INSTRUCTION
stringlengths 1
46.3k
| RESPONSE
stringlengths 75
80.2k
|
---|---|
Returns True if the running system's terminal supports color.
Borrowed from Django
https://github.com/django/django/blob/master/django/core/management/color.py
|
def file_supports_color(file_obj):
"""
Returns True if the running system's terminal supports color.
Borrowed from Django
https://github.com/django/django/blob/master/django/core/management/color.py
"""
plat = sys.platform
supported_platform = plat != 'Pocket PC' and (plat != 'win32' or
'ANSICON' in os.environ)
is_a_tty = file_is_a_tty(file_obj)
return (supported_platform and is_a_tty)
|
Returns the session referred to by identifier
|
def load_report(identifier=None):
'''
Returns the session referred to by identifier
'''
path = os.path.join(
report_dir(),
identifier + '.pyireport'
)
return ProfilerSession.load(path)
|
Saves the session to a temp file, and returns that path.
Also prunes the number of reports to 10 so there aren't loads building up.
|
def save_report(session):
'''
Saves the session to a temp file, and returns that path.
Also prunes the number of reports to 10 so there aren't loads building up.
'''
# prune this folder to contain the last 10 sessions
previous_reports = glob.glob(os.path.join(report_dir(), '*.pyireport'))
previous_reports.sort(reverse=True)
while len(previous_reports) > 10:
report_file = previous_reports.pop()
os.remove(report_file)
identifier = time.strftime('%Y-%m-%dT%H-%M-%S', time.localtime(session.start_time))
path = os.path.join(
report_dir(),
identifier + '.pyireport'
)
session.save(path)
return path, identifier
|
The first frame when using the command line is always the __main__ function. I want to remove
that from the output.
|
def remove_first_pyinstrument_frame_processor(frame, options):
'''
The first frame when using the command line is always the __main__ function. I want to remove
that from the output.
'''
if frame is None:
return None
if 'pyinstrument' in frame.file_path and len(frame.children) == 1:
frame = frame.children[0]
frame.remove_from_parent()
return frame
return frame
|
Parses the internal frame records and returns a tree of Frame objects
|
def root_frame(self, trim_stem=True):
'''
Parses the internal frame records and returns a tree of Frame objects
'''
root_frame = None
frame_stack = []
for frame_tuple in self.frame_records:
identifier_stack = frame_tuple[0]
time = frame_tuple[1]
# now we must create a stack of frame objects and assign this time to the leaf
for stack_depth, frame_identifier in enumerate(identifier_stack):
if stack_depth < len(frame_stack):
if frame_identifier != frame_stack[stack_depth].identifier:
# trim any frames after and including this one
del frame_stack[stack_depth:]
if stack_depth >= len(frame_stack):
frame = Frame(frame_identifier)
frame_stack.append(frame)
if stack_depth == 0:
# There should only be one root frame, as far as I know
assert root_frame is None, ASSERTION_MESSAGE
root_frame = frame
else:
parent = frame_stack[stack_depth-1]
parent.add_child(frame)
# trim any extra frames
del frame_stack[stack_depth+1:] # pylint: disable=W0631
# assign the time to the final frame
frame_stack[-1].add_child(SelfTimeFrame(self_time=time))
if root_frame is None:
return None
if trim_stem:
root_frame = self._trim_stem(root_frame)
return root_frame
|
Removes this frame from its parent, and nulls the parent link
|
def remove_from_parent(self):
'''
Removes this frame from its parent, and nulls the parent link
'''
if self.parent:
self.parent._children.remove(self)
self.parent._invalidate_time_caches()
self.parent = None
|
The total amount of self time in this frame (including self time recorded by SelfTimeFrame
children)
|
def total_self_time(self):
'''
The total amount of self time in this frame (including self time recorded by SelfTimeFrame
children)
'''
self_time = self.self_time
for child in self.children:
if isinstance(child, SelfTimeFrame):
self_time += child.self_time
return self_time
|
Adds a child frame, updating the parent link.
Optionally, insert the frame in a specific position by passing the frame to insert
this one after.
|
def add_child(self, frame, after=None):
'''
Adds a child frame, updating the parent link.
Optionally, insert the frame in a specific position by passing the frame to insert
this one after.
'''
frame.remove_from_parent()
frame.parent = self
if after is None:
self._children.append(frame)
else:
index = self._children.index(after) + 1
self._children.insert(index, frame)
self._invalidate_time_caches()
|
Convenience method to add multiple frames at once.
|
def add_children(self, frames, after=None):
'''
Convenience method to add multiple frames at once.
'''
if after is not None:
# if there's an 'after' parameter, add the frames in reverse so the order is
# preserved.
for frame in reversed(frames):
self.add_child(frame, after=after)
else:
for frame in frames:
self.add_child(frame)
|
Return the path resolved against the closest entry in sys.path
|
def file_path_short(self):
""" Return the path resolved against the closest entry in sys.path """
if not hasattr(self, '_file_path_short'):
if self.file_path:
result = None
for path in sys.path:
# On Windows, if self.file_path and path are on different drives, relpath
# will result in exception, because it cannot compute a relpath in this case.
# The root cause is that on Windows, there is no root dir like '/' on Linux.
try:
candidate = os.path.relpath(self.file_path, path)
except ValueError:
continue
if not result or (len(candidate.split(os.sep)) < len(result.split(os.sep))):
result = candidate
self._file_path_short = result
else:
self._file_path_short = None
return self._file_path_short
|
Returns a list of frames whose children include a frame outside of the group
|
def exit_frames(self):
'''
Returns a list of frames whose children include a frame outside of the group
'''
if self._exit_frames is None:
exit_frames = []
for frame in self.frames:
if any(c.group != self for c in frame.children):
exit_frames.append(frame)
self._exit_frames = exit_frames
return self._exit_frames
|
Traverse down the frame hierarchy until a frame is found with more than one child
|
def first_interesting_frame(self):
"""
Traverse down the frame hierarchy until a frame is found with more than one child
"""
root_frame = self.root_frame()
frame = root_frame
while len(frame.children) <= 1:
if frame.children:
frame = frame.children[0]
else:
# there are no branches
return root_frame
return frame
|
Converts a timeline into a time-aggregate summary.
Adds together calls along the same call stack, so that repeated calls appear as the same
frame. Removes time-linearity - frames are sorted according to total time spent.
Useful for outputs that display a summary of execution (e.g. text and html outputs)
|
def aggregate_repeated_calls(frame, options):
'''
Converts a timeline into a time-aggregate summary.
Adds together calls along the same call stack, so that repeated calls appear as the same
frame. Removes time-linearity - frames are sorted according to total time spent.
Useful for outputs that display a summary of execution (e.g. text and html outputs)
'''
if frame is None:
return None
children_by_identifier = {}
# iterate over a copy of the children since it's going to mutate while we're iterating
for child in frame.children:
if child.identifier in children_by_identifier:
aggregate_frame = children_by_identifier[child.identifier]
# combine the two frames, putting the children and self_time into the aggregate frame.
aggregate_frame.self_time += child.self_time
if child.children:
aggregate_frame.add_children(child.children)
# remove this frame, it's been incorporated into aggregate_frame
child.remove_from_parent()
else:
# never seen this identifier before. It becomes the aggregate frame.
children_by_identifier[child.identifier] = child
# recurse into the children
for child in frame.children:
aggregate_repeated_calls(child, options=options)
# sort the children by time
# it's okay to use the internal _children list, sinde we're not changing the tree
# structure.
frame._children.sort(key=methodcaller('time'), reverse=True) # pylint: disable=W0212
return frame
|
Combines consecutive 'self time' frames
|
def merge_consecutive_self_time(frame, options):
'''
Combines consecutive 'self time' frames
'''
if frame is None:
return None
previous_self_time_frame = None
for child in frame.children:
if isinstance(child, SelfTimeFrame):
if previous_self_time_frame:
# merge
previous_self_time_frame.self_time += child.self_time
child.remove_from_parent()
else:
# keep a reference, maybe it'll be added to on the next loop
previous_self_time_frame = child
else:
previous_self_time_frame = None
for child in frame.children:
merge_consecutive_self_time(child, options=options)
return frame
|
When a frame has only one child, and that is a self-time frame, remove that node, since it's
unnecessary - it clutters the output and offers no additional information.
|
def remove_unnecessary_self_time_nodes(frame, options):
'''
When a frame has only one child, and that is a self-time frame, remove that node, since it's
unnecessary - it clutters the output and offers no additional information.
'''
if frame is None:
return None
if len(frame.children) == 1 and isinstance(frame.children[0], SelfTimeFrame):
child = frame.children[0]
frame.self_time += child.self_time
child.remove_from_parent()
for child in frame.children:
remove_unnecessary_self_time_nodes(child, options=options)
return frame
|
Remove nodes that represent less than e.g. 1% of the output
|
def remove_irrelevant_nodes(frame, options, total_time=None):
'''
Remove nodes that represent less than e.g. 1% of the output
'''
if frame is None:
return None
if total_time is None:
total_time = frame.time()
filter_threshold = options.get('filter_threshold', 0.01)
for child in frame.children:
proportion_of_total = child.time() / total_time
if proportion_of_total < filter_threshold:
frame.self_time += child.time()
child.remove_from_parent()
for child in frame.children:
remove_irrelevant_nodes(child, options=options, total_time=total_time)
return frame
|
decorate(func, caller) decorates a function using a caller.
|
def decorate(func, caller, extras=()):
"""
decorate(func, caller) decorates a function using a caller.
"""
evaldict = dict(_call_=caller, _func_=func)
es = ''
for i, extra in enumerate(extras):
ex = '_e%d_' % i
evaldict[ex] = extra
es += ex + ', '
fun = FunctionMaker.create(
func, "return _call_(_func_, %s%%(shortsignature)s)" % es,
evaldict, __wrapped__=func)
if hasattr(func, '__qualname__'):
fun.__qualname__ = func.__qualname__
return fun
|
Factory of decorators turning a function into a generic function
dispatching on the given arguments.
|
def dispatch_on(*dispatch_args):
"""
Factory of decorators turning a function into a generic function
dispatching on the given arguments.
"""
assert dispatch_args, 'No dispatch args passed'
dispatch_str = '(%s,)' % ', '.join(dispatch_args)
def check(arguments, wrong=operator.ne, msg=''):
"""Make sure one passes the expected number of arguments"""
if wrong(len(arguments), len(dispatch_args)):
raise TypeError('Expected %d arguments, got %d%s' %
(len(dispatch_args), len(arguments), msg))
def gen_func_dec(func):
"""Decorator turning a function into a generic function"""
# first check the dispatch arguments
argset = set(getfullargspec(func).args)
if not set(dispatch_args) <= argset:
raise NameError('Unknown dispatch arguments %s' % dispatch_str)
typemap = {}
def vancestors(*types):
"""
Get a list of sets of virtual ancestors for the given types
"""
check(types)
ras = [[] for _ in range(len(dispatch_args))]
for types_ in typemap:
for t, type_, ra in zip(types, types_, ras):
if issubclass(t, type_) and type_ not in t.mro():
append(type_, ra)
return [set(ra) for ra in ras]
def ancestors(*types):
"""
Get a list of virtual MROs, one for each type
"""
check(types)
lists = []
for t, vas in zip(types, vancestors(*types)):
n_vas = len(vas)
if n_vas > 1:
raise RuntimeError(
'Ambiguous dispatch for %s: %s' % (t, vas))
elif n_vas == 1:
va, = vas
mro = type('t', (t, va), {}).mro()[1:]
else:
mro = t.mro()
lists.append(mro[:-1]) # discard t and object
return lists
def register(*types):
"""
Decorator to register an implementation for the given types
"""
check(types)
def dec(f):
check(getfullargspec(f).args, operator.lt, ' in ' + f.__name__)
typemap[types] = f
return f
return dec
def dispatch_info(*types):
"""
An utility to introspect the dispatch algorithm
"""
check(types)
lst = []
for anc in itertools.product(*ancestors(*types)):
lst.append(tuple(a.__name__ for a in anc))
return lst
def _dispatch(dispatch_args, *args, **kw):
types = tuple(type(arg) for arg in dispatch_args)
try: # fast path
f = typemap[types]
except KeyError:
pass
else:
return f(*args, **kw)
combinations = itertools.product(*ancestors(*types))
next(combinations) # the first one has been already tried
for types_ in combinations:
f = typemap.get(types_)
if f is not None:
return f(*args, **kw)
# else call the default implementation
return func(*args, **kw)
return FunctionMaker.create(
func, 'return _f_(%s, %%(shortsignature)s)' % dispatch_str,
dict(_f_=_dispatch), register=register, default=func,
typemap=typemap, vancestors=vancestors, ancestors=ancestors,
dispatch_info=dispatch_info, __wrapped__=func)
gen_func_dec.__name__ = 'dispatch_on' + dispatch_str
return gen_func_dec
|
Open the rendered HTML in a webbrowser.
If output_filename=None (the default), a tempfile is used.
The filename of the HTML file is returned.
|
def open_in_browser(self, session, output_filename=None):
"""
Open the rendered HTML in a webbrowser.
If output_filename=None (the default), a tempfile is used.
The filename of the HTML file is returned.
"""
if output_filename is None:
output_file = tempfile.NamedTemporaryFile(suffix='.html', delete=False)
output_filename = output_file.name
with codecs.getwriter('utf-8')(output_file) as f:
f.write(self.render(session))
else:
with codecs.open(output_filename, 'w', 'utf-8') as f:
f.write(self.render(session))
from pyinstrument.vendor.six.moves import urllib
url = urllib.parse.urlunparse(('file', '', output_filename, '', '', ''))
webbrowser.open(url)
return output_filename
|
compile the JS, then run superclass implementation
|
def run(self):
'''compile the JS, then run superclass implementation'''
if subprocess.call(['npm', '--version']) != 0:
raise RuntimeError('npm is required to build the HTML renderer.')
self.check_call(['npm', 'install'], cwd=HTML_RENDERER_DIR)
self.check_call(['npm', 'run', 'build'], cwd=HTML_RENDERER_DIR)
self.copy_file(HTML_RENDERER_DIR+'/dist/js/app.js', 'pyinstrument/renderers/html_resources/app.js')
setuptools.command.build_py.build_py.run(self)
|
Marks a function as deprecated.
|
def deprecated(func, *args, **kwargs):
''' Marks a function as deprecated. '''
warnings.warn(
'{} is deprecated and should no longer be used.'.format(func),
DeprecationWarning,
stacklevel=3
)
return func(*args, **kwargs)
|
Marks an option as deprecated.
|
def deprecated_option(option_name, message=''):
''' Marks an option as deprecated. '''
def caller(func, *args, **kwargs):
if option_name in kwargs:
warnings.warn(
'{} is deprecated. {}'.format(option_name, message),
DeprecationWarning,
stacklevel=3
)
return func(*args, **kwargs)
return decorator(caller)
|
Set the size as a 2-tuple for thumbnailed images after uploading them.
|
def THUMBNAIL_OPTIONS(self):
"""
Set the size as a 2-tuple for thumbnailed images after uploading them.
"""
from django.core.exceptions import ImproperlyConfigured
size = self._setting('DJNG_THUMBNAIL_SIZE', (200, 200))
if not (isinstance(size, (list, tuple)) and len(size) == 2 and isinstance(size[0], int) and isinstance(size[1], int)):
raise ImproperlyConfigured("'DJNG_THUMBNAIL_SIZE' must be a 2-tuple of integers.")
return {'crop': True, 'size': size}
|
Some widgets require a modified rendering context, if they contain angular directives.
|
def get_context(self, name, value, attrs):
"""
Some widgets require a modified rendering context, if they contain angular directives.
"""
context = super(NgWidgetMixin, self).get_context(name, value, attrs)
if callable(getattr(self._field, 'update_widget_rendering_context', None)):
self._field.update_widget_rendering_context(context)
return context
|
Returns a TupleErrorList for this field. This overloaded method adds additional error lists
to the errors as detected by the form validator.
|
def errors(self):
"""
Returns a TupleErrorList for this field. This overloaded method adds additional error lists
to the errors as detected by the form validator.
"""
if not hasattr(self, '_errors_cache'):
self._errors_cache = self.form.get_field_errors(self)
return self._errors_cache
|
Returns a string of space-separated CSS classes for the wrapping element of this input field.
|
def css_classes(self, extra_classes=None):
"""
Returns a string of space-separated CSS classes for the wrapping element of this input field.
"""
if hasattr(extra_classes, 'split'):
extra_classes = extra_classes.split()
extra_classes = set(extra_classes or [])
# field_css_classes is an optional member of a Form optimized for django-angular
field_css_classes = getattr(self.form, 'field_css_classes', None)
if hasattr(field_css_classes, 'split'):
extra_classes.update(field_css_classes.split())
elif isinstance(field_css_classes, (list, tuple)):
extra_classes.update(field_css_classes)
elif isinstance(field_css_classes, dict):
extra_field_classes = []
for key in ('*', self.name):
css_classes = field_css_classes.get(key)
if hasattr(css_classes, 'split'):
extra_field_classes = css_classes.split()
elif isinstance(css_classes, (list, tuple)):
if '__default__' in css_classes:
css_classes.remove('__default__')
extra_field_classes.extend(css_classes)
else:
extra_field_classes = css_classes
extra_classes.update(extra_field_classes)
return super(NgBoundField, self).css_classes(extra_classes)
|
Renders the field.
|
def as_widget(self, widget=None, attrs=None, only_initial=False):
"""
Renders the field.
"""
if not widget:
widget = self.field.widget
if DJANGO_VERSION > (1, 10):
# so that we can refer to the field when building the rendering context
widget._field = self.field
# Make sure that NgWidgetMixin is not already part of the widget's bases so it doesn't get added twice.
if not isinstance(widget, NgWidgetMixin):
widget.__class__ = type(widget.__class__.__name__, (NgWidgetMixin, widget.__class__), {})
return super(NgBoundField, self).as_widget(widget, attrs, only_initial)
|
Return server side errors. Shall be overridden by derived forms to add their
extra errors for AngularJS.
|
def get_field_errors(self, field):
"""
Return server side errors. Shall be overridden by derived forms to add their
extra errors for AngularJS.
"""
identifier = format_html('{0}[\'{1}\']', self.form_name, field.name)
errors = self.errors.get(field.html_name, [])
return self.error_class([SafeTuple(
(identifier, self.field_error_css_classes, '$pristine', '$pristine', 'invalid', e)) for e in errors])
|
Updated the widget attributes which shall be added to the widget when rendering this field.
|
def update_widget_attrs(self, bound_field, attrs):
"""
Updated the widget attributes which shall be added to the widget when rendering this field.
"""
if bound_field.field.has_subwidgets() is False:
widget_classes = getattr(self, 'widget_css_classes', None)
if widget_classes:
if 'class' in attrs:
attrs['class'] += ' ' + widget_classes
else:
attrs.update({'class': widget_classes})
return attrs
|
During form initialization, some widgets have to be replaced by a counterpart suitable to
be rendered the AngularJS way.
|
def convert_widgets(self):
"""
During form initialization, some widgets have to be replaced by a counterpart suitable to
be rendered the AngularJS way.
"""
warnings.warn("Will be removed after dropping support for Django-1.10", PendingDeprecationWarning)
widgets_module = getattr(self, 'widgets_module', 'djng.widgets')
for field in self.base_fields.values():
if hasattr(field, 'get_converted_widget'):
new_widget = field.get_converted_widget(widgets_module)
if new_widget:
field.widget = new_widget
|
If a widget was converted and the Form data was submitted through a multipart request,
then these data fields must be converted to suit the Django Form validation
|
def rectify_multipart_form_data(self, data):
"""
If a widget was converted and the Form data was submitted through a multipart request,
then these data fields must be converted to suit the Django Form validation
"""
for name, field in self.base_fields.items():
try:
field.implode_multi_values(name, data)
except AttributeError:
pass
return data
|
If a widget was converted and the Form data was submitted through an Ajax request,
then these data fields must be converted to suit the Django Form validation
|
def rectify_ajax_form_data(self, data):
"""
If a widget was converted and the Form data was submitted through an Ajax request,
then these data fields must be converted to suit the Django Form validation
"""
for name, field in self.base_fields.items():
try:
data[name] = field.convert_ajax_data(data.get(name, {}))
except AttributeError:
pass
return data
|
Determine the kind of input field and create a list of potential errors which may occur
during validation of that field. This list is returned to be displayed in '$dirty' state
if the field does not validate for that criteria.
|
def get_field_errors(self, bound_field):
"""
Determine the kind of input field and create a list of potential errors which may occur
during validation of that field. This list is returned to be displayed in '$dirty' state
if the field does not validate for that criteria.
"""
errors = super(NgFormValidationMixin, self).get_field_errors(bound_field)
if bound_field.is_hidden:
return errors
identifier = format_html('{0}[\'{1}\']', self.form_name, self.add_prefix(bound_field.name))
potential_errors = bound_field.field.get_potential_errors()
errors.extend([SafeTuple((identifier, self.field_error_css_classes, '$dirty', pe[0], 'invalid', force_text(pe[1])))
for pe in potential_errors])
if not isinstance(bound_field.field.widget, widgets.PasswordInput):
# all valid fields shall display OK tick after changed into dirty state
errors.append(SafeTuple((identifier, self.field_error_css_classes, '$dirty', '$valid', 'valid', '')))
if bound_field.value():
# valid bound fields shall display OK tick, even in pristine state
errors.append(SafeTuple((identifier, self.field_error_css_classes, '$pristine', '$valid', 'valid', '')))
return errors
|
Returns this form rendered as HTML with <div class="form-group">s for each form field.
|
def as_div(self):
"""
Returns this form rendered as HTML with <div class="form-group">s for each form field.
"""
# wrap non-field-errors into <div>-element to prevent re-boxing
error_row = '<div class="djng-line-spreader">%s</div>'
div_element = self._html_output(
normal_row='<div%(html_class_attr)s>%(label)s%(field)s%(help_text)s%(errors)s</div>',
error_row=error_row,
row_ender='</div>',
help_text_html='<span class="help-block">%s</span>',
errors_on_separate_row=False)
return div_element
|
Conditionally switch between AngularJS and Django variable expansion for ``{{`` and ``}}``
keeping Django's expansion for ``{%`` and ``%}``
Usage::
{% angularjs 1 %} or simply {% angularjs %}
{% process variables through the AngularJS template engine %}
{% endangularjs %}
{% angularjs 0 %}
{% process variables through the Django template engine %}
{% endangularjs %}
Instead of 0 and 1, it is possible to use a context variable.
|
def angularjs(parser, token):
"""
Conditionally switch between AngularJS and Django variable expansion for ``{{`` and ``}}``
keeping Django's expansion for ``{%`` and ``%}``
Usage::
{% angularjs 1 %} or simply {% angularjs %}
{% process variables through the AngularJS template engine %}
{% endangularjs %}
{% angularjs 0 %}
{% process variables through the Django template engine %}
{% endangularjs %}
Instead of 0 and 1, it is possible to use a context variable.
"""
bits = token.contents.split()
if len(bits) < 2:
bits.append('1')
values = [parser.compile_filter(bit) for bit in bits[1:]]
django_nodelist = parser.parse(('endangularjs',))
angular_nodelist = NodeList()
for node in django_nodelist:
# convert all occurrences of VariableNode into a TextNode using the
# AngularJS double curly bracket notation
if isinstance(node, VariableNode):
# convert Django's array notation into JS array notation
tokens = node.filter_expression.token.split('.')
token = tokens[0]
for part in tokens[1:]:
if part.isdigit():
token += '[%s]' % part
else:
token += '.%s' % part
node = TextNode('{{ %s }}' % token)
angular_nodelist.append(node)
parser.delete_first_token()
return AngularJsNode(django_nodelist, angular_nodelist, values[0])
|
Returns a script tag for including the proper locale script in any HTML page.
This tag determines the current language with its locale.
Usage:
<script src="{% static 'node_modules/angular-i18n/' %}{% djng_locale_script %}"></script>
or, if used with a default language:
<script src="{% static 'node_modules/angular-i18n/' %}{% djng_locale_script 'de' %}"></script>
|
def djng_locale_script(context, default_language='en'):
"""
Returns a script tag for including the proper locale script in any HTML page.
This tag determines the current language with its locale.
Usage:
<script src="{% static 'node_modules/angular-i18n/' %}{% djng_locale_script %}"></script>
or, if used with a default language:
<script src="{% static 'node_modules/angular-i18n/' %}{% djng_locale_script 'de' %}"></script>
"""
language = get_language_from_request(context['request'])
if not language:
language = default_language
return format_html('angular-locale_{}.js', language.lower())
|
Update the dictionary of attributes used while rendering the input widget
|
def update_widget_attrs(self, bound_field, attrs):
"""
Update the dictionary of attributes used while rendering the input widget
"""
bound_field.form.update_widget_attrs(bound_field, attrs)
widget_classes = self.widget.attrs.get('class', None)
if widget_classes:
if 'class' in attrs:
attrs['class'] += ' ' + widget_classes
else:
attrs.update({'class': widget_classes})
return attrs
|
Return a regex pattern matching valid email addresses. Uses the same
logic as the django validator, with the folowing exceptions:
- Internationalized domain names not supported
- IP addresses not supported
- Strips lookbehinds (not supported in javascript regular expressions)
|
def get_email_regex(self):
"""
Return a regex pattern matching valid email addresses. Uses the same
logic as the django validator, with the folowing exceptions:
- Internationalized domain names not supported
- IP addresses not supported
- Strips lookbehinds (not supported in javascript regular expressions)
"""
validator = self.default_validators[0]
user_regex = validator.user_regex.pattern.replace('\Z', '@')
domain_patterns = ([re.escape(domain) + '$' for domain in
validator.domain_whitelist] +
[validator.domain_regex.pattern.replace('\Z', '$')])
domain_regex = '({0})'.format('|'.join(domain_patterns))
email_regex = user_regex + domain_regex
return re.sub(r'\(\?\<[^()]*?\)', '', email_regex)
|
Add only the required message, but no 'ng-required' attribute to the input fields,
otherwise all Checkboxes of a MultipleChoiceField would require the property "checked".
|
def get_multiple_choices_required(self):
"""
Add only the required message, but no 'ng-required' attribute to the input fields,
otherwise all Checkboxes of a MultipleChoiceField would require the property "checked".
"""
errors = []
if self.required:
msg = _("At least one checkbox has to be selected.")
errors.append(('$error.multifield', msg))
return errors
|
Due to the way Angular organizes it model, when Form data is sent via a POST request,
then for this kind of widget, the posted data must to be converted into a format suitable
for Django's Form validation.
|
def implode_multi_values(self, name, data):
"""
Due to the way Angular organizes it model, when Form data is sent via a POST request,
then for this kind of widget, the posted data must to be converted into a format suitable
for Django's Form validation.
"""
mkeys = [k for k in data.keys() if k.startswith(name + '.')]
mvls = [data.pop(k)[0] for k in mkeys]
if mvls:
data.setlist(name, mvls)
|
Due to the way Angular organizes it model, when this Form data is sent using Ajax,
then for this kind of widget, the sent data has to be converted into a format suitable
for Django's Form validation.
|
def convert_ajax_data(self, field_data):
"""
Due to the way Angular organizes it model, when this Form data is sent using Ajax,
then for this kind of widget, the sent data has to be converted into a format suitable
for Django's Form validation.
"""
data = [key for key, val in field_data.items() if val]
return data
|
Reads url name, args, kwargs from GET parameters, reverses the url and resolves view function
Returns the result of resolved view function, called with provided args and kwargs
Since the view function is called directly, it isn't ran through middlewares, so the middlewares must
be added manually
The final result is exactly the same as if the request was for the resolved view.
Parametrized urls:
djangoUrl.reverse can be used with parametrized urls of $resource
In that case the reverse url is something like: /angular/reverse/?djng_url_name=orders&djng_url_kwarg_id=:id
$resource can either replace the ':id' part with say 2 and we can proceed as usual,
reverse with reverse('orders', kwargs={'id': 2}).
If it's not replaced we want to reverse to url we get a request to url
'/angular/reverse/?djng_url_name=orders&djng_url_kwarg_id=' which
gives a request.GET QueryDict {u'djng_url_name': [u'orders'], u'djng_url_kwarg_id': [u'']}
In that case we want to ignore the id param and only reverse to url with name 'orders' and no params.
So we ignore args and kwargs that are empty strings.
|
def process_request(self, request):
"""
Reads url name, args, kwargs from GET parameters, reverses the url and resolves view function
Returns the result of resolved view function, called with provided args and kwargs
Since the view function is called directly, it isn't ran through middlewares, so the middlewares must
be added manually
The final result is exactly the same as if the request was for the resolved view.
Parametrized urls:
djangoUrl.reverse can be used with parametrized urls of $resource
In that case the reverse url is something like: /angular/reverse/?djng_url_name=orders&djng_url_kwarg_id=:id
$resource can either replace the ':id' part with say 2 and we can proceed as usual,
reverse with reverse('orders', kwargs={'id': 2}).
If it's not replaced we want to reverse to url we get a request to url
'/angular/reverse/?djng_url_name=orders&djng_url_kwarg_id=' which
gives a request.GET QueryDict {u'djng_url_name': [u'orders'], u'djng_url_kwarg_id': [u'']}
In that case we want to ignore the id param and only reverse to url with name 'orders' and no params.
So we ignore args and kwargs that are empty strings.
"""
if request.path == self.ANGULAR_REVERSE:
url_name = request.GET.get('djng_url_name')
url_args = request.GET.getlist('djng_url_args', [])
url_kwargs = {}
# Remove falsy values (empty strings)
url_args = filter(lambda x: x, url_args)
# Read kwargs
for param in request.GET:
if param.startswith('djng_url_kwarg_'):
# Ignore kwargs that are empty strings
if request.GET[param]:
url_kwargs[param[15:]] = request.GET[param] # [15:] to remove 'djng_url_kwarg' prefix
url = unquote(reverse(url_name, args=url_args, kwargs=url_kwargs))
assert not url.startswith(self.ANGULAR_REVERSE), "Prevent recursive requests"
# rebuild the request object with a different environ
request.path = request.path_info = url
request.environ['PATH_INFO'] = url
query = request.GET.copy()
for key in request.GET:
if key.startswith('djng_url'):
query.pop(key, None)
if six.PY3:
request.environ['QUERY_STRING'] = query.urlencode()
else:
request.environ['QUERY_STRING'] = query.urlencode().encode('utf-8')
# Reconstruct GET QueryList in the same way WSGIRequest.GET function works
request.GET = http.QueryDict(request.environ['QUERY_STRING'])
|
Returns a dictionary to be used for calling ``djangoCall.configure()``, which itself extends the
Angular API to the client, offering him to call remote methods.
|
def get_all_remote_methods(resolver=None, ns_prefix=''):
"""
Returns a dictionary to be used for calling ``djangoCall.configure()``, which itself extends the
Angular API to the client, offering him to call remote methods.
"""
if not resolver:
resolver = get_resolver(get_urlconf())
result = {}
for name in resolver.reverse_dict.keys():
if not isinstance(name, six.string_types):
continue
try:
url = reverse(ns_prefix + name)
resmgr = resolve(url)
ViewClass = import_string('{0}.{1}'.format(resmgr.func.__module__, resmgr.func.__name__))
if isclass(ViewClass) and issubclass(ViewClass, JSONResponseMixin):
result[name] = _get_remote_methods_for(ViewClass, url)
except (NoReverseMatch, ImproperlyConfigured):
pass
for namespace, ns_pattern in resolver.namespace_dict.items():
sub_res = get_all_remote_methods(ns_pattern[1], ns_prefix + namespace + ':')
if sub_res:
result[namespace] = sub_res
return result
|
Override dispatch to call appropriate methods:
* $query - ng_query
* $get - ng_get
* $save - ng_save
* $delete and $remove - ng_delete
|
def dispatch(self, request, *args, **kwargs):
"""
Override dispatch to call appropriate methods:
* $query - ng_query
* $get - ng_get
* $save - ng_save
* $delete and $remove - ng_delete
"""
allowed_methods = self.get_allowed_methods()
try:
if request.method == 'GET' and 'GET' in allowed_methods:
if 'pk' in request.GET or self.slug_field in request.GET:
return self.ng_get(request, *args, **kwargs)
return self.ng_query(request, *args, **kwargs)
elif request.method == 'POST' and 'POST' in allowed_methods:
return self.ng_save(request, *args, **kwargs)
elif request.method == 'DELETE' and 'DELETE' in allowed_methods:
return self.ng_delete(request, *args, **kwargs)
except self.model.DoesNotExist as e:
return self.error_json_response(e.args[0], 404)
except NgMissingParameterError as e:
return self.error_json_response(e.args[0])
except JSONResponseException as e:
return self.error_json_response(e.args[0], e.status_code)
except ValidationError as e:
if hasattr(e, 'error_dict'):
return self.error_json_response('Form not valid', detail=e.message_dict)
else:
return self.error_json_response(e.message)
return self.error_json_response('This view can not handle method {0}'.format(request.method), 405)
|
Return serialized queryset or single object as python dictionary
serialize() only works on iterables, so to serialize a single object we put it in a list
|
def serialize_queryset(self, queryset):
"""
Return serialized queryset or single object as python dictionary
serialize() only works on iterables, so to serialize a single object we put it in a list
"""
object_data = []
is_queryset = False
query_fields = self.get_fields()
try:
iter(queryset)
is_queryset = True
raw_data = serializers.serialize(self.serializer_name, queryset, fields=query_fields,
use_natural_keys=self.serialize_natural_keys)
except TypeError: # Not iterable
raw_data = serializers.serialize(self.serializer_name, [queryset, ], fields=query_fields,
use_natural_keys=self.serialize_natural_keys)
for obj in raw_data: # Add pk to fields
obj['fields']['pk'] = obj['pk']
object_data.append(obj['fields'])
if is_queryset:
return object_data
return object_data[0]
|
Called on $save()
Use modelform to save new object or modify an existing one
|
def ng_save(self, request, *args, **kwargs):
"""
Called on $save()
Use modelform to save new object or modify an existing one
"""
form = self.get_form(self.get_form_class())
if form.is_valid():
obj = form.save()
return self.build_json_response(obj)
raise ValidationError(form.errors)
|
Delete object and return it's data in JSON encoding
The response is build before the object is actually deleted
so that we can still retrieve a serialization in the response
even with a m2m relationship
|
def ng_delete(self, request, *args, **kwargs):
"""
Delete object and return it's data in JSON encoding
The response is build before the object is actually deleted
so that we can still retrieve a serialization in the response
even with a m2m relationship
"""
if 'pk' not in request.GET:
raise NgMissingParameterError("Object id is required to delete.")
obj = self.get_object()
response = self.build_json_response(obj)
obj.delete()
return response
|
Outputs a <div ng-form="name"> for this set of choice fields to nest an ngForm.
|
def render(self):
"""
Outputs a <div ng-form="name"> for this set of choice fields to nest an ngForm.
"""
start_tag = format_html('<div {}>', mark_safe(' '.join(self.field_attrs)))
output = [start_tag]
for widget in self:
output.append(force_text(widget))
output.append('</div>')
return mark_safe('\n'.join(output))
|
Rewrite the error dictionary, so that its keys correspond to the model fields.
|
def _post_clean(self):
"""
Rewrite the error dictionary, so that its keys correspond to the model fields.
"""
super(NgModelFormMixin, self)._post_clean()
if self._errors and self.prefix:
self._errors = ErrorDict((self.add_prefix(name), value) for name, value in self._errors.items())
|
Return a dictionary specifying the defaults for this form. This dictionary can be used to
inject the initial values for an Angular controller using the directive:
``ng-init={{ thisform.get_initial_data|js|safe }}``.
|
def get_initial_data(self):
"""
Return a dictionary specifying the defaults for this form. This dictionary can be used to
inject the initial values for an Angular controller using the directive:
``ng-init={{ thisform.get_initial_data|js|safe }}``.
"""
data = {}
ng_models = hasattr(self, 'Meta') and getattr(self.Meta, 'ng_models', []) or []
for name, field in self.fields.items():
if 'ng-model' in self.ng_directives or name in ng_models:
data[name] = self.initial.get(name) if self.initial else field.initial
return data
|
Tries to catch resize signals sent from the terminal.
|
def _handle_resize(self, signum=None, frame=None):
'Tries to catch resize signals sent from the terminal.'
w, h = utils.get_terminal_size()
self.term_width = w
|
(re)initialize values to original state so the progressbar can be
used (again)
|
def init(self):
'''
(re)initialize values to original state so the progressbar can be
used (again)
'''
self.previous_value = None
self.last_update_time = None
self.start_time = None
self.updates = 0
self.end_time = None
self.extra = dict()
self._last_update_timer = timeit.default_timer()
|
Return current percentage, returns None if no max_value is given
>>> progress = ProgressBar()
>>> progress.max_value = 10
>>> progress.min_value = 0
>>> progress.value = 0
>>> progress.percentage
0.0
>>>
>>> progress.value = 1
>>> progress.percentage
10.0
>>> progress.value = 10
>>> progress.percentage
100.0
>>> progress.min_value = -10
>>> progress.percentage
100.0
>>> progress.value = 0
>>> progress.percentage
50.0
>>> progress.value = 5
>>> progress.percentage
75.0
>>> progress.value = -5
>>> progress.percentage
25.0
>>> progress.max_value = None
>>> progress.percentage
|
def percentage(self):
'''Return current percentage, returns None if no max_value is given
>>> progress = ProgressBar()
>>> progress.max_value = 10
>>> progress.min_value = 0
>>> progress.value = 0
>>> progress.percentage
0.0
>>>
>>> progress.value = 1
>>> progress.percentage
10.0
>>> progress.value = 10
>>> progress.percentage
100.0
>>> progress.min_value = -10
>>> progress.percentage
100.0
>>> progress.value = 0
>>> progress.percentage
50.0
>>> progress.value = 5
>>> progress.percentage
75.0
>>> progress.value = -5
>>> progress.percentage
25.0
>>> progress.max_value = None
>>> progress.percentage
'''
if self.max_value is None or self.max_value is base.UnknownLength:
return None
elif self.max_value:
todo = self.value - self.min_value
total = self.max_value - self.min_value
percentage = todo / total
else:
percentage = 1
return percentage * 100
|
Returns whether the ProgressBar should redraw the line.
|
def _needs_update(self):
'Returns whether the ProgressBar should redraw the line.'
if self.poll_interval:
delta = timeit.default_timer() - self._last_update_timer
poll_status = delta > self.poll_interval.total_seconds()
else:
delta = 0
poll_status = False
# Do not update if value increment is not large enough to
# add more bars to progressbar (according to current
# terminal width)
try:
divisor = self.max_value / self.term_width # float division
if self.value // divisor == self.previous_value // divisor:
return poll_status or self.end_time
else:
return True
except Exception:
# ignore any division errors
pass
return poll_status or self.end_time
|
Updates the ProgressBar to a new value.
|
def update(self, value=None, force=False, **kwargs):
'Updates the ProgressBar to a new value.'
if self.start_time is None:
self.start()
return self.update(value, force=force, **kwargs)
if value is not None and value is not base.UnknownLength:
if self.max_value is base.UnknownLength:
# Can't compare against unknown lengths so just update
pass
elif self.min_value <= value <= self.max_value: # pragma: no cover
# Correct value, let's accept
pass
elif self.max_error:
raise ValueError(
'Value %s is out of range, should be between %s and %s'
% (value, self.min_value, self.max_value))
else:
self.max_value = value
self.previous_value = self.value
self.value = value
minimum_update_interval = self._MINIMUM_UPDATE_INTERVAL
delta = timeit.default_timer() - self._last_update_timer
if delta < minimum_update_interval and not force:
# Prevent updating too often
return
# Save the updated values for dynamic messages
for key in kwargs:
if key in self.dynamic_messages:
self.dynamic_messages[key] = kwargs[key]
else:
raise TypeError(
'update() got an unexpected keyword ' +
'argument {0!r}'.format(key))
if self._needs_update() or force:
self.updates += 1
ResizableMixin.update(self, value=value)
ProgressBarBase.update(self, value=value)
StdRedirectMixin.update(self, value=value)
# Only flush if something was actually written
self.fd.flush()
|
Starts measuring time, and prints the bar at 0%.
It returns self so you can use it like this:
Args:
max_value (int): The maximum value of the progressbar
reinit (bool): Initialize the progressbar, this is useful if you
wish to reuse the same progressbar but can be disabled if
data needs to be passed along to the next run
>>> pbar = ProgressBar().start()
>>> for i in range(100):
... # do something
... pbar.update(i+1)
...
>>> pbar.finish()
|
def start(self, max_value=None, init=True):
'''Starts measuring time, and prints the bar at 0%.
It returns self so you can use it like this:
Args:
max_value (int): The maximum value of the progressbar
reinit (bool): Initialize the progressbar, this is useful if you
wish to reuse the same progressbar but can be disabled if
data needs to be passed along to the next run
>>> pbar = ProgressBar().start()
>>> for i in range(100):
... # do something
... pbar.update(i+1)
...
>>> pbar.finish()
'''
if init:
self.init()
# Prevent multiple starts
if self.start_time is not None: # pragma: no cover
return self
if max_value is not None:
self.max_value = max_value
if self.max_value is None:
self.max_value = self._DEFAULT_MAXVAL
StdRedirectMixin.start(self, max_value=max_value)
ResizableMixin.start(self, max_value=max_value)
ProgressBarBase.start(self, max_value=max_value)
# Constructing the default widgets is only done when we know max_value
if self.widgets is None:
self.widgets = self.default_widgets()
if self.prefix:
self.widgets.insert(0, widgets.FormatLabel(
self.prefix, new_style=True))
if self.suffix:
self.widgets.append(widgets.FormatLabel(
self.suffix, new_style=True))
for widget in self.widgets:
interval = getattr(widget, 'INTERVAL', None)
if interval is not None:
self.poll_interval = min(
self.poll_interval or interval,
interval,
)
self.num_intervals = max(100, self.term_width)
if self.max_value is not base.UnknownLength and self.max_value < 0:
raise ValueError('Value out of range')
self.start_time = self.last_update_time = datetime.now()
self._last_update_timer = timeit.default_timer()
self.update(self.min_value, force=True)
return self
|
Puts the ProgressBar bar in the finished state.
Also flushes and disables output buffering if this was the last
progressbar running.
Args:
end (str): The string to end the progressbar with, defaults to a
newline
dirty (bool): When True the progressbar kept the current state and
won't be set to 100 percent
|
def finish(self, end='\n', dirty=False):
'''
Puts the ProgressBar bar in the finished state.
Also flushes and disables output buffering if this was the last
progressbar running.
Args:
end (str): The string to end the progressbar with, defaults to a
newline
dirty (bool): When True the progressbar kept the current state and
won't be set to 100 percent
'''
if not dirty:
self.end_time = datetime.now()
self.update(self.max_value, force=True)
StdRedirectMixin.finish(self, end=end)
ResizableMixin.finish(self)
ProgressBarBase.finish(self)
|
Wrap the examples so they generate readable output
|
def example(fn):
'''Wrap the examples so they generate readable output'''
@functools.wraps(fn)
def wrapped():
try:
sys.stdout.write('Running: %s\n' % fn.__name__)
fn()
sys.stdout.write('\n')
except KeyboardInterrupt:
sys.stdout.write('\nSkipping example.\n\n')
# Sleep a bit to make killing the script easier
time.sleep(0.2)
examples.append(wrapped)
return wrapped
|
Updates the widget to show the ETA or total time when finished.
|
def _calculate_eta(self, progress, data, value, elapsed):
'''Updates the widget to show the ETA or total time when finished.'''
if elapsed:
# The max() prevents zero division errors
per_item = elapsed.total_seconds() / max(value, 1e-6)
remaining = progress.max_value - data['value']
eta_seconds = remaining * per_item
else:
eta_seconds = 0
return eta_seconds
|
Load standard graph validation sets
For each size (from 6 to 32 graph nodes) the dataset consists of
100 graphs drawn from the Erdős-Rényi ensemble with edge
probability 50%.
|
def load_stdgraphs(size: int) -> List[nx.Graph]:
"""Load standard graph validation sets
For each size (from 6 to 32 graph nodes) the dataset consists of
100 graphs drawn from the Erdős-Rényi ensemble with edge
probability 50%.
"""
from pkg_resources import resource_stream
if size < 6 or size > 32:
raise ValueError('Size out of range.')
filename = 'datasets/data/graph{}er100.g6'.format(size)
fdata = resource_stream('quantumflow', filename)
return nx.read_graph6(fdata)
|
Download and rescale the MNIST database of handwritten digits
MNIST is a dataset of 60,000 28x28 grayscale images handwritten digits,
along with a test set of 10,000 images. We use Keras to download and
access the dataset. The first invocation of this method may take a while
as the dataset has to be downloaded and cached.
If size is None, then we return the original MNIST data.
For rescaled MNIST, we chop off the border, downsample to the
desired size with Lanczos resampling, and then (optionally) zero out the
corner pixels.
Returns (x_train, y_train, x_test, y_test)
x_train ndarray of shape (60000, size, size)
y_train ndarray of shape (60000,)
x_test ndarray of shape (10000, size, size)
y_test ndarray of shape (10000,)
|
def load_mnist(size: int = None,
border: int = _MNIST_BORDER,
blank_corners: bool = False,
nums: List[int] = None) \
-> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Download and rescale the MNIST database of handwritten digits
MNIST is a dataset of 60,000 28x28 grayscale images handwritten digits,
along with a test set of 10,000 images. We use Keras to download and
access the dataset. The first invocation of this method may take a while
as the dataset has to be downloaded and cached.
If size is None, then we return the original MNIST data.
For rescaled MNIST, we chop off the border, downsample to the
desired size with Lanczos resampling, and then (optionally) zero out the
corner pixels.
Returns (x_train, y_train, x_test, y_test)
x_train ndarray of shape (60000, size, size)
y_train ndarray of shape (60000,)
x_test ndarray of shape (10000, size, size)
y_test ndarray of shape (10000,)
"""
# DOCME: Fix up formatting above,
# DOCME: Explain nums argument
# JIT import since keras startup is slow
from keras.datasets import mnist
def _filter_mnist(x: np.ndarray, y: np.ndarray, nums: List[int] = None) \
-> Tuple[np.ndarray, np.ndarray]:
xt = []
yt = []
items = len(y)
for n in range(items):
if nums is not None and y[n] in nums:
xt.append(x[n])
yt.append(y[n])
xt = np.stack(xt)
yt = np.stack(yt)
return xt, yt
def _rescale(imgarray: np.ndarray, size: int) -> np.ndarray:
N = imgarray.shape[0]
# Chop off border
imgarray = imgarray[:, border:-border, border:-border]
rescaled = np.zeros(shape=(N, size, size), dtype=np.float)
for n in range(0, N):
img = Image.fromarray(imgarray[n])
img = img.resize((size, size), Image.LANCZOS)
rsc = np.asarray(img).reshape((size, size))
rsc = 256.*rsc/rsc.max()
rescaled[n] = rsc
return rescaled.astype(dtype=np.uint8)
def _blank_corners(imgarray: np.ndarray) -> None:
# Zero out corners
sz = imgarray.shape[1]
corner = (sz//2)-1
for x in range(0, corner):
for y in range(0, corner-x):
imgarray[:, x, y] = 0
imgarray[:, -(1+x), y] = 0
imgarray[:, -(1+x), -(1+y)] = 0
imgarray[:, x, -(1+y)] = 0
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if nums:
x_train, y_train = _filter_mnist(x_train, y_train, nums)
x_test, y_test = _filter_mnist(x_test, y_test, nums)
if size:
x_train = _rescale(x_train, size)
x_test = _rescale(x_test, size)
if blank_corners:
_blank_corners(x_train)
_blank_corners(x_test)
return x_train, y_train, x_test, y_test
|
Covert numpy array to tensorflow tensor
|
def astensor(array: TensorLike) -> BKTensor:
"""Covert numpy array to tensorflow tensor"""
tensor = tf.convert_to_tensor(value=array, dtype=CTYPE)
return tensor
|
Return the inner product between two states
|
def inner(tensor0: BKTensor, tensor1: BKTensor) -> BKTensor:
"""Return the inner product between two states"""
# Note: Relying on fact that vdot flattens arrays
N = rank(tensor0)
axes = list(range(N))
return tf.tensordot(tf.math.conj(tensor0), tensor1, axes=(axes, axes))
|
A QAOA circuit for the Quadratic Unconstrained Binary Optimization
problem (i.e. an Ising model).
Args:
graph : a networkx graph instance with optional edge and node weights
steps : number of QAOA steps
beta : driver parameters (One per step)
gamma : cost parameters (One per step)
|
def qubo_circuit(
graph: nx.Graph,
steps: int,
beta: Sequence,
gamma: Sequence) -> Circuit:
"""
A QAOA circuit for the Quadratic Unconstrained Binary Optimization
problem (i.e. an Ising model).
Args:
graph : a networkx graph instance with optional edge and node weights
steps : number of QAOA steps
beta : driver parameters (One per step)
gamma : cost parameters (One per step)
"""
qubits = list(graph.nodes())
# Initialization
circ = Circuit()
for q0 in qubits:
circ += H(q0)
# Run for given number of QAOA steps
for p in range(0, steps):
# Cost
for q0, q1 in graph.edges():
weight = graph[q0][q1].get('weight', 1.0)
# Note factor of pi due to parameterization of ZZ gate
circ += ZZ(-weight * gamma[p] / np.pi, q0, q1)
for q0 in qubits:
node_weight = graph.nodes[q0].get('weight', None)
if node_weight is not None:
circ += RZ(node_weight, q0)
# Drive
for q0 in qubits:
circ += RX(beta[p], q0)
return circ
|
For the given graph, return the cut value for all binary assignments
of the graph.
|
def graph_cuts(graph: nx.Graph) -> np.ndarray:
"""For the given graph, return the cut value for all binary assignments
of the graph.
"""
N = len(graph)
diag_hamiltonian = np.zeros(shape=([2]*N), dtype=np.double)
for q0, q1 in graph.edges():
for index, _ in np.ndenumerate(diag_hamiltonian):
if index[q0] != index[q1]:
weight = graph[q0][q1].get('weight', 1)
diag_hamiltonian[index] += weight
return diag_hamiltonian
|
Return the circuit depth.
Args:
local: If True include local one-qubit gates in depth
calculation. Else return the multi-qubit gate depth.
|
def depth(self, local: bool = True) -> int:
"""Return the circuit depth.
Args:
local: If True include local one-qubit gates in depth
calculation. Else return the multi-qubit gate depth.
"""
G = self.graph
if not local:
def remove_local(dagc: DAGCircuit) \
-> Generator[Operation, None, None]:
for elem in dagc:
if dagc.graph.degree[elem] > 2:
yield elem
G = DAGCircuit(remove_local(self)).graph
return nx.dag_longest_path_length(G) - 1
|
Split DAGCircuit into independent components
|
def components(self) -> List['DAGCircuit']:
"""Split DAGCircuit into independent components"""
comps = nx.weakly_connected_component_subgraphs(self.graph)
return [DAGCircuit(comp) for comp in comps]
|
Split DAGCircuit into layers, where the operations within each
layer operate on different qubits (and therefore commute).
Returns: A Circuit of Circuits, one Circuit per layer
|
def layers(self) -> Circuit:
"""Split DAGCircuit into layers, where the operations within each
layer operate on different qubits (and therefore commute).
Returns: A Circuit of Circuits, one Circuit per layer
"""
node_depth: Dict[Qubit, int] = {}
G = self.graph
for elem in self:
depth = np.max(list(node_depth.get(prev, -1) + 1
for prev in G.predecessors(elem)))
node_depth[elem] = depth
depth_nodes = invert_map(node_depth, one_to_one=False)
layers = []
for nd in range(0, self.depth()):
elements = depth_nodes[nd]
circ = Circuit(list(elements))
layers.append(circ)
return Circuit(layers)
|
Return the all-zero state on N qubits
|
def zero_state(qubits: Union[int, Qubits]) -> State:
"""Return the all-zero state on N qubits"""
N, qubits = qubits_count_tuple(qubits)
ket = np.zeros(shape=[2] * N)
ket[(0,) * N] = 1
return State(ket, qubits)
|
Return a W state on N qubits
|
def w_state(qubits: Union[int, Qubits]) -> State:
"""Return a W state on N qubits"""
N, qubits = qubits_count_tuple(qubits)
ket = np.zeros(shape=[2] * N)
for n in range(N):
idx = np.zeros(shape=N, dtype=int)
idx[n] += 1
ket[tuple(idx)] = 1 / sqrt(N)
return State(ket, qubits)
|
Return a GHZ state on N qubits
|
def ghz_state(qubits: Union[int, Qubits]) -> State:
"""Return a GHZ state on N qubits"""
N, qubits = qubits_count_tuple(qubits)
ket = np.zeros(shape=[2] * N)
ket[(0, ) * N] = 1 / sqrt(2)
ket[(1, ) * N] = 1 / sqrt(2)
return State(ket, qubits)
|
Return a random state from the space of N qubits
|
def random_state(qubits: Union[int, Qubits]) -> State:
"""Return a random state from the space of N qubits"""
N, qubits = qubits_count_tuple(qubits)
ket = np.random.normal(size=([2] * N)) \
+ 1j * np.random.normal(size=([2] * N))
return State(ket, qubits).normalize()
|
Join two state vectors into a larger qubit state
|
def join_states(*states: State) -> State:
"""Join two state vectors into a larger qubit state"""
vectors = [ket.vec for ket in states]
vec = reduce(outer_product, vectors)
return State(vec.tensor, vec.qubits)
|
Print a state vector
|
def print_state(state: State, file: TextIO = None) -> None:
"""Print a state vector"""
state = state.vec.asarray()
for index, amplitude in np.ndenumerate(state):
ket = "".join([str(n) for n in index])
print(ket, ":", amplitude, file=file)
|
Pretty print state probabilities.
Args:
state:
ndigits: Number of digits of accuracy
file: Output stream (Defaults to stdout)
|
def print_probabilities(state: State, ndigits: int = 4,
file: TextIO = None) -> None:
"""
Pretty print state probabilities.
Args:
state:
ndigits: Number of digits of accuracy
file: Output stream (Defaults to stdout)
"""
prob = bk.evaluate(state.probabilities())
for index, prob in np.ndenumerate(prob):
prob = round(prob, ndigits)
if prob == 0.0:
continue
ket = "".join([str(n) for n in index])
print(ket, ":", prob, file=file)
|
Returns the completely mixed density matrix
|
def mixed_density(qubits: Union[int, Qubits]) -> Density:
"""Returns the completely mixed density matrix"""
N, qubits = qubits_count_tuple(qubits)
matrix = np.eye(2**N) / 2**N
return Density(matrix, qubits)
|
Returns: A randomly sampled Density from the Hilbert–Schmidt
ensemble of quantum states
Ref: "Induced measures in the space of mixed quantum states" Karol
Zyczkowski, Hans-Juergen Sommers, J. Phys. A34, 7111-7125 (2001)
https://arxiv.org/abs/quant-ph/0012101
|
def random_density(qubits: Union[int, Qubits]) -> Density:
"""
Returns: A randomly sampled Density from the Hilbert–Schmidt
ensemble of quantum states
Ref: "Induced measures in the space of mixed quantum states" Karol
Zyczkowski, Hans-Juergen Sommers, J. Phys. A34, 7111-7125 (2001)
https://arxiv.org/abs/quant-ph/0012101
"""
N, qubits = qubits_count_tuple(qubits)
size = (2**N, 2**N)
ginibre_ensemble = (np.random.normal(size=size) +
1j * np.random.normal(size=size)) / np.sqrt(2.0)
matrix = ginibre_ensemble @ np.transpose(np.conjugate(ginibre_ensemble))
matrix /= np.trace(matrix)
return Density(matrix, qubits=qubits)
|
Return a copy of this state with new qubits
|
def relabel(self, qubits: Qubits) -> 'State':
"""Return a copy of this state with new qubits"""
return State(self.vec.tensor, qubits, self._memory)
|
Return a copy of this state with qubit labels permuted
|
def permute(self, qubits: Qubits) -> 'State':
"""Return a copy of this state with qubit labels permuted"""
vec = self.vec.permute(qubits)
return State(vec.tensor, vec.qubits, self._memory)
|
Normalize the state
|
def normalize(self) -> 'State':
"""Normalize the state"""
tensor = self.tensor / bk.ccast(bk.sqrt(self.norm()))
return State(tensor, self.qubits, self._memory)
|
Returns:
The state probabilities
|
def probabilities(self) -> bk.BKTensor:
"""
Returns:
The state probabilities
"""
value = bk.absolute(self.tensor)
return value * value
|
Measure the state in the computational basis the the given number
of trials, and return the counts of each output configuration.
|
def sample(self, trials: int) -> np.ndarray:
"""Measure the state in the computational basis the the given number
of trials, and return the counts of each output configuration.
"""
# TODO: Can we do this within backend?
probs = np.real(bk.evaluate(self.probabilities()))
res = np.random.multinomial(trials, probs.ravel())
res = res.reshape(probs.shape)
return res
|
Return the expectation of a measurement. Since we can only measure
our computer in the computational basis, we only require the diagonal
of the Hermitian in that basis.
If the number of trials is specified, we sample the given number of
times. Else we return the exact expectation (as if we'd performed an
infinite number of trials. )
|
def expectation(self, diag_hermitian: bk.TensorLike,
trials: int = None) -> bk.BKTensor:
"""Return the expectation of a measurement. Since we can only measure
our computer in the computational basis, we only require the diagonal
of the Hermitian in that basis.
If the number of trials is specified, we sample the given number of
times. Else we return the exact expectation (as if we'd performed an
infinite number of trials. )
"""
if trials is None:
probs = self.probabilities()
else:
probs = bk.real(bk.astensorproduct(self.sample(trials) / trials))
diag_hermitian = bk.astensorproduct(diag_hermitian)
return bk.sum(bk.real(diag_hermitian) * probs)
|
Measure the state in the computational basis.
Returns:
A [2]*bits array of qubit states, either 0 or 1
|
def measure(self) -> np.ndarray:
"""Measure the state in the computational basis.
Returns:
A [2]*bits array of qubit states, either 0 or 1
"""
# TODO: Can we do this within backend?
probs = np.real(bk.evaluate(self.probabilities()))
indices = np.asarray(list(np.ndindex(*[2] * self.qubit_nb)))
res = np.random.choice(probs.size, p=probs.ravel())
res = indices[res]
return res
|
Convert a pure state to a density matrix
|
def asdensity(self) -> 'Density':
"""Convert a pure state to a density matrix"""
matrix = bk.outer(self.tensor, bk.conj(self.tensor))
return Density(matrix, self.qubits, self._memory)
|
Return the partial trace over the specified qubits
|
def partial_trace(self, qubits: Qubits) -> 'Density':
"""Return the partial trace over the specified qubits"""
vec = self.vec.partial_trace(qubits)
return Density(vec.tensor, vec.qubits, self._memory)
|
Return a copy of this state with new qubits
|
def relabel(self, qubits: Qubits) -> 'Density':
"""Return a copy of this state with new qubits"""
return Density(self.vec.tensor, qubits, self._memory)
|
Return a copy of this state with qubit labels permuted
|
def permute(self, qubits: Qubits) -> 'Density':
"""Return a copy of this state with qubit labels permuted"""
vec = self.vec.permute(qubits)
return Density(vec.tensor, vec.qubits, self._memory)
|
Normalize state
|
def normalize(self) -> 'Density':
"""Normalize state"""
tensor = self.tensor / self.trace()
return Density(tensor, self.qubits, self._memory)
|
Returns: The state probabilities
|
def probabilities(self) -> bk.BKTensor:
"""Returns: The state probabilities """
prob = bk.productdiag(self.tensor)
return prob
|
Create and run a circuit with N qubits and given number of gates
|
def benchmark(N, gates):
"""Create and run a circuit with N qubits and given number of gates"""
qubits = list(range(0, N))
ket = qf.zero_state(N)
for n in range(0, N):
ket = qf.H(n).run(ket)
for _ in range(0, (gates-N)//3):
qubit0, qubit1 = random.sample(qubits, 2)
ket = qf.X(qubit0).run(ket)
ket = qf.T(qubit1).run(ket)
ket = qf.CNOT(qubit0, qubit1).run(ket)
return ket.vec.tensor
|
Return benchmark performance in GOPS (Gate operations per second)
|
def benchmark_gops(N, gates, reps):
"""Return benchmark performance in GOPS (Gate operations per second)"""
t = timeit.timeit(lambda: benchmark(N, gates), number=reps)
gops = (GATES*REPS)/t
gops = int((gops * 100) + 0.5) / 100.0
return gops
|
Create composite gates, decompose, and return a list
of canonical coordinates
|
def sandwich_decompositions(coords0, coords1, samples=SAMPLES):
"""Create composite gates, decompose, and return a list
of canonical coordinates"""
decomps = []
for _ in range(samples):
circ = qf.Circuit()
circ += qf.CANONICAL(*coords0, 0, 1)
circ += qf.random_gate([0])
circ += qf.random_gate([1])
circ += qf.CANONICAL(*coords1, 0, 1)
gate = circ.asgate()
coords = qf.canonical_coords(gate)
decomps.append(coords)
return decomps
|
Construct and display 3D plot of canonical coordinates
|
def display_weyl(decomps):
"""Construct and display 3D plot of canonical coordinates"""
tx, ty, tz = list(zip(*decomps))
rcParams['axes.labelsize'] = 24
rcParams['font.family'] = 'serif'
rcParams['font.serif'] = ['Computer Modern Roman']
rcParams['text.usetex'] = True
fig = pyplot.figure()
ax = Axes3D(fig)
ax.scatter(tx, ty, tz)
ax.plot((1,), (1,), (1,))
ax.plot((0, 1, 1/2, 0, 1/2, 1, 1/2, 1/2),
(0, 0, 1/2, 0, 1/2, 0, 1/2, 1/2),
(0, 0, 0, 0, 1/2, 0, 0, 1/2))
ax.plot((0, 1/2, 1, 1/2, 1/2),
(0, 1/4, 0, 1/4, 1/2),
(0, 1/4, 0, 1/4, 0))
points = [(0, 0, 0), (1/4, 0, 0), (1/2, 0, 0), (3/4, 0, 0), (1, 0, 0),
(1/4, 1/4, 0), (1/2, 1/4, 0), (3/4, 1/4, 0), (1/2, 1/2, 0),
(1/4, 1/4, 1/4), (1/2, 1/4, 1/4), (3/4, 1/4, 1/4),
(1/2, 1/2, 1/4), (1/2, 1/2, 1/2)]
ax.scatter(*zip(*points))
eps = 0.04
ax.text(0, 0, 0-2*eps, 'I', ha='center')
ax.text(1, 0, 0-2*eps, 'I', ha='center')
ax.text(1/2, 1/2, 0-2*eps, 'iSWAP', ha='center')
ax.text(1/2, 1/2, 1/2+eps, 'SWAP', ha='center')
ax.text(1/2, 0, 0-2*eps, 'CNOT', ha='center')
# More coordinate labels
# ax.text(1/4-eps, 1/4, 1/4, '$\sqrt{SWAP}$', ha='right')
# ax.text(3/4+eps, 1/4, 1/4, '$\sqrt{SWAP}^\dagger$', ha='left')
# ax.text(1/4, 0, 0-2*eps, '$\sqrt{{CNOT}}$', ha='center')
# ax.text(3/4, 0, 0-2*eps, '$\sqrt{{CNOT}}$', ha='center')
# ax.text(1/2, 1/4, 0-2*eps, 'B', ha='center')
# ax.text(1/2, 1/4, 1/4+eps, 'ECP', ha='center')
# ax.text(1/4, 1/4, 0-2*eps, '$\sqrt{iSWAP}$', ha='center')
# ax.text(3/4, 1/4, 0-2*eps, '$\sqrt{iSWAP}$', ha='center')
# ax.text(1/2, 1/2+eps, 1/4, 'PSWAP(1/2)', ha='left')
ax.set_xlim(0, 1)
ax.set_ylim(-1/4, 3/4)
ax.set_zlim(-1/4, 3/4)
# Get rid of the panes
ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
# Get rid of the spines
ax.w_xaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
ax.w_yaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
ax.w_zaxis.line.set_color((1.0, 1.0, 1.0, 0.0))
# Get rid of the ticks
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
pyplot.show()
|
Return the Pauli sigma_X operator acting on the given qubit
|
def sX(qubit: Qubit, coefficient: complex = 1.0) -> Pauli:
"""Return the Pauli sigma_X operator acting on the given qubit"""
return Pauli.sigma(qubit, 'X', coefficient)
|
Return the Pauli sigma_Y operator acting on the given qubit
|
def sY(qubit: Qubit, coefficient: complex = 1.0) -> Pauli:
"""Return the Pauli sigma_Y operator acting on the given qubit"""
return Pauli.sigma(qubit, 'Y', coefficient)
|
Return the Pauli sigma_Z operator acting on the given qubit
|
def sZ(qubit: Qubit, coefficient: complex = 1.0) -> Pauli:
"""Return the Pauli sigma_Z operator acting on the given qubit"""
return Pauli.sigma(qubit, 'Z', coefficient)
|
Return the Pauli sigma_I (identity) operator. The qubit is irrelevant,
but kept as an argument for consistency
|
def sI(qubit: Qubit, coefficient: complex = 1.0) -> Pauli:
"""Return the Pauli sigma_I (identity) operator. The qubit is irrelevant,
but kept as an argument for consistency"""
return Pauli.sigma(qubit, 'I', coefficient)
|
Return the sum of elements of the Pauli algebra
|
def pauli_sum(*elements: Pauli) -> Pauli:
"""Return the sum of elements of the Pauli algebra"""
terms = []
key = itemgetter(0)
for term, grp in groupby(heapq.merge(*elements, key=key), key=key):
coeff = sum(g[1] for g in grp)
if not isclose(coeff, 0.0):
terms.append((term, coeff))
return Pauli(tuple(terms))
|
Return the product of elements of the Pauli algebra
|
def pauli_product(*elements: Pauli) -> Pauli:
"""Return the product of elements of the Pauli algebra"""
result_terms = []
for terms in product(*elements):
coeff = reduce(mul, [term[1] for term in terms])
ops = (term[0] for term in terms)
out = []
key = itemgetter(0)
for qubit, qops in groupby(heapq.merge(*ops, key=key), key=key):
res = next(qops)[1] # Operator: X Y Z
for op in qops:
pair = res + op[1]
res, rescoeff = PAULI_PROD[pair]
coeff *= rescoeff
if res != 'I':
out.append((qubit, res))
p = Pauli(((tuple(out), coeff),))
result_terms.append(p)
return pauli_sum(*result_terms)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.