INSTRUCTION
stringlengths 1
46.3k
| RESPONSE
stringlengths 75
80.2k
|
---|---|
Return the arguments of `func`. | def func_args(func)->bool:
"Return the arguments of `func`."
code = func.__code__
return code.co_varnames[:code.co_argcount] |
Split `kwargs` between those expected by `func` and the others. | def split_kwargs_by_func(kwargs, func):
"Split `kwargs` between those expected by `func` and the others."
args = func_args(func)
func_kwargs = {a:kwargs.pop(a) for a in args if a in kwargs}
return func_kwargs, kwargs |
Same as `np.array` but also handles generators. `kwargs` are passed to `np.array` with `dtype`. | def array(a, dtype:type=None, **kwargs)->np.ndarray:
"Same as `np.array` but also handles generators. `kwargs` are passed to `np.array` with `dtype`."
if not isinstance(a, collections.Sized) and not getattr(a,'__array_interface__',False):
a = list(a)
if np.int_==np.int32 and dtype is None and is_listy(a) and len(a) and isinstance(a[0],int):
dtype=np.int64
return np.array(a, dtype=dtype, **kwargs) |
Put the texts in `items` in an HTML table, `widths` are the widths of the columns in %. | def text2html_table(items:Collection[Collection[str]])->str:
"Put the texts in `items` in an HTML table, `widths` are the widths of the columns in %."
html_code = f"""<table border="1" class="dataframe">"""
html_code += f""" <thead>\n <tr style="text-align: right;">\n"""
for i in items[0]: html_code += f" <th>{_treat_html(i)}</th>"
html_code += f" </tr>\n </thead>\n <tbody>"
html_code += " <tbody>"
for line in items[1:]:
html_code += " <tr>"
for i in line: html_code += f" <td>{_treat_html(i)}</td>"
html_code += " </tr>"
html_code += " </tbody>\n</table>"
return html_code |
Call `func` on every element of `arr` in parallel using `max_workers`. | def parallel(func, arr:Collection, max_workers:int=None):
"Call `func` on every element of `arr` in parallel using `max_workers`."
max_workers = ifnone(max_workers, defaults.cpus)
if max_workers<2: results = [func(o,i) for i,o in progress_bar(enumerate(arr), total=len(arr))]
else:
with ProcessPoolExecutor(max_workers=max_workers) as ex:
futures = [ex.submit(func,o,i) for i,o in enumerate(arr)]
results = []
for f in progress_bar(concurrent.futures.as_completed(futures), total=len(arr)): results.append(f.result())
if any([o is not None for o in results]): return results |
Like `plt.subplots` but with consistent axs shape, `kwargs` passed to `fig.suptitle` with `title` | def subplots(rows:int, cols:int, imgsize:int=4, figsize:Optional[Tuple[int,int]]=None, title=None, **kwargs):
"Like `plt.subplots` but with consistent axs shape, `kwargs` passed to `fig.suptitle` with `title`"
figsize = ifnone(figsize, (imgsize*cols, imgsize*rows))
fig, axs = plt.subplots(rows,cols,figsize=figsize)
if rows==cols==1: axs = [[axs]] # subplots(1,1) returns Axes, not [Axes]
elif (rows==1 and cols!=1) or (cols==1 and rows!=1): axs = [axs]
if title is not None: fig.suptitle(title, **kwargs)
return array(axs) |
Return the representation of the first `n_max` elements in `items`. | def show_some(items:Collection, n_max:int=5, sep:str=','):
"Return the representation of the first `n_max` elements in `items`."
if items is None or len(items) == 0: return ''
res = sep.join([f'{o}' for o in items[:n_max]])
if len(items) > n_max: res += '...'
return res |
Create and return a tmp filename, optionally at a specific path. `os.remove` when done with it. | def get_tmp_file(dir=None):
"Create and return a tmp filename, optionally at a specific path. `os.remove` when done with it."
with tempfile.NamedTemporaryFile(delete=False, dir=dir) as f: return f.name |
Compose `funcs` | def compose(funcs:List[Callable])->Callable:
"Compose `funcs`"
def compose_(funcs, x, *args, **kwargs):
for f in listify(funcs): x = f(x, *args, **kwargs)
return x
return partial(compose_, funcs) |
Subclass this method if you want to customize the way this `ItemBase` is shown on `ax`. | def show(self, ax:plt.Axes, **kwargs):
"Subclass this method if you want to customize the way this `ItemBase` is shown on `ax`."
ax.set_title(str(self)) |
Init layer parameters. | def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0) |
Create a seuence Conv2d->BatchNorm2d->LeakyReLu layer. | def conv_bn_lrelu(ni:int, nf:int, ks:int=3, stride:int=1)->nn.Sequential:
"Create a seuence Conv2d->BatchNorm2d->LeakyReLu layer."
return nn.Sequential(
nn.Conv2d(ni, nf, kernel_size=ks, bias=False, stride=stride, padding=ks//2),
nn.BatchNorm2d(nf),
nn.LeakyReLU(negative_slope=0.1, inplace=True)) |
starts with conv layer - `ch_in` channels in - then has `num_blocks` `ResLayer` | def make_group_layer(self, ch_in:int, num_blocks:int, stride:int=1):
"starts with conv layer - `ch_in` channels in - then has `num_blocks` `ResLayer`"
return [conv_bn_lrelu(ch_in, ch_in*2,stride=stride)
] + [(ResLayer(ch_in*2)) for i in range(num_blocks)] |
Create a Learner for collaborative filtering on `data`. | def collab_learner(data, n_factors:int=None, use_nn:bool=False, emb_szs:Dict[str,int]=None, layers:Collection[int]=None,
ps:Collection[float]=None, emb_drop:float=0., y_range:OptRange=None, use_bn:bool=True,
bn_final:bool=False, **learn_kwargs)->Learner:
"Create a Learner for collaborative filtering on `data`."
emb_szs = data.get_emb_szs(ifnone(emb_szs, {}))
u,m = data.train_ds.x.classes.values()
if use_nn: model = EmbeddingNN(emb_szs=emb_szs, layers=layers, ps=ps, emb_drop=emb_drop, y_range=y_range,
use_bn=use_bn, bn_final=bn_final, **learn_kwargs)
else: model = EmbeddingDotBias(n_factors, len(u), len(m), y_range=y_range)
return CollabLearner(data, model, **learn_kwargs) |
Create a `DataBunch` suitable for collaborative filtering from `ratings`. | def from_df(cls, ratings:DataFrame, valid_pct:float=0.2, user_name:Optional[str]=None, item_name:Optional[str]=None,
rating_name:Optional[str]=None, test:DataFrame=None, seed:int=None, path:PathOrStr='.', bs:int=64,
val_bs:int=None, num_workers:int=defaults.cpus, dl_tfms:Optional[Collection[Callable]]=None,
device:torch.device=None, collate_fn:Callable=data_collate, no_check:bool=False) -> 'CollabDataBunch':
"Create a `DataBunch` suitable for collaborative filtering from `ratings`."
user_name = ifnone(user_name, ratings.columns[0])
item_name = ifnone(item_name, ratings.columns[1])
rating_name = ifnone(rating_name,ratings.columns[2])
cat_names = [user_name,item_name]
src = (CollabList.from_df(ratings, cat_names=cat_names, procs=Categorify)
.split_by_rand_pct(valid_pct=valid_pct, seed=seed).label_from_df(cols=rating_name))
if test is not None: src.add_test(CollabList.from_df(test, cat_names=cat_names))
return src.databunch(path=path, bs=bs, val_bs=val_bs, num_workers=num_workers, device=device,
collate_fn=collate_fn, no_check=no_check) |
Fetch item or user (based on `is_item`) for all in `arr`. (Set model to `cpu` and no grad.) | def get_idx(self, arr:Collection, is_item:bool=True):
"Fetch item or user (based on `is_item`) for all in `arr`. (Set model to `cpu` and no grad.)"
m = self.model.eval().cpu()
requires_grad(m,False)
u_class,i_class = self.data.train_ds.x.classes.values()
classes = i_class if is_item else u_class
c2i = {v:k for k,v in enumerate(classes)}
try: return tensor([c2i[o] for o in arr])
except Exception as e:
print(f"""You're trying to access {'an item' if is_item else 'a user'} that isn't in the training data.
If it was in your original data, it may have been split such that it's only in the validation set now.""") |
Bias for item or user (based on `is_item`) for all in `arr`. (Set model to `cpu` and no grad.) | def bias(self, arr:Collection, is_item:bool=True):
"Bias for item or user (based on `is_item`) for all in `arr`. (Set model to `cpu` and no grad.)"
idx = self.get_idx(arr, is_item)
m = self.model
layer = m.i_bias if is_item else m.u_bias
return layer(idx).squeeze() |
Bias for item or user (based on `is_item`) for all in `arr`. (Set model to `cpu` and no grad.) | def weight(self, arr:Collection, is_item:bool=True):
"Bias for item or user (based on `is_item`) for all in `arr`. (Set model to `cpu` and no grad.)"
idx = self.get_idx(arr, is_item)
m = self.model
layer = m.i_weight if is_item else m.u_weight
return layer(idx) |
Draws a representation of a random forest in IPython.
Parameters:
-----------
t: The tree you wish to draw
df: The data used to train the tree. This is used to get the names of the features. | def draw_tree(t, df, size=10, ratio=0.6, precision=0):
""" Draws a representation of a random forest in IPython.
Parameters:
-----------
t: The tree you wish to draw
df: The data used to train the tree. This is used to get the names of the features.
"""
s=export_graphviz(t, out_file=None, feature_names=df.columns, filled=True,
special_characters=True, rotate=True, precision=precision)
IPython.display.display(graphviz.Source(re.sub('Tree {',
f'Tree {{ size={size}; ratio={ratio}', s))) |
Gets a random sample of n rows from df, without replacement.
Parameters:
-----------
df: A pandas data frame, that you wish to sample from.
n: The number of rows you wish to sample.
Returns:
--------
return value: A random sample of n rows of df.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
>>> get_sample(df, 2)
col1 col2
1 2 b
2 3 a | def get_sample(df,n):
""" Gets a random sample of n rows from df, without replacement.
Parameters:
-----------
df: A pandas data frame, that you wish to sample from.
n: The number of rows you wish to sample.
Returns:
--------
return value: A random sample of n rows of df.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
>>> get_sample(df, 2)
col1 col2
1 2 b
2 3 a
"""
idxs = sorted(np.random.permutation(len(df))[:n])
return df.iloc[idxs].copy() |
add_datepart converts a column of df from a datetime64 to many columns containing
the information from the date. This applies changes inplace.
Parameters:
-----------
df: A pandas data frame. df gain several new columns.
fldname: A string that is the name of the date column you wish to expand.
If it is not a datetime64 series, it will be converted to one with pd.to_datetime.
drop: If true then the original date column will be removed.
time: If true time features: Hour, Minute, Second will be added.
Examples:
---------
>>> df = pd.DataFrame({ 'A' : pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000'], infer_datetime_format=False) })
>>> df
A
0 2000-03-11
1 2000-03-12
2 2000-03-13
>>> add_datepart(df, 'A')
>>> df
AYear AMonth AWeek ADay ADayofweek ADayofyear AIs_month_end AIs_month_start AIs_quarter_end AIs_quarter_start AIs_year_end AIs_year_start AElapsed
0 2000 3 10 11 5 71 False False False False False False 952732800
1 2000 3 10 12 6 72 False False False False False False 952819200
2 2000 3 11 13 0 73 False False False False False False 952905600 | def add_datepart(df, fldname, drop=True, time=False, errors="raise"):
"""add_datepart converts a column of df from a datetime64 to many columns containing
the information from the date. This applies changes inplace.
Parameters:
-----------
df: A pandas data frame. df gain several new columns.
fldname: A string that is the name of the date column you wish to expand.
If it is not a datetime64 series, it will be converted to one with pd.to_datetime.
drop: If true then the original date column will be removed.
time: If true time features: Hour, Minute, Second will be added.
Examples:
---------
>>> df = pd.DataFrame({ 'A' : pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000'], infer_datetime_format=False) })
>>> df
A
0 2000-03-11
1 2000-03-12
2 2000-03-13
>>> add_datepart(df, 'A')
>>> df
AYear AMonth AWeek ADay ADayofweek ADayofyear AIs_month_end AIs_month_start AIs_quarter_end AIs_quarter_start AIs_year_end AIs_year_start AElapsed
0 2000 3 10 11 5 71 False False False False False False 952732800
1 2000 3 10 12 6 72 False False False False False False 952819200
2 2000 3 11 13 0 73 False False False False False False 952905600
"""
fld = df[fldname]
fld_dtype = fld.dtype
if isinstance(fld_dtype, pd.core.dtypes.dtypes.DatetimeTZDtype):
fld_dtype = np.datetime64
if not np.issubdtype(fld_dtype, np.datetime64):
df[fldname] = fld = pd.to_datetime(fld, infer_datetime_format=True, errors=errors)
targ_pre = re.sub('[Dd]ate$', '', fldname)
attr = ['Year', 'Month', 'Week', 'Day', 'Dayofweek', 'Dayofyear',
'Is_month_end', 'Is_month_start', 'Is_quarter_end', 'Is_quarter_start', 'Is_year_end', 'Is_year_start']
if time: attr = attr + ['Hour', 'Minute', 'Second']
for n in attr: df[targ_pre + n] = getattr(fld.dt, n.lower())
df[targ_pre + 'Elapsed'] = fld.astype(np.int64) // 10 ** 9
if drop: df.drop(fldname, axis=1, inplace=True) |
Change any columns of strings in a panda's dataframe to a column of
categorical values. This applies the changes inplace.
Parameters:
-----------
df: A pandas dataframe. Any columns of strings will be changed to
categorical values.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
note the type of col2 is string
>>> train_cats(df)
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
now the type of col2 is category | def train_cats(df):
"""Change any columns of strings in a panda's dataframe to a column of
categorical values. This applies the changes inplace.
Parameters:
-----------
df: A pandas dataframe. Any columns of strings will be changed to
categorical values.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
note the type of col2 is string
>>> train_cats(df)
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
now the type of col2 is category
"""
for n,c in df.items():
if is_string_dtype(c): df[n] = c.astype('category').cat.as_ordered() |
Changes any columns of strings in df into categorical variables using trn as
a template for the category codes.
Parameters:
-----------
df: A pandas dataframe. Any columns of strings will be changed to
categorical values. The category codes are determined by trn.
trn: A pandas dataframe. When creating a category for df, it looks up the
what the category's code were in trn and makes those the category codes
for df.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
note the type of col2 is string
>>> train_cats(df)
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
now the type of col2 is category {a : 1, b : 2}
>>> df2 = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['b', 'a', 'a']})
>>> apply_cats(df2, df)
col1 col2
0 1 b
1 2 a
2 3 a
now the type of col is category {a : 1, b : 2} | def apply_cats(df, trn):
"""Changes any columns of strings in df into categorical variables using trn as
a template for the category codes.
Parameters:
-----------
df: A pandas dataframe. Any columns of strings will be changed to
categorical values. The category codes are determined by trn.
trn: A pandas dataframe. When creating a category for df, it looks up the
what the category's code were in trn and makes those the category codes
for df.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
note the type of col2 is string
>>> train_cats(df)
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
now the type of col2 is category {a : 1, b : 2}
>>> df2 = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['b', 'a', 'a']})
>>> apply_cats(df2, df)
col1 col2
0 1 b
1 2 a
2 3 a
now the type of col is category {a : 1, b : 2}
"""
for n,c in df.items():
if (n in trn.columns) and (trn[n].dtype.name=='category'):
df[n] = c.astype('category').cat.as_ordered()
df[n].cat.set_categories(trn[n].cat.categories, ordered=True, inplace=True) |
Fill missing data in a column of df with the median, and add a {name}_na column
which specifies if the data was missing.
Parameters:
-----------
df: The data frame that will be changed.
col: The column of data to fix by filling in missing data.
name: The name of the new filled column in df.
na_dict: A dictionary of values to create na's of and the value to insert. If
name is not a key of na_dict the median will fill any missing data. Also
if name is not a key of na_dict and there is no missing data in col, then
no {name}_na column is not created.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col1'], 'col1', {})
>>> df
col1 col2 col1_na
0 1 5 False
1 2 2 True
2 3 2 False
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col2'], 'col2', {})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col1'], 'col1', {'col1' : 500})
>>> df
col1 col2 col1_na
0 1 5 False
1 500 2 True
2 3 2 False | def fix_missing(df, col, name, na_dict):
""" Fill missing data in a column of df with the median, and add a {name}_na column
which specifies if the data was missing.
Parameters:
-----------
df: The data frame that will be changed.
col: The column of data to fix by filling in missing data.
name: The name of the new filled column in df.
na_dict: A dictionary of values to create na's of and the value to insert. If
name is not a key of na_dict the median will fill any missing data. Also
if name is not a key of na_dict and there is no missing data in col, then
no {name}_na column is not created.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col1'], 'col1', {})
>>> df
col1 col2 col1_na
0 1 5 False
1 2 2 True
2 3 2 False
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col2'], 'col2', {})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> df = pd.DataFrame({'col1' : [1, np.NaN, 3], 'col2' : [5, 2, 2]})
>>> df
col1 col2
0 1 5
1 nan 2
2 3 2
>>> fix_missing(df, df['col1'], 'col1', {'col1' : 500})
>>> df
col1 col2 col1_na
0 1 5 False
1 500 2 True
2 3 2 False
"""
if is_numeric_dtype(col):
if pd.isnull(col).sum() or (name in na_dict):
df[name+'_na'] = pd.isnull(col)
filler = na_dict[name] if name in na_dict else col.median()
df[name] = col.fillna(filler)
na_dict[name] = filler
return na_dict |
Changes the column col from a categorical type to it's integer codes.
Parameters:
-----------
df: A pandas dataframe. df[name] will be filled with the integer codes from
col.
col: The column you wish to change into the categories.
name: The column name you wish to insert into df. This column will hold the
integer codes.
max_n_cat: If col has more categories than max_n_cat it will not change the
it to its integer codes. If max_n_cat is None, then col will always be
converted.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
note the type of col2 is string
>>> train_cats(df)
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
now the type of col2 is category { a : 1, b : 2}
>>> numericalize(df, df['col2'], 'col3', None)
col1 col2 col3
0 1 a 1
1 2 b 2
2 3 a 1 | def numericalize(df, col, name, max_n_cat):
""" Changes the column col from a categorical type to it's integer codes.
Parameters:
-----------
df: A pandas dataframe. df[name] will be filled with the integer codes from
col.
col: The column you wish to change into the categories.
name: The column name you wish to insert into df. This column will hold the
integer codes.
max_n_cat: If col has more categories than max_n_cat it will not change the
it to its integer codes. If max_n_cat is None, then col will always be
converted.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
note the type of col2 is string
>>> train_cats(df)
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
now the type of col2 is category { a : 1, b : 2}
>>> numericalize(df, df['col2'], 'col3', None)
col1 col2 col3
0 1 a 1
1 2 b 2
2 3 a 1
"""
if not is_numeric_dtype(col) and ( max_n_cat is None or len(col.cat.categories)>max_n_cat):
df[name] = pd.Categorical(col).codes+1 |
proc_df takes a data frame df and splits off the response variable, and
changes the df into an entirely numeric dataframe. For each column of df
which is not in skip_flds nor in ignore_flds, na values are replaced by the
median value of the column.
Parameters:
-----------
df: The data frame you wish to process.
y_fld: The name of the response variable
skip_flds: A list of fields that dropped from df.
ignore_flds: A list of fields that are ignored during processing.
do_scale: Standardizes each column in df. Takes Boolean Values(True,False)
na_dict: a dictionary of na columns to add. Na columns are also added if there
are any missing values.
preproc_fn: A function that gets applied to df.
max_n_cat: The maximum number of categories to break into dummy values, instead
of integer codes.
subset: Takes a random subset of size subset from df.
mapper: If do_scale is set as True, the mapper variable
calculates the values used for scaling of variables during training time (mean and standard deviation).
Returns:
--------
[x, y, nas, mapper(optional)]:
x: x is the transformed version of df. x will not have the response variable
and is entirely numeric.
y: y is the response variable
nas: returns a dictionary of which nas it created, and the associated median.
mapper: A DataFrameMapper which stores the mean and standard deviation of the corresponding continuous
variables which is then used for scaling of during test-time.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
note the type of col2 is string
>>> train_cats(df)
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
now the type of col2 is category { a : 1, b : 2}
>>> x, y, nas = proc_df(df, 'col1')
>>> x
col2
0 1
1 2
2 1
>>> data = DataFrame(pet=["cat", "dog", "dog", "fish", "cat", "dog", "cat", "fish"],
children=[4., 6, 3, 3, 2, 3, 5, 4],
salary=[90, 24, 44, 27, 32, 59, 36, 27])
>>> mapper = DataFrameMapper([(:pet, LabelBinarizer()),
([:children], StandardScaler())])
>>>round(fit_transform!(mapper, copy(data)), 2)
8x4 Array{Float64,2}:
1.0 0.0 0.0 0.21
0.0 1.0 0.0 1.88
0.0 1.0 0.0 -0.63
0.0 0.0 1.0 -0.63
1.0 0.0 0.0 -1.46
0.0 1.0 0.0 -0.63
1.0 0.0 0.0 1.04
0.0 0.0 1.0 0.21 | def proc_df(df, y_fld=None, skip_flds=None, ignore_flds=None, do_scale=False, na_dict=None,
preproc_fn=None, max_n_cat=None, subset=None, mapper=None):
""" proc_df takes a data frame df and splits off the response variable, and
changes the df into an entirely numeric dataframe. For each column of df
which is not in skip_flds nor in ignore_flds, na values are replaced by the
median value of the column.
Parameters:
-----------
df: The data frame you wish to process.
y_fld: The name of the response variable
skip_flds: A list of fields that dropped from df.
ignore_flds: A list of fields that are ignored during processing.
do_scale: Standardizes each column in df. Takes Boolean Values(True,False)
na_dict: a dictionary of na columns to add. Na columns are also added if there
are any missing values.
preproc_fn: A function that gets applied to df.
max_n_cat: The maximum number of categories to break into dummy values, instead
of integer codes.
subset: Takes a random subset of size subset from df.
mapper: If do_scale is set as True, the mapper variable
calculates the values used for scaling of variables during training time (mean and standard deviation).
Returns:
--------
[x, y, nas, mapper(optional)]:
x: x is the transformed version of df. x will not have the response variable
and is entirely numeric.
y: y is the response variable
nas: returns a dictionary of which nas it created, and the associated median.
mapper: A DataFrameMapper which stores the mean and standard deviation of the corresponding continuous
variables which is then used for scaling of during test-time.
Examples:
---------
>>> df = pd.DataFrame({'col1' : [1, 2, 3], 'col2' : ['a', 'b', 'a']})
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
note the type of col2 is string
>>> train_cats(df)
>>> df
col1 col2
0 1 a
1 2 b
2 3 a
now the type of col2 is category { a : 1, b : 2}
>>> x, y, nas = proc_df(df, 'col1')
>>> x
col2
0 1
1 2
2 1
>>> data = DataFrame(pet=["cat", "dog", "dog", "fish", "cat", "dog", "cat", "fish"],
children=[4., 6, 3, 3, 2, 3, 5, 4],
salary=[90, 24, 44, 27, 32, 59, 36, 27])
>>> mapper = DataFrameMapper([(:pet, LabelBinarizer()),
([:children], StandardScaler())])
>>>round(fit_transform!(mapper, copy(data)), 2)
8x4 Array{Float64,2}:
1.0 0.0 0.0 0.21
0.0 1.0 0.0 1.88
0.0 1.0 0.0 -0.63
0.0 0.0 1.0 -0.63
1.0 0.0 0.0 -1.46
0.0 1.0 0.0 -0.63
1.0 0.0 0.0 1.04
0.0 0.0 1.0 0.21
"""
if not ignore_flds: ignore_flds=[]
if not skip_flds: skip_flds=[]
if subset: df = get_sample(df,subset)
else: df = df.copy()
ignored_flds = df.loc[:, ignore_flds]
df.drop(ignore_flds, axis=1, inplace=True)
if preproc_fn: preproc_fn(df)
if y_fld is None: y = None
else:
if not is_numeric_dtype(df[y_fld]): df[y_fld] = pd.Categorical(df[y_fld]).codes
y = df[y_fld].values
skip_flds += [y_fld]
df.drop(skip_flds, axis=1, inplace=True)
if na_dict is None: na_dict = {}
else: na_dict = na_dict.copy()
na_dict_initial = na_dict.copy()
for n,c in df.items(): na_dict = fix_missing(df, c, n, na_dict)
if len(na_dict_initial.keys()) > 0:
df.drop([a + '_na' for a in list(set(na_dict.keys()) - set(na_dict_initial.keys()))], axis=1, inplace=True)
if do_scale: mapper = scale_vars(df, mapper)
for n,c in df.items(): numericalize(df, c, n, max_n_cat)
df = pd.get_dummies(df, dummy_na=True)
df = pd.concat([ignored_flds, df], axis=1)
res = [df, y, na_dict]
if do_scale: res = res + [mapper]
return res |
Changes Scikit learn's random forests to give each tree a random sample of
n random rows. | def set_rf_samples(n):
""" Changes Scikit learn's random forests to give each tree a random sample of
n random rows.
"""
forest._generate_sample_indices = (lambda rs, n_samples:
forest.check_random_state(rs).randint(0, n_samples, n)) |
Undoes the changes produced by set_rf_samples. | def reset_rf_samples():
""" Undoes the changes produced by set_rf_samples.
"""
forest._generate_sample_indices = (lambda rs, n_samples:
forest.check_random_state(rs).randint(0, n_samples, n_samples)) |
Return globally assigned variables. | def get_global_vars(mod):
"Return globally assigned variables."
# https://stackoverflow.com/questions/8820276/docstring-for-variable/31764368#31764368
import ast,re
with open(mod.__file__, 'r') as f: fstr = f.read()
flines = fstr.splitlines()
d = {}
for node in ast.walk(ast.parse(fstr)):
if isinstance(node,ast.Assign) and hasattr(node.targets[0], 'id'):
key,lineno = node.targets[0].id,node.targets[0].lineno
codestr = flines[lineno]
match = re.match(f"^({key})\s*=\s*.*", codestr)
if match and match.group(1) != '__all__': # only top level assignment
d[key] = f'`{codestr}` {get_source_link(mod, lineno)}'
return d |
Execute notebook `fname` with `metadata` for preprocessing. | def execute_nb(fname, metadata=None, save=True, show_doc_only=False):
"Execute notebook `fname` with `metadata` for preprocessing."
# Any module used in the notebook that isn't inside must be in the same directory as this script
with open(fname) as f: nb = nbformat.read(f, as_version=4)
ep_class = ExecuteShowDocPreprocessor if show_doc_only else ExecutePreprocessor
ep = ep_class(timeout=600, kernel_name='python3')
metadata = metadata or {}
ep.preprocess(nb, metadata)
if save:
with open(fname, 'wt') as f: nbformat.write(nb, f)
NotebookNotary().sign(nb) |
Create the documentation notebook for module `mod_name` in path `dest_path` | def create_module_page(mod, dest_path, force=False):
"Create the documentation notebook for module `mod_name` in path `dest_path`"
nb = get_empty_notebook()
mod_name = mod.__name__
strip_name = strip_fastai(mod_name)
init_cell = [get_md_cell(f'## Title for {strip_name} (use plain english, not module name!)'), get_md_cell('Type an introduction of the package here.')]
cells = [get_code_cell(f'from fastai.gen_doc.nbdoc import *\nfrom {mod_name} import * ', True)]
gvar_map = get_global_vars(mod)
if gvar_map: cells.append(get_md_cell('### Global Variable Definitions:'))
for name in get_exports(mod):
if name in gvar_map: cells.append(get_md_cell(gvar_map[name]))
for ft_name in get_ft_names(mod, include_inner=True):
if not hasattr(mod, ft_name):
warnings.warn(f"Module {strip_name} doesn't have a function named {ft_name}.")
continue
cells += _symbol_skeleton(ft_name)
elt = getattr(mod, ft_name)
nb['cells'] = init_cell + cells + [get_md_cell(UNDOC_HEADER)]
doc_path = get_doc_path(mod, dest_path)
write_nb(nb, doc_path, 'w' if force else 'x')
execute_nb(doc_path)
return doc_path |
Search a given `path_dir` and return all the modules contained inside except those in `exclude` | def get_module_names(path_dir, exclude=None):
if exclude is None: exclude = _default_exclude
"Search a given `path_dir` and return all the modules contained inside except those in `exclude`"
files = sorted(path_dir.glob('*'), key=lambda x: (x.is_dir(), x.name), reverse=True) # directories first
res = [f'{path_dir.name}']
for f in files:
if f.is_dir() and f.name in exclude: continue # exclude directories
if any([f.name.endswith(ex) for ex in exclude]): continue # exclude extensions
if f.suffix == '.py': res.append(f'{path_dir.name}.{f.stem}')
elif f.is_dir(): res += [f'{path_dir.name}.{name}' for name in get_module_names(f)]
return res |
Read a notebook in `fname` and return its corresponding json | def read_nb(fname):
"Read a notebook in `fname` and return its corresponding json"
with open(fname,'r') as f: return nbformat.reads(f.read(), as_version=4) |
Build a dictionary containing the position of the `cells`. | def read_nb_content(cells, mod_name):
"Build a dictionary containing the position of the `cells`."
doc_fns = {}
for i, cell in enumerate(cells):
if cell['cell_type'] == 'code':
for match in SHOW_DOC_RE.findall(cell['source']):
doc_fns[match] = i
return doc_fns |
Create documentation links for all cells in markdown with backticks. | def link_markdown_cells(cells, modules):
"Create documentation links for all cells in markdown with backticks."
for i, cell in enumerate(cells):
if cell['cell_type'] == 'markdown':
cell['source'] = link_docstring(modules, cell['source']) |
Return the position to insert a given function doc in a notebook. | def get_insert_idx(pos_dict, name):
"Return the position to insert a given function doc in a notebook."
keys,i = list(pos_dict.keys()),0
while i < len(keys) and str.lower(keys[i]) < str.lower(name): i+=1
if i == len(keys): return -1
else: return pos_dict[keys[i]] |
Update the `pos_dict` by moving all positions after `start_key` by `nbr`. | def update_pos(pos_dict, start_key, nbr=2):
"Update the `pos_dict` by moving all positions after `start_key` by `nbr`."
for key,idx in pos_dict.items():
if str.lower(key) >= str.lower(start_key): pos_dict[key] += nbr
return pos_dict |
Insert the function doc `cells` at their correct position and updates `pos_dict`. | def insert_cells(cells, pos_dict, ft_name, append=False):
"Insert the function doc `cells` at their correct position and updates `pos_dict`."
idx = get_insert_idx(pos_dict, ft_name)
if append or idx == -1: cells += [get_doc_cell(ft_name), get_empty_cell()]
else:
cells.insert(idx, get_doc_cell(ft_name))
cells.insert(idx+1, get_empty_cell())
pos_dict = update_pos(pos_dict, ft_name, 2)
return cells, pos_dict |
Creates jekyll metadata for given notebook path. | def update_nb_metadata(nb_path=None, title=None, summary=None, keywords='fastai', overwrite=True, **kwargs):
"Creates jekyll metadata for given notebook path."
nb = read_nb(nb_path)
data = {'title': title, 'summary': summary, 'keywords': keywords, **kwargs}
data = {k:v for (k,v) in data.items() if v is not None} # remove none values
if not data: return
nb['metadata']['jekyll'] = data
write_nb(nb, nb_path)
NotebookNotary().sign(nb) |
Finds all submodules of notebook - sorted by submodules > top level modules > manual imports. This gives notebook imports priority | def get_imported_modules(cells, nb_module_name=''):
"Finds all submodules of notebook - sorted by submodules > top level modules > manual imports. This gives notebook imports priority"
module_names = get_top_level_modules()
nb_imports = [match.group(1) for cell in cells for match in IMPORT_RE.finditer(cell['source']) if cell['cell_type'] == 'code']
parts = nb_module_name.split('.')
parent_modules = ['.'.join(parts[:(x+1)]) for x in range_of(parts)] # Imports parent modules - a.b.c = [a, a.b, a.b.c]
all_modules = module_names + nb_imports + parent_modules
mods = [import_mod(m, ignore_errors=True) for m in all_modules]
return [m for m in mods if m is not None] |
Update the documentation notebook of a given module. | def update_module_page(mod, dest_path='.'):
"Update the documentation notebook of a given module."
doc_path = get_doc_path(mod, dest_path)
strip_name = strip_fastai(mod.__name__)
nb = read_nb(doc_path)
cells = nb['cells']
link_markdown_cells(cells, get_imported_modules(cells, mod.__name__))
type_dict = read_nb_types(cells)
gvar_map = get_global_vars(mod)
for name in get_exports(mod):
if name not in gvar_map: continue
code = gvar_map[name]
if name in type_dict: cells[type_dict[name]] = get_md_cell(code)
else: cells.append(get_md_cell(code))
pos_dict = read_nb_content(cells, strip_name)
ft_names = get_ft_names(mod, include_inner=True)
new_fts = list(set(ft_names) - set(pos_dict.keys()))
if new_fts: print(f'Found new fuctions for {mod}. Please document:\n{new_fts}')
existing, undoc_cells, new_cells = parse_sections(cells)
for ft_name in new_fts: new_cells.extend([get_doc_cell(ft_name), get_empty_cell()])
if len(new_cells) > 1: nb['cells'] = existing + undoc_cells + new_cells
write_nb(nb, doc_path)
return doc_path |
Return a dropout mask of the same type as `x`, size `sz`, with probability `p` to cancel an element. | def dropout_mask(x:Tensor, sz:Collection[int], p:float):
"Return a dropout mask of the same type as `x`, size `sz`, with probability `p` to cancel an element."
return x.new(*sz).bernoulli_(1-p).div_(1-p) |
`source_path` can be a directory or a file. Assume all modules reside in the fastai directory. | def update_notebooks(source_path, dest_path=None, update_html=True, document_new_fns=False,
update_nb_links=True, html_path=None, force=False):
"`source_path` can be a directory or a file. Assume all modules reside in the fastai directory."
from .convert2html import convert_nb
source_path = Path(source_path)
if source_path.is_file():
dest_path = source_path.parent if dest_path is None else Path(dest_path)
html_path = dest_path/'..'/'docs' if html_path is None else Path(html_path)
doc_path = source_path
assert source_path.suffix == '.ipynb', 'Must update from notebook or module'
if document_new_fns:
mod = import_mod(get_module_from_notebook(source_path))
if not mod: print('Could not find module for path:', source_path)
elif mod.__file__.endswith('__init__.py'): pass
else: update_module_page(mod, dest_path)
generate_missing_metadata(doc_path)
if update_nb_links:
print(f'Updating notebook {doc_path}. Please wait...')
link_nb(doc_path)
execute_nb(doc_path, {'metadata': {'path': doc_path.parent}}, show_doc_only=True)
if update_html:
check_nbconvert_version()
html_fn = html_path/doc_path.with_suffix('.html').name
if not force and html_fn.is_file():
in_mod = os.path.getmtime(doc_path)
out_mod = os.path.getmtime(html_fn)
if in_mod < out_mod: return
convert_nb(doc_path, html_path)
elif (source_path.name.startswith('fastai.')):
# Do module update
assert dest_path is not None, 'To update a module, you must specify a destination folder for where notebook resides'
mod = import_mod(source_path.name)
if not mod: return print('Could not find module for:', source_path)
doc_path = Path(dest_path)/(strip_fastai(mod.__name__)+'.ipynb')
if not doc_path.exists():
print('Notebook does not exist. Creating:', doc_path)
create_module_page(mod, dest_path)
update_notebooks(doc_path, dest_path=dest_path, update_html=update_html, document_new_fns=document_new_fns,
update_nb_links=update_nb_links, html_path=html_path)
elif source_path.is_dir():
for f in sorted(Path(source_path).glob('*.ipynb')):
update_notebooks(f, dest_path=dest_path, update_html=update_html, document_new_fns=document_new_fns,
update_nb_links=update_nb_links, html_path=html_path)
else: print('Could not resolve source file:', source_path) |
Split a RNN `model` in groups for differential learning rates. | def awd_lstm_lm_split(model:nn.Module) -> List[nn.Module]:
"Split a RNN `model` in groups for differential learning rates."
groups = [[rnn, dp] for rnn, dp in zip(model[0].rnns, model[0].hidden_dps)]
return groups + [[model[0].encoder, model[0].encoder_dp, model[1]]] |
Convert a value `x` from 0 to 1 (inclusive) to an RGBA tuple according to `cmap` times transparency `alpha_mult`. | def value2rgba(x:float, cmap:Callable=cm.RdYlGn, alpha_mult:float=1.0)->Tuple:
"Convert a value `x` from 0 to 1 (inclusive) to an RGBA tuple according to `cmap` times transparency `alpha_mult`."
c = cmap(x)
rgb = (np.array(c[:-1]) * 255).astype(int)
a = c[-1] * alpha_mult
return tuple(rgb.tolist() + [a]) |
Apply dropout to the raw weights. | def _setweights(self):
"Apply dropout to the raw weights."
for layer in self.layer_names:
raw_w = getattr(self, f'{layer}_raw')
self.module._parameters[layer] = F.dropout(raw_w, p=self.weight_p, training=self.training) |
Return one hidden state. | def _one_hidden(self, l:int)->Tensor:
"Return one hidden state."
nh = (self.n_hid if l != self.n_layers - 1 else self.emb_sz) // self.n_dir
return one_param(self).new(1, self.bs, nh).zero_() |
Reset the hidden states. | def reset(self):
"Reset the hidden states."
[r.reset() for r in self.rnns if hasattr(r, 'reset')]
if self.qrnn: self.hidden = [self._one_hidden(l) for l in range(self.n_layers)]
else: self.hidden = [(self._one_hidden(l), self._one_hidden(l)) for l in range(self.n_layers)] |
Calculate the intrinsic attention of the input w.r.t to an output `class_id`, or the classification given by the model if `None`.
For reference, see the Sequential Jacobian session at https://www.cs.toronto.edu/~graves/preprint.pdf | def intrinsic_attention(self, text:str, class_id:int=None):
"""Calculate the intrinsic attention of the input w.r.t to an output `class_id`, or the classification given by the model if `None`.
For reference, see the Sequential Jacobian session at https://www.cs.toronto.edu/~graves/preprint.pdf
"""
self.model.train()
_eval_dropouts(self.model)
self.model.zero_grad()
self.model.reset()
ids = self.data.one_item(text)[0]
emb = self.model[0].module.encoder(ids).detach().requires_grad_(True)
lstm_output = self.model[0].module(emb, from_embeddings=True)
self.model.eval()
cl = self.model[1](lstm_output + (torch.zeros_like(ids).byte(),))[0].softmax(dim=-1)
if class_id is None: class_id = cl.argmax()
cl[0][class_id].backward()
attn = emb.grad.squeeze().abs().sum(dim=-1)
attn /= attn.max()
tokens = self.data.single_ds.reconstruct(ids[0])
return tokens, attn |
Create a tabulation showing the first `k` texts in top_losses along with their prediction, actual,loss, and probability of
actual class. `max_len` is the maximum number of tokens displayed. | def show_top_losses(self, k:int, max_len:int=70)->None:
"""
Create a tabulation showing the first `k` texts in top_losses along with their prediction, actual,loss, and probability of
actual class. `max_len` is the maximum number of tokens displayed.
"""
from IPython.display import display, HTML
items = []
tl_val,tl_idx = self.top_losses()
for i,idx in enumerate(tl_idx):
if k <= 0: break
k -= 1
tx,cl = self.data.dl(self.ds_type).dataset[idx]
cl = cl.data
classes = self.data.classes
txt = ' '.join(tx.text.split(' ')[:max_len]) if max_len is not None else tx.text
tmp = [txt, f'{classes[self.pred_class[idx]]}', f'{classes[cl]}', f'{self.losses[idx]:.2f}',
f'{self.probs[idx][cl]:.2f}']
items.append(tmp)
items = np.array(items)
names = ['Text', 'Prediction', 'Actual', 'Loss', 'Probability']
df = pd.DataFrame({n:items[:,i] for i,n in enumerate(names)}, columns=names)
with pd.option_context('display.max_colwidth', -1):
display(HTML(df.to_html(index=False))) |
Initialize the schedulers for training. | def on_train_begin(self, epoch:int, **kwargs:Any)->None:
"Initialize the schedulers for training."
res = {'epoch':self.start_epoch} if self.start_epoch is not None else None
self.start_epoch = ifnone(self.start_epoch, epoch)
self.scheds = [p.scheds for p in self.phases]
self.opt = self.learn.opt
for k,v in self.scheds[0].items():
v.restart()
self.opt.set_stat(k, v.start)
self.idx_s = 0
return res |
Take a step in lr,mom sched, start next stepper when the current one is complete. | def on_batch_end(self, train, **kwargs:Any)->None:
"Take a step in lr,mom sched, start next stepper when the current one is complete."
if train:
if self.idx_s >= len(self.scheds): return {'stop_training': True, 'stop_epoch': True}
sched = self.scheds[self.idx_s]
for k,v in sched.items(): self.opt.set_stat(k, v.step())
if list(sched.values())[0].is_done: self.idx_s += 1 |
Like `torch.as_tensor`, but handle lists too, and can pass multiple vector elements directly. | def tensor(x:Any, *rest)->Tensor:
"Like `torch.as_tensor`, but handle lists too, and can pass multiple vector elements directly."
if len(rest): x = (x,)+rest
# XXX: Pytorch bug in dataloader using num_workers>0; TODO: create repro and report
if is_listy(x) and len(x)==0: return tensor(0)
res = torch.tensor(x) if is_listy(x) else as_tensor(x)
if res.dtype is torch.int32:
warn('Tensor is int32: upgrading to int64; for better performance use int64 input')
return res.long()
return res |
Recursively detach lists of tensors in `b `; put them on the CPU if `cpu=True`. | def to_detach(b:Tensors, cpu:bool=True):
"Recursively detach lists of tensors in `b `; put them on the CPU if `cpu=True`."
if is_listy(b): return [to_detach(o, cpu) for o in b]
if not isinstance(b,Tensor): return b
b = b.detach()
return b.cpu() if cpu else b |
Recursively map lists of items in `b ` to their wrapped data. | def to_data(b:ItemsList):
"Recursively map lists of items in `b ` to their wrapped data."
if is_listy(b): return [to_data(o) for o in b]
return b.data if isinstance(b,ItemBase) else b |
Recursively map lists of tensors in `b ` to the cpu. | def to_cpu(b:ItemsList):
"Recursively map lists of tensors in `b ` to the cpu."
if is_listy(b): return [to_cpu(o) for o in b]
return b.cpu() if isinstance(b,Tensor) else b |
Recursively map lists of tensors in `b ` to FP16. | def to_half(b:Collection[Tensor])->Collection[Tensor]:
"Recursively map lists of tensors in `b ` to FP16."
if is_listy(b): return [to_half(o) for o in b]
return b.half() if b.dtype not in [torch.int64, torch.int32, torch.int16] else b |
Recursively map lists of tensors in `b ` to FP16. | def to_float(b:Collection[Tensor])->Collection[Tensor]:
"Recursively map lists of tensors in `b ` to FP16."
if is_listy(b): return [to_float(o) for o in b]
return b.float() if b.dtype not in [torch.int64, torch.int32, torch.int16] else b |
Recursively put `b` on `device`. | def to_device(b:Tensors, device:torch.device):
"Recursively put `b` on `device`."
device = ifnone(device, defaults.device)
if is_listy(b): return [to_device(o, device) for o in b]
if is_dict(b): return {k: to_device(v, device) for k, v in b.items()}
return b.to(device, non_blocking=True) |
Convert `batch` items to tensor data. | def data_collate(batch:ItemsList)->Tensor:
"Convert `batch` items to tensor data."
return torch.utils.data.dataloader.default_collate(to_data(batch)) |
If `b` is not set return `requires_grad` of first param, else set `requires_grad` on all params as `b` | def requires_grad(m:nn.Module, b:Optional[bool]=None)->Optional[bool]:
"If `b` is not set return `requires_grad` of first param, else set `requires_grad` on all params as `b`"
ps = list(m.parameters())
if not ps: return None
if b is None: return ps[0].requires_grad
for p in ps: p.requires_grad=b |
Return list of trainable params in `m`. | def trainable_params(m:nn.Module)->ParamList:
"Return list of trainable params in `m`."
res = filter(lambda p: p.requires_grad, m.parameters())
return res |
Return the children of `m` and its direct parameters not registered in modules. | def children_and_parameters(m:nn.Module):
"Return the children of `m` and its direct parameters not registered in modules."
children = list(m.children())
children_p = sum([[id(p) for p in c.parameters()] for c in m.children()],[])
for p in m.parameters():
if id(p) not in children_p: children.append(ParameterModule(p))
return children |
Split `model` according to the indexes in `idxs`. | def split_model_idx(model:nn.Module, idxs:Collection[int])->ModuleList:
"Split `model` according to the indexes in `idxs`."
layers = flatten_model(model)
if idxs[0] != 0: idxs = [0] + idxs
if idxs[-1] != len(layers): idxs.append(len(layers))
return [nn.Sequential(*layers[i:j]) for i,j in zip(idxs[:-1],idxs[1:])] |
Split `model` according to the layers in `splits`. | def split_model(model:nn.Module=None, splits:Collection[Union[nn.Module,ModuleList]]=None):
"Split `model` according to the layers in `splits`."
splits = listify(splits)
if isinstance(splits[0], nn.Module):
layers = flatten_model(model)
idxs = [layers.index(first_layer(s)) for s in splits]
return split_model_idx(model, idxs)
return [nn.Sequential(*s) for s in splits] |
Separate the parameters in `layer_groups` between `no_wd_types` and bias (`bias_types`) from the rest. | def split_no_wd_params(layer_groups:Collection[nn.Module])->List[List[nn.Parameter]]:
"Separate the parameters in `layer_groups` between `no_wd_types` and bias (`bias_types`) from the rest."
split_params = []
for l in layer_groups:
l1,l2 = [],[]
for c in l.children():
if isinstance(c, no_wd_types): l2 += list(trainable_params(c))
elif isinstance(c, bias_types):
bias = c.bias if hasattr(c, 'bias') else None
l1 += [p for p in trainable_params(c) if not (p is bias)]
if bias is not None: l2.append(bias)
else: l1 += list(trainable_params(c))
#Since we scan the children separately, we might get duplicates (tied weights). We need to preserve the order
#for the optimizer load of state_dict
l1,l2 = uniqueify(l1),uniqueify(l2)
split_params += [l1, l2]
return split_params |
Set bn layers in eval mode for all recursive children of `m`. | def set_bn_eval(m:nn.Module)->None:
"Set bn layers in eval mode for all recursive children of `m`."
for l in m.children():
if isinstance(l, bn_types) and not next(l.parameters()).requires_grad:
l.eval()
set_bn_eval(l) |
If `module` is batchnorm don't use half precision. | def bn2float(module:nn.Module)->nn.Module:
"If `module` is batchnorm don't use half precision."
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): module.float()
for child in module.children(): bn2float(child)
return module |
Initialize `m` weights with `func` and set `bias` to 0. | def init_default(m:nn.Module, func:LayerFunc=nn.init.kaiming_normal_)->None:
"Initialize `m` weights with `func` and set `bias` to 0."
if func:
if hasattr(m, 'weight'): func(m.weight)
if hasattr(m, 'bias') and hasattr(m.bias, 'data'): m.bias.data.fill_(0.)
return m |
Initialize the non-batchnorm layers of `m` with `init_func`. | def cond_init(m:nn.Module, init_func:LayerFunc):
"Initialize the non-batchnorm layers of `m` with `init_func`."
if (not isinstance(m, bn_types)) and requires_grad(m): init_default(m, init_func) |
Initialize all non-batchnorm layers of `m` with `init_func`. | def apply_init(m, init_func:LayerFunc):
"Initialize all non-batchnorm layers of `m` with `init_func`."
apply_leaf(m, partial(cond_init, init_func=init_func)) |
Return the shape of the first weight layer in `m`. | def in_channels(m:nn.Module) -> List[int]:
"Return the shape of the first weight layer in `m`."
for l in flatten_model(m):
if hasattr(l, 'weight'): return l.weight.shape[1]
raise Exception('No weight layer') |
Return the torch type corresponding to `dtype`. | def model_type(dtype):
"Return the torch type corresponding to `dtype`."
return (torch.float32 if np.issubdtype(dtype, np.floating) else
torch.int64 if np.issubdtype(dtype, np.integer)
else None) |
Tranform numpy array `a` to a tensor of the same type. | def np2model_tensor(a):
"Tranform numpy array `a` to a tensor of the same type."
dtype = model_type(a.dtype)
res = as_tensor(a)
if not dtype: return res
return res.type(dtype) |
Compute PCA of `x` with `k` dimensions. | def _pca(x, k=2):
"Compute PCA of `x` with `k` dimensions."
x = x-torch.mean(x,0)
U,S,V = torch.svd(x.t())
return torch.mm(x,U[:,:k]) |
Grab the `i`-th batch in `x`, `batch_first` stating the batch dimension. | def grab_idx(x,i,batch_first:bool=True):
"Grab the `i`-th batch in `x`, `batch_first` stating the batch dimension."
if batch_first: return ([o[i].cpu() for o in x] if is_listy(x) else x[i].cpu())
else: return ([o[:,i].cpu() for o in x] if is_listy(x) else x[:,i].cpu()) |
Inplace logit of `x`, clamped to avoid inf | def logit_(x:Tensor)->Tensor:
"Inplace logit of `x`, clamped to avoid inf"
x.clamp_(1e-7, 1-1e-7)
return (x.reciprocal_().sub_(1)).log_().neg_() |
Draw 1 or shape=`size` random floats from uniform dist: min=`low`, max=`high`. | def uniform(low:Number, high:Number=None, size:Optional[List[int]]=None)->FloatOrTensor:
"Draw 1 or shape=`size` random floats from uniform dist: min=`low`, max=`high`."
if high is None: high=low
return random.uniform(low,high) if size is None else torch.FloatTensor(*listify(size)).uniform_(low,high) |
Draw 1 or shape=`size` random floats from uniform dist: min=log(`low`), max=log(`high`). | def log_uniform(low, high, size:Optional[List[int]]=None)->FloatOrTensor:
"Draw 1 or shape=`size` random floats from uniform dist: min=log(`low`), max=log(`high`)."
res = uniform(log(low), log(high), size)
return exp(res) if size is None else res.exp_() |
Draw 1 or shape=`size` random booleans (`True` occuring with probability `p`). | def rand_bool(p:float, size:Optional[List[int]]=None)->BoolOrTensor:
"Draw 1 or shape=`size` random booleans (`True` occuring with probability `p`)."
return uniform(0,1,size)<p |
Generate int or tensor `size` of ints between `low` and `high` (included). | def uniform_int(low:int, high:int, size:Optional[List[int]]=None)->IntOrTensor:
"Generate int or tensor `size` of ints between `low` and `high` (included)."
return random.randint(low,high) if size is None else torch.randint(low,high+1,size) |
Try to convert `o` to int, default to `o` if not possible. | def try_int(o:Any)->Any:
"Try to convert `o` to int, default to `o` if not possible."
# NB: single-item rank-1 array/tensor can be converted to int, but we don't want to do this
if isinstance(o, (np.ndarray,Tensor)): return o if o.ndim else int(o)
if isinstance(o, collections.Sized) or getattr(o,'__array_interface__',False): return o
try: return int(o)
except: return o |
Return the model maybe wrapped inside `model`. | def get_model(model:nn.Module):
"Return the model maybe wrapped inside `model`."
return model.module if isinstance(model, (DistributedDataParallel, nn.DataParallel)) else model |
Check that `out` and `targ` have the same number of elements and flatten them. | def flatten_check(out:Tensor, targ:Tensor) -> Tensor:
"Check that `out` and `targ` have the same number of elements and flatten them."
out,targ = out.contiguous().view(-1),targ.contiguous().view(-1)
assert len(out) == len(targ), f"Expected output and target to have the same number of elements but got {len(out)} and {len(targ)}."
return out,targ |
create new OrderedDict that does not contain `module.` | def remove_module_load(state_dict):
"""create new OrderedDict that does not contain `module.`"""
new_state_dict = OrderedDict()
for k, v in state_dict.items(): new_state_dict[k[7:]] = v
return new_state_dict |
Return a dictionary for updating `last_metrics` with `mets`. | def add_metrics(last_metrics:Collection[Rank0Tensor], mets:Union[Rank0Tensor, Collection[Rank0Tensor]]):
"Return a dictionary for updating `last_metrics` with `mets`."
last_metrics,mets = listify(last_metrics),listify(mets)
return {'last_metrics': last_metrics + mets} |
Collects iterables lazily, rather than immediately.
Docstring same as parent: https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
Implmentation taken from this PR: https://github.com/python/cpython/pull/707 | def map(self, fn, *iterables, timeout=None, chunksize=1, prefetch=None):
"""
Collects iterables lazily, rather than immediately.
Docstring same as parent: https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
Implmentation taken from this PR: https://github.com/python/cpython/pull/707
"""
if timeout is not None: end_time = timeout + time.time()
if prefetch is None: prefetch = self._max_workers
if prefetch < 0: raise ValueError("prefetch count may not be negative")
argsiter = zip(*iterables)
fs = collections.deque(self.submit(fn, *args) for args in itertools.islice(argsiter, self._max_workers+prefetch))
# Yield must be hidden in closure so that the futures are submitted before the first iterator value is required.
def result_iterator():
nonlocal argsiter
try:
while fs:
res = fs[0].result() if timeout is None else fs[0].result(end_time-time.time())
# Got a result, future needn't be cancelled
del fs[0]
# Dispatch next task before yielding to keep pipeline full
if argsiter:
try:
args = next(argsiter)
except StopIteration:
argsiter = None
else:
fs.append(self.submit(fn, *args))
yield res
finally:
for future in fs: future.cancel()
return result_iterator() |
Generate documentation for fastai library in HTML (asciidoctor required)
:param str src: The absolute/relative path of source file/dir | def gen_ascii_docs(src='fastai'):
"""Generate documentation for fastai library in HTML (asciidoctor required)
:param str src: The absolute/relative path of source file/dir
"""
os.chdir(Path(__file__).absolute().parent)
with working_directory('..'):
path = Path(src)
if path.is_dir():
file_paths = list(path.glob('**/*.py'))
else:
file_paths = [path]
pat = re.compile('^(?!__init__).*.py\Z')
for file_path in file_paths:
if pat.match(file_path.name):
file_path.parent.mkdir(parents=True, exist_ok=True)
with working_directory('..'):
tmpl_str = parse_module(file_path)
(file_path.parent/(file_path.name.rsplit('.',1)[0] + '.adoc.tmpl')).write_text(tmpl_str)
(file_path.parent/(file_path.name.rsplit('.',1)[0] + '.adoc')).write_text(re.sub(r"{{(.*?)}}", parse_tmpl, tmpl_str, flags=re.DOTALL))
if path.is_dir():
subprocess.call(['asciidoctor', str(path) + '/**/*.adoc'])
else:
subprocess.call(['asciidoctor', str(path).rsplit('.',1)[0] + '.adoc']) |
Retrieves new batch of DatasetType, and detaches it. | def _get_new_batch(self, ds_type:DatasetType)->Collection[Tensor]:
"Retrieves new batch of DatasetType, and detaches it."
return self.learn.data.one_batch(ds_type=ds_type, detach=True, denorm=False, cpu=False) |
one_batch function is extremely slow with large datasets. This is caching the result as an optimization. | def _update_batches_if_needed(self)->None:
"one_batch function is extremely slow with large datasets. This is caching the result as an optimization."
if self.learn.data.valid_dl is None: return # Running learning rate finder, so return
update_batches = self.data is not self.learn.data
if not update_batches: return
self.data = self.learn.data
self.trn_batch = self._get_new_batch(ds_type=DatasetType.Train)
self.val_batch = self._get_new_batch(ds_type=DatasetType.Valid) |
Writes gradient statistics to Tensorboard. | def _write_model_stats(self, iteration:int)->None:
"Writes gradient statistics to Tensorboard."
self.stats_writer.write(model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter) |
Writes training loss to Tensorboard. | def _write_training_loss(self, iteration:int, last_loss:Tensor)->None:
"Writes training loss to Tensorboard."
scalar_value = to_np(last_loss)
tag = self.metrics_root + 'train_loss'
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration) |
Writes model weight histograms to Tensorboard. | def _write_weight_histograms(self, iteration:int)->None:
"Writes model weight histograms to Tensorboard."
self.hist_writer.write(model=self.learn.model, iteration=iteration, tbwriter=self.tbwriter) |
Writes single scalar value to Tensorboard. | def _write_scalar(self, name:str, scalar_value, iteration:int)->None:
"Writes single scalar value to Tensorboard."
tag = self.metrics_root + name
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration) |
Writes training metrics to Tensorboard. | def _write_metrics(self, iteration:int, last_metrics:MetricsList, start_idx:int=2)->None:
"Writes training metrics to Tensorboard."
recorder = self.learn.recorder
for i, name in enumerate(recorder.names[start_idx:]):
if last_metrics is None or len(last_metrics) < i+1: return
scalar_value = last_metrics[i]
self._write_scalar(name=name, scalar_value=scalar_value, iteration=iteration) |
Callback function that writes batch end appropriate data to Tensorboard. | def on_batch_end(self, last_loss:Tensor, iteration:int, **kwargs)->None:
"Callback function that writes batch end appropriate data to Tensorboard."
if iteration == 0: return
self._update_batches_if_needed()
if iteration % self.loss_iters == 0: self._write_training_loss(iteration=iteration, last_loss=last_loss)
if iteration % self.hist_iters == 0: self._write_weight_histograms(iteration=iteration) |
Callback function that writes backward end appropriate data to Tensorboard. | def on_backward_end(self, iteration:int, **kwargs)->None:
"Callback function that writes backward end appropriate data to Tensorboard."
if iteration == 0: return
self._update_batches_if_needed()
if iteration % self.stats_iters == 0: self._write_model_stats(iteration=iteration) |
Callback function that writes epoch end appropriate data to Tensorboard. | def on_epoch_end(self, last_metrics:MetricsList, iteration:int, **kwargs)->None:
"Callback function that writes epoch end appropriate data to Tensorboard."
self._write_metrics(iteration=iteration, last_metrics=last_metrics) |
Writes model weight histograms to Tensorboard. | def _write_weight_histograms(self, iteration:int)->None:
"Writes model weight histograms to Tensorboard."
generator, critic = self.learn.gan_trainer.generator, self.learn.gan_trainer.critic
self.hist_writer.write(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='generator')
self.hist_writer.write(model=critic, iteration=iteration, tbwriter=self.tbwriter, name='critic') |
Writes gradient statistics for generator to Tensorboard. | def _write_gen_model_stats(self, iteration:int)->None:
"Writes gradient statistics for generator to Tensorboard."
generator = self.learn.gan_trainer.generator
self.stats_writer.write(model=generator, iteration=iteration, tbwriter=self.tbwriter, name='gen_model_stats')
self.gen_stats_updated = True |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.