",", ":", ",", "3", "]", ")", "depth_arr", "=", "np", ".", "fliplr", "(", "copy", ".", "copy", "(", "depth", ".", "asarray", "(", ")", ")", ")", "ir_arr", "=", "np", ".", "fliplr", "(", "copy", ".", "copy", "(", "ir", ".", "asarray", "(", ")", ")", ")", "# convert meters", "if", "self", ".", "_depth_mode", "==", "Kinect2DepthMode", ".", "METERS", ":", "depth_arr", "=", "depth_arr", "*", "MM_TO_METERS", "# Release and return", "self", ".", "_listener", ".", "release", "(", "frames", ")", "return", "(", "ColorImage", "(", "color_arr", "[", ":", ",", ":", ",", ":", "3", "]", ",", "color_frame", ")", ",", "DepthImage", "(", "depth_arr", ",", "self", ".", "_ir_frame", ")", ",", "IrImage", "(", "ir_arr", ".", "astype", "(", "np", ".", "uint16", ")", ",", "self", ".", "_ir_frame", ")", ",", "color_depth_map", ")" ]
Retrieve a new frame from the Kinect and return a ColorImage, DepthImage, IrImage, and a map from depth pixels to color pixel indices. Parameters ---------- skip_registration : bool If True, the registration step is skipped. Returns ------- :obj:`tuple` of :obj:`ColorImage`, :obj:`DepthImage`, :obj:`IrImage`, :obj:`numpy.ndarray` The ColorImage, DepthImage, and IrImage of the current frame, and an ndarray that maps pixels of the depth image to the index of the corresponding pixel in the color image. Raises ------ RuntimeError If the Kinect stream is not running.
[ "Retrieve", "a", "new", "frame", "from", "the", "Kinect", "and", "return", "a", "ColorImage", "DepthImage", "IrImage", "and", "a", "map", "from", "depth", "pixels", "to", "color", "pixel", "indices", "." ]
python
train
Josef-Friedrich/phrydy
phrydy/mediafile.py
https://github.com/Josef-Friedrich/phrydy/blob/aa13755155977b4776e49f79984f9968ac1d74dc/phrydy/mediafile.py#L2189-L2207
def bitrate(self): """The number of bits per seconds used in the audio coding (an int). If this is provided explicitly by the compressed file format, this is a precise reflection of the encoding. Otherwise, it is estimated from the on-disk file size. In this case, some imprecision is possible because the file header is incorporated in the file size. """ if hasattr(self.mgfile.info, 'bitrate') and self.mgfile.info.bitrate: # Many formats provide it explicitly. return self.mgfile.info.bitrate else: # Otherwise, we calculate bitrate from the file size. (This # is the case for all of the lossless formats.) if not self.length: # Avoid division by zero if length is not available. return 0 size = os.path.getsize(self.path) return int(size * 8 / self.length)
[ "def", "bitrate", "(", "self", ")", ":", "if", "hasattr", "(", "self", ".", "mgfile", ".", "info", ",", "'bitrate'", ")", "and", "self", ".", "mgfile", ".", "info", ".", "bitrate", ":", "# Many formats provide it explicitly.", "return", "self", ".", "mgfile", ".", "info", ".", "bitrate", "else", ":", "# Otherwise, we calculate bitrate from the file size. (This", "# is the case for all of the lossless formats.)", "if", "not", "self", ".", "length", ":", "# Avoid division by zero if length is not available.", "return", "0", "size", "=", "os", ".", "path", ".", "getsize", "(", "self", ".", "path", ")", "return", "int", "(", "size", "*", "8", "/", "self", ".", "length", ")" ]
The number of bits per seconds used in the audio coding (an int). If this is provided explicitly by the compressed file format, this is a precise reflection of the encoding. Otherwise, it is estimated from the on-disk file size. In this case, some imprecision is possible because the file header is incorporated in the file size.
[ "The", "number", "of", "bits", "per", "seconds", "used", "in", "the", "audio", "coding", "(", "an", "int", ")", ".", "If", "this", "is", "provided", "explicitly", "by", "the", "compressed", "file", "format", "this", "is", "a", "precise", "reflection", "of", "the", "encoding", ".", "Otherwise", "it", "is", "estimated", "from", "the", "on", "-", "disk", "file", "size", ".", "In", "this", "case", "some", "imprecision", "is", "possible", "because", "the", "file", "header", "is", "incorporated", "in", "the", "file", "size", "." ]
python
train
omza/azurestoragewrap
azurestoragewrap/queue.py
https://github.com/omza/azurestoragewrap/blob/976878e95d82ff0f7d8a00a5e4a7a3fb6268ab08/azurestoragewrap/queue.py#L62-L73
def getmessage(self) -> str: """ parse self into unicode string as message content """ image = {} for key, default in vars(self.__class__).items(): if not key.startswith('_') and key !='' and (not key in vars(QueueMessage).items()): if isinstance(default, datetime.date): image[key] = safe_cast(getattr(self, key, default), str, dformat=self._dateformat) if isinstance(default, datetime.datetime): image[key] = safe_cast(getattr(self, key, default), str, dformat=self._datetimeformat) else: image[key] = getattr(self, key, default) return str(image)
[ "def", "getmessage", "(", "self", ")", "->", "str", ":", "image", "=", "{", "}", "for", "key", ",", "default", "in", "vars", "(", "self", ".", "__class__", ")", ".", "items", "(", ")", ":", "if", "not", "key", ".", "startswith", "(", "'_'", ")", "and", "key", "!=", "''", "and", "(", "not", "key", "in", "vars", "(", "QueueMessage", ")", ".", "items", "(", ")", ")", ":", "if", "isinstance", "(", "default", ",", "datetime", ".", "date", ")", ":", "image", "[", "key", "]", "=", "safe_cast", "(", "getattr", "(", "self", ",", "key", ",", "default", ")", ",", "str", ",", "dformat", "=", "self", ".", "_dateformat", ")", "if", "isinstance", "(", "default", ",", "datetime", ".", "datetime", ")", ":", "image", "[", "key", "]", "=", "safe_cast", "(", "getattr", "(", "self", ",", "key", ",", "default", ")", ",", "str", ",", "dformat", "=", "self", ".", "_datetimeformat", ")", "else", ":", "image", "[", "key", "]", "=", "getattr", "(", "self", ",", "key", ",", "default", ")", "return", "str", "(", "image", ")" ]
parse self into unicode string as message content
[ "parse", "self", "into", "unicode", "string", "as", "message", "content" ]
python
train
djgagne/hagelslag
hagelslag/processing/ObjectMatcher.py
https://github.com/djgagne/hagelslag/blob/6fb6c3df90bf4867e13a97d3460b14471d107df1/hagelslag/processing/ObjectMatcher.py#L334-L348
def nonoverlap(item_a, time_a, item_b, time_b, max_value): """ Percentage of pixels in each object that do not overlap with the other object Args: item_a: STObject from the first set in ObjectMatcher time_a: Time integer being evaluated item_b: STObject from the second set in ObjectMatcher time_b: Time integer being evaluated max_value: Maximum distance value used as scaling value and upper constraint. Returns: Distance value between 0 and 1. """ return np.minimum(1 - item_a.count_overlap(time_a, item_b, time_b), max_value) / float(max_value)
[ "def", "nonoverlap", "(", "item_a", ",", "time_a", ",", "item_b", ",", "time_b", ",", "max_value", ")", ":", "return", "np", ".", "minimum", "(", "1", "-", "item_a", ".", "count_overlap", "(", "time_a", ",", "item_b", ",", "time_b", ")", ",", "max_value", ")", "/", "float", "(", "max_value", ")" ]
Percentage of pixels in each object that do not overlap with the other object Args: item_a: STObject from the first set in ObjectMatcher time_a: Time integer being evaluated item_b: STObject from the second set in ObjectMatcher time_b: Time integer being evaluated max_value: Maximum distance value used as scaling value and upper constraint. Returns: Distance value between 0 and 1.
[ "Percentage", "of", "pixels", "in", "each", "object", "that", "do", "not", "overlap", "with", "the", "other", "object" ]
python
train
allenai/allennlp
allennlp/semparse/domain_languages/nlvr_language.py
https://github.com/allenai/allennlp/blob/648a36f77db7e45784c047176074f98534c76636/allennlp/semparse/domain_languages/nlvr_language.py#L125-L199
def get_agenda_for_sentence(self, sentence: str) -> List[str]: """ Given a ``sentence``, returns a list of actions the sentence triggers as an ``agenda``. The ``agenda`` can be used while by a parser to guide the decoder. sequences as possible. This is a simplistic mapping at this point, and can be expanded. Parameters ---------- sentence : ``str`` The sentence for which an agenda will be produced. """ agenda = [] sentence = sentence.lower() if sentence.startswith("there is a box") or sentence.startswith("there is a tower "): agenda.append(self.terminal_productions["box_exists"]) elif sentence.startswith("there is a "): agenda.append(self.terminal_productions["object_exists"]) if "<Set[Box]:bool> -> box_exists" not in agenda: # These are object filters and do not apply if we have a box_exists at the top. if "touch" in sentence: if "top" in sentence: agenda.append(self.terminal_productions["touch_top"]) elif "bottom" in sentence or "base" in sentence: agenda.append(self.terminal_productions["touch_bottom"]) elif "corner" in sentence: agenda.append(self.terminal_productions["touch_corner"]) elif "right" in sentence: agenda.append(self.terminal_productions["touch_right"]) elif "left" in sentence: agenda.append(self.terminal_productions["touch_left"]) elif "wall" in sentence or "edge" in sentence: agenda.append(self.terminal_productions["touch_wall"]) else: agenda.append(self.terminal_productions["touch_object"]) else: # The words "top" and "bottom" may be referring to top and bottom blocks in a tower. if "top" in sentence: agenda.append(self.terminal_productions["top"]) elif "bottom" in sentence or "base" in sentence: agenda.append(self.terminal_productions["bottom"]) if " not " in sentence: agenda.append(self.terminal_productions["negate_filter"]) if " contains " in sentence or " has " in sentence: agenda.append(self.terminal_productions["all_boxes"]) # This takes care of shapes, colors, top, bottom, big, small etc. for constant, production in self.terminal_productions.items(): # TODO(pradeep): Deal with constant names with underscores. if "top" in constant or "bottom" in constant: # We already dealt with top, bottom, touch_top and touch_bottom above. continue if constant in sentence: if "<Set[Object]:Set[Object]> ->" in production and "<Set[Box]:bool> -> box_exists" in agenda: if constant in ["square", "circle", "triangle"]: agenda.append(self.terminal_productions[f"shape_{constant}"]) elif constant in ["yellow", "blue", "black"]: agenda.append(self.terminal_productions[f"color_{constant}"]) else: continue else: agenda.append(production) # TODO (pradeep): Rules for "member_*" productions ("tower" or "box" followed by a color, # shape or number...) number_productions = self._get_number_productions(sentence) for production in number_productions: agenda.append(production) if not agenda: # None of the rules above was triggered! if "box" in sentence: agenda.append(self.terminal_productions["all_boxes"]) else: agenda.append(self.terminal_productions["all_objects"]) return agenda
[ "def", "get_agenda_for_sentence", "(", "self", ",", "sentence", ":", "str", ")", "->", "List", "[", "str", "]", ":", "agenda", "=", "[", "]", "sentence", "=", "sentence", ".", "lower", "(", ")", "if", "sentence", ".", "startswith", "(", "\"there is a box\"", ")", "or", "sentence", ".", "startswith", "(", "\"there is a tower \"", ")", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"box_exists\"", "]", ")", "elif", "sentence", ".", "startswith", "(", "\"there is a \"", ")", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"object_exists\"", "]", ")", "if", "\"<Set[Box]:bool> -> box_exists\"", "not", "in", "agenda", ":", "# These are object filters and do not apply if we have a box_exists at the top.", "if", "\"touch\"", "in", "sentence", ":", "if", "\"top\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"touch_top\"", "]", ")", "elif", "\"bottom\"", "in", "sentence", "or", "\"base\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"touch_bottom\"", "]", ")", "elif", "\"corner\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"touch_corner\"", "]", ")", "elif", "\"right\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"touch_right\"", "]", ")", "elif", "\"left\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"touch_left\"", "]", ")", "elif", "\"wall\"", "in", "sentence", "or", "\"edge\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"touch_wall\"", "]", ")", "else", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"touch_object\"", "]", ")", "else", ":", "# The words \"top\" and \"bottom\" may be referring to top and bottom blocks in a tower.", "if", "\"top\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"top\"", "]", ")", "elif", "\"bottom\"", "in", "sentence", "or", "\"base\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"bottom\"", "]", ")", "if", "\" not \"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"negate_filter\"", "]", ")", "if", "\" contains \"", "in", "sentence", "or", "\" has \"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"all_boxes\"", "]", ")", "# This takes care of shapes, colors, top, bottom, big, small etc.", "for", "constant", ",", "production", "in", "self", ".", "terminal_productions", ".", "items", "(", ")", ":", "# TODO(pradeep): Deal with constant names with underscores.", "if", "\"top\"", "in", "constant", "or", "\"bottom\"", "in", "constant", ":", "# We already dealt with top, bottom, touch_top and touch_bottom above.", "continue", "if", "constant", "in", "sentence", ":", "if", "\"<Set[Object]:Set[Object]> ->\"", "in", "production", "and", "\"<Set[Box]:bool> -> box_exists\"", "in", "agenda", ":", "if", "constant", "in", "[", "\"square\"", ",", "\"circle\"", ",", "\"triangle\"", "]", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "f\"shape_{constant}\"", "]", ")", "elif", "constant", "in", "[", "\"yellow\"", ",", "\"blue\"", ",", "\"black\"", "]", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "f\"color_{constant}\"", "]", ")", "else", ":", "continue", "else", ":", "agenda", ".", "append", "(", "production", ")", "# TODO (pradeep): Rules for \"member_*\" productions (\"tower\" or \"box\" followed by a color,", "# shape or number...)", "number_productions", "=", "self", ".", "_get_number_productions", "(", "sentence", ")", "for", "production", "in", "number_productions", ":", "agenda", ".", "append", "(", "production", ")", "if", "not", "agenda", ":", "# None of the rules above was triggered!", "if", "\"box\"", "in", "sentence", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"all_boxes\"", "]", ")", "else", ":", "agenda", ".", "append", "(", "self", ".", "terminal_productions", "[", "\"all_objects\"", "]", ")", "return", "agenda" ]
Given a ``sentence``, returns a list of actions the sentence triggers as an ``agenda``. The ``agenda`` can be used while by a parser to guide the decoder. sequences as possible. This is a simplistic mapping at this point, and can be expanded. Parameters ---------- sentence : ``str`` The sentence for which an agenda will be produced.
[ "Given", "a", "sentence", "returns", "a", "list", "of", "actions", "the", "sentence", "triggers", "as", "an", "agenda", ".", "The", "agenda", "can", "be", "used", "while", "by", "a", "parser", "to", "guide", "the", "decoder", ".", "sequences", "as", "possible", ".", "This", "is", "a", "simplistic", "mapping", "at", "this", "point", "and", "can", "be", "expanded", "." ]
python
train
Jaymon/prom
prom/interface/base.py
https://github.com/Jaymon/prom/blob/b7ad2c259eca198da03e1e4bc7d95014c168c361/prom/interface/base.py#L233-L253
def transaction(self, connection=None, **kwargs): """ a simple context manager useful for when you want to wrap a bunch of db calls in a transaction http://docs.python.org/2/library/contextlib.html http://docs.python.org/release/2.5/whatsnew/pep-343.html example -- with self.transaction() # do a bunch of calls # those db calls will be committed by this line """ with self.connection(connection) as connection: name = connection.transaction_name() connection.transaction_start(name) try: yield connection connection.transaction_stop() except Exception as e: connection.transaction_fail(name) self.raise_error(e)
[ "def", "transaction", "(", "self", ",", "connection", "=", "None", ",", "*", "*", "kwargs", ")", ":", "with", "self", ".", "connection", "(", "connection", ")", "as", "connection", ":", "name", "=", "connection", ".", "transaction_name", "(", ")", "connection", ".", "transaction_start", "(", "name", ")", "try", ":", "yield", "connection", "connection", ".", "transaction_stop", "(", ")", "except", "Exception", "as", "e", ":", "connection", ".", "transaction_fail", "(", "name", ")", "self", ".", "raise_error", "(", "e", ")" ]
a simple context manager useful for when you want to wrap a bunch of db calls in a transaction http://docs.python.org/2/library/contextlib.html http://docs.python.org/release/2.5/whatsnew/pep-343.html example -- with self.transaction() # do a bunch of calls # those db calls will be committed by this line
[ "a", "simple", "context", "manager", "useful", "for", "when", "you", "want", "to", "wrap", "a", "bunch", "of", "db", "calls", "in", "a", "transaction", "http", ":", "//", "docs", ".", "python", ".", "org", "/", "2", "/", "library", "/", "contextlib", ".", "html", "http", ":", "//", "docs", ".", "python", ".", "org", "/", "release", "/", "2", ".", "5", "/", "whatsnew", "/", "pep", "-", "343", ".", "html" ]
python
train
ethereum/pyethereum
ethereum/slogging.py
https://github.com/ethereum/pyethereum/blob/b704a5c6577863edc539a1ec3d2620a443b950fb/ethereum/slogging.py#L349-L356
def DEBUG(msg, *args, **kwargs): """temporary logger during development that is always on""" logger = getLogger("DEBUG") if len(logger.handlers) == 0: logger.addHandler(StreamHandler()) logger.propagate = False logger.setLevel(logging.DEBUG) logger.DEV(msg, *args, **kwargs)
[ "def", "DEBUG", "(", "msg", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "logger", "=", "getLogger", "(", "\"DEBUG\"", ")", "if", "len", "(", "logger", ".", "handlers", ")", "==", "0", ":", "logger", ".", "addHandler", "(", "StreamHandler", "(", ")", ")", "logger", ".", "propagate", "=", "False", "logger", ".", "setLevel", "(", "logging", ".", "DEBUG", ")", "logger", ".", "DEV", "(", "msg", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
temporary logger during development that is always on
[ "temporary", "logger", "during", "development", "that", "is", "always", "on" ]
python
train
mabuchilab/QNET
src/qnet/__init__.py
https://github.com/mabuchilab/QNET/blob/cc20d26dad78691d34c67173e5cd67dcac94208a/src/qnet/__init__.py#L23-L52
def _git_version(): """If installed with 'pip installe -e .' from inside a git repo, the current git revision as a string""" import subprocess import os def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' FNULL = open(os.devnull, 'w') cwd = os.path.dirname(os.path.realpath(__file__)) proc = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=FNULL, env=env, cwd=cwd) out = proc.communicate()[0] return out try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) return out.strip().decode('ascii') except OSError: return "unknown"
[ "def", "_git_version", "(", ")", ":", "import", "subprocess", "import", "os", "def", "_minimal_ext_cmd", "(", "cmd", ")", ":", "# construct minimal environment", "env", "=", "{", "}", "for", "k", "in", "[", "'SYSTEMROOT'", ",", "'PATH'", "]", ":", "v", "=", "os", ".", "environ", ".", "get", "(", "k", ")", "if", "v", "is", "not", "None", ":", "env", "[", "k", "]", "=", "v", "# LANGUAGE is used on win32", "env", "[", "'LANGUAGE'", "]", "=", "'C'", "env", "[", "'LANG'", "]", "=", "'C'", "env", "[", "'LC_ALL'", "]", "=", "'C'", "FNULL", "=", "open", "(", "os", ".", "devnull", ",", "'w'", ")", "cwd", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "realpath", "(", "__file__", ")", ")", "proc", "=", "subprocess", ".", "Popen", "(", "cmd", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "FNULL", ",", "env", "=", "env", ",", "cwd", "=", "cwd", ")", "out", "=", "proc", ".", "communicate", "(", ")", "[", "0", "]", "return", "out", "try", ":", "out", "=", "_minimal_ext_cmd", "(", "[", "'git'", ",", "'rev-parse'", ",", "'HEAD'", "]", ")", "return", "out", ".", "strip", "(", ")", ".", "decode", "(", "'ascii'", ")", "except", "OSError", ":", "return", "\"unknown\"" ]
If installed with 'pip installe -e .' from inside a git repo, the current git revision as a string
[ "If", "installed", "with", "pip", "installe", "-", "e", ".", "from", "inside", "a", "git", "repo", "the", "current", "git", "revision", "as", "a", "string" ]
python
train
tensorflow/probability
tensorflow_probability/python/distributions/onehot_categorical.py
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/onehot_categorical.py#L241-L258
def _kl_categorical_categorical(a, b, name=None): """Calculate the batched KL divergence KL(a || b) with a, b OneHotCategorical. Args: a: instance of a OneHotCategorical distribution object. b: instance of a OneHotCategorical distribution object. name: (optional) Name to use for created operations. default is "kl_categorical_categorical". Returns: Batchwise KL(a || b) """ with tf.name_scope(name or "kl_categorical_categorical"): # sum(p ln(p / q)) return tf.reduce_sum( input_tensor=tf.nn.softmax(a.logits) * (tf.nn.log_softmax(a.logits) - tf.nn.log_softmax(b.logits)), axis=-1)
[ "def", "_kl_categorical_categorical", "(", "a", ",", "b", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"kl_categorical_categorical\"", ")", ":", "# sum(p ln(p / q))", "return", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "tf", ".", "nn", ".", "softmax", "(", "a", ".", "logits", ")", "*", "(", "tf", ".", "nn", ".", "log_softmax", "(", "a", ".", "logits", ")", "-", "tf", ".", "nn", ".", "log_softmax", "(", "b", ".", "logits", ")", ")", ",", "axis", "=", "-", "1", ")" ]
Calculate the batched KL divergence KL(a || b) with a, b OneHotCategorical. Args: a: instance of a OneHotCategorical distribution object. b: instance of a OneHotCategorical distribution object. name: (optional) Name to use for created operations. default is "kl_categorical_categorical". Returns: Batchwise KL(a || b)
[ "Calculate", "the", "batched", "KL", "divergence", "KL", "(", "a", "||", "b", ")", "with", "a", "b", "OneHotCategorical", "." ]
python
test
awslabs/sockeye
sockeye/inference.py
https://github.com/awslabs/sockeye/blob/5d64a1ee1ef3cbba17c6d1d94bc061020c43f6ab/sockeye/inference.py#L2209-L2231
def _get_best_word_indices_for_kth_hypotheses(ks: np.ndarray, all_hyp_indices: np.ndarray) -> np.ndarray: """ Traverses the matrix of best hypotheses indices collected during beam search in reversed order by using the kth hypotheses index as a backpointer. Returns an array containing the indices into the best_word_indices collected during beam search to extract the kth hypotheses. :param ks: The kth-best hypotheses to extract. Supports multiple for batch_size > 1. Shape: (batch,). :param all_hyp_indices: All best hypotheses indices list collected in beam search. Shape: (batch * beam, steps). :return: Array of indices into the best_word_indices collected in beam search that extract the kth-best hypothesis. Shape: (batch,). """ batch_size = ks.shape[0] num_steps = all_hyp_indices.shape[1] result = np.zeros((batch_size, num_steps - 1), dtype=all_hyp_indices.dtype) # first index into the history of the desired hypotheses. pointer = all_hyp_indices[ks, -1] # for each column/step follow the pointer, starting from the penultimate column/step num_steps = all_hyp_indices.shape[1] for step in range(num_steps - 2, -1, -1): result[:, step] = pointer pointer = all_hyp_indices[pointer, step] return result
[ "def", "_get_best_word_indices_for_kth_hypotheses", "(", "ks", ":", "np", ".", "ndarray", ",", "all_hyp_indices", ":", "np", ".", "ndarray", ")", "->", "np", ".", "ndarray", ":", "batch_size", "=", "ks", ".", "shape", "[", "0", "]", "num_steps", "=", "all_hyp_indices", ".", "shape", "[", "1", "]", "result", "=", "np", ".", "zeros", "(", "(", "batch_size", ",", "num_steps", "-", "1", ")", ",", "dtype", "=", "all_hyp_indices", ".", "dtype", ")", "# first index into the history of the desired hypotheses.", "pointer", "=", "all_hyp_indices", "[", "ks", ",", "-", "1", "]", "# for each column/step follow the pointer, starting from the penultimate column/step", "num_steps", "=", "all_hyp_indices", ".", "shape", "[", "1", "]", "for", "step", "in", "range", "(", "num_steps", "-", "2", ",", "-", "1", ",", "-", "1", ")", ":", "result", "[", ":", ",", "step", "]", "=", "pointer", "pointer", "=", "all_hyp_indices", "[", "pointer", ",", "step", "]", "return", "result" ]
Traverses the matrix of best hypotheses indices collected during beam search in reversed order by using the kth hypotheses index as a backpointer. Returns an array containing the indices into the best_word_indices collected during beam search to extract the kth hypotheses. :param ks: The kth-best hypotheses to extract. Supports multiple for batch_size > 1. Shape: (batch,). :param all_hyp_indices: All best hypotheses indices list collected in beam search. Shape: (batch * beam, steps). :return: Array of indices into the best_word_indices collected in beam search that extract the kth-best hypothesis. Shape: (batch,).
[ "Traverses", "the", "matrix", "of", "best", "hypotheses", "indices", "collected", "during", "beam", "search", "in", "reversed", "order", "by", "using", "the", "kth", "hypotheses", "index", "as", "a", "backpointer", ".", "Returns", "an", "array", "containing", "the", "indices", "into", "the", "best_word_indices", "collected", "during", "beam", "search", "to", "extract", "the", "kth", "hypotheses", "." ]
python
train
Miserlou/Zappa
zappa/core.py
https://github.com/Miserlou/Zappa/blob/3ccf7490a8d8b8fa74a61ee39bf44234f3567739/zappa/core.py#L1985-L2014
def undeploy_api_gateway(self, lambda_name, domain_name=None, base_path=None): """ Delete a deployed REST API Gateway. """ print("Deleting API Gateway..") api_id = self.get_api_id(lambda_name) if domain_name: # XXX - Remove Route53 smartly here? # XXX - This doesn't raise, but doesn't work either. try: self.apigateway_client.delete_base_path_mapping( domainName=domain_name, basePath='(none)' if base_path is None else base_path ) except Exception as e: # We may not have actually set up the domain. pass was_deleted = self.delete_stack(lambda_name, wait=True) if not was_deleted: # try erasing it with the older method for api in self.get_rest_apis(lambda_name): self.apigateway_client.delete_rest_api( restApiId=api['id'] )
[ "def", "undeploy_api_gateway", "(", "self", ",", "lambda_name", ",", "domain_name", "=", "None", ",", "base_path", "=", "None", ")", ":", "print", "(", "\"Deleting API Gateway..\"", ")", "api_id", "=", "self", ".", "get_api_id", "(", "lambda_name", ")", "if", "domain_name", ":", "# XXX - Remove Route53 smartly here?", "# XXX - This doesn't raise, but doesn't work either.", "try", ":", "self", ".", "apigateway_client", ".", "delete_base_path_mapping", "(", "domainName", "=", "domain_name", ",", "basePath", "=", "'(none)'", "if", "base_path", "is", "None", "else", "base_path", ")", "except", "Exception", "as", "e", ":", "# We may not have actually set up the domain.", "pass", "was_deleted", "=", "self", ".", "delete_stack", "(", "lambda_name", ",", "wait", "=", "True", ")", "if", "not", "was_deleted", ":", "# try erasing it with the older method", "for", "api", "in", "self", ".", "get_rest_apis", "(", "lambda_name", ")", ":", "self", ".", "apigateway_client", ".", "delete_rest_api", "(", "restApiId", "=", "api", "[", "'id'", "]", ")" ]
Delete a deployed REST API Gateway.
[ "Delete", "a", "deployed", "REST", "API", "Gateway", "." ]
python
train
cloud9ers/gurumate
environment/share/doc/ipython/examples/parallel/davinci/pwordfreq.py
https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/share/doc/ipython/examples/parallel/davinci/pwordfreq.py#L20-L37
def pwordfreq(view, fnames): """Parallel word frequency counter. view - An IPython DirectView fnames - The filenames containing the split data. """ assert len(fnames) == len(view.targets) view.scatter('fname', fnames, flatten=True) ar = view.apply(wordfreq, Reference('fname')) freqs_list = ar.get() word_set = set() for f in freqs_list: word_set.update(f.keys()) freqs = dict(zip(word_set, repeat(0))) for f in freqs_list: for word, count in f.iteritems(): freqs[word] += count return freqs
[ "def", "pwordfreq", "(", "view", ",", "fnames", ")", ":", "assert", "len", "(", "fnames", ")", "==", "len", "(", "view", ".", "targets", ")", "view", ".", "scatter", "(", "'fname'", ",", "fnames", ",", "flatten", "=", "True", ")", "ar", "=", "view", ".", "apply", "(", "wordfreq", ",", "Reference", "(", "'fname'", ")", ")", "freqs_list", "=", "ar", ".", "get", "(", ")", "word_set", "=", "set", "(", ")", "for", "f", "in", "freqs_list", ":", "word_set", ".", "update", "(", "f", ".", "keys", "(", ")", ")", "freqs", "=", "dict", "(", "zip", "(", "word_set", ",", "repeat", "(", "0", ")", ")", ")", "for", "f", "in", "freqs_list", ":", "for", "word", ",", "count", "in", "f", ".", "iteritems", "(", ")", ":", "freqs", "[", "word", "]", "+=", "count", "return", "freqs" ]
Parallel word frequency counter. view - An IPython DirectView fnames - The filenames containing the split data.
[ "Parallel", "word", "frequency", "counter", ".", "view", "-", "An", "IPython", "DirectView", "fnames", "-", "The", "filenames", "containing", "the", "split", "data", "." ]
python
test
materialsproject/pymatgen
pymatgen/io/qchem/outputs.py
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/io/qchem/outputs.py#L586-L624
def _read_pcm_information(self): """ Parses information from PCM solvent calculations. """ temp_dict = read_pattern( self.text, { "g_electrostatic": r"\s*G_electrostatic\s+=\s+([\d\-\.]+)\s+hartree\s+=\s+([\d\-\.]+)\s+kcal/mol\s*", "g_cavitation": r"\s*G_cavitation\s+=\s+([\d\-\.]+)\s+hartree\s+=\s+([\d\-\.]+)\s+kcal/mol\s*", "g_dispersion": r"\s*G_dispersion\s+=\s+([\d\-\.]+)\s+hartree\s+=\s+([\d\-\.]+)\s+kcal/mol\s*", "g_repulsion": r"\s*G_repulsion\s+=\s+([\d\-\.]+)\s+hartree\s+=\s+([\d\-\.]+)\s+kcal/mol\s*", "total_contribution_pcm": r"\s*Total\s+=\s+([\d\-\.]+)\s+hartree\s+=\s+([\d\-\.]+)\s+kcal/mol\s*", } ) if temp_dict.get("g_electrostatic") is None: self.data["g_electrostatic"] = None else: self.data["g_electrostatic"] = float(temp_dict.get("g_electrostatic")[0][0]) if temp_dict.get("g_cavitation") is None: self.data["g_cavitation"] = None else: self.data["g_cavitation"] = float(temp_dict.get("g_cavitation")[0][0]) if temp_dict.get("g_dispersion") is None: self.data["g_dispersion"] = None else: self.data["g_dispersion"] = float(temp_dict.get("g_dispersion")[0][0]) if temp_dict.get("g_repulsion") is None: self.data["g_repulsion"] = None else: self.data["g_repulsion"] = float(temp_dict.get("g_repulsion")[0][0]) if temp_dict.get("total_contribution_pcm") is None: self.data["total_contribution_pcm"] = [] else: self.data["total_contribution_pcm"] = float(temp_dict.get("total_contribution_pcm")[0][0])
[ "def", "_read_pcm_information", "(", "self", ")", ":", "temp_dict", "=", "read_pattern", "(", "self", ".", "text", ",", "{", "\"g_electrostatic\"", ":", "r\"\\s*G_electrostatic\\s+=\\s+([\\d\\-\\.]+)\\s+hartree\\s+=\\s+([\\d\\-\\.]+)\\s+kcal/mol\\s*\"", ",", "\"g_cavitation\"", ":", "r\"\\s*G_cavitation\\s+=\\s+([\\d\\-\\.]+)\\s+hartree\\s+=\\s+([\\d\\-\\.]+)\\s+kcal/mol\\s*\"", ",", "\"g_dispersion\"", ":", "r\"\\s*G_dispersion\\s+=\\s+([\\d\\-\\.]+)\\s+hartree\\s+=\\s+([\\d\\-\\.]+)\\s+kcal/mol\\s*\"", ",", "\"g_repulsion\"", ":", "r\"\\s*G_repulsion\\s+=\\s+([\\d\\-\\.]+)\\s+hartree\\s+=\\s+([\\d\\-\\.]+)\\s+kcal/mol\\s*\"", ",", "\"total_contribution_pcm\"", ":", "r\"\\s*Total\\s+=\\s+([\\d\\-\\.]+)\\s+hartree\\s+=\\s+([\\d\\-\\.]+)\\s+kcal/mol\\s*\"", ",", "}", ")", "if", "temp_dict", ".", "get", "(", "\"g_electrostatic\"", ")", "is", "None", ":", "self", ".", "data", "[", "\"g_electrostatic\"", "]", "=", "None", "else", ":", "self", ".", "data", "[", "\"g_electrostatic\"", "]", "=", "float", "(", "temp_dict", ".", "get", "(", "\"g_electrostatic\"", ")", "[", "0", "]", "[", "0", "]", ")", "if", "temp_dict", ".", "get", "(", "\"g_cavitation\"", ")", "is", "None", ":", "self", ".", "data", "[", "\"g_cavitation\"", "]", "=", "None", "else", ":", "self", ".", "data", "[", "\"g_cavitation\"", "]", "=", "float", "(", "temp_dict", ".", "get", "(", "\"g_cavitation\"", ")", "[", "0", "]", "[", "0", "]", ")", "if", "temp_dict", ".", "get", "(", "\"g_dispersion\"", ")", "is", "None", ":", "self", ".", "data", "[", "\"g_dispersion\"", "]", "=", "None", "else", ":", "self", ".", "data", "[", "\"g_dispersion\"", "]", "=", "float", "(", "temp_dict", ".", "get", "(", "\"g_dispersion\"", ")", "[", "0", "]", "[", "0", "]", ")", "if", "temp_dict", ".", "get", "(", "\"g_repulsion\"", ")", "is", "None", ":", "self", ".", "data", "[", "\"g_repulsion\"", "]", "=", "None", "else", ":", "self", ".", "data", "[", "\"g_repulsion\"", "]", "=", "float", "(", "temp_dict", ".", "get", "(", "\"g_repulsion\"", ")", "[", "0", "]", "[", "0", "]", ")", "if", "temp_dict", ".", "get", "(", "\"total_contribution_pcm\"", ")", "is", "None", ":", "self", ".", "data", "[", "\"total_contribution_pcm\"", "]", "=", "[", "]", "else", ":", "self", ".", "data", "[", "\"total_contribution_pcm\"", "]", "=", "float", "(", "temp_dict", ".", "get", "(", "\"total_contribution_pcm\"", ")", "[", "0", "]", "[", "0", "]", ")" ]
Parses information from PCM solvent calculations.
[ "Parses", "information", "from", "PCM", "solvent", "calculations", "." ]
python
train
jupyter-widgets/ipywidgets
ipywidgets/widgets/widget.py
https://github.com/jupyter-widgets/ipywidgets/blob/36fe37594cd5a268def228709ca27e37b99ac606/ipywidgets/widgets/widget.py#L266-L284
def register(name=''): "For backwards compatibility, we support @register(name) syntax." def reg(widget): """A decorator registering a widget class in the widget registry.""" w = widget.class_traits() Widget.widget_types.register(w['_model_module'].default_value, w['_model_module_version'].default_value, w['_model_name'].default_value, w['_view_module'].default_value, w['_view_module_version'].default_value, w['_view_name'].default_value, widget) return widget if isinstance(name, string_types): import warnings warnings.warn("Widget registration using a string name has been deprecated. Widget registration now uses a plain `@register` decorator.", DeprecationWarning) return reg else: return reg(name)
[ "def", "register", "(", "name", "=", "''", ")", ":", "def", "reg", "(", "widget", ")", ":", "\"\"\"A decorator registering a widget class in the widget registry.\"\"\"", "w", "=", "widget", ".", "class_traits", "(", ")", "Widget", ".", "widget_types", ".", "register", "(", "w", "[", "'_model_module'", "]", ".", "default_value", ",", "w", "[", "'_model_module_version'", "]", ".", "default_value", ",", "w", "[", "'_model_name'", "]", ".", "default_value", ",", "w", "[", "'_view_module'", "]", ".", "default_value", ",", "w", "[", "'_view_module_version'", "]", ".", "default_value", ",", "w", "[", "'_view_name'", "]", ".", "default_value", ",", "widget", ")", "return", "widget", "if", "isinstance", "(", "name", ",", "string_types", ")", ":", "import", "warnings", "warnings", ".", "warn", "(", "\"Widget registration using a string name has been deprecated. Widget registration now uses a plain `@register` decorator.\"", ",", "DeprecationWarning", ")", "return", "reg", "else", ":", "return", "reg", "(", "name", ")" ]
For backwards compatibility, we support @register(name) syntax.
[ "For", "backwards", "compatibility", "we", "support" ]
python
train
Karaage-Cluster/karaage
karaage/common/create_update.py
https://github.com/Karaage-Cluster/karaage/blob/2f4c8b4e2d728b3fcbb151160c49000f1c04f5c9/karaage/common/create_update.py#L12-L21
def apply_extra_context(extra_context, context): """ Adds items from extra_context dict to context. If a value in extra_context is callable, then it is called and the result is added to context. """ for key, value in six.iteritems(extra_context): if callable(value): context[key] = value() else: context[key] = value
[ "def", "apply_extra_context", "(", "extra_context", ",", "context", ")", ":", "for", "key", ",", "value", "in", "six", ".", "iteritems", "(", "extra_context", ")", ":", "if", "callable", "(", "value", ")", ":", "context", "[", "key", "]", "=", "value", "(", ")", "else", ":", "context", "[", "key", "]", "=", "value" ]
Adds items from extra_context dict to context. If a value in extra_context is callable, then it is called and the result is added to context.
[ "Adds", "items", "from", "extra_context", "dict", "to", "context", ".", "If", "a", "value", "in", "extra_context", "is", "callable", "then", "it", "is", "called", "and", "the", "result", "is", "added", "to", "context", "." ]
python
train
brocade/pynos
pynos/versions/ver_6/ver_6_0_1/yang/brocade_lag.py
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_lag.py#L84-L96
def get_port_channel_detail_output_lacp_aggregator_mode(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_port_channel_detail = ET.Element("get_port_channel_detail") config = get_port_channel_detail output = ET.SubElement(get_port_channel_detail, "output") lacp = ET.SubElement(output, "lacp") aggregator_mode = ET.SubElement(lacp, "aggregator-mode") aggregator_mode.text = kwargs.pop('aggregator_mode') callback = kwargs.pop('callback', self._callback) return callback(config)
[ "def", "get_port_channel_detail_output_lacp_aggregator_mode", "(", "self", ",", "*", "*", "kwargs", ")", ":", "config", "=", "ET", ".", "Element", "(", "\"config\"", ")", "get_port_channel_detail", "=", "ET", ".", "Element", "(", "\"get_port_channel_detail\"", ")", "config", "=", "get_port_channel_detail", "output", "=", "ET", ".", "SubElement", "(", "get_port_channel_detail", ",", "\"output\"", ")", "lacp", "=", "ET", ".", "SubElement", "(", "output", ",", "\"lacp\"", ")", "aggregator_mode", "=", "ET", ".", "SubElement", "(", "lacp", ",", "\"aggregator-mode\"", ")", "aggregator_mode", ".", "text", "=", "kwargs", ".", "pop", "(", "'aggregator_mode'", ")", "callback", "=", "kwargs", ".", "pop", "(", "'callback'", ",", "self", ".", "_callback", ")", "return", "callback", "(", "config", ")" ]
Auto Generated Code
[ "Auto", "Generated", "Code" ]
python
train
pytroll/satpy
satpy/readers/goes_imager_hrit.py
https://github.com/pytroll/satpy/blob/1f21d20ac686b745fb0da9b4030d139893e066dd/satpy/readers/goes_imager_hrit.py#L430-L443
def _calibrate(self, data): """Calibrate *data*.""" idx = self.mda['calibration_parameters']['indices'] val = self.mda['calibration_parameters']['values'] data.data = da.where(data.data == 0, np.nan, data.data) ddata = data.data.map_blocks(np.interp, idx, val, dtype=val.dtype) res = xr.DataArray(ddata, dims=data.dims, attrs=data.attrs, coords=data.coords) res = res.clip(min=0) units = {'percent': '%'} unit = self.mda['calibration_parameters'][b'_UNIT'] res.attrs['units'] = units.get(unit, unit) return res
[ "def", "_calibrate", "(", "self", ",", "data", ")", ":", "idx", "=", "self", ".", "mda", "[", "'calibration_parameters'", "]", "[", "'indices'", "]", "val", "=", "self", ".", "mda", "[", "'calibration_parameters'", "]", "[", "'values'", "]", "data", ".", "data", "=", "da", ".", "where", "(", "data", ".", "data", "==", "0", ",", "np", ".", "nan", ",", "data", ".", "data", ")", "ddata", "=", "data", ".", "data", ".", "map_blocks", "(", "np", ".", "interp", ",", "idx", ",", "val", ",", "dtype", "=", "val", ".", "dtype", ")", "res", "=", "xr", ".", "DataArray", "(", "ddata", ",", "dims", "=", "data", ".", "dims", ",", "attrs", "=", "data", ".", "attrs", ",", "coords", "=", "data", ".", "coords", ")", "res", "=", "res", ".", "clip", "(", "min", "=", "0", ")", "units", "=", "{", "'percent'", ":", "'%'", "}", "unit", "=", "self", ".", "mda", "[", "'calibration_parameters'", "]", "[", "b'_UNIT'", "]", "res", ".", "attrs", "[", "'units'", "]", "=", "units", ".", "get", "(", "unit", ",", "unit", ")", "return", "res" ]
Calibrate *data*.
[ "Calibrate", "*", "data", "*", "." ]
python
train
Alignak-monitoring/alignak
alignak/objects/service.py
https://github.com/Alignak-monitoring/alignak/blob/f3c145207e83159b799d3714e4241399c7740a64/alignak/objects/service.py#L1756-L1785
def register_service_dependencies(service, servicedependencies): """ Registers a service dependencies. :param service: The service to register :type service: :param servicedependencies: The servicedependencies container :type servicedependencies: :return: None """ # We explode service_dependencies into Servicedependency # We just create serviceDep with goods values (as STRING!), # the link pass will be done after sdeps = [d.strip() for d in getattr(service, "service_dependencies", [])] # %2=0 are for hosts, !=0 are for service_description i = 0 hname = '' for elt in sdeps: if i % 2 == 0: # host hname = elt else: # description desc = elt # we can register it (service) (depend on) -> (hname, desc) # If we do not have enough data for service, it'service no use if hasattr(service, 'service_description') and hasattr(service, 'host_name'): if hname == '': hname = service.host_name servicedependencies.add_service_dependency( service.host_name, service.service_description, hname, desc) i += 1
[ "def", "register_service_dependencies", "(", "service", ",", "servicedependencies", ")", ":", "# We explode service_dependencies into Servicedependency", "# We just create serviceDep with goods values (as STRING!),", "# the link pass will be done after", "sdeps", "=", "[", "d", ".", "strip", "(", ")", "for", "d", "in", "getattr", "(", "service", ",", "\"service_dependencies\"", ",", "[", "]", ")", "]", "# %2=0 are for hosts, !=0 are for service_description", "i", "=", "0", "hname", "=", "''", "for", "elt", "in", "sdeps", ":", "if", "i", "%", "2", "==", "0", ":", "# host", "hname", "=", "elt", "else", ":", "# description", "desc", "=", "elt", "# we can register it (service) (depend on) -> (hname, desc)", "# If we do not have enough data for service, it'service no use", "if", "hasattr", "(", "service", ",", "'service_description'", ")", "and", "hasattr", "(", "service", ",", "'host_name'", ")", ":", "if", "hname", "==", "''", ":", "hname", "=", "service", ".", "host_name", "servicedependencies", ".", "add_service_dependency", "(", "service", ".", "host_name", ",", "service", ".", "service_description", ",", "hname", ",", "desc", ")", "i", "+=", "1" ]
Registers a service dependencies. :param service: The service to register :type service: :param servicedependencies: The servicedependencies container :type servicedependencies: :return: None
[ "Registers", "a", "service", "dependencies", "." ]
python
train
rande/python-simple-ioc
ioc/locator.py
https://github.com/rande/python-simple-ioc/blob/36ddf667c1213a07a53cd4cdd708d02494e5190b/ioc/locator.py#L26-L38
def split_resource_path(resource): """Split a path into segments and perform a sanity check. If it detects '..' in the path it will raise a `TemplateNotFound` error. """ pieces = [] for piece in resource.split('/'): if path.sep in piece \ or (path.altsep and path.altsep in piece) or \ piece == path.pardir: raise ResourceNotFound(resource) elif piece and piece != '.': pieces.append(piece) return pieces
[ "def", "split_resource_path", "(", "resource", ")", ":", "pieces", "=", "[", "]", "for", "piece", "in", "resource", ".", "split", "(", "'/'", ")", ":", "if", "path", ".", "sep", "in", "piece", "or", "(", "path", ".", "altsep", "and", "path", ".", "altsep", "in", "piece", ")", "or", "piece", "==", "path", ".", "pardir", ":", "raise", "ResourceNotFound", "(", "resource", ")", "elif", "piece", "and", "piece", "!=", "'.'", ":", "pieces", ".", "append", "(", "piece", ")", "return", "pieces" ]
Split a path into segments and perform a sanity check. If it detects '..' in the path it will raise a `TemplateNotFound` error.
[ "Split", "a", "path", "into", "segments", "and", "perform", "a", "sanity", "check", ".", "If", "it", "detects", "..", "in", "the", "path", "it", "will", "raise", "a", "TemplateNotFound", "error", "." ]
python
train
explosion/spaCy
spacy/_ml.py
https://github.com/explosion/spaCy/blob/8ee4100f8ffb336886208a1ea827bf4c745e2709/spacy/_ml.py#L693-L709
def masked_language_model(vocab, model, mask_prob=0.15): """Convert a model into a BERT-style masked language model""" random_words = _RandomWords(vocab) def mlm_forward(docs, drop=0.0): mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob) mask = model.ops.asarray(mask).reshape((mask.shape[0], 1)) output, backprop = model.begin_update(docs, drop=drop) def mlm_backward(d_output, sgd=None): d_output *= 1 - mask return backprop(d_output, sgd=sgd) return output, mlm_backward return wrap(mlm_forward, model)
[ "def", "masked_language_model", "(", "vocab", ",", "model", ",", "mask_prob", "=", "0.15", ")", ":", "random_words", "=", "_RandomWords", "(", "vocab", ")", "def", "mlm_forward", "(", "docs", ",", "drop", "=", "0.0", ")", ":", "mask", ",", "docs", "=", "_apply_mask", "(", "docs", ",", "random_words", ",", "mask_prob", "=", "mask_prob", ")", "mask", "=", "model", ".", "ops", ".", "asarray", "(", "mask", ")", ".", "reshape", "(", "(", "mask", ".", "shape", "[", "0", "]", ",", "1", ")", ")", "output", ",", "backprop", "=", "model", ".", "begin_update", "(", "docs", ",", "drop", "=", "drop", ")", "def", "mlm_backward", "(", "d_output", ",", "sgd", "=", "None", ")", ":", "d_output", "*=", "1", "-", "mask", "return", "backprop", "(", "d_output", ",", "sgd", "=", "sgd", ")", "return", "output", ",", "mlm_backward", "return", "wrap", "(", "mlm_forward", ",", "model", ")" ]
Convert a model into a BERT-style masked language model
[ "Convert", "a", "model", "into", "a", "BERT", "-", "style", "masked", "language", "model" ]
python
train
reorx/torext
torext/sql.py
https://github.com/reorx/torext/blob/84c4300ebc7fab0dbd11cf8b020bc7d4d1570171/torext/sql.py#L378-L382
def coerce(cls, key, value): """Convert plain list to MutationList""" self = MutationList((MutationObj.coerce(key, v) for v in value)) self._key = key return self
[ "def", "coerce", "(", "cls", ",", "key", ",", "value", ")", ":", "self", "=", "MutationList", "(", "(", "MutationObj", ".", "coerce", "(", "key", ",", "v", ")", "for", "v", "in", "value", ")", ")", "self", ".", "_key", "=", "key", "return", "self" ]
Convert plain list to MutationList
[ "Convert", "plain", "list", "to", "MutationList" ]
python
train
Pytwitcher/pytwitcherapi
src/pytwitcherapi/session.py
https://github.com/Pytwitcher/pytwitcherapi/blob/d53ac5ad5ca113ecb7da542e8cdcbbf8c762b336/src/pytwitcherapi/session.py#L543-L556
def get_channel_access_token(self, channel): """Return the token and sig for the given channel :param channel: the channel or channel name to get the access token for :type channel: :class:`channel` | :class:`str` :returns: The token and sig for the given channel :rtype: (:class:`unicode`, :class:`unicode`) :raises: None """ if isinstance(channel, models.Channel): channel = channel.name r = self.oldapi_request( 'GET', 'channels/%s/access_token' % channel).json() return r['token'], r['sig']
[ "def", "get_channel_access_token", "(", "self", ",", "channel", ")", ":", "if", "isinstance", "(", "channel", ",", "models", ".", "Channel", ")", ":", "channel", "=", "channel", ".", "name", "r", "=", "self", ".", "oldapi_request", "(", "'GET'", ",", "'channels/%s/access_token'", "%", "channel", ")", ".", "json", "(", ")", "return", "r", "[", "'token'", "]", ",", "r", "[", "'sig'", "]" ]
Return the token and sig for the given channel :param channel: the channel or channel name to get the access token for :type channel: :class:`channel` | :class:`str` :returns: The token and sig for the given channel :rtype: (:class:`unicode`, :class:`unicode`) :raises: None
[ "Return", "the", "token", "and", "sig", "for", "the", "given", "channel" ]
python
train
kibitzr/kibitzr
kibitzr/storage.py
https://github.com/kibitzr/kibitzr/blob/749da312488f1dda1ed1093cf4c95aaac0a604f7/kibitzr/storage.py#L62-L67
def write(self, content): """Save content on disk""" with io.open(self.target, 'w', encoding='utf-8') as fp: fp.write(content) if not content.endswith(u'\n'): fp.write(u'\n')
[ "def", "write", "(", "self", ",", "content", ")", ":", "with", "io", ".", "open", "(", "self", ".", "target", ",", "'w'", ",", "encoding", "=", "'utf-8'", ")", "as", "fp", ":", "fp", ".", "write", "(", "content", ")", "if", "not", "content", ".", "endswith", "(", "u'\\n'", ")", ":", "fp", ".", "write", "(", "u'\\n'", ")" ]
Save content on disk
[ "Save", "content", "on", "disk" ]
python
train
envi-idl/envipyarclib
envipyarclib/gptool/parameter/builder.py
https://github.com/envi-idl/envipyarclib/blob/90135652510c3d53c5f51177252c1fea2639bf22/envipyarclib/gptool/parameter/builder.py#L100-L163
def create_param_info(task_params, parameter_map): """ Builds the code block for the GPTool GetParameterInfo method based on the input task_params. :param task_params: A list of task parameters to map to GPTool parameters. :return: A string representing the code block to the GPTool GetParameterInfo method. """ gp_params = [] gp_param_list = [] gp_param_idx_list = [] gp_param_idx = 0 for task_param in task_params: # Setup to gp_param dictionary used to substitute against the parameter info template. gp_param = {} # Convert DataType data_type = task_param['type'].upper() if 'dimensions' in task_param: if len(task_param['dimensions'].split(',')) > 1: raise UnknownDataTypeError('Only one-dimensional arrays are supported.') data_type += 'ARRAY' if data_type in parameter_map: gp_param['dataType'] = parameter_map[data_type].data_type else: # No Mapping exists for this data type! raise UnknownDataTypeError('Unable to map task datatype: ' + data_type + '. A template must be created.') gp_param['name'] = task_param['name'] gp_param['displayName'] = task_param['display_name'] gp_param['direction'] = _DIRECTION_MAP[task_param['direction']] gp_param['paramType'] = 'Required' if task_param['required'] else 'Optional' # ENVI/IDL output type translates to a derived output type in Arc if gp_param['direction'] is 'Output': gp_param['paramType'] = 'Derived' gp_param['multiValue'] = True if 'dimensions' in task_param else False # Substitute values into the template gp_params.append(parameter_map[data_type].get_parameter(task_param).substitute(gp_param)) # Convert the default value if 'default_value' in task_param: gp_param['defaultValue'] = task_param['default_value'] gp_params.append(parameter_map[data_type].default_value().substitute(gp_param)) # Convert any choicelist if 'choice_list' in task_param: gp_param['choiceList'] = task_param['choice_list'] gp_params.append(_CHOICELIST_TEMPLATE.substitute(gp_param)) # Construct the parameter list and indicies for future reference for param_name in parameter_map[data_type].parameter_names(task_param): gp_param_list.append(param_name.substitute(gp_param)) gp_param_idx_list.append(_PARAM_INDEX_TEMPLATE.substitute( {'name': param_name.substitute(gp_param), 'idx': gp_param_idx})) gp_param_idx += 1 # Construct the final parameter string gp_params.append(_PARAM_RETURN_TEMPLATE.substitute({'paramList': convert_list(gp_param_list)})) return ''.join((''.join(gp_params), ''.join(gp_param_idx_list)))
[ "def", "create_param_info", "(", "task_params", ",", "parameter_map", ")", ":", "gp_params", "=", "[", "]", "gp_param_list", "=", "[", "]", "gp_param_idx_list", "=", "[", "]", "gp_param_idx", "=", "0", "for", "task_param", "in", "task_params", ":", "# Setup to gp_param dictionary used to substitute against the parameter info template.", "gp_param", "=", "{", "}", "# Convert DataType", "data_type", "=", "task_param", "[", "'type'", "]", ".", "upper", "(", ")", "if", "'dimensions'", "in", "task_param", ":", "if", "len", "(", "task_param", "[", "'dimensions'", "]", ".", "split", "(", "','", ")", ")", ">", "1", ":", "raise", "UnknownDataTypeError", "(", "'Only one-dimensional arrays are supported.'", ")", "data_type", "+=", "'ARRAY'", "if", "data_type", "in", "parameter_map", ":", "gp_param", "[", "'dataType'", "]", "=", "parameter_map", "[", "data_type", "]", ".", "data_type", "else", ":", "# No Mapping exists for this data type!", "raise", "UnknownDataTypeError", "(", "'Unable to map task datatype: '", "+", "data_type", "+", "'. A template must be created.'", ")", "gp_param", "[", "'name'", "]", "=", "task_param", "[", "'name'", "]", "gp_param", "[", "'displayName'", "]", "=", "task_param", "[", "'display_name'", "]", "gp_param", "[", "'direction'", "]", "=", "_DIRECTION_MAP", "[", "task_param", "[", "'direction'", "]", "]", "gp_param", "[", "'paramType'", "]", "=", "'Required'", "if", "task_param", "[", "'required'", "]", "else", "'Optional'", "# ENVI/IDL output type translates to a derived output type in Arc", "if", "gp_param", "[", "'direction'", "]", "is", "'Output'", ":", "gp_param", "[", "'paramType'", "]", "=", "'Derived'", "gp_param", "[", "'multiValue'", "]", "=", "True", "if", "'dimensions'", "in", "task_param", "else", "False", "# Substitute values into the template", "gp_params", ".", "append", "(", "parameter_map", "[", "data_type", "]", ".", "get_parameter", "(", "task_param", ")", ".", "substitute", "(", "gp_param", ")", ")", "# Convert the default value", "if", "'default_value'", "in", "task_param", ":", "gp_param", "[", "'defaultValue'", "]", "=", "task_param", "[", "'default_value'", "]", "gp_params", ".", "append", "(", "parameter_map", "[", "data_type", "]", ".", "default_value", "(", ")", ".", "substitute", "(", "gp_param", ")", ")", "# Convert any choicelist", "if", "'choice_list'", "in", "task_param", ":", "gp_param", "[", "'choiceList'", "]", "=", "task_param", "[", "'choice_list'", "]", "gp_params", ".", "append", "(", "_CHOICELIST_TEMPLATE", ".", "substitute", "(", "gp_param", ")", ")", "# Construct the parameter list and indicies for future reference", "for", "param_name", "in", "parameter_map", "[", "data_type", "]", ".", "parameter_names", "(", "task_param", ")", ":", "gp_param_list", ".", "append", "(", "param_name", ".", "substitute", "(", "gp_param", ")", ")", "gp_param_idx_list", ".", "append", "(", "_PARAM_INDEX_TEMPLATE", ".", "substitute", "(", "{", "'name'", ":", "param_name", ".", "substitute", "(", "gp_param", ")", ",", "'idx'", ":", "gp_param_idx", "}", ")", ")", "gp_param_idx", "+=", "1", "# Construct the final parameter string", "gp_params", ".", "append", "(", "_PARAM_RETURN_TEMPLATE", ".", "substitute", "(", "{", "'paramList'", ":", "convert_list", "(", "gp_param_list", ")", "}", ")", ")", "return", "''", ".", "join", "(", "(", "''", ".", "join", "(", "gp_params", ")", ",", "''", ".", "join", "(", "gp_param_idx_list", ")", ")", ")" ]
Builds the code block for the GPTool GetParameterInfo method based on the input task_params. :param task_params: A list of task parameters to map to GPTool parameters. :return: A string representing the code block to the GPTool GetParameterInfo method.
[ "Builds", "the", "code", "block", "for", "the", "GPTool", "GetParameterInfo", "method", "based", "on", "the", "input", "task_params", "." ]
python
train