INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
Cycle GAN, main step used for training.
def cycle_gan_internal(inputs, targets, _, hparams): """Cycle GAN, main step used for training.""" with tf.variable_scope("cycle_gan"): # Embed inputs and targets. inputs_orig, targets_orig = tf.to_int32(inputs), tf.to_int32(targets) inputs = common_layers.embedding( inputs_orig, hparams.vocab_size, hparams.hidden_size, "embed") targets = common_layers.embedding( targets_orig, hparams.vocab_size, hparams.hidden_size, "embed", reuse=True) x, _ = split_on_batch(inputs) _, y = split_on_batch(targets) # Y --> X y_fake = generator(y, hparams, "Fy", reuse=False) y_to_x_loss = lossfn(y, y_fake, True, hparams, True, "YtoX") # X --> Y x_fake = generator(x, hparams, "Gx", reuse=False) x_to_y_loss = lossfn(y, x_fake, True, hparams, True, "XtoY") # Cycle-Consistency y_fake_ = generator(y_fake, hparams, "Gx", reuse=True) x_fake_ = generator(x_fake, hparams, "Fy", reuse=True) x_to_x_loss = hparams.cycle_loss_multiplier1 * tf.reduce_mean( tf.abs(x_fake_ - x)) y_to_y_loss = hparams.cycle_loss_multiplier2 * tf.reduce_mean( tf.abs(y_fake_ - y)) cycloss = x_to_x_loss + y_to_y_loss sample_generated = generator(inputs, hparams, "Gx", reuse=True) sample_generated = tf.layers.dense( sample_generated, hparams.vocab_size, name="softmax", reuse=None) sample_generated = tf.stop_gradient( tf.expand_dims(sample_generated, axis=2)) losses = {"cycloss": cycloss, "y_to_x_loss": y_to_x_loss, "x_to_y_loss": x_to_y_loss} return sample_generated, losses
Hparams for decoding.
def decode_hparams(overrides=""): """Hparams for decoding.""" hparams = decoding.decode_hparams() # Number of interpolations between [0.0, 1.0]. hparams.add_hparam("num_interp", 11) # Which level(s) to interpolate. hparams.add_hparam("level_interp", [0, 1, 2]) # "all" or "ranked", interpolate all channels or a "ranked". hparams.add_hparam("channel_interp", "all") # interpolate channels ranked according to squared L2 norm. hparams.add_hparam("rank_interp", 1) # Whether on not to save frames as summaries hparams.add_hparam("save_frames", True) hparams.parse(overrides) return hparams
Set of hyperparameters.
def cycle_gan_small(): """Set of hyperparameters.""" hparams = transformer_vae.transformer_ae_small() hparams.batch_size = 2048 hparams.bottom = { "inputs": modalities.identity_bottom, "targets": modalities.identity_bottom, } hparams.top = { "targets": modalities.identity_top, } hparams.weight_decay = 3.0 hparams.learning_rate = 0.05 hparams.kl_warmup_steps = 5000 hparams.learning_rate_warmup_steps = 3000 hparams.add_hparam("vocab_size", 66) # Vocabulary size, need to set here. hparams.add_hparam("cycle_loss_multiplier1", 10.0) hparams.add_hparam("cycle_loss_multiplier2", 10.0) return hparams
Preprocess frame. 1. Converts [0, 255] to [-0.5, 0.5] 2. Adds uniform noise. Args: frame: 3-D Tensor representing pixels. Returns: frame: 3-D Tensor with values in between [-0.5, 0.5]
def preprocess_frame(frame): """Preprocess frame. 1. Converts [0, 255] to [-0.5, 0.5] 2. Adds uniform noise. Args: frame: 3-D Tensor representing pixels. Returns: frame: 3-D Tensor with values in between [-0.5, 0.5] """ # Normalize from [0.0, 1.0] -> [-0.5, 0.5] frame = common_layers.convert_rgb_to_real(frame) frame = frame - 0.5 frame, _ = glow_ops.uniform_binning_correction(frame) return frame
Encode frames to latents.
def frame_to_latents(frame, hparams): """Encode frames to latents.""" # Preprocess frame = preprocess_frame(frame) # Encode [X_t] to [z^1_t, z^2_t .. z^l_t] glow_vals = glow_ops.encoder_decoder( "codec", frame, hparams, eps=None, reverse=False) z_top, _, level_eps, _, _ = glow_vals return z_top, level_eps
Decodes latents to frames.
def latents_to_frames(z_top_interp, level_eps_interp, hparams): """Decodes latents to frames.""" # Decode [z^1_t, z^2_t .. z^l_t] to [X_t] images, _, _, _ = glow_ops.encoder_decoder( "codec", z_top_interp, hparams, eps=level_eps_interp, reverse=True) images = glow_ops.postprocess(images) return images
Interpolate between the first input frame and last target frame. Args: features: dict of tensors hparams: HParams, training hparams. decode_hp: HParams, decode hparams. Returns: images: interpolated images, 4-D Tensor, shape=(num_interp, H, W, C) first_frame: image, 3-D Tensor, shape=(1, H, W, C) last_frame: image, 3-D Tensor, shape=(1, H, W, C)
def interpolate(features, hparams, decode_hp): """Interpolate between the first input frame and last target frame. Args: features: dict of tensors hparams: HParams, training hparams. decode_hp: HParams, decode hparams. Returns: images: interpolated images, 4-D Tensor, shape=(num_interp, H, W, C) first_frame: image, 3-D Tensor, shape=(1, H, W, C) last_frame: image, 3-D Tensor, shape=(1, H, W, C) """ inputs, targets = features["inputs"], features["targets"] inputs = tf.unstack(inputs, axis=1) targets = tf.unstack(targets, axis=1) coeffs = np.linspace(0.0, 1.0, decode_hp.num_interp) # (X_1, X_t) -> (z_1, z_t) first_frame, last_frame = inputs[0], targets[-1] first_top_z, first_level_eps = frame_to_latents(first_frame, hparams) last_top_z, last_level_eps = frame_to_latents(last_frame, hparams) # Interpolate latents at all levels. first_lats = first_level_eps + [first_top_z] last_lats = last_level_eps + [last_top_z] interp_lats = [] lat_iterator = enumerate(zip(first_lats, last_lats)) for level_ind, (first_lat, last_lat) in lat_iterator: if level_ind in decode_hp.level_interp: if decode_hp.channel_interp == "all": interp_lat = glow_ops.linear_interpolate(first_lat, last_lat, coeffs) else: interp_lat = glow_ops.linear_interpolate_rank( first_lat, last_lat, coeffs, decode_hp.rank_interp) else: interp_lat = tf.tile(first_lat, [decode_hp.num_interp, 1, 1, 1]) interp_lats.append(interp_lat) level_eps_interp = interp_lats[:hparams.n_levels-1] z_top_interp = interp_lats[-1] images = latents_to_frames(z_top_interp, level_eps_interp, hparams) return images, first_frame, last_frame
Get nested summaries_log_dir based on decode_hp.
def get_summaries_log_dir(decode_hp, output_dir, dataset_split): """Get nested summaries_log_dir based on decode_hp.""" child_dir = decode_hp.summaries_log_dir level_dir = "".join([str(level) for level in decode_hp.level_interp]) if decode_hp.channel_interp == "all": rank_dir = "all" else: rank_dir = "rank_%d" % decode_hp.rank_interp child_dir = "%s/%s_%s" % (child_dir, level_dir, rank_dir) if dataset_split is not None: child_dir += "_{}".format(dataset_split) return os.path.join(output_dir, child_dir)
Converts interpolated frames into tf summaries. The summaries consists of: 1. Image summary corresponding to the first frame. 2. Image summary corresponding to the last frame. 3. The interpolated frames as a gif summary. Args: sample_ind: int interpolations: Numpy array, shape=(num_interp, H, W, 3) first_frame: Numpy array, shape=(HWC) last_frame: Numpy array, shape=(HWC) hparams: HParams, train hparams decode_hp: HParams, decode hparams Returns: summaries: list of tf Summary Values.
def interpolations_to_summary(sample_ind, interpolations, first_frame, last_frame, hparams, decode_hp): """Converts interpolated frames into tf summaries. The summaries consists of: 1. Image summary corresponding to the first frame. 2. Image summary corresponding to the last frame. 3. The interpolated frames as a gif summary. Args: sample_ind: int interpolations: Numpy array, shape=(num_interp, H, W, 3) first_frame: Numpy array, shape=(HWC) last_frame: Numpy array, shape=(HWC) hparams: HParams, train hparams decode_hp: HParams, decode hparams Returns: summaries: list of tf Summary Values. """ parent_tag = "sample_%d" % sample_ind frame_shape = hparams.problem.frame_shape interp_shape = [hparams.batch_size, decode_hp.num_interp] + frame_shape interpolations = np.reshape(interpolations, interp_shape) interp_tag = "%s/interp/%s" % (parent_tag, decode_hp.channel_interp) if decode_hp.channel_interp == "ranked": interp_tag = "%s/rank_%d" % (interp_tag, decode_hp.rank_interp) summaries, _ = common_video.py_gif_summary( interp_tag, interpolations, return_summary_value=True, max_outputs=decode_hp.max_display_outputs, fps=decode_hp.frames_per_second) if decode_hp.save_frames: first_frame_summ = image_utils.image_to_tf_summary_value( first_frame, "%s/first" % parent_tag) last_frame_summ = image_utils.image_to_tf_summary_value( last_frame, "%s/last" % parent_tag) summaries.append(first_frame_summ) summaries.append(last_frame_summ) return summaries
EPVA hparams.
def next_frame_epva(): """EPVA hparams.""" hparams = basic_deterministic_params.next_frame_basic_deterministic() hparams.video_num_input_frames = 4 hparams.video_num_target_frames = 4 hparams.bottom = { "inputs": modalities.video_raw_bottom, "targets": modalities.video_raw_targets_bottom, } hparams.loss = { "targets": modalities.video_l2_raw_loss, } hparams.top = { "targets": modalities.video_raw_top, } hparams.learning_rate_schedule = "constant" hparams.learning_rate_constant = 1e-05 hparams.batch_size = 2 hparams.clip_grad_norm = 0.01 # TODO(msaffar): disentangle EPVA from SV2P hparams.add_hparam("reward_prediction", False) hparams.add_hparam("clip_pixel_values", True) hparams.add_hparam("context_frames", 5) hparams.add_hparam("enc_learning_rate", 1e-5) hparams.add_hparam("enc_pred_loss_scale", 0.1) hparams.add_hparam("enc_pred_loss_scale_delay", 6e5) hparams.add_hparam("enc_size", 64) hparams.add_hparam("enc_keep_prob", .65) hparams.add_hparam("enc_pred_use_l1_loss", False) hparams.add_hparam("enc_pred_use_l2norm", False) hparams.add_hparam("van_learning_rate", 3e-5) hparams.add_hparam("van_keep_prob", .9) hparams.add_hparam("sequence_length ", 64) hparams.add_hparam("skip_num", 2) hparams.add_hparam("pred_noise_std", 0) hparams.add_hparam("lstm_state_noise_stddev", 0) return hparams
Create slot variables for Adam with accumulated gradients.
def _create_slots(self, var_list): """Create slot variables for Adam with accumulated gradients.""" super(MultistepAdamOptimizer, self)._create_slots(var_list) first_var = min(var_list, key=lambda x: x.name) self._create_non_slot_variable(initial_value=0 if self._n == 1 else 1, name="iter", colocate_with=first_var) for v in var_list: self._zeros_slot(v, "grad_acc", self._name)
Apply conditionally if counter is zero.
def _apply_cond(self, apply_fn, grad, var, *args, **kwargs): """Apply conditionally if counter is zero.""" grad_acc = self.get_slot(var, "grad_acc") def apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs): total_grad = (grad_acc + grad) / tf.cast(self._n_t, grad.dtype) adam_op = apply_fn(total_grad, var, *args, **kwargs) with tf.control_dependencies([adam_op]): grad_acc_to_zero_op = grad_acc.assign(tf.zeros_like(grad_acc), use_locking=self._use_locking) return tf.group(adam_op, grad_acc_to_zero_op) def accumulate_gradient(grad_acc, grad): assign_op = tf.assign_add(grad_acc, grad, use_locking=self._use_locking) return tf.group(assign_op) # Strip return value return tf.cond( tf.equal(self._get_iter_variable(), 0), lambda: apply_adam(grad_acc, apply_fn, grad, var, *args, **kwargs), lambda: accumulate_gradient(grad_acc, grad))
Updates beta_power variables every n batches and incrs counter.
def _finish(self, update_ops, name_scope): """Updates beta_power variables every n batches and incrs counter.""" iter_ = self._get_iter_variable() beta1_power, beta2_power = self._get_beta_accumulators() with tf.control_dependencies(update_ops): with tf.colocate_with(iter_): def update_beta_op(): update_beta1 = beta1_power.assign( beta1_power * self._beta1_t, use_locking=self._use_locking) update_beta2 = beta2_power.assign( beta2_power * self._beta2_t, use_locking=self._use_locking) return tf.group(update_beta1, update_beta2) maybe_update_beta = tf.cond( tf.equal(iter_, 0), update_beta_op, tf.no_op) with tf.control_dependencies([maybe_update_beta]): update_iter = iter_.assign(tf.mod(iter_ + 1, self._n_t), use_locking=self._use_locking) return tf.group( *update_ops + [update_iter, maybe_update_beta], name=name_scope)
A stack of transformer layers. Args: encoder_input: a Tensor encoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) hparams: hyperparameters for model name: a string Returns: y: a Tensors
def transformer_revnet_encoder(encoder_input, encoder_self_attention_bias, hparams, name="encoder"): """A stack of transformer layers. Args: encoder_input: a Tensor encoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) hparams: hyperparameters for model name: a string Returns: y: a Tensors """ def f(x, side_input): """f(x) for reversible layer, self-attention layer.""" encoder_self_attention_bias = side_input[0] old_hid_size = hparams.hidden_size hparams.hidden_size = old_hid_size // 2 with tf.variable_scope("self_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess( x, hparams), None, encoder_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout) y = common_layers.layer_postprocess(x, y, hparams) hparams.hidden_size = old_hid_size return y def g(x): """g(x) for reversible layer, feed-forward layer.""" old_hid_size = hparams.hidden_size hparams.hidden_size = old_hid_size // 2 with tf.variable_scope("ffn"): y = transformer.transformer_ffn_layer( common_layers.layer_preprocess(x, hparams), hparams) y = common_layers.layer_postprocess(x, y, hparams) hparams.hidden_size = old_hid_size return y x1, x2 = tf.split(encoder_input, 2, axis=-1) with tf.variable_scope(name): y1, y2 = tf.contrib.layers.rev_block( x1, x2, f, g, num_layers=hparams.num_hidden_layers, f_side_input=[encoder_self_attention_bias], is_training=hparams.mode == tf.estimator.ModeKeys.TRAIN) y = tf.concat([y1, y2], axis=-1) return common_layers.layer_preprocess(y, hparams)
A stack of transformer layers. Args: decoder_input: a Tensor encoder_output: a Tensor decoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) encoder_decoder_attention_bias: bias Tensor for encoder-decoder attention (see common_attention.attention_bias()) hparams: hyperparameters for model name: a string Returns: y: a Tensors
def transformer_revnet_decoder(decoder_input, encoder_output, decoder_self_attention_bias, encoder_decoder_attention_bias, hparams, name="decoder"): """A stack of transformer layers. Args: decoder_input: a Tensor encoder_output: a Tensor decoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) encoder_decoder_attention_bias: bias Tensor for encoder-decoder attention (see common_attention.attention_bias()) hparams: hyperparameters for model name: a string Returns: y: a Tensors """ def f(x, side_input): """f(x) for reversible layer, self-attention and enc-dec attention.""" decoder_self_attention_bias = side_input[0] encoder_decoder_attention_bias = side_input[1] encoder_output = side_input[2] old_hid_size = hparams.hidden_size hparams.hidden_size = old_hid_size // 2 with tf.variable_scope("self_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess( x, hparams), None, decoder_self_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout) y = common_layers.layer_postprocess(x, y, hparams) if encoder_output is not None: with tf.variable_scope("encdec_attention"): y = common_attention.multihead_attention( common_layers.layer_preprocess( x, hparams), encoder_output, encoder_decoder_attention_bias, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout) y = common_layers.layer_postprocess(x, y, hparams) hparams.hidden_size = old_hid_size return y def g(x): """g(x) for reversible layer, feed-forward layer.""" old_hid_size = hparams.hidden_size hparams.hidden_size = old_hid_size // 2 with tf.variable_scope("ffn"): y = transformer.transformer_ffn_layer( common_layers.layer_preprocess(x, hparams), hparams) y = common_layers.layer_postprocess(x, y, hparams) hparams.hidden_size = old_hid_size return y x1, x2 = tf.split(decoder_input, 2, axis=-1) with tf.variable_scope(name): y1, y2 = tf.contrib.layers.rev_block( x1, x2, f, g, num_layers=hparams.num_hidden_layers, f_side_input=[ decoder_self_attention_bias, encoder_decoder_attention_bias, encoder_output ], is_training=hparams.mode == tf.estimator.ModeKeys.TRAIN) y = tf.concat([y1, y2], axis=-1) return common_layers.layer_preprocess(y, hparams)
Base hparams for TransformerRevnet.
def transformer_revnet_base(): """Base hparams for TransformerRevnet.""" hparams = transformer.transformer_big() # Use settings from transformer_n_da hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.learning_rate = 0.4 return hparams
Base hparams for TransformerRevnet.
def transformer_revnet_big(): """Base hparams for TransformerRevnet.""" hparams = transformer_revnet_base() # The TransformerRevnet uses significantly less memory than the Transformer. # Increase batch size and model size. hparams.batch_size *= 2 hparams.hidden_size *= 2 hparams.num_heads *= 2 hparams.num_hidden_layers += 1 return hparams
Over which devices do we split each training batch. In old-fashioned async mode, we split the batch over all GPUs on the current worker. In sync mode, we split the batch over all the parameter server GPUs. This function returns an expert_utils.Parallelism object, which can be used to build the model. It is configured in a way that any variables created by `tf.get_variable` will be assigned to the parameter servers and shared between datashards. Args: daisy_chain_variables: whether to copy variables in a daisy chain on GPUs. all_workers: whether the devices are all async workers or just this one. Returns: a expert_utils.Parallelism.
def data_parallelism_from_flags(daisy_chain_variables=True, all_workers=False): """Over which devices do we split each training batch. In old-fashioned async mode, we split the batch over all GPUs on the current worker. In sync mode, we split the batch over all the parameter server GPUs. This function returns an expert_utils.Parallelism object, which can be used to build the model. It is configured in a way that any variables created by `tf.get_variable` will be assigned to the parameter servers and shared between datashards. Args: daisy_chain_variables: whether to copy variables in a daisy chain on GPUs. all_workers: whether the devices are all async workers or just this one. Returns: a expert_utils.Parallelism. """ dp_arg_names = inspect.getargspec(data_parallelism).args blacklist = ["daisy_chain_variables", "all_workers"] kwargs = {} for arg in dp_arg_names: if arg in blacklist: continue kwargs[arg] = getattr(tf.flags.FLAGS, arg) return data_parallelism( daisy_chain_variables=daisy_chain_variables, all_workers=all_workers, **kwargs)
See data_parallelism_from_flags.
def data_parallelism(daisy_chain_variables=True, all_workers=False, ps_replicas=0, ps_job="/job:ps", ps_gpu=0, schedule="continuous_train_and_eval", sync=False, worker_gpu=1, worker_replicas=1, worker_id=0, gpu_order="", worker_job="/job:localhost", no_data_parallelism=False): """See data_parallelism_from_flags.""" tf.logging.info("schedule=%s" % schedule) tf.logging.info("worker_gpu=%s" % worker_gpu) tf.logging.info("sync=%s" % sync) def _ps_replicas(all_workers=False): if all_workers: return list(range(ps_replicas)) # Worker K will be using replicas {0,...n-1} + K*n if we have n replicas. num_replicas = ps_replicas // worker_replicas return [d + worker_id * num_replicas for d in range(num_replicas)] def _gpu_order(num_gpus): if gpu_order: ret = [int(s) for s in gpu_order.split(" ")] if len(ret) == num_gpus: return ret return list(range(num_gpus)) def _ps_gpus(all_workers=False): ps_gpus = [] for d in _ps_replicas(all_workers=all_workers): ps_gpus.extend([(d, gpu) for gpu in _gpu_order(ps_gpu)]) return ps_gpus def ps_devices(all_workers=False): """List of ps devices (where to put the experts). Args: all_workers: whether the list is for all async workers or just this one. Returns: a list of device names """ if ps_replicas > 0: if ps_gpu > 0: return [ ps_job + "/task:%d/GPU:%d" % (d, gpu) for (d, gpu) in _ps_gpus(all_workers=all_workers) ] else: return [ ps_job + "/task:%d" % d for d in _ps_replicas(all_workers=all_workers) ] else: if worker_gpu > 0: return ["gpu:%d" % d for d in _gpu_order(worker_gpu)] else: return [""] def _replica_device_setter(worker_device): if ps_replicas == 0: return worker_device return tf.train.replica_device_setter( worker_device=worker_device, ps_tasks=ps_replicas, ps_device=ps_job + "/GPU:0" if ps_gpu > 0 else ps_job) is_single_machine = ps_replicas == 0 and worker_replicas == 1 if no_data_parallelism: datashard_devices = [""] caching_devices = None elif is_single_machine: tf.logging.warn( "Schedule=%s. Assuming that training is running on a single machine.", schedule) datashard_devices = ["gpu:%d" % d for d in _gpu_order(worker_gpu)] if worker_gpu < 1: datashard_devices += ["cpu:0"] caching_devices = None elif sync and ps_replicas > 0: # compute on ps datashard_devices = [ _replica_device_setter(d) for d in ps_devices(all_workers=all_workers) ] if ps_gpu > 0 and ps_replicas > 1: caching_devices = [ ps_job + "/task:%d/cpu:0" % d for (d, _) in _ps_gpus(all_workers=all_workers) ] else: caching_devices = None else: # compute on worker - this is either a single-worker setup or asynchronous # with parameter servers. if worker_gpu > 1: datashard_devices = [ _replica_device_setter(worker_job + "/GPU:%d" % d) for d in _gpu_order(worker_gpu) ] caching_devices = None else: datashard_devices = [_replica_device_setter(worker_job)] caching_devices = None tf.logging.info("datashard_devices: %s", datashard_devices) tf.logging.info("caching_devices: %s", caching_devices) tf.logging.info("ps_devices: %s", ps_devices(all_workers=all_workers)) return eu.Parallelism( datashard_devices, caching_devices=caching_devices, daisy_chain_variables=daisy_chain_variables, ps_devices=ps_devices(all_workers=all_workers))
Generate concatenated lines from file upto up_threshold characters.
def concat_generator(filename, up_threshold, low_threshold=10): """Generate concatenated lines from file upto up_threshold characters.""" txt = "" for line in tf.gfile.Open(filename): line = line.strip() if len(txt) + len(line) + 1 >= up_threshold: ret = txt txt = "" # We don't yield very short long parts to prevent noisy examples. if len(ret) > low_threshold and len(ret) < up_threshold: yield {"targets": ret} if not txt: txt = line else: txt = " ".join([txt, line])
Given python generators, generate from one, then from another, etc.
def mix_generators(generator_list): """Given python generators, generate from one, then from another, etc.""" i = 0 l = len(generator_list) stopiters_seen = 0 while stopiters_seen <= l: try: yield six.next(generator_list[i % l]) i += 1 stopiters_seen = 0 except StopIteration: i += 1 stopiters_seen += 1
Compute BLEU core summaries using the decoder output. Args: hook_args: DecodeHookArgs namedtuple Returns: A list of tf.Summary values if hook_args.hparams contains the reference file and the translated file.
def compute_bleu_summaries(hook_args): """Compute BLEU core summaries using the decoder output. Args: hook_args: DecodeHookArgs namedtuple Returns: A list of tf.Summary values if hook_args.hparams contains the reference file and the translated file. """ decode_hparams = hook_args.decode_hparams if not (decode_hparams.decode_reference and decode_hparams.decode_to_file): return None values = [] bleu = 100 * bleu_hook.bleu_wrapper( decode_hparams.decode_reference, decode_hparams.decode_to_file) values.append(tf.Summary.Value(tag="BLEU", simple_value=bleu)) tf.logging.info("%s: BLEU = %6.2f" % (decode_hparams.decode_to_file, bleu)) if hook_args.hparams.mlperf_mode: current_step = decode_hparams.mlperf_decode_step mlperf_log.transformer_print( key=mlperf_log.EVAL_TARGET, value=decode_hparams.mlperf_threshold) mlperf_log.transformer_print( key=mlperf_log.EVAL_ACCURACY, value={ "epoch": max(current_step // decode_hparams.iterations_per_loop - 1, 0), "value": bleu }) mlperf_log.transformer_print(key=mlperf_log.EVAL_STOP) if bleu >= decode_hparams.mlperf_threshold: decode_hparams.set_hparam("mlperf_success", True) return values
Preprocessing to strip tags in SGM files.
def _preprocess_sgm(line, is_sgm): """Preprocessing to strip tags in SGM files.""" if not is_sgm: return line # In SGM files, remove <srcset ...>, <p>, <doc ...> lines. if line.startswith("<srcset") or line.startswith("</srcset"): return "" if line.startswith("<doc") or line.startswith("</doc"): return "" if line.startswith("<p>") or line.startswith("</p>"): return "" # Strip <seg> tags. line = line.strip() if line.startswith("<seg") and line.endswith("</seg>"): i = line.index(">") return line[i + 1:-6]
Concatenates all `datasets` and saves to `filename`.
def compile_data(tmp_dir, datasets, filename, datatypes_to_clean=None): """Concatenates all `datasets` and saves to `filename`.""" datatypes_to_clean = datatypes_to_clean or [] filename = os.path.join(tmp_dir, filename) lang1_fname = filename + ".lang1" lang2_fname = filename + ".lang2" if tf.gfile.Exists(lang1_fname) and tf.gfile.Exists(lang2_fname): tf.logging.info("Skipping compile data, found files:\n%s\n%s", lang1_fname, lang2_fname) return filename with tf.gfile.GFile(lang1_fname, mode="w") as lang1_resfile: with tf.gfile.GFile(lang2_fname, mode="w") as lang2_resfile: for dataset in datasets: url = dataset[0] compressed_filename = os.path.basename(url) compressed_filepath = os.path.join(tmp_dir, compressed_filename) if url.startswith("http"): generator_utils.maybe_download(tmp_dir, compressed_filename, url) if dataset[1][0] == "tmx": cleaning_requested = "tmx" in datatypes_to_clean tmx_filename = os.path.join(tmp_dir, dataset[1][1]) if tmx_filename.endswith(".gz"): with gzip.open(tmx_filename, "rb") as tmx_file: _tmx_to_source_target(tmx_file, lang1_resfile, lang2_resfile, do_cleaning=cleaning_requested) else: with tf.gfile.Open(tmx_filename) as tmx_file: _tmx_to_source_target(tmx_file, lang1_resfile, lang2_resfile, do_cleaning=cleaning_requested) elif dataset[1][0] == "tsv": _, src_column, trg_column, glob_pattern = dataset[1] filenames = tf.gfile.Glob(os.path.join(tmp_dir, glob_pattern)) if not filenames: # Capture *.tgz and *.tar.gz too. mode = "r:gz" if compressed_filepath.endswith("gz") else "r" with tarfile.open(compressed_filepath, mode) as corpus_tar: corpus_tar.extractall(tmp_dir) filenames = tf.gfile.Glob(os.path.join(tmp_dir, glob_pattern)) for tsv_filename in filenames: if tsv_filename.endswith(".gz"): new_filename = tsv_filename.strip(".gz") generator_utils.gunzip_file(tsv_filename, new_filename) tsv_filename = new_filename with tf.gfile.Open(tsv_filename) as tsv_file: for line in tsv_file: if line and "\t" in line: parts = line.split("\t") source, target = parts[src_column], parts[trg_column] source, target = source.strip(), target.strip() clean_pairs = [(source, target)] if "tsv" in datatypes_to_clean: clean_pairs = cleaner_en_xx.clean_en_xx_pairs(clean_pairs) for source, target in clean_pairs: if source and target: lang1_resfile.write(source) lang1_resfile.write("\n") lang2_resfile.write(target) lang2_resfile.write("\n") else: lang1_filename, lang2_filename = dataset[1] lang1_filepath = os.path.join(tmp_dir, lang1_filename) lang2_filepath = os.path.join(tmp_dir, lang2_filename) is_sgm = ( lang1_filename.endswith("sgm") and lang2_filename.endswith("sgm")) if not (tf.gfile.Exists(lang1_filepath) and tf.gfile.Exists(lang2_filepath)): # For .tar.gz and .tgz files, we read compressed. mode = "r:gz" if compressed_filepath.endswith("gz") else "r" with tarfile.open(compressed_filepath, mode) as corpus_tar: corpus_tar.extractall(tmp_dir) if lang1_filepath.endswith(".gz"): new_filepath = lang1_filepath.strip(".gz") generator_utils.gunzip_file(lang1_filepath, new_filepath) lang1_filepath = new_filepath if lang2_filepath.endswith(".gz"): new_filepath = lang2_filepath.strip(".gz") generator_utils.gunzip_file(lang2_filepath, new_filepath) lang2_filepath = new_filepath for example in text_problems.text2text_txt_iterator( lang1_filepath, lang2_filepath): line1res = _preprocess_sgm(example["inputs"], is_sgm) line2res = _preprocess_sgm(example["targets"], is_sgm) clean_pairs = [(line1res, line2res)] if "txt" in datatypes_to_clean: clean_pairs = cleaner_en_xx.clean_en_xx_pairs(clean_pairs) for line1res, line2res in clean_pairs: if line1res and line2res: lang1_resfile.write(line1res) lang1_resfile.write("\n") lang2_resfile.write(line2res) lang2_resfile.write("\n") return filename
Get vocab for distill problems.
def get_or_create_vocab(self, data_dir, tmp_dir, force_get=False): """Get vocab for distill problems.""" # We assume that vocab file is present in data_dir directory where the # data generated will be stored. vocab_filepath = os.path.join(data_dir, self.vocab_filename) encoder = text_encoder.SubwordTextEncoder(vocab_filepath) return encoder
Set hparams overrides from unparsed args list.
def set_hparams_from_args(args): """Set hparams overrides from unparsed args list.""" if not args: return hp_prefix = "--hp_" tf.logging.info("Found unparsed command-line arguments. Checking if any " "start with %s and interpreting those as hparams " "settings.", hp_prefix) pairs = [] i = 0 while i < len(args): arg = args[i] if arg.startswith(hp_prefix): pairs.append((arg[len(hp_prefix):], args[i+1])) i += 2 else: tf.logging.warn("Found unknown flag: %s", arg) i += 1 as_hparams = ",".join(["%s=%s" % (key, val) for key, val in pairs]) if FLAGS.hparams: as_hparams = "," + as_hparams FLAGS.hparams += as_hparams
Create hparams.
def create_hparams(): """Create hparams.""" if FLAGS.use_tpu and "tpu" not in FLAGS.hparams_set: tf.logging.warn("Not all hyperparameter sets work on TPU. " "Prefer hparams_sets with a '_tpu' suffix, " "e.g. transformer_tpu, if available for your model.") hparams_path = os.path.join(FLAGS.output_dir, "hparams.json") return trainer_lib.create_hparams(FLAGS.hparams_set, FLAGS.hparams, hparams_path=hparams_path)
Create a run config. Args: hp: model hyperparameters output_dir: model's output directory, defaults to output_dir flag. Returns: a run config
def create_run_config(hp, output_dir=None): """Create a run config. Args: hp: model hyperparameters output_dir: model's output directory, defaults to output_dir flag. Returns: a run config """ save_ckpt_steps = max(FLAGS.iterations_per_loop, FLAGS.local_eval_frequency) save_ckpt_secs = FLAGS.save_checkpoints_secs or None if save_ckpt_secs: save_ckpt_steps = None assert FLAGS.output_dir or FLAGS.checkpoint_path tpu_config_extra_kwargs = {} if FLAGS.tpu_job_name is not None: tpu_config_extra_kwargs["tpu_job_name"] = FLAGS.tpu_job_name if getattr(hp, "mtf_mode", False): save_ckpt_steps = None # Disable the default saver save_ckpt_secs = None # Disable the default saver tpu_config_extra_kwargs = { "num_cores_per_replica": 1, "per_host_input_for_training": tpu_config.InputPipelineConfig.BROADCAST, } # the various custom getters we have written do not play well together yet. # TODO(noam): ask rsepassi for help here. daisy_chain_variables = ( hp.daisy_chain_variables and hp.activation_dtype == "float32" and hp.weight_dtype == "float32") return trainer_lib.create_run_config( model_name=FLAGS.model, model_dir=output_dir or os.path.expanduser(FLAGS.output_dir), master=FLAGS.master, iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.tpu_num_shards, log_device_placement=FLAGS.log_device_placement, save_checkpoints_steps=save_ckpt_steps, save_checkpoints_secs=save_ckpt_secs, keep_checkpoint_max=FLAGS.keep_checkpoint_max, keep_checkpoint_every_n_hours=FLAGS.keep_checkpoint_every_n_hours, num_gpus=FLAGS.worker_gpu, gpu_order=FLAGS.gpu_order, num_async_replicas=FLAGS.worker_replicas, gpu_mem_fraction=FLAGS.worker_gpu_memory_fraction, enable_graph_rewriter=FLAGS.enable_graph_rewriter, use_tpu=FLAGS.use_tpu, use_tpu_estimator=FLAGS.use_tpu_estimator, xla_jit_level=FLAGS.xla_jit_level, schedule=FLAGS.schedule, no_data_parallelism=hp.no_data_parallelism, optionally_use_dist_strat=FLAGS.optionally_use_dist_strat, daisy_chain_variables=daisy_chain_variables, ps_replicas=FLAGS.ps_replicas, ps_job=FLAGS.ps_job, ps_gpu=FLAGS.ps_gpu, sync=FLAGS.sync, worker_id=FLAGS.worker_id, worker_job=FLAGS.worker_job, random_seed=FLAGS.random_seed, tpu_infeed_sleep_secs=FLAGS.tpu_infeed_sleep_secs, inter_op_parallelism_threads=FLAGS.inter_op_parallelism_threads, log_step_count_steps=FLAGS.log_step_count_steps, intra_op_parallelism_threads=FLAGS.intra_op_parallelism_threads, tpu_config_extra_kwargs=tpu_config_extra_kwargs, cloud_tpu_name=FLAGS.cloud_tpu_name)
Saves FLAGS and hparams to output_dir.
def save_metadata(hparams): """Saves FLAGS and hparams to output_dir.""" output_dir = os.path.expanduser(FLAGS.output_dir) if not tf.gfile.Exists(output_dir): tf.gfile.MakeDirs(output_dir) # Save FLAGS in txt file if hasattr(FLAGS, "flags_into_string"): flags_str = FLAGS.flags_into_string() t2t_flags_str = "\n".join([ "--%s=%s" % (f.name, f.value) for f in FLAGS.flags_by_module_dict()["tensor2tensor.utils.flags"] ]) else: flags_dict = FLAGS.__dict__["__flags"] flags_str = "\n".join( ["--%s=%s" % (name, str(f)) for (name, f) in flags_dict.items()]) t2t_flags_str = None flags_txt = os.path.join(output_dir, "flags.txt") with tf.gfile.Open(flags_txt, "w") as f: f.write(flags_str) if t2t_flags_str: t2t_flags_txt = os.path.join(output_dir, "flags_t2t.txt") with tf.gfile.Open(t2t_flags_txt, "w") as f: f.write(t2t_flags_str) # Save hparams as hparams.json new_hparams = hparams_lib.copy_hparams(hparams) # Modality class is not JSON serializable so remove. new_hparams.del_hparam("modality") hparams_fname = os.path.join(output_dir, "hparams.json") with tf.gfile.Open(hparams_fname, "w") as f: f.write(new_hparams.to_json(indent=0, sort_keys=True))
A stack of convolution blocks with residual connection.
def residual_block(x, hparams): """A stack of convolution blocks with residual connection.""" k = (hparams.kernel_height, hparams.kernel_width) dilations_and_kernels = [((1, 1), k) for _ in range(3)] y = common_layers.subseparable_conv_block( x, hparams.hidden_size, dilations_and_kernels, padding="SAME", separability=0, name="residual_block") x = common_layers.layer_norm(x + y, hparams.hidden_size, name="lnorm") return tf.nn.dropout(x, 1.0 - hparams.dropout)
Xception body.
def xception_internal(inputs, hparams): """Xception body.""" with tf.variable_scope("xception"): cur = inputs if cur.get_shape().as_list()[1] > 200: # Large image, Xception entry flow cur = xception_entry(cur, hparams.hidden_size) else: # Small image, conv cur = common_layers.conv_block( cur, hparams.hidden_size, [((1, 1), (3, 3))], first_relu=False, padding="SAME", force2d=True, name="small_image_conv") for i in range(hparams.num_hidden_layers): with tf.variable_scope("layer_%d" % i): cur = residual_block(cur, hparams) return xception_exit(cur)
Xception entry flow.
def xception_entry(inputs, hidden_dim): """Xception entry flow.""" with tf.variable_scope("xception_entry"): def xnet_resblock(x, filters, res_relu, name): """Resblock.""" with tf.variable_scope(name): y = common_layers.separable_conv_block( x, filters, [((1, 1), (3, 3)), ((1, 1), (3, 3))], first_relu=True, padding="SAME", force2d=True, name="sep_conv_block") y = common_layers.pool(y, (3, 3), "MAX", "SAME", strides=(2, 2)) return y + common_layers.conv_block( x, filters, [((1, 1), (1, 1))], padding="SAME", strides=(2, 2), first_relu=res_relu, force2d=True, name="res_conv0") tf.summary.image("inputs", inputs, max_outputs=2) x = common_layers.conv_block( inputs, 32, [((1, 1), (3, 3))], first_relu=False, padding="SAME", strides=(2, 2), force2d=True, name="conv0") x = common_layers.conv_block( x, 64, [((1, 1), (3, 3))], padding="SAME", force2d=True, name="conv1") x = xnet_resblock(x, min(128, hidden_dim), True, "block0") x = xnet_resblock(x, min(256, hidden_dim), False, "block1") return xnet_resblock(x, hidden_dim, False, "block2")
Xception exit flow.
def xception_exit(inputs): """Xception exit flow.""" with tf.variable_scope("xception_exit"): x = inputs x_shape = x.get_shape().as_list() if x_shape[1] is None or x_shape[2] is None: length_float = tf.to_float(tf.shape(x)[1]) length_float *= tf.to_float(tf.shape(x)[2]) spatial_dim_float = tf.sqrt(length_float) spatial_dim = tf.to_int32(spatial_dim_float) x_depth = x_shape[3] x = tf.reshape(x, [-1, spatial_dim, spatial_dim, x_depth]) elif x_shape[1] != x_shape[2]: spatial_dim = int(math.sqrt(float(x_shape[1] * x_shape[2]))) if spatial_dim * spatial_dim != x_shape[1] * x_shape[2]: raise ValueError("Assumed inputs were square-able but they were " "not. Shape: %s" % x_shape) x = tf.reshape(x, [-1, spatial_dim, spatial_dim, x_depth]) x = common_layers.conv_block_downsample(x, (3, 3), (2, 2), "SAME") return tf.nn.relu(x)
Returns a plaintext representation of HTML content.
def get_text_from_html(html): """Returns a plaintext representation of HTML content.""" try: soup = bs4.BeautifulSoup(html, "html.parser") except: # pylint: disable=bare-except # Some docs don't parse return "" # Remove script and style tags for s in soup(["script", "style"]): s.decompose() return "\n".join([s for s in _soup_strings(soup)])
Return text strings in soup.
def _soup_strings(soup): """Return text strings in soup.""" paragraph_tags = set([ "caption", "details", "h1", "h2", "h3", "h4", "h5", "h6", "li", "p", "td", "div", "span" ]) skip_children = None for descendant in soup.descendants: # If we've treated a tag as a contiguous paragraph, don't re-emit the # children (see below). if skip_children is not None: try: in_skip = descendant in skip_children # pylint: disable=unsupported-membership-test except RecursionError: # pylint: disable=undefined-variable # Possible for this check to hit a nasty infinite recursion because of # BeautifulSoup __eq__ checks. in_skip = True if in_skip: continue else: skip_children = None # Treat some tags as contiguous paragraphs, regardless of other tags nested # inside (like <a> or <b>). if isinstance(descendant, bs4.Tag): if descendant.name in paragraph_tags: if descendant.find_all(paragraph_tags): # If there are nested paragraph tags, don't treat it as a single # contiguous tag. continue skip_children = list(descendant.descendants) text = " ".join(descendant.get_text(" ", strip=True).split()) if text: yield text continue if (isinstance(descendant, bs4.Comment) or not isinstance(descendant, bs4.NavigableString)): continue text = " ".join(descendant.strip().split()) if text: yield text
Set of hyperparameters.
def image_transformer_base(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.hidden_size = 512 hparams.batch_size = 4 hparams.max_length = 3075 hparams.dropout = 0.0 hparams.clip_grad_norm = 0. # i.e. no gradient clipping hparams.optimizer_adam_epsilon = 1e-9 hparams.learning_rate_decay_scheme = "noam" hparams.learning_rate = 0.1 hparams.learning_rate_warmup_steps = 4000 hparams.initializer_gain = 0.2 hparams.num_hidden_layers = 6 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.optimizer_adam_beta1 = 0.9 hparams.optimizer_adam_beta2 = 0.98 hparams.label_smoothing = 0.0 hparams.bottom["targets"] = modalities.image_channel_embeddings_bottom hparams.top["targets"] = modalities.identity_top hparams.norm_type = "layer" hparams.layer_prepostprocess_dropout = 0.0 hparams.add_hparam("filter_size", 512) # Add new ones like this. # attention-related flags hparams.add_hparam("num_heads", 8) hparams.add_hparam("attention_key_channels", 0) hparams.add_hparam("attention_value_channels", 0) hparams.add_hparam("ffn_layer", "conv_hidden_relu") # All hyperparameters ending in "dropout" are automatically set to 0.0 # when not in training mode. hparams.add_hparam("attention_dropout", 0.0) hparams.add_hparam("relu_dropout", 0.0) hparams.add_hparam("pos", "timing") # timing, none hparams.add_hparam("nbr_decoder_problems", 1) hparams.add_hparam("num_output_layers", 3) hparams.add_hparam("block_size", 1) # dilated attention based flags hparams.add_hparam("gap_sizes", [2, 4, 8, 16, 32, 64, 2, 4, 8, 16, 32, 64]) # image size related flags # assuming that the image has same height and width hparams.add_hparam("img_len", 32) hparams.add_hparam("num_channels", 3) # Local attention params hparams.add_hparam("local_and_global_att", False) hparams.add_hparam("block_length", 256) hparams.add_hparam("block_width", 128) hparams.add_hparam("num_encoder_layers", 4) hparams.add_hparam("num_decoder_layers", 12) hparams.add_hparam("dec_attention_type", cia.AttentionType.LOCAL_1D) hparams.add_hparam("block_raster_scan", False) # multipos attention params hparams.add_hparam("q_filter_width", 1) hparams.add_hparam("kv_filter_width", 1) hparams.add_hparam("likelihood", cia.DistributionType.CAT) hparams.add_hparam("unconditional", False) # unconditional generation # parameters of discretized mixture of logistics loss from pixel cnn++ hparams.add_hparam("num_mixtures", 10) # These parameters are only used when ffn_layer=="local_moe_tpu" hparams.add_hparam("moe_overhead_train", 1.0) hparams.add_hparam("moe_overhead_eval", 2.0) hparams.moe_num_experts = 8 hparams.moe_loss_coef = 1e-3 # These parameters are for relative attention hparams.add_hparam("shared_rel", False) # share relative embeddings return hparams
Best config for 2.90 bits/dim on CIFAR10 using cross entropy.
def imagetransformer_cifar10_base(): """Best config for 2.90 bits/dim on CIFAR10 using cross entropy.""" hparams = image_transformer_base() hparams.batch_size = 4 hparams.num_heads = 4 hparams.num_decoder_layers = 12 hparams.block_length = 256 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.learning_rate = 0.5 hparams.learning_rate_warmup_steps = 4000 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 hparams.unconditional = True return hparams
Best config for 2.90 bits/dim on CIFAR10 using DMOL.
def imagetransformer_cifar10_base_dmol(): """Best config for 2.90 bits/dim on CIFAR10 using DMOL.""" hparams = image_transformer_base() hparams.likelihood = cia.DistributionType.DMOL hparams.num_channels = 1 hparams.bottom["targets"] = modalities.image_channel_compress_targets_bottom hparams.top["targets"] = modalities.identity_top hparams.num_heads = 8 hparams.batch_size = 8 hparams.sampling_method = "random" hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.summarize_grads = True hparams.hidden_size = 256 hparams.filter_size = 512 hparams.attention_key_channels = 512 hparams.attention_value_channels = 512 hparams.num_decoder_layers = 12 hparams.layer_prepostprocess_dropout = 0.1 hparams.learning_rate = 0.1 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.pos = "emb" hparams.unconditional = True return hparams
Transformer base params for cifar-10.
def imagetransformer_base_tpu(): """Transformer base params for cifar-10.""" hparams = imagetransformer_bas8l_8h_big_uncond_dr03_imgnet() update_hparams_for_tpu(hparams) hparams.batch_size = 4 hparams.num_heads = 4 # heads are expensive on tpu hparams.num_decoder_layers = 12 hparams.block_length = 128 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.learning_rate = 0.2 hparams.learning_rate_warmup_steps = 6000 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 return hparams
Transformer base params for cifar-10.
def imagetransformer_base_imagenet_tpu(): """Transformer base params for cifar-10.""" hparams = imagetransformer_base_tpu() hparams.batch_size = 4 hparams.num_heads = 4 # heads are expensive on tpu hparams.num_decoder_layers = 12 hparams.block_length = 128 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.1 return hparams
separate rgb embeddings.
def imagetransformer_sep_channels(): """separate rgb embeddings.""" hparams = imagetransformer_base() hparams.num_heads = 4 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 256 hparams.filter_size = 512 hparams.num_hidden_layers = 6 return hparams
separate rgb embeddings.
def imagetransformer_sep_channels_8l(): """separate rgb embeddings.""" hparams = imagetransformer_base() hparams.num_heads = 4 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 256 hparams.filter_size = 256 hparams.num_hidden_layers = 8 hparams.sampling_method = "random" return hparams
big 1d model for conditional image generation.2.99 on cifar10.
def imagetransformer_base_8l_8h_big_cond_dr03_dan(): """big 1d model for conditional image generation.2.99 on cifar10.""" hparams = imagetransformer_sep_channels_8l() hparams.block_width = 256 hparams.block_length = 256 hparams.hidden_size = 512 hparams.num_heads = 8 hparams.filter_size = 2048 hparams.batch_size = 4 hparams.max_length = 3075 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.num_decoder_layers = 8 hparams.layer_prepostprocess_dropout = 0.3 return hparams
big 1d model for unconditional generation on imagenet.
def imagetransformer_base_10l_8h_big_uncond_dr03_dan_64(): """big 1d model for unconditional generation on imagenet.""" hparams = imagetransformer_base_10l_8h_big_cond_dr03_dan() hparams.unconditional = True hparams.max_length = 14000 hparams.batch_size = 1 hparams.img_len = 64 hparams.layer_prepostprocess_dropout = 0.1 return hparams
separate rgb embeddings.
def imagetransformerpp_sep_channels_8l_8h(): """separate rgb embeddings.""" hparams = imagetransformer_base() hparams.likelihood = cia.DistributionType.DMOL hparams.num_channels = 1 hparams.bottom["targets"] = modalities.image_channel_compress_targets_bottom hparams.top["targets"] = modalities.identity_top hparams.num_heads = 8 hparams.batch_size = 4 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 512 hparams.filter_size = 512 hparams.num_hidden_layers = 8 hparams.sampling_method = "random" hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.summarize_grads = True hparams.learning_rate = 0.1 return hparams
big 1d model for conditional image generation.2.99 on cifar10.
def imagetransformerpp_base_8l_8h_big_cond_dr03_dan(): """big 1d model for conditional image generation.2.99 on cifar10.""" hparams = imagetransformerpp_sep_channels_8l_8h() hparams.hidden_size = 512 hparams.num_heads = 8 hparams.filter_size = 2048 hparams.batch_size = 4 hparams.max_length = 3075 hparams.layer_prepostprocess_dropout = 0.3 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.summarize_grads = True hparams.learning_rate = 0.01 return hparams
Gets to 2.92 in just under 4 days on 8 p100s.
def imagetransformerpp_base_14l_8h_big_uncond_dr03_dan_p(): """Gets to 2.92 in just under 4 days on 8 p100s.""" hparams = imagetransformerpp_base_12l_8h_big_uncond_dr03_dan_l() hparams.num_decoder_layers = 14 hparams.batch_size = 8 hparams.layer_prepostprocess_dropout = 0.2 return hparams
For 256x256.
def imagetransformerpp_base_5l_8h_big_uncond_dr00_dan_g_bs1(): """For 256x256.""" hparams = imagetransformerpp_base_10l_8h_big_uncond_dr03_dan_g() # TODO(trandustin): I forgot to set this in the runs! Maybe it's not used in # image transformer training implementation? # hparams.img_len = 256 hparams.max_length = 66000 # allow for 256x256 hparams.batch_size = 1 hparams.num_decoder_layers = 5 hparams.hidden_size = 128 hparams.filter_size = 128 hparams.attention_key_channels = 64 hparams.attention_value_channels = 64 hparams.layer_prepostprocess_dropout = 0.0 return hparams
Dilated hparams.
def imagetransformer_base_8l_8h_big_cond_dr03_dan_dilated(): """Dilated hparams.""" hparams = imagetransformer_base_8l_8h_big_cond_dr03_dan() hparams.gap_sizes = [0, 16, 64, 0, 16, 64, 128, 0] hparams.dec_attention_type = cia.AttentionType.DILATED hparams.block_length = 128 hparams.block_width = 128 hparams.add_hparam("num_memory_blocks", 1) return hparams
big 1d model for conditional image generation.
def imagetransformer_base_12l_8h_big(): """big 1d model for conditional image generation.""" hparams = imagetransformer_sep_channels_8l_8h() hparams.filter_size = 1024 hparams.num_decoder_layers = 12 hparams.batch_size = 1 hparams.hidden_size = 512 hparams.learning_rate_warmup_steps = 4000 hparams.sampling_method = "random" hparams.beam_size = 1 hparams.block_width = 256 return hparams
hparams fo 12 layer big 1d model for imagenet 64x64.
def imagetransformer1d_base_8l_64by64(): """hparams fo 12 layer big 1d model for imagenet 64x64.""" hparams = image_transformer_base() hparams.num_heads = 8 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.num_decoder_layers = 8 hparams.batch_size = 1 hparams.block_length = 512 hparams.block_width = 768 hparams.layer_prepostprocess_dropout = 0.1 hparams.max_length = 14000 hparams.unconditional = int(False) return hparams
separate rgb embeddings.
def imagetransformer_sep_channels_12l_16h_imagenet_large(): """separate rgb embeddings.""" hparams = imagetransformer_sep_channels_8l_8h() hparams.num_hidden_layers = 12 hparams.batch_size = 1 hparams.filter_size = 2048 hparams.num_heads = 16 hparams.learning_rate_warmup_steps = 16000 hparams.sampling_method = "random" hparams.learning_rate = 0.1 return hparams
separate rgb embeddings.
def imagetransformer_sep_channels_16l_16h_imgnet_lrg_loc(): """separate rgb embeddings.""" hparams = imagetransformer_sep_channels_12l_16h_imagenet_large() hparams.num_hidden_layers = 16 hparams.local_attention = True hparams.batch_size = 1 hparams.block_length = 256 return hparams
separate rgb embeddings.
def imagetransformer_sep_channels_16l_16h_imgnet_lrg_loc_128(): """separate rgb embeddings.""" hparams = imagetransformer_sep_channels_12l_16h_imagenet_large() hparams.num_hidden_layers = 16 hparams.local_attention = True hparams.batch_size = 1 hparams.block_length = 128 return hparams
big 1d model for conditional image generation.
def imagetransformer_base_10l_16h_big_uncond_dr01_imgnet(): """big 1d model for conditional image generation.""" hparams = imagetransformer_base_14l_8h_big_dr01() # num_hidden_layers hparams.num_decoder_layers = 10 hparams.num_heads = 16 hparams.hidden_size = 1024 hparams.filter_size = 4096 hparams.batch_size = 1 hparams.layer_prepostprocess_dropout = 0.1 return hparams
big 1d model for conditional image generation.
def imagetransformer_base_10l_16h_big_dr01_imgnet(): """big 1d model for conditional image generation.""" hparams = imagetransformer_base_14l_8h_big_dr01() # num_hidden_layers hparams.num_decoder_layers = 10 hparams.num_heads = 16 hparams.hidden_size = 1024 hparams.filter_size = 4096 hparams.batch_size = 1 hparams.unconditional = False hparams.layer_prepostprocess_dropout = 0.1 return hparams
separate rgb embeddings.
def imagetransformer_sep_channels_8l_8h(): """separate rgb embeddings.""" hparams = imagetransformer_base() hparams.num_heads = 8 hparams.batch_size = 1 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 512 hparams.filter_size = 512 hparams.num_hidden_layers = 8 hparams.sampling_method = "random" return hparams
big 1d model for conditional image generation.
def imagetransformer_bas8l_8h_big_uncond_dr03_imgnet(): """big 1d model for conditional image generation.""" hparams = imagetransformer_base_14l_8h_big_dr01() # num_hidden_layers hparams.num_decoder_layers = 8 hparams.num_heads = 8 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.layer_prepostprocess_dropout = 0.3 return hparams
separate rgb embeddings.
def imagetransformer_sep_channels_8l_8h_local_and_global_att(): """separate rgb embeddings.""" hparams = imagetransformer_sep_channels_8l_8h() hparams.num_heads = 8 hparams.batch_size = 1 hparams.attention_key_channels = hparams.attention_value_channels = 0 hparams.hidden_size = 256 hparams.filter_size = 256 hparams.num_hidden_layers = 4 hparams.sampling_method = "random" hparams.local_and_global_att = True return hparams
big 1d model for conditional image generation.
def imagetransformer_base_10l_16h_big_dr01_moe_imgnet(): """big 1d model for conditional image generation.""" hparams = imagetransformer_base_10l_16h_big_dr01_imgnet() hparams.initializer = "orthogonal" hparams.learning_rate_warmup_steps = 16000 hparams.add_hparam("moe_layers_decoder", "2,7") # Which layer is MoE. hparams.moe_hidden_sizes = "4096" # Hidden layer sizes (comma-separated). hparams.moe_num_experts = 64 # Number of experts in each MoE layer. hparams.moe_k = 4 # How many experts to use per batch element (try 2 or 4). hparams.moe_loss_coef = 3e-2 # MoE loss coefficient (1e-2 is usually ok). hparams.scheduled_sampling_prob = 0.1 hparams.scheduled_sampling_warmup_steps = 200000 return hparams
Set of hyperparameters for a very small imagetransformer with MoE.
def imagetransformer_moe_tiny(): """Set of hyperparameters for a very small imagetransformer with MoE.""" hparams = imagetransformer_tiny() hparams.hidden_size = 64 hparams.batch_size = 1 hparams.num_hidden_layers = 3 hparams.dec_attention_type = cia.AttentionType.MOE_LOCAL_1D hparams.add_hparam("moe_layers_decoder", "1") # Which layer is MoE. hparams.moe_hidden_sizes = "1024" # Hidden layer sizes (comma-separated). hparams.moe_num_experts = 16 # Number of experts in each MoE layer. hparams.moe_k = 2 # How many experts to use per batch element (try 2 or 4). hparams.moe_loss_coef = 1e-2 # MoE loss coefficient (1e-2 is usually ok). return hparams
Hparams for training imagetransformer on tpu.
def imagetransformer_sep_channels_8l_tpu(): """Hparams for training imagetransformer on tpu.""" hparams = imagetransformer_sep_channels_8l() update_hparams_for_tpu(hparams) hparams.batch_size = 4 hparams.num_heads = 4 # heads are expensive on tpu hparams.shared_embedding_and_softmax_weights = False return hparams
Small model for tpu cifar 10.
def imagetransformer_b10l_4h_big_uncond_dr03_tpu(): """Small model for tpu cifar 10.""" hparams = imagetransformer_bas8l_8h_big_uncond_dr03_imgnet() update_hparams_for_tpu(hparams) hparams.batch_size = 4 hparams.num_heads = 4 # heads are expensive on tpu hparams.num_decoder_layers = 10 hparams.block_length = 128 hparams.hidden_size = 512 hparams.filter_size = 1024 hparams.learning_rate = 0.2 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" return hparams
Moe tpu params.
def imagetransformer_b10l_dr03_moe_tpu(): """Moe tpu params.""" hparams = imagetransformer_b10l_4h_big_uncond_dr03_tpu() update_hparams_for_tpu(hparams) hparams.batch_size = 4 hparams.num_heads = 4 # heads are expensive on tpu hparams.num_decoder_layers = 10 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.ffn_layer = "local_moe_tpu" return hparams
TPU related small model.
def imagetransformer_b10l_4h_big_uncond_dr03_lr025_tpu(): """TPU related small model.""" hparams = imagetransformer_bas8l_8h_big_uncond_dr03_imgnet() update_hparams_for_tpu(hparams) hparams.batch_size = 4 hparams.num_heads = 4 # heads are expensive on tpu hparams.num_decoder_layers = 10 hparams.learning_rate = 0.25 hparams.learning_rate_warmup_steps = 8000 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" # hparams.unconditional = True return hparams
works very well on 4x4.
def imagetransformer_b12l_4h_b256_uncond_dr03_tpu(): """works very well on 4x4.""" hparams = imagetransformer_bas8l_8h_big_uncond_dr03_imgnet() update_hparams_for_tpu(hparams) hparams.batch_size = 4 hparams.num_heads = 4 # heads are expensive on tpu hparams.num_decoder_layers = 12 hparams.block_length = 256 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.learning_rate = 0.5 hparams.learning_rate_warmup_steps = 4000 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 hparams.unconditional = True return hparams
works very well on 4x4.
def imagetransformer_b12l_4h_b256_uncond_dr03_rel_tpu(): """works very well on 4x4.""" hparams = imagetransformer_b12l_4h_b256_uncond_dr03_tpu() hparams.shared_rel = True hparams.dec_attention_type = cia.AttentionType.RELATIVE_LOCAL_1D return hparams
Range of hyperparameters for vizier.
def imagetransformer_cifar_tpu_range(rhp): """Range of hyperparameters for vizier.""" # After starting from base, set intervals for some parameters. rhp.set_float("learning_rate", 0.01, 1.0, scale=rhp.LOG_SCALE) rhp.set_discrete("num_decoder_layers", [8, 10, 12, 14, 16]) rhp.set_discrete("hidden_size", [256, 512, 1024]) rhp.set_discrete("block_length", [128, 256, 512]) rhp.set_categorical("dec_attention_type", [ cia.AttentionType.RELATIVE_LOCAL_1D, cia.AttentionType.LOCAL_1D])
TPU related imagenet model.
def imagetransformer_b12l_4h_b128_h512_uncond_dr01_im(): """TPU related imagenet model.""" hparams = imagetransformer_b12l_4h_b256_uncond_dr03_tpu() update_hparams_for_tpu(hparams) hparams.batch_size = 4 hparams.optimizer = "Adafactor" hparams.learning_rate_schedule = "rsqrt_decay" hparams.learning_rate_warmup_steps = 6000 hparams.layer_prepostprocess_dropout = 0.1 return hparams
TPU related small model.
def imagetransformer_b12l_4h_uncond_dr03_tpu(): """TPU related small model.""" hparams = imagetransformer_b12l_4h_b256_uncond_dr03_tpu() hparams.learning_rate = 0.2 hparams.learning_rate_warmup_steps = 4000 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 return hparams
TPU config for cifar 10.
def imagetransformer_b12l_4h_b128_uncond_dr03_tpu(): """TPU config for cifar 10.""" hparams = imagetransformer_bas8l_8h_big_uncond_dr03_imgnet() update_hparams_for_tpu(hparams) hparams.batch_size = 2 hparams.num_heads = 4 # heads are expensive on tpu hparams.num_decoder_layers = 12 hparams.block_length = 128 hparams.hidden_size = 256 hparams.filter_size = 2048 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.1 hparams.optimizer = "Adafactor" hparams.learning_rate_schedule = "rsqrt_decay" hparams.learning_rate_warmup_steps = 10000 return hparams
TPU related 12 layer 8 heads model.
def imagetransformer_b12l_8h_b256_uncond_dr03_tpu(): """TPU related 12 layer 8 heads model.""" hparams = imagetransformer_bas8l_8h_big_uncond_dr03_imgnet() update_hparams_for_tpu(hparams) hparams.batch_size = 2 hparams.num_heads = 8 # heads are expensive on tpu hparams.num_decoder_layers = 12 hparams.block_length = 256 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 return hparams
big 1d model for conditional image generation.
def imagetransformer_b10l_4h_big_uncond_dr01_tpu(): """big 1d model for conditional image generation.""" hparams = imagetransformer_b12l_4h_big_uncond_dr03_tpu() # num_hidden_layers hparams.num_decoder_layers = 10 hparams.num_heads = 4 hparams.hidden_size = 1024 hparams.filter_size = 4096 hparams.batch_size = 1 hparams.layer_prepostprocess_dropout = 0.1 return hparams
Context manager wrapping the training loop, updates step counters.
def training_loop(self): """Context manager wrapping the training loop, updates step counters.""" if not self.restarting: self._write_counters(self._local_step_at_start, self._global_step) tf.logging.info( "Training %s up to %d, %d to go", self.model_mode, self.target_local_step, self.steps_to_go ) yield self._write_counters(self.target_local_step, -1)
Reads words from a file.
def _read_words(filename): """Reads words from a file.""" with tf.gfile.GFile(filename, "r") as f: if sys.version_info[0] >= 3: return f.read().replace("\n", " %s " % EOS).split() else: return f.read().decode("utf-8").replace("\n", " %s " % EOS).split()
Reads a file to build a vocabulary of `vocab_size` most common words. The vocabulary is sorted by occurrence count and has one word per line. Originally from: https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/reader.py Args: filename: file to read list of words from. vocab_path: path where to save the vocabulary. vocab_size: size of the vocabulary to generate.
def _build_vocab(filename, vocab_path, vocab_size): """Reads a file to build a vocabulary of `vocab_size` most common words. The vocabulary is sorted by occurrence count and has one word per line. Originally from: https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/reader.py Args: filename: file to read list of words from. vocab_path: path where to save the vocabulary. vocab_size: size of the vocabulary to generate. """ data = _read_words(filename) counter = collections.Counter(data) count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0])) words, _ = list(zip(*count_pairs)) words = words[:vocab_size] with open(vocab_path, "w") as f: f.write("\n".join(words))
Reads from file and returns a `TokenTextEncoder` for the vocabulary.
def _get_token_encoder(vocab_dir, vocab_name, filename): """Reads from file and returns a `TokenTextEncoder` for the vocabulary.""" vocab_path = os.path.join(vocab_dir, vocab_name) if not tf.gfile.Exists(vocab_path): _build_vocab(filename, vocab_path, 10000) return text_encoder.TokenTextEncoder(vocab_path)
Download and unpack the corpus. Args: tmp_dir: directory containing dataset. vocab_type: which vocabulary are we using. Returns: The list of names of files.
def _maybe_download_corpus(tmp_dir, vocab_type): """Download and unpack the corpus. Args: tmp_dir: directory containing dataset. vocab_type: which vocabulary are we using. Returns: The list of names of files. """ filename = os.path.basename(PTB_URL) compressed_filepath = generator_utils.maybe_download( tmp_dir, filename, PTB_URL) ptb_files = [] ptb_char_files = [] with tarfile.open(compressed_filepath, "r:gz") as tgz: files = [] # Selecting only relevant files. for m in tgz.getmembers(): if "ptb" in m.name and ".txt" in m.name: if "char" in m.name: ptb_char_files += [m.name] else: ptb_files += [m.name] files += [m] tgz.extractall(tmp_dir, members=files) if vocab_type == text_problems.VocabType.CHARACTER: return ptb_char_files else: return ptb_files
Normalize attention matrices and reshape as necessary.
def resize(att_mat, max_length=None): """Normalize attention matrices and reshape as necessary.""" for i, att in enumerate(att_mat): # Add extra batch dim for viz code to work. if att.ndim == 3: att = np.expand_dims(att, axis=0) if max_length is not None: # Sum across different attention values for each token. att = att[:, :, :max_length, :max_length] row_sums = np.sum(att, axis=2) # Normalize att /= row_sums[:, :, np.newaxis] att_mat[i] = att return att_mat
Compute representation of the attention ready for the d3 visualization. Args: inp_text: list of strings, words to be displayed on the left of the vis out_text: list of strings, words to be displayed on the right of the vis enc_atts: numpy array, encoder self-attentions [num_layers, batch_size, num_heads, enc_length, enc_length] dec_atts: numpy array, decoder self-attentions [num_layers, batch_size, num_heads, dec_length, dec_length] encdec_atts: numpy array, encoder-decoder attentions [num_layers, batch_size, num_heads, dec_length, enc_length] Returns: Dictionary of attention representations with the structure: { 'all': Representations for showing all attentions at the same time. 'inp_inp': Representations for showing encoder self-attentions 'inp_out': Representations for showing encoder-decoder attentions 'out_out': Representations for showing decoder self-attentions } and each sub-dictionary has structure: { 'att': list of inter attentions matrices, one for each attention head 'top_text': list of strings, words to be displayed on the left of the vis 'bot_text': list of strings, words to be displayed on the right of the vis }
def _get_attention(inp_text, out_text, enc_atts, dec_atts, encdec_atts): """Compute representation of the attention ready for the d3 visualization. Args: inp_text: list of strings, words to be displayed on the left of the vis out_text: list of strings, words to be displayed on the right of the vis enc_atts: numpy array, encoder self-attentions [num_layers, batch_size, num_heads, enc_length, enc_length] dec_atts: numpy array, decoder self-attentions [num_layers, batch_size, num_heads, dec_length, dec_length] encdec_atts: numpy array, encoder-decoder attentions [num_layers, batch_size, num_heads, dec_length, enc_length] Returns: Dictionary of attention representations with the structure: { 'all': Representations for showing all attentions at the same time. 'inp_inp': Representations for showing encoder self-attentions 'inp_out': Representations for showing encoder-decoder attentions 'out_out': Representations for showing decoder self-attentions } and each sub-dictionary has structure: { 'att': list of inter attentions matrices, one for each attention head 'top_text': list of strings, words to be displayed on the left of the vis 'bot_text': list of strings, words to be displayed on the right of the vis } """ def get_full_attention(layer): """Get the full input+output - input+output attentions.""" enc_att = enc_atts[layer][0] dec_att = dec_atts[layer][0] encdec_att = encdec_atts[layer][0] enc_att = np.transpose(enc_att, [0, 2, 1]) dec_att = np.transpose(dec_att, [0, 2, 1]) encdec_att = np.transpose(encdec_att, [0, 2, 1]) # [heads, query_length, memory_length] enc_length = enc_att.shape[1] dec_length = dec_att.shape[1] num_heads = enc_att.shape[0] first = np.concatenate([enc_att, encdec_att], axis=2) second = np.concatenate( [np.zeros((num_heads, dec_length, enc_length)), dec_att], axis=2) full_att = np.concatenate([first, second], axis=1) return [ha.T.tolist() for ha in full_att] def get_inp_inp_attention(layer): att = np.transpose(enc_atts[layer][0], (0, 2, 1)) return [ha.T.tolist() for ha in att] def get_out_inp_attention(layer): att = np.transpose(encdec_atts[layer][0], (0, 2, 1)) return [ha.T.tolist() for ha in att] def get_out_out_attention(layer): att = np.transpose(dec_atts[layer][0], (0, 2, 1)) return [ha.T.tolist() for ha in att] def get_attentions(get_attention_fn): num_layers = len(enc_atts) return [get_attention_fn(i) for i in range(num_layers)] attentions = { 'all': { 'att': get_attentions(get_full_attention), 'top_text': inp_text + out_text, 'bot_text': inp_text + out_text, }, 'inp_inp': { 'att': get_attentions(get_inp_inp_attention), 'top_text': inp_text, 'bot_text': inp_text, }, 'inp_out': { 'att': get_attentions(get_out_inp_attention), 'top_text': inp_text, 'bot_text': out_text, }, 'out_out': { 'att': get_attentions(get_out_out_attention), 'top_text': out_text, 'bot_text': out_text, }, } return attentions
Decode a list of tokens to a unicode string. Args: tokens: a list of Unicode strings Returns: a unicode string
def decode(tokens): """Decode a list of tokens to a unicode string. Args: tokens: a list of Unicode strings Returns: a unicode string """ token_is_alnum = [t[0] in _ALPHANUMERIC_CHAR_SET for t in tokens] ret = [] for i, token in enumerate(tokens): if i > 0 and token_is_alnum[i - 1] and token_is_alnum[i]: ret.append(u" ") ret.append(token) return "".join(ret)
Reads files matching a wildcard pattern, yielding the contents. Args: filepattern: A wildcard pattern matching one or more files. max_lines: If set, stop reading after reading this many lines. split_on_newlines: A boolean. If true, then split files by lines and strip leading and trailing whitespace from each line. Otherwise, treat each file as a single string. Yields: The contents of the files as lines, if split_on_newlines is True, or the entire contents of each file if False.
def _read_filepattern(filepattern, max_lines=None, split_on_newlines=True): """Reads files matching a wildcard pattern, yielding the contents. Args: filepattern: A wildcard pattern matching one or more files. max_lines: If set, stop reading after reading this many lines. split_on_newlines: A boolean. If true, then split files by lines and strip leading and trailing whitespace from each line. Otherwise, treat each file as a single string. Yields: The contents of the files as lines, if split_on_newlines is True, or the entire contents of each file if False. """ filenames = sorted(tf.gfile.Glob(filepattern)) lines_read = 0 for filename in filenames: with tf.gfile.Open(filename) as f: if split_on_newlines: for line in f: yield line.strip() lines_read += 1 if max_lines and lines_read >= max_lines: return else: if max_lines: doc = [] for line in f: doc.append(line) lines_read += 1 if max_lines and lines_read >= max_lines: yield "".join(doc) return yield "".join(doc) else: yield f.read()
Read the corpus and compute a dictionary of token counts. Args: text_filepattern: A pattern matching one or more files. corpus_max_lines: An integer; maximum total lines to read. split_on_newlines: A boolean. If true, then split files by lines and strip leading and trailing whitespace from each line. Otherwise, treat each file as a single string. Returns: a dictionary mapping token to count.
def corpus_token_counts( text_filepattern, corpus_max_lines, split_on_newlines=True): """Read the corpus and compute a dictionary of token counts. Args: text_filepattern: A pattern matching one or more files. corpus_max_lines: An integer; maximum total lines to read. split_on_newlines: A boolean. If true, then split files by lines and strip leading and trailing whitespace from each line. Otherwise, treat each file as a single string. Returns: a dictionary mapping token to count. """ counts = collections.Counter() for doc in _read_filepattern( text_filepattern, max_lines=corpus_max_lines, split_on_newlines=split_on_newlines): counts.update(encode(_native_to_unicode(doc))) mlperf_log.transformer_print( key=mlperf_log.PREPROC_VOCAB_SIZE, value=len(counts)) return counts
Read a vocab file and return a dictionary of token counts. Reads a two-column CSV file of tokens and their frequency in a dataset. The tokens are presumed to be generated by encode() or the equivalent. Args: text_filepattern: A pattern matching one or more files. max_lines: An integer; maximum total lines to read. Returns: a dictionary mapping token to count.
def vocab_token_counts(text_filepattern, max_lines): """Read a vocab file and return a dictionary of token counts. Reads a two-column CSV file of tokens and their frequency in a dataset. The tokens are presumed to be generated by encode() or the equivalent. Args: text_filepattern: A pattern matching one or more files. max_lines: An integer; maximum total lines to read. Returns: a dictionary mapping token to count. """ ret = {} for i, line in enumerate( _read_filepattern(text_filepattern, max_lines=max_lines)): if "," not in line: tf.logging.warning("Malformed vocab line #%d '%s'", i, line) continue token, count = line.rsplit(",", 1) ret[_native_to_unicode(token)] = int(count) return ret
Make a tf.train.Example for the problem. features[input_feature_name] = input_ids Also fills in any other required features with dummy values. Args: input_ids: list<int>. problem: Problem. input_feature_name: name of feature for input_ids. Returns: tf.train.Example
def _make_example(input_ids, problem, input_feature_name="inputs"): """Make a tf.train.Example for the problem. features[input_feature_name] = input_ids Also fills in any other required features with dummy values. Args: input_ids: list<int>. problem: Problem. input_feature_name: name of feature for input_ids. Returns: tf.train.Example """ features = { input_feature_name: tf.train.Feature(int64_list=tf.train.Int64List(value=input_ids)) } # Fill in dummy values for any other required features that presumably # will not actually be used for prediction. data_fields, _ = problem.example_reading_spec() for fname, ftype in data_fields.items(): if fname == input_feature_name: continue if not isinstance(ftype, tf.FixedLenFeature): # Only FixedLenFeatures are required continue if ftype.default_value is not None: # If there's a default value, no need to fill it in continue num_elements = functools.reduce(lambda acc, el: acc * el, ftype.shape, 1) if ftype.dtype in [tf.int32, tf.int64]: value = tf.train.Feature( int64_list=tf.train.Int64List(value=[0] * num_elements)) if ftype.dtype in [tf.float32, tf.float64]: value = tf.train.Feature( float_list=tf.train.FloatList(value=[0.] * num_elements)) if ftype.dtype == tf.bytes: value = tf.train.Feature( bytes_list=tf.train.BytesList(value=[""] * num_elements)) tf.logging.info("Adding dummy value for feature %s as it is required by " "the Problem.", fname) features[fname] = value return tf.train.Example(features=tf.train.Features(feature=features))
Wraps function to make grpc requests with runtime args.
def make_grpc_request_fn(servable_name, server, timeout_secs): """Wraps function to make grpc requests with runtime args.""" stub = _create_stub(server) def _make_grpc_request(examples): """Builds and sends request to TensorFlow model server.""" request = predict_pb2.PredictRequest() request.model_spec.name = servable_name request.inputs["input"].CopyFrom( tf.make_tensor_proto( [ex.SerializeToString() for ex in examples], shape=[len(examples)])) response = stub.Predict(request, timeout_secs) outputs = tf.make_ndarray(response.outputs["outputs"]) scores = tf.make_ndarray(response.outputs["scores"]) assert len(outputs) == len(scores) return [{ # pylint: disable=g-complex-comprehension "outputs": output, "scores": score } for output, score in zip(outputs, scores)] return _make_grpc_request
Wraps function to make CloudML Engine requests with runtime args.
def make_cloud_mlengine_request_fn(credentials, model_name, version): """Wraps function to make CloudML Engine requests with runtime args.""" def _make_cloud_mlengine_request(examples): """Builds and sends requests to Cloud ML Engine.""" api = discovery.build("ml", "v1", credentials=credentials) parent = "projects/%s/models/%s/versions/%s" % (cloud.default_project(), model_name, version) input_data = { "instances": [{ # pylint: disable=g-complex-comprehension "input": { "b64": base64.b64encode(ex.SerializeToString()) } } for ex in examples] } prediction = api.projects().predict(body=input_data, name=parent).execute() return prediction["predictions"] return _make_cloud_mlengine_request
Encodes inputs, makes request to deployed TF model, and decodes outputs.
def predict(inputs_list, problem, request_fn): """Encodes inputs, makes request to deployed TF model, and decodes outputs.""" assert isinstance(inputs_list, list) fname = "inputs" if problem.has_inputs else "targets" input_encoder = problem.feature_info[fname].encoder input_ids_list = [ _encode(inputs, input_encoder, add_eos=problem.has_inputs) for inputs in inputs_list ] examples = [_make_example(input_ids, problem, fname) for input_ids in input_ids_list] predictions = request_fn(examples) output_decoder = problem.feature_info["targets"].encoder outputs = [ (_decode(prediction["outputs"], output_decoder), prediction["scores"]) for prediction in predictions ] return outputs
Basic 2-frame recurrent model with stochastic tower.
def next_frame_basic_recurrent(): """Basic 2-frame recurrent model with stochastic tower.""" hparams = basic_stochastic.next_frame_basic_stochastic_discrete() hparams.filter_double_steps = 2 hparams.hidden_size = 64 hparams.video_num_input_frames = 4 hparams.video_num_target_frames = 4 hparams.concat_internal_states = False hparams.add_hparam("num_lstm_layers", 2) hparams.add_hparam("num_lstm_filters", 256) return hparams
Creates experiment function.
def create_teacher_experiment(run_config, hparams, argv): """Creates experiment function.""" tf.logging.info("training teacher") tf.logging.set_verbosity(tf.logging.INFO) trainer_lib.set_random_seed(FLAGS.random_seed) usr_dir.import_usr_dir(FLAGS.t2t_usr_dir) t2t_trainer.maybe_log_registry_and_exit() if FLAGS.cloud_mlengine: return cloud_mlengine.launch() if FLAGS.generate_data: t2t_trainer.generate_data() if cloud_mlengine.job_dir(): FLAGS.output_dir = cloud_mlengine.job_dir() if argv: t2t_trainer.set_hparams_from_args(argv[1:]) hparams.distill_phase = "train" exp_fn = t2t_trainer.create_experiment_fn() exp = exp_fn(run_config, hparams) return exp
Generate source and target data from a single file.
def tabbed_parsing_token_generator(data_dir, tmp_dir, train, prefix, source_vocab_size, target_vocab_size): """Generate source and target data from a single file.""" filename = "parsing_{0}.pairs".format("train" if train else "dev") source_vocab = generator_utils.get_or_generate_tabbed_vocab( data_dir, tmp_dir, filename, 0, prefix + "_source.tokens.vocab.%d" % source_vocab_size, source_vocab_size) target_vocab = generator_utils.get_or_generate_tabbed_vocab( data_dir, tmp_dir, filename, 1, prefix + "_target.tokens.vocab.%d" % target_vocab_size, target_vocab_size) pair_filepath = os.path.join(tmp_dir, filename) return text_problems.text2text_generate_encoded( text_problems.text2text_txt_tab_iterator(pair_filepath), source_vocab, target_vocab)
Generate source and target data from a single file.
def tabbed_parsing_character_generator(tmp_dir, train): """Generate source and target data from a single file.""" character_vocab = text_encoder.ByteTextEncoder() filename = "parsing_{0}.pairs".format("train" if train else "dev") pair_filepath = os.path.join(tmp_dir, filename) return text_problems.text2text_generate_encoded( text_problems.text2text_txt_tab_iterator(pair_filepath), character_vocab)
Helper: make predictions and targets lists, check they match on length.
def _make_list(predictions, targets): """Helper: make predictions and targets lists, check they match on length.""" # Our models sometimes return predictions in lists, make it a list always. # TODO(lukaszkaiser): make abstractions for nested structures and refactor. if not isinstance(predictions, (list, tuple)): if isinstance(targets, (list, tuple)): raise ValueError("Targets are a list or tuple but predictions are not.") predictions, targets = [predictions], [targets] if len(predictions) != len(targets): raise ValueError("Predictions and targets have different lengths.") return list(predictions), list(targets)
Mean of the inputs but counting only those where targets != mask_id.
def masked_mean(inputs, targets, mask_id=None): """Mean of the inputs but counting only those where targets != mask_id.""" inputs = [x.astype(np.float32) for x in inputs] # We assume all elements in the list contribute equally. # TODO(lukaszkaiser): remove this assumption (e.g., when masks differ). length = len(inputs) if mask_id is None: # TODO(lukaszkaiser): can we just divide the sum by length? XLA optimizes? return sum([np.mean(x) / length for x in inputs]) unmask = [1.0 - np.equal(t, mask_id).astype(np.float32) for t in targets] return sum([np.sum(x * m) / (length * np.sum(m)) for x, m in zip(inputs, unmask)])
Calculate accuracy.
def accuracy(batch, model_predictions): """Calculate accuracy.""" _, targets = batch model_predictions, targets = _make_list(model_predictions, targets) correct = [] for (prediction, target) in zip(model_predictions, targets): predicted_class = np.argmax(prediction, axis=-1) correct.append(np.equal(predicted_class, target)) return masked_mean(correct, targets)
Calculate negative log perplexity.
def neg_log_perplexity(batch, model_predictions): """Calculate negative log perplexity.""" _, targets = batch model_predictions, targets = _make_list(model_predictions, targets) xent = [] for (prediction, target) in zip(model_predictions, targets): hot_target = layers.one_hot(target, prediction.shape[-1]) xent.append(np.sum(prediction * hot_target, axis=-1)) return masked_mean(xent, targets)
Calculate loss.
def loss(params, batch, model_predict, rng): """Calculate loss.""" inputs, targets = batch predictions = model_predict(inputs, params, rng=rng) predictions, targets = _make_list(predictions, targets) xent = [] for (pred, target) in zip(predictions, targets): xent.append(np.sum(pred * layers.one_hot(target, pred.shape[-1]), axis=-1)) return - masked_mean(xent, targets)
Restore State.
def restore_state(output_dir): """Restore State.""" params_file = os.path.join(output_dir, "model.pkl") if not gfile.exists(params_file): return State(step=None, params=None, history=trax_history.History()) with gfile.GFile(params_file, "rb") as f: (params, step, history) = pickle.load(f) log("Model loaded from %s at step %d" % (params_file, step)) logging.debug("From loaded model : history = %s", history) return State(step=step, params=params, history=history)
Save State and optionally gin config.
def save_state(state, output_dir, keep=False): """Save State and optionally gin config.""" params_file = os.path.join(output_dir, "model.pkl") with gfile.GFile(params_file, "wb") as f: pickle.dump((state.params, state.step, state.history), f) if keep: params_file = os.path.join(output_dir, "model_{}.pkl".format(state.step)) with gfile.GFile(params_file, "wb") as f: pickle.dump((state.params, state.step, state.history), f) log("Model saved to %s" % params_file, stdout=False)
Evalaute on train and eval data, and log metrics.
def evaluate_train_and_eval(step, inputs, predict_fun, eval_steps, rng, train_sw=None, eval_sw=None, history=None): """Evalaute on train and eval data, and log metrics.""" step_log(step, "Evaluation") train_metrics, eval_metrics = [ evaluate( # pylint: disable=g-complex-comprehension itertools.islice(input_stream(), eval_steps), predict_fun, _METRICS, rng) for input_stream in [inputs.train_eval_stream, inputs.eval_stream]] if train_sw: log_metrics(train_metrics, train_sw, "train", step, history=history) if eval_sw: log_metrics(eval_metrics, eval_sw, "eval", step, history=history) step_log(step, "Finished evaluation") return train_metrics, eval_metrics