INSTRUCTION
stringlengths 1
46.3k
| RESPONSE
stringlengths 75
80.2k
|
---|---|
Return a function that raises a NotImplementedError with a passed node
name. | def _node_not_implemented(node_name, cls):
"""Return a function that raises a NotImplementedError with a passed node
name.
"""
def f(self, *args, **kwargs):
raise NotImplementedError("{name!r} nodes are not "
"implemented".format(name=node_name))
return f |
Decorator to disallow certain nodes from parsing. Raises a
NotImplementedError instead.
Returns
-------
disallowed : callable | def disallow(nodes):
"""Decorator to disallow certain nodes from parsing. Raises a
NotImplementedError instead.
Returns
-------
disallowed : callable
"""
def disallowed(cls):
cls.unsupported_nodes = ()
for node in nodes:
new_method = _node_not_implemented(node, cls)
name = 'visit_{node}'.format(node=node)
cls.unsupported_nodes += (name,)
setattr(cls, name, new_method)
return cls
return disallowed |
Return a function to create an op class with its symbol already passed.
Returns
-------
f : callable | def _op_maker(op_class, op_symbol):
"""Return a function to create an op class with its symbol already passed.
Returns
-------
f : callable
"""
def f(self, node, *args, **kwargs):
"""Return a partial function with an Op subclass with an operator
already passed.
Returns
-------
f : callable
"""
return partial(op_class, op_symbol, *args, **kwargs)
return f |
Decorator to add default implementation of ops. | def add_ops(op_classes):
"""Decorator to add default implementation of ops."""
def f(cls):
for op_attr_name, op_class in op_classes.items():
ops = getattr(cls, '{name}_ops'.format(name=op_attr_name))
ops_map = getattr(cls, '{name}_op_nodes_map'.format(
name=op_attr_name))
for op in ops:
op_node = ops_map[op]
if op_node is not None:
made_op = _op_maker(op_class, op)
setattr(cls, 'visit_{node}'.format(node=op_node), made_op)
return cls
return f |
Get the names in an expression | def names(self):
"""Get the names in an expression"""
if is_term(self.terms):
return frozenset([self.terms.name])
return frozenset(term.name for term in com.flatten(self.terms)) |
return a boolean whether I can attempt conversion to a TimedeltaIndex | def _is_convertible_to_index(other):
"""
return a boolean whether I can attempt conversion to a TimedeltaIndex
"""
if isinstance(other, TimedeltaIndex):
return True
elif (len(other) > 0 and
other.inferred_type not in ('floating', 'mixed-integer', 'integer',
'mixed-integer-float', 'mixed')):
return True
return False |
Return a fixed frequency TimedeltaIndex, with day as the default
frequency
Parameters
----------
start : string or timedelta-like, default None
Left bound for generating timedeltas
end : string or timedelta-like, default None
Right bound for generating timedeltas
periods : integer, default None
Number of periods to generate
freq : string or DateOffset, default 'D'
Frequency strings can have multiples, e.g. '5H'
name : string, default None
Name of the resulting TimedeltaIndex
closed : string, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None)
Returns
-------
rng : TimedeltaIndex
Notes
-----
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
exactly three must be specified. If ``freq`` is omitted, the resulting
``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
``start`` and ``end`` (closed on both sides).
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.
Examples
--------
>>> pd.timedelta_range(start='1 day', periods=4)
TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``closed`` parameter specifies which endpoint is included. The default
behavior is to include both endpoints.
>>> pd.timedelta_range(start='1 day', periods=4, closed='right')
TimedeltaIndex(['2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
Only fixed frequencies can be passed, non-fixed frequencies such as
'M' (month end) will raise.
>>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
'1 days 18:00:00', '2 days 00:00:00'],
dtype='timedelta64[ns]', freq='6H')
Specify ``start``, ``end``, and ``periods``; the frequency is generated
automatically (linearly spaced).
>>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
'5 days 00:00:00'],
dtype='timedelta64[ns]', freq=None) | def timedelta_range(start=None, end=None, periods=None, freq=None,
name=None, closed=None):
"""
Return a fixed frequency TimedeltaIndex, with day as the default
frequency
Parameters
----------
start : string or timedelta-like, default None
Left bound for generating timedeltas
end : string or timedelta-like, default None
Right bound for generating timedeltas
periods : integer, default None
Number of periods to generate
freq : string or DateOffset, default 'D'
Frequency strings can have multiples, e.g. '5H'
name : string, default None
Name of the resulting TimedeltaIndex
closed : string, default None
Make the interval closed with respect to the given frequency to
the 'left', 'right', or both sides (None)
Returns
-------
rng : TimedeltaIndex
Notes
-----
Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
exactly three must be specified. If ``freq`` is omitted, the resulting
``TimedeltaIndex`` will have ``periods`` linearly spaced elements between
``start`` and ``end`` (closed on both sides).
To learn more about the frequency strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.
Examples
--------
>>> pd.timedelta_range(start='1 day', periods=4)
TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``closed`` parameter specifies which endpoint is included. The default
behavior is to include both endpoints.
>>> pd.timedelta_range(start='1 day', periods=4, closed='right')
TimedeltaIndex(['2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq='D')
The ``freq`` parameter specifies the frequency of the TimedeltaIndex.
Only fixed frequencies can be passed, non-fixed frequencies such as
'M' (month end) will raise.
>>> pd.timedelta_range(start='1 day', end='2 days', freq='6H')
TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
'1 days 18:00:00', '2 days 00:00:00'],
dtype='timedelta64[ns]', freq='6H')
Specify ``start``, ``end``, and ``periods``; the frequency is generated
automatically (linearly spaced).
>>> pd.timedelta_range(start='1 day', end='5 days', periods=4)
TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00',
'5 days 00:00:00'],
dtype='timedelta64[ns]', freq=None)
"""
if freq is None and com._any_none(periods, start, end):
freq = 'D'
freq, freq_infer = dtl.maybe_infer_freq(freq)
tdarr = TimedeltaArray._generate_range(start, end, periods, freq,
closed=closed)
return TimedeltaIndex._simple_new(tdarr._data, freq=tdarr.freq, name=name) |
Returns a FrozenList with other concatenated to the end of self.
Parameters
----------
other : array-like
The array-like whose elements we are concatenating.
Returns
-------
diff : FrozenList
The collection difference between self and other. | def union(self, other):
"""
Returns a FrozenList with other concatenated to the end of self.
Parameters
----------
other : array-like
The array-like whose elements we are concatenating.
Returns
-------
diff : FrozenList
The collection difference between self and other.
"""
if isinstance(other, tuple):
other = list(other)
return type(self)(super().__add__(other)) |
Returns a FrozenList with elements from other removed from self.
Parameters
----------
other : array-like
The array-like whose elements we are removing self.
Returns
-------
diff : FrozenList
The collection difference between self and other. | def difference(self, other):
"""
Returns a FrozenList with elements from other removed from self.
Parameters
----------
other : array-like
The array-like whose elements we are removing self.
Returns
-------
diff : FrozenList
The collection difference between self and other.
"""
other = set(other)
temp = [x for x in self if x not in other]
return type(self)(temp) |
Find indices to insert `value` so as to maintain order.
For full documentation, see `numpy.searchsorted`
See Also
--------
numpy.searchsorted : Equivalent function. | def searchsorted(self, value, side="left", sorter=None):
"""
Find indices to insert `value` so as to maintain order.
For full documentation, see `numpy.searchsorted`
See Also
--------
numpy.searchsorted : Equivalent function.
"""
# We are much more performant if the searched
# indexer is the same type as the array.
#
# This doesn't matter for int64, but DOES
# matter for smaller int dtypes.
#
# xref: https://github.com/numpy/numpy/issues/5370
try:
value = self.dtype.type(value)
except ValueError:
pass
return super().searchsorted(value, side=side, sorter=sorter) |
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases. | def arrays_to_mgr(arrays, arr_names, index, columns, dtype=None):
"""
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases.
"""
# figure out the index, if necessary
if index is None:
index = extract_index(arrays)
else:
index = ensure_index(index)
# don't force copy because getting jammed in an ndarray anyway
arrays = _homogenize(arrays, index, dtype)
# from BlockManager perspective
axes = [ensure_index(columns), index]
return create_block_manager_from_arrays(arrays, arr_names, axes) |
Extract from a masked rec array and create the manager. | def masked_rec_array_to_mgr(data, index, columns, dtype, copy):
"""
Extract from a masked rec array and create the manager.
"""
# essentially process a record array then fill it
fill_value = data.fill_value
fdata = ma.getdata(data)
if index is None:
index = get_names_from_index(fdata)
if index is None:
index = ibase.default_index(len(data))
index = ensure_index(index)
if columns is not None:
columns = ensure_index(columns)
arrays, arr_columns = to_arrays(fdata, columns)
# fill if needed
new_arrays = []
for fv, arr, col in zip(fill_value, arrays, arr_columns):
mask = ma.getmaskarray(data[col])
if mask.any():
arr, fv = maybe_upcast(arr, fill_value=fv, copy=True)
arr[mask] = fv
new_arrays.append(arr)
# create the manager
arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns)
if columns is None:
columns = arr_columns
mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype)
if copy:
mgr = mgr.copy()
return mgr |
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases. | def init_dict(data, index, columns, dtype=None):
"""
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases.
"""
if columns is not None:
from pandas.core.series import Series
arrays = Series(data, index=columns, dtype=object)
data_names = arrays.index
missing = arrays.isnull()
if index is None:
# GH10856
# raise ValueError if only scalars in dict
index = extract_index(arrays[~missing])
else:
index = ensure_index(index)
# no obvious "empty" int column
if missing.any() and not is_integer_dtype(dtype):
if dtype is None or np.issubdtype(dtype, np.flexible):
# GH#1783
nan_dtype = object
else:
nan_dtype = dtype
val = construct_1d_arraylike_from_scalar(np.nan, len(index),
nan_dtype)
arrays.loc[missing] = [val] * missing.sum()
else:
keys = com.dict_keys_to_ordered_list(data)
columns = data_names = Index(keys)
# GH#24096 need copy to be deep for datetime64tz case
# TODO: See if we can avoid these copies
arrays = [data[k] if not is_datetime64tz_dtype(data[k]) else
data[k].copy(deep=True) for k in keys]
return arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype) |
Return list of arrays, columns. | def to_arrays(data, columns, coerce_float=False, dtype=None):
"""
Return list of arrays, columns.
"""
if isinstance(data, ABCDataFrame):
if columns is not None:
arrays = [data._ixs(i, axis=1).values
for i, col in enumerate(data.columns) if col in columns]
else:
columns = data.columns
arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]
return arrays, columns
if not len(data):
if isinstance(data, np.ndarray):
columns = data.dtype.names
if columns is not None:
return [[]] * len(columns), columns
return [], [] # columns if columns is not None else []
if isinstance(data[0], (list, tuple)):
return _list_to_arrays(data, columns, coerce_float=coerce_float,
dtype=dtype)
elif isinstance(data[0], abc.Mapping):
return _list_of_dict_to_arrays(data, columns,
coerce_float=coerce_float, dtype=dtype)
elif isinstance(data[0], ABCSeries):
return _list_of_series_to_arrays(data, columns,
coerce_float=coerce_float,
dtype=dtype)
elif isinstance(data[0], Categorical):
if columns is None:
columns = ibase.default_index(len(data))
return data, columns
elif (isinstance(data, (np.ndarray, ABCSeries, Index)) and
data.dtype.names is not None):
columns = list(data.dtype.names)
arrays = [data[k] for k in columns]
return arrays, columns
else:
# last ditch effort
data = lmap(tuple, data)
return _list_to_arrays(data, columns, coerce_float=coerce_float,
dtype=dtype) |
Sanitize an index type to return an ndarray of the underlying, pass
through a non-Index. | def sanitize_index(data, index, copy=False):
"""
Sanitize an index type to return an ndarray of the underlying, pass
through a non-Index.
"""
if index is None:
return data
if len(data) != len(index):
raise ValueError('Length of values does not match length of index')
if isinstance(data, ABCIndexClass) and not copy:
pass
elif isinstance(data, (ABCPeriodIndex, ABCDatetimeIndex)):
data = data._values
if copy:
data = data.copy()
elif isinstance(data, np.ndarray):
# coerce datetimelike types
if data.dtype.kind in ['M', 'm']:
data = sanitize_array(data, index, copy=copy)
return data |
Sanitize input data to an ndarray, copy if specified, coerce to the
dtype if specified. | def sanitize_array(data, index, dtype=None, copy=False,
raise_cast_failure=False):
"""
Sanitize input data to an ndarray, copy if specified, coerce to the
dtype if specified.
"""
if dtype is not None:
dtype = pandas_dtype(dtype)
if isinstance(data, ma.MaskedArray):
mask = ma.getmaskarray(data)
if mask.any():
data, fill_value = maybe_upcast(data, copy=True)
data.soften_mask() # set hardmask False if it was True
data[mask] = fill_value
else:
data = data.copy()
data = extract_array(data, extract_numpy=True)
# GH#846
if isinstance(data, np.ndarray):
if dtype is not None:
subarr = np.array(data, copy=False)
# possibility of nan -> garbage
if is_float_dtype(data.dtype) and is_integer_dtype(dtype):
try:
subarr = _try_cast(data, True, dtype, copy,
True)
except ValueError:
if copy:
subarr = data.copy()
else:
subarr = _try_cast(data, True, dtype, copy, raise_cast_failure)
elif isinstance(data, Index):
# don't coerce Index types
# e.g. indexes can have different conversions (so don't fast path
# them)
# GH#6140
subarr = sanitize_index(data, index, copy=copy)
else:
# we will try to copy be-definition here
subarr = _try_cast(data, True, dtype, copy, raise_cast_failure)
elif isinstance(data, ExtensionArray):
if isinstance(data, ABCPandasArray):
# We don't want to let people put our PandasArray wrapper
# (the output of Series/Index.array), into a Series. So
# we explicitly unwrap it here.
subarr = data.to_numpy()
else:
subarr = data
# everything else in this block must also handle ndarray's,
# becuase we've unwrapped PandasArray into an ndarray.
if dtype is not None:
subarr = data.astype(dtype)
if copy:
subarr = data.copy()
return subarr
elif isinstance(data, (list, tuple)) and len(data) > 0:
if dtype is not None:
try:
subarr = _try_cast(data, False, dtype, copy,
raise_cast_failure)
except Exception:
if raise_cast_failure: # pragma: no cover
raise
subarr = np.array(data, dtype=object, copy=copy)
subarr = lib.maybe_convert_objects(subarr)
else:
subarr = maybe_convert_platform(data)
subarr = maybe_cast_to_datetime(subarr, dtype)
elif isinstance(data, range):
# GH#16804
arr = np.arange(data.start, data.stop, data.step, dtype='int64')
subarr = _try_cast(arr, False, dtype, copy, raise_cast_failure)
else:
subarr = _try_cast(data, False, dtype, copy, raise_cast_failure)
# scalar like, GH
if getattr(subarr, 'ndim', 0) == 0:
if isinstance(data, list): # pragma: no cover
subarr = np.array(data, dtype=object)
elif index is not None:
value = data
# figure out the dtype from the value (upcast if necessary)
if dtype is None:
dtype, value = infer_dtype_from_scalar(value)
else:
# need to possibly convert the value here
value = maybe_cast_to_datetime(value, dtype)
subarr = construct_1d_arraylike_from_scalar(
value, len(index), dtype)
else:
return subarr.item()
# the result that we want
elif subarr.ndim == 1:
if index is not None:
# a 1-element ndarray
if len(subarr) != len(index) and len(subarr) == 1:
subarr = construct_1d_arraylike_from_scalar(
subarr[0], len(index), subarr.dtype)
elif subarr.ndim > 1:
if isinstance(data, np.ndarray):
raise Exception('Data must be 1-dimensional')
else:
subarr = com.asarray_tuplesafe(data, dtype=dtype)
# This is to prevent mixed-type Series getting all casted to
# NumPy string type, e.g. NaN --> '-1#IND'.
if issubclass(subarr.dtype.type, str):
# GH#16605
# If not empty convert the data to dtype
# GH#19853: If data is a scalar, subarr has already the result
if not lib.is_scalar(data):
if not np.all(isna(data)):
data = np.array(data, dtype=dtype, copy=False)
subarr = np.array(data, dtype=object, copy=copy)
if is_object_dtype(subarr.dtype) and dtype != 'object':
inferred = lib.infer_dtype(subarr, skipna=False)
if inferred == 'period':
try:
subarr = period_array(subarr)
except IncompatibleFrequency:
pass
return subarr |
Make sure a valid engine is passed.
Parameters
----------
engine : str
Raises
------
KeyError
* If an invalid engine is passed
ImportError
* If numexpr was requested but doesn't exist
Returns
-------
string engine | def _check_engine(engine):
"""Make sure a valid engine is passed.
Parameters
----------
engine : str
Raises
------
KeyError
* If an invalid engine is passed
ImportError
* If numexpr was requested but doesn't exist
Returns
-------
string engine
"""
from pandas.core.computation.check import _NUMEXPR_INSTALLED
if engine is None:
if _NUMEXPR_INSTALLED:
engine = 'numexpr'
else:
engine = 'python'
if engine not in _engines:
valid = list(_engines.keys())
raise KeyError('Invalid engine {engine!r} passed, valid engines are'
' {valid}'.format(engine=engine, valid=valid))
# TODO: validate this in a more general way (thinking of future engines
# that won't necessarily be import-able)
# Could potentially be done on engine instantiation
if engine == 'numexpr':
if not _NUMEXPR_INSTALLED:
raise ImportError("'numexpr' is not installed or an "
"unsupported version. Cannot use "
"engine='numexpr' for query/eval "
"if 'numexpr' is not installed")
return engine |
Make sure a valid parser is passed.
Parameters
----------
parser : str
Raises
------
KeyError
* If an invalid parser is passed | def _check_parser(parser):
"""Make sure a valid parser is passed.
Parameters
----------
parser : str
Raises
------
KeyError
* If an invalid parser is passed
"""
from pandas.core.computation.expr import _parsers
if parser not in _parsers:
raise KeyError('Invalid parser {parser!r} passed, valid parsers are'
' {valid}'.format(parser=parser, valid=_parsers.keys())) |
Evaluate a Python expression as a string using various backends.
The following arithmetic operations are supported: ``+``, ``-``, ``*``,
``/``, ``**``, ``%``, ``//`` (python engine only) along with the following
boolean operations: ``|`` (or), ``&`` (and), and ``~`` (not).
Additionally, the ``'pandas'`` parser allows the use of :keyword:`and`,
:keyword:`or`, and :keyword:`not` with the same semantics as the
corresponding bitwise operators. :class:`~pandas.Series` and
:class:`~pandas.DataFrame` objects are supported and behave as they would
with plain ol' Python evaluation.
Parameters
----------
expr : str or unicode
The expression to evaluate. This string cannot contain any Python
`statements
<https://docs.python.org/3/reference/simple_stmts.html#simple-statements>`__,
only Python `expressions
<https://docs.python.org/3/reference/simple_stmts.html#expression-statements>`__.
parser : string, default 'pandas', {'pandas', 'python'}
The parser to use to construct the syntax tree from the expression. The
default of ``'pandas'`` parses code slightly different than standard
Python. Alternatively, you can parse an expression using the
``'python'`` parser to retain strict Python semantics. See the
:ref:`enhancing performance <enhancingperf.eval>` documentation for
more details.
engine : string or None, default 'numexpr', {'python', 'numexpr'}
The engine used to evaluate the expression. Supported engines are
- None : tries to use ``numexpr``, falls back to ``python``
- ``'numexpr'``: This default engine evaluates pandas objects using
numexpr for large speed ups in complex expressions
with large frames.
- ``'python'``: Performs operations as if you had ``eval``'d in top
level python. This engine is generally not that useful.
More backends may be available in the future.
truediv : bool, optional
Whether to use true division, like in Python >= 3
local_dict : dict or None, optional
A dictionary of local variables, taken from locals() by default.
global_dict : dict or None, optional
A dictionary of global variables, taken from globals() by default.
resolvers : list of dict-like or None, optional
A list of objects implementing the ``__getitem__`` special method that
you can use to inject an additional collection of namespaces to use for
variable lookup. For example, this is used in the
:meth:`~DataFrame.query` method to inject the
``DataFrame.index`` and ``DataFrame.columns``
variables that refer to their respective :class:`~pandas.DataFrame`
instance attributes.
level : int, optional
The number of prior stack frames to traverse and add to the current
scope. Most users will **not** need to change this parameter.
target : object, optional, default None
This is the target object for assignment. It is used when there is
variable assignment in the expression. If so, then `target` must
support item assignment with string keys, and if a copy is being
returned, it must also support `.copy()`.
inplace : bool, default False
If `target` is provided, and the expression mutates `target`, whether
to modify `target` inplace. Otherwise, return a copy of `target` with
the mutation.
Returns
-------
ndarray, numeric scalar, DataFrame, Series
Raises
------
ValueError
There are many instances where such an error can be raised:
- `target=None`, but the expression is multiline.
- The expression is multiline, but not all them have item assignment.
An example of such an arrangement is this:
a = b + 1
a + 2
Here, there are expressions on different lines, making it multiline,
but the last line has no variable assigned to the output of `a + 2`.
- `inplace=True`, but the expression is missing item assignment.
- Item assignment is provided, but the `target` does not support
string item assignment.
- Item assignment is provided and `inplace=False`, but the `target`
does not support the `.copy()` method
See Also
--------
DataFrame.query
DataFrame.eval
Notes
-----
The ``dtype`` of any objects involved in an arithmetic ``%`` operation are
recursively cast to ``float64``.
See the :ref:`enhancing performance <enhancingperf.eval>` documentation for
more details. | def eval(expr, parser='pandas', engine=None, truediv=True,
local_dict=None, global_dict=None, resolvers=(), level=0,
target=None, inplace=False):
"""Evaluate a Python expression as a string using various backends.
The following arithmetic operations are supported: ``+``, ``-``, ``*``,
``/``, ``**``, ``%``, ``//`` (python engine only) along with the following
boolean operations: ``|`` (or), ``&`` (and), and ``~`` (not).
Additionally, the ``'pandas'`` parser allows the use of :keyword:`and`,
:keyword:`or`, and :keyword:`not` with the same semantics as the
corresponding bitwise operators. :class:`~pandas.Series` and
:class:`~pandas.DataFrame` objects are supported and behave as they would
with plain ol' Python evaluation.
Parameters
----------
expr : str or unicode
The expression to evaluate. This string cannot contain any Python
`statements
<https://docs.python.org/3/reference/simple_stmts.html#simple-statements>`__,
only Python `expressions
<https://docs.python.org/3/reference/simple_stmts.html#expression-statements>`__.
parser : string, default 'pandas', {'pandas', 'python'}
The parser to use to construct the syntax tree from the expression. The
default of ``'pandas'`` parses code slightly different than standard
Python. Alternatively, you can parse an expression using the
``'python'`` parser to retain strict Python semantics. See the
:ref:`enhancing performance <enhancingperf.eval>` documentation for
more details.
engine : string or None, default 'numexpr', {'python', 'numexpr'}
The engine used to evaluate the expression. Supported engines are
- None : tries to use ``numexpr``, falls back to ``python``
- ``'numexpr'``: This default engine evaluates pandas objects using
numexpr for large speed ups in complex expressions
with large frames.
- ``'python'``: Performs operations as if you had ``eval``'d in top
level python. This engine is generally not that useful.
More backends may be available in the future.
truediv : bool, optional
Whether to use true division, like in Python >= 3
local_dict : dict or None, optional
A dictionary of local variables, taken from locals() by default.
global_dict : dict or None, optional
A dictionary of global variables, taken from globals() by default.
resolvers : list of dict-like or None, optional
A list of objects implementing the ``__getitem__`` special method that
you can use to inject an additional collection of namespaces to use for
variable lookup. For example, this is used in the
:meth:`~DataFrame.query` method to inject the
``DataFrame.index`` and ``DataFrame.columns``
variables that refer to their respective :class:`~pandas.DataFrame`
instance attributes.
level : int, optional
The number of prior stack frames to traverse and add to the current
scope. Most users will **not** need to change this parameter.
target : object, optional, default None
This is the target object for assignment. It is used when there is
variable assignment in the expression. If so, then `target` must
support item assignment with string keys, and if a copy is being
returned, it must also support `.copy()`.
inplace : bool, default False
If `target` is provided, and the expression mutates `target`, whether
to modify `target` inplace. Otherwise, return a copy of `target` with
the mutation.
Returns
-------
ndarray, numeric scalar, DataFrame, Series
Raises
------
ValueError
There are many instances where such an error can be raised:
- `target=None`, but the expression is multiline.
- The expression is multiline, but not all them have item assignment.
An example of such an arrangement is this:
a = b + 1
a + 2
Here, there are expressions on different lines, making it multiline,
but the last line has no variable assigned to the output of `a + 2`.
- `inplace=True`, but the expression is missing item assignment.
- Item assignment is provided, but the `target` does not support
string item assignment.
- Item assignment is provided and `inplace=False`, but the `target`
does not support the `.copy()` method
See Also
--------
DataFrame.query
DataFrame.eval
Notes
-----
The ``dtype`` of any objects involved in an arithmetic ``%`` operation are
recursively cast to ``float64``.
See the :ref:`enhancing performance <enhancingperf.eval>` documentation for
more details.
"""
from pandas.core.computation.expr import Expr
inplace = validate_bool_kwarg(inplace, "inplace")
if isinstance(expr, str):
_check_expression(expr)
exprs = [e.strip() for e in expr.splitlines() if e.strip() != '']
else:
exprs = [expr]
multi_line = len(exprs) > 1
if multi_line and target is None:
raise ValueError("multi-line expressions are only valid in the "
"context of data, use DataFrame.eval")
ret = None
first_expr = True
target_modified = False
for expr in exprs:
expr = _convert_expression(expr)
engine = _check_engine(engine)
_check_parser(parser)
_check_resolvers(resolvers)
_check_for_locals(expr, level, parser)
# get our (possibly passed-in) scope
env = _ensure_scope(level + 1, global_dict=global_dict,
local_dict=local_dict, resolvers=resolvers,
target=target)
parsed_expr = Expr(expr, engine=engine, parser=parser, env=env,
truediv=truediv)
# construct the engine and evaluate the parsed expression
eng = _engines[engine]
eng_inst = eng(parsed_expr)
ret = eng_inst.evaluate()
if parsed_expr.assigner is None:
if multi_line:
raise ValueError("Multi-line expressions are only valid"
" if all expressions contain an assignment")
elif inplace:
raise ValueError("Cannot operate inplace "
"if there is no assignment")
# assign if needed
assigner = parsed_expr.assigner
if env.target is not None and assigner is not None:
target_modified = True
# if returning a copy, copy only on the first assignment
if not inplace and first_expr:
try:
target = env.target.copy()
except AttributeError:
raise ValueError("Cannot return a copy of the target")
else:
target = env.target
# TypeError is most commonly raised (e.g. int, list), but you
# get IndexError if you try to do this assignment on np.ndarray.
# we will ignore numpy warnings here; e.g. if trying
# to use a non-numeric indexer
try:
with warnings.catch_warnings(record=True):
# TODO: Filter the warnings we actually care about here.
target[assigner] = ret
except (TypeError, IndexError):
raise ValueError("Cannot assign expression output to target")
if not resolvers:
resolvers = ({assigner: ret},)
else:
# existing resolver needs updated to handle
# case of mutating existing column in copy
for resolver in resolvers:
if assigner in resolver:
resolver[assigner] = ret
break
else:
resolvers += ({assigner: ret},)
ret = None
first_expr = False
# We want to exclude `inplace=None` as being False.
if inplace is False:
return target if target_modified else ret |
Transform combination(s) of uint64 in one uint64 (each), in a strictly
monotonic way (i.e. respecting the lexicographic order of integer
combinations): see BaseMultiIndexCodesEngine documentation.
Parameters
----------
codes : 1- or 2-dimensional array of dtype uint64
Combinations of integers (one per row)
Returns
------
int_keys : scalar or 1-dimensional array, of dtype uint64
Integer(s) representing one combination (each). | def _codes_to_ints(self, codes):
"""
Transform combination(s) of uint64 in one uint64 (each), in a strictly
monotonic way (i.e. respecting the lexicographic order of integer
combinations): see BaseMultiIndexCodesEngine documentation.
Parameters
----------
codes : 1- or 2-dimensional array of dtype uint64
Combinations of integers (one per row)
Returns
------
int_keys : scalar or 1-dimensional array, of dtype uint64
Integer(s) representing one combination (each).
"""
# Shift the representation of each level by the pre-calculated number
# of bits:
codes <<= self.offsets
# Now sum and OR are in fact interchangeable. This is a simple
# composition of the (disjunct) significant bits of each level (i.e.
# each column in "codes") in a single positive integer:
if codes.ndim == 1:
# Single key
return np.bitwise_or.reduce(codes)
# Multiple keys
return np.bitwise_or.reduce(codes, axis=1) |
Convert arrays to MultiIndex.
Parameters
----------
arrays : list / sequence of array-likes
Each array-like gives one level's value for each data point.
len(arrays) is the number of levels.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex(levels=[[1, 2], ['blue', 'red']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color']) | def from_arrays(cls, arrays, sortorder=None, names=None):
"""
Convert arrays to MultiIndex.
Parameters
----------
arrays : list / sequence of array-likes
Each array-like gives one level's value for each data point.
len(arrays) is the number of levels.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))
MultiIndex(levels=[[1, 2], ['blue', 'red']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color'])
"""
error_msg = "Input must be a list / sequence of array-likes."
if not is_list_like(arrays):
raise TypeError(error_msg)
elif is_iterator(arrays):
arrays = list(arrays)
# Check if elements of array are list-like
for array in arrays:
if not is_list_like(array):
raise TypeError(error_msg)
# Check if lengths of all arrays are equal or not,
# raise ValueError, if not
for i in range(1, len(arrays)):
if len(arrays[i]) != len(arrays[i - 1]):
raise ValueError('all arrays must be same length')
from pandas.core.arrays.categorical import _factorize_from_iterables
codes, levels = _factorize_from_iterables(arrays)
if names is None:
names = [getattr(arr, "name", None) for arr in arrays]
return MultiIndex(levels=levels, codes=codes, sortorder=sortorder,
names=names, verify_integrity=False) |
Convert list of tuples to MultiIndex.
Parameters
----------
tuples : list / sequence of tuple-likes
Each tuple is the index of one row/column.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> tuples = [(1, 'red'), (1, 'blue'),
... (2, 'red'), (2, 'blue')]
>>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
MultiIndex(levels=[[1, 2], ['blue', 'red']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color']) | def from_tuples(cls, tuples, sortorder=None, names=None):
"""
Convert list of tuples to MultiIndex.
Parameters
----------
tuples : list / sequence of tuple-likes
Each tuple is the index of one row/column.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> tuples = [(1, 'red'), (1, 'blue'),
... (2, 'red'), (2, 'blue')]
>>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color'))
MultiIndex(levels=[[1, 2], ['blue', 'red']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['number', 'color'])
"""
if not is_list_like(tuples):
raise TypeError('Input must be a list / sequence of tuple-likes.')
elif is_iterator(tuples):
tuples = list(tuples)
if len(tuples) == 0:
if names is None:
msg = 'Cannot infer number of levels from empty list'
raise TypeError(msg)
arrays = [[]] * len(names)
elif isinstance(tuples, (np.ndarray, Index)):
if isinstance(tuples, Index):
tuples = tuples._values
arrays = list(lib.tuples_to_object_array(tuples).T)
elif isinstance(tuples, list):
arrays = list(lib.to_object_array_tuples(tuples).T)
else:
arrays = lzip(*tuples)
return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names) |
Make a MultiIndex from the cartesian product of multiple iterables.
Parameters
----------
iterables : list / sequence of iterables
Each iterable has unique labels for each level of the index.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> numbers = [0, 1, 2]
>>> colors = ['green', 'purple']
>>> pd.MultiIndex.from_product([numbers, colors],
... names=['number', 'color'])
MultiIndex(levels=[[0, 1, 2], ['green', 'purple']],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=['number', 'color']) | def from_product(cls, iterables, sortorder=None, names=None):
"""
Make a MultiIndex from the cartesian product of multiple iterables.
Parameters
----------
iterables : list / sequence of iterables
Each iterable has unique labels for each level of the index.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples
--------
>>> numbers = [0, 1, 2]
>>> colors = ['green', 'purple']
>>> pd.MultiIndex.from_product([numbers, colors],
... names=['number', 'color'])
MultiIndex(levels=[[0, 1, 2], ['green', 'purple']],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=['number', 'color'])
"""
from pandas.core.arrays.categorical import _factorize_from_iterables
from pandas.core.reshape.util import cartesian_product
if not is_list_like(iterables):
raise TypeError("Input must be a list / sequence of iterables.")
elif is_iterator(iterables):
iterables = list(iterables)
codes, levels = _factorize_from_iterables(iterables)
codes = cartesian_product(codes)
return MultiIndex(levels, codes, sortorder=sortorder, names=names) |
Make a MultiIndex from a DataFrame.
.. versionadded:: 0.24.0
Parameters
----------
df : DataFrame
DataFrame to be converted to MultiIndex.
sortorder : int, optional
Level of sortedness (must be lexicographically sorted by that
level).
names : list-like, optional
If no names are provided, use the column names, or tuple of column
names if the columns is a MultiIndex. If a sequence, overwrite
names with the given sequence.
Returns
-------
MultiIndex
The MultiIndex representation of the given DataFrame.
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
Examples
--------
>>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
... ['NJ', 'Temp'], ['NJ', 'Precip']],
... columns=['a', 'b'])
>>> df
a b
0 HI Temp
1 HI Precip
2 NJ Temp
3 NJ Precip
>>> pd.MultiIndex.from_frame(df)
MultiIndex(levels=[['HI', 'NJ'], ['Precip', 'Temp']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['a', 'b'])
Using explicit names, instead of the column names
>>> pd.MultiIndex.from_frame(df, names=['state', 'observation'])
MultiIndex(levels=[['HI', 'NJ'], ['Precip', 'Temp']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['state', 'observation']) | def from_frame(cls, df, sortorder=None, names=None):
"""
Make a MultiIndex from a DataFrame.
.. versionadded:: 0.24.0
Parameters
----------
df : DataFrame
DataFrame to be converted to MultiIndex.
sortorder : int, optional
Level of sortedness (must be lexicographically sorted by that
level).
names : list-like, optional
If no names are provided, use the column names, or tuple of column
names if the columns is a MultiIndex. If a sequence, overwrite
names with the given sequence.
Returns
-------
MultiIndex
The MultiIndex representation of the given DataFrame.
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
Examples
--------
>>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
... ['NJ', 'Temp'], ['NJ', 'Precip']],
... columns=['a', 'b'])
>>> df
a b
0 HI Temp
1 HI Precip
2 NJ Temp
3 NJ Precip
>>> pd.MultiIndex.from_frame(df)
MultiIndex(levels=[['HI', 'NJ'], ['Precip', 'Temp']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['a', 'b'])
Using explicit names, instead of the column names
>>> pd.MultiIndex.from_frame(df, names=['state', 'observation'])
MultiIndex(levels=[['HI', 'NJ'], ['Precip', 'Temp']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
names=['state', 'observation'])
"""
if not isinstance(df, ABCDataFrame):
raise TypeError("Input must be a DataFrame")
column_names, columns = lzip(*df.iteritems())
names = column_names if names is None else names
return cls.from_arrays(columns, sortorder=sortorder, names=names) |
Set new levels on MultiIndex. Defaults to returning
new index.
Parameters
----------
levels : sequence or list of sequence
new level(s) to apply
level : int, level name, or sequence of int/level names (default None)
level(s) to set (None for all levels)
inplace : bool
if True, mutates in place
verify_integrity : bool (default True)
if True, checks that levels and codes are compatible
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')],
names=['foo', 'bar'])
>>> idx.set_levels([['a','b'], [1,2]])
MultiIndex(levels=[['a', 'b'], [1, 2]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels(['a','b'], level=0)
MultiIndex(levels=[['a', 'b'], ['one', 'two']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels(['a','b'], level='bar')
MultiIndex(levels=[[1, 2], ['a', 'b']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels([['a','b'], [1,2]], level=[0,1])
MultiIndex(levels=[['a', 'b'], [1, 2]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar']) | def set_levels(self, levels, level=None, inplace=False,
verify_integrity=True):
"""
Set new levels on MultiIndex. Defaults to returning
new index.
Parameters
----------
levels : sequence or list of sequence
new level(s) to apply
level : int, level name, or sequence of int/level names (default None)
level(s) to set (None for all levels)
inplace : bool
if True, mutates in place
verify_integrity : bool (default True)
if True, checks that levels and codes are compatible
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')],
names=['foo', 'bar'])
>>> idx.set_levels([['a','b'], [1,2]])
MultiIndex(levels=[['a', 'b'], [1, 2]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels(['a','b'], level=0)
MultiIndex(levels=[['a', 'b'], ['one', 'two']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels(['a','b'], level='bar')
MultiIndex(levels=[[1, 2], ['a', 'b']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_levels([['a','b'], [1,2]], level=[0,1])
MultiIndex(levels=[['a', 'b'], [1, 2]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['foo', 'bar'])
"""
if is_list_like(levels) and not isinstance(levels, Index):
levels = list(levels)
if level is not None and not is_list_like(level):
if not is_list_like(levels):
raise TypeError("Levels must be list-like")
if is_list_like(levels[0]):
raise TypeError("Levels must be list-like")
level = [level]
levels = [levels]
elif level is None or is_list_like(level):
if not is_list_like(levels) or not is_list_like(levels[0]):
raise TypeError("Levels must be list of lists-like")
if inplace:
idx = self
else:
idx = self._shallow_copy()
idx._reset_identity()
idx._set_levels(levels, level=level, validate=True,
verify_integrity=verify_integrity)
if not inplace:
return idx |
Set new codes on MultiIndex. Defaults to returning
new index.
.. versionadded:: 0.24.0
New name for deprecated method `set_labels`.
Parameters
----------
codes : sequence or list of sequence
new codes to apply
level : int, level name, or sequence of int/level names (default None)
level(s) to set (None for all levels)
inplace : bool
if True, mutates in place
verify_integrity : bool (default True)
if True, checks that levels and codes are compatible
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')],
names=['foo', 'bar'])
>>> idx.set_codes([[1,0,1,0], [0,0,1,1]])
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([1,0,1,0], level=0)
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([0,0,1,1], level='bar')
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[0, 0, 1, 1], [0, 0, 1, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([[1,0,1,0], [0,0,1,1]], level=[0,1])
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=['foo', 'bar']) | def set_codes(self, codes, level=None, inplace=False,
verify_integrity=True):
"""
Set new codes on MultiIndex. Defaults to returning
new index.
.. versionadded:: 0.24.0
New name for deprecated method `set_labels`.
Parameters
----------
codes : sequence or list of sequence
new codes to apply
level : int, level name, or sequence of int/level names (default None)
level(s) to set (None for all levels)
inplace : bool
if True, mutates in place
verify_integrity : bool (default True)
if True, checks that levels and codes are compatible
Returns
-------
new index (of same type and class...etc)
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')],
names=['foo', 'bar'])
>>> idx.set_codes([[1,0,1,0], [0,0,1,1]])
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([1,0,1,0], level=0)
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 1, 0, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([0,0,1,1], level='bar')
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[0, 0, 1, 1], [0, 0, 1, 1]],
names=['foo', 'bar'])
>>> idx.set_codes([[1,0,1,0], [0,0,1,1]], level=[0,1])
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=['foo', 'bar'])
"""
if level is not None and not is_list_like(level):
if not is_list_like(codes):
raise TypeError("Codes must be list-like")
if is_list_like(codes[0]):
raise TypeError("Codes must be list-like")
level = [level]
codes = [codes]
elif level is None or is_list_like(level):
if not is_list_like(codes) or not is_list_like(codes[0]):
raise TypeError("Codes must be list of lists-like")
if inplace:
idx = self
else:
idx = self._shallow_copy()
idx._reset_identity()
idx._set_codes(codes, level=level, verify_integrity=verify_integrity)
if not inplace:
return idx |
Make a copy of this object. Names, dtype, levels and codes can be
passed and will be set on new copy.
Parameters
----------
names : sequence, optional
dtype : numpy dtype or pandas type, optional
levels : sequence, optional
codes : sequence, optional
Returns
-------
copy : MultiIndex
Notes
-----
In most cases, there should be no functional difference from using
``deep``, but if ``deep`` is passed it will attempt to deepcopy.
This could be potentially expensive on large MultiIndex objects. | def copy(self, names=None, dtype=None, levels=None, codes=None,
deep=False, _set_identity=False, **kwargs):
"""
Make a copy of this object. Names, dtype, levels and codes can be
passed and will be set on new copy.
Parameters
----------
names : sequence, optional
dtype : numpy dtype or pandas type, optional
levels : sequence, optional
codes : sequence, optional
Returns
-------
copy : MultiIndex
Notes
-----
In most cases, there should be no functional difference from using
``deep``, but if ``deep`` is passed it will attempt to deepcopy.
This could be potentially expensive on large MultiIndex objects.
"""
name = kwargs.get('name')
names = self._validate_names(name=name, names=names, deep=deep)
if deep:
from copy import deepcopy
if levels is None:
levels = deepcopy(self.levels)
if codes is None:
codes = deepcopy(self.codes)
else:
if levels is None:
levels = self.levels
if codes is None:
codes = self.codes
return MultiIndex(levels=levels, codes=codes, names=names,
sortorder=self.sortorder, verify_integrity=False,
_set_identity=_set_identity) |
this is defined as a copy with the same identity | def view(self, cls=None):
""" this is defined as a copy with the same identity """
result = self.copy()
result._id = self._id
return result |
return a boolean if we need a qualified .info display | def _is_memory_usage_qualified(self):
""" return a boolean if we need a qualified .info display """
def f(l):
return 'mixed' in l or 'string' in l or 'unicode' in l
return any(f(l) for l in self._inferred_type_levels) |
return the number of bytes in the underlying data
deeply introspect the level data if deep=True
include the engine hashtable
*this is in internal routine* | def _nbytes(self, deep=False):
"""
return the number of bytes in the underlying data
deeply introspect the level data if deep=True
include the engine hashtable
*this is in internal routine*
"""
# for implementations with no useful getsizeof (PyPy)
objsize = 24
level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels)
label_nbytes = sum(i.nbytes for i in self.codes)
names_nbytes = sum(getsizeof(i, objsize) for i in self.names)
result = level_nbytes + label_nbytes + names_nbytes
# include our engine hashtable
result += self._engine.sizeof(deep=deep)
return result |
Return a list of tuples of the (attr,formatted_value) | def _format_attrs(self):
"""
Return a list of tuples of the (attr,formatted_value)
"""
attrs = [
('levels', ibase.default_pprint(self._levels,
max_seq_items=False)),
('codes', ibase.default_pprint(self._codes,
max_seq_items=False))]
if com._any_not_none(*self.names):
attrs.append(('names', ibase.default_pprint(self.names)))
if self.sortorder is not None:
attrs.append(('sortorder', ibase.default_pprint(self.sortorder)))
return attrs |
Set new names on index. Each name has to be a hashable type.
Parameters
----------
values : str or sequence
name(s) to set
level : int, level name, or sequence of int/level names (default None)
If the index is a MultiIndex (hierarchical), level(s) to set (None
for all levels). Otherwise level must be None
validate : boolean, default True
validate that the names match level lengths
Raises
------
TypeError if each name is not hashable.
Notes
-----
sets names on levels. WARNING: mutates!
Note that you generally want to set this *after* changing levels, so
that it only acts on copies | def _set_names(self, names, level=None, validate=True):
"""
Set new names on index. Each name has to be a hashable type.
Parameters
----------
values : str or sequence
name(s) to set
level : int, level name, or sequence of int/level names (default None)
If the index is a MultiIndex (hierarchical), level(s) to set (None
for all levels). Otherwise level must be None
validate : boolean, default True
validate that the names match level lengths
Raises
------
TypeError if each name is not hashable.
Notes
-----
sets names on levels. WARNING: mutates!
Note that you generally want to set this *after* changing levels, so
that it only acts on copies
"""
# GH 15110
# Don't allow a single string for names in a MultiIndex
if names is not None and not is_list_like(names):
raise ValueError('Names should be list-like for a MultiIndex')
names = list(names)
if validate and level is not None and len(names) != len(level):
raise ValueError('Length of names must match length of level.')
if validate and level is None and len(names) != self.nlevels:
raise ValueError('Length of names must match number of levels in '
'MultiIndex.')
if level is None:
level = range(self.nlevels)
else:
level = [self._get_level_number(l) for l in level]
# set the name
for l, name in zip(level, names):
if name is not None:
# GH 20527
# All items in 'names' need to be hashable:
if not is_hashable(name):
raise TypeError('{}.name must be a hashable type'
.format(self.__class__.__name__))
self.levels[l].rename(name, inplace=True) |
return if the index is monotonic increasing (only equal or
increasing) values. | def is_monotonic_increasing(self):
"""
return if the index is monotonic increasing (only equal or
increasing) values.
"""
# reversed() because lexsort() wants the most significant key last.
values = [self._get_level_values(i).values
for i in reversed(range(len(self.levels)))]
try:
sort_order = np.lexsort(values)
return Index(sort_order).is_monotonic
except TypeError:
# we have mixed types and np.lexsort is not happy
return Index(self.values).is_monotonic |
validate and return the hash for the provided key
*this is internal for use for the cython routines*
Parameters
----------
key : string or tuple
Returns
-------
np.uint64
Notes
-----
we need to stringify if we have mixed levels | def _hashed_indexing_key(self, key):
"""
validate and return the hash for the provided key
*this is internal for use for the cython routines*
Parameters
----------
key : string or tuple
Returns
-------
np.uint64
Notes
-----
we need to stringify if we have mixed levels
"""
from pandas.core.util.hashing import hash_tuples, hash_tuple
if not isinstance(key, tuple):
return hash_tuples(key)
if not len(key) == self.nlevels:
raise KeyError
def f(k, stringify):
if stringify and not isinstance(k, str):
k = str(k)
return k
key = tuple(f(k, stringify)
for k, stringify in zip(key, self._have_mixed_levels))
return hash_tuple(key) |
Return vector of label values for requested level,
equal to the length of the index
**this is an internal method**
Parameters
----------
level : int level
unique : bool, default False
if True, drop duplicated values
Returns
-------
values : ndarray | def _get_level_values(self, level, unique=False):
"""
Return vector of label values for requested level,
equal to the length of the index
**this is an internal method**
Parameters
----------
level : int level
unique : bool, default False
if True, drop duplicated values
Returns
-------
values : ndarray
"""
values = self.levels[level]
level_codes = self.codes[level]
if unique:
level_codes = algos.unique(level_codes)
filled = algos.take_1d(values._values, level_codes,
fill_value=values._na_value)
values = values._shallow_copy(filled)
return values |
Return vector of label values for requested level,
equal to the length of the index.
Parameters
----------
level : int or str
``level`` is either the integer position of the level in the
MultiIndex, or the name of the level.
Returns
-------
values : Index
Values is a level of this MultiIndex converted to
a single :class:`Index` (or subclass thereof).
Examples
---------
Create a MultiIndex:
>>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def')))
>>> mi.names = ['level_1', 'level_2']
Get level values by supplying level as either integer or name:
>>> mi.get_level_values(0)
Index(['a', 'b', 'c'], dtype='object', name='level_1')
>>> mi.get_level_values('level_2')
Index(['d', 'e', 'f'], dtype='object', name='level_2') | def get_level_values(self, level):
"""
Return vector of label values for requested level,
equal to the length of the index.
Parameters
----------
level : int or str
``level`` is either the integer position of the level in the
MultiIndex, or the name of the level.
Returns
-------
values : Index
Values is a level of this MultiIndex converted to
a single :class:`Index` (or subclass thereof).
Examples
---------
Create a MultiIndex:
>>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def')))
>>> mi.names = ['level_1', 'level_2']
Get level values by supplying level as either integer or name:
>>> mi.get_level_values(0)
Index(['a', 'b', 'c'], dtype='object', name='level_1')
>>> mi.get_level_values('level_2')
Index(['d', 'e', 'f'], dtype='object', name='level_2')
"""
level = self._get_level_number(level)
values = self._get_level_values(level)
return values |
Create a DataFrame with the levels of the MultiIndex as columns.
Column ordering is determined by the DataFrame constructor with data as
a dict.
.. versionadded:: 0.24.0
Parameters
----------
index : boolean, default True
Set the index of the returned DataFrame as the original MultiIndex.
name : list / sequence of strings, optional
The passed names should substitute index level names.
Returns
-------
DataFrame : a DataFrame containing the original MultiIndex data.
See Also
--------
DataFrame | def to_frame(self, index=True, name=None):
"""
Create a DataFrame with the levels of the MultiIndex as columns.
Column ordering is determined by the DataFrame constructor with data as
a dict.
.. versionadded:: 0.24.0
Parameters
----------
index : boolean, default True
Set the index of the returned DataFrame as the original MultiIndex.
name : list / sequence of strings, optional
The passed names should substitute index level names.
Returns
-------
DataFrame : a DataFrame containing the original MultiIndex data.
See Also
--------
DataFrame
"""
from pandas import DataFrame
if name is not None:
if not is_list_like(name):
raise TypeError("'name' must be a list / sequence "
"of column names.")
if len(name) != len(self.levels):
raise ValueError("'name' should have same length as "
"number of levels on index.")
idx_names = name
else:
idx_names = self.names
# Guarantee resulting column order
result = DataFrame(
OrderedDict([
((level if lvlname is None else lvlname),
self._get_level_values(level))
for lvlname, level in zip(idx_names, range(len(self.levels)))
]),
copy=False
)
if index:
result.index = self
return result |
Return a MultiIndex reshaped to conform to the
shapes given by n_repeat and n_shuffle.
.. deprecated:: 0.24.0
Useful to replicate and rearrange a MultiIndex for combination
with another Index with n_repeat items.
Parameters
----------
n_repeat : int
Number of times to repeat the labels on self
n_shuffle : int
Controls the reordering of the labels. If the result is going
to be an inner level in a MultiIndex, n_shuffle will need to be
greater than one. The size of each label must divisible by
n_shuffle.
Returns
-------
MultiIndex
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')])
>>> idx.to_hierarchical(3)
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) | def to_hierarchical(self, n_repeat, n_shuffle=1):
"""
Return a MultiIndex reshaped to conform to the
shapes given by n_repeat and n_shuffle.
.. deprecated:: 0.24.0
Useful to replicate and rearrange a MultiIndex for combination
with another Index with n_repeat items.
Parameters
----------
n_repeat : int
Number of times to repeat the labels on self
n_shuffle : int
Controls the reordering of the labels. If the result is going
to be an inner level in a MultiIndex, n_shuffle will need to be
greater than one. The size of each label must divisible by
n_shuffle.
Returns
-------
MultiIndex
Examples
--------
>>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
(2, 'one'), (2, 'two')])
>>> idx.to_hierarchical(3)
MultiIndex(levels=[[1, 2], ['one', 'two']],
codes=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]])
"""
levels = self.levels
codes = [np.repeat(level_codes, n_repeat) for
level_codes in self.codes]
# Assumes that each level_codes is divisible by n_shuffle
codes = [x.reshape(n_shuffle, -1).ravel(order='F') for x in codes]
names = self.names
warnings.warn("Method .to_hierarchical is deprecated and will "
"be removed in a future version",
FutureWarning, stacklevel=2)
return MultiIndex(levels=levels, codes=codes, names=names) |
Create a new MultiIndex from the current that removes
unused levels, meaning that they are not expressed in the labels.
The resulting MultiIndex will have the same outward
appearance, meaning the same .values and ordering. It will also
be .equals() to the original.
.. versionadded:: 0.20.0
Returns
-------
MultiIndex
Examples
--------
>>> i = pd.MultiIndex.from_product([range(2), list('ab')])
MultiIndex(levels=[[0, 1], ['a', 'b']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> i[2:]
MultiIndex(levels=[[0, 1], ['a', 'b']],
codes=[[1, 1], [0, 1]])
The 0 from the first level is not represented
and can be removed
>>> i[2:].remove_unused_levels()
MultiIndex(levels=[[1], ['a', 'b']],
codes=[[0, 0], [0, 1]]) | def remove_unused_levels(self):
"""
Create a new MultiIndex from the current that removes
unused levels, meaning that they are not expressed in the labels.
The resulting MultiIndex will have the same outward
appearance, meaning the same .values and ordering. It will also
be .equals() to the original.
.. versionadded:: 0.20.0
Returns
-------
MultiIndex
Examples
--------
>>> i = pd.MultiIndex.from_product([range(2), list('ab')])
MultiIndex(levels=[[0, 1], ['a', 'b']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> i[2:]
MultiIndex(levels=[[0, 1], ['a', 'b']],
codes=[[1, 1], [0, 1]])
The 0 from the first level is not represented
and can be removed
>>> i[2:].remove_unused_levels()
MultiIndex(levels=[[1], ['a', 'b']],
codes=[[0, 0], [0, 1]])
"""
new_levels = []
new_codes = []
changed = False
for lev, level_codes in zip(self.levels, self.codes):
# Since few levels are typically unused, bincount() is more
# efficient than unique() - however it only accepts positive values
# (and drops order):
uniques = np.where(np.bincount(level_codes + 1) > 0)[0] - 1
has_na = int(len(uniques) and (uniques[0] == -1))
if len(uniques) != len(lev) + has_na:
# We have unused levels
changed = True
# Recalculate uniques, now preserving order.
# Can easily be cythonized by exploiting the already existing
# "uniques" and stop parsing "level_codes" when all items
# are found:
uniques = algos.unique(level_codes)
if has_na:
na_idx = np.where(uniques == -1)[0]
# Just ensure that -1 is in first position:
uniques[[0, na_idx[0]]] = uniques[[na_idx[0], 0]]
# codes get mapped from uniques to 0:len(uniques)
# -1 (if present) is mapped to last position
code_mapping = np.zeros(len(lev) + has_na)
# ... and reassigned value -1:
code_mapping[uniques] = np.arange(len(uniques)) - has_na
level_codes = code_mapping[level_codes]
# new levels are simple
lev = lev.take(uniques[has_na:])
new_levels.append(lev)
new_codes.append(level_codes)
result = self._shallow_copy()
if changed:
result._reset_identity()
result._set_levels(new_levels, validate=False)
result._set_codes(new_codes, validate=False)
return result |
.. versionadded:: 0.20.0
This is an *internal* function.
Create a new MultiIndex from the current to monotonically sorted
items IN the levels. This does not actually make the entire MultiIndex
monotonic, JUST the levels.
The resulting MultiIndex will have the same outward
appearance, meaning the same .values and ordering. It will also
be .equals() to the original.
Returns
-------
MultiIndex
Examples
--------
>>> i = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> i
MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> i.sort_monotonic()
MultiIndex(levels=[['a', 'b'], ['aa', 'bb']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]]) | def _sort_levels_monotonic(self):
"""
.. versionadded:: 0.20.0
This is an *internal* function.
Create a new MultiIndex from the current to monotonically sorted
items IN the levels. This does not actually make the entire MultiIndex
monotonic, JUST the levels.
The resulting MultiIndex will have the same outward
appearance, meaning the same .values and ordering. It will also
be .equals() to the original.
Returns
-------
MultiIndex
Examples
--------
>>> i = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> i
MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> i.sort_monotonic()
MultiIndex(levels=[['a', 'b'], ['aa', 'bb']],
codes=[[0, 0, 1, 1], [1, 0, 1, 0]])
"""
if self.is_lexsorted() and self.is_monotonic:
return self
new_levels = []
new_codes = []
for lev, level_codes in zip(self.levels, self.codes):
if not lev.is_monotonic:
try:
# indexer to reorder the levels
indexer = lev.argsort()
except TypeError:
pass
else:
lev = lev.take(indexer)
# indexer to reorder the level codes
indexer = ensure_int64(indexer)
ri = lib.get_reverse_indexer(indexer, len(indexer))
level_codes = algos.take_1d(ri, level_codes)
new_levels.append(lev)
new_codes.append(level_codes)
return MultiIndex(new_levels, new_codes,
names=self.names, sortorder=self.sortorder,
verify_integrity=False) |
Internal method to handle NA filling of take | def _assert_take_fillable(self, values, indices, allow_fill=True,
fill_value=None, na_value=None):
""" Internal method to handle NA filling of take """
# only fill if we are passing a non-None fill_value
if allow_fill and fill_value is not None:
if (indices < -1).any():
msg = ('When allow_fill=True and fill_value is not None, '
'all indices must be >= -1')
raise ValueError(msg)
taken = [lab.take(indices) for lab in self.codes]
mask = indices == -1
if mask.any():
masked = []
for new_label in taken:
label_values = new_label.values()
label_values[mask] = na_value
masked.append(np.asarray(label_values))
taken = masked
else:
taken = [lab.take(indices) for lab in self.codes]
return taken |
Append a collection of Index options together
Parameters
----------
other : Index or list/tuple of indices
Returns
-------
appended : Index | def append(self, other):
"""
Append a collection of Index options together
Parameters
----------
other : Index or list/tuple of indices
Returns
-------
appended : Index
"""
if not isinstance(other, (list, tuple)):
other = [other]
if all((isinstance(o, MultiIndex) and o.nlevels >= self.nlevels)
for o in other):
arrays = []
for i in range(self.nlevels):
label = self._get_level_values(i)
appended = [o._get_level_values(i) for o in other]
arrays.append(label.append(appended))
return MultiIndex.from_arrays(arrays, names=self.names)
to_concat = (self.values, ) + tuple(k._values for k in other)
new_tuples = np.concatenate(to_concat)
# if all(isinstance(x, MultiIndex) for x in other):
try:
return MultiIndex.from_tuples(new_tuples, names=self.names)
except (TypeError, IndexError):
return Index(new_tuples) |
Make new MultiIndex with passed list of codes deleted
Parameters
----------
codes : array-like
Must be a list of tuples
level : int or level name, default None
Returns
-------
dropped : MultiIndex | def drop(self, codes, level=None, errors='raise'):
"""
Make new MultiIndex with passed list of codes deleted
Parameters
----------
codes : array-like
Must be a list of tuples
level : int or level name, default None
Returns
-------
dropped : MultiIndex
"""
if level is not None:
return self._drop_from_level(codes, level)
try:
if not isinstance(codes, (np.ndarray, Index)):
codes = com.index_labels_to_array(codes)
indexer = self.get_indexer(codes)
mask = indexer == -1
if mask.any():
if errors != 'ignore':
raise ValueError('codes %s not contained in axis' %
codes[mask])
except Exception:
pass
inds = []
for level_codes in codes:
try:
loc = self.get_loc(level_codes)
# get_loc returns either an integer, a slice, or a boolean
# mask
if isinstance(loc, int):
inds.append(loc)
elif isinstance(loc, slice):
inds.extend(lrange(loc.start, loc.stop))
elif com.is_bool_indexer(loc):
if self.lexsort_depth == 0:
warnings.warn('dropping on a non-lexsorted multi-index'
' without a level parameter may impact '
'performance.',
PerformanceWarning,
stacklevel=3)
loc = loc.nonzero()[0]
inds.extend(loc)
else:
msg = 'unsupported indexer of type {}'.format(type(loc))
raise AssertionError(msg)
except KeyError:
if errors != 'ignore':
raise
return self.delete(inds) |
Swap level i with level j.
Calling this method does not change the ordering of the values.
Parameters
----------
i : int, str, default -2
First level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
j : int, str, default -1
Second level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
Returns
-------
MultiIndex
A new MultiIndex.
.. versionchanged:: 0.18.1
The indexes ``i`` and ``j`` are now optional, and default to
the two innermost levels of the index.
See Also
--------
Series.swaplevel : Swap levels i and j in a MultiIndex.
Dataframe.swaplevel : Swap levels i and j in a MultiIndex on a
particular axis.
Examples
--------
>>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
... codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi
MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi.swaplevel(0, 1)
MultiIndex(levels=[['bb', 'aa'], ['a', 'b']],
codes=[[0, 1, 0, 1], [0, 0, 1, 1]]) | def swaplevel(self, i=-2, j=-1):
"""
Swap level i with level j.
Calling this method does not change the ordering of the values.
Parameters
----------
i : int, str, default -2
First level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
j : int, str, default -1
Second level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
Returns
-------
MultiIndex
A new MultiIndex.
.. versionchanged:: 0.18.1
The indexes ``i`` and ``j`` are now optional, and default to
the two innermost levels of the index.
See Also
--------
Series.swaplevel : Swap levels i and j in a MultiIndex.
Dataframe.swaplevel : Swap levels i and j in a MultiIndex on a
particular axis.
Examples
--------
>>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
... codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi
MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
>>> mi.swaplevel(0, 1)
MultiIndex(levels=[['bb', 'aa'], ['a', 'b']],
codes=[[0, 1, 0, 1], [0, 0, 1, 1]])
"""
new_levels = list(self.levels)
new_codes = list(self.codes)
new_names = list(self.names)
i = self._get_level_number(i)
j = self._get_level_number(j)
new_levels[i], new_levels[j] = new_levels[j], new_levels[i]
new_codes[i], new_codes[j] = new_codes[j], new_codes[i]
new_names[i], new_names[j] = new_names[j], new_names[i]
return MultiIndex(levels=new_levels, codes=new_codes,
names=new_names, verify_integrity=False) |
Rearrange levels using input order. May not drop or duplicate levels
Parameters
---------- | def reorder_levels(self, order):
"""
Rearrange levels using input order. May not drop or duplicate levels
Parameters
----------
"""
order = [self._get_level_number(i) for i in order]
if len(order) != self.nlevels:
raise AssertionError('Length of order must be same as '
'number of levels (%d), got %d' %
(self.nlevels, len(order)))
new_levels = [self.levels[i] for i in order]
new_codes = [self.codes[i] for i in order]
new_names = [self.names[i] for i in order]
return MultiIndex(levels=new_levels, codes=new_codes,
names=new_names, verify_integrity=False) |
we categorizing our codes by using the
available categories (all, not just observed)
excluding any missing ones (-1); this is in preparation
for sorting, where we need to disambiguate that -1 is not
a valid valid | def _get_codes_for_sorting(self):
"""
we categorizing our codes by using the
available categories (all, not just observed)
excluding any missing ones (-1); this is in preparation
for sorting, where we need to disambiguate that -1 is not
a valid valid
"""
from pandas.core.arrays import Categorical
def cats(level_codes):
return np.arange(np.array(level_codes).max() + 1 if
len(level_codes) else 0,
dtype=level_codes.dtype)
return [Categorical.from_codes(level_codes, cats(level_codes),
ordered=True)
for level_codes in self.codes] |
Sort MultiIndex at the requested level. The result will respect the
original ordering of the associated factor at that level.
Parameters
----------
level : list-like, int or str, default 0
If a string is given, must be a name of the level
If list-like must be names or ints of levels.
ascending : boolean, default True
False to sort in descending order
Can also be a list to specify a directed ordering
sort_remaining : sort by the remaining levels after level
Returns
-------
sorted_index : pd.MultiIndex
Resulting index.
indexer : np.ndarray
Indices of output values in original index. | def sortlevel(self, level=0, ascending=True, sort_remaining=True):
"""
Sort MultiIndex at the requested level. The result will respect the
original ordering of the associated factor at that level.
Parameters
----------
level : list-like, int or str, default 0
If a string is given, must be a name of the level
If list-like must be names or ints of levels.
ascending : boolean, default True
False to sort in descending order
Can also be a list to specify a directed ordering
sort_remaining : sort by the remaining levels after level
Returns
-------
sorted_index : pd.MultiIndex
Resulting index.
indexer : np.ndarray
Indices of output values in original index.
"""
from pandas.core.sorting import indexer_from_factorized
if isinstance(level, (str, int)):
level = [level]
level = [self._get_level_number(lev) for lev in level]
sortorder = None
# we have a directed ordering via ascending
if isinstance(ascending, list):
if not len(level) == len(ascending):
raise ValueError("level must have same length as ascending")
from pandas.core.sorting import lexsort_indexer
indexer = lexsort_indexer([self.codes[lev] for lev in level],
orders=ascending)
# level ordering
else:
codes = list(self.codes)
shape = list(self.levshape)
# partition codes and shape
primary = tuple(codes[lev] for lev in level)
primshp = tuple(shape[lev] for lev in level)
# Reverse sorted to retain the order of
# smaller indices that needs to be removed
for lev in sorted(level, reverse=True):
codes.pop(lev)
shape.pop(lev)
if sort_remaining:
primary += primary + tuple(codes)
primshp += primshp + tuple(shape)
else:
sortorder = level[0]
indexer = indexer_from_factorized(primary, primshp,
compress=False)
if not ascending:
indexer = indexer[::-1]
indexer = ensure_platform_int(indexer)
new_codes = [level_codes.take(indexer) for level_codes in self.codes]
new_index = MultiIndex(codes=new_codes, levels=self.levels,
names=self.names, sortorder=sortorder,
verify_integrity=False)
return new_index, indexer |
Parameters
----------
keyarr : list-like
Indexer to convert.
Returns
-------
tuple (indexer, keyarr)
indexer is an ndarray or None if cannot convert
keyarr are tuple-safe keys | def _convert_listlike_indexer(self, keyarr, kind=None):
"""
Parameters
----------
keyarr : list-like
Indexer to convert.
Returns
-------
tuple (indexer, keyarr)
indexer is an ndarray or None if cannot convert
keyarr are tuple-safe keys
"""
indexer, keyarr = super()._convert_listlike_indexer(keyarr, kind=kind)
# are we indexing a specific level
if indexer is None and len(keyarr) and not isinstance(keyarr[0],
tuple):
level = 0
_, indexer = self.reindex(keyarr, level=level)
# take all
if indexer is None:
indexer = np.arange(len(self))
check = self.levels[0].get_indexer(keyarr)
mask = check == -1
if mask.any():
raise KeyError('%s not in index' % keyarr[mask])
return indexer, keyarr |
Create index with target's values (move/add/delete values as necessary)
Returns
-------
new_index : pd.MultiIndex
Resulting index
indexer : np.ndarray or None
Indices of output values in original index. | def reindex(self, target, method=None, level=None, limit=None,
tolerance=None):
"""
Create index with target's values (move/add/delete values as necessary)
Returns
-------
new_index : pd.MultiIndex
Resulting index
indexer : np.ndarray or None
Indices of output values in original index.
"""
# GH6552: preserve names when reindexing to non-named target
# (i.e. neither Index nor Series).
preserve_names = not hasattr(target, 'names')
if level is not None:
if method is not None:
raise TypeError('Fill method not supported if level passed')
# GH7774: preserve dtype/tz if target is empty and not an Index.
# target may be an iterator
target = ibase._ensure_has_len(target)
if len(target) == 0 and not isinstance(target, Index):
idx = self.levels[level]
attrs = idx._get_attributes_dict()
attrs.pop('freq', None) # don't preserve freq
target = type(idx)._simple_new(np.empty(0, dtype=idx.dtype),
**attrs)
else:
target = ensure_index(target)
target, indexer, _ = self._join_level(target, level, how='right',
return_indexers=True,
keep_order=False)
else:
target = ensure_index(target)
if self.equals(target):
indexer = None
else:
if self.is_unique:
indexer = self.get_indexer(target, method=method,
limit=limit,
tolerance=tolerance)
else:
raise ValueError("cannot handle a non-unique multi-index!")
if not isinstance(target, MultiIndex):
if indexer is None:
target = self
elif (indexer >= 0).all():
target = self.take(indexer)
else:
# hopefully?
target = MultiIndex.from_tuples(target)
if (preserve_names and target.nlevels == self.nlevels and
target.names != self.names):
target = target.copy(deep=False)
target.names = self.names
return target, indexer |
For an ordered MultiIndex, compute the slice locations for input
labels.
The input labels can be tuples representing partial levels, e.g. for a
MultiIndex with 3 levels, you can pass a single value (corresponding to
the first level), or a 1-, 2-, or 3-tuple.
Parameters
----------
start : label or tuple, default None
If None, defaults to the beginning
end : label or tuple
If None, defaults to the end
step : int or None
Slice step
kind : string, optional, defaults None
Returns
-------
(start, end) : (int, int)
Notes
-----
This method only works if the MultiIndex is properly lexsorted. So,
if only the first 2 levels of a 3-level MultiIndex are lexsorted,
you can only pass two levels to ``.slice_locs``.
Examples
--------
>>> mi = pd.MultiIndex.from_arrays([list('abbd'), list('deff')],
... names=['A', 'B'])
Get the slice locations from the beginning of 'b' in the first level
until the end of the multiindex:
>>> mi.slice_locs(start='b')
(1, 4)
Like above, but stop at the end of 'b' in the first level and 'f' in
the second level:
>>> mi.slice_locs(start='b', end=('b', 'f'))
(1, 3)
See Also
--------
MultiIndex.get_loc : Get location for a label or a tuple of labels.
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
sequence of such. | def slice_locs(self, start=None, end=None, step=None, kind=None):
"""
For an ordered MultiIndex, compute the slice locations for input
labels.
The input labels can be tuples representing partial levels, e.g. for a
MultiIndex with 3 levels, you can pass a single value (corresponding to
the first level), or a 1-, 2-, or 3-tuple.
Parameters
----------
start : label or tuple, default None
If None, defaults to the beginning
end : label or tuple
If None, defaults to the end
step : int or None
Slice step
kind : string, optional, defaults None
Returns
-------
(start, end) : (int, int)
Notes
-----
This method only works if the MultiIndex is properly lexsorted. So,
if only the first 2 levels of a 3-level MultiIndex are lexsorted,
you can only pass two levels to ``.slice_locs``.
Examples
--------
>>> mi = pd.MultiIndex.from_arrays([list('abbd'), list('deff')],
... names=['A', 'B'])
Get the slice locations from the beginning of 'b' in the first level
until the end of the multiindex:
>>> mi.slice_locs(start='b')
(1, 4)
Like above, but stop at the end of 'b' in the first level and 'f' in
the second level:
>>> mi.slice_locs(start='b', end=('b', 'f'))
(1, 3)
See Also
--------
MultiIndex.get_loc : Get location for a label or a tuple of labels.
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
sequence of such.
"""
# This function adds nothing to its parent implementation (the magic
# happens in get_slice_bound method), but it adds meaningful doc.
return super().slice_locs(start, end, step, kind=kind) |
Get location for a label or a tuple of labels as an integer, slice or
boolean mask.
Parameters
----------
key : label or tuple of labels (one for each level)
method : None
Returns
-------
loc : int, slice object or boolean mask
If the key is past the lexsort depth, the return may be a
boolean mask array, otherwise it is always a slice or int.
Examples
---------
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')])
>>> mi.get_loc('b')
slice(1, 3, None)
>>> mi.get_loc(('b', 'e'))
1
Notes
------
The key cannot be a slice, list of same-level labels, a boolean mask,
or a sequence of such. If you want to use those, use
:meth:`MultiIndex.get_locs` instead.
See Also
--------
Index.get_loc : The get_loc method for (single-level) index.
MultiIndex.slice_locs : Get slice location given start label(s) and
end label(s).
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
sequence of such. | def get_loc(self, key, method=None):
"""
Get location for a label or a tuple of labels as an integer, slice or
boolean mask.
Parameters
----------
key : label or tuple of labels (one for each level)
method : None
Returns
-------
loc : int, slice object or boolean mask
If the key is past the lexsort depth, the return may be a
boolean mask array, otherwise it is always a slice or int.
Examples
---------
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')])
>>> mi.get_loc('b')
slice(1, 3, None)
>>> mi.get_loc(('b', 'e'))
1
Notes
------
The key cannot be a slice, list of same-level labels, a boolean mask,
or a sequence of such. If you want to use those, use
:meth:`MultiIndex.get_locs` instead.
See Also
--------
Index.get_loc : The get_loc method for (single-level) index.
MultiIndex.slice_locs : Get slice location given start label(s) and
end label(s).
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
sequence of such.
"""
if method is not None:
raise NotImplementedError('only the default get_loc method is '
'currently supported for MultiIndex')
def _maybe_to_slice(loc):
"""convert integer indexer to boolean mask or slice if possible"""
if not isinstance(loc, np.ndarray) or loc.dtype != 'int64':
return loc
loc = lib.maybe_indices_to_slice(loc, len(self))
if isinstance(loc, slice):
return loc
mask = np.empty(len(self), dtype='bool')
mask.fill(False)
mask[loc] = True
return mask
if not isinstance(key, tuple):
loc = self._get_level_indexer(key, level=0)
return _maybe_to_slice(loc)
keylen = len(key)
if self.nlevels < keylen:
raise KeyError('Key length ({0}) exceeds index depth ({1})'
''.format(keylen, self.nlevels))
if keylen == self.nlevels and self.is_unique:
return self._engine.get_loc(key)
# -- partial selection or non-unique index
# break the key into 2 parts based on the lexsort_depth of the index;
# the first part returns a continuous slice of the index; the 2nd part
# needs linear search within the slice
i = self.lexsort_depth
lead_key, follow_key = key[:i], key[i:]
start, stop = (self.slice_locs(lead_key, lead_key)
if lead_key else (0, len(self)))
if start == stop:
raise KeyError(key)
if not follow_key:
return slice(start, stop)
warnings.warn('indexing past lexsort depth may impact performance.',
PerformanceWarning, stacklevel=10)
loc = np.arange(start, stop, dtype='int64')
for i, k in enumerate(follow_key, len(lead_key)):
mask = self.codes[i][loc] == self.levels[i].get_loc(k)
if not mask.all():
loc = loc[mask]
if not len(loc):
raise KeyError(key)
return (_maybe_to_slice(loc) if len(loc) != stop - start else
slice(start, stop)) |
Get both the location for the requested label(s) and the
resulting sliced index.
Parameters
----------
key : label or sequence of labels
level : int/level name or list thereof, optional
drop_level : bool, default True
if ``False``, the resulting index will not drop any level.
Returns
-------
loc : A 2-tuple where the elements are:
Element 0: int, slice object or boolean array
Element 1: The resulting sliced multiindex/index. If the key
contains all levels, this will be ``None``.
Examples
--------
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')],
... names=['A', 'B'])
>>> mi.get_loc_level('b')
(slice(1, 3, None), Index(['e', 'f'], dtype='object', name='B'))
>>> mi.get_loc_level('e', level='B')
(array([False, True, False], dtype=bool),
Index(['b'], dtype='object', name='A'))
>>> mi.get_loc_level(['b', 'e'])
(1, None)
See Also
---------
MultiIndex.get_loc : Get location for a label or a tuple of labels.
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
sequence of such. | def get_loc_level(self, key, level=0, drop_level=True):
"""
Get both the location for the requested label(s) and the
resulting sliced index.
Parameters
----------
key : label or sequence of labels
level : int/level name or list thereof, optional
drop_level : bool, default True
if ``False``, the resulting index will not drop any level.
Returns
-------
loc : A 2-tuple where the elements are:
Element 0: int, slice object or boolean array
Element 1: The resulting sliced multiindex/index. If the key
contains all levels, this will be ``None``.
Examples
--------
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')],
... names=['A', 'B'])
>>> mi.get_loc_level('b')
(slice(1, 3, None), Index(['e', 'f'], dtype='object', name='B'))
>>> mi.get_loc_level('e', level='B')
(array([False, True, False], dtype=bool),
Index(['b'], dtype='object', name='A'))
>>> mi.get_loc_level(['b', 'e'])
(1, None)
See Also
---------
MultiIndex.get_loc : Get location for a label or a tuple of labels.
MultiIndex.get_locs : Get location for a label/slice/list/mask or a
sequence of such.
"""
def maybe_droplevels(indexer, levels, drop_level):
if not drop_level:
return self[indexer]
# kludgearound
orig_index = new_index = self[indexer]
levels = [self._get_level_number(i) for i in levels]
for i in sorted(levels, reverse=True):
try:
new_index = new_index.droplevel(i)
except ValueError:
# no dropping here
return orig_index
return new_index
if isinstance(level, (tuple, list)):
if len(key) != len(level):
raise AssertionError('Key for location must have same '
'length as number of levels')
result = None
for lev, k in zip(level, key):
loc, new_index = self.get_loc_level(k, level=lev)
if isinstance(loc, slice):
mask = np.zeros(len(self), dtype=bool)
mask[loc] = True
loc = mask
result = loc if result is None else result & loc
return result, maybe_droplevels(result, level, drop_level)
level = self._get_level_number(level)
# kludge for #1796
if isinstance(key, list):
key = tuple(key)
if isinstance(key, tuple) and level == 0:
try:
if key in self.levels[0]:
indexer = self._get_level_indexer(key, level=level)
new_index = maybe_droplevels(indexer, [0], drop_level)
return indexer, new_index
except TypeError:
pass
if not any(isinstance(k, slice) for k in key):
# partial selection
# optionally get indexer to avoid re-calculation
def partial_selection(key, indexer=None):
if indexer is None:
indexer = self.get_loc(key)
ilevels = [i for i in range(len(key))
if key[i] != slice(None, None)]
return indexer, maybe_droplevels(indexer, ilevels,
drop_level)
if len(key) == self.nlevels and self.is_unique:
# Complete key in unique index -> standard get_loc
return (self._engine.get_loc(key), None)
else:
return partial_selection(key)
else:
indexer = None
for i, k in enumerate(key):
if not isinstance(k, slice):
k = self._get_level_indexer(k, level=i)
if isinstance(k, slice):
# everything
if k.start == 0 and k.stop == len(self):
k = slice(None, None)
else:
k_index = k
if isinstance(k, slice):
if k == slice(None, None):
continue
else:
raise TypeError(key)
if indexer is None:
indexer = k_index
else: # pragma: no cover
indexer &= k_index
if indexer is None:
indexer = slice(None, None)
ilevels = [i for i in range(len(key))
if key[i] != slice(None, None)]
return indexer, maybe_droplevels(indexer, ilevels, drop_level)
else:
indexer = self._get_level_indexer(key, level=level)
return indexer, maybe_droplevels(indexer, [level], drop_level) |
Get location for a given label/slice/list/mask or a sequence of such as
an array of integers.
Parameters
----------
seq : label/slice/list/mask or a sequence of such
You should use one of the above for each level.
If a level should not be used, set it to ``slice(None)``.
Returns
-------
locs : array of integers suitable for passing to iloc
Examples
---------
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')])
>>> mi.get_locs('b')
array([1, 2], dtype=int64)
>>> mi.get_locs([slice(None), ['e', 'f']])
array([1, 2], dtype=int64)
>>> mi.get_locs([[True, False, True], slice('e', 'f')])
array([2], dtype=int64)
See Also
--------
MultiIndex.get_loc : Get location for a label or a tuple of labels.
MultiIndex.slice_locs : Get slice location given start label(s) and
end label(s). | def get_locs(self, seq):
"""
Get location for a given label/slice/list/mask or a sequence of such as
an array of integers.
Parameters
----------
seq : label/slice/list/mask or a sequence of such
You should use one of the above for each level.
If a level should not be used, set it to ``slice(None)``.
Returns
-------
locs : array of integers suitable for passing to iloc
Examples
---------
>>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')])
>>> mi.get_locs('b')
array([1, 2], dtype=int64)
>>> mi.get_locs([slice(None), ['e', 'f']])
array([1, 2], dtype=int64)
>>> mi.get_locs([[True, False, True], slice('e', 'f')])
array([2], dtype=int64)
See Also
--------
MultiIndex.get_loc : Get location for a label or a tuple of labels.
MultiIndex.slice_locs : Get slice location given start label(s) and
end label(s).
"""
from .numeric import Int64Index
# must be lexsorted to at least as many levels
true_slices = [i for (i, s) in enumerate(com.is_true_slices(seq)) if s]
if true_slices and true_slices[-1] >= self.lexsort_depth:
raise UnsortedIndexError('MultiIndex slicing requires the index '
'to be lexsorted: slicing on levels {0}, '
'lexsort depth {1}'
.format(true_slices, self.lexsort_depth))
# indexer
# this is the list of all values that we want to select
n = len(self)
indexer = None
def _convert_to_indexer(r):
# return an indexer
if isinstance(r, slice):
m = np.zeros(n, dtype=bool)
m[r] = True
r = m.nonzero()[0]
elif com.is_bool_indexer(r):
if len(r) != n:
raise ValueError("cannot index with a boolean indexer "
"that is not the same length as the "
"index")
r = r.nonzero()[0]
return Int64Index(r)
def _update_indexer(idxr, indexer=indexer):
if indexer is None:
indexer = Index(np.arange(n))
if idxr is None:
return indexer
return indexer & idxr
for i, k in enumerate(seq):
if com.is_bool_indexer(k):
# a boolean indexer, must be the same length!
k = np.asarray(k)
indexer = _update_indexer(_convert_to_indexer(k),
indexer=indexer)
elif is_list_like(k):
# a collection of labels to include from this level (these
# are or'd)
indexers = None
for x in k:
try:
idxrs = _convert_to_indexer(
self._get_level_indexer(x, level=i,
indexer=indexer))
indexers = (idxrs if indexers is None
else indexers | idxrs)
except KeyError:
# ignore not founds
continue
if indexers is not None:
indexer = _update_indexer(indexers, indexer=indexer)
else:
# no matches we are done
return Int64Index([])._ndarray_values
elif com.is_null_slice(k):
# empty slice
indexer = _update_indexer(None, indexer=indexer)
elif isinstance(k, slice):
# a slice, include BOTH of the labels
indexer = _update_indexer(_convert_to_indexer(
self._get_level_indexer(k, level=i, indexer=indexer)),
indexer=indexer)
else:
# a single label
indexer = _update_indexer(_convert_to_indexer(
self.get_loc_level(k, level=i, drop_level=False)[0]),
indexer=indexer)
# empty indexer
if indexer is None:
return Int64Index([])._ndarray_values
return indexer._ndarray_values |
Slice index between two labels / tuples, return new MultiIndex
Parameters
----------
before : label or tuple, can be partial. Default None
None defaults to start
after : label or tuple, can be partial. Default None
None defaults to end
Returns
-------
truncated : MultiIndex | def truncate(self, before=None, after=None):
"""
Slice index between two labels / tuples, return new MultiIndex
Parameters
----------
before : label or tuple, can be partial. Default None
None defaults to start
after : label or tuple, can be partial. Default None
None defaults to end
Returns
-------
truncated : MultiIndex
"""
if after and before and after < before:
raise ValueError('after < before')
i, j = self.levels[0].slice_locs(before, after)
left, right = self.slice_locs(before, after)
new_levels = list(self.levels)
new_levels[0] = new_levels[0][i:j]
new_codes = [level_codes[left:right] for level_codes in self.codes]
new_codes[0] = new_codes[0] - i
return MultiIndex(levels=new_levels, codes=new_codes,
verify_integrity=False) |
Determines if two MultiIndex objects have the same labeling information
(the levels themselves do not necessarily have to be the same)
See Also
--------
equal_levels | def equals(self, other):
"""
Determines if two MultiIndex objects have the same labeling information
(the levels themselves do not necessarily have to be the same)
See Also
--------
equal_levels
"""
if self.is_(other):
return True
if not isinstance(other, Index):
return False
if not isinstance(other, MultiIndex):
other_vals = com.values_from_object(ensure_index(other))
return array_equivalent(self._ndarray_values, other_vals)
if self.nlevels != other.nlevels:
return False
if len(self) != len(other):
return False
for i in range(self.nlevels):
self_codes = self.codes[i]
self_codes = self_codes[self_codes != -1]
self_values = algos.take_nd(np.asarray(self.levels[i]._values),
self_codes, allow_fill=False)
other_codes = other.codes[i]
other_codes = other_codes[other_codes != -1]
other_values = algos.take_nd(
np.asarray(other.levels[i]._values),
other_codes, allow_fill=False)
# since we use NaT both datetime64 and timedelta64
# we can have a situation where a level is typed say
# timedelta64 in self (IOW it has other values than NaT)
# but types datetime64 in other (where its all NaT)
# but these are equivalent
if len(self_values) == 0 and len(other_values) == 0:
continue
if not array_equivalent(self_values, other_values):
return False
return True |
Return True if the levels of both MultiIndex objects are the same | def equal_levels(self, other):
"""
Return True if the levels of both MultiIndex objects are the same
"""
if self.nlevels != other.nlevels:
return False
for i in range(self.nlevels):
if not self.levels[i].equals(other.levels[i]):
return False
return True |
Form the union of two MultiIndex objects
Parameters
----------
other : MultiIndex or array / Index of tuples
sort : False or None, default None
Whether to sort the resulting Index.
* None : Sort the result, except when
1. `self` and `other` are equal.
2. `self` has length 0.
3. Some values in `self` or `other` cannot be compared.
A RuntimeWarning is issued in this case.
* False : do not sort the result.
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default value from ``True`` to ``None``
(without change in behaviour).
Returns
-------
Index
>>> index.union(index2) | def union(self, other, sort=None):
"""
Form the union of two MultiIndex objects
Parameters
----------
other : MultiIndex or array / Index of tuples
sort : False or None, default None
Whether to sort the resulting Index.
* None : Sort the result, except when
1. `self` and `other` are equal.
2. `self` has length 0.
3. Some values in `self` or `other` cannot be compared.
A RuntimeWarning is issued in this case.
* False : do not sort the result.
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default value from ``True`` to ``None``
(without change in behaviour).
Returns
-------
Index
>>> index.union(index2)
"""
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
other, result_names = self._convert_can_do_setop(other)
if len(other) == 0 or self.equals(other):
return self
# TODO: Index.union returns other when `len(self)` is 0.
uniq_tuples = lib.fast_unique_multiple([self._ndarray_values,
other._ndarray_values],
sort=sort)
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names) |
Form the intersection of two MultiIndex objects.
Parameters
----------
other : MultiIndex or array / Index of tuples
sort : False or None, default False
Sort the resulting MultiIndex if possible
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default from ``True`` to ``False``, to match
behaviour from before 0.24.0
Returns
-------
Index | def intersection(self, other, sort=False):
"""
Form the intersection of two MultiIndex objects.
Parameters
----------
other : MultiIndex or array / Index of tuples
sort : False or None, default False
Sort the resulting MultiIndex if possible
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default from ``True`` to ``False``, to match
behaviour from before 0.24.0
Returns
-------
Index
"""
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
other, result_names = self._convert_can_do_setop(other)
if self.equals(other):
return self
self_tuples = self._ndarray_values
other_tuples = other._ndarray_values
uniq_tuples = set(self_tuples) & set(other_tuples)
if sort is None:
uniq_tuples = sorted(uniq_tuples)
if len(uniq_tuples) == 0:
return MultiIndex(levels=self.levels,
codes=[[]] * self.nlevels,
names=result_names, verify_integrity=False)
else:
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names) |
Compute set difference of two MultiIndex objects
Parameters
----------
other : MultiIndex
sort : False or None, default None
Sort the resulting MultiIndex if possible
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default value from ``True`` to ``None``
(without change in behaviour).
Returns
-------
diff : MultiIndex | def difference(self, other, sort=None):
"""
Compute set difference of two MultiIndex objects
Parameters
----------
other : MultiIndex
sort : False or None, default None
Sort the resulting MultiIndex if possible
.. versionadded:: 0.24.0
.. versionchanged:: 0.24.1
Changed the default value from ``True`` to ``None``
(without change in behaviour).
Returns
-------
diff : MultiIndex
"""
self._validate_sort_keyword(sort)
self._assert_can_do_setop(other)
other, result_names = self._convert_can_do_setop(other)
if len(other) == 0:
return self
if self.equals(other):
return MultiIndex(levels=self.levels,
codes=[[]] * self.nlevels,
names=result_names, verify_integrity=False)
this = self._get_unique_index()
indexer = this.get_indexer(other)
indexer = indexer.take((indexer != -1).nonzero()[0])
label_diff = np.setdiff1d(np.arange(this.size), indexer,
assume_unique=True)
difference = this.values.take(label_diff)
if sort is None:
difference = sorted(difference)
if len(difference) == 0:
return MultiIndex(levels=[[]] * self.nlevels,
codes=[[]] * self.nlevels,
names=result_names, verify_integrity=False)
else:
return MultiIndex.from_tuples(difference, sortorder=0,
names=result_names) |
Make new MultiIndex inserting new item at location
Parameters
----------
loc : int
item : tuple
Must be same length as number of levels in the MultiIndex
Returns
-------
new_index : Index | def insert(self, loc, item):
"""
Make new MultiIndex inserting new item at location
Parameters
----------
loc : int
item : tuple
Must be same length as number of levels in the MultiIndex
Returns
-------
new_index : Index
"""
# Pad the key with empty strings if lower levels of the key
# aren't specified:
if not isinstance(item, tuple):
item = (item, ) + ('', ) * (self.nlevels - 1)
elif len(item) != self.nlevels:
raise ValueError('Item must have length equal to number of '
'levels.')
new_levels = []
new_codes = []
for k, level, level_codes in zip(item, self.levels, self.codes):
if k not in level:
# have to insert into level
# must insert at end otherwise you have to recompute all the
# other codes
lev_loc = len(level)
level = level.insert(lev_loc, k)
else:
lev_loc = level.get_loc(k)
new_levels.append(level)
new_codes.append(np.insert(
ensure_int64(level_codes), loc, lev_loc))
return MultiIndex(levels=new_levels, codes=new_codes,
names=self.names, verify_integrity=False) |
Make new index with passed location deleted
Returns
-------
new_index : MultiIndex | def delete(self, loc):
"""
Make new index with passed location deleted
Returns
-------
new_index : MultiIndex
"""
new_codes = [np.delete(level_codes, loc) for level_codes in self.codes]
return MultiIndex(levels=self.levels, codes=new_codes,
names=self.names, verify_integrity=False) |
routine to ensure that our data is of the correct
input dtype for lower-level routines
This will coerce:
- ints -> int64
- uint -> uint64
- bool -> uint64 (TODO this should be uint8)
- datetimelike -> i8
- datetime64tz -> i8 (in local tz)
- categorical -> codes
Parameters
----------
values : array-like
dtype : pandas_dtype, optional
coerce to this dtype
Returns
-------
(ndarray, pandas_dtype, algo dtype as a string) | def _ensure_data(values, dtype=None):
"""
routine to ensure that our data is of the correct
input dtype for lower-level routines
This will coerce:
- ints -> int64
- uint -> uint64
- bool -> uint64 (TODO this should be uint8)
- datetimelike -> i8
- datetime64tz -> i8 (in local tz)
- categorical -> codes
Parameters
----------
values : array-like
dtype : pandas_dtype, optional
coerce to this dtype
Returns
-------
(ndarray, pandas_dtype, algo dtype as a string)
"""
# we check some simple dtypes first
try:
if is_object_dtype(dtype):
return ensure_object(np.asarray(values)), 'object', 'object'
if is_bool_dtype(values) or is_bool_dtype(dtype):
# we are actually coercing to uint64
# until our algos support uint8 directly (see TODO)
return np.asarray(values).astype('uint64'), 'bool', 'uint64'
elif is_signed_integer_dtype(values) or is_signed_integer_dtype(dtype):
return ensure_int64(values), 'int64', 'int64'
elif (is_unsigned_integer_dtype(values) or
is_unsigned_integer_dtype(dtype)):
return ensure_uint64(values), 'uint64', 'uint64'
elif is_float_dtype(values) or is_float_dtype(dtype):
return ensure_float64(values), 'float64', 'float64'
elif is_object_dtype(values) and dtype is None:
return ensure_object(np.asarray(values)), 'object', 'object'
elif is_complex_dtype(values) or is_complex_dtype(dtype):
# ignore the fact that we are casting to float
# which discards complex parts
with catch_warnings():
simplefilter("ignore", np.ComplexWarning)
values = ensure_float64(values)
return values, 'float64', 'float64'
except (TypeError, ValueError, OverflowError):
# if we are trying to coerce to a dtype
# and it is incompat this will fall thru to here
return ensure_object(values), 'object', 'object'
# datetimelike
if (needs_i8_conversion(values) or
is_period_dtype(dtype) or
is_datetime64_any_dtype(dtype) or
is_timedelta64_dtype(dtype)):
if is_period_dtype(values) or is_period_dtype(dtype):
from pandas import PeriodIndex
values = PeriodIndex(values)
dtype = values.dtype
elif is_timedelta64_dtype(values) or is_timedelta64_dtype(dtype):
from pandas import TimedeltaIndex
values = TimedeltaIndex(values)
dtype = values.dtype
else:
# Datetime
from pandas import DatetimeIndex
values = DatetimeIndex(values)
dtype = values.dtype
return values.asi8, dtype, 'int64'
elif (is_categorical_dtype(values) and
(is_categorical_dtype(dtype) or dtype is None)):
values = getattr(values, 'values', values)
values = values.codes
dtype = 'category'
# we are actually coercing to int64
# until our algos support int* directly (not all do)
values = ensure_int64(values)
return values, dtype, 'int64'
# we have failed, return object
values = np.asarray(values, dtype=np.object)
return ensure_object(values), 'object', 'object' |
reverse of _ensure_data
Parameters
----------
values : ndarray
dtype : pandas_dtype
original : ndarray-like
Returns
-------
Index for extension types, otherwise ndarray casted to dtype | def _reconstruct_data(values, dtype, original):
"""
reverse of _ensure_data
Parameters
----------
values : ndarray
dtype : pandas_dtype
original : ndarray-like
Returns
-------
Index for extension types, otherwise ndarray casted to dtype
"""
from pandas import Index
if is_extension_array_dtype(dtype):
values = dtype.construct_array_type()._from_sequence(values)
elif is_datetime64tz_dtype(dtype) or is_period_dtype(dtype):
values = Index(original)._shallow_copy(values, name=None)
elif is_bool_dtype(dtype):
values = values.astype(dtype)
# we only support object dtypes bool Index
if isinstance(original, Index):
values = values.astype(object)
elif dtype is not None:
values = values.astype(dtype)
return values |
ensure that we are arraylike if not already | def _ensure_arraylike(values):
"""
ensure that we are arraylike if not already
"""
if not is_array_like(values):
inferred = lib.infer_dtype(values, skipna=False)
if inferred in ['mixed', 'string', 'unicode']:
if isinstance(values, tuple):
values = list(values)
values = construct_1d_object_array_from_listlike(values)
else:
values = np.asarray(values)
return values |
Parameters
----------
values : arraylike
Returns
-------
tuples(hashtable class,
vector class,
values,
dtype,
ndtype) | def _get_hashtable_algo(values):
"""
Parameters
----------
values : arraylike
Returns
-------
tuples(hashtable class,
vector class,
values,
dtype,
ndtype)
"""
values, dtype, ndtype = _ensure_data(values)
if ndtype == 'object':
# it's cheaper to use a String Hash Table than Object; we infer
# including nulls because that is the only difference between
# StringHashTable and ObjectHashtable
if lib.infer_dtype(values, skipna=False) in ['string']:
ndtype = 'string'
else:
ndtype = 'object'
htable, table = _hashtables[ndtype]
return (htable, table, values, dtype, ndtype) |
Compute locations of to_match into values
Parameters
----------
to_match : array-like
values to find positions of
values : array-like
Unique set of values
na_sentinel : int, default -1
Value to mark "not found"
Examples
--------
Returns
-------
match : ndarray of integers | def match(to_match, values, na_sentinel=-1):
"""
Compute locations of to_match into values
Parameters
----------
to_match : array-like
values to find positions of
values : array-like
Unique set of values
na_sentinel : int, default -1
Value to mark "not found"
Examples
--------
Returns
-------
match : ndarray of integers
"""
values = com.asarray_tuplesafe(values)
htable, _, values, dtype, ndtype = _get_hashtable_algo(values)
to_match, _, _ = _ensure_data(to_match, dtype)
table = htable(min(len(to_match), 1000000))
table.map_locations(values)
result = table.lookup(to_match)
if na_sentinel != -1:
# replace but return a numpy array
# use a Series because it handles dtype conversions properly
from pandas import Series
result = Series(result.ravel()).replace(-1, na_sentinel)
result = result.values.reshape(result.shape)
return result |
Hash table-based unique. Uniques are returned in order
of appearance. This does NOT sort.
Significantly faster than numpy.unique. Includes NA values.
Parameters
----------
values : 1d array-like
Returns
-------
numpy.ndarray or ExtensionArray
The return can be:
* Index : when the input is an Index
* Categorical : when the input is a Categorical dtype
* ndarray : when the input is a Series/ndarray
Return numpy.ndarray or ExtensionArray.
See Also
--------
Index.unique
Series.unique
Examples
--------
>>> pd.unique(pd.Series([2, 1, 3, 3]))
array([2, 1, 3])
>>> pd.unique(pd.Series([2] + [1] * 5))
array([2, 1])
>>> pd.unique(pd.Series([pd.Timestamp('20160101'),
... pd.Timestamp('20160101')]))
array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
>>> pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
... pd.Timestamp('20160101', tz='US/Eastern')]))
array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
dtype=object)
>>> pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
... pd.Timestamp('20160101', tz='US/Eastern')]))
DatetimeIndex(['2016-01-01 00:00:00-05:00'],
... dtype='datetime64[ns, US/Eastern]', freq=None)
>>> pd.unique(list('baabc'))
array(['b', 'a', 'c'], dtype=object)
An unordered Categorical will return categories in the
order of appearance.
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'))))
[b, a, c]
Categories (3, object): [b, a, c]
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'),
... categories=list('abc'))))
[b, a, c]
Categories (3, object): [b, a, c]
An ordered Categorical preserves the category ordering.
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'),
... categories=list('abc'),
... ordered=True)))
[b, a, c]
Categories (3, object): [a < b < c]
An array of tuples
>>> pd.unique([('a', 'b'), ('b', 'a'), ('a', 'c'), ('b', 'a')])
array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object) | def unique(values):
"""
Hash table-based unique. Uniques are returned in order
of appearance. This does NOT sort.
Significantly faster than numpy.unique. Includes NA values.
Parameters
----------
values : 1d array-like
Returns
-------
numpy.ndarray or ExtensionArray
The return can be:
* Index : when the input is an Index
* Categorical : when the input is a Categorical dtype
* ndarray : when the input is a Series/ndarray
Return numpy.ndarray or ExtensionArray.
See Also
--------
Index.unique
Series.unique
Examples
--------
>>> pd.unique(pd.Series([2, 1, 3, 3]))
array([2, 1, 3])
>>> pd.unique(pd.Series([2] + [1] * 5))
array([2, 1])
>>> pd.unique(pd.Series([pd.Timestamp('20160101'),
... pd.Timestamp('20160101')]))
array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
>>> pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
... pd.Timestamp('20160101', tz='US/Eastern')]))
array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
dtype=object)
>>> pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
... pd.Timestamp('20160101', tz='US/Eastern')]))
DatetimeIndex(['2016-01-01 00:00:00-05:00'],
... dtype='datetime64[ns, US/Eastern]', freq=None)
>>> pd.unique(list('baabc'))
array(['b', 'a', 'c'], dtype=object)
An unordered Categorical will return categories in the
order of appearance.
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'))))
[b, a, c]
Categories (3, object): [b, a, c]
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'),
... categories=list('abc'))))
[b, a, c]
Categories (3, object): [b, a, c]
An ordered Categorical preserves the category ordering.
>>> pd.unique(pd.Series(pd.Categorical(list('baabc'),
... categories=list('abc'),
... ordered=True)))
[b, a, c]
Categories (3, object): [a < b < c]
An array of tuples
>>> pd.unique([('a', 'b'), ('b', 'a'), ('a', 'c'), ('b', 'a')])
array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)
"""
values = _ensure_arraylike(values)
if is_extension_array_dtype(values):
# Dispatch to extension dtype's unique.
return values.unique()
original = values
htable, _, values, dtype, ndtype = _get_hashtable_algo(values)
table = htable(len(values))
uniques = table.unique(values)
uniques = _reconstruct_data(uniques, dtype, original)
return uniques |
Compute the isin boolean array
Parameters
----------
comps : array-like
values : array-like
Returns
-------
boolean array same length as comps | def isin(comps, values):
"""
Compute the isin boolean array
Parameters
----------
comps : array-like
values : array-like
Returns
-------
boolean array same length as comps
"""
if not is_list_like(comps):
raise TypeError("only list-like objects are allowed to be passed"
" to isin(), you passed a [{comps_type}]"
.format(comps_type=type(comps).__name__))
if not is_list_like(values):
raise TypeError("only list-like objects are allowed to be passed"
" to isin(), you passed a [{values_type}]"
.format(values_type=type(values).__name__))
if not isinstance(values, (ABCIndex, ABCSeries, np.ndarray)):
values = construct_1d_object_array_from_listlike(list(values))
if is_categorical_dtype(comps):
# TODO(extension)
# handle categoricals
return comps._values.isin(values)
comps = com.values_from_object(comps)
comps, dtype, _ = _ensure_data(comps)
values, _, _ = _ensure_data(values, dtype=dtype)
# faster for larger cases to use np.in1d
f = lambda x, y: htable.ismember_object(x, values)
# GH16012
# Ensure np.in1d doesn't get object types or it *may* throw an exception
if len(comps) > 1000000 and not is_object_dtype(comps):
f = lambda x, y: np.in1d(x, y)
elif is_integer_dtype(comps):
try:
values = values.astype('int64', copy=False)
comps = comps.astype('int64', copy=False)
f = lambda x, y: htable.ismember_int64(x, y)
except (TypeError, ValueError, OverflowError):
values = values.astype(object)
comps = comps.astype(object)
elif is_float_dtype(comps):
try:
values = values.astype('float64', copy=False)
comps = comps.astype('float64', copy=False)
f = lambda x, y: htable.ismember_float64(x, y)
except (TypeError, ValueError):
values = values.astype(object)
comps = comps.astype(object)
return f(comps, values) |
Factorize an array-like to labels and uniques.
This doesn't do any coercion of types or unboxing before factorization.
Parameters
----------
values : ndarray
na_sentinel : int, default -1
size_hint : int, optional
Passsed through to the hashtable's 'get_labels' method
na_value : object, optional
A value in `values` to consider missing. Note: only use this
parameter when you know that you don't have any values pandas would
consider missing in the array (NaN for float data, iNaT for
datetimes, etc.).
Returns
-------
labels, uniques : ndarray | def _factorize_array(values, na_sentinel=-1, size_hint=None,
na_value=None):
"""Factorize an array-like to labels and uniques.
This doesn't do any coercion of types or unboxing before factorization.
Parameters
----------
values : ndarray
na_sentinel : int, default -1
size_hint : int, optional
Passsed through to the hashtable's 'get_labels' method
na_value : object, optional
A value in `values` to consider missing. Note: only use this
parameter when you know that you don't have any values pandas would
consider missing in the array (NaN for float data, iNaT for
datetimes, etc.).
Returns
-------
labels, uniques : ndarray
"""
(hash_klass, _), values = _get_data_algo(values, _hashtables)
table = hash_klass(size_hint or len(values))
uniques, labels = table.factorize(values, na_sentinel=na_sentinel,
na_value=na_value)
labels = ensure_platform_int(labels)
return labels, uniques |
Compute a histogram of the counts of non-null values.
Parameters
----------
values : ndarray (1-d)
sort : boolean, default True
Sort by values
ascending : boolean, default False
Sort in ascending order
normalize: boolean, default False
If True then compute a relative histogram
bins : integer, optional
Rather than count values, group them into half-open bins,
convenience for pd.cut, only works with numeric data
dropna : boolean, default True
Don't include counts of NaN
Returns
-------
value_counts : Series | def value_counts(values, sort=True, ascending=False, normalize=False,
bins=None, dropna=True):
"""
Compute a histogram of the counts of non-null values.
Parameters
----------
values : ndarray (1-d)
sort : boolean, default True
Sort by values
ascending : boolean, default False
Sort in ascending order
normalize: boolean, default False
If True then compute a relative histogram
bins : integer, optional
Rather than count values, group them into half-open bins,
convenience for pd.cut, only works with numeric data
dropna : boolean, default True
Don't include counts of NaN
Returns
-------
value_counts : Series
"""
from pandas.core.series import Series, Index
name = getattr(values, 'name', None)
if bins is not None:
try:
from pandas.core.reshape.tile import cut
values = Series(values)
ii = cut(values, bins, include_lowest=True)
except TypeError:
raise TypeError("bins argument only works with numeric data.")
# count, remove nulls (from the index), and but the bins
result = ii.value_counts(dropna=dropna)
result = result[result.index.notna()]
result.index = result.index.astype('interval')
result = result.sort_index()
# if we are dropna and we have NO values
if dropna and (result.values == 0).all():
result = result.iloc[0:0]
# normalizing is by len of all (regardless of dropna)
counts = np.array([len(ii)])
else:
if is_extension_array_dtype(values) or is_sparse(values):
# handle Categorical and sparse,
result = Series(values)._values.value_counts(dropna=dropna)
result.name = name
counts = result.values
else:
keys, counts = _value_counts_arraylike(values, dropna)
if not isinstance(keys, Index):
keys = Index(keys)
result = Series(counts, index=keys, name=name)
if sort:
result = result.sort_values(ascending=ascending)
if normalize:
result = result / float(counts.sum())
return result |
Parameters
----------
values : arraylike
dropna : boolean
Returns
-------
(uniques, counts) | def _value_counts_arraylike(values, dropna):
"""
Parameters
----------
values : arraylike
dropna : boolean
Returns
-------
(uniques, counts)
"""
values = _ensure_arraylike(values)
original = values
values, dtype, ndtype = _ensure_data(values)
if needs_i8_conversion(dtype):
# i8
keys, counts = htable.value_count_int64(values, dropna)
if dropna:
msk = keys != iNaT
keys, counts = keys[msk], counts[msk]
else:
# ndarray like
# TODO: handle uint8
f = getattr(htable, "value_count_{dtype}".format(dtype=ndtype))
keys, counts = f(values, dropna)
mask = isna(values)
if not dropna and mask.any():
if not isna(keys).any():
keys = np.insert(keys, 0, np.NaN)
counts = np.insert(counts, 0, mask.sum())
keys = _reconstruct_data(keys, original.dtype, original)
return keys, counts |
Return boolean ndarray denoting duplicate values.
.. versionadded:: 0.19.0
Parameters
----------
values : ndarray-like
Array over which to check for duplicate values.
keep : {'first', 'last', False}, default 'first'
- ``first`` : Mark duplicates as ``True`` except for the first
occurrence.
- ``last`` : Mark duplicates as ``True`` except for the last
occurrence.
- False : Mark all duplicates as ``True``.
Returns
-------
duplicated : ndarray | def duplicated(values, keep='first'):
"""
Return boolean ndarray denoting duplicate values.
.. versionadded:: 0.19.0
Parameters
----------
values : ndarray-like
Array over which to check for duplicate values.
keep : {'first', 'last', False}, default 'first'
- ``first`` : Mark duplicates as ``True`` except for the first
occurrence.
- ``last`` : Mark duplicates as ``True`` except for the last
occurrence.
- False : Mark all duplicates as ``True``.
Returns
-------
duplicated : ndarray
"""
values, dtype, ndtype = _ensure_data(values)
f = getattr(htable, "duplicated_{dtype}".format(dtype=ndtype))
return f(values, keep=keep) |
Returns the mode(s) of an array.
Parameters
----------
values : array-like
Array over which to check for duplicate values.
dropna : boolean, default True
Don't consider counts of NaN/NaT.
.. versionadded:: 0.24.0
Returns
-------
mode : Series | def mode(values, dropna=True):
"""
Returns the mode(s) of an array.
Parameters
----------
values : array-like
Array over which to check for duplicate values.
dropna : boolean, default True
Don't consider counts of NaN/NaT.
.. versionadded:: 0.24.0
Returns
-------
mode : Series
"""
from pandas import Series
values = _ensure_arraylike(values)
original = values
# categorical is a fast-path
if is_categorical_dtype(values):
if isinstance(values, Series):
return Series(values.values.mode(dropna=dropna), name=values.name)
return values.mode(dropna=dropna)
if dropna and is_datetimelike(values):
mask = values.isnull()
values = values[~mask]
values, dtype, ndtype = _ensure_data(values)
f = getattr(htable, "mode_{dtype}".format(dtype=ndtype))
result = f(values, dropna=dropna)
try:
result = np.sort(result)
except TypeError as e:
warn("Unable to sort modes: {error}".format(error=e))
result = _reconstruct_data(result, original.dtype, original)
return Series(result) |
Rank the values along a given axis.
Parameters
----------
values : array-like
Array whose values will be ranked. The number of dimensions in this
array must not exceed 2.
axis : int, default 0
Axis over which to perform rankings.
method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
The method by which tiebreaks are broken during the ranking.
na_option : {'keep', 'top'}, default 'keep'
The method by which NaNs are placed in the ranking.
- ``keep``: rank each NaN value with a NaN ranking
- ``top``: replace each NaN with either +/- inf so that they
there are ranked at the top
ascending : boolean, default True
Whether or not the elements should be ranked in ascending order.
pct : boolean, default False
Whether or not to the display the returned rankings in integer form
(e.g. 1, 2, 3) or in percentile form (e.g. 0.333..., 0.666..., 1). | def rank(values, axis=0, method='average', na_option='keep',
ascending=True, pct=False):
"""
Rank the values along a given axis.
Parameters
----------
values : array-like
Array whose values will be ranked. The number of dimensions in this
array must not exceed 2.
axis : int, default 0
Axis over which to perform rankings.
method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
The method by which tiebreaks are broken during the ranking.
na_option : {'keep', 'top'}, default 'keep'
The method by which NaNs are placed in the ranking.
- ``keep``: rank each NaN value with a NaN ranking
- ``top``: replace each NaN with either +/- inf so that they
there are ranked at the top
ascending : boolean, default True
Whether or not the elements should be ranked in ascending order.
pct : boolean, default False
Whether or not to the display the returned rankings in integer form
(e.g. 1, 2, 3) or in percentile form (e.g. 0.333..., 0.666..., 1).
"""
if values.ndim == 1:
f, values = _get_data_algo(values, _rank1d_functions)
ranks = f(values, ties_method=method, ascending=ascending,
na_option=na_option, pct=pct)
elif values.ndim == 2:
f, values = _get_data_algo(values, _rank2d_functions)
ranks = f(values, axis=axis, ties_method=method,
ascending=ascending, na_option=na_option, pct=pct)
else:
raise TypeError("Array with ndim > 2 are not supported.")
return ranks |
Perform array addition that checks for underflow and overflow.
Performs the addition of an int64 array and an int64 integer (or array)
but checks that they do not result in overflow first. For elements that
are indicated to be NaN, whether or not there is overflow for that element
is automatically ignored.
Parameters
----------
arr : array addend.
b : array or scalar addend.
arr_mask : boolean array or None
array indicating which elements to exclude from checking
b_mask : boolean array or boolean or None
array or scalar indicating which element(s) to exclude from checking
Returns
-------
sum : An array for elements x + b for each element x in arr if b is
a scalar or an array for elements x + y for each element pair
(x, y) in (arr, b).
Raises
------
OverflowError if any x + y exceeds the maximum or minimum int64 value. | def checked_add_with_arr(arr, b, arr_mask=None, b_mask=None):
"""
Perform array addition that checks for underflow and overflow.
Performs the addition of an int64 array and an int64 integer (or array)
but checks that they do not result in overflow first. For elements that
are indicated to be NaN, whether or not there is overflow for that element
is automatically ignored.
Parameters
----------
arr : array addend.
b : array or scalar addend.
arr_mask : boolean array or None
array indicating which elements to exclude from checking
b_mask : boolean array or boolean or None
array or scalar indicating which element(s) to exclude from checking
Returns
-------
sum : An array for elements x + b for each element x in arr if b is
a scalar or an array for elements x + y for each element pair
(x, y) in (arr, b).
Raises
------
OverflowError if any x + y exceeds the maximum or minimum int64 value.
"""
# For performance reasons, we broadcast 'b' to the new array 'b2'
# so that it has the same size as 'arr'.
b2 = np.broadcast_to(b, arr.shape)
if b_mask is not None:
# We do the same broadcasting for b_mask as well.
b2_mask = np.broadcast_to(b_mask, arr.shape)
else:
b2_mask = None
# For elements that are NaN, regardless of their value, we should
# ignore whether they overflow or not when doing the checked add.
if arr_mask is not None and b2_mask is not None:
not_nan = np.logical_not(arr_mask | b2_mask)
elif arr_mask is not None:
not_nan = np.logical_not(arr_mask)
elif b_mask is not None:
not_nan = np.logical_not(b2_mask)
else:
not_nan = np.empty(arr.shape, dtype=bool)
not_nan.fill(True)
# gh-14324: For each element in 'arr' and its corresponding element
# in 'b2', we check the sign of the element in 'b2'. If it is positive,
# we then check whether its sum with the element in 'arr' exceeds
# np.iinfo(np.int64).max. If so, we have an overflow error. If it
# it is negative, we then check whether its sum with the element in
# 'arr' exceeds np.iinfo(np.int64).min. If so, we have an overflow
# error as well.
mask1 = b2 > 0
mask2 = b2 < 0
if not mask1.any():
to_raise = ((np.iinfo(np.int64).min - b2 > arr) & not_nan).any()
elif not mask2.any():
to_raise = ((np.iinfo(np.int64).max - b2 < arr) & not_nan).any()
else:
to_raise = (((np.iinfo(np.int64).max -
b2[mask1] < arr[mask1]) & not_nan[mask1]).any() or
((np.iinfo(np.int64).min -
b2[mask2] > arr[mask2]) & not_nan[mask2]).any())
if to_raise:
raise OverflowError("Overflow in int64 addition")
return arr + b |
Compute sample quantile or quantiles of the input array. For example, q=0.5
computes the median.
The `interpolation_method` parameter supports three values, namely
`fraction` (default), `lower` and `higher`. Interpolation is done only,
if the desired quantile lies between two data points `i` and `j`. For
`fraction`, the result is an interpolated value between `i` and `j`;
for `lower`, the result is `i`, for `higher` the result is `j`.
Parameters
----------
x : ndarray
Values from which to extract score.
q : scalar or array
Percentile at which to extract score.
interpolation_method : {'fraction', 'lower', 'higher'}, optional
This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`:
- fraction: `i + (j - i)*fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
-lower: `i`.
- higher: `j`.
Returns
-------
score : float
Score at percentile.
Examples
--------
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5 | def quantile(x, q, interpolation_method='fraction'):
"""
Compute sample quantile or quantiles of the input array. For example, q=0.5
computes the median.
The `interpolation_method` parameter supports three values, namely
`fraction` (default), `lower` and `higher`. Interpolation is done only,
if the desired quantile lies between two data points `i` and `j`. For
`fraction`, the result is an interpolated value between `i` and `j`;
for `lower`, the result is `i`, for `higher` the result is `j`.
Parameters
----------
x : ndarray
Values from which to extract score.
q : scalar or array
Percentile at which to extract score.
interpolation_method : {'fraction', 'lower', 'higher'}, optional
This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`:
- fraction: `i + (j - i)*fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
-lower: `i`.
- higher: `j`.
Returns
-------
score : float
Score at percentile.
Examples
--------
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
"""
x = np.asarray(x)
mask = isna(x)
x = x[~mask]
values = np.sort(x)
def _interpolate(a, b, fraction):
"""Returns the point at the given fraction between a and b, where
'fraction' must be between 0 and 1.
"""
return a + (b - a) * fraction
def _get_score(at):
if len(values) == 0:
return np.nan
idx = at * (len(values) - 1)
if idx % 1 == 0:
score = values[int(idx)]
else:
if interpolation_method == 'fraction':
score = _interpolate(values[int(idx)], values[int(idx) + 1],
idx % 1)
elif interpolation_method == 'lower':
score = values[np.floor(idx)]
elif interpolation_method == 'higher':
score = values[np.ceil(idx)]
else:
raise ValueError("interpolation_method can only be 'fraction' "
", 'lower' or 'higher'")
return score
if is_scalar(q):
return _get_score(q)
else:
q = np.asarray(q, np.float64)
return algos.arrmap_float64(q, _get_score) |
Take elements from an array.
.. versionadded:: 0.23.0
Parameters
----------
arr : sequence
Non array-likes (sequences without a dtype) are coerced
to an ndarray.
indices : sequence of integers
Indices to be taken.
axis : int, default 0
The axis over which to select values.
allow_fill : bool, default False
How to handle negative values in `indices`.
* False: negative values in `indices` indicate positional indices
from the right (the default). This is similar to :func:`numpy.take`.
* True: negative values in `indices` indicate
missing values. These values are set to `fill_value`. Any other
other negative values raise a ``ValueError``.
fill_value : any, optional
Fill value to use for NA-indices when `allow_fill` is True.
This may be ``None``, in which case the default NA value for
the type (``self.dtype.na_value``) is used.
For multi-dimensional `arr`, each *element* is filled with
`fill_value`.
Returns
-------
ndarray or ExtensionArray
Same type as the input.
Raises
------
IndexError
When `indices` is out of bounds for the array.
ValueError
When the indexer contains negative values other than ``-1``
and `allow_fill` is True.
Notes
-----
When `allow_fill` is False, `indices` may be whatever dimensionality
is accepted by NumPy for `arr`.
When `allow_fill` is True, `indices` should be 1-D.
See Also
--------
numpy.take
Examples
--------
>>> from pandas.api.extensions import take
With the default ``allow_fill=False``, negative numbers indicate
positional indices from the right.
>>> take(np.array([10, 20, 30]), [0, 0, -1])
array([10, 10, 30])
Setting ``allow_fill=True`` will place `fill_value` in those positions.
>>> take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True)
array([10., 10., nan])
>>> take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True,
... fill_value=-10)
array([ 10, 10, -10]) | def take(arr, indices, axis=0, allow_fill=False, fill_value=None):
"""
Take elements from an array.
.. versionadded:: 0.23.0
Parameters
----------
arr : sequence
Non array-likes (sequences without a dtype) are coerced
to an ndarray.
indices : sequence of integers
Indices to be taken.
axis : int, default 0
The axis over which to select values.
allow_fill : bool, default False
How to handle negative values in `indices`.
* False: negative values in `indices` indicate positional indices
from the right (the default). This is similar to :func:`numpy.take`.
* True: negative values in `indices` indicate
missing values. These values are set to `fill_value`. Any other
other negative values raise a ``ValueError``.
fill_value : any, optional
Fill value to use for NA-indices when `allow_fill` is True.
This may be ``None``, in which case the default NA value for
the type (``self.dtype.na_value``) is used.
For multi-dimensional `arr`, each *element* is filled with
`fill_value`.
Returns
-------
ndarray or ExtensionArray
Same type as the input.
Raises
------
IndexError
When `indices` is out of bounds for the array.
ValueError
When the indexer contains negative values other than ``-1``
and `allow_fill` is True.
Notes
-----
When `allow_fill` is False, `indices` may be whatever dimensionality
is accepted by NumPy for `arr`.
When `allow_fill` is True, `indices` should be 1-D.
See Also
--------
numpy.take
Examples
--------
>>> from pandas.api.extensions import take
With the default ``allow_fill=False``, negative numbers indicate
positional indices from the right.
>>> take(np.array([10, 20, 30]), [0, 0, -1])
array([10, 10, 30])
Setting ``allow_fill=True`` will place `fill_value` in those positions.
>>> take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True)
array([10., 10., nan])
>>> take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True,
... fill_value=-10)
array([ 10, 10, -10])
"""
from pandas.core.indexing import validate_indices
if not is_array_like(arr):
arr = np.asarray(arr)
indices = np.asarray(indices, dtype=np.intp)
if allow_fill:
# Pandas style, -1 means NA
validate_indices(indices, len(arr))
result = take_1d(arr, indices, axis=axis, allow_fill=True,
fill_value=fill_value)
else:
# NumPy style
result = arr.take(indices, axis=axis)
return result |
Specialized Cython take which sets NaN values in one pass
This dispatches to ``take`` defined on ExtensionArrays. It does not
currently dispatch to ``SparseArray.take`` for sparse ``arr``.
Parameters
----------
arr : array-like
Input array.
indexer : ndarray
1-D array of indices to take, subarrays corresponding to -1 value
indices are filed with fill_value
axis : int, default 0
Axis to take from
out : ndarray or None, default None
Optional output array, must be appropriate type to hold input and
fill_value together, if indexer has any -1 value entries; call
_maybe_promote to determine this type for any fill_value
fill_value : any, default np.nan
Fill value to replace -1 values with
mask_info : tuple of (ndarray, boolean)
If provided, value should correspond to:
(indexer != -1, (indexer != -1).any())
If not provided, it will be computed internally if necessary
allow_fill : boolean, default True
If False, indexer is assumed to contain no -1 values so no filling
will be done. This short-circuits computation of a mask. Result is
undefined if allow_fill == False and -1 is present in indexer.
Returns
-------
subarray : array-like
May be the same type as the input, or cast to an ndarray. | def take_nd(arr, indexer, axis=0, out=None, fill_value=np.nan, mask_info=None,
allow_fill=True):
"""
Specialized Cython take which sets NaN values in one pass
This dispatches to ``take`` defined on ExtensionArrays. It does not
currently dispatch to ``SparseArray.take`` for sparse ``arr``.
Parameters
----------
arr : array-like
Input array.
indexer : ndarray
1-D array of indices to take, subarrays corresponding to -1 value
indices are filed with fill_value
axis : int, default 0
Axis to take from
out : ndarray or None, default None
Optional output array, must be appropriate type to hold input and
fill_value together, if indexer has any -1 value entries; call
_maybe_promote to determine this type for any fill_value
fill_value : any, default np.nan
Fill value to replace -1 values with
mask_info : tuple of (ndarray, boolean)
If provided, value should correspond to:
(indexer != -1, (indexer != -1).any())
If not provided, it will be computed internally if necessary
allow_fill : boolean, default True
If False, indexer is assumed to contain no -1 values so no filling
will be done. This short-circuits computation of a mask. Result is
undefined if allow_fill == False and -1 is present in indexer.
Returns
-------
subarray : array-like
May be the same type as the input, or cast to an ndarray.
"""
# TODO(EA): Remove these if / elifs as datetimeTZ, interval, become EAs
# dispatch to internal type takes
if is_extension_array_dtype(arr):
return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)
elif is_datetime64tz_dtype(arr):
return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)
elif is_interval_dtype(arr):
return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)
if is_sparse(arr):
arr = arr.get_values()
elif isinstance(arr, (ABCIndexClass, ABCSeries)):
arr = arr.values
arr = np.asarray(arr)
if indexer is None:
indexer = np.arange(arr.shape[axis], dtype=np.int64)
dtype, fill_value = arr.dtype, arr.dtype.type()
else:
indexer = ensure_int64(indexer, copy=False)
if not allow_fill:
dtype, fill_value = arr.dtype, arr.dtype.type()
mask_info = None, False
else:
# check for promotion based on types only (do this first because
# it's faster than computing a mask)
dtype, fill_value = maybe_promote(arr.dtype, fill_value)
if dtype != arr.dtype and (out is None or out.dtype != dtype):
# check if promotion is actually required based on indexer
if mask_info is not None:
mask, needs_masking = mask_info
else:
mask = indexer == -1
needs_masking = mask.any()
mask_info = mask, needs_masking
if needs_masking:
if out is not None and out.dtype != dtype:
raise TypeError('Incompatible type for fill_value')
else:
# if not, then depromote, set fill_value to dummy
# (it won't be used but we don't want the cython code
# to crash when trying to cast it to dtype)
dtype, fill_value = arr.dtype, arr.dtype.type()
flip_order = False
if arr.ndim == 2:
if arr.flags.f_contiguous:
flip_order = True
if flip_order:
arr = arr.T
axis = arr.ndim - axis - 1
if out is not None:
out = out.T
# at this point, it's guaranteed that dtype can hold both the arr values
# and the fill_value
if out is None:
out_shape = list(arr.shape)
out_shape[axis] = len(indexer)
out_shape = tuple(out_shape)
if arr.flags.f_contiguous and axis == arr.ndim - 1:
# minor tweak that can make an order-of-magnitude difference
# for dataframes initialized directly from 2-d ndarrays
# (s.t. df.values is c-contiguous and df._data.blocks[0] is its
# f-contiguous transpose)
out = np.empty(out_shape, dtype=dtype, order='F')
else:
out = np.empty(out_shape, dtype=dtype)
func = _get_take_nd_function(arr.ndim, arr.dtype, out.dtype, axis=axis,
mask_info=mask_info)
func(arr, indexer, out, fill_value)
if flip_order:
out = out.T
return out |
Specialized Cython take which sets NaN values in one pass | def take_2d_multi(arr, indexer, out=None, fill_value=np.nan, mask_info=None,
allow_fill=True):
"""
Specialized Cython take which sets NaN values in one pass
"""
if indexer is None or (indexer[0] is None and indexer[1] is None):
row_idx = np.arange(arr.shape[0], dtype=np.int64)
col_idx = np.arange(arr.shape[1], dtype=np.int64)
indexer = row_idx, col_idx
dtype, fill_value = arr.dtype, arr.dtype.type()
else:
row_idx, col_idx = indexer
if row_idx is None:
row_idx = np.arange(arr.shape[0], dtype=np.int64)
else:
row_idx = ensure_int64(row_idx)
if col_idx is None:
col_idx = np.arange(arr.shape[1], dtype=np.int64)
else:
col_idx = ensure_int64(col_idx)
indexer = row_idx, col_idx
if not allow_fill:
dtype, fill_value = arr.dtype, arr.dtype.type()
mask_info = None, False
else:
# check for promotion based on types only (do this first because
# it's faster than computing a mask)
dtype, fill_value = maybe_promote(arr.dtype, fill_value)
if dtype != arr.dtype and (out is None or out.dtype != dtype):
# check if promotion is actually required based on indexer
if mask_info is not None:
(row_mask, col_mask), (row_needs, col_needs) = mask_info
else:
row_mask = row_idx == -1
col_mask = col_idx == -1
row_needs = row_mask.any()
col_needs = col_mask.any()
mask_info = (row_mask, col_mask), (row_needs, col_needs)
if row_needs or col_needs:
if out is not None and out.dtype != dtype:
raise TypeError('Incompatible type for fill_value')
else:
# if not, then depromote, set fill_value to dummy
# (it won't be used but we don't want the cython code
# to crash when trying to cast it to dtype)
dtype, fill_value = arr.dtype, arr.dtype.type()
# at this point, it's guaranteed that dtype can hold both the arr values
# and the fill_value
if out is None:
out_shape = len(row_idx), len(col_idx)
out = np.empty(out_shape, dtype=dtype)
func = _take_2d_multi_dict.get((arr.dtype.name, out.dtype.name), None)
if func is None and arr.dtype != out.dtype:
func = _take_2d_multi_dict.get((out.dtype.name, out.dtype.name), None)
if func is not None:
func = _convert_wrapper(func, out.dtype)
if func is None:
def func(arr, indexer, out, fill_value=np.nan):
_take_2d_multi_object(arr, indexer, out, fill_value=fill_value,
mask_info=mask_info)
func(arr, indexer, out=out, fill_value=fill_value)
return out |
Find indices where elements should be inserted to maintain order.
.. versionadded:: 0.25.0
Find the indices into a sorted array `arr` (a) such that, if the
corresponding elements in `value` were inserted before the indices,
the order of `arr` would be preserved.
Assuming that `arr` is sorted:
====== ================================
`side` returned index `i` satisfies
====== ================================
left ``arr[i-1] < value <= self[i]``
right ``arr[i-1] <= value < self[i]``
====== ================================
Parameters
----------
arr: array-like
Input array. If `sorter` is None, then it must be sorted in
ascending order, otherwise `sorter` must be an array of indices
that sort it.
value : array_like
Values to insert into `arr`.
side : {'left', 'right'}, optional
If 'left', the index of the first suitable location found is given.
If 'right', return the last such index. If there is no suitable
index, return either 0 or N (where N is the length of `self`).
sorter : 1-D array_like, optional
Optional array of integer indices that sort array a into ascending
order. They are typically the result of argsort.
Returns
-------
array of ints
Array of insertion points with the same shape as `value`.
See Also
--------
numpy.searchsorted : Similar method from NumPy. | def searchsorted(arr, value, side="left", sorter=None):
"""
Find indices where elements should be inserted to maintain order.
.. versionadded:: 0.25.0
Find the indices into a sorted array `arr` (a) such that, if the
corresponding elements in `value` were inserted before the indices,
the order of `arr` would be preserved.
Assuming that `arr` is sorted:
====== ================================
`side` returned index `i` satisfies
====== ================================
left ``arr[i-1] < value <= self[i]``
right ``arr[i-1] <= value < self[i]``
====== ================================
Parameters
----------
arr: array-like
Input array. If `sorter` is None, then it must be sorted in
ascending order, otherwise `sorter` must be an array of indices
that sort it.
value : array_like
Values to insert into `arr`.
side : {'left', 'right'}, optional
If 'left', the index of the first suitable location found is given.
If 'right', return the last such index. If there is no suitable
index, return either 0 or N (where N is the length of `self`).
sorter : 1-D array_like, optional
Optional array of integer indices that sort array a into ascending
order. They are typically the result of argsort.
Returns
-------
array of ints
Array of insertion points with the same shape as `value`.
See Also
--------
numpy.searchsorted : Similar method from NumPy.
"""
if sorter is not None:
sorter = ensure_platform_int(sorter)
if isinstance(arr, np.ndarray) and is_integer_dtype(arr) and (
is_integer(value) or is_integer_dtype(value)):
from .arrays.array_ import array
# if `arr` and `value` have different dtypes, `arr` would be
# recast by numpy, causing a slow search.
# Before searching below, we therefore try to give `value` the
# same dtype as `arr`, while guarding against integer overflows.
iinfo = np.iinfo(arr.dtype.type)
value_arr = np.array([value]) if is_scalar(value) else np.array(value)
if (value_arr >= iinfo.min).all() and (value_arr <= iinfo.max).all():
# value within bounds, so no overflow, so can convert value dtype
# to dtype of arr
dtype = arr.dtype
else:
dtype = value_arr.dtype
if is_scalar(value):
value = dtype.type(value)
else:
value = array(value, dtype=dtype)
elif not (is_object_dtype(arr) or is_numeric_dtype(arr) or
is_categorical_dtype(arr)):
from pandas.core.series import Series
# E.g. if `arr` is an array with dtype='datetime64[ns]'
# and `value` is a pd.Timestamp, we may need to convert value
value_ser = Series(value)._values
value = value_ser[0] if is_scalar(value) else value_ser
result = arr.searchsorted(value, side=side, sorter=sorter)
return result |
difference of n between self,
analogous to s-s.shift(n)
Parameters
----------
arr : ndarray
n : int
number of periods
axis : int
axis to shift on
Returns
-------
shifted | def diff(arr, n, axis=0):
"""
difference of n between self,
analogous to s-s.shift(n)
Parameters
----------
arr : ndarray
n : int
number of periods
axis : int
axis to shift on
Returns
-------
shifted
"""
n = int(n)
na = np.nan
dtype = arr.dtype
is_timedelta = False
if needs_i8_conversion(arr):
dtype = np.float64
arr = arr.view('i8')
na = iNaT
is_timedelta = True
elif is_bool_dtype(dtype):
dtype = np.object_
elif is_integer_dtype(dtype):
dtype = np.float64
dtype = np.dtype(dtype)
out_arr = np.empty(arr.shape, dtype=dtype)
na_indexer = [slice(None)] * arr.ndim
na_indexer[axis] = slice(None, n) if n >= 0 else slice(n, None)
out_arr[tuple(na_indexer)] = na
if arr.ndim == 2 and arr.dtype.name in _diff_special:
f = _diff_special[arr.dtype.name]
f(arr, out_arr, n, axis)
else:
res_indexer = [slice(None)] * arr.ndim
res_indexer[axis] = slice(n, None) if n >= 0 else slice(None, n)
res_indexer = tuple(res_indexer)
lag_indexer = [slice(None)] * arr.ndim
lag_indexer[axis] = slice(None, -n) if n > 0 else slice(-n, None)
lag_indexer = tuple(lag_indexer)
# need to make sure that we account for na for datelike/timedelta
# we don't actually want to subtract these i8 numbers
if is_timedelta:
res = arr[res_indexer]
lag = arr[lag_indexer]
mask = (arr[res_indexer] == na) | (arr[lag_indexer] == na)
if mask.any():
res = res.copy()
res[mask] = 0
lag = lag.copy()
lag[mask] = 0
result = res - lag
result[mask] = na
out_arr[res_indexer] = result
else:
out_arr[res_indexer] = arr[res_indexer] - arr[lag_indexer]
if is_timedelta:
from pandas import TimedeltaIndex
out_arr = TimedeltaIndex(out_arr.ravel().astype('int64')).asi8.reshape(
out_arr.shape).astype('timedelta64[ns]')
return out_arr |
For arbitrary (MultiIndexed) SparseSeries return
(v, i, j, ilabels, jlabels) where (v, (i, j)) is suitable for
passing to scipy.sparse.coo constructor. | def _to_ijv(ss, row_levels=(0, ), column_levels=(1, ), sort_labels=False):
""" For arbitrary (MultiIndexed) SparseSeries return
(v, i, j, ilabels, jlabels) where (v, (i, j)) is suitable for
passing to scipy.sparse.coo constructor. """
# index and column levels must be a partition of the index
_check_is_partition([row_levels, column_levels], range(ss.index.nlevels))
# from the SparseSeries: get the labels and data for non-null entries
values = ss._data.internal_values()._valid_sp_values
nonnull_labels = ss.dropna()
def get_indexers(levels):
""" Return sparse coords and dense labels for subset levels """
# TODO: how to do this better? cleanly slice nonnull_labels given the
# coord
values_ilabels = [tuple(x[i] for i in levels)
for x in nonnull_labels.index]
if len(levels) == 1:
values_ilabels = [x[0] for x in values_ilabels]
# # performance issues with groupby ###################################
# TODO: these two lines can rejplace the code below but
# groupby is too slow (in some cases at least)
# labels_to_i = ss.groupby(level=levels, sort=sort_labels).first()
# labels_to_i[:] = np.arange(labels_to_i.shape[0])
def _get_label_to_i_dict(labels, sort_labels=False):
""" Return OrderedDict of unique labels to number.
Optionally sort by label.
"""
labels = Index(lmap(tuple, labels)).unique().tolist() # squish
if sort_labels:
labels = sorted(list(labels))
d = OrderedDict((k, i) for i, k in enumerate(labels))
return (d)
def _get_index_subset_to_coord_dict(index, subset, sort_labels=False):
ilabels = list(zip(*[index._get_level_values(i) for i in subset]))
labels_to_i = _get_label_to_i_dict(ilabels,
sort_labels=sort_labels)
labels_to_i = Series(labels_to_i)
if len(subset) > 1:
labels_to_i.index = MultiIndex.from_tuples(labels_to_i.index)
labels_to_i.index.names = [index.names[i] for i in subset]
else:
labels_to_i.index = Index(x[0] for x in labels_to_i.index)
labels_to_i.index.name = index.names[subset[0]]
labels_to_i.name = 'value'
return (labels_to_i)
labels_to_i = _get_index_subset_to_coord_dict(ss.index, levels,
sort_labels=sort_labels)
# #####################################################################
# #####################################################################
i_coord = labels_to_i[values_ilabels].tolist()
i_labels = labels_to_i.index.tolist()
return i_coord, i_labels
i_coord, i_labels = get_indexers(row_levels)
j_coord, j_labels = get_indexers(column_levels)
return values, i_coord, j_coord, i_labels, j_labels |
Convert a SparseSeries to a scipy.sparse.coo_matrix using index
levels row_levels, column_levels as the row and column
labels respectively. Returns the sparse_matrix, row and column labels. | def _sparse_series_to_coo(ss, row_levels=(0, ), column_levels=(1, ),
sort_labels=False):
"""
Convert a SparseSeries to a scipy.sparse.coo_matrix using index
levels row_levels, column_levels as the row and column
labels respectively. Returns the sparse_matrix, row and column labels.
"""
import scipy.sparse
if ss.index.nlevels < 2:
raise ValueError('to_coo requires MultiIndex with nlevels > 2')
if not ss.index.is_unique:
raise ValueError('Duplicate index entries are not allowed in to_coo '
'transformation.')
# to keep things simple, only rely on integer indexing (not labels)
row_levels = [ss.index._get_level_number(x) for x in row_levels]
column_levels = [ss.index._get_level_number(x) for x in column_levels]
v, i, j, rows, columns = _to_ijv(ss, row_levels=row_levels,
column_levels=column_levels,
sort_labels=sort_labels)
sparse_matrix = scipy.sparse.coo_matrix(
(v, (i, j)), shape=(len(rows), len(columns)))
return sparse_matrix, rows, columns |
Convert a scipy.sparse.coo_matrix to a SparseSeries.
Use the defaults given in the SparseSeries constructor. | def _coo_to_sparse_series(A, dense_index=False):
"""
Convert a scipy.sparse.coo_matrix to a SparseSeries.
Use the defaults given in the SparseSeries constructor.
"""
s = Series(A.data, MultiIndex.from_arrays((A.row, A.col)))
s = s.sort_index()
s = s.to_sparse() # TODO: specify kind?
if dense_index:
# is there a better constructor method to use here?
i = range(A.shape[0])
j = range(A.shape[1])
ind = MultiIndex.from_product([i, j])
s = s.reindex(ind)
return s |
Timestamp-like => dt64 | def _to_M8(key, tz=None):
"""
Timestamp-like => dt64
"""
if not isinstance(key, Timestamp):
# this also converts strings
key = Timestamp(key)
if key.tzinfo is not None and tz is not None:
# Don't tz_localize(None) if key is already tz-aware
key = key.tz_convert(tz)
else:
key = key.tz_localize(tz)
return np.int64(conversion.pydt_to_i8(key)).view(_NS_DTYPE) |
Wrap comparison operations to convert datetime-like to datetime64 | def _dt_array_cmp(cls, op):
"""
Wrap comparison operations to convert datetime-like to datetime64
"""
opname = '__{name}__'.format(name=op.__name__)
nat_result = opname == '__ne__'
def wrapper(self, other):
if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)):
return NotImplemented
other = lib.item_from_zerodim(other)
if isinstance(other, (datetime, np.datetime64, str)):
if isinstance(other, (datetime, np.datetime64)):
# GH#18435 strings get a pass from tzawareness compat
self._assert_tzawareness_compat(other)
try:
other = _to_M8(other, tz=self.tz)
except ValueError:
# string that cannot be parsed to Timestamp
return ops.invalid_comparison(self, other, op)
result = op(self.asi8, other.view('i8'))
if isna(other):
result.fill(nat_result)
elif lib.is_scalar(other) or np.ndim(other) == 0:
return ops.invalid_comparison(self, other, op)
elif len(other) != len(self):
raise ValueError("Lengths must match")
else:
if isinstance(other, list):
try:
other = type(self)._from_sequence(other)
except ValueError:
other = np.array(other, dtype=np.object_)
elif not isinstance(other, (np.ndarray, ABCIndexClass, ABCSeries,
DatetimeArray)):
# Following Timestamp convention, __eq__ is all-False
# and __ne__ is all True, others raise TypeError.
return ops.invalid_comparison(self, other, op)
if is_object_dtype(other):
# We have to use _comp_method_OBJECT_ARRAY instead of numpy
# comparison otherwise it would fail to raise when
# comparing tz-aware and tz-naive
with np.errstate(all='ignore'):
result = ops._comp_method_OBJECT_ARRAY(op,
self.astype(object),
other)
o_mask = isna(other)
elif not (is_datetime64_dtype(other) or
is_datetime64tz_dtype(other)):
# e.g. is_timedelta64_dtype(other)
return ops.invalid_comparison(self, other, op)
else:
self._assert_tzawareness_compat(other)
if isinstance(other, (ABCIndexClass, ABCSeries)):
other = other.array
if (is_datetime64_dtype(other) and
not is_datetime64_ns_dtype(other) or
not hasattr(other, 'asi8')):
# e.g. other.dtype == 'datetime64[s]'
# or an object-dtype ndarray
other = type(self)._from_sequence(other)
result = op(self.view('i8'), other.view('i8'))
o_mask = other._isnan
result = com.values_from_object(result)
if o_mask.any():
result[o_mask] = nat_result
if self._hasnans:
result[self._isnan] = nat_result
return result
return compat.set_function_name(wrapper, opname, cls) |
Parameters
----------
data : list-like
dtype : dtype, str, or None, default None
copy : bool, default False
tz : tzinfo, str, or None, default None
dayfirst : bool, default False
yearfirst : bool, default False
ambiguous : str, bool, or arraylike, default 'raise'
See pandas._libs.tslibs.conversion.tz_localize_to_utc
int_as_wall_time : bool, default False
Whether to treat ints as wall time in specified timezone, or as
nanosecond-precision UNIX epoch (wall time in UTC).
This is used in DatetimeIndex.__init__ to deprecate the wall-time
behaviour.
..versionadded:: 0.24.0
Returns
-------
result : numpy.ndarray
The sequence converted to a numpy array with dtype ``datetime64[ns]``.
tz : tzinfo or None
Either the user-provided tzinfo or one inferred from the data.
inferred_freq : Tick or None
The inferred frequency of the sequence.
Raises
------
TypeError : PeriodDType data is passed | def sequence_to_dt64ns(data, dtype=None, copy=False,
tz=None,
dayfirst=False, yearfirst=False, ambiguous='raise',
int_as_wall_time=False):
"""
Parameters
----------
data : list-like
dtype : dtype, str, or None, default None
copy : bool, default False
tz : tzinfo, str, or None, default None
dayfirst : bool, default False
yearfirst : bool, default False
ambiguous : str, bool, or arraylike, default 'raise'
See pandas._libs.tslibs.conversion.tz_localize_to_utc
int_as_wall_time : bool, default False
Whether to treat ints as wall time in specified timezone, or as
nanosecond-precision UNIX epoch (wall time in UTC).
This is used in DatetimeIndex.__init__ to deprecate the wall-time
behaviour.
..versionadded:: 0.24.0
Returns
-------
result : numpy.ndarray
The sequence converted to a numpy array with dtype ``datetime64[ns]``.
tz : tzinfo or None
Either the user-provided tzinfo or one inferred from the data.
inferred_freq : Tick or None
The inferred frequency of the sequence.
Raises
------
TypeError : PeriodDType data is passed
"""
inferred_freq = None
dtype = _validate_dt64_dtype(dtype)
if not hasattr(data, "dtype"):
# e.g. list, tuple
if np.ndim(data) == 0:
# i.e. generator
data = list(data)
data = np.asarray(data)
copy = False
elif isinstance(data, ABCSeries):
data = data._values
if isinstance(data, ABCPandasArray):
data = data.to_numpy()
if hasattr(data, "freq"):
# i.e. DatetimeArray/Index
inferred_freq = data.freq
# if dtype has an embedded tz, capture it
tz = validate_tz_from_dtype(dtype, tz)
if isinstance(data, ABCIndexClass):
data = data._data
# By this point we are assured to have either a numpy array or Index
data, copy = maybe_convert_dtype(data, copy)
if is_object_dtype(data) or is_string_dtype(data):
# TODO: We do not have tests specific to string-dtypes,
# also complex or categorical or other extension
copy = False
if lib.infer_dtype(data, skipna=False) == 'integer':
data = data.astype(np.int64)
else:
# data comes back here as either i8 to denote UTC timestamps
# or M8[ns] to denote wall times
data, inferred_tz = objects_to_datetime64ns(
data, dayfirst=dayfirst, yearfirst=yearfirst)
tz = maybe_infer_tz(tz, inferred_tz)
# When a sequence of timestamp objects is passed, we always
# want to treat the (now i8-valued) data as UTC timestamps,
# not wall times.
int_as_wall_time = False
# `data` may have originally been a Categorical[datetime64[ns, tz]],
# so we need to handle these types.
if is_datetime64tz_dtype(data):
# DatetimeArray -> ndarray
tz = maybe_infer_tz(tz, data.tz)
result = data._data
elif is_datetime64_dtype(data):
# tz-naive DatetimeArray or ndarray[datetime64]
data = getattr(data, "_data", data)
if data.dtype != _NS_DTYPE:
data = conversion.ensure_datetime64ns(data)
if tz is not None:
# Convert tz-naive to UTC
tz = timezones.maybe_get_tz(tz)
data = conversion.tz_localize_to_utc(data.view('i8'), tz,
ambiguous=ambiguous)
data = data.view(_NS_DTYPE)
assert data.dtype == _NS_DTYPE, data.dtype
result = data
else:
# must be integer dtype otherwise
# assume this data are epoch timestamps
if tz:
tz = timezones.maybe_get_tz(tz)
if data.dtype != _INT64_DTYPE:
data = data.astype(np.int64, copy=False)
if int_as_wall_time and tz is not None and not timezones.is_utc(tz):
warnings.warn(_i8_message, FutureWarning, stacklevel=4)
data = conversion.tz_localize_to_utc(data.view('i8'), tz,
ambiguous=ambiguous)
data = data.view(_NS_DTYPE)
result = data.view(_NS_DTYPE)
if copy:
# TODO: should this be deepcopy?
result = result.copy()
assert isinstance(result, np.ndarray), type(result)
assert result.dtype == 'M8[ns]', result.dtype
# We have to call this again after possibly inferring a tz above
validate_tz_from_dtype(dtype, tz)
return result, tz, inferred_freq |
Convert data to array of timestamps.
Parameters
----------
data : np.ndarray[object]
dayfirst : bool
yearfirst : bool
utc : bool, default False
Whether to convert timezone-aware timestamps to UTC
errors : {'raise', 'ignore', 'coerce'}
allow_object : bool
Whether to return an object-dtype ndarray instead of raising if the
data contains more than one timezone.
Returns
-------
result : ndarray
np.int64 dtype if returned values represent UTC timestamps
np.datetime64[ns] if returned values represent wall times
object if mixed timezones
inferred_tz : tzinfo or None
Raises
------
ValueError : if data cannot be converted to datetimes | def objects_to_datetime64ns(data, dayfirst, yearfirst,
utc=False, errors="raise",
require_iso8601=False, allow_object=False):
"""
Convert data to array of timestamps.
Parameters
----------
data : np.ndarray[object]
dayfirst : bool
yearfirst : bool
utc : bool, default False
Whether to convert timezone-aware timestamps to UTC
errors : {'raise', 'ignore', 'coerce'}
allow_object : bool
Whether to return an object-dtype ndarray instead of raising if the
data contains more than one timezone.
Returns
-------
result : ndarray
np.int64 dtype if returned values represent UTC timestamps
np.datetime64[ns] if returned values represent wall times
object if mixed timezones
inferred_tz : tzinfo or None
Raises
------
ValueError : if data cannot be converted to datetimes
"""
assert errors in ["raise", "ignore", "coerce"]
# if str-dtype, convert
data = np.array(data, copy=False, dtype=np.object_)
try:
result, tz_parsed = tslib.array_to_datetime(
data,
errors=errors,
utc=utc,
dayfirst=dayfirst,
yearfirst=yearfirst,
require_iso8601=require_iso8601
)
except ValueError as e:
try:
values, tz_parsed = conversion.datetime_to_datetime64(data)
# If tzaware, these values represent unix timestamps, so we
# return them as i8 to distinguish from wall times
return values.view('i8'), tz_parsed
except (ValueError, TypeError):
raise e
if tz_parsed is not None:
# We can take a shortcut since the datetime64 numpy array
# is in UTC
# Return i8 values to denote unix timestamps
return result.view('i8'), tz_parsed
elif is_datetime64_dtype(result):
# returning M8[ns] denotes wall-times; since tz is None
# the distinction is a thin one
return result, tz_parsed
elif is_object_dtype(result):
# GH#23675 when called via `pd.to_datetime`, returning an object-dtype
# array is allowed. When called via `pd.DatetimeIndex`, we can
# only accept datetime64 dtype, so raise TypeError if object-dtype
# is returned, as that indicates the values can be recognized as
# datetimes but they have conflicting timezones/awareness
if allow_object:
return result, tz_parsed
raise TypeError(result)
else: # pragma: no cover
# GH#23675 this TypeError should never be hit, whereas the TypeError
# in the object-dtype branch above is reachable.
raise TypeError(result) |
Convert data based on dtype conventions, issuing deprecation warnings
or errors where appropriate.
Parameters
----------
data : np.ndarray or pd.Index
copy : bool
Returns
-------
data : np.ndarray or pd.Index
copy : bool
Raises
------
TypeError : PeriodDType data is passed | def maybe_convert_dtype(data, copy):
"""
Convert data based on dtype conventions, issuing deprecation warnings
or errors where appropriate.
Parameters
----------
data : np.ndarray or pd.Index
copy : bool
Returns
-------
data : np.ndarray or pd.Index
copy : bool
Raises
------
TypeError : PeriodDType data is passed
"""
if is_float_dtype(data):
# Note: we must cast to datetime64[ns] here in order to treat these
# as wall-times instead of UTC timestamps.
data = data.astype(_NS_DTYPE)
copy = False
# TODO: deprecate this behavior to instead treat symmetrically
# with integer dtypes. See discussion in GH#23675
elif is_timedelta64_dtype(data):
warnings.warn("Passing timedelta64-dtype data is deprecated, will "
"raise a TypeError in a future version",
FutureWarning, stacklevel=5)
data = data.view(_NS_DTYPE)
elif is_period_dtype(data):
# Note: without explicitly raising here, PeriodIndex
# test_setops.test_join_does_not_recur fails
raise TypeError("Passing PeriodDtype data is invalid. "
"Use `data.to_timestamp()` instead")
elif is_categorical_dtype(data):
# GH#18664 preserve tz in going DTI->Categorical->DTI
# TODO: cases where we need to do another pass through this func,
# e.g. the categories are timedelta64s
data = data.categories.take(data.codes, fill_value=NaT)._values
copy = False
elif is_extension_type(data) and not is_datetime64tz_dtype(data):
# Includes categorical
# TODO: We have no tests for these
data = np.array(data, dtype=np.object_)
copy = False
return data, copy |
If a timezone is inferred from data, check that it is compatible with
the user-provided timezone, if any.
Parameters
----------
tz : tzinfo or None
inferred_tz : tzinfo or None
Returns
-------
tz : tzinfo or None
Raises
------
TypeError : if both timezones are present but do not match | def maybe_infer_tz(tz, inferred_tz):
"""
If a timezone is inferred from data, check that it is compatible with
the user-provided timezone, if any.
Parameters
----------
tz : tzinfo or None
inferred_tz : tzinfo or None
Returns
-------
tz : tzinfo or None
Raises
------
TypeError : if both timezones are present but do not match
"""
if tz is None:
tz = inferred_tz
elif inferred_tz is None:
pass
elif not timezones.tz_compare(tz, inferred_tz):
raise TypeError('data is already tz-aware {inferred_tz}, unable to '
'set specified tz: {tz}'
.format(inferred_tz=inferred_tz, tz=tz))
return tz |
Check that a dtype, if passed, represents either a numpy datetime64[ns]
dtype or a pandas DatetimeTZDtype.
Parameters
----------
dtype : object
Returns
-------
dtype : None, numpy.dtype, or DatetimeTZDtype
Raises
------
ValueError : invalid dtype
Notes
-----
Unlike validate_tz_from_dtype, this does _not_ allow non-existent
tz errors to go through | def _validate_dt64_dtype(dtype):
"""
Check that a dtype, if passed, represents either a numpy datetime64[ns]
dtype or a pandas DatetimeTZDtype.
Parameters
----------
dtype : object
Returns
-------
dtype : None, numpy.dtype, or DatetimeTZDtype
Raises
------
ValueError : invalid dtype
Notes
-----
Unlike validate_tz_from_dtype, this does _not_ allow non-existent
tz errors to go through
"""
if dtype is not None:
dtype = pandas_dtype(dtype)
if is_dtype_equal(dtype, np.dtype("M8")):
# no precision, warn
dtype = _NS_DTYPE
msg = textwrap.dedent("""\
Passing in 'datetime64' dtype with no precision is deprecated
and will raise in a future version. Please pass in
'datetime64[ns]' instead.""")
warnings.warn(msg, FutureWarning, stacklevel=5)
if ((isinstance(dtype, np.dtype) and dtype != _NS_DTYPE)
or not isinstance(dtype, (np.dtype, DatetimeTZDtype))):
raise ValueError("Unexpected value for 'dtype': '{dtype}'. "
"Must be 'datetime64[ns]' or DatetimeTZDtype'."
.format(dtype=dtype))
return dtype |
If the given dtype is a DatetimeTZDtype, extract the implied
tzinfo object from it and check that it does not conflict with the given
tz.
Parameters
----------
dtype : dtype, str
tz : None, tzinfo
Returns
-------
tz : consensus tzinfo
Raises
------
ValueError : on tzinfo mismatch | def validate_tz_from_dtype(dtype, tz):
"""
If the given dtype is a DatetimeTZDtype, extract the implied
tzinfo object from it and check that it does not conflict with the given
tz.
Parameters
----------
dtype : dtype, str
tz : None, tzinfo
Returns
-------
tz : consensus tzinfo
Raises
------
ValueError : on tzinfo mismatch
"""
if dtype is not None:
if isinstance(dtype, str):
try:
dtype = DatetimeTZDtype.construct_from_string(dtype)
except TypeError:
# Things like `datetime64[ns]`, which is OK for the
# constructors, but also nonsense, which should be validated
# but not by us. We *do* allow non-existent tz errors to
# go through
pass
dtz = getattr(dtype, 'tz', None)
if dtz is not None:
if tz is not None and not timezones.tz_compare(tz, dtz):
raise ValueError("cannot supply both a tz and a dtype"
" with a tz")
tz = dtz
if tz is not None and is_datetime64_dtype(dtype):
# We also need to check for the case where the user passed a
# tz-naive dtype (i.e. datetime64[ns])
if tz is not None and not timezones.tz_compare(tz, dtz):
raise ValueError("cannot supply both a tz and a "
"timezone-naive dtype (i.e. datetime64[ns])")
return tz |
If a timezone is not explicitly given via `tz`, see if one can
be inferred from the `start` and `end` endpoints. If more than one
of these inputs provides a timezone, require that they all agree.
Parameters
----------
start : Timestamp
end : Timestamp
tz : tzinfo or None
Returns
-------
tz : tzinfo or None
Raises
------
TypeError : if start and end timezones do not agree | def _infer_tz_from_endpoints(start, end, tz):
"""
If a timezone is not explicitly given via `tz`, see if one can
be inferred from the `start` and `end` endpoints. If more than one
of these inputs provides a timezone, require that they all agree.
Parameters
----------
start : Timestamp
end : Timestamp
tz : tzinfo or None
Returns
-------
tz : tzinfo or None
Raises
------
TypeError : if start and end timezones do not agree
"""
try:
inferred_tz = timezones.infer_tzinfo(start, end)
except Exception:
raise TypeError('Start and end cannot both be tz-aware with '
'different timezones')
inferred_tz = timezones.maybe_get_tz(inferred_tz)
tz = timezones.maybe_get_tz(tz)
if tz is not None and inferred_tz is not None:
if not timezones.tz_compare(inferred_tz, tz):
raise AssertionError("Inferred time zone not equal to passed "
"time zone")
elif inferred_tz is not None:
tz = inferred_tz
return tz |
Localize a start or end Timestamp to the timezone of the corresponding
start or end Timestamp
Parameters
----------
ts : start or end Timestamp to potentially localize
is_none : argument that should be None
is_not_none : argument that should not be None
freq : Tick, DateOffset, or None
tz : str, timezone object or None
Returns
-------
ts : Timestamp | def _maybe_localize_point(ts, is_none, is_not_none, freq, tz):
"""
Localize a start or end Timestamp to the timezone of the corresponding
start or end Timestamp
Parameters
----------
ts : start or end Timestamp to potentially localize
is_none : argument that should be None
is_not_none : argument that should not be None
freq : Tick, DateOffset, or None
tz : str, timezone object or None
Returns
-------
ts : Timestamp
"""
# Make sure start and end are timezone localized if:
# 1) freq = a Timedelta-like frequency (Tick)
# 2) freq = None i.e. generating a linspaced range
if isinstance(freq, Tick) or freq is None:
localize_args = {'tz': tz, 'ambiguous': False}
else:
localize_args = {'tz': None}
if is_none is None and is_not_none is not None:
ts = ts.tz_localize(**localize_args)
return ts |
subtract DatetimeArray/Index or ndarray[datetime64] | def _sub_datetime_arraylike(self, other):
"""subtract DatetimeArray/Index or ndarray[datetime64]"""
if len(self) != len(other):
raise ValueError("cannot add indices of unequal length")
if isinstance(other, np.ndarray):
assert is_datetime64_dtype(other)
other = type(self)(other)
if not self._has_same_tz(other):
# require tz compat
raise TypeError("{cls} subtraction must have the same "
"timezones or no timezones"
.format(cls=type(self).__name__))
self_i8 = self.asi8
other_i8 = other.asi8
arr_mask = self._isnan | other._isnan
new_values = checked_add_with_arr(self_i8, -other_i8,
arr_mask=arr_mask)
if self._hasnans or other._hasnans:
new_values[arr_mask] = iNaT
return new_values.view('timedelta64[ns]') |
Add a timedelta-like, Tick, or TimedeltaIndex-like object
to self, yielding a new DatetimeArray
Parameters
----------
other : {timedelta, np.timedelta64, Tick,
TimedeltaIndex, ndarray[timedelta64]}
Returns
-------
result : DatetimeArray | def _add_delta(self, delta):
"""
Add a timedelta-like, Tick, or TimedeltaIndex-like object
to self, yielding a new DatetimeArray
Parameters
----------
other : {timedelta, np.timedelta64, Tick,
TimedeltaIndex, ndarray[timedelta64]}
Returns
-------
result : DatetimeArray
"""
new_values = super()._add_delta(delta)
return type(self)._from_sequence(new_values, tz=self.tz, freq='infer') |
Convert tz-aware Datetime Array/Index from one time zone to another.
Parameters
----------
tz : str, pytz.timezone, dateutil.tz.tzfile or None
Time zone for time. Corresponding timestamps would be converted
to this time zone of the Datetime Array/Index. A `tz` of None will
convert to UTC and remove the timezone information.
Returns
-------
Array or Index
Raises
------
TypeError
If Datetime Array/Index is tz-naive.
See Also
--------
DatetimeIndex.tz : A timezone that has a variable offset from UTC.
DatetimeIndex.tz_localize : Localize tz-naive DatetimeIndex to a
given time zone, or remove timezone from a tz-aware DatetimeIndex.
Examples
--------
With the `tz` parameter, we can change the DatetimeIndex
to other time zones:
>>> dti = pd.date_range(start='2014-08-01 09:00',
... freq='H', periods=3, tz='Europe/Berlin')
>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',
'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],
dtype='datetime64[ns, Europe/Berlin]', freq='H')
>>> dti.tz_convert('US/Central')
DatetimeIndex(['2014-08-01 02:00:00-05:00',
'2014-08-01 03:00:00-05:00',
'2014-08-01 04:00:00-05:00'],
dtype='datetime64[ns, US/Central]', freq='H')
With the ``tz=None``, we can remove the timezone (after converting
to UTC if necessary):
>>> dti = pd.date_range(start='2014-08-01 09:00', freq='H',
... periods=3, tz='Europe/Berlin')
>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',
'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],
dtype='datetime64[ns, Europe/Berlin]', freq='H')
>>> dti.tz_convert(None)
DatetimeIndex(['2014-08-01 07:00:00',
'2014-08-01 08:00:00',
'2014-08-01 09:00:00'],
dtype='datetime64[ns]', freq='H') | def tz_convert(self, tz):
"""
Convert tz-aware Datetime Array/Index from one time zone to another.
Parameters
----------
tz : str, pytz.timezone, dateutil.tz.tzfile or None
Time zone for time. Corresponding timestamps would be converted
to this time zone of the Datetime Array/Index. A `tz` of None will
convert to UTC and remove the timezone information.
Returns
-------
Array or Index
Raises
------
TypeError
If Datetime Array/Index is tz-naive.
See Also
--------
DatetimeIndex.tz : A timezone that has a variable offset from UTC.
DatetimeIndex.tz_localize : Localize tz-naive DatetimeIndex to a
given time zone, or remove timezone from a tz-aware DatetimeIndex.
Examples
--------
With the `tz` parameter, we can change the DatetimeIndex
to other time zones:
>>> dti = pd.date_range(start='2014-08-01 09:00',
... freq='H', periods=3, tz='Europe/Berlin')
>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',
'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],
dtype='datetime64[ns, Europe/Berlin]', freq='H')
>>> dti.tz_convert('US/Central')
DatetimeIndex(['2014-08-01 02:00:00-05:00',
'2014-08-01 03:00:00-05:00',
'2014-08-01 04:00:00-05:00'],
dtype='datetime64[ns, US/Central]', freq='H')
With the ``tz=None``, we can remove the timezone (after converting
to UTC if necessary):
>>> dti = pd.date_range(start='2014-08-01 09:00', freq='H',
... periods=3, tz='Europe/Berlin')
>>> dti
DatetimeIndex(['2014-08-01 09:00:00+02:00',
'2014-08-01 10:00:00+02:00',
'2014-08-01 11:00:00+02:00'],
dtype='datetime64[ns, Europe/Berlin]', freq='H')
>>> dti.tz_convert(None)
DatetimeIndex(['2014-08-01 07:00:00',
'2014-08-01 08:00:00',
'2014-08-01 09:00:00'],
dtype='datetime64[ns]', freq='H')
"""
tz = timezones.maybe_get_tz(tz)
if self.tz is None:
# tz naive, use tz_localize
raise TypeError('Cannot convert tz-naive timestamps, use '
'tz_localize to localize')
# No conversion since timestamps are all UTC to begin with
dtype = tz_to_dtype(tz)
return self._simple_new(self.asi8, dtype=dtype, freq=self.freq) |
Localize tz-naive Datetime Array/Index to tz-aware
Datetime Array/Index.
This method takes a time zone (tz) naive Datetime Array/Index object
and makes this time zone aware. It does not move the time to another
time zone.
Time zone localization helps to switch from time zone aware to time
zone unaware objects.
Parameters
----------
tz : str, pytz.timezone, dateutil.tz.tzfile or None
Time zone to convert timestamps to. Passing ``None`` will
remove the time zone information preserving local time.
ambiguous : 'infer', 'NaT', bool array, default 'raise'
When clocks moved backward due to DST, ambiguous times may arise.
For example in Central European Time (UTC+01), when going from
03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at
00:30:00 UTC and at 01:30:00 UTC. In such a situation, the
`ambiguous` parameter dictates how ambiguous times should be
handled.
- 'infer' will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False signifies a
non-DST time (note that this flag is only applicable for
ambiguous times)
- 'NaT' will return NaT where there are ambiguous times
- 'raise' will raise an AmbiguousTimeError if there are ambiguous
times
nonexistent : 'shift_forward', 'shift_backward, 'NaT', timedelta, \
default 'raise'
A nonexistent time does not exist in a particular timezone
where clocks moved forward due to DST.
- 'shift_forward' will shift the nonexistent time forward to the
closest existing time
- 'shift_backward' will shift the nonexistent time backward to the
closest existing time
- 'NaT' will return NaT where there are nonexistent times
- timedelta objects will shift nonexistent times by the timedelta
- 'raise' will raise an NonExistentTimeError if there are
nonexistent times
.. versionadded:: 0.24.0
errors : {'raise', 'coerce'}, default None
- 'raise' will raise a NonExistentTimeError if a timestamp is not
valid in the specified time zone (e.g. due to a transition from
or to DST time). Use ``nonexistent='raise'`` instead.
- 'coerce' will return NaT if the timestamp can not be converted
to the specified time zone. Use ``nonexistent='NaT'`` instead.
.. deprecated:: 0.24.0
Returns
-------
Same type as self
Array/Index converted to the specified time zone.
Raises
------
TypeError
If the Datetime Array/Index is tz-aware and tz is not None.
See Also
--------
DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from
one time zone to another.
Examples
--------
>>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3)
>>> tz_naive
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')
Localize DatetimeIndex in US/Eastern time zone:
>>> tz_aware = tz_naive.tz_localize(tz='US/Eastern')
>>> tz_aware
DatetimeIndex(['2018-03-01 09:00:00-05:00',
'2018-03-02 09:00:00-05:00',
'2018-03-03 09:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', freq='D')
With the ``tz=None``, we can remove the time zone information
while keeping the local time (not converted to UTC):
>>> tz_aware.tz_localize(None)
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')
Be careful with DST changes. When there is sequential data, pandas can
infer the DST time:
>>> s = pd.to_datetime(pd.Series(['2018-10-28 01:30:00',
... '2018-10-28 02:00:00',
... '2018-10-28 02:30:00',
... '2018-10-28 02:00:00',
... '2018-10-28 02:30:00',
... '2018-10-28 03:00:00',
... '2018-10-28 03:30:00']))
>>> s.dt.tz_localize('CET', ambiguous='infer')
0 2018-10-28 01:30:00+02:00
1 2018-10-28 02:00:00+02:00
2 2018-10-28 02:30:00+02:00
3 2018-10-28 02:00:00+01:00
4 2018-10-28 02:30:00+01:00
5 2018-10-28 03:00:00+01:00
6 2018-10-28 03:30:00+01:00
dtype: datetime64[ns, CET]
In some cases, inferring the DST is impossible. In such cases, you can
pass an ndarray to the ambiguous parameter to set the DST explicitly
>>> s = pd.to_datetime(pd.Series(['2018-10-28 01:20:00',
... '2018-10-28 02:36:00',
... '2018-10-28 03:46:00']))
>>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False]))
0 2015-03-29 03:00:00+02:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, Europe/Warsaw]
If the DST transition causes nonexistent times, you can shift these
dates forward or backwards with a timedelta object or `'shift_forward'`
or `'shift_backwards'`.
>>> s = pd.to_datetime(pd.Series(['2015-03-29 02:30:00',
... '2015-03-29 03:30:00']))
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward')
0 2015-03-29 03:00:00+02:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, 'Europe/Warsaw']
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_backward')
0 2015-03-29 01:59:59.999999999+01:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, 'Europe/Warsaw']
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H'))
0 2015-03-29 03:30:00+02:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, 'Europe/Warsaw'] | def tz_localize(self, tz, ambiguous='raise', nonexistent='raise',
errors=None):
"""
Localize tz-naive Datetime Array/Index to tz-aware
Datetime Array/Index.
This method takes a time zone (tz) naive Datetime Array/Index object
and makes this time zone aware. It does not move the time to another
time zone.
Time zone localization helps to switch from time zone aware to time
zone unaware objects.
Parameters
----------
tz : str, pytz.timezone, dateutil.tz.tzfile or None
Time zone to convert timestamps to. Passing ``None`` will
remove the time zone information preserving local time.
ambiguous : 'infer', 'NaT', bool array, default 'raise'
When clocks moved backward due to DST, ambiguous times may arise.
For example in Central European Time (UTC+01), when going from
03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at
00:30:00 UTC and at 01:30:00 UTC. In such a situation, the
`ambiguous` parameter dictates how ambiguous times should be
handled.
- 'infer' will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False signifies a
non-DST time (note that this flag is only applicable for
ambiguous times)
- 'NaT' will return NaT where there are ambiguous times
- 'raise' will raise an AmbiguousTimeError if there are ambiguous
times
nonexistent : 'shift_forward', 'shift_backward, 'NaT', timedelta, \
default 'raise'
A nonexistent time does not exist in a particular timezone
where clocks moved forward due to DST.
- 'shift_forward' will shift the nonexistent time forward to the
closest existing time
- 'shift_backward' will shift the nonexistent time backward to the
closest existing time
- 'NaT' will return NaT where there are nonexistent times
- timedelta objects will shift nonexistent times by the timedelta
- 'raise' will raise an NonExistentTimeError if there are
nonexistent times
.. versionadded:: 0.24.0
errors : {'raise', 'coerce'}, default None
- 'raise' will raise a NonExistentTimeError if a timestamp is not
valid in the specified time zone (e.g. due to a transition from
or to DST time). Use ``nonexistent='raise'`` instead.
- 'coerce' will return NaT if the timestamp can not be converted
to the specified time zone. Use ``nonexistent='NaT'`` instead.
.. deprecated:: 0.24.0
Returns
-------
Same type as self
Array/Index converted to the specified time zone.
Raises
------
TypeError
If the Datetime Array/Index is tz-aware and tz is not None.
See Also
--------
DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from
one time zone to another.
Examples
--------
>>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3)
>>> tz_naive
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')
Localize DatetimeIndex in US/Eastern time zone:
>>> tz_aware = tz_naive.tz_localize(tz='US/Eastern')
>>> tz_aware
DatetimeIndex(['2018-03-01 09:00:00-05:00',
'2018-03-02 09:00:00-05:00',
'2018-03-03 09:00:00-05:00'],
dtype='datetime64[ns, US/Eastern]', freq='D')
With the ``tz=None``, we can remove the time zone information
while keeping the local time (not converted to UTC):
>>> tz_aware.tz_localize(None)
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
'2018-03-03 09:00:00'],
dtype='datetime64[ns]', freq='D')
Be careful with DST changes. When there is sequential data, pandas can
infer the DST time:
>>> s = pd.to_datetime(pd.Series(['2018-10-28 01:30:00',
... '2018-10-28 02:00:00',
... '2018-10-28 02:30:00',
... '2018-10-28 02:00:00',
... '2018-10-28 02:30:00',
... '2018-10-28 03:00:00',
... '2018-10-28 03:30:00']))
>>> s.dt.tz_localize('CET', ambiguous='infer')
0 2018-10-28 01:30:00+02:00
1 2018-10-28 02:00:00+02:00
2 2018-10-28 02:30:00+02:00
3 2018-10-28 02:00:00+01:00
4 2018-10-28 02:30:00+01:00
5 2018-10-28 03:00:00+01:00
6 2018-10-28 03:30:00+01:00
dtype: datetime64[ns, CET]
In some cases, inferring the DST is impossible. In such cases, you can
pass an ndarray to the ambiguous parameter to set the DST explicitly
>>> s = pd.to_datetime(pd.Series(['2018-10-28 01:20:00',
... '2018-10-28 02:36:00',
... '2018-10-28 03:46:00']))
>>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False]))
0 2015-03-29 03:00:00+02:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, Europe/Warsaw]
If the DST transition causes nonexistent times, you can shift these
dates forward or backwards with a timedelta object or `'shift_forward'`
or `'shift_backwards'`.
>>> s = pd.to_datetime(pd.Series(['2015-03-29 02:30:00',
... '2015-03-29 03:30:00']))
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward')
0 2015-03-29 03:00:00+02:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, 'Europe/Warsaw']
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_backward')
0 2015-03-29 01:59:59.999999999+01:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, 'Europe/Warsaw']
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H'))
0 2015-03-29 03:30:00+02:00
1 2015-03-29 03:30:00+02:00
dtype: datetime64[ns, 'Europe/Warsaw']
"""
if errors is not None:
warnings.warn("The errors argument is deprecated and will be "
"removed in a future release. Use "
"nonexistent='NaT' or nonexistent='raise' "
"instead.", FutureWarning)
if errors == 'coerce':
nonexistent = 'NaT'
elif errors == 'raise':
nonexistent = 'raise'
else:
raise ValueError("The errors argument must be either 'coerce' "
"or 'raise'.")
nonexistent_options = ('raise', 'NaT', 'shift_forward',
'shift_backward')
if nonexistent not in nonexistent_options and not isinstance(
nonexistent, timedelta):
raise ValueError("The nonexistent argument must be one of 'raise',"
" 'NaT', 'shift_forward', 'shift_backward' or"
" a timedelta object")
if self.tz is not None:
if tz is None:
new_dates = tzconversion.tz_convert(self.asi8, timezones.UTC,
self.tz)
else:
raise TypeError("Already tz-aware, use tz_convert to convert.")
else:
tz = timezones.maybe_get_tz(tz)
# Convert to UTC
new_dates = conversion.tz_localize_to_utc(
self.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent,
)
new_dates = new_dates.view(_NS_DTYPE)
dtype = tz_to_dtype(tz)
return self._simple_new(new_dates, dtype=dtype, freq=self.freq) |
Convert times to midnight.
The time component of the date-time is converted to midnight i.e.
00:00:00. This is useful in cases, when the time does not matter.
Length is unaltered. The timezones are unaffected.
This method is available on Series with datetime values under
the ``.dt`` accessor, and directly on Datetime Array/Index.
Returns
-------
DatetimeArray, DatetimeIndex or Series
The same type as the original data. Series will have the same
name and index. DatetimeIndex will have the same name.
See Also
--------
floor : Floor the datetimes to the specified freq.
ceil : Ceil the datetimes to the specified freq.
round : Round the datetimes to the specified freq.
Examples
--------
>>> idx = pd.date_range(start='2014-08-01 10:00', freq='H',
... periods=3, tz='Asia/Calcutta')
>>> idx
DatetimeIndex(['2014-08-01 10:00:00+05:30',
'2014-08-01 11:00:00+05:30',
'2014-08-01 12:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq='H')
>>> idx.normalize()
DatetimeIndex(['2014-08-01 00:00:00+05:30',
'2014-08-01 00:00:00+05:30',
'2014-08-01 00:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq=None) | def normalize(self):
"""
Convert times to midnight.
The time component of the date-time is converted to midnight i.e.
00:00:00. This is useful in cases, when the time does not matter.
Length is unaltered. The timezones are unaffected.
This method is available on Series with datetime values under
the ``.dt`` accessor, and directly on Datetime Array/Index.
Returns
-------
DatetimeArray, DatetimeIndex or Series
The same type as the original data. Series will have the same
name and index. DatetimeIndex will have the same name.
See Also
--------
floor : Floor the datetimes to the specified freq.
ceil : Ceil the datetimes to the specified freq.
round : Round the datetimes to the specified freq.
Examples
--------
>>> idx = pd.date_range(start='2014-08-01 10:00', freq='H',
... periods=3, tz='Asia/Calcutta')
>>> idx
DatetimeIndex(['2014-08-01 10:00:00+05:30',
'2014-08-01 11:00:00+05:30',
'2014-08-01 12:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq='H')
>>> idx.normalize()
DatetimeIndex(['2014-08-01 00:00:00+05:30',
'2014-08-01 00:00:00+05:30',
'2014-08-01 00:00:00+05:30'],
dtype='datetime64[ns, Asia/Calcutta]', freq=None)
"""
if self.tz is None or timezones.is_utc(self.tz):
not_null = ~self.isna()
DAY_NS = ccalendar.DAY_SECONDS * 1000000000
new_values = self.asi8.copy()
adjustment = (new_values[not_null] % DAY_NS)
new_values[not_null] = new_values[not_null] - adjustment
else:
new_values = conversion.normalize_i8_timestamps(self.asi8, self.tz)
return type(self)._from_sequence(new_values,
freq='infer').tz_localize(self.tz) |
Cast to PeriodArray/Index at a particular frequency.
Converts DatetimeArray/Index to PeriodArray/Index.
Parameters
----------
freq : str or Offset, optional
One of pandas' :ref:`offset strings <timeseries.offset_aliases>`
or an Offset object. Will be inferred by default.
Returns
-------
PeriodArray/Index
Raises
------
ValueError
When converting a DatetimeArray/Index with non-regular values,
so that a frequency cannot be inferred.
See Also
--------
PeriodIndex: Immutable ndarray holding ordinal values.
DatetimeIndex.to_pydatetime: Return DatetimeIndex as object.
Examples
--------
>>> df = pd.DataFrame({"y": [1, 2, 3]},
... index=pd.to_datetime(["2000-03-31 00:00:00",
... "2000-05-31 00:00:00",
... "2000-08-31 00:00:00"]))
>>> df.index.to_period("M")
PeriodIndex(['2000-03', '2000-05', '2000-08'],
dtype='period[M]', freq='M')
Infer the daily frequency
>>> idx = pd.date_range("2017-01-01", periods=2)
>>> idx.to_period()
PeriodIndex(['2017-01-01', '2017-01-02'],
dtype='period[D]', freq='D') | def to_period(self, freq=None):
"""
Cast to PeriodArray/Index at a particular frequency.
Converts DatetimeArray/Index to PeriodArray/Index.
Parameters
----------
freq : str or Offset, optional
One of pandas' :ref:`offset strings <timeseries.offset_aliases>`
or an Offset object. Will be inferred by default.
Returns
-------
PeriodArray/Index
Raises
------
ValueError
When converting a DatetimeArray/Index with non-regular values,
so that a frequency cannot be inferred.
See Also
--------
PeriodIndex: Immutable ndarray holding ordinal values.
DatetimeIndex.to_pydatetime: Return DatetimeIndex as object.
Examples
--------
>>> df = pd.DataFrame({"y": [1, 2, 3]},
... index=pd.to_datetime(["2000-03-31 00:00:00",
... "2000-05-31 00:00:00",
... "2000-08-31 00:00:00"]))
>>> df.index.to_period("M")
PeriodIndex(['2000-03', '2000-05', '2000-08'],
dtype='period[M]', freq='M')
Infer the daily frequency
>>> idx = pd.date_range("2017-01-01", periods=2)
>>> idx.to_period()
PeriodIndex(['2017-01-01', '2017-01-02'],
dtype='period[D]', freq='D')
"""
from pandas.core.arrays import PeriodArray
if self.tz is not None:
warnings.warn("Converting to PeriodArray/Index representation "
"will drop timezone information.", UserWarning)
if freq is None:
freq = self.freqstr or self.inferred_freq
if freq is None:
raise ValueError("You must pass a freq argument as "
"current index has none.")
freq = get_period_alias(freq)
return PeriodArray._from_datetime64(self._data, freq, tz=self.tz) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.