INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
Tiny setting with a tiny sv2p model.
def rlmb_tiny_sv2p(): """Tiny setting with a tiny sv2p model.""" hparams = rlmb_ppo_tiny() hparams.generative_model = "next_frame_sv2p" hparams.generative_model_params = "next_frame_sv2p_tiny" hparams.grayscale = False return hparams
Grid over games and frames, and 5 runs each for variance.
def rlmb_grid(rhp): """Grid over games and frames, and 5 runs each for variance.""" rhp.set_categorical("loop.game", ["breakout", "pong", "freeway"]) base = 100000 medium = base // 2 small = medium // 2 rhp.set_discrete("loop.num_real_env_frames", [base, medium, small]) # Dummy parameter to get 5 runs for each configuration rhp.set_discrete("model.moe_loss_coef", list(range(5)))
Merge multiple HParams into one with scopes.
def merge_unscoped_hparams(scopes_and_hparams): """Merge multiple HParams into one with scopes.""" merged_values = {} for (scope, hparams) in scopes_and_hparams: for key, value in six.iteritems(hparams.values()): scoped_key = "%s.%s" % (scope, key) merged_values[scoped_key] = value return hparam.HParams(**merged_values)
Split single HParams with scoped keys into multiple.
def split_scoped_hparams(scopes, merged_hparams): """Split single HParams with scoped keys into multiple.""" split_values = {scope: {} for scope in scopes} merged_values = merged_hparams.values() for scoped_key, value in six.iteritems(merged_values): scope = scoped_key.split(".")[0] key = scoped_key[len(scope) + 1:] split_values[scope][key] = value return [ hparam.HParams(**split_values[scope]) for scope in scopes ]
Create HParams suitable for training loop from scoped HParams. Args: scoped_overrides: HParams, with keys all scoped by one of HP_SCOPES. These parameters are overrides for the base HParams created by create_loop_hparams. trial_id: str, trial identifier. This is used to register unique HParams names for the underlying model and ppo HParams. Returns: HParams suitable for passing to training_loop.
def training_loop_hparams_from_scoped_overrides(scoped_overrides, trial_id): """Create HParams suitable for training loop from scoped HParams. Args: scoped_overrides: HParams, with keys all scoped by one of HP_SCOPES. These parameters are overrides for the base HParams created by create_loop_hparams. trial_id: str, trial identifier. This is used to register unique HParams names for the underlying model and ppo HParams. Returns: HParams suitable for passing to training_loop. """ trial_hp_overrides = scoped_overrides.values() # Create loop, model, and ppo base HParams loop_hp = create_loop_hparams() model_hp_name = trial_hp_overrides.get( "loop.generative_model_params", loop_hp.generative_model_params) model_hp = registry.hparams(model_hp_name).parse(FLAGS.hparams) base_algo_params_name = trial_hp_overrides.get( "loop.base_algo_params", loop_hp.base_algo_params) algo_hp = registry.hparams(base_algo_params_name) # Merge them and then override with the scoped overrides combined_hp = merge_unscoped_hparams( zip(HP_SCOPES, [loop_hp, model_hp, algo_hp])) combined_hp.override_from_dict(trial_hp_overrides) # Split out the component hparams loop_hp, model_hp, algo_hp = ( split_scoped_hparams(HP_SCOPES, combined_hp)) # Dynamic register the model hp and set the new name in loop_hp model_hp_name = "model_hp_%s" % str(trial_id) dynamic_register_hparams(model_hp_name, model_hp) loop_hp.generative_model_params = model_hp_name # Dynamic register the algo hp and set the new name in loop_hp algo_hp_name = "algo_hp_%s" % str(trial_id) dynamic_register_hparams(algo_hp_name, algo_hp) loop_hp.base_algo_params = algo_hp_name return loop_hp
Get mapping from keyboard keys to actions. Required by gym.utils.play in environment or top level wrapper. Returns: { Unicode code point for keyboard key: action (formatted for step()), ... }
def get_keys_to_action(self): """Get mapping from keyboard keys to actions. Required by gym.utils.play in environment or top level wrapper. Returns: { Unicode code point for keyboard key: action (formatted for step()), ... } """ # Based on gym AtariEnv.get_keys_to_action() keyword_to_key = { "UP": ord("w"), "DOWN": ord("s"), "LEFT": ord("a"), "RIGHT": ord("d"), "FIRE": ord(" "), } keys_to_action = {} for action_id, action_meaning in enumerate(self.action_meanings): keys_tuple = tuple(sorted([ key for keyword, key in keyword_to_key.items() if keyword in action_meaning])) assert keys_tuple not in keys_to_action keys_to_action[keys_tuple] = action_id # Special actions: keys_to_action[(ord("r"),)] = self.RETURN_DONE_ACTION keys_to_action[(ord("c"),)] = self.TOGGLE_WAIT_ACTION keys_to_action[(ord("n"),)] = self.WAIT_MODE_NOOP_ACTION return keys_to_action
Pass action to underlying environment(s) or perform special action.
def step(self, action): """Pass action to underlying environment(s) or perform special action.""" # Special codes if action in self._player_actions(): envs_step_tuples = self._player_actions()[action]() elif self._wait and action == self.name_to_action_num["NOOP"]: # Ignore no-op, do not pass to environment. envs_step_tuples = self._last_step_tuples else: # Run action on environment(s). if action == self.WAIT_MODE_NOOP_ACTION: action = self.name_to_action_num["NOOP"] # Perform action on underlying environment(s). envs_step_tuples = self._step_envs(action) self._update_statistics(envs_step_tuples) self._last_step_tuples = envs_step_tuples ob, reward, done, info = self._player_step_tuple(envs_step_tuples) return ob, reward, done, info
Expand observation array with additional information header (top rows). Args: ob: observation reward: reward to be included in header. cumulative_reward: total cumulated reward to be included in header. Returns: Expanded observation array.
def _augment_observation(self, ob, reward, cumulative_reward): """"Expand observation array with additional information header (top rows). Args: ob: observation reward: reward to be included in header. cumulative_reward: total cumulated reward to be included in header. Returns: Expanded observation array. """ img = PIL_Image().new("RGB", (ob.shape[1], self.HEADER_HEIGHT,)) draw = PIL_ImageDraw().Draw(img) draw.text( (1, 0), "c:{:3}, r:{:3}".format(int(cumulative_reward), int(reward)), fill=(255, 0, 0) ) draw.text( (1, 15), "fc:{:3}".format(int(self._frame_counter)), fill=(255, 0, 0) ) header = np.asarray(img) del img header.setflags(write=1) # Top row color indicates if WAIT MODE is on. if self._wait: pixel_fill = (0, 255, 0) else: pixel_fill = (255, 0, 0) header[0, :, :] = pixel_fill return np.concatenate([header, ob], axis=0)
Construct observation, return usual step tuple. Args: envs_step_tuples: tuples. Returns: Step tuple: ob, reward, done, info ob: concatenated images [simulated observation, real observation, difference], with additional informations in header. reward: real environment reward done: True iff. envs_step_tuples['real_env'][2] is True info: real environment info
def _player_step_tuple(self, envs_step_tuples): """Construct observation, return usual step tuple. Args: envs_step_tuples: tuples. Returns: Step tuple: ob, reward, done, info ob: concatenated images [simulated observation, real observation, difference], with additional informations in header. reward: real environment reward done: True iff. envs_step_tuples['real_env'][2] is True info: real environment info """ ob_real, reward_real, _, _ = envs_step_tuples["real_env"] ob_sim, reward_sim, _, _ = envs_step_tuples["sim_env"] ob_err = absolute_hinge_difference(ob_sim, ob_real) ob_real_aug = self._augment_observation(ob_real, reward_real, self.cumulative_real_reward) ob_sim_aug = self._augment_observation(ob_sim, reward_sim, self.cumulative_sim_reward) ob_err_aug = self._augment_observation( ob_err, reward_sim - reward_real, self.cumulative_sim_reward - self.cumulative_real_reward ) ob = np.concatenate([ob_sim_aug, ob_real_aug, ob_err_aug], axis=1) _, reward, done, info = envs_step_tuples["real_env"] return ob, reward, done, info
Reset simulated and real environments.
def reset(self): """Reset simulated and real environments.""" self._frame_counter = 0 ob_real = self.real_env.reset() # Initialize simulated environment with frames from real one. self.sim_env.add_to_initial_stack(ob_real) for _ in range(3): ob_real, _, _, _ = self.real_env.step(self.name_to_action_num["NOOP"]) self.sim_env.add_to_initial_stack(ob_real) ob_sim = self.sim_env.reset() assert np.all(ob_real == ob_sim) self._last_step_tuples = self._pack_step_tuples((ob_real, 0, False, {}), (ob_sim, 0, False, {})) self.set_zero_cumulative_rewards() ob, _, _, _ = self._player_step_tuple(self._last_step_tuples) return ob
Perform step(action) on environments and update initial_frame_stack.
def _step_envs(self, action): """Perform step(action) on environments and update initial_frame_stack.""" self._frame_counter += 1 real_env_step_tuple = self.real_env.step(action) sim_env_step_tuple = self.sim_env.step(action) self.sim_env.add_to_initial_stack(real_env_step_tuple[0]) return self._pack_step_tuples(real_env_step_tuple, sim_env_step_tuple)
Augment observation, return usual step tuple.
def _player_step_tuple(self, envs_step_tuples): """Augment observation, return usual step tuple.""" ob, reward, done, info = envs_step_tuples["env"] ob = self._augment_observation(ob, reward, self.cumulative_reward) return ob, reward, done, info
Compute time first and second-order derivative channels. Args: filterbanks: float32 tensor with shape [batch_size, len, num_bins, 1] name: scope name Returns: float32 tensor with shape [batch_size, len, num_bins, 3]
def add_delta_deltas(filterbanks, name=None): """Compute time first and second-order derivative channels. Args: filterbanks: float32 tensor with shape [batch_size, len, num_bins, 1] name: scope name Returns: float32 tensor with shape [batch_size, len, num_bins, 3] """ delta_filter = np.array([2, 1, 0, -1, -2]) delta_delta_filter = scipy.signal.convolve(delta_filter, delta_filter, "full") delta_filter_stack = np.array( [[0] * 4 + [1] + [0] * 4, [0] * 2 + list(delta_filter) + [0] * 2, list(delta_delta_filter)], dtype=np.float32).T[:, None, None, :] delta_filter_stack /= np.sqrt( np.sum(delta_filter_stack**2, axis=0, keepdims=True)) filterbanks = tf.nn.conv2d( filterbanks, delta_filter_stack, [1, 1, 1, 1], "SAME", data_format="NHWC", name=name) return filterbanks
Implement mel-filterbank extraction using tf ops. Args: waveforms: float32 tensor with shape [batch_size, max_len] sample_rate: sampling rate of the waveform dither: stddev of Gaussian noise added to waveform to prevent quantization artefacts preemphasis: waveform high-pass filtering constant frame_length: frame length in ms frame_step: frame_Step in ms fft_length: number of fft bins window_fn: windowing function lower_edge_hertz: lowest frequency of the filterbank upper_edge_hertz: highest frequency of the filterbank num_mel_bins: filterbank size log_noise_floor: clip small values to prevent numeric overflow in log apply_mask: When working on a batch of samples, set padding frames to zero Returns: filterbanks: a float32 tensor with shape [batch_size, len, num_bins, 1]
def compute_mel_filterbank_features( waveforms, sample_rate=16000, dither=1.0 / np.iinfo(np.int16).max, preemphasis=0.97, frame_length=25, frame_step=10, fft_length=None, window_fn=functools.partial(tf.contrib.signal.hann_window, periodic=True), lower_edge_hertz=80.0, upper_edge_hertz=7600.0, num_mel_bins=80, log_noise_floor=1e-3, apply_mask=True): """Implement mel-filterbank extraction using tf ops. Args: waveforms: float32 tensor with shape [batch_size, max_len] sample_rate: sampling rate of the waveform dither: stddev of Gaussian noise added to waveform to prevent quantization artefacts preemphasis: waveform high-pass filtering constant frame_length: frame length in ms frame_step: frame_Step in ms fft_length: number of fft bins window_fn: windowing function lower_edge_hertz: lowest frequency of the filterbank upper_edge_hertz: highest frequency of the filterbank num_mel_bins: filterbank size log_noise_floor: clip small values to prevent numeric overflow in log apply_mask: When working on a batch of samples, set padding frames to zero Returns: filterbanks: a float32 tensor with shape [batch_size, len, num_bins, 1] """ # `stfts` is a complex64 Tensor representing the short-time Fourier # Transform of each signal in `signals`. Its shape is # [batch_size, ?, fft_unique_bins] # where fft_unique_bins = fft_length // 2 + 1 # Find the wave length: the largest index for which the value is !=0 # note that waveforms samples that are exactly 0.0 are quite common, so # simply doing sum(waveforms != 0, axis=-1) will not work correctly. wav_lens = tf.reduce_max( tf.expand_dims(tf.range(tf.shape(waveforms)[1]), 0) * tf.to_int32(tf.not_equal(waveforms, 0.0)), axis=-1) + 1 if dither > 0: waveforms += tf.random_normal(tf.shape(waveforms), stddev=dither) if preemphasis > 0: waveforms = waveforms[:, 1:] - preemphasis * waveforms[:, :-1] wav_lens -= 1 frame_length = int(frame_length * sample_rate / 1e3) frame_step = int(frame_step * sample_rate / 1e3) if fft_length is None: fft_length = int(2**(np.ceil(np.log2(frame_length)))) stfts = tf.contrib.signal.stft( waveforms, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length, window_fn=window_fn, pad_end=True) stft_lens = (wav_lens + (frame_step - 1)) // frame_step masks = tf.to_float(tf.less_equal( tf.expand_dims(tf.range(tf.shape(stfts)[1]), 0), tf.expand_dims(stft_lens, 1))) # An energy spectrogram is the magnitude of the complex-valued STFT. # A float32 Tensor of shape [batch_size, ?, 257]. magnitude_spectrograms = tf.abs(stfts) # Warp the linear-scale, magnitude spectrograms into the mel-scale. num_spectrogram_bins = magnitude_spectrograms.shape[-1].value linear_to_mel_weight_matrix = ( tf.contrib.signal.linear_to_mel_weight_matrix( num_mel_bins, num_spectrogram_bins, sample_rate, lower_edge_hertz, upper_edge_hertz)) mel_spectrograms = tf.tensordot( magnitude_spectrograms, linear_to_mel_weight_matrix, 1) # Note: Shape inference for tensordot does not currently handle this case. mel_spectrograms.set_shape(magnitude_spectrograms.shape[:-1].concatenate( linear_to_mel_weight_matrix.shape[-1:])) log_mel_sgram = tf.log(tf.maximum(log_noise_floor, mel_spectrograms)) if apply_mask: log_mel_sgram *= tf.expand_dims(tf.to_float(masks), -1) return tf.expand_dims(log_mel_sgram, -1, name="mel_sgrams")
Plays the env problem by randomly sampling actions for `num_steps`.
def play_env_problem_randomly(env_problem, num_steps): """Plays the env problem by randomly sampling actions for `num_steps`.""" # Reset all environments. env_problem.reset() # Play all environments, sampling random actions each time. for _ in range(num_steps): # Sample batch_size actions from the action space and stack them. actions = np.stack([env_problem.action_space.sample() for _ in range( env_problem.batch_size)]) # Execute actions, observations are stored in `env_problem`. _, _, dones, _ = env_problem.step(actions) # Get the indices where we are done and reset those. env_problem.reset(indices=done_indices(dones))
Generates samples of text from the provided vocabulary. Args: plain_vocab: vocabulary. distribution: distribution. train_samples: samples for training. length: length. Returns: train_indices (np.array of Integers): random integers for training. shape = [num_samples, length] test_indices (np.array of Integers): random integers for testing. shape = [num_samples, length] plain_vocab (list of Integers): unique vocabularies.
def generate_plaintext_random(plain_vocab, distribution, train_samples, length): """Generates samples of text from the provided vocabulary. Args: plain_vocab: vocabulary. distribution: distribution. train_samples: samples for training. length: length. Returns: train_indices (np.array of Integers): random integers for training. shape = [num_samples, length] test_indices (np.array of Integers): random integers for testing. shape = [num_samples, length] plain_vocab (list of Integers): unique vocabularies. """ if distribution is not None: assert len(distribution) == len(plain_vocab) train_indices = np.random.choice( range(len(plain_vocab)), (train_samples, length), p=distribution) return train_indices
Encrypt plain text with a single shift layer. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. shift (Integer): number of shift, shift to the right if shift is positive. Returns: ciphertext (list of Strings): encrypted plain text.
def encipher_shift(plaintext, plain_vocab, shift): """Encrypt plain text with a single shift layer. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. shift (Integer): number of shift, shift to the right if shift is positive. Returns: ciphertext (list of Strings): encrypted plain text. """ ciphertext = [] cipher = ShiftEncryptionLayer(plain_vocab, shift) for _, sentence in enumerate(plaintext): cipher_sentence = [] for _, character in enumerate(sentence): encrypted_char = cipher.encrypt_character(character) cipher_sentence.append(encrypted_char) ciphertext.append(cipher_sentence) return ciphertext
Encrypt plain text with given key. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. key (list of Integer): key to encrypt cipher using Vigenere table. Returns: ciphertext (list of Strings): encrypted plain text.
def encipher_vigenere(plaintext, plain_vocab, key): """Encrypt plain text with given key. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. key (list of Integer): key to encrypt cipher using Vigenere table. Returns: ciphertext (list of Strings): encrypted plain text. """ ciphertext = [] # generate Vigenere table layers = [ ShiftEncryptionLayer(plain_vocab, i) for i in range(len(plain_vocab)) ] for i, sentence in enumerate(plaintext): cipher_sentence = [] for j, character in enumerate(sentence): key_idx = key[j % len(key)] encrypted_char = layers[key_idx].encrypt_character(character) cipher_sentence.append(encrypted_char) ciphertext.append(cipher_sentence) return ciphertext
A stack of super_lm layers. Args: inputs: a list of Tensors attention_bias: list of bias Tensor for self-attention (see common_attention.attention_bias()) hparams: hyperparameters for model mp: a Parallelism object padding: a string Returns: y: a list of Tensors extra_loss: an optional scalar
def _super_stack(inputs, attention_bias, hparams, mp, padding="LEFT"): """A stack of super_lm layers. Args: inputs: a list of Tensors attention_bias: list of bias Tensor for self-attention (see common_attention.attention_bias()) hparams: hyperparameters for model mp: a Parallelism object padding: a string Returns: y: a list of Tensors extra_loss: an optional scalar """ layers = hparams.layers.strip(",").split(",") moe_hidden_sizes = [int(s) for s in hparams.moe_hidden_sizes.split(",")] if hparams.diet_experts: hsize, = moe_hidden_sizes def _diet_expert(x): return diet.diet_expert(x, hsize, diet.diet_adam_optimizer_params()) expert_fn = _diet_expert else: expert_fn = expert_utils.ffn_expert_fn( hparams.hidden_size, moe_hidden_sizes, hparams.hidden_size) # scaled_dot_product_attention_with_projections uses a 3d attention bias # (no heads), where multihead_attention uses 4d attention bias. attention_bias_3d = mp(tf.squeeze, attention_bias, 1) mix_size = int(hparams.mix_fraction * hparams.hidden_size) accumulator = inputs x = inputs extra_losses = [] for layer_num, layer_type in enumerate(layers): with tf.variable_scope("%s_%d" % (layer_type, layer_num)): tf.logging.info("%s_%d" % (layer_type, layer_num)) if layer_type == "a": # accumulate accumulator = mp(tf.add, x, accumulator) x = accumulator elif layer_type == "n": # normalize x = mp(common_layers.apply_norm, x, hparams.norm_type, hparams.hidden_size, hparams.norm_epsilon) elif layer_type == "d": # dropout x = mp(tf.nn.dropout, x, 1.0 - hparams.layer_prepostprocess_dropout) elif layer_type == "m": # mix across shards def _split(t): return tuple(tf.split( t, [mix_size, hparams.hidden_size - mix_size], 2)) to_mix, to_keep = mp(_split, x) mixed = expert_utils.all_reduce_ring(to_mix, mp) mixed = mp(tf.multiply, mixed, mp.n ** -0.5) x = mp(lambda a, b: tf.concat([a, b], 2), mixed, to_keep) elif layer_type == "att": # single-head attention q = mp(tf.layers.dense, x, hparams.hidden_size, use_bias=False, name="q_transform") x = mp( common_attention.scaled_dot_product_attention_simple, q, x, x, attention_bias_3d) x = mp(tf.layers.dense, x, hparams.hidden_size, use_bias=False, name="o_transform") elif layer_type == "multihead-att": # multi-head attention x = mp( common_attention.multihead_attention, x, None, attention_bias, # bias hparams.multihead_attention_key_channels or hparams.hidden_size, hparams.multihead_attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.multihead_attention_num_heads, hparams.attention_dropout) elif layer_type == "ffn": x = mp( common_layers.dense_relu_dense, x, hparams.filter_size, hparams.hidden_size) elif layer_type == "conv": # convolution x = mp( common_layers.conv1d, x, hparams.hidden_size, hparams.kernel_height, activation=tf.nn.relu, padding=padding, ) elif layer_type == "moe": # mixture of experts - each model shard has its own local MoE. x, loss = mp( expert_utils.local_moe, x, train=hparams.mode == tf.estimator.ModeKeys.TRAIN, expert_fn=expert_fn, num_experts=hparams.moe_num_experts, k=hparams.moe_k, loss_coef=hparams.moe_loss_coef) extra_losses.extend(loss) else: assert False, "unknown sublayer %s" % layer_type if extra_losses: extra_loss = tf.add_n(extra_losses) else: extra_loss = None return x, extra_loss
Set of hyperparameters.
def super_lm_base(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.hidden_size = 512 hparams.moe_hidden_sizes = "512" hparams.batch_size = 16384 hparams.max_length = 0 # All hyperparameters ending in "dropout" are automatically set to 0.0 # when not in training mode. hparams.layer_prepostprocess_dropout = 0.0 hparams.symbol_dropout = 0.1 hparams.add_hparam("attention_dropout", 0.0) hparams.label_smoothing = 0.0 hparams.clip_grad_norm = 0. # i.e. no gradient clipping hparams.optimizer = "Adafactor" hparams.learning_rate_decay_scheme = "noam" hparams.learning_rate = 0.1 hparams.learning_rate_warmup_steps = 8000 hparams.initializer_gain = 1.0 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.shared_embedding_and_softmax_weights = False hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" # we only want one data shard. hparams.no_data_parallelism = True # bypass the symbol modality so that we can use model parallelism. hparams.bottom = { "inputs": modalities.identity_bottom, "targets": modalities.identity_bottom, } hparams.top = { "targets": modalities.identity_top, } hparams.add_hparam("filter_size", 512) hparams.add_hparam("mix_fraction", 0.5) # attention-related flags hparams.add_hparam("multihead_attention_num_heads", 4) hparams.add_hparam("multihead_attention_key_channels", 0) hparams.add_hparam("multihead_attention_value_channels", 0) hparams.add_hparam("pos", "timing") # timing, none hparams.add_hparam( "layers", ("n,att,m,d,a," "n,ffn,m,d,a,") * 4 + "n,ffn,d") # Number of model shards - each one has separate parameters. # Changing this number invalidates checkpoints. hparams.add_hparam("num_model_shards", 8) hparams.add_hparam("diet_experts", False) return hparams
Add mixture of experts with ~1B params.
def super_lm_moe(): """Add mixture of experts with ~1B params.""" hparams = super_lm_base() hparams.layers = ( ("n,att,m,d,a," "n,moe,m,d,a,") * 4 + "n,ffn,d") hparams.moe_num_experts = 32 hparams.moe_hidden_sizes = "1024" return hparams
Series of architectural experiments on Translation. # run on 8-core setup 119M params, einsum=0.95e13 Returns: a hparams
def xmoe_tr_dense_2k(): """Series of architectural experiments on Translation. # run on 8-core setup 119M params, einsum=0.95e13 Returns: a hparams """ hparams = mtf_transformer2.mtf_bitransformer_base() hparams.encoder_layers = ["self_att", "drd"] * 4 hparams.decoder_layers = ["self_att", "enc_att", "drd"] * 4 hparams.batch_size = 64 hparams.shared_embedding_and_softmax_weights = True hparams.mesh_shape = "batch:8" return hparams
Mixture of experts (16 experts). 623M Params, einsum=1.09e13 Returns: a hparams
def xmoe_tr_1d(): """Mixture of experts (16 experts). 623M Params, einsum=1.09e13 Returns: a hparams """ hparams = xmoe_tr_dense_2k() hparams.encoder_layers = ["self_att", "moe_1d"] * 4 hparams.decoder_layers = ["self_att", "enc_att", "moe_1d"] * 4 hparams.layout = "batch:batch;experts:batch" hparams.moe_hidden_size = 2048 hparams.moe_num_experts = 16 return hparams
Mixture of experts (16 experts). 623M Params, einsum=1.09e13 Returns: a hparams
def xmoe_tr_2d(): """Mixture of experts (16 experts). 623M Params, einsum=1.09e13 Returns: a hparams """ hparams = xmoe_tr_dense_2k() hparams.mesh_shape = "b0:2;b1:4" hparams.outer_batch_size = 4 hparams.layout = "outer_batch:b0;inner_batch:b1,expert_x:b1,expert_y:b0" hparams.encoder_layers = ["self_att", "moe_2d"] * 4 hparams.decoder_layers = ["self_att", "enc_att", "moe_2d"] * 4 hparams.moe_hidden_size = 2048 hparams.moe_experts_x = 4 hparams.moe_experts_y = 4 return hparams
Series of architectural experiments on cheap language models. For all of these architectures, we run on languagemodel_lm1b8k_packed for 32000 steps. All log-perplexities are per-token - multiply by 1.298 for per-word Results: model params(M) einsum alltoall mxu-util log-ppl xmoe_dense_4k 30 3.0e12 0 45% 3.31 xmoe_dense_8k 46 4.7e12 0 49% 3.24 xmoe_dense_64k 282 2.8e13 0 3.06 xmoe_top_2 282 4.0e12 3.4e8 36% 3.07 xmoe_top_2_c15 282 4.5e12 4.0e8 38% 3.07 xmoe_2d 282 5.3e12 7.6e8 34% 3.06 Trained at 4x the batch size: xmoe_2d_88 1090 2.1e13 3.0e9 24% 3.07 Note: configurations and code are likely to change without notice. Returns: a hparams
def xmoe_dense_4k(): """Series of architectural experiments on cheap language models. For all of these architectures, we run on languagemodel_lm1b8k_packed for 32000 steps. All log-perplexities are per-token - multiply by 1.298 for per-word Results: model params(M) einsum alltoall mxu-util log-ppl xmoe_dense_4k 30 3.0e12 0 45% 3.31 xmoe_dense_8k 46 4.7e12 0 49% 3.24 xmoe_dense_64k 282 2.8e13 0 3.06 xmoe_top_2 282 4.0e12 3.4e8 36% 3.07 xmoe_top_2_c15 282 4.5e12 4.0e8 38% 3.07 xmoe_2d 282 5.3e12 7.6e8 34% 3.06 Trained at 4x the batch size: xmoe_2d_88 1090 2.1e13 3.0e9 24% 3.07 Note: configurations and code are likely to change without notice. Returns: a hparams """ hparams = mtf_transformer.mtf_transformer_base_lm() hparams.attention_dropout = 0.0 hparams.relu_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 # The following hparams are constant across all these experiments. hparams.batch_size = 128 hparams.d_model = 512 hparams.d_kv = 128 hparams.num_heads = 4 hparams.decoder_layers = ["att", "drd"] * 4 hparams.shared_embedding_and_softmax_weights = False hparams.learning_rate_schedule = "rsqrt_decay" # We will vary the following parameters related to the ffn/moe layers. hparams.d_ff = 4096 hparams.layout = "batch:batch;vocab:model;d_ff:model;heads:model" hparams.mesh_shape = "batch:8" return hparams
Mixture of experts (16 experts).
def xmoe_top_2(): """Mixture of experts (16 experts).""" hparams = xmoe_dense_4k() moe.set_default_moe_hparams(hparams) hparams.mesh_shape = "all:8" hparams.layout = "batch:all;experts:all" return hparams
Two-dimensional hierarchical mixture of 16 experts.
def xmoe_2d(): """Two-dimensional hierarchical mixture of 16 experts.""" hparams = xmoe_top_2() hparams.decoder_layers = ["att", "hmoe"] * 4 hparams.mesh_shape = "b0:2;b1:4" hparams.outer_batch_size = 4 hparams.layout = "outer_batch:b0;inner_batch:b1,expert_x:b1,expert_y:b0" hparams.moe_num_experts = [4, 4] return hparams
Series of architectural experiments on language modeling. Larger models than the ones above. All models are trained on sequences of 1024 tokens. We assume infinite training data, so no dropout necessary. We process 2^36 tokens in training = 524288 steps at batch size 128 TODO(noam): find a large enough dataset for these experiments. You can use languagemodel_wiki_noref_v32k_l1k, but this is too small, (1 epoch = ~46000 steps) so training will cover about 11 epochs. Note: configurations and code are likely to change without notice. Run on TPU 4x4 for 524288 steps unless otherwise indicated. Args: sz: an integer Returns: a hparams
def xmoe2_dense(sz): """Series of architectural experiments on language modeling. Larger models than the ones above. All models are trained on sequences of 1024 tokens. We assume infinite training data, so no dropout necessary. We process 2^36 tokens in training = 524288 steps at batch size 128 TODO(noam): find a large enough dataset for these experiments. You can use languagemodel_wiki_noref_v32k_l1k, but this is too small, (1 epoch = ~46000 steps) so training will cover about 11 epochs. Note: configurations and code are likely to change without notice. Run on TPU 4x4 for 524288 steps unless otherwise indicated. Args: sz: an integer Returns: a hparams """ hparams = mtf_transformer.mtf_transformer_paper_lm(sz) hparams.attention_dropout = 0.0 hparams.relu_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 hparams.max_length = 1024 hparams.batch_size = 128 hparams.learning_rate_schedule = "rsqrt_decay*linear_decay" hparams.learning_rate_decay_steps = 65536 hparams.layout = "batch:batch;vocab:model;d_ff:model;heads:model" hparams.mesh_shape = "batch:32" return hparams
Model incorporating mixture-of-experts and local-attention. ~6B parameters 32 experts in 3 hierarchichal moe layers. Returns: a hparams
def xmoe2_v1(): """Model incorporating mixture-of-experts and local-attention. ~6B parameters 32 experts in 3 hierarchichal moe layers. Returns: a hparams """ hparams = xmoe2_dense(0) moe.set_default_moe_hparams(hparams) hparams.decoder_layers = ( ["local_att", "local_att", "drd", "att", "drd", "local_att", "local_att", "hmoe"] * 4)[:-1] hparams.d_ff = 2048 hparams.d_kv = 128 hparams.moe_hidden_size = 32768 hparams.mesh_shape = "b0:4;b1:8" hparams.layout = "outer_batch:b0;inner_batch:b1,expert_x:b1,expert_y:b0" hparams.outer_batch_size = 4 hparams.moe_num_experts = [8, 4] hparams.num_heads = 4 return hparams
128 experts, ~25B params - Train for 131072 steps on 8x8.
def xmoe2_v1_x128(): """128 experts, ~25B params - Train for 131072 steps on 8x8.""" hparams = xmoe2_v1() hparams.moe_num_experts = [16, 8] hparams.outer_batch_size = 8 hparams.mesh_shape = "b0:8;b1:16" hparams.batch_size = 512 hparams.learning_rate_decay_steps = 16384 return hparams
Test on local cpu.
def xmoe2_tiny(): """Test on local cpu.""" hparams = xmoe2_v1() hparams.decoder_layers = [ "local_att", "att", "compressed_att", "drd", "hmoe"] hparams.d_model = 128 hparams.moe_hidden_size = 512 hparams.outer_batch_size = 0 hparams.batch_size = 2 hparams.mesh_shape = "" hparams.activation_dtype = "float32" return hparams
With sequence length 4096.
def xmoe2_v1_l4k(): """With sequence length 4096.""" hparams = xmoe2_v1() hparams.batch_size = 32 hparams.max_length = 4096 hparams.split_to_length = 4096 hparams.reshape_logits_hack = True return hparams
With sequence length 4096.
def xmoe2_v1_l4k_local_only(): """With sequence length 4096.""" hparams = xmoe2_v1_l4k() hparams.decoder_layers = [ "local_att" if l == "att" else l for l in hparams.decoder_layers] return hparams
With compressed attention.
def xmoe2_v1_l4k_compressed_c4(): """With compressed attention.""" hparams = xmoe2_v1_l4k() hparams.decoder_layers = [ "compressed_att" if l == "att" else l for l in hparams.decoder_layers] hparams.compression_factor = 4 return hparams
With sequence length 4096.
def xmoe2_v1_l4k_global_only(): """With sequence length 4096.""" hparams = xmoe2_v1_l4k() hparams.decoder_layers = [ "att" if l == "local_att" else l for l in hparams.decoder_layers] return hparams
Set of architectural experiments - language model on wikipedia on a 2x2. 1 epoch = ~180k steps at batch size 32 - we may never finish an epoch! Returns: a hparams
def wiki_2x2_base(): """Set of architectural experiments - language model on wikipedia on a 2x2. 1 epoch = ~180k steps at batch size 32 - we may never finish an epoch! Returns: a hparams """ hparams = mtf_transformer.mtf_transformer_base_lm() hparams.shared_embedding_and_softmax_weights = False # no dropout - dataset is big enough to avoid overfitting. hparams.attention_dropout = 0.0 hparams.relu_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 hparams.max_length = 1024 # 4 sequences per core hparams.batch_size = 32 # We don't use linear decay in these experiments, since we don't want # a sharp jump in quality at the end of the training schedule. # You can insert this once you find the right architecture. hparams.learning_rate_schedule = "rsqrt_decay" hparams.mesh_shape = "all:8" hparams.layout = "batch:all;experts:all" # parameters for mixture-of-experts moe.set_default_moe_hparams(hparams) hparams.moe_num_experts = 16 hparams.moe_hidden_size = 8192 hparams.decoder_layers = ["att", "drd"] * 6 hparams.d_model = 1024 hparams.d_ff = 2048 hparams.d_kv = 128 hparams.num_heads = 4 return hparams
Replace tokens instead of masking.
def denoise_z15(): """Replace tokens instead of masking.""" hparams = xmoe2_dense_0() hparams.decoder_type = "denoising" hparams.noising_spec_train = {"type": "random_zipfian", "prob": 0.15} hparams.noising_use_eval_during_train = 0.25 return hparams
Denoising experiment.
def denoise_v1_m15(): """Denoising experiment.""" hparams = xmoe2_v1() # no local attention # TODO(noam): non-masked version of local-attention hparams.decoder_layers = [ "att" if l == "local_att" else l for l in hparams.decoder_layers] hparams.decoder_type = "denoising" hparams.noising_spec_train = {"type": "mask", "prob": 0.15} return hparams
Downloads and extracts the dataset. Args: tmp_dir: temp directory to download and extract the dataset data_dir: The base directory where data and vocab files are stored. Returns: tmp_dir: temp directory containing the raw data.
def _download_mlu_data(tmp_dir, data_dir): """Downloads and extracts the dataset. Args: tmp_dir: temp directory to download and extract the dataset data_dir: The base directory where data and vocab files are stored. Returns: tmp_dir: temp directory containing the raw data. """ if not tf.gfile.Exists(data_dir): tf.gfile.MakeDirs(data_dir) filename = os.path.basename(_URL) file_path = os.path.join(tmp_dir, filename) headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_1) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/63.0.3239.132 Safari/537.36"} resp = requests.get(_URL, headers=headers) with open(file_path, "wb") as f: f.write(resp.content) with tarfile.open(file_path, "r:gz") as tar: tar.extractall(tmp_dir) return tmp_dir
Get a Counter with the ngrams of the given ID list. Args: ids: np.array or a list corresponding to a single sentence n: n-gram size Returns: collections.Counter with ID tuples as keys and 1s as values.
def _get_ngram_counter(ids, n): """Get a Counter with the ngrams of the given ID list. Args: ids: np.array or a list corresponding to a single sentence n: n-gram size Returns: collections.Counter with ID tuples as keys and 1s as values. """ # Remove zero IDs used to pad the sequence. ids = [token_id for token_id in ids if token_id != 0] ngram_list = [tuple(ids[i:i + n]) for i in range(len(ids) + 1 - n)] ngrams = set(ngram_list) counts = collections.Counter() for ngram in ngrams: counts[ngram] = 1 return counts
Compute Fbeta score. Args: true_positives: Number of true positive ngrams. selected: Number of selected ngrams. relevant: Number of relevant ngrams. beta: 0 gives precision only, 1 gives F1 score, and Inf gives recall only. Returns: Fbeta score.
def _get_fbeta_score(true_positives, selected, relevant, beta=1): """Compute Fbeta score. Args: true_positives: Number of true positive ngrams. selected: Number of selected ngrams. relevant: Number of relevant ngrams. beta: 0 gives precision only, 1 gives F1 score, and Inf gives recall only. Returns: Fbeta score. """ precision = 1 if selected > 0: precision = true_positives / selected if beta == 0: return precision recall = 1 if relevant > 0: recall = true_positives / relevant if precision > 0 and recall > 0: beta2 = beta * beta return (1 + beta2) * precision * recall / (beta2 * precision + recall) else: return 0
Compute the addition score (Equation 4 in the paper).
def get_addition_score(source_counts, prediction_counts, target_counts): """Compute the addition score (Equation 4 in the paper).""" added_to_prediction_counts = prediction_counts - source_counts true_positives = sum((added_to_prediction_counts & target_counts).values()) selected = sum(added_to_prediction_counts.values()) # Note that in the paper the summation is done over all the ngrams in the # output rather than the ngrams in the following set difference. Since the # former does not make as much sense we compute the latter, which is also done # in the GitHub implementation. relevant = sum((target_counts - source_counts).values()) return _get_fbeta_score(true_positives, selected, relevant)
Compute the keep score (Equation 5 in the paper).
def get_keep_score(source_counts, prediction_counts, target_counts): """Compute the keep score (Equation 5 in the paper).""" source_and_prediction_counts = source_counts & prediction_counts source_and_target_counts = source_counts & target_counts true_positives = sum((source_and_prediction_counts & source_and_target_counts).values()) selected = sum(source_and_prediction_counts.values()) relevant = sum(source_and_target_counts.values()) return _get_fbeta_score(true_positives, selected, relevant)
Compute the deletion score (Equation 6 in the paper).
def get_deletion_score(source_counts, prediction_counts, target_counts, beta=0): """Compute the deletion score (Equation 6 in the paper).""" source_not_prediction_counts = source_counts - prediction_counts source_not_target_counts = source_counts - target_counts true_positives = sum((source_not_prediction_counts & source_not_target_counts).values()) selected = sum(source_not_prediction_counts.values()) relevant = sum(source_not_target_counts.values()) return _get_fbeta_score(true_positives, selected, relevant, beta=beta)
Compute the SARI score for a single prediction and one or more targets. Args: source_ids: a list / np.array of SentencePiece IDs prediction_ids: a list / np.array of SentencePiece IDs list_of_targets: a list of target ID lists / np.arrays max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams, bigrams, and trigrams) beta_for_deletion: beta for deletion F score. Returns: the SARI score and its three components: add, keep, and deletion scores
def get_sari_score(source_ids, prediction_ids, list_of_targets, max_gram_size=4, beta_for_deletion=0): """Compute the SARI score for a single prediction and one or more targets. Args: source_ids: a list / np.array of SentencePiece IDs prediction_ids: a list / np.array of SentencePiece IDs list_of_targets: a list of target ID lists / np.arrays max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams, bigrams, and trigrams) beta_for_deletion: beta for deletion F score. Returns: the SARI score and its three components: add, keep, and deletion scores """ addition_scores = [] keep_scores = [] deletion_scores = [] for n in range(1, max_gram_size + 1): source_counts = _get_ngram_counter(source_ids, n) prediction_counts = _get_ngram_counter(prediction_ids, n) # All ngrams in the targets with count 1. target_counts = collections.Counter() # All ngrams in the targets with count r/num_targets, where r is the number # of targets where the ngram occurs. weighted_target_counts = collections.Counter() num_nonempty_targets = 0 for target_ids_i in list_of_targets: target_counts_i = _get_ngram_counter(target_ids_i, n) if target_counts_i: weighted_target_counts += target_counts_i num_nonempty_targets += 1 for gram in weighted_target_counts.keys(): weighted_target_counts[gram] /= num_nonempty_targets target_counts[gram] = 1 keep_scores.append(get_keep_score(source_counts, prediction_counts, weighted_target_counts)) deletion_scores.append(get_deletion_score(source_counts, prediction_counts, weighted_target_counts, beta_for_deletion)) addition_scores.append(get_addition_score(source_counts, prediction_counts, target_counts)) avg_keep_score = sum(keep_scores) / max_gram_size avg_addition_score = sum(addition_scores) / max_gram_size avg_deletion_score = sum(deletion_scores) / max_gram_size sari = (avg_keep_score + avg_addition_score + avg_deletion_score) / 3.0 return sari, avg_keep_score, avg_addition_score, avg_deletion_score
Computes the SARI scores from the given source, prediction and targets. Args: source_ids: A 2D tf.Tensor of size (batch_size , sequence_length) prediction_ids: A 2D tf.Tensor of size (batch_size, sequence_length) target_ids: A 3D tf.Tensor of size (batch_size, number_of_targets, sequence_length) max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams, bigrams, and trigrams) Returns: A 4-tuple of 1D float Tensors of size (batch_size) for the SARI score and the keep, addition and deletion scores.
def get_sari(source_ids, prediction_ids, target_ids, max_gram_size=4): """Computes the SARI scores from the given source, prediction and targets. Args: source_ids: A 2D tf.Tensor of size (batch_size , sequence_length) prediction_ids: A 2D tf.Tensor of size (batch_size, sequence_length) target_ids: A 3D tf.Tensor of size (batch_size, number_of_targets, sequence_length) max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams, bigrams, and trigrams) Returns: A 4-tuple of 1D float Tensors of size (batch_size) for the SARI score and the keep, addition and deletion scores. """ def get_sari_numpy(source_ids, prediction_ids, target_ids): """Iterate over elements in the batch and call the SARI function.""" sari_scores = [] keep_scores = [] add_scores = [] deletion_scores = [] # Iterate over elements in the batch. for source_ids_i, prediction_ids_i, target_ids_i in zip( source_ids, prediction_ids, target_ids): sari, keep, add, deletion = get_sari_score( source_ids_i, prediction_ids_i, target_ids_i, max_gram_size, BETA_FOR_SARI_DELETION_F_MEASURE) sari_scores.append(sari) keep_scores.append(keep) add_scores.append(add) deletion_scores.append(deletion) return (np.asarray(sari_scores), np.asarray(keep_scores), np.asarray(add_scores), np.asarray(deletion_scores)) sari, keep, add, deletion = tf.py_func( get_sari_numpy, [source_ids, prediction_ids, target_ids], [tf.float64, tf.float64, tf.float64, tf.float64]) return sari, keep, add, deletion
Computes the SARI scores from the given source, prediction and targets. An approximate SARI scoring method since we do not glue word pieces or decode the ids and tokenize the output. By default, we use ngram order of 4. Also, this does not have beam search. Args: predictions: tensor, model predictions. labels: tensor, gold output. features: dict, containing inputs. Returns: sari: int, approx sari score
def sari_score(predictions, labels, features, **unused_kwargs): """Computes the SARI scores from the given source, prediction and targets. An approximate SARI scoring method since we do not glue word pieces or decode the ids and tokenize the output. By default, we use ngram order of 4. Also, this does not have beam search. Args: predictions: tensor, model predictions. labels: tensor, gold output. features: dict, containing inputs. Returns: sari: int, approx sari score """ if "inputs" not in features: raise ValueError("sari_score requires inputs feature") # Convert the inputs and outputs to a [batch_size, sequence_length] tensor. inputs = tf.squeeze(features["inputs"], axis=[-1, -2]) outputs = tf.to_int32(tf.argmax(predictions, axis=-1)) outputs = tf.squeeze(outputs, axis=[-1, -2]) # Convert the labels to a [batch_size, 1, sequence_length] tensor. labels = tf.squeeze(labels, axis=[-1, -2]) labels = tf.expand_dims(labels, axis=1) score, _, _, _ = get_sari(inputs, outputs, labels) return score, tf.constant(1.0)
Download all MNIST files to directory unless they are there.
def _get_mnist(directory): """Download all MNIST files to directory unless they are there.""" for filename in [ _MNIST_TRAIN_DATA_FILENAME, _MNIST_TRAIN_LABELS_FILENAME, _MNIST_TEST_DATA_FILENAME, _MNIST_TEST_LABELS_FILENAME ]: generator_utils.maybe_download(directory, filename, _MNIST_URL + filename)
Extract images from an MNIST file into a numpy array. Args: filename: The path to an MNIST images file. num_images: The number of images in the file. Returns: A numpy array of shape [number_of_images, height, width, channels].
def _extract_mnist_images(filename, num_images): """Extract images from an MNIST file into a numpy array. Args: filename: The path to an MNIST images file. num_images: The number of images in the file. Returns: A numpy array of shape [number_of_images, height, width, channels]. """ with gzip.open(filename) as bytestream: bytestream.read(16) buf = bytestream.read(_MNIST_IMAGE_SIZE * _MNIST_IMAGE_SIZE * num_images) data = np.frombuffer(buf, dtype=np.uint8) data = data.reshape(num_images, _MNIST_IMAGE_SIZE, _MNIST_IMAGE_SIZE, 1) return data
Extract labels from an MNIST file into integers. Args: filename: The path to an MNIST labels file. num_labels: The number of labels in the file. Returns: A int64 numpy array of shape [num_labels]
def _extract_mnist_labels(filename, num_labels): """Extract labels from an MNIST file into integers. Args: filename: The path to an MNIST labels file. num_labels: The number of labels in the file. Returns: A int64 numpy array of shape [num_labels] """ with gzip.open(filename) as bytestream: bytestream.read(8) buf = bytestream.read(num_labels) labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64) return labels
Image generator for MNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. data_filename: file that contains features data. label_filename: file that contains labels. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images.
def mnist_common_generator(tmp_dir, training, how_many, data_filename, label_filename, start_from=0): """Image generator for MNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. data_filename: file that contains features data. label_filename: file that contains labels. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. """ data_path = os.path.join(tmp_dir, data_filename) labels_path = os.path.join(tmp_dir, label_filename) images = _extract_mnist_images(data_path, 60000 if training else 10000) labels = _extract_mnist_labels(labels_path, 60000 if training else 10000) # Shuffle the data to make sure classes are well distributed. data = list(zip(images, labels)) random.shuffle(data) images, labels = list(zip(*data)) return image_utils.image_generator(images[start_from:start_from + how_many], labels[start_from:start_from + how_many])
Image generator for MNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images.
def mnist_generator(tmp_dir, training, how_many, start_from=0): """Image generator for MNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. """ _get_mnist(tmp_dir) d = _MNIST_TRAIN_DATA_FILENAME if training else _MNIST_TEST_DATA_FILENAME l = _MNIST_TRAIN_LABELS_FILENAME if training else _MNIST_TEST_LABELS_FILENAME return mnist_common_generator(tmp_dir, training, how_many, d, l, start_from)
Download all FashionMNIST files to directory unless they are there.
def _get_fashion_mnist(directory): """Download all FashionMNIST files to directory unless they are there.""" # Fashion mnist files have the same names as MNIST. # We must choose a separate name (by adding 'fashion-' prefix) in the tmp_dir. for filename in [ _MNIST_TRAIN_DATA_FILENAME, _MNIST_TRAIN_LABELS_FILENAME, _MNIST_TEST_DATA_FILENAME, _MNIST_TEST_LABELS_FILENAME ]: generator_utils.maybe_download(directory, _FASHION_MNIST_LOCAL_FILE_PREFIX + filename, _FASHION_MNIST_URL + filename)
Image generator for FashionMNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images.
def fashion_mnist_generator(tmp_dir, training, how_many, start_from=0): """Image generator for FashionMNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. """ _get_fashion_mnist(tmp_dir) d = _FASHION_MNIST_LOCAL_FILE_PREFIX + ( _MNIST_TRAIN_DATA_FILENAME if training else _MNIST_TEST_DATA_FILENAME) l = _FASHION_MNIST_LOCAL_FILE_PREFIX + ( _MNIST_TRAIN_LABELS_FILENAME if training else _MNIST_TEST_LABELS_FILENAME) return mnist_common_generator(tmp_dir, training, how_many, d, l, start_from)
Generates synthetic timeseries using input parameters. Each generated timeseries has timeseries_length data points. Parameters for each timeseries are specified by timeseries_params. Args: timeseries_length: Number of data points to generate for each timeseries. timeseries_params: Parameters used to generate the timeseries. The following parameters need to be specified for each timeseries: m = Slope of the timeseries used to compute the timeseries trend. b = y-intercept of the timeseries used to compute the timeseries trend. A = Timeseries amplitude used to compute timeseries period. freqcoeff = Frequency coefficient used to compute timeseries period. rndA = Random amplitude used to inject noise into the timeseries. fn = Base timeseries function (np.cos or np.sin). Example params for two timeseries. [{"m": 0.006, "b": 300.0, "A":50.0, "freqcoeff":1500.0, "rndA":15.0, "fn": np.sin}, {"m": 0.000, "b": 500.0, "A":35.0, "freqcoeff":3500.0, "rndA":25.0, "fn": np.cos}] Returns: Multi-timeseries (list of list).
def generate_data(timeseries_length, timeseries_params): """Generates synthetic timeseries using input parameters. Each generated timeseries has timeseries_length data points. Parameters for each timeseries are specified by timeseries_params. Args: timeseries_length: Number of data points to generate for each timeseries. timeseries_params: Parameters used to generate the timeseries. The following parameters need to be specified for each timeseries: m = Slope of the timeseries used to compute the timeseries trend. b = y-intercept of the timeseries used to compute the timeseries trend. A = Timeseries amplitude used to compute timeseries period. freqcoeff = Frequency coefficient used to compute timeseries period. rndA = Random amplitude used to inject noise into the timeseries. fn = Base timeseries function (np.cos or np.sin). Example params for two timeseries. [{"m": 0.006, "b": 300.0, "A":50.0, "freqcoeff":1500.0, "rndA":15.0, "fn": np.sin}, {"m": 0.000, "b": 500.0, "A":35.0, "freqcoeff":3500.0, "rndA":25.0, "fn": np.cos}] Returns: Multi-timeseries (list of list). """ x = range(timeseries_length) multi_timeseries = [] for p in timeseries_params: # Trend y1 = [p["m"] * i + p["b"] for i in x] # Period y2 = [p["A"] * p["fn"](i / p["freqcoeff"]) for i in x] # Noise y3 = np.random.normal(0, p["rndA"], timeseries_length).tolist() # Sum of Trend, Period and Noise. Replace negative values with zero. y = [max(a + b + c, 0) for a, b, c in zip(y1, y2, y3)] multi_timeseries.append(y) return multi_timeseries
Basic 2-frame conv model with stochastic tower.
def next_frame_basic_stochastic(): """Basic 2-frame conv model with stochastic tower.""" hparams = basic_deterministic_params.next_frame_basic_deterministic() hparams.stochastic_model = True hparams.add_hparam("latent_channels", 1) hparams.add_hparam("latent_std_min", -5.0) hparams.add_hparam("num_iterations_1st_stage", 15000) hparams.add_hparam("num_iterations_2nd_stage", 15000) hparams.add_hparam("latent_loss_multiplier", 1e-3) hparams.add_hparam("latent_loss_multiplier_dynamic", False) hparams.add_hparam("latent_loss_multiplier_alpha", 1e-5) hparams.add_hparam("latent_loss_multiplier_epsilon", 1.0) hparams.add_hparam("latent_loss_multiplier_schedule", "constant") hparams.add_hparam("latent_num_frames", 0) # 0 means use all frames. hparams.add_hparam("anneal_end", 50000) hparams.add_hparam("information_capacity", 0.0) return hparams
Basic 2-frame conv model with stochastic tower.
def next_frame_sampling_stochastic(): """Basic 2-frame conv model with stochastic tower.""" hparams = basic_deterministic_params.next_frame_sampling() hparams.stochastic_model = True hparams.add_hparam("latent_channels", 1) hparams.add_hparam("latent_std_min", -5.0) hparams.add_hparam("num_iterations_1st_stage", 15000) hparams.add_hparam("num_iterations_2nd_stage", 15000) hparams.add_hparam("latent_loss_multiplier", 1e-3) hparams.add_hparam("latent_loss_multiplier_dynamic", False) hparams.add_hparam("latent_loss_multiplier_alpha", 1e-5) hparams.add_hparam("latent_loss_multiplier_epsilon", 1.0) hparams.add_hparam("latent_loss_multiplier_schedule", "constant") hparams.add_hparam("latent_num_frames", 0) # 0 means use all frames. hparams.add_hparam("anneal_end", 40000) hparams.add_hparam("information_capacity", 0.0) return hparams
Basic 2-frame conv model with stochastic discrete latent.
def next_frame_basic_stochastic_discrete(): """Basic 2-frame conv model with stochastic discrete latent.""" hparams = basic_deterministic_params.next_frame_sampling() hparams.batch_size = 4 hparams.video_num_target_frames = 6 hparams.scheduled_sampling_mode = "prob_inverse_lin" hparams.scheduled_sampling_decay_steps = 40000 hparams.scheduled_sampling_max_prob = 1.0 hparams.dropout = 0.15 hparams.filter_double_steps = 3 hparams.hidden_size = 96 hparams.learning_rate_constant = 0.002 hparams.learning_rate_warmup_steps = 2000 hparams.learning_rate_schedule = "linear_warmup * constant" hparams.concat_internal_states = True hparams.video_modality_loss_cutoff = 0.03 hparams.add_hparam("bottleneck_bits", 128) hparams.add_hparam("bottleneck_noise", 0.1) hparams.add_hparam("discretize_warmup_steps", 40000) hparams.add_hparam("latent_rnn_warmup_steps", 40000) hparams.add_hparam("latent_rnn_max_sampling", 0.5) hparams.add_hparam("latent_use_max_probability", 0.8) hparams.add_hparam("full_latent_tower", False) hparams.add_hparam("latent_predictor_state_size", 128) hparams.add_hparam("latent_predictor_temperature", 1.0) hparams.add_hparam("complex_addn", True) hparams.add_hparam("recurrent_state_size", 64) return hparams
Map the function f to the nested structure x (dicts, tuples, lists).
def nested_map(x, f): """Map the function f to the nested structure x (dicts, tuples, lists).""" if isinstance(x, list): return [nested_map(y, f) for y in x] if isinstance(x, tuple): return tuple([nested_map(y, f) for y in x]) if isinstance(x, dict): return {k: nested_map(x[k], f) for k in x} return f(x)
Get a structure of shapes for a structure of nested arrays.
def shapes(x): """Get a structure of shapes for a structure of nested arrays.""" def shape(x): try: return x.shape except Exception: # pylint: disable=broad-except return [] return nested_map(x, shape)
Get a structure of sizes for a structure of nested arrays.
def sizes(x): """Get a structure of sizes for a structure of nested arrays.""" def size(x): try: return x.size except Exception: # pylint: disable=broad-except return 0 return nested_map(x, size)
Find the frame with the caller on the stack.
def _find_frame(stack, start=0): """Find the frame with the caller on the stack.""" # We want to find the first place where the layer was called # that is *not* an __init__ function of an inheriting layer. frame = inspect.getframeinfo(stack[start][0]) # If we are in an init, move on. if frame.function == '__init__': return _find_frame(stack, start + 1) return frame
Shorten file path in error lines for more readable tracebacks.
def _shorten_file_path(line): """Shorten file path in error lines for more readable tracebacks.""" start = line.lower().find('file') if start < 0: return line first_quote = line.find('"', start) if first_quote < 0: return line second_quote = line.find('"', first_quote + 1) if second_quote < 0: return line path = line[first_quote + 1:second_quote] new_path = '/'.join(path.split('/')[-3:]) return line[:first_quote] + '[...]/' + new_path + line[second_quote + 1:]
Cleaned-up form of traceback.
def _short_traceback(skip=3): """Cleaned-up form of traceback.""" counter, res = 0, [] # Skipping 3 lines by default: the top (useless) and self-call. lines = traceback.format_exc().splitlines()[skip:] for l in lines: res.append(_shorten_file_path(l)) if counter % 2 == 1: res.append('') counter += 1 # If we see a LayerError, the traceback has already been processed. if l.startswith('LayerError'): # Skip 4 back except last as these are internal base-layer calls. res = res[:-4] + [res[-1]] res += lines[counter:] break return '\n'.join(res)
Create a layer class from a function.
def layer(output_shape=None, new_parameters=None): """Create a layer class from a function.""" def layer_decorator(call): """Decorating the call function.""" def output_shape_fun(self, input_shape): if output_shape is None: return input_shape kwargs = self._init_kwargs # pylint: disable=protected-access return output_shape(input_shape, **kwargs) def new_parameters_fun(self, input_shape, rng): if new_parameters is None: return () kwargs = self._init_kwargs # pylint: disable=protected-access return new_parameters(input_shape, rng, **kwargs) def call_fun(self, x, params=(), **kwargs): """The call function of the created class, derived from call.""" # Merge on-call kwargs with class-kwargs. call_kwargs = kwargs.copy() call_kwargs.update(self._init_kwargs) # pylint: disable=protected-access # Call with the merged kwargs. return call(x, params=params, **call_kwargs) # Set doc for python help. call_fun.__doc__ = call.__doc__ if output_shape is None: output_shape_fun.__doc__ = output_shape.__doc__ if new_parameters is None: new_parameters_fun.__doc__ = new_parameters.__doc__ # Create the class. cls = type(call.__name__, (Layer,), {'call': call_fun, 'output_shape': output_shape_fun, 'new_parameters': new_parameters_fun}) return cls return layer_decorator
Initialize the layer given an input shape and rng. Returns new_parameters(input_shape, rng) on the first call and () on any subsequent call, as the layer is already initialized. This is used for networks that share parameters, so the layer only produces them once. Note that all arguments and return values can be tuples or dictionaries or arbitraty nested structures composed of tuples and dictionaries. Args: input_shape: a tuple representing the shape of the input. rng: random number generator. Returns: Newly created parameters on the first call and () on all subsequent calls.
def initialize(self, input_shape, rng): """Initialize the layer given an input shape and rng. Returns new_parameters(input_shape, rng) on the first call and () on any subsequent call, as the layer is already initialized. This is used for networks that share parameters, so the layer only produces them once. Note that all arguments and return values can be tuples or dictionaries or arbitraty nested structures composed of tuples and dictionaries. Args: input_shape: a tuple representing the shape of the input. rng: random number generator. Returns: Newly created parameters on the first call and () on all subsequent calls. """ try: # Re-using this layer, no new parameters. if not self._first_init: return () # First call of this layer, create parameters. self._first_init = False self._params = self.new_parameters(input_shape, rng) return self._params except Exception: name, trace = self.__class__.__name__, _short_traceback() raise LayerError(name, 'initialize', self._caller, input_shape, trace)
Returns dict<str ref_url, str ref_content>.
def _references_content(ref_files): """Returns dict<str ref_url, str ref_content>.""" example_spec = { "url": tf.FixedLenFeature([], tf.string), "content": tf.FixedLenFeature([], tf.string), } data = {} for ex in generator_utils.tfrecord_iterator( ref_files, gzipped=True, example_spec=example_spec): data[ex["url"]] = text_encoder.to_unicode(ex["content"]) return data
Urls for chunk: dict<str wiki_url, list<str> ref_urls>.
def _wiki_urls_for_shard(shard_id, urls_dir=None): """Urls for chunk: dict<str wiki_url, list<str> ref_urls>.""" urls_dir = urls_dir or WIKI_URLS_DIR urls_filepath = os.path.join(urls_dir, WIKI_URLS_FILE % shard_id) with tf.gfile.GFile(urls_filepath) as f: return json.loads(f.read())
Generates WikipediaArticles from GCS that are part of shard shard_id.
def _wiki_articles(shard_id, wikis_dir=None): """Generates WikipediaArticles from GCS that are part of shard shard_id.""" if not wikis_dir: wikis_dir = WIKI_CONTENT_DIR with tf.Graph().as_default(): dataset = tf.data.TFRecordDataset( cc_utils.readahead( os.path.join(wikis_dir, WIKI_CONTENT_FILE % shard_id)), buffer_size=16 * 1000 * 1000) def _parse_example(ex_ser): """Parse serialized Example containing Wikipedia article content.""" features = { "url": tf.VarLenFeature(tf.string), "title": tf.VarLenFeature(tf.string), "section_titles": tf.VarLenFeature(tf.string), "section_texts": tf.VarLenFeature(tf.string), } ex = tf.parse_single_example(ex_ser, features) for k in ex.keys(): ex[k] = ex[k].values ex["url"] = ex["url"][0] ex["title"] = ex["title"][0] return ex dataset = dataset.map(_parse_example, num_parallel_calls=32) dataset = dataset.prefetch(100) record_it = dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: while True: try: ex = sess.run(record_it) except tf.errors.OutOfRangeError: break sections = [ WikipediaSection(title=text_encoder.to_unicode(title), text=text_encoder.to_unicode(text)) for title, text in zip(ex["section_titles"], ex["section_texts"]) ] yield WikipediaArticle( url=text_encoder.to_unicode(ex["url"]), title=text_encoder.to_unicode(ex["title"]), sections=sections)
Rank and return reference paragraphs by tf-idf score on title tokens.
def rank_reference_paragraphs(wiki_title, references_content, normalize=True): """Rank and return reference paragraphs by tf-idf score on title tokens.""" normalized_title = _normalize_text(wiki_title) title_tokens = _tokens_to_score( set(tokenizer.encode(text_encoder.native_to_unicode(normalized_title)))) ref_paragraph_info = [] doc_counts = collections.defaultdict(int) for ref in references_content: for paragraph in ref.split("\n"): normalized_paragraph = _normalize_text(paragraph) if cc_utils.filter_paragraph(normalized_paragraph): # Skip paragraph continue counts = _token_counts(normalized_paragraph, title_tokens) for token in title_tokens: if counts[token]: doc_counts[token] += 1 content = normalized_paragraph if normalize else paragraph info = {"content": content, "counts": counts} ref_paragraph_info.append(info) for info in ref_paragraph_info: score = 0. for token in title_tokens: term_frequency = info["counts"][token] inv_doc_frequency = ( float(len(ref_paragraph_info)) / max(doc_counts[token], 1)) score += term_frequency * math.log(inv_doc_frequency) info["score"] = score ref_paragraph_info.sort(key=lambda el: el["score"], reverse=True) return [info["content"] for info in ref_paragraph_info]
Produce examples from shard_ids to out_filepaths.
def produce_examples(shard_ids, wikis_dir, refs_dir, urls_dir, vocab_path, out_filepaths): """Produce examples from shard_ids to out_filepaths.""" # * Join the Wikipedia articles with their references # * Run Tf-idf to sort reference paragraphs # * Encode the Wikipedia and reference text with the vocabulary # * Write out TFRecords of tensorflow.Example tf.logging.info("Processing %d input shards into %d output files.", len(shard_ids), len(out_filepaths)) vocab = text_encoder.SubwordTextEncoder(vocab_path) eot_ids = vocab.encode(EOT) def example_generator(): """Generate Example dicts.""" stats = dict(total_original_wikis=0, total_original_refs=0, total_found_refs=0, ref_lengths=[], wiki_original_refs=[], wiki_found_refs=[], wikis_skipped_no_refs=0, wikis_skipped_short_lead=0, num_wikis_written=0) ref_files_by_shard = _references_files_by_shard(refs_dir) for shard_id in shard_ids: tf.logging.info("Processing shard %d", shard_id) wiki_urls = _wiki_urls_for_shard(shard_id, urls_dir) tf.logging.info("Loaded wiki URLs for shard") refs_content = _references_content(ref_files_by_shard[shard_id]) tf.logging.info("Loaded reference content for shard") for i, wiki in enumerate(_wiki_articles(shard_id, wikis_dir)): if not i % 1000: tf.logging.info("Processing wiki index %d for shard %d", i, shard_id) stats["total_original_wikis"] += 1 # Get reference content wiki_ref_content = [] ref_urls = wiki_urls[wiki.url]["refs"] stats["total_original_refs"] += len(ref_urls) stats_wiki_original_refs = len(ref_urls) stats_wiki_found_refs = 0 for ref_url in ref_urls: ref_content = refs_content.get(ref_url) if not ref_content: continue stats["total_found_refs"] += 1 stats["ref_lengths"].append(len(ref_content)) stats_wiki_found_refs += 1 wiki_ref_content.append(ref_content) stats["wiki_original_refs"].append(stats_wiki_original_refs) stats["wiki_found_refs"].append(stats_wiki_found_refs) if not wiki_ref_content or len(wiki_ref_content) < _MIN_REFS: # No/few refs were found stats["wikis_skipped_no_refs"] += 1 continue # Rank reference paragraphs with TFIDF wiki_title = _normalize_text(wiki.title) ranked_paragraphs = rank_reference_paragraphs(wiki_title, wiki_ref_content) # Construct inputs from Wiki title and references inputs = [] inputs.extend(vocab.encode(wiki_title)) inputs.extend(eot_ids) for paragraph in ranked_paragraphs: if len(inputs) >= 1e6: break paragraph += " " inputs.extend(vocab.encode(paragraph)) # Construct targets from article sections targets, section_boundaries = _encode_wiki_sections( wiki.sections, vocab) # Skip if lead section is too short if (not section_boundaries or section_boundaries[0] < _MIN_LEADSECTION_TOKENS): stats["wikis_skipped_short_lead"] += 1 continue inputs.append(text_encoder.EOS_ID) targets.append(text_encoder.EOS_ID) stats["num_wikis_written"] += 1 yield { "inputs": inputs, "targets": targets, "section_boundaries": section_boundaries, } tf.logging.info("Total: %d, Skipped: %d", stats["num_wikis_written"], stats["total_original_wikis"] - stats["num_wikis_written"]) tf.logging.info("Total refs: %d, Skipped refs: %d", stats["total_found_refs"], stats["total_original_refs"] - stats["total_found_refs"]) stats_fname = os.path.join(os.path.split(out_filepaths[0])[0], "stats.%d.json" % shard_ids[0]) with tf.gfile.Open(stats_fname, "w") as f: f.write(json.dumps(stats)) generator_utils.generate_files(example_generator(), out_filepaths)
Encodes sections with vocab. Returns ids and section boundaries.
def _encode_wiki_sections(sections, vocab): """Encodes sections with vocab. Returns ids and section boundaries.""" ids = [] section_boundaries = [] for i, section in enumerate(sections): if i > 0: # Skip including article title ids.extend(vocab.encode(_format_title(_normalize_text(section.title)))) ids.extend(vocab.encode(_normalize_text(section.text))) section_boundaries.append(len(ids)) return ids, section_boundaries
Extract references from WET files into sharded output files.
def extract_references_from_wets(wet_files, metadata_dir, out_dir, tmp_dir=None): """Extract references from WET files into sharded output files.""" # Setup output files shard_files = make_ref_shard_files(out_dir) num_refs = 0 for i, wet_file in enumerate(wet_files): num_refs_in_wet = 0 tf.logging.info("Processing file %d", i) # Read metadata file metadata_fname = os.path.join( metadata_dir, os.path.basename(wet_file)) + cc_utils.METADTA_SUFFIX with tf.gfile.Open(cc_utils.readahead(metadata_fname)) as f: wet_metadata = json.loads(f.read()) if not wet_metadata: # No references in this WET file continue if wet_file.startswith("http"): # download if not tmp_dir: tmp_dir = tempfile.gettempdir() record_gen = cc_utils.wet_records_from_url(wet_file, tmp_dir) else: # local record_gen = cc_utils.wet_records_from_file_obj( cc_utils.gzip_memfile(wet_file), take_ownership=True) for wet_record in record_gen: shard_ids = wet_metadata.get(wet_record.url) if not shard_ids: # URL not in dataset continue # Serialize and write out ex = _make_example_from_record(wet_record) ex_str = ex.SerializeToString() for shard_id in shard_ids: shard_files[shard_id].write(ex_str) num_refs += 1 num_refs_in_wet += 1 tf.logging.info("Wrote out %d references for this WET", num_refs_in_wet) tf.logging.info("Wrote out %d references total", num_refs) # Cleanup for shard_file in shard_files: shard_file.close()
Extract pages from an xml dump. Args: dump: a unicode string Returns: a list of unicode strings
def _dump_to_pages(dump): """Extract pages from an xml dump. Args: dump: a unicode string Returns: a list of unicode strings """ pos = 0 ret = [] start_tag = u"<page>\n" end_tag = u"</page>\n" while True: start_pos = dump.find(start_tag, pos) if start_pos == -1: break start_pos += len(start_tag) end_pos = dump.find(end_tag, start_pos) if end_pos == -1: break ret.append(dump[start_pos:end_pos]) pos = end_pos + len(end_tag) return ret
Extract the title from a page. Args: page: a unicode string Returns: a unicode string
def _page_to_title(page): """Extract the title from a page. Args: page: a unicode string Returns: a unicode string """ # print("page=%s" % page) start_tag = u"<title>" end_tag = u"</title>" start_pos = page.find(start_tag) end_pos = page.find(end_tag) assert start_pos != -1 assert end_pos != -1 start_pos += len(start_tag) return page[start_pos:end_pos]
Extract the text from a page. Args: page: a unicode string Returns: a unicode string
def _page_to_text(page): """Extract the text from a page. Args: page: a unicode string Returns: a unicode string """ # text start tag looks like "<text ..otherstuff>" start_pos = page.find(u"<text") assert start_pos != -1 end_tag_pos = page.find(u">", start_pos) assert end_tag_pos != -1 end_tag_pos += len(u">") end_pos = page.find(u"</text>") if end_pos == -1: return u"" return page[end_tag_pos:end_pos]
Remove everything found between instances of start_string and end_string. Replace each such instance with replace_fn(removed_text) e.g. _find_and_replace(u"the [[fat]] cat [[sat]]", u"[[", u"]]", lambda x: x) = u"the fat cat sat" Args: text: a unicode string start_string: a unicode string end_string: a unicode string replace_fn: a unary function from unicode string to unicode string Returns: a string
def _find_and_replace(text, start_string, end_string, replace_fn): """Remove everything found between instances of start_string and end_string. Replace each such instance with replace_fn(removed_text) e.g. _find_and_replace(u"the [[fat]] cat [[sat]]", u"[[", u"]]", lambda x: x) = u"the fat cat sat" Args: text: a unicode string start_string: a unicode string end_string: a unicode string replace_fn: a unary function from unicode string to unicode string Returns: a string """ ret = u"" current_pos = 0 while True: start_pos = text.find(start_string, current_pos) if start_pos == -1: ret += text[current_pos:] break ret += text[current_pos:start_pos] end_pos = text.find(end_string, start_pos + len(start_string)) if end_pos == -1: break ret += replace_fn(text[start_pos + len(start_string):end_pos]) current_pos = end_pos + len(end_string) return ret
Remove double brackets (internal links) but leave the viewable text. Args: text: a unicode string Returns: a unicode string
def _remove_double_brackets(text): """Remove double brackets (internal links) but leave the viewable text. Args: text: a unicode string Returns: a unicode string """ def replacement_fn(s): if u":" in s: # this is probably a category or something like that. return "" # keep the part after the bar. bar_pos = s.find(u"|") if bar_pos == -1: return s return s[bar_pos + 1:] return _find_and_replace(text, u"[[", u"]]", replacement_fn)
A stack of self attention layers.
def image_encoder(image_feat, hparams, name="image_encoder", save_weights_to=None, make_image_summary=True): """A stack of self attention layers.""" x = image_feat image_hidden_size = hparams.image_hidden_size or hparams.hidden_size image_filter_size = hparams.image_filter_size or hparams.filter_size with tf.variable_scope(name): for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers): with tf.variable_scope("layer_%d" % layer): with tf.variable_scope("self_attention"): y = vqa_layers.multihead_attention( common_layers.layer_preprocess(x, hparams), None, None, hparams.attention_key_channels or image_hidden_size, hparams.attention_value_channels or image_hidden_size, image_hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.image_self_attention_type, save_weights_to=save_weights_to, make_image_summary=make_image_summary, scale_dotproduct=hparams.scale_dotproduct, ) utils.collect_named_outputs( "norms", "image_feat_self_attention_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs( "norms", "image_feat_self_attention_postprocess_%d"%(layer), tf.norm(x, axis=-1)) with tf.variable_scope("ffn"): y = common_layers.dense_relu_dense( common_layers.layer_preprocess(x, hparams), image_filter_size, image_hidden_size, dropout=hparams.relu_dropout, ) utils.collect_named_outputs( "norms", "image_feat_ffn_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs( "norms", "image_feat_ffn_postprocess_%d"%(layer), tf.norm(x, axis=-1)) # if normalization is done in layer_preprocess, then it should also be done # on the output, since the output can grow very large, being the sum of # a whole stack of unnormalized layer outputs. return common_layers.layer_preprocess(x, hparams)
Prepare question encoder. Args: inputs: a Tensor. hparams: run hyperparameters Returns: encoder_input: a Tensor, bottom of encoder stack encoder_self_attention_bias: a bias tensor for use in encoder self-attention
def prepare_question_encoder(inputs, hparams): """Prepare question encoder. Args: inputs: a Tensor. hparams: run hyperparameters Returns: encoder_input: a Tensor, bottom of encoder stack encoder_self_attention_bias: a bias tensor for use in encoder self-attention """ encoder_input = inputs # Usual case - not a packed dataset. encoder_padding = common_attention.embedding_to_padding(encoder_input) ignore_padding = common_attention.attention_bias_ignore_padding( encoder_padding) encoder_self_attention_bias = ignore_padding if hparams.pos == "timing": encoder_input = common_attention.add_timing_signal_1d(encoder_input) elif hparams.pos == "emb": encoder_input = common_attention.add_positional_embedding( encoder_input, hparams.max_length, "inputs_positional_embedding", None) return (encoder_input, encoder_self_attention_bias)
A stack of self attention layers.
def question_encoder(question, question_self_attention_bias, hparams, name="question_encoder", save_weights_to=None, make_image_summary=True): """A stack of self attention layers.""" x = question with tf.variable_scope(name): for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers): with tf.variable_scope("layer_%d" % layer): with tf.variable_scope("self_attention"): y = vqa_layers.multihead_attention( common_layers.layer_preprocess(x, hparams), None, question_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.question_self_attention_type, block_length=hparams.block_length, save_weights_to=save_weights_to, make_image_summary=make_image_summary, scale_dotproduct=hparams.scale_dotproduct, ) utils.collect_named_outputs( "norms", "query_self_attention_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs( "norms", "query_self_attention_postprocess_%d"%(layer), tf.norm(x, axis=-1)) with tf.variable_scope("ffn"): y = common_layers.dense_relu_dense( common_layers.layer_preprocess(x, hparams), hparams.filter_size, hparams.hidden_size, dropout=hparams.relu_dropout, ) utils.collect_named_outputs( "norms", "query_ffn_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs( "norms", "query_ffn_postprocess_%d"%(layer), tf.norm(x, axis=-1)) # if normalization is done in layer_preprocess, then it should also be done # on the output, since the output can grow very large, being the sum of # a whole stack of unnormalized layer outputs. return common_layers.layer_preprocess(x, hparams)
Attention on image feature with question as query.
def attn(image_feat, query, hparams, name="attn", save_weights_to=None, make_image_summary=True): """Attention on image feature with question as query.""" with tf.variable_scope(name, "attn", values=[image_feat, query]): total_key_depth = hparams.attention_key_channels or hparams.hidden_size total_value_depth = hparams.attention_value_channels or hparams.hidden_size num_heads = hparams.num_heads query = tf.expand_dims(query, 1) q, k, v = common_attention.compute_qkv( query, image_feat, total_key_depth, total_value_depth, ) q = common_attention.split_heads(q, num_heads) k = common_attention.split_heads(k, num_heads) v = common_attention.split_heads(v, num_heads) if hparams.scale_dotproduct: key_depth_per_head = total_key_depth // num_heads q *= key_depth_per_head**-0.5 # image_feat is input as v x = common_attention.dot_product_attention( q, k, v, None, dropout_rate=hparams.attention_dropout, image_shapes=None, save_weights_to=save_weights_to, make_image_summary=make_image_summary) x = common_attention.combine_heads(x) return tf.squeeze(x, axis=1)
Multi layer perceptron with dropout and relu activation.
def mlp(feature, hparams, name="mlp"): """Multi layer perceptron with dropout and relu activation.""" with tf.variable_scope(name, "mlp", values=[feature]): num_mlp_layers = hparams.num_mlp_layers mlp_size = hparams.mlp_size for _ in range(num_mlp_layers): feature = common_layers.dense(feature, mlp_size, activation=None) utils.collect_named_outputs("norms", "mlp_feature", tf.norm(feature, axis=-1)) feature = common_layers.layer_norm(feature) feature = tf.nn.relu(feature) feature = tf.nn.dropout(feature, keep_prob=1.-hparams.dropout) return feature
Prepare encoder. Args: image_feat: a Tensor. question: a Tensor. hparams: run hyperparameters Returns: encoder_input: a Tensor, bottom of encoder stack encoder_self_attention_bias: a bias tensor for use in encoder self-attention
def prepare_image_question_encoder(image_feat, question, hparams): """Prepare encoder. Args: image_feat: a Tensor. question: a Tensor. hparams: run hyperparameters Returns: encoder_input: a Tensor, bottom of encoder stack encoder_self_attention_bias: a bias tensor for use in encoder self-attention """ encoder_input = tf.concat([image_feat, question], axis=1) encoder_padding = common_attention.embedding_to_padding(encoder_input) ignore_padding = common_attention.attention_bias_ignore_padding( encoder_padding) encoder_self_attention_bias = ignore_padding encoder_decoder_attention_bias = ignore_padding # Usual case - not a packed dataset. if hparams.pos == "timing": question = common_attention.add_timing_signal_1d(question) elif hparams.pos == "emb": question = common_attention.add_positional_embedding( question, hparams.max_length, "inputs_positional_embedding", None) encoder_input = tf.concat([image_feat, question], axis=1) return (encoder_input, encoder_self_attention_bias, encoder_decoder_attention_bias)
A stack of self attention layers.
def image_question_encoder(encoder_inputs, encoder_self_attention_bias, hparams, query=None, name="image_question_encoder", save_weights_to=None, make_image_summary=True): """A stack of self attention layers.""" x = encoder_inputs with tf.variable_scope(name): for layer in range(hparams.num_encoder_layers or hparams.num_hidden_layers): with tf.variable_scope("layer_%d" % layer): with tf.variable_scope("self_attention"): y = vqa_layers.multihead_attention( common_layers.layer_preprocess(x, hparams), None, encoder_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.self_attention_type, block_length=hparams.block_length, save_weights_to=save_weights_to, make_image_summary=make_image_summary, scale_dotproduct=hparams.scale_dotproduct, ) utils.collect_named_outputs( "norms", "encoder_self_attention_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs( "norms", "encoder_self_attention_postprocess_%d"%(layer), tf.norm(x, axis=-1)) if query is not None: with tf.variable_scope("encdec_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess(x, hparams), query, None, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.self_attention_type, block_length=hparams.block_length, save_weights_to=save_weights_to, make_image_summary=make_image_summary, scale_dotproduct=hparams.scale_dotproduct, ) utils.collect_named_outputs( "norms", "encoder_decoder_attention_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs( "norms", "encoder_decoder_attention_post_%d"%(layer), tf.norm(x, axis=-1)) with tf.variable_scope("ffn"): y = common_layers.dense_relu_dense( common_layers.layer_preprocess(x, hparams), hparams.filter_size, hparams.hidden_size, dropout=hparams.relu_dropout, ) utils.collect_named_outputs( "norms", "encoder_ffn_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs( "norms", "encoder_ffn_postprocess_%d"%(layer), tf.norm(x, axis=-1)) # if normalization is done in layer_preprocess, then it should also be done # on the output, since the output can grow very large, being the sum of # a whole stack of unnormalized layer outputs. return common_layers.layer_preprocess(x, hparams)
A stack of transformer layers. Args: decoder_input: a Tensor encoder_output: a Tensor decoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) encoder_decoder_attention_bias: bias Tensor for encoder-decoder attention (see common_attention.attention_bias()) hparams: hyperparameters for model name: a string save_weights_to: an optional dictionary to capture attention weights for visualization; the weights tensor will be appended there under a string key created from the variable scope (including name). make_image_summary: Whether to make an attention image summary. Returns: y: a Tensors
def decoder(decoder_input, encoder_output, decoder_self_attention_bias, encoder_decoder_attention_bias, hparams, name="decoder", save_weights_to=None, make_image_summary=True,): """A stack of transformer layers. Args: decoder_input: a Tensor encoder_output: a Tensor decoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) encoder_decoder_attention_bias: bias Tensor for encoder-decoder attention (see common_attention.attention_bias()) hparams: hyperparameters for model name: a string save_weights_to: an optional dictionary to capture attention weights for visualization; the weights tensor will be appended there under a string key created from the variable scope (including name). make_image_summary: Whether to make an attention image summary. Returns: y: a Tensors """ x = decoder_input with tf.variable_scope(name): for layer in range(hparams.num_decoder_layers or hparams.num_hidden_layers): layer_name = "layer_%d" % layer with tf.variable_scope(layer_name): with tf.variable_scope("self_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess(x, hparams), None, decoder_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, attention_type=hparams.self_attention_type, save_weights_to=save_weights_to, make_image_summary=make_image_summary, ) utils.collect_named_outputs("norms", "decoder_self_attention_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs("norms", "decoder_self_attention_post_%d"%(layer), tf.norm(x, axis=-1)) if encoder_output is not None: with tf.variable_scope("encdec_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess(x, hparams), encoder_output, encoder_decoder_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout, save_weights_to=save_weights_to, make_image_summary=make_image_summary, ) utils.collect_named_outputs( "norms", "decoder_encoder_attention_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs( "norms", "decoder_encoder_attention_post_%d"%(layer), tf.norm(x, axis=-1)) with tf.variable_scope("ffn"): y = common_layers.dense_relu_dense( common_layers.layer_preprocess(x, hparams), hparams.filter_size, hparams.hidden_size, dropout=hparams.relu_dropout, ) utils.collect_named_outputs("norms", "decoder_ffn_%d"%(layer), tf.norm(y, axis=-1)) x = common_layers.layer_postprocess(x, y, hparams) utils.collect_named_outputs("norms", "decoder_ffn_post_%d"%(layer), tf.norm(x, axis=-1)) # if normalization is done in layer_preprocess, then it should also be done # on the output, since the output can grow very large, being the sum of # a whole stack of unnormalized layer outputs. return common_layers.layer_preprocess(x, hparams)
Iterative encoder decoder.
def iterative_encoder_decoder(encoder_input, encoder_self_attention_bias, encoder_decoder_attention_bias, query, hparams): """Iterative encoder decoder.""" for _ in range(hparams.num_rec_steps): with tf.variable_scope("step", reuse=tf.AUTO_REUSE): encoder_output = image_question_encoder( encoder_input, encoder_self_attention_bias, hparams, query) decoder_output = decoder( query, encoder_output, None, encoder_decoder_attention_bias, hparams) encoder_input = encoder_output query = decoder_output return decoder_output
VQA attention baseline hparams.
def vqa_self_attention_base(): """VQA attention baseline hparams.""" hparams = common_hparams.basic_params1() hparams.batch_size = 128 hparams.use_fixed_batch_size = True, hparams.optimizer = "adam" hparams.optimizer_adam_beta1 = 0.9 hparams.optimizer_adam_beta2 = 0.997 hparams.optimizer_adam_epsilon = 1e-9 hparams.weight_decay = 0. hparams.clip_grad_norm = 0. hparams.initializer = "xavier" hparams.learning_rate_schedule = ( "constant*linear_warmup*rsqrt_normalized_decay") hparams.learning_rate_warmup_steps = 8000 hparams.learning_rate_constant = 1e-3 hparams.learning_rate_decay_rate = 0.5 hparams.learning_rate_decay_steps = 50000 hparams.dropout = 0.5 hparams.summarize_grads = True hparams.summarize_vars = True # not used hparams hparams.label_smoothing = 0. hparams.multiply_embedding_mode = "sqrt_depth" # add new hparams # use raw image as input hparams.add_hparam("image_input_type", "image") hparams.add_hparam("image_model_fn", "resnet_v1_152") hparams.add_hparam("resize_side", 512) hparams.add_hparam("height", 448) hparams.add_hparam("width", 448) hparams.add_hparam("distort", True) hparams.add_hparam("train_resnet", False) # image parts hparams.add_hparam("image_feat_preprocess_proj", True) hparams.add_hparam("image_feat_preprocess_layernorm", True) hparams.add_hparam("image_feat_encode", True) hparams.add_hparam("image_hidden_size", 0) # default to hidden_size hparams.add_hparam("image_filter_size", 0) # defaults to filter_size # question hidden size hparams.hidden_size = 512 hparams.filter_size = 1024 hparams.num_hidden_layers = 4 hparams.add_hparam("multimodal_combine", "concat") hparams.add_hparam("num_mlp_layers", 1) hparams.add_hparam("mlp_size", 1024) # self attention parts hparams.norm_type = "layer" hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.layer_prepostprocess_dropout = 0.1 hparams.attention_dropout = 0.1 hparams.relu_dropout = 0.1 hparams.add_hparam("pos", "timing") hparams.add_hparam("num_encoder_layers", 0) hparams.add_hparam("num_decoder_layers", 0) hparams.add_hparam("num_heads", 8) hparams.add_hparam("attention_key_channels", 0) hparams.add_hparam("attention_value_channels", 0) hparams.add_hparam("self_attention_type", "dot_product") hparams.add_hparam("image_self_attention_type", "dot_product") hparams.add_hparam("question_self_attention_type", "dot_product") hparams.add_hparam("block_length", 1) hparams.add_hparam("scale_dotproduct", True) # iterative part hparams.add_hparam("num_rec_steps", 3) return hparams
Big model.
def vqa_self_attention_feature_batch1024_big(): """Big model.""" hparams = vqa_self_attention_feature_batch1024() hparams.learning_rate_constant = 7e-4 hparams.batch_size = 256 hparams.hidden_size = 1024 hparams.filter_size = 4096 hparams.num_heads = 16 hparams.layer_prepostprocess_dropout = 0.3 hparams.attention_dropout = 0.3 hparams.relu_dropout = 0.3 return hparams
A default set of length-bucket boundaries.
def _bucket_boundaries(max_length, min_length=8, length_bucket_step=1.1): """A default set of length-bucket boundaries.""" assert length_bucket_step > 1.0 x = min_length boundaries = [] while x < max_length: boundaries.append(x) x = max(x + 1, int(x * length_bucket_step)) return boundaries
A batching scheme based on model hyperparameters. Every batch contains a number of sequences divisible by `shard_multiplier`. Args: batch_size: int, total number of tokens in a batch. max_length: int, sequences longer than this will be skipped. Defaults to batch_size. min_length_bucket: int length_bucket_step: float greater than 1.0 drop_long_sequences: bool, if True, then sequences longer than `max_length` are dropped. This prevents generating batches with more than the usual number of tokens, which can cause out-of-memory errors. shard_multiplier: an integer increasing the batch_size to suit splitting across datashards. length_multiplier: an integer multiplier that is used to increase the batch sizes and sequence length tolerance. min_length: int, sequences shorter than this will be skipped. Returns: A dictionary with parameters that can be passed to input_pipeline: * boundaries: list of bucket boundaries * batch_sizes: list of batch sizes for each length bucket * max_length: int, maximum length of an example Raises: ValueError: If min_length > max_length
def batching_scheme(batch_size, max_length, min_length_bucket, length_bucket_step, drop_long_sequences=False, shard_multiplier=1, length_multiplier=1, min_length=0): """A batching scheme based on model hyperparameters. Every batch contains a number of sequences divisible by `shard_multiplier`. Args: batch_size: int, total number of tokens in a batch. max_length: int, sequences longer than this will be skipped. Defaults to batch_size. min_length_bucket: int length_bucket_step: float greater than 1.0 drop_long_sequences: bool, if True, then sequences longer than `max_length` are dropped. This prevents generating batches with more than the usual number of tokens, which can cause out-of-memory errors. shard_multiplier: an integer increasing the batch_size to suit splitting across datashards. length_multiplier: an integer multiplier that is used to increase the batch sizes and sequence length tolerance. min_length: int, sequences shorter than this will be skipped. Returns: A dictionary with parameters that can be passed to input_pipeline: * boundaries: list of bucket boundaries * batch_sizes: list of batch sizes for each length bucket * max_length: int, maximum length of an example Raises: ValueError: If min_length > max_length """ max_length = max_length or batch_size if max_length < min_length: raise ValueError("max_length must be greater or equal to min_length") boundaries = _bucket_boundaries(max_length, min_length_bucket, length_bucket_step) boundaries = [boundary * length_multiplier for boundary in boundaries] max_length *= length_multiplier batch_sizes = [ max(1, batch_size // length) for length in boundaries + [max_length] ] max_batch_size = max(batch_sizes) # Since the Datasets API only allows a single constant for window_size, # and it needs divide all bucket_batch_sizes, we pick a highly-composite # window size and then round down all batch sizes to divisors of that window # size, so that a window can always be divided evenly into batches. # TODO(noam): remove this when Dataset API improves. highly_composite_numbers = [ 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880, 3603600, 4324320, 6486480, 7207200, 8648640, 10810800, 14414400, 17297280, 21621600, 32432400, 36756720, 43243200, 61261200, 73513440, 110270160 ] window_size = max( [i for i in highly_composite_numbers if i <= 3 * max_batch_size]) divisors = [i for i in range(1, window_size + 1) if window_size % i == 0] batch_sizes = [max([d for d in divisors if d <= bs]) for bs in batch_sizes] window_size *= shard_multiplier batch_sizes = [bs * shard_multiplier for bs in batch_sizes] # The Datasets API splits one window into multiple batches, which # produces runs of many consecutive batches of the same size. This # is bad for training. To solve this, we will shuffle the batches # using a queue which must be several times as large as the maximum # number of batches per window. max_batches_per_window = window_size // min(batch_sizes) shuffle_queue_size = max_batches_per_window * 3 ret = { "boundaries": boundaries, "batch_sizes": batch_sizes, "min_length": min_length, "max_length": (max_length if drop_long_sequences else 10**9), "shuffle_queue_size": shuffle_queue_size, } return ret
Wrapper around _batching_scheme with hparams.
def hparams_to_batching_scheme(hparams, drop_long_sequences=False, shard_multiplier=1, length_multiplier=1): """Wrapper around _batching_scheme with hparams.""" return batching_scheme( batch_size=hparams.batch_size, min_length=hparams.min_length, max_length=hparams.max_length, min_length_bucket=hparams.min_length_bucket, length_bucket_step=hparams.length_bucket_step, drop_long_sequences=drop_long_sequences, shard_multiplier=shard_multiplier, length_multiplier=length_multiplier)
Pads unknown features' dimensions for TPU.
def pad_for_tpu(shapes_dict, hparams, max_length): """Pads unknown features' dimensions for TPU.""" padded_shapes = {} def get_filler(specified_max_length): if not specified_max_length: return max_length return min(specified_max_length, max_length) inputs_none_filler = get_filler(hparams.max_input_seq_length) targets_none_filler = get_filler(hparams.max_target_seq_length) def pad_one_shape(shape, none_filler): return [ (dim if dim is not None else none_filler) for dim in shape.as_list() ] for key, shape in six.iteritems(shapes_dict): if key == "inputs": padded_shapes[key] = pad_one_shape(shape, inputs_none_filler) elif key == "targets": padded_shapes[key] = pad_one_shape(shape, targets_none_filler) else: padded_shapes[key] = pad_one_shape(shape, max_length) return padded_shapes
Set the right shapes for the features.
def standardize_shapes(features, batch_size=None): """Set the right shapes for the features.""" for fname in ["inputs", "targets"]: if fname not in features: continue f = features[fname] while len(f.get_shape()) < 4: f = tf.expand_dims(f, axis=-1) features[fname] = f if batch_size: # Ensure batch size is set on all features for _, t in six.iteritems(features): shape = t.get_shape().as_list() shape[0] = batch_size t.set_shape(t.get_shape().merge_with(shape)) # Assert shapes are fully known t.get_shape().assert_is_fully_defined() return features
Return the number of TFRecords in a file.
def _file_num_records_cached(filename): """Return the number of TFRecords in a file.""" # Cache the result, as this is expensive to compute if filename in _file_num_records_cache: return _file_num_records_cache[filename] ret = 0 for _ in tf.python_io.tf_record_iterator(filename): ret += 1 _file_num_records_cache[filename] = ret return ret
Pad batch dim of features to nearest multiple of batch_multiple.
def pad_batch(features, batch_multiple): """Pad batch dim of features to nearest multiple of batch_multiple.""" feature = list(features.items())[0][1] batch_size = tf.shape(feature)[0] mod = batch_size % batch_multiple has_mod = tf.cast(tf.cast(mod, tf.bool), tf.int32) batch_padding = batch_multiple * has_mod - mod padded_features = {} for k, feature in features.items(): rank = len(feature.shape) paddings = [[0, 0] for _ in range(rank)] paddings[0][1] = batch_padding padded_feature = tf.pad(feature, paddings) padded_features[k] = padded_feature return padded_features
Builds input pipeline for problem. Args: dataset: the dataset to make input function from. filepattern: the pattern of files to read from. skip_random_fraction_when_training: whether to skip randomly when training. batch_size_means_tokens_param: whether batch size should mean tokens. batch_size_multiplier: how to multiply batch size when bucketing. max_length: maximum length, mode: tf.estimator.ModeKeys hparams: HParams, model hparams data_dir: str, data directory; if None, will use hparams.data_dir params: dict, may include "batch_size" config: RunConfig; should have the data_parallelism attribute if not using TPU force_repeat: bool, whether to repeat the data even if not training prevent_repeat: bool, whether to not repeat when in training mode. Overrides force_repeat. Returns: (features_dict<str name, Tensor feature>, Tensor targets)
def input_fn(dataset, filepattern, skip_random_fraction_when_training, batch_size_means_tokens_param, batch_size_multiplier, max_length, mode, hparams, data_dir=None, params=None, config=None, force_repeat=False, prevent_repeat=False): """Builds input pipeline for problem. Args: dataset: the dataset to make input function from. filepattern: the pattern of files to read from. skip_random_fraction_when_training: whether to skip randomly when training. batch_size_means_tokens_param: whether batch size should mean tokens. batch_size_multiplier: how to multiply batch size when bucketing. max_length: maximum length, mode: tf.estimator.ModeKeys hparams: HParams, model hparams data_dir: str, data directory; if None, will use hparams.data_dir params: dict, may include "batch_size" config: RunConfig; should have the data_parallelism attribute if not using TPU force_repeat: bool, whether to repeat the data even if not training prevent_repeat: bool, whether to not repeat when in training mode. Overrides force_repeat. Returns: (features_dict<str name, Tensor feature>, Tensor targets) """ is_training = mode == tf.estimator.ModeKeys.TRAIN if config and config.use_tpu: num_threads = 64 else: num_threads = cpu_count() if is_training else 1 if config and hasattr(config, "data_parallelism") and config.data_parallelism: num_shards = config.data_parallelism.n else: num_shards = 1 mlperf_log.transformer_print( key=mlperf_log.INPUT_MAX_LENGTH, value=max_length) def tpu_valid_size(example): return example_valid_size(example, hparams.min_length, max_length) def gpu_valid_size(example): drop_long_sequences = is_training or hparams.eval_drop_long_sequences max_validate_length = max_length if drop_long_sequences else 10**9 return example_valid_size(example, hparams.min_length, max_validate_length) def define_shapes(example): batch_size = config and config.use_tpu and params["batch_size"] return standardize_shapes(example, batch_size=batch_size) # Read and preprocess data_dir = data_dir or (hasattr(hparams, "data_dir") and hparams.data_dir) if (force_repeat or is_training) and not prevent_repeat: # Repeat and skip a random number of records dataset = dataset.repeat() if is_training and skip_random_fraction_when_training: data_files = tf.contrib.slim.parallel_reader.get_data_files(filepattern) # In continuous_train_and_eval when switching between train and # eval, this input_fn method gets called multiple times and it # would give you the exact same samples from the last call # (because the Graph seed is set). So this skip gives you some # shuffling. dataset = skip_random_fraction(dataset, data_files[0]) dataset = dataset.map(cast_ints_to_int32, num_parallel_calls=num_threads) if batch_size_means_tokens_param: batch_size_means_tokens = True else: if _are_shapes_fully_defined(dataset.output_shapes): batch_size_means_tokens = False else: tf.logging.warning( "Shapes are not fully defined. Assuming batch_size means tokens.") batch_size_means_tokens = True # Batching if not batch_size_means_tokens: # Batch size means examples per datashard. if config and config.use_tpu: # on TPU, we use params["batch_size"], which specifies the number of # examples across all datashards batch_size = params["batch_size"] dataset = dataset.batch(batch_size, drop_remainder=True) else: batch_size = hparams.batch_size * num_shards dataset = dataset.batch(batch_size) else: # batch_size means tokens per datashard if config and config.use_tpu: dataset = dataset.filter(tpu_valid_size) padded_shapes = pad_for_tpu(dataset.output_shapes, hparams, max_length) # on TPU, we use params["batch_size"], which specifies the number of # examples across all datashards batch_size = params["batch_size"] if hparams.pad_batch: tf.logging.warn( "Padding the batch to ensure that remainder eval batches are " "processed. This may lead to incorrect metrics for " "non-zero-padded features, e.g. images. Use a smaller batch " "size that has no remainder in that case.") dataset = dataset.padded_batch( batch_size, padded_shapes, drop_remainder=False) dataset = dataset.map( functools.partial(pad_batch, batch_multiple=batch_size), num_parallel_calls=num_threads) else: dataset = dataset.padded_batch( batch_size, padded_shapes, drop_remainder=True) else: # On GPU, bucket by length dataset = dataset.filter(gpu_valid_size) cur_batching_scheme = hparams_to_batching_scheme( hparams, shard_multiplier=num_shards, length_multiplier=batch_size_multiplier) if hparams.use_fixed_batch_size: # Here batch_size really means examples per datashard. cur_batching_scheme["batch_sizes"] = [hparams.batch_size] cur_batching_scheme["boundaries"] = [] dataset = dataset.apply( tf.data.experimental.bucket_by_sequence_length( example_length, cur_batching_scheme["boundaries"], cur_batching_scheme["batch_sizes"])) if not is_training: batch_multiple = num_shards if hparams.use_fixed_batch_size: # Make sure the last batch has the same fixed size as the rest. batch_multiple *= hparams.batch_size if batch_multiple > 1: tf.logging.warn( "Padding the batch to ensure that remainder eval batches have " "a batch size divisible by the number of data shards. This may " "lead to incorrect metrics for non-zero-padded features, e.g. " "images. Use a single datashard (i.e. 1 GPU) in that case.") dataset = dataset.map( functools.partial(pad_batch, batch_multiple=batch_multiple), num_parallel_calls=num_threads) dataset = dataset.map(define_shapes, num_parallel_calls=num_threads) # Add shuffling for training batches. This is necessary along with record # level shuffling in the dataset generation. Record shuffling will shuffle # the examples. However, in some cases, it's possible that the shuffle # buffer size for record shuffling is smaller than the batch size. In such # cases, adding batch shuffling ensures that the data is in random order # during training if (is_training and hasattr(hparams, "batch_shuffle_size") and hparams.batch_shuffle_size): dataset = dataset.shuffle(hparams.batch_shuffle_size) # Split batches into chunks if targets are too long. # The new "chunk_number" feature is 0 for the first chunk and goes up then. # Chunks are reversed so the 0th chunk comes first, then the 1st and so on, # so models can attend to them in the order they arrive. The last chunk is # usually the one containing the end of the target sentence (EOS). chunk_length = hparams.get("split_targets_chunk_length", 0) max_chunks = hparams.get("split_targets_max_chunks", 100) if chunk_length > 0: def is_nonzero_chunk(example): """A chunk is zero if all targets are 0s.""" return tf.less(0, tf.reduce_sum(tf.abs(example["targets"]))) def split_on_length(example): """Split a batch of ditcs on length.""" x = example["targets"] # TODO(kitaev): This code breaks if chunk_length * max_chunks < batch_size length_diff = chunk_length * max_chunks - tf.shape(x)[1] padded_x = tf.pad(x, [(0, 0), (0, length_diff), (0, 0), (0, 0)]) chunks = [padded_x[:, i*chunk_length:(i+1)*chunk_length, :, :] for i in range(max_chunks - 1)] chunks.append(padded_x[:, (max_chunks - 1)*chunk_length:, :, :]) new_example = {} # Setting chunk_number to be tf.range(max_chunks) is incompatible with TPU new_example["chunk_number"] = tf.concat([ tf.expand_dims(tf.ones_like(c) * n, axis=0) for n, c in enumerate(chunks) ], axis=0) new_example["targets"] = tf.concat( [tf.expand_dims(c, axis=0) for c in chunks], axis=0) for k in example: if k != "targets": assert k != "chunk_number", ( "Chunking code expects the chunk_number feature name to be " "available" ) new_example[k] = tf.concat( [tf.expand_dims(example[k], axis=0) for _ in range(max_chunks)], axis=0) return tf.data.Dataset.from_tensor_slices(new_example) dataset = dataset.flat_map(split_on_length) dataset = dataset.filter(is_nonzero_chunk) # The chunking data pipeline thus far creates batches of examples where all # of the examples have the same chunk number. This can lead to periodic # fluctuations in the loss; for example, when all examples in the batch have # chunk number 0 the loss may be higher than midway through a sequence. # Enabling split_targets_strided_training adjusts the data so that each # batch includes examples at various points within a sequence. if is_training and hparams.split_targets_strided_training: # TODO(kitaev): make sure that shape inference works on GPU, not just TPU. inferred_batch_size = dataset.output_shapes["targets"].as_list()[0] if inferred_batch_size is None: raise ValueError( "Strided training is only implemented when the batch size can be " "inferred statically, for example when training on TPU." ) chunk_stride = inferred_batch_size * max( 1, max_chunks // inferred_batch_size) + 1 def collapse_nested_datasets(example): """Converts a dataset of datasets to a dataset of tensor features.""" new_example = {} for k, v in example.items(): v = tf.data.experimental.get_single_element( v.batch(inferred_batch_size, drop_remainder=True)) new_example[k] = v return tf.data.Dataset.from_tensor_slices(new_example) dataset = dataset.apply(tf.data.experimental.unbatch()) dataset = dataset.window(inferred_batch_size, inferred_batch_size, chunk_stride) dataset = dataset.flat_map(collapse_nested_datasets) dataset = dataset.batch(inferred_batch_size, drop_remainder=True) def prepare_for_output(example): if not config or not config.use_tpu: _summarize_features(example, num_shards) if mode == tf.estimator.ModeKeys.PREDICT: example["infer_targets"] = example.pop("targets") return example else: return example, example["targets"] dataset = dataset.map(prepare_for_output, num_parallel_calls=num_threads) dataset = dataset.prefetch(2) if mode == tf.estimator.ModeKeys.PREDICT: # This is because of a bug in the Estimator that short-circuits prediction # if it doesn't see a QueueRunner. DummyQueueRunner implements the # minimal expected interface but does nothing. tf.add_to_collection(tf.GraphKeys.QUEUE_RUNNERS, DummyQueueRunner()) return dataset
Generate example dicts.
def dataset_generator(filepath, dataset, chunk_size=1, start_idx=None, end_idx=None): """Generate example dicts.""" encoder = dna_encoder.DNAEncoder(chunk_size=chunk_size) with h5py.File(filepath, "r") as h5_file: # Get input keys from h5_file src_keys = [s % dataset for s in ["%s_in", "%s_na", "%s_out"]] src_values = [h5_file[k] for k in src_keys] inp_data, mask_data, out_data = src_values assert len(set([v.len() for v in src_values])) == 1 if start_idx is None: start_idx = 0 if end_idx is None: end_idx = inp_data.len() for i in range(start_idx, end_idx): if i % 100 == 0: print("Generating example %d for %s" % (i, dataset)) inputs, mask, outputs = inp_data[i], mask_data[i], out_data[i] ex_dict = to_example_dict(encoder, inputs, mask, outputs) # Original data has one output for every 128 input bases. Ensure that the # ratio has been maintained given the chunk size and removing EOS. assert (len(ex_dict["inputs"]) - 1) == (( 128 // chunk_size) * ex_dict["targets_shape"][0]) yield ex_dict
Generate start and end indices per outfile.
def generate_shard_args(outfiles, num_examples): """Generate start and end indices per outfile.""" num_shards = len(outfiles) num_examples_per_shard = num_examples // num_shards start_idxs = [i * num_examples_per_shard for i in range(num_shards)] end_idxs = list(start_idxs) end_idxs.pop(0) end_idxs.append(num_examples) return zip(start_idxs, end_idxs, outfiles)
Convert single h5 record to an example dict.
def to_example_dict(encoder, inputs, mask, outputs): """Convert single h5 record to an example dict.""" # Inputs bases = [] input_ids = [] last_idx = -1 for row in np.argwhere(inputs): idx, base_id = row idx, base_id = int(idx), int(base_id) assert idx > last_idx # if not, means 2 True values in 1 row # Some rows are all False. Those rows are mapped to UNK_ID. while idx != last_idx + 1: bases.append(encoder.UNK) last_idx += 1 bases.append(encoder.BASES[base_id]) last_idx = idx assert len(inputs) == len(bases) input_ids = encoder.encode(bases) input_ids.append(text_encoder.EOS_ID) # Targets: mask and output targets_mask = [float(v) for v in mask] # The output is (n, m); store targets_shape so that it can be reshaped # properly on the other end. targets = [float(v) for v in outputs.flatten()] targets_shape = [int(dim) for dim in outputs.shape] assert mask.shape[0] == outputs.shape[0] example_keys = ["inputs", "targets_mask", "targets", "targets_shape"] ex_dict = dict( zip(example_keys, [input_ids, targets_mask, targets, targets_shape])) return ex_dict