name
stringlengths 9
16
| description
stringlengths 419
314k
|
---|---|
HUYKER_clean
|
NiC12H8(NO3)2(CH3)4(CH)6 crystallizes in the cubic I4_132 space group. The structure consists of one hundred and forty-four 02329_fluka molecules and ninety-six 02329_fluka molecules inside a NiC12H8(NO3)2 framework. In each NiC12H8(NO3)2 framework, Ni(1) is bonded in a 8-coordinate geometry to two equivalent N(1), two equivalent H(13), two equivalent O(1), and two equivalent O(3) atoms. Both Ni(1)-N(1) bond lengths are 2.09 Å. Both Ni(1)-H(13) bond lengths are 2.09 Å. Both Ni(1)-O(1) bond lengths are 2.01 Å. Both Ni(1)-O(3) bond lengths are 2.10 Å. There are six inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1) and two equivalent C(3) atoms. Both C(2)-C(3) bond lengths are 1.38 Å. In the third C site, C(3) is bonded in a single-bond geometry to two equivalent C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one O(3) atom. The C(4)-O(3) bond length is 1.41 Å. In the fifth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(8) atom. The C(7)-N(1) bond length is 1.34 Å. The C(7)-H(8) bond length is 0.95 Å. In the sixth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(12) atom. The C(11)-N(1) bond length is 1.32 Å. The C(11)-H(12) bond length is 0.95 Å. N(1) is bonded in a trigonal planar geometry to one Ni(1), one C(11), and one C(7) atom. There are four inequivalent H sites. In the first H site, H(12) is bonded in a single-bond geometry to one C(11) atom. In the second H site, H(13) is bonded in a single-bond geometry to one Ni(1) and one O(3) atom. The H(13)-O(3) bond length is 0.84 Å. In the third H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(8) is bonded in a single-bond geometry to one C(7) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Ni(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(1) atom. In the third O site, O(3) is bonded in a distorted water-like geometry to one Ni(1), one C(4), and one H(13) atom. Linkers: 16 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 24 [Ni]. The MOF has largest included sphere 10.78 A, density 0.82 g/cm3, surface area 4926.49 m2/g, accessible volume 0.72 cm3/g
|
OWIZAW_clean
|
Cu2C61H32O8 crystallizes in the monoclinic C2/c space group. The structure consists of a Cu2C61H32O8 framework. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a 4-coordinate geometry to one O(1), one O(4), one O(5), and one O(7) atom. The Cu(1)-O(1) bond length is 1.97 Å. The Cu(1)-O(4) bond length is 1.92 Å. The Cu(1)-O(5) bond length is 1.93 Å. The Cu(1)-O(7) bond length is 1.95 Å. In the second Cu site, Cu(2) is bonded in a distorted rectangular see-saw-like geometry to one O(2), one O(3), one O(6), and one O(8) atom. The Cu(2)-O(2) bond length is 1.99 Å. The Cu(2)-O(3) bond length is 2.01 Å. The Cu(2)-O(6) bond length is 1.93 Å. The Cu(2)-O(8) bond length is 1.97 Å. There are sixty-one inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(50), and one C(6) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(50) bond length is 1.48 Å. The C(1)-C(6) bond length is 1.39 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1) and one H(1) atom. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(4) and one H(2) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(2) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(55) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-C(55) bond length is 1.49 Å. In the fifth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(4), one C(6), and one H(3) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-H(3) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(1), one C(5), and one H(4) atom. The C(6)-H(4) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(12), one C(49), and one C(8) atom. The C(7)-C(12) bond length is 1.39 Å. The C(7)-C(49) bond length is 1.57 Å. The C(7)-C(8) bond length is 1.39 Å. In the eighth C site, C(8) is bonded in a single-bond geometry to one C(7) and one H(5,12) atom. The C(8)-H(5,12) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(10) and one H(6) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-H(6) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(54), and one C(9) atom. The C(10)-C(11) bond length is 1.39 Å. The C(10)-C(54) bond length is 1.43 Å. In the eleventh C site, C(11) is bonded in a distorted trigonal planar geometry to one C(10), one C(12), and one H(7) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-H(7) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(11), one C(7), and one H(8) atom. The C(12)-H(8) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one C(14), one C(18), and one C(51) atom. The C(13)-C(14) bond length is 1.39 Å. The C(13)-C(18) bond length is 1.39 Å. The C(13)-C(51) bond length is 1.51 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(13), one C(15), and one H(9) atom. The C(14)-C(15) bond length is 1.39 Å. The C(14)-H(9) bond length is 0.93 Å. In the fifteenth C site, C(15) is bonded in a distorted trigonal planar geometry to one C(14), one C(16), and one H(10) atom. The C(15)-C(16) bond length is 1.39 Å. The C(15)-H(10) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(57) atom. The C(16)-C(17) bond length is 1.39 Å. The C(16)-C(57) bond length is 1.48 Å. In the seventeenth C site, C(17) is bonded in a distorted single-bond geometry to one C(16) and one H(11) atom. The C(17)-H(11) bond length is 0.93 Å. In the eighteenth C site, C(18) is bonded in a distorted single-bond geometry to one C(13) and one H(5,12) atom. The C(18)-H(5,12) bond length is 0.93 Å. In the nineteenth C site, C(19) is bonded in a trigonal planar geometry to one C(20), one C(24), and one C(49) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-C(24) bond length is 1.39 Å. The C(19)-C(49) bond length is 1.55 Å. In the twentieth C site, C(20) is bonded in a distorted single-bond geometry to one C(19), one C(21), and one H(13) atom. The C(20)-C(21) bond length is 1.39 Å. The C(20)-H(13) bond length is 0.93 Å. In the twenty-first C site, C(21) is bonded in a distorted trigonal planar geometry to one C(20), one C(22), and one H(14) atom. The C(21)-C(22) bond length is 1.39 Å. The C(21)-H(14) bond length is 0.93 Å. In the twenty-second C site, C(22) is bonded in a trigonal planar geometry to one C(21), one C(23), and one C(56) atom. The C(22)-C(23) bond length is 1.39 Å. The C(22)-C(56) bond length is 1.46 Å. In the twenty-third C site, C(23) is bonded in a distorted single-bond geometry to one C(22) and one H(15) atom. The C(23)-H(15) bond length is 0.93 Å. In the twenty-fourth C site, C(24) is bonded in a single-bond geometry to one C(19) and one H(16) atom. The C(24)-H(16) bond length is 0.93 Å. In the twenty-fifth C site, C(25) is bonded in a trigonal planar geometry to one C(26), one C(30), and one C(52) atom. The C(25)-C(26) bond length is 1.39 Å. The C(25)-C(30) bond length is 1.39 Å. The C(25)-C(52) bond length is 1.53 Å. In the twenty-sixth C site, C(26) is bonded in a distorted single-bond geometry to one C(25), one C(27), and one H(17) atom. The C(26)-C(27) bond length is 1.39 Å. The C(26)-H(17) bond length is 0.93 Å. In the twenty-seventh C site, C(27) is bonded in a distorted trigonal planar geometry to one C(26), one C(28), and one H(18) atom. The C(27)-C(28) bond length is 1.39 Å. The C(27)-H(18) bond length is 0.93 Å. In the twenty-eighth C site, C(28) is bonded in a trigonal planar geometry to one C(27), one C(29), and one C(61) atom. The C(28)-C(29) bond length is 1.39 Å. The C(28)-C(61) bond length is 1.38 Å. In the twenty-ninth C site, C(29) is bonded in a single-bond geometry to one C(28) and one H(19) atom. The C(29)-H(19) bond length is 0.93 Å. In the thirtieth C site, C(30) is bonded in a distorted single-bond geometry to one C(25) and one H(20) atom. The C(30)-H(20) bond length is 0.93 Å. In the thirty-first C site, C(31) is bonded in a trigonal planar geometry to one C(32), one C(36), and one C(53) atom. The C(31)-C(32) bond length is 1.39 Å. The C(31)-C(36) bond length is 1.39 Å. The C(31)-C(53) bond length is 1.50 Å. In the thirty-second C site, C(32) is bonded in a distorted single-bond geometry to one C(31), one C(33), and one H(21) atom. The C(32)-C(33) bond length is 1.39 Å. The C(32)-H(21) bond length is 0.93 Å. In the thirty-third C site, C(33) is bonded in a distorted trigonal planar geometry to one C(32), one C(34), and one H(22) atom. The C(33)-C(34) bond length is 1.39 Å. The C(33)-H(22) bond length is 0.93 Å. In the thirty-fourth C site, C(34) is bonded in a distorted trigonal planar geometry to one C(33), one C(35), and one C(58) atom. The C(34)-C(35) bond length is 1.39 Å. The C(34)-C(58) bond length is 1.43 Å. In the thirty-fifth C site, C(35) is bonded in a distorted trigonal planar geometry to one C(34), one C(36), and one H(23) atom. The C(35)-C(36) bond length is 1.39 Å. The C(35)-H(23) bond length is 0.93 Å. In the thirty-sixth C site, C(36) is bonded in a distorted single-bond geometry to one C(31), one C(35), and one H(24) atom. The C(36)-H(24) bond length is 0.93 Å. In the thirty-seventh C site, C(37) is bonded in a trigonal planar geometry to one C(38), one C(42), and one C(49) atom. The C(37)-C(38) bond length is 1.39 Å. The C(37)-C(42) bond length is 1.39 Å. The C(37)-C(49) bond length is 1.56 Å. In the thirty-eighth C site, C(38) is bonded in a distorted single-bond geometry to one C(37), one C(39), and one H(25) atom. The C(38)-C(39) bond length is 1.39 Å. The C(38)-H(25) bond length is 0.93 Å. In the thirty-ninth C site, C(39) is bonded in a distorted trigonal planar geometry to one C(38), one C(40), and one H(26) atom. The C(39)-C(40) bond length is 1.39 Å. The C(39)-H(26) bond length is 0.93 Å. In the fortieth C site, C(40) is bonded in a trigonal planar geometry to one C(39), one C(41), and one C(59) atom. The C(40)-C(41) bond length is 1.39 Å. The C(40)-C(59) bond length is 1.43 Å. In the forty-first C site, C(41) is bonded in a distorted trigonal planar geometry to one C(40), one C(42), and one H(27) atom. The C(41)-C(42) bond length is 1.39 Å. The C(41)-H(27) bond length is 0.93 Å. In the forty-second C site, C(42) is bonded in a distorted single-bond geometry to one C(37), one C(41), and one H(28) atom. The C(42)-H(28) bond length is 0.93 Å. In the forty-third C site, C(43) is bonded in a trigonal planar geometry to one C(44), one C(48), and one C(49) atom. The C(43)-C(44) bond length is 1.39 Å. The C(43)-C(48) bond length is 1.39 Å. The C(43)-C(49) bond length is 1.52 Å. In the forty-fourth C site, C(44) is bonded in a single-bond geometry to one C(43) and one H(29) atom. The C(44)-H(29) bond length is 0.93 Å. In the forty-fifth C site, C(45) is bonded in a distorted single-bond geometry to one C(46) and one H(30) atom. The C(45)-C(46) bond length is 1.39 Å. The C(45)-H(30) bond length is 0.93 Å. In the forty-sixth C site, C(46) is bonded in a trigonal planar geometry to one C(45), one C(47), and one C(60) atom. The C(46)-C(47) bond length is 1.39 Å. The C(46)-C(60) bond length is 1.46 Å. In the forty-seventh C site, C(47) is bonded in a distorted trigonal planar geometry to one C(46), one C(48), and one H(31) atom. The C(47)-C(48) bond length is 1.39 Å. The C(47)-H(31) bond length is 0.93 Å. In the forty-eighth C site, C(48) is bonded in a distorted single-bond geometry to one C(43), one C(47), and one H(32) atom. The C(48)-H(32) bond length is 0.93 Å. In the forty-ninth C site, C(49) is bonded in a tetrahedral geometry to one C(19), one C(37), one C(43), and one C(7) atom. In the fiftieth C site, C(50) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(50)-O(1) bond length is 1.26 Å. The C(50)-O(2) bond length is 1.32 Å. In the fifty-first C site, C(51) is bonded in a 2-coordinate geometry to one C(13), one O(3), and one O(4) atom. The C(51)-O(3) bond length is 1.30 Å. The C(51)-O(4) bond length is 1.30 Å. In the fifty-second C site, C(52) is bonded in a bent 120 degrees geometry to one C(25), one O(5), and one O(6) atom. The C(52)-O(5) bond length is 1.32 Å. The C(52)-O(6) bond length is 1.27 Å. In the fifty-third C site, C(53) is bonded in a bent 120 degrees geometry to one C(31), one O(7), and one O(8) atom. The C(53)-O(7) bond length is 1.30 Å. The C(53)-O(8) bond length is 1.28 Å. In the fifty-fourth C site, C(54) is bonded in a linear geometry to one C(10) and one C(55) atom. The C(54)-C(55) bond length is 1.20 Å. In the fifty-fifth C site, C(55) is bonded in a linear geometry to one C(4) and one C(54) atom. In the fifty-sixth C site, C(56) is bonded in a linear geometry to one C(22) and one C(57) atom. The C(56)-C(57) bond length is 1.23 Å. In the fifty-seventh C site, C(57) is bonded in a linear geometry to one C(16) and one C(56) atom. In the fifty-eighth C site, C(58) is bonded in a distorted bent 150 degrees geometry to one C(34) and one C(59) atom. The C(58)-C(59) bond length is 1.22 Å. In the fifty-ninth C site, C(59) is bonded in a linear geometry to one C(40) and one C(58) atom. In the sixtieth C site, C(60) is bonded in a linear geometry to one C(46) and one C(61) atom. The C(60)-C(61) bond length is 1.21 Å. In the sixty-first C site, C(61) is bonded in a linear geometry to one C(28) and one C(60) atom. There are thirty-one inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(5,12) is bonded in a single-bond geometry to one C(8) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(9) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(12) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(14) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(15) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(17) atom. In the twelfth H site, H(13) is bonded in a single-bond geometry to one C(20) atom. In the thirteenth H site, H(14) is bonded in a single-bond geometry to one C(21) atom. In the fourteenth H site, H(15) is bonded in a single-bond geometry to one C(23) atom. In the fifteenth H site, H(16) is bonded in a single-bond geometry to one C(24) atom. In the sixteenth H site, H(17) is bonded in a single-bond geometry to one C(26) atom. In the seventeenth H site, H(18) is bonded in a single-bond geometry to one C(27) atom. In the eighteenth H site, H(19) is bonded in a single-bond geometry to one C(29) atom. In the nineteenth H site, H(20) is bonded in a single-bond geometry to one C(30) atom. In the twentieth H site, H(21) is bonded in a single-bond geometry to one C(32) atom. In the twenty-first H site, H(22) is bonded in a single-bond geometry to one C(33) atom. In the twenty-second H site, H(23) is bonded in a single-bond geometry to one C(35) atom. In the twenty-third H site, H(24) is bonded in a single-bond geometry to one C(36) atom. In the twenty-fourth H site, H(25) is bonded in a single-bond geometry to one C(38) atom. In the twenty-fifth H site, H(26) is bonded in a single-bond geometry to one C(39) atom. In the twenty-sixth H site, H(27) is bonded in a single-bond geometry to one C(41) atom. In the twenty-seventh H site, H(28) is bonded in a single-bond geometry to one C(42) atom. In the twenty-eighth H site, H(29) is bonded in a single-bond geometry to one C(44) atom. In the twenty-ninth H site, H(30) is bonded in a single-bond geometry to one C(45) atom. In the thirtieth H site, H(31) is bonded in a single-bond geometry to one C(47) atom. In the thirty-first H site, H(32) is bonded in a single-bond geometry to one C(48) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(50) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Cu(2) and one C(50) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(51) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one Cu(1) and one C(51) atom. In the fifth O site, O(5) is bonded in a distorted single-bond geometry to one Cu(1) and one C(52) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(52) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Cu(1) and one C(53) atom. In the eighth O site, O(8) is bonded in a distorted single-bond geometry to one Cu(2) and one C(53) atom. Linkers: 4 [O]C(=O)c1ccc(C#Cc2ccc(C(c3ccc(C#Cc4ccc(C([O])=O)cc4)cc3)(c3ccc(C#Cc4ccc(C([O])=O)cc4)cc3)c3ccc(C#Cc4ccc(C([O])=O)cc4)cc3)cc2)cc1. Metal clusters: 4 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. RCSR code: pts. The MOF has largest included sphere 14.24 A, density 0.38 g/cm3, surface area 4946.82 m2/g, accessible volume 2.30 cm3/g
|
RAVDAV_clean
|
SmC17H8O8 crystallizes in the monoclinic P2_1/c space group. Sm(1) is bonded in a 8-coordinate geometry to one O(1), one O(2), one O(3), one O(4), one O(5), one O(6), one O(7), and one O(8) atom. The Sm(1)-O(1) bond length is 2.59 Å. The Sm(1)-O(2) bond length is 2.51 Å. The Sm(1)-O(3) bond length is 2.36 Å. The Sm(1)-O(4) bond length is 2.41 Å. The Sm(1)-O(5) bond length is 2.37 Å. The Sm(1)-O(6) bond length is 2.34 Å. The Sm(1)-O(7) bond length is 2.53 Å. The Sm(1)-O(8) bond length is 2.61 Å. There are seventeen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(14), one C(2), and one C(6) atom. The C(1)-C(14) bond length is 1.51 Å. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.40 Å. In the second C site, C(2) is bonded in a single-bond geometry to one C(1), one C(3), and one H(1) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(15), one C(2), and one C(4) atom. The C(3)-C(15) bond length is 1.51 Å. The C(3)-C(4) bond length is 1.40 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(2) atom. The C(4)-C(5) bond length is 1.40 Å. The C(4)-H(2) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(7) atom. The C(5)-C(6) bond length is 1.40 Å. The C(5)-C(7) bond length is 1.51 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(1), one C(5), and one H(3) atom. The C(6)-H(3) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a water-like geometry to one C(5), one C(8), one H(4), and one H(5) atom. The C(7)-C(8) bond length is 1.51 Å. The C(7)-H(4) bond length is 0.99 Å. The C(7)-H(5) bond length is 0.99 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(13), one C(7), and one C(9) atom. The C(8)-C(13) bond length is 1.38 Å. The C(8)-C(9) bond length is 1.38 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one H(6) atom. The C(9)-C(10) bond length is 1.41 Å. The C(9)-H(6) bond length is 0.95 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(16), and one C(9) atom. The C(10)-C(11) bond length is 1.40 Å. The C(10)-C(16) bond length is 1.51 Å. In the eleventh C site, C(11) is bonded in a single-bond geometry to one C(10), one C(12), and one H(7) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-H(7) bond length is 0.95 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(11), one C(13), and one C(17) atom. The C(12)-C(13) bond length is 1.39 Å. The C(12)-C(17) bond length is 1.51 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(12), one C(8), and one H(8) atom. The C(13)-H(8) bond length is 0.95 Å. In the fourteenth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(14)-O(1) bond length is 1.25 Å. The C(14)-O(2) bond length is 1.25 Å. In the fifteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(3), and one O(4) atom. The C(15)-O(3) bond length is 1.25 Å. The C(15)-O(4) bond length is 1.26 Å. In the sixteenth C site, C(16) is bonded in a distorted bent 120 degrees geometry to one C(10), one O(5), and one O(6) atom. The C(16)-O(5) bond length is 1.25 Å. The C(16)-O(6) bond length is 1.23 Å. In the seventeenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(12), one O(7), and one O(8) atom. The C(17)-O(7) bond length is 1.26 Å. The C(17)-O(8) bond length is 1.27 Å. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(9) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(13) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Sm(1) and one C(14) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Sm(1) and one C(14) atom. In the third O site, O(3) is bonded in a linear geometry to one Sm(1) and one C(15) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Sm(1) and one C(15) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Sm(1) and one C(16) atom. In the sixth O site, O(6) is bonded in a linear geometry to one Sm(1) and one C(16) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Sm(1) and one C(17) atom. In the eighth O site, O(8) is bonded in a single-bond geometry to one Sm(1) and one C(17) atom. Linkers: 4 [O]C(=O)c1cc(Cc2cc(C([O])=O)cc(C([O])=O)c2)cc(C([O])=O)c1. Metal clusters: 4 [Sm]. The MOF has largest included sphere 4.66 A, density 1.78 g/cm3, surface area 3101.94 m2/g, accessible volume 0.16 cm3/g
|
ILECIN_clean
|
MgH3(CO2)3 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Mg sites. In the first Mg site, Mg(1) is bonded in an octahedral geometry to one O(12), one O(2), one O(3), one O(4), one O(5), and one O(6) atom. The Mg(1)-O(12) bond length is 2.05 Å. The Mg(1)-O(2) bond length is 2.04 Å. The Mg(1)-O(3) bond length is 2.07 Å. The Mg(1)-O(4) bond length is 2.07 Å. The Mg(1)-O(5) bond length is 2.08 Å. The Mg(1)-O(6) bond length is 2.06 Å. In the second Mg site, Mg(2) is bonded in an octahedral geometry to one O(1), one O(10), one O(11), one O(7), one O(8), and one O(9) atom. The Mg(2)-O(1) bond length is 2.09 Å. The Mg(2)-O(10) bond length is 2.05 Å. The Mg(2)-O(11) bond length is 2.07 Å. The Mg(2)-O(7) bond length is 2.06 Å. The Mg(2)-O(8) bond length is 2.05 Å. The Mg(2)-O(9) bond length is 2.06 Å. There are six inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one H(1), one O(1), and one O(6) atom. The C(1)-H(1) bond length is 0.93 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(6) bond length is 1.22 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one H(2), one O(12), and one O(7) atom. The C(2)-H(2) bond length is 0.93 Å. The C(2)-O(12) bond length is 1.23 Å. The C(2)-O(7) bond length is 1.21 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one H(3), one O(11), and one O(4) atom. The C(3)-H(3) bond length is 0.93 Å. The C(3)-O(11) bond length is 1.22 Å. The C(3)-O(4) bond length is 1.24 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one H(4), one O(10), and one O(3) atom. The C(4)-H(4) bond length is 0.93 Å. The C(4)-O(10) bond length is 1.23 Å. The C(4)-O(3) bond length is 1.25 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one H(5), one O(5), and one O(9) atom. The C(5)-H(5) bond length is 0.93 Å. The C(5)-O(5) bond length is 1.23 Å. The C(5)-O(9) bond length is 1.23 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one H(6), one O(2), and one O(8) atom. The C(6)-H(6) bond length is 0.93 Å. The C(6)-O(2) bond length is 1.21 Å. The C(6)-O(8) bond length is 1.22 Å. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(4) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(5) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(6) atom. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Mg(2) and one C(1) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Mg(1) and one C(6) atom. In the third O site, O(3) is bonded in a bent 150 degrees geometry to one Mg(1) and one C(4) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Mg(1) and one C(3) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Mg(1) and one C(5) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Mg(1) and one C(1) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one Mg(2) and one C(2) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Mg(2) and one C(6) atom. In the ninth O site, O(9) is bonded in a bent 150 degrees geometry to one Mg(2) and one C(5) atom. In the tenth O site, O(10) is bonded in a distorted bent 120 degrees geometry to one Mg(2) and one C(4) atom. In the eleventh O site, O(11) is bonded in a bent 150 degrees geometry to one Mg(2) and one C(3) atom. In the twelfth O site, O(12) is bonded in a bent 150 degrees geometry to one Mg(1) and one C(2) atom. Linkers: 24 [O]C=O. Metal clusters: 8 [Mg]. The MOF has largest included sphere 4.57 A, density 1.14 g/cm3, surface area 4724.78 m2/g, accessible volume 0.41 cm3/g
|
VEJHID_clean
|
Cd7C78H30(NO4)6 crystallizes in the cubic Pm-3m space group. There are two inequivalent Cd sites. In the first Cd site, Cd(1) is bonded in a 6-coordinate geometry to three equivalent O(1) and three equivalent O(2) atoms. All Cd(1)-O(1) bond lengths are 2.34 Å. All Cd(1)-O(2) bond lengths are 2.41 Å. In the second Cd site, Cd(2) is bonded in a distorted pentagonal planar geometry to one Cd(2) and four equivalent N(1) atoms. The Cd(2)-Cd(2) bond length is 1.71 Å. All Cd(2)-N(1) bond lengths are 2.32 Å. There are eight inequivalent C sites. In the first C site, C(6) is bonded in a trigonal planar geometry to one C(7) and two equivalent C(4) atoms. The C(6)-C(7) bond length is 1.49 Å. Both C(6)-C(4) bond lengths are 1.40 Å. In the second C site, C(7) is bonded in a trigonal planar geometry to one C(6) and two equivalent C(2) atoms. Both C(7)-C(2) bond lengths are 1.38 Å. In the third C site, C(8) is bonded in a distorted trigonal planar geometry to two equivalent C(1) and one H(3) atom. Both C(8)-C(1) bond lengths are 1.37 Å. The C(8)-H(3) bond length is 0.93 Å. In the fourth C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(8) atom. The C(1)-C(2) bond length is 1.40 Å. The C(1)-C(3) bond length is 1.49 Å. In the fifth C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(7), and one H(1) atom. The C(2)-H(1) bond length is 0.93 Å. In the sixth C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(3)-O(1) bond length is 1.18 Å. The C(3)-O(2) bond length is 1.22 Å. In the seventh C site, C(4) is bonded in a distorted trigonal planar geometry to one C(5), one C(6), and one N(1) atom. The C(4)-C(5) bond length is 1.47 Å. The C(4)-N(1) bond length is 1.39 Å. In the eighth C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(2) atom. The C(5)-H(2) bond length is 0.93 Å. N(1) is bonded in a 4-coordinate geometry to two equivalent Cd(2) and two equivalent C(4) atoms. There are three inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(8) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in an L-shaped geometry to one Cd(1) and one C(3) atom. In the second O site, O(2) is bonded in an L-shaped geometry to one Cd(1) and one C(3) atom. Linkers: 5 [O]C(=O)c1cc(C([O])=O)cc(/C2=C3\C=C/C(=C(\c4cc(C([O])=O)cc(C([O])=O)c4)C4=N/C(=C(/c5cc(C([O])=O)cc(C([O])=O)c5)C5=CC=C([N]5)/C(c5cc(C([O])=O)cc(C([O])=O)c5)=C5/C=CC2=N5)C=C4)[N]3)c1. Metal clusters: 8 [C]1O[Cd]23(O1)(O[C]O2)O[C]O3 ,1 [N][Cd]([N])([N])([N])[Cd] ,1 [N][Cd][Cd]([N])([N])[N] ,1 [N][Cd]([N])[Cd]([N])[N]. RCSR code: the. The MOF has largest included sphere 17.65 A, density 0.65 g/cm3, surface area 3409.96 m2/g, accessible volume 1.15 cm3/g
|
SIPCID_clean
|
NaH3(SO3)3(CF3)3 crystallizes in the cubic I2_13 space group. The structure consists of twenty-four trifluoromethane molecules inside a NaH3(SO3)3 framework. In the NaH3(SO3)3 framework, Na(1) is bonded in an octahedral geometry to three equivalent O(1) and three equivalent O(3) atoms. All Na(1)-O(1) bond lengths are 2.36 Å. All Na(1)-O(3) bond lengths are 2.33 Å. H(1) is bonded in a single-bond geometry to one O(2) atom. The H(1)-O(2) bond length is 0.94 Å. S(1) is bonded in a distorted trigonal non-coplanar geometry to one O(1), one O(2), and one O(3) atom. The S(1)-O(1) bond length is 1.40 Å. The S(1)-O(2) bond length is 1.52 Å. The S(1)-O(3) bond length is 1.39 Å. There are three inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Na(1) and one S(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one H(1) and one S(1) atom. In the third O site, O(3) is bonded in a linear geometry to one Na(1) and one S(1) atom. Linkers: 24 [O]S([O])(O)C(F)(F)F. Metal clusters: 8 [Na]. The MOF has largest included sphere 5.32 A, density 1.48 g/cm3, surface area 3988.26 m2/g, accessible volume 0.28 cm3/g
|
HIFWAV_clean
|
Zn(C3H3N2)2 crystallizes in the monoclinic P2_1/c space group. There are five inequivalent Zn sites. In the first Zn site, Zn(1) is bonded in a tetrahedral geometry to one N(1), one N(14), one N(2), and one N(3) atom. The Zn(1)-N(1) bond length is 2.00 Å. The Zn(1)-N(14) bond length is 1.98 Å. The Zn(1)-N(2) bond length is 2.00 Å. The Zn(1)-N(3) bond length is 1.98 Å. In the second Zn site, Zn(2) is bonded in a tetrahedral geometry to one N(20), one N(4), one N(5), and one N(7) atom. The Zn(2)-N(20) bond length is 1.99 Å. The Zn(2)-N(4) bond length is 2.00 Å. The Zn(2)-N(5) bond length is 1.99 Å. The Zn(2)-N(7) bond length is 2.00 Å. In the third Zn site, Zn(3) is bonded in a tetrahedral geometry to one N(11), one N(6), one N(8), and one N(9) atom. The Zn(3)-N(11) bond length is 1.99 Å. The Zn(3)-N(6) bond length is 1.97 Å. The Zn(3)-N(8) bond length is 1.98 Å. The Zn(3)-N(9) bond length is 2.00 Å. In the fourth Zn site, Zn(4) is bonded in a tetrahedral geometry to one N(10), one N(12), one N(13), and one N(15) atom. The Zn(4)-N(10) bond length is 2.00 Å. The Zn(4)-N(12) bond length is 2.00 Å. The Zn(4)-N(13) bond length is 1.99 Å. The Zn(4)-N(15) bond length is 1.98 Å. In the fifth Zn site, Zn(5) is bonded in a tetrahedral geometry to one N(16), one N(17), one N(18), and one N(19) atom. The Zn(5)-N(16) bond length is 1.98 Å. The Zn(5)-N(17) bond length is 1.97 Å. The Zn(5)-N(18) bond length is 1.99 Å. The Zn(5)-N(19) bond length is 2.00 Å. There are thirty inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(1) atom. The C(1)-N(1) bond length is 1.31 Å. The C(1)-N(2) bond length is 1.33 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(3), one N(1), and one H(2) atom. The C(2)-C(3) bond length is 1.33 Å. The C(2)-N(1) bond length is 1.34 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(2), and one H(3) atom. The C(3)-N(2) bond length is 1.36 Å. The C(3)-H(3) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one N(3), one N(4), and one H(4) atom. The C(4)-N(3) bond length is 1.28 Å. The C(4)-N(4) bond length is 1.31 Å. The C(4)-H(4) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(5) atom. The C(5)-N(3) bond length is 1.30 Å. The C(5)-H(5) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(6) atom. The C(6)-N(4) bond length is 1.30 Å. The C(6)-H(6) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one N(5), one N(6), and one H(7) atom. The C(7)-N(5) bond length is 1.31 Å. The C(7)-N(6) bond length is 1.31 Å. The C(7)-H(7) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(9), one N(5), and one H(8) atom. The C(8)-C(9) bond length is 1.34 Å. The C(8)-N(5) bond length is 1.39 Å. The C(8)-H(8) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a 3-coordinate geometry to one C(8), one N(6), and one H(9) atom. The C(9)-N(6) bond length is 1.34 Å. The C(9)-H(9) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one N(7), one N(8), and one H(10) atom. The C(10)-N(7) bond length is 1.32 Å. The C(10)-N(8) bond length is 1.31 Å. The C(10)-H(10) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one C(12), one N(8), and one H(11) atom. The C(11)-C(12) bond length is 1.34 Å. The C(11)-N(8) bond length is 1.35 Å. The C(11)-H(11) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted trigonal planar geometry to one C(11), one N(7), and one H(12) atom. The C(12)-N(7) bond length is 1.37 Å. The C(12)-H(12) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one N(10), one N(9), and one H(13) atom. The C(13)-N(10) bond length is 1.34 Å. The C(13)-N(9) bond length is 1.32 Å. The C(13)-H(13) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a distorted trigonal planar geometry to one C(15), one N(10), and one H(14) atom. The C(14)-C(15) bond length is 1.32 Å. The C(14)-N(10) bond length is 1.37 Å. The C(14)-H(14) bond length is 0.93 Å. In the fifteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one C(14), one N(9), and one H(15) atom. The C(15)-N(9) bond length is 1.35 Å. The C(15)-H(15) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one N(11), one N(12), and one H(16) atom. The C(16)-N(11) bond length is 1.33 Å. The C(16)-N(12) bond length is 1.31 Å. The C(16)-H(16) bond length is 0.93 Å. In the seventeenth C site, C(17) is bonded in a 3-coordinate geometry to one C(18), one N(11), and one H(17) atom. The C(17)-C(18) bond length is 1.33 Å. The C(17)-N(11) bond length is 1.35 Å. The C(17)-H(17) bond length is 0.93 Å. In the eighteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one C(17), one N(12), and one H(18) atom. The C(18)-N(12) bond length is 1.38 Å. The C(18)-H(18) bond length is 0.93 Å. In the nineteenth C site, C(19) is bonded in a trigonal planar geometry to one N(13), one N(14), and one H(19) atom. The C(19)-N(13) bond length is 1.33 Å. The C(19)-N(14) bond length is 1.33 Å. The C(19)-H(19) bond length is 0.93 Å. In the twentieth C site, C(20) is bonded in a distorted bent 120 degrees geometry to one N(13) and one H(20) atom. The C(20)-N(13) bond length is 1.36 Å. The C(20)-H(20) bond length is 0.93 Å. In the twenty-first C site, C(21) is bonded in a distorted bent 120 degrees geometry to one N(14) and one H(21) atom. The C(21)-N(14) bond length is 1.36 Å. The C(21)-H(21) bond length is 0.93 Å. In the twenty-second C site, C(22) is bonded in a trigonal planar geometry to one N(15), one N(16), and one H(22) atom. The C(22)-N(15) bond length is 1.32 Å. The C(22)-N(16) bond length is 1.34 Å. The C(22)-H(22) bond length is 0.93 Å. In the twenty-third C site, C(23) is bonded in a distorted trigonal planar geometry to one C(24), one N(15), and one H(23) atom. The C(23)-C(24) bond length is 1.35 Å. The C(23)-N(15) bond length is 1.35 Å. The C(23)-H(23) bond length is 0.93 Å. In the twenty-fourth C site, C(24) is bonded in a distorted bent 120 degrees geometry to one C(23), one N(16), and one H(24) atom. The C(24)-N(16) bond length is 1.35 Å. The C(24)-H(24) bond length is 0.93 Å. In the twenty-fifth C site, C(25) is bonded in a trigonal planar geometry to one N(17), one N(18), and one H(25) atom. The C(25)-N(17) bond length is 1.31 Å. The C(25)-N(18) bond length is 1.32 Å. The C(25)-H(25) bond length is 0.93 Å. In the twenty-sixth C site, C(26) is bonded in a distorted bent 120 degrees geometry to one N(18) and one H(26) atom. The C(26)-N(18) bond length is 1.35 Å. The C(26)-H(26) bond length is 0.93 Å. In the twenty-seventh C site, C(27) is bonded in a distorted bent 120 degrees geometry to one N(17) and one H(27) atom. The C(27)-N(17) bond length is 1.35 Å. The C(27)-H(27) bond length is 0.93 Å. In the twenty-eighth C site, C(28) is bonded in a trigonal planar geometry to one N(19), one N(20), and one H(28) atom. The C(28)-N(19) bond length is 1.29 Å. The C(28)-N(20) bond length is 1.31 Å. The C(28)-H(28) bond length is 0.93 Å. In the twenty-ninth C site, C(29) is bonded in a distorted bent 120 degrees geometry to one C(30), one N(19), and one H(29) atom. The C(29)-C(30) bond length is 1.33 Å. The C(29)-N(19) bond length is 1.30 Å. The C(29)-H(29) bond length is 0.93 Å. In the thirtieth C site, C(30) is bonded in a distorted bent 120 degrees geometry to one C(29), one N(20), and one H(30) atom. The C(30)-N(20) bond length is 1.35 Å. The C(30)-H(30) bond length is 0.93 Å. There are twenty inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Zn(1), one C(1), and one C(2) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Zn(1), one C(1), and one C(3) atom. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Zn(1), one C(4), and one C(5) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Zn(2), one C(4), and one C(6) atom. In the fifth N site, N(5) is bonded in a trigonal planar geometry to one Zn(2), one C(7), and one C(8) atom. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one Zn(3), one C(7), and one C(9) atom. In the seventh N site, N(7) is bonded in a trigonal planar geometry to one Zn(2), one C(10), and one C(12) atom. In the eighth N site, N(8) is bonded in a trigonal planar geometry to one Zn(3), one C(10), and one C(11) atom. In the ninth N site, N(9) is bonded in a trigonal planar geometry to one Zn(3), one C(13), and one C(15) atom. In the tenth N site, N(10) is bonded in a distorted trigonal planar geometry to one Zn(4), one C(13), and one C(14) atom. In the eleventh N site, N(11) is bonded in a trigonal planar geometry to one Zn(3), one C(16), and one C(17) atom. In the twelfth N site, N(12) is bonded in a trigonal planar geometry to one Zn(4), one C(16), and one C(18) atom. In the thirteenth N site, N(13) is bonded in a trigonal planar geometry to one Zn(4), one C(19), and one C(20) atom. In the fourteenth N site, N(14) is bonded in a trigonal planar geometry to one Zn(1), one C(19), and one C(21) atom. In the fifteenth N site, N(15) is bonded in a trigonal planar geometry to one Zn(4), one C(22), and one C(23) atom. In the sixteenth N site, N(16) is bonded in a trigonal planar geometry to one Zn(5), one C(22), and one C(24) atom. In the seventeenth N site, N(17) is bonded in a trigonal planar geometry to one Zn(5), one C(25), and one C(27) atom. In the eighteenth N site, N(18) is bonded in a trigonal planar geometry to one Zn(5), one C(25), and one C(26) atom. In the nineteenth N site, N(19) is bonded in a distorted trigonal planar geometry to one Zn(5), one C(28), and one C(29) atom. In the twentieth N site, N(20) is bonded in a trigonal planar geometry to one Zn(2), one C(28), and one C(30) atom. There are thirty inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(4) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(5) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(6) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(7) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(8) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(9) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(10) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(11) atom. In the twelfth H site, H(12) is bonded in a single-bond geometry to one C(12) atom. In the thirteenth H site, H(13) is bonded in a single-bond geometry to one C(13) atom. In the fourteenth H site, H(14) is bonded in a single-bond geometry to one C(14) atom. In the fifteenth H site, H(15) is bonded in a single-bond geometry to one C(15) atom. In the sixteenth H site, H(16) is bonded in a single-bond geometry to one C(16) atom. In the seventeenth H site, H(17) is bonded in a single-bond geometry to one C(17) atom. In the eighteenth H site, H(18) is bonded in a single-bond geometry to one C(18) atom. In the nineteenth H site, H(19) is bonded in a single-bond geometry to one C(19) atom. In the twentieth H site, H(20) is bonded in a single-bond geometry to one C(20) atom. In the twenty-first H site, H(21) is bonded in a single-bond geometry to one C(21) atom. In the twenty-second H site, H(22) is bonded in a single-bond geometry to one C(22) atom. In the twenty-third H site, H(23) is bonded in a single-bond geometry to one C(23) atom. In the twenty-fourth H site, H(24) is bonded in a single-bond geometry to one C(24) atom. In the twenty-fifth H site, H(25) is bonded in a single-bond geometry to one C(25) atom. In the twenty-sixth H site, H(26) is bonded in a single-bond geometry to one C(26) atom. In the twenty-seventh H site, H(27) is bonded in a single-bond geometry to one C(27) atom. In the twenty-eighth H site, H(28) is bonded in a single-bond geometry to one C(28) atom. In the twenty-ninth H site, H(29) is bonded in a single-bond geometry to one C(29) atom. In the thirtieth H site, H(30) is bonded in a single-bond geometry to one C(30) atom. Linkers: 1 [CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH]=N[Zn]([N])([N])[N].[CH]=N[Zn][N].[CH]=N[Zn][N].[CH]=N[Zn][N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]N([CH])[Zn].[CH]N([Zn])[CH][C][N].[CH][C][N].[CH][C][N][Zn].[CH][N].[CH][N].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]#N.[C]#N.[C]#N.[C]#N.[C]#N.[C]#N.[C]#N.[C]#N.[C]#N.[C]#[C].[C]1[C]=N[C]=N1.[C]=C[N].[C]=C[N][CH].[C]=C[N][Zn]([N])[N].[C]=N[Zn].[C]=N[Zn].[C]N([CH])[Zn].[C]N([CH])[Zn].[C]N([C])[Zn].[C]N([C])[Zn].[C]N([Zn])/C=C\[N].[C][C][N].[C][C][N][C].[C][C][N][Zn].[C][N].[C][N].[C][N].[C][N].[C][N].[C][N].[C][N].[C][N].[C][N].[C][N].[C][N]C=[C].[C][N]C=[C].[C][N][CH].[C][N][CH].[C][N][C].[C][N][C].[C][N][C].[C][N][Zn]([N])[N][C].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N]=C[C][N][Zn].[N][C]C=[N].[N][C][C][N].[N][Zn].[N][Zn].[N][Zn].[N][Zn].[N][Zn].[N][Zn].[N][Zn].[N][Zn][N].[N][Zn][N].[N][Zn][N].[N][Zn][N].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn].[Zn] ,1 [CH]1C=NC=N1. Metal clusters: 2 [Zn]. The MOF has largest included sphere 6.83 A, density 1.14 g/cm3, surface area 4541.42 m2/g, accessible volume 0.46 cm3/g
|
KABXAO_clean
|
W6Cu2C5N2H3O17 crystallizes in the triclinic P-1 space group. There are six inequivalent W sites. In the first W site, W(1) is bonded in a 5-coordinate geometry to one O(1), one O(12), one O(13), one O(2), and one O(7) atom. The W(1)-O(1) bond length is 1.81 Å. The W(1)-O(12) bond length is 1.97 Å. The W(1)-O(13) bond length is 1.89 Å. The W(1)-O(2) bond length is 2.10 Å. The W(1)-O(7) bond length is 2.24 Å. In the second W site, W(2) is bonded to one O(11), one O(13), one O(3), one O(6), and one O(8) atom to form a mixture of distorted edge and corner-sharing WO5 square pyramids. The W(2)-O(11) bond length is 2.26 Å. The W(2)-O(13) bond length is 1.95 Å. The W(2)-O(3) bond length is 1.85 Å. The W(2)-O(6) bond length is 1.89 Å. The W(2)-O(8) bond length is 1.97 Å. In the third W site, W(3) is bonded in a 5-coordinate geometry to one O(10), one O(11), one O(2), one O(5), and one O(6) atom. The W(3)-O(10) bond length is 1.90 Å. The W(3)-O(11) bond length is 2.25 Å. The W(3)-O(2) bond length is 1.82 Å. The W(3)-O(5) bond length is 1.95 Å. The W(3)-O(6) bond length is 2.06 Å. In the fourth W site, W(4) is bonded in a 4-coordinate geometry to one O(10), one O(12), one O(7), and one O(9) atom. The W(4)-O(10) bond length is 2.27 Å. The W(4)-O(12) bond length is 1.91 Å. The W(4)-O(7) bond length is 2.25 Å. The W(4)-O(9) bond length is 1.91 Å. In the fifth W site, W(5) is bonded to one O(10), one O(14), one O(4), one O(8), and one O(9) atom to form distorted corner-sharing WO5 square pyramids. The W(5)-O(10) bond length is 2.27 Å. The W(5)-O(14) bond length is 1.80 Å. The W(5)-O(4) bond length is 2.12 Å. The W(5)-O(8) bond length is 1.88 Å. The W(5)-O(9) bond length is 1.96 Å. In the sixth W site, W(6) is bonded to one O(11), one O(3), one O(4), one O(5), and one O(7) atom to form a mixture of distorted edge and corner-sharing WO5 square pyramids. The W(6)-O(11) bond length is 2.26 Å. The W(6)-O(3) bond length is 2.07 Å. The W(6)-O(4) bond length is 1.84 Å. The W(6)-O(5) bond length is 1.96 Å. The W(6)-O(7) bond length is 1.90 Å. There are three inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a distorted trigonal planar geometry to one Cu(1), one O(14), and one O(17) atom. The Cu(1)-Cu(1) bond length is 0.26 Å. The Cu(1)-O(14) bond length is 1.84 Å. The Cu(1)-O(17) bond length is 1.91 Å. In the second Cu site, Cu(2) is bonded in a square co-planar geometry to two equivalent N(1) and two equivalent O(1) atoms. Both Cu(2)-N(1) bond lengths are 2.01 Å. Both Cu(2)-O(1) bond lengths are 1.93 Å. In the third Cu site, Cu(3) is bonded in a square co-planar geometry to two equivalent N(2) and two equivalent O(15) atoms. Both Cu(3)-N(2) bond lengths are 1.97 Å. Both Cu(3)-O(15) bond lengths are 1.93 Å. There are five inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(4), one N(1), and one H(1) atom. The C(1)-C(4) bond length is 1.39 Å. The C(1)-N(1) bond length is 1.31 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(3), one N(1), and one H(2) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-N(1) bond length is 1.37 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(5), and one N(2) atom. The C(3)-C(5) bond length is 1.45 Å. The C(3)-N(2) bond length is 1.31 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(1), one N(2), and one H(3) atom. The C(4)-N(2) bond length is 1.34 Å. The C(4)-H(3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(15), and one O(16) atom. The C(5)-O(15) bond length is 1.29 Å. The C(5)-O(16) bond length is 1.27 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(2), one C(1), and one C(2) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Cu(3), one C(3), and one C(4) atom. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. There are seventeen inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one W(1) and one Cu(2) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one W(1) and one W(3) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one W(2) and one W(6) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one W(5) and one W(6) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one W(3) and one W(6) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one W(2) and one W(3) atom. In the seventh O site, O(7) is bonded in a 3-coordinate geometry to one W(1), one W(4), and one W(6) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one W(2) and one W(5) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one W(4) and one W(5) atom. In the tenth O site, O(10) is bonded in a 3-coordinate geometry to one W(3), one W(4), and one W(5) atom. In the eleventh O site, O(11) is bonded in a distorted T-shaped geometry to one W(2), one W(3), and one W(6) atom. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to one W(1) and one W(4) atom. In the thirteenth O site, O(13) is bonded in a bent 150 degrees geometry to one W(1) and one W(2) atom. In the fourteenth O site, O(14) is bonded in a distorted bent 150 degrees geometry to one W(5) and one Cu(1) atom. In the fifteenth O site, O(15) is bonded in a bent 120 degrees geometry to one Cu(3) and one C(5) atom. In the sixteenth O site, O(16) is bonded in a single-bond geometry to one C(5) atom. In the seventeenth O site, O(17) is bonded in a single-bond geometry to one Cu(1) atom. Linkers: 2 [O]C(=O)c1cnccn1. Metal clusters: 4 [Cu] ,12 [W]. The MOF has largest included sphere 5.26 A, density 2.95 g/cm3, surface area 1348.87 m2/g, accessible volume 0.17 cm3/g
|
ICAROV_clean
|
NiC10NH6O4(C5H3)2C3H2 is Indium-derived structured and crystallizes in the cubic Pm-3n space group. The structure is zero-dimensional and consists of eight 1,3,5-triisopropenyl benzene molecules; six 2,3-dimethyl-1,3-butadiene molecules; and six NiC10NH6O4 clusters. In each NiC10NH6O4 cluster, Ni(1) is bonded in a square pyramidal geometry to one N(1) and four equivalent O(1) atoms. The Ni(1)-N(1) bond length is 2.02 Å. All Ni(1)-O(1) bond lengths are 2.00 Å. There are four inequivalent C sites. In the first C site, C(4) is bonded in a bent 120 degrees geometry to one C(5) and two equivalent O(1) atoms. The C(4)-C(5) bond length is 1.50 Å. Both C(4)-O(1) bond lengths are 1.25 Å. In the second C site, C(5) is bonded in a trigonal planar geometry to one C(4) and two equivalent C(1) atoms. Both C(5)-C(1) bond lengths are 1.38 Å. In the third C site, C(1) is bonded in a distorted single-bond geometry to one C(5) and one H(1) atom. The C(1)-H(1) bond length is 0.93 Å. In the fourth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(5) atom. The C(10)-N(1) bond length is 1.34 Å. The C(10)-H(5) bond length is 0.93 Å. N(1) is bonded in a trigonal planar geometry to one Ni(1) and two equivalent C(10) atoms. There are two inequivalent H sites. In the first H site, H(5) is bonded in a single-bond geometry to one C(10) atom. In the second H site, H(1) is bonded in a single-bond geometry to one C(1) atom. O(1) is bonded in a bent 120 degrees geometry to one Ni(1) and one C(4) atom. Linkers: 6 c1cc(-c2ccncc2)ccn1 ,8 [O]C(=O)c1ccc(-c2cc(-c3ccc(C([O])=O)cc3)cc(-c3ccc(C([O])=O)cc3)c2)cc1. Metal clusters: 6 [C]1O[Ni]234O[C]O[Ni]2(O1)(O[C]O3)O[C]O4. RCSR code: pto. The MOF has largest included sphere 20.33 A, density 0.41 g/cm3, surface area 4635.02 m2/g, accessible volume 1.92 cm3/g
|
XALCUJ_clean
|
Mn3C21N8H11O9(CH)17(CH2)10(CH3)3 crystallizes in the tetragonal I4_1/a space group. The structure is zero-dimensional and consists of one hundred and forty-four 02329_fluka molecules, one hundred and sixty 02329_fluka molecules, forty-eight 02329_fluka molecules, thirty-two isobutylene molecules, and eight Mn3C21N8H11O9 clusters. In each Mn3C21N8H11O9 cluster, there are three inequivalent Mn sites. In the first Mn site, Mn(1) is bonded in a distorted octahedral geometry to one N(1), one N(3), one N(7), one O(1), one O(3), and one O(8) atom. The Mn(1)-N(1) bond length is 1.94 Å. The Mn(1)-N(3) bond length is 2.29 Å. The Mn(1)-N(7) bond length is 2.24 Å. The Mn(1)-O(1) bond length is 1.85 Å. The Mn(1)-O(3) bond length is 1.93 Å. The Mn(1)-O(8) bond length is 1.98 Å. In the second Mn site, Mn(2) is bonded in a distorted square pyramidal geometry to one N(2), one N(4), one O(2), one O(4), and one O(6) atom. The Mn(2)-N(2) bond length is 2.24 Å. The Mn(2)-N(4) bond length is 1.94 Å. The Mn(2)-O(2) bond length is 1.97 Å. The Mn(2)-O(4) bond length is 1.86 Å. The Mn(2)-O(6) bond length is 1.93 Å. In the third Mn site, Mn(3) is bonded in a distorted octahedral geometry to one N(5), one N(6), one N(8), one O(5), one O(7), and one O(9) atom. The Mn(3)-N(5) bond length is 2.27 Å. The Mn(3)-N(6) bond length is 1.94 Å. The Mn(3)-N(8) bond length is 2.29 Å. The Mn(3)-O(5) bond length is 1.99 Å. The Mn(3)-O(7) bond length is 1.86 Å. The Mn(3)-O(9) bond length is 1.94 Å. There are twenty-one inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(6) and one O(1) atom. The C(1)-C(6) bond length is 1.41 Å. The C(1)-O(1) bond length is 1.35 Å. In the second C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(5)-C(6) bond length is 1.38 Å. The C(5)-H(4) bond length is 0.93 Å. In the third C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(6)-C(7) bond length is 1.48 Å. In the fourth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(6), one N(1), and one O(2) atom. The C(7)-N(1) bond length is 1.33 Å. The C(7)-O(2) bond length is 1.29 Å. In the fifth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one N(2) and one O(3) atom. The C(8)-N(2) bond length is 1.31 Å. The C(8)-O(3) bond length is 1.31 Å. In the sixth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(16) atom. The C(14)-N(3) bond length is 1.33 Å. The C(14)-H(16) bond length is 0.93 Å. In the seventh C site, C(18) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(19) atom. The C(18)-N(3) bond length is 1.35 Å. The C(18)-H(19) bond length is 0.93 Å. In the eighth C site, C(20) is bonded in a distorted single-bond geometry to one C(25) and one O(4) atom. The C(20)-C(25) bond length is 1.42 Å. The C(20)-O(4) bond length is 1.32 Å. In the ninth C site, C(24) is bonded in a distorted single-bond geometry to one C(25) and one H(25) atom. The C(24)-C(25) bond length is 1.40 Å. The C(24)-H(25) bond length is 0.93 Å. In the tenth C site, C(25) is bonded in a trigonal planar geometry to one C(20), one C(24), and one C(26) atom. The C(25)-C(26) bond length is 1.46 Å. In the eleventh C site, C(26) is bonded in a distorted trigonal planar geometry to one C(25), one N(4), and one O(5) atom. The C(26)-N(4) bond length is 1.32 Å. The C(26)-O(5) bond length is 1.29 Å. In the twelfth C site, C(27) is bonded in a distorted trigonal planar geometry to one C(28), one N(5), and one O(6) atom. The C(27)-C(28) bond length is 1.51 Å. The C(27)-N(5) bond length is 1.30 Å. The C(27)-O(6) bond length is 1.31 Å. In the thirteenth C site, C(28) is bonded in a water-like geometry to one C(27) and two equivalent H(26,27) atoms. Both C(28)-H(26,27) bond lengths are 0.97 Å. In the fourteenth C site, C(33) is bonded in a distorted single-bond geometry to one C(38) and one O(7) atom. The C(33)-C(38) bond length is 1.39 Å. The C(33)-O(7) bond length is 1.33 Å. In the fifteenth C site, C(37) is bonded in a distorted single-bond geometry to one C(38) and one H(40) atom. The C(37)-C(38) bond length is 1.41 Å. The C(37)-H(40) bond length is 0.93 Å. In the sixteenth C site, C(38) is bonded in a trigonal planar geometry to one C(33), one C(37), and one C(39) atom. The C(38)-C(39) bond length is 1.47 Å. In the seventeenth C site, C(39) is bonded in a distorted bent 120 degrees geometry to one C(38), one N(6), and one O(8) atom. The C(39)-N(6) bond length is 1.31 Å. The C(39)-O(8) bond length is 1.28 Å. In the eighteenth C site, C(40) is bonded in a distorted trigonal planar geometry to one C(41), one N(7), and one O(9) atom. The C(40)-C(41) bond length is 1.51 Å. The C(40)-N(7) bond length is 1.29 Å. The C(40)-O(9) bond length is 1.30 Å. In the nineteenth C site, C(41) is bonded in a water-like geometry to one C(40) and two equivalent H(41,42) atoms. Both C(41)-H(41,42) bond lengths are 0.97 Å. In the twentieth C site, C(46) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(52) atom. The C(46)-N(8) bond length is 1.32 Å. The C(46)-H(52) bond length is 0.93 Å. In the twenty-first C site, C(50) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(55) atom. The C(50)-N(8) bond length is 1.33 Å. The C(50)-H(55) bond length is 0.93 Å. There are eight inequivalent N sites. In the first N site, N(8) is bonded in a trigonal planar geometry to one Mn(3), one C(46), and one C(50) atom. In the second N site, N(1) is bonded in a distorted trigonal planar geometry to one Mn(1), one C(7), and one N(2) atom. The N(1)-N(2) bond length is 1.43 Å. In the third N site, N(2) is bonded in a 3-coordinate geometry to one Mn(2), one C(8), and one N(1) atom. In the fourth N site, N(3) is bonded in a trigonal planar geometry to one Mn(1), one C(14), and one C(18) atom. In the fifth N site, N(4) is bonded in a distorted trigonal planar geometry to one Mn(2), one C(26), and one N(5) atom. The N(4)-N(5) bond length is 1.42 Å. In the sixth N site, N(5) is bonded in a 3-coordinate geometry to one Mn(3), one C(27), and one N(4) atom. In the seventh N site, N(6) is bonded in a distorted trigonal planar geometry to one Mn(3), one C(39), and one N(7) atom. The N(6)-N(7) bond length is 1.42 Å. In the eighth N site, N(7) is bonded in a 3-coordinate geometry to one Mn(1), one C(40), and one N(6) atom. There are nine inequivalent H sites. In the first H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(16) is bonded in a single-bond geometry to one C(14) atom. In the third H site, H(19) is bonded in a single-bond geometry to one C(18) atom. In the fourth H site, H(25) is bonded in a single-bond geometry to one C(24) atom. In the fifth H site, H(26,27) is bonded in a single-bond geometry to one C(28) atom. In the sixth H site, H(41,42) is bonded in a single-bond geometry to one C(41) atom. In the seventh H site, H(40) is bonded in a single-bond geometry to one C(37) atom. In the eighth H site, H(52) is bonded in a single-bond geometry to one C(46) atom. In the ninth H site, H(55) is bonded in a single-bond geometry to one C(50) atom. There are nine inequivalent O sites. In the first O site, O(8) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(39) atom. In the second O site, O(9) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(40) atom. In the third O site, O(1) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(1) atom. In the fourth O site, O(2) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(7) atom. In the fifth O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(8) atom. In the sixth O site, O(4) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(20) atom. In the seventh O site, O(5) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(26) atom. In the eighth O site, O(6) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(27) atom. In the ninth O site, O(7) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(33) atom. Linkers: 8 c1cc(CCc2ccncc2)ccn1 ,24 CCCCCC(=O)[N][N]C(=O)c1ccccc1[O]. Metal clusters: 24 [Mn]. The MOF has largest included sphere 8.78 A, density 1.00 g/cm3, surface area 5039.28 m2/g, accessible volume 0.41 cm3/g
|
ZIMHUA_clean
|
ZnH14(C7N2)2 is Indium-like structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of eight ZnH14(C7N2)2 clusters. Zn(1) is bonded in a linear geometry to one N(1) and one N(4) atom. The Zn(1)-N(1) bond length is 2.21 Å. The Zn(1)-N(4) bond length is 2.22 Å. There are fourteen inequivalent C sites. In the first C site, C(9) is bonded in a distorted single-bond geometry to one C(8) and one H(8) atom. The C(9)-C(8) bond length is 1.40 Å. The C(9)-H(8) bond length is 0.93 Å. In the second C site, C(11) is bonded in a 3-coordinate geometry to one C(8), one N(3), one H(10), and one H(11) atom. The C(11)-C(8) bond length is 1.48 Å. The C(11)-N(3) bond length is 1.47 Å. The C(11)-H(10) bond length is 0.97 Å. The C(11)-H(11) bond length is 0.97 Å. In the third C site, C(12) is bonded in a trigonal planar geometry to one N(3), one N(4), and one H(12) atom. The C(12)-N(3) bond length is 1.34 Å. The C(12)-N(4) bond length is 1.30 Å. The C(12)-H(12) bond length is 0.93 Å. In the fourth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(14), one N(4), and one H(13) atom. The C(13)-C(14) bond length is 1.31 Å. The C(13)-N(4) bond length is 1.39 Å. The C(13)-H(13) bond length is 0.93 Å. In the fifth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(13), one N(3), and one H(14) atom. The C(14)-N(3) bond length is 1.38 Å. The C(14)-H(14) bond length is 0.93 Å. In the sixth C site, C(10) is bonded in a distorted single-bond geometry to one C(5) and one H(9) atom. The C(10)-C(5) bond length is 1.39 Å. The C(10)-H(9) bond length is 0.93 Å. In the seventh C site, C(1) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(1) atom. The C(1)-N(1) bond length is 1.32 Å. The C(1)-N(2) bond length is 1.33 Å. The C(1)-H(1) bond length is 0.93 Å. In the eighth C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(3), one N(2), and one H(2) atom. The C(2)-C(3) bond length is 1.35 Å. The C(2)-N(2) bond length is 1.36 Å. The C(2)-H(2) bond length is 0.93 Å. In the ninth C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one N(1), and one H(3) atom. The C(3)-N(1) bond length is 1.38 Å. The C(3)-H(3) bond length is 0.93 Å. In the tenth C site, C(4) is bonded in a 3-coordinate geometry to one C(5); one N(2); and two equivalent H(4,5) atoms. The C(4)-C(5) bond length is 1.51 Å. The C(4)-N(2) bond length is 1.48 Å. Both C(4)-H(4,5) bond lengths are 0.97 Å. In the eleventh C site, C(5) is bonded in a trigonal planar geometry to one C(10), one C(4), and one C(6) atom. The C(5)-C(6) bond length is 1.39 Å. In the twelfth C site, C(6) is bonded in a distorted single-bond geometry to one C(5) and one H(6) atom. The C(6)-H(6) bond length is 0.93 Å. In the thirteenth C site, C(7) is bonded in a distorted single-bond geometry to one C(8) and one H(7) atom. The C(7)-C(8) bond length is 1.40 Å. The C(7)-H(7) bond length is 0.93 Å. In the fourteenth C site, C(8) is bonded in a trigonal planar geometry to one C(11), one C(7), and one C(9) atom. There are four inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Zn(1), one C(1), and one C(3) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(1), one C(2), and one C(4) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one C(11), one C(12), and one C(14) atom. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one Zn(1), one C(12), and one C(13) atom. There are thirteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4,5) is bonded in a single-bond geometry to one C(4) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(6) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(7) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one C(9) atom. In the eighth H site, H(9) is bonded in a single-bond geometry to one C(10) atom. In the ninth H site, H(10) is bonded in a single-bond geometry to one C(11) atom. In the tenth H site, H(11) is bonded in a single-bond geometry to one C(11) atom. In the eleventh H site, H(12) is bonded in a single-bond geometry to one C(12) atom. In the twelfth H site, H(13) is bonded in a single-bond geometry to one C(13) atom. In the thirteenth H site, H(14) is bonded in a single-bond geometry to one C(14) atom. Linkers: 8 c1cn(Cc2ccc(Cn3ccnc3)cc2)cn1. Metal clusters: 8 [Zn]. The MOF has largest included sphere 7.42 A, density 0.69 g/cm3, surface area 5255.84 m2/g, accessible volume 1.07 cm3/g
|
OLICIX_clean
|
Fe4C32N24H16Cl crystallizes in the cubic Fm-3c space group. Fe(1) is bonded to two equivalent N(1), two equivalent N(2), and one Cl(1) atom to form corner-sharing FeN4Cl square pyramids. Both Fe(1)-N(1) bond lengths are 2.14 Å. Both Fe(1)-N(2) bond lengths are 2.14 Å. The Fe(1)-Cl(1) bond length is 2.60 Å. There are four inequivalent C sites. In the first C site, C(2) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(1) atom. The C(2)-N(2) bond length is 1.34 Å. The C(2)-H(1) bond length is 0.95 Å. In the second C site, C(1) is bonded in a distorted single-bond geometry to one C(4) and one N(3) atom. The C(1)-C(4) bond length is 1.46 Å. The C(1)-N(3) bond length is 1.35 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to two equivalent C(4) and one H(2) atom. Both C(3)-C(4) bond lengths are 1.39 Å. The C(3)-H(2) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(1) and two equivalent C(3) atoms. There are three inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Fe(1), one N(2), and one N(3) atom. The N(1)-N(2) bond length is 1.34 Å. The N(1)-N(3) bond length is 1.33 Å. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Fe(1), one C(2), and one N(1) atom. In the third N site, N(3) is bonded in a water-like geometry to one C(1) and one N(1) atom. There are two inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(1) is bonded in a single-bond geometry to one C(2) atom. Cl(1) is bonded in a square co-planar geometry to four equivalent Fe(1) atoms. Linkers: 26 [CH]1N=NN=C1c1cc(C2=CN=N[N]2)cc(C2=C[N]N=N2)c1 ,2 [CH]1N=NN=C1c1cc(C2=CN=N[N]2)cc(C2=NN=N[CH]2)c1 ,5 C1=C(c2cc(C3=C[N]N=N3)cc(C3=C[N]N=N3)c2)[N]N=N1 ,1 C1=N[N]N=C1c1cc(C2=CN=N[N]2)cc(C2=C[N]N=N2)c1 ,10 C1=C(c2cc(C3=CN=N[N]3)cc(C3=C[N]N=N3)c2)[N]N=N1 ,4 [CH]1N=NN=C1c1cc([C]2C=NN=N2)cc(C2=CN=N[N]2)c1 ,11 [CH]1N=NN=C1c1cc(C2=CN=N[N]2)cc(C2=CN=N[N]2)c1 ,1 C1=NN=N[C]1c1cc(C2=CN=N[N]2)cc(C2=C[N]N=N2)c1 ,1 C1=NN=N[C]1c1cc([C]2C=NN=N2)cc(C2=CN=N[N]2)c1 ,2 [CH]1N=NN=C1c1cc(C2=C[N]N=N2)cc(C2=C[N]N=N2)c1 ,1 C1=NN=N[C]1c1cc(C2=C[N]N=N2)cc(C2=C[N]N=N2)c1. Metal clusters: 15 Cl[Fe]123N=N[Fe@]4(=N[N][Fe@@]5(=NN=[Fe@@](N=N5)(N=N1)N=N2)N=N4)N=N3 ,9 Cl[Fe]123N=N[Fe@]4(=N[N][Fe@]5(=NN=[Fe@@](N=N5)(N=N1)N=N2)N=N4)N=N3. The MOF has largest included sphere 16.14 A, density 0.72 g/cm3, surface area 3740.41 m2/g, accessible volume 0.97 cm3/g
|
DAPYAW_clean
|
Cd5H24(C2O)24(C5H3)12 is Indium-derived structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of sixteen 1,3,5-triisopropenyl benzene molecules and four Cd5H24(C2O)24 clusters. In each Cd5H24(C2O)24 cluster, there are three inequivalent Cd sites. In the first Cd site, Cd(1) is bonded in a 6-coordinate geometry to one O(1), one O(11), one O(12), one O(3), one O(5), and one O(8) atom. The Cd(1)-O(1) bond length is 2.37 Å. The Cd(1)-O(11) bond length is 2.45 Å. The Cd(1)-O(12) bond length is 2.34 Å. The Cd(1)-O(3) bond length is 2.19 Å. The Cd(1)-O(5) bond length is 2.18 Å. The Cd(1)-O(8) bond length is 2.29 Å. In the second Cd site, Cd(2) is bonded in a 5-coordinate geometry to one O(1), one O(10), one O(7), one O(8), and one O(9) atom. The Cd(2)-O(1) bond length is 2.33 Å. The Cd(2)-O(10) bond length is 2.26 Å. The Cd(2)-O(7) bond length is 2.45 Å. The Cd(2)-O(8) bond length is 2.42 Å. The Cd(2)-O(9) bond length is 2.54 Å. In the third Cd site, Cd(3) is bonded in an octahedral geometry to two equivalent O(12), two equivalent O(4), and two equivalent O(6) atoms. Both Cd(3)-O(12) bond lengths are 2.30 Å. Both Cd(3)-O(4) bond lengths are 2.25 Å. Both Cd(3)-O(6) bond lengths are 2.24 Å. There are twenty-four inequivalent C sites. In the first C site, C(9) is bonded in a distorted single-bond geometry to one C(10) and one H(5) atom. The C(9)-C(10) bond length is 1.41 Å. The C(9)-H(5) bond length is 0.93 Å. In the second C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(25), and one C(9) atom. The C(10)-C(11) bond length is 1.37 Å. The C(10)-C(25) bond length is 1.49 Å. In the third C site, C(11) is bonded in a distorted single-bond geometry to one C(10) and one H(6) atom. The C(11)-H(6) bond length is 0.93 Å. In the fourth C site, C(15) is bonded in a distorted single-bond geometry to one C(16) and one H(9) atom. The C(15)-C(16) bond length is 1.37 Å. The C(15)-H(9) bond length is 0.93 Å. In the fifth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(26) atom. The C(16)-C(17) bond length is 1.37 Å. The C(16)-C(26) bond length is 1.51 Å. In the sixth C site, C(17) is bonded in a distorted single-bond geometry to one C(16) and one H(10) atom. The C(17)-H(10) bond length is 0.93 Å. In the seventh C site, C(21) is bonded in a distorted single-bond geometry to one C(22) and one H(13) atom. The C(21)-C(22) bond length is 1.37 Å. The C(21)-H(13) bond length is 0.93 Å. In the eighth C site, C(22) is bonded in a trigonal planar geometry to one C(21), one C(23), and one C(27) atom. The C(22)-C(23) bond length is 1.39 Å. The C(22)-C(27) bond length is 1.52 Å. In the ninth C site, C(25) is bonded in a bent 120 degrees geometry to one C(10), one O(1), and one O(2) atom. The C(25)-O(1) bond length is 1.26 Å. The C(25)-O(2) bond length is 1.23 Å. In the tenth C site, C(23) is bonded in a distorted single-bond geometry to one C(22) and one H(12,14) atom. The C(23)-H(12,14) bond length is 0.93 Å. In the eleventh C site, C(27) is bonded in a distorted bent 120 degrees geometry to one C(22), one O(5), and one O(6) atom. The C(27)-O(5) bond length is 1.25 Å. The C(27)-O(6) bond length is 1.25 Å. In the twelfth C site, C(26) is bonded in a distorted bent 120 degrees geometry to one C(16), one O(3), and one O(4) atom. The C(26)-O(3) bond length is 1.27 Å. The C(26)-O(4) bond length is 1.26 Å. In the thirteenth C site, C(36) is bonded in a distorted single-bond geometry to one C(37) and one H(20) atom. The C(36)-C(37) bond length is 1.40 Å. The C(36)-H(20) bond length is 0.93 Å. In the fourteenth C site, C(37) is bonded in a trigonal planar geometry to one C(36), one C(38), and one C(52) atom. The C(37)-C(38) bond length is 1.38 Å. The C(37)-C(52) bond length is 1.51 Å. In the fifteenth C site, C(38) is bonded in a distorted single-bond geometry to one C(37) and one H(21) atom. The C(38)-H(21) bond length is 0.93 Å. In the sixteenth C site, C(42) is bonded in a distorted single-bond geometry to one C(43) and one H(24) atom. The C(42)-C(43) bond length is 1.41 Å. The C(42)-H(24) bond length is 0.93 Å. In the seventeenth C site, C(43) is bonded in a trigonal planar geometry to one C(42), one C(44), and one C(53) atom. The C(43)-C(44) bond length is 1.36 Å. The C(43)-C(53) bond length is 1.53 Å. In the eighteenth C site, C(44) is bonded in a distorted single-bond geometry to one C(43) and one H(25) atom. The C(44)-H(25) bond length is 0.93 Å. In the nineteenth C site, C(48) is bonded in a distorted single-bond geometry to one C(49) and one H(28) atom. The C(48)-C(49) bond length is 1.40 Å. The C(48)-H(28) bond length is 0.93 Å. In the twentieth C site, C(49) is bonded in a trigonal planar geometry to one C(48), one C(50), and one C(54) atom. The C(49)-C(50) bond length is 1.37 Å. The C(49)-C(54) bond length is 1.46 Å. In the twenty-first C site, C(50) is bonded in a single-bond geometry to one C(49) and one H(29) atom. The C(50)-H(29) bond length is 0.93 Å. In the twenty-second C site, C(52) is bonded in a distorted bent 120 degrees geometry to one C(37), one O(7), and one O(8) atom. The C(52)-O(7) bond length is 1.25 Å. The C(52)-O(8) bond length is 1.30 Å. In the twenty-third C site, C(53) is bonded in a bent 120 degrees geometry to one C(43), one O(10), and one O(9) atom. The C(53)-O(10) bond length is 1.25 Å. The C(53)-O(9) bond length is 1.28 Å. In the twenty-fourth C site, C(54) is bonded in a bent 120 degrees geometry to one C(49), one O(11), and one O(12) atom. The C(54)-O(11) bond length is 1.25 Å. The C(54)-O(12) bond length is 1.28 Å. There are twelve inequivalent H sites. In the first H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the second H site, H(6) is bonded in a single-bond geometry to one C(11) atom. In the third H site, H(9) is bonded in a single-bond geometry to one C(15) atom. In the fourth H site, H(10) is bonded in a single-bond geometry to one C(17) atom. In the fifth H site, H(12,14) is bonded in a single-bond geometry to one C(20) atom. The H(12,14)-C(20) bond length is 0.93 Å. In the sixth H site, H(13) is bonded in a single-bond geometry to one C(21) atom. In the seventh H site, H(20) is bonded in a single-bond geometry to one C(36) atom. In the eighth H site, H(24) is bonded in a single-bond geometry to one C(42) atom. In the ninth H site, H(25) is bonded in a single-bond geometry to one C(44) atom. In the tenth H site, H(28) is bonded in a single-bond geometry to one C(48) atom. In the eleventh H site, H(29) is bonded in a single-bond geometry to one C(50) atom. In the twelfth H site, H(21) is bonded in a single-bond geometry to one C(38) atom. There are twelve inequivalent O sites. In the first O site, O(3) is bonded in a bent 120 degrees geometry to one Cd(1) and one C(26) atom. In the second O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Cd(3) and one C(26) atom. In the third O site, O(1) is bonded in a distorted trigonal non-coplanar geometry to one Cd(1), one Cd(2), and one C(25) atom. In the fourth O site, O(2) is bonded in a single-bond geometry to one C(25) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Cd(1) and one C(27) atom. In the sixth O site, O(9) is bonded in a distorted single-bond geometry to one Cd(2) and one C(53) atom. In the seventh O site, O(10) is bonded in a distorted L-shaped geometry to one Cd(2) and one C(53) atom. In the eighth O site, O(11) is bonded in a distorted L-shaped geometry to one Cd(1) and one C(54) atom. In the ninth O site, O(12) is bonded in a 3-coordinate geometry to one Cd(1), one Cd(3), and one C(54) atom. In the tenth O site, O(6) is bonded in a 2-coordinate geometry to one Cd(3) and one C(27) atom. In the eleventh O site, O(7) is bonded in an L-shaped geometry to one Cd(2) and one C(52) atom. In the twelfth O site, O(8) is bonded in a 3-coordinate geometry to one Cd(1), one Cd(2), and one C(52) atom. Linkers: 8 [O]C(=O)c1ccc(-c2cc(-c3ccc(C([O])=O)cc3)cc(-c3ccc(C([O])=O)cc3)c2)cc1. Metal clusters: 2 O=[C]O[Cd]1(O[C]O[Cd]23O[C]O[Cd]45(O[C]O2)(O[C]O3)O[C]O[Cd](O[C]O[Cd]2(O[C]=O)O[C]O2)(O[C]O4)O[C]O5)O[C]O1. The MOF has largest included sphere 10.04 A, density 1.07 g/cm3, surface area 4040.10 m2/g, accessible volume 0.50 cm3/g
|
ZIWTII_clean
|
AgH12(C3N2)2 crystallizes in the cubic P2_13 space group. Ag(1) is bonded in a trigonal planar geometry to three equivalent N(1) atoms. All Ag(1)-N(1) bond lengths are 2.36 Å. There are two inequivalent C sites. In the first C site, C(1) is bonded to one N(1), one N(2), one H(1), and one H(2) atom to form corner-sharing CH2N2 tetrahedra. The C(1)-N(1) bond length is 1.49 Å. The C(1)-N(2) bond length is 1.46 Å. The C(1)-H(1) bond length is 0.97 Å. The C(1)-H(2) bond length is 0.95 Å. In the second C site, C(2) is bonded to two equivalent N(1), one H(3), and one H(4) atom to form corner-sharing CH2N2 tetrahedra. There is one shorter (1.48 Å) and one longer (1.49 Å) C(2)-N(1) bond length. The C(2)-H(3) bond length is 1.03 Å. The C(2)-H(4) bond length is 1.03 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded to one Ag(1), one C(1), and two equivalent C(2) atoms to form distorted corner-sharing NAgC3 tetrahedra. In the second N site, N(2) is bonded in a trigonal non-coplanar geometry to three equivalent C(1) atoms. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(1) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(2) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(2) atom. Linkers: 4 C1N2CN3CN1CN(C2)C3. Metal clusters: 4 [Ag]. The MOF has largest included sphere 4.69 A, density 1.39 g/cm3, surface area 3508.59 m2/g, accessible volume 0.35 cm3/g
|
KULZEY_clean
|
CoC13H9(NO2)2CoC12H8(NO2)2(CH)15(C2O)2C9H8O4 is Indium-derived structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of one hundred and twenty 02329_fluka molecules; eight 1,3-dimethoxy-2,2-bis(methoxymethyl)propane molecules; sixteen dimethyl ether molecules; eight CoC12H8(NO2)2 clusters; and eight CoC13H9(NO2)2 clusters. In each CoC12H8(NO2)2 cluster, Co(2) is bonded in a square pyramidal geometry to one N(2), one N(4), one O(1), one O(2), and one O(7) atom. The Co(2)-N(2) bond length is 2.10 Å. The Co(2)-N(4) bond length is 2.11 Å. The Co(2)-O(1) bond length is 2.19 Å. The Co(2)-O(2) bond length is 2.18 Å. The Co(2)-O(7) bond length is 2.04 Å. There are twelve inequivalent C sites. In the first C site, C(49) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(37) atom. The C(49)-N(2) bond length is 1.33 Å. The C(49)-H(37) bond length is 0.93 Å. In the second C site, C(53) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(40) atom. The C(53)-N(2) bond length is 1.33 Å. The C(53)-H(40) bond length is 0.93 Å. In the third C site, C(8) is bonded in a trigonal planar geometry to one C(12), one C(13), and one C(14) atom. The C(8)-C(12) bond length is 1.36 Å. The C(8)-C(13) bond length is 1.37 Å. The C(8)-C(14) bond length is 1.51 Å. In the fourth C site, C(12) is bonded in a distorted single-bond geometry to one C(8) and one H(7) atom. The C(12)-H(7) bond length is 0.93 Å. In the fifth C site, C(13) is bonded in a distorted single-bond geometry to one C(8) and one H(8) atom. The C(13)-H(8) bond length is 0.93 Å. In the sixth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(8), one O(7), and one O(8) atom. The C(14)-O(7) bond length is 1.25 Å. The C(14)-O(8) bond length is 1.25 Å. In the seventh C site, C(15) is bonded in a bent 120 degrees geometry to one C(16), one O(1), and one O(2) atom. The C(15)-C(16) bond length is 1.49 Å. The C(15)-O(1) bond length is 1.25 Å. The C(15)-O(2) bond length is 1.27 Å. In the eighth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(18) atom. The C(16)-C(17) bond length is 1.38 Å. The C(16)-C(18) bond length is 1.35 Å. In the ninth C site, C(17) is bonded in a distorted single-bond geometry to one C(16) and one H(9) atom. The C(17)-H(9) bond length is 0.93 Å. In the tenth C site, C(18) is bonded in a distorted single-bond geometry to one C(16) and one H(10) atom. The C(18)-H(10) bond length is 0.93 Å. In the eleventh C site, C(44) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(33) atom. The C(44)-N(4) bond length is 1.33 Å. The C(44)-H(33) bond length is 0.93 Å. In the twelfth C site, C(46) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(34) atom. The C(46)-N(4) bond length is 1.31 Å. The C(46)-H(34) bond length is 0.93 Å. There are two inequivalent N sites. In the first N site, N(2) is bonded in a trigonal planar geometry to one Co(2), one C(49), and one C(53) atom. In the second N site, N(4) is bonded in a trigonal planar geometry to one Co(2), one C(44), and one C(46) atom. There are eight inequivalent H sites. In the first H site, H(7) is bonded in a single-bond geometry to one C(12) atom. In the second H site, H(8) is bonded in a single-bond geometry to one C(13) atom. In the third H site, H(9) is bonded in a single-bond geometry to one C(17) atom. In the fourth H site, H(10) is bonded in a single-bond geometry to one C(18) atom. In the fifth H site, H(33) is bonded in a single-bond geometry to one C(44) atom. In the sixth H site, H(34) is bonded in a single-bond geometry to one C(46) atom. In the seventh H site, H(37) is bonded in a single-bond geometry to one C(49) atom. In the eighth H site, H(40) is bonded in a single-bond geometry to one C(53) atom. There are four inequivalent O sites. In the first O site, O(2) is bonded in a distorted L-shaped geometry to one Co(2) and one C(15) atom. In the second O site, O(1) is bonded in a distorted L-shaped geometry to one Co(2) and one C(15) atom. In the third O site, O(7) is bonded in a bent 120 degrees geometry to one Co(2) and one C(14) atom. In the fourth O site, O(8) is bonded in a single-bond geometry to one C(14) atom. In each CoC13H9(NO2)2 cluster, Co(1) is bonded in a distorted square pyramidal geometry to one N(1), one N(3), one O(3), one O(5), and one O(6) atom. The Co(1)-N(1) bond length is 2.14 Å. The Co(1)-N(3) bond length is 2.09 Å. The Co(1)-O(3) bond length is 2.06 Å. The Co(1)-O(5) bond length is 2.11 Å. The Co(1)-O(6) bond length is 2.28 Å. There are thirteen inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(5), and one O(6) atom. The C(1)-C(2) bond length is 1.50 Å. The C(1)-O(5) bond length is 1.26 Å. The C(1)-O(6) bond length is 1.26 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(2)-C(5) bond length is 1.39 Å. The C(2)-C(7) bond length is 1.36 Å. In the third C site, C(5) is bonded in a distorted single-bond geometry to one C(2) and one H(2) atom. The C(5)-H(2) bond length is 0.93 Å. In the fourth C site, C(7) is bonded in a distorted single-bond geometry to one C(2) and one H(4) atom. The C(7)-H(4) bond length is 0.93 Å. In the fifth C site, C(22) is bonded in a distorted single-bond geometry to one C(23) and one H(13,16) atom. The C(22)-C(23) bond length is 1.39 Å. The C(22)-H(13,16) bond length is 0.93 Å. In the sixth C site, C(23) is bonded in a trigonal planar geometry to one C(22), one C(26), and one C(28) atom. The C(23)-C(26) bond length is 1.50 Å. The C(23)-C(28) bond length is 1.38 Å. In the seventh C site, C(26) is bonded in a distorted bent 120 degrees geometry to one C(23), one O(3), and one O(4) atom. The C(26)-O(3) bond length is 1.26 Å. The C(26)-O(4) bond length is 1.24 Å. In the eighth C site, C(28) is bonded in a distorted single-bond geometry to one C(23) and one H(13,16) atom. The C(28)-H(13,16) bond length is 0.93 Å. In the ninth C site, C(30) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(17) atom. The C(30)-N(3) bond length is 1.32 Å. The C(30)-H(17) bond length is 0.93 Å. In the tenth C site, C(32) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(19) atom. The C(32)-N(3) bond length is 1.31 Å. The C(32)-H(19) bond length is 0.93 Å. In the eleventh C site, C(35) is bonded in a distorted trigonal planar geometry to one C(38), one N(1), and one H(23) atom. The C(35)-C(38) bond length is 1.36 Å. The C(35)-N(1) bond length is 1.33 Å. The C(35)-H(23) bond length is 0.93 Å. In the twelfth C site, C(36) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(24) atom. The C(36)-N(1) bond length is 1.34 Å. The C(36)-H(24) bond length is 0.93 Å. In the thirteenth C site, C(38) is bonded in a distorted single-bond geometry to one C(35) and one H(26) atom. The C(38)-H(26) bond length is 0.93 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Co(1), one C(35), and one C(36) atom. In the second N site, N(3) is bonded in a trigonal planar geometry to one Co(1), one C(30), and one C(32) atom. There are eight inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In the third H site, H(13,16) is bonded in a single-bond geometry to one C(22) atom. In the fourth H site, H(17) is bonded in a single-bond geometry to one C(30) atom. In the fifth H site, H(19) is bonded in a single-bond geometry to one C(32) atom. In the sixth H site, H(23) is bonded in a single-bond geometry to one C(35) atom. In the seventh H site, H(24) is bonded in a single-bond geometry to one C(36) atom. In the eighth H site, H(26) is bonded in a single-bond geometry to one C(38) atom. There are four inequivalent O sites. In the first O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Co(1) and one C(26) atom. In the second O site, O(4) is bonded in a single-bond geometry to one C(26) atom. In the third O site, O(5) is bonded in an L-shaped geometry to one Co(1) and one C(1) atom. In the fourth O site, O(6) is bonded in a distorted single-bond geometry to one Co(1) and one C(1) atom. Linkers: 1 O=[C]O[Co].[CH2].[CH2].[CH2].[CH2].[CH2].[CH2].[CH2].[CH2].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH]/C=N/[Co]([N])([O])[O].[CH]/[C]=C\[CH].[CH]=[CH].[CH]=[CH].[CH]=[C]C=[CH].[CH]=[C][N].[CH]=[C][O].[CH]=[C][O].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]=[N].[CH]N=[CH].[CH][N][CH].[CH][N][CH].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]#N.[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]#[C].[C]/[C]=C\C=[C].[C]/[C]=C\[CH].[C]/[C]=[C]\[C].[C]=CC=[C].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=[CH].[C]=[CH].[C]=[CH].[C]=[CH].[C]=[CH].[C]=[CH].[C]=[CH].[C]=[CH].[C]=[CH].[C]=[CH].[C]=[CH].[C]=[C][CH].[C]=[C][CH][C]=[C].[C]=[C][O].[C]=[C][O].[C]=[C][O].[C]=[C][O].[C]COC([C])=[C].[C]N([CH])[Co]([N])([O])[O].[C]N([CH])[Co]([N])[O].[C]N([CH])[Co][O].[C]N([CH])[Co][O].[C]N([C])[Co].[C]N([C])[Co].[C]N([C])[Co][O].[C]N=[CH].[C]N=[CH].[C]N=[C].[C]O[CH].[C]O[C].[C]O[Co].[C]O[Co].[C]O[Co].[C][CH2].[C][CH].[C][CH].[C][CH]/C=[C]/[O].[C][CH]C(=[C])[O].[C][CH][O].[C][CH][O].[C][C].[C][C].[C][C].[C][C].[C][C]([C])O[CH]C([C])([C])[CH]OC([C])=[CH].[C][C]=[C].[C][C]=[C].[C][C]=[N].[C][C][C].[C][C][C].[C][C][C].[C][N].[C][N][CH].[C][N][CH].[C][N][CH].[C][N][CH].[C][N][CH].[C][N][C].[C][N][C].[C][N][C].[C][N][C].[C][N][C].[C][N][C]=[C].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[C][O].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[Co].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N].[N][Co].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][C]=O.[O][Co].[O][Co].[O][Co].[O][Co].[O][Co].[O]c1[c][c][c][c][c]1.[O]c1[c]c[c][c]c1.[c]1cc[c]cc1. Metal clusters: 2 O=[C]O[Co]1O[C]O1. The MOF has largest included sphere 5.34 A, density 1.22 g/cm3, surface area 4863.17 m2/g, accessible volume 0.33 cm3/g
|
WEXQUL_clean
|
Zn4P3HO13 crystallizes in the monoclinic P2_1/c space group. There are four inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one O(1), one O(2), one O(3), and one O(4) atom to form ZnO4 tetrahedra that share a cornercorner with one Zn(3)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, corners with two equivalent Zn(2)O4 tetrahedra, and corners with two equivalent P(1)O4 tetrahedra. The Zn(1)-O(1) bond length is 1.91 Å. The Zn(1)-O(2) bond length is 1.98 Å. The Zn(1)-O(3) bond length is 1.98 Å. The Zn(1)-O(4) bond length is 1.99 Å. In the second Zn site, Zn(2) is bonded to one O(3), one O(4), one O(5), and one O(6) atom to form ZnO4 tetrahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, corners with two equivalent Zn(1)O4 tetrahedra, and corners with two equivalent P(2)O4 tetrahedra. The Zn(2)-O(3) bond length is 2.00 Å. The Zn(2)-O(4) bond length is 1.97 Å. The Zn(2)-O(5) bond length is 1.87 Å. The Zn(2)-O(6) bond length is 1.96 Å. In the third Zn site, Zn(3) is bonded to one O(2), one O(7), one O(8), and one O(9) atom to form ZnO4 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, and corners with two equivalent P(3)O4 tetrahedra. The Zn(3)-O(2) bond length is 1.98 Å. The Zn(3)-O(7) bond length is 1.91 Å. The Zn(3)-O(8) bond length is 1.93 Å. The Zn(3)-O(9) bond length is 1.97 Å. In the fourth Zn site, Zn(4) is bonded to one O(10), one O(11), one O(12), and one O(13) atom to form ZnO4 tetrahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, and a cornercorner with one P(3)O4 tetrahedra. The Zn(4)-O(10) bond length is 1.91 Å. The Zn(4)-O(11) bond length is 1.92 Å. The Zn(4)-O(12) bond length is 1.91 Å. The Zn(4)-O(13) bond length is 2.02 Å. There are three inequivalent P sites. In the first P site, P(1) is bonded to one O(1), one O(12), one O(3), and one O(9) atom to form PO4 tetrahedra that share a cornercorner with one Zn(2)O4 tetrahedra, a cornercorner with one Zn(3)O4 tetrahedra, a cornercorner with one Zn(4)O4 tetrahedra, and corners with two equivalent Zn(1)O4 tetrahedra. The P(1)-O(1) bond length is 1.52 Å. The P(1)-O(12) bond length is 1.51 Å. The P(1)-O(3) bond length is 1.57 Å. The P(1)-O(9) bond length is 1.50 Å. In the second P site, P(2) is bonded to one O(10), one O(4), one O(6), and one O(7) atom to form PO4 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one Zn(3)O4 tetrahedra, a cornercorner with one Zn(4)O4 tetrahedra, and corners with two equivalent Zn(2)O4 tetrahedra. The P(2)-O(10) bond length is 1.51 Å. The P(2)-O(4) bond length is 1.58 Å. The P(2)-O(6) bond length is 1.52 Å. The P(2)-O(7) bond length is 1.52 Å. In the third P site, P(3) is bonded to one O(11), one O(2), one O(5), and one O(8) atom to form PO4 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one Zn(2)O4 tetrahedra, a cornercorner with one Zn(4)O4 tetrahedra, and corners with two equivalent Zn(3)O4 tetrahedra. The P(3)-O(11) bond length is 1.53 Å. The P(3)-O(2) bond length is 1.57 Å. The P(3)-O(5) bond length is 1.52 Å. The P(3)-O(8) bond length is 1.52 Å. H(1) is bonded in a single-bond geometry to one O(13) atom. The H(1)-O(13) bond length is 0.82 Å. There are thirteen inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one P(1) atom. In the second O site, O(2) is bonded in a trigonal planar geometry to one Zn(1), one Zn(3), and one P(3) atom. In the third O site, O(3) is bonded in a trigonal planar geometry to one Zn(1), one Zn(2), and one P(1) atom. In the fourth O site, O(4) is bonded in a trigonal planar geometry to one Zn(1), one Zn(2), and one P(2) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Zn(2) and one P(3) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(2) and one P(2) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one Zn(3) and one P(2) atom. In the eighth O site, O(8) is bonded in a distorted bent 120 degrees geometry to one Zn(3) and one P(3) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Zn(3) and one P(1) atom. In the tenth O site, O(10) is bonded in a distorted bent 120 degrees geometry to one Zn(4) and one P(2) atom. In the eleventh O site, O(11) is bonded in a distorted bent 120 degrees geometry to one Zn(4) and one P(3) atom. In the twelfth O site, O(12) is bonded in a bent 150 degrees geometry to one Zn(4) and one P(1) atom. In the thirteenth O site, O(13) is bonded in a distorted water-like geometry to one Zn(4) and one H(1) atom. Linkers: 12 [O]P([O])([O])=O. Metal clusters: 16 [Zn]. The MOF has largest included sphere 4.41 A, density 2.58 g/cm3, surface area 2409.23 m2/g, accessible volume 0.12 cm3/g
|
YUKXAF_clean
|
HoZnC13H4(NO5)2(CH)2 crystallizes in the triclinic P-1 space group. The structure consists of four 02329_fluka molecules inside a HoZnC13H4(NO5)2 framework. In the HoZnC13H4(NO5)2 framework, Ho(1) is bonded in a 7-coordinate geometry to one O(10), one O(3), one O(5), one O(6), one O(7), one O(8), and one O(9) atom. The Ho(1)-O(10) bond length is 2.41 Å. The Ho(1)-O(3) bond length is 2.27 Å. The Ho(1)-O(5) bond length is 2.55 Å. The Ho(1)-O(6) bond length is 2.45 Å. The Ho(1)-O(7) bond length is 2.52 Å. The Ho(1)-O(8) bond length is 2.45 Å. The Ho(1)-O(9) bond length is 2.44 Å. Zn(1) is bonded in a distorted square pyramidal geometry to one N(1), one N(2), one O(1), one O(4), and one O(5) atom. The Zn(1)-N(1) bond length is 2.11 Å. The Zn(1)-N(2) bond length is 2.19 Å. The Zn(1)-O(1) bond length is 2.09 Å. The Zn(1)-O(4) bond length is 2.21 Å. The Zn(1)-O(5) bond length is 2.13 Å. There are thirteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.53 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(1), one C(3), and one N(1) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-N(1) bond length is 1.36 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(7) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-C(7) bond length is 1.53 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3) and one H(1) atom. The C(4)-H(1) bond length is 0.95 Å. In the fifth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(3) atom. The C(6)-N(1) bond length is 1.35 Å. The C(6)-H(3) bond length is 0.89 Å. In the sixth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(3), and one O(4) atom. The C(7)-O(3) bond length is 1.25 Å. The C(7)-O(4) bond length is 1.25 Å. In the seventh C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(9), one O(5), and one O(6) atom. The C(8)-C(9) bond length is 1.52 Å. The C(8)-O(5) bond length is 1.28 Å. The C(8)-O(6) bond length is 1.24 Å. In the eighth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one C(8), and one N(2) atom. The C(9)-C(10) bond length is 1.40 Å. The C(9)-N(2) bond length is 1.35 Å. In the ninth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(14), and one C(9) atom. The C(10)-C(11) bond length is 1.40 Å. The C(10)-C(14) bond length is 1.53 Å. In the tenth C site, C(11) is bonded in a distorted single-bond geometry to one C(10) and one H(4) atom. The C(11)-H(4) bond length is 0.96 Å. In the eleventh C site, C(13) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(6) atom. The C(13)-N(2) bond length is 1.34 Å. The C(13)-H(6) bond length is 0.89 Å. In the twelfth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(10), one O(7), and one O(8) atom. The C(14)-O(7) bond length is 1.26 Å. The C(14)-O(8) bond length is 1.26 Å. In the thirteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one O(10) and one O(9) atom. The C(15)-O(10) bond length is 1.26 Å. The C(15)-O(9) bond length is 1.25 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Zn(1), one C(2), and one C(6) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Zn(1), one C(13), and one C(9) atom. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(11) atom. In the fourth H site, H(6) is bonded in a single-bond geometry to one C(13) atom. There are ten inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(1) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Ho(1) and one C(7) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one C(7) atom. In the fifth O site, O(5) is bonded in a 3-coordinate geometry to one Ho(1), one Zn(1), and one C(8) atom. In the sixth O site, O(6) is bonded in a distorted L-shaped geometry to one Ho(1) and one C(8) atom. In the seventh O site, O(7) is bonded in a single-bond geometry to one Ho(1) and one C(14) atom. In the eighth O site, O(8) is bonded in a distorted single-bond geometry to one Ho(1) and one C(14) atom. In the ninth O site, O(9) is bonded in a distorted bent 120 degrees geometry to one Ho(1) and one C(15) atom. In the tenth O site, O(10) is bonded in a bent 120 degrees geometry to one Ho(1) and one C(15) atom. Linkers: 4 [O]C(=O)c1cccnc1C([O])=O ,1 [O]C(=O)C([O])=O. Metal clusters: 2 [Ho] ,2 [Zn]. The MOF has largest included sphere 4.83 A, density 1.88 g/cm3, surface area 3063.45 m2/g, accessible volume 0.24 cm3/g
|
XORHET_clean
|
CoH4(CN)8 crystallizes in the tetragonal P4_12_12 space group. There are three inequivalent Co sites. In the first Co site, Co(1) is bonded in a square pyramidal geometry to one N(11), one N(14), one N(16), one N(2), and one N(6) atom. The Co(1)-N(11) bond length is 2.14 Å. The Co(1)-N(14) bond length is 2.07 Å. The Co(1)-N(16) bond length is 2.22 Å. The Co(1)-N(2) bond length is 2.12 Å. The Co(1)-N(6) bond length is 2.09 Å. In the second Co site, Co(2) is bonded in an octahedral geometry to two equivalent N(4), two equivalent N(7), and two equivalent N(9) atoms. Both Co(2)-N(4) bond lengths are 2.13 Å. Both Co(2)-N(7) bond lengths are 2.08 Å. Both Co(2)-N(9) bond lengths are 2.14 Å. In the third Co site, Co(3) is bonded in a distorted see-saw-like geometry to two equivalent N(15) and two equivalent N(3) atoms. Both Co(3)-N(15) bond lengths are 2.10 Å. Both Co(3)-N(3) bond lengths are 2.20 Å. There are sixteen inequivalent C sites. In the first C site, C(16) is bonded in a distorted bent 120 degrees geometry to one C(4), one N(8), and one H(4) atom. The C(16)-C(4) bond length is 1.37 Å. The C(16)-N(8) bond length is 1.36 Å. The C(16)-H(4) bond length is 0.93 Å. In the second C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(2) and one N(5) atom. The C(1)-N(2) bond length is 1.34 Å. The C(1)-N(5) bond length is 1.33 Å. In the third C site, C(2) is bonded in a distorted trigonal planar geometry to one C(14), one N(3), and one H(3) atom. The C(2)-C(14) bond length is 1.34 Å. The C(2)-N(3) bond length is 1.36 Å. The C(2)-H(3) bond length is 0.93 Å. In the fourth C site, C(3) is bonded in a distorted trigonal planar geometry to one C(6), one N(12), and one H(1) atom. The C(3)-C(6) bond length is 1.41 Å. The C(3)-N(12) bond length is 1.33 Å. The C(3)-H(1) bond length is 0.93 Å. In the fifth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(16), one C(9), and one N(16) atom. The C(4)-C(9) bond length is 1.47 Å. The C(4)-N(16) bond length is 1.35 Å. In the sixth C site, C(5) is bonded in a trigonal planar geometry to one N(13), one N(14), and one H(8) atom. The C(5)-N(13) bond length is 1.32 Å. The C(5)-N(14) bond length is 1.33 Å. The C(5)-H(8) bond length is 0.93 Å. In the seventh C site, C(6) is bonded in a distorted trigonal planar geometry to one C(12), one C(3), and one N(3) atom. The C(6)-C(12) bond length is 1.42 Å. The C(6)-N(3) bond length is 1.34 Å. In the eighth C site, C(7) is bonded in a trigonal planar geometry to one N(5), one N(7), and one H(6) atom. The C(7)-N(5) bond length is 1.38 Å. The C(7)-N(7) bond length is 1.32 Å. The C(7)-H(6) bond length is 0.93 Å. In the ninth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one N(11) and one N(6) atom. The C(8)-N(11) bond length is 1.32 Å. The C(8)-N(6) bond length is 1.32 Å. In the tenth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(4), one N(1), and one N(6) atom. The C(9)-N(1) bond length is 1.32 Å. The C(9)-N(6) bond length is 1.35 Å. In the eleventh C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(11), one N(8), and one H(2) atom. The C(10)-C(11) bond length is 1.40 Å. The C(10)-N(8) bond length is 1.29 Å. The C(10)-H(2) bond length is 0.93 Å. In the twelfth C site, C(11) is bonded in a distorted trigonal planar geometry to one C(10), one N(16), and one H(7) atom. The C(11)-N(16) bond length is 1.32 Å. The C(11)-H(7) bond length is 0.93 Å. In the thirteenth C site, C(12) is bonded in a distorted trigonal planar geometry to one C(6), one N(10), and one N(15) atom. The C(12)-N(10) bond length is 1.32 Å. The C(12)-N(15) bond length is 1.36 Å. In the fourteenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(15), one N(15), and one N(9) atom. The C(13)-C(15) bond length is 1.45 Å. The C(13)-N(15) bond length is 1.34 Å. The C(13)-N(9) bond length is 1.32 Å. In the fifteenth C site, C(14) is bonded in a distorted trigonal planar geometry to one C(2), one N(12), and one H(5) atom. The C(14)-N(12) bond length is 1.29 Å. The C(14)-H(5) bond length is 0.93 Å. In the sixteenth C site, C(15) is bonded in a 2-coordinate geometry to one C(13), one N(13), and one N(4) atom. The C(15)-N(13) bond length is 1.35 Å. The C(15)-N(4) bond length is 1.32 Å. There are sixteen inequivalent N sites. In the first N site, N(16) is bonded in a trigonal planar geometry to one Co(1), one C(11), and one C(4) atom. In the second N site, N(3) is bonded in a trigonal planar geometry to one Co(3), one C(2), and one C(6) atom. In the third N site, N(5) is bonded in a water-like geometry to one C(1) and one C(7) atom. In the fourth N site, N(7) is bonded in a distorted trigonal planar geometry to one Co(2), one C(7), and one N(2) atom. The N(7)-N(2) bond length is 1.37 Å. In the fifth N site, N(8) is bonded in a bent 120 degrees geometry to one C(10) and one C(16) atom. In the sixth N site, N(1) is bonded in a distorted single-bond geometry to one C(9) and one N(11) atom. The N(1)-N(11) bond length is 1.36 Å. In the seventh N site, N(2) is bonded in a 3-coordinate geometry to one Co(1), one C(1), and one N(7) atom. In the eighth N site, N(4) is bonded in a 3-coordinate geometry to one Co(2), one C(15), and one N(14) atom. The N(4)-N(14) bond length is 1.37 Å. In the ninth N site, N(6) is bonded in a distorted trigonal planar geometry to one Co(1), one C(8), and one C(9) atom. In the tenth N site, N(9) is bonded in a 3-coordinate geometry to one Co(2), one C(13), and one N(10) atom. The N(9)-N(10) bond length is 1.39 Å. In the eleventh N site, N(10) is bonded in a distorted water-like geometry to one C(12) and one N(9) atom. In the twelfth N site, N(11) is bonded in a 3-coordinate geometry to one Co(1), one C(8), and one N(1) atom. In the thirteenth N site, N(12) is bonded in a bent 120 degrees geometry to one C(14) and one C(3) atom. In the fourteenth N site, N(13) is bonded in a water-like geometry to one C(15) and one C(5) atom. In the fifteenth N site, N(14) is bonded in a distorted trigonal planar geometry to one Co(1), one C(5), and one N(4) atom. In the sixteenth N site, N(15) is bonded in a distorted trigonal planar geometry to one Co(3), one C(12), and one C(13) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(10) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(2) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(16) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(14) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(7) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(5) atom. Linkers: 1 C1=NC(C2=NN=C(c3cnccn3)[N]2)=N[N]1 ,1 [N]1N=CN=C1C1=[N]=C(N=N1)c1cnccn1 ,1 [CH]1C=NC=C2c3nnc(C4=NC=N[N]4)n3[Co@@]3(N4C=CN=C[C]4c4nnc(C5=NC=N[N]5)n43)N12 ,1 N1=C[C]2N(C=C1)[Co@@]1(n3c2nnc3C2=[N]=CN=N2)N2[CH]C=NC=C2c2n1c(nn2)C1=NN=C[N]1 ,1 N1=NC(=[N]=C1)c1nnc2n1[Co@]1(n3c(nnc3C3=CN=C[CH]N13)C1=[N]=CN=N1)N1[C]2C=NC=C1 ,2 [N]1N=C(N=C1c1cnccn1)C1=[N]=CN=N1 ,1 [N]1C=NN=C1C1=[N]=C(N=N1)c1cnccn1 ,1 C1=NN=C(C2=NN=C(c3cnccn3)[N]2)[N]1 ,1 C1=N[N]C(C2=NN=C(c3cnccn3)[N]2)=N1 ,1 C1=[N]=C(N=N1)C1=[N]=C(N=N1)c1cnccn1 ,1 [CH]1C=NC=C2c3nnc(C4=N[N]C=N4)n3[Co@@]3(N4C=CN=C[C]4c4nnc(C5=NN=C[N]5)n43)N12. Metal clusters: 4 [N]1[N][Co]2([N][N][Co]=N[N]2)[N]N=[Co]1. The MOF has largest included sphere 4.71 A, density 1.22 g/cm3, surface area 3866.84 m2/g, accessible volume 0.45 cm3/g
|
RIPTEQ_clean
|
NaMo6ZnP4O25 crystallizes in the triclinic P-1 space group. There are two inequivalent Na sites. In the first Na site, Na(1) is bonded to two equivalent O(14), two equivalent O(5), and two equivalent O(8) atoms to form NaO6 octahedra that share corners with two equivalent Mo(1)O5 square pyramids, corners with two equivalent Mo(3)O5 square pyramids, corners with two equivalent Mo(4)O5 square pyramids, and corners with two equivalent Mo(6)O5 square pyramids. Both Na(1)-O(14) bond lengths are 2.30 Å. Both Na(1)-O(5) bond lengths are 2.26 Å. Both Na(1)-O(8) bond lengths are 2.35 Å. In the second Na site, Na(2) is bonded in a linear geometry to two equivalent O(18) atoms. Both Na(2)-O(18) bond lengths are 2.42 Å. There are six inequivalent Mo sites. In the first Mo site, Mo(1) is bonded to one O(1), one O(2), one O(3), one O(4), and one O(5) atom to form distorted MoO5 square pyramids that share a cornercorner with one Na(1)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, and an edgeedge with one Mo(6)O5 square pyramid. The corner-sharing octahedral tilt angles are 47°. The Mo(1)-O(1) bond length is 2.06 Å. The Mo(1)-O(2) bond length is 2.28 Å. The Mo(1)-O(3) bond length is 1.94 Å. The Mo(1)-O(4) bond length is 2.11 Å. The Mo(1)-O(5) bond length is 1.94 Å. In the second Mo site, Mo(2) is bonded in a 5-coordinate geometry to one O(2), one O(4), one O(6), one O(7), and one O(8) atom. The Mo(2)-O(2) bond length is 2.28 Å. The Mo(2)-O(4) bond length is 2.12 Å. The Mo(2)-O(6) bond length is 2.08 Å. The Mo(2)-O(7) bond length is 1.94 Å. The Mo(2)-O(8) bond length is 1.95 Å. In the third Mo site, Mo(3) is bonded to one O(10), one O(11), one O(7), one O(8), and one O(9) atom to form distorted MoO5 square pyramids that share a cornercorner with one Na(1)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, and an edgeedge with one Mo(4)O5 square pyramid. The corner-sharing octahedral tilt angles are 48°. The Mo(3)-O(10) bond length is 2.31 Å. The Mo(3)-O(11) bond length is 2.12 Å. The Mo(3)-O(7) bond length is 1.93 Å. The Mo(3)-O(8) bond length is 1.95 Å. The Mo(3)-O(9) bond length is 2.07 Å. In the fourth Mo site, Mo(4) is bonded to one O(10), one O(11), one O(12), one O(13), and one O(14) atom to form distorted MoO5 square pyramids that share a cornercorner with one Na(1)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, and an edgeedge with one Mo(3)O5 square pyramid. The corner-sharing octahedral tilt angles are 48°. The Mo(4)-O(10) bond length is 2.31 Å. The Mo(4)-O(11) bond length is 2.12 Å. The Mo(4)-O(12) bond length is 2.08 Å. The Mo(4)-O(13) bond length is 1.94 Å. The Mo(4)-O(14) bond length is 1.95 Å. In the fifth Mo site, Mo(5) is bonded in a 5-coordinate geometry to one O(13), one O(14), one O(15), one O(16), and one O(17) atom. The Mo(5)-O(13) bond length is 1.94 Å. The Mo(5)-O(14) bond length is 1.94 Å. The Mo(5)-O(15) bond length is 2.13 Å. The Mo(5)-O(16) bond length is 2.06 Å. The Mo(5)-O(17) bond length is 2.31 Å. In the sixth Mo site, Mo(6) is bonded to one O(15), one O(17), one O(18), one O(3), and one O(5) atom to form distorted MoO5 square pyramids that share a cornercorner with one Na(1)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(4)O4 tetrahedra, and an edgeedge with one Mo(1)O5 square pyramid. The corner-sharing octahedral tilt angles are 47°. The Mo(6)-O(15) bond length is 2.13 Å. The Mo(6)-O(17) bond length is 2.30 Å. The Mo(6)-O(18) bond length is 2.06 Å. The Mo(6)-O(3) bond length is 1.94 Å. The Mo(6)-O(5) bond length is 1.94 Å. Zn(1) is bonded to one O(21), one O(23), one O(24), and one O(25) atom to form ZnO4 tetrahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, and a cornercorner with one P(4)O4 tetrahedra. The Zn(1)-O(21) bond length is 1.89 Å. The Zn(1)-O(23) bond length is 1.94 Å. The Zn(1)-O(24) bond length is 1.95 Å. The Zn(1)-O(25) bond length is 1.96 Å. There are four inequivalent P sites. In the first P site, P(1) is bonded to one O(10), one O(17), one O(2), and one O(25) atom to form PO4 tetrahedra that share a cornercorner with one Mo(1)O5 square pyramid, a cornercorner with one Mo(3)O5 square pyramid, a cornercorner with one Mo(4)O5 square pyramid, a cornercorner with one Mo(6)O5 square pyramid, and a cornercorner with one Zn(1)O4 tetrahedra. The P(1)-O(10) bond length is 1.54 Å. The P(1)-O(17) bond length is 1.54 Å. The P(1)-O(2) bond length is 1.54 Å. The P(1)-O(25) bond length is 1.53 Å. In the second P site, P(2) is bonded to one O(1), one O(19), one O(24), and one O(6) atom to form PO4 tetrahedra that share a cornercorner with one Mo(1)O5 square pyramid and a cornercorner with one Zn(1)O4 tetrahedra. The P(2)-O(1) bond length is 1.52 Å. The P(2)-O(19) bond length is 1.54 Å. The P(2)-O(24) bond length is 1.51 Å. The P(2)-O(6) bond length is 1.52 Å. In the third P site, P(3) is bonded to one O(12), one O(20), one O(23), and one O(9) atom to form PO4 tetrahedra that share a cornercorner with one Mo(3)O5 square pyramid, a cornercorner with one Mo(4)O5 square pyramid, and a cornercorner with one Zn(1)O4 tetrahedra. The P(3)-O(12) bond length is 1.54 Å. The P(3)-O(20) bond length is 1.54 Å. The P(3)-O(23) bond length is 1.51 Å. The P(3)-O(9) bond length is 1.54 Å. In the fourth P site, P(4) is bonded to one O(16), one O(18), one O(21), and one O(22) atom to form PO4 tetrahedra that share a cornercorner with one Mo(6)O5 square pyramid and a cornercorner with one Zn(1)O4 tetrahedra. The P(4)-O(16) bond length is 1.53 Å. The P(4)-O(18) bond length is 1.55 Å. The P(4)-O(21) bond length is 1.52 Å. The P(4)-O(22) bond length is 1.52 Å. There are twenty-five inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Mo(1) and one P(2) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Mo(1), one Mo(2), and one P(1) atom. In the third O site, O(3) is bonded in an L-shaped geometry to one Mo(1) and one Mo(6) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Mo(1) and one Mo(2) atom. In the fifth O site, O(5) is bonded in a distorted T-shaped geometry to one Na(1), one Mo(1), and one Mo(6) atom. In the sixth O site, O(6) is bonded in a distorted single-bond geometry to one Mo(2) and one P(2) atom. In the seventh O site, O(7) is bonded in an L-shaped geometry to one Mo(2) and one Mo(3) atom. In the eighth O site, O(8) is bonded in a distorted T-shaped geometry to one Na(1), one Mo(2), and one Mo(3) atom. In the ninth O site, O(9) is bonded in a distorted single-bond geometry to one Mo(3) and one P(3) atom. In the tenth O site, O(10) is bonded in a distorted single-bond geometry to one Mo(3), one Mo(4), and one P(1) atom. In the eleventh O site, O(11) is bonded in a bent 120 degrees geometry to one Mo(3) and one Mo(4) atom. In the twelfth O site, O(12) is bonded in a distorted single-bond geometry to one Mo(4) and one P(3) atom. In the thirteenth O site, O(13) is bonded in an L-shaped geometry to one Mo(4) and one Mo(5) atom. In the fourteenth O site, O(14) is bonded in a distorted T-shaped geometry to one Na(1), one Mo(4), and one Mo(5) atom. In the fifteenth O site, O(15) is bonded in a bent 120 degrees geometry to one Mo(5) and one Mo(6) atom. In the sixteenth O site, O(16) is bonded in a single-bond geometry to one Mo(5) and one P(4) atom. In the seventeenth O site, O(17) is bonded in a distorted single-bond geometry to one Mo(5), one Mo(6), and one P(1) atom. In the eighteenth O site, O(18) is bonded in a 3-coordinate geometry to one Na(2), one Mo(6), and one P(4) atom. In the nineteenth O site, O(19) is bonded in a single-bond geometry to one P(2) atom. In the twentieth O site, O(20) is bonded in a single-bond geometry to one P(3) atom. In the twenty-first O site, O(21) is bonded in a bent 150 degrees geometry to one Zn(1) and one P(4) atom. In the twenty-second O site, O(22) is bonded in a single-bond geometry to one P(4) atom. In the twenty-third O site, O(23) is bonded in a bent 150 degrees geometry to one Zn(1) and one P(3) atom. In the twenty-fourth O site, O(24) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one P(2) atom. In the twenty-fifth O site, O(25) is bonded in a bent 120 degrees geometry to one Zn(1) and one P(1) atom. Linkers: 8 [O]P([O])([O])=O. Metal clusters: 2 [Na] ,2 [Zn] ,12 [Mo]. The MOF has largest included sphere 5.96 A, density 2.02 g/cm3, surface area 1893.71 m2/g, accessible volume 0.27 cm3/g
|
XAKYUE_clean
|
Mn3C25N8H15O9(CH)13CH2(CH3)3 crystallizes in the tetragonal I4_1/a space group. The structure is zero-dimensional and consists of eighty 02329_fluka molecules, sixteen 02329_fluka molecules, forty-eight 02329_fluka molecules, thirty-two isobutylene molecules, and eight Mn3C25N8H15O9 clusters. In each Mn3C25N8H15O9 cluster, there are three inequivalent Mn sites. In the first Mn site, Mn(1) is bonded in a distorted octahedral geometry to one N(1), one N(3), one N(7), one O(1), one O(3), and one O(8) atom. The Mn(1)-N(1) bond length is 1.95 Å. The Mn(1)-N(3) bond length is 2.28 Å. The Mn(1)-N(7) bond length is 2.26 Å. The Mn(1)-O(1) bond length is 1.85 Å. The Mn(1)-O(3) bond length is 1.93 Å. The Mn(1)-O(8) bond length is 1.99 Å. In the second Mn site, Mn(2) is bonded in a distorted square pyramidal geometry to one N(2), one N(4), one O(2), one O(4), and one O(6) atom. The Mn(2)-N(2) bond length is 2.25 Å. The Mn(2)-N(4) bond length is 1.95 Å. The Mn(2)-O(2) bond length is 1.98 Å. The Mn(2)-O(4) bond length is 1.86 Å. The Mn(2)-O(6) bond length is 1.95 Å. In the third Mn site, Mn(3) is bonded in a distorted octahedral geometry to one N(5), one N(6), one N(8), one O(5), one O(7), and one O(9) atom. The Mn(3)-N(5) bond length is 2.26 Å. The Mn(3)-N(6) bond length is 1.94 Å. The Mn(3)-N(8) bond length is 2.30 Å. The Mn(3)-O(5) bond length is 2.01 Å. The Mn(3)-O(7) bond length is 1.85 Å. The Mn(3)-O(9) bond length is 1.94 Å. There are twenty-five inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(2) and one O(1) atom. The C(1)-C(2) bond length is 1.43 Å. The C(1)-O(1) bond length is 1.35 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(7) bond length is 1.49 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.95 Å. In the fourth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(1), and one O(2) atom. The C(7)-N(1) bond length is 1.32 Å. The C(7)-O(2) bond length is 1.27 Å. In the fifth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one N(2) and one O(3) atom. The C(8)-N(2) bond length is 1.29 Å. The C(8)-O(3) bond length is 1.32 Å. In the sixth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(10) atom. The C(11)-N(3) bond length is 1.32 Å. The C(11)-H(10) bond length is 0.95 Å. In the seventh C site, C(15) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(13) atom. The C(15)-N(3) bond length is 1.32 Å. The C(15)-H(13) bond length is 0.95 Å. In the eighth C site, C(17) is bonded in a distorted single-bond geometry to one C(18) and one O(4) atom. The C(17)-C(18) bond length is 1.39 Å. The C(17)-O(4) bond length is 1.35 Å. In the ninth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(23) atom. The C(18)-C(19) bond length is 1.43 Å. The C(18)-C(23) bond length is 1.46 Å. In the tenth C site, C(19) is bonded in a distorted single-bond geometry to one C(18), one C(20), and one H(16) atom. The C(19)-C(20) bond length is 1.44 Å. The C(19)-H(16) bond length is 0.95 Å. In the eleventh C site, C(20) is bonded in a distorted trigonal planar geometry to one C(19), one C(21), and one H(17) atom. The C(20)-C(21) bond length is 1.32 Å. The C(20)-H(17) bond length is 0.95 Å. In the twelfth C site, C(21) is bonded in a distorted single-bond geometry to one C(20) and one H(18) atom. The C(21)-H(18) bond length is 0.95 Å. In the thirteenth C site, C(23) is bonded in a distorted trigonal planar geometry to one C(18), one N(4), and one O(5) atom. The C(23)-N(4) bond length is 1.32 Å. The C(23)-O(5) bond length is 1.28 Å. In the fourteenth C site, C(24) is bonded in a trigonal planar geometry to one C(25), one N(5), and one O(6) atom. The C(24)-C(25) bond length is 1.49 Å. The C(24)-N(5) bond length is 1.34 Å. The C(24)-O(6) bond length is 1.29 Å. In the fifteenth C site, C(25) is bonded in a water-like geometry to one C(24) and two equivalent H(20,21) atoms. Both C(25)-H(20,21) bond lengths are 0.99 Å. In the sixteenth C site, C(27) is bonded in a distorted single-bond geometry to one C(28), one C(32), and one O(7) atom. The C(27)-C(28) bond length is 1.43 Å. The C(27)-C(32) bond length is 1.47 Å. The C(27)-O(7) bond length is 1.32 Å. In the seventeenth C site, C(28) is bonded in a trigonal planar geometry to one C(27), one C(29), and one C(33) atom. The C(28)-C(29) bond length is 1.38 Å. The C(28)-C(33) bond length is 1.46 Å. In the eighteenth C site, C(29) is bonded in a distorted single-bond geometry to one C(28) and one H(25) atom. The C(29)-H(25) bond length is 0.95 Å. In the nineteenth C site, C(31) is bonded in a distorted single-bond geometry to one C(32) and one H(27) atom. The C(31)-C(32) bond length is 1.37 Å. The C(31)-H(27) bond length is 0.95 Å. In the twentieth C site, C(32) is bonded in a distorted trigonal planar geometry to one C(27), one C(31), and one H(28) atom. The C(32)-H(28) bond length is 0.95 Å. In the twenty-first C site, C(33) is bonded in a distorted bent 120 degrees geometry to one C(28), one N(6), and one O(8) atom. The C(33)-N(6) bond length is 1.33 Å. The C(33)-O(8) bond length is 1.30 Å. In the twenty-second C site, C(34) is bonded in a distorted trigonal planar geometry to one C(35), one N(7), and one O(9) atom. The C(34)-C(35) bond length is 1.48 Å. The C(34)-N(7) bond length is 1.29 Å. The C(34)-O(9) bond length is 1.31 Å. In the twenty-third C site, C(41) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(37) atom. The C(41)-N(8) bond length is 1.33 Å. The C(41)-H(37) bond length is 0.95 Å. In the twenty-fourth C site, C(35) is bonded in a water-like geometry to one C(34), one H(29), and one H(30) atom. The C(35)-H(29) bond length is 0.99 Å. The C(35)-H(30) bond length is 0.99 Å. In the twenty-fifth C site, C(37) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(34) atom. The C(37)-N(8) bond length is 1.32 Å. The C(37)-H(34) bond length is 0.95 Å. There are eight inequivalent N sites. In the first N site, N(8) is bonded in a trigonal planar geometry to one Mn(3), one C(37), and one C(41) atom. In the second N site, N(6) is bonded in a distorted trigonal planar geometry to one Mn(3), one C(33), and one N(7) atom. The N(6)-N(7) bond length is 1.42 Å. In the third N site, N(7) is bonded in a 3-coordinate geometry to one Mn(1), one C(34), and one N(6) atom. In the fourth N site, N(1) is bonded in a distorted trigonal planar geometry to one Mn(1), one C(7), and one N(2) atom. The N(1)-N(2) bond length is 1.43 Å. In the fifth N site, N(2) is bonded in a 3-coordinate geometry to one Mn(2), one C(8), and one N(1) atom. In the sixth N site, N(3) is bonded in a trigonal planar geometry to one Mn(1), one C(11), and one C(15) atom. In the seventh N site, N(4) is bonded in a distorted trigonal planar geometry to one Mn(2), one C(23), and one N(5) atom. The N(4)-N(5) bond length is 1.42 Å. In the eighth N site, N(5) is bonded in a 3-coordinate geometry to one Mn(3), one C(24), and one N(4) atom. There are fourteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(10) is bonded in a single-bond geometry to one C(11) atom. In the third H site, H(13) is bonded in a single-bond geometry to one C(15) atom. In the fourth H site, H(16) is bonded in a single-bond geometry to one C(19) atom. In the fifth H site, H(17) is bonded in a single-bond geometry to one C(20) atom. In the sixth H site, H(18) is bonded in a single-bond geometry to one C(21) atom. In the seventh H site, H(20,21) is bonded in a single-bond geometry to one C(25) atom. In the eighth H site, H(25) is bonded in a single-bond geometry to one C(29) atom. In the ninth H site, H(27) is bonded in a single-bond geometry to one C(31) atom. In the tenth H site, H(28) is bonded in a single-bond geometry to one C(32) atom. In the eleventh H site, H(29) is bonded in a single-bond geometry to one C(35) atom. In the twelfth H site, H(30) is bonded in a single-bond geometry to one C(35) atom. In the thirteenth H site, H(34) is bonded in a single-bond geometry to one C(37) atom. In the fourteenth H site, H(37) is bonded in a single-bond geometry to one C(41) atom. There are nine inequivalent O sites. In the first O site, O(8) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(33) atom. In the second O site, O(9) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(34) atom. In the third O site, O(5) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(23) atom. In the fourth O site, O(6) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(24) atom. In the fifth O site, O(7) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(27) atom. In the sixth O site, O(1) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(1) atom. In the seventh O site, O(2) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(7) atom. In the eighth O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(8) atom. In the ninth O site, O(4) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(17) atom. Linkers: 24 CCC(=O)[N][N]C(=O)c1ccccc1[O] ,8 c1cc(CCc2ccncc2)ccn1. Metal clusters: 24 [Mn]. The MOF has largest included sphere 12.06 A, density 0.88 g/cm3, surface area 4715.23 m2/g, accessible volume 0.74 cm3/g
|
POSGEL_clean
|
CdC20H14(NO)4 is Indium-like structured and crystallizes in the monoclinic Cc space group. The structure is zero-dimensional and consists of four CdC20H14(NO)4 clusters. Cd(1) is bonded in a 6-coordinate geometry to one N(1), one N(3), one O(1), one O(2), one O(3), and one O(4) atom. The Cd(1)-N(1) bond length is 2.26 Å. The Cd(1)-N(3) bond length is 2.22 Å. The Cd(1)-O(1) bond length is 2.26 Å. The Cd(1)-O(2) bond length is 2.45 Å. The Cd(1)-O(3) bond length is 2.58 Å. The Cd(1)-O(4) bond length is 2.28 Å. There are twenty inequivalent C sites. In the first C site, C(1) is bonded in a single-bond geometry to one C(6) and one H(1) atom. The C(1)-C(6) bond length is 1.40 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2,3) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-H(2,3) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(10), one C(2), and one C(4) atom. The C(3)-C(10) bond length is 1.51 Å. The C(3)-C(4) bond length is 1.39 Å. In the fourth C site, C(4) is bonded in a single-bond geometry to one C(3) and one H(2,3) atom. The C(4)-H(2,3) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(5)-C(6) bond length is 1.35 Å. The C(5)-H(4) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(6)-C(7) bond length is 1.52 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(6), one C(8), and one N(2) atom. The C(7)-C(8) bond length is 1.33 Å. The C(7)-N(2) bond length is 1.37 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(7), one N(1), and one H(5) atom. The C(8)-N(1) bond length is 1.36 Å. The C(8)-H(5) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(6) atom. The C(9)-N(1) bond length is 1.25 Å. The C(9)-N(2) bond length is 1.33 Å. The C(9)-H(6) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(1), and one O(2) atom. The C(10)-O(1) bond length is 1.32 Å. The C(10)-O(2) bond length is 1.12 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(16) and one H(7) atom. The C(11)-C(16) bond length is 1.44 Å. The C(11)-H(7) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(13) and one H(8) atom. The C(12)-C(13) bond length is 1.44 Å. The C(12)-H(8) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(20) atom. The C(13)-C(14) bond length is 1.36 Å. The C(13)-C(20) bond length is 1.53 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(13) and one H(9) atom. The C(14)-H(9) bond length is 0.93 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(16) and one H(10) atom. The C(15)-C(16) bond length is 1.39 Å. The C(15)-H(10) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(11), one C(15), and one C(17) atom. The C(16)-C(17) bond length is 1.43 Å. In the seventeenth C site, C(17) is bonded in a distorted single-bond geometry to one C(16), one C(18), and one N(4) atom. The C(17)-C(18) bond length is 1.40 Å. The C(17)-N(4) bond length is 1.39 Å. In the eighteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one C(17), one N(3), and one H(11) atom. The C(18)-N(3) bond length is 1.35 Å. The C(18)-H(11) bond length is 0.93 Å. In the nineteenth C site, C(19) is bonded in a trigonal planar geometry to one N(3), one N(4), and one H(12) atom. The C(19)-N(3) bond length is 1.37 Å. The C(19)-N(4) bond length is 1.35 Å. The C(19)-H(12) bond length is 0.93 Å. In the twentieth C site, C(20) is bonded in a distorted bent 120 degrees geometry to one C(13), one O(3), and one O(4) atom. The C(20)-O(3) bond length is 1.21 Å. The C(20)-O(4) bond length is 1.27 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Cd(1), one C(8), and one C(9) atom. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one C(7), one C(9), and one H(13) atom. The N(2)-H(13) bond length is 0.86 Å. In the third N site, N(3) is bonded in a trigonal planar geometry to one Cd(1), one C(18), and one C(19) atom. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one C(17), one C(19), and one H(14) atom. The N(4)-H(14) bond length is 0.86 Å. There are thirteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2,3) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one C(12) atom. In the eighth H site, H(11) is bonded in a single-bond geometry to one C(18) atom. In the ninth H site, H(13) is bonded in a single-bond geometry to one N(2) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(15) atom. In the eleventh H site, H(12) is bonded in a single-bond geometry to one C(19) atom. In the twelfth H site, H(14) is bonded in a single-bond geometry to one N(4) atom. In the thirteenth H site, H(9) is bonded in a single-bond geometry to one C(14) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted L-shaped geometry to one Cd(1) and one C(10) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Cd(1) and one C(10) atom. In the third O site, O(3) is bonded in a single-bond geometry to one Cd(1) and one C(20) atom. In the fourth O site, O(4) is bonded in a distorted water-like geometry to one Cd(1) and one C(20) atom. Linkers: 8 [O]C(=O)c1ccc(-c2cnc[nH]2)cc1. Metal clusters: 4 O=[C]O[Cd]1O[C]O1. The MOF has largest included sphere 4.66 A, density 1.39 g/cm3, surface area 4240.49 m2/g, accessible volume 0.30 cm3/g
|
RAHPAT_clean
|
(CuC13H7O4)3H12C15N is Indium-derived structured and crystallizes in the cubic Fm-3m space group. The structure is zero-dimensional and consists of four CuC13H7O4 clusters and thirty-two H12C15N clusters. In each CuC13H7O4 cluster, there are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a distorted square co-planar geometry to four equivalent O(1) atoms. All Cu(1)-O(1) bond lengths are 1.94 Å. In the second Cu site, Cu(2) is bonded in a distorted rectangular see-saw-like geometry to four equivalent O(2) atoms. All Cu(2)-O(2) bond lengths are 1.93 Å. There are eight inequivalent C sites. In the first C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(8) atom. The C(2)-C(1) bond length is 1.46 Å. The C(2)-C(3) bond length is 1.41 Å. The C(2)-C(8) bond length is 1.39 Å. In the second C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-O(1) bond length is 1.29 Å. The C(1)-O(2) bond length is 1.24 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(9), and one H(1) atom. The C(3)-C(9) bond length is 1.38 Å. The C(3)-H(1) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(10) and one H(2) atom. The C(4)-C(10) bond length is 1.44 Å. The C(4)-H(2) bond length is 0.95 Å. In the fifth C site, C(6) is bonded in a distorted single-bond geometry to one C(10) and one H(4) atom. The C(6)-C(10) bond length is 1.41 Å. The C(6)-H(4) bond length is 0.95 Å. In the sixth C site, C(8) is bonded in a distorted single-bond geometry to two equivalent C(2) and one H(6) atom. The C(8)-H(6) bond length is 0.95 Å. In the seventh C site, C(9) is bonded in a trigonal planar geometry to one C(10) and two equivalent C(3) atoms. The C(9)-C(10) bond length is 1.54 Å. In the eighth C site, C(10) is bonded in a 5-coordinate geometry to one C(9), two equivalent C(4), and two equivalent C(6) atoms. There are four inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(6) is bonded in a single-bond geometry to one C(8) atom. There are two inequivalent O sites. In the first O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(1) atom. In the second O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(1) atom. In each H12C15N cluster, there are three inequivalent C sites. In the first C site, C(5) is bonded in a distorted single-bond geometry to one C(11) and one H(3) atom. The C(5)-C(11) bond length is 1.43 Å. The C(5)-H(3) bond length is 0.95 Å. In the second C site, C(7) is bonded in a distorted single-bond geometry to one C(11) and one H(5) atom. The C(7)-C(11) bond length is 1.42 Å. The C(7)-H(5) bond length is 0.95 Å. In the third C site, C(11) is bonded in a distorted single-bond geometry to two equivalent C(5), two equivalent C(7), and one N(1) atom. The C(11)-N(1) bond length is 1.40 Å. N(1) is bonded in a trigonal planar geometry to three equivalent C(11) atoms. There are two inequivalent H sites. In the first H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(5) is bonded in a single-bond geometry to one C(7) atom. Linkers: 1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@@]718)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@@]718)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [CH]1[C@H]2[C@H]3[C@@H]4[C@@H]5[C@H]6[C@@H]([C@H]1[C@]45N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@@]875)[C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@]718)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@@]718)[C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@@]718)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@H]5[C@@]14N([C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@]14[C@@H]5[C@@H]7[C@@H]8[C@H]1[CH][C@@H]1[C@H]([C@@H]54)[C@@]871)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@H]5[C@@]14N([C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@H]5[C@@]14N([C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@H]5[C@@]14N([C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@H]5[C@@]14N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@H]2[C@H]3[C@@H]4[C@@H]5[C@H]6[C@@H]([C@H]1[C@]45N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [CH]1[C@H]2[C@H]3[C@@H]4[C@@H]5[C@H]6[C@@H]([C@H]1[C@]45N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@H]2[C@H]3[C@@H]4[C@@H]5[C@H]6[C@@H]([C@H]1[C@]45N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@H]2[C@H]3[C@@H]4[C@@H]5[C@H]6[C@@H]([C@H]1[C@]45N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@@]718)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@H]2[C@H]3[C@@H]4[C@@H]5[C@H]6[C@@H]([C@H]1[C@]45N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@@]718)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@]718)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@@]875)[C@]14[C@@H]5[C@@H]7[C@@H]8[CH][C@H]1[C@@H]1[C@H]([C@@H]54)[C@@]718)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,2 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@@H]2[C@@H]3[C@H]4[C@H]5[C@@H]6[C@H]([C@@H]1[C@]54N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@H]2[C@H]3[CH][C@]4(N([C@]56[CH][C@@H]7[C@@H]8[C@H]5[C@H]5[C@@H]9[C@H]([C@H]56)[C@]987)[C@]56[CH][C@@H]7[C@@H]8[C@H]5[C@H]5[C@@H]9[C@H]([C@H]56)[C@]987)[CH][C@H]5[C@@H]([C@H]14)[C@]352.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@H]2[C@H]3[C@@H]4[C@@H]5[C@H]6[C@@H]([C@H]1[C@]45N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@]785)[C@@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1 ,1 [CH]1[C@H]2[C@H]3[C@@H]4[C@@H]5[C@H]6[C@@H]([C@H]1[C@]45N([C@]14[CH][C@@H]5[C@@H]7[C@H]1[C@H]1[C@@H]8[C@H]([C@H]14)[C@]875)[C@@]14[CH][C@H]5[C@H]7[C@@H]1[C@@H]1[C@H]8[C@@H]([C@@H]14)[C@@]785)[C@]632.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1.[O]C(=O)c1c[c]cc(C([O])=O)c1. Metal clusters: 48 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. The MOF has largest included sphere 17.38 A, density 0.71 g/cm3, surface area 3499.22 m2/g, accessible volume 1.04 cm3/g
|
LACZEX_clean
|
Na4CoC52H20(NO4)4 crystallizes in the orthorhombic Imma space group. There are two inequivalent Na sites. In the first Na site, Na(1) is bonded in a 6-coordinate geometry to two equivalent O(1), two equivalent O(2), and two equivalent O(3) atoms. Both Na(1)-O(1) bond lengths are 2.38 Å. Both Na(1)-O(2) bond lengths are 2.34 Å. Both Na(1)-O(3) bond lengths are 2.46 Å. In the second Na site, Na(2) is bonded in a 6-coordinate geometry to two equivalent O(1), two equivalent O(2), and two equivalent O(4) atoms. Both Na(2)-O(1) bond lengths are 2.29 Å. Both Na(2)-O(2) bond lengths are 2.41 Å. Both Na(2)-O(4) bond lengths are 2.44 Å. Co(1) is bonded in a rectangular see-saw-like geometry to two equivalent N(1) and two equivalent N(2) atoms. Both Co(1)-N(1) bond lengths are 1.97 Å. Both Co(1)-N(2) bond lengths are 1.98 Å. There are thirteen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(12), one C(3), and one C(8) atom. The C(1)-C(12) bond length is 1.52 Å. The C(1)-C(3) bond length is 1.38 Å. The C(1)-C(8) bond length is 1.39 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(7), one C(8), and one C(9) atom. The C(2)-C(7) bond length is 1.50 Å. The C(2)-C(8) bond length is 1.38 Å. The C(2)-C(9) bond length is 1.39 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(1), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.37 Å. The C(3)-H(1) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(13), one C(3), and one C(9) atom. The C(4)-C(13) bond length is 1.51 Å. The C(4)-C(9) bond length is 1.40 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(11), one C(7), and one N(1) atom. The C(5)-C(11) bond length is 1.42 Å. The C(5)-C(7) bond length is 1.39 Å. The C(5)-N(1) bond length is 1.37 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(10), one C(7), and one N(2) atom. The C(6)-C(10) bond length is 1.44 Å. The C(6)-C(7) bond length is 1.38 Å. The C(6)-N(2) bond length is 1.37 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(2), one C(5), and one C(6) atom. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(1), one C(2), and one H(2) atom. The C(8)-H(2) bond length is 0.95 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(3) atom. The C(9)-H(3) bond length is 0.95 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(10)-H(4) bond length is 0.95 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(5) and one H(5) atom. The C(11)-H(5) bond length is 0.95 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(1), and one O(3) atom. The C(12)-O(1) bond length is 1.24 Å. The C(12)-O(3) bond length is 1.23 Å. In the thirteenth C site, C(13) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(2), and one O(4) atom. The C(13)-O(2) bond length is 1.24 Å. The C(13)-O(4) bond length is 1.24 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Co(1) and two equivalent C(5) atoms. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Co(1) and two equivalent C(6) atoms. There are five inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(8) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(9) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(11) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted T-shaped geometry to one Na(1), one Na(2), and one C(12) atom. In the second O site, O(2) is bonded in a distorted T-shaped geometry to one Na(1), one Na(2), and one C(13) atom. In the third O site, O(3) is bonded in an L-shaped geometry to one Na(1) and one C(12) atom. In the fourth O site, O(4) is bonded in an L-shaped geometry to one Na(2) and one C(13) atom. Linkers: 4 [O]C(=O)c1cc(cc(c1)C1=C2C=CC3=[N]2[Co@]24n5c1ccc5C(=C1[N]2=C(C=C1)C(=c1n4c(=C3c2cc(cc(c2)C(=O)[O])C(=O)[O])cc1)c1cc(cc(c1)C(=O)[O])C(=O)[O])c1cc(cc(c1)C(=O)[O])C(=O)[O])C(=O)[O]. Metal clusters: 16 [Na]. The MOF has largest included sphere 9.31 A, density 0.71 g/cm3, surface area 3994.81 m2/g, accessible volume 0.85 cm3/g
|
EFOGOX_clean
|
CdH12(C9N8)2(CH)20 crystallizes in the cubic Ia-3d space group. The structure consists of one hundred and ninety-two 02329_fluka molecules and ninety-six propylene molecules inside a CdH12(C9N8)2 framework. In the CdH12(C9N8)2 framework, Cd(1) is bonded in a distorted trigonal pyramidal geometry to four equivalent N(2) atoms. All Cd(1)-N(2) bond lengths are 2.23 Å. There are five inequivalent C sites. In the first C site, C(9) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(7) atom. The C(9)-N(3) bond length is 1.37 Å. The C(9)-H(7) bond length is 0.95 Å. In the second C site, C(10) is bonded in a tetrahedral geometry to two equivalent N(3) and two equivalent H(8) atoms. Both C(10)-N(3) bond lengths are 1.44 Å. Both C(10)-H(8) bond lengths are 0.99 Å. In the third C site, C(7) is bonded in a trigonal planar geometry to one N(2), one N(3), and one N(4) atom. The C(7)-N(2) bond length is 1.33 Å. The C(7)-N(3) bond length is 1.35 Å. The C(7)-N(4) bond length is 1.39 Å. In the fourth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(6) atom. The C(8)-N(2) bond length is 1.36 Å. The C(8)-H(6) bond length is 0.95 Å. In the fifth C site, C(6) is bonded in a distorted single-bond geometry to one N(1) atom. The C(6)-N(1) bond length is 1.44 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a distorted bent 120 degrees geometry to one C(6) and one N(4) atom. The N(1)-N(4) bond length is 1.27 Å. In the second N site, N(2) is bonded in a trigonal planar geometry to one Cd(1), one C(7), and one C(8) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one C(10), one C(7), and one C(9) atom. In the fourth N site, N(4) is bonded in a distorted bent 120 degrees geometry to one C(7) and one N(1) atom. There are three inequivalent H sites. In the first H site, H(6) is bonded in a single-bond geometry to one C(8) atom. In the second H site, H(7) is bonded in a single-bond geometry to one C(9) atom. In the third H site, H(8) is bonded in a single-bond geometry to one C(10) atom. Linkers: 9 c1ccc([N][N]c2nccn2Cn2ccnc2[N][N]c2ccccc2)cc1 ,3 [N][N]c1nccn1CN1C=CN([Cd@@]2(N3C=CN(Cn4ccnc4[N][N]c4ccccc4)[C]3[N][N]c3ccccc3)N3C=CN(CN4C=CN([C]4[N][N]c4ccccc4)[Cd@](N4C=CN(CN5C=CN([Cd](N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)(N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)[C]5[N][N]c5ccccc5)[C]4[N][N]c4ccccc4)(N4C=CN(Cn5ccnc5[N][N]c5ccccc5)[C]4[N][N]c4ccccc4)N4C=CN(CN5C=CN([C]5[N][N]c5ccccc5)[Cd](N5C=CN(Cn6ccnc6[N][N]c6ccccc6)[C]5[N][N]c5ccccc5)(N5C=CN(Cn6ccnc6[N][N]c6ccccc6)[C]5[N][N]c5ccccc5)N5C=CN(CN6C=CN([C]6[N][N]c6ccccc6)[Cd@](N6C=CN(CN7C=CN([Cd](N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)(N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)[C]7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)(N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)N6C=CN(CN7C=CN([C]7[N][N]c7ccccc7)[Cd](N7C=CN(Cn8ccnc8[N][N]c8ccccc8)[C]7[N][N]c7ccccc7)(N7C=CN(Cn8ccnc8[N][N]c8ccccc8)[C]7[N][N]c7ccccc7)N7C=CN(CN8C=CN([C]8[N][N]c8ccccc8)[Cd@](N8C=CN(CN9C=CN([Cd](N%10C=CN(Cn%11ccnc%11[N][N]c%11ccccc%11)[C]%10[N][N]c%10ccccc%10)(N%10C=CN(Cn%11ccnc%11[N][N]c%11ccccc%11)[C]%10[N][N]c%10ccccc%10)N%10C=CN(Cn%11ccnc%11[N][N]c%11ccccc%11)[C]%10[N][N]c%10ccccc%10)[C]9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)(N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)N8C=CN(CN9C=CN2[C]9[N][N]c2ccccc2)[C]8[N][N]c2ccccc2)[C]7[N][N]c2ccccc2)[C]6[N][N]c2ccccc2)[C]5[N][N]c2ccccc2)[C]4[N][N]c2ccccc2)[C]3[N][N]c2ccccc2)[C]1[N][N]c1ccccc1 ,1 C1=CN2[C]([N][N]c3ccccc3)N1CN1C=CN([C]1[N][N]c1ccccc1)[Cd@](N1C=CN(CN3C=CN([Cd](N4C=CN(Cn5ccnc5[N][N]c5ccccc5)[C]4[N][N]c4ccccc4)(N4C=CN(Cn5ccnc5[N][N]c5ccccc5)[C]4[N][N]c4ccccc4)N4C=CN(Cn5ccnc5[N][N]c5ccccc5)[C]4[N][N]c4ccccc4)[C]3[N][N]c3ccccc3)[C]1[N][N]c1ccccc1)(N1C=CN(Cn3ccnc3[N][N]c3ccccc3)[C]1[N][N]c1ccccc1)N1C=CN(CN3C=CN([C]3[N][N]c3ccccc3)[Cd](N3C=CN(Cn4ccnc4[N][N]c4ccccc4)[C]3[N][N]c3ccccc3)(N3C=CN(Cn4ccnc4[N][N]c4ccccc4)[C]3[N][N]c3ccccc3)N3C=CN(CN4C=CN([C]4[N][N]c4ccccc4)[Cd@](N4C=CN(CN5C=CN([Cd](N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)(N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)[C]5[N][N]c5ccccc5)[C]4[N][N]c4ccccc4)(N4C=CN(Cn5ccnc5[N][N]c5ccccc5)[C]4[N][N]c4ccccc4)N4C=CN(CN5C=CN([C]5[N][N]c5ccccc5)[Cd](N5C=CN(Cn6ccnc6[N][N]c6ccccc6)[C]5[N][N]c5ccccc5)(N5C=CN(Cn6ccnc6[N][N]c6ccccc6)[C]5[N][N]c5ccccc5)N5C=CN(CN6C=CN([C]6[N][N]c6ccccc6)[Cd@](N6C=CN(CN7C=CN([Cd](N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)(N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)[C]7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)(N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)N6C=CN(CN7C=CN([C]7[N][N]c7ccccc7)[Cd]2(N2C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]2[N][N]c2ccccc2)N2C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]2[N][N]c2ccccc2)[C]6[N][N]c2ccccc2)[C]5[N][N]c2ccccc2)[C]4[N][N]c2ccccc2)[C]3[N][N]c2ccccc2)[C]1[N][N]c1ccccc1 ,3 [C]N1C=CN([Cd](N2C=CN([C])[C]2[N][N]/[C]=C/[CH])(N2C=CN(CN3C=CN([Cd@@]4(N5C=CN(Cn6ccnc6[N][N])[C]5[N][N]c5ccccc5)N5C=CN(CN6C=CN([C]6[N][N]c6ccccc6)[Cd](N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)(N6C=CN(Cn7ccnc7[N][N]c7ccccc7)[C]6[N][N]c6ccccc6)N6C=CN(CN7C=CN([C]7[N][N]c7ccccc7)[Cd@](N7C=CN(CN8C=CN([Cd](N9C=CN(Cn%10ccnc%10[N][N]c%10ccccc%10)[C]9[N][N]c9ccccc9)(N9C=CN(Cn%10ccnc%10[N][N]c%10ccccc%10)[C]9[N][N]c9ccccc9)N9C=CN(Cn%10ccnc%10[N][N]c%10ccccc%10)[C]9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)[C]7[N][N]c7ccccc7)(N7C=CN(Cn8ccnc8[N][N]c8ccccc8)[C]7[N][N]c7ccccc7)N7C=CN(CN8C=CN([C]8[N][N]c8ccccc8)[Cd](N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)(N8C=CN(Cn9ccnc9[N][N]c9ccccc9)[C]8[N][N]c8ccccc8)N8C=CN(CN9C=CN([C]9[N][N]c9ccccc9)[Cd@](N9C=CN(CN%10C=CN([Cd](N%11C=CN(Cn%12ccnc%12[N][N])[C]%11[N][N]c%11ccccc%11)(N%11C=CN(Cn%12ccnc%12[N][N]c%12ccccc%12)[C]%11[N][N]c%11ccccc%11)N%11C=CN(Cn%12ccnc%12[N][N]c%12ccccc%12)[C]%11[N][N]c%11ccccc%11)[C]%10[N][N]c%10ccccc%10)[C]9[N][N]c9ccccc9)(N9C=CN(Cn%10ccnc%10[N][N]c%10ccccc%10)[C]9[N][N]c9ccccc9)N9C=CN(CN%10C=CN([C]%10[N][N]c%10ccccc%10)[Cd](N%10C=CN(Cn%11ccnc%11[N][N]c%11ccccc%11)[C]%10[N][N]c%10ccccc%10)(N%10C=CN(Cn%11ccnc%11[N][N]c%11ccccc%11)[C]%10[N][N]c%10ccccc%10)N%10C=CN(CN%11C=CN4[C]%11[N][N]c4ccccc4)[C]%10[N][N]c4ccccc4)[C]9[N][N]c4ccccc4)[C]8[N][N]c4ccccc4)[C]7[N][N]c4ccccc4)[C]6[N][N]c4ccccc4)[C]5[N][N]c4ccccc4)[C]3[N][N]c3ccccc3)[C]2[N][N]c2ccccc2)N2C=CN(Cn3ccnc3[N][N]c3ccccc3)[C]2[N][N]c2ccccc2)[C]1[N][N]/[C]=C/[CH]. Metal clusters: 15 [Cd]. The MOF has largest included sphere 6.79 A, density 1.02 g/cm3, surface area 4933.80 m2/g, accessible volume 0.46 cm3/g
|
MIFLIY_clean
|
MgH18(C17O4)2 crystallizes in the monoclinic C2/c space group. Mg(1) is bonded in a square co-planar geometry to two equivalent O(1) and two equivalent O(3) atoms. Both Mg(1)-O(1) bond lengths are 2.10 Å. Both Mg(1)-O(3) bond lengths are 2.09 Å. There are seventeen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(7) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.42 Å. The C(1)-C(7) bond length is 1.49 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(3), and one H(1) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one H(2) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-H(2) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(16), one C(3), and one C(5) atom. The C(4)-C(16) bond length is 1.50 Å. The C(4)-C(5) bond length is 1.38 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(3) atom. The C(5)-H(3) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(1) and one H(4) atom. The C(6)-H(4) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(1), one C(7), and one C(8) atom. The C(7)-C(7) bond length is 1.42 Å. The C(7)-C(8) bond length is 1.40 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(7), one C(9), and one H(5) atom. The C(8)-C(9) bond length is 1.40 Å. The C(8)-H(5) bond length is 0.95 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(8), and one C(9) atom. The C(9)-C(10) bond length is 1.50 Å. The C(9)-C(9) bond length is 1.39 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(15), and one C(9) atom. The C(10)-C(11) bond length is 1.40 Å. The C(10)-C(15) bond length is 1.38 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(10) and one H(6) atom. The C(11)-H(6) bond length is 0.95 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(13) and one H(7) atom. The C(12)-C(13) bond length is 1.38 Å. The C(12)-H(7) bond length is 0.95 Å. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(17) atom. The C(13)-C(14) bond length is 1.39 Å. The C(13)-C(17) bond length is 1.49 Å. In the fourteenth C site, C(14) is bonded in a distorted trigonal planar geometry to one C(13), one C(15), and one H(8) atom. The C(14)-C(15) bond length is 1.40 Å. The C(14)-H(8) bond length is 0.95 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(10), one C(14), and one H(9) atom. The C(15)-H(9) bond length is 0.95 Å. In the sixteenth C site, C(16) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(1), and one O(2) atom. The C(16)-O(1) bond length is 1.24 Å. The C(16)-O(2) bond length is 1.27 Å. In the seventeenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(13), one O(3), and one O(4) atom. The C(17)-O(3) bond length is 1.23 Å. The C(17)-O(4) bond length is 1.30 Å. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(8) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(12) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(14) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(15) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one Mg(1) and one C(16) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(16) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Mg(1) and one C(17) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(17) atom. Linkers: 1 [CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]O[Mg][O].[C][CH].[C][CH].[C][CH].[C][C].[C][C].[C][C].[C][C].[C][C]/C([C]=[CH])=C(\[C])[C]/[C]=[C]\[C].[C][C]=[CH].[C][C][C].[C][C][C]([C])[C].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[Mg].[Mg].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O] ,1 [CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]/C=[C]\[C]=C/[C].[C]/C=[C]\[C]=C/[C].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=[CH].[C]=[CH].[C]=[C][CH].[C][CH].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C]=[CH].[C][C][C].[C][C][C].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[Mg].[Mg].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O][C]=O.[O][C]=O.[O][Mg][O] ,1 [CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]/[C]=[C]\[CH][C].[C]/[C]=[C]\[C].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C]/[C]=[C]\[C].[C][C]=[CH].[C][C][C].[C][C][C].[C][C][C].[C][C]c1ccc(C([O])=O)cc1.[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[Mg].[Mg].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O] ,1 [CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH]=[C][C]/C=C\[C][C]=O.[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]/[C]=[C]\C=[C].[C]/[C]=[C]\[C].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C][CH].[C][CH].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C]/[C]=C(\[C])c1ccc(C([O])=O)cc1.[C][C][C].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[Mg].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O][C]=O.[O][C]O[Mg] ,1 [CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C].[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=O.[C]=[CH].[C][CH].[C][CH].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C].[C][C]=O.[C][C][C].[C][C][C].[C][C][C].[C][C][C]=[C].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[H].[Mg].[Mg].[Mg].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O].[O][C]=O.[c]1[c][c][c][c][c]1. Metal clusters: 1 [O][C]=O.[O][C]=O.[O][C]O[Mg]O[C][O]. The MOF has largest included sphere 9.88 A, density 0.76 g/cm3, surface area 5050.35 m2/g, accessible volume 0.80 cm3/g
|
MAYKOO_clean
|
CuH14(C13O2)2(CuC11NH10O4)2 is Indium-like structured and crystallizes in the tetragonal I4_1/amd space group. The structure is zero-dimensional and consists of eight CuC11NH10O4 clusters and four CuH14(C13O2)2 clusters. In each CuC11NH10O4 cluster, Cu(1) is bonded in a distorted square pyramidal geometry to one N(1), two equivalent O(1), and two equivalent O(2) atoms. The Cu(1)-N(1) bond length is 2.19 Å. Both Cu(1)-O(1) bond lengths are 1.96 Å. Both Cu(1)-O(2) bond lengths are 1.96 Å. There are six inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-C(7) bond length is 1.38 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(11) is bonded in a distorted trigonal non-coplanar geometry to one N(1) and two equivalent H(8) atoms. The C(11)-N(1) bond length is 1.41 Å. Both C(11)-H(8) bond lengths are 0.96 Å. In the fifth C site, C(7) is bonded in a distorted single-bond geometry to one C(2) and one H(4) atom. The C(7)-H(4) bond length is 0.93 Å. In the sixth C site, C(10) is bonded in a distorted trigonal non-coplanar geometry to one N(1) and two equivalent H(6,7) atoms. The C(10)-N(1) bond length is 1.40 Å. Both C(10)-H(6,7) bond lengths are 0.97 Å. N(1) is bonded in a tetrahedral geometry to one Cu(1), one C(11), and two equivalent C(10) atoms. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In the third H site, H(6,7) is bonded in a single-bond geometry to one C(10) atom. In the fourth H site, H(8) is bonded in a single-bond geometry to one C(11) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In each CuH14(C13O2)2 cluster, Cu(2) is bonded in a distorted rectangular see-saw-like geometry to four equivalent O(3) atoms. All Cu(2)-O(3) bond lengths are 1.95 Å. There are eight inequivalent C sites. In the first C site, C(4) is bonded in a distorted single-bond geometry to one C(5) and one H(2) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-H(2) bond length is 0.93 Å. In the second C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(8) atom. The C(5)-C(6) bond length is 1.38 Å. The C(5)-C(8) bond length is 1.48 Å. In the third C site, C(6) is bonded in a distorted single-bond geometry to one C(5) and one H(3) atom. The C(6)-H(3) bond length is 0.93 Å. In the fourth C site, C(8) is bonded in a trigonal planar geometry to one C(12), one C(5), and one C(9) atom. The C(8)-C(12) bond length is 1.40 Å. The C(8)-C(9) bond length is 1.38 Å. In the fifth C site, C(9) is bonded in a distorted single-bond geometry to one C(13), one C(8), and one H(5) atom. The C(9)-C(13) bond length is 1.38 Å. The C(9)-H(5) bond length is 0.93 Å. In the sixth C site, C(12) is bonded in a single-bond geometry to two equivalent C(8) and one H(9) atom. The C(12)-H(9) bond length is 0.93 Å. In the seventh C site, C(13) is bonded in a trigonal planar geometry to one C(14) and two equivalent C(9) atoms. The C(13)-C(14) bond length is 1.50 Å. In the eighth C site, C(14) is bonded in a bent 120 degrees geometry to one C(13) and two equivalent O(3) atoms. Both C(14)-O(3) bond lengths are 1.26 Å. There are four inequivalent H sites. In the first H site, H(9) is bonded in a single-bond geometry to one C(12) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. O(3) is bonded in a distorted single-bond geometry to one Cu(2) and one C(14) atom. Linkers: 8 [O]C(=O)c1ccc(-c2cc(C([O])=O)cc(-c3ccc(C([O])=O)cc3)c2)cc1 ,4 C1CN2CCN1CC2. Metal clusters: 6 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. RCSR code: iab. The MOF has largest included sphere 12.58 A, density 0.60 g/cm3, surface area 4124.39 m2/g, accessible volume 1.34 cm3/g
|
PEWFII01_clean
|
UCuH2(C5O4)2 crystallizes in the triclinic P-1 space group. U(1) is bonded in a distorted hexagonal planar geometry to two equivalent O(1), two equivalent O(2), and two equivalent O(3) atoms. Both U(1)-O(1) bond lengths are 2.38 Å. Both U(1)-O(2) bond lengths are 2.53 Å. Both U(1)-O(3) bond lengths are 2.49 Å. Cu(1) is bonded in a linear geometry to two equivalent O(4) atoms. Both Cu(1)-O(4) bond lengths are 1.97 Å. There are five inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(2), and one O(3) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(2) bond length is 1.27 Å. The C(1)-O(3) bond length is 1.27 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(4) bond length is 1.41 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(5) atom. The C(4)-C(5) bond length is 1.51 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(1), and one O(4) atom. The C(5)-O(1) bond length is 1.25 Å. The C(5)-O(4) bond length is 1.26 Å. H(1) is bonded in a single-bond geometry to one C(3) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one U(1) and one C(5) atom. In the second O site, O(2) is bonded in a distorted L-shaped geometry to one U(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted L-shaped geometry to one U(1) and one C(1) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(5) atom. Linkers: 2 [O]C(=O)c1cc(C([O])=O)c(C([O])=O)cc1C([O])=O. Metal clusters: 1 [U] ,1 [Cu]. The MOF has largest included sphere 4.22 A, density 2.14 g/cm3, surface area 2313.39 m2/g, accessible volume 0.22 cm3/g
|
TAWSUI_clean
|
Zn3P4H5O12 crystallizes in the orthorhombic Pnma space group. There are two inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one O(1), one O(2), one O(4), and one O(5) atom to form ZnO4 tetrahedra that share a cornercorner with one P(3)HO3 tetrahedra and corners with two equivalent P(1)HO3 tetrahedra. The Zn(1)-O(1) bond length is 1.95 Å. The Zn(1)-O(2) bond length is 1.90 Å. The Zn(1)-O(4) bond length is 1.89 Å. The Zn(1)-O(5) bond length is 1.91 Å. In the second Zn site, Zn(2) is bonded to one O(6), one O(7), and two equivalent O(3) atoms to form ZnO4 tetrahedra that share a cornercorner with one P(3)HO3 tetrahedra and corners with two equivalent P(1)HO3 tetrahedra. The Zn(2)-O(6) bond length is 1.90 Å. The Zn(2)-O(7) bond length is 1.87 Å. Both Zn(2)-O(3) bond lengths are 1.92 Å. There are three inequivalent P sites. In the first P site, P(1) is bonded to one H(1), one O(1), one O(2), and one O(3) atom to form distorted PHO3 tetrahedra that share a cornercorner with one Zn(2)O4 tetrahedra and corners with two equivalent Zn(1)O4 tetrahedra. The P(1)-H(1) bond length is 1.37 Å. The P(1)-O(1) bond length is 1.51 Å. The P(1)-O(2) bond length is 1.49 Å. The P(1)-O(3) bond length is 1.49 Å. In the second P site, P(2) is bonded in a distorted trigonal non-coplanar geometry to two equivalent H(2), one O(6), and two equivalent O(4) atoms. Both P(2)-H(2) bond lengths are 1.29 Å. The P(2)-O(6) bond length is 1.45 Å. Both P(2)-O(4) bond lengths are 1.45 Å. In the third P site, P(3) is bonded to one H(3), one O(7), and two equivalent O(5) atoms to form PHO3 tetrahedra that share a cornercorner with one Zn(2)O4 tetrahedra and corners with two equivalent Zn(1)O4 tetrahedra. The P(3)-H(3) bond length is 1.28 Å. The P(3)-O(7) bond length is 1.49 Å. Both P(3)-O(5) bond lengths are 1.45 Å. There are three inequivalent H sites. In the first H site, H(3) is bonded in a single-bond geometry to one P(3) atom. In the second H site, H(1) is bonded in a single-bond geometry to one P(1) atom. In the third H site, H(2) is bonded in a distorted single-bond geometry to one P(2) and one H(2) atom. The H(2)-H(2) bond length is 0.46 Å. There are seven inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one P(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one P(1) atom. In the third O site, O(3) is bonded in a bent 150 degrees geometry to one Zn(2) and one P(1) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Zn(1) and one P(2) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Zn(1) and one P(3) atom. In the sixth O site, O(6) is bonded in a bent 150 degrees geometry to one Zn(2) and one P(2) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one Zn(2) and one P(3) atom. Linkers: 12 [O][PH]([O])=O ,4 [H].[O].[O].[O].[PH]. Metal clusters: 12 [Zn]. The MOF has largest included sphere 5.21 A, density 1.56 g/cm3, surface area 3007.94 m2/g, accessible volume 0.36 cm3/g
|
BUBWOM_clean
|
Zn3C46H26(N5O8)2 crystallizes in the orthorhombic Pcca space group. There are two inequivalent Zn sites. In the first Zn site, Zn(1) is bonded in a square pyramidal geometry to one N(1), one N(3), one O(1), one O(3), and one O(8) atom. The Zn(1)-N(1) bond length is 2.04 Å. The Zn(1)-N(3) bond length is 2.05 Å. The Zn(1)-O(1) bond length is 2.23 Å. The Zn(1)-O(3) bond length is 2.15 Å. The Zn(1)-O(8) bond length is 2.12 Å. In the second Zn site, Zn(2) is bonded in a square co-planar geometry to one N(5), one N(6), and two equivalent O(5) atoms. The Zn(2)-N(5) bond length is 2.12 Å. The Zn(2)-N(6) bond length is 2.17 Å. Both Zn(2)-O(5) bond lengths are 2.07 Å. There are twenty-four inequivalent C sites. In the first C site, C(13) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(5) atom. The C(13)-N(3) bond length is 1.34 Å. The C(13)-H(5) bond length is 0.93 Å. In the second C site, C(14) is bonded in a trigonal planar geometry to one C(11), one C(15), and one C(18) atom. The C(14)-C(11) bond length is 1.48 Å. The C(14)-C(15) bond length is 1.40 Å. The C(14)-C(18) bond length is 1.40 Å. In the third C site, C(15) is bonded in a distorted single-bond geometry to one C(14) and one H(6) atom. The C(15)-H(6) bond length is 0.93 Å. In the fourth C site, C(16) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(7) atom. The C(16)-N(4) bond length is 1.33 Å. The C(16)-H(7) bond length is 0.93 Å. In the fifth C site, C(17) is bonded in a distorted trigonal planar geometry to one C(18), one N(4), and one H(8) atom. The C(17)-C(18) bond length is 1.38 Å. The C(17)-N(4) bond length is 1.34 Å. The C(17)-H(8) bond length is 0.93 Å. In the sixth C site, C(18) is bonded in a distorted single-bond geometry to one C(14), one C(17), and one H(9) atom. The C(18)-H(9) bond length is 0.93 Å. In the seventh C site, C(19) is bonded in a distorted trigonal planar geometry to one C(20), one N(5), and one H(10) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-N(5) bond length is 1.34 Å. The C(19)-H(10) bond length is 0.93 Å. In the eighth C site, C(20) is bonded in a distorted single-bond geometry to one C(19), one C(23), and one H(11) atom. The C(20)-C(23) bond length is 1.40 Å. The C(20)-H(11) bond length is 0.93 Å. In the ninth C site, C(21) is bonded in a distorted single-bond geometry to one C(24) and one H(12) atom. The C(21)-C(24) bond length is 1.40 Å. The C(21)-H(12) bond length is 0.93 Å. In the tenth C site, C(22) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(13) atom. The C(22)-N(6) bond length is 1.34 Å. The C(22)-H(13) bond length is 0.93 Å. In the eleventh C site, C(23) is bonded in a trigonal planar geometry to one C(24) and two equivalent C(20) atoms. The C(23)-C(24) bond length is 1.49 Å. In the twelfth C site, C(24) is bonded in a trigonal planar geometry to one C(23) and two equivalent C(21) atoms. In the thirteenth C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.52 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.24 Å. In the fourteenth C site, C(2) is bonded in a distorted trigonal planar geometry to one C(1), one C(3), and one N(1) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-N(1) bond length is 1.33 Å. In the fifteenth C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one N(2) atom. The C(3)-C(4) bond length is 1.52 Å. The C(3)-N(2) bond length is 1.35 Å. In the sixteenth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(7), and one O(8) atom. The C(4)-O(7) bond length is 1.25 Å. The C(4)-O(8) bond length is 1.25 Å. In the seventeenth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(3), and one O(4) atom. The C(5)-C(6) bond length is 1.53 Å. The C(5)-O(3) bond length is 1.28 Å. The C(5)-O(4) bond length is 1.23 Å. In the eighteenth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(5), one C(7), and one N(1) atom. The C(6)-C(7) bond length is 1.40 Å. The C(6)-N(1) bond length is 1.32 Å. In the nineteenth C site, C(7) is bonded in a distorted trigonal planar geometry to one C(6), one C(8), and one N(2) atom. The C(7)-C(8) bond length is 1.52 Å. The C(7)-N(2) bond length is 1.35 Å. In the twentieth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(7), one O(5), and one O(6) atom. The C(8)-O(5) bond length is 1.28 Å. The C(8)-O(6) bond length is 1.23 Å. In the twenty-first C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one N(3), and one H(2) atom. The C(9)-C(10) bond length is 1.38 Å. The C(9)-N(3) bond length is 1.34 Å. The C(9)-H(2) bond length is 0.93 Å. In the twenty-second C site, C(10) is bonded in a distorted single-bond geometry to one C(11), one C(9), and one H(3) atom. The C(10)-C(11) bond length is 1.39 Å. The C(10)-H(3) bond length is 0.93 Å. In the twenty-third C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(14) atom. The C(11)-C(12) bond length is 1.40 Å. In the twenty-fourth C site, C(12) is bonded in a distorted single-bond geometry to one C(11) and one H(4) atom. The C(12)-H(4) bond length is 0.93 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Zn(1), one C(2), and one C(6) atom. In the second N site, N(2) is bonded in a bent 120 degrees geometry to one C(3) and one C(7) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Zn(1), one C(13), and one C(9) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one C(16), one C(17), and one H(1) atom. The N(4)-H(1) bond length is 0.91 Å. In the fifth N site, N(5) is bonded in a trigonal planar geometry to one Zn(2) and two equivalent C(19) atoms. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one Zn(2) and two equivalent C(22) atoms. There are thirteen inequivalent H sites. In the first H site, H(1) is bonded in a distorted single-bond geometry to one N(4) and one O(2) atom. The H(1)-O(2) bond length is 1.69 Å. In the second H site, H(2) is bonded in a single-bond geometry to one C(9) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(10) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(12) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(13) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(15) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(16) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(17) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(18) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(19) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(20) atom. In the twelfth H site, H(12) is bonded in a single-bond geometry to one C(21) atom. In the thirteenth H site, H(13) is bonded in a single-bond geometry to one C(22) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one C(1) and one H(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(5) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Zn(2) and one C(8) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one C(8) atom. In the seventh O site, O(7) is bonded in a single-bond geometry to one C(4) atom. In the eighth O site, O(8) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one C(4) atom. Linkers: 4 c1cc(-c2ccncc2)ccn1 ,8 [O]C(=O)c1nc(C([O])=O)c(C([O])=O)nc1C([O])=O. Metal clusters: 12 [Zn]. The MOF has largest included sphere 4.30 A, density 1.47 g/cm3, surface area 4214.85 m2/g, accessible volume 0.26 cm3/g
|
SOBTUY_clean
|
PdCd2(C5N)8 crystallizes in the monoclinic C2/c space group. Pd(1) is bonded in a square co-planar geometry to two equivalent N(1) and two equivalent N(2) atoms. Both Pd(1)-N(1) bond lengths are 2.01 Å. Both Pd(1)-N(2) bond lengths are 1.98 Å. There are two inequivalent Cd sites. In the first Cd site, Cd(1) is bonded in a water-like geometry to two equivalent N(3) atoms. Both Cd(1)-N(3) bond lengths are 2.32 Å. In the second Cd site, Cd(2) is bonded in a linear geometry to two equivalent N(4) atoms. Both Cd(2)-N(4) bond lengths are 2.26 Å. There are twenty inequivalent C sites. In the first C site, C(1) is bonded in a 3-coordinate geometry to one C(10), one C(2), and one N(1) atom. The C(1)-C(10) bond length is 1.54 Å. The C(1)-C(2) bond length is 1.28 Å. The C(1)-N(1) bond length is 1.40 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(11), and one C(3) atom. The C(2)-C(11) bond length is 1.53 Å. The C(2)-C(3) bond length is 1.41 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one N(2) atom. The C(3)-C(4) bond length is 1.44 Å. The C(3)-N(2) bond length is 1.47 Å. In the fourth C site, C(4) is bonded in a water-like geometry to one C(3) and one C(5) atom. The C(4)-C(5) bond length is 1.40 Å. In the fifth C site, C(5) is bonded in a water-like geometry to one C(4) and one C(6) atom. The C(5)-C(6) bond length is 1.46 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(5), one C(7), and one N(2) atom. The C(6)-C(7) bond length is 1.51 Å. The C(6)-N(2) bond length is 1.34 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(16), one C(6), and one C(8) atom. The C(7)-C(16) bond length is 1.55 Å. The C(7)-C(8) bond length is 1.34 Å. In the eighth C site, C(8) is bonded in a distorted trigonal planar geometry to one C(7), one C(9), and one N(1) atom. The C(8)-C(9) bond length is 1.48 Å. The C(8)-N(1) bond length is 1.33 Å. In the ninth C site, C(9) is bonded in a water-like geometry to one C(10) and one C(8) atom. The C(9)-C(10) bond length is 1.23 Å. In the tenth C site, C(10) is bonded in a water-like geometry to one C(1) and one C(9) atom. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(12), one C(15), and one C(2) atom. The C(11)-C(12) bond length is 1.30 Å. The C(11)-C(15) bond length is 1.56 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(11) and one C(13) atom. The C(12)-C(13) bond length is 1.45 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(12) and one N(3) atom. The C(13)-N(3) bond length is 1.46 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(15) and one N(3) atom. The C(14)-C(15) bond length is 1.37 Å. The C(14)-N(3) bond length is 1.29 Å. In the fifteenth C site, C(15) is bonded in a water-like geometry to one C(11) and one C(14) atom. In the sixteenth C site, C(16) is bonded in a distorted trigonal planar geometry to one C(17), one C(20), and one C(7) atom. The C(16)-C(17) bond length is 1.29 Å. The C(16)-C(20) bond length is 1.32 Å. In the seventeenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(16) and one C(18) atom. The C(17)-C(18) bond length is 1.39 Å. In the eighteenth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one C(17) and one N(4) atom. The C(18)-N(4) bond length is 1.43 Å. In the nineteenth C site, C(19) is bonded in a bent 120 degrees geometry to one C(20) and one N(4) atom. The C(19)-C(20) bond length is 1.46 Å. The C(19)-N(4) bond length is 1.33 Å. In the twentieth C site, C(20) is bonded in a bent 120 degrees geometry to one C(16) and one C(19) atom. There are four inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Pd(1), one C(1), and one C(8) atom. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Pd(1), one C(3), and one C(6) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Cd(1), one C(13), and one C(14) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Cd(2), one C(18), and one C(19) atom. Linkers: 7 N1=[C][C]=C([C]=[C]1)C1=C2[C]=[C]C3=C(C4=[C][C]=N[C]=[C]4)C4=[N]5[Pd@@]6(N23)[N]2=C1[C]=[C]C2=C(C1=[C][C]=C(N61)C(=C5[C]=[C]4)C1=[C][C]=N[C]=[C]1)C1=[C][C]=N[C]=[C]1 ,2 [C]/[C]=[C]/C1=C2[C]=[C]C3=C(C4=[C][C]=N[C]=[C]4)C4=[N]5[Pd@@]6(N23)[N]2=C1[C]=[C]C2=C(C1=[C][C]=C(N61)C(=C5[C]=[C]4)C1=[C][C]=N[C]=[C]1)C1=[C][C]=N[C]=[C]1 ,2 [C]/[C]=[C]/C1=C2[C]=[C]C3=[N]2[Pd@@]24N5C1=[C][C]=C5C(=C1[N]4=C(C(=C4N2C(=C3C2=[C][C]=N[C]=[C]2)[C]=[C]4)C2=[C][C]=N[C]=[C]2)[C]=[C]1)C1=[C][C]=N[C]=[C]1. Metal clusters: 8 [Cd]. The MOF has largest included sphere 5.30 A, density 1.24 g/cm3, surface area 3577.99 m2/g, accessible volume 0.42 cm3/g
|
ITIWEO_clean
|
CdH32(C11N3)4(CH)4 is Indium-derived structured and crystallizes in the tetragonal P4_12_12 space group. The structure is zero-dimensional and consists of sixteen 02329_fluka molecules and four CdH32(C11N3)4 clusters. In each CdH32(C11N3)4 cluster, Cd(1) is bonded in a distorted octahedral geometry to two equivalent N(1), two equivalent N(3), and two equivalent N(6) atoms. Both Cd(1)-N(1) bond lengths are 2.47 Å. Both Cd(1)-N(3) bond lengths are 2.32 Å. Both Cd(1)-N(6) bond lengths are 2.37 Å. There are twenty-two inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.28 Å. The C(1)-H(1) bond length is 0.95 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(3) and one H(2,3) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-H(2,3) bond length is 0.95 Å. In the third C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(4) atom. The C(5)-N(1) bond length is 1.27 Å. The C(5)-H(4) bond length is 0.95 Å. In the fourth C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(6) atom. The C(3)-C(4) bond length is 1.37 Å. The C(3)-C(6) bond length is 1.49 Å. In the fifth C site, C(4) is bonded in a distorted single-bond geometry to one C(3) and one H(2,3) atom. The C(4)-H(2,3) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(11), one C(3), and one C(7) atom. The C(6)-C(11) bond length is 1.39 Å. The C(6)-C(7) bond length is 1.41 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(6) and one H(5) atom. The C(7)-H(5) bond length is 0.95 Å. In the eighth C site, C(9) is bonded in a distorted single-bond geometry to one C(10) and one H(7) atom. The C(9)-C(10) bond length is 1.38 Å. The C(9)-H(7) bond length is 0.95 Å. In the ninth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(12), and one C(9) atom. The C(10)-C(11) bond length is 1.39 Å. The C(10)-C(12) bond length is 1.43 Å. In the tenth C site, C(11) is bonded in a distorted single-bond geometry to one C(10), one C(6), and one H(8) atom. The C(11)-H(8) bond length is 0.95 Å. In the eleventh C site, C(12) is bonded in a distorted water-like geometry to one C(10), one N(2), and one N(4) atom. The C(12)-N(2) bond length is 1.33 Å. The C(12)-N(4) bond length is 1.37 Å. In the twelfth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(14), one N(3), and one N(4) atom. The C(13)-C(14) bond length is 1.51 Å. The C(13)-N(3) bond length is 1.30 Å. The C(13)-N(4) bond length is 1.32 Å. In the thirteenth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one C(19) atom. The C(14)-C(15) bond length is 1.37 Å. The C(14)-C(19) bond length is 1.36 Å. In the fourteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(14) and one H(9) atom. The C(15)-H(9) bond length is 0.95 Å. In the fifteenth C site, C(17) is bonded in a distorted single-bond geometry to one C(18) and one H(11) atom. The C(17)-C(18) bond length is 1.42 Å. The C(17)-H(11) bond length is 0.95 Å. In the sixteenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(20) atom. The C(18)-C(19) bond length is 1.39 Å. The C(18)-C(20) bond length is 1.47 Å. In the seventeenth C site, C(19) is bonded in a distorted single-bond geometry to one C(14), one C(18), and one H(12) atom. The C(19)-H(12) bond length is 0.95 Å. In the eighteenth C site, C(20) is bonded in a trigonal planar geometry to one C(18), one C(21), and one C(24) atom. The C(20)-C(21) bond length is 1.38 Å. The C(20)-C(24) bond length is 1.41 Å. In the nineteenth C site, C(21) is bonded in a distorted single-bond geometry to one C(20) and one H(13) atom. The C(21)-H(13) bond length is 0.95 Å. In the twentieth C site, C(22) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(14) atom. The C(22)-N(6) bond length is 1.30 Å. The C(22)-H(14) bond length is 0.95 Å. In the twenty-first C site, C(23) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(15) atom. The C(23)-N(6) bond length is 1.30 Å. The C(23)-H(15) bond length is 0.95 Å. In the twenty-second C site, C(24) is bonded in a distorted single-bond geometry to one C(20) and one H(16) atom. The C(24)-H(16) bond length is 0.95 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Cd(1), one C(1), and one C(5) atom. In the second N site, N(2) is bonded in a distorted water-like geometry to one C(12) and one N(3) atom. The N(2)-N(3) bond length is 1.38 Å. In the third N site, N(3) is bonded in a 3-coordinate geometry to one Cd(1), one C(13), and one N(2) atom. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one C(12), one C(13), and one N(5) atom. The N(4)-N(5) bond length is 1.40 Å. In the fifth N site, N(5) is bonded in a distorted water-like geometry to one N(4), one H(17), and one H(18) atom. The N(5)-H(17) bond length is 0.91 Å. The N(5)-H(18) bond length is 0.91 Å. In the sixth N site, N(6) is bonded in a distorted trigonal planar geometry to one Cd(1), one C(22), and one C(23) atom. There are fifteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2,3) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(7) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(8) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(9) is bonded in a single-bond geometry to one C(15) atom. In the eighth H site, H(11) is bonded in a single-bond geometry to one C(17) atom. In the ninth H site, H(12) is bonded in a single-bond geometry to one C(19) atom. In the tenth H site, H(13) is bonded in a single-bond geometry to one C(21) atom. In the eleventh H site, H(14) is bonded in a single-bond geometry to one C(22) atom. In the twelfth H site, H(15) is bonded in a single-bond geometry to one C(23) atom. In the thirteenth H site, H(16) is bonded in a single-bond geometry to one C(24) atom. In the fourteenth H site, H(17) is bonded in a single-bond geometry to one N(5) atom. In the fifteenth H site, H(18) is bonded in a single-bond geometry to one N(5) atom. Linkers: 8 Nn1c(-c2cccc(-c3ccncc3)c2)nnc1-c1cccc(-c2ccncc2)c1. Metal clusters: 4 [Cd]. The MOF has largest included sphere 5.00 A, density 1.10 g/cm3, surface area 4662.88 m2/g, accessible volume 0.38 cm3/g
|
WEVQOD_clean
|
Gd2Cu3H24(C4O5)6 crystallizes in the hexagonal P6/mcc space group. Gd(1) is bonded in a 9-coordinate geometry to three equivalent O(3) and six equivalent O(1) atoms. All Gd(1)-O(3) bond lengths are 2.48 Å. All Gd(1)-O(1) bond lengths are 2.41 Å. Cu(1) is bonded in a square co-planar geometry to four equivalent O(2) atoms. All Cu(1)-O(2) bond lengths are 1.95 Å. There are two inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted trigonal non-coplanar geometry to two equivalent H(1,2) and one O(3) atom. Both C(2)-H(1,2) bond lengths are 0.97 Å. The C(2)-O(3) bond length is 1.40 Å. H(1,2) is bonded in a single-bond geometry to one C(2) atom. There are three inequivalent O sites. In the first O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Gd(1) and two equivalent C(2) atoms. In the second O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Gd(1) and one C(1) atom. In the third O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(1) atom. Linkers: 12 [O]C(=O)COCC([O])=O. Metal clusters: 4 [Gd] ,6 [Cu]. The MOF has largest included sphere 8.33 A, density 1.51 g/cm3, surface area 3152.49 m2/g, accessible volume 0.35 cm3/g
|
POFGUO_clean
|
Li2H3(C3O2)3 crystallizes in the cubic I-43d space group. Li(1) is bonded to one O(2), one O(3), and two equivalent O(1) atoms to form corner-sharing LiO4 tetrahedra. The Li(1)-O(2) bond length is 1.90 Å. The Li(1)-O(3) bond length is 1.94 Å. Both Li(1)-O(1) bond lengths are 2.02 Å. There are six inequivalent C sites. In the first C site, C(4) is bonded in a trigonal planar geometry to one C(6) and two equivalent C(2) atoms. The C(4)-C(6) bond length is 1.50 Å. Both C(4)-C(2) bond lengths are 1.38 Å. In the second C site, C(5) is bonded in a distorted trigonal planar geometry to two equivalent C(3) and one H(2) atom. Both C(5)-C(3) bond lengths are 1.38 Å. The C(5)-H(2) bond length is 1.16 Å. In the third C site, C(6) is bonded in a bent 120 degrees geometry to one C(4) and two equivalent O(1) atoms. Both C(6)-O(1) bond lengths are 1.26 Å. In the fourth C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(2), and one O(3) atom. The C(1)-C(3) bond length is 1.53 Å. The C(1)-O(2) bond length is 1.24 Å. The C(1)-O(3) bond length is 1.26 Å. In the fifth C site, C(2) is bonded in a distorted single-bond geometry to one C(3), one C(4), and one H(1) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-H(1) bond length is 1.13 Å. In the sixth C site, C(3) is bonded in a trigonal planar geometry to one C(1), one C(2), and one C(5) atom. There are two inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(1) is bonded in a single-bond geometry to one C(2) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a distorted trigonal non-coplanar geometry to two equivalent Li(1) and one C(6) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Li(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Li(1) and one C(1) atom. Linkers: 24 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 12 [Li]O[C]=O.[Li]O[C]=O.[Li]O[C]=O.[Li]O[C]=O.[O][C]=O.[O][C]=O. RCSR code: czz. The MOF has largest included sphere 5.16 A, density 0.93 g/cm3, surface area 4276.76 m2/g, accessible volume 0.57 cm3/g
|
KOFPEB03_clean
|
La2Cu3C18H18(NO4)6(CH2)6 crystallizes in the trigonal P-3c1 space group. The structure consists of twelve 02329_fluka molecules inside a La2Cu3C18H18(NO4)6 framework. In the La2Cu3C18H18(NO4)6 framework, La(1) is bonded in a 9-coordinate geometry to three equivalent O(1), three equivalent O(2), and three equivalent O(4) atoms. All La(1)-O(1) bond lengths are 2.51 Å. All La(1)-O(2) bond lengths are 2.76 Å. All La(1)-O(4) bond lengths are 2.45 Å. Cu(1) is bonded in a distorted octahedral geometry to two equivalent N(1), two equivalent O(1), and two equivalent O(3) atoms. Both Cu(1)-N(1) bond lengths are 2.02 Å. Both Cu(1)-O(1) bond lengths are 2.37 Å. Both Cu(1)-O(3) bond lengths are 1.97 Å. There are three inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(3) is bonded in a 3-coordinate geometry to one N(1), one H(3), and one H(4) atom. The C(3)-N(1) bond length is 1.48 Å. The C(3)-H(3) bond length is 0.96 Å. The C(3)-H(4) bond length is 0.95 Å. In the third C site, C(4) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(4)-O(3) bond length is 1.25 Å. The C(4)-O(4) bond length is 1.24 Å. N(1) is bonded in a distorted single-bond geometry to one Cu(1), one C(3), and one H(5) atom. The N(1)-H(5) bond length is 0.88 Å. There are three inequivalent H sites. In the first H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(5) is bonded in a single-bond geometry to one N(1) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one La(1), one Cu(1), and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one La(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(4) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one La(1) and one C(4) atom. Linkers: 12 [O]C(=O)CNCC([O])=O. Metal clusters: 4 [La] ,6 [Cu]. The MOF has largest included sphere 7.32 A, density 1.77 g/cm3, surface area 3019.94 m2/g, accessible volume 0.23 cm3/g
|
COYCEZ_clean
|
MoCu3C14H12(N3S2)2(C3H2)4 is Indium-derived structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of eight 2,3-dimethyl-1,3-butadiene molecules and two MoCu3C14H12(N3S2)2 clusters. In each MoCu3C14H12(N3S2)2 cluster, Mo(1) is bonded in a 6-coordinate geometry to one Cu(1), one Cu(2), one Cu(3), one S(1), one S(2), and one S(3) atom. The Mo(1)-Cu(1) bond length is 2.71 Å. The Mo(1)-Cu(2) bond length is 2.70 Å. The Mo(1)-Cu(3) bond length is 2.68 Å. The Mo(1)-S(1) bond length is 2.27 Å. The Mo(1)-S(2) bond length is 2.26 Å. The Mo(1)-S(3) bond length is 2.27 Å. There are three inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a 4-coordinate geometry to one Mo(1), one N(3), one N(6), one S(1), and one S(3) atom. The Cu(1)-N(3) bond length is 2.13 Å. The Cu(1)-N(6) bond length is 1.95 Å. The Cu(1)-S(1) bond length is 2.31 Å. The Cu(1)-S(3) bond length is 2.29 Å. In the second Cu site, Cu(2) is bonded to one Mo(1), one N(1), one N(4), one S(2), and one S(3) atom to form distorted edge-sharing CuMoS2N2 tetrahedra. The Cu(2)-N(1) bond length is 2.05 Å. The Cu(2)-N(4) bond length is 2.04 Å. The Cu(2)-S(2) bond length is 2.28 Å. The Cu(2)-S(3) bond length is 2.28 Å. In the third Cu site, Cu(3) is bonded to one Mo(1), one N(2), one N(5), one S(1), and one S(2) atom to form distorted edge-sharing CuMoS2N2 tetrahedra. The Cu(3)-N(2) bond length is 2.07 Å. The Cu(3)-N(5) bond length is 2.08 Å. The Cu(3)-S(1) bond length is 2.28 Å. The Cu(3)-S(2) bond length is 2.27 Å. There are fourteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted linear geometry to one N(6) and one S(4) atom. The C(1)-N(6) bond length is 1.15 Å. The C(1)-S(4) bond length is 1.65 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(3), one N(1), and one H(1) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-N(1) bond length is 1.33 Å. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(2) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(2) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(4), and one C(5) atom. The C(4)-C(4) bond length is 1.49 Å. The C(4)-C(5) bond length is 1.37 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4), one C(6), and one H(3) atom. The C(5)-C(6) bond length is 1.38 Å. The C(5)-H(3) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(5), one N(1), and one H(4) atom. The C(6)-N(1) bond length is 1.32 Å. The C(6)-H(4) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(5) atom. The C(7)-N(2) bond length is 1.34 Å. The C(7)-H(5) bond length is 0.95 Å. In the eighth C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(8) atom. The C(11)-N(2) bond length is 1.34 Å. The C(11)-H(8) bond length is 0.95 Å. In the ninth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(10) atom. The C(14)-N(3) bond length is 1.35 Å. The C(14)-H(10) bond length is 0.95 Å. In the tenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(11) atom. The C(15)-N(3) bond length is 1.32 Å. The C(15)-H(11) bond length is 0.95 Å. In the eleventh C site, C(17) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(13) atom. The C(17)-N(4) bond length is 1.34 Å. The C(17)-H(13) bond length is 0.95 Å. In the twelfth C site, C(21) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(16) atom. The C(21)-N(4) bond length is 1.34 Å. The C(21)-H(16) bond length is 0.95 Å. In the thirteenth C site, C(24) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(18) atom. The C(24)-N(5) bond length is 1.33 Å. The C(24)-H(18) bond length is 0.95 Å. In the fourteenth C site, C(25) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(19) atom. The C(25)-N(5) bond length is 1.36 Å. The C(25)-H(19) bond length is 0.95 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(2), one C(2), and one C(6) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Cu(3), one C(11), and one C(7) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Cu(1), one C(14), and one C(15) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Cu(2), one C(17), and one C(21) atom. In the fifth N site, N(5) is bonded in a trigonal planar geometry to one Cu(3), one C(24), and one C(25) atom. In the sixth N site, N(6) is bonded in a linear geometry to one Cu(1) and one C(1) atom. There are twelve inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(8) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(10) is bonded in a single-bond geometry to one C(14) atom. In the eighth H site, H(11) is bonded in a single-bond geometry to one C(15) atom. In the ninth H site, H(13) is bonded in a single-bond geometry to one C(17) atom. In the tenth H site, H(16) is bonded in a single-bond geometry to one C(21) atom. In the eleventh H site, H(18) is bonded in a single-bond geometry to one C(24) atom. In the twelfth H site, H(19) is bonded in a single-bond geometry to one C(25) atom. There are four inequivalent S sites. In the first S site, S(1) is bonded in a 3-coordinate geometry to one Mo(1), one Cu(1), and one Cu(3) atom. In the second S site, S(2) is bonded in a distorted trigonal non-coplanar geometry to one Mo(1), one Cu(2), and one Cu(3) atom. In the third S site, S(3) is bonded in a distorted trigonal non-coplanar geometry to one Mo(1), one Cu(1), and one Cu(2) atom. In the fourth S site, S(4) is bonded in a single-bond geometry to one C(1) atom. Linkers: 8 c1cc(-c2ccncc2)ccn1. Metal clusters: 2 S=C=N[Cu@]12[S]3[Cu]4[S@]5[Cu]6[S]1[Mo]35462 ,6 [Cu] ,2 [Mo]. The MOF has largest included sphere 6.30 A, density 1.16 g/cm3, surface area 4173.40 m2/g, accessible volume 0.44 cm3/g
|
KOSLEL_clean
|
Ni2C7HO6CH crystallizes in the trigonal R3m space group. The structure consists of nine 02329_fluka molecules inside a Ni2C7HO6 framework. In the Ni2C7HO6 framework, Ni(1) is bonded to one O(3), two equivalent O(1), and two equivalent O(2) atoms to form edge-sharing NiO5 square pyramids. The Ni(1)-O(3) bond length is 1.98 Å. There is one shorter (1.97 Å) and one longer (2.06 Å) Ni(1)-O(1) bond length. There is one shorter (1.92 Å) and one longer (2.04 Å) Ni(1)-O(2) bond length. There are four inequivalent C sites. In the first C site, C(2) is bonded in a trigonal planar geometry to one C(3), one C(4), and one C(5) atom. The C(2)-C(3) bond length is 1.52 Å. The C(2)-C(4) bond length is 1.49 Å. The C(2)-C(5) bond length is 1.35 Å. In the second C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(2), and one O(3) atom. The C(3)-O(2) bond length is 1.29 Å. The C(3)-O(3) bond length is 1.37 Å. In the third C site, C(4) is bonded in a single-bond geometry to one C(2) and one O(1) atom. The C(4)-O(1) bond length is 1.35 Å. In the fourth C site, C(5) is bonded in a distorted trigonal planar geometry to two equivalent C(2) and one H(2) atom. The C(5)-H(2) bond length is 0.90 Å. H(2) is bonded in a single-bond geometry to one C(5) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a distorted trigonal planar geometry to two equivalent Ni(1) and one C(4) atom. In the second O site, O(2) is bonded in a distorted trigonal planar geometry to two equivalent Ni(1) and one C(3) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Ni(1) and one C(3) atom. Linkers: 3 [O]C(=O)c1cc(C([O])=O)c([O])cc1[O]. Metal clusters: 6 [Ni]. The MOF has largest included sphere 10.96 A, density 1.20 g/cm3, surface area 2535.76 m2/g, accessible volume 0.52 cm3/g
|
ILUFIF_clean
|
Eu2Co3C24(NO4)6(CH)18 crystallizes in the hexagonal P6/mcc space group. The structure consists of thirty-six 02329_fluka molecules inside a Eu2Co3C24(NO4)6 framework. In the Eu2Co3C24(NO4)6 framework, Eu(1) is bonded in a 9-coordinate geometry to three equivalent N(1) and six equivalent O(1) atoms. All Eu(1)-N(1) bond lengths are 2.51 Å. All Eu(1)-O(1) bond lengths are 2.45 Å. Co(1) is bonded in a square co-planar geometry to four equivalent O(2) atoms. All Co(1)-O(2) bond lengths are 2.07 Å. There are two inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.28 Å. The C(1)-O(2) bond length is 1.24 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one N(1) atom. The C(2)-N(1) bond length is 1.34 Å. N(1) is bonded in a trigonal planar geometry to one Eu(1) and two equivalent C(2) atoms. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Eu(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Co(1) and one C(1) atom. Linkers: 12 [O]C(=O)c1cccc(C([O])=O)n1. Metal clusters: 4 [Eu] ,6 [Co]. The MOF has largest included sphere 7.10 A, density 1.57 g/cm3, surface area 3266.31 m2/g, accessible volume 0.25 cm3/g
|
LUVWUU_clean
|
AgC15N6H15O is Indium-like structured and crystallizes in the trigonal R-3 space group. The structure is zero-dimensional and consists of three AgC15N6H15O clusters. Ag(1) is bonded in a 4-coordinate geometry to one N(1), one N(4), one N(5), and one O(1) atom. The Ag(1)-N(1) bond length is 2.37 Å. The Ag(1)-N(4) bond length is 2.25 Å. The Ag(1)-N(5) bond length is 2.19 Å. The Ag(1)-O(1) bond length is 2.65 Å. There are fifteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted tetrahedral geometry to one C(11), one N(2), one N(3), and one N(6) atom. The C(1)-C(11) bond length is 1.53 Å. The C(1)-N(2) bond length is 1.45 Å. The C(1)-N(3) bond length is 1.47 Å. The C(1)-N(6) bond length is 1.47 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(3), one N(3), and one H(1) atom. The C(2)-C(3) bond length is 1.37 Å. The C(2)-N(3) bond length is 1.34 Å. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(2) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(2) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(3), one N(4), and one H(3) atom. The C(4)-N(4) bond length is 1.32 Å. The C(4)-H(3) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(6), one N(1), and one H(4) atom. The C(5)-C(6) bond length is 1.41 Å. The C(5)-N(1) bond length is 1.32 Å. The C(5)-H(4) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(5), one C(7), and one H(5) atom. The C(6)-C(7) bond length is 1.35 Å. The C(6)-H(5) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a 3-coordinate geometry to one C(6), one N(2), and one H(6) atom. The C(7)-N(2) bond length is 1.36 Å. The C(7)-H(6) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(9), one N(5), and one H(7) atom. The C(8)-C(9) bond length is 1.41 Å. The C(8)-N(5) bond length is 1.33 Å. The C(8)-H(7) bond length is 0.95 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one H(8) atom. The C(9)-C(10) bond length is 1.36 Å. The C(9)-H(8) bond length is 0.95 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(9), one N(6), and one H(9) atom. The C(10)-N(6) bond length is 1.35 Å. The C(10)-H(9) bond length is 0.95 Å. In the eleventh C site, C(11) is bonded in a distorted trigonal non-coplanar geometry to one C(1), one H(10), one H(11), and one O(1) atom. The C(11)-H(10) bond length is 0.99 Å. The C(11)-H(11) bond length is 0.99 Å. The C(11)-O(1) bond length is 1.41 Å. In the twelfth C site, C(12) is bonded in a distorted trigonal non-coplanar geometry to one C(13), one H(12), one H(13), and one O(1) atom. The C(12)-C(13) bond length is 1.51 Å. The C(12)-H(12) bond length is 0.99 Å. The C(12)-H(13) bond length is 0.99 Å. The C(12)-O(1) bond length is 1.45 Å. In the thirteenth C site, C(13) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(15) atom. The C(13)-C(14) bond length is 1.40 Å. The C(13)-C(15) bond length is 1.38 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(13) and one H(14) atom. The C(14)-H(14) bond length is 0.95 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(13) and one H(15) atom. The C(15)-H(15) bond length is 0.95 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Ag(1), one C(5), and one N(2) atom. The N(1)-N(2) bond length is 1.36 Å. In the second N site, N(4) is bonded in a distorted trigonal planar geometry to one Ag(1), one C(4), and one N(3) atom. The N(4)-N(3) bond length is 1.37 Å. In the third N site, N(2) is bonded in a distorted trigonal planar geometry to one C(1), one C(7), and one N(1) atom. In the fourth N site, N(3) is bonded in a distorted trigonal planar geometry to one C(1), one C(2), and one N(4) atom. In the fifth N site, N(5) is bonded in a distorted trigonal planar geometry to one Ag(1), one C(8), and one N(6) atom. The N(5)-N(6) bond length is 1.36 Å. In the sixth N site, N(6) is bonded in a distorted trigonal planar geometry to one C(1), one C(10), and one N(5) atom. There are fifteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(6) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(7) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(8) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(9) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(10) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(11) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(11) atom. In the twelfth H site, H(12) is bonded in a single-bond geometry to one C(12) atom. In the thirteenth H site, H(13) is bonded in a single-bond geometry to one C(12) atom. In the fourteenth H site, H(14) is bonded in a single-bond geometry to one C(14) atom. In the fifteenth H site, H(15) is bonded in a single-bond geometry to one C(15) atom. O(1) is bonded in a distorted water-like geometry to one Ag(1), one C(11), and one C(12) atom. Linkers: 10 c1cnn(C(COCc2ccc(COCC(n3cccn3)(n3cccn3)n3cccn3)cc2)(n2cccn2)n2cccn2)c1. Metal clusters: 18 [Ag]. The MOF has largest included sphere 5.96 A, density 1.11 g/cm3, surface area 4207.91 m2/g, accessible volume 0.51 cm3/g
|
XAMDUM03_clean
|
CuH2(C3O2)2 crystallizes in the cubic Fm-3m space group. Cu(1) is bonded in a distorted rectangular see-saw-like geometry to four equivalent O(1) atoms. All Cu(1)-O(1) bond lengths are 1.96 Å. There are three inequivalent C sites. In the first C site, C(2) is bonded in a trigonal planar geometry to one C(3) and two equivalent C(1) atoms. The C(2)-C(3) bond length is 1.49 Å. Both C(2)-C(1) bond lengths are 1.38 Å. In the second C site, C(3) is bonded in a bent 120 degrees geometry to one C(2) and two equivalent O(1) atoms. Both C(3)-O(1) bond lengths are 1.25 Å. In the third C site, C(1) is bonded in a distorted single-bond geometry to two equivalent C(2) and one H(1) atom. The C(1)-H(1) bond length is 0.95 Å. H(1) is bonded in a single-bond geometry to one C(1) atom. O(1) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(3) atom. Linkers: 8 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 6 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. RCSR code: tbo. The MOF has largest included sphere 13.16 A, density 0.89 g/cm3, surface area 3145.82 m2/g, accessible volume 0.79 cm3/g
|
RAVXAP_clean
|
MgH22(C9O)3CH3(CH2)4 crystallizes in the trigonal R3 space group. The structure consists of seventy-two 02329_fluka molecules and eighteen 02329_fluka molecules inside a MgH22(C9O)3 framework. In the MgH22(C9O)3 framework, there are two inequivalent Mg sites. In the first Mg site, Mg(1) is bonded to one O(3), two equivalent O(1), and two equivalent O(2) atoms to form distorted edge-sharing MgO5 square pyramids. The Mg(1)-O(3) bond length is 1.99 Å. There is one shorter (1.97 Å) and one longer (2.04 Å) Mg(1)-O(1) bond length. There is one shorter (1.92 Å) and one longer (1.97 Å) Mg(1)-O(2) bond length. In the second Mg site, Mg(2) is bonded to one O(4), two equivalent O(5), and two equivalent O(6) atoms to form edge-sharing MgO5 square pyramids. The Mg(2)-O(4) bond length is 2.00 Å. There is one shorter (1.92 Å) and one longer (1.96 Å) Mg(2)-O(5) bond length. There is one shorter (1.97 Å) and one longer (2.04 Å) Mg(2)-O(6) bond length. There are fifty-four inequivalent C sites. In the first C site, C(6) is bonded in a distorted water-like geometry to one C(18), one H(12), and one H(13) atom. The C(6)-C(18) bond length is 1.51 Å. The C(6)-H(12) bond length is 1.10 Å. The C(6)-H(13) bond length is 1.11 Å. In the second C site, C(7) is bonded in a distorted trigonal non-coplanar geometry to one C(23), one H(14), one H(15), and one H(16) atom. The C(7)-C(23) bond length is 1.51 Å. The C(7)-H(14) bond length is 1.11 Å. The C(7)-H(15) bond length is 1.09 Å. The C(7)-H(16) bond length is 1.10 Å. In the third C site, C(8) is bonded in a distorted trigonal non-coplanar geometry to one C(20), one H(17), one H(18), and one H(19) atom. The C(8)-C(20) bond length is 1.51 Å. The C(8)-H(17) bond length is 1.10 Å. The C(8)-H(18) bond length is 1.10 Å. The C(8)-H(19) bond length is 1.09 Å. In the fourth C site, C(9) is bonded in a distorted trigonal non-coplanar geometry to one C(53), one H(20), one H(21), and one H(22) atom. The C(9)-C(53) bond length is 1.49 Å. The C(9)-H(20) bond length is 1.11 Å. The C(9)-H(21) bond length is 1.11 Å. The C(9)-H(22) bond length is 1.10 Å. In the fifth C site, C(10) is bonded in a distorted trigonal non-coplanar geometry to one C(52), one H(23), one H(24), and one H(25) atom. The C(10)-C(52) bond length is 1.50 Å. The C(10)-H(23) bond length is 1.11 Å. The C(10)-H(24) bond length is 1.11 Å. The C(10)-H(25) bond length is 1.09 Å. In the sixth C site, C(11) is bonded in a distorted trigonal planar geometry to one C(12), one C(16), and one H(26) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-C(16) bond length is 1.40 Å. The C(11)-H(26) bond length is 1.07 Å. In the seventh C site, C(12) is bonded in a trigonal planar geometry to one C(11), one C(15), and one C(56) atom. The C(12)-C(15) bond length is 1.40 Å. The C(12)-C(56) bond length is 1.51 Å. In the eighth C site, C(13) is bonded in a trigonal planar geometry to one C(14), one C(16), and one C(55) atom. The C(13)-C(14) bond length is 1.40 Å. The C(13)-C(16) bond length is 1.40 Å. The C(13)-C(55) bond length is 1.51 Å. In the ninth C site, C(14) is bonded in a distorted single-bond geometry to one C(13), one C(15), and one H(27) atom. The C(14)-C(15) bond length is 1.40 Å. The C(14)-H(27) bond length is 1.07 Å. In the tenth C site, C(15) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(40) atom. The C(15)-C(40) bond length is 1.48 Å. In the eleventh C site, C(16) is bonded in a trigonal planar geometry to one C(11), one C(13), and one C(28) atom. The C(16)-C(28) bond length is 1.47 Å. In the twelfth C site, C(17) is bonded in a distorted single-bond geometry to one C(18), one C(46), and one H(28) atom. The C(17)-C(18) bond length is 1.40 Å. The C(17)-C(46) bond length is 1.39 Å. The C(17)-H(28) bond length is 1.07 Å. In the thirteenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(6) atom. The C(18)-C(19) bond length is 1.40 Å. In the fourteenth C site, C(19) is bonded in a trigonal planar geometry to one C(18), one C(22), and one C(48) atom. The C(19)-C(22) bond length is 1.48 Å. The C(19)-C(48) bond length is 1.39 Å. In the fifteenth C site, C(20) is bonded in a trigonal planar geometry to one C(21), one C(25), and one C(8) atom. The C(20)-C(21) bond length is 1.40 Å. The C(20)-C(25) bond length is 1.41 Å. In the sixteenth C site, C(21) is bonded in a distorted single-bond geometry to one C(20), one C(22), and one H(29) atom. The C(21)-C(22) bond length is 1.40 Å. The C(21)-H(29) bond length is 1.08 Å. In the seventeenth C site, C(22) is bonded in a trigonal planar geometry to one C(19), one C(21), and one C(23) atom. The C(22)-C(23) bond length is 1.41 Å. In the eighteenth C site, C(23) is bonded in a trigonal planar geometry to one C(22), one C(24), and one C(7) atom. The C(23)-C(24) bond length is 1.40 Å. In the nineteenth C site, C(24) is bonded in a distorted single-bond geometry to one C(23), one C(25), and one H(30) atom. The C(24)-C(25) bond length is 1.40 Å. The C(24)-H(30) bond length is 1.08 Å. In the twentieth C site, C(25) is bonded in a trigonal planar geometry to one C(20), one C(24), and one C(50) atom. The C(25)-C(50) bond length is 1.48 Å. In the twenty-first C site, C(26) is bonded in a distorted trigonal planar geometry to one C(27), one C(34), and one H(32) atom. The C(26)-C(27) bond length is 1.38 Å. The C(26)-C(34) bond length is 1.41 Å. The C(26)-H(32) bond length is 1.06 Å. In the twenty-second C site, C(27) is bonded in a distorted single-bond geometry to one C(26), one C(28), and one H(31) atom. The C(27)-C(28) bond length is 1.37 Å. The C(27)-H(31) bond length is 1.08 Å. In the twenty-third C site, C(28) is bonded in a trigonal planar geometry to one C(16), one C(27), and one C(29) atom. The C(28)-C(29) bond length is 1.39 Å. In the twenty-fourth C site, C(29) is bonded in a distorted single-bond geometry to one C(28) and one H(33) atom. The C(29)-H(33) bond length is 1.06 Å. In the twenty-fifth C site, C(30) is bonded in a distorted trigonal planar geometry to one C(31), one C(36), and one O(1) atom. The C(30)-C(31) bond length is 1.41 Å. The C(30)-C(36) bond length is 1.40 Å. The C(30)-O(1) bond length is 1.40 Å. In the twenty-sixth C site, C(31) is bonded in a trigonal planar geometry to one C(30), one C(32), and one C(39) atom. The C(31)-C(32) bond length is 1.49 Å. The C(31)-C(39) bond length is 1.40 Å. In the twenty-seventh C site, C(32) is bonded in a bent 120 degrees geometry to one C(31), one O(2), and one O(3) atom. The C(32)-O(2) bond length is 1.27 Å. The C(32)-O(3) bond length is 1.26 Å. In the twenty-eighth C site, C(33) is bonded in a bent 120 degrees geometry to one C(34), one O(4), and one O(5) atom. The C(33)-C(34) bond length is 1.49 Å. The C(33)-O(4) bond length is 1.27 Å. The C(33)-O(5) bond length is 1.27 Å. In the twenty-ninth C site, C(34) is bonded in a trigonal planar geometry to one C(26), one C(33), and one C(35) atom. The C(34)-C(35) bond length is 1.41 Å. In the thirtieth C site, C(35) is bonded in a distorted single-bond geometry to one C(34) and one O(6) atom. The C(35)-O(6) bond length is 1.40 Å. In the thirty-first C site, C(36) is bonded in a distorted single-bond geometry to one C(30), one C(37), and one H(34) atom. The C(36)-C(37) bond length is 1.40 Å. The C(36)-H(34) bond length is 1.06 Å. In the thirty-second C site, C(37) is bonded in a trigonal planar geometry to one C(36), one C(38), and one C(49) atom. The C(37)-C(38) bond length is 1.37 Å. The C(37)-C(49) bond length is 1.48 Å. In the thirty-third C site, C(38) is bonded in a distorted single-bond geometry to one C(37) and one H(36) atom. The C(38)-H(36) bond length is 1.08 Å. In the thirty-fourth C site, C(39) is bonded in a distorted single-bond geometry to one C(31) and one H(35) atom. The C(39)-H(35) bond length is 1.06 Å. In the thirty-fifth C site, C(40) is bonded in a trigonal planar geometry to one C(15), one C(41), and one C(45) atom. The C(40)-C(41) bond length is 1.40 Å. The C(40)-C(45) bond length is 1.41 Å. In the thirty-sixth C site, C(41) is bonded in a distorted single-bond geometry to one C(40), one C(42), and one H(37) atom. The C(41)-C(42) bond length is 1.40 Å. The C(41)-H(37) bond length is 1.08 Å. In the thirty-seventh C site, C(42) is bonded in a trigonal planar geometry to one C(41), one C(43), and one C(58) atom. The C(42)-C(43) bond length is 1.41 Å. The C(42)-C(58) bond length is 1.50 Å. In the thirty-eighth C site, C(43) is bonded in a trigonal planar geometry to one C(42), one C(44), and one C(46) atom. The C(43)-C(44) bond length is 1.39 Å. The C(43)-C(46) bond length is 1.48 Å. In the thirty-ninth C site, C(44) is bonded in a distorted single-bond geometry to one C(43), one C(45), and one H(38) atom. The C(44)-C(45) bond length is 1.40 Å. The C(44)-H(38) bond length is 1.08 Å. In the fortieth C site, C(45) is bonded in a trigonal planar geometry to one C(40), one C(44), and one C(57) atom. The C(45)-C(57) bond length is 1.50 Å. In the forty-first C site, C(46) is bonded in a trigonal planar geometry to one C(17), one C(43), and one C(47) atom. The C(46)-C(47) bond length is 1.39 Å. In the forty-second C site, C(47) is bonded in a trigonal planar geometry to one C(46), one C(48), and one C(59) atom. The C(47)-C(48) bond length is 1.40 Å. The C(47)-C(59) bond length is 1.50 Å. In the forty-third C site, C(48) is bonded in a distorted single-bond geometry to one C(19), one C(47), and one H(39) atom. The C(48)-H(39) bond length is 1.06 Å. In the forty-fourth C site, C(49) is bonded in a trigonal planar geometry to one C(37), one C(52), and one C(54) atom. The C(49)-C(52) bond length is 1.41 Å. The C(49)-C(54) bond length is 1.39 Å. In the forty-fifth C site, C(50) is bonded in a trigonal planar geometry to one C(25), one C(51), and one C(53) atom. The C(50)-C(51) bond length is 1.39 Å. The C(50)-C(53) bond length is 1.41 Å. In the forty-sixth C site, C(51) is bonded in a distorted single-bond geometry to one C(50), one C(52), and one H(40) atom. The C(51)-C(52) bond length is 1.39 Å. The C(51)-H(40) bond length is 1.08 Å. In the forty-seventh C site, C(52) is bonded in a trigonal planar geometry to one C(10), one C(49), and one C(51) atom. In the forty-eighth C site, C(53) is bonded in a trigonal planar geometry to one C(50), one C(54), and one C(9) atom. The C(53)-C(54) bond length is 1.40 Å. In the forty-ninth C site, C(54) is bonded in a distorted single-bond geometry to one C(49), one C(53), and one H(41) atom. The C(54)-H(41) bond length is 1.08 Å. In the fiftieth C site, C(55) is bonded in a distorted trigonal non-coplanar geometry to one C(13), one H(42), one H(43), and one H(44) atom. The C(55)-H(42) bond length is 1.10 Å. The C(55)-H(43) bond length is 1.10 Å. The C(55)-H(44) bond length is 1.10 Å. In the fifty-first C site, C(56) is bonded in a trigonal non-coplanar geometry to one C(12), one H(45), one H(46), and one H(47) atom. The C(56)-H(45) bond length is 1.10 Å. The C(56)-H(46) bond length is 1.10 Å. The C(56)-H(47) bond length is 1.11 Å. In the fifty-second C site, C(57) is bonded in a distorted trigonal non-coplanar geometry to one C(45), one H(48), one H(49), and one H(50) atom. The C(57)-H(48) bond length is 1.11 Å. The C(57)-H(49) bond length is 1.09 Å. The C(57)-H(50) bond length is 1.10 Å. In the fifty-third C site, C(58) is bonded in a distorted trigonal non-coplanar geometry to one C(42), one H(51), one H(52), and one H(53) atom. The C(58)-H(51) bond length is 1.11 Å. The C(58)-H(52) bond length is 1.11 Å. The C(58)-H(53) bond length is 1.09 Å. In the fifty-fourth C site, C(59) is bonded in a distorted water-like geometry to one C(47), one H(54), and one H(55) atom. The C(59)-H(54) bond length is 1.10 Å. The C(59)-H(55) bond length is 1.10 Å. There are forty-four inequivalent H sites. In the first H site, H(12) is bonded in a single-bond geometry to one C(6) atom. In the second H site, H(13) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(14) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(15) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(16) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(17) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(18) is bonded in a single-bond geometry to one C(8) atom. In the eighth H site, H(19) is bonded in a single-bond geometry to one C(8) atom. In the ninth H site, H(20) is bonded in a single-bond geometry to one C(9) atom. In the tenth H site, H(21) is bonded in a single-bond geometry to one C(9) atom. In the eleventh H site, H(22) is bonded in a single-bond geometry to one C(9) atom. In the twelfth H site, H(23) is bonded in a single-bond geometry to one C(10) atom. In the thirteenth H site, H(24) is bonded in a single-bond geometry to one C(10) atom. In the fourteenth H site, H(25) is bonded in a single-bond geometry to one C(10) atom. In the fifteenth H site, H(26) is bonded in a single-bond geometry to one C(11) atom. In the sixteenth H site, H(27) is bonded in a single-bond geometry to one C(14) atom. In the seventeenth H site, H(28) is bonded in a single-bond geometry to one C(17) atom. In the eighteenth H site, H(29) is bonded in a single-bond geometry to one C(21) atom. In the nineteenth H site, H(30) is bonded in a single-bond geometry to one C(24) atom. In the twentieth H site, H(31) is bonded in a single-bond geometry to one C(27) atom. In the twenty-first H site, H(32) is bonded in a single-bond geometry to one C(26) atom. In the twenty-second H site, H(33) is bonded in a single-bond geometry to one C(29) atom. In the twenty-third H site, H(34) is bonded in a single-bond geometry to one C(36) atom. In the twenty-fourth H site, H(35) is bonded in a single-bond geometry to one C(39) atom. In the twenty-fifth H site, H(36) is bonded in a single-bond geometry to one C(38) atom. In the twenty-sixth H site, H(37) is bonded in a single-bond geometry to one C(41) atom. In the twenty-seventh H site, H(38) is bonded in a single-bond geometry to one C(44) atom. In the twenty-eighth H site, H(39) is bonded in a single-bond geometry to one C(48) atom. In the twenty-ninth H site, H(40) is bonded in a single-bond geometry to one C(51) atom. In the thirtieth H site, H(41) is bonded in a single-bond geometry to one C(54) atom. In the thirty-first H site, H(42) is bonded in a single-bond geometry to one C(55) atom. In the thirty-second H site, H(43) is bonded in a single-bond geometry to one C(55) atom. In the thirty-third H site, H(44) is bonded in a single-bond geometry to one C(55) atom. In the thirty-fourth H site, H(45) is bonded in a single-bond geometry to one C(56) atom. In the thirty-fifth H site, H(46) is bonded in a single-bond geometry to one C(56) atom. In the thirty-sixth H site, H(47) is bonded in a single-bond geometry to one C(56) atom. In the thirty-seventh H site, H(48) is bonded in a single-bond geometry to one C(57) atom. In the thirty-eighth H site, H(49) is bonded in a single-bond geometry to one C(57) atom. In the thirty-ninth H site, H(50) is bonded in a single-bond geometry to one C(57) atom. In the fortieth H site, H(51) is bonded in a single-bond geometry to one C(58) atom. In the forty-first H site, H(52) is bonded in a single-bond geometry to one C(58) atom. In the forty-second H site, H(53) is bonded in a single-bond geometry to one C(58) atom. In the forty-third H site, H(54) is bonded in a single-bond geometry to one C(59) atom. In the forty-fourth H site, H(55) is bonded in a single-bond geometry to one C(59) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted trigonal planar geometry to two equivalent Mg(1) and one C(30) atom. In the second O site, O(2) is bonded in a trigonal planar geometry to two equivalent Mg(1) and one C(32) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Mg(1) and one C(32) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Mg(2) and one C(33) atom. In the fifth O site, O(5) is bonded in a trigonal planar geometry to two equivalent Mg(2) and one C(33) atom. In the sixth O site, O(6) is bonded in a distorted trigonal planar geometry to two equivalent Mg(2) and one C(35) atom. Linkers: 1 [C]/C([O])=C\C(=[C])c1cc(C)c(-c2cc(C)c(-c3cc(CCCCCC)c(-c4cc(C)c(-c5cc(C)c(-c6ccc(C([O])=O)c([O])c6)cc5C)cc4C)cc3CCCCCC)cc2C)cc1C ,1 [CH]=[C]c1cc(C)c(-c2cc(C)c(-c3cc(CCCCCC)c(-c4cc(C)c(-c5cc(C)c(-c6ccc(C([O])=O)c([O])c6)cc5C)cc4C)cc3CCCCCC)cc2C)cc1[CH2] ,1 CCCC[C][CH]c1cc(-c2cc(C)[c][c]c2C)c(CCCCCC)cc1-c1cc(C)c(-c2cc(C)c(-c3ccc(C([O])=O)c([O])c3)cc2C)cc1C ,1 CCCCCCc1cc(-c2cc(C)c(-c3cc(C)c(-c4ccc(C([O])=O)c([O])c4)cc3C)cc2C)c(CCCCCC)cc1-c1cc(C)c(-c2cc(C)c(-c3ccc(C([O])=O)c([O])c3)cc2C)cc1C ,1 Cc1cc(-c2c[c][c]cc2C)c(C)cc1-c1ccc(C([O])=O)c([O])c1 ,1 [C]=C(/C=[C]/[O])c1cc(C)c(-c2cc(C)c(-c3cc(CCCCCC)c(-c4cc(C)c(-c5cc(C)c(-c6ccc(C([O])=O)c([O])c6)cc5C)cc4C)cc3CCCCCC)cc2C)cc1C ,1 [CH]=C(C)C(=[CH])c1cc(C)c(-c2ccc(C([O])=O)c([O])c2)cc1C ,1 CCCCCCc1cc(-c2cc(C)c(-c3cc(C)c(-c4ccc(C([O])=O)c([O])c4)cc3C)cc2C)c(CCCCCC)cc1-c1cc(C)c(-c2cc(C)c(-c3ccc([C]=O)c([O])c3)cc2C)cc1C ,1 [C][C](/C=[C]/C)c1cc(C)c(-c2cc(CCCCC[CH2])c(-c3cc(C)c(-c4cc(C)c(-c5ccc(C([O])=O)c([O])c5)cc4C)cc3C)cc2CCCCCC)cc1C ,1 [C]/C(=C\[C]c1cc(C)c(-c2cc(C)c(-c3ccc(C([O])=O)c([O])c3)cc2C)cc1C)CCC[CH2] ,1 [CH2][CH]CCCCC(=[C]\[C]=[C]/C)/C=[C]/c1cc(C)c(-c2cc(C)c(-c3ccc(C([O])=O)c([O])c3)cc2C)cc1C. Metal clusters: 6 [Mg]. The MOF has largest included sphere 34.86 A, density 0.29 g/cm3, surface area 5945.05 m2/g, accessible volume 2.80 cm3/g
|
DUQCAU_clean
|
Pr(CO2)3 crystallizes in the monoclinic P2_1/c space group. Pr(1) is bonded in a 7-coordinate geometry to one O(1), one O(2), one O(3), one O(5), one O(6), and two equivalent O(4) atoms. The Pr(1)-O(1) bond length is 2.54 Å. The Pr(1)-O(2) bond length is 2.54 Å. The Pr(1)-O(3) bond length is 2.50 Å. The Pr(1)-O(5) bond length is 2.44 Å. The Pr(1)-O(6) bond length is 2.50 Å. There is one shorter (2.55 Å) and one longer (2.57 Å) Pr(1)-O(4) bond length. There are three inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.24 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(2)-O(3) bond length is 1.23 Å. The C(2)-O(4) bond length is 1.27 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(3)-O(5) bond length is 1.24 Å. The C(3)-O(6) bond length is 1.25 Å. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Pr(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Pr(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Pr(1) and one C(2) atom. In the fourth O site, O(4) is bonded in a distorted trigonal planar geometry to two equivalent Pr(1) and one C(2) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Pr(1) and one C(3) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Pr(1) and one C(3) atom. Linkers: 6 [O]C(=O)C([O])=O. Metal clusters: 4 [Pr]. RCSR code: dmc. The MOF has largest included sphere 4.76 A, density 2.20 g/cm3, surface area 2176.17 m2/g, accessible volume 0.20 cm3/g
|
ETAXIH_clean
|
Zn9C36H12(N6O13)2(CH2)6(CH3)6 crystallizes in the trigonal P-3c1 space group. The structure consists of twelve 02329_fluka molecules and twelve 02329_fluka molecules inside a Zn9C36H12(N6O13)2 framework. In the Zn9C36H12(N6O13)2 framework, there are two inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one N(1), one N(2), one O(1), one O(3), and one O(5) atom to form distorted corner-sharing ZnN2O3 trigonal bipyramids. The Zn(1)-N(1) bond length is 2.04 Å. The Zn(1)-N(2) bond length is 2.03 Å. The Zn(1)-O(1) bond length is 2.24 Å. The Zn(1)-O(3) bond length is 2.18 Å. The Zn(1)-O(5) bond length is 2.06 Å. In the second Zn site, Zn(2) is bonded in a see-saw-like geometry to two equivalent O(2) and two equivalent O(4) atoms. Both Zn(2)-O(2) bond lengths are 2.03 Å. Both Zn(2)-O(4) bond lengths are 2.11 Å. There are six inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(1), and one O(2) atom. The C(1)-C(4) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.30 Å. The C(1)-O(2) bond length is 1.26 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(3), and one O(4) atom. The C(2)-C(5) bond length is 1.49 Å. The C(2)-O(3) bond length is 1.31 Å. The C(2)-O(4) bond length is 1.26 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(6), one N(1), and one N(2) atom. The C(3)-C(6) bond length is 1.50 Å. The C(3)-N(1) bond length is 1.37 Å. The C(3)-N(2) bond length is 1.36 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(1), one C(5), and one N(2) atom. The C(4)-C(5) bond length is 1.42 Å. The C(4)-N(2) bond length is 1.39 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one N(1) atom. The C(5)-N(1) bond length is 1.39 Å. In the sixth C site, C(6) is bonded in a water-like geometry to one C(3) and two equivalent H(1,2) atoms. Both C(6)-H(1,2) bond lengths are 0.97 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Zn(1), one C(3), and one C(5) atom. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Zn(1), one C(3), and one C(4) atom. H(1,2) is bonded in a single-bond geometry to one C(6) atom. There are five inequivalent O sites. In the first O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(2) atom. In the second O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Zn(2) and one C(2) atom. In the third O site, O(5) is bonded in a trigonal planar geometry to three equivalent Zn(1) atoms. In the fourth O site, O(1) is bonded in a distorted water-like geometry to one Zn(1) and one C(1) atom. In the fifth O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Zn(2) and one C(1) atom. Linkers: 11 CCCC1=NC(C([O])=O)=C(C([O])=O)[N]1. Metal clusters: 18 [Zn]. The MOF has largest included sphere 5.15 A, density 1.64 g/cm3, surface area 3830.32 m2/g, accessible volume 0.29 cm3/g
|
MUZKEZ_clean
|
Al3C24H12O13(C17H11)3 is Indium-derived structured and crystallizes in the cubic Pm-3n space group. The structure is zero-dimensional and consists of eight Al3C24H12O13 clusters and twenty-four C17H11 clusters. In each Al3C24H12O13 cluster, Al(1) is bonded to one O(3), two equivalent O(1), and two equivalent O(2) atoms to form corner-sharing AlO5 square pyramids. The Al(1)-O(3) bond length is 1.83 Å. Both Al(1)-O(1) bond lengths are 1.89 Å. Both Al(1)-O(2) bond lengths are 1.91 Å. There are four inequivalent C sites. In the first C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(1) bond length is 1.48 Å. The C(2)-C(3) bond length is 1.37 Å. The C(2)-C(4) bond length is 1.40 Å. In the second C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the third C site, C(4) is bonded in a distorted single-bond geometry to one C(2) and one H(2) atom. The C(4)-H(2) bond length is 0.93 Å. In the fourth C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.26 Å. There are two inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(1) is bonded in a single-bond geometry to one C(3) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Al(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Al(1) and one C(1) atom. In the third O site, O(3) is bonded in a trigonal planar geometry to three equivalent Al(1) atoms. In each C17H11 cluster, there are ten inequivalent C sites. In the first C site, C(5) is bonded in a distorted single-bond geometry to one C(7) and one H(3) atom. The C(5)-C(7) bond length is 1.40 Å. The C(5)-H(3) bond length is 0.93 Å. In the second C site, C(6) is bonded in a distorted single-bond geometry to one C(7) and one H(4) atom. The C(6)-C(7) bond length is 1.39 Å. The C(6)-H(4) bond length is 0.93 Å. In the third C site, C(7) is bonded in a trigonal planar geometry to one C(5), one C(6), and one C(8) atom. The C(7)-C(8) bond length is 1.48 Å. In the fourth C site, C(8) is bonded in a trigonal planar geometry to one C(12), one C(7), and one C(9) atom. The C(8)-C(12) bond length is 1.40 Å. The C(8)-C(9) bond length is 1.38 Å. In the fifth C site, C(9) is bonded in a single-bond geometry to one C(13), one C(8), and one H(5) atom. The C(9)-C(13) bond length is 1.41 Å. The C(9)-H(5) bond length is 0.93 Å. In the sixth C site, C(10) is bonded in a distorted single-bond geometry to one C(14) and one H(6) atom. The C(10)-C(14) bond length is 1.33 Å. The C(10)-H(6) bond length is 0.98 Å. In the seventh C site, C(11) is bonded in a distorted single-bond geometry to one C(14) and one H(7) atom. The C(11)-C(14) bond length is 1.32 Å. The C(11)-H(7) bond length is 0.98 Å. In the eighth C site, C(12) is bonded in a distorted single-bond geometry to two equivalent C(8) and one H(8) atom. The C(12)-H(8) bond length is 0.93 Å. In the ninth C site, C(13) is bonded in a trigonal planar geometry to one C(14) and two equivalent C(9) atoms. The C(13)-C(14) bond length is 1.44 Å. In the tenth C site, C(14) is bonded in a 5-coordinate geometry to one C(13), two equivalent C(10), and two equivalent C(11) atoms. There are six inequivalent H sites. In the first H site, H(8) is bonded in a single-bond geometry to one C(12) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(10) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(11) atom. Linkers: 5 [C@H]12[C@@H]3[C@@H]4[C@H]1C41[C@@H]4[C@H]5[C@@H]([C@@H]41)C235.[O]C(=O)c1ccc(-c2c[c]cc(-c3ccc(C([O])=O)cc3)c2)cc1.[O]C(=O)c1ccc(-c2c[c]cc(-c3ccc(C([O])=O)cc3)c2)cc1 ,9 [C@H]12[C@@H]3[C@@H]4[C@H]1C41[C@H]4[C@@H]5[C@H]([C@H]41)C235.[O]C(=O)c1ccc(-c2c[c]cc(-c3ccc(C([O])=O)cc3)c2)cc1.[O]C(=O)c1ccc(-c2c[c]cc(-c3ccc(C([O])=O)cc3)c2)cc1. Metal clusters: 8 [C]1O[Al]23O[C]O[Al]45(O1)O[C]O[Al](O[C]O2)(O[C]O3)(O[C]O4)O5. RCSR code: soc. The MOF has largest included sphere 17.52 A, density 0.35 g/cm3, surface area 4569.31 m2/g, accessible volume 2.26 cm3/g
|
QISNEN_clean
|
Cd2C9H3O6Br crystallizes in the orthorhombic P2_12_12_1 space group. There are two inequivalent Cd sites. In the first Cd site, Cd(1) is bonded in a 5-coordinate geometry to one O(1), one O(3), one O(4), one O(6), and one Br(1) atom. The Cd(1)-O(1) bond length is 2.19 Å. The Cd(1)-O(3) bond length is 2.71 Å. The Cd(1)-O(4) bond length is 2.23 Å. The Cd(1)-O(6) bond length is 2.19 Å. The Cd(1)-Br(1) bond length is 2.55 Å. In the second Cd site, Cd(2) is bonded in a distorted T-shaped geometry to one O(2), one O(3), and one O(5) atom. The Cd(2)-O(2) bond length is 2.27 Å. The Cd(2)-O(3) bond length is 2.29 Å. The Cd(2)-O(5) bond length is 2.25 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.51 Å. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(7) bond length is 1.39 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.37 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(9) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-C(9) bond length is 1.52 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4), one C(6), and one H(2) atom. The C(5)-C(6) bond length is 1.41 Å. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one C(8) atom. The C(6)-C(7) bond length is 1.36 Å. The C(6)-C(8) bond length is 1.52 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2), one C(6), and one H(3) atom. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a bent 120 degrees geometry to one C(6), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.25 Å. The C(8)-O(4) bond length is 1.26 Å. In the ninth C site, C(9) is bonded in a bent 120 degrees geometry to one C(4), one O(5), and one O(6) atom. The C(9)-O(5) bond length is 1.24 Å. The C(9)-O(6) bond length is 1.25 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Cd(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Cd(2) and one C(1) atom. In the third O site, O(3) is bonded in a 2-coordinate geometry to one Cd(1), one Cd(2), and one C(8) atom. In the fourth O site, O(4) is bonded in a water-like geometry to one Cd(1) and one C(8) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Cd(2) and one C(9) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Cd(1) and one C(9) atom. Br(1) is bonded in a single-bond geometry to one Cd(1) atom. Linkers: 4 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 4 Br[Cd]12O[C]O[Cd](O[C]O1)O[C]O2. RCSR code: srs. The MOF has largest included sphere 6.74 A, density 1.14 g/cm3, surface area 2812.67 m2/g, accessible volume 0.61 cm3/g
|
YOQYEK_clean
|
CaH3(C3O2)3 crystallizes in the triclinic P-1 space group. Ca(1) is bonded in a 7-coordinate geometry to one O(1), one O(4), one O(5), two equivalent O(2), and two equivalent O(3) atoms. The Ca(1)-O(1) bond length is 2.43 Å. The Ca(1)-O(4) bond length is 2.48 Å. The Ca(1)-O(5) bond length is 2.50 Å. There is one shorter (2.41 Å) and one longer (2.57 Å) Ca(1)-O(2) bond length. There is one shorter (2.43 Å) and one longer (2.51 Å) Ca(1)-O(3) bond length. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(1), and one O(6) atom. The C(1)-C(5) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.22 Å. The C(1)-O(6) bond length is 1.32 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(2), and one O(3) atom. The C(2)-C(3) bond length is 1.50 Å. The C(2)-O(2) bond length is 1.26 Å. The C(2)-O(3) bond length is 1.26 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(8) bond length is 1.39 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(2) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(1), one C(4), and one C(9) atom. The C(5)-C(9) bond length is 1.39 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(7), one C(8), and one C(9) atom. The C(6)-C(7) bond length is 1.50 Å. The C(6)-C(8) bond length is 1.40 Å. The C(6)-C(9) bond length is 1.39 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(4), and one O(5) atom. The C(7)-O(4) bond length is 1.26 Å. The C(7)-O(5) bond length is 1.27 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(3), one C(6), and one H(1) atom. The C(8)-H(1) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(5), one C(6), and one H(3) atom. The C(9)-H(3) bond length is 0.93 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(8) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(9) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Ca(1) and one C(1) atom. In the second O site, O(2) is bonded in a 3-coordinate geometry to two equivalent Ca(1) and one C(2) atom. In the third O site, O(3) is bonded in a 3-coordinate geometry to two equivalent Ca(1) and one C(2) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Ca(1) and one C(7) atom. In the fifth O site, O(5) is bonded in a distorted L-shaped geometry to one Ca(1) and one C(7) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one C(1) atom. Linkers: 2 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 2 [Ca]. The MOF has largest included sphere 3.97 A, density 1.52 g/cm3, surface area 3500.11 m2/g, accessible volume 0.25 cm3/g
|
UMOVEZ_clean
|
CuC21H13O5 crystallizes in the trigonal R-3m space group. Cu(1) is bonded in a distorted square co-planar geometry to two equivalent O(1) and two equivalent O(2) atoms. Both Cu(1)-O(1) bond lengths are 1.96 Å. Both Cu(1)-O(2) bond lengths are 1.96 Å. There are twelve inequivalent C sites. In the first C site, C(5) is bonded in a distorted trigonal planar geometry to one C(3), one C(7), and one H(3) atom. The C(5)-C(3) bond length is 1.38 Å. The C(5)-C(7) bond length is 1.37 Å. The C(5)-H(3) bond length is 0.93 Å. In the second C site, C(6) is bonded in a distorted single-bond geometry to one C(4), one C(7), and one H(4) atom. The C(6)-C(4) bond length is 1.38 Å. The C(6)-C(7) bond length is 1.41 Å. The C(6)-H(4) bond length is 0.93 Å. In the third C site, C(7) is bonded in a trigonal planar geometry to one C(5), one C(6), and one C(8) atom. The C(7)-C(8) bond length is 1.50 Å. In the fourth C site, C(8) is bonded in a trigonal planar geometry to one C(10), one C(7), and one C(9) atom. The C(8)-C(10) bond length is 1.39 Å. The C(8)-C(9) bond length is 1.40 Å. In the fifth C site, C(9) is bonded in a distorted single-bond geometry to one C(11), one C(8), and one H(5) atom. The C(9)-C(11) bond length is 1.40 Å. The C(9)-H(5) bond length is 0.93 Å. In the sixth C site, C(10) is bonded in a single-bond geometry to two equivalent C(8) and one O(3) atom. The C(10)-O(3) bond length is 1.40 Å. In the seventh C site, C(11) is bonded in a trigonal planar geometry to one C(11) and two equivalent C(9) atoms. The C(11)-C(11) bond length is 1.45 Å. In the eighth C site, C(12) is bonded in a tetrahedral geometry to three equivalent H(6,7) and one O(3) atom. All C(12)-H(6,7) bond lengths are 0.96 Å. The C(12)-O(3) bond length is 1.41 Å. In the ninth C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.51 Å. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(2) bond length is 1.26 Å. In the tenth C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(4) bond length is 1.34 Å. In the eleventh C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(5), and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the twelfth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(2), one C(6), and one H(2) atom. The C(4)-H(2) bond length is 0.93 Å. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(6,7) is bonded in a single-bond geometry to one C(12) atom. There are three inequivalent O sites. In the first O site, O(3) is bonded in a bent 120 degrees geometry to one C(10) and one C(12) atom. In the second O site, O(1) is bonded in a distorted single-bond geometry to one Cu(1) and one C(1) atom. In the third O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(1) atom. Linkers: 9 COc1c(-c2ccc(C([O])=O)cc2)cc(-c2cc(-c3ccc(C([O])=O)cc3)c(OC)c(-c3ccc(C([O])=O)cc3)c2)cc1-c1ccc(C([O])=O)cc1. Metal clusters: 9 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4. RCSR code: nbo. The MOF has largest included sphere 11.79 A, density 0.50 g/cm3, surface area 4464.59 m2/g, accessible volume 1.59 cm3/g
|
LUSZIJ01_clean
|
Cu2C8H3SO8 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a distorted rectangular see-saw-like geometry to one O(2), one O(3), one O(4), and one O(8) atom. The Cu(1)-O(2) bond length is 1.95 Å. The Cu(1)-O(3) bond length is 1.94 Å. The Cu(1)-O(4) bond length is 1.91 Å. The Cu(1)-O(8) bond length is 2.35 Å. In the second Cu site, Cu(2) is bonded to one O(1), one O(6), one O(7), and two equivalent O(2) atoms to form edge-sharing CuO5 square pyramids. The Cu(2)-O(1) bond length is 1.94 Å. The Cu(2)-O(6) bond length is 1.91 Å. The Cu(2)-O(7) bond length is 2.29 Å. There is one shorter (1.97 Å) and one longer (1.99 Å) Cu(2)-O(2) bond length. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(6), one C(7), and one S(1) atom. The C(1)-C(6) bond length is 1.39 Å. The C(1)-C(7) bond length is 1.39 Å. The C(1)-S(1) bond length is 1.79 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(3), one C(7), and one C(8) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(7) bond length is 1.39 Å. The C(2)-C(8) bond length is 1.51 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(6) atom. The C(4)-C(5) bond length is 1.50 Å. The C(4)-C(6) bond length is 1.38 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(1), and one O(4) atom. The C(5)-O(1) bond length is 1.26 Å. The C(5)-O(4) bond length is 1.27 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(1), one C(4), and one H(2) atom. The C(6)-H(2) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(1), one C(2), and one H(3) atom. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(3), and one O(6) atom. The C(8)-O(3) bond length is 1.25 Å. The C(8)-O(6) bond length is 1.27 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. S(1) is bonded in a distorted trigonal non-coplanar geometry to one C(1), one O(5), one O(7), and one O(8) atom. The S(1)-O(5) bond length is 1.43 Å. The S(1)-O(7) bond length is 1.46 Å. The S(1)-O(8) bond length is 1.47 Å. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Cu(2) and one C(5) atom. In the second O site, O(2) is bonded in a trigonal non-coplanar geometry to one Cu(1) and two equivalent Cu(2) atoms. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Cu(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Cu(1) and one C(5) atom. In the fifth O site, O(5) is bonded in a single-bond geometry to one S(1) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Cu(2) and one C(8) atom. In the seventh O site, O(7) is bonded in a distorted bent 150 degrees geometry to one Cu(2) and one S(1) atom. In the eighth O site, O(8) is bonded in a distorted bent 150 degrees geometry to one Cu(1) and one S(1) atom. Linkers: 4 [O]C(=O)c1cc(C([O])=O)cc(S([O])([O])[O])c1. Metal clusters: 8 [Cu]. The MOF has largest included sphere 3.94 A, density 1.89 g/cm3, surface area 2997.36 m2/g, accessible volume 0.21 cm3/g
|
LUQGAG_clean
|
CoC11N4H7CH crystallizes in the tetragonal I4_1/amd space group. The structure consists of sixteen 02329_fluka molecules inside a CoC11N4H7 framework. In the CoC11N4H7 framework, Co(1) is bonded in a tetrahedral geometry to two equivalent N(1) and two equivalent N(2) atoms. Both Co(1)-N(1) bond lengths are 1.98 Å. Both Co(1)-N(2) bond lengths are 1.99 Å. There are six inequivalent C sites. In the first C site, C(6) is bonded in a single-bond geometry to two equivalent C(4) and one H(4) atom. Both C(6)-C(4) bond lengths are 1.46 Å. The C(6)-H(4) bond length is 0.93 Å. In the second C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(1), and one H(1) atom. The C(1)-C(2) bond length is 1.40 Å. The C(1)-N(1) bond length is 1.33 Å. The C(1)-H(1) bond length is 0.93 Å. In the third C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.37 Å. The C(2)-C(4) bond length is 1.50 Å. In the fourth C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(2), and one H(2) atom. The C(3)-N(2) bond length is 1.34 Å. The C(3)-H(2) bond length is 0.93 Å. In the fifth C site, C(4) is bonded in a trigonal planar geometry to one C(2), one C(5), and one C(6) atom. The C(4)-C(5) bond length is 1.39 Å. In the sixth C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(3) atom. The C(5)-H(3) bond length is 0.93 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a 3-coordinate geometry to one Co(1), one C(1), and one N(2) atom. The N(1)-N(2) bond length is 1.36 Å. In the second N site, N(2) is bonded in a distorted bent 120 degrees geometry to one Co(1), one C(3), and one N(1) atom. There are four inequivalent H sites. In the first H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the second H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the third H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(3) is bonded in a single-bond geometry to one C(5) atom. Linkers: 2 [CH]1C=C([C]2C=NN=C2)[CH]C(C2=C[N]N=C2)=C1 ,2 [CH]1C=C(C2=CN=N[CH]2)[CH]C(C2=C[N]N=C2)=C1 ,1 [CH]1C=C(C2=CN=N[CH]2)[CH]C(C2=CN=N[CH]2)=C1 ,2 [CH]1[C]([C]2C=NN=C2)C=CC=C1C1=C[N]N=C1 ,1 [CH]1N=NC=C1[C]1[CH]C(C2=C[N]N=C2)=CC=C1. Metal clusters: 8 [Co]. The MOF has largest included sphere 6.95 A, density 1.09 g/cm3, surface area 3921.88 m2/g, accessible volume 0.46 cm3/g
|
FEDKAB_clean
|
CdH8(C2O)8(CH2)4(C3NH4)4 is Indium-derived structured and crystallizes in the tetragonal P-4n2 space group. The structure is zero-dimensional and consists of eight 02329_fluka molecules, eight trimethylamine molecules, and two CdH8(C2O)8 clusters. In each CdH8(C2O)8 cluster, Cd(1) is bonded in a 4-coordinate geometry to four equivalent O(1) atoms. All Cd(1)-O(1) bond lengths are 2.25 Å. There are four inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.53 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(6) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-C(6) bond length is 1.38 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(6) is bonded in a distorted single-bond geometry to one C(2) and one H(4) atom. The C(6)-H(4) bond length is 0.93 Å. There are two inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(6) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one Cd(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(1) atom. Linkers: 4 [O]C(=O)C1=C[CH]N(CCCCN2[CH]C=C(C([O])=O)C=C2)C=C1. Metal clusters: 2 O=[C]O[Cd](O[C]=O)(O[C]=O)O[C]=O. RCSR code: dia. The MOF has largest included sphere 4.60 A, density 1.25 g/cm3, surface area 5154.57 m2/g, accessible volume 0.31 cm3/g
|
DABGIZ_clean
|
Mo16Cd5C30P8H18(N2O9)6(CH)30 crystallizes in the monoclinic P2_1/c space group. The structure consists of sixty 02329_fluka molecules inside a Mo16Cd5C30P8H18(N2O9)6 framework. In the Mo16Cd5C30P8H18(N2O9)6 framework, there are eight inequivalent Mo sites. In the first Mo site, Mo(1) is bonded to one O(1), one O(2), one O(3), one O(4), and one O(5) atom to form distorted MoO5 square pyramids that share a cornercorner with one Cd(3)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, an edgeedge with one Mo(2)O5 square pyramid, an edgeedge with one Mo(6)O5 square pyramid, and an edgeedge with one Cd(1)O5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 50°. The Mo(1)-O(1) bond length is 1.95 Å. The Mo(1)-O(2) bond length is 1.97 Å. The Mo(1)-O(3) bond length is 2.23 Å. The Mo(1)-O(4) bond length is 2.12 Å. The Mo(1)-O(5) bond length is 2.11 Å. In the second Mo site, Mo(2) is bonded to one O(1), one O(14), one O(15), one O(16), and one O(2) atom to form distorted MoO5 square pyramids that share a cornercorner with one Cd(3)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(4)O4 tetrahedra, a cornercorner with one Cd(1)O5 trigonal bipyramid, an edgeedge with one Mo(1)O5 square pyramid, and an edgeedge with one Mo(3)O5 square pyramid. The corner-sharing octahedral tilt angles are 49°. The Mo(2)-O(1) bond length is 1.96 Å. The Mo(2)-O(14) bond length is 2.25 Å. The Mo(2)-O(15) bond length is 2.11 Å. The Mo(2)-O(16) bond length is 2.05 Å. The Mo(2)-O(2) bond length is 1.97 Å. In the third Mo site, Mo(3) is bonded to one O(14), one O(15), one O(17), one O(6), and one O(7) atom to form distorted MoO5 square pyramids that share a cornercorner with one Cd(3)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(4)O4 tetrahedra, an edgeedge with one Mo(2)O5 square pyramid, and an edgeedge with one Mo(4)O5 square pyramid. The corner-sharing octahedral tilt angles are 48°. The Mo(3)-O(14) bond length is 2.27 Å. The Mo(3)-O(15) bond length is 2.13 Å. The Mo(3)-O(17) bond length is 2.05 Å. The Mo(3)-O(6) bond length is 1.97 Å. The Mo(3)-O(7) bond length is 1.96 Å. In the fourth Mo site, Mo(4) is bonded to one O(10), one O(6), one O(7), one O(8), and one O(9) atom to form distorted MoO5 square pyramids that share a cornercorner with one Cd(3)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, an edgeedge with one Mo(3)O5 square pyramid, and an edgeedge with one Mo(5)O5 square pyramid. The corner-sharing octahedral tilt angles are 46°. The Mo(4)-O(10) bond length is 2.07 Å. The Mo(4)-O(6) bond length is 1.97 Å. The Mo(4)-O(7) bond length is 1.95 Å. The Mo(4)-O(8) bond length is 2.07 Å. The Mo(4)-O(9) bond length is 2.33 Å. In the fifth Mo site, Mo(5) is bonded to one O(10), one O(11), one O(12), one O(18), and one O(9) atom to form distorted MoO5 square pyramids that share a cornercorner with one Cd(3)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, an edgeedge with one Mo(4)O5 square pyramid, and an edgeedge with one Mo(6)O5 square pyramid. The corner-sharing octahedral tilt angles are 46°. The Mo(5)-O(10) bond length is 2.11 Å. The Mo(5)-O(11) bond length is 1.97 Å. The Mo(5)-O(12) bond length is 1.93 Å. The Mo(5)-O(18) bond length is 2.05 Å. The Mo(5)-O(9) bond length is 2.33 Å. In the sixth Mo site, Mo(6) is bonded to one O(11), one O(12), one O(13), one O(3), and one O(5) atom to form distorted MoO5 square pyramids that share a cornercorner with one Cd(3)O6 octahedra, a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, an edgeedge with one Mo(1)O5 square pyramid, and an edgeedge with one Mo(5)O5 square pyramid. The corner-sharing octahedral tilt angles are 49°. The Mo(6)-O(11) bond length is 1.97 Å. The Mo(6)-O(12) bond length is 1.93 Å. The Mo(6)-O(13) bond length is 2.05 Å. The Mo(6)-O(3) bond length is 2.30 Å. The Mo(6)-O(5) bond length is 2.12 Å. In the seventh Mo site, Mo(7) is bonded to one N(3), one N(4), one O(24), one O(25), and one O(26) atom to form distorted MoN2O3 square pyramids that share a cornercorner with one P(2)O4 tetrahedra and an edgeedge with one Mo(8)N2O3 square pyramid. The Mo(7)-N(3) bond length is 2.32 Å. The Mo(7)-N(4) bond length is 2.24 Å. The Mo(7)-O(24) bond length is 1.92 Å. The Mo(7)-O(25) bond length is 1.95 Å. The Mo(7)-O(26) bond length is 2.05 Å. In the eighth Mo site, Mo(8) is bonded to one N(5), one N(6), one O(24), one O(25), and one O(27) atom to form distorted MoN2O3 square pyramids that share a cornercorner with one P(4)O4 tetrahedra and an edgeedge with one Mo(7)N2O3 square pyramid. The Mo(8)-N(5) bond length is 2.25 Å. The Mo(8)-N(6) bond length is 2.34 Å. The Mo(8)-O(24) bond length is 1.94 Å. The Mo(8)-O(25) bond length is 1.92 Å. The Mo(8)-O(27) bond length is 2.08 Å. There are three inequivalent Cd sites. In the first Cd site, Cd(1) is bonded to one O(1), one O(20), one O(4), and two equivalent O(19) atoms to form distorted CdO5 trigonal bipyramids that share a cornercorner with one Mo(2)O5 square pyramid, a cornercorner with one P(2)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, corners with two equivalent P(1)O4 tetrahedra, an edgeedge with one Mo(1)O5 square pyramid, and an edgeedge with one Cd(1)O5 trigonal bipyramid. The Cd(1)-O(1) bond length is 2.27 Å. The Cd(1)-O(20) bond length is 2.27 Å. The Cd(1)-O(4) bond length is 2.50 Å. There is one shorter (2.19 Å) and one longer (2.52 Å) Cd(1)-O(19) bond length. In the second Cd site, Cd(2) is bonded in a 6-coordinate geometry to one N(1), one N(2), one O(20), one O(21), one O(7), and one O(8) atom. The Cd(2)-N(1) bond length is 2.28 Å. The Cd(2)-N(2) bond length is 2.33 Å. The Cd(2)-O(20) bond length is 2.32 Å. The Cd(2)-O(21) bond length is 2.22 Å. The Cd(2)-O(7) bond length is 2.28 Å. The Cd(2)-O(8) bond length is 2.62 Å. In the third Cd site, Cd(3) is bonded to two equivalent O(11), two equivalent O(2), and two equivalent O(6) atoms to form CdO6 octahedra that share corners with two equivalent Mo(1)O5 square pyramids, corners with two equivalent Mo(2)O5 square pyramids, corners with two equivalent Mo(3)O5 square pyramids, corners with two equivalent Mo(4)O5 square pyramids, corners with two equivalent Mo(5)O5 square pyramids, and corners with two equivalent Mo(6)O5 square pyramids. Both Cd(3)-O(11) bond lengths are 2.26 Å. Both Cd(3)-O(2) bond lengths are 2.30 Å. Both Cd(3)-O(6) bond lengths are 2.30 Å. There are fifteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.30 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(4) is bonded in a distorted single-bond geometry to one C(9) and one H(4) atom. The C(4)-C(9) bond length is 1.44 Å. The C(4)-H(4) bond length is 0.93 Å. In the third C site, C(5) is bonded in a distorted single-bond geometry to one C(10) and one H(5) atom. The C(5)-C(10) bond length is 1.37 Å. The C(5)-H(5) bond length is 0.93 Å. In the fourth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(8) atom. The C(8)-N(2) bond length is 1.33 Å. The C(8)-H(8) bond length is 0.93 Å. In the fifth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one C(4), and one N(1) atom. The C(9)-C(10) bond length is 1.49 Å. The C(9)-N(1) bond length is 1.34 Å. In the sixth C site, C(10) is bonded in a distorted trigonal planar geometry to one C(5), one C(9), and one N(2) atom. The C(10)-N(2) bond length is 1.33 Å. In the seventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(9) atom. The C(11)-N(3) bond length is 1.31 Å. The C(11)-H(9) bond length is 0.93 Å. In the eighth C site, C(18) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(16) atom. The C(18)-N(4) bond length is 1.33 Å. The C(18)-H(16) bond length is 0.93 Å. In the ninth C site, C(19) is bonded in a distorted single-bond geometry to one N(3) atom. The C(19)-N(3) bond length is 1.37 Å. In the tenth C site, C(20) is bonded in a distorted single-bond geometry to one N(4) atom. The C(20)-N(4) bond length is 1.36 Å. In the eleventh C site, C(21) is bonded in a distorted bent 120 degrees geometry to one N(5) and one H(17) atom. The C(21)-N(5) bond length is 1.34 Å. The C(21)-H(17) bond length is 0.93 Å. In the twelfth C site, C(24) is bonded in a distorted single-bond geometry to one C(29) and one H(20) atom. The C(24)-C(29) bond length is 1.37 Å. The C(24)-H(20) bond length is 0.93 Å. In the thirteenth C site, C(28) is bonded in a distorted bent 120 degrees geometry to one N(6) and one H(24) atom. The C(28)-N(6) bond length is 1.34 Å. The C(28)-H(24) bond length is 0.93 Å. In the fourteenth C site, C(29) is bonded in a distorted trigonal planar geometry to one C(24), one C(30), and one N(5) atom. The C(29)-C(30) bond length is 1.48 Å. The C(29)-N(5) bond length is 1.34 Å. In the fifteenth C site, C(30) is bonded in a distorted single-bond geometry to one C(29) and one N(6) atom. The C(30)-N(6) bond length is 1.32 Å. There are four inequivalent P sites. In the first P site, P(1) is bonded to one O(14), one O(19), one O(3), and one O(9) atom to form PO4 tetrahedra that share a cornercorner with one Mo(1)O5 square pyramid, a cornercorner with one Mo(2)O5 square pyramid, a cornercorner with one Mo(3)O5 square pyramid, a cornercorner with one Mo(4)O5 square pyramid, a cornercorner with one Mo(5)O5 square pyramid, a cornercorner with one Mo(6)O5 square pyramid, and corners with two equivalent Cd(1)O5 trigonal bipyramids. The P(1)-O(14) bond length is 1.55 Å. The P(1)-O(19) bond length is 1.52 Å. The P(1)-O(3) bond length is 1.55 Å. The P(1)-O(9) bond length is 1.53 Å. In the second P site, P(2) is bonded to one O(18), one O(20), one O(26), and one O(8) atom to form PO4 tetrahedra that share a cornercorner with one Mo(7)N2O3 square pyramid, a cornercorner with one Mo(4)O5 square pyramid, a cornercorner with one Mo(5)O5 square pyramid, and a cornercorner with one Cd(1)O5 trigonal bipyramid. The P(2)-O(18) bond length is 1.53 Å. The P(2)-O(20) bond length is 1.52 Å. The P(2)-O(26) bond length is 1.52 Å. The P(2)-O(8) bond length is 1.56 Å. In the third P site, P(3) is bonded to one O(13), one O(21), one O(22), and one O(4) atom to form PO4 tetrahedra that share a cornercorner with one Mo(1)O5 square pyramid, a cornercorner with one Mo(6)O5 square pyramid, and a cornercorner with one Cd(1)O5 trigonal bipyramid. The P(3)-O(13) bond length is 1.51 Å. The P(3)-O(21) bond length is 1.50 Å. The P(3)-O(22) bond length is 1.56 Å. The P(3)-O(4) bond length is 1.54 Å. In the fourth P site, P(4) is bonded to one O(16), one O(17), one O(23), and one O(27) atom to form PO4 tetrahedra that share a cornercorner with one Mo(8)N2O3 square pyramid, a cornercorner with one Mo(2)O5 square pyramid, and a cornercorner with one Mo(3)O5 square pyramid. The P(4)-O(16) bond length is 1.51 Å. The P(4)-O(17) bond length is 1.52 Å. The P(4)-O(23) bond length is 1.56 Å. The P(4)-O(27) bond length is 1.51 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cd(2), one C(1), and one C(9) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Cd(2), one C(10), and one C(8) atom. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Mo(7), one C(11), and one C(19) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Mo(7), one C(18), and one C(20) atom. In the fifth N site, N(5) is bonded in a trigonal planar geometry to one Mo(8), one C(21), and one C(29) atom. In the sixth N site, N(6) is bonded in a distorted trigonal planar geometry to one Mo(8), one C(28), and one C(30) atom. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(8) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(9) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(16) is bonded in a single-bond geometry to one C(18) atom. In the seventh H site, H(17) is bonded in a single-bond geometry to one C(21) atom. In the eighth H site, H(20) is bonded in a single-bond geometry to one C(24) atom. In the ninth H site, H(24) is bonded in a single-bond geometry to one C(28) atom. There are twenty-seven inequivalent O sites. In the first O site, O(12) is bonded in an L-shaped geometry to one Mo(5) and one Mo(6) atom. In the second O site, O(15) is bonded in a bent 120 degrees geometry to one Mo(2) and one Mo(3) atom. In the third O site, O(16) is bonded in a distorted bent 150 degrees geometry to one Mo(2) and one P(4) atom. In the fourth O site, O(1) is bonded in a distorted T-shaped geometry to one Mo(1), one Mo(2), and one Cd(1) atom. In the fifth O site, O(2) is bonded in a distorted T-shaped geometry to one Mo(1), one Mo(2), and one Cd(3) atom. In the sixth O site, O(6) is bonded in a distorted T-shaped geometry to one Mo(3), one Mo(4), and one Cd(3) atom. In the seventh O site, O(7) is bonded in a distorted T-shaped geometry to one Mo(3), one Mo(4), and one Cd(2) atom. In the eighth O site, O(9) is bonded in a distorted single-bond geometry to one Mo(4), one Mo(5), and one P(1) atom. In the ninth O site, O(10) is bonded in a bent 120 degrees geometry to one Mo(4) and one Mo(5) atom. In the tenth O site, O(13) is bonded in a distorted single-bond geometry to one Mo(6) and one P(3) atom. In the eleventh O site, O(14) is bonded in a distorted single-bond geometry to one Mo(2), one Mo(3), and one P(1) atom. In the twelfth O site, O(17) is bonded in a distorted single-bond geometry to one Mo(3) and one P(4) atom. In the thirteenth O site, O(18) is bonded in a distorted bent 150 degrees geometry to one Mo(5) and one P(2) atom. In the fourteenth O site, O(19) is bonded in a 3-coordinate geometry to two equivalent Cd(1) and one P(1) atom. In the fifteenth O site, O(20) is bonded in a 3-coordinate geometry to one Cd(1), one Cd(2), and one P(2) atom. In the sixteenth O site, O(11) is bonded in a distorted T-shaped geometry to one Mo(5), one Mo(6), and one Cd(3) atom. In the seventeenth O site, O(21) is bonded in a bent 120 degrees geometry to one Cd(2) and one P(3) atom. In the eighteenth O site, O(22) is bonded in a single-bond geometry to one P(3) atom. In the nineteenth O site, O(23) is bonded in a single-bond geometry to one P(4) atom. In the twentieth O site, O(24) is bonded in an L-shaped geometry to one Mo(7) and one Mo(8) atom. In the twenty-first O site, O(25) is bonded in an L-shaped geometry to one Mo(7) and one Mo(8) atom. In the twenty-second O site, O(26) is bonded in a distorted bent 150 degrees geometry to one Mo(7) and one P(2) atom. In the twenty-third O site, O(27) is bonded in a bent 150 degrees geometry to one Mo(8) and one P(4) atom. In the twenty-fourth O site, O(3) is bonded in a distorted single-bond geometry to one Mo(1), one Mo(6), and one P(1) atom. In the twenty-fifth O site, O(4) is bonded in a distorted single-bond geometry to one Mo(1), one Cd(1), and one P(3) atom. In the twenty-sixth O site, O(5) is bonded in a bent 120 degrees geometry to one Mo(1) and one Mo(6) atom. In the twenty-seventh O site, O(8) is bonded in a 1-coordinate geometry to one Mo(4), one Cd(2), and one P(2) atom. Linkers: 8 c1ccc(-c2ccccn2)nc1. Metal clusters: 10 [Cd] ,32 [Mo]. The MOF has largest included sphere 6.30 A, density 2.13 g/cm3, surface area 2469.60 m2/g, accessible volume 0.19 cm3/g
|
NUCPEI_clean
|
Zn2C23H9O10 crystallizes in the monoclinic P2_1/c space group. There are four inequivalent Zn sites. In the first Zn site, Zn(1) is bonded in a trigonal pyramidal geometry to one O(12), one O(18), one O(19), and one O(7) atom. The Zn(1)-O(12) bond length is 1.91 Å. The Zn(1)-O(18) bond length is 1.93 Å. The Zn(1)-O(19) bond length is 2.02 Å. The Zn(1)-O(7) bond length is 1.91 Å. In the second Zn site, Zn(2) is bonded in a tetrahedral geometry to one O(11), one O(20), one O(4), and one O(8) atom. The Zn(2)-O(11) bond length is 1.96 Å. The Zn(2)-O(20) bond length is 1.93 Å. The Zn(2)-O(4) bond length is 1.90 Å. The Zn(2)-O(8) bond length is 1.96 Å. In the third Zn site, Zn(3) is bonded in a tetrahedral geometry to one O(10), one O(13), one O(16), and one O(5) atom. The Zn(3)-O(10) bond length is 1.95 Å. The Zn(3)-O(13) bond length is 1.94 Å. The Zn(3)-O(16) bond length is 2.03 Å. The Zn(3)-O(5) bond length is 1.96 Å. In the fourth Zn site, Zn(4) is bonded in a distorted trigonal bipyramidal geometry to one O(1), one O(15), one O(2), one O(6), and one O(9) atom. The Zn(4)-O(1) bond length is 2.24 Å. The Zn(4)-O(15) bond length is 2.23 Å. The Zn(4)-O(2) bond length is 2.09 Å. The Zn(4)-O(6) bond length is 1.95 Å. The Zn(4)-O(9) bond length is 1.98 Å. There are forty-six inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.36 Å. The C(2)-C(7) bond length is 1.39 Å. In the third C site, C(3) is bonded in a single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a single-bond geometry to one C(5) and one H(2) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(16), one C(4), and one C(6) atom. The C(5)-C(16) bond length is 1.48 Å. The C(5)-C(6) bond length is 1.39 Å. In the sixth C site, C(6) is bonded in a single-bond geometry to one C(5), one C(7), and one H(3) atom. The C(6)-C(7) bond length is 1.38 Å. The C(6)-H(3) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(8) atom. The C(7)-C(8) bond length is 1.50 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(10), one C(7), and one C(9) atom. The C(8)-C(10) bond length is 1.37 Å. The C(8)-C(9) bond length is 1.39 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(14), one C(8), and one H(4) atom. The C(9)-C(14) bond length is 1.38 Å. The C(9)-H(4) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(11), one C(8), and one H(5) atom. The C(10)-C(11) bond length is 1.37 Å. The C(10)-H(5) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(13) atom. The C(11)-C(12) bond length is 1.50 Å. The C(11)-C(13) bond length is 1.38 Å. In the twelfth C site, C(12) is bonded in a bent 120 degrees geometry to one C(11), one O(5), and one O(6) atom. The C(12)-O(5) bond length is 1.25 Å. The C(12)-O(6) bond length is 1.24 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(11), one C(14), and one H(6) atom. The C(13)-C(14) bond length is 1.39 Å. The C(13)-H(6) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one C(9) atom. The C(14)-C(15) bond length is 1.49 Å. In the fifteenth C site, C(15) is bonded in a distorted trigonal planar geometry to one C(14), one O(3), and one O(4) atom. The C(15)-O(3) bond length is 1.21 Å. The C(15)-O(4) bond length is 1.27 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(17), one C(21), and one C(5) atom. The C(16)-C(17) bond length is 1.38 Å. The C(16)-C(21) bond length is 1.37 Å. In the seventeenth C site, C(17) is bonded in a distorted single-bond geometry to one C(16), one C(18), and one H(7) atom. The C(17)-C(18) bond length is 1.39 Å. The C(17)-H(7) bond length is 0.93 Å. In the eighteenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(22) atom. The C(18)-C(19) bond length is 1.39 Å. The C(18)-C(22) bond length is 1.49 Å. In the nineteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(18), one C(20), and one H(8) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-H(8) bond length is 0.93 Å. In the twentieth C site, C(20) is bonded in a trigonal planar geometry to one C(19), one C(21), and one C(23) atom. The C(20)-C(21) bond length is 1.36 Å. The C(20)-C(23) bond length is 1.52 Å. In the twenty-first C site, C(21) is bonded in a distorted single-bond geometry to one C(16), one C(20), and one H(9) atom. The C(21)-H(9) bond length is 0.93 Å. In the twenty-second C site, C(22) is bonded in a distorted bent 120 degrees geometry to one C(18), one O(7), and one O(8) atom. The C(22)-O(7) bond length is 1.25 Å. The C(22)-O(8) bond length is 1.23 Å. In the twenty-third C site, C(23) is bonded in a distorted bent 120 degrees geometry to one C(20), one O(10), and one O(9) atom. The C(23)-O(10) bond length is 1.25 Å. The C(23)-O(9) bond length is 1.23 Å. In the twenty-fourth C site, C(24) is bonded in a distorted bent 120 degrees geometry to one C(25), one O(11), and one O(12) atom. The C(24)-C(25) bond length is 1.49 Å. The C(24)-O(11) bond length is 1.25 Å. The C(24)-O(12) bond length is 1.25 Å. In the twenty-fifth C site, C(25) is bonded in a trigonal planar geometry to one C(24), one C(26), and one C(30) atom. The C(25)-C(26) bond length is 1.40 Å. The C(25)-C(30) bond length is 1.36 Å. In the twenty-sixth C site, C(26) is bonded in a distorted single-bond geometry to one C(25), one C(27), and one H(10) atom. The C(26)-C(27) bond length is 1.36 Å. The C(26)-H(10) bond length is 0.93 Å. In the twenty-seventh C site, C(27) is bonded in a trigonal planar geometry to one C(26), one C(28), and one C(31) atom. The C(27)-C(28) bond length is 1.39 Å. The C(27)-C(31) bond length is 1.52 Å. In the twenty-eighth C site, C(28) is bonded in a distorted single-bond geometry to one C(27), one C(29), and one H(11) atom. The C(28)-C(29) bond length is 1.38 Å. The C(28)-H(11) bond length is 0.93 Å. In the twenty-ninth C site, C(29) is bonded in a trigonal planar geometry to one C(28), one C(30), and one C(32) atom. The C(29)-C(30) bond length is 1.40 Å. The C(29)-C(32) bond length is 1.49 Å. In the thirtieth C site, C(30) is bonded in a distorted single-bond geometry to one C(25), one C(29), and one H(12) atom. The C(30)-H(12) bond length is 0.93 Å. In the thirty-first C site, C(31) is bonded in a distorted bent 120 degrees geometry to one C(27), one O(13), and one O(14) atom. The C(31)-O(13) bond length is 1.27 Å. The C(31)-O(14) bond length is 1.21 Å. In the thirty-second C site, C(32) is bonded in a trigonal planar geometry to one C(29), one C(33), and one C(37) atom. The C(32)-C(33) bond length is 1.40 Å. The C(32)-C(37) bond length is 1.39 Å. In the thirty-third C site, C(33) is bonded in a single-bond geometry to one C(32) and one H(13) atom. The C(33)-H(13) bond length is 0.93 Å. In the thirty-fourth C site, C(34) is bonded in a distorted single-bond geometry to one C(35) and one H(14) atom. The C(34)-C(35) bond length is 1.40 Å. The C(34)-H(14) bond length is 0.93 Å. In the thirty-fifth C site, C(35) is bonded in a trigonal planar geometry to one C(34), one C(36), and one C(38) atom. The C(35)-C(36) bond length is 1.39 Å. The C(35)-C(38) bond length is 1.52 Å. In the thirty-sixth C site, C(36) is bonded in a trigonal planar geometry to one C(35), one C(37), and one C(39) atom. The C(36)-C(37) bond length is 1.40 Å. The C(36)-C(39) bond length is 1.49 Å. In the thirty-seventh C site, C(37) is bonded in a distorted single-bond geometry to one C(32), one C(36), and one H(15) atom. The C(37)-H(15) bond length is 0.93 Å. In the thirty-eighth C site, C(38) is bonded in a distorted bent 120 degrees geometry to one C(35), one O(15), and one O(16) atom. The C(38)-O(15) bond length is 1.25 Å. The C(38)-O(16) bond length is 1.20 Å. In the thirty-ninth C site, C(39) is bonded in a trigonal planar geometry to one C(36), one C(40), and one C(44) atom. The C(39)-C(40) bond length is 1.38 Å. The C(39)-C(44) bond length is 1.38 Å. In the fortieth C site, C(40) is bonded in a distorted single-bond geometry to one C(39), one C(41), and one H(16) atom. The C(40)-C(41) bond length is 1.39 Å. The C(40)-H(16) bond length is 0.93 Å. In the forty-first C site, C(41) is bonded in a trigonal planar geometry to one C(40), one C(42), and one C(46) atom. The C(41)-C(42) bond length is 1.38 Å. The C(41)-C(46) bond length is 1.49 Å. In the forty-second C site, C(42) is bonded in a distorted trigonal planar geometry to one C(41), one C(43), and one H(17) atom. The C(42)-C(43) bond length is 1.38 Å. The C(42)-H(17) bond length is 0.93 Å. In the forty-third C site, C(43) is bonded in a trigonal planar geometry to one C(42), one C(44), and one C(45) atom. The C(43)-C(44) bond length is 1.37 Å. The C(43)-C(45) bond length is 1.48 Å. In the forty-fourth C site, C(44) is bonded in a distorted single-bond geometry to one C(39), one C(43), and one H(18) atom. The C(44)-H(18) bond length is 0.93 Å. In the forty-fifth C site, C(45) is bonded in a distorted bent 120 degrees geometry to one C(43), one O(17), and one O(18) atom. The C(45)-O(17) bond length is 1.22 Å. The C(45)-O(18) bond length is 1.26 Å. In the forty-sixth C site, C(46) is bonded in a bent 120 degrees geometry to one C(41), one O(19), and one O(20) atom. The C(46)-O(19) bond length is 1.24 Å. The C(46)-O(20) bond length is 1.24 Å. There are eighteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(9) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(10) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(13) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(17) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(19) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(21) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(26) atom. In the eleventh H site, H(11) is bonded in a single-bond geometry to one C(28) atom. In the twelfth H site, H(12) is bonded in a single-bond geometry to one C(30) atom. In the thirteenth H site, H(13) is bonded in a single-bond geometry to one C(33) atom. In the fourteenth H site, H(14) is bonded in a single-bond geometry to one C(34) atom. In the fifteenth H site, H(15) is bonded in a single-bond geometry to one C(37) atom. In the sixteenth H site, H(16) is bonded in a single-bond geometry to one C(40) atom. In the seventeenth H site, H(17) is bonded in a single-bond geometry to one C(42) atom. In the eighteenth H site, H(18) is bonded in a single-bond geometry to one C(44) atom. There are twenty inequivalent O sites. In the first O site, O(1) is bonded in a distorted L-shaped geometry to one Zn(4) and one C(1) atom. In the second O site, O(2) is bonded in an L-shaped geometry to one Zn(4) and one C(1) atom. In the third O site, O(3) is bonded in a single-bond geometry to one C(15) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(15) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(12) atom. In the sixth O site, O(6) is bonded in a bent 150 degrees geometry to one Zn(4) and one C(12) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(22) atom. In the eighth O site, O(8) is bonded in a bent 150 degrees geometry to one Zn(2) and one C(22) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Zn(4) and one C(23) atom. In the tenth O site, O(10) is bonded in a distorted bent 120 degrees geometry to one Zn(3) and one C(23) atom. In the eleventh O site, O(11) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(24) atom. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(24) atom. In the thirteenth O site, O(13) is bonded in a bent 120 degrees geometry to one Zn(3) and one C(31) atom. In the fourteenth O site, O(14) is bonded in a single-bond geometry to one C(31) atom. In the fifteenth O site, O(15) is bonded in a 2-coordinate geometry to one Zn(4) and one C(38) atom. In the sixteenth O site, O(16) is bonded in a water-like geometry to one Zn(3) and one C(38) atom. In the seventeenth O site, O(17) is bonded in a single-bond geometry to one C(45) atom. In the eighteenth O site, O(18) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(45) atom. In the nineteenth O site, O(19) is bonded in a bent 150 degrees geometry to one Zn(1) and one C(46) atom. In the twentieth O site, O(20) is bonded in a bent 120 degrees geometry to one Zn(2) and one C(46) atom. Linkers: 2 [O]C(=O)c1cc(C([O])=O)cc(-c2ccc(C([O])=O)c(-c3cc([C]=O)cc(C([O])=O)c3)c2)c1 ,2 [O]C(=O)c1cc([C]=O)cc(-c2ccc(C([O])=O)c(-c3cc(C([O])=O)cc(C([O])=O)c3)c2)c1 ,4 [O]C(=O)c1cc(C([O])=O)cc(-c2ccc(C([O])=O)c(-c3cc(C([O])=O)cc(C([O])=O)c3)c2)c1. Metal clusters: 4 O=[C]O[Zn@]12O[C]O[Zn@](O[C]=O)(O[C]O1)O[C]O2 ,4 O=[C]O[Zn]12O[C]O[Zn]3(O[C]O1)(O[C]O2)O[C]O3. The MOF has largest included sphere 6.77 A, density 1.04 g/cm3, surface area 3872.28 m2/g, accessible volume 0.55 cm3/g
|
YOYREL_clean
|
Mn2C45H21(N2O)6(CH)18 crystallizes in the trigonal P-31c space group. The structure consists of thirty-six 02329_fluka molecules inside a Mn2C45H21(N2O)6 framework. In the Mn2C45H21(N2O)6 framework, Mn(1) is bonded in an octahedral geometry to three equivalent N(2) and three equivalent O(1) atoms. All Mn(1)-N(2) bond lengths are 2.32 Å. All Mn(1)-O(1) bond lengths are 2.13 Å. There are nine inequivalent C sites. In the first C site, C(12) is bonded in a distorted single-bond geometry to two equivalent C(2) and one H(7) atom. Both C(12)-C(2) bond lengths are 1.38 Å. The C(12)-H(7) bond length is 0.93 Å. In the second C site, C(1) is bonded in a single-bond geometry to one C(11), one C(2), and one H(1) atom. The C(1)-C(11) bond length is 1.39 Å. The C(1)-C(2) bond length is 1.37 Å. The C(1)-H(1) bond length is 0.93 Å. In the third C site, C(2) is bonded in a distorted trigonal planar geometry to one C(1), one C(12), and one N(1) atom. The C(2)-N(1) bond length is 1.43 Å. In the fourth C site, C(3) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(2) atom. The C(3)-N(1) bond length is 1.35 Å. The C(3)-N(2) bond length is 1.31 Å. The C(3)-H(2) bond length is 0.93 Å. In the fifth C site, C(4) is bonded in a distorted single-bond geometry to one C(5), one C(9), and one N(1) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-C(9) bond length is 1.40 Å. The C(4)-N(1) bond length is 1.39 Å. In the sixth C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(3) atom. The C(5)-H(3) bond length is 0.93 Å. In the seventh C site, C(9) is bonded in a distorted single-bond geometry to one C(4) and one N(2) atom. The C(9)-N(2) bond length is 1.40 Å. In the eighth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(11) and two equivalent O(1) atoms. The C(10)-C(11) bond length is 1.50 Å. Both C(10)-O(1) bond lengths are 1.26 Å. In the ninth C site, C(11) is bonded in a trigonal planar geometry to one C(10) and two equivalent C(1) atoms. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(4) atom. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Mn(1), one C(3), and one C(9) atom. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(7) is bonded in a single-bond geometry to one C(12) atom. O(1) is bonded in a distorted bent 120 degrees geometry to one Mn(1) and one C(10) atom. Linkers: 6 [O]C(=O)c1cc(-n2cnc3ccccc32)cc(-n2cnc3ccccc32)c1. Metal clusters: 2 [C]1O[Mn]2O[C]O[Mn](O1)O[C]O2. The MOF has largest included sphere 7.29 A, density 1.05 g/cm3, surface area 4559.36 m2/g, accessible volume 0.41 cm3/g
|
MAGNEQ_clean
|
Cu(HCOO)2 crystallizes in the orthorhombic P2_12_12_1 space group. Cu(1) is bonded in a rectangular see-saw-like geometry to one O(1), one O(2), one O(3), and one O(4) atom. The Cu(1)-O(1) bond length is 2.26 Å. The Cu(1)-O(2) bond length is 1.95 Å. The Cu(1)-O(3) bond length is 2.01 Å. The Cu(1)-O(4) bond length is 1.99 Å. There are two inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one H(1), one O(1), and one O(2) atom. The C(1)-H(1) bond length is 0.95 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.26 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one H(2), one O(3), and one O(4) atom. The C(2)-H(2) bond length is 0.95 Å. The C(2)-O(3) bond length is 1.27 Å. The C(2)-O(4) bond length is 1.26 Å. There are two inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(2) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(2) atom. Linkers: 8 [O]C=O. Metal clusters: 4 [Cu]. RCSR code: dia. The MOF has largest included sphere 5.33 A, density 1.10 g/cm3, surface area 3761.91 m2/g, accessible volume 0.58 cm3/g
|
MIHLEV_clean
|
PrC23H12(NO3)2(CH)2 crystallizes in the triclinic P-1 space group. The structure consists of four 02329_fluka molecules inside a PrC23H12(NO3)2 framework. In the PrC23H12(NO3)2 framework, Pr(1) is bonded in a 8-coordinate geometry to one O(1), one O(2), one O(4), one O(5), two equivalent O(3), and two equivalent O(6) atoms. The Pr(1)-O(1) bond length is 2.45 Å. The Pr(1)-O(2) bond length is 2.41 Å. The Pr(1)-O(4) bond length is 2.49 Å. The Pr(1)-O(5) bond length is 2.69 Å. There is one shorter (2.44 Å) and one longer (2.68 Å) Pr(1)-O(3) bond length. There is one shorter (2.48 Å) and one longer (2.53 Å) Pr(1)-O(6) bond length. There are twenty-three inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(10), one C(2), and one N(1) atom. The C(1)-C(10) bond length is 1.40 Å. The C(1)-C(2) bond length is 1.43 Å. The C(1)-N(1) bond length is 1.38 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1) and one H(1) atom. The C(2)-H(1) bond length is 0.95 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(4) and one H(2) atom. The C(3)-C(4) bond length is 1.43 Å. The C(3)-H(2) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one N(1) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-N(1) bond length is 1.37 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(11), one C(4), and one C(6) atom. The C(5)-C(11) bond length is 1.50 Å. The C(5)-C(6) bond length is 1.41 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(5), one C(7), and one N(2) atom. The C(6)-C(7) bond length is 1.45 Å. The C(6)-N(2) bond length is 1.37 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(6) and one H(3) atom. The C(7)-H(3) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(9) and one H(4) atom. The C(8)-C(9) bond length is 1.45 Å. The C(8)-H(4) bond length is 0.95 Å. In the ninth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one C(8), and one N(2) atom. The C(9)-C(10) bond length is 1.41 Å. The C(9)-N(2) bond length is 1.37 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(1), one C(18), and one C(9) atom. The C(10)-C(18) bond length is 1.50 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(12), one C(16), and one C(5) atom. The C(11)-C(12) bond length is 1.40 Å. The C(11)-C(16) bond length is 1.39 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(11) and one H(6) atom. The C(12)-H(6) bond length is 0.95 Å. In the thirteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(15) and one H(8) atom. The C(14)-C(15) bond length is 1.39 Å. The C(14)-H(8) bond length is 0.95 Å. In the fourteenth C site, C(15) is bonded in a trigonal planar geometry to one C(14), one C(16), and one C(17) atom. The C(15)-C(16) bond length is 1.40 Å. The C(15)-C(17) bond length is 1.51 Å. In the fifteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(11), one C(15), and one H(9) atom. The C(16)-H(9) bond length is 0.95 Å. In the sixteenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(15), one O(1), and one O(2) atom. The C(17)-O(1) bond length is 1.25 Å. The C(17)-O(2) bond length is 1.27 Å. In the seventeenth C site, C(18) is bonded in a trigonal planar geometry to one C(10), one C(19), and one C(23) atom. The C(18)-C(19) bond length is 1.40 Å. The C(18)-C(23) bond length is 1.39 Å. In the eighteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(18) and one H(10) atom. The C(19)-H(10) bond length is 0.95 Å. In the nineteenth C site, C(21) is bonded in a distorted single-bond geometry to one C(22) and one H(12) atom. The C(21)-C(22) bond length is 1.39 Å. The C(21)-H(12) bond length is 0.95 Å. In the twentieth C site, C(22) is bonded in a trigonal planar geometry to one C(21), one C(23), and one C(24) atom. The C(22)-C(23) bond length is 1.39 Å. The C(22)-C(24) bond length is 1.49 Å. In the twenty-first C site, C(23) is bonded in a distorted single-bond geometry to one C(18), one C(22), and one H(13) atom. The C(23)-H(13) bond length is 0.95 Å. In the twenty-second C site, C(24) is bonded in a distorted bent 120 degrees geometry to one C(22), one O(3), and one O(4) atom. The C(24)-O(3) bond length is 1.28 Å. The C(24)-O(4) bond length is 1.25 Å. In the twenty-third C site, C(25) is bonded in a trigonal planar geometry to one H(14), one O(5), and one O(6) atom. The C(25)-H(14) bond length is 0.95 Å. The C(25)-O(5) bond length is 1.23 Å. The C(25)-O(6) bond length is 1.27 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one C(1), one C(4), and one H(5) atom. The N(1)-H(5) bond length is 0.88 Å. In the second N site, N(2) is bonded in a water-like geometry to one C(6) and one C(9) atom. There are twelve inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one N(1) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one C(14) atom. In the eighth H site, H(9) is bonded in a single-bond geometry to one C(16) atom. In the ninth H site, H(10) is bonded in a single-bond geometry to one C(19) atom. In the tenth H site, H(12) is bonded in a single-bond geometry to one C(21) atom. In the eleventh H site, H(13) is bonded in a single-bond geometry to one C(23) atom. In the twelfth H site, H(14) is bonded in a single-bond geometry to one C(25) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Pr(1) and one C(17) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Pr(1) and one C(17) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to two equivalent Pr(1) and one C(24) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Pr(1) and one C(24) atom. In the fifth O site, O(5) is bonded in a single-bond geometry to one Pr(1) and one C(25) atom. In the sixth O site, O(6) is bonded in a distorted single-bond geometry to two equivalent Pr(1) and one C(25) atom. Linkers: 2 [O]C(=O)c1cccc(-c2c3nc(c(-c4cccc(C([O])=O)c4)c4ccc([nH]4)c(-c4cccc(C([O])=O)c4)c4nc([c]c5ccc2[nH]5)[C]=C4)C=C3)c1 ,1 [O]C(=O)c1cccc(-c2c3nc(c(-c4cccc(C([O])=O)c4)c4ccc([nH]4)c(-c4cccc(C([O])=O)c4)c4nc(c(-c5cccc(C([O])=O)c5)c5ccc2[nH]5)C=C4)C=C3)c1. Metal clusters: 2 [Pr]. The MOF has largest included sphere 5.70 A, density 1.38 g/cm3, surface area 3596.91 m2/g, accessible volume 0.33 cm3/g
|
KUXSAZ_clean
|
Fe3C36N3H36O13C18NH12 is Indium-derived structured and crystallizes in the hexagonal P6_3/mmc space group. The structure is zero-dimensional and consists of two C18NH12 clusters and two Fe3C36N3H36O13 clusters. In each C18NH12 cluster, there are four inequivalent C sites. In the first C site, C(7) is bonded in a distorted single-bond geometry to one C(2) and one H(4) atom. The C(7)-C(2) bond length is 1.38 Å. The C(7)-H(4) bond length is 0.93 Å. In the second C site, C(9) is bonded in a distorted single-bond geometry to one C(2) and one H(6) atom. The C(9)-C(2) bond length is 1.39 Å. The C(9)-H(6) bond length is 0.93 Å. In the third C site, C(2) is bonded in a 5-coordinate geometry to one C(3), two equivalent C(7), and two equivalent C(9) atoms. The C(2)-C(3) bond length is 1.51 Å. In the fourth C site, C(3) is bonded in a distorted linear geometry to one C(2) and one N(2) atom. The C(3)-N(2) bond length is 1.21 Å. N(2) is bonded in a trigonal planar geometry to three equivalent C(3) atoms. There are two inequivalent H sites. In the first H site, H(6) is bonded in a single-bond geometry to one C(9) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In each Fe3C36N3H36O13 cluster, Fe(1) is bonded to one N(1), one O(2), and four equivalent O(1) atoms to form corner-sharing FeNO5 octahedra. The corner-sharing octahedral tilt angles are 60°. The Fe(1)-N(1) bond length is 2.13 Å. The Fe(1)-O(2) bond length is 1.91 Å. All Fe(1)-O(1) bond lengths are 2.03 Å. There are five inequivalent C sites. In the first C site, C(6) is bonded in a 3-coordinate geometry to one H(3) and two equivalent H(2) atoms. The C(6)-H(3) bond length is 0.93 Å. Both C(6)-H(2) bond lengths are 0.93 Å. In the second C site, C(1) is bonded in a distorted single-bond geometry to one C(5) and one H(1) atom. The C(1)-C(5) bond length is 1.35 Å. The C(1)-H(1) bond length is 0.93 Å. In the third C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(5) and two equivalent O(1) atoms. The C(4)-C(5) bond length is 1.50 Å. Both C(4)-O(1) bond lengths are 1.25 Å. In the fourth C site, C(5) is bonded in a trigonal planar geometry to one C(4) and two equivalent C(1) atoms. In the fifth C site, C(8) is bonded in a 3-coordinate geometry to one H(5) and two equivalent H(2) atoms. The C(8)-H(5) bond length is 0.93 Å. Both C(8)-H(2) bond lengths are 0.89 Å. N(1) is bonded in a 4-coordinate geometry to one Fe(1) and four equivalent H(2) atoms. All N(1)-H(2) bond lengths are 0.85 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a distorted trigonal non-coplanar geometry to one C(6), one C(8), and one N(1) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(8) atom. In the fourth H site, H(3) is bonded in a single-bond geometry to one C(6) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Fe(1) and one C(4) atom. In the second O site, O(2) is bonded in a trigonal planar geometry to three equivalent Fe(1) atoms. Linkers: 1 [C@@H]12[C@@H]3[C@@]42[C@H]1[C@H]34.[CH][C@@H]1[C@H]2[C@@]31[CH][C@H]3[CH][CH]2.[CH][C@H]1[C@@H]2[C@@]31[CH][CH][C@H]([CH]2)[CH]3.[C]N([C])[C].[CH].[CH].[CH].[CH].[CH].[NH4].[NH4].[NH4] ,1 [C@@H]12[C@@H]3[C@@]42[C@H]1[C@H]34.[CH]1[C@@H]2[CH][C@@H]3[C@@H]4[C@H]1[C@]34[CH]2.[CH][C@H]1[C@@H]2[C@@]31[C@@H]2[CH]3.[C]N([C])[C].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[CH].[NH4].[NH4].[NH4] ,1 [CH][C@@]12[CH][CH][C@H]3[C@@H]1[C@@H]2[CH]3.[CH][C@@H]1[C@H]2[C@]31[CH][CH][C@@H]([CH]2)[CH]3.[CH][C@@H]1[C@H]2[C@]1([C@H]2[CH])[CH].[C]N([C])[C].[CH].[CH].[CH].[NH4].[NH4].[NH4] ,6 [O]C(=O)c1ccc(C([O])=O)cc1. Metal clusters: 2 [C]1O[Fe]23O[C]O[Fe]45(O1)O[C]O[Fe](O[C]O2)(O[C]O3)(O[C]O4)O5. RCSR code: acs. The MOF has largest included sphere 8.82 A, density 1.04 g/cm3, surface area 3553.91 m2/g, accessible volume 0.56 cm3/g
|
XILDUT_clean
|
(NaZnC12(OCl)6)2CH2CO crystallizes in the monoclinic C2/c space group. The structure consists of four acetylene-water molecules inside a NaZnC12(OCl)6 framework. In the NaZnC12(OCl)6 framework, Na(1) is bonded in a 4-coordinate geometry to one O(2), one O(3), and two equivalent O(5) atoms. The Na(1)-O(2) bond length is 2.31 Å. The Na(1)-O(3) bond length is 2.49 Å. There is one shorter (2.36 Å) and one longer (2.41 Å) Na(1)-O(5) bond length. Zn(1) is bonded in a distorted trigonal non-coplanar geometry to one O(1), one O(3), and one O(6) atom. The Zn(1)-O(1) bond length is 1.96 Å. The Zn(1)-O(3) bond length is 1.98 Å. The Zn(1)-O(6) bond length is 1.93 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.53 Å. The C(1)-O(1) bond length is 1.28 Å. The C(1)-O(2) bond length is 1.21 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(7) bond length is 1.39 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one Cl(1) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-Cl(1) bond length is 1.73 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one Cl(2) atom. The C(4)-C(5) bond length is 1.38 Å. The C(4)-Cl(2) bond length is 1.73 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(8) atom. The C(5)-C(6) bond length is 1.40 Å. The C(5)-C(8) bond length is 1.51 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one Cl(4) atom. The C(6)-C(7) bond length is 1.38 Å. The C(6)-Cl(4) bond length is 1.73 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(2), one C(6), and one Cl(3) atom. The C(7)-Cl(3) bond length is 1.74 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.26 Å. The C(8)-O(4) bond length is 1.21 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(10), one O(5), and one O(6) atom. The C(9)-C(10) bond length is 1.53 Å. The C(9)-O(5) bond length is 1.22 Å. The C(9)-O(6) bond length is 1.28 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(12), and one C(9) atom. The C(10)-C(11) bond length is 1.37 Å. The C(10)-C(12) bond length is 1.40 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one Cl(5) atom. The C(11)-C(12) bond length is 1.41 Å. The C(11)-Cl(5) bond length is 1.73 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(10), one C(11), and one Cl(6) atom. The C(12)-Cl(6) bond length is 1.73 Å. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Na(1) and one C(1) atom. In the third O site, O(3) is bonded in a 3-coordinate geometry to one Na(1), one Zn(1), and one C(8) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth O site, O(5) is bonded in a 3-coordinate geometry to two equivalent Na(1) and one C(9) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(9) atom. There are six inequivalent Cl sites. In the first Cl site, Cl(1) is bonded in a single-bond geometry to one C(3) atom. In the second Cl site, Cl(2) is bonded in a single-bond geometry to one C(4) atom. In the third Cl site, Cl(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth Cl site, Cl(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth Cl site, Cl(5) is bonded in a single-bond geometry to one C(11) atom. In the sixth Cl site, Cl(6) is bonded in a single-bond geometry to one C(12) atom. Linkers: 6 [O]C(=O)c1c(Cl)c(Cl)c(C([O])=O)c(Cl)c1Cl. Metal clusters: 2 O.O=[C]O[Zn](O[C]O[Na])O[C]=O.O=[C]O[Zn](O[C]O[Na])O[C]=O. RCSR code: pcu. The MOF has largest included sphere 5.33 A, density 1.33 g/cm3, surface area 3755.29 m2/g, accessible volume 0.37 cm3/g
|
HAWVOS_clean
|
ErC12H4(SO4)2 crystallizes in the monoclinic P2_1/c space group. Er(1) is bonded in a 8-coordinate geometry to one O(1), one O(2), one O(3), one O(4), one O(5), one O(6), one O(7), and one O(8) atom. The Er(1)-O(1) bond length is 2.32 Å. The Er(1)-O(2) bond length is 2.25 Å. The Er(1)-O(3) bond length is 2.31 Å. The Er(1)-O(4) bond length is 2.30 Å. The Er(1)-O(5) bond length is 2.52 Å. The Er(1)-O(6) bond length is 2.35 Å. The Er(1)-O(7) bond length is 2.39 Å. The Er(1)-O(8) bond length is 2.43 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(5), and one S(1) atom. The C(1)-C(2) bond length is 1.37 Å. The C(1)-C(5) bond length is 1.50 Å. The C(1)-S(1) bond length is 1.70 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1) and one H(1) atom. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(4) and one H(2) atom. The C(3)-C(4) bond length is 1.36 Å. The C(3)-H(2) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(6), and one S(1) atom. The C(4)-C(6) bond length is 1.49 Å. The C(4)-S(1) bond length is 1.71 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(5)-O(1) bond length is 1.26 Å. The C(5)-O(2) bond length is 1.26 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(3), and one O(4) atom. The C(6)-O(3) bond length is 1.26 Å. The C(6)-O(4) bond length is 1.25 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(11), one C(8), and one S(2) atom. The C(7)-C(11) bond length is 1.49 Å. The C(7)-C(8) bond length is 1.37 Å. The C(7)-S(2) bond length is 1.72 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(7) and one H(3) atom. The C(8)-H(3) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(10) and one H(4) atom. The C(9)-C(10) bond length is 1.36 Å. The C(9)-H(4) bond length is 0.93 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(12), one C(9), and one S(2) atom. The C(10)-C(12) bond length is 1.47 Å. The C(10)-S(2) bond length is 1.74 Å. In the eleventh C site, C(11) is bonded in a bent 120 degrees geometry to one C(7), one O(5), and one O(6) atom. The C(11)-O(5) bond length is 1.25 Å. The C(11)-O(6) bond length is 1.26 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(10), one O(7), and one O(8) atom. The C(12)-O(7) bond length is 1.26 Å. The C(12)-O(8) bond length is 1.27 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(8) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(9) atom. There are two inequivalent S sites. In the first S site, S(1) is bonded in an L-shaped geometry to one C(1) and one C(4) atom. In the second S site, S(2) is bonded in an L-shaped geometry to one C(10) and one C(7) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Er(1) and one C(5) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Er(1) and one C(5) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Er(1) and one C(6) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Er(1) and one C(6) atom. In the fifth O site, O(5) is bonded in a distorted L-shaped geometry to one Er(1) and one C(11) atom. In the sixth O site, O(6) is bonded in an L-shaped geometry to one Er(1) and one C(11) atom. In the seventh O site, O(7) is bonded in an L-shaped geometry to one Er(1) and one C(12) atom. In the eighth O site, O(8) is bonded in a distorted L-shaped geometry to one Er(1) and one C(12) atom. Linkers: 8 [O]C(=O)c1ccc(C([O])=O)s1. Metal clusters: 2 O=[C]O[Er]123(O[C]=O)O[C]O[Er](O[C]=O)(O[C]=O)(O[C]O1)(O[C]O2)O[C]O3. RCSR code: bcu. The MOF has largest included sphere 5.41 A, density 1.63 g/cm3, surface area 3016.05 m2/g, accessible volume 0.29 cm3/g
|
IKOPIJ_clean
|
Cu3H10(C15O8)2(CH)2 crystallizes in the monoclinic C2/c space group. The structure consists of eight 02329_fluka molecules inside a Cu3H10(C15O8)2 framework. In the Cu3H10(C15O8)2 framework, there are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a distorted rectangular see-saw-like geometry to one O(1), one O(2), one O(3), and one O(4) atom. The Cu(1)-O(1) bond length is 1.98 Å. The Cu(1)-O(2) bond length is 1.99 Å. The Cu(1)-O(3) bond length is 1.97 Å. The Cu(1)-O(4) bond length is 1.96 Å. In the second Cu site, Cu(2) is bonded in a square co-planar geometry to two equivalent O(6) and two equivalent O(7) atoms. Both Cu(2)-O(6) bond lengths are 1.95 Å. Both Cu(2)-O(7) bond lengths are 1.87 Å. There are fifteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-C(7) bond length is 1.42 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.43 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(8) atom. The C(4)-C(5) bond length is 1.40 Å. The C(4)-C(8) bond length is 1.48 Å. In the fifth C site, C(5) is bonded in a single-bond geometry to one C(4), one C(6), and one H(2) atom. The C(5)-C(6) bond length is 1.40 Å. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one C(9) atom. The C(6)-C(7) bond length is 1.37 Å. The C(6)-C(9) bond length is 1.49 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2), one C(6), and one H(3) atom. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a bent 120 degrees geometry to one C(4), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.23 Å. The C(8)-O(4) bond length is 1.29 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(14), and one C(6) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-C(14) bond length is 1.38 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(9) and one H(4) atom. The C(10)-H(4) bond length is 0.93 Å. In the eleventh C site, C(12) is bonded in a distorted single-bond geometry to one C(13) and one H(6) atom. The C(12)-C(13) bond length is 1.40 Å. The C(12)-H(6) bond length is 0.93 Å. In the twelfth C site, C(13) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(16) atom. The C(13)-C(14) bond length is 1.40 Å. The C(13)-C(16) bond length is 1.49 Å. In the thirteenth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one C(9) atom. The C(14)-C(15) bond length is 1.48 Å. In the fourteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one C(14), one O(5), and one O(6) atom. The C(15)-O(5) bond length is 1.23 Å. The C(15)-O(6) bond length is 1.30 Å. In the fifteenth C site, C(16) is bonded in a distorted bent 120 degrees geometry to one C(13), one O(7), and one O(8) atom. The C(16)-O(7) bond length is 1.35 Å. The C(16)-O(8) bond length is 1.25 Å. There are five inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. There are eight inequivalent O sites. In the first O site, O(3) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(8) atom. In the second O site, O(1) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the third O site, O(2) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(1) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(8) atom. In the fifth O site, O(5) is bonded in a single-bond geometry to one C(15) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(15) atom. In the seventh O site, O(7) is bonded in a distorted bent 120 degrees geometry to one Cu(2) and one C(16) atom. In the eighth O site, O(8) is bonded in a single-bond geometry to one C(16) atom. Linkers: 8 [O]C(=O)c1cc(C([O])=O)cc(-c2cccc(C([O])=O)c2C([O])=O)c1. Metal clusters: 4 [C]1O[Cu]234O[C]O[Cu]2(O1)(O[C]O3)O[C]O4 ,4 O=[C]O[Cu](O[C]=O)(O[C]=O)O[C]=O. The MOF has largest included sphere 5.91 A, density 1.12 g/cm3, surface area 3840.37 m2/g, accessible volume 0.57 cm3/g
|
XEGKOL_clean
|
GdC23N7H8O18C4H3O crystallizes in the monoclinic C2/c space group. The structure consists of eight methacrolein molecules inside a GdC23N7H8O18 framework. In the GdC23N7H8O18 framework, Gd(1) is bonded in a 8-coordinate geometry to one N(7), one O(1), one O(14), one O(2), one O(3), one O(4), and two equivalent O(13) atoms. The Gd(1)-N(7) bond length is 2.65 Å. The Gd(1)-O(1) bond length is 2.41 Å. The Gd(1)-O(14) bond length is 2.42 Å. The Gd(1)-O(2) bond length is 2.37 Å. The Gd(1)-O(3) bond length is 2.41 Å. The Gd(1)-O(4) bond length is 2.46 Å. There is one shorter (2.31 Å) and one longer (2.82 Å) Gd(1)-O(13) bond length. There are twenty-three inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.24 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(7) bond length is 1.37 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.41 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(3), one C(5), and one N(1) atom. The C(4)-C(5) bond length is 1.37 Å. The C(4)-N(1) bond length is 1.49 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(8) atom. The C(5)-C(6) bond length is 1.38 Å. The C(5)-C(8) bond length is 1.52 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(5), one C(7), and one N(2) atom. The C(6)-C(7) bond length is 1.39 Å. The C(6)-N(2) bond length is 1.48 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2), one C(6), and one H(2) atom. The C(7)-H(2) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(13), one C(5), and one C(9) atom. The C(8)-C(13) bond length is 1.42 Å. The C(8)-C(9) bond length is 1.34 Å. In the ninth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one C(8), and one N(3) atom. The C(9)-C(10) bond length is 1.38 Å. The C(9)-N(3) bond length is 1.49 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(11), one C(9), and one H(3) atom. The C(10)-C(11) bond length is 1.40 Å. The C(10)-H(3) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(14) atom. The C(11)-C(12) bond length is 1.38 Å. The C(11)-C(14) bond length is 1.51 Å. In the twelfth C site, C(12) is bonded in a distorted trigonal planar geometry to one C(11), one C(13), and one H(4) atom. The C(12)-C(13) bond length is 1.37 Å. The C(12)-H(4) bond length is 0.93 Å. In the thirteenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(12), one C(8), and one N(4) atom. The C(13)-N(4) bond length is 1.46 Å. In the fourteenth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one C(11), one O(3), and one O(4) atom. The C(14)-O(3) bond length is 1.25 Å. The C(14)-O(4) bond length is 1.24 Å. In the fifteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one C(16), one O(13), and one O(14) atom. The C(15)-C(16) bond length is 1.52 Å. The C(15)-O(13) bond length is 1.25 Å. The C(15)-O(14) bond length is 1.23 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(21) atom. The C(16)-C(17) bond length is 1.36 Å. The C(16)-C(21) bond length is 1.38 Å. In the seventeenth C site, C(17) is bonded in a distorted trigonal planar geometry to one C(16), one C(18), and one H(5) atom. The C(17)-C(18) bond length is 1.40 Å. The C(17)-H(5) bond length is 0.93 Å. In the eighteenth C site, C(18) is bonded in a distorted trigonal planar geometry to one C(17), one C(19), and one N(5) atom. The C(18)-C(19) bond length is 1.35 Å. The C(18)-N(5) bond length is 1.49 Å. In the nineteenth C site, C(19) is bonded in a trigonal planar geometry to one C(18), one C(19), and one C(20) atom. The C(19)-C(19) bond length is 1.53 Å. The C(19)-C(20) bond length is 1.39 Å. In the twentieth C site, C(20) is bonded in a distorted trigonal planar geometry to one C(19), one C(21), and one N(6) atom. The C(20)-C(21) bond length is 1.41 Å. The C(20)-N(6) bond length is 1.45 Å. In the twenty-first C site, C(21) is bonded in a distorted trigonal planar geometry to one C(16), one C(20), and one H(6) atom. The C(21)-H(6) bond length is 0.93 Å. In the twenty-second C site, C(22) is bonded in a distorted bent 120 degrees geometry to one N(7) and one H(7) atom. The C(22)-N(7) bond length is 1.35 Å. The C(22)-H(7) bond length is 0.93 Å. In the twenty-third C site, C(26) is bonded in a distorted bent 120 degrees geometry to one N(7) and one H(10) atom. The C(26)-N(7) bond length is 1.33 Å. The C(26)-H(10) bond length is 0.93 Å. There are seven inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one C(4), one O(5), and one O(6) atom. The N(1)-O(5) bond length is 1.21 Å. The N(1)-O(6) bond length is 1.20 Å. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(6), one O(7), and one O(8) atom. The N(2)-O(7) bond length is 1.24 Å. The N(2)-O(8) bond length is 1.21 Å. In the third N site, N(3) is bonded in a trigonal planar geometry to one C(9), one O(10), and one O(9) atom. The N(3)-O(10) bond length is 1.22 Å. The N(3)-O(9) bond length is 1.24 Å. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one C(13), one O(11), and one O(12) atom. The N(4)-O(11) bond length is 1.23 Å. The N(4)-O(12) bond length is 1.23 Å. In the fifth N site, N(5) is bonded in a trigonal planar geometry to one C(18), one O(15), and one O(16) atom. The N(5)-O(15) bond length is 1.19 Å. The N(5)-O(16) bond length is 1.21 Å. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one C(20), one O(17), and one O(18) atom. The N(6)-O(17) bond length is 1.24 Å. The N(6)-O(18) bond length is 1.12 Å. In the seventh N site, N(7) is bonded in a distorted bent 120 degrees geometry to one Gd(1), one C(22), and one C(26) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(7) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(10) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(12) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(17) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(21) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(22) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(26) atom. There are eighteen inequivalent O sites. In the first O site, O(17) is bonded in a single-bond geometry to one N(6) atom. In the second O site, O(15) is bonded in a single-bond geometry to one N(5) atom. In the third O site, O(18) is bonded in a single-bond geometry to one N(6) atom. In the fourth O site, O(10) is bonded in a single-bond geometry to one N(3) atom. In the fifth O site, O(11) is bonded in a single-bond geometry to one N(4) atom. In the sixth O site, O(14) is bonded in a distorted water-like geometry to one Gd(1) and one C(15) atom. In the seventh O site, O(12) is bonded in a single-bond geometry to one N(4) atom. In the eighth O site, O(13) is bonded in a 2-coordinate geometry to two equivalent Gd(1) and one C(15) atom. In the ninth O site, O(8) is bonded in a single-bond geometry to one N(2) atom. In the tenth O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Gd(1) and one C(1) atom. In the eleventh O site, O(2) is bonded in a 2-coordinate geometry to one Gd(1) and one C(1) atom. In the twelfth O site, O(3) is bonded in a distorted L-shaped geometry to one Gd(1) and one C(14) atom. In the thirteenth O site, O(4) is bonded in a distorted single-bond geometry to one Gd(1) and one C(14) atom. In the fourteenth O site, O(5) is bonded in a single-bond geometry to one N(1) atom. In the fifteenth O site, O(6) is bonded in a single-bond geometry to one N(1) atom. In the sixteenth O site, O(7) is bonded in a single-bond geometry to one N(2) atom. In the seventeenth O site, O(9) is bonded in a single-bond geometry to one N(3) atom. In the eighteenth O site, O(16) is bonded in a single-bond geometry to one N(5) atom. Linkers: 6 [O]C(=O)c1cc([N+](=O)[O-])c(-c2c([N+](=O)[O-])cc(C([O])=O)cc2[N+](=O)[O-])c([N+](=O)[O-])c1. Metal clusters: 2 [C]1O[Gd]234(O1)O[C]O[Gd]1(O[C]O1)(O[C]O2)(O[C]O3)O[C]O4. RCSR code: pcu. The MOF has largest included sphere 8.26 A, density 1.12 g/cm3, surface area 3728.74 m2/g, accessible volume 0.55 cm3/g
|
CIFJAE_clean
|
MnC7H3O4CH crystallizes in the monoclinic C2/c space group. The structure consists of eight 02329_fluka molecules inside a MnC7H3O4 framework. In the MnC7H3O4 framework, Mn(1) is bonded in a 5-coordinate geometry to one O(2), one O(3), one O(4), and two equivalent O(1) atoms. The Mn(1)-O(2) bond length is 2.18 Å. The Mn(1)-O(3) bond length is 2.05 Å. The Mn(1)-O(4) bond length is 2.07 Å. There is one shorter (2.17 Å) and one longer (2.61 Å) Mn(1)-O(1) bond length. There are seven inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(7) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.37 Å. The C(1)-C(7) bond length is 1.50 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(3), and one H(1) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.38 Å. The C(3)-C(8) bond length is 1.50 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3) and one H(2) atom. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(6) is bonded in a distorted single-bond geometry to one C(1) and one H(4) atom. The C(6)-H(4) bond length is 0.93 Å. In the sixth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(1), one O(1), and one O(2) atom. The C(7)-O(1) bond length is 1.26 Å. The C(7)-O(2) bond length is 1.24 Å. In the seventh C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.23 Å. The C(8)-O(4) bond length is 1.24 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(4) is bonded in a single-bond geometry to one C(6) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to two equivalent Mn(1) and one C(7) atom. In the second O site, O(2) is bonded in a distorted water-like geometry to one Mn(1) and one C(7) atom. In the third O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Mn(1) and one C(8) atom. In the fourth O site, O(3) is bonded in a linear geometry to one Mn(1) and one C(8) atom. Linkers: 4 [O]C(=O)c1cccc(C([O])=O)c1. Metal clusters: 4 [Mn]. The MOF has largest included sphere 5.81 A, density 1.17 g/cm3, surface area 3745.66 m2/g, accessible volume 0.42 cm3/g
|
BOXFOK_clean
|
Dy4C96H56O17(CH3)16 crystallizes in the cubic Fm-3c space group. The structure consists of three hundred and eighty-four 02329_fluka molecules inside a Dy4C96H56O17 framework. In the Dy4C96H56O17 framework, Dy(1) is bonded in a 7-coordinate geometry to one O(3), two equivalent O(2), and four equivalent O(1) atoms. The Dy(1)-O(3) bond length is 2.19 Å. Both Dy(1)-O(2) bond lengths are 2.51 Å. There are two shorter (2.18 Å) and two longer (2.41 Å) Dy(1)-O(1) bond lengths. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.31 Å. The C(1)-O(2) bond length is 1.22 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(7) bond length is 1.38 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-H(1) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(8) atom. The C(4)-C(5) bond length is 1.41 Å. The C(4)-C(8) bond length is 1.50 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(10), one C(4), and one C(6) atom. The C(5)-C(10) bond length is 1.49 Å. The C(5)-C(6) bond length is 1.40 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(5), one C(7), and one H(2) atom. The C(6)-C(7) bond length is 1.38 Å. The C(6)-H(2) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a distorted trigonal planar geometry to one C(2), one C(6), and one H(3) atom. The C(7)-H(3) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a tetrahedral geometry to one C(11), one C(13), one C(4), and one C(9) atom. The C(8)-C(11) bond length is 1.55 Å. The C(8)-C(13) bond length is 1.56 Å. The C(8)-C(9) bond length is 1.52 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(8) and two equivalent C(10) atoms. There is one shorter (1.39 Å) and one longer (1.42 Å) C(9)-C(10) bond length. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(5) and two equivalent C(9) atoms. In the eleventh C site, C(11) is bonded in a water-like geometry to one C(8) and two equivalent H(4,5) atoms. Both C(11)-H(4,5) bond lengths are 0.99 Å. In the twelfth C site, C(13) is bonded in a water-like geometry to one C(8), one H(10), and one H(9) atom. The C(13)-H(10) bond length is 0.99 Å. The C(13)-H(9) bond length is 0.99 Å. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4,5) is bonded in a single-bond geometry to one C(11) atom. In the fifth H site, H(9) is bonded in a single-bond geometry to one C(13) atom. In the sixth H site, H(10) is bonded in a single-bond geometry to one C(13) atom. There are three inequivalent O sites. In the first O site, O(3) is bonded in a square co-planar geometry to four equivalent Dy(1) atoms. In the second O site, O(1) is bonded in a distorted T-shaped geometry to two equivalent Dy(1) and one C(1) atom. In the third O site, O(2) is bonded in a distorted single-bond geometry to one Dy(1) and one C(1) atom. Linkers: 16 CCC1(CC)c2cc(C([O])=O)ccc2-c2c1c1c(c3c2C(CC)(CC)c2cc(C([O])=O)ccc2-3)C(CC)(CC)c2cc(C([O])=O)ccc2-1. Metal clusters: 2 O=[C]O[Dy]123O[C]O[Dy]4O[C]O[Dy@](O[C]=O)(O[C]O4)O[C]O[Dy@](O[C]O1)(O[C]O2)O3 ,3 O=[C]O[Dy]123O[C]O[Dy](O[C]O1)O[C]O[Dy@]1(O[C]=O)O[C]O[Dy@](O[C]O2)(O[C]O1)O3 ,1 O=[C]O[Dy]123O[C]O[Dy](O[C]O1)O[C]O[Dy@]1(O[C]=O)O[C]O[Dy@@](O[C]O2)(O[C]O1)O3. RCSR code: the. The MOF has largest included sphere 18.06 A, density 0.79 g/cm3, surface area 3881.99 m2/g, accessible volume 0.87 cm3/g
|
BOFBII_clean
|
Na(CO2)4 is Indium-like structured and crystallizes in the monoclinic C2/m space group. The structure is zero-dimensional and consists of two 71029-85-1 molecules. Na(1) is bonded in a distorted square co-planar geometry to four equivalent O(1) atoms. All Na(1)-O(1) bond lengths are 2.39 Å. C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(2) bond length is 1.25 Å. There are two inequivalent O sites. In the first O site, O(2) is bonded in a single-bond geometry to one C(1) atom. In the second O site, O(1) is bonded in a bent 150 degrees geometry to one Na(1) and one C(1) atom. Linkers: 4 [O]C(=O)C([O])=O. Metal clusters: 2 [Na]. RCSR code: sql. The MOF has largest included sphere 6.67 A, density 0.52 g/cm3, surface area 5363.45 m2/g, accessible volume 1.40 cm3/g
|
WEYQAU16_clean
|
MnH3(C3O2)3 crystallizes in the orthorhombic Pbca space group. Mn(1) is bonded in a 7-coordinate geometry to one O(1), one O(2), one O(3), one O(4), one O(6), and two equivalent O(5) atoms. The Mn(1)-O(1) bond length is 2.19 Å. The Mn(1)-O(2) bond length is 2.29 Å. The Mn(1)-O(3) bond length is 2.33 Å. The Mn(1)-O(4) bond length is 2.12 Å. The Mn(1)-O(6) bond length is 2.21 Å. There is one shorter (2.18 Å) and one longer (2.48 Å) Mn(1)-O(5) bond length. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(5), one C(8), and one H(1) atom. The C(1)-C(5) bond length is 1.34 Å. The C(1)-C(8) bond length is 1.42 Å. The C(1)-H(1) bond length is 0.94 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(1), and one O(2) atom. The C(2)-C(5) bond length is 1.49 Å. The C(2)-O(1) bond length is 1.35 Å. The C(2)-O(2) bond length is 1.19 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(5), one C(9), and one H(2) atom. The C(3)-C(5) bond length is 1.40 Å. The C(3)-C(9) bond length is 1.39 Å. The C(3)-H(2) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a bent 120 degrees geometry to one C(9), one O(3), and one O(6) atom. The C(4)-C(9) bond length is 1.53 Å. The C(4)-O(3) bond length is 1.35 Å. The C(4)-O(6) bond length is 1.24 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(1), one C(2), and one C(3) atom. In the sixth C site, C(6) is bonded in a bent 120 degrees geometry to one C(8), one O(4), and one O(5) atom. The C(6)-C(8) bond length is 1.49 Å. The C(6)-O(4) bond length is 1.36 Å. The C(6)-O(5) bond length is 1.27 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(8), one C(9), and one H(3) atom. The C(7)-C(8) bond length is 1.36 Å. The C(7)-C(9) bond length is 1.31 Å. The C(7)-H(3) bond length is 0.94 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(1), one C(6), and one C(7) atom. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(3), one C(4), and one C(7) atom. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in an L-shaped geometry to one Mn(1) and one C(2) atom. In the second O site, O(2) is bonded in an L-shaped geometry to one Mn(1) and one C(2) atom. In the third O site, O(3) is bonded in a distorted L-shaped geometry to one Mn(1) and one C(4) atom. In the fourth O site, O(4) is bonded in a water-like geometry to one Mn(1) and one C(6) atom. In the fifth O site, O(5) is bonded in a 3-coordinate geometry to two equivalent Mn(1) and one C(6) atom. In the sixth O site, O(6) is bonded in an L-shaped geometry to one Mn(1) and one C(4) atom. Linkers: 8 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 4 [C]1O[Mn]23(O1)(O[C]O2)O[C]O[Mn]12(O[C]O1)(O[C]O2)O[C]O3. RCSR code: pyr. The MOF has largest included sphere 4.04 A, density 1.31 g/cm3, surface area 3472.12 m2/g, accessible volume 0.44 cm3/g
|
HOMRIL_clean
|
CuH16(CN)12(CH2)4 is Indium-derived structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of sixteen 02329_fluka molecules and four CuH16(CN)12 clusters. In each CuH16(CN)12 cluster, Cu(1) is bonded in a rectangular see-saw-like geometry to one N(1), one N(10), one N(6), and one N(7) atom. The Cu(1)-N(1) bond length is 2.00 Å. The Cu(1)-N(10) bond length is 2.01 Å. The Cu(1)-N(6) bond length is 1.99 Å. The Cu(1)-N(7) bond length is 2.00 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one N(1), one N(3), and one H(1) atom. The C(1)-N(1) bond length is 1.31 Å. The C(1)-N(3) bond length is 1.35 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one N(1), one N(2), and one H(2) atom. The C(2)-N(1) bond length is 1.36 Å. The C(2)-N(2) bond length is 1.36 Å. The C(2)-H(2) bond length is 0.93 Å. In the third C site, C(3) is bonded in a 3-coordinate geometry to one N(3) and two equivalent H(3,4) atoms. The C(3)-N(3) bond length is 1.50 Å. Both C(3)-H(3,4) bond lengths are 0.97 Å. In the fourth C site, C(6) is bonded in a 3-coordinate geometry to one N(5), one H(10), and one H(9) atom. The C(6)-N(5) bond length is 1.43 Å. The C(6)-H(10) bond length is 0.97 Å. The C(6)-H(9) bond length is 0.97 Å. In the fifth C site, C(7) is bonded in a trigonal planar geometry to one N(5), one N(6), and one H(11) atom. The C(7)-N(5) bond length is 1.34 Å. The C(7)-N(6) bond length is 1.34 Å. The C(7)-H(11) bond length is 0.93 Å. In the sixth C site, C(8) is bonded in a trigonal planar geometry to one N(4), one N(6), and one H(12) atom. The C(8)-N(4) bond length is 1.33 Å. The C(8)-N(6) bond length is 1.34 Å. The C(8)-H(12) bond length is 0.93 Å. In the seventh C site, C(9) is bonded in a trigonal planar geometry to one N(7), one N(9), and one H(13) atom. The C(9)-N(7) bond length is 1.40 Å. The C(9)-N(9) bond length is 1.30 Å. The C(9)-H(13) bond length is 0.93 Å. In the eighth C site, C(10) is bonded in a trigonal planar geometry to one N(7), one N(8), and one H(14) atom. The C(10)-N(7) bond length is 1.36 Å. The C(10)-N(8) bond length is 1.30 Å. The C(10)-H(14) bond length is 0.93 Å. In the ninth C site, C(11) is bonded in a 3-coordinate geometry to one N(8), one H(15), and one H(16) atom. The C(11)-N(8) bond length is 1.52 Å. The C(11)-H(15) bond length is 0.97 Å. The C(11)-H(16) bond length is 0.97 Å. In the tenth C site, C(13) is bonded in a trigonal planar geometry to one N(10), one N(11), and one H(19) atom. The C(13)-N(10) bond length is 1.38 Å. The C(13)-N(11) bond length is 1.31 Å. The C(13)-H(19) bond length is 0.93 Å. In the eleventh C site, C(14) is bonded in a trigonal planar geometry to one N(10), one N(12), and one H(20) atom. The C(14)-N(10) bond length is 1.30 Å. The C(14)-N(12) bond length is 1.28 Å. The C(14)-H(20) bond length is 0.93 Å. In the twelfth C site, C(15) is bonded in a 3-coordinate geometry to one N(12) and two equivalent H(21,22) atoms. The C(15)-N(12) bond length is 1.46 Å. Both C(15)-H(21,22) bond lengths are 0.97 Å. There are twelve inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cu(1), one C(1), and one C(2) atom. In the second N site, N(2) is bonded in a water-like geometry to one C(2) and one N(3) atom. The N(2)-N(3) bond length is 1.33 Å. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one C(1), one C(3), and one N(2) atom. In the fourth N site, N(4) is bonded in a water-like geometry to one C(8) and one N(5) atom. The N(4)-N(5) bond length is 1.38 Å. In the fifth N site, N(5) is bonded in a 2-coordinate geometry to one C(6), one C(7), and one N(4) atom. In the sixth N site, N(6) is bonded in a distorted trigonal planar geometry to one Cu(1), one C(7), and one C(8) atom. In the seventh N site, N(7) is bonded in a trigonal planar geometry to one Cu(1), one C(10), and one C(9) atom. In the eighth N site, N(8) is bonded in a distorted bent 120 degrees geometry to one C(10), one C(11), and one N(9) atom. The N(8)-N(9) bond length is 1.32 Å. In the ninth N site, N(9) is bonded in a distorted water-like geometry to one C(9) and one N(8) atom. In the tenth N site, N(10) is bonded in a distorted trigonal planar geometry to one Cu(1), one C(13), and one C(14) atom. In the eleventh N site, N(11) is bonded in a distorted water-like geometry to one C(13) and one N(12) atom. The N(11)-N(12) bond length is 1.36 Å. In the twelfth N site, N(12) is bonded in a 3-coordinate geometry to one C(14), one C(15), and one N(11) atom. There are fourteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3,4) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(9) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(10) is bonded in a single-bond geometry to one C(6) atom. In the sixth H site, H(11) is bonded in a single-bond geometry to one C(7) atom. In the seventh H site, H(12) is bonded in a single-bond geometry to one C(8) atom. In the eighth H site, H(13) is bonded in a single-bond geometry to one C(9) atom. In the ninth H site, H(14) is bonded in a single-bond geometry to one C(10) atom. In the tenth H site, H(15) is bonded in a single-bond geometry to one C(11) atom. In the eleventh H site, H(16) is bonded in a single-bond geometry to one C(11) atom. In the twelfth H site, H(19) is bonded in a single-bond geometry to one C(13) atom. In the thirteenth H site, H(20) is bonded in a single-bond geometry to one C(14) atom. In the fourteenth H site, H(21,22) is bonded in a single-bond geometry to one C(15) atom. Linkers: 1 [CH]1N=C[N]N1CCCCN1[CH]N=C[N]1 ,7 [CH]1N=C[N]N1CCCCn1cncn1. Metal clusters: 4 [Cu]. The MOF has largest included sphere 8.33 A, density 0.83 g/cm3, surface area 5363.12 m2/g, accessible volume 0.71 cm3/g
|
SEYFEI_clean
|
LuC5PNH7O7 crystallizes in the orthorhombic P2_12_12_1 space group. Lu(1) is bonded in a 6-coordinate geometry to one N(1), one O(1), one O(2), one O(4), one O(6), and one O(7) atom. The Lu(1)-N(1) bond length is 2.63 Å. The Lu(1)-O(1) bond length is 2.28 Å. The Lu(1)-O(2) bond length is 2.31 Å. The Lu(1)-O(4) bond length is 2.35 Å. The Lu(1)-O(6) bond length is 2.22 Å. The Lu(1)-O(7) bond length is 2.24 Å. There are five inequivalent C sites. In the first C site, C(1) is bonded in a distorted tetrahedral geometry to one P(1); one N(1); and two equivalent H(1,2) atoms. The C(1)-P(1) bond length is 1.81 Å. The C(1)-N(1) bond length is 1.48 Å. Both C(1)-H(1,2) bond lengths are 0.97 Å. In the second C site, C(2) is bonded in a 3-coordinate geometry to one N(1) and two equivalent H(3,4) atoms. The C(2)-N(1) bond length is 1.47 Å. Both C(2)-H(3,4) bond lengths are 0.97 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(3)-O(1) bond length is 1.27 Å. The C(3)-O(2) bond length is 1.25 Å. In the fourth C site, C(4) is bonded in a 3-coordinate geometry to one N(1) and two equivalent H(5,6) atoms. The C(4)-N(1) bond length is 1.48 Å. Both C(4)-H(5,6) bond lengths are 0.97 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(5)-O(3) bond length is 1.26 Å. The C(5)-O(4) bond length is 1.27 Å. P(1) is bonded in a distorted tetrahedral geometry to one C(1), one O(5), one O(6), and one O(7) atom. The P(1)-O(5) bond length is 1.57 Å. The P(1)-O(6) bond length is 1.50 Å. The P(1)-O(7) bond length is 1.50 Å. N(1) is bonded in a distorted trigonal non-coplanar geometry to one Lu(1), one C(1), one C(2), and one C(4) atom. There are four inequivalent H sites. In the first H site, H(1,2) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(3,4) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(5,6) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(7) is bonded in a distorted single-bond geometry to one O(3) and one O(5) atom. The H(7)-O(3) bond length is 1.68 Å. The H(7)-O(5) bond length is 0.82 Å. There are seven inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Lu(1) and one C(3) atom. In the second O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Lu(1) and one C(3) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one C(5) and one H(7) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Lu(1) and one C(5) atom. In the fifth O site, O(5) is bonded in a water-like geometry to one P(1) and one H(7) atom. In the sixth O site, O(6) is bonded in a bent 150 degrees geometry to one Lu(1) and one P(1) atom. In the seventh O site, O(7) is bonded in a distorted bent 120 degrees geometry to one Lu(1) and one P(1) atom. Linkers: 4 [O]C(=O)CN(CC([O])=O)CP([O])(=O)O. Metal clusters: 4 [Lu]. The MOF has largest included sphere 4.06 A, density 2.14 g/cm3, surface area 2544.25 m2/g, accessible volume 0.17 cm3/g
|
LELMIA01_clean
|
SrC6H2SO4 crystallizes in the monoclinic P2_1/c space group. Sr(1) is bonded in a 7-coordinate geometry to one O(3), two equivalent O(1), two equivalent O(2), and two equivalent O(4) atoms. The Sr(1)-O(3) bond length is 2.49 Å. There is one shorter (2.59 Å) and one longer (2.73 Å) Sr(1)-O(1) bond length. There is one shorter (2.43 Å) and one longer (2.72 Å) Sr(1)-O(2) bond length. There is one shorter (2.58 Å) and one longer (2.70 Å) Sr(1)-O(4) bond length. There are six inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.48 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.26 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one S(1) atom. The C(2)-C(3) bond length is 1.37 Å. The C(2)-S(1) bond length is 1.72 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(2) atom. The C(3)-H(2) bond length is 0.96 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(5) and one H(1) atom. The C(4)-C(5) bond length is 1.37 Å. The C(4)-H(1) bond length is 0.97 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one S(1) atom. The C(5)-C(6) bond length is 1.49 Å. The C(5)-S(1) bond length is 1.72 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(3), and one O(4) atom. The C(6)-O(3) bond length is 1.26 Å. The C(6)-O(4) bond length is 1.26 Å. There are two inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. S(1) is bonded in an L-shaped geometry to one C(2) and one C(5) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to two equivalent Sr(1) and one C(1) atom. In the second O site, O(2) is bonded in a 3-coordinate geometry to two equivalent Sr(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Sr(1) and one C(6) atom. In the fourth O site, O(4) is bonded in a 3-coordinate geometry to two equivalent Sr(1) and one C(6) atom. Linkers: 4 [O]C(=O)c1ccc(C([O])=O)s1. Metal clusters: 4 [Sr]. The MOF has largest included sphere 5.76 A, density 1.48 g/cm3, surface area 3120.43 m2/g, accessible volume 0.31 cm3/g
|
ORUKET_clean
|
MgH8(C2O)8(CH)4(C4PNH2O2)2 is Indium-derived structured and crystallizes in the hexagonal P6_3/m space group. The structure is zero-dimensional and consists of twenty-four 02329_fluka molecules, four C4PNH2O2 clusters, and six MgH8(C2O)8 clusters. In each C4PNH2O2 cluster, there are four inequivalent C sites. In the first C site, C(4) is bonded in a distorted single-bond geometry to one C(5) and one H(2) atom. The C(4)-C(5) bond length is 1.40 Å. The C(4)-H(2) bond length is 0.93 Å. In the second C site, C(5) is bonded in a distorted trigonal planar geometry to one C(4), one C(6), and one O(1) atom. The C(5)-C(6) bond length is 1.40 Å. The C(5)-O(1) bond length is 1.39 Å. In the third C site, C(6) is bonded in a distorted single-bond geometry to one C(5) and one H(3) atom. The C(6)-H(3) bond length is 0.93 Å. In the fourth C site, C(12) is bonded in a distorted single-bond geometry to one O(2) atom. The C(12)-O(2) bond length is 1.43 Å. P(1) is bonded to two equivalent N(1), one O(1), and one O(2) atom to form corner-sharing PN2O2 tetrahedra. Both P(1)-N(1) bond lengths are 1.58 Å. The P(1)-O(1) bond length is 1.59 Å. The P(1)-O(2) bond length is 1.58 Å. N(1) is bonded in a bent 120 degrees geometry to two equivalent P(1) atoms. There are two inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(3) is bonded in a single-bond geometry to one C(6) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one C(5) and one P(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one C(12) and one P(1) atom. In each MgH8(C2O)8 cluster, Mg(1) is bonded in a rectangular see-saw-like geometry to two equivalent O(4) and two equivalent O(6) atoms. Both Mg(1)-O(4) bond lengths are 2.08 Å. Both Mg(1)-O(6) bond lengths are 2.05 Å. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(3), and one O(4) atom. The C(1)-C(2) bond length is 1.48 Å. The C(1)-O(3) bond length is 1.25 Å. The C(1)-O(4) bond length is 1.28 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.41 Å. The C(2)-C(7) bond length is 1.41 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(7) is bonded in a distorted single-bond geometry to one C(2) and one H(4) atom. The C(7)-H(4) bond length is 0.93 Å. In the fifth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(9), one O(5), and one O(6) atom. The C(8)-C(9) bond length is 1.53 Å. The C(8)-O(5) bond length is 1.25 Å. The C(8)-O(6) bond length is 1.22 Å. In the sixth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(14), and one C(8) atom. The C(9)-C(10) bond length is 1.36 Å. The C(9)-C(14) bond length is 1.35 Å. In the seventh C site, C(10) is bonded in a distorted single-bond geometry to one C(9) and one H(5) atom. The C(10)-H(5) bond length is 0.93 Å. In the eighth C site, C(14) is bonded in a distorted single-bond geometry to one C(9) and one H(8) atom. The C(14)-H(8) bond length is 0.93 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(10) atom. In the fourth H site, H(8) is bonded in a single-bond geometry to one C(14) atom. There are four inequivalent O sites. In the first O site, O(3) is bonded in a single-bond geometry to one C(1) atom. In the second O site, O(4) is bonded in a bent 120 degrees geometry to one Mg(1) and one C(1) atom. In the third O site, O(5) is bonded in a single-bond geometry to one C(8) atom. In the fourth O site, O(6) is bonded in a distorted bent 150 degrees geometry to one Mg(1) and one C(8) atom. Linkers: 4 [O]C(=O)c1ccc(O[P]2(Oc3ccc(C([O])=O)cc3)[N][P](Oc3ccc(C([O])=O)cc3)(Oc3ccc(C([O])=O)cc3)[N][P](Oc3ccc(C([O])=O)cc3)(Oc3ccc(C([O])=O)cc3)[N]2)cc1. Metal clusters: 6 O=[C]O[Mg]O[C]=O.[O][C]=O.[O][C]=O. RCSR code: stp. The MOF has largest included sphere 11.73 A, density 0.76 g/cm3, surface area 4848.77 m2/g, accessible volume 0.80 cm3/g
|
XAVQIU01_clean
|
CoH2(C3O2)2 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Co sites. In the first Co site, Co(1) is bonded in a distorted rectangular see-saw-like geometry to one O(1), one O(4), one O(5), and one O(6) atom. The Co(1)-O(1) bond length is 2.03 Å. The Co(1)-O(4) bond length is 2.05 Å. The Co(1)-O(5) bond length is 2.23 Å. The Co(1)-O(6) bond length is 2.11 Å. In the second Co site, Co(2) is bonded in a square co-planar geometry to two equivalent O(2) and two equivalent O(3) atoms. Both Co(2)-O(2) bond lengths are 2.03 Å. Both Co(2)-O(3) bond lengths are 2.04 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.26 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(7) bond length is 1.39 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(8) atom. The C(4)-C(5) bond length is 1.40 Å. The C(4)-C(8) bond length is 1.50 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4), one C(6), and one H(2) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one C(9) atom. The C(6)-C(7) bond length is 1.39 Å. The C(6)-C(9) bond length is 1.50 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2), one C(6), and one H(3) atom. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.26 Å. The C(8)-O(4) bond length is 1.25 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(6), one O(5), and one O(6) atom. The C(9)-O(5) bond length is 1.25 Å. The C(9)-O(6) bond length is 1.26 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Co(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Co(2) and one C(1) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Co(2) and one C(8) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Co(1) and one C(8) atom. In the fifth O site, O(5) is bonded in a distorted L-shaped geometry to one Co(1) and one C(9) atom. In the sixth O site, O(6) is bonded in a distorted L-shaped geometry to one Co(1) and one C(9) atom. Linkers: 4 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 2 [C]1O[Co]2(O1)O[C]O[Co]1(O[C]O2)O[C]O[Co]2(O[C]O2)O[C]O1. RCSR code: rtl. The MOF has largest included sphere 4.22 A, density 1.17 g/cm3, surface area 3532.46 m2/g, accessible volume 0.44 cm3/g
|
ODAJAG_clean
|
NdC5H4O8 crystallizes in the monoclinic P2_1/c space group. Nd(1) is bonded in a 8-coordinate geometry to one O(1), one O(2), one O(3), one O(4), one O(5), one O(6), one O(7), and one O(8) atom. The Nd(1)-O(1) bond length is 2.49 Å. The Nd(1)-O(2) bond length is 2.52 Å. The Nd(1)-O(3) bond length is 2.64 Å. The Nd(1)-O(4) bond length is 2.55 Å. The Nd(1)-O(5) bond length is 2.46 Å. The Nd(1)-O(6) bond length is 2.47 Å. The Nd(1)-O(7) bond length is 2.53 Å. The Nd(1)-O(8) bond length is 2.59 Å. There are five inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted water-like geometry to one H(3) and one O(3) atom. The C(2)-H(3) bond length is 0.98 Å. The C(2)-O(3) bond length is 1.44 Å. In the third C site, C(3) is bonded in a distorted water-like geometry to one H(4) and one O(4) atom. The C(3)-H(4) bond length is 0.98 Å. The C(3)-O(4) bond length is 1.45 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(4)-O(5) bond length is 1.26 Å. The C(4)-O(6) bond length is 1.25 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one O(7) and one O(8) atom. The C(5)-O(7) bond length is 1.28 Å. The C(5)-O(8) bond length is 1.26 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one O(3) atom. The H(1)-O(3) bond length is 0.82 Å. In the second H site, H(2) is bonded in a single-bond geometry to one O(4) atom. The H(2)-O(4) bond length is 0.82 Å. In the third H site, H(3) is bonded in a single-bond geometry to one C(2) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(3) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Nd(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Nd(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted water-like geometry to one Nd(1), one C(2), and one H(1) atom. In the fourth O site, O(4) is bonded in a distorted water-like geometry to one Nd(1), one C(3), and one H(2) atom. In the fifth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Nd(1) and one C(4) atom. In the sixth O site, O(6) is bonded in a distorted single-bond geometry to one Nd(1) and one C(4) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Nd(1) and one C(5) atom. In the eighth O site, O(8) is bonded in a distorted bent 120 degrees geometry to one Nd(1) and one C(5) atom. Linkers: 2 [O]C(=O)[C@@H](O)[C@H](O)C([O])=O ,2 [O]C(=O)[C@H](O)[C@@H](O)C([O])=O ,2 [O]C(=O)C([O])=O. Metal clusters: 4 [Nd]. The MOF has largest included sphere 4.18 A, density 2.10 g/cm3, surface area 2364.73 m2/g, accessible volume 0.19 cm3/g
|
ENESUN_clean
|
CoC16H16(N6O)2 crystallizes in the orthorhombic Cmce space group. The structure consists of a CoC16H16(N6O)2 framework. There are two inequivalent Co sites. In the first Co site, Co(1) is bonded in a rectangular see-saw-like geometry to two equivalent N(1) and two equivalent N(7) atoms. Both Co(1)-N(1) bond lengths are 2.13 Å. Both Co(1)-N(7) bond lengths are 2.14 Å. In the second Co site, Co(2) is bonded in a square co-planar geometry to two equivalent N(12) and two equivalent N(6) atoms. Both Co(2)-N(12) bond lengths are 2.12 Å. Both Co(2)-N(6) bond lengths are 2.13 Å. There are sixteen inequivalent C sites. In the first C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(10), one N(7), and one H(10) atom. The C(9)-C(10) bond length is 1.38 Å. The C(9)-N(7) bond length is 1.33 Å. The C(9)-H(10) bond length is 0.93 Å. In the second C site, C(10) is bonded in a distorted trigonal planar geometry to one C(11), one C(9), and one H(11) atom. The C(10)-C(11) bond length is 1.37 Å. The C(10)-H(11) bond length is 0.93 Å. In the third C site, C(2) is bonded in a distorted trigonal planar geometry to one C(1), one C(5), and one N(5) atom. The C(2)-C(1) bond length is 1.39 Å. The C(2)-C(5) bond length is 1.39 Å. The C(2)-N(5) bond length is 1.41 Å. In the fourth C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(6), and one H(1) atom. The C(1)-N(6) bond length is 1.32 Å. The C(1)-H(1) bond length is 0.93 Å. In the fifth C site, C(15) is bonded in a distorted trigonal non-coplanar geometry to one C(14), one N(9), one H(14), and one H(15) atom. The C(15)-C(14) bond length is 1.55 Å. The C(15)-N(9) bond length is 1.44 Å. The C(15)-H(14) bond length is 0.97 Å. The C(15)-H(15) bond length is 0.97 Å. In the sixth C site, C(16) is bonded in a trigonal planar geometry to one N(12), one N(9), and one H(16) atom. The C(16)-N(12) bond length is 1.32 Å. The C(16)-N(9) bond length is 1.33 Å. The C(16)-H(16) bond length is 0.93 Å. In the seventh C site, C(11) is bonded in a distorted single-bond geometry to one C(10), one C(13), and one H(12) atom. The C(11)-C(13) bond length is 1.37 Å. The C(11)-H(12) bond length is 0.93 Å. In the eighth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(13), one N(7), and one H(13) atom. The C(12)-C(13) bond length is 1.40 Å. The C(12)-N(7) bond length is 1.35 Å. The C(12)-H(13) bond length is 0.93 Å. In the ninth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(11), one C(12), and one N(8) atom. The C(13)-N(8) bond length is 1.40 Å. In the tenth C site, C(14) is bonded in a trigonal planar geometry to one C(15), one N(8), and one O(2) atom. The C(14)-N(8) bond length is 1.34 Å. The C(14)-O(2) bond length is 1.21 Å. In the eleventh C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(4), one N(6), and one H(2) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-N(6) bond length is 1.35 Å. The C(3)-H(2) bond length is 0.93 Å. In the twelfth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(3), one C(5), and one H(3) atom. The C(4)-C(5) bond length is 1.37 Å. The C(4)-H(3) bond length is 0.93 Å. In the thirteenth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one H(6) atom. The C(5)-H(6) bond length is 0.93 Å. In the fourteenth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(7), one N(5), and one O(1) atom. The C(6)-C(7) bond length is 1.53 Å. The C(6)-N(5) bond length is 1.34 Å. The C(6)-O(1) bond length is 1.22 Å. In the fifteenth C site, C(7) is bonded in a 3-coordinate geometry to one C(6); one N(4); and two equivalent H(7,8) atoms. The C(7)-N(4) bond length is 1.47 Å. Both C(7)-H(7,8) bond lengths are 0.97 Å. In the sixteenth C site, C(8) is bonded in a trigonal planar geometry to one N(1), one N(4), and one H(9) atom. The C(8)-N(1) bond length is 1.31 Å. The C(8)-N(4) bond length is 1.34 Å. The C(8)-H(9) bond length is 0.93 Å. There are twelve inequivalent N sites. In the first N site, N(8) is bonded in a distorted trigonal planar geometry to one C(13), one C(14), and one H(5) atom. The N(8)-H(5) bond length is 0.86 Å. In the second N site, N(9) is bonded in a 2-coordinate geometry to one C(15), one C(16), and one N(10) atom. The N(9)-N(10) bond length is 1.36 Å. In the third N site, N(10) is bonded in a water-like geometry to one N(11) and one N(9) atom. The N(10)-N(11) bond length is 1.31 Å. In the fourth N site, N(11) is bonded in a water-like geometry to one N(10) and one N(12) atom. The N(11)-N(12) bond length is 1.35 Å. In the fifth N site, N(1) is bonded in a 3-coordinate geometry to one Co(1), one C(8), and one N(2) atom. The N(1)-N(2) bond length is 1.37 Å. In the sixth N site, N(2) is bonded in a water-like geometry to one N(1) and one N(3) atom. The N(2)-N(3) bond length is 1.29 Å. In the seventh N site, N(3) is bonded in a water-like geometry to one N(2) and one N(4) atom. The N(3)-N(4) bond length is 1.34 Å. In the eighth N site, N(4) is bonded in a 2-coordinate geometry to one C(7), one C(8), and one N(3) atom. In the ninth N site, N(5) is bonded in a distorted trigonal planar geometry to one C(2), one C(6), and one H(4) atom. The N(5)-H(4) bond length is 0.86 Å. In the tenth N site, N(12) is bonded in a distorted trigonal planar geometry to one Co(2), one C(16), and one N(11) atom. In the eleventh N site, N(6) is bonded in a trigonal planar geometry to one Co(2), one C(1), and one C(3) atom. In the twelfth N site, N(7) is bonded in a trigonal planar geometry to one Co(1), one C(12), and one C(9) atom. There are fifteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one N(5) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one N(8) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(5) atom. In the seventh H site, H(7,8) is bonded in a single-bond geometry to one C(7) atom. In the eighth H site, H(9) is bonded in a single-bond geometry to one C(8) atom. In the ninth H site, H(10) is bonded in a single-bond geometry to one C(9) atom. In the tenth H site, H(11) is bonded in a single-bond geometry to one C(10) atom. In the eleventh H site, H(12) is bonded in a single-bond geometry to one C(11) atom. In the twelfth H site, H(13) is bonded in a single-bond geometry to one C(12) atom. In the thirteenth H site, H(14) is bonded in a single-bond geometry to one C(15) atom. In the fourteenth H site, H(15) is bonded in a single-bond geometry to one C(15) atom. In the fifteenth H site, H(16) is bonded in a single-bond geometry to one C(16) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a single-bond geometry to one C(6) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(14) atom. Linkers: 32 O=C(Cn1cnnn1)Nc1cccnc1. Metal clusters: 16 [Co]. The MOF has largest included sphere 8.36 A, density 0.63 g/cm3, surface area 4921.45 m2/g, accessible volume 1.15 cm3/g
|
VEHJID01_clean
|
Zn2H3(C3O2)3 crystallizes in the orthorhombic P2_12_12_1 space group. There are two inequivalent Zn sites. In the first Zn site, Zn(1) is bonded in a distorted T-shaped geometry to one O(1), one O(4), and one O(5) atom. The Zn(1)-O(1) bond length is 2.09 Å. The Zn(1)-O(4) bond length is 2.08 Å. The Zn(1)-O(5) bond length is 2.10 Å. In the second Zn site, Zn(2) is bonded in a distorted trigonal non-coplanar geometry to one O(2), one O(3), and one O(6) atom. The Zn(2)-O(2) bond length is 1.94 Å. The Zn(2)-O(3) bond length is 1.96 Å. The Zn(2)-O(6) bond length is 1.94 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(9), one O(4), and one O(6) atom. The C(1)-C(9) bond length is 1.52 Å. The C(1)-O(4) bond length is 1.22 Å. The C(1)-O(6) bond length is 1.26 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(3), one C(4), and one C(7) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-C(4) bond length is 1.50 Å. The C(2)-C(7) bond length is 1.42 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(8), and one H(2) atom. The C(3)-C(8) bond length is 1.41 Å. The C(3)-H(2) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(2), and one O(5) atom. The C(4)-O(2) bond length is 1.27 Å. The C(4)-O(5) bond length is 1.26 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(8), one C(9), and one H(3) atom. The C(5)-C(8) bond length is 1.41 Å. The C(5)-C(9) bond length is 1.36 Å. The C(5)-H(3) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a bent 120 degrees geometry to one C(8), one O(1), and one O(3) atom. The C(6)-C(8) bond length is 1.49 Å. The C(6)-O(1) bond length is 1.24 Å. The C(6)-O(3) bond length is 1.27 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2), one C(9), and one H(1) atom. The C(7)-C(9) bond length is 1.38 Å. The C(7)-H(1) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(6) atom. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(7) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one C(6) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Zn(2) and one C(4) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Zn(2) and one C(6) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Zn(1) and one C(1) atom. In the fifth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(4) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Zn(2) and one C(1) atom. Linkers: 4 [O]C(=O)c1cc(C([O])=O)cc(C([O])=O)c1. Metal clusters: 4 [C]1O[Zn]2O[C]O[Zn](O1)O[C]O2. RCSR code: srs. The MOF has largest included sphere 8.78 A, density 0.77 g/cm3, surface area 3231.07 m2/g, accessible volume 1.08 cm3/g
|
YITHOA_clean
|
Ce2C8H8SO16 crystallizes in the orthorhombic P2_12_12 space group. Ce(1) is bonded in a 8-coordinate geometry to one O(1), one O(2), one O(3), one O(4), one O(5), one O(6), one O(7), and one O(8) atom. The Ce(1)-O(1) bond length is 2.62 Å. The Ce(1)-O(2) bond length is 2.57 Å. The Ce(1)-O(3) bond length is 2.46 Å. The Ce(1)-O(4) bond length is 2.47 Å. The Ce(1)-O(5) bond length is 2.53 Å. The Ce(1)-O(6) bond length is 2.64 Å. The Ce(1)-O(7) bond length is 2.52 Å. The Ce(1)-O(8) bond length is 2.48 Å. There are four inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(1)-O(3) bond length is 1.26 Å. The C(1)-O(4) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted water-like geometry to one H(3) and one O(5) atom. The C(2)-H(3) bond length is 0.98 Å. The C(2)-O(5) bond length is 1.41 Å. In the third C site, C(3) is bonded in a distorted water-like geometry to one H(4) and one O(6) atom. The C(3)-H(4) bond length is 0.98 Å. The C(3)-O(6) bond length is 1.43 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one O(7) and one O(8) atom. The C(4)-O(7) bond length is 1.26 Å. The C(4)-O(8) bond length is 1.25 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one O(5) atom. The H(1)-O(5) bond length is 0.82 Å. In the second H site, H(2) is bonded in a single-bond geometry to one O(6) atom. The H(2)-O(6) bond length is 0.82 Å. In the third H site, H(3) is bonded in a single-bond geometry to one C(2) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(3) atom. S(1) is bonded in a tetrahedral geometry to two equivalent O(1) and two equivalent O(2) atoms. Both S(1)-O(1) bond lengths are 1.47 Å. Both S(1)-O(2) bond lengths are 1.48 Å. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Ce(1) and one S(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Ce(1) and one S(1) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Ce(1) and one C(1) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Ce(1) and one C(1) atom. In the fifth O site, O(5) is bonded in a distorted water-like geometry to one Ce(1), one C(2), and one H(1) atom. In the sixth O site, O(6) is bonded in a distorted water-like geometry to one Ce(1), one C(3), and one H(2) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Ce(1) and one C(4) atom. In the eighth O site, O(8) is bonded in a distorted single-bond geometry to one Ce(1) and one C(4) atom. Linkers: 4 [O]C(=O)[C@H](O)[C@@H](O)C([O])=O. Metal clusters: 4 [Ce]. The MOF has largest included sphere 3.92 A, density 2.16 g/cm3, surface area 2444.87 m2/g, accessible volume 0.15 cm3/g
|
MEKBAH_clean
|
Tb3C27P3H29(NO7)3(CH2)6(CH)3CHO2 is Indium-derived structured and crystallizes in the triclinic P-1 space group. The structure is zero-dimensional and consists of six 02329_fluka molecules, twelve 02329_fluka molecules, two formic acid molecules, and one Tb3C27P3H29(NO7)3 cluster. In the Tb3C27P3H29(NO7)3 cluster, there are three inequivalent Tb sites. In the first Tb site, Tb(1) is bonded in a 9-coordinate geometry to one O(12), one O(15), one O(16), one O(17), one O(20), one O(21), one O(3), one O(6), and one O(7) atom. The Tb(1)-O(12) bond length is 2.30 Å. The Tb(1)-O(15) bond length is 2.38 Å. The Tb(1)-O(16) bond length is 2.48 Å. The Tb(1)-O(17) bond length is 2.59 Å. The Tb(1)-O(20) bond length is 2.48 Å. The Tb(1)-O(21) bond length is 2.42 Å. The Tb(1)-O(3) bond length is 2.39 Å. The Tb(1)-O(6) bond length is 2.45 Å. The Tb(1)-O(7) bond length is 2.51 Å. In the second Tb site, Tb(2) is bonded in a 9-coordinate geometry to one O(1), one O(12), one O(13), one O(18), one O(19), one O(22), one O(23), one O(7), and one O(9) atom. The Tb(2)-O(1) bond length is 2.41 Å. The Tb(2)-O(12) bond length is 2.53 Å. The Tb(2)-O(13) bond length is 2.45 Å. The Tb(2)-O(18) bond length is 2.52 Å. The Tb(2)-O(19) bond length is 2.57 Å. The Tb(2)-O(22) bond length is 2.53 Å. The Tb(2)-O(23) bond length is 2.43 Å. The Tb(2)-O(7) bond length is 2.31 Å. The Tb(2)-O(9) bond length is 2.38 Å. In the third Tb site, Tb(3) is bonded in a 7-coordinate geometry to one O(1), one O(10), one O(11), one O(14), one O(2), one O(3), and one O(8) atom. The Tb(3)-O(1) bond length is 2.51 Å. The Tb(3)-O(10) bond length is 2.41 Å. The Tb(3)-O(11) bond length is 2.38 Å. The Tb(3)-O(14) bond length is 2.43 Å. The Tb(3)-O(2) bond length is 2.26 Å. The Tb(3)-O(3) bond length is 2.52 Å. The Tb(3)-O(8) bond length is 2.39 Å. There are twenty-seven inequivalent C sites. In the first C site, C(1) is bonded in a distorted tetrahedral geometry to one P(1), one N(1), one H(5), and one H(6) atom. The C(1)-P(1) bond length is 1.85 Å. The C(1)-N(1) bond length is 1.48 Å. The C(1)-H(5) bond length is 0.96 Å. The C(1)-H(6) bond length is 0.96 Å. In the second C site, C(2) is bonded in a 3-coordinate geometry to one N(1), one H(7), and one H(8) atom. The C(2)-N(1) bond length is 1.49 Å. The C(2)-H(7) bond length is 0.96 Å. The C(2)-H(8) bond length is 0.96 Å. In the third C site, C(6) is bonded in a 3-coordinate geometry to one N(1), one H(14), and one H(15) atom. The C(6)-N(1) bond length is 1.51 Å. The C(6)-H(14) bond length is 0.96 Å. The C(6)-H(15) bond length is 0.96 Å. In the fourth C site, C(8) is bonded in a distorted tetrahedral geometry to one P(2), one N(2), one H(16), and one H(17) atom. The C(8)-P(2) bond length is 1.84 Å. The C(8)-N(2) bond length is 1.50 Å. The C(8)-H(16) bond length is 0.96 Å. The C(8)-H(17) bond length is 0.96 Å. In the fifth C site, C(9) is bonded in a 3-coordinate geometry to one N(2); one H(18,25); and one H(19) atom. The C(9)-N(2) bond length is 1.50 Å. The C(9)-H(18,25) bond length is 0.96 Å. The C(9)-H(19) bond length is 0.96 Å. In the sixth C site, C(13) is bonded in a 3-coordinate geometry to one N(2); one H(18,25); and one H(26) atom. The C(13)-N(2) bond length is 1.47 Å. The C(13)-H(18,25) bond length is 0.96 Å. The C(13)-H(26) bond length is 0.96 Å. In the seventh C site, C(14) is bonded in a distorted bent 120 degrees geometry to one O(10) and one O(9) atom. The C(14)-O(10) bond length is 1.27 Å. The C(14)-O(9) bond length is 1.25 Å. In the eighth C site, C(15) is bonded in a distorted tetrahedral geometry to one P(3), one N(3), one H(27), and one H(28) atom. The C(15)-P(3) bond length is 1.83 Å. The C(15)-N(3) bond length is 1.48 Å. The C(15)-H(27) bond length is 0.96 Å. The C(15)-H(28) bond length is 0.96 Å. In the ninth C site, C(16) is bonded in a 3-coordinate geometry to one N(3), one H(29), and one H(30) atom. The C(16)-N(3) bond length is 1.48 Å. The C(16)-H(29) bond length is 0.96 Å. The C(16)-H(30) bond length is 0.96 Å. In the tenth C site, C(20) is bonded in a 3-coordinate geometry to one N(3), one H(36), and one H(37) atom. The C(20)-N(3) bond length is 1.47 Å. The C(20)-H(36) bond length is 0.96 Å. The C(20)-H(37) bond length is 0.96 Å. In the eleventh C site, C(21) is bonded in a distorted bent 120 degrees geometry to one O(14) and one O(15) atom. The C(21)-O(14) bond length is 1.25 Å. The C(21)-O(15) bond length is 1.24 Å. In the twelfth C site, C(22) is bonded in a bent 120 degrees geometry to one C(23), one O(20), and one O(21) atom. The C(22)-C(23) bond length is 1.48 Å. The C(22)-O(20) bond length is 1.26 Å. The C(22)-O(21) bond length is 1.26 Å. In the thirteenth C site, C(23) is bonded in a trigonal planar geometry to one C(22), one C(24), and one C(28) atom. The C(23)-C(24) bond length is 1.38 Å. The C(23)-C(28) bond length is 1.38 Å. In the fourteenth C site, C(24) is bonded in a distorted single-bond geometry to one C(23) and one H(38) atom. The C(24)-H(38) bond length is 0.96 Å. In the fifteenth C site, C(25) is bonded in a distorted single-bond geometry to one C(26) and one H(39) atom. The C(25)-C(26) bond length is 1.37 Å. The C(25)-H(39) bond length is 0.96 Å. In the sixteenth C site, C(26) is bonded in a trigonal planar geometry to one C(25), one C(27), and one C(29) atom. The C(26)-C(27) bond length is 1.37 Å. The C(26)-C(29) bond length is 1.50 Å. In the seventeenth C site, C(27) is bonded in a distorted single-bond geometry to one C(26) and one H(40) atom. The C(27)-H(40) bond length is 0.96 Å. In the eighteenth C site, C(28) is bonded in a distorted single-bond geometry to one C(23) and one H(41) atom. The C(28)-H(41) bond length is 0.96 Å. In the nineteenth C site, C(29) is bonded in a bent 120 degrees geometry to one C(26), one O(22), and one O(23) atom. The C(29)-O(22) bond length is 1.25 Å. The C(29)-O(23) bond length is 1.26 Å. In the twentieth C site, C(30) is bonded in a distorted bent 120 degrees geometry to one C(31), one O(16), and one O(17) atom. The C(30)-C(31) bond length is 1.52 Å. The C(30)-O(16) bond length is 1.26 Å. The C(30)-O(17) bond length is 1.26 Å. In the twenty-first C site, C(31) is bonded in a trigonal planar geometry to one C(30), one C(32), and one C(36) atom. The C(31)-C(32) bond length is 1.35 Å. The C(31)-C(36) bond length is 1.36 Å. In the twenty-second C site, C(32) is bonded in a distorted single-bond geometry to one C(31) and one H(42) atom. The C(32)-H(42) bond length is 0.96 Å. In the twenty-third C site, C(33) is bonded in a distorted single-bond geometry to one C(34) and one H(43,44) atom. The C(33)-C(34) bond length is 1.38 Å. The C(33)-H(43,44) bond length is 0.96 Å. In the twenty-fourth C site, C(34) is bonded in a trigonal planar geometry to one C(33), one C(35), and one C(37) atom. The C(34)-C(35) bond length is 1.37 Å. The C(34)-C(37) bond length is 1.51 Å. In the twenty-fifth C site, C(35) is bonded in a distorted single-bond geometry to one C(34) and one H(43,44) atom. The C(35)-H(43,44) bond length is 0.96 Å. In the twenty-sixth C site, C(36) is bonded in a distorted single-bond geometry to one C(31) and one H(45) atom. The C(36)-H(45) bond length is 0.96 Å. In the twenty-seventh C site, C(37) is bonded in a distorted bent 120 degrees geometry to one C(34), one O(18), and one O(19) atom. The C(37)-O(18) bond length is 1.28 Å. The C(37)-O(19) bond length is 1.26 Å. There are three inequivalent P sites. In the first P site, P(1) is bonded to one C(1), one O(1), one O(2), and one O(3) atom to form distorted PCO3 tetrahedra that share a cornercorner with one N(1)HC3 tetrahedra. The P(1)-O(1) bond length is 1.54 Å. The P(1)-O(2) bond length is 1.51 Å. The P(1)-O(3) bond length is 1.53 Å. In the second P site, P(2) is bonded to one C(8), one O(6), one O(7), and one O(8) atom to form distorted PCO3 tetrahedra that share a cornercorner with one N(2)HC3 tetrahedra. The P(2)-O(6) bond length is 1.53 Å. The P(2)-O(7) bond length is 1.52 Å. The P(2)-O(8) bond length is 1.49 Å. In the third P site, P(3) is bonded to one C(15), one O(11), one O(12), and one O(13) atom to form distorted PCO3 tetrahedra that share a cornercorner with one N(3)HC3 tetrahedra. The P(3)-O(11) bond length is 1.51 Å. The P(3)-O(12) bond length is 1.51 Å. The P(3)-O(13) bond length is 1.53 Å. There are three inequivalent N sites. In the first N site, N(1) is bonded to one C(1), one C(2), one C(6), and one H(2) atom to form distorted NHC3 tetrahedra that share a cornercorner with one P(1)CO3 tetrahedra. The N(1)-H(2) bond length is 0.90 Å. In the second N site, N(2) is bonded to one C(13), one C(8), one C(9), and one H(3) atom to form distorted NHC3 tetrahedra that share a cornercorner with one P(2)CO3 tetrahedra. The N(2)-H(3) bond length is 0.90 Å. In the third N site, N(3) is bonded to one C(15), one C(16), one C(20), and one H(4) atom to form distorted NHC3 tetrahedra that share a cornercorner with one P(3)CO3 tetrahedra. The N(3)-H(4) bond length is 0.90 Å. There are twenty-seven inequivalent H sites. In the first H site, H(2) is bonded in a single-bond geometry to one N(1) atom. In the second H site, H(3) is bonded in a single-bond geometry to one N(2) atom. In the third H site, H(4) is bonded in a single-bond geometry to one N(3) atom. In the fourth H site, H(5) is bonded in a single-bond geometry to one C(1) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(1) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(2) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one C(2) atom. In the eighth H site, H(14) is bonded in a single-bond geometry to one C(6) atom. In the ninth H site, H(15) is bonded in a single-bond geometry to one C(6) atom. In the tenth H site, H(16) is bonded in a single-bond geometry to one C(8) atom. In the eleventh H site, H(17) is bonded in a single-bond geometry to one C(8) atom. In the twelfth H site, H(18,25) is bonded in a single-bond geometry to one C(9) atom. In the thirteenth H site, H(19) is bonded in a single-bond geometry to one C(9) atom. In the fourteenth H site, H(26) is bonded in a single-bond geometry to one C(13) atom. In the fifteenth H site, H(27) is bonded in a single-bond geometry to one C(15) atom. In the sixteenth H site, H(28) is bonded in a single-bond geometry to one C(15) atom. In the seventeenth H site, H(29) is bonded in a single-bond geometry to one C(16) atom. In the eighteenth H site, H(30) is bonded in a single-bond geometry to one C(16) atom. In the nineteenth H site, H(36) is bonded in a single-bond geometry to one C(20) atom. In the twentieth H site, H(37) is bonded in a single-bond geometry to one C(20) atom. In the twenty-first H site, H(38) is bonded in a single-bond geometry to one C(24) atom. In the twenty-second H site, H(39) is bonded in a single-bond geometry to one C(25) atom. In the twenty-third H site, H(40) is bonded in a single-bond geometry to one C(27) atom. In the twenty-fourth H site, H(41) is bonded in a single-bond geometry to one C(28) atom. In the twenty-fifth H site, H(42) is bonded in a single-bond geometry to one C(32) atom. In the twenty-sixth H site, H(43,44) is bonded in a single-bond geometry to one C(33) atom. In the twenty-seventh H site, H(45) is bonded in a single-bond geometry to one C(36) atom. There are twenty-one inequivalent O sites. In the first O site, O(1) is bonded in a 3-coordinate geometry to one Tb(2), one Tb(3), and one P(1) atom. In the second O site, O(2) is bonded in a distorted linear geometry to one Tb(3) and one P(1) atom. In the third O site, O(3) is bonded in a 3-coordinate geometry to one Tb(1), one Tb(3), and one P(1) atom. In the fourth O site, O(6) is bonded in a distorted single-bond geometry to one Tb(1) and one P(2) atom. In the fifth O site, O(7) is bonded in a 3-coordinate geometry to one Tb(1), one Tb(2), and one P(2) atom. In the sixth O site, O(8) is bonded in a distorted single-bond geometry to one Tb(3) and one P(2) atom. In the seventh O site, O(9) is bonded in a distorted single-bond geometry to one Tb(2) and one C(14) atom. In the eighth O site, O(10) is bonded in a distorted single-bond geometry to one Tb(3) and one C(14) atom. In the ninth O site, O(11) is bonded in a distorted single-bond geometry to one Tb(3) and one P(3) atom. In the tenth O site, O(12) is bonded in a 3-coordinate geometry to one Tb(1), one Tb(2), and one P(3) atom. In the eleventh O site, O(13) is bonded in a distorted water-like geometry to one Tb(2) and one P(3) atom. In the twelfth O site, O(14) is bonded in a distorted single-bond geometry to one Tb(3) and one C(21) atom. In the thirteenth O site, O(15) is bonded in a distorted bent 120 degrees geometry to one Tb(1) and one C(21) atom. In the fourteenth O site, O(16) is bonded in a distorted single-bond geometry to one Tb(1) and one C(30) atom. In the fifteenth O site, O(17) is bonded in a distorted single-bond geometry to one Tb(1) and one C(30) atom. In the sixteenth O site, O(18) is bonded in a distorted single-bond geometry to one Tb(2) and one C(37) atom. In the seventeenth O site, O(19) is bonded in a distorted single-bond geometry to one Tb(2) and one C(37) atom. In the eighteenth O site, O(20) is bonded in a distorted single-bond geometry to one Tb(1) and one C(22) atom. In the nineteenth O site, O(21) is bonded in a distorted single-bond geometry to one Tb(1) and one C(22) atom. In the twentieth O site, O(22) is bonded in a distorted single-bond geometry to one Tb(2) and one C(29) atom. In the twenty-first O site, O(23) is bonded in a distorted single-bond geometry to one Tb(2) and one C(29) atom. Linkers: 4 [O]C(=O)c1ccc(C([O])=O)cc1 ,4 [O]C(=O)C1CC[NH](CC1)CP(=O)([O])[O]. Metal clusters: 6 [Tb]. The MOF has largest included sphere 5.23 A, density 1.84 g/cm3, surface area 2948.03 m2/g, accessible volume 0.16 cm3/g
|
GOYYAW_clean
|
HoAgC14H8(NO4)2 crystallizes in the monoclinic C2/c space group. Ho(1) is bonded in a 8-coordinate geometry to one O(1), one O(2), one O(3), one O(4), one O(5), one O(6), one O(7), and one O(8) atom. The Ho(1)-O(1) bond length is 2.32 Å. The Ho(1)-O(2) bond length is 2.28 Å. The Ho(1)-O(3) bond length is 2.39 Å. The Ho(1)-O(4) bond length is 2.38 Å. The Ho(1)-O(5) bond length is 2.37 Å. The Ho(1)-O(6) bond length is 2.41 Å. The Ho(1)-O(7) bond length is 2.36 Å. The Ho(1)-O(8) bond length is 2.40 Å. Ag(1) is bonded in a distorted T-shaped geometry to one N(1), one N(2), and one O(5) atom. The Ag(1)-N(1) bond length is 2.17 Å. The Ag(1)-N(2) bond length is 2.18 Å. The Ag(1)-O(5) bond length is 2.56 Å. There are fourteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(14), one C(3), and one H(1) atom. The C(1)-C(14) bond length is 1.39 Å. The C(1)-C(3) bond length is 1.36 Å. The C(1)-H(1) bond length is 0.93 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(12), one O(2), and one O(7) atom. The C(2)-C(12) bond length is 1.48 Å. The C(2)-O(2) bond length is 1.25 Å. The C(2)-O(7) bond length is 1.26 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(1), one N(2), and one H(3) atom. The C(3)-N(2) bond length is 1.34 Å. The C(3)-H(3) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(12), one N(1), and one H(5) atom. The C(4)-C(12) bond length is 1.35 Å. The C(4)-N(1) bond length is 1.36 Å. The C(4)-H(5) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(13), one C(14), and one H(2) atom. The C(5)-C(13) bond length is 1.36 Å. The C(5)-C(14) bond length is 1.39 Å. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(8) atom. The C(6)-O(5) bond length is 1.27 Å. The C(6)-O(8) bond length is 1.25 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(10) and one H(4) atom. The C(7)-C(10) bond length is 1.37 Å. The C(7)-H(4) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(12) and one H(6) atom. The C(8)-C(12) bond length is 1.43 Å. The C(8)-H(6) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(14), one O(1), and one O(4) atom. The C(9)-C(14) bond length is 1.53 Å. The C(9)-O(1) bond length is 1.22 Å. The C(9)-O(4) bond length is 1.26 Å. In the tenth C site, C(10) is bonded in a distorted trigonal planar geometry to one C(7), one N(1), and one H(7) atom. The C(10)-N(1) bond length is 1.37 Å. The C(10)-H(7) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(6) atom. The C(11)-O(3) bond length is 1.24 Å. The C(11)-O(6) bond length is 1.26 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. In the thirteenth C site, C(13) is bonded in a distorted trigonal planar geometry to one C(5), one N(2), and one H(8) atom. The C(13)-N(2) bond length is 1.32 Å. The C(13)-H(8) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(9) atom. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Ag(1), one C(10), and one C(4) atom. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Ag(1), one C(13), and one C(3) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(7) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(4) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(10) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(13) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Ho(1) and one C(9) atom. In the second O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Ho(1) and one C(2) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Ho(1) and one C(11) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Ho(1) and one C(9) atom. In the fifth O site, O(5) is bonded in a distorted single-bond geometry to one Ho(1), one Ag(1), and one C(6) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Ho(1) and one C(11) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Ho(1) and one C(2) atom. In the eighth O site, O(8) is bonded in a distorted single-bond geometry to one Ho(1) and one C(6) atom. Linkers: 4 [O]C(=O)C([O])=O ,3 [O]C(=O)c1cccnc1 ,4 [O]C(=O)c1ccncc1. Metal clusters: 4 [Ho] ,4 [Ag]. The MOF has largest included sphere 3.94 A, density 2.31 g/cm3, surface area 2777.82 m2/g, accessible volume 0.16 cm3/g
|
VICSIL_clean
|
CuC24N6H23SO7 crystallizes in the triclinic P-1 space group. Cu(1) is bonded in a trigonal bipyramidal geometry to one N(3), one N(6), one O(1), one O(2), and one O(3) atom. The Cu(1)-N(3) bond length is 1.98 Å. The Cu(1)-N(6) bond length is 1.99 Å. The Cu(1)-O(1) bond length is 1.94 Å. The Cu(1)-O(2) bond length is 2.24 Å. The Cu(1)-O(3) bond length is 1.98 Å. There are twenty-four inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(3), and one C(4) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(3) bond length is 1.41 Å. The C(1)-C(4) bond length is 1.52 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(5) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(5) bond length is 1.52 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(1), one C(2), and one C(6) atom. The C(3)-C(6) bond length is 1.52 Å. In the fourth C site, C(4) is bonded in a 3-coordinate geometry to one C(1), one N(1), one H(1), and one H(2) atom. The C(4)-N(1) bond length is 1.46 Å. The C(4)-H(1) bond length is 0.98 Å. The C(4)-H(2) bond length is 0.98 Å. In the fifth C site, C(5) is bonded in a trigonal non-coplanar geometry to one C(2); one H(4); and two equivalent H(3,5) atoms. The C(5)-H(4) bond length is 0.97 Å. Both C(5)-H(3,5) bond lengths are 0.97 Å. In the sixth C site, C(6) is bonded in a trigonal non-coplanar geometry to one C(3); one H(7); and two equivalent H(6,8) atoms. The C(6)-H(7) bond length is 0.97 Å. Both C(6)-H(6,8) bond lengths are 0.97 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one N(2), one N(3), and one H(9) atom. The C(7)-N(2) bond length is 1.31 Å. The C(7)-N(3) bond length is 1.36 Å. The C(7)-H(9) bond length is 0.94 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one N(1), one N(3), and one H(10) atom. The C(8)-N(1) bond length is 1.32 Å. The C(8)-N(3) bond length is 1.32 Å. The C(8)-H(10) bond length is 0.94 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(11), and one C(12) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-C(11) bond length is 1.41 Å. The C(9)-C(12) bond length is 1.52 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(13), and one C(9) atom. The C(10)-C(11) bond length is 1.40 Å. The C(10)-C(13) bond length is 1.51 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(14), and one C(9) atom. The C(11)-C(14) bond length is 1.51 Å. In the twelfth C site, C(12) is bonded in a 3-coordinate geometry to one C(9); one N(4); and two equivalent H(11,12) atoms. The C(12)-N(4) bond length is 1.48 Å. Both C(12)-H(11,12) bond lengths are 0.98 Å. In the thirteenth C site, C(13) is bonded in a trigonal non-coplanar geometry to one C(10) and three equivalent H(13,14,15) atoms. All C(13)-H(13,14,15) bond lengths are 0.97 Å. In the fourteenth C site, C(14) is bonded in a trigonal non-coplanar geometry to one C(11) and three equivalent H(16,17,18) atoms. All C(14)-H(16,17,18) bond lengths are 0.97 Å. In the fifteenth C site, C(15) is bonded in a trigonal planar geometry to one N(5), one N(6), and one H(19) atom. The C(15)-N(5) bond length is 1.31 Å. The C(15)-N(6) bond length is 1.35 Å. The C(15)-H(19) bond length is 0.94 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one N(4), one N(6), and one H(20) atom. The C(16)-N(4) bond length is 1.32 Å. The C(16)-N(6) bond length is 1.32 Å. The C(16)-H(20) bond length is 0.94 Å. In the seventeenth C site, C(17) is bonded in a trigonal planar geometry to one C(18), one C(22), and one C(23) atom. The C(17)-C(18) bond length is 1.40 Å. The C(17)-C(22) bond length is 1.39 Å. The C(17)-C(23) bond length is 1.51 Å. In the eighteenth C site, C(18) is bonded in a distorted single-bond geometry to one C(17), one C(19), and one H(21) atom. The C(18)-C(19) bond length is 1.38 Å. The C(18)-H(21) bond length is 0.94 Å. In the nineteenth C site, C(19) is bonded in a trigonal planar geometry to one C(18), one C(20), and one C(24) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-C(24) bond length is 1.51 Å. In the twentieth C site, C(20) is bonded in a distorted single-bond geometry to one C(19), one C(21), and one H(22) atom. The C(20)-C(21) bond length is 1.39 Å. The C(20)-H(22) bond length is 0.94 Å. In the twenty-first C site, C(21) is bonded in a trigonal planar geometry to one C(20), one C(22), and one S(1) atom. The C(21)-C(22) bond length is 1.38 Å. The C(21)-S(1) bond length is 1.77 Å. In the twenty-second C site, C(22) is bonded in a distorted single-bond geometry to one C(17), one C(21), and one H(23) atom. The C(22)-H(23) bond length is 0.94 Å. In the twenty-third C site, C(23) is bonded in a distorted bent 120 degrees geometry to one C(17), one O(1), and one O(2) atom. The C(23)-O(1) bond length is 1.27 Å. The C(23)-O(2) bond length is 1.23 Å. In the twenty-fourth C site, C(24) is bonded in a distorted bent 120 degrees geometry to one C(19), one O(3), and one O(4) atom. The C(24)-O(3) bond length is 1.26 Å. The C(24)-O(4) bond length is 1.25 Å. There are six inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one C(4), one C(8), and one N(2) atom. The N(1)-N(2) bond length is 1.36 Å. In the second N site, N(2) is bonded in a water-like geometry to one C(7) and one N(1) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Cu(1), one C(7), and one C(8) atom. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one C(12), one C(16), and one N(5) atom. The N(4)-N(5) bond length is 1.36 Å. In the fifth N site, N(5) is bonded in a water-like geometry to one C(15) and one N(4) atom. In the sixth N site, N(6) is bonded in a trigonal planar geometry to one Cu(1), one C(15), and one C(16) atom. There are sixteen inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3,5) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the fifth H site, H(6,8) is bonded in a single-bond geometry to one C(6) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(6) atom. In the seventh H site, H(9) is bonded in a single-bond geometry to one C(7) atom. In the eighth H site, H(10) is bonded in a single-bond geometry to one C(8) atom. In the ninth H site, H(11,12) is bonded in a single-bond geometry to one C(12) atom. In the tenth H site, H(13,14,15) is bonded in a single-bond geometry to one C(13) atom. In the eleventh H site, H(16,17,18) is bonded in a single-bond geometry to one C(14) atom. In the twelfth H site, H(19) is bonded in a single-bond geometry to one C(15) atom. In the thirteenth H site, H(20) is bonded in a single-bond geometry to one C(16) atom. In the fourteenth H site, H(21) is bonded in a single-bond geometry to one C(18) atom. In the fifteenth H site, H(22) is bonded in a single-bond geometry to one C(20) atom. In the sixteenth H site, H(23) is bonded in a single-bond geometry to one C(22) atom. S(1) is bonded in a distorted trigonal non-coplanar geometry to one C(21), one O(5), one O(6), and one O(7) atom. The S(1)-O(5) bond length is 1.45 Å. The S(1)-O(6) bond length is 1.44 Å. The S(1)-O(7) bond length is 1.47 Å. There are seven inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(23) atom. In the second O site, O(2) is bonded in a distorted bent 150 degrees geometry to one Cu(1) and one C(23) atom. In the third O site, O(3) is bonded in a water-like geometry to one Cu(1) and one C(24) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(24) atom. In the fifth O site, O(5) is bonded in a single-bond geometry to one S(1) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one S(1) atom. In the seventh O site, O(7) is bonded in a single-bond geometry to one S(1) atom. Linkers: 1 Cc1c(C)c(Cn2cncn2)c(C)c(C)c1Cn1cncn1 ,2 [O]C(=O)c1cc(C([O])=O)cc(S([O])([O])[O])c1 ,1 Cc1c(C)c(Cn2cncn2)c(C)c(C)c1CN1[CH]N=C[N]1. Metal clusters: 1 O=[C]O[Cu]1O[C]O[Cu](O[C]=O)O[C]O1. The MOF has largest included sphere 5.31 A, density 1.04 g/cm3, surface area 4787.55 m2/g, accessible volume 0.47 cm3/g
|
NATHUO_clean
|
ZnC24H9(O2F3)3 crystallizes in the orthorhombic Aea2 space group. Zn(1) is bonded in a tetrahedral geometry to one O(1), one O(3), one O(4), and one O(5) atom. The Zn(1)-O(1) bond length is 1.94 Å. The Zn(1)-O(3) bond length is 1.96 Å. The Zn(1)-O(4) bond length is 2.01 Å. The Zn(1)-O(5) bond length is 1.97 Å. There are twenty-four inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.51 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.21 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-C(7) bond length is 1.40 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(8) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-C(8) bond length is 1.50 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(3), one C(5), and one H(1) atom. The C(4)-C(5) bond length is 1.40 Å. The C(4)-H(1) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(6), and one C(9) atom. The C(5)-C(6) bond length is 1.40 Å. The C(5)-C(9) bond length is 1.48 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(5) and one H(2) atom. The C(6)-H(2) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(2) and one H(3) atom. The C(7)-H(3) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted trigonal non-coplanar geometry to one C(3), one F(1), one F(2), and one F(3) atom. The C(8)-F(1) bond length is 1.32 Å. The C(8)-F(2) bond length is 1.33 Å. The C(8)-F(3) bond length is 1.35 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(14), and one C(5) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-C(14) bond length is 1.40 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(11), one C(9), and one H(4) atom. The C(10)-C(11) bond length is 1.39 Å. The C(10)-H(4) bond length is 0.95 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(15) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-C(15) bond length is 1.51 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(11), one C(13), and one C(16) atom. The C(12)-C(13) bond length is 1.38 Å. The C(12)-C(16) bond length is 1.51 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(12) and one H(5) atom. The C(13)-H(5) bond length is 0.95 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(9) and one H(6) atom. The C(14)-H(6) bond length is 0.95 Å. In the fifteenth C site, C(15) is bonded in a trigonal non-coplanar geometry to one C(11), one F(4), one F(5), and one F(6) atom. The C(15)-F(4) bond length is 1.34 Å. The C(15)-F(5) bond length is 1.33 Å. The C(15)-F(6) bond length is 1.35 Å. In the sixteenth C site, C(16) is bonded in a distorted bent 120 degrees geometry to one C(12), one O(3), and one O(4) atom. The C(16)-O(3) bond length is 1.26 Å. The C(16)-O(4) bond length is 1.25 Å. In the seventeenth C site, C(17) is bonded in a distorted bent 120 degrees geometry to one C(18), one O(5), and one O(6) atom. The C(17)-C(18) bond length is 1.53 Å. The C(17)-O(5) bond length is 1.24 Å. The C(17)-O(6) bond length is 1.25 Å. In the eighteenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(23) atom. The C(18)-C(19) bond length is 1.41 Å. The C(18)-C(23) bond length is 1.36 Å. In the nineteenth C site, C(19) is bonded in a trigonal planar geometry to one C(18), one C(20), and one C(24) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-C(24) bond length is 1.49 Å. In the twentieth C site, C(20) is bonded in a distorted single-bond geometry to one C(19), one C(21), and one H(7) atom. The C(20)-C(21) bond length is 1.41 Å. The C(20)-H(7) bond length is 0.95 Å. In the twenty-first C site, C(21) is bonded in a trigonal planar geometry to one C(20), one C(21), and one C(22) atom. The C(21)-C(21) bond length is 1.52 Å. The C(21)-C(22) bond length is 1.35 Å. In the twenty-second C site, C(22) is bonded in a distorted single-bond geometry to one C(21) and one H(8) atom. The C(22)-H(8) bond length is 0.95 Å. In the twenty-third C site, C(23) is bonded in a distorted single-bond geometry to one C(18) and one H(9) atom. The C(23)-H(9) bond length is 0.95 Å. In the twenty-fourth C site, C(24) is bonded in a trigonal non-coplanar geometry to one C(19), one F(7), one F(8), and one F(9) atom. The C(24)-F(7) bond length is 1.33 Å. The C(24)-F(8) bond length is 1.36 Å. The C(24)-F(9) bond length is 1.34 Å. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(6) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(13) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(14) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(20) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(22) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(23) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(1) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(16) atom. In the fourth O site, O(4) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one C(16) atom. In the fifth O site, O(5) is bonded in a water-like geometry to one Zn(1) and one C(17) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one C(17) atom. There are nine inequivalent F sites. In the first F site, F(1) is bonded in a single-bond geometry to one C(8) atom. In the second F site, F(2) is bonded in a single-bond geometry to one C(8) atom. In the third F site, F(3) is bonded in a single-bond geometry to one C(8) atom. In the fourth F site, F(4) is bonded in a single-bond geometry to one C(15) atom. In the fifth F site, F(5) is bonded in a single-bond geometry to one C(15) atom. In the sixth F site, F(6) is bonded in a single-bond geometry to one C(15) atom. In the seventh F site, F(7) is bonded in a single-bond geometry to one C(24) atom. In the eighth F site, F(8) is bonded in a single-bond geometry to one C(24) atom. In the ninth F site, F(9) is bonded in a single-bond geometry to one C(24) atom. Linkers: 12 [O]C(=O)c1ccc(-c2ccc(C([O])=O)c(C(F)(F)F)c2)cc1C(F)(F)F. Metal clusters: 8 [Zn]. The MOF has largest included sphere 7.56 A, density 1.08 g/cm3, surface area 4220.74 m2/g, accessible volume 0.61 cm3/g
|
AXUHEH_clean
|
Na2Co3C130H130S8(N2O7)4(CH)2 is Indium-derived structured and crystallizes in the monoclinic P2_1/c space group. The structure is zero-dimensional and consists of four 02329_fluka molecules and two Na2Co3C130H130S8(N2O7)4 clusters. In each Na2Co3C130H130S8(N2O7)4 cluster, Na(1) is bonded in a distorted rectangular see-saw-like geometry to one O(1), one O(3), one O(7), and one O(9) atom. The Na(1)-O(1) bond length is 2.47 Å. The Na(1)-O(3) bond length is 2.29 Å. The Na(1)-O(7) bond length is 2.50 Å. The Na(1)-O(9) bond length is 2.26 Å. There are two inequivalent Co sites. In the first Co site, Co(1) is bonded in a tetrahedral geometry to one N(4), one O(11), one O(5), and one O(8) atom. The Co(1)-N(4) bond length is 2.03 Å. The Co(1)-O(11) bond length is 1.96 Å. The Co(1)-O(5) bond length is 1.93 Å. The Co(1)-O(8) bond length is 1.95 Å. In the second Co site, Co(2) is bonded in a square co-planar geometry to two equivalent N(1) and two equivalent O(2) atoms. Both Co(2)-N(1) bond lengths are 2.13 Å. Both Co(2)-O(2) bond lengths are 2.09 Å. There are sixty-five inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(2), one C(6), and one O(1) atom. The C(1)-C(2) bond length is 1.39 Å. The C(1)-C(6) bond length is 1.38 Å. The C(1)-O(1) bond length is 1.39 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one S(4) atom. The C(2)-C(3) bond length is 1.40 Å. The C(2)-S(4) bond length is 1.78 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-H(1) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(33), and one C(5) atom. The C(4)-C(33) bond length is 1.54 Å. The C(4)-C(5) bond length is 1.39 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4), one C(6), and one H(2) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-H(2) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(5), and one S(1) atom. The C(6)-S(1) bond length is 1.78 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(12), one C(8), and one O(4) atom. The C(7)-C(12) bond length is 1.39 Å. The C(7)-C(8) bond length is 1.39 Å. The C(7)-O(4) bond length is 1.38 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(7), one C(9), and one S(1) atom. The C(8)-C(9) bond length is 1.39 Å. The C(8)-S(1) bond length is 1.78 Å. In the ninth C site, C(9) is bonded in a distorted single-bond geometry to one C(10), one C(8), and one H(3) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-H(3) bond length is 0.95 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(37), and one C(9) atom. The C(10)-C(11) bond length is 1.40 Å. The C(10)-C(37) bond length is 1.53 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(10), one C(12), and one H(4) atom. The C(11)-C(12) bond length is 1.38 Å. The C(11)-H(4) bond length is 0.95 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(11), one C(7), and one S(2) atom. The C(12)-S(2) bond length is 1.77 Å. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(14), one C(18), and one O(7) atom. The C(13)-C(14) bond length is 1.39 Å. The C(13)-C(18) bond length is 1.40 Å. The C(13)-O(7) bond length is 1.38 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(13), one C(15), and one S(2) atom. The C(14)-C(15) bond length is 1.40 Å. The C(14)-S(2) bond length is 1.78 Å. In the fifteenth C site, C(15) is bonded in a single-bond geometry to one C(14), one C(16), and one H(5) atom. The C(15)-C(16) bond length is 1.38 Å. The C(15)-H(5) bond length is 0.95 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(15), one C(17), and one C(41) atom. The C(16)-C(17) bond length is 1.39 Å. The C(16)-C(41) bond length is 1.54 Å. In the seventeenth C site, C(17) is bonded in a single-bond geometry to one C(16), one C(18), and one H(6) atom. The C(17)-C(18) bond length is 1.37 Å. The C(17)-H(6) bond length is 0.95 Å. In the eighteenth C site, C(18) is bonded in a trigonal planar geometry to one C(13), one C(17), and one S(3) atom. The C(18)-S(3) bond length is 1.77 Å. In the nineteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(20), one C(24), and one O(10) atom. The C(19)-C(20) bond length is 1.39 Å. The C(19)-C(24) bond length is 1.40 Å. The C(19)-O(10) bond length is 1.37 Å. In the twentieth C site, C(20) is bonded in a trigonal planar geometry to one C(19), one C(21), and one S(3) atom. The C(20)-C(21) bond length is 1.39 Å. The C(20)-S(3) bond length is 1.76 Å. In the twenty-first C site, C(21) is bonded in a distorted single-bond geometry to one C(20), one C(22), and one H(7) atom. The C(21)-C(22) bond length is 1.39 Å. The C(21)-H(7) bond length is 0.95 Å. In the twenty-second C site, C(22) is bonded in a trigonal planar geometry to one C(21), one C(23), and one C(45) atom. The C(22)-C(23) bond length is 1.41 Å. The C(22)-C(45) bond length is 1.53 Å. In the twenty-third C site, C(23) is bonded in a distorted single-bond geometry to one C(22), one C(24), and one H(8) atom. The C(23)-C(24) bond length is 1.39 Å. The C(23)-H(8) bond length is 0.95 Å. In the twenty-fourth C site, C(24) is bonded in a trigonal planar geometry to one C(19), one C(23), and one S(4) atom. The C(24)-S(4) bond length is 1.78 Å. In the twenty-fifth C site, C(25) is bonded in a distorted trigonal non-coplanar geometry to one H(10), one H(9), and one O(1) atom. The C(25)-H(10) bond length is 0.99 Å. The C(25)-H(9) bond length is 0.99 Å. The C(25)-O(1) bond length is 1.44 Å. In the twenty-sixth C site, C(26) is bonded in a distorted bent 120 degrees geometry to one O(2) and one O(3) atom. The C(26)-O(2) bond length is 1.26 Å. The C(26)-O(3) bond length is 1.25 Å. In the twenty-seventh C site, C(27) is bonded in a distorted trigonal non-coplanar geometry to two equivalent H(11,12) and one O(4) atom. Both C(27)-H(11,12) bond lengths are 0.99 Å. The C(27)-O(4) bond length is 1.43 Å. In the twenty-eighth C site, C(28) is bonded in a distorted bent 120 degrees geometry to one O(5) and one O(6) atom. The C(28)-O(5) bond length is 1.27 Å. The C(28)-O(6) bond length is 1.21 Å. In the twenty-ninth C site, C(29) is bonded in a distorted trigonal non-coplanar geometry to two equivalent H(13,14) and one O(7) atom. Both C(29)-H(13,14) bond lengths are 0.99 Å. The C(29)-O(7) bond length is 1.45 Å. In the thirtieth C site, C(30) is bonded in a distorted bent 120 degrees geometry to one O(8) and one O(9) atom. The C(30)-O(8) bond length is 1.28 Å. The C(30)-O(9) bond length is 1.23 Å. In the thirty-first C site, C(31) is bonded in a distorted trigonal non-coplanar geometry to two equivalent H(15,16) and one O(10) atom. Both C(31)-H(15,16) bond lengths are 0.99 Å. The C(31)-O(10) bond length is 1.44 Å. In the thirty-second C site, C(32) is bonded in a distorted bent 120 degrees geometry to one O(11) and one O(12) atom. The C(32)-O(11) bond length is 1.26 Å. The C(32)-O(12) bond length is 1.23 Å. In the thirty-third C site, C(33) is bonded in a tetrahedral geometry to one C(34), one C(35), one C(36), and one C(4) atom. The C(33)-C(34) bond length is 1.52 Å. The C(33)-C(35) bond length is 1.51 Å. The C(33)-C(36) bond length is 1.52 Å. In the thirty-fourth C site, C(34) is bonded in a trigonal non-coplanar geometry to one C(33); one H(18); and two equivalent H(17,19,20,21,22,25) atoms. The C(34)-H(18) bond length is 0.98 Å. Both C(34)-H(17,19,20,21,22,25) bond lengths are 0.98 Å. In the thirty-fifth C site, C(35) is bonded in a trigonal non-coplanar geometry to one C(33) and three equivalent H(17,19,20,21,22,25) atoms. All C(35)-H(17,19,20,21,22,25) bond lengths are 0.98 Å. In the thirty-sixth C site, C(36) is bonded in a trigonal non-coplanar geometry to one C(33); one H(17,19,20,21,22,25); and two equivalent H(23,24) atoms. The C(36)-H(17,19,20,21,22,25) bond length is 0.98 Å. Both C(36)-H(23,24) bond lengths are 0.98 Å. In the thirty-seventh C site, C(37) is bonded in a tetrahedral geometry to one C(10), one C(38), one C(39), and one C(40) atom. The C(37)-C(38) bond length is 1.54 Å. The C(37)-C(39) bond length is 1.64 Å. The C(37)-C(40) bond length is 1.45 Å. In the thirty-eighth C site, C(38) is bonded in a trigonal non-coplanar geometry to one C(37) and three equivalent H(26,27,28,29,31) atoms. All C(38)-H(26,27,28,29,31) bond lengths are 0.98 Å. In the thirty-ninth C site, C(39) is bonded in a trigonal non-coplanar geometry to one C(37); one H(30); and two equivalent H(26,27,28,29,31) atoms. The C(39)-H(30) bond length is 0.98 Å. Both C(39)-H(26,27,28,29,31) bond lengths are 0.98 Å. In the fortieth C site, C(40) is bonded in a trigonal non-coplanar geometry to one C(37); one H(33); and two equivalent H(32,34) atoms. The C(40)-H(33) bond length is 0.98 Å. Both C(40)-H(32,34) bond lengths are 0.98 Å. In the forty-first C site, C(41) is bonded in a tetrahedral geometry to one C(16), one C(42), one C(43), and one C(44) atom. The C(41)-C(42) bond length is 1.52 Å. The C(41)-C(43) bond length is 1.53 Å. The C(41)-C(44) bond length is 1.51 Å. In the forty-second C site, C(42) is bonded in a trigonal non-coplanar geometry to one C(41) and three equivalent H(35,36,37,38,39,40,43) atoms. All C(42)-H(35,36,37,38,39,40,43) bond lengths are 0.98 Å. In the forty-third C site, C(43) is bonded in a trigonal non-coplanar geometry to one C(41) and three equivalent H(35,36,37,38,39,40,43) atoms. All C(43)-H(35,36,37,38,39,40,43) bond lengths are 0.98 Å. In the forty-fourth C site, C(44) is bonded in a trigonal non-coplanar geometry to one C(41); one H(35,36,37,38,39,40,43); and two equivalent H(41,42) atoms. The C(44)-H(35,36,37,38,39,40,43) bond length is 0.98 Å. Both C(44)-H(41,42) bond lengths are 0.98 Å. In the forty-fifth C site, C(45) is bonded in a tetrahedral geometry to one C(22), one C(46), one C(47), and one C(48) atom. The C(45)-C(46) bond length is 1.53 Å. The C(45)-C(47) bond length is 1.51 Å. The C(45)-C(48) bond length is 1.53 Å. In the forty-sixth C site, C(46) is bonded in a trigonal non-coplanar geometry to one C(45); one H(45); and two equivalent H(44,46,47,50,51,52) atoms. The C(46)-H(45) bond length is 0.98 Å. Both C(46)-H(44,46,47,50,51,52) bond lengths are 0.98 Å. In the forty-seventh C site, C(47) is bonded in a trigonal non-coplanar geometry to one C(45); one H(44,46,47,50,51,52); and two equivalent H(48,49) atoms. The C(47)-H(44,46,47,50,51,52) bond length is 0.98 Å. Both C(47)-H(48,49) bond lengths are 0.98 Å. In the forty-eighth C site, C(48) is bonded in a trigonal non-coplanar geometry to one C(45) and three equivalent H(44,46,47,50,51,52) atoms. All C(48)-H(44,46,47,50,51,52) bond lengths are 0.98 Å. In the forty-ninth C site, C(49) is bonded in a distorted single-bond geometry to one C(53) and one H(55) atom. The C(49)-C(53) bond length is 1.40 Å. The C(49)-H(55) bond length is 0.95 Å. In the fiftieth C site, C(50) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(56) atom. The C(50)-N(1) bond length is 1.33 Å. The C(50)-H(56) bond length is 0.95 Å. In the fifty-first C site, C(51) is bonded in a distorted trigonal planar geometry to one C(52), one N(1), and one H(57) atom. The C(51)-C(52) bond length is 1.35 Å. The C(51)-N(1) bond length is 1.35 Å. The C(51)-H(57) bond length is 0.95 Å. In the fifty-second C site, C(52) is bonded in a distorted single-bond geometry to one C(51), one C(53), and one H(58) atom. The C(52)-C(53) bond length is 1.40 Å. The C(52)-H(58) bond length is 0.95 Å. In the fifty-third C site, C(53) is bonded in a distorted trigonal planar geometry to one C(49), one C(52), and one N(2) atom. The C(53)-N(2) bond length is 1.38 Å. In the fifty-fourth C site, C(54) is bonded in a distorted bent 120 degrees geometry to one C(55), one N(2), and one O(13) atom. The C(54)-C(55) bond length is 1.50 Å. The C(54)-N(2) bond length is 1.37 Å. The C(54)-O(13) bond length is 1.23 Å. In the fifty-fifth C site, C(55) is bonded in a trigonal planar geometry to one C(54), one C(56), and one C(60) atom. The C(55)-C(56) bond length is 1.38 Å. The C(55)-C(60) bond length is 1.39 Å. In the fifty-sixth C site, C(56) is bonded in a distorted single-bond geometry to one C(55) and one H(59) atom. The C(56)-H(59) bond length is 0.95 Å. In the fifty-seventh C site, C(58) is bonded in a distorted single-bond geometry to one C(59) and one H(61) atom. The C(58)-C(59) bond length is 1.41 Å. The C(58)-H(61) bond length is 0.95 Å. In the fifty-eighth C site, C(59) is bonded in a trigonal planar geometry to one C(58), one C(60), and one C(61) atom. The C(59)-C(60) bond length is 1.37 Å. The C(59)-C(61) bond length is 1.48 Å. In the fifty-ninth C site, C(60) is bonded in a distorted single-bond geometry to one C(55), one C(59), and one H(62) atom. The C(60)-H(62) bond length is 0.95 Å. In the sixtieth C site, C(61) is bonded in a distorted bent 120 degrees geometry to one C(59), one N(3), and one O(14) atom. The C(61)-N(3) bond length is 1.35 Å. The C(61)-O(14) bond length is 1.24 Å. In the sixty-first C site, C(62) is bonded in a distorted trigonal planar geometry to one C(63), one C(66), and one N(3) atom. The C(62)-C(63) bond length is 1.38 Å. The C(62)-C(66) bond length is 1.38 Å. The C(62)-N(3) bond length is 1.39 Å. In the sixty-second C site, C(63) is bonded in a distorted single-bond geometry to one C(62) and one H(63,66) atom. The C(63)-H(63,66) bond length is 0.95 Å. In the sixty-third C site, C(64) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(64) atom. The C(64)-N(4) bond length is 1.32 Å. The C(64)-H(64) bond length is 0.95 Å. In the sixty-fourth C site, C(65) is bonded in a distorted bent 120 degrees geometry to one N(4) and one H(65) atom. The C(65)-N(4) bond length is 1.35 Å. The C(65)-H(65) bond length is 0.95 Å. In the sixty-fifth C site, C(66) is bonded in a distorted single-bond geometry to one C(62) and one H(63,66) atom. The C(66)-H(63,66) bond length is 0.95 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Co(2), one C(50), and one C(51) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one C(53), one C(54), and one H(53) atom. The N(2)-H(53) bond length is 0.88 Å. In the third N site, N(3) is bonded in a trigonal planar geometry to one C(61), one C(62), and one H(54) atom. The N(3)-H(54) bond length is 0.88 Å. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Co(1), one C(64), and one C(65) atom. There are thirty-seven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(9) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(11) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(15) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(17) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(21) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(23) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(25) atom. In the tenth H site, H(10) is bonded in a single-bond geometry to one C(25) atom. In the eleventh H site, H(11,12) is bonded in a single-bond geometry to one C(27) atom. In the twelfth H site, H(13,14) is bonded in a single-bond geometry to one C(29) atom. In the thirteenth H site, H(15,16) is bonded in a single-bond geometry to one C(31) atom. In the fourteenth H site, H(17,19,20,21,22,25) is bonded in a single-bond geometry to one C(34) atom. In the fifteenth H site, H(18) is bonded in a single-bond geometry to one C(34) atom. In the sixteenth H site, H(23,24) is bonded in a single-bond geometry to one C(36) atom. In the seventeenth H site, H(26,27,28,29,31) is bonded in a single-bond geometry to one C(38) atom. In the eighteenth H site, H(30) is bonded in a single-bond geometry to one C(39) atom. In the nineteenth H site, H(32,34) is bonded in a single-bond geometry to one C(40) atom. In the twentieth H site, H(33) is bonded in a single-bond geometry to one C(40) atom. In the twenty-first H site, H(35,36,37,38,39,40,43) is bonded in a single-bond geometry to one C(42) atom. In the twenty-second H site, H(41,42) is bonded in a single-bond geometry to one C(44) atom. In the twenty-third H site, H(44,46,47,50,51,52) is bonded in a single-bond geometry to one C(46) atom. In the twenty-fourth H site, H(45) is bonded in a single-bond geometry to one C(46) atom. In the twenty-fifth H site, H(48,49) is bonded in a single-bond geometry to one C(47) atom. In the twenty-sixth H site, H(53) is bonded in a single-bond geometry to one N(2) atom. In the twenty-seventh H site, H(54) is bonded in a single-bond geometry to one N(3) atom. In the twenty-eighth H site, H(55) is bonded in a single-bond geometry to one C(49) atom. In the twenty-ninth H site, H(56) is bonded in a single-bond geometry to one C(50) atom. In the thirtieth H site, H(57) is bonded in a single-bond geometry to one C(51) atom. In the thirty-first H site, H(58) is bonded in a single-bond geometry to one C(52) atom. In the thirty-second H site, H(59) is bonded in a single-bond geometry to one C(56) atom. In the thirty-third H site, H(61) is bonded in a single-bond geometry to one C(58) atom. In the thirty-fourth H site, H(62) is bonded in a single-bond geometry to one C(60) atom. In the thirty-fifth H site, H(63,66) is bonded in a single-bond geometry to one C(63) atom. In the thirty-sixth H site, H(64) is bonded in a single-bond geometry to one C(64) atom. In the thirty-seventh H site, H(65) is bonded in a single-bond geometry to one C(65) atom. There are four inequivalent S sites. In the first S site, S(1) is bonded in a water-like geometry to one C(6) and one C(8) atom. In the second S site, S(2) is bonded in a water-like geometry to one C(12) and one C(14) atom. In the third S site, S(3) is bonded in a water-like geometry to one C(18) and one C(20) atom. In the fourth S site, S(4) is bonded in a water-like geometry to one C(2) and one C(24) atom. There are fourteen inequivalent O sites. In the first O site, O(1) is bonded in a distorted trigonal planar geometry to one Na(1), one C(1), and one C(25) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Co(2) and one C(26) atom. In the third O site, O(3) is bonded in a bent 120 degrees geometry to one Na(1) and one C(26) atom. In the fourth O site, O(4) is bonded in a water-like geometry to one C(27) and one C(7) atom. In the fifth O site, O(7) is bonded in a distorted trigonal planar geometry to one Na(1), one C(13), and one C(29) atom. In the sixth O site, O(9) is bonded in a bent 120 degrees geometry to one Na(1) and one C(30) atom. In the seventh O site, O(10) is bonded in a bent 120 degrees geometry to one C(19) and one C(31) atom. In the eighth O site, O(13) is bonded in a single-bond geometry to one C(54) atom. In the ninth O site, O(14) is bonded in a single-bond geometry to one C(61) atom. In the tenth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Co(1) and one C(28) atom. In the eleventh O site, O(6) is bonded in a single-bond geometry to one C(28) atom. In the twelfth O site, O(8) is bonded in a distorted bent 150 degrees geometry to one Co(1) and one C(30) atom. In the thirteenth O site, O(11) is bonded in a bent 120 degrees geometry to one Co(1) and one C(32) atom. In the fourteenth O site, O(12) is bonded in a single-bond geometry to one C(32) atom. Linkers: 4 O=C(Nc1ccncc1)c1cccc(C(=O)Nc2ccncc2)c1 ,4 CC(C)(C)c1cc2c(OCC([O])=O)c(c1)Sc1cc(C(C)(C)C)cc(c1OCC([O])=O)Sc1cc(C(C)(C)C)cc(c1OCC([O])=O)Sc1cc(C(C)(C)C)cc(c1OCC([O])=O)S2. Metal clusters: 2 [O]CC(=O)O[Co]OC(=O)C[O].[O]C[C](O[Na])O[Co](O[C]=O)O[C]=O.[O]C[C](O[Na])O[Co](O[C]=O)O[C]=O. The MOF has largest included sphere 7.21 A, density 1.06 g/cm3, surface area 4840.87 m2/g, accessible volume 0.34 cm3/g
|
LODKIA_clean
|
CdH10(C11O4)2 is Indium-like structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of four CdH10(C11O4)2 clusters. Cd(1) is bonded in a 7-coordinate geometry to one O(1), one O(4), one O(5), one O(6), one O(7), and two equivalent O(2) atoms. The Cd(1)-O(1) bond length is 2.42 Å. The Cd(1)-O(4) bond length is 2.26 Å. The Cd(1)-O(5) bond length is 2.33 Å. The Cd(1)-O(6) bond length is 2.15 Å. The Cd(1)-O(7) bond length is 2.63 Å. There is one shorter (2.42 Å) and one longer (2.57 Å) Cd(1)-O(2) bond length. There are twenty-two inequivalent C sites. In the first C site, C(22) is bonded in a trigonal planar geometry to one C(10), one C(2), and one C(6) atom. The C(22)-C(10) bond length is 1.39 Å. The C(22)-C(2) bond length is 1.40 Å. The C(22)-C(6) bond length is 1.50 Å. In the second C site, C(21) is bonded in a distorted single-bond geometry to one C(7) and one H(4) atom. The C(21)-C(7) bond length is 1.37 Å. The C(21)-H(4) bond length is 0.93 Å. In the third C site, C(1) is bonded in a distorted single-bond geometry to one C(16) and one H(1) atom. The C(1)-C(16) bond length is 1.39 Å. The C(1)-H(1) bond length is 0.93 Å. In the fourth C site, C(2) is bonded in a trigonal planar geometry to one C(14), one C(19), and one C(22) atom. The C(2)-C(14) bond length is 1.39 Å. The C(2)-C(19) bond length is 1.50 Å. In the fifth C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(18), one O(3), and one O(6) atom. The C(3)-C(18) bond length is 1.48 Å. The C(3)-O(3) bond length is 1.25 Å. The C(3)-O(6) bond length is 1.26 Å. In the sixth C site, C(4) is bonded in a distorted single-bond geometry to one C(18) and one H(3) atom. The C(4)-C(18) bond length is 1.39 Å. The C(4)-H(3) bond length is 0.93 Å. In the seventh C site, C(5) is bonded in a trigonal planar geometry to one C(10), one C(13), and one C(15) atom. The C(5)-C(10) bond length is 1.38 Å. The C(5)-C(13) bond length is 1.49 Å. The C(5)-C(15) bond length is 1.40 Å. In the eighth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(22), one O(1), and one O(8) atom. The C(6)-O(1) bond length is 1.29 Å. The C(6)-O(8) bond length is 1.24 Å. In the ninth C site, C(7) is bonded in a trigonal planar geometry to one C(15), one C(20), and one C(21) atom. The C(7)-C(15) bond length is 1.50 Å. The C(7)-C(20) bond length is 1.38 Å. In the tenth C site, C(8) is bonded in a distorted single-bond geometry to one C(13) and one H(2,9) atom. The C(8)-C(13) bond length is 1.37 Å. The C(8)-H(2,9) bond length is 0.93 Å. In the eleventh C site, C(9) is bonded in a bent 120 degrees geometry to one C(16), one O(5), and one O(7) atom. The C(9)-C(16) bond length is 1.50 Å. The C(9)-O(5) bond length is 1.27 Å. The C(9)-O(7) bond length is 1.25 Å. In the twelfth C site, C(10) is bonded in a single-bond geometry to one C(22), one C(5), and one H(7) atom. The C(10)-H(7) bond length is 0.93 Å. In the thirteenth C site, C(11) is bonded in a distorted single-bond geometry to one C(18) and one H(6) atom. The C(11)-C(18) bond length is 1.39 Å. The C(11)-H(6) bond length is 0.93 Å. In the fourteenth C site, C(12) is bonded in a distorted single-bond geometry to one C(16) and one H(8) atom. The C(12)-C(16) bond length is 1.37 Å. The C(12)-H(8) bond length is 0.93 Å. In the fifteenth C site, C(13) is bonded in a trigonal planar geometry to one C(17), one C(5), and one C(8) atom. The C(13)-C(17) bond length is 1.38 Å. In the sixteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(15), one C(2), and one H(5) atom. The C(14)-C(15) bond length is 1.38 Å. The C(14)-H(5) bond length is 0.93 Å. In the seventeenth C site, C(15) is bonded in a trigonal planar geometry to one C(14), one C(5), and one C(7) atom. In the eighteenth C site, C(16) is bonded in a trigonal planar geometry to one C(1), one C(12), and one C(9) atom. In the nineteenth C site, C(17) is bonded in a distorted single-bond geometry to one C(13) and one H(2,9) atom. The C(17)-H(2,9) bond length is 0.93 Å. In the twentieth C site, C(18) is bonded in a trigonal planar geometry to one C(11), one C(3), and one C(4) atom. In the twenty-first C site, C(19) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(2), and one O(4) atom. The C(19)-O(2) bond length is 1.27 Å. The C(19)-O(4) bond length is 1.26 Å. In the twenty-second C site, C(20) is bonded in a distorted single-bond geometry to one C(7) and one H(10) atom. The C(20)-H(10) bond length is 0.93 Å. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2,9) is bonded in a single-bond geometry to one C(8) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(21) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(14) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(10) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(12) atom. In the ninth H site, H(10) is bonded in a single-bond geometry to one C(20) atom. There are eight inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Cd(1) and one C(6) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to two equivalent Cd(1) and one C(19) atom. In the third O site, O(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth O site, O(5) is bonded in a water-like geometry to one Cd(1) and one C(9) atom. In the fifth O site, O(6) is bonded in a bent 120 degrees geometry to one Cd(1) and one C(3) atom. In the sixth O site, O(8) is bonded in a single-bond geometry to one C(6) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Cd(1) and one C(9) atom. In the eighth O site, O(4) is bonded in a distorted water-like geometry to one Cd(1) and one C(19) atom. Linkers: 4 [O]C(=O)c1ccc(-c2cc(C([O])=O)c(C([O])=O)cc2-c2ccc(C([O])=O)cc2)cc1. Metal clusters: 2 O=[C]O[Cd]1(O[C]=O)(O[C]=O)O[C]O[Cd](O[C]=O)(O[C]=O)(O[C]=O)O[C]O1. The MOF has largest included sphere 6.01 A, density 1.02 g/cm3, surface area 3962.40 m2/g, accessible volume 0.56 cm3/g
|
CAXVUU_clean
|
FeC4HO3 crystallizes in the trigonal R-3 space group. Fe(1) is bonded to one O(2), two equivalent O(1), and two equivalent O(3) atoms to form distorted edge-sharing FeO5 square pyramids. The Fe(1)-O(2) bond length is 2.21 Å. There is one shorter (2.00 Å) and one longer (2.03 Å) Fe(1)-O(1) bond length. There is one shorter (1.97 Å) and one longer (2.07 Å) Fe(1)-O(3) bond length. There are four inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.53 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.45 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.45 Å. The C(2)-C(4) bond length is 1.37 Å. In the third C site, C(3) is bonded in a single-bond geometry to one C(2), one C(4), and one O(3) atom. The C(3)-C(4) bond length is 1.47 Å. The C(3)-O(3) bond length is 1.27 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(2), one C(3), and one H(1) atom. The C(4)-H(1) bond length is 1.27 Å. H(1) is bonded in a single-bond geometry to one C(4) atom. There are three inequivalent O sites. In the first O site, O(1) is bonded in a distorted trigonal planar geometry to two equivalent Fe(1) and one C(1) atom. In the second O site, O(2) is bonded in a water-like geometry to one Fe(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted trigonal planar geometry to two equivalent Fe(1) and one C(3) atom. Linkers: 3 [O]C(=O)[C]1[C]C(=O)[C](C([O])=O)[C]C1=O. Metal clusters: 6 [Fe]. The MOF has largest included sphere 11.31 A, density 1.15 g/cm3, surface area 2355.52 m2/g, accessible volume 0.49 cm3/g
|
NORGOS_clean
|
BaCoH10(CO)10 crystallizes in the trigonal R-3m space group. Ba(1) is bonded in a 8-coordinate geometry to two equivalent O(1), two equivalent O(2), and four equivalent O(5) atoms. Both Ba(1)-O(1) bond lengths are 2.81 Å. Both Ba(1)-O(2) bond lengths are 2.92 Å. There are two shorter (2.84 Å) and two longer (2.88 Å) Ba(1)-O(5) bond lengths. Co(1) is bonded in a square co-planar geometry to two equivalent O(2) and two equivalent O(3) atoms. Both Co(1)-O(2) bond lengths are 2.04 Å. Both Co(1)-O(3) bond lengths are 2.01 Å. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a distorted L-shaped geometry to one C(7) and two equivalent H(5) atoms. The C(1)-C(7) bond length is 1.52 Å. Both C(1)-H(5) bond lengths are 0.98 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(8), one O(1), and one O(2) atom. The C(2)-C(8) bond length is 1.55 Å. The C(2)-O(1) bond length is 1.23 Å. The C(2)-O(2) bond length is 1.27 Å. In the third C site, C(3) is bonded in a distorted L-shaped geometry to one C(7) and two equivalent H(3) atoms. The C(3)-C(7) bond length is 1.54 Å. Both C(3)-H(3) bond lengths are 0.98 Å. In the fourth C site, C(4) is bonded in a single-bond geometry to one C(8) atom. The C(4)-C(8) bond length is 1.53 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one C(8) and two equivalent H(1) atoms. The C(5)-C(8) bond length is 1.54 Å. Both C(5)-H(1) bond lengths are 0.98 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(7), one O(3), and one O(4) atom. The C(6)-C(7) bond length is 1.58 Å. The C(6)-O(3) bond length is 1.28 Å. The C(6)-O(4) bond length is 1.22 Å. In the seventh C site, C(7) is bonded in a tetrahedral geometry to one C(1), one C(3), and two equivalent C(6) atoms. In the eighth C site, C(8) is bonded in a tetrahedral geometry to one C(4), one C(5), and two equivalent C(2) atoms. There are five inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(2) is bonded in a single-bond geometry to one O(5) atom. The H(2)-O(5) bond length is 0.81 Å. In the third H site, H(3) is bonded in a single-bond geometry to one C(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one O(5) atom. The H(4)-O(5) bond length is 0.82 Å. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(1) atom. There are five inequivalent O sites. In the first O site, O(1) is bonded in a distorted single-bond geometry to one Ba(1) and one C(2) atom. In the second O site, O(2) is bonded in a 3-coordinate geometry to one Ba(1), one Co(1), and one C(2) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Co(1) and one C(6) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth O site, O(5) is bonded in a water-like geometry to two equivalent Ba(1), one H(2), and one H(4) atom. Linkers: 6 [C]C([CH2])(C([O])=O)C([O])=O ,4 [CH2]C([CH2])(C([O])=O)C([O])=O. Metal clusters: 6 [Ba] ,6 [Co]. The MOF has largest included sphere 4.95 A, density 1.73 g/cm3, surface area 3530.56 m2/g, accessible volume 0.24 cm3/g
|
IWAZIP_clean
|
NaCd2(CO3)4 crystallizes in the cubic Im-3m space group. Na(1) is bonded in a square co-planar geometry to four equivalent O(2) atoms. All Na(1)-O(2) bond lengths are 2.40 Å. Cd(1) is bonded to four equivalent O(1) and four equivalent O(2) atoms to form distorted corner-sharing CdO8 hexagonal bipyramids. All Cd(1)-O(1) bond lengths are 2.28 Å. All Cd(1)-O(2) bond lengths are 2.62 Å. C(1) is bonded in a trigonal planar geometry to one O(2) and two equivalent O(1) atoms. The C(1)-O(2) bond length is 1.27 Å. Both C(1)-O(1) bond lengths are 1.29 Å. There are two inequivalent O sites. In the first O site, O(2) is bonded in a 4-coordinate geometry to one Na(1), two equivalent Cd(1), and one C(1) atom. In the second O site, O(1) is bonded in a water-like geometry to one Cd(1) and one C(1) atom. Linkers: 24 [O]C([O])=O. Metal clusters: 6 [Na] ,12 [Cd]. RCSR code: nju. The MOF has largest included sphere 9.36 A, density 1.51 g/cm3, surface area 2895.60 m2/g, accessible volume 0.36 cm3/g
|
HASNIB_clean
|
Eu(CO2)4 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Eu sites. In the first Eu site, Eu(1) is bonded in a 8-coordinate geometry to one O(10), one O(15), one O(2), one O(3), one O(5), one O(6), one O(7), and one O(8) atom. The Eu(1)-O(10) bond length is 2.54 Å. The Eu(1)-O(15) bond length is 2.40 Å. The Eu(1)-O(2) bond length is 2.46 Å. The Eu(1)-O(3) bond length is 2.41 Å. The Eu(1)-O(5) bond length is 2.45 Å. The Eu(1)-O(6) bond length is 2.43 Å. The Eu(1)-O(7) bond length is 2.42 Å. The Eu(1)-O(8) bond length is 2.45 Å. In the second Eu site, Eu(2) is bonded in a 8-coordinate geometry to one O(1), one O(11), one O(12), one O(13), one O(14), one O(16), one O(4), and one O(9) atom. The Eu(2)-O(1) bond length is 2.48 Å. The Eu(2)-O(11) bond length is 2.43 Å. The Eu(2)-O(12) bond length is 2.44 Å. The Eu(2)-O(13) bond length is 2.39 Å. The Eu(2)-O(14) bond length is 2.41 Å. The Eu(2)-O(16) bond length is 2.47 Å. The Eu(2)-O(4) bond length is 2.50 Å. The Eu(2)-O(9) bond length is 2.47 Å. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(1)-O(3) bond length is 1.24 Å. The C(1)-O(4) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(2)-O(1) bond length is 1.26 Å. The C(2)-O(2) bond length is 1.25 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one O(12) and one O(7) atom. The C(3)-O(12) bond length is 1.26 Å. The C(3)-O(7) bond length is 1.24 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one O(13) and one O(6) atom. The C(4)-O(13) bond length is 1.26 Å. The C(4)-O(6) bond length is 1.26 Å. In the fifth C site, C(5) is bonded in a distorted bent 120 degrees geometry to one O(10) and one O(8) atom. The C(5)-O(10) bond length is 1.25 Å. The C(5)-O(8) bond length is 1.24 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one O(16) and one O(9) atom. The C(6)-O(16) bond length is 1.25 Å. The C(6)-O(9) bond length is 1.25 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one O(11) and one O(15) atom. The C(7)-O(11) bond length is 1.25 Å. The C(7)-O(15) bond length is 1.25 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one O(14) and one O(5) atom. The C(8)-O(14) bond length is 1.25 Å. The C(8)-O(5) bond length is 1.24 Å. There are sixteen inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Eu(2) and one C(2) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Eu(1) and one C(2) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Eu(1) and one C(1) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one Eu(2) and one C(1) atom. In the fifth O site, O(5) is bonded in a bent 120 degrees geometry to one Eu(1) and one C(8) atom. In the sixth O site, O(6) is bonded in a bent 120 degrees geometry to one Eu(1) and one C(4) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Eu(1) and one C(3) atom. In the eighth O site, O(8) is bonded in a distorted bent 120 degrees geometry to one Eu(1) and one C(5) atom. In the ninth O site, O(9) is bonded in a distorted single-bond geometry to one Eu(2) and one C(6) atom. In the tenth O site, O(10) is bonded in a distorted single-bond geometry to one Eu(1) and one C(5) atom. In the eleventh O site, O(11) is bonded in a bent 120 degrees geometry to one Eu(2) and one C(7) atom. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to one Eu(2) and one C(3) atom. In the thirteenth O site, O(13) is bonded in a bent 120 degrees geometry to one Eu(2) and one C(4) atom. In the fourteenth O site, O(14) is bonded in a bent 120 degrees geometry to one Eu(2) and one C(8) atom. In the fifteenth O site, O(15) is bonded in a bent 120 degrees geometry to one Eu(1) and one C(7) atom. In the sixteenth O site, O(16) is bonded in a distorted single-bond geometry to one Eu(2) and one C(6) atom. Linkers: 14 [O]C(=O)C([O])=O. Metal clusters: 8 [Eu]. The MOF has largest included sphere 5.41 A, density 1.75 g/cm3, surface area 2358.39 m2/g, accessible volume 0.28 cm3/g
|
HIWLIK_clean
|
Zn3P4(HO3)4 crystallizes in the orthorhombic Pca2_1 space group. There are three inequivalent Zn sites. In the first Zn site, Zn(1) is bonded to one O(12), one O(3), one O(6), and one O(9) atom to form ZnO4 tetrahedra that share a cornercorner with one P(1)HO3 tetrahedra, a cornercorner with one P(2)HO3 tetrahedra, a cornercorner with one P(3)HO3 tetrahedra, and a cornercorner with one P(4)HO3 tetrahedra. The Zn(1)-O(12) bond length is 1.97 Å. The Zn(1)-O(3) bond length is 1.94 Å. The Zn(1)-O(6) bond length is 1.93 Å. The Zn(1)-O(9) bond length is 1.93 Å. In the second Zn site, Zn(2) is bonded to one O(1), one O(2), one O(5), and one O(8) atom to form ZnO4 tetrahedra that share a cornercorner with one P(2)HO3 tetrahedra, a cornercorner with one P(3)HO3 tetrahedra, and corners with two equivalent P(1)HO3 tetrahedra. The Zn(2)-O(1) bond length is 1.98 Å. The Zn(2)-O(2) bond length is 1.92 Å. The Zn(2)-O(5) bond length is 1.91 Å. The Zn(2)-O(8) bond length is 1.93 Å. In the third Zn site, Zn(3) is bonded to one O(10), one O(11), one O(4), and one O(7) atom to form ZnO4 tetrahedra that share a cornercorner with one P(2)HO3 tetrahedra, a cornercorner with one P(3)HO3 tetrahedra, and corners with two equivalent P(4)HO3 tetrahedra. The Zn(3)-O(10) bond length is 1.99 Å. The Zn(3)-O(11) bond length is 1.94 Å. The Zn(3)-O(4) bond length is 1.91 Å. The Zn(3)-O(7) bond length is 1.91 Å. There are four inequivalent P sites. In the first P site, P(1) is bonded to one H(1), one O(1), one O(2), and one O(3) atom to form PHO3 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra and corners with two equivalent Zn(2)O4 tetrahedra. The P(1)-H(1) bond length is 1.26 Å. The P(1)-O(1) bond length is 1.53 Å. The P(1)-O(2) bond length is 1.51 Å. The P(1)-O(3) bond length is 1.51 Å. In the second P site, P(2) is bonded to one H(2), one O(4), one O(5), and one O(6) atom to form PHO3 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one Zn(2)O4 tetrahedra, and a cornercorner with one Zn(3)O4 tetrahedra. The P(2)-H(2) bond length is 1.20 Å. The P(2)-O(4) bond length is 1.50 Å. The P(2)-O(5) bond length is 1.50 Å. The P(2)-O(6) bond length is 1.48 Å. In the third P site, P(3) is bonded to one H(3), one O(7), one O(8), and one O(9) atom to form distorted PHO3 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra, a cornercorner with one Zn(2)O4 tetrahedra, and a cornercorner with one Zn(3)O4 tetrahedra. The P(3)-H(3) bond length is 1.40 Å. The P(3)-O(7) bond length is 1.51 Å. The P(3)-O(8) bond length is 1.51 Å. The P(3)-O(9) bond length is 1.51 Å. In the fourth P site, P(4) is bonded to one H(4), one O(10), one O(11), and one O(12) atom to form distorted PHO3 tetrahedra that share a cornercorner with one Zn(1)O4 tetrahedra and corners with two equivalent Zn(3)O4 tetrahedra. The P(4)-H(4) bond length is 1.38 Å. The P(4)-O(10) bond length is 1.52 Å. The P(4)-O(11) bond length is 1.50 Å. The P(4)-O(12) bond length is 1.52 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one P(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one P(2) atom. In the third H site, H(3) is bonded in a single-bond geometry to one P(3) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one P(4) atom. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(2) and one P(1) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Zn(2) and one P(1) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one P(1) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Zn(3) and one P(2) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Zn(2) and one P(2) atom. In the sixth O site, O(6) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one P(2) atom. In the seventh O site, O(7) is bonded in a bent 120 degrees geometry to one Zn(3) and one P(3) atom. In the eighth O site, O(8) is bonded in a distorted bent 150 degrees geometry to one Zn(2) and one P(3) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Zn(1) and one P(3) atom. In the tenth O site, O(10) is bonded in a bent 120 degrees geometry to one Zn(3) and one P(4) atom. In the eleventh O site, O(11) is bonded in a bent 150 degrees geometry to one Zn(3) and one P(4) atom. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to one Zn(1) and one P(4) atom. Linkers: 16 [O][PH]([O])=O. Metal clusters: 12 [Zn]. The MOF has largest included sphere 4.58 A, density 1.69 g/cm3, surface area 3143.95 m2/g, accessible volume 0.31 cm3/g
|
ICEGED_clean
|
CdH4(CN)8 is Indium-like structured and crystallizes in the triclinic P-1 space group. The structure is zero-dimensional and consists of one CdH4(CN)8 cluster. There are two inequivalent Cd sites. In the first Cd site, Cd(1) is bonded in a distorted T-shaped geometry to one N(11), one N(3), and one N(6) atom. The Cd(1)-N(11) bond length is 2.35 Å. The Cd(1)-N(3) bond length is 2.30 Å. The Cd(1)-N(6) bond length is 2.33 Å. In the second Cd site, Cd(2) is bonded in an octahedral geometry to two equivalent N(10), two equivalent N(2), and two equivalent N(7) atoms. Both Cd(2)-N(10) bond lengths are 2.36 Å. Both Cd(2)-N(2) bond lengths are 2.38 Å. Both Cd(2)-N(7) bond lengths are 2.31 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(2), one N(1), and one N(4) atom. The C(1)-C(2) bond length is 1.47 Å. The C(1)-N(1) bond length is 1.34 Å. The C(1)-N(4) bond length is 1.33 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(4) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-C(4) bond length is 1.38 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(2) and one H(2) atom. The C(4)-H(2) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(6), one N(5), and one N(8) atom. The C(5)-C(6) bond length is 1.47 Å. The C(5)-N(5) bond length is 1.34 Å. The C(5)-N(8) bond length is 1.33 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one C(8) atom. The C(6)-C(7) bond length is 1.39 Å. The C(6)-C(8) bond length is 1.39 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(6) and one H(3) atom. The C(7)-H(3) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(8)-H(4) bond length is 0.95 Å. In the ninth C site, C(9) is bonded in a distorted water-like geometry to one C(10), one N(12), and one N(9) atom. The C(9)-C(10) bond length is 1.47 Å. The C(9)-N(12) bond length is 1.34 Å. The C(9)-N(9) bond length is 1.34 Å. In the tenth C site, C(10) is bonded in a trigonal planar geometry to one C(11), one C(12), and one C(9) atom. The C(10)-C(11) bond length is 1.39 Å. The C(10)-C(12) bond length is 1.39 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(10) and one H(5) atom. The C(11)-H(5) bond length is 0.95 Å. In the twelfth C site, C(12) is bonded in a distorted single-bond geometry to one C(10) and one H(6) atom. The C(12)-H(6) bond length is 0.95 Å. There are twelve inequivalent N sites. In the first N site, N(1) is bonded in a water-like geometry to one C(1) and one N(2) atom. The N(1)-N(2) bond length is 1.33 Å. In the second N site, N(2) is bonded in a distorted trigonal planar geometry to one Cd(2), one N(1), and one N(3) atom. The N(2)-N(3) bond length is 1.32 Å. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Cd(1), one N(2), and one N(4) atom. The N(3)-N(4) bond length is 1.34 Å. In the fourth N site, N(4) is bonded in a distorted water-like geometry to one C(1) and one N(3) atom. In the fifth N site, N(5) is bonded in a distorted single-bond geometry to one C(5) and one N(6) atom. The N(5)-N(6) bond length is 1.34 Å. In the sixth N site, N(6) is bonded in a distorted trigonal planar geometry to one Cd(1), one N(5), and one N(7) atom. The N(6)-N(7) bond length is 1.31 Å. In the seventh N site, N(7) is bonded in a distorted trigonal planar geometry to one Cd(2), one N(6), and one N(8) atom. The N(7)-N(8) bond length is 1.33 Å. In the eighth N site, N(8) is bonded in a water-like geometry to one C(5) and one N(7) atom. In the ninth N site, N(9) is bonded in a water-like geometry to one C(9) and one N(10) atom. The N(9)-N(10) bond length is 1.33 Å. In the tenth N site, N(10) is bonded in a distorted trigonal planar geometry to one Cd(2), one N(11), and one N(9) atom. The N(10)-N(11) bond length is 1.32 Å. In the eleventh N site, N(11) is bonded in a distorted trigonal planar geometry to one Cd(1), one N(10), and one N(12) atom. The N(11)-N(12) bond length is 1.34 Å. In the twelfth N site, N(12) is bonded in a distorted water-like geometry to one C(9) and one N(11) atom. There are six inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. Linkers: 3 c1cc(C2=NN=N[N]2)ccc1C1=NN=N[N]1. Metal clusters: 1 [N]1[N][Cd]234([N][N][Cd](N=N2)N=N3)N=N[Cd]1N=N4. The MOF has largest included sphere 7.44 A, density 0.94 g/cm3, surface area 3628.94 m2/g, accessible volume 0.75 cm3/g
|
TAMHUM_clean
|
AgC9N4H8 crystallizes in the trigonal R-3 space group. Ag(1) is bonded in a distorted trigonal pyramidal geometry to one N(1), one N(2), one N(3), and one N(4) atom. The Ag(1)-N(1) bond length is 2.25 Å. The Ag(1)-N(2) bond length is 2.53 Å. The Ag(1)-N(3) bond length is 2.30 Å. The Ag(1)-N(4) bond length is 2.35 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one N(4), and one H(1) atom. The C(1)-C(2) bond length is 1.38 Å. The C(1)-N(4) bond length is 1.31 Å. The C(1)-H(1) bond length is 0.95 Å. In the second C site, C(2) is bonded in a distorted trigonal planar geometry to one C(1), one C(9), and one N(3) atom. The C(2)-C(9) bond length is 1.52 Å. The C(2)-N(3) bond length is 1.34 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(5), one N(1), and one H(2) atom. The C(3)-C(5) bond length is 1.39 Å. The C(3)-N(1) bond length is 1.33 Å. The C(3)-H(2) bond length is 0.95 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(3) atom. The C(4)-N(2) bond length is 1.30 Å. The C(4)-H(3) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a distorted trigonal planar geometry to one C(3), one C(9), and one N(2) atom. The C(5)-C(9) bond length is 1.49 Å. The C(5)-N(2) bond length is 1.33 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(8), one N(3), and one H(4) atom. The C(6)-C(8) bond length is 1.38 Å. The C(6)-N(3) bond length is 1.34 Å. The C(6)-H(4) bond length is 0.95 Å. In the seventh C site, C(7) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(5) atom. The C(7)-N(1) bond length is 1.38 Å. The C(7)-H(5) bond length is 0.95 Å. In the eighth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(6), one N(4), and one H(6) atom. The C(8)-N(4) bond length is 1.38 Å. The C(8)-H(6) bond length is 0.95 Å. In the ninth C site, C(9) is bonded in a water-like geometry to one C(2); one C(5); and two equivalent H(7,8) atoms. Both C(9)-H(7,8) bond lengths are 0.99 Å. There are four inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Ag(1), one C(3), and one C(7) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Ag(1), one C(4), and one C(5) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Ag(1), one C(2), and one C(6) atom. In the fourth N site, N(4) is bonded in a trigonal planar geometry to one Ag(1), one C(1), and one C(8) atom. There are seven inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(4) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(7) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(8) atom. In the seventh H site, H(7,8) is bonded in a single-bond geometry to one C(9) atom. Linkers: 18 c1cnc(Cc2cnccn2)cn1. Metal clusters: 18 [Ag]. The MOF has largest included sphere 11.16 A, density 0.82 g/cm3, surface area 3855.12 m2/g, accessible volume 0.81 cm3/g
|
VAGMAT_clean
|
ZnH8(C3O)4C8NH4 is Indium-derived structured and crystallizes in the orthorhombic Imma space group. The structure is zero-dimensional and consists of four n,n,n',n'-tetramethylbenzidine molecules and four ZnH8(C3O)4 clusters. In each ZnH8(C3O)4 cluster, Zn(1) is bonded in a distorted square co-planar geometry to two equivalent O(1) and two equivalent O(2) atoms. Both Zn(1)-O(1) bond lengths are 2.03 Å. Both Zn(1)-O(2) bond lengths are 2.04 Å. There are six inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(5), one O(1), and one O(2) atom. The C(1)-C(5) bond length is 1.50 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.24 Å. In the second C site, C(4) is bonded in a distorted trigonal planar geometry to one C(5), one C(7), and one H(2) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-C(7) bond length is 1.36 Å. The C(4)-H(2) bond length is 0.93 Å. In the third C site, C(7) is bonded in a distorted single-bond geometry to one C(4) and one H(4) atom. The C(7)-H(4) bond length is 0.93 Å. In the fourth C site, C(5) is bonded in a trigonal planar geometry to one C(1), one C(4), and one C(6) atom. The C(5)-C(6) bond length is 1.37 Å. In the fifth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(2), one C(5), and one H(3) atom. The C(6)-C(2) bond length is 1.38 Å. The C(6)-H(3) bond length is 0.93 Å. In the sixth C site, C(2) is bonded in a distorted single-bond geometry to one C(6) and one H(1) atom. The C(2)-H(1) bond length is 0.93 Å. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(7) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Zn(1) and one C(1) atom. Linkers: 3 [O]C(=O)c1ccc(N(c2ccc(C([O])=O)cc2)c2ccc(-c3ccc(N(c4ccc(C([O])=O)cc4)c4ccc(C([O])=O)cc4)cc3)cc2)cc1. Metal clusters: 2 [C]1O[Zn]23O[C]O[Zn](O1)(O[C]O2)O[C]O3. RCSR code: lvt. The MOF has largest included sphere 14.92 A, density 0.36 g/cm3, surface area 4466.17 m2/g, accessible volume 2.28 cm3/g
|
LEMMAS_clean
|
ZnH8(C2N)4(C3H2S)4 is Indium-derived structured and crystallizes in the monoclinic C2/c space group. The structure is zero-dimensional and consists of eight schembl776479 molecules and four ZnH8(C2N)4 clusters. In each ZnH8(C2N)4 cluster, Zn(1) is bonded in a square co-planar geometry to two equivalent N(1) and two equivalent N(2) atoms. Both Zn(1)-N(1) bond lengths are 2.14 Å. Both Zn(1)-N(2) bond lengths are 2.17 Å. There are four inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(1)-N(1) bond length is 1.34 Å. The C(1)-H(1) bond length is 0.92 Å. In the second C site, C(5) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(4) atom. The C(5)-N(1) bond length is 1.34 Å. The C(5)-H(4) bond length is 0.92 Å. In the third C site, C(6) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(5) atom. The C(6)-N(2) bond length is 1.33 Å. The C(6)-H(5) bond length is 0.88 Å. In the fourth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(8) atom. The C(10)-N(2) bond length is 1.34 Å. The C(10)-H(8) bond length is 0.88 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Zn(1), one C(1), and one C(5) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Zn(1), one C(10), and one C(6) atom. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(1) atom. In the second H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(5) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(8) is bonded in a single-bond geometry to one C(10) atom. Linkers: 8 c1cc(SSc2ccncc2)ccn1. Metal clusters: 4 [Zn]. The MOF has largest included sphere 4.86 A, density 1.06 g/cm3, surface area 4873.23 m2/g, accessible volume 0.45 cm3/g
|
UCUTIW_clean
|
ZnH6(C3O)4 crystallizes in the monoclinic C2/c space group. Zn(1) is bonded in a distorted see-saw-like geometry to two equivalent O(1) and two equivalent O(2) atoms. Both Zn(1)-O(1) bond lengths are 2.09 Å. Both Zn(1)-O(2) bond lengths are 2.20 Å. There are six inequivalent C sites. In the first C site, C(5) is bonded in a trigonal planar geometry to one C(4), one C(5), and one C(6) atom. The C(5)-C(4) bond length is 1.27 Å. The C(5)-C(5) bond length is 1.37 Å. The C(5)-C(6) bond length is 1.45 Å. In the second C site, C(6) is bonded in a distorted single-bond geometry to one C(2), one C(5), and one H(3) atom. The C(6)-C(2) bond length is 1.33 Å. The C(6)-H(3) bond length is 0.93 Å. In the third C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.52 Å. The C(1)-O(1) bond length is 1.25 Å. The C(1)-O(2) bond length is 1.23 Å. In the fourth C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(6) atom. The C(2)-C(3) bond length is 1.33 Å. In the fifth C site, C(3) is bonded in a distorted single-bond geometry to one C(2) and one H(1) atom. The C(3)-H(1) bond length is 0.93 Å. In the sixth C site, C(4) is bonded in a distorted single-bond geometry to one C(5) and one H(2) atom. The C(4)-H(2) bond length is 0.93 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. There are two inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one C(1) atom. In the second O site, O(2) is bonded in a distorted single-bond geometry to one Zn(1) and one C(1) atom. Linkers: 4 [O]C(=O)c1ccc2cc(C([O])=O)ccc2c1. Metal clusters: 4 [Zn]. The MOF has largest included sphere 6.35 A, density 1.00 g/cm3, surface area 4047.15 m2/g, accessible volume 0.52 cm3/g
|
WAPTIT_clean
|
Eu2W11C2AsP2H4O37 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Eu sites. In the first Eu site, Eu(1) is bonded in a distorted pentagonal planar geometry to one O(12), one O(28), one O(29), one O(31), and one O(32) atom. The Eu(1)-O(12) bond length is 2.46 Å. The Eu(1)-O(28) bond length is 2.47 Å. The Eu(1)-O(29) bond length is 2.48 Å. The Eu(1)-O(31) bond length is 2.43 Å. The Eu(1)-O(32) bond length is 2.47 Å. In the second Eu site, Eu(2) is bonded in a 3-coordinate geometry to one O(26), one O(33), and one O(36) atom. The Eu(2)-O(26) bond length is 2.33 Å. The Eu(2)-O(33) bond length is 2.31 Å. The Eu(2)-O(36) bond length is 2.29 Å. There are eleven inequivalent W sites. In the first W site, W(1) is bonded to one O(17), one O(18), one O(20), one O(21), and one O(34) atom to form distorted WO5 square pyramids that share a cornercorner with one W(10)O6 octahedra, a cornercorner with one W(2)O5 square pyramid, an edgeedge with one W(3)O5 square pyramid, and an edgeedge with one W(8)O5 square pyramid. The corner-sharing octahedral tilt angles are 34°. The W(1)-O(17) bond length is 1.95 Å. The W(1)-O(18) bond length is 2.34 Å. The W(1)-O(20) bond length is 1.97 Å. The W(1)-O(21) bond length is 1.90 Å. The W(1)-O(34) bond length is 1.86 Å. In the second W site, W(2) is bonded to one O(1), one O(10), one O(21), one O(23), and one O(3) atom to form distorted WO5 square pyramids that share a cornercorner with one W(10)O6 octahedra, a cornercorner with one W(1)O5 square pyramid, and an edgeedge with one W(5)O5 square pyramid. The corner-sharing octahedral tilt angles are 32°. The W(2)-O(1) bond length is 1.91 Å. The W(2)-O(10) bond length is 1.89 Å. The W(2)-O(21) bond length is 1.92 Å. The W(2)-O(23) bond length is 1.90 Å. The W(2)-O(3) bond length is 2.44 Å. In the third W site, W(3) is bonded to one O(17), one O(18), one O(30), one O(8), and one O(9) atom to form distorted WO5 square pyramids that share a cornercorner with one W(11)O6 octahedra, an edgeedge with one W(1)O5 square pyramid, and an edgeedge with one W(8)O5 square pyramid. The corner-sharing octahedral tilt angles are 33°. The W(3)-O(17) bond length is 1.89 Å. The W(3)-O(18) bond length is 2.30 Å. The W(3)-O(30) bond length is 1.91 Å. The W(3)-O(8) bond length is 1.86 Å. The W(3)-O(9) bond length is 1.96 Å. In the fourth W site, W(4) is bonded in a 6-coordinate geometry to one O(10), one O(12), one O(15), one O(19), one O(3), and one O(31) atom. The W(4)-O(10) bond length is 1.98 Å. The W(4)-O(12) bond length is 1.74 Å. The W(4)-O(15) bond length is 2.12 Å. The W(4)-O(19) bond length is 1.89 Å. The W(4)-O(3) bond length is 2.23 Å. The W(4)-O(31) bond length is 1.75 Å. In the fifth W site, W(5) is bonded to one O(15), one O(16), one O(23), one O(3), and one O(5) atom to form a mixture of distorted edge and corner-sharing WO5 square pyramids. The W(5)-O(15) bond length is 1.82 Å. The W(5)-O(16) bond length is 1.98 Å. The W(5)-O(23) bond length is 1.91 Å. The W(5)-O(3) bond length is 2.38 Å. The W(5)-O(5) bond length is 1.89 Å. In the sixth W site, W(6) is bonded to one O(11), one O(19), one O(2), one O(24), and one O(29) atom to form distorted edge-sharing WO5 square pyramids. The W(6)-O(11) bond length is 2.23 Å. The W(6)-O(19) bond length is 1.92 Å. The W(6)-O(2) bond length is 1.99 Å. The W(6)-O(24) bond length is 2.12 Å. The W(6)-O(29) bond length is 1.72 Å. In the seventh W site, W(7) is bonded in a 5-coordinate geometry to one O(11), one O(14), one O(2), one O(27), and one O(30) atom. The W(7)-O(11) bond length is 2.43 Å. The W(7)-O(14) bond length is 1.89 Å. The W(7)-O(2) bond length is 1.86 Å. The W(7)-O(27) bond length is 1.92 Å. The W(7)-O(30) bond length is 1.90 Å. In the eighth W site, W(8) is bonded to one O(16), one O(18), one O(25), one O(34), and one O(8) atom to form a mixture of distorted edge and corner-sharing WO5 square pyramids. The W(8)-O(16) bond length is 1.85 Å. The W(8)-O(18) bond length is 2.28 Å. The W(8)-O(25) bond length is 1.85 Å. The W(8)-O(34) bond length is 2.01 Å. The W(8)-O(8) bond length is 2.02 Å. In the ninth W site, W(9) is bonded to one O(11), one O(14), one O(24), one O(25), and one O(5) atom to form a mixture of distorted edge and corner-sharing WO5 square pyramids. The W(9)-O(11) bond length is 2.40 Å. The W(9)-O(14) bond length is 1.92 Å. The W(9)-O(24) bond length is 1.81 Å. The W(9)-O(25) bond length is 1.97 Å. The W(9)-O(5) bond length is 1.90 Å. In the tenth W site, W(10) is bonded to one O(1), one O(20), one O(22), one O(28), one O(4), and one O(7) atom to form distorted WO6 octahedra that share a cornercorner with one W(11)O6 octahedra, a cornercorner with one W(1)O5 square pyramid, a cornercorner with one W(2)O5 square pyramid, a cornercorner with one P(1)CO3 tetrahedra, and a cornercorner with one P(2)CO3 tetrahedra. The corner-sharing octahedral tilt angles are 28°. The W(10)-O(1) bond length is 1.90 Å. The W(10)-O(20) bond length is 1.85 Å. The W(10)-O(22) bond length is 2.02 Å. The W(10)-O(28) bond length is 1.72 Å. The W(10)-O(4) bond length is 2.15 Å. The W(10)-O(7) bond length is 1.91 Å. In the eleventh W site, W(11) is bonded to one O(13), one O(27), one O(32), one O(6), one O(7), and one O(9) atom to form distorted WO6 octahedra that share a cornercorner with one W(10)O6 octahedra, a cornercorner with one W(3)O5 square pyramid, a cornercorner with one P(1)CO3 tetrahedra, and a cornercorner with one P(2)CO3 tetrahedra. The corner-sharing octahedral tilt angles are 28°. The W(11)-O(13) bond length is 2.18 Å. The W(11)-O(27) bond length is 1.89 Å. The W(11)-O(32) bond length is 1.72 Å. The W(11)-O(6) bond length is 2.02 Å. The W(11)-O(7) bond length is 1.90 Å. The W(11)-O(9) bond length is 1.85 Å. There are two inequivalent C sites. In the first C site, C(1) is bonded in a distorted tetrahedral geometry to one C(2), one P(1), one P(2), and one O(35) atom. The C(1)-C(2) bond length is 1.44 Å. The C(1)-P(1) bond length is 1.87 Å. The C(1)-P(2) bond length is 1.80 Å. The C(1)-O(35) bond length is 1.43 Å. In the second C site, C(2) is bonded in a trigonal non-coplanar geometry to one C(1); one H(2); and two equivalent H(3,4) atoms. The C(2)-H(2) bond length is 0.96 Å. Both C(2)-H(3,4) bond lengths are 0.96 Å. As(1) is bonded in a distorted T-shaped geometry to one O(11), one O(18), and one O(3) atom. The As(1)-O(11) bond length is 1.78 Å. The As(1)-O(18) bond length is 1.79 Å. The As(1)-O(3) bond length is 1.80 Å. There are two inequivalent P sites. In the first P site, P(1) is bonded to one C(1), one O(13), one O(22), and one O(33) atom to form PCO3 tetrahedra that share a cornercorner with one W(10)O6 octahedra, a cornercorner with one W(11)O6 octahedra, and a cornercorner with one P(2)CO3 tetrahedra. The corner-sharing octahedral tilt angles range from 46-51°. The P(1)-O(13) bond length is 1.52 Å. The P(1)-O(22) bond length is 1.55 Å. The P(1)-O(33) bond length is 1.49 Å. In the second P site, P(2) is bonded to one C(1), one O(26), one O(4), and one O(6) atom to form PCO3 tetrahedra that share a cornercorner with one W(10)O6 octahedra, a cornercorner with one W(11)O6 octahedra, and a cornercorner with one P(1)CO3 tetrahedra. The corner-sharing octahedral tilt angles range from 46-50°. The P(2)-O(26) bond length is 1.50 Å. The P(2)-O(4) bond length is 1.54 Å. The P(2)-O(6) bond length is 1.54 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one O(35) atom. The H(1)-O(35) bond length is 0.82 Å. In the second H site, H(2) is bonded in a single-bond geometry to one C(2) atom. In the third H site, H(3,4) is bonded in a single-bond geometry to one C(2) atom. There are thirty-seven inequivalent O sites. In the first O site, O(1) is bonded in a bent 150 degrees geometry to one W(10) and one W(2) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one W(6) and one W(7) atom. In the third O site, O(3) is bonded in a distorted rectangular see-saw-like geometry to one W(2), one W(4), one W(5), and one As(1) atom. In the fourth O site, O(4) is bonded in a distorted bent 120 degrees geometry to one W(10) and one P(2) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one W(5) and one W(9) atom. In the sixth O site, O(6) is bonded in a distorted bent 120 degrees geometry to one W(11) and one P(2) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one W(10) and one W(11) atom. In the eighth O site, O(8) is bonded in a bent 120 degrees geometry to one W(3) and one W(8) atom. In the ninth O site, O(9) is bonded in a bent 150 degrees geometry to one W(11) and one W(3) atom. In the tenth O site, O(10) is bonded in a bent 120 degrees geometry to one W(2) and one W(4) atom. In the eleventh O site, O(11) is bonded in a distorted rectangular see-saw-like geometry to one W(6), one W(7), one W(9), and one As(1) atom. In the twelfth O site, O(12) is bonded in a distorted bent 150 degrees geometry to one Eu(1) and one W(4) atom. In the thirteenth O site, O(13) is bonded in a distorted bent 120 degrees geometry to one W(11) and one P(1) atom. In the fourteenth O site, O(14) is bonded in a distorted single-bond geometry to one W(7) and one W(9) atom. In the fifteenth O site, O(15) is bonded in a bent 120 degrees geometry to one W(4) and one W(5) atom. In the sixteenth O site, O(16) is bonded in a bent 150 degrees geometry to one W(5) and one W(8) atom. In the seventeenth O site, O(17) is bonded in a bent 120 degrees geometry to one W(1) and one W(3) atom. In the eighteenth O site, O(18) is bonded in a distorted rectangular see-saw-like geometry to one W(1), one W(3), one W(8), and one As(1) atom. In the nineteenth O site, O(19) is bonded in a bent 150 degrees geometry to one W(4) and one W(6) atom. In the twentieth O site, O(20) is bonded in a bent 150 degrees geometry to one W(1) and one W(10) atom. In the twenty-first O site, O(21) is bonded in a bent 150 degrees geometry to one W(1) and one W(2) atom. In the twenty-second O site, O(22) is bonded in a distorted bent 120 degrees geometry to one W(10) and one P(1) atom. In the twenty-third O site, O(23) is bonded in a bent 120 degrees geometry to one W(2) and one W(5) atom. In the twenty-fourth O site, O(24) is bonded in a bent 120 degrees geometry to one W(6) and one W(9) atom. In the twenty-fifth O site, O(25) is bonded in a bent 150 degrees geometry to one W(8) and one W(9) atom. In the twenty-sixth O site, O(26) is bonded in a single-bond geometry to one Eu(2) and one P(2) atom. In the twenty-seventh O site, O(27) is bonded in a bent 150 degrees geometry to one W(11) and one W(7) atom. In the twenty-eighth O site, O(28) is bonded in a distorted single-bond geometry to one Eu(1) and one W(10) atom. In the twenty-ninth O site, O(29) is bonded in a distorted bent 150 degrees geometry to one Eu(1) and one W(6) atom. In the thirtieth O site, O(30) is bonded in a bent 150 degrees geometry to one W(3) and one W(7) atom. In the thirty-first O site, O(31) is bonded in a distorted bent 150 degrees geometry to one Eu(1) and one W(4) atom. In the thirty-second O site, O(32) is bonded in a distorted single-bond geometry to one Eu(1) and one W(11) atom. In the thirty-third O site, O(33) is bonded in a distorted single-bond geometry to one Eu(2) and one P(1) atom. In the thirty-fourth O site, O(34) is bonded in a bent 120 degrees geometry to one W(1) and one W(8) atom. In the thirty-fifth O site, O(35) is bonded in a water-like geometry to one C(1) and one H(1) atom. In the thirty-sixth O site, O(36) is bonded in a water-like geometry to one Eu(2) and one O(37) atom. The O(36)-O(37) bond length is 0.95 Å. In the thirty-seventh O site, O(37) is bonded in a distorted single-bond geometry to one O(36) atom. Linkers: 4 CC(O)(P([O])([O])=O)P([O])([O])=O. Metal clusters: 8 [Eu] ,44 [W]. The MOF has largest included sphere 6.43 A, density 3.25 g/cm3, surface area 1112.64 m2/g, accessible volume 0.15 cm3/g
|
IZIHOQ_clean
|
Dy3C43H19O18(CH)2 crystallizes in the tetragonal I-42d space group. The structure consists of sixteen 02329_fluka molecules inside a Dy3C43H19O18 framework. In the Dy3C43H19O18 framework, there are two inequivalent Dy sites. In the first Dy site, Dy(1) is bonded in a 7-coordinate geometry to one O(1), one O(3), one O(4), one O(5), one O(6), one O(7), and one O(9) atom. The Dy(1)-O(1) bond length is 2.29 Å. The Dy(1)-O(3) bond length is 2.33 Å. The Dy(1)-O(4) bond length is 2.90 Å. The Dy(1)-O(5) bond length is 2.44 Å. The Dy(1)-O(6) bond length is 2.38 Å. The Dy(1)-O(7) bond length is 2.30 Å. The Dy(1)-O(9) bond length is 2.47 Å. In the second Dy site, Dy(2) is bonded in a 8-coordinate geometry to two equivalent O(2), two equivalent O(4), two equivalent O(7), and two equivalent O(8) atoms. Both Dy(2)-O(2) bond lengths are 2.32 Å. Both Dy(2)-O(4) bond lengths are 2.28 Å. Both Dy(2)-O(7) bond lengths are 2.74 Å. Both Dy(2)-O(8) bond lengths are 2.42 Å. There are twenty-two inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.51 Å. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(2) bond length is 1.26 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(7) atom. The C(2)-C(3) bond length is 1.37 Å. The C(2)-C(7) bond length is 1.39 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(1) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(3), one C(5), and one C(8) atom. The C(4)-C(5) bond length is 1.39 Å. The C(4)-C(8) bond length is 1.51 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4) and one H(2) atom. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(7) and one H(3) atom. The C(6)-C(7) bond length is 1.43 Å. The C(6)-H(3) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(2), one C(6), and one C(9) atom. The C(7)-C(9) bond length is 1.50 Å. In the eighth C site, C(8) is bonded in a bent 120 degrees geometry to one C(4), one O(3), and one O(4) atom. The C(8)-O(3) bond length is 1.25 Å. The C(8)-O(4) bond length is 1.25 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(14), and one C(7) atom. The C(9)-C(10) bond length is 1.37 Å. The C(9)-C(14) bond length is 1.40 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(9) and one H(4) atom. The C(10)-H(4) bond length is 0.93 Å. In the eleventh C site, C(12) is bonded in a distorted single-bond geometry to one C(13) and one H(6) atom. The C(12)-C(13) bond length is 1.38 Å. The C(12)-H(6) bond length is 0.93 Å. In the twelfth C site, C(13) is bonded in a trigonal planar geometry to one C(12), one C(14), and one C(15) atom. The C(13)-C(14) bond length is 1.39 Å. The C(13)-C(15) bond length is 1.50 Å. In the thirteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(13), one C(9), and one H(7) atom. The C(14)-H(7) bond length is 0.93 Å. In the fourteenth C site, C(15) is bonded in a trigonal planar geometry to one C(13), one C(16), and one C(20) atom. The C(15)-C(16) bond length is 1.37 Å. The C(15)-C(20) bond length is 1.40 Å. In the fifteenth C site, C(16) is bonded in a distorted single-bond geometry to one C(15) and one H(8) atom. The C(16)-H(8) bond length is 0.93 Å. In the sixteenth C site, C(17) is bonded in a distorted single-bond geometry to one C(18) and one H(9) atom. The C(17)-C(18) bond length is 1.38 Å. The C(17)-H(9) bond length is 0.93 Å. In the seventeenth C site, C(18) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(21) atom. The C(18)-C(19) bond length is 1.36 Å. The C(18)-C(21) bond length is 1.50 Å. In the eighteenth C site, C(19) is bonded in a single-bond geometry to one C(18), one C(20), and one H(10) atom. The C(19)-C(20) bond length is 1.38 Å. The C(19)-H(10) bond length is 0.93 Å. In the nineteenth C site, C(20) is bonded in a trigonal planar geometry to one C(15), one C(19), and one C(22) atom. The C(20)-C(22) bond length is 1.51 Å. In the twentieth C site, C(21) is bonded in a bent 120 degrees geometry to one C(18), one O(5), and one O(6) atom. The C(21)-O(5) bond length is 1.26 Å. The C(21)-O(6) bond length is 1.26 Å. In the twenty-first C site, C(22) is bonded in a distorted bent 120 degrees geometry to one C(20), one O(7), and one O(8) atom. The C(22)-O(7) bond length is 1.27 Å. The C(22)-O(8) bond length is 1.23 Å. In the twenty-second C site, C(23) is bonded in a trigonal planar geometry to one H(11) and two equivalent O(9) atoms. The C(23)-H(11) bond length is 0.93 Å. Both C(23)-O(9) bond lengths are 1.30 Å. There are ten inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(10) atom. In the fifth H site, H(6) is bonded in a single-bond geometry to one C(12) atom. In the sixth H site, H(7) is bonded in a single-bond geometry to one C(14) atom. In the seventh H site, H(8) is bonded in a single-bond geometry to one C(16) atom. In the eighth H site, H(9) is bonded in a single-bond geometry to one C(17) atom. In the ninth H site, H(10) is bonded in a single-bond geometry to one C(19) atom. In the tenth H site, H(11) is bonded in a single-bond geometry to one C(23) atom. There are nine inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Dy(1) and one C(1) atom. In the second O site, O(2) is bonded in a 2-coordinate geometry to one Dy(2) and one C(1) atom. In the third O site, O(3) is bonded in a distorted water-like geometry to one Dy(1) and one C(8) atom. In the fourth O site, O(4) is bonded in a 2-coordinate geometry to one Dy(1), one Dy(2), and one C(8) atom. In the fifth O site, O(5) is bonded in a distorted L-shaped geometry to one Dy(1) and one C(21) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one Dy(1) and one C(21) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Dy(1), one Dy(2), and one C(22) atom. In the eighth O site, O(8) is bonded in a distorted water-like geometry to one Dy(2) and one C(22) atom. In the ninth O site, O(9) is bonded in a distorted water-like geometry to one Dy(1) and one C(23) atom. Linkers: 16 [O]C(=O)c1ccc(-c2cccc(-c3ccc(C([O])=O)cc3C([O])=O)c2)c(C([O])=O)c1. Metal clusters: 24 [Dy]. The MOF has largest included sphere 7.06 A, density 1.41 g/cm3, surface area 3023.55 m2/g, accessible volume 0.32 cm3/g
|
LIXWAR_clean
|
MnH6(C3O)4 crystallizes in the monoclinic C2/c space group. There are two inequivalent Mn sites. In the first Mn site, Mn(1) is bonded in a distorted rectangular see-saw-like geometry to one O(1), one O(2), one O(4), and one O(5) atom. The Mn(1)-O(1) bond length is 2.29 Å. The Mn(1)-O(2) bond length is 2.07 Å. The Mn(1)-O(4) bond length is 2.21 Å. The Mn(1)-O(5) bond length is 2.10 Å. In the second Mn site, Mn(2) is bonded in an octahedral geometry to two equivalent O(1), two equivalent O(3), and two equivalent O(6) atoms. Both Mn(2)-O(1) bond lengths are 2.19 Å. Both Mn(2)-O(3) bond lengths are 2.15 Å. Both Mn(2)-O(6) bond lengths are 2.16 Å. There are eighteen inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(1), one C(4), and one C(5) atom. The C(1)-C(1) bond length is 1.42 Å. The C(1)-C(4) bond length is 1.42 Å. The C(1)-C(5) bond length is 1.42 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(11), one C(2), and one C(8) atom. The C(2)-C(11) bond length is 1.42 Å. The C(2)-C(2) bond length is 1.40 Å. The C(2)-C(8) bond length is 1.43 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one C(7), one O(1), and one O(4) atom. The C(3)-C(7) bond length is 1.49 Å. The C(3)-O(1) bond length is 1.27 Å. The C(3)-O(4) bond length is 1.24 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(1) and one H(1) atom. The C(4)-H(1) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(1), one C(7), and one H(2) atom. The C(5)-C(7) bond length is 1.35 Å. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(12) and one H(3) atom. The C(6)-C(12) bond length is 1.40 Å. The C(6)-H(3) bond length is 0.93 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(15), one C(3), and one C(5) atom. The C(7)-C(15) bond length is 1.42 Å. In the eighth C site, C(8) is bonded in a single-bond geometry to one C(2) and one H(4) atom. The C(8)-H(4) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a distorted bent 120 degrees geometry to one C(17), one O(5), and one O(6) atom. The C(9)-C(17) bond length is 1.51 Å. The C(9)-O(5) bond length is 1.26 Å. The C(9)-O(6) bond length is 1.26 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(12), one O(2), and one O(3) atom. The C(10)-C(12) bond length is 1.51 Å. The C(10)-O(2) bond length is 1.25 Å. The C(10)-O(3) bond length is 1.25 Å. In the eleventh C site, C(11) is bonded in a distorted single-bond geometry to one C(12), one C(2), and one H(5) atom. The C(11)-C(12) bond length is 1.38 Å. The C(11)-H(5) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(10), one C(11), and one C(6) atom. In the thirteenth C site, C(13) is bonded in a distorted single-bond geometry to one C(16) and one H(6) atom. The C(13)-C(16) bond length is 1.41 Å. The C(13)-H(6) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a distorted single-bond geometry to one C(16), one C(17), and one H(7) atom. The C(14)-C(16) bond length is 1.43 Å. The C(14)-C(17) bond length is 1.36 Å. The C(14)-H(7) bond length is 0.93 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(7) and one H(8) atom. The C(15)-H(8) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(13), one C(14), and one C(16) atom. The C(16)-C(16) bond length is 1.41 Å. In the seventeenth C site, C(17) is bonded in a trigonal planar geometry to one C(14), one C(18), and one C(9) atom. The C(17)-C(18) bond length is 1.41 Å. In the eighteenth C site, C(18) is bonded in a distorted single-bond geometry to one C(17) and one H(9) atom. The C(18)-H(9) bond length is 0.93 Å. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(6) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(11) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(13) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(14) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(15) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(18) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a 3-coordinate geometry to one Mn(1), one Mn(2), and one C(3) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(10) atom. In the third O site, O(3) is bonded in a bent 150 degrees geometry to one Mn(2) and one C(10) atom. In the fourth O site, O(4) is bonded in a distorted L-shaped geometry to one Mn(1) and one C(3) atom. In the fifth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Mn(1) and one C(9) atom. In the sixth O site, O(6) is bonded in a distorted bent 150 degrees geometry to one Mn(2) and one C(9) atom. Linkers: 7 [O]C(=O)c1ccc2cc(C([O])=O)ccc2c1. Metal clusters: 2 [C]1O[Mn]2O[C]O[Mn]34(O1)(O[C]O2)O[C]O[Mn](O[C]O3)O[C]O4. RCSR code: pcu. The MOF has largest included sphere 5.64 A, density 1.06 g/cm3, surface area 4076.30 m2/g, accessible volume 0.48 cm3/g
|
XALDAQ_clean
|
Mn3C21N8H11O9(CH)17(CH2)10(CH3)3 crystallizes in the tetragonal I4_1/a space group. The structure is zero-dimensional and consists of one hundred and forty-four 02329_fluka molecules, one hundred and sixty 02329_fluka molecules, forty-eight 02329_fluka molecules, thirty-two isobutylene molecules, and eight Mn3C21N8H11O9 clusters. In each Mn3C21N8H11O9 cluster, there are three inequivalent Mn sites. In the first Mn site, Mn(1) is bonded in a distorted octahedral geometry to one N(1), one N(3), one N(7), one O(1), one O(3), and one O(8) atom. The Mn(1)-N(1) bond length is 1.95 Å. The Mn(1)-N(3) bond length is 2.29 Å. The Mn(1)-N(7) bond length is 2.25 Å. The Mn(1)-O(1) bond length is 1.85 Å. The Mn(1)-O(3) bond length is 1.93 Å. The Mn(1)-O(8) bond length is 1.98 Å. In the second Mn site, Mn(2) is bonded in a distorted square pyramidal geometry to one N(2), one N(4), one O(2), one O(4), and one O(6) atom. The Mn(2)-N(2) bond length is 2.24 Å. The Mn(2)-N(4) bond length is 1.93 Å. The Mn(2)-O(2) bond length is 1.97 Å. The Mn(2)-O(4) bond length is 1.86 Å. The Mn(2)-O(6) bond length is 1.93 Å. In the third Mn site, Mn(3) is bonded in a distorted octahedral geometry to one N(5), one N(6), one N(8), one O(5), one O(7), and one O(9) atom. The Mn(3)-N(5) bond length is 2.27 Å. The Mn(3)-N(6) bond length is 1.95 Å. The Mn(3)-N(8) bond length is 2.28 Å. The Mn(3)-O(5) bond length is 1.98 Å. The Mn(3)-O(7) bond length is 1.86 Å. The Mn(3)-O(9) bond length is 1.93 Å. There are twenty-one inequivalent C sites. In the first C site, C(1) is bonded in a distorted single-bond geometry to one C(6) and one O(1) atom. The C(1)-C(6) bond length is 1.41 Å. The C(1)-O(1) bond length is 1.33 Å. In the second C site, C(5) is bonded in a distorted single-bond geometry to one C(6) and one H(4) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-H(4) bond length is 0.95 Å. In the third C site, C(6) is bonded in a trigonal planar geometry to one C(1), one C(5), and one C(7) atom. The C(6)-C(7) bond length is 1.49 Å. In the fourth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one C(6), one N(1), and one O(2) atom. The C(7)-N(1) bond length is 1.32 Å. The C(7)-O(2) bond length is 1.28 Å. In the fifth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one N(2) and one O(3) atom. The C(8)-N(2) bond length is 1.30 Å. The C(8)-O(3) bond length is 1.30 Å. In the sixth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(16) atom. The C(14)-N(3) bond length is 1.33 Å. The C(14)-H(16) bond length is 0.95 Å. In the seventh C site, C(18) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(19) atom. The C(18)-N(3) bond length is 1.34 Å. The C(18)-H(19) bond length is 0.95 Å. In the eighth C site, C(20) is bonded in a distorted single-bond geometry to one C(25) and one O(4) atom. The C(20)-C(25) bond length is 1.42 Å. The C(20)-O(4) bond length is 1.33 Å. In the ninth C site, C(24) is bonded in a distorted single-bond geometry to one C(25) and one H(25) atom. The C(24)-C(25) bond length is 1.40 Å. The C(24)-H(25) bond length is 0.95 Å. In the tenth C site, C(25) is bonded in a trigonal planar geometry to one C(20), one C(24), and one C(26) atom. The C(25)-C(26) bond length is 1.46 Å. In the eleventh C site, C(26) is bonded in a distorted trigonal planar geometry to one C(25), one N(4), and one O(5) atom. The C(26)-N(4) bond length is 1.33 Å. The C(26)-O(5) bond length is 1.28 Å. In the twelfth C site, C(27) is bonded in a distorted trigonal planar geometry to one C(28), one N(5), and one O(6) atom. The C(27)-C(28) bond length is 1.51 Å. The C(27)-N(5) bond length is 1.29 Å. The C(27)-O(6) bond length is 1.32 Å. In the thirteenth C site, C(28) is bonded in a water-like geometry to one C(27), one H(26), and one H(27) atom. The C(28)-H(26) bond length is 0.99 Å. The C(28)-H(27) bond length is 0.99 Å. In the fourteenth C site, C(33) is bonded in a distorted single-bond geometry to one C(38) and one O(7) atom. The C(33)-C(38) bond length is 1.40 Å. The C(33)-O(7) bond length is 1.33 Å. In the fifteenth C site, C(37) is bonded in a distorted single-bond geometry to one C(38) and one H(40) atom. The C(37)-C(38) bond length is 1.40 Å. The C(37)-H(40) bond length is 0.95 Å. In the sixteenth C site, C(38) is bonded in a trigonal planar geometry to one C(33), one C(37), and one C(39) atom. The C(38)-C(39) bond length is 1.47 Å. In the seventeenth C site, C(39) is bonded in a distorted bent 120 degrees geometry to one C(38), one N(6), and one O(8) atom. The C(39)-N(6) bond length is 1.32 Å. The C(39)-O(8) bond length is 1.28 Å. In the eighteenth C site, C(40) is bonded in a distorted trigonal planar geometry to one C(41), one N(7), and one O(9) atom. The C(40)-C(41) bond length is 1.50 Å. The C(40)-N(7) bond length is 1.28 Å. The C(40)-O(9) bond length is 1.31 Å. In the nineteenth C site, C(41) is bonded in a water-like geometry to one C(40) and two equivalent H(41,42) atoms. Both C(41)-H(41,42) bond lengths are 0.99 Å. In the twentieth C site, C(46) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(52) atom. The C(46)-N(8) bond length is 1.33 Å. The C(46)-H(52) bond length is 0.95 Å. In the twenty-first C site, C(50) is bonded in a distorted bent 120 degrees geometry to one N(8) and one H(55) atom. The C(50)-N(8) bond length is 1.31 Å. The C(50)-H(55) bond length is 0.95 Å. There are eight inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Mn(1), one C(7), and one N(2) atom. The N(1)-N(2) bond length is 1.41 Å. In the second N site, N(2) is bonded in a 3-coordinate geometry to one Mn(2), one C(8), and one N(1) atom. In the third N site, N(3) is bonded in a trigonal planar geometry to one Mn(1), one C(14), and one C(18) atom. In the fourth N site, N(4) is bonded in a distorted trigonal planar geometry to one Mn(2), one C(26), and one N(5) atom. The N(4)-N(5) bond length is 1.42 Å. In the fifth N site, N(6) is bonded in a distorted trigonal planar geometry to one Mn(3), one C(39), and one N(7) atom. The N(6)-N(7) bond length is 1.41 Å. In the sixth N site, N(7) is bonded in a 3-coordinate geometry to one Mn(1), one C(40), and one N(6) atom. In the seventh N site, N(8) is bonded in a trigonal planar geometry to one Mn(3), one C(46), and one C(50) atom. In the eighth N site, N(5) is bonded in a 3-coordinate geometry to one Mn(3), one C(27), and one N(4) atom. There are ten inequivalent H sites. In the first H site, H(4) is bonded in a single-bond geometry to one C(5) atom. In the second H site, H(16) is bonded in a single-bond geometry to one C(14) atom. In the third H site, H(19) is bonded in a single-bond geometry to one C(18) atom. In the fourth H site, H(25) is bonded in a single-bond geometry to one C(24) atom. In the fifth H site, H(26) is bonded in a single-bond geometry to one C(28) atom. In the sixth H site, H(27) is bonded in a single-bond geometry to one C(28) atom. In the seventh H site, H(41,42) is bonded in a single-bond geometry to one C(41) atom. In the eighth H site, H(40) is bonded in a single-bond geometry to one C(37) atom. In the ninth H site, H(52) is bonded in a single-bond geometry to one C(46) atom. In the tenth H site, H(55) is bonded in a single-bond geometry to one C(50) atom. There are nine inequivalent O sites. In the first O site, O(5) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(26) atom. In the second O site, O(8) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(39) atom. In the third O site, O(9) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(40) atom. In the fourth O site, O(1) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(1) atom. In the fifth O site, O(2) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(7) atom. In the sixth O site, O(3) is bonded in a bent 120 degrees geometry to one Mn(1) and one C(8) atom. In the seventh O site, O(4) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(20) atom. In the eighth O site, O(7) is bonded in a bent 120 degrees geometry to one Mn(3) and one C(33) atom. In the ninth O site, O(6) is bonded in a bent 120 degrees geometry to one Mn(2) and one C(27) atom. Linkers: 24 CCCCCC(=O)[N][N]C(=O)c1ccccc1[O] ,8 c1cc(CCc2ccncc2)ccn1. Metal clusters: 24 [Mn]. The MOF has largest included sphere 8.83 A, density 1.00 g/cm3, surface area 5055.79 m2/g, accessible volume 0.51 cm3/g
|
BUWLUC_clean
|
Pr2C9H6(NO6)2(CH)5 crystallizes in the monoclinic C2 space group. The structure consists of twenty 02329_fluka molecules inside a Pr2C9H6(NO6)2 framework. In the Pr2C9H6(NO6)2 framework, there are three inequivalent Pr sites. In the first Pr site, Pr(1) is bonded in a 9-coordinate geometry to one N(1), one H(8), one O(1), one O(3), one O(5), one O(6), one O(7), one O(8), and one O(9) atom. The Pr(1)-N(1) bond length is 2.60 Å. The Pr(1)-H(8) bond length is 2.33 Å. The Pr(1)-O(1) bond length is 2.52 Å. The Pr(1)-O(3) bond length is 2.53 Å. The Pr(1)-O(5) bond length is 2.55 Å. The Pr(1)-O(6) bond length is 2.63 Å. The Pr(1)-O(7) bond length is 2.43 Å. The Pr(1)-O(8) bond length is 2.54 Å. The Pr(1)-O(9) bond length is 2.43 Å. In the second Pr site, Pr(2) is bonded in a 5-coordinate geometry to one N(2), two equivalent O(12), and two equivalent O(2) atoms. The Pr(2)-N(2) bond length is 2.59 Å. Both Pr(2)-O(12) bond lengths are 2.53 Å. Both Pr(2)-O(2) bond lengths are 2.43 Å. In the third Pr site, Pr(3) is bonded in a 7-coordinate geometry to one N(3), two equivalent O(10), two equivalent O(11), and two equivalent O(4) atoms. The Pr(3)-N(3) bond length is 2.58 Å. Both Pr(3)-O(10) bond lengths are 2.53 Å. Both Pr(3)-O(11) bond lengths are 2.54 Å. Both Pr(3)-O(4) bond lengths are 2.42 Å. There are nine inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(1) and one O(2) atom. The C(1)-O(1) bond length is 1.28 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one N(1) atom. The C(2)-N(1) bond length is 1.34 Å. In the third C site, C(6) is bonded in a distorted single-bond geometry to one N(1) atom. The C(6)-N(1) bond length is 1.33 Å. In the fourth C site, C(7) is bonded in a distorted bent 120 degrees geometry to one O(3) and one O(4) atom. The C(7)-O(3) bond length is 1.26 Å. The C(7)-O(4) bond length is 1.27 Å. In the fifth C site, C(8) is bonded in a distorted bent 120 degrees geometry to one C(9), one O(12), and one O(7) atom. The C(8)-C(9) bond length is 1.52 Å. The C(8)-O(12) bond length is 1.26 Å. The C(8)-O(7) bond length is 1.26 Å. In the sixth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one C(8), and one N(2) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-N(2) bond length is 1.34 Å. In the seventh C site, C(10) is bonded in a distorted single-bond geometry to one C(9) and one H(4) atom. The C(10)-H(4) bond length is 0.93 Å. In the eighth C site, C(12) is bonded in a distorted single-bond geometry to one N(3) atom. The C(12)-N(3) bond length is 1.35 Å. In the ninth C site, C(13) is bonded in a distorted bent 120 degrees geometry to one O(10) and one O(9) atom. The C(13)-O(10) bond length is 1.26 Å. The C(13)-O(9) bond length is 1.26 Å. There are three inequivalent N sites. In the first N site, N(1) is bonded in a distorted trigonal planar geometry to one Pr(1), one C(2), and one C(6) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Pr(2) and two equivalent C(9) atoms. In the third N site, N(3) is bonded in a distorted trigonal planar geometry to one Pr(3) and two equivalent C(12) atoms. There are six inequivalent H sites. In the first H site, H(4) is bonded in a single-bond geometry to one C(10) atom. In the second H site, H(6) is bonded in a single-bond geometry to one O(5) atom. The H(6)-O(5) bond length is 0.83 Å. In the third H site, H(7) is bonded in a single-bond geometry to one O(6) atom. The H(7)-O(6) bond length is 0.83 Å. In the fourth H site, H(8) is bonded in a single-bond geometry to one Pr(1) and one O(8) atom. The H(8)-O(8) bond length is 0.82 Å. In the fifth H site, H(9) is bonded in a single-bond geometry to one O(11) atom. The H(9)-O(11) bond length is 0.83 Å. In the sixth H site, H(10) is bonded in a single-bond geometry to one O(8) atom. The H(10)-O(8) bond length is 0.83 Å. There are twelve inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Pr(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 150 degrees geometry to one Pr(2) and one C(1) atom. In the third O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Pr(1) and one C(7) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Pr(3) and one C(7) atom. In the fifth O site, O(5) is bonded in a distorted single-bond geometry to one Pr(1) and one H(6) atom. In the sixth O site, O(6) is bonded in a single-bond geometry to one Pr(1) and one H(7) atom. In the seventh O site, O(7) is bonded in a bent 150 degrees geometry to one Pr(1) and one C(8) atom. In the eighth O site, O(8) is bonded in a bent 120 degrees geometry to one Pr(1), one H(10), and one H(8) atom. In the ninth O site, O(9) is bonded in a bent 150 degrees geometry to one Pr(1) and one C(13) atom. In the tenth O site, O(10) is bonded in a distorted bent 120 degrees geometry to one Pr(3) and one C(13) atom. In the eleventh O site, O(11) is bonded in a distorted single-bond geometry to one Pr(3) and one H(9) atom. In the twelfth O site, O(12) is bonded in a distorted bent 120 degrees geometry to one Pr(2) and one C(8) atom. Linkers: 8 [O]C(=O)c1cccc(C([O])=O)n1. Metal clusters: 8 [Pr]. The MOF has largest included sphere 5.17 A, density 1.32 g/cm3, surface area 3383.10 m2/g, accessible volume 0.44 cm3/g
|
ZEZQIG_clean
|
EuC18H9(NO2)3 crystallizes in the triclinic P-1 space group. Eu(1) is bonded in a 5-coordinate geometry to one O(1), one O(3), one O(4), one O(5), and one O(6) atom. The Eu(1)-O(1) bond length is 2.42 Å. The Eu(1)-O(3) bond length is 2.41 Å. The Eu(1)-O(4) bond length is 2.34 Å. The Eu(1)-O(5) bond length is 2.40 Å. The Eu(1)-O(6) bond length is 2.32 Å. There are eighteen inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(4), one O(1), and one O(2) atom. The C(1)-C(4) bond length is 1.52 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one N(1) and one H(1) atom. The C(2)-N(1) bond length is 1.33 Å. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(4) and one H(2) atom. The C(3)-C(4) bond length is 1.38 Å. The C(3)-H(2) bond length is 0.93 Å. In the fourth C site, C(4) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(5) atom. The C(4)-C(5) bond length is 1.39 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(4), one C(6), and one H(3) atom. The C(5)-C(6) bond length is 1.38 Å. The C(5)-H(3) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a distorted trigonal planar geometry to one C(5), one C(7), and one N(1) atom. The C(6)-C(7) bond length is 1.49 Å. The C(6)-N(1) bond length is 1.34 Å. In the seventh C site, C(7) is bonded in a distorted trigonal planar geometry to one C(6), one C(8), and one N(2) atom. The C(7)-C(8) bond length is 1.40 Å. The C(7)-N(2) bond length is 1.35 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(7), one C(9), and one H(4) atom. The C(8)-C(9) bond length is 1.37 Å. The C(8)-H(4) bond length is 0.93 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(8) atom. The C(9)-C(10) bond length is 1.39 Å. The C(9)-C(12) bond length is 1.50 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(9) and one H(5) atom. The C(10)-H(5) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one N(2) and one H(6) atom. The C(11)-N(2) bond length is 1.32 Å. The C(11)-H(6) bond length is 0.93 Å. In the twelfth C site, C(12) is bonded in a distorted bent 120 degrees geometry to one C(9), one O(3), and one O(4) atom. The C(12)-O(3) bond length is 1.26 Å. The C(12)-O(4) bond length is 1.26 Å. In the thirteenth C site, C(13) is bonded in a distorted bent 120 degrees geometry to one C(16), one O(5), and one O(6) atom. The C(13)-C(16) bond length is 1.52 Å. The C(13)-O(5) bond length is 1.24 Å. The C(13)-O(6) bond length is 1.24 Å. In the fourteenth C site, C(14) is bonded in a distorted bent 120 degrees geometry to one N(3) and one H(7) atom. The C(14)-N(3) bond length is 1.33 Å. The C(14)-H(7) bond length is 0.93 Å. In the fifteenth C site, C(15) is bonded in a distorted single-bond geometry to one C(16) and one H(8) atom. The C(15)-C(16) bond length is 1.37 Å. The C(15)-H(8) bond length is 0.93 Å. In the sixteenth C site, C(16) is bonded in a trigonal planar geometry to one C(13), one C(15), and one C(17) atom. The C(16)-C(17) bond length is 1.38 Å. In the seventeenth C site, C(17) is bonded in a distorted single-bond geometry to one C(16), one C(18), and one H(9) atom. The C(17)-C(18) bond length is 1.38 Å. The C(17)-H(9) bond length is 0.93 Å. In the eighteenth C site, C(18) is bonded in a distorted trigonal planar geometry to one C(17), one C(18), and one N(3) atom. The C(18)-C(18) bond length is 1.48 Å. The C(18)-N(3) bond length is 1.35 Å. There are three inequivalent N sites. In the first N site, N(1) is bonded in a bent 120 degrees geometry to one C(2) and one C(6) atom. In the second N site, N(2) is bonded in a bent 120 degrees geometry to one C(11) and one C(7) atom. In the third N site, N(3) is bonded in a bent 120 degrees geometry to one C(14) and one C(18) atom. There are nine inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(8) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(10) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(11) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(14) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(15) atom. In the ninth H site, H(9) is bonded in a single-bond geometry to one C(17) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Eu(1) and one C(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one C(1) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Eu(1) and one C(12) atom. In the fourth O site, O(4) is bonded in a distorted linear geometry to one Eu(1) and one C(12) atom. In the fifth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Eu(1) and one C(13) atom. In the sixth O site, O(6) is bonded in a linear geometry to one Eu(1) and one C(13) atom. Linkers: 3 [O]C(=O)c1ccnc(-c2cc(C([O])=O)ccn2)c1. Metal clusters: 2 [Eu]. The MOF has largest included sphere 6.88 A, density 1.22 g/cm3, surface area 3800.97 m2/g, accessible volume 0.49 cm3/g
|
IHUROS_clean
|
Fe3P3H2(CO5)4 crystallizes in the triclinic P-1 space group. There are three inequivalent Fe sites. In the first Fe site, Fe(1) is bonded to one O(11), one O(13), one O(15), one O(2), one O(5), and one O(6) atom to form FeO6 octahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(3)O4 tetrahedra, and corners with two equivalent P(2)O4 tetrahedra. The Fe(1)-O(11) bond length is 1.99 Å. The Fe(1)-O(13) bond length is 2.09 Å. The Fe(1)-O(15) bond length is 2.07 Å. The Fe(1)-O(2) bond length is 1.93 Å. The Fe(1)-O(5) bond length is 1.95 Å. The Fe(1)-O(6) bond length is 1.98 Å. In the second Fe site, Fe(2) is bonded to one O(1), one O(10), one O(17), one O(19), one O(7), and one O(9) atom to form FeO6 octahedra that share a cornercorner with one P(1)O4 tetrahedra, a cornercorner with one P(2)O4 tetrahedra, and corners with two equivalent P(3)O4 tetrahedra. The Fe(2)-O(1) bond length is 1.95 Å. The Fe(2)-O(10) bond length is 1.96 Å. The Fe(2)-O(17) bond length is 2.07 Å. The Fe(2)-O(19) bond length is 2.05 Å. The Fe(2)-O(7) bond length is 2.07 Å. The Fe(2)-O(9) bond length is 1.94 Å. In the third Fe site, Fe(3) is bonded in a 5-coordinate geometry to one O(14), one O(16), one O(3), one O(4), and one O(7) atom. The Fe(3)-O(14) bond length is 2.10 Å. The Fe(3)-O(16) bond length is 2.20 Å. The Fe(3)-O(3) bond length is 2.02 Å. The Fe(3)-O(4) bond length is 2.02 Å. The Fe(3)-O(7) bond length is 2.10 Å. There are four inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one O(13) and one O(14) atom. The C(1)-O(13) bond length is 1.25 Å. The C(1)-O(14) bond length is 1.25 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one O(15) and one O(16) atom. The C(2)-O(15) bond length is 1.26 Å. The C(2)-O(16) bond length is 1.24 Å. In the third C site, C(3) is bonded in a distorted bent 120 degrees geometry to one O(17) and one O(18) atom. The C(3)-O(17) bond length is 1.26 Å. The C(3)-O(18) bond length is 1.23 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one O(19) and one O(20) atom. The C(4)-O(19) bond length is 1.27 Å. The C(4)-O(20) bond length is 1.23 Å. There are three inequivalent P sites. In the first P site, P(1) is bonded to one O(1), one O(2), one O(3), and one O(4) atom to form PO4 tetrahedra that share a cornercorner with one Fe(1)O6 octahedra and a cornercorner with one Fe(2)O6 octahedra. The corner-sharing octahedral tilt angles range from 47-49°. The P(1)-O(1) bond length is 1.54 Å. The P(1)-O(2) bond length is 1.55 Å. The P(1)-O(3) bond length is 1.52 Å. The P(1)-O(4) bond length is 1.53 Å. In the second P site, P(2) is bonded to one O(5), one O(6), one O(7), and one O(8) atom to form PO4 tetrahedra that share a cornercorner with one Fe(2)O6 octahedra and corners with two equivalent Fe(1)O6 octahedra. The corner-sharing octahedral tilt angles range from 43-46°. The P(2)-O(5) bond length is 1.51 Å. The P(2)-O(6) bond length is 1.52 Å. The P(2)-O(7) bond length is 1.54 Å. The P(2)-O(8) bond length is 1.57 Å. In the third P site, P(3) is bonded to one O(10), one O(11), one O(12), and one O(9) atom to form PO4 tetrahedra that share a cornercorner with one Fe(1)O6 octahedra and corners with two equivalent Fe(2)O6 octahedra. The corner-sharing octahedral tilt angles range from 35-45°. The P(3)-O(10) bond length is 1.53 Å. The P(3)-O(11) bond length is 1.53 Å. The P(3)-O(12) bond length is 1.58 Å. The P(3)-O(9) bond length is 1.51 Å. There are two inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one O(8) atom. The H(1)-O(8) bond length is 0.90 Å. In the second H site, H(2) is bonded in a distorted single-bond geometry to one O(12) and one O(18) atom. The H(2)-O(12) bond length is 0.97 Å. The H(2)-O(18) bond length is 1.68 Å. There are twenty inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Fe(2) and one P(1) atom. In the second O site, O(2) is bonded in a distorted bent 120 degrees geometry to one Fe(1) and one P(1) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Fe(3) and one P(1) atom. In the fourth O site, O(4) is bonded in a 2-coordinate geometry to one Fe(3) and one P(1) atom. In the fifth O site, O(5) is bonded in a distorted bent 150 degrees geometry to one Fe(1) and one P(2) atom. In the sixth O site, O(6) is bonded in a distorted bent 150 degrees geometry to one Fe(1) and one P(2) atom. In the seventh O site, O(7) is bonded in a distorted trigonal planar geometry to one Fe(2), one Fe(3), and one P(2) atom. In the eighth O site, O(8) is bonded in a bent 120 degrees geometry to one P(2) and one H(1) atom. In the ninth O site, O(9) is bonded in a bent 150 degrees geometry to one Fe(2) and one P(3) atom. In the tenth O site, O(10) is bonded in a distorted bent 150 degrees geometry to one Fe(2) and one P(3) atom. In the eleventh O site, O(11) is bonded in a distorted bent 150 degrees geometry to one Fe(1) and one P(3) atom. In the twelfth O site, O(12) is bonded in a bent 120 degrees geometry to one P(3) and one H(2) atom. In the thirteenth O site, O(13) is bonded in a bent 120 degrees geometry to one Fe(1) and one C(1) atom. In the fourteenth O site, O(14) is bonded in a bent 120 degrees geometry to one Fe(3) and one C(1) atom. In the fifteenth O site, O(15) is bonded in a bent 120 degrees geometry to one Fe(1) and one C(2) atom. In the sixteenth O site, O(16) is bonded in a water-like geometry to one Fe(3) and one C(2) atom. In the seventeenth O site, O(17) is bonded in a bent 120 degrees geometry to one Fe(2) and one C(3) atom. In the eighteenth O site, O(18) is bonded in a distorted bent 120 degrees geometry to one C(3) and one H(2) atom. In the nineteenth O site, O(19) is bonded in a bent 120 degrees geometry to one Fe(2) and one C(4) atom. In the twentieth O site, O(20) is bonded in a single-bond geometry to one C(4) atom. Linkers: 4 [O]C(=O)C([O])=O. Metal clusters: 6 [Fe]. The MOF has largest included sphere 3.96 A, density 2.08 g/cm3, surface area 2422.46 m2/g, accessible volume 0.16 cm3/g
|
KEJBOQ_clean_h
|
CdC12H8(NO2)2 crystallizes in the orthorhombic Pbca space group. The structure consists of a CdC12H8(NO2)2 framework. Cd(1) is bonded in a distorted pentagonal pyramidal geometry to one N(1), one N(2), one O(1), one O(2), one O(3), and one O(4) atom. The Cd(1)-N(1) bond length is 2.34 Å. The Cd(1)-N(2) bond length is 2.37 Å. The Cd(1)-O(1) bond length is 2.66 Å. The Cd(1)-O(2) bond length is 2.28 Å. The Cd(1)-O(3) bond length is 2.44 Å. The Cd(1)-O(4) bond length is 2.38 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.52 Å. The C(1)-O(1) bond length is 1.26 Å. The C(1)-O(2) bond length is 1.24 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(6) atom. The C(2)-C(3) bond length is 1.38 Å. The C(2)-C(6) bond length is 1.39 Å. In the third C site, C(3) is bonded in a distorted single-bond geometry to one C(2), one C(4), and one H(1) atom. The C(3)-C(4) bond length is 1.39 Å. The C(3)-H(1) bond length is 1.14 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one C(3), one N(1), and one H(2) atom. The C(4)-N(1) bond length is 1.34 Å. The C(4)-H(2) bond length is 1.14 Å. In the fifth C site, C(5) is bonded in a 2-coordinate geometry to one N(1) and one H(3) atom. The C(5)-N(1) bond length is 1.34 Å. The C(5)-H(3) bond length is 1.14 Å. In the sixth C site, C(6) is bonded in a distorted single-bond geometry to one C(2) and one H(4) atom. The C(6)-H(4) bond length is 1.14 Å. In the seventh C site, C(7) is bonded in a bent 120 degrees geometry to one C(8), one O(3), and one O(4) atom. The C(7)-C(8) bond length is 1.50 Å. The C(7)-O(3) bond length is 1.26 Å. The C(7)-O(4) bond length is 1.25 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(12), one C(7), and one C(9) atom. The C(8)-C(12) bond length is 1.40 Å. The C(8)-C(9) bond length is 1.39 Å. In the ninth C site, C(9) is bonded in a distorted trigonal planar geometry to one C(10), one C(8), and one H(5) atom. The C(9)-C(10) bond length is 1.38 Å. The C(9)-H(5) bond length is 1.14 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(9), one N(2), and one H(6) atom. The C(10)-N(2) bond length is 1.34 Å. The C(10)-H(6) bond length is 1.14 Å. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one C(12), one N(2), and one H(7) atom. The C(11)-C(12) bond length is 1.39 Å. The C(11)-N(2) bond length is 1.34 Å. The C(11)-H(7) bond length is 1.14 Å. In the twelfth C site, C(12) is bonded in a distorted trigonal planar geometry to one C(11), one C(8), and one H(8) atom. The C(12)-H(8) bond length is 1.14 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a trigonal planar geometry to one Cd(1), one C(4), and one C(5) atom. In the second N site, N(2) is bonded in a trigonal planar geometry to one Cd(1), one C(10), and one C(11) atom. There are eight inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(3) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(5) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(6) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(9) atom. In the sixth H site, H(6) is bonded in a single-bond geometry to one C(10) atom. In the seventh H site, H(7) is bonded in a single-bond geometry to one C(11) atom. In the eighth H site, H(8) is bonded in a single-bond geometry to one C(12) atom. There are four inequivalent O sites. In the first O site, O(1) is bonded in a single-bond geometry to one Cd(1) and one C(1) atom. In the second O site, O(2) is bonded in a water-like geometry to one Cd(1) and one C(1) atom. In the third O site, O(3) is bonded in a distorted L-shaped geometry to one Cd(1) and one C(7) atom. In the fourth O site, O(4) is bonded in a distorted single-bond geometry to one Cd(1) and one C(7) atom. Linkers: 16 [O]C(=O)c1ccncc1. Metal clusters: 8 O=[C]O[Cd]1O[C]O1. The MOF has largest included sphere 5.18 A, density 1.31 g/cm3, surface area 3970.55 m2/g, accessible volume 0.37 cm3/g
|
VIWMEV_clean
|
Sm2Cu2H5(C5O4)5 crystallizes in the monoclinic P2_1/c space group. There are two inequivalent Sm sites. In the first Sm site, Sm(1) is bonded in a distorted pentagonal planar geometry to one O(11), one O(14), one O(16), one O(5), and one O(7) atom. The Sm(1)-O(11) bond length is 2.60 Å. The Sm(1)-O(14) bond length is 2.41 Å. The Sm(1)-O(16) bond length is 2.37 Å. The Sm(1)-O(5) bond length is 2.39 Å. The Sm(1)-O(7) bond length is 2.50 Å. In the second Sm site, Sm(2) is bonded in a 4-coordinate geometry to one O(12), one O(17), one O(18), and one O(8) atom. The Sm(2)-O(12) bond length is 2.43 Å. The Sm(2)-O(17) bond length is 2.55 Å. The Sm(2)-O(18) bond length is 2.38 Å. The Sm(2)-O(8) bond length is 2.49 Å. There are two inequivalent Cu sites. In the first Cu site, Cu(1) is bonded in a see-saw-like geometry to one O(1), one O(10), one O(6), and one O(9) atom. The Cu(1)-O(1) bond length is 1.94 Å. The Cu(1)-O(10) bond length is 1.94 Å. The Cu(1)-O(6) bond length is 2.24 Å. The Cu(1)-O(9) bond length is 1.98 Å. In the second Cu site, Cu(2) is bonded in a T-shaped geometry to one O(2), one O(20), and one O(3) atom. The Cu(2)-O(2) bond length is 1.97 Å. The Cu(2)-O(20) bond length is 1.95 Å. The Cu(2)-O(3) bond length is 1.94 Å. There are twenty-five inequivalent C sites. In the first C site, C(1) is bonded in a distorted bent 120 degrees geometry to one C(12), one O(19), and one O(2) atom. The C(1)-C(12) bond length is 1.52 Å. The C(1)-O(19) bond length is 1.23 Å. The C(1)-O(2) bond length is 1.27 Å. In the second C site, C(2) is bonded in a distorted bent 120 degrees geometry to one C(8), one O(10), and one O(18) atom. The C(2)-C(8) bond length is 1.52 Å. The C(2)-O(10) bond length is 1.24 Å. The C(2)-O(18) bond length is 1.25 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(23), one C(4), and one C(6) atom. The C(3)-C(23) bond length is 1.41 Å. The C(3)-C(4) bond length is 1.37 Å. The C(3)-C(6) bond length is 1.51 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(23), one C(3), and one H(2) atom. The C(4)-C(23) bond length is 1.38 Å. The C(4)-H(2) bond length is 0.93 Å. In the fifth C site, C(5) is bonded in a trigonal planar geometry to one C(12), one C(22), and one C(7) atom. The C(5)-C(12) bond length is 1.39 Å. The C(5)-C(22) bond length is 1.51 Å. The C(5)-C(7) bond length is 1.39 Å. In the sixth C site, C(6) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(15), and one O(6) atom. The C(6)-O(15) bond length is 1.26 Å. The C(6)-O(6) bond length is 1.26 Å. In the seventh C site, C(7) is bonded in a distorted single-bond geometry to one C(20), one C(5), and one H(1) atom. The C(7)-C(20) bond length is 1.39 Å. The C(7)-H(1) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a trigonal planar geometry to one C(10), one C(2), and one C(20) atom. The C(8)-C(10) bond length is 1.39 Å. The C(8)-C(20) bond length is 1.39 Å. In the ninth C site, C(9) is bonded in a trigonal planar geometry to one C(15), one C(18), and one C(19) atom. The C(9)-C(15) bond length is 1.51 Å. The C(9)-C(18) bond length is 1.40 Å. The C(9)-C(19) bond length is 1.38 Å. In the tenth C site, C(10) is bonded in a distorted single-bond geometry to one C(12), one C(8), and one H(5) atom. The C(10)-C(12) bond length is 1.39 Å. The C(10)-H(5) bond length is 0.93 Å. In the eleventh C site, C(11) is bonded in a distorted bent 120 degrees geometry to one C(23), one O(16), and one O(4) atom. The C(11)-C(23) bond length is 1.51 Å. The C(11)-O(16) bond length is 1.25 Å. The C(11)-O(4) bond length is 1.25 Å. In the twelfth C site, C(12) is bonded in a trigonal planar geometry to one C(1), one C(10), and one C(5) atom. In the thirteenth C site, C(13) is bonded in a single-bond geometry to one C(17), one C(18), and one H(4) atom. The C(13)-C(17) bond length is 1.38 Å. The C(13)-C(18) bond length is 1.40 Å. The C(13)-H(4) bond length is 0.93 Å. In the fourteenth C site, C(14) is bonded in a trigonal planar geometry to one C(17), one C(19), and one C(25) atom. The C(14)-C(17) bond length is 1.40 Å. The C(14)-C(19) bond length is 1.39 Å. The C(14)-C(25) bond length is 1.50 Å. In the fifteenth C site, C(15) is bonded in a distorted bent 120 degrees geometry to one C(9), one O(17), and one O(8) atom. The C(15)-O(17) bond length is 1.26 Å. The C(15)-O(8) bond length is 1.27 Å. In the sixteenth C site, C(16) is bonded in a bent 120 degrees geometry to one C(20), one O(11), and one O(7) atom. The C(16)-C(20) bond length is 1.51 Å. The C(16)-O(11) bond length is 1.25 Å. The C(16)-O(7) bond length is 1.26 Å. In the seventeenth C site, C(17) is bonded in a trigonal planar geometry to one C(13), one C(14), and one C(21) atom. The C(17)-C(21) bond length is 1.52 Å. In the eighteenth C site, C(18) is bonded in a trigonal planar geometry to one C(13), one C(24), and one C(9) atom. The C(18)-C(24) bond length is 1.49 Å. In the nineteenth C site, C(19) is bonded in a distorted single-bond geometry to one C(14), one C(9), and one H(3) atom. The C(19)-H(3) bond length is 0.93 Å. In the twentieth C site, C(20) is bonded in a trigonal planar geometry to one C(16), one C(7), and one C(8) atom. In the twenty-first C site, C(21) is bonded in a distorted bent 120 degrees geometry to one C(17), one O(13), and one O(9) atom. The C(21)-O(13) bond length is 1.22 Å. The C(21)-O(9) bond length is 1.28 Å. In the twenty-second C site, C(22) is bonded in a distorted bent 120 degrees geometry to one C(5), one O(1), and one O(12) atom. The C(22)-O(1) bond length is 1.26 Å. The C(22)-O(12) bond length is 1.24 Å. In the twenty-third C site, C(23) is bonded in a trigonal planar geometry to one C(11), one C(3), and one C(4) atom. In the twenty-fourth C site, C(24) is bonded in a distorted bent 120 degrees geometry to one C(18), one O(14), and one O(20) atom. The C(24)-O(14) bond length is 1.25 Å. The C(24)-O(20) bond length is 1.27 Å. In the twenty-fifth C site, C(25) is bonded in a distorted bent 120 degrees geometry to one C(14), one O(3), and one O(5) atom. The C(25)-O(3) bond length is 1.26 Å. The C(25)-O(5) bond length is 1.24 Å. There are five inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(7) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(4) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(19) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(13) atom. In the fifth H site, H(5) is bonded in a single-bond geometry to one C(10) atom. There are twenty inequivalent O sites. In the first O site, O(1) is bonded in a water-like geometry to one Cu(1) and one C(22) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Cu(2) and one C(1) atom. In the third O site, O(3) is bonded in a distorted single-bond geometry to one Cu(2) and one C(25) atom. In the fourth O site, O(4) is bonded in a single-bond geometry to one C(11) atom. In the fifth O site, O(5) is bonded in a distorted single-bond geometry to one Sm(1) and one C(25) atom. In the sixth O site, O(6) is bonded in a distorted single-bond geometry to one Cu(1) and one C(6) atom. In the seventh O site, O(7) is bonded in a distorted single-bond geometry to one Sm(1) and one C(16) atom. In the eighth O site, O(8) is bonded in a single-bond geometry to one Sm(2) and one C(15) atom. In the ninth O site, O(9) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(21) atom. In the tenth O site, O(10) is bonded in a bent 120 degrees geometry to one Cu(1) and one C(2) atom. In the eleventh O site, O(11) is bonded in a single-bond geometry to one Sm(1) and one C(16) atom. In the twelfth O site, O(12) is bonded in a distorted single-bond geometry to one Sm(2) and one C(22) atom. In the thirteenth O site, O(13) is bonded in a single-bond geometry to one C(21) atom. In the fourteenth O site, O(14) is bonded in a distorted single-bond geometry to one Sm(1) and one C(24) atom. In the fifteenth O site, O(15) is bonded in a single-bond geometry to one C(6) atom. In the sixteenth O site, O(16) is bonded in a distorted bent 150 degrees geometry to one Sm(1) and one C(11) atom. In the seventeenth O site, O(18) is bonded in a distorted single-bond geometry to one Sm(2) and one C(2) atom. In the eighteenth O site, O(19) is bonded in a single-bond geometry to one C(1) atom. In the nineteenth O site, O(20) is bonded in a distorted water-like geometry to one Cu(2) and one C(24) atom. In the twentieth O site, O(17) is bonded in a single-bond geometry to one Sm(2) and one C(15) atom. Linkers: 10 [O]C(=O)c1cc(C([O])=O)c(C([O])=O)cc1C([O])=O. Metal clusters: 4 O=[C]O[Cu]1O[C]O[Sm]2(O[C]=O)(O[C]O1)O[C]O2 ,4 O=[C]O[Cu]1(O[C]=O)O[C]O[Sm]2(O[C]O1)O[C]O2. The MOF has largest included sphere 5.54 A, density 1.62 g/cm3, surface area 2936.32 m2/g, accessible volume 0.33 cm3/g
|
DUNXUH15_clean
|
ZnC8H3SO7 crystallizes in the monoclinic P2_1/c space group. Zn(1) is bonded in a distorted trigonal bipyramidal geometry to one O(1), one O(4), one O(5), one O(6), and one O(7) atom. The Zn(1)-O(1) bond length is 2.01 Å. The Zn(1)-O(4) bond length is 1.97 Å. The Zn(1)-O(5) bond length is 1.96 Å. The Zn(1)-O(6) bond length is 2.23 Å. The Zn(1)-O(7) bond length is 2.09 Å. There are eight inequivalent C sites. In the first C site, C(1) is bonded in a trigonal planar geometry to one C(2), one C(7), and one S(1) atom. The C(1)-C(2) bond length is 1.38 Å. The C(1)-C(7) bond length is 1.39 Å. The C(1)-S(1) bond length is 1.78 Å. In the second C site, C(2) is bonded in a distorted single-bond geometry to one C(1), one C(3), and one H(1) atom. The C(2)-C(3) bond length is 1.39 Å. The C(2)-H(1) bond length is 0.93 Å. In the third C site, C(3) is bonded in a trigonal planar geometry to one C(2), one C(4), and one C(5) atom. The C(3)-C(4) bond length is 1.49 Å. The C(3)-C(5) bond length is 1.39 Å. In the fourth C site, C(4) is bonded in a distorted bent 120 degrees geometry to one C(3), one O(4), and one O(5) atom. The C(4)-O(4) bond length is 1.26 Å. The C(4)-O(5) bond length is 1.25 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(3), one C(6), and one H(2) atom. The C(5)-C(6) bond length is 1.39 Å. The C(5)-H(2) bond length is 0.93 Å. In the sixth C site, C(6) is bonded in a trigonal planar geometry to one C(5), one C(7), and one C(8) atom. The C(6)-C(7) bond length is 1.38 Å. The C(6)-C(8) bond length is 1.50 Å. In the seventh C site, C(7) is bonded in a single-bond geometry to one C(1), one C(6), and one H(3) atom. The C(7)-H(3) bond length is 0.93 Å. In the eighth C site, C(8) is bonded in a bent 120 degrees geometry to one C(6), one O(6), and one O(7) atom. The C(8)-O(6) bond length is 1.23 Å. The C(8)-O(7) bond length is 1.25 Å. There are three inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(7) atom. S(1) is bonded in a distorted trigonal non-coplanar geometry to one C(1), one O(1), one O(2), and one O(3) atom. The S(1)-O(1) bond length is 1.47 Å. The S(1)-O(2) bond length is 1.43 Å. The S(1)-O(3) bond length is 1.42 Å. There are seven inequivalent O sites. In the first O site, O(1) is bonded in a bent 120 degrees geometry to one Zn(1) and one S(1) atom. In the second O site, O(2) is bonded in a single-bond geometry to one S(1) atom. In the third O site, O(3) is bonded in a single-bond geometry to one S(1) atom. In the fourth O site, O(4) is bonded in a bent 120 degrees geometry to one Zn(1) and one C(4) atom. In the fifth O site, O(5) is bonded in a distorted bent 150 degrees geometry to one Zn(1) and one C(4) atom. In the sixth O site, O(6) is bonded in an L-shaped geometry to one Zn(1) and one C(8) atom. In the seventh O site, O(7) is bonded in an L-shaped geometry to one Zn(1) and one C(8) atom. Linkers: 4 [O]C(=O)c1cc(C([O])=O)cc(S([O])([O])[O])c1. Metal clusters: 1 [O][S@](=O)O[Zn]12(O[C]O1)O[C]O[Zn]1(O[S@]([O])=O)(O[C]O1)O[C]O2 ,1 [O][S@@](=O)O[Zn]12(O[C]O1)O[C]O[Zn]1(O[S@@]([O])=O)(O[C]O1)O[C]O2. RCSR code: rtl. The MOF has largest included sphere 5.06 A, density 1.21 g/cm3, surface area 3696.66 m2/g, accessible volume 0.53 cm3/g
|
SANGUM_clean
|
SmC12H4(NO3)2 crystallizes in the monoclinic C2/c space group. Sm(1) is bonded in a 6-coordinate geometry to one O(1), one O(2), one O(3), one O(4), one O(5), and one O(6) atom. The Sm(1)-O(1) bond length is 2.30 Å. The Sm(1)-O(2) bond length is 2.33 Å. The Sm(1)-O(3) bond length is 2.29 Å. The Sm(1)-O(4) bond length is 2.26 Å. The Sm(1)-O(5) bond length is 2.29 Å. The Sm(1)-O(6) bond length is 2.30 Å. There are twelve inequivalent C sites. In the first C site, C(1) is bonded in a bent 120 degrees geometry to one C(2), one O(1), and one O(5) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.27 Å. The C(1)-O(5) bond length is 1.27 Å. In the second C site, C(2) is bonded in a trigonal planar geometry to one C(1), one C(3), and one C(5) atom. The C(2)-C(3) bond length is 1.43 Å. The C(2)-C(5) bond length is 1.39 Å. In the third C site, C(3) is bonded in a distorted trigonal planar geometry to one C(2), one C(4), and one N(1) atom. The C(3)-C(4) bond length is 1.40 Å. The C(3)-N(1) bond length is 1.38 Å. In the fourth C site, C(4) is bonded in a distorted single-bond geometry to one C(11), one C(3), and one H(1) atom. The C(4)-C(11) bond length is 1.38 Å. The C(4)-H(1) bond length is 0.95 Å. In the fifth C site, C(5) is bonded in a distorted single-bond geometry to one C(2) and one H(2) atom. The C(5)-H(2) bond length is 0.95 Å. In the sixth C site, C(6) is bonded in a bent 120 degrees geometry to one C(7), one O(2), and one O(6) atom. The C(6)-C(7) bond length is 1.51 Å. The C(6)-O(2) bond length is 1.27 Å. The C(6)-O(6) bond length is 1.23 Å. In the seventh C site, C(7) is bonded in a trigonal planar geometry to one C(6), one C(8), and one C(9) atom. The C(7)-C(8) bond length is 1.42 Å. The C(7)-C(9) bond length is 1.40 Å. In the eighth C site, C(8) is bonded in a distorted single-bond geometry to one C(7) and one N(2) atom. The C(8)-N(2) bond length is 1.39 Å. In the ninth C site, C(9) is bonded in a single-bond geometry to one C(7) and one H(3) atom. The C(9)-H(3) bond length is 0.95 Å. In the tenth C site, C(10) is bonded in a distorted bent 120 degrees geometry to one C(11), one O(3), and one O(4) atom. The C(10)-C(11) bond length is 1.50 Å. The C(10)-O(3) bond length is 1.25 Å. The C(10)-O(4) bond length is 1.27 Å. In the eleventh C site, C(11) is bonded in a trigonal planar geometry to one C(10), one C(12), and one C(4) atom. The C(11)-C(12) bond length is 1.39 Å. In the twelfth C site, C(12) is bonded in a single-bond geometry to one C(11) and one H(4) atom. The C(12)-H(4) bond length is 0.95 Å. There are two inequivalent N sites. In the first N site, N(1) is bonded in a single-bond geometry to one C(3) atom. In the second N site, N(2) is bonded in a single-bond geometry to one C(8) atom. There are four inequivalent H sites. In the first H site, H(1) is bonded in a single-bond geometry to one C(4) atom. In the second H site, H(2) is bonded in a single-bond geometry to one C(5) atom. In the third H site, H(3) is bonded in a single-bond geometry to one C(9) atom. In the fourth H site, H(4) is bonded in a single-bond geometry to one C(12) atom. There are six inequivalent O sites. In the first O site, O(1) is bonded in a distorted bent 150 degrees geometry to one Sm(1) and one C(1) atom. In the second O site, O(2) is bonded in a bent 120 degrees geometry to one Sm(1) and one C(6) atom. In the third O site, O(3) is bonded in a distorted bent 150 degrees geometry to one Sm(1) and one C(10) atom. In the fourth O site, O(4) is bonded in a bent 150 degrees geometry to one Sm(1) and one C(10) atom. In the fifth O site, O(5) is bonded in a bent 150 degrees geometry to one Sm(1) and one C(1) atom. In the sixth O site, O(6) is bonded in a linear geometry to one Sm(1) and one C(6) atom. Linkers: 4 [N]c1cc(C([O])=O)c([N])cc1C([O])=O ,8 [N]c1cc(C([O])=O)ccc1C([O])=O. Metal clusters: 8 [Sm]. The MOF has largest included sphere 6.62 A, density 1.50 g/cm3, surface area 3144.82 m2/g, accessible volume 0.39 cm3/g
|
MAZJAY_clean
|
Eu2H12(C4O5)3 crystallizes in the orthorhombic Ama2 space group. There are two inequivalent Eu sites. In the first Eu site, Eu(1) is bonded in a 9-coordinate geometry to one O(8), two equivalent O(1), two equivalent O(3), two equivalent O(5), and two equivalent O(6) atoms. The Eu(1)-O(8) bond length is 2.48 Å. Both Eu(1)-O(1) bond lengths are 2.42 Å. Both Eu(1)-O(3) bond lengths are 2.49 Å. Both Eu(1)-O(5) bond lengths are 2.43 Å. Both Eu(1)-O(6) bond lengths are 2.43 Å. In the second Eu site, Eu(2) is bonded in a distorted pentagonal pyramidal geometry to two equivalent O(2), two equivalent O(4), and two equivalent O(7) atoms. Both Eu(2)-O(2) bond lengths are 2.34 Å. Both Eu(2)-O(4) bond lengths are 2.36 Å. Both Eu(2)-O(7) bond lengths are 2.41 Å. There are six inequivalent C sites. In the first C site, C(1) is bonded in a distorted trigonal planar geometry to one C(2), one O(1), and one O(2) atom. The C(1)-C(2) bond length is 1.49 Å. The C(1)-O(1) bond length is 1.24 Å. The C(1)-O(2) bond length is 1.27 Å. In the second C site, C(2) is bonded in a distorted trigonal non-coplanar geometry to one C(1); two equivalent H(1,2); and one O(3) atom. Both C(2)-H(1,2) bond lengths are 0.97 Å. The C(2)-O(3) bond length is 1.41 Å. In the third C site, C(3) is bonded in a distorted trigonal non-coplanar geometry to two equivalent H(3,4) and one O(3) atom. Both C(3)-H(3,4) bond lengths are 0.97 Å. The C(3)-O(3) bond length is 1.42 Å. In the fourth C site, C(4) is bonded in a distorted trigonal planar geometry to one O(4) and one O(5) atom. The C(4)-O(4) bond length is 1.23 Å. The C(4)-O(5) bond length is 1.26 Å. In the fifth C site, C(5) is bonded in a distorted trigonal planar geometry to one O(6) and one O(7) atom. The C(5)-O(6) bond length is 1.28 Å. The C(5)-O(7) bond length is 1.22 Å. In the sixth C site, C(6) is bonded in a distorted trigonal non-coplanar geometry to two equivalent H(5,6) and one O(8) atom. Both C(6)-H(5,6) bond lengths are 0.97 Å. The C(6)-O(8) bond length is 1.43 Å. There are three inequivalent H sites. In the first H site, H(1,2) is bonded in a single-bond geometry to one C(2) atom. In the second H site, H(3,4) is bonded in a single-bond geometry to one C(3) atom. In the third H site, H(5,6) is bonded in a single-bond geometry to one C(6) atom. There are eight inequivalent O sites. In the first O site, O(8) is bonded in a distorted trigonal planar geometry to one Eu(1) and two equivalent C(6) atoms. In the second O site, O(1) is bonded in a distorted bent 120 degrees geometry to one Eu(1) and one C(1) atom. In the third O site, O(2) is bonded in a bent 150 degrees geometry to one Eu(2) and one C(1) atom. In the fourth O site, O(3) is bonded in a distorted bent 120 degrees geometry to one Eu(1), one C(2), and one C(3) atom. In the fifth O site, O(4) is bonded in a distorted linear geometry to one Eu(2) and one C(4) atom. In the sixth O site, O(5) is bonded in a distorted bent 120 degrees geometry to one Eu(1) and one C(4) atom. In the seventh O site, O(6) is bonded in a distorted bent 120 degrees geometry to one Eu(1) and one C(5) atom. In the eighth O site, O(7) is bonded in a distorted bent 150 degrees geometry to one Eu(2) and one C(5) atom. Linkers: 6 [O]C(=O)COCC([O])=O. Metal clusters: 4 [Eu]. The MOF has largest included sphere 5.85 A, density 1.87 g/cm3, surface area 2659.13 m2/g, accessible volume 0.24 cm3/g
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.