INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
Fixed `mode` `padding` and random crop of `size`
def rand_pad(padding:int, size:int, mode:str='reflection'): "Fixed `mode` `padding` and random crop of `size`" return [pad(padding=padding,mode=mode), crop(size=size, **rand_pos)]
Randomized version of `zoom`.
def rand_zoom(scale:uniform=1.0, p:float=1.): "Randomized version of `zoom`." return zoom(scale=scale, **rand_pos, p=p)
Randomized version of `crop_pad`.
def rand_crop(*args, padding_mode='reflection', p:float=1.): "Randomized version of `crop_pad`." return crop_pad(*args, **rand_pos, padding_mode=padding_mode, p=p)
Randomly zoom and/or crop.
def zoom_crop(scale:float, do_rand:bool=False, p:float=1.0): "Randomly zoom and/or crop." zoom_fn = rand_zoom if do_rand else zoom crop_fn = rand_crop if do_rand else crop_pad return [zoom_fn(scale=scale, p=p), crop_fn()]
Find 8 coeff mentioned [here](https://web.archive.org/web/20150222120106/xenia.media.mit.edu/~cwren/interpolator/).
def _find_coeffs(orig_pts:Points, targ_pts:Points)->Tensor: "Find 8 coeff mentioned [here](https://web.archive.org/web/20150222120106/xenia.media.mit.edu/~cwren/interpolator/)." matrix = [] #The equations we'll need to solve. for p1, p2 in zip(targ_pts, orig_pts): matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0]*p1[0], -p2[0]*p1[1]]) matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1]*p1[0], -p2[1]*p1[1]]) A = FloatTensor(matrix) B = FloatTensor(orig_pts).view(8, 1) #The 8 scalars we seek are solution of AX = B return _solve_func(B,A)[0][:,0]
Transform `coords` with `coeffs`.
def _apply_perspective(coords:FlowField, coeffs:Points)->FlowField: "Transform `coords` with `coeffs`." size = coords.flow.size() #compress all the dims expect the last one ang adds ones, coords become N * 3 coords.flow = coords.flow.view(-1,2) #Transform the coeffs in a 3*3 matrix with a 1 at the bottom left coeffs = torch.cat([coeffs, FloatTensor([1])]).view(3,3) coords.flow = torch.addmm(coeffs[:,2], coords.flow, coeffs[:,:2].t()) coords.flow.mul_(1/coords.flow[:,2].unsqueeze(1)) coords.flow = coords.flow[:,:2].view(size) return coords
Apply warp to `targ_pts` from `_orig_pts` to `c` `FlowField`.
def _do_perspective_warp(c:FlowField, targ_pts:Points, invert=False): "Apply warp to `targ_pts` from `_orig_pts` to `c` `FlowField`." if invert: return _apply_perspective(c, _find_coeffs(targ_pts, _orig_pts)) return _apply_perspective(c, _find_coeffs(_orig_pts, targ_pts))
Apply warp of `magnitude` to `c`.
def _perspective_warp(c, magnitude:partial(uniform,size=8)=0, invert=False): "Apply warp of `magnitude` to `c`." magnitude = magnitude.view(4,2) targ_pts = [[x+m for x,m in zip(xs, ms)] for xs, ms in zip(_orig_pts, magnitude)] return _do_perspective_warp(c, targ_pts, invert)
Apply symmetric warp of `magnitude` to `c`.
def _symmetric_warp(c, magnitude:partial(uniform,size=4)=0, invert=False): "Apply symmetric warp of `magnitude` to `c`." m = listify(magnitude, 4) targ_pts = [[-1-m[3],-1-m[1]], [-1-m[2],1+m[1]], [1+m[3],-1-m[0]], [1+m[2],1+m[0]]] return _do_perspective_warp(c, targ_pts, invert)
Tilt `c` field with random `direction` and `magnitude`.
def _tilt(c, direction:uniform_int, magnitude:uniform=0, invert=False): "Tilt `c` field with random `direction` and `magnitude`." orig_pts = [[-1,-1], [-1,1], [1,-1], [1,1]] if direction == 0: targ_pts = [[-1,-1], [-1,1], [1,-1-magnitude], [1,1+magnitude]] elif direction == 1: targ_pts = [[-1,-1-magnitude], [-1,1+magnitude], [1,-1], [1,1]] elif direction == 2: targ_pts = [[-1,-1], [-1-magnitude,1], [1,-1], [1+magnitude,1]] elif direction == 3: targ_pts = [[-1-magnitude,-1], [-1,1], [1+magnitude,-1], [1,1]] coeffs = _find_coeffs(targ_pts, _orig_pts) if invert else _find_coeffs(_orig_pts, targ_pts) return _apply_perspective(c, coeffs)
Utility func to easily create a list of flip, rotate, `zoom`, warp, lighting transforms.
def get_transforms(do_flip:bool=True, flip_vert:bool=False, max_rotate:float=10., max_zoom:float=1.1, max_lighting:float=0.2, max_warp:float=0.2, p_affine:float=0.75, p_lighting:float=0.75, xtra_tfms:Optional[Collection[Transform]]=None)->Collection[Transform]: "Utility func to easily create a list of flip, rotate, `zoom`, warp, lighting transforms." res = [rand_crop()] if do_flip: res.append(dihedral_affine() if flip_vert else flip_lr(p=0.5)) if max_warp: res.append(symmetric_warp(magnitude=(-max_warp,max_warp), p=p_affine)) if max_rotate: res.append(rotate(degrees=(-max_rotate,max_rotate), p=p_affine)) if max_zoom>1: res.append(rand_zoom(scale=(1.,max_zoom), p=p_affine)) if max_lighting: res.append(brightness(change=(0.5*(1-max_lighting), 0.5*(1+max_lighting)), p=p_lighting)) res.append(contrast(scale=(1-max_lighting, 1/(1-max_lighting)), p=p_lighting)) # train , valid return (res + listify(xtra_tfms), [crop_pad()])
Utility routine to compute zoom/squish matrix.
def _compute_zs_mat(sz:TensorImageSize, scale:float, squish:float, invert:bool, row_pct:float, col_pct:float)->AffineMatrix: "Utility routine to compute zoom/squish matrix." orig_ratio = math.sqrt(sz[1]/sz[0]) for s,r,i in zip(scale,squish, invert): s,r = 1/math.sqrt(s),math.sqrt(r) if s * r <= 1 and s / r <= 1: #Test if we are completely inside the picture w,h = (s/r, s*r) if i else (s*r,s/r) col_c = (1-w) * (2*col_pct - 1) row_c = (1-h) * (2*row_pct - 1) return _get_zoom_mat(w, h, col_c, row_c) #Fallback, hack to emulate a center crop without cropping anything yet. if orig_ratio > 1: return _get_zoom_mat(1/orig_ratio**2, 1, 0, 0.) else: return _get_zoom_mat(1, orig_ratio**2, 0, 0.)
Randomly resize and crop the image to a ratio in `ratios` after a zoom of `max_scale`.
def rand_resize_crop(size:int, max_scale:float=2., ratios:Tuple[float,float]=(0.75,1.33)): "Randomly resize and crop the image to a ratio in `ratios` after a zoom of `max_scale`." return [zoom_squish(scale=(1.,max_scale,8), squish=(*ratios,8), invert=(0.5,8), row_pct=(0.,1.), col_pct=(0.,1.)), crop(size=size)]
Sets the learning rate to the initial LR decayed by 10 every 30 epochs
def adjust_learning_rate(optimizer, epoch, gammas, schedule): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.learning_rate assert len(gammas) == len(schedule), "length of gammas and schedule should be equal" for (gamma, step) in zip(gammas, schedule): if (epoch >= step): lr = lr * gamma else: break for param_group in optimizer.param_groups: param_group['lr'] = lr return lr
Method does some preparation before finally delegating to the 'fit' method for fitting the model. Namely, if cycle_len is defined, it adds a 'Cosine Annealing' scheduler for varying the learning rate across iterations. Method also computes the total number of epochs to fit based on provided 'cycle_len', 'cycle_mult', and 'n_cycle' parameters. Args: model (Learner): Any neural architecture for solving a supported problem. Eg. ResNet-34, RNN_Learner etc. data (ModelData): An instance of ModelData. layer_opt (LayerOptimizer): An instance of the LayerOptimizer class n_cycle (int): number of cycles cycle_len (int): number of epochs before lr is reset to the initial value. E.g if cycle_len = 3, then the lr is varied between a maximum and minimum value over 3 epochs. cycle_mult (int): additional parameter for influencing how the lr resets over the cycles. For an intuitive explanation, please see https://github.com/fastai/fastai/blob/master/courses/dl1/lesson1.ipynb cycle_save_name (str): use to save the weights at end of each cycle (requires use_clr, use_clr_beta or cycle_len arg) best_save_name (str): use to save weights of best model during training. metrics (function): some function for evaluating a desired metric. Eg. accuracy. callbacks (list(Callback)): callbacks to apply during the training. use_wd_sched (bool, optional): set to True to enable weight regularization using the technique mentioned in https://arxiv.org/abs/1711.05101. When this is True alone (see below), the regularization is detached from gradient update and applied directly to the weights. norm_wds (bool, optional): when this is set to True along with use_wd_sched, the regularization factor is normalized with each training cycle. wds_sched_mult (function, optional): when this is provided along with use_wd_sched as True, the value computed by this function is multiplied with the regularization strength. This function is passed the WeightDecaySchedule object. And example function that can be passed is: f = lambda x: np.array(x.layer_opt.lrs) / x.init_lrs use_swa (bool, optional): when this is set to True, it will enable the use of Stochastic Weight Averaging (https://arxiv.org/abs/1803.05407). The learner will include an additional model (in the swa_model attribute) for keeping track of the average weights as described in the paper. All testing of this technique so far has been in image classification, so use in other contexts is not guaranteed to work. swa_start (int, optional): if use_swa is set to True, then this determines the epoch to start keeping track of the average weights. It is 1-indexed per the paper's conventions. swa_eval_freq (int, optional): if use_swa is set to True, this determines the frequency at which to evaluate the performance of the swa_model. This evaluation can be costly for models using BatchNorm (requiring a full pass through the data), which is why the default is not to evaluate after each epoch. Returns: None
def fit_gen(self, model, data, layer_opt, n_cycle, cycle_len=None, cycle_mult=1, cycle_save_name=None, best_save_name=None, use_clr=None, use_clr_beta=None, metrics=None, callbacks=None, use_wd_sched=False, norm_wds=False, wds_sched_mult=None, use_swa=False, swa_start=1, swa_eval_freq=5, **kwargs): """Method does some preparation before finally delegating to the 'fit' method for fitting the model. Namely, if cycle_len is defined, it adds a 'Cosine Annealing' scheduler for varying the learning rate across iterations. Method also computes the total number of epochs to fit based on provided 'cycle_len', 'cycle_mult', and 'n_cycle' parameters. Args: model (Learner): Any neural architecture for solving a supported problem. Eg. ResNet-34, RNN_Learner etc. data (ModelData): An instance of ModelData. layer_opt (LayerOptimizer): An instance of the LayerOptimizer class n_cycle (int): number of cycles cycle_len (int): number of epochs before lr is reset to the initial value. E.g if cycle_len = 3, then the lr is varied between a maximum and minimum value over 3 epochs. cycle_mult (int): additional parameter for influencing how the lr resets over the cycles. For an intuitive explanation, please see https://github.com/fastai/fastai/blob/master/courses/dl1/lesson1.ipynb cycle_save_name (str): use to save the weights at end of each cycle (requires use_clr, use_clr_beta or cycle_len arg) best_save_name (str): use to save weights of best model during training. metrics (function): some function for evaluating a desired metric. Eg. accuracy. callbacks (list(Callback)): callbacks to apply during the training. use_wd_sched (bool, optional): set to True to enable weight regularization using the technique mentioned in https://arxiv.org/abs/1711.05101. When this is True alone (see below), the regularization is detached from gradient update and applied directly to the weights. norm_wds (bool, optional): when this is set to True along with use_wd_sched, the regularization factor is normalized with each training cycle. wds_sched_mult (function, optional): when this is provided along with use_wd_sched as True, the value computed by this function is multiplied with the regularization strength. This function is passed the WeightDecaySchedule object. And example function that can be passed is: f = lambda x: np.array(x.layer_opt.lrs) / x.init_lrs use_swa (bool, optional): when this is set to True, it will enable the use of Stochastic Weight Averaging (https://arxiv.org/abs/1803.05407). The learner will include an additional model (in the swa_model attribute) for keeping track of the average weights as described in the paper. All testing of this technique so far has been in image classification, so use in other contexts is not guaranteed to work. swa_start (int, optional): if use_swa is set to True, then this determines the epoch to start keeping track of the average weights. It is 1-indexed per the paper's conventions. swa_eval_freq (int, optional): if use_swa is set to True, this determines the frequency at which to evaluate the performance of the swa_model. This evaluation can be costly for models using BatchNorm (requiring a full pass through the data), which is why the default is not to evaluate after each epoch. Returns: None """ if cycle_save_name: assert use_clr or use_clr_beta or cycle_len, "cycle_save_name argument requires either of the following arguments use_clr, use_clr_beta, cycle_len" if callbacks is None: callbacks=[] if metrics is None: metrics=self.metrics if use_wd_sched: # This needs to come before CosAnneal() because we need to read the initial learning rate from # layer_opt.lrs - but CosAnneal() alters the layer_opt.lrs value initially (divides by 100) if np.sum(layer_opt.wds) == 0: print('fit() warning: use_wd_sched is set to True, but weight decay(s) passed are 0. Use wds to ' 'pass weight decay values.') batch_per_epoch = len(data.trn_dl) cl = cycle_len if cycle_len else 1 self.wd_sched = WeightDecaySchedule(layer_opt, batch_per_epoch, cl, cycle_mult, n_cycle, norm_wds, wds_sched_mult) callbacks += [self.wd_sched] if use_clr is not None: clr_div,cut_div = use_clr[:2] moms = use_clr[2:] if len(use_clr) > 2 else None cycle_end = self.get_cycle_end(cycle_save_name) assert cycle_len, "use_clr requires cycle_len arg" self.sched = CircularLR(layer_opt, len(data.trn_dl)*cycle_len, on_cycle_end=cycle_end, div=clr_div, cut_div=cut_div, momentums=moms) elif use_clr_beta is not None: div,pct = use_clr_beta[:2] moms = use_clr_beta[2:] if len(use_clr_beta) > 3 else None cycle_end = self.get_cycle_end(cycle_save_name) assert cycle_len, "use_clr_beta requires cycle_len arg" self.sched = CircularLR_beta(layer_opt, len(data.trn_dl)*cycle_len, on_cycle_end=cycle_end, div=div, pct=pct, momentums=moms) elif cycle_len: cycle_end = self.get_cycle_end(cycle_save_name) cycle_batches = len(data.trn_dl)*cycle_len self.sched = CosAnneal(layer_opt, cycle_batches, on_cycle_end=cycle_end, cycle_mult=cycle_mult) elif not self.sched: self.sched=LossRecorder(layer_opt) callbacks+=[self.sched] if best_save_name is not None: callbacks+=[SaveBestModel(self, layer_opt, metrics, best_save_name)] if use_swa: # make a copy of the model to track average weights self.swa_model = copy.deepcopy(model) callbacks+=[SWA(model, self.swa_model, swa_start)] n_epoch = int(sum_geom(cycle_len if cycle_len else 1, cycle_mult, n_cycle)) return fit(model, data, n_epoch, layer_opt.opt, self.crit, metrics=metrics, callbacks=callbacks, reg_fn=self.reg_fn, clip=self.clip, fp16=self.fp16, swa_model=self.swa_model if use_swa else None, swa_start=swa_start, swa_eval_freq=swa_eval_freq, **kwargs)
Method returns an instance of the LayerOptimizer class, which allows for setting differential learning rates for different parts of the model. An example of how a model maybe differentiated into different parts for application of differential learning rates and weight decays is seen in ../.../courses/dl1/fastai/conv_learner.py, using the dict 'model_meta'. Currently, this seems supported only for convolutional networks such as VGG-19, ResNet-XX etc. Args: lrs (float or list(float)): learning rate(s) for the model wds (float or list(float)): weight decay parameter(s). Returns: An instance of a LayerOptimizer
def get_layer_opt(self, lrs, wds): """Method returns an instance of the LayerOptimizer class, which allows for setting differential learning rates for different parts of the model. An example of how a model maybe differentiated into different parts for application of differential learning rates and weight decays is seen in ../.../courses/dl1/fastai/conv_learner.py, using the dict 'model_meta'. Currently, this seems supported only for convolutional networks such as VGG-19, ResNet-XX etc. Args: lrs (float or list(float)): learning rate(s) for the model wds (float or list(float)): weight decay parameter(s). Returns: An instance of a LayerOptimizer """ return LayerOptimizer(self.opt_fn, self.get_layer_groups(), lrs, wds)
Method gets an instance of LayerOptimizer and delegates to self.fit_gen(..) Note that one can specify a list of learning rates which, when appropriately defined, will be applied to different segments of an architecture. This seems mostly relevant to ImageNet-trained models, where we want to alter the layers closest to the images by much smaller amounts. Likewise, a single or list of weight decay parameters can be specified, which if appropriate for a model, will apply variable weight decay parameters to different segments of the model. Args: lrs (float or list(float)): learning rate for the model n_cycle (int): number of cycles (or iterations) to fit the model for wds (float or list(float)): weight decay parameter(s). kwargs: other arguments Returns: None
def fit(self, lrs, n_cycle, wds=None, **kwargs): """Method gets an instance of LayerOptimizer and delegates to self.fit_gen(..) Note that one can specify a list of learning rates which, when appropriately defined, will be applied to different segments of an architecture. This seems mostly relevant to ImageNet-trained models, where we want to alter the layers closest to the images by much smaller amounts. Likewise, a single or list of weight decay parameters can be specified, which if appropriate for a model, will apply variable weight decay parameters to different segments of the model. Args: lrs (float or list(float)): learning rate for the model n_cycle (int): number of cycles (or iterations) to fit the model for wds (float or list(float)): weight decay parameter(s). kwargs: other arguments Returns: None """ self.sched = None layer_opt = self.get_layer_opt(lrs, wds) return self.fit_gen(self.model, self.data, layer_opt, n_cycle, **kwargs)
Helps you find an optimal learning rate for a model. It uses the technique developed in the 2015 paper `Cyclical Learning Rates for Training Neural Networks`, where we simply keep increasing the learning rate from a very small value, until the loss starts decreasing. Args: start_lr (float/numpy array) : Passing in a numpy array allows you to specify learning rates for a learner's layer_groups end_lr (float) : The maximum learning rate to try. wds (iterable/float) Examples: As training moves us closer to the optimal weights for a model, the optimal learning rate will be smaller. We can take advantage of that knowledge and provide lr_find() with a starting learning rate 1000x smaller than the model's current learning rate as such: >> learn.lr_find(lr/1000) >> lrs = np.array([ 1e-4, 1e-3, 1e-2 ]) >> learn.lr_find(lrs / 1000) Notes: lr_find() may finish before going through each batch of examples if the loss decreases enough. .. _Cyclical Learning Rates for Training Neural Networks: http://arxiv.org/abs/1506.01186
def lr_find(self, start_lr=1e-5, end_lr=10, wds=None, linear=False, **kwargs): """Helps you find an optimal learning rate for a model. It uses the technique developed in the 2015 paper `Cyclical Learning Rates for Training Neural Networks`, where we simply keep increasing the learning rate from a very small value, until the loss starts decreasing. Args: start_lr (float/numpy array) : Passing in a numpy array allows you to specify learning rates for a learner's layer_groups end_lr (float) : The maximum learning rate to try. wds (iterable/float) Examples: As training moves us closer to the optimal weights for a model, the optimal learning rate will be smaller. We can take advantage of that knowledge and provide lr_find() with a starting learning rate 1000x smaller than the model's current learning rate as such: >> learn.lr_find(lr/1000) >> lrs = np.array([ 1e-4, 1e-3, 1e-2 ]) >> learn.lr_find(lrs / 1000) Notes: lr_find() may finish before going through each batch of examples if the loss decreases enough. .. _Cyclical Learning Rates for Training Neural Networks: http://arxiv.org/abs/1506.01186 """ self.save('tmp') layer_opt = self.get_layer_opt(start_lr, wds) self.sched = LR_Finder(layer_opt, len(self.data.trn_dl), end_lr, linear=linear) self.fit_gen(self.model, self.data, layer_opt, 1, **kwargs) self.load('tmp')
A variant of lr_find() that helps find the best learning rate. It doesn't do an epoch but a fixed num of iterations (which may be more or less than an epoch depending on your data). At each step, it computes the validation loss and the metrics on the next batch of the validation data, so it's slower than lr_find(). Args: start_lr (float/numpy array) : Passing in a numpy array allows you to specify learning rates for a learner's layer_groups end_lr (float) : The maximum learning rate to try. num_it : the number of iterations you want it to run wds (iterable/float) stop_dv : stops (or not) when the losses starts to explode.
def lr_find2(self, start_lr=1e-5, end_lr=10, num_it = 100, wds=None, linear=False, stop_dv=True, **kwargs): """A variant of lr_find() that helps find the best learning rate. It doesn't do an epoch but a fixed num of iterations (which may be more or less than an epoch depending on your data). At each step, it computes the validation loss and the metrics on the next batch of the validation data, so it's slower than lr_find(). Args: start_lr (float/numpy array) : Passing in a numpy array allows you to specify learning rates for a learner's layer_groups end_lr (float) : The maximum learning rate to try. num_it : the number of iterations you want it to run wds (iterable/float) stop_dv : stops (or not) when the losses starts to explode. """ self.save('tmp') layer_opt = self.get_layer_opt(start_lr, wds) self.sched = LR_Finder2(layer_opt, num_it, end_lr, linear=linear, metrics=self.metrics, stop_dv=stop_dv) self.fit_gen(self.model, self.data, layer_opt, num_it//len(self.data.trn_dl) + 1, all_val=True, **kwargs) self.load('tmp')
Args: arr: a numpy array to be used as input to the model for prediction purposes Returns: a numpy array containing the predictions from the model
def predict_array(self, arr): """ Args: arr: a numpy array to be used as input to the model for prediction purposes Returns: a numpy array containing the predictions from the model """ if not isinstance(arr, np.ndarray): raise OSError(f'Not valid numpy array') self.model.eval() return to_np(self.model(to_gpu(V(T(arr)))))
Predict with Test Time Augmentation (TTA) Additional to the original test/validation images, apply image augmentation to them (just like for training images) and calculate the mean of predictions. The intent is to increase the accuracy of predictions by examining the images using multiple perspectives. n_aug: a number of augmentation images to use per original image is_test: indicate to use test images; otherwise use validation images Returns: (tuple): a tuple containing: log predictions (numpy.ndarray): log predictions (i.e. `np.exp(log_preds)` will return probabilities) targs (numpy.ndarray): target values when `is_test==False`; zeros otherwise.
def TTA(self, n_aug=4, is_test=False): """ Predict with Test Time Augmentation (TTA) Additional to the original test/validation images, apply image augmentation to them (just like for training images) and calculate the mean of predictions. The intent is to increase the accuracy of predictions by examining the images using multiple perspectives. n_aug: a number of augmentation images to use per original image is_test: indicate to use test images; otherwise use validation images Returns: (tuple): a tuple containing: log predictions (numpy.ndarray): log predictions (i.e. `np.exp(log_preds)` will return probabilities) targs (numpy.ndarray): target values when `is_test==False`; zeros otherwise. """ dl1 = self.data.test_dl if is_test else self.data.val_dl dl2 = self.data.test_aug_dl if is_test else self.data.aug_dl preds1,targs = predict_with_targs(self.model, dl1) preds1 = [preds1]*math.ceil(n_aug/4) preds2 = [predict_with_targs(self.model, dl2)[0] for i in tqdm(range(n_aug), leave=False)] return np.stack(preds1+preds2), targs
Wraps us the content of phases to send them to model.fit(..) This will split the training in several parts, each with their own learning rates/ wds/momentums/optimizer detailed in phases. Additionaly we can add a list of different data objets in data_list to train on different datasets (to change the size for instance) for each of these groups. Args: phases: a list of TrainingPhase objects stop_div: when True, stops the training if the loss goes too high data_list: a list of different Data objects. kwargs: other arguments use_swa (bool, optional): when this is set to True, it will enable the use of Stochastic Weight Averaging (https://arxiv.org/abs/1803.05407). The learner will include an additional model (in the swa_model attribute) for keeping track of the average weights as described in the paper. All testing of this technique so far has been in image classification, so use in other contexts is not guaranteed to work. swa_start (int, optional): if use_swa is set to True, then this determines the epoch to start keeping track of the average weights. It is 1-indexed per the paper's conventions. swa_eval_freq (int, optional): if use_swa is set to True, this determines the frequency at which to evaluate the performance of the swa_model. This evaluation can be costly for models using BatchNorm (requiring a full pass through the data), which is why the default is not to evaluate after each epoch. Returns: None
def fit_opt_sched(self, phases, cycle_save_name=None, best_save_name=None, stop_div=False, data_list=None, callbacks=None, cut = None, use_swa=False, swa_start=1, swa_eval_freq=5, **kwargs): """Wraps us the content of phases to send them to model.fit(..) This will split the training in several parts, each with their own learning rates/ wds/momentums/optimizer detailed in phases. Additionaly we can add a list of different data objets in data_list to train on different datasets (to change the size for instance) for each of these groups. Args: phases: a list of TrainingPhase objects stop_div: when True, stops the training if the loss goes too high data_list: a list of different Data objects. kwargs: other arguments use_swa (bool, optional): when this is set to True, it will enable the use of Stochastic Weight Averaging (https://arxiv.org/abs/1803.05407). The learner will include an additional model (in the swa_model attribute) for keeping track of the average weights as described in the paper. All testing of this technique so far has been in image classification, so use in other contexts is not guaranteed to work. swa_start (int, optional): if use_swa is set to True, then this determines the epoch to start keeping track of the average weights. It is 1-indexed per the paper's conventions. swa_eval_freq (int, optional): if use_swa is set to True, this determines the frequency at which to evaluate the performance of the swa_model. This evaluation can be costly for models using BatchNorm (requiring a full pass through the data), which is why the default is not to evaluate after each epoch. Returns: None """ if data_list is None: data_list=[] if callbacks is None: callbacks=[] layer_opt = LayerOptimizer(phases[0].opt_fn, self.get_layer_groups(), 1e-2, phases[0].wds) if len(data_list) == 0: nb_batches = [len(self.data.trn_dl)] * len(phases) else: nb_batches = [len(data.trn_dl) for data in data_list] self.sched = OptimScheduler(layer_opt, phases, nb_batches, stop_div) callbacks.append(self.sched) metrics = self.metrics if best_save_name is not None: callbacks+=[SaveBestModel(self, layer_opt, metrics, best_save_name)] if use_swa: # make a copy of the model to track average weights self.swa_model = copy.deepcopy(self.model) callbacks+=[SWA(self.model, self.swa_model, swa_start)] n_epochs = [phase.epochs for phase in phases] if cut is None else cut if len(data_list)==0: data_list = [self.data] return fit(self.model, data_list, n_epochs,layer_opt, self.crit, metrics=metrics, callbacks=callbacks, reg_fn=self.reg_fn, clip=self.clip, fp16=self.fp16, swa_model=self.swa_model if use_swa else None, swa_start=swa_start, swa_eval_freq=swa_eval_freq, **kwargs)
Save the extra outputs for later and only returns the true output.
def on_loss_begin(self, last_output:Tuple[Tensor,Tensor,Tensor], **kwargs): "Save the extra outputs for later and only returns the true output." self.raw_out,self.out = last_output[1],last_output[2] return {'last_output': last_output[0]}
Apply AR and TAR to `last_loss`.
def on_backward_begin(self, last_loss:Rank0Tensor, last_input:Tensor, **kwargs): "Apply AR and TAR to `last_loss`." #AR and TAR if self.alpha != 0.: last_loss += self.alpha * self.out[-1].float().pow(2).mean() if self.beta != 0.: h = self.raw_out[-1] if len(h)>1: last_loss += self.beta * (h[:,1:] - h[:,:-1]).float().pow(2).mean() return {'last_loss': last_loss}
Convert the model `wgts` to go with a new vocabulary.
def convert_weights(wgts:Weights, stoi_wgts:Dict[str,int], itos_new:Collection[str]) -> Weights: "Convert the model `wgts` to go with a new vocabulary." dec_bias, enc_wgts = wgts.get('1.decoder.bias', None), wgts['0.encoder.weight'] wgts_m = enc_wgts.mean(0) if dec_bias is not None: bias_m = dec_bias.mean(0) new_w = enc_wgts.new_zeros((len(itos_new),enc_wgts.size(1))).zero_() if dec_bias is not None: new_b = dec_bias.new_zeros((len(itos_new),)).zero_() for i,w in enumerate(itos_new): r = stoi_wgts[w] if w in stoi_wgts else -1 new_w[i] = enc_wgts[r] if r>=0 else wgts_m if dec_bias is not None: new_b[i] = dec_bias[r] if r>=0 else bias_m wgts['0.encoder.weight'] = new_w if '0.encoder_dp.emb.weight' in wgts: wgts['0.encoder_dp.emb.weight'] = new_w.clone() wgts['1.decoder.weight'] = new_w.clone() if dec_bias is not None: wgts['1.decoder.bias'] = new_b return wgts
Create a language model from `arch` and its `config`, maybe `pretrained`.
def get_language_model(arch:Callable, vocab_sz:int, config:dict=None, drop_mult:float=1.): "Create a language model from `arch` and its `config`, maybe `pretrained`." meta = _model_meta[arch] config = ifnone(config, meta['config_lm'].copy()) for k in config.keys(): if k.endswith('_p'): config[k] *= drop_mult tie_weights,output_p,out_bias = map(config.pop, ['tie_weights', 'output_p', 'out_bias']) init = config.pop('init') if 'init' in config else None encoder = arch(vocab_sz, **config) enc = encoder.encoder if tie_weights else None decoder = LinearDecoder(vocab_sz, config[meta['hid_name']], output_p, tie_encoder=enc, bias=out_bias) model = SequentialRNN(encoder, decoder) return model if init is None else model.apply(init)
Create a `Learner` with a language model from `data` and `arch`.
def language_model_learner(data:DataBunch, arch, config:dict=None, drop_mult:float=1., pretrained:bool=True, pretrained_fnames:OptStrTuple=None, **learn_kwargs) -> 'LanguageLearner': "Create a `Learner` with a language model from `data` and `arch`." model = get_language_model(arch, len(data.vocab.itos), config=config, drop_mult=drop_mult) meta = _model_meta[arch] learn = LanguageLearner(data, model, split_func=meta['split_lm'], **learn_kwargs) if pretrained: if 'url' not in meta: warn("There are no pretrained weights for that architecture yet!") return learn model_path = untar_data(meta['url'], data=False) fnames = [list(model_path.glob(f'*.{ext}'))[0] for ext in ['pth', 'pkl']] learn.load_pretrained(*fnames) learn.freeze() if pretrained_fnames is not None: fnames = [learn.path/learn.model_dir/f'{fn}.{ext}' for fn,ext in zip(pretrained_fnames, ['pth', 'pkl'])] learn.load_pretrained(*fnames) learn.freeze() return learn
Create a text classifier from `arch` and its `config`, maybe `pretrained`.
def get_text_classifier(arch:Callable, vocab_sz:int, n_class:int, bptt:int=70, max_len:int=20*70, config:dict=None, drop_mult:float=1., lin_ftrs:Collection[int]=None, ps:Collection[float]=None, pad_idx:int=1) -> nn.Module: "Create a text classifier from `arch` and its `config`, maybe `pretrained`." meta = _model_meta[arch] config = ifnone(config, meta['config_clas'].copy()) for k in config.keys(): if k.endswith('_p'): config[k] *= drop_mult if lin_ftrs is None: lin_ftrs = [50] if ps is None: ps = [0.1]*len(lin_ftrs) layers = [config[meta['hid_name']] * 3] + lin_ftrs + [n_class] ps = [config.pop('output_p')] + ps init = config.pop('init') if 'init' in config else None encoder = MultiBatchEncoder(bptt, max_len, arch(vocab_sz, **config), pad_idx=pad_idx) model = SequentialRNN(encoder, PoolingLinearClassifier(layers, ps)) return model if init is None else model.apply(init)
Create a `Learner` with a text classifier from `data` and `arch`.
def text_classifier_learner(data:DataBunch, arch:Callable, bptt:int=70, max_len:int=70*20, config:dict=None, pretrained:bool=True, drop_mult:float=1., lin_ftrs:Collection[int]=None, ps:Collection[float]=None, **learn_kwargs) -> 'TextClassifierLearner': "Create a `Learner` with a text classifier from `data` and `arch`." model = get_text_classifier(arch, len(data.vocab.itos), data.c, bptt=bptt, max_len=max_len, config=config, drop_mult=drop_mult, lin_ftrs=lin_ftrs, ps=ps) meta = _model_meta[arch] learn = RNNLearner(data, model, split_func=meta['split_clas'], **learn_kwargs) if pretrained: if 'url' not in meta: warn("There are no pretrained weights for that architecture yet!") return learn model_path = untar_data(meta['url'], data=False) fnames = [list(model_path.glob(f'*.{ext}'))[0] for ext in ['pth', 'pkl']] learn.load_pretrained(*fnames, strict=False) learn.freeze() return learn
Save the encoder to `name` inside the model directory.
def save_encoder(self, name:str): "Save the encoder to `name` inside the model directory." encoder = get_model(self.model)[0] if hasattr(encoder, 'module'): encoder = encoder.module torch.save(encoder.state_dict(), self.path/self.model_dir/f'{name}.pth')
Load the encoder `name` from the model directory.
def load_encoder(self, name:str, device:torch.device=None): "Load the encoder `name` from the model directory." encoder = get_model(self.model)[0] if device is None: device = self.data.device if hasattr(encoder, 'module'): encoder = encoder.module encoder.load_state_dict(torch.load(self.path/self.model_dir/f'{name}.pth')) encoder.load_state_dict(torch.load(self.path/self.model_dir/f'{name}.pth', map_location=device)) self.freeze()
Load a pretrained model and adapts it to the data vocabulary.
def load_pretrained(self, wgts_fname:str, itos_fname:str, strict:bool=True): "Load a pretrained model and adapts it to the data vocabulary." old_itos = pickle.load(open(itos_fname, 'rb')) old_stoi = {v:k for k,v in enumerate(old_itos)} wgts = torch.load(wgts_fname, map_location=lambda storage, loc: storage) if 'model' in wgts: wgts = wgts['model'] wgts = convert_weights(wgts, old_stoi, self.data.train_ds.vocab.itos) self.model.load_state_dict(wgts, strict=strict)
Return predictions and targets on the valid, train, or test set, depending on `ds_type`.
def get_preds(self, ds_type:DatasetType=DatasetType.Valid, with_loss:bool=False, n_batch:Optional[int]=None, pbar:Optional[PBar]=None, ordered:bool=False) -> List[Tensor]: "Return predictions and targets on the valid, train, or test set, depending on `ds_type`." self.model.reset() if ordered: np.random.seed(42) preds = super().get_preds(ds_type=ds_type, with_loss=with_loss, n_batch=n_batch, pbar=pbar) if ordered and hasattr(self.dl(ds_type), 'sampler'): np.random.seed(42) sampler = [i for i in self.dl(ds_type).sampler] reverse_sampler = np.argsort(sampler) preds = [p[reverse_sampler] for p in preds] return(preds)
Return the `n_words` that come after `text`.
def predict(self, text:str, n_words:int=1, no_unk:bool=True, temperature:float=1., min_p:float=None, sep:str=' ', decoder=decode_spec_tokens): "Return the `n_words` that come after `text`." ds = self.data.single_dl.dataset self.model.reset() xb,yb = self.data.one_item(text) new_idx = [] for _ in range(n_words): #progress_bar(range(n_words), leave=False): res = self.pred_batch(batch=(xb,yb))[0][-1] #if len(new_idx) == 0: self.model[0].select_hidden([0]) if no_unk: res[self.data.vocab.stoi[UNK]] = 0. if min_p is not None: if (res >= min_p).float().sum() == 0: warn(f"There is no item with probability >= {min_p}, try a lower value.") else: res[res < min_p] = 0. if temperature != 1.: res.pow_(1 / temperature) idx = torch.multinomial(res, 1).item() new_idx.append(idx) xb = xb.new_tensor([idx])[None] return text + sep + sep.join(decoder(self.data.vocab.textify(new_idx, sep=None)))
Return the `n_words` that come after `text` using beam search.
def beam_search(self, text:str, n_words:int, no_unk:bool=True, top_k:int=10, beam_sz:int=1000, temperature:float=1., sep:str=' ', decoder=decode_spec_tokens): "Return the `n_words` that come after `text` using beam search." ds = self.data.single_dl.dataset self.model.reset() xb, yb = self.data.one_item(text) nodes = None xb = xb.repeat(top_k, 1) nodes = xb.clone() scores = xb.new_zeros(1).float() with torch.no_grad(): for k in progress_bar(range(n_words), leave=False): out = F.log_softmax(self.model(xb)[0][:,-1], dim=-1) if no_unk: out[:,self.data.vocab.stoi[UNK]] = -float('Inf') values, indices = out.topk(top_k, dim=-1) scores = (-values + scores[:,None]).view(-1) indices_idx = torch.arange(0,nodes.size(0))[:,None].expand(nodes.size(0), top_k).contiguous().view(-1) sort_idx = scores.argsort()[:beam_sz] scores = scores[sort_idx] nodes = torch.cat([nodes[:,None].expand(nodes.size(0),top_k,nodes.size(1)), indices[:,:,None].expand(nodes.size(0),top_k,1),], dim=2) nodes = nodes.view(-1, nodes.size(2))[sort_idx] self.model[0].select_hidden(indices_idx[sort_idx]) xb = nodes[:,-1][:,None] if temperature != 1.: scores.div_(temperature) node_idx = torch.multinomial(torch.exp(-scores), 1).item() return text + sep + sep.join(decoder(self.data.vocab.textify([i.item() for i in nodes[node_idx][1:] ], sep=None)))
Show `rows` result of predictions on `ds_type` dataset.
def show_results(self, ds_type=DatasetType.Valid, rows:int=5, max_len:int=20): from IPython.display import display, HTML "Show `rows` result of predictions on `ds_type` dataset." ds = self.dl(ds_type).dataset x,y = self.data.one_batch(ds_type, detach=False, denorm=False) preds = self.pred_batch(batch=(x,y)) y = y.view(*x.size()) z = preds.view(*x.size(),-1).argmax(dim=2) xs = [ds.x.reconstruct(grab_idx(x, i)) for i in range(rows)] ys = [ds.x.reconstruct(grab_idx(y, i)) for i in range(rows)] zs = [ds.x.reconstruct(grab_idx(z, i)) for i in range(rows)] items,names = [],['text', 'target', 'pred'] for i, (x,y,z) in enumerate(zip(xs,ys,zs)): txt_x = ' '.join(x.text.split(' ')[:max_len]) txt_y = ' '.join(y.text.split(' ')[max_len-1:2*max_len-1]) txt_z = ' '.join(z.text.split(' ')[max_len-1:2*max_len-1]) items.append([txt_x, txt_y, txt_z]) items = np.array(items) df = pd.DataFrame({n:items[:,i] for i,n in enumerate(names)}, columns=names) with pd.option_context('display.max_colwidth', -1): display(HTML(df.to_html(index=False)))
Concatenate the `arrs` along the batch dimension.
def concat(self, arrs:Collection[Tensor])->Tensor: "Concatenate the `arrs` along the batch dimension." return [torch.cat([l[si] for l in arrs], dim=1) for si in range_of(arrs[0])]
A batchnorm2d layer with `nf` features initialized depending on `norm_type`.
def batchnorm_2d(nf:int, norm_type:NormType=NormType.Batch): "A batchnorm2d layer with `nf` features initialized depending on `norm_type`." bn = nn.BatchNorm2d(nf) with torch.no_grad(): bn.bias.fill_(1e-3) bn.weight.fill_(0. if norm_type==NormType.BatchZero else 1.) return bn
Sequence of batchnorm (if `bn`), dropout (with `p`) and linear (`n_in`,`n_out`) layers followed by `actn`.
def bn_drop_lin(n_in:int, n_out:int, bn:bool=True, p:float=0., actn:Optional[nn.Module]=None): "Sequence of batchnorm (if `bn`), dropout (with `p`) and linear (`n_in`,`n_out`) layers followed by `actn`." layers = [nn.BatchNorm1d(n_in)] if bn else [] if p != 0: layers.append(nn.Dropout(p)) layers.append(nn.Linear(n_in, n_out)) if actn is not None: layers.append(actn) return layers
Create and initialize a `nn.Conv1d` layer with spectral normalization.
def conv1d(ni:int, no:int, ks:int=1, stride:int=1, padding:int=0, bias:bool=False): "Create and initialize a `nn.Conv1d` layer with spectral normalization." conv = nn.Conv1d(ni, no, ks, stride=stride, padding=padding, bias=bias) nn.init.kaiming_normal_(conv.weight) if bias: conv.bias.data.zero_() return spectral_norm(conv)
Create and initialize `nn.Conv2d` layer. `padding` defaults to `ks//2`.
def conv2d(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias=False, init:LayerFunc=nn.init.kaiming_normal_) -> nn.Conv2d: "Create and initialize `nn.Conv2d` layer. `padding` defaults to `ks//2`." if padding is None: padding = ks//2 return init_default(nn.Conv2d(ni, nf, kernel_size=ks, stride=stride, padding=padding, bias=bias), init)
Create `nn.ConvTranspose2d` layer.
def conv2d_trans(ni:int, nf:int, ks:int=2, stride:int=2, padding:int=0, bias=False) -> nn.ConvTranspose2d: "Create `nn.ConvTranspose2d` layer." return nn.ConvTranspose2d(ni, nf, kernel_size=ks, stride=stride, padding=padding, bias=bias)
Return a relu activation, maybe `leaky` and `inplace`.
def relu(inplace:bool=False, leaky:float=None): "Return a relu activation, maybe `leaky` and `inplace`." return nn.LeakyReLU(inplace=inplace, negative_slope=leaky) if leaky is not None else nn.ReLU(inplace=inplace)
Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and batchnorm (if `bn`) layers.
def conv_layer(ni:int, nf:int, ks:int=3, stride:int=1, padding:int=None, bias:bool=None, is_1d:bool=False, norm_type:Optional[NormType]=NormType.Batch, use_activ:bool=True, leaky:float=None, transpose:bool=False, init:Callable=nn.init.kaiming_normal_, self_attention:bool=False): "Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and batchnorm (if `bn`) layers." if padding is None: padding = (ks-1)//2 if not transpose else 0 bn = norm_type in (NormType.Batch, NormType.BatchZero) if bias is None: bias = not bn conv_func = nn.ConvTranspose2d if transpose else nn.Conv1d if is_1d else nn.Conv2d conv = init_default(conv_func(ni, nf, kernel_size=ks, bias=bias, stride=stride, padding=padding), init) if norm_type==NormType.Weight: conv = weight_norm(conv) elif norm_type==NormType.Spectral: conv = spectral_norm(conv) layers = [conv] if use_activ: layers.append(relu(True, leaky=leaky)) if bn: layers.append((nn.BatchNorm1d if is_1d else nn.BatchNorm2d)(nf)) if self_attention: layers.append(SelfAttention(nf)) return nn.Sequential(*layers)
Resnet block of `nf` features. `conv_kwargs` are passed to `conv_layer`.
def res_block(nf, dense:bool=False, norm_type:Optional[NormType]=NormType.Batch, bottle:bool=False, **conv_kwargs): "Resnet block of `nf` features. `conv_kwargs` are passed to `conv_layer`." norm2 = norm_type if not dense and (norm_type==NormType.Batch): norm2 = NormType.BatchZero nf_inner = nf//2 if bottle else nf return SequentialEx(conv_layer(nf, nf_inner, norm_type=norm_type, **conv_kwargs), conv_layer(nf_inner, nf, norm_type=norm2, **conv_kwargs), MergeLayer(dense))
Sigmoid function with range `(low, high)`
def sigmoid_range(x, low, high): "Sigmoid function with range `(low, high)`" return torch.sigmoid(x) * (high - low) + low
ICNR init of `x`, with `scale` and `init` function.
def icnr(x, scale=2, init=nn.init.kaiming_normal_): "ICNR init of `x`, with `scale` and `init` function." ni,nf,h,w = x.shape ni2 = int(ni/(scale**2)) k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1) k = k.contiguous().view(ni2, nf, -1) k = k.repeat(1, 1, scale**2) k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1) x.data.copy_(k)
Same as `nn.CrossEntropyLoss`, but flattens input and target.
def CrossEntropyFlat(*args, axis:int=-1, **kwargs): "Same as `nn.CrossEntropyLoss`, but flattens input and target." return FlattenedLoss(nn.CrossEntropyLoss, *args, axis=axis, **kwargs)
Same as `nn.BCEWithLogitsLoss`, but flattens input and target.
def BCEWithLogitsFlat(*args, axis:int=-1, floatify:bool=True, **kwargs): "Same as `nn.BCEWithLogitsLoss`, but flattens input and target." return FlattenedLoss(nn.BCEWithLogitsLoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
Same as `nn.BCELoss`, but flattens input and target.
def BCEFlat(*args, axis:int=-1, floatify:bool=True, **kwargs): "Same as `nn.BCELoss`, but flattens input and target." return FlattenedLoss(nn.BCELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
Same as `nn.MSELoss`, but flattens input and target.
def MSELossFlat(*args, axis:int=-1, floatify:bool=True, **kwargs): "Same as `nn.MSELoss`, but flattens input and target." return FlattenedLoss(nn.MSELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs)
CNN with `conv_layer` defined by `actns`, `kernel_szs` and `strides`, plus batchnorm if `bn`.
def simple_cnn(actns:Collection[int], kernel_szs:Collection[int]=None, strides:Collection[int]=None, bn=False) -> nn.Sequential: "CNN with `conv_layer` defined by `actns`, `kernel_szs` and `strides`, plus batchnorm if `bn`." nl = len(actns)-1 kernel_szs = ifnone(kernel_szs, [3]*nl) strides = ifnone(strides , [2]*nl) layers = [conv_layer(actns[i], actns[i+1], kernel_szs[i], stride=strides[i], norm_type=(NormType.Batch if bn and i<(len(strides)-1) else None)) for i in range_of(strides)] layers.append(PoolFlatten()) return nn.Sequential(*layers)
Truncated normal initialization.
def trunc_normal_(x:Tensor, mean:float=0., std:float=1.) -> Tensor: "Truncated normal initialization." # From https://discuss.pytorch.org/t/implementing-truncated-normal-initializer/4778/12 return x.normal_().fmod_(2).mul_(std).add_(mean)
Create an embedding layer.
def embedding(ni:int,nf:int) -> nn.Module: "Create an embedding layer." emb = nn.Embedding(ni, nf) # See https://arxiv.org/abs/1711.09160 with torch.no_grad(): trunc_normal_(emb.weight, std=0.01) return emb
Prepare MLflow experiment and log params
def on_train_begin(self, **kwargs: Any) -> None: "Prepare MLflow experiment and log params" self.client = mlflow.tracking.MlflowClient(self.uri) exp = self.client.get_experiment_by_name(self.exp_name) self.exp_id = self.client.create_experiment(self.exp_name) if exp is None else exp.experiment_id run = self.client.create_run(experiment_id=self.exp_id) self.run = run.info.run_uuid for k,v in self.params.items(): self.client.log_param(run_id=self.run, key=k, value=v)
Send loss and metrics values to MLFlow after each epoch
def on_epoch_end(self, epoch, **kwargs:Any)->None: "Send loss and metrics values to MLFlow after each epoch" if kwargs['smooth_loss'] is None or kwargs["last_metrics"] is None: return metrics = [kwargs['smooth_loss']] + kwargs["last_metrics"] for name, val in zip(self.metrics_names, metrics): self.client.log_metric(self.run, name, np.float(val))
Store the notebook and stop run
def on_train_end(self, **kwargs: Any) -> None: "Store the notebook and stop run" self.client.log_artifact(run_id=self.run, local_path=self.nb_path) self.client.set_terminated(run_id=self.run)
Convert PIL style `image` array to torch style image tensor.
def pil2tensor(image:Union[NPImage,NPArray],dtype:np.dtype)->TensorImage: "Convert PIL style `image` array to torch style image tensor." a = np.asarray(image) if a.ndim==2 : a = np.expand_dims(a,2) a = np.transpose(a, (1, 0, 2)) a = np.transpose(a, (2, 1, 0)) return torch.from_numpy(a.astype(dtype, copy=False) )
Convert from torch style `image` to numpy/matplotlib style.
def image2np(image:Tensor)->np.ndarray: "Convert from torch style `image` to numpy/matplotlib style." res = image.cpu().permute(1,2,0).numpy() return res[...,0] if res.shape[2]==1 else res
Convert bounding box points from (width,height,center) to (height,width,top,left).
def bb2hw(a:Collection[int])->np.ndarray: "Convert bounding box points from (width,height,center) to (height,width,top,left)." return np.array([a[1],a[0],a[3]-a[1],a[2]-a[0]])
Convert `int` or `TensorImageSize` to (height,width) of an image.
def tis2hw(size:Union[int,TensorImageSize]) -> Tuple[int,int]: "Convert `int` or `TensorImageSize` to (height,width) of an image." if type(size) is str: raise RuntimeError("Expected size to be an int or a tuple, got a string.") return listify(size, 2) if isinstance(size, int) else listify(size[-2:],2)
Outline bounding box onto image `Patch`.
def _draw_outline(o:Patch, lw:int): "Outline bounding box onto image `Patch`." o.set_path_effects([patheffects.Stroke( linewidth=lw, foreground='black'), patheffects.Normal()])
Draw bounding box on `ax`.
def _draw_rect(ax:plt.Axes, b:Collection[int], color:str='white', text=None, text_size=14): "Draw bounding box on `ax`." patch = ax.add_patch(patches.Rectangle(b[:2], *b[-2:], fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(*b[:2], text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1)
Return `Image` object created from image in file `fn`.
def open_image(fn:PathOrStr, div:bool=True, convert_mode:str='RGB', cls:type=Image, after_open:Callable=None)->Image: "Return `Image` object created from image in file `fn`." with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) # EXIF warning from TiffPlugin x = PIL.Image.open(fn).convert(convert_mode) if after_open: x = after_open(x) x = pil2tensor(x,np.float32) if div: x.div_(255) return cls(x)
Return `ImageSegment` object create from mask in file `fn`. If `div`, divides pixel values by 255.
def open_mask(fn:PathOrStr, div=False, convert_mode='L', after_open:Callable=None)->ImageSegment: "Return `ImageSegment` object create from mask in file `fn`. If `div`, divides pixel values by 255." return open_image(fn, div=div, convert_mode=convert_mode, cls=ImageSegment, after_open=after_open)
Return `ImageSegment` object create from run-length encoded string in `mask_lre` with size in `shape`.
def open_mask_rle(mask_rle:str, shape:Tuple[int, int])->ImageSegment: "Return `ImageSegment` object create from run-length encoded string in `mask_lre` with size in `shape`." x = FloatTensor(rle_decode(str(mask_rle), shape).astype(np.uint8)) x = x.view(shape[1], shape[0], -1) return ImageSegment(x.permute(2,0,1))
Return run-length encoding string from `img`.
def rle_encode(img:NPArrayMask)->str: "Return run-length encoding string from `img`." pixels = np.concatenate([[0], img.flatten() , [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x) for x in runs)
Return an image array from run-length encoded string `mask_rle` with `shape`.
def rle_decode(mask_rle:str, shape:Tuple[int,int])->NPArrayMask: "Return an image array from run-length encoded string `mask_rle` with `shape`." s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0]*shape[1], dtype=np.uint) for low, up in zip(starts, ends): img[low:up] = 1 return img.reshape(shape)
Display `Image` in notebook.
def show_image(img:Image, ax:plt.Axes=None, figsize:tuple=(3,3), hide_axis:bool=True, cmap:str='binary', alpha:float=None, **kwargs)->plt.Axes: "Display `Image` in notebook." if ax is None: fig,ax = plt.subplots(figsize=figsize) ax.imshow(image2np(img.data), cmap=cmap, alpha=alpha, **kwargs) if hide_axis: ax.axis('off') return ax
Scale the coords in `flow` to -1/1 or the image size depending on `to_unit`.
def scale_flow(flow, to_unit=True): "Scale the coords in `flow` to -1/1 or the image size depending on `to_unit`." s = tensor([flow.size[0]/2,flow.size[1]/2])[None] if to_unit: flow.flow = flow.flow/s-1 else: flow.flow = (flow.flow+1)*s return flow
Resample pixels in `coords` from `x` by `mode`, with `padding_mode` in ('reflection','border','zeros').
def _grid_sample(x:TensorImage, coords:FlowField, mode:str='bilinear', padding_mode:str='reflection', remove_out:bool=True)->TensorImage: "Resample pixels in `coords` from `x` by `mode`, with `padding_mode` in ('reflection','border','zeros')." coords = coords.flow.permute(0, 3, 1, 2).contiguous().permute(0, 2, 3, 1) # optimize layout for grid_sample if mode=='bilinear': # hack to get smoother downwards resampling mn,mx = coords.min(),coords.max() # max amount we're affine zooming by (>1 means zooming in) z = 1/(mx-mn).item()*2 # amount we're resizing by, with 100% extra margin d = min(x.shape[1]/coords.shape[1], x.shape[2]/coords.shape[2])/2 # If we're resizing up by >200%, and we're zooming less than that, interpolate first if d>1 and d>z: x = F.interpolate(x[None], scale_factor=1/d, mode='area')[0] return F.grid_sample(x[None], coords, mode=mode, padding_mode=padding_mode)[0]
Multiply `c` by `m` - can adjust for rectangular shaped `c`.
def _affine_mult(c:FlowField,m:AffineMatrix)->FlowField: "Multiply `c` by `m` - can adjust for rectangular shaped `c`." if m is None: return c size = c.flow.size() h,w = c.size m[0,1] *= h/w m[1,0] *= w/h c.flow = c.flow.view(-1,2) c.flow = torch.addmm(m[:2,2], c.flow, m[:2,:2].t()).view(size) return c
Applies the inverse affine transform described in `m` to `c`.
def _affine_inv_mult(c, m): "Applies the inverse affine transform described in `m` to `c`." size = c.flow.size() h,w = c.size m[0,1] *= h/w m[1,0] *= w/h c.flow = c.flow.view(-1,2) a = torch.inverse(m[:2,:2].t()) c.flow = torch.mm(c.flow - m[:2,2], a).view(size) return c
Calc `x` to nearest multiple of `mult`.
def _round_multiple(x:int, mult:int=None)->int: "Calc `x` to nearest multiple of `mult`." return (int(x/mult+0.5)*mult) if mult is not None else x
Calc crop shape of `target_px` to nearest multiple of `mult`.
def _get_crop_target(target_px:Union[int,TensorImageSize], mult:int=None)->Tuple[int,int]: "Calc crop shape of `target_px` to nearest multiple of `mult`." target_r,target_c = tis2hw(target_px) return _round_multiple(target_r,mult),_round_multiple(target_c,mult)
Calc size of `img` to fit in `crop_target` - adjust based on `do_crop`.
def _get_resize_target(img, crop_target, do_crop=False)->TensorImageSize: "Calc size of `img` to fit in `crop_target` - adjust based on `do_crop`." if crop_target is None: return None ch,r,c = img.shape target_r,target_c = crop_target ratio = (min if do_crop else max)(r/target_r, c/target_c) return ch,int(round(r/ratio)),int(round(c/ratio))
Shortcut for `enumerate(subplots.flatten())`
def plot_flat(r, c, figsize): "Shortcut for `enumerate(subplots.flatten())`" return enumerate(plt.subplots(r, c, figsize=figsize)[1].flatten())
Call `func` for every combination of `r,c` on a subplot
def plot_multi(func:Callable[[int,int,plt.Axes],None], r:int=1, c:int=1, figsize:Tuple=(12,6)): "Call `func` for every combination of `r,c` on a subplot" axes = plt.subplots(r, c, figsize=figsize)[1] for i in range(r): for j in range(c): func(i,j,axes[i,j])
Call `func(i,j).show(ax)` for every combination of `r,c`
def show_multi(func:Callable[[int,int],Image], r:int=1, c:int=1, figsize:Tuple=(9,9)): "Call `func(i,j).show(ax)` for every combination of `r,c`" plot_multi(lambda i,j,ax: func(i,j).show(ax), r, c, figsize=figsize)
Show all `imgs` using `r` rows
def show_all(imgs:Collection[Image], r:int=1, c:Optional[int]=None, figsize=(12,6)): "Show all `imgs` using `r` rows" imgs = listify(imgs) if c is None: c = len(imgs)//r for i,ax in plot_flat(r,c,figsize): imgs[i].show(ax)
Apply all `tfms` to the `Image`, if `do_resolve` picks value for random args.
def apply_tfms(self, tfms:TfmList, do_resolve:bool=True, xtra:Optional[Dict[Callable,dict]]=None, size:Optional[Union[int,TensorImageSize]]=None, resize_method:ResizeMethod=None, mult:int=None, padding_mode:str='reflection', mode:str='bilinear', remove_out:bool=True)->TensorImage: "Apply all `tfms` to the `Image`, if `do_resolve` picks value for random args." if not (tfms or xtra or size): return self tfms = listify(tfms) xtra = ifnone(xtra, {}) default_rsz = ResizeMethod.SQUISH if (size is not None and is_listy(size)) else ResizeMethod.CROP resize_method = ifnone(resize_method, default_rsz) if resize_method <= 2 and size is not None: tfms = self._maybe_add_crop_pad(tfms) tfms = sorted(tfms, key=lambda o: o.tfm.order) if do_resolve: _resolve_tfms(tfms) x = self.clone() x.set_sample(padding_mode=padding_mode, mode=mode, remove_out=remove_out) if size is not None: crop_target = _get_crop_target(size, mult=mult) if resize_method in (ResizeMethod.CROP,ResizeMethod.PAD): target = _get_resize_target(x, crop_target, do_crop=(resize_method==ResizeMethod.CROP)) x.resize(target) elif resize_method==ResizeMethod.SQUISH: x.resize((x.shape[0],) + crop_target) else: size = x.size size_tfms = [o for o in tfms if isinstance(o.tfm,TfmCrop)] for tfm in tfms: if tfm.tfm in xtra: x = tfm(x, **xtra[tfm.tfm]) elif tfm in size_tfms: if resize_method in (ResizeMethod.CROP,ResizeMethod.PAD): x = tfm(x, size=_get_crop_target(size,mult=mult), padding_mode=padding_mode) else: x = tfm(x) return x.refresh()
Apply any logit, flow, or affine transfers that have been sent to the `Image`.
def refresh(self)->None: "Apply any logit, flow, or affine transfers that have been sent to the `Image`." if self._logit_px is not None: self._px = self._logit_px.sigmoid_() self._logit_px = None if self._affine_mat is not None or self._flow is not None: self._px = _grid_sample(self._px, self.flow, **self.sample_kwargs) self.sample_kwargs = {} self._flow = None return self
Save the image to `fn`.
def save(self, fn:PathOrStr): "Save the image to `fn`." x = image2np(self.data*255).astype(np.uint8) PIL.Image.fromarray(x).save(fn)
Access the flow-field grid after applying queued affine transforms.
def flow(self)->FlowField: "Access the flow-field grid after applying queued affine transforms." if self._flow is None: self._flow = _affine_grid(self.shape) if self._affine_mat is not None: self._flow = _affine_mult(self._flow,self._affine_mat) self._affine_mat = None return self._flow
Equivalent to `image = sigmoid(func(logit(image)))`.
def lighting(self, func:LightingFunc, *args:Any, **kwargs:Any): "Equivalent to `image = sigmoid(func(logit(image)))`." self.logit_px = func(self.logit_px, *args, **kwargs) return self
Equivalent to `image.px = func(image.px)`.
def pixel(self, func:PixelFunc, *args, **kwargs)->'Image': "Equivalent to `image.px = func(image.px)`." self.px = func(self.px, *args, **kwargs) return self
Equivalent to `image.flow = func(image.flow, image.size)`.
def coord(self, func:CoordFunc, *args, **kwargs)->'Image': "Equivalent to `image.flow = func(image.flow, image.size)`." self.flow = func(self.flow, *args, **kwargs) return self
Equivalent to `image.affine_mat = image.affine_mat @ func()`.
def affine(self, func:AffineFunc, *args, **kwargs)->'Image': "Equivalent to `image.affine_mat = image.affine_mat @ func()`." m = tensor(func(*args, **kwargs)).to(self.device) self.affine_mat = self.affine_mat @ m return self
Resize the image to `size`, size can be a single int.
def resize(self, size:Union[int,TensorImageSize])->'Image': "Resize the image to `size`, size can be a single int." assert self._flow is None if isinstance(size, int): size=(self.shape[0], size, size) if tuple(size)==tuple(self.shape): return self self.flow = _affine_grid(size) return self
Get the affine matrix that will be applied by `refresh`.
def affine_mat(self)->AffineMatrix: "Get the affine matrix that will be applied by `refresh`." if self._affine_mat is None: self._affine_mat = torch.eye(3).to(self.device) return self._affine_mat
Get logit(image.px).
def logit_px(self)->LogitTensorImage: "Get logit(image.px)." if self._logit_px is None: self._logit_px = logit_(self.px) return self._logit_px
Show image on `ax` with `title`, using `cmap` if single-channel, overlaid with optional `y`
def show(self, ax:plt.Axes=None, figsize:tuple=(3,3), title:Optional[str]=None, hide_axis:bool=True, cmap:str=None, y:Any=None, **kwargs): "Show image on `ax` with `title`, using `cmap` if single-channel, overlaid with optional `y`" cmap = ifnone(cmap, defaults.cmap) ax = show_image(self, ax=ax, hide_axis=hide_axis, cmap=cmap, figsize=figsize) if y is not None: y.show(ax=ax, **kwargs) if title is not None: ax.set_title(title)
Show the `ImageSegment` on `ax`.
def show(self, ax:plt.Axes=None, figsize:tuple=(3,3), title:Optional[str]=None, hide_axis:bool=True, cmap:str='tab20', alpha:float=0.5, **kwargs): "Show the `ImageSegment` on `ax`." ax = show_image(self, ax=ax, hide_axis=hide_axis, cmap=cmap, figsize=figsize, interpolation='nearest', alpha=alpha, vmin=0) if title: ax.set_title(title)
Mimic the behavior of torch.clone for `ImagePoints` objects.
def clone(self): "Mimic the behavior of torch.clone for `ImagePoints` objects." return self.__class__(FlowField(self.size, self.flow.flow.clone()), scale=False, y_first=False)
Access the flow-field grid after applying queued affine and coord transforms.
def flow(self)->FlowField: "Access the flow-field grid after applying queued affine and coord transforms." if self._affine_mat is not None: self._flow = _affine_inv_mult(self._flow, self._affine_mat) self._affine_mat = None self.transformed = True if len(self.flow_func) != 0: for f in self.flow_func[::-1]: self._flow = f(self._flow) self.transformed = True self.flow_func = [] return self._flow
Put `func` with `args` and `kwargs` in `self.flow_func` for later.
def coord(self, func:CoordFunc, *args, **kwargs)->'ImagePoints': "Put `func` with `args` and `kwargs` in `self.flow_func` for later." if 'invert' in kwargs: kwargs['invert'] = True else: warn(f"{func.__name__} isn't implemented for {self.__class__}.") self.flow_func.append(partial(func, *args, **kwargs)) return self
Equivalent to `self = func_flow(self)`.
def pixel(self, func:PixelFunc, *args, **kwargs)->'ImagePoints': "Equivalent to `self = func_flow(self)`." self = func(self, *args, **kwargs) self.transformed=True return self
Resize the image to `size`, size can be a single int.
def resize(self, size:Union[int,TensorImageSize]) -> 'ImagePoints': "Resize the image to `size`, size can be a single int." if isinstance(size, int): size=(1, size, size) self._flow.size = size[1:] return self
Return the points associated to this object.
def data(self)->Tensor: "Return the points associated to this object." flow = self.flow #This updates flow before we test if some transforms happened if self.transformed: if 'remove_out' not in self.sample_kwargs or self.sample_kwargs['remove_out']: flow = _remove_points_out(flow) self.transformed=False return flow.flow.flip(1)
Show the `ImagePoints` on `ax`.
def show(self, ax:plt.Axes=None, figsize:tuple=(3,3), title:Optional[str]=None, hide_axis:bool=True, **kwargs): "Show the `ImagePoints` on `ax`." if ax is None: _,ax = plt.subplots(figsize=figsize) pnt = scale_flow(FlowField(self.size, self.data), to_unit=False).flow.flip(1) params = {'s': 10, 'marker': '.', 'c': 'r', **kwargs} ax.scatter(pnt[:, 0], pnt[:, 1], **params) if hide_axis: ax.axis('off') if title: ax.set_title(title)