INSTRUCTION
stringlengths 1
46.3k
| RESPONSE
stringlengths 75
80.2k
|
---|---|
Loads a task with the given ID from the given queue in the given
state. An integer may be passed in the load_executions parameter
to indicate how many executions should be loaded (starting from the
latest). If the task doesn't exist, None is returned. | def from_id(self, tiger, queue, state, task_id, load_executions=0):
"""
Loads a task with the given ID from the given queue in the given
state. An integer may be passed in the load_executions parameter
to indicate how many executions should be loaded (starting from the
latest). If the task doesn't exist, None is returned.
"""
if load_executions:
pipeline = tiger.connection.pipeline()
pipeline.get(tiger._key('task', task_id))
pipeline.lrange(tiger._key('task', task_id, 'executions'), -load_executions, -1)
serialized_data, serialized_executions = pipeline.execute()
else:
serialized_data = tiger.connection.get(tiger._key('task', task_id))
serialized_executions = []
# XXX: No timestamp for now
if serialized_data:
data = json.loads(serialized_data)
executions = [json.loads(e) for e in serialized_executions if e]
return Task(tiger, queue=queue, _data=data, _state=state,
_executions=executions)
else:
raise TaskNotFound('Task {} not found.'.format(
task_id
)) |
Returns a tuple with the following information:
* total items in the queue
* tasks from the given queue in the given state, latest first.
An integer may be passed in the load_executions parameter to indicate
how many executions should be loaded (starting from the latest). | def tasks_from_queue(self, tiger, queue, state, skip=0, limit=1000,
load_executions=0):
"""
Returns a tuple with the following information:
* total items in the queue
* tasks from the given queue in the given state, latest first.
An integer may be passed in the load_executions parameter to indicate
how many executions should be loaded (starting from the latest).
"""
key = tiger._key(state, queue)
pipeline = tiger.connection.pipeline()
pipeline.zcard(key)
pipeline.zrange(key, -limit-skip, -1-skip, withscores=True)
n, items = pipeline.execute()
tasks = []
if items:
tss = [datetime.datetime.utcfromtimestamp(item[1]) for item in items]
if load_executions:
pipeline = tiger.connection.pipeline()
pipeline.mget([tiger._key('task', item[0]) for item in items])
for item in items:
pipeline.lrange(tiger._key('task', item[0], 'executions'), -load_executions, -1)
results = pipeline.execute()
for serialized_data, serialized_executions, ts in zip(results[0], results[1:], tss):
data = json.loads(serialized_data)
executions = [json.loads(e) for e in serialized_executions if e]
task = Task(tiger, queue=queue, _data=data, _state=state,
_ts=ts, _executions=executions)
tasks.append(task)
else:
data = tiger.connection.mget([tiger._key('task', item[0]) for item in items])
for serialized_data, ts in zip(data, tss):
data = json.loads(serialized_data)
task = Task(tiger, queue=queue, _data=data, _state=state,
_ts=ts)
tasks.append(task)
return n, tasks |
Queries and returns the number of past task executions. | def n_executions(self):
"""
Queries and returns the number of past task executions.
"""
pipeline = self.tiger.connection.pipeline()
pipeline.exists(self.tiger._key('task', self.id))
pipeline.llen(self.tiger._key('task', self.id, 'executions'))
exists, n_executions = pipeline.execute()
if not exists:
raise TaskNotFound('Task {} not found.'.format(
self.id
))
return n_executions |
Set inputs after initialization
Parameters
-------
nr: integer
length of generated time-series
number must be power of two
qd: float
discrete variance
b: float
noise type:
0 : White Phase Modulation (WPM)
-1 : Flicker Phase Modulation (FPM)
-2 : White Frequency Modulation (WFM)
-3 : Flicker Frequency Modulation (FFM)
-4 : Random Walk Frequency Modulation (RWFM) | def set_input(self, nr=2, qd=1, b=0):
""" Set inputs after initialization
Parameters
-------
nr: integer
length of generated time-series
number must be power of two
qd: float
discrete variance
b: float
noise type:
0 : White Phase Modulation (WPM)
-1 : Flicker Phase Modulation (FPM)
-2 : White Frequency Modulation (WFM)
-3 : Flicker Frequency Modulation (FFM)
-4 : Random Walk Frequency Modulation (RWFM)
"""
self.nr = nr
self.qd = qd
self.b = b |
Generate noise time series based on input parameters
Returns
-------
time_series: np.array
Time series with colored noise.
len(time_series) == nr | def generateNoise(self):
""" Generate noise time series based on input parameters
Returns
-------
time_series: np.array
Time series with colored noise.
len(time_series) == nr
"""
# Fill wfb array with white noise based on given discrete variance
wfb = np.zeros(self.nr*2)
wfb[:self.nr] = np.random.normal(0, np.sqrt(self.qd), self.nr)
# Generate the hfb coefficients based on the noise type
mhb = -self.b/2.0
hfb = np.zeros(self.nr*2)
hfb = np.zeros(self.nr*2)
hfb[0] = 1.0
indices = np.arange(self.nr-1)
hfb[1:self.nr] = (mhb+indices)/(indices+1.0)
hfb[:self.nr] = np.multiply.accumulate(hfb[:self.nr])
# Perform discrete Fourier transform of wfb and hfb time series
wfb_fft = np.fft.rfft(wfb)
hfb_fft = np.fft.rfft(hfb)
# Perform inverse Fourier transform of the product of wfb and hfb FFTs
time_series = np.fft.irfft(wfb_fft*hfb_fft)[:self.nr]
self.time_series = time_series |
return phase power spectral density coefficient g_b
for noise-type defined by (qd, b, tau0)
where tau0 is the interval between data points
Colored noise generated with (qd, b, tau0) parameters will
show a phase power spectral density of
S_x(f) = Phase_PSD(f) = g_b * f^b
Kasdin & Walter eqn (39) | def phase_psd_from_qd(self, tau0=1.0):
""" return phase power spectral density coefficient g_b
for noise-type defined by (qd, b, tau0)
where tau0 is the interval between data points
Colored noise generated with (qd, b, tau0) parameters will
show a phase power spectral density of
S_x(f) = Phase_PSD(f) = g_b * f^b
Kasdin & Walter eqn (39)
"""
return self.qd*2.0*pow(2.0*np.pi, self.b)*pow(tau0, self.b+1.0) |
return frequency power spectral density coefficient h_a
for the noise type defined by (qd, b, tau0)
Colored noise generated with (qd, b, tau0) parameters will
show a frequency power spectral density of
S_y(f) = Frequency_PSD(f) = h_a * f^a
where the slope a comes from the phase PSD slope b:
a = b + 2
Kasdin & Walter eqn (39) | def frequency_psd_from_qd(self, tau0=1.0):
""" return frequency power spectral density coefficient h_a
for the noise type defined by (qd, b, tau0)
Colored noise generated with (qd, b, tau0) parameters will
show a frequency power spectral density of
S_y(f) = Frequency_PSD(f) = h_a * f^a
where the slope a comes from the phase PSD slope b:
a = b + 2
Kasdin & Walter eqn (39)
"""
a = self.b + 2.0
return self.qd*2.0*pow(2.0*np.pi, a)*pow(tau0, a-1.0) |
return predicted ADEV of noise-type at given tau | def adev(self, tau0, tau):
""" return predicted ADEV of noise-type at given tau
"""
prefactor = self.adev_from_qd(tau0=tau0, tau=tau)
c = self.c_avar()
avar = pow(prefactor, 2)*pow(tau, c)
return np.sqrt(avar) |
return predicted MDEV of noise-type at given tau | def mdev(self, tau0, tau):
""" return predicted MDEV of noise-type at given tau
"""
prefactor = self.mdev_from_qd(tau0=tau0, tau=tau)
c = self.c_mvar()
mvar = pow(prefactor, 2)*pow(tau, c)
return np.sqrt(mvar) |
return tau exponent "c" for noise type.
AVAR = prefactor * h_a * tau^c | def c_avar(self):
""" return tau exponent "c" for noise type.
AVAR = prefactor * h_a * tau^c
"""
if self.b == -4:
return 1.0
elif self.b == -3:
return 0.0
elif self.b == -2:
return -1.0
elif self.b == -1:
return -2.0
elif self.b == 0:
return -2.0 |
return tau exponent "c" for noise type.
MVAR = prefactor * h_a * tau^c | def c_mvar(self):
""" return tau exponent "c" for noise type.
MVAR = prefactor * h_a * tau^c
"""
if self.b == -4:
return 1.0
elif self.b == -3:
return 0.0
elif self.b == -2:
return -1.0
elif self.b == -1:
return -2.0
elif self.b == 0:
return -3.0 |
prefactor for Allan deviation for noise
type defined by (qd, b, tau0)
Colored noise generated with (qd, b, tau0) parameters will
show an Allan variance of:
AVAR = prefactor * h_a * tau^c
where a = b + 2 is the slope of the frequency PSD.
and h_a is the frequency PSD prefactor S_y(f) = h_a * f^a
The relation between a, b, c is:
a b c(AVAR) c(MVAR)
-----------------------
-2 -4 1 1
-1 -3 0 0
0 -2 -1 -1
+1 -1 -2 -2
+2 0 -2 -3
Coefficients from:
S. T. Dawkins, J. J. McFerran and A. N. Luiten, "Considerations on
the measurement of the stability of oscillators with frequency
counters," in IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 54, no. 5, pp. 918-925, May 2007.
doi: 10.1109/TUFFC.2007.337 | def adev_from_qd(self, tau0=1.0, tau=1.0):
""" prefactor for Allan deviation for noise
type defined by (qd, b, tau0)
Colored noise generated with (qd, b, tau0) parameters will
show an Allan variance of:
AVAR = prefactor * h_a * tau^c
where a = b + 2 is the slope of the frequency PSD.
and h_a is the frequency PSD prefactor S_y(f) = h_a * f^a
The relation between a, b, c is:
a b c(AVAR) c(MVAR)
-----------------------
-2 -4 1 1
-1 -3 0 0
0 -2 -1 -1
+1 -1 -2 -2
+2 0 -2 -3
Coefficients from:
S. T. Dawkins, J. J. McFerran and A. N. Luiten, "Considerations on
the measurement of the stability of oscillators with frequency
counters," in IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 54, no. 5, pp. 918-925, May 2007.
doi: 10.1109/TUFFC.2007.337
"""
g_b = self.phase_psd_from_qd(tau0)
f_h = 0.5/tau0
if self.b == 0:
coeff = 3.0*f_h / (4.0*pow(np.pi, 2)) # E, White PM, tau^-1
elif self.b == -1:
coeff = (1.038+3*np.log(2.0*np.pi*f_h*tau))/(4.0*pow(np.pi, 2))# D, Flicker PM, tau^-1
elif self.b == -2:
coeff = 0.5 # C, white FM, 1/sqrt(tau)
elif self.b == -3:
coeff = 2*np.log(2) # B, flicker FM, constant ADEV
elif self.b == -4:
coeff = 2.0*pow(np.pi, 2)/3.0 # A, RW FM, sqrt(tau)
return np.sqrt(coeff*g_b*pow(2.0*np.pi, 2)) |
calculate power spectral density of input signal x
x = signal
f_sample = sampling frequency in Hz. i.e. 1/fs is the time-interval
in seconds between datapoints
scale fft so that output corresponds to 1-sided PSD
output has units of [X^2/Hz] where X is the unit of x | def numpy_psd(x, f_sample=1.0):
""" calculate power spectral density of input signal x
x = signal
f_sample = sampling frequency in Hz. i.e. 1/fs is the time-interval
in seconds between datapoints
scale fft so that output corresponds to 1-sided PSD
output has units of [X^2/Hz] where X is the unit of x
"""
psd_of_x = (2.0/ (float(len(x)) * f_sample)) * numpy.abs(numpy.fft.rfft(x))**2
f_axis = numpy.linspace(0, f_sample/2.0, len(psd_of_x)) # frequency axis
return f_axis, psd_of_x |
PSD routine from scipy
we can compare our own numpy result against this one | def scipy_psd(x, f_sample=1.0, nr_segments=4):
""" PSD routine from scipy
we can compare our own numpy result against this one
"""
f_axis, psd_of_x = scipy.signal.welch(x, f_sample, nperseg=len(x)/nr_segments)
return f_axis, psd_of_x |
generate time series with white noise that has constant PSD = b0,
up to the nyquist frequency fs/2
N = number of samples
b0 = desired power-spectral density in [X^2/Hz] where X is the unit of x
fs = sampling frequency, i.e. 1/fs is the time-interval between datapoints
the pre-factor corresponds to the area 'box' under the PSD-curve:
The PSD is at 'height' b0 and extends from 0 Hz up to the nyquist frequency fs/2 | def white(num_points=1024, b0=1.0, fs=1.0):
""" generate time series with white noise that has constant PSD = b0,
up to the nyquist frequency fs/2
N = number of samples
b0 = desired power-spectral density in [X^2/Hz] where X is the unit of x
fs = sampling frequency, i.e. 1/fs is the time-interval between datapoints
the pre-factor corresponds to the area 'box' under the PSD-curve:
The PSD is at 'height' b0 and extends from 0 Hz up to the nyquist frequency fs/2
"""
return math.sqrt(b0*fs/2.0)*numpy.random.randn(num_points) |
Brownian or random walk (diffusion) noise with 1/f^2 PSD
(not really a color... rather Brownian or random-walk)
N = number of samples
b2 = desired PSD is b2*f^-2
fs = sampling frequency
we integrate white-noise to get Brownian noise. | def brown(num_points=1024, b2=1.0, fs=1.0):
""" Brownian or random walk (diffusion) noise with 1/f^2 PSD
(not really a color... rather Brownian or random-walk)
N = number of samples
b2 = desired PSD is b2*f^-2
fs = sampling frequency
we integrate white-noise to get Brownian noise.
"""
return (1.0/float(fs))*numpy.cumsum(white(num_points, b0=b2*(4.0*math.pi*math.pi), fs=fs)) |
N-length vector with (approximate) pink noise
pink noise has 1/f PSD | def pink(N, depth=80):
"""
N-length vector with (approximate) pink noise
pink noise has 1/f PSD
"""
a = []
s = iterpink(depth)
for n in range(N):
a.append(next(s))
return a |
Generate a sequence of samples of pink noise.
pink noise generator
from http://pydoc.net/Python/lmj.sound/0.1.1/lmj.sound.noise/
Based on the Voss-McCartney algorithm, discussion and code examples at
http://www.firstpr.com.au/dsp/pink-noise/
depth: Use this many samples of white noise to calculate the output. A
higher number is slower to run, but renders low frequencies with more
correct power spectra.
Generates a never-ending sequence of floating-point values. Any continuous
set of these samples will tend to have a 1/f power spectrum. | def iterpink(depth=20):
"""Generate a sequence of samples of pink noise.
pink noise generator
from http://pydoc.net/Python/lmj.sound/0.1.1/lmj.sound.noise/
Based on the Voss-McCartney algorithm, discussion and code examples at
http://www.firstpr.com.au/dsp/pink-noise/
depth: Use this many samples of white noise to calculate the output. A
higher number is slower to run, but renders low frequencies with more
correct power spectra.
Generates a never-ending sequence of floating-point values. Any continuous
set of these samples will tend to have a 1/f power spectrum.
"""
values = numpy.random.randn(depth)
smooth = numpy.random.randn(depth)
source = numpy.random.randn(depth)
sumvals = values.sum()
i = 0
while True:
yield sumvals + smooth[i]
# advance the index by 1. if the index wraps, generate noise to use in
# the calculations, but do not update any of the pink noise values.
i += 1
if i == depth:
i = 0
smooth = numpy.random.randn(depth)
source = numpy.random.randn(depth)
continue
# count trailing zeros in i
c = 0
while not (i >> c) & 1:
c += 1
# replace value c with a new source element
sumvals += source[i] - values[c]
values[c] = source[i] |
plot a line with the slope alpha | def plotline(plt, alpha, taus, style,label=""):
""" plot a line with the slope alpha """
y = [pow(tt, alpha) for tt in taus]
plt.loglog(taus, y, style,label=label) |
B1 ratio for noise identification
ratio of Standard Variace to AVAR | def b1_noise_id(x, af, rate):
""" B1 ratio for noise identification
ratio of Standard Variace to AVAR
"""
(taus,devs,errs,ns) = at.adev(x,taus=[af*rate],data_type="phase", rate=rate)
oadev_x = devs[0]
y = np.diff(x)
y_cut = np.array( y[:len(y)-(len(y)%af)] ) # cut to length
assert len(y_cut)%af == 0
y_shaped = y_cut.reshape( ( int(len(y_cut)/af), af) )
y_averaged = np.average(y_shaped,axis=1) # average
var = np.var(y_averaged, ddof=1)
return var/pow(oadev_x,2.0) |
use matplotlib methods for plotting
Parameters
----------
atDataset : allantools.Dataset()
a dataset with computed data
errorbars : boolean
Plot errorbars. Defaults to False
grid : boolean
Plot grid. Defaults to False | def plot(self, atDataset,
errorbars=False,
grid=False):
""" use matplotlib methods for plotting
Parameters
----------
atDataset : allantools.Dataset()
a dataset with computed data
errorbars : boolean
Plot errorbars. Defaults to False
grid : boolean
Plot grid. Defaults to False
"""
if errorbars:
self.ax.errorbar(atDataset.out["taus"],
atDataset.out["stat"],
yerr=atDataset.out["stat_err"],
)
else:
self.ax.plot(atDataset.out["taus"],
atDataset.out["stat"],
)
self.ax.set_xlabel("Tau")
self.ax.set_ylabel(atDataset.out["stat_id"])
self.ax.grid(grid, which="minor", ls="-", color='0.65')
self.ax.grid(grid, which="major", ls="-", color='0.25') |
returns confidence interval (dev_min, dev_max)
for a given deviation dev, equivalent degrees of freedom edf,
and degree of confidence ci.
Parameters
----------
dev: float
Mean value (e.g. adev) around which we produce the confidence interval
edf: float
Equivalent degrees of freedon
ci: float, defaults to scipy.special.erf(1/math.sqrt(2))
for 1-sigma standard error set
ci = scipy.special.erf(1/math.sqrt(2))
= 0.68268949213708585
Returns
-------
(dev_min, dev_max): (float, float)
Confidence interval | def confidence_interval(dev, edf, ci=ONE_SIGMA_CI):
""" returns confidence interval (dev_min, dev_max)
for a given deviation dev, equivalent degrees of freedom edf,
and degree of confidence ci.
Parameters
----------
dev: float
Mean value (e.g. adev) around which we produce the confidence interval
edf: float
Equivalent degrees of freedon
ci: float, defaults to scipy.special.erf(1/math.sqrt(2))
for 1-sigma standard error set
ci = scipy.special.erf(1/math.sqrt(2))
= 0.68268949213708585
Returns
-------
(dev_min, dev_max): (float, float)
Confidence interval
"""
ci_l = min(np.abs(ci), np.abs((ci-1))) / 2
ci_h = 1 - ci_l
# function from scipy, works OK, but scipy is large and slow to build
chi2_l = scipy.stats.chi2.ppf(ci_l, edf)
chi2_h = scipy.stats.chi2.ppf(ci_h, edf)
variance = dev*dev
var_l = float(edf) * variance / chi2_h # NIST SP1065 eqn (45)
var_h = float(edf) * variance / chi2_l
return (np.sqrt(var_l), np.sqrt(var_h)) |
returns confidence interval (dev_min, dev_max)
for a given deviation dev = Xdev( x, tau = af*(1/rate) )
steps:
1) identify noise type
2) compute EDF
3) compute confidence interval
Parameters
----------
x: numpy.array
time-series
dev: float
Mean value (e.g. adev) around which we produce the confidence interval
af: int
averaging factor
dev_type: string
adev, oadev, mdev, tdev, hdev, ohdev
data_type:
"phase" or "freq"
ci: float, defaults to scipy.special.erf(1/math.sqrt(2))
for 1-sigma standard error set
ci = scipy.special.erf(1/math.sqrt(2))
= 0.68268949213708585
Returns
-------
(dev_min, dev_max): (float, float)
Confidence interval | def confidence_interval_noiseID(x, dev, af, dev_type="adev", data_type="phase", ci=ONE_SIGMA_CI):
""" returns confidence interval (dev_min, dev_max)
for a given deviation dev = Xdev( x, tau = af*(1/rate) )
steps:
1) identify noise type
2) compute EDF
3) compute confidence interval
Parameters
----------
x: numpy.array
time-series
dev: float
Mean value (e.g. adev) around which we produce the confidence interval
af: int
averaging factor
dev_type: string
adev, oadev, mdev, tdev, hdev, ohdev
data_type:
"phase" or "freq"
ci: float, defaults to scipy.special.erf(1/math.sqrt(2))
for 1-sigma standard error set
ci = scipy.special.erf(1/math.sqrt(2))
= 0.68268949213708585
Returns
-------
(dev_min, dev_max): (float, float)
Confidence interval
"""
# 1) noise ID
dmax = 2
if (dev_type is "hdev") or (dev_type is "ohdev"):
dmax = 3
alpha_int = autocorr_noise_id( x, int(af), data_type=data_type, dmin=0, dmax=dmax)[0]
# 2) EDF
if dev_type is "adev":
edf = edf_greenhall( alpha=alpha_int, d=2, m=af, N=len(x), overlapping = False, modified=False )
elif dev_type is "oadev":
edf = edf_greenhall( alpha=alpha_int, d=2, m=af, N=len(x), overlapping = True, modified=False )
elif (dev_type is "mdev") or (dev_type is "tdev"):
edf = edf_greenhall( alpha=alpha_int, d=2, m=af, N=len(x), overlapping = True, modified=True )
elif dev_type is "hdev":
edf = edf_greenhall( alpha=alpha_int, d=3, m=af, N=len(x), overlapping = False, modified=False )
elif dev_type is "ohdev":
edf = edf_greenhall( alpha=alpha_int, d=3, m=af, N=len(x), overlapping = True, modified=False )
else:
raise NotImplementedError
# 3) confidence interval
(low, high) = confidence_interval(dev, edf, ci)
return (low, high) |
R(n) ratio for noise identification
ration of MVAR to AVAR | def rn(x, af, rate):
""" R(n) ratio for noise identification
ration of MVAR to AVAR
"""
(taus,devs,errs,ns) = at.adev(x,taus=[af*rate], data_type='phase', rate=rate)
oadev_x = devs[0]
(mtaus,mdevs,errs,ns) = at.mdev(x,taus=[af*rate], data_type='phase', rate=rate)
mdev_x = mdevs[0]
rn = pow(mdev_x/oadev_x,2)
return rn |
R(n) ratio expected from theory for given noise type
alpha = b + 2 | def rn_theory(af, b):
""" R(n) ratio expected from theory for given noise type
alpha = b + 2
"""
# From IEEE1139-2008
# alpha beta ADEV_mu MDEV_mu Rn_mu
# -2 -4 1 1 0 Random Walk FM
# -1 -3 0 0 0 Flicker FM
# 0 -2 -1 -1 0 White FM
# 1 -1 -2 -2 0 Flicker PM
# 2 0 -2 -3 -1 White PM
# (a=-3 flicker walk FM)
# (a=-4 random run FM)
if b==0:
return pow(af,-1)
elif b==-1:
# f_h = 0.5/tau0 (assumed!)
# af = tau/tau0
# so f_h*tau = 0.5/tau0 * af*tau0 = 0.5*af
avar = (1.038+3*np.log(2*np.pi*0.5*af)) / (4.0*pow(np.pi,2))
mvar = 3*np.log(256.0/27.0)/(8.0*pow(np.pi,2))
return mvar/avar
else:
return pow(af,0) |
R(n) ratio boundary for selecting between [b_hi-1, b_hi]
alpha = b + 2 | def rn_boundary(af, b_hi):
"""
R(n) ratio boundary for selecting between [b_hi-1, b_hi]
alpha = b + 2
"""
return np.sqrt( rn_theory(af, b)*rn_theory(af, b-1) ) |
Expected B1 ratio for given time-series length N and exponent mu
FIXME: add reference (paper & link)
The exponents are defined as
S_y(f) = h_a f^alpha (power spectrum of y)
S_x(f) = g_b f^b (power spectrum of x)
bias = const * tau^mu
and (b, alpha, mu) relate to eachother by:
b alpha mu
0 +2 -2
-1 +1 -2 resolve between -2 cases with R(n)
-2 0 -1
-3 -1 0
-4 -2 +1
-5 -3 +2
-6 -4 +3 for HDEV, by applying B1 to frequency data, and add +2 to resulting mu | def b1_theory(N, mu):
""" Expected B1 ratio for given time-series length N and exponent mu
FIXME: add reference (paper & link)
The exponents are defined as
S_y(f) = h_a f^alpha (power spectrum of y)
S_x(f) = g_b f^b (power spectrum of x)
bias = const * tau^mu
and (b, alpha, mu) relate to eachother by:
b alpha mu
0 +2 -2
-1 +1 -2 resolve between -2 cases with R(n)
-2 0 -1
-3 -1 0
-4 -2 +1
-5 -3 +2
-6 -4 +3 for HDEV, by applying B1 to frequency data, and add +2 to resulting mu
"""
# see Table 3 of Howe 2000
if mu == 2:
return float(N)*(float(N)+1.0)/6.0
#up = N*(1.0-pow(N, mu))
#down = 2*(N-1.0)*(1-pow(2.0, mu))
#return up/down
elif mu == 1:
return float(N)/2.0
elif mu == 0:
return N*np.log(N)/(2.0*(N-1.0)*np.log(2))
elif mu == -1:
return 1
elif mu == -2:
return (pow(N,2)-1.0)/(1.5*N*(N-1.0))
else:
up = N*(1.0-pow(N, mu))
down = 2*(N-1.0)*(1-pow(2.0, mu))
return up/down
assert False |
B1 ratio boundary for selecting between [b_hi-1, b_hi]
alpha = b + 2 | def b1_boundary(b_hi, N):
"""
B1 ratio boundary for selecting between [b_hi-1, b_hi]
alpha = b + 2
"""
b_lo = b_hi-1
b1_lo = b1_theory(N, b_to_mu(b_lo))
b1_hi = b1_theory(N, b_to_mu(b_hi))
if b1_lo >= -4:
return np.sqrt(b1_lo*b1_hi) # geometric mean
else:
return 0.5*(b1_lo+b1_hi) |
Lag-1 autocorrelation function
as defined in Riley 2004, Eqn (2)
used by autocorr_noise_id()
Parameters
----------
x: numpy.array
time-series
Returns
-------
ACF: float
Lag-1 autocorrelation for input time-series x
Notes
-----
* a faster algorithm based on FFT might be better!?
* numpy.corrcoeff() gives similar but not identical results.
#c = np.corrcoef( np.array(x[:-lag]), np.array(x[lag:]) )
#r1 = c[0,1] # lag-1 autocorrelation of x | def lag1_acf(x, detrend_deg=1):
""" Lag-1 autocorrelation function
as defined in Riley 2004, Eqn (2)
used by autocorr_noise_id()
Parameters
----------
x: numpy.array
time-series
Returns
-------
ACF: float
Lag-1 autocorrelation for input time-series x
Notes
-----
* a faster algorithm based on FFT might be better!?
* numpy.corrcoeff() gives similar but not identical results.
#c = np.corrcoef( np.array(x[:-lag]), np.array(x[lag:]) )
#r1 = c[0,1] # lag-1 autocorrelation of x
"""
mu = np.mean(x)
a=0
b=0
for n in range(len(x)-1):
a = a + (x[n]-mu)*(x[n+1]-mu)
for n in range(len(x)):
b=b+pow( x[n]-mu , 2 )
return a/b |
Lag-1 autocorrelation based noise identification
Parameters
----------
x: numpy.array
phase or fractional frequency time-series data
minimum recommended length is len(x)>30 roughly.
af: int
averaging factor
data_type: string {'phase', 'freq'}
"phase" for phase data in seconds
"freq" for fractional frequency data
dmin: int
minimum required number of differentiations in the algorithm
dmax: int
maximum number of differentiations
defaults to 2 for ADEV
set to 3 for HDEV
Returns
-------
alpha_int: int
noise-slope as integer
alpha: float
noise-slope as float
d: int
number of differentiations of the time-series performed
Notes
-----
http://www.stable32.com/Auto.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.503.9864&rep=rep1&type=pdf
Power law noise identification using the lag 1 autocorrelation
Riley,W.J. et al.
18th European Frequency and Time Forum (EFTF 2004)
https://ieeexplore.ieee.org/document/5075021 | def autocorr_noise_id(x, af, data_type="phase", dmin=0, dmax=2):
""" Lag-1 autocorrelation based noise identification
Parameters
----------
x: numpy.array
phase or fractional frequency time-series data
minimum recommended length is len(x)>30 roughly.
af: int
averaging factor
data_type: string {'phase', 'freq'}
"phase" for phase data in seconds
"freq" for fractional frequency data
dmin: int
minimum required number of differentiations in the algorithm
dmax: int
maximum number of differentiations
defaults to 2 for ADEV
set to 3 for HDEV
Returns
-------
alpha_int: int
noise-slope as integer
alpha: float
noise-slope as float
d: int
number of differentiations of the time-series performed
Notes
-----
http://www.stable32.com/Auto.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.503.9864&rep=rep1&type=pdf
Power law noise identification using the lag 1 autocorrelation
Riley,W.J. et al.
18th European Frequency and Time Forum (EFTF 2004)
https://ieeexplore.ieee.org/document/5075021
"""
d = 0 # number of differentiations
lag = 1
if data_type is "phase":
if af>1:
#x = scipy.signal.decimate(x, af, n=1, ftype='fir')
x = x[0:len(x):af] # decimate by averaging factor
x = detrend(x, deg=2) # remove quadratic trend (frequency offset and drift)
elif data_type is "freq":
# average by averaging factor
y_cut = np.array(x[:len(x)-(len(x)%af)]) # cut to length
assert len(y_cut)%af == 0
y_shaped = y_cut.reshape((int(len(y_cut)/af), af))
x = np.average(y_shaped, axis=1) # average
x = detrend(x, deg=1) # remove frequency drift
# require minimum length for time-series
if len(x)<30:
print("autocorr_noise_id() Don't know how to do noise-ID for time-series length= %d"%len(x))
raise NotImplementedError
while True:
r1 = lag1_acf(x)
rho = r1/(1.0+r1)
if d >= dmin and ( rho < 0.25 or d >= dmax ):
p = -2*(rho+d)
#print r1
#assert r1 < 0
#assert r1 > -1.0/2.0
phase_add2 = 0
if data_type is "phase":
phase_add2 = 2
alpha = p+phase_add2
alpha_int = int( -1.0*np.round(2*rho) - 2.0*d )+phase_add2
#print "d=",d,"alpha=",p+2
return alpha_int, alpha, d, rho
else:
x = np.diff(x)
d = d + 1
assert False |
remove polynomial from data.
used by autocorr_noise_id()
Parameters
----------
x: numpy.array
time-series
deg: int
degree of polynomial to remove from x
Returns
-------
x_detrended: numpy.array
detrended time-series | def detrend(x, deg=1):
"""
remove polynomial from data.
used by autocorr_noise_id()
Parameters
----------
x: numpy.array
time-series
deg: int
degree of polynomial to remove from x
Returns
-------
x_detrended: numpy.array
detrended time-series
"""
t=range(len(x))
p = np.polyfit(t, x, deg)
residual = x - np.polyval(p, t)
return residual |
Eqn (13) from Greenhall2004 | def edf_greenhall_simple(alpha, d, m, S, F, N):
""" Eqn (13) from Greenhall2004 """
L = m/F+m*d # length of filter applied to phase samples
M = 1 + np.floor(S*(N-L) / m)
J = min(M, (d+1)*S)
inv_edf = (1.0/(pow(greenhall_sz(0, F, alpha, d), 2)*M))* \
greenhall_BasicSum(J, M, S, F, alpha, d)
return 1.0/inv_edf |
returns Equivalent degrees of freedom
Parameters
----------
alpha: int
noise type, +2...-4
d: int
1 first-difference variance
2 Allan variance
3 Hadamard variance
require alpha+2*d>1
m: int
averaging factor
tau = m*tau0 = m*(1/rate)
N: int
number of phase observations (length of time-series)
overlapping: bool
True for oadev, ohdev
modified: bool
True for mdev, tdev
Returns
-------
edf: float
Equivalent degrees of freedom
Greenhall, Riley, 2004
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050061319.pdf
UNCERTAINTY OF STABILITY VARIANCES BASED ON FINITE DIFFERENCES
Notes
-----
Used for the following deviations (see http://www.wriley.com/CI2.pdf page 8)
adev()
oadev()
mdev()
tdev()
hdev()
ohdev() | def edf_greenhall(alpha, d, m, N, overlapping=False, modified=False, verbose=False):
""" returns Equivalent degrees of freedom
Parameters
----------
alpha: int
noise type, +2...-4
d: int
1 first-difference variance
2 Allan variance
3 Hadamard variance
require alpha+2*d>1
m: int
averaging factor
tau = m*tau0 = m*(1/rate)
N: int
number of phase observations (length of time-series)
overlapping: bool
True for oadev, ohdev
modified: bool
True for mdev, tdev
Returns
-------
edf: float
Equivalent degrees of freedom
Greenhall, Riley, 2004
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050061319.pdf
UNCERTAINTY OF STABILITY VARIANCES BASED ON FINITE DIFFERENCES
Notes
-----
Used for the following deviations (see http://www.wriley.com/CI2.pdf page 8)
adev()
oadev()
mdev()
tdev()
hdev()
ohdev()
"""
if modified:
F = 1 # F filter factor, 1 modified variance, m unmodified variance
else:
F = int(m)
if overlapping:
S = int(m) # S stride factor, 1 nonoverlapped estimator, m overlapped estimator (estimator stride = tau/S )
else:
S = 1
assert(alpha+2*d > 1.0)
L = m/F+m*d # length of filter applied to phase samples
M = 1 + np.floor(S*(N-L) / m)
J = min(M, (d+1)*S)
J_max = 100
r = M/S
if int(F) == 1 and modified: # case 1, modified variances, all alpha
if J <= J_max:
inv_edf = (1.0/(pow(greenhall_sz(0, 1, alpha, d), 2)*M))* \
greenhall_BasicSum(J, M, S, 1, alpha, d)
if verbose:
print("case 1.1 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
elif r > d+1:
(a0, a1) = greenhall_table1(alpha, d)
inv_edf = (1.0/r)*(a0-a1/r)
if verbose:
print("case 1.2 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
else:
m_prime = J_max/r
inv_edf = (1.0/(pow(greenhall_sz(0, F, alpha, d), 2)*J_max))* \
greenhall_BasicSum(J_max, J_max, m_prime, 1, alpha, d)
if verbose:
print("case 1.3 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
elif int(F) == int(m) and int(alpha) <= 0 and not modified:
# case 2, unmodified variances, alpha <= 0
if J <= J_max:
if m*(d+1) <= J_max:
m_prime = m
variant = "a"
else:
m_prime = float('inf')
variant = "b"
inv_edf = (1.0/(pow(greenhall_sz(0, m_prime, alpha, d), 2)*M))* \
greenhall_BasicSum(J, M, S, m_prime, alpha, d)
if verbose:
print("case 2.1%s edf= %3f" % (variant, float(1.0/inv_edf)))
return 1.0/inv_edf
elif r > d+1:
(a0, a1) = greenhall_table2(alpha, d)
inv_edf = (1.0/r)*(a0-a1/r)
if verbose:
print("case 2.2 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
else:
m_prime = J_max/r
inv_edf = (1.0/(pow(greenhall_sz(0, float('inf'), alpha, d), 2)*J_max))* \
greenhall_BasicSum(J_max, J_max, m_prime, float('inf'), alpha, d)
if verbose:
print("case 2.3 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
elif int(F) == int(m) and int(alpha) == 1 and not modified:
# case 3, unmodified variances, alpha=1
if J <= J_max:
inv_edf = (1.0/(pow(greenhall_sz(0, m, 1, d), 2)*M))* \
greenhall_BasicSum(J, M, S, m, 1, d) # note: m<1e6 to avoid roundoff
if verbose:
print("case 3.1 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
elif r > d+1:
(a0, a1) = greenhall_table2(alpha, d)
(b0, b1) = greenhall_table3(alpha, d)
inv_edf = (1.0/(pow(b0+b1*np.log(m), 2)*r))*(a0-a1/r)
if verbose:
print("case 3.2 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
else:
m_prime = J_max/r
(b0, b1) = greenhall_table3(alpha, d)
inv_edf = (1.0/(pow(b0+b1*np.log(m), 2)*J_max))* \
greenhall_BasicSum(J_max, J_max, m_prime, m_prime, 1, d)
if verbose:
print("case 3.3 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
elif int(F) == int(m) and int(alpha) == 2 and not modified:
# case 4, unmodified variances, alpha=2
K = np.ceil(r)
if K <= d:
raise NotImplementedError # FIXME: add formula from the paper here!
else:
a0 = scipy.special.binom(4*d, 2*d) / pow(scipy.special.binom(2*d, d), 2)
a1 = d/2.0
inv_edf = (1.0/M)*(a0-a1/r)
if verbose:
print("case 4.2 edf= %3f" % float(1.0/inv_edf))
return 1.0/inv_edf
print("greenhall_edf() no matching case!")
raise NotImplementedError |
Eqn (10) from Greenhall2004 | def greenhall_BasicSum(J, M, S, F, alpha, d):
""" Eqn (10) from Greenhall2004 """
first = pow(greenhall_sz(0, F, alpha, d), 2)
second = (1-float(J)/float(M))*pow(greenhall_sz(float(J)/float(S), F, alpha, d), 2)
third = 0
for j in range(1, int(J)):
third += 2*(1.0-float(j)/float(M))*pow(greenhall_sz(float(j)/float(S), F, alpha, d), 2)
return first+second+third |
Eqn (9) from Greenhall2004 | def greenhall_sz(t, F, alpha, d):
""" Eqn (9) from Greenhall2004 """
if d == 1:
a = 2*greenhall_sx(t, F, alpha)
b = greenhall_sx(t-1.0, F, alpha)
c = greenhall_sx(t+1.0, F, alpha)
return a-b-c
elif d == 2:
a = 6*greenhall_sx(t, F, alpha)
b = 4*greenhall_sx(t-1.0, F, alpha)
c = 4*greenhall_sx(t+1.0, F, alpha)
dd = greenhall_sx(t-2.0, F, alpha)
e = greenhall_sx(t+2.0, F, alpha)
return a-b-c+dd+e
elif d == 3:
a = 20.0*greenhall_sx(t, F, alpha)
b = 15.0*greenhall_sx(t-1.0, F, alpha)
c = 15.0*greenhall_sx(t+1.0, F, alpha)
dd = 6.0*greenhall_sx(t-2.0, F, alpha)
e = 6.0*greenhall_sx(t+2.0, F, alpha)
f = greenhall_sx(t-3.0, F, alpha)
g = greenhall_sx(t+3.0, F, alpha)
return a-b-c+dd+e-f-g
assert(0) |
Eqn (8) from Greenhall2004 | def greenhall_sx(t, F, alpha):
""" Eqn (8) from Greenhall2004
"""
if F == float('inf'):
return greenhall_sw(t, alpha+2)
a = 2*greenhall_sw(t, alpha)
b = greenhall_sw(t-1.0/float(F), alpha)
c = greenhall_sw(t+1.0/float(F), alpha)
return pow(F, 2)*(a-b-c) |
Eqn (7) from Greenhall2004 | def greenhall_sw(t, alpha):
""" Eqn (7) from Greenhall2004
"""
alpha = int(alpha)
if alpha == 2:
return -np.abs(t)
elif alpha == 1:
if t == 0:
return 0
else:
return pow(t, 2)*np.log(np.abs(t))
elif alpha == 0:
return np.abs(pow(t, 3))
elif alpha == -1:
if t == 0:
return 0
else:
return pow(t, 4)*np.log(np.abs(t))
elif alpha == -2:
return np.abs(pow(t, 5))
elif alpha == -3:
if t == 0:
return 0
else:
return pow(t, 6)*np.log(np.abs(t))
elif alpha == -4:
return np.abs(pow(t, 7))
assert(0) |
Table 2 from Greenhall 2004 | def greenhall_table2(alpha, d):
""" Table 2 from Greenhall 2004 """
row_idx = int(-alpha+2) # map 2-> row0 and -4-> row6
assert(row_idx in [0, 1, 2, 3, 4, 5])
col_idx = int(d-1)
table2 = [[(3.0/2.0, 1.0/2.0), (35.0/18.0, 1.0), (231.0/100.0, 3.0/2.0)], # alpha=+2
[(78.6, 25.2), (790.0, 410.0), (9950.0, 6520.0)],
[(2.0/3.0, 1.0/6.0), (2.0/3.0, 1.0/3.0), (7.0/9.0, 1.0/2.0)], # alpha=0
[(-1, -1), (0.852, 0.375), (0.997, 0.617)], # -1
[(-1, -1), (1.079, 0.368), (1.033, 0.607)], #-2
[(-1, -1), (-1, -1), (1.053, 0.553)], #-3
[(-1, -1), (-1, -1), (1.302, 0.535)], # alpha=-4
]
#print("table2 = ", table2[row_idx][col_idx])
return table2[row_idx][col_idx] |
Table 1 from Greenhall 2004 | def greenhall_table1(alpha, d):
""" Table 1 from Greenhall 2004 """
row_idx = int(-alpha+2) # map 2-> row0 and -4-> row6
col_idx = int(d-1)
table1 = [[(2.0/3.0, 1.0/3.0), (7.0/9.0, 1.0/2.0), (22.0/25.0, 2.0/3.0)], # alpha=+2
[(0.840, 0.345), (0.997, 0.616), (1.141, 0.843)],
[(1.079, 0.368), (1.033, 0.607), (1.184, 0.848)],
[(-1, -1), (1.048, 0.534), (1.180, 0.816)], # -1
[(-1, -1), (1.302, 0.535), (1.175, 0.777)], #-2
[(-1, -1), (-1, -1), (1.194, 0.703)], #-3
[(-1, -1), (-1, -1), (1.489, 0.702)], # alpha=-4
]
#print("table1 = ", table1[row_idx][col_idx])
return table1[row_idx][col_idx] |
Equivalent degrees of freedom for Total Deviation
FIXME: what is the right behavior for alpha outside 0,-1,-2?
NIST SP1065 page 41, Table 7 | def edf_totdev(N, m, alpha):
""" Equivalent degrees of freedom for Total Deviation
FIXME: what is the right behavior for alpha outside 0,-1,-2?
NIST SP1065 page 41, Table 7
"""
alpha = int(alpha)
if alpha in [0, -1, -2]:
# alpha 0 WFM
# alpha -1 FFM
# alpha -2 RWFM
NIST_SP1065_table7 = [(1.50, 0.0), (1.17, 0.22), (0.93, 0.36)]
(b, c) = NIST_SP1065_table7[int(abs(alpha))]
return b*(float(N)/float(m))-c
else:
return edf_simple(N, m, alpha) |
Equivalent degrees of freedom for Modified Total Deviation
NIST SP1065 page 41, Table 8 | def edf_mtotdev(N, m, alpha):
""" Equivalent degrees of freedom for Modified Total Deviation
NIST SP1065 page 41, Table 8
"""
assert(alpha in [2, 1, 0, -1, -2])
NIST_SP1065_table8 = [(1.90, 2.1), (1.20, 1.40), (1.10, 1.2), (0.85, 0.50), (0.75, 0.31)]
#(b, c) = NIST_SP1065_table8[ abs(alpha-2) ]
(b, c) = NIST_SP1065_table8[abs(alpha-2)]
edf = b*(float(N)/float(m))-c
print("mtotdev b,c= ", (b, c), " edf=", edf)
return edf |
Equivalent degrees of freedom.
Simple approximate formulae.
Parameters
----------
N : int
the number of phase samples
m : int
averaging factor, tau = m * tau0
alpha: int
exponent of f for the frequency PSD:
'wp' returns white phase noise. alpha=+2
'wf' returns white frequency noise. alpha= 0
'fp' returns flicker phase noise. alpha=+1
'ff' returns flicker frequency noise. alpha=-1
'rf' returns random walk frequency noise. alpha=-2
If the input is not recognized, it defaults to idealized, uncorrelated
noise with (N-1) degrees of freedom.
Notes
-----
S. Stein, Frequency and Time - Their Measurement and
Characterization. Precision Frequency Control Vol 2, 1985, pp 191-416.
http://tf.boulder.nist.gov/general/pdf/666.pdf
Returns
-------
edf : float
Equivalent degrees of freedom | def edf_simple(N, m, alpha):
"""Equivalent degrees of freedom.
Simple approximate formulae.
Parameters
----------
N : int
the number of phase samples
m : int
averaging factor, tau = m * tau0
alpha: int
exponent of f for the frequency PSD:
'wp' returns white phase noise. alpha=+2
'wf' returns white frequency noise. alpha= 0
'fp' returns flicker phase noise. alpha=+1
'ff' returns flicker frequency noise. alpha=-1
'rf' returns random walk frequency noise. alpha=-2
If the input is not recognized, it defaults to idealized, uncorrelated
noise with (N-1) degrees of freedom.
Notes
-----
S. Stein, Frequency and Time - Their Measurement and
Characterization. Precision Frequency Control Vol 2, 1985, pp 191-416.
http://tf.boulder.nist.gov/general/pdf/666.pdf
Returns
-------
edf : float
Equivalent degrees of freedom
"""
N = float(N)
m = float(m)
if alpha in [2, 1, 0, -1, -2]:
# NIST SP 1065, Table 5
if alpha == +2:
edf = (N + 1) * (N - 2*m) / (2 * (N - m))
if alpha == 0:
edf = (((3 * (N - 1) / (2 * m)) - (2 * (N - 2) / N)) *
((4*pow(m, 2)) / ((4*pow(m, 2)) + 5)))
if alpha == 1:
a = (N - 1)/(2 * m)
b = (2 * m + 1) * (N - 1) / 4
edf = np.exp(np.sqrt(np.log(a) * np.log(b)))
if alpha == -1:
if m == 1:
edf = 2 * (N - 2) /(2.3 * N - 4.9)
if m >= 2:
edf = 5 * N**2 / (4 * m * (N + (3 * m)))
if alpha == -2:
a = (N - 2) / (m * (N - 3)**2)
b = (N - 1)**2
c = 3 * m * (N - 1)
d = 4 * m **2
edf = a * (b - c + d)
else:
edf = (N - 1)
print("Noise type not recognized. Defaulting to N - 1 degrees of freedom.")
return edf |
Compute the GRADEV of a white phase noise. Compares two different
scenarios. 1) The original data and 2) ADEV estimate with gap robust ADEV. | def example1():
"""
Compute the GRADEV of a white phase noise. Compares two different
scenarios. 1) The original data and 2) ADEV estimate with gap robust ADEV.
"""
N = 1000
f = 1
y = np.random.randn(1,N)[0,:]
x = [xx for xx in np.linspace(1,len(y),len(y))]
x_ax, y_ax, (err_l, err_h), ns = allan.gradev(y,data_type='phase',rate=f,taus=x)
plt.errorbar(x_ax, y_ax,yerr=[err_l,err_h],label='GRADEV, no gaps')
y[int(np.floor(0.4*N)):int(np.floor(0.6*N))] = np.NaN # Simulate missing data
x_ax, y_ax, (err_l, err_h) , ns = allan.gradev(y,data_type='phase',rate=f,taus=x)
plt.errorbar(x_ax, y_ax,yerr=[err_l,err_h], label='GRADEV, with gaps')
plt.xscale('log')
plt.yscale('log')
plt.grid()
plt.legend()
plt.xlabel('Tau / s')
plt.ylabel('Overlapping Allan deviation')
plt.show() |
Compute the GRADEV of a nonstationary white phase noise. | def example2():
"""
Compute the GRADEV of a nonstationary white phase noise.
"""
N=1000 # number of samples
f = 1 # data samples per second
s=1+5/N*np.arange(0,N)
y=s*np.random.randn(1,N)[0,:]
x = [xx for xx in np.linspace(1,len(y),len(y))]
x_ax, y_ax, (err_l, err_h) , ns = allan.gradev(y,data_type='phase',rate=f,taus=x)
plt.loglog(x_ax, y_ax,'b.',label="No gaps")
y[int(0.4*N):int(0.6*N,)] = np.NaN # Simulate missing data
x_ax, y_ax, (err_l, err_h), ns = allan.gradev(y,data_type='phase',rate=f,taus=x)
plt.loglog(x_ax, y_ax,'g.',label="With gaps")
plt.grid()
plt.legend()
plt.xlabel('Tau / s')
plt.ylabel('Overlapping Allan deviation')
plt.show() |
Time deviation.
Based on modified Allan variance.
.. math::
\\sigma^2_{TDEV}( \\tau ) = { \\tau^2 \\over 3 }
\\sigma^2_{MDEV}( \\tau )
Note that TDEV has a unit of seconds.
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Returns
-------
(taus, tdev, tdev_error, ns): tuple
Tuple of values
taus: np.array
Tau values for which td computed
tdev: np.array
Computed time deviations (in seconds) for each tau value
tdev_errors: np.array
Time deviation errors
ns: np.array
Values of N used in mdev_phase()
Notes
-----
http://en.wikipedia.org/wiki/Time_deviation | def tdev(data, rate=1.0, data_type="phase", taus=None):
""" Time deviation.
Based on modified Allan variance.
.. math::
\\sigma^2_{TDEV}( \\tau ) = { \\tau^2 \\over 3 }
\\sigma^2_{MDEV}( \\tau )
Note that TDEV has a unit of seconds.
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Returns
-------
(taus, tdev, tdev_error, ns): tuple
Tuple of values
taus: np.array
Tau values for which td computed
tdev: np.array
Computed time deviations (in seconds) for each tau value
tdev_errors: np.array
Time deviation errors
ns: np.array
Values of N used in mdev_phase()
Notes
-----
http://en.wikipedia.org/wiki/Time_deviation
"""
phase = input_to_phase(data, rate, data_type)
(taus, md, mde, ns) = mdev(phase, rate=rate, taus=taus)
td = taus * md / np.sqrt(3.0)
tde = td / np.sqrt(ns)
return taus, td, tde, ns |
Modified Allan deviation.
Used to distinguish between White and Flicker Phase Modulation.
.. math::
\\sigma^2_{MDEV}(m\\tau_0) = { 1 \\over 2 (m \\tau_0 )^2 (N-3m+1) }
\\sum_{j=1}^{N-3m+1} \\lbrace
\\sum_{i=j}^{j+m-1} {x}_{i+2m} - 2x_{i+m} + x_{i} \\rbrace^2
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Returns
-------
(taus2, md, mde, ns): tuple
Tuple of values
taus2: np.array
Tau values for which td computed
md: np.array
Computed mdev for each tau value
mde: np.array
mdev errors
ns: np.array
Values of N used in each mdev calculation
Notes
-----
see http://www.leapsecond.com/tools/adev_lib.c
NIST SP 1065 eqn (14) and (15), page 17 | def mdev(data, rate=1.0, data_type="phase", taus=None):
""" Modified Allan deviation.
Used to distinguish between White and Flicker Phase Modulation.
.. math::
\\sigma^2_{MDEV}(m\\tau_0) = { 1 \\over 2 (m \\tau_0 )^2 (N-3m+1) }
\\sum_{j=1}^{N-3m+1} \\lbrace
\\sum_{i=j}^{j+m-1} {x}_{i+2m} - 2x_{i+m} + x_{i} \\rbrace^2
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Returns
-------
(taus2, md, mde, ns): tuple
Tuple of values
taus2: np.array
Tau values for which td computed
md: np.array
Computed mdev for each tau value
mde: np.array
mdev errors
ns: np.array
Values of N used in each mdev calculation
Notes
-----
see http://www.leapsecond.com/tools/adev_lib.c
NIST SP 1065 eqn (14) and (15), page 17
"""
phase = input_to_phase(data, rate, data_type)
(phase, ms, taus_used) = tau_generator(phase, rate, taus=taus)
data, taus = np.array(phase), np.array(taus)
md = np.zeros_like(ms)
mderr = np.zeros_like(ms)
ns = np.zeros_like(ms)
# this is a 'loop-unrolled' algorithm following
# http://www.leapsecond.com/tools/adev_lib.c
for idx, m in enumerate(ms):
m = int(m) # without this we get: VisibleDeprecationWarning:
# using a non-integer number instead of an integer
# will result in an error in the future
tau = taus_used[idx]
# First loop sum
d0 = phase[0:m]
d1 = phase[m:2*m]
d2 = phase[2*m:3*m]
e = min(len(d0), len(d1), len(d2))
v = np.sum(d2[:e] - 2* d1[:e] + d0[:e])
s = v * v
# Second part of sum
d3 = phase[3*m:]
d2 = phase[2*m:]
d1 = phase[1*m:]
d0 = phase[0:]
e = min(len(d0), len(d1), len(d2), len(d3))
n = e + 1
v_arr = v + np.cumsum(d3[:e] - 3 * d2[:e] + 3 * d1[:e] - d0[:e])
s = s + np.sum(v_arr * v_arr)
s /= 2.0 * m * m * tau * tau * n
s = np.sqrt(s)
md[idx] = s
mderr[idx] = (s / np.sqrt(n))
ns[idx] = n
return remove_small_ns(taus_used, md, mderr, ns) |
Allan deviation.
Classic - use only if required - relatively poor confidence.
.. math::
\\sigma^2_{ADEV}(\\tau) = { 1 \\over 2 \\tau^2 }
\\langle ( {x}_{n+2} - 2x_{n+1} + x_{n} )^2 \\rangle
= { 1 \\over 2 (N-2) \\tau^2 }
\\sum_{n=1}^{N-2} ( {x}_{n+2} - 2x_{n+1} + x_{n} )^2
where :math:`x_n` is the time-series of phase observations, spaced
by the measurement interval :math:`\\tau`, and with length :math:`N`.
Or alternatively calculated from a time-series of fractional frequency:
.. math::
\\sigma^{2}_{ADEV}(\\tau) = { 1 \\over 2 }
\\langle ( \\bar{y}_{n+1} - \\bar{y}_n )^2 \\rangle
where :math:`\\bar{y}_n` is the time-series of fractional frequency
at averaging time :math:`\\tau`
NIST SP 1065 eqn (6) and (7), pages 14 and 15
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Returns
-------
(taus2, ad, ade, ns): tuple
Tuple of values
taus2: np.array
Tau values for which td computed
ad: np.array
Computed adev for each tau value
ade: np.array
adev errors
ns: np.array
Values of N used in each adev calculation | def adev(data, rate=1.0, data_type="phase", taus=None):
""" Allan deviation.
Classic - use only if required - relatively poor confidence.
.. math::
\\sigma^2_{ADEV}(\\tau) = { 1 \\over 2 \\tau^2 }
\\langle ( {x}_{n+2} - 2x_{n+1} + x_{n} )^2 \\rangle
= { 1 \\over 2 (N-2) \\tau^2 }
\\sum_{n=1}^{N-2} ( {x}_{n+2} - 2x_{n+1} + x_{n} )^2
where :math:`x_n` is the time-series of phase observations, spaced
by the measurement interval :math:`\\tau`, and with length :math:`N`.
Or alternatively calculated from a time-series of fractional frequency:
.. math::
\\sigma^{2}_{ADEV}(\\tau) = { 1 \\over 2 }
\\langle ( \\bar{y}_{n+1} - \\bar{y}_n )^2 \\rangle
where :math:`\\bar{y}_n` is the time-series of fractional frequency
at averaging time :math:`\\tau`
NIST SP 1065 eqn (6) and (7), pages 14 and 15
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Returns
-------
(taus2, ad, ade, ns): tuple
Tuple of values
taus2: np.array
Tau values for which td computed
ad: np.array
Computed adev for each tau value
ade: np.array
adev errors
ns: np.array
Values of N used in each adev calculation
"""
phase = input_to_phase(data, rate, data_type)
(phase, m, taus_used) = tau_generator(phase, rate, taus)
ad = np.zeros_like(taus_used)
ade = np.zeros_like(taus_used)
adn = np.zeros_like(taus_used)
for idx, mj in enumerate(m): # loop through each tau value m(j)
(ad[idx], ade[idx], adn[idx]) = calc_adev_phase(phase, rate, mj, mj)
return remove_small_ns(taus_used, ad, ade, adn) |
Main algorithm for adev() (stride=mj) and oadev() (stride=1)
see http://www.leapsecond.com/tools/adev_lib.c
stride = mj for nonoverlapping allan deviation
Parameters
----------
phase: np.array
Phase data in seconds.
rate: float
The sampling rate for phase or frequency, in Hz
mj: int
M index value for stride
stride: int
Size of stride
Returns
-------
(dev, deverr, n): tuple
Array of computed values.
Notes
-----
stride = mj for nonoverlapping Allan deviation
stride = 1 for overlapping Allan deviation
References
----------
* http://en.wikipedia.org/wiki/Allan_variance
* http://www.leapsecond.com/tools/adev_lib.c
NIST SP 1065, eqn (7) and (11) page 16 | def calc_adev_phase(phase, rate, mj, stride):
""" Main algorithm for adev() (stride=mj) and oadev() (stride=1)
see http://www.leapsecond.com/tools/adev_lib.c
stride = mj for nonoverlapping allan deviation
Parameters
----------
phase: np.array
Phase data in seconds.
rate: float
The sampling rate for phase or frequency, in Hz
mj: int
M index value for stride
stride: int
Size of stride
Returns
-------
(dev, deverr, n): tuple
Array of computed values.
Notes
-----
stride = mj for nonoverlapping Allan deviation
stride = 1 for overlapping Allan deviation
References
----------
* http://en.wikipedia.org/wiki/Allan_variance
* http://www.leapsecond.com/tools/adev_lib.c
NIST SP 1065, eqn (7) and (11) page 16
"""
mj = int(mj)
stride = int(stride)
d2 = phase[2 * mj::stride]
d1 = phase[1 * mj::stride]
d0 = phase[::stride]
n = min(len(d0), len(d1), len(d2))
if n == 0:
RuntimeWarning("Data array length is too small: %i" % len(phase))
n = 1
v_arr = d2[:n] - 2 * d1[:n] + d0[:n]
s = np.sum(v_arr * v_arr)
dev = np.sqrt(s / (2.0 * n)) / mj * rate
deverr = dev / np.sqrt(n)
return dev, deverr, n |
Overlapping Hadamard deviation.
Better confidence than normal Hadamard.
.. math::
\\sigma^2_{OHDEV}(m\\tau_0) = { 1 \\over 6 (m \\tau_0 )^2 (N-3m) }
\\sum_{i=1}^{N-3m} ( {x}_{i+3m} - 3x_{i+2m} + 3x_{i+m} - x_{i} )^2
where :math:`x_i` is the time-series of phase observations, spaced
by the measurement interval :math:`\\tau_0`, and with length :math:`N`.
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Returns
-------
(taus2, hd, hde, ns): tuple
Tuple of values
taus2: np.array
Tau values for which td computed
hd: np.array
Computed hdev for each tau value
hde: np.array
hdev errors
ns: np.array
Values of N used in each hdev calculation | def ohdev(data, rate=1.0, data_type="phase", taus=None):
""" Overlapping Hadamard deviation.
Better confidence than normal Hadamard.
.. math::
\\sigma^2_{OHDEV}(m\\tau_0) = { 1 \\over 6 (m \\tau_0 )^2 (N-3m) }
\\sum_{i=1}^{N-3m} ( {x}_{i+3m} - 3x_{i+2m} + 3x_{i+m} - x_{i} )^2
where :math:`x_i` is the time-series of phase observations, spaced
by the measurement interval :math:`\\tau_0`, and with length :math:`N`.
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Returns
-------
(taus2, hd, hde, ns): tuple
Tuple of values
taus2: np.array
Tau values for which td computed
hd: np.array
Computed hdev for each tau value
hde: np.array
hdev errors
ns: np.array
Values of N used in each hdev calculation
"""
phase = input_to_phase(data, rate, data_type)
(phase, m, taus_used) = tau_generator(phase, rate, taus)
hdevs = np.zeros_like(taus_used)
hdeverrs = np.zeros_like(taus_used)
ns = np.zeros_like(taus_used)
for idx, mj in enumerate(m):
(hdevs[idx],
hdeverrs[idx],
ns[idx]) = calc_hdev_phase(phase, rate, mj, 1)
return remove_small_ns(taus_used, hdevs, hdeverrs, ns) |
main calculation fungtion for HDEV and OHDEV
Parameters
----------
phase: np.array
Phase data in seconds.
rate: float
The sampling rate for phase or frequency, in Hz
mj: int
M index value for stride
stride: int
Size of stride
Returns
-------
(dev, deverr, n): tuple
Array of computed values.
Notes
-----
http://www.leapsecond.com/tools/adev_lib.c
1 N-3
s2y(t) = --------------- sum [x(i+3) - 3x(i+2) + 3x(i+1) - x(i) ]^2
6*tau^2 (N-3m) i=1
N=M+1 phase measurements
m is averaging factor
NIST SP 1065 eqn (18) and (20) pages 20 and 21 | def calc_hdev_phase(phase, rate, mj, stride):
""" main calculation fungtion for HDEV and OHDEV
Parameters
----------
phase: np.array
Phase data in seconds.
rate: float
The sampling rate for phase or frequency, in Hz
mj: int
M index value for stride
stride: int
Size of stride
Returns
-------
(dev, deverr, n): tuple
Array of computed values.
Notes
-----
http://www.leapsecond.com/tools/adev_lib.c
1 N-3
s2y(t) = --------------- sum [x(i+3) - 3x(i+2) + 3x(i+1) - x(i) ]^2
6*tau^2 (N-3m) i=1
N=M+1 phase measurements
m is averaging factor
NIST SP 1065 eqn (18) and (20) pages 20 and 21
"""
tau0 = 1.0 / float(rate)
mj = int(mj)
stride = int(stride)
d3 = phase[3 * mj::stride]
d2 = phase[2 * mj::stride]
d1 = phase[1 * mj::stride]
d0 = phase[::stride]
n = min(len(d0), len(d1), len(d2), len(d3))
v_arr = d3[:n] - 3 * d2[:n] + 3 * d1[:n] - d0[:n]
s = np.sum(v_arr * v_arr)
if n == 0:
n = 1
h = np.sqrt(s / 6.0 / float(n)) / float(tau0 * mj)
e = h / np.sqrt(n)
return h, e, n |
Total deviation.
Better confidence at long averages for Allan.
.. math::
\\sigma^2_{TOTDEV}( m\\tau_0 ) = { 1 \\over 2 (m\\tau_0)^2 (N-2) }
\\sum_{i=2}^{N-1} ( {x}^*_{i-m} - 2x^*_{i} + x^*_{i+m} )^2
Where :math:`x^*_i` is a new time-series of length :math:`3N-4`
derived from the original phase time-series :math:`x_n` of
length :math:`N` by reflection at both ends.
FIXME: better description of reflection operation.
the original data x is in the center of x*:
x*(1-j) = 2x(1) - x(1+j) for j=1..N-2
x*(i) = x(i) for i=1..N
x*(N+j) = 2x(N) - x(N-j) for j=1..N-2
x* has length 3N-4
tau = m*tau0
FIXME: bias correction http://www.wriley.com/CI2.pdf page 5
Parameters
----------
phase: np.array
Phase data in seconds. Provide either phase or frequency.
frequency: np.array
Fractional frequency data (nondimensional). Provide either
frequency or phase.
rate: float
The sampling rate for phase or frequency, in Hz
taus: np.array
Array of tau values for which to compute measurement
References
----------
David A. Howe,
*The total deviation approach to long-term characterization
of frequency stability*,
IEEE tr. UFFC vol 47 no 5 (2000)
NIST SP 1065 eqn (25) page 23 | def totdev(data, rate=1.0, data_type="phase", taus=None):
""" Total deviation.
Better confidence at long averages for Allan.
.. math::
\\sigma^2_{TOTDEV}( m\\tau_0 ) = { 1 \\over 2 (m\\tau_0)^2 (N-2) }
\\sum_{i=2}^{N-1} ( {x}^*_{i-m} - 2x^*_{i} + x^*_{i+m} )^2
Where :math:`x^*_i` is a new time-series of length :math:`3N-4`
derived from the original phase time-series :math:`x_n` of
length :math:`N` by reflection at both ends.
FIXME: better description of reflection operation.
the original data x is in the center of x*:
x*(1-j) = 2x(1) - x(1+j) for j=1..N-2
x*(i) = x(i) for i=1..N
x*(N+j) = 2x(N) - x(N-j) for j=1..N-2
x* has length 3N-4
tau = m*tau0
FIXME: bias correction http://www.wriley.com/CI2.pdf page 5
Parameters
----------
phase: np.array
Phase data in seconds. Provide either phase or frequency.
frequency: np.array
Fractional frequency data (nondimensional). Provide either
frequency or phase.
rate: float
The sampling rate for phase or frequency, in Hz
taus: np.array
Array of tau values for which to compute measurement
References
----------
David A. Howe,
*The total deviation approach to long-term characterization
of frequency stability*,
IEEE tr. UFFC vol 47 no 5 (2000)
NIST SP 1065 eqn (25) page 23
"""
phase = input_to_phase(data, rate, data_type)
(phase, m, taus_used) = tau_generator(phase, rate, taus)
N = len(phase)
# totdev requires a new dataset
# Begin by adding reflected data before dataset
x1 = 2.0 * phase[0] * np.ones((N - 2,))
x1 = x1 - phase[1:-1]
x1 = x1[::-1]
# Reflected data at end of dataset
x2 = 2.0 * phase[-1] * np.ones((N - 2,))
x2 = x2 - phase[1:-1][::-1]
# check length of new dataset
assert len(x1)+len(phase)+len(x2) == 3*N - 4
# Combine into a single array
x = np.zeros((3*N - 4))
x[0:N-2] = x1
x[N-2:2*(N-2)+2] = phase # original data in the middle
x[2*(N-2)+2:] = x2
devs = np.zeros_like(taus_used)
deverrs = np.zeros_like(taus_used)
ns = np.zeros_like(taus_used)
mid = len(x1)
for idx, mj in enumerate(m):
mj = int(mj)
d0 = x[mid + 1:]
d1 = x[mid + mj + 1:]
d1n = x[mid - mj + 1:]
e = min(len(d0), len(d1), len(d1n))
v_arr = d1n[:e] - 2.0 * d0[:e] + d1[:e]
dev = np.sum(v_arr[:mid] * v_arr[:mid])
dev /= float(2 * pow(mj / rate, 2) * (N - 2))
dev = np.sqrt(dev)
devs[idx] = dev
deverrs[idx] = dev / np.sqrt(mid)
ns[idx] = mid
return remove_small_ns(taus_used, devs, deverrs, ns) |
Time Total Deviation
modified total variance scaled by tau^2 / 3
NIST SP 1065 eqn (28) page 26 <--- formula should have tau squared !?! | def ttotdev(data, rate=1.0, data_type="phase", taus=None):
""" Time Total Deviation
modified total variance scaled by tau^2 / 3
NIST SP 1065 eqn (28) page 26 <--- formula should have tau squared !?!
"""
(taus, mtotdevs, mde, ns) = mtotdev(data, data_type=data_type,
rate=rate, taus=taus)
td = taus*mtotdevs / np.sqrt(3.0)
tde = td / np.sqrt(ns)
return taus, td, tde, ns |
PRELIMINARY - REQUIRES FURTHER TESTING.
Modified Total deviation.
Better confidence at long averages for modified Allan
FIXME: bias-correction http://www.wriley.com/CI2.pdf page 6
The variance is scaled up (divided by this number) based on the
noise-type identified.
WPM 0.94
FPM 0.83
WFM 0.73
FFM 0.70
RWFM 0.69
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
NIST SP 1065 eqn (27) page 25 | def mtotdev(data, rate=1.0, data_type="phase", taus=None):
""" PRELIMINARY - REQUIRES FURTHER TESTING.
Modified Total deviation.
Better confidence at long averages for modified Allan
FIXME: bias-correction http://www.wriley.com/CI2.pdf page 6
The variance is scaled up (divided by this number) based on the
noise-type identified.
WPM 0.94
FPM 0.83
WFM 0.73
FFM 0.70
RWFM 0.69
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
NIST SP 1065 eqn (27) page 25
"""
phase = input_to_phase(data, rate, data_type)
(phase, ms, taus_used) = tau_generator(phase, rate, taus,
maximum_m=float(len(phase))/3.0)
devs = np.zeros_like(taus_used)
deverrs = np.zeros_like(taus_used)
ns = np.zeros_like(taus_used)
for idx, mj in enumerate(ms):
devs[idx], deverrs[idx], ns[idx] = calc_mtotdev_phase(phase, rate, mj)
return remove_small_ns(taus_used, devs, deverrs, ns) |
PRELIMINARY - REQUIRES FURTHER TESTING.
Hadamard Total deviation.
Better confidence at long averages for Hadamard deviation
FIXME: bias corrections from http://www.wriley.com/CI2.pdf
W FM 0.995 alpha= 0
F FM 0.851 alpha=-1
RW FM 0.771 alpha=-2
FW FM 0.717 alpha=-3
RR FM 0.679 alpha=-4
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation. | def htotdev(data, rate=1.0, data_type="phase", taus=None):
""" PRELIMINARY - REQUIRES FURTHER TESTING.
Hadamard Total deviation.
Better confidence at long averages for Hadamard deviation
FIXME: bias corrections from http://www.wriley.com/CI2.pdf
W FM 0.995 alpha= 0
F FM 0.851 alpha=-1
RW FM 0.771 alpha=-2
FW FM 0.717 alpha=-3
RR FM 0.679 alpha=-4
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
"""
if data_type == "phase":
phase = data
freq = phase2frequency(phase, rate)
elif data_type == "freq":
phase = frequency2phase(data, rate)
freq = data
else:
raise Exception("unknown data_type: " + data_type)
rate = float(rate)
(freq, ms, taus_used) = tau_generator(freq, rate, taus,
maximum_m=float(len(freq))/3.0)
phase = np.array(phase)
freq = np.array(freq)
devs = np.zeros_like(taus_used)
deverrs = np.zeros_like(taus_used)
ns = np.zeros_like(taus_used)
# NOTE at mj==1 we use ohdev(), based on comment from here:
# http://www.wriley.com/paper4ht.htm
# "For best consistency, the overlapping Hadamard variance is used
# instead of the Hadamard total variance at m=1"
# FIXME: this uses both freq and phase datasets, which uses double the memory really needed...
for idx, mj in enumerate(ms):
if int(mj) == 1:
(devs[idx],
deverrs[idx],
ns[idx]) = calc_hdev_phase(phase, rate, mj, 1)
else:
(devs[idx],
deverrs[idx],
ns[idx]) = calc_htotdev_freq(freq, mj)
return remove_small_ns(taus_used, devs, deverrs, ns) |
PRELIMINARY - REQUIRES FURTHER TESTING.
calculation of htotdev for one averaging factor m
tau = m*tau0
Parameters
----------
frequency: np.array
Fractional frequency data (nondimensional).
m: int
Averaging factor. tau = m*tau0, where tau0=1/rate. | def calc_htotdev_freq(freq, m):
""" PRELIMINARY - REQUIRES FURTHER TESTING.
calculation of htotdev for one averaging factor m
tau = m*tau0
Parameters
----------
frequency: np.array
Fractional frequency data (nondimensional).
m: int
Averaging factor. tau = m*tau0, where tau0=1/rate.
"""
N = int(len(freq)) # frequency data, N points
m = int(m)
n = 0 # number of terms in the sum, for error estimation
dev = 0.0 # the deviation we are computing
for i in range(0, N-3*int(m)+1):
# subsequence of length 3m, from the original phase data
xs = freq[i:i+3*m]
assert len(xs) == 3*m
# remove linear trend. by averaging first/last half,
# computing slope, and subtracting
half1_idx = int(np.floor(3*m/2.0))
half2_idx = int(np.ceil(3*m/2.0))
# m
# 1 0:1 2:2
mean1 = np.mean(xs[:half1_idx])
mean2 = np.mean(xs[half2_idx:])
if int(3*m)%2 == 1: # m is odd
# 3m = 2k+1 is odd, with the averages at both ends over k points
# the distance between the averages is then k+1 = (3m-1)/2 +1
slope = (mean2-mean1) / ((0.5*(3*m-1)+1))
else: # m is even
# 3m = 2k is even, so distance between averages is k=3m/2
slope = (mean2-mean1) / (0.5*3*m)
# remove the linear trend
x0 = [x - slope*(idx-np.floor(3*m/2)) for (idx, x) in enumerate(xs)]
x0_flip = x0[::-1] # left-right flipped version of array
# extended sequence of length 9m, by uninverted even reflection
xstar = np.concatenate((x0_flip, x0, x0_flip))
assert len(xstar) == 9*m
# now compute totdev on these 9m points
# 6m unique groups of m-point averages,
# all possible overlapping second differences
# one term in the 6m sum: [ x_i - 2 x_i+m + x_i+2m ]^2
squaresum = 0.0
k = 0
for j in range(0, 6*int(m)): # summation of the 6m terms.
xmean1 = np.mean(xstar[j+0*m : j+1*m])
xmean2 = np.mean(xstar[j+1*m : j+2*m])
xmean3 = np.mean(xstar[j+2*m : j+3*m])
squaresum += pow(xmean1-2.0*xmean2+xmean3, 2)
k = k+1
assert k == 6*int(m)
squaresum = (1.0/(6.0*k)) * squaresum
dev += squaresum
n = n+1
# scaling in front of double-sum
assert n == N-3*int(m)+1 # sanity check on the number of terms n
dev = dev* 1.0/ (N-3*m+1)
dev = np.sqrt(dev)
error = dev / np.sqrt(n)
return (dev, error, n) |
PRELIMINARY - REQUIRES FURTHER TESTING.
Theo1 is a two-sample variance with improved confidence and
extended averaging factor range.
.. math::
\\sigma^2_{THEO1}(m\\tau_0) = { 1 \\over (m \\tau_0 )^2 (N-m) }
\\sum_{i=1}^{N-m} \\sum_{\\delta=0}^{m/2-1}
{1\\over m/2-\\delta}\\lbrace
({x}_{i} - x_{i-\\delta +m/2}) +
(x_{i+m}- x_{i+\\delta +m/2}) \\rbrace^2
Where :math:`10<=m<=N-1` is even.
FIXME: bias correction
NIST SP 1065 eq (30) page 29
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation. | def theo1(data, rate=1.0, data_type="phase", taus=None):
""" PRELIMINARY - REQUIRES FURTHER TESTING.
Theo1 is a two-sample variance with improved confidence and
extended averaging factor range.
.. math::
\\sigma^2_{THEO1}(m\\tau_0) = { 1 \\over (m \\tau_0 )^2 (N-m) }
\\sum_{i=1}^{N-m} \\sum_{\\delta=0}^{m/2-1}
{1\\over m/2-\\delta}\\lbrace
({x}_{i} - x_{i-\\delta +m/2}) +
(x_{i+m}- x_{i+\\delta +m/2}) \\rbrace^2
Where :math:`10<=m<=N-1` is even.
FIXME: bias correction
NIST SP 1065 eq (30) page 29
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
"""
phase = input_to_phase(data, rate, data_type)
tau0 = 1.0/rate
(phase, ms, taus_used) = tau_generator(phase, rate, taus, even=True)
devs = np.zeros_like(taus_used)
deverrs = np.zeros_like(taus_used)
ns = np.zeros_like(taus_used)
N = len(phase)
for idx, m in enumerate(ms):
m = int(m) # to avoid: VisibleDeprecationWarning: using a
# non-integer number instead of an integer will
# result in an error in the future
assert m % 2 == 0 # m must be even
dev = 0
n = 0
for i in range(int(N-m)):
s = 0
for d in range(int(m/2)): # inner sum
pre = 1.0 / (float(m)/2 - float(d))
s += pre*pow(phase[i]-phase[i-d+int(m/2)] +
phase[i+m]-phase[i+d+int(m/2)], 2)
n = n+1
dev += s
assert n == (N-m)*m/2 # N-m outer sums, m/2 inner sums
dev = dev/(0.75*(N-m)*pow(m*tau0, 2))
# factor 0.75 used here? http://tf.nist.gov/general/pdf/1990.pdf
# but not here? http://tf.nist.gov/timefreq/general/pdf/2220.pdf page 29
devs[idx] = np.sqrt(dev)
deverrs[idx] = devs[idx] / np.sqrt(N-m)
ns[idx] = n
return remove_small_ns(taus_used, devs, deverrs, ns) |
Time Interval Error RMS.
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation. | def tierms(data, rate=1.0, data_type="phase", taus=None):
""" Time Interval Error RMS.
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
"""
phase = input_to_phase(data, rate, data_type)
(data, m, taus_used) = tau_generator(phase, rate, taus)
count = len(phase)
devs = np.zeros_like(taus_used)
deverrs = np.zeros_like(taus_used)
ns = np.zeros_like(taus_used)
for idx, mj in enumerate(m):
mj = int(mj)
# This seems like an unusual way to
phases = np.column_stack((phase[:-mj], phase[mj:]))
p_max = np.max(phases, axis=1)
p_min = np.min(phases, axis=1)
phases = p_max - p_min
tie = np.sqrt(np.mean(phases * phases))
ncount = count - mj
devs[idx] = tie
deverrs[idx] = 0 / np.sqrt(ncount) # TODO! I THINK THIS IS WRONG!
ns[idx] = ncount
return remove_small_ns(taus_used, devs, deverrs, ns) |
Make an ndarray with a rolling window of the last dimension, from
http://mail.scipy.org/pipermail/numpy-discussion/2011-January/054401.html
Parameters
----------
a : array_like
Array to add rolling window to
window : int
Size of rolling window
Returns
-------
Array that is a view of the original array with a added dimension
of size window. | def mtie_rolling_window(a, window):
"""
Make an ndarray with a rolling window of the last dimension, from
http://mail.scipy.org/pipermail/numpy-discussion/2011-January/054401.html
Parameters
----------
a : array_like
Array to add rolling window to
window : int
Size of rolling window
Returns
-------
Array that is a view of the original array with a added dimension
of size window.
"""
if window < 1:
raise ValueError("`window` must be at least 1.")
if window > a.shape[-1]:
raise ValueError("`window` is too long.")
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) |
Maximum Time Interval Error.
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Notes
-----
this seems to correspond to Stable32 setting "Fast(u)"
Stable32 also has "Decade" and "Octave" modes where the
dataset is extended somehow? | def mtie(data, rate=1.0, data_type="phase", taus=None):
""" Maximum Time Interval Error.
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
Notes
-----
this seems to correspond to Stable32 setting "Fast(u)"
Stable32 also has "Decade" and "Octave" modes where the
dataset is extended somehow?
"""
phase = input_to_phase(data, rate, data_type)
(phase, m, taus_used) = tau_generator(phase, rate, taus)
devs = np.zeros_like(taus_used)
deverrs = np.zeros_like(taus_used)
ns = np.zeros_like(taus_used)
for idx, mj in enumerate(m):
rw = mtie_rolling_window(phase, int(mj + 1))
win_max = np.max(rw, axis=1)
win_min = np.min(rw, axis=1)
tie = win_max - win_min
dev = np.max(tie)
ncount = phase.shape[0] - mj
devs[idx] = dev
deverrs[idx] = dev / np.sqrt(ncount)
ns[idx] = ncount
return remove_small_ns(taus_used, devs, deverrs, ns) |
fast binary decomposition algorithm for MTIE
See: STEFANO BREGNI "Fast Algorithms for TVAR and MTIE Computation in
Characterization of Network Synchronization Performance" | def mtie_phase_fast(phase, rate=1.0, data_type="phase", taus=None):
""" fast binary decomposition algorithm for MTIE
See: STEFANO BREGNI "Fast Algorithms for TVAR and MTIE Computation in
Characterization of Network Synchronization Performance"
"""
rate = float(rate)
phase = np.asarray(phase)
k_max = int(np.floor(np.log2(len(phase))))
phase = phase[0:pow(2, k_max)] # truncate data to 2**k_max datapoints
assert len(phase) == pow(2, k_max)
#k = 1
taus = [ pow(2,k) for k in range(k_max)]
#while k <= k_max:
# tau = pow(2, k)
# taus.append(tau)
#print tau
# k += 1
print("taus N=", len(taus), " ",taus)
devs = np.zeros(len(taus))
deverrs = np.zeros(len(taus))
ns = np.zeros(len(taus))
taus_used = np.array(taus) # [(1.0/rate)*t for t in taus]
# matrices to store results
mtie_max = np.zeros((len(phase)-1, k_max))
mtie_min = np.zeros((len(phase)-1, k_max))
for kidx in range(k_max):
k = kidx+1
imax = len(phase)-pow(2, k)+1
#print k, imax
tie = np.zeros(imax)
ns[kidx]=imax
#print np.max( tie )
for i in range(imax):
if k == 1:
mtie_max[i, kidx] = max(phase[i], phase[i+1])
mtie_min[i, kidx] = min(phase[i], phase[i+1])
else:
p = int(pow(2, k-1))
mtie_max[i, kidx] = max(mtie_max[i, kidx-1],
mtie_max[i+p, kidx-1])
mtie_min[i, kidx] = min(mtie_min[i, kidx-1],
mtie_min[i+p, kidx-1])
#for i in range(imax):
tie[i] = mtie_max[i, kidx] - mtie_min[i, kidx]
#print tie[i]
devs[kidx] = np.amax(tie) # maximum along axis
#print "maximum %2.4f" % devs[kidx]
#print np.amax( tie )
#for tau in taus:
#for
devs = np.array(devs)
print("devs N=",len(devs)," ",devs)
print("taus N=", len(taus_used), " ",taus_used)
return remove_small_ns(taus_used, devs, deverrs, ns) |
gap resistant overlapping Allan deviation
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional). Warning : phase data works better (frequency data is
first trantformed into phase using numpy.cumsum() function, which can
lead to poor results).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
ci: float
the total confidence interval desired, i.e. if ci = 0.9, the bounds
will be at 0.05 and 0.95.
noisetype: string
the type of noise desired:
'wp' returns white phase noise.
'wf' returns white frequency noise.
'fp' returns flicker phase noise.
'ff' returns flicker frequency noise.
'rf' returns random walk frequency noise.
If the input is not recognized, it defaults to idealized, uncorrelated
noise with (N-1) degrees of freedom.
Returns
-------
taus: np.array
list of tau vales in seconds
adev: np.array
deviations
[err_l, err_h] : list of len()==2, np.array
the upper and lower bounds of the confidence interval taken as
distances from the the estimated two sample variance.
ns: np.array
numper of terms n in the adev estimate. | def gradev(data, rate=1.0, data_type="phase", taus=None,
ci=0.9, noisetype='wp'):
""" gap resistant overlapping Allan deviation
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional). Warning : phase data works better (frequency data is
first trantformed into phase using numpy.cumsum() function, which can
lead to poor results).
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
tau-list generation.
ci: float
the total confidence interval desired, i.e. if ci = 0.9, the bounds
will be at 0.05 and 0.95.
noisetype: string
the type of noise desired:
'wp' returns white phase noise.
'wf' returns white frequency noise.
'fp' returns flicker phase noise.
'ff' returns flicker frequency noise.
'rf' returns random walk frequency noise.
If the input is not recognized, it defaults to idealized, uncorrelated
noise with (N-1) degrees of freedom.
Returns
-------
taus: np.array
list of tau vales in seconds
adev: np.array
deviations
[err_l, err_h] : list of len()==2, np.array
the upper and lower bounds of the confidence interval taken as
distances from the the estimated two sample variance.
ns: np.array
numper of terms n in the adev estimate.
"""
if (data_type == "freq"):
print("Warning : phase data is preferred as input to gradev()")
phase = input_to_phase(data, rate, data_type)
(data, m, taus_used) = tau_generator(phase, rate, taus)
ad = np.zeros_like(taus_used)
ade_l = np.zeros_like(taus_used)
ade_h = np.zeros_like(taus_used)
adn = np.zeros_like(taus_used)
for idx, mj in enumerate(m):
(dev, deverr, n) = calc_gradev_phase(data,
rate,
mj,
1,
ci,
noisetype)
# stride=1 for overlapping ADEV
ad[idx] = dev
ade_l[idx] = deverr[0]
ade_h[idx] = deverr[1]
adn[idx] = n
# Note that errors are split in 2 arrays
return remove_small_ns(taus_used, ad, [ade_l, ade_h], adn) |
see http://www.leapsecond.com/tools/adev_lib.c
stride = mj for nonoverlapping allan deviation
stride = 1 for overlapping allan deviation
see http://en.wikipedia.org/wiki/Allan_variance
1 1
s2y(t) = --------- sum [x(i+2) - 2x(i+1) + x(i) ]^2
2*tau^2 | def calc_gradev_phase(data, rate, mj, stride, confidence, noisetype):
""" see http://www.leapsecond.com/tools/adev_lib.c
stride = mj for nonoverlapping allan deviation
stride = 1 for overlapping allan deviation
see http://en.wikipedia.org/wiki/Allan_variance
1 1
s2y(t) = --------- sum [x(i+2) - 2x(i+1) + x(i) ]^2
2*tau^2
"""
d2 = data[2 * int(mj)::int(stride)]
d1 = data[1 * int(mj)::int(stride)]
d0 = data[::int(stride)]
n = min(len(d0), len(d1), len(d2))
if n == 0:
RuntimeWarning("Data array length is too small: %i" % len(data))
n = 1
v_arr = d2[:n] - 2 * d1[:n] + d0[:n]
n = len(np.where(np.isnan(v_arr) == False)[0]) # only average for non-nans
N = len(np.where(np.isnan(data) == False)[0])
s = np.nansum(v_arr * v_arr) # a summation robust to nans
dev = np.sqrt(s / (2.0 * n)) / mj * rate
#deverr = dev / np.sqrt(n) # old simple errorbars
if (noisetype == 'wp'):
alpha = 2
elif (noisetype == 'wf'):
alpha = 0
elif (noisetype == 'fp'):
alpha = -2
else:
alpha = None
if n > 1:
edf = ci.edf_simple(N, mj, alpha)
deverr = ci.confidence_interval(dev, confidence, edf)
else:
deverr = [0, 0]
return dev, deverr, n |
Take either phase or frequency as input and return phase | def input_to_phase(data, rate, data_type):
""" Take either phase or frequency as input and return phase
"""
if data_type == "phase":
return data
elif data_type == "freq":
return frequency2phase(data, rate)
else:
raise Exception("unknown data_type: " + data_type) |
pre-processing of the tau-list given by the user (Helper function)
Does sanity checks, sorts data, removes duplicates and invalid values.
Generates a tau-list based on keywords 'all', 'decade', 'octave'.
Uses 'octave' by default if no taus= argument is given.
Parameters
----------
data: np.array
data array
rate: float
Sample rate of data in Hz. Time interval between measurements
is 1/rate seconds.
taus: np.array
Array of tau values for which to compute measurement.
Alternatively one of the keywords: "all", "octave", "decade".
Defaults to "octave" if omitted.
v:
verbose output if True
even:
require even m, where tau=m*tau0, for Theo1 statistic
maximum_m:
limit m, where tau=m*tau0, to this value.
used by mtotdev() and htotdev() to limit maximum tau.
Returns
-------
(data, m, taus): tuple
List of computed values
data: np.array
Data
m: np.array
Tau in units of data points
taus: np.array
Cleaned up list of tau values | def tau_generator(data, rate, taus=None, v=False, even=False, maximum_m=-1):
""" pre-processing of the tau-list given by the user (Helper function)
Does sanity checks, sorts data, removes duplicates and invalid values.
Generates a tau-list based on keywords 'all', 'decade', 'octave'.
Uses 'octave' by default if no taus= argument is given.
Parameters
----------
data: np.array
data array
rate: float
Sample rate of data in Hz. Time interval between measurements
is 1/rate seconds.
taus: np.array
Array of tau values for which to compute measurement.
Alternatively one of the keywords: "all", "octave", "decade".
Defaults to "octave" if omitted.
v:
verbose output if True
even:
require even m, where tau=m*tau0, for Theo1 statistic
maximum_m:
limit m, where tau=m*tau0, to this value.
used by mtotdev() and htotdev() to limit maximum tau.
Returns
-------
(data, m, taus): tuple
List of computed values
data: np.array
Data
m: np.array
Tau in units of data points
taus: np.array
Cleaned up list of tau values
"""
if rate == 0:
raise RuntimeError("Warning! rate==0")
if taus is None: # empty or no tau-list supplied
taus = "octave" # default to octave
elif isinstance(taus, list) and taus == []:
taus = "octave"
if taus is "all":
taus = (1.0/rate)*np.linspace(1.0, len(data), len(data))
elif taus is "octave":
maxn = np.floor(np.log2(len(data)))
taus = (1.0/rate)*np.logspace(0, maxn, maxn+1, base=2.0)
elif taus is "decade": # 1, 2, 4, 10, 20, 40, spacing similar to Stable32
maxn = np.floor(np.log10(len(data)))
taus = []
for k in range(int(maxn+1)):
taus.append(1.0*(1.0/rate)*pow(10.0, k))
taus.append(2.0*(1.0/rate)*pow(10.0, k))
taus.append(4.0*(1.0/rate)*pow(10.0, k))
data, taus = np.array(data), np.array(taus)
rate = float(rate)
m = [] # integer averaging factor. tau = m*tau0
if maximum_m == -1: # if no limit given
maximum_m = len(data)
# FIXME: should we use a "stop-ratio" like Stable32
# found in Table III, page 9 of "Evolution of frequency stability analysis software"
# max(AF) = len(phase)/stop_ratio, where
# function stop_ratio
# adev 5
# oadev 4
# mdev 4
# tdev 4
# hdev 5
# ohdev 4
# totdev 2
# tierms 4
# htotdev 3
# mtie 2
# theo1 1
# theoH 1
# mtotdev 2
# ttotdev 2
taus_valid1 = taus < (1 / float(rate)) * float(len(data))
taus_valid2 = taus > 0
taus_valid3 = taus <= (1 / float(rate)) * float(maximum_m)
taus_valid = taus_valid1 & taus_valid2 & taus_valid3
m = np.floor(taus[taus_valid] * rate)
m = m[m != 0] # m is tau in units of datapoints
m = np.unique(m) # remove duplicates and sort
if v:
print("tau_generator: ", m)
if len(m) == 0:
print("Warning: sanity-check on tau failed!")
print(" len(data)=", len(data), " rate=", rate, "taus= ", taus)
taus2 = m / float(rate)
if even: # used by Theo1
m_even_mask = ((m % 2) == 0)
m = m[m_even_mask]
taus2 = taus2[m_even_mask]
return data, m, taus2 |
Reduce the number of taus to maximum of n per decade (Helper function)
takes in a tau list and reduces the number of taus to a maximum amount per
decade. This is only useful if more than the "decade" and "octave" but
less than the "all" taus are wanted. E.g. to show certain features of
the data one might want 100 points per decade.
NOTE: The algorithm is slightly inaccurate for ms under n_per_decade, and
will also remove some points in this range, which is usually fine.
Typical use would be something like:
(data,m,taus)=tau_generator(data,rate,taus="all")
(m,taus)=tau_reduction(m,rate,n_per_decade)
Parameters
----------
ms: array of integers
List of m values (assumed to be an "all" list) to remove points from.
rate: float
Sample rate of data in Hz. Time interval between measurements
is 1/rate seconds. Used to convert to taus.
n_per_decade: int
Number of ms/taus to keep per decade.
Returns
-------
m: np.array
Reduced list of m values
taus: np.array
Reduced list of tau values | def tau_reduction(ms, rate, n_per_decade):
"""Reduce the number of taus to maximum of n per decade (Helper function)
takes in a tau list and reduces the number of taus to a maximum amount per
decade. This is only useful if more than the "decade" and "octave" but
less than the "all" taus are wanted. E.g. to show certain features of
the data one might want 100 points per decade.
NOTE: The algorithm is slightly inaccurate for ms under n_per_decade, and
will also remove some points in this range, which is usually fine.
Typical use would be something like:
(data,m,taus)=tau_generator(data,rate,taus="all")
(m,taus)=tau_reduction(m,rate,n_per_decade)
Parameters
----------
ms: array of integers
List of m values (assumed to be an "all" list) to remove points from.
rate: float
Sample rate of data in Hz. Time interval between measurements
is 1/rate seconds. Used to convert to taus.
n_per_decade: int
Number of ms/taus to keep per decade.
Returns
-------
m: np.array
Reduced list of m values
taus: np.array
Reduced list of tau values
"""
ms = np.int64(ms)
keep = np.bool8(np.rint(n_per_decade*np.log10(ms[1:])) -
np.rint(n_per_decade*np.log10(ms[:-1])))
# Adjust ms size to fit above-defined mask
ms = ms[:-1]
assert len(ms) == len(keep)
ms = ms[keep]
taus = ms/float(rate)
return ms, taus |
Remove results with small number of samples.
If n is small (==1), reject the result
Parameters
----------
taus: array
List of tau values for which deviation were computed
devs: array
List of deviations
deverrs: array or list of arrays
List of estimated errors (possibly a list containing two arrays :
upper and lower values)
ns: array
Number of samples for each point
Returns
-------
(taus, devs, deverrs, ns): tuple
Identical to input, except that values with low ns have been removed. | def remove_small_ns(taus, devs, deverrs, ns):
""" Remove results with small number of samples.
If n is small (==1), reject the result
Parameters
----------
taus: array
List of tau values for which deviation were computed
devs: array
List of deviations
deverrs: array or list of arrays
List of estimated errors (possibly a list containing two arrays :
upper and lower values)
ns: array
Number of samples for each point
Returns
-------
(taus, devs, deverrs, ns): tuple
Identical to input, except that values with low ns have been removed.
"""
ns_big_enough = ns > 1
o_taus = taus[ns_big_enough]
o_devs = devs[ns_big_enough]
o_ns = ns[ns_big_enough]
if isinstance(deverrs, list):
assert len(deverrs) < 3
o_deverrs = [deverrs[0][ns_big_enough], deverrs[1][ns_big_enough]]
else:
o_deverrs = deverrs[ns_big_enough]
if len(o_devs)==0:
print("remove_small_ns() nothing remains!?")
raise UserWarning
return o_taus, o_devs, o_deverrs, o_ns |
Trim leading and trailing NaNs from dataset
This is done by browsing the array from each end and store the index of the
first non-NaN in each case, the return the appropriate slice of the array | def trim_data(x):
"""
Trim leading and trailing NaNs from dataset
This is done by browsing the array from each end and store the index of the
first non-NaN in each case, the return the appropriate slice of the array
"""
# Find indices for first and last valid data
first = 0
while np.isnan(x[first]):
first += 1
last = len(x)
while np.isnan(x[last - 1]):
last -= 1
return x[first:last] |
Three Cornered Hat Method
Given three clocks A, B, C, we seek to find their variances
:math:`\\sigma^2_A`, :math:`\\sigma^2_B`, :math:`\\sigma^2_C`.
We measure three phase differences, assuming no correlation between
the clocks, the measurements have variances:
.. math::
\\sigma^2_{AB} = \\sigma^2_{A} + \\sigma^2_{B}
\\sigma^2_{BC} = \\sigma^2_{B} + \\sigma^2_{C}
\\sigma^2_{CA} = \\sigma^2_{C} + \\sigma^2_{A}
Which allows solving for the variance of one clock as:
.. math::
\\sigma^2_{A} = {1 \\over 2} ( \\sigma^2_{AB} +
\\sigma^2_{CA} - \\sigma^2_{BC} )
and similarly cyclic permutations for :math:`\\sigma^2_B` and
:math:`\\sigma^2_C`
Parameters
----------
phasedata_ab: np.array
phase measurements between clock A and B, in seconds
phasedata_bc: np.array
phase measurements between clock B and C, in seconds
phasedata_ca: np.array
phase measurements between clock C and A, in seconds
rate: float
The sampling rate for phase, in Hz
taus: np.array
The tau values for deviations, in seconds
function: allantools deviation function
The type of statistic to compute, e.g. allantools.oadev
Returns
-------
tau_ab: np.array
Tau values corresponding to output deviations
dev_a: np.array
List of computed values for clock A
References
----------
http://www.wriley.com/3-CornHat.htm | def three_cornered_hat_phase(phasedata_ab, phasedata_bc,
phasedata_ca, rate, taus, function):
"""
Three Cornered Hat Method
Given three clocks A, B, C, we seek to find their variances
:math:`\\sigma^2_A`, :math:`\\sigma^2_B`, :math:`\\sigma^2_C`.
We measure three phase differences, assuming no correlation between
the clocks, the measurements have variances:
.. math::
\\sigma^2_{AB} = \\sigma^2_{A} + \\sigma^2_{B}
\\sigma^2_{BC} = \\sigma^2_{B} + \\sigma^2_{C}
\\sigma^2_{CA} = \\sigma^2_{C} + \\sigma^2_{A}
Which allows solving for the variance of one clock as:
.. math::
\\sigma^2_{A} = {1 \\over 2} ( \\sigma^2_{AB} +
\\sigma^2_{CA} - \\sigma^2_{BC} )
and similarly cyclic permutations for :math:`\\sigma^2_B` and
:math:`\\sigma^2_C`
Parameters
----------
phasedata_ab: np.array
phase measurements between clock A and B, in seconds
phasedata_bc: np.array
phase measurements between clock B and C, in seconds
phasedata_ca: np.array
phase measurements between clock C and A, in seconds
rate: float
The sampling rate for phase, in Hz
taus: np.array
The tau values for deviations, in seconds
function: allantools deviation function
The type of statistic to compute, e.g. allantools.oadev
Returns
-------
tau_ab: np.array
Tau values corresponding to output deviations
dev_a: np.array
List of computed values for clock A
References
----------
http://www.wriley.com/3-CornHat.htm
"""
(tau_ab, dev_ab, err_ab, ns_ab) = function(phasedata_ab,
data_type='phase',
rate=rate, taus=taus)
(tau_bc, dev_bc, err_bc, ns_bc) = function(phasedata_bc,
data_type='phase',
rate=rate, taus=taus)
(tau_ca, dev_ca, err_ca, ns_ca) = function(phasedata_ca,
data_type='phase',
rate=rate, taus=taus)
var_ab = dev_ab * dev_ab
var_bc = dev_bc * dev_bc
var_ca = dev_ca * dev_ca
assert len(var_ab) == len(var_bc) == len(var_ca)
var_a = 0.5 * (var_ab + var_ca - var_bc)
var_a[var_a < 0] = 0 # don't return imaginary deviations (?)
dev_a = np.sqrt(var_a)
err_a = [d/np.sqrt(nn) for (d, nn) in zip(dev_a, ns_ab)]
return tau_ab, dev_a, err_a, ns_ab |
integrate fractional frequency data and output phase data
Parameters
----------
freqdata: np.array
Data array of fractional frequency measurements (nondimensional)
rate: float
The sampling rate for phase or frequency, in Hz
Returns
-------
phasedata: np.array
Time integral of fractional frequency data, i.e. phase (time) data
in units of seconds.
For phase in units of radians, see phase2radians() | def frequency2phase(freqdata, rate):
""" integrate fractional frequency data and output phase data
Parameters
----------
freqdata: np.array
Data array of fractional frequency measurements (nondimensional)
rate: float
The sampling rate for phase or frequency, in Hz
Returns
-------
phasedata: np.array
Time integral of fractional frequency data, i.e. phase (time) data
in units of seconds.
For phase in units of radians, see phase2radians()
"""
dt = 1.0 / float(rate)
# Protect against NaN values in input array (issue #60)
# Reintroduces data trimming as in commit 503cb82
freqdata = trim_data(freqdata)
phasedata = np.cumsum(freqdata) * dt
phasedata = np.insert(phasedata, 0, 0) # FIXME: why do we do this?
# so that phase starts at zero and len(phase)=len(freq)+1 ??
return phasedata |
Convert phase in seconds to phase in radians
Parameters
----------
phasedata: np.array
Data array of phase in seconds
v0: float
Nominal oscillator frequency in Hz
Returns
-------
fi:
phase data in radians | def phase2radians(phasedata, v0):
""" Convert phase in seconds to phase in radians
Parameters
----------
phasedata: np.array
Data array of phase in seconds
v0: float
Nominal oscillator frequency in Hz
Returns
-------
fi:
phase data in radians
"""
fi = [2*np.pi*v0*xx for xx in phasedata]
return fi |
Convert frequency in Hz to fractional frequency
Parameters
----------
frequency: np.array
Data array of frequency in Hz
mean_frequency: float
(optional) The nominal mean frequency, in Hz
if omitted, defaults to mean frequency=np.mean(frequency)
Returns
-------
y:
Data array of fractional frequency | def frequency2fractional(frequency, mean_frequency=-1):
""" Convert frequency in Hz to fractional frequency
Parameters
----------
frequency: np.array
Data array of frequency in Hz
mean_frequency: float
(optional) The nominal mean frequency, in Hz
if omitted, defaults to mean frequency=np.mean(frequency)
Returns
-------
y:
Data array of fractional frequency
"""
if mean_frequency == -1:
mu = np.mean(frequency)
else:
mu = mean_frequency
y = [(x-mu)/mu for x in frequency]
return y |
Optionnal method if you chose not to set inputs on init
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional)
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic | def set_input(self, data,
rate=1.0, data_type="phase", taus=None):
""" Optionnal method if you chose not to set inputs on init
Parameters
----------
data: np.array
Input data. Provide either phase or frequency (fractional,
adimensional)
rate: float
The sampling rate for data, in Hz. Defaults to 1.0
data_type: {'phase', 'freq'}
Data type, i.e. phase or frequency. Defaults to "phase".
taus: np.array
Array of tau values, in seconds, for which to compute statistic.
Optionally set taus=["all"|"octave"|"decade"] for automatic
"""
self.inp["data"] = data
self.inp["rate"] = rate
self.inp["data_type"] = data_type
self.inp["taus"] = taus |
Evaluate the passed function with the supplied data.
Stores result in self.out.
Parameters
----------
function: str
Name of the :mod:`allantools` function to evaluate
Returns
-------
result: dict
The results of the calculation. | def compute(self, function):
"""Evaluate the passed function with the supplied data.
Stores result in self.out.
Parameters
----------
function: str
Name of the :mod:`allantools` function to evaluate
Returns
-------
result: dict
The results of the calculation.
"""
try:
func = getattr(allantools, function)
except AttributeError:
raise AttributeError("function must be defined in allantools")
whitelisted = ["theo1", "mtie", "tierms"]
if function[-3:] != "dev" and function not in whitelisted:
# this should probably raise a custom exception type so
# it's easier to distinguish from other bad things
raise RuntimeError("function must be one of the 'dev' functions")
result = func(self.inp["data"], rate=self.inp["rate"],
data_type=self.inp["data_type"], taus=self.inp["taus"])
keys = ["taus", "stat", "stat_err", "stat_n"]
result = {key: result[i] for i, key in enumerate(keys)}
self.out = result.copy()
self.out["stat_id"] = function
return result |
compute average of many PSDs | def many_psds(k=2,fs=1.0, b0=1.0, N=1024):
""" compute average of many PSDs """
psd=[]
for j in range(k):
print j
x = noise.white(N=2*4096,b0=b0,fs=fs)
f, tmp = noise.numpy_psd(x,fs)
if j==0:
psd = tmp
else:
psd = psd + tmp
return f, psd/k |
Find organization that has the current identity as the owner or as the member | def list_my(self):
""" Find organization that has the current identity as the owner or as the member """
org_list = self.call_contract_command("Registry", "listOrganizations", [])
rez_owner = []
rez_member = []
for idx, org_id in enumerate(org_list):
(found, org_id, org_name, owner, members, serviceNames, repositoryNames) = self.call_contract_command("Registry", "getOrganizationById", [org_id])
if (not found):
raise Exception("Organization was removed during this call. Please retry.");
if self.ident.address == owner:
rez_owner.append((org_name, bytes32_to_str(org_id)))
if self.ident.address in members:
rez_member.append((org_name, bytes32_to_str(org_id)))
if (rez_owner):
self._printout("# Organizations you are the owner of")
self._printout("# OrgName OrgId")
for n,i in rez_owner:
self._printout("%s %s"%(n,i))
if (rez_member):
self._printout("# Organizations you are the member of")
self._printout("# OrgName OrgId")
for n,i in rez_member:
self._printout("%s %s"%(n,i)) |
Return new group_id in base64 | def add_group(self, group_name, payment_address):
""" Return new group_id in base64 """
if (self.is_group_name_exists(group_name)):
raise Exception("the group \"%s\" is already present"%str(group_name))
group_id_base64 = base64.b64encode(secrets.token_bytes(32))
self.m["groups"] += [{"group_name" : group_name ,
"group_id" : group_id_base64.decode("ascii"),
"payment_address" : payment_address}]
return group_id_base64 |
check if group with given name is already exists | def is_group_name_exists(self, group_name):
""" check if group with given name is already exists """
groups = self.m["groups"]
for g in groups:
if (g["group_name"] == group_name):
return True
return False |
return group with given group_id (return None if doesn't exists) | def get_group_by_group_id(self, group_id):
""" return group with given group_id (return None if doesn't exists) """
group_id_base64 = base64.b64encode(group_id).decode('ascii')
groups = self.m["groups"]
for g in groups:
if (g["group_id"] == group_id_base64):
return g
return None |
In all getter function in case of single payment group, group_name can be None | def get_group_name_nonetrick(self, group_name = None):
""" In all getter function in case of single payment group, group_name can be None """
groups = self.m["groups"]
if (len(groups) == 0):
raise Exception("Cannot find any groups in metadata")
if (not group_name):
if (len(groups) > 1):
raise Exception("We have more than one payment group in metadata, so group_name should be specified")
return groups[0]["group_name"]
return group_name |
make tar from protodir/*proto, and publish this tar in ipfs
return base58 encoded ipfs hash | def publish_proto_in_ipfs(ipfs_client, protodir):
"""
make tar from protodir/*proto, and publish this tar in ipfs
return base58 encoded ipfs hash
"""
if (not os.path.isdir(protodir)):
raise Exception("Directory %s doesn't exists"%protodir)
files = glob.glob(os.path.join(protodir, "*.proto"))
if (len(files) == 0):
raise Exception("Cannot find any %s files"%(os.path.join(protodir, "*.proto")) )
# We are sorting files before we add them to the .tar since an archive containing the same files in a different
# order will produce a different content hash;
files.sort()
tarbytes = io.BytesIO()
tar = tarfile.open(fileobj=tarbytes, mode="w")
for f in files:
tar.add(f, os.path.basename(f))
tar.close()
return ipfs_client.add_bytes(tarbytes.getvalue()) |
Get file from ipfs
We must check the hash becasue we cannot believe that ipfs_client wasn't been compromise | def get_from_ipfs_and_checkhash(ipfs_client, ipfs_hash_base58, validate=True):
"""
Get file from ipfs
We must check the hash becasue we cannot believe that ipfs_client wasn't been compromise
"""
if validate:
from snet_cli.resources.proto.unixfs_pb2 import Data
from snet_cli.resources.proto.merckledag_pb2 import MerkleNode
# No nice Python library to parse ipfs blocks, so do it ourselves.
block_data = ipfs_client.block_get(ipfs_hash_base58)
mn = MerkleNode()
mn.ParseFromString(block_data)
unixfs_data = Data()
unixfs_data.ParseFromString(mn.Data)
assert unixfs_data.Type == unixfs_data.DataType.Value('File'), "IPFS hash must be a file"
data = unixfs_data.Data
# multihash has a badly registered base58 codec, overwrite it...
multihash.CodecReg.register('base58', base58.b58encode, base58.b58decode)
# create a multihash object from our ipfs hash
mh = multihash.decode(ipfs_hash_base58.encode('ascii'), 'base58')
# Convenience method lets us directly use a multihash to verify data
if not mh.verify(block_data):
raise Exception("IPFS hash mismatch with data")
else:
data = ipfs_client.cat(ipfs_hash_base58)
return data |
Convert in and from bytes uri format used in Registry contract | def hash_to_bytesuri(s):
"""
Convert in and from bytes uri format used in Registry contract
"""
# TODO: we should pad string with zeros till closest 32 bytes word because of a bug in processReceipt (in snet_cli.contract.process_receipt)
s = "ipfs://" + s
return s.encode("ascii").ljust(32 * (len(s)//32 + 1), b"\0") |
Tar files might be dangerous (see https://bugs.python.org/issue21109,
and https://docs.python.org/3/library/tarfile.html, TarFile.extractall warning)
we extract only simple files | def safe_extract_proto_from_ipfs(ipfs_client, ipfs_hash, protodir):
"""
Tar files might be dangerous (see https://bugs.python.org/issue21109,
and https://docs.python.org/3/library/tarfile.html, TarFile.extractall warning)
we extract only simple files
"""
spec_tar = get_from_ipfs_and_checkhash(ipfs_client, ipfs_hash)
with tarfile.open(fileobj=io.BytesIO(spec_tar)) as f:
for m in f.getmembers():
if (os.path.dirname(m.name) != ""):
raise Exception("tarball has directories. We do not support it.")
if (not m.isfile()):
raise Exception("tarball contains %s which is not a files"%m.name)
fullname = os.path.join(protodir, m.name)
if (os.path.exists(fullname)):
raise Exception("%s already exists."%fullname)
# now it is safe to call extractall
f.extractall(protodir) |
import protobuf and return stub and request class | def _get_stub_and_request_classes(self, service_name):
""" import protobuf and return stub and request class """
# Compile protobuf if needed
codegen_dir = Path.home().joinpath(".snet", "mpe_client", "control_service")
proto_dir = Path(__file__).absolute().parent.joinpath("resources", "proto")
if (not codegen_dir.joinpath("control_service_pb2.py").is_file()):
compile_proto(proto_dir, codegen_dir, proto_file = "control_service.proto")
stub_class, request_class, _ = import_protobuf_from_dir(codegen_dir, service_name)
return stub_class, request_class |
Safely run StartClaim for given channels | def _start_claim_channels(self, grpc_channel, channels_ids):
""" Safely run StartClaim for given channels """
unclaimed_payments = self._call_GetListUnclaimed(grpc_channel)
unclaimed_payments_dict = {p["channel_id"] : p for p in unclaimed_payments}
to_claim = []
for channel_id in channels_ids:
if (channel_id not in unclaimed_payments_dict or unclaimed_payments_dict[channel_id]["amount"] == 0):
self._printout("There is nothing to claim for channel %i, we skip it"%channel_id)
continue
blockchain = self._get_channel_state_from_blockchain(channel_id)
if (unclaimed_payments_dict[channel_id]["nonce"] != blockchain["nonce"]):
self._printout("Old payment for channel %i is still in progress. Please run claim for this channel later."%channel_id)
continue
to_claim.append((channel_id, blockchain["nonce"]))
payments = [self._call_StartClaim(grpc_channel, channel_id, nonce) for channel_id, nonce in to_claim]
return payments |
Claim all 'pending' payments in progress and after we claim given channels | def _claim_in_progress_and_claim_channels(self, grpc_channel, channels):
""" Claim all 'pending' payments in progress and after we claim given channels """
# first we get the list of all 'payments in progress' in case we 'lost' some payments.
payments = self._call_GetListInProgress(grpc_channel)
if (len(payments) > 0):
self._printout("There are %i payments in 'progress' (they haven't been claimed in blockchain). We will claim them."%len(payments))
self._blockchain_claim(payments)
payments = self._start_claim_channels(grpc_channel, channels)
self._blockchain_claim(payments) |
Create default configuration if config file does not exist | def create_default_config(self):
""" Create default configuration if config file does not exist """
# make config directory with the minimal possible permission
self._config_file.parent.mkdir(mode=0o700, exist_ok=True)
self["network.kovan"] = {"default_eth_rpc_endpoint": "https://kovan.infura.io", "default_gas_price" : "medium"}
self["network.mainnet"] = {"default_eth_rpc_endpoint": "https://mainnet.infura.io", "default_gas_price" : "medium"}
self["network.ropsten"] = {"default_eth_rpc_endpoint": "https://ropsten.infura.io", "default_gas_price" : "medium"}
self["network.rinkeby"] = {"default_eth_rpc_endpoint": "https://rinkeby.infura.io", "default_gas_price" : "medium"}
self["ipfs"] = {"default_ipfs_endpoint": "http://ipfs.singularitynet.io:80"}
self["session"] = {
"network": "kovan" }
self._persist()
print("We've created configuration file with default values in: %s\n"%str(self._config_file)) |
Dynamic import of grpc-protobuf from given directory (proto_dir)
service_name should be provided only in the case of conflicting method names (two methods with the same name in difference services).
Return stub_class, request_class, response_class
! We need response_class only for json payload encoding ! | def import_protobuf_from_dir(proto_dir, method_name, service_name = None):
"""
Dynamic import of grpc-protobuf from given directory (proto_dir)
service_name should be provided only in the case of conflicting method names (two methods with the same name in difference services).
Return stub_class, request_class, response_class
! We need response_class only for json payload encoding !
"""
proto_dir = Path(proto_dir)
# <SERVICE>_pb2_grpc.py import <SERVICE>_pb2.py so we are forced to add proto_dir to path
sys.path.append(str(proto_dir))
grpc_pyfiles = [str(os.path.basename(p)) for p in proto_dir.glob("*_pb2_grpc.py")]
good_rez = []
for grpc_pyfile in grpc_pyfiles:
is_found, rez = _import_protobuf_from_file(grpc_pyfile, method_name, service_name);
if (is_found): good_rez.append(rez)
if (len(good_rez) == 0):
raise Exception("Error while loading protobuf. Cannot find method=%s"%method_name)
if (len(good_rez) > 1):
if (service_name):
raise Exception("Error while loading protobuf. Found method %s.%s in multiply .proto files. We don't support packages yet!"%(service_name, method_name))
else:
raise Exception("Error while loading protobuf. Found method %s in multiply .proto files. You could try to specify service_name."%method_name)
return good_rez[0] |
helper function which try to import method from the given _pb2_grpc.py file
service_name should be provided only in case of name conflict
return (False, None) in case of failure
return (True, (stub_class, request_class, response_class)) in case of success | def _import_protobuf_from_file(grpc_pyfile, method_name, service_name = None):
"""
helper function which try to import method from the given _pb2_grpc.py file
service_name should be provided only in case of name conflict
return (False, None) in case of failure
return (True, (stub_class, request_class, response_class)) in case of success
"""
prefix = grpc_pyfile[:-12]
pb2 = __import__("%s_pb2"%prefix)
pb2_grpc = __import__("%s_pb2_grpc"%prefix)
# we take all objects from pb2_grpc module which endswith "Stub", and we remove this postfix to get service_name
all_service_names = [stub_name[:-4] for stub_name in dir(pb2_grpc) if stub_name.endswith("Stub")]
# if service_name was specified we take only this service_name
if (service_name):
if (service_name not in all_service_names):
return False, None
all_service_names = [service_name]
found_services = []
for service_name in all_service_names:
service_descriptor = getattr(pb2, "DESCRIPTOR").services_by_name[service_name]
for method in service_descriptor.methods:
if(method.name == method_name):
request_class = method.input_type._concrete_class
response_class = method.output_type._concrete_class
stub_class = getattr(pb2_grpc, "%sStub"%service_name)
found_services.append(service_name)
if (len(found_services) == 0):
return False, None
if (len(found_services) > 1):
raise Exception("Error while loading protobuf. We found methods %s in multiply services [%s]."
" You should specify service_name."%(method_name, ", ".join(found_services)))
return True, (stub_class, request_class, response_class) |
Switch payload encoding to JSON for GRPC call | def switch_to_json_payload_encoding(call_fn, response_class):
""" Switch payload encoding to JSON for GRPC call """
def json_serializer(*args, **kwargs):
return bytes(json_format.MessageToJson(args[0], True, preserving_proto_field_name=True), "utf-8")
def json_deserializer(*args, **kwargs):
resp = response_class()
json_format.Parse(args[0], resp, True)
return resp
call_fn._request_serializer = json_serializer
call_fn._response_deserializer = json_deserializer |
possible modifiers: file, b64encode, b64decode
format: modifier1@[email protected]@k_final | def _transform_call_params(self, params):
"""
possible modifiers: file, b64encode, b64decode
format: modifier1@[email protected]@k_final
"""
rez = {}
for k, v in params.items():
if isinstance(v, dict):
v = self._transform_call_params(v)
k_final = k
else:
# k = modifier1@[email protected]@k_final
k_split = k.split("@")
k_final = k_split[-1]
k_mods = k_split[:-1]
for m in k_mods:
if (m == "file"):
with open(v, 'rb') as f:
v = f.read()
elif (m == "b64encode"):
v = base64.b64encode(v)
elif (m == "b64decode"):
v = base64.b64decode(v)
else:
raise Exception("Unknown modifier ('%s') in call parameters. Possible modifiers: file, b64encode, b64decode"%m)
rez[k_final] = v
return rez |
We get state of the channel (nonce, amount, unspent_amount)
We do it by securely combine information from the server and blockchain
https://github.com/singnet/wiki/blob/master/multiPartyEscrowContract/MultiPartyEscrow_stateless_client.md | def _get_channel_state_statelessly(self, grpc_channel, channel_id):
"""
We get state of the channel (nonce, amount, unspent_amount)
We do it by securely combine information from the server and blockchain
https://github.com/singnet/wiki/blob/master/multiPartyEscrowContract/MultiPartyEscrow_stateless_client.md
"""
server = self._get_channel_state_from_server (grpc_channel, channel_id)
blockchain = self._get_channel_state_from_blockchain( channel_id)
if (server["current_nonce"] == blockchain["nonce"]):
unspent_amount = blockchain["value"] - server["current_signed_amount"]
else:
unspent_amount = None # in this case we cannot securely define unspent_amount yet
return (server["current_nonce"], server["current_signed_amount"], unspent_amount) |
Print balance of ETH, AGI, and MPE wallet | def print_agi_and_mpe_balances(self):
""" Print balance of ETH, AGI, and MPE wallet """
if (self.args.account):
account = self.args.account
else:
account = self.ident.address
eth_wei = self.w3.eth.getBalance(account)
agi_cogs = self.call_contract_command("SingularityNetToken", "balanceOf", [account])
mpe_cogs = self.call_contract_command("MultiPartyEscrow", "balances", [account])
# we cannot use _pprint here because it doesn't conserve order yet
self._printout(" account: %s"%account)
self._printout(" ETH: %s"%self.w3.fromWei(eth_wei, 'ether'))
self._printout(" AGI: %s"%cogs2stragi(agi_cogs))
self._printout(" MPE: %s"%cogs2stragi(mpe_cogs)) |
Publish proto files in ipfs and print hash | def publish_proto_in_ipfs(self):
""" Publish proto files in ipfs and print hash """
ipfs_hash_base58 = utils_ipfs.publish_proto_in_ipfs(self._get_ipfs_client(), self.args.protodir)
self._printout(ipfs_hash_base58) |
Publish protobuf model in ipfs and update existing metadata file | def publish_proto_metadata_update(self):
""" Publish protobuf model in ipfs and update existing metadata file """
metadata = load_mpe_service_metadata(self.args.metadata_file)
ipfs_hash_base58 = utils_ipfs.publish_proto_in_ipfs(self._get_ipfs_client(), self.args.protodir)
metadata.set_simple_field("model_ipfs_hash", ipfs_hash_base58)
metadata.save_pretty(self.args.metadata_file) |
Metadata: add endpoint to the group | def metadata_add_endpoints(self):
""" Metadata: add endpoint to the group """
metadata = load_mpe_service_metadata(self.args.metadata_file)
group_name = metadata.get_group_name_nonetrick(self.args.group_name)
for endpoint in self.args.endpoints:
metadata.add_endpoint(group_name, endpoint)
metadata.save_pretty(self.args.metadata_file) |
Metadata: remove all endpoints from all groups | def metadata_remove_all_endpoints(self):
""" Metadata: remove all endpoints from all groups """
metadata = load_mpe_service_metadata(self.args.metadata_file)
metadata.remove_all_endpoints()
metadata.save_pretty(self.args.metadata_file) |
Metadata: Remove all endpoints from the group and add new ones | def metadata_update_endpoints(self):
""" Metadata: Remove all endpoints from the group and add new ones """
metadata = load_mpe_service_metadata(self.args.metadata_file)
group_name = metadata.get_group_name_nonetrick(self.args.group_name)
metadata.remove_all_endpoints_for_group(group_name)
for endpoint in self.args.endpoints:
metadata.add_endpoint(group_name, endpoint)
metadata.save_pretty(self.args.metadata_file) |
get persistent storage for mpe | def _get_persistent_mpe_dir(self):
""" get persistent storage for mpe """
mpe_address = self.get_mpe_address().lower()
registry_address = self.get_registry_address().lower()
return Path.home().joinpath(".snet", "mpe_client", "%s_%s"%(mpe_address, registry_address)) |
return {channel_id: channel} | def _get_initialized_channels_dict_for_service(self, org_id, service_id):
'''return {channel_id: channel}'''
fn = self._get_channels_info_file(org_id, service_id)
if (os.path.isfile(fn)):
return pickle.load( open( fn, "rb" ) )
else:
return {} |