INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
Helper function to obtain the shape of an array
def get_input_shape(sym, proto_obj): """Helper function to obtain the shape of an array""" arg_params = proto_obj.arg_dict aux_params = proto_obj.aux_dict model_input_shape = [data[1] for data in proto_obj.model_metadata.get('input_tensor_data')] data_names = [data[0] for data in proto_obj.model_metadata.get('input_tensor_data')] # creating dummy inputs inputs = [] for in_shape in model_input_shape: inputs.append(nd.ones(shape=in_shape)) data_shapes = [] for idx, input_name in enumerate(data_names): data_shapes.append((input_name, inputs[idx].shape)) ctx = context.cpu() # create a module mod = module.Module(symbol=sym, data_names=data_names, context=ctx, label_names=None) mod.bind(for_training=False, data_shapes=data_shapes, label_shapes=None) mod.set_params(arg_params=arg_params, aux_params=aux_params) data_forward = [] for idx, input_name in enumerate(data_names): val = inputs[idx] data_forward.append(val) mod.forward(io.DataBatch(data_forward)) result = mod.get_outputs()[0].asnumpy() return result.shape
r"""Resize image with OpenCV. .. note:: `imresize` uses OpenCV (not the CV2 Python library). MXNet must have been built with USE_OPENCV=1 for `imresize` to work. Parameters ---------- src : NDArray source image w : int, required Width of resized image. h : int, required Height of resized image. interp : int, optional, default=1 Interpolation method (default=cv2.INTER_LINEAR). Possible values: 0: Nearest Neighbors Interpolation. 1: Bilinear interpolation. 2: Area-based (resampling using pixel area relation). It may be a preferred method for image decimation, as it gives moire-free results. But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). 3: Bicubic interpolation over 4x4 pixel neighborhood. 4: Lanczos interpolation over 8x8 pixel neighborhood. 9: Cubic for enlarge, area for shrink, bilinear for others 10: Random select from interpolation method metioned above. Note: When shrinking an image, it will generally look best with AREA-based interpolation, whereas, when enlarging an image, it will generally look best with Bicubic (slow) or Bilinear (faster but still looks OK). More details can be found in the documentation of OpenCV, please refer to http://docs.opencv.org/master/da/d54/group__imgproc__transform.html. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. Example ------- >>> with open("flower.jpeg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image) >>> image <NDArray 2321x3482x3 @cpu(0)> >>> new_image = mx.img.resize(image, 240, 360) >>> new_image <NDArray 240x360x3 @cpu(0)>
def imresize(src, w, h, *args, **kwargs): r"""Resize image with OpenCV. .. note:: `imresize` uses OpenCV (not the CV2 Python library). MXNet must have been built with USE_OPENCV=1 for `imresize` to work. Parameters ---------- src : NDArray source image w : int, required Width of resized image. h : int, required Height of resized image. interp : int, optional, default=1 Interpolation method (default=cv2.INTER_LINEAR). Possible values: 0: Nearest Neighbors Interpolation. 1: Bilinear interpolation. 2: Area-based (resampling using pixel area relation). It may be a preferred method for image decimation, as it gives moire-free results. But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). 3: Bicubic interpolation over 4x4 pixel neighborhood. 4: Lanczos interpolation over 8x8 pixel neighborhood. 9: Cubic for enlarge, area for shrink, bilinear for others 10: Random select from interpolation method metioned above. Note: When shrinking an image, it will generally look best with AREA-based interpolation, whereas, when enlarging an image, it will generally look best with Bicubic (slow) or Bilinear (faster but still looks OK). More details can be found in the documentation of OpenCV, please refer to http://docs.opencv.org/master/da/d54/group__imgproc__transform.html. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. Example ------- >>> with open("flower.jpeg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image) >>> image <NDArray 2321x3482x3 @cpu(0)> >>> new_image = mx.img.resize(image, 240, 360) >>> new_image <NDArray 240x360x3 @cpu(0)> """ return _internal._cvimresize(src, w, h, *args, **kwargs)
Decode an image to an NDArray. .. note:: `imdecode` uses OpenCV (not the CV2 Python library). MXNet must have been built with USE_OPENCV=1 for `imdecode` to work. Parameters ---------- buf : str/bytes/bytearray or numpy.ndarray Binary image data as string or numpy ndarray. flag : int, optional, default=1 1 for three channel color output. 0 for grayscale output. to_rgb : int, optional, default=1 1 for RGB formatted output (MXNet default). 0 for BGR formatted output (OpenCV default). out : NDArray, optional Output buffer. Use `None` for automatic allocation. Returns ------- NDArray An `NDArray` containing the image. Example ------- >>> with open("flower.jpg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image) >>> image <NDArray 224x224x3 @cpu(0)> Set `flag` parameter to 0 to get grayscale output >>> with open("flower.jpg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image, flag=0) >>> image <NDArray 224x224x1 @cpu(0)> Set `to_rgb` parameter to 0 to get output in OpenCV format (BGR) >>> with open("flower.jpg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image, to_rgb=0) >>> image <NDArray 224x224x3 @cpu(0)>
def imdecode(buf, *args, **kwargs): """Decode an image to an NDArray. .. note:: `imdecode` uses OpenCV (not the CV2 Python library). MXNet must have been built with USE_OPENCV=1 for `imdecode` to work. Parameters ---------- buf : str/bytes/bytearray or numpy.ndarray Binary image data as string or numpy ndarray. flag : int, optional, default=1 1 for three channel color output. 0 for grayscale output. to_rgb : int, optional, default=1 1 for RGB formatted output (MXNet default). 0 for BGR formatted output (OpenCV default). out : NDArray, optional Output buffer. Use `None` for automatic allocation. Returns ------- NDArray An `NDArray` containing the image. Example ------- >>> with open("flower.jpg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image) >>> image <NDArray 224x224x3 @cpu(0)> Set `flag` parameter to 0 to get grayscale output >>> with open("flower.jpg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image, flag=0) >>> image <NDArray 224x224x1 @cpu(0)> Set `to_rgb` parameter to 0 to get output in OpenCV format (BGR) >>> with open("flower.jpg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image, to_rgb=0) >>> image <NDArray 224x224x3 @cpu(0)> """ if not isinstance(buf, nd.NDArray): if sys.version_info[0] == 3 and not isinstance(buf, (bytes, bytearray, np.ndarray)): raise ValueError('buf must be of type bytes, bytearray or numpy.ndarray,' 'if you would like to input type str, please convert to bytes') buf = nd.array(np.frombuffer(buf, dtype=np.uint8), dtype=np.uint8) return _internal._cvimdecode(buf, *args, **kwargs)
Scales down crop size if it's larger than image size. If width/height of the crop is larger than the width/height of the image, sets the width/height to the width/height of the image. Parameters ---------- src_size : tuple of int Size of the image in (width, height) format. size : tuple of int Size of the crop in (width, height) format. Returns ------- tuple of int A tuple containing the scaled crop size in (width, height) format. Example -------- >>> src_size = (640,480) >>> size = (720,120) >>> new_size = mx.img.scale_down(src_size, size) >>> new_size (640,106)
def scale_down(src_size, size): """Scales down crop size if it's larger than image size. If width/height of the crop is larger than the width/height of the image, sets the width/height to the width/height of the image. Parameters ---------- src_size : tuple of int Size of the image in (width, height) format. size : tuple of int Size of the crop in (width, height) format. Returns ------- tuple of int A tuple containing the scaled crop size in (width, height) format. Example -------- >>> src_size = (640,480) >>> size = (720,120) >>> new_size = mx.img.scale_down(src_size, size) >>> new_size (640,106) """ w, h = size sw, sh = src_size if sh < h: w, h = float(w * sh) / h, sh if sw < w: w, h = sw, float(h * sw) / w return int(w), int(h)
Pad image border with OpenCV. Parameters ---------- src : NDArray source image top : int, required Top margin. bot : int, required Bottom margin. left : int, required Left margin. right : int, required Right margin. type : int, optional, default='0' Filling type (default=cv2.BORDER_CONSTANT). 0 - cv2.BORDER_CONSTANT - Adds a constant colored border. 1 - cv2.BORDER_REFLECT - Border will be mirror reflection of the border elements, like this : fedcba|abcdefgh|hgfedcb 2 - cv2.BORDER_REFLECT_101 or cv.BORDER_DEFAULT - Same as above, but with a slight change, like this : gfedcb|abcdefgh|gfedcba 3 - cv2.BORDER_REPLICATE - Last element is replicated throughout, like this: aaaaaa|abcdefgh|hhhhhhh 4 - cv2.BORDER_WRAP - it will look like this : cdefgh|abcdefgh|abcdefg value : double, optional, default=0 (Deprecated! Use ``values`` instead.) Fill with single value. values : tuple of <double>, optional, default=[] Fill with value(RGB[A] or gray), up to 4 channels. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. Example -------- >>> with open("flower.jpeg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image) >>> image <NDArray 2321x3482x3 @cpu(0)> >>> new_image = mx_border = mx.image.copyMakeBorder(mx_img, 1, 2, 3, 4, type=0) >>> new_image <NDArray 2324x3489x3 @cpu(0)>
def copyMakeBorder(src, top, bot, left, right, *args, **kwargs): """Pad image border with OpenCV. Parameters ---------- src : NDArray source image top : int, required Top margin. bot : int, required Bottom margin. left : int, required Left margin. right : int, required Right margin. type : int, optional, default='0' Filling type (default=cv2.BORDER_CONSTANT). 0 - cv2.BORDER_CONSTANT - Adds a constant colored border. 1 - cv2.BORDER_REFLECT - Border will be mirror reflection of the border elements, like this : fedcba|abcdefgh|hgfedcb 2 - cv2.BORDER_REFLECT_101 or cv.BORDER_DEFAULT - Same as above, but with a slight change, like this : gfedcb|abcdefgh|gfedcba 3 - cv2.BORDER_REPLICATE - Last element is replicated throughout, like this: aaaaaa|abcdefgh|hhhhhhh 4 - cv2.BORDER_WRAP - it will look like this : cdefgh|abcdefgh|abcdefg value : double, optional, default=0 (Deprecated! Use ``values`` instead.) Fill with single value. values : tuple of <double>, optional, default=[] Fill with value(RGB[A] or gray), up to 4 channels. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. Example -------- >>> with open("flower.jpeg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image) >>> image <NDArray 2321x3482x3 @cpu(0)> >>> new_image = mx_border = mx.image.copyMakeBorder(mx_img, 1, 2, 3, 4, type=0) >>> new_image <NDArray 2324x3489x3 @cpu(0)> """ return _internal._cvcopyMakeBorder(src, top, bot, left, right, *args, **kwargs)
Get the interpolation method for resize functions. The major purpose of this function is to wrap a random interp method selection and a auto-estimation method. Parameters ---------- interp : int interpolation method for all resizing operations Possible values: 0: Nearest Neighbors Interpolation. 1: Bilinear interpolation. 2: Area-based (resampling using pixel area relation). It may be a preferred method for image decimation, as it gives moire-free results. But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). 3: Bicubic interpolation over 4x4 pixel neighborhood. 4: Lanczos interpolation over 8x8 pixel neighborhood. 9: Cubic for enlarge, area for shrink, bilinear for others 10: Random select from interpolation method metioned above. Note: When shrinking an image, it will generally look best with AREA-based interpolation, whereas, when enlarging an image, it will generally look best with Bicubic (slow) or Bilinear (faster but still looks OK). More details can be found in the documentation of OpenCV, please refer to http://docs.opencv.org/master/da/d54/group__imgproc__transform.html. sizes : tuple of int (old_height, old_width, new_height, new_width), if None provided, auto(9) will return Area(2) anyway. Returns ------- int interp method from 0 to 4
def _get_interp_method(interp, sizes=()): """Get the interpolation method for resize functions. The major purpose of this function is to wrap a random interp method selection and a auto-estimation method. Parameters ---------- interp : int interpolation method for all resizing operations Possible values: 0: Nearest Neighbors Interpolation. 1: Bilinear interpolation. 2: Area-based (resampling using pixel area relation). It may be a preferred method for image decimation, as it gives moire-free results. But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). 3: Bicubic interpolation over 4x4 pixel neighborhood. 4: Lanczos interpolation over 8x8 pixel neighborhood. 9: Cubic for enlarge, area for shrink, bilinear for others 10: Random select from interpolation method metioned above. Note: When shrinking an image, it will generally look best with AREA-based interpolation, whereas, when enlarging an image, it will generally look best with Bicubic (slow) or Bilinear (faster but still looks OK). More details can be found in the documentation of OpenCV, please refer to http://docs.opencv.org/master/da/d54/group__imgproc__transform.html. sizes : tuple of int (old_height, old_width, new_height, new_width), if None provided, auto(9) will return Area(2) anyway. Returns ------- int interp method from 0 to 4 """ if interp == 9: if sizes: assert len(sizes) == 4 oh, ow, nh, nw = sizes if nh > oh and nw > ow: return 2 elif nh < oh and nw < ow: return 3 else: return 1 else: return 2 if interp == 10: return random.randint(0, 4) if interp not in (0, 1, 2, 3, 4): raise ValueError('Unknown interp method %d' % interp) return interp
Resizes shorter edge to size. .. note:: `resize_short` uses OpenCV (not the CV2 Python library). MXNet must have been built with OpenCV for `resize_short` to work. Resizes the original image by setting the shorter edge to size and setting the longer edge accordingly. Resizing function is called from OpenCV. Parameters ---------- src : NDArray The original image. size : int The length to be set for the shorter edge. interp : int, optional, default=2 Interpolation method used for resizing the image. Possible values: 0: Nearest Neighbors Interpolation. 1: Bilinear interpolation. 2: Area-based (resampling using pixel area relation). It may be a preferred method for image decimation, as it gives moire-free results. But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). 3: Bicubic interpolation over 4x4 pixel neighborhood. 4: Lanczos interpolation over 8x8 pixel neighborhood. 9: Cubic for enlarge, area for shrink, bilinear for others 10: Random select from interpolation method metioned above. Note: When shrinking an image, it will generally look best with AREA-based interpolation, whereas, when enlarging an image, it will generally look best with Bicubic (slow) or Bilinear (faster but still looks OK). More details can be found in the documentation of OpenCV, please refer to http://docs.opencv.org/master/da/d54/group__imgproc__transform.html. Returns ------- NDArray An 'NDArray' containing the resized image. Example ------- >>> with open("flower.jpeg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image) >>> image <NDArray 2321x3482x3 @cpu(0)> >>> size = 640 >>> new_image = mx.img.resize_short(image, size) >>> new_image <NDArray 2321x3482x3 @cpu(0)>
def resize_short(src, size, interp=2): """Resizes shorter edge to size. .. note:: `resize_short` uses OpenCV (not the CV2 Python library). MXNet must have been built with OpenCV for `resize_short` to work. Resizes the original image by setting the shorter edge to size and setting the longer edge accordingly. Resizing function is called from OpenCV. Parameters ---------- src : NDArray The original image. size : int The length to be set for the shorter edge. interp : int, optional, default=2 Interpolation method used for resizing the image. Possible values: 0: Nearest Neighbors Interpolation. 1: Bilinear interpolation. 2: Area-based (resampling using pixel area relation). It may be a preferred method for image decimation, as it gives moire-free results. But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). 3: Bicubic interpolation over 4x4 pixel neighborhood. 4: Lanczos interpolation over 8x8 pixel neighborhood. 9: Cubic for enlarge, area for shrink, bilinear for others 10: Random select from interpolation method metioned above. Note: When shrinking an image, it will generally look best with AREA-based interpolation, whereas, when enlarging an image, it will generally look best with Bicubic (slow) or Bilinear (faster but still looks OK). More details can be found in the documentation of OpenCV, please refer to http://docs.opencv.org/master/da/d54/group__imgproc__transform.html. Returns ------- NDArray An 'NDArray' containing the resized image. Example ------- >>> with open("flower.jpeg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.img.imdecode(str_image) >>> image <NDArray 2321x3482x3 @cpu(0)> >>> size = 640 >>> new_image = mx.img.resize_short(image, size) >>> new_image <NDArray 2321x3482x3 @cpu(0)> """ h, w, _ = src.shape if h > w: new_h, new_w = size * h // w, size else: new_h, new_w = size, size * w // h return imresize(src, new_w, new_h, interp=_get_interp_method(interp, (h, w, new_h, new_w)))
Crop src at fixed location, and (optionally) resize it to size. Parameters ---------- src : NDArray Input image x0 : int Left boundary of the cropping area y0 : int Top boundary of the cropping area w : int Width of the cropping area h : int Height of the cropping area size : tuple of (w, h) Optional, resize to new size after cropping interp : int, optional, default=2 Interpolation method. See resize_short for details. Returns ------- NDArray An `NDArray` containing the cropped image.
def fixed_crop(src, x0, y0, w, h, size=None, interp=2): """Crop src at fixed location, and (optionally) resize it to size. Parameters ---------- src : NDArray Input image x0 : int Left boundary of the cropping area y0 : int Top boundary of the cropping area w : int Width of the cropping area h : int Height of the cropping area size : tuple of (w, h) Optional, resize to new size after cropping interp : int, optional, default=2 Interpolation method. See resize_short for details. Returns ------- NDArray An `NDArray` containing the cropped image. """ out = nd.slice(src, begin=(y0, x0, 0), end=(y0 + h, x0 + w, int(src.shape[2]))) if size is not None and (w, h) != size: sizes = (h, w, size[1], size[0]) out = imresize(out, *size, interp=_get_interp_method(interp, sizes)) return out
Crops the image `src` to the given `size` by trimming on all four sides and preserving the center of the image. Upsamples if `src` is smaller than `size`. .. note:: This requires MXNet to be compiled with USE_OPENCV. Parameters ---------- src : NDArray Binary source image data. size : list or tuple of int The desired output image size. interp : int, optional, default=2 Interpolation method. See resize_short for details. Returns ------- NDArray The cropped image. Tuple (x, y, width, height) where x, y are the positions of the crop in the original image and width, height the dimensions of the crop. Example ------- >>> with open("flower.jpg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.image.imdecode(str_image) >>> image <NDArray 2321x3482x3 @cpu(0)> >>> cropped_image, (x, y, width, height) = mx.image.center_crop(image, (1000, 500)) >>> cropped_image <NDArray 500x1000x3 @cpu(0)> >>> x, y, width, height (1241, 910, 1000, 500)
def center_crop(src, size, interp=2): """Crops the image `src` to the given `size` by trimming on all four sides and preserving the center of the image. Upsamples if `src` is smaller than `size`. .. note:: This requires MXNet to be compiled with USE_OPENCV. Parameters ---------- src : NDArray Binary source image data. size : list or tuple of int The desired output image size. interp : int, optional, default=2 Interpolation method. See resize_short for details. Returns ------- NDArray The cropped image. Tuple (x, y, width, height) where x, y are the positions of the crop in the original image and width, height the dimensions of the crop. Example ------- >>> with open("flower.jpg", 'rb') as fp: ... str_image = fp.read() ... >>> image = mx.image.imdecode(str_image) >>> image <NDArray 2321x3482x3 @cpu(0)> >>> cropped_image, (x, y, width, height) = mx.image.center_crop(image, (1000, 500)) >>> cropped_image <NDArray 500x1000x3 @cpu(0)> >>> x, y, width, height (1241, 910, 1000, 500) """ h, w, _ = src.shape new_w, new_h = scale_down((w, h), size) x0 = int((w - new_w) / 2) y0 = int((h - new_h) / 2) out = fixed_crop(src, x0, y0, new_w, new_h, size, interp) return out, (x0, y0, new_w, new_h)
Normalize src with mean and std. Parameters ---------- src : NDArray Input image mean : NDArray RGB mean to be subtracted std : NDArray RGB standard deviation to be divided Returns ------- NDArray An `NDArray` containing the normalized image.
def color_normalize(src, mean, std=None): """Normalize src with mean and std. Parameters ---------- src : NDArray Input image mean : NDArray RGB mean to be subtracted std : NDArray RGB standard deviation to be divided Returns ------- NDArray An `NDArray` containing the normalized image. """ if mean is not None: src -= mean if std is not None: src /= std return src
Randomly crop src with size. Randomize area and aspect ratio. Parameters ---------- src : NDArray Input image size : tuple of (int, int) Size of the crop formatted as (width, height). area : float in (0, 1] or tuple of (float, float) If tuple, minimum area and maximum area to be maintained after cropping If float, minimum area to be maintained after cropping, maximum area is set to 1.0 ratio : tuple of (float, float) Aspect ratio range as (min_aspect_ratio, max_aspect_ratio) interp: int, optional, default=2 Interpolation method. See resize_short for details. Returns ------- NDArray An `NDArray` containing the cropped image. Tuple A tuple (x, y, width, height) where (x, y) is top-left position of the crop in the original image and (width, height) are the dimensions of the cropped image.
def random_size_crop(src, size, area, ratio, interp=2, **kwargs): """Randomly crop src with size. Randomize area and aspect ratio. Parameters ---------- src : NDArray Input image size : tuple of (int, int) Size of the crop formatted as (width, height). area : float in (0, 1] or tuple of (float, float) If tuple, minimum area and maximum area to be maintained after cropping If float, minimum area to be maintained after cropping, maximum area is set to 1.0 ratio : tuple of (float, float) Aspect ratio range as (min_aspect_ratio, max_aspect_ratio) interp: int, optional, default=2 Interpolation method. See resize_short for details. Returns ------- NDArray An `NDArray` containing the cropped image. Tuple A tuple (x, y, width, height) where (x, y) is top-left position of the crop in the original image and (width, height) are the dimensions of the cropped image. """ h, w, _ = src.shape src_area = h * w if 'min_area' in kwargs: warnings.warn('`min_area` is deprecated. Please use `area` instead.', DeprecationWarning) area = kwargs.pop('min_area') assert not kwargs, "unexpected keyword arguments for `random_size_crop`." if isinstance(area, numeric_types): area = (area, 1.0) for _ in range(10): target_area = random.uniform(area[0], area[1]) * src_area log_ratio = (np.log(ratio[0]), np.log(ratio[1])) new_ratio = np.exp(random.uniform(*log_ratio)) new_w = int(round(np.sqrt(target_area * new_ratio))) new_h = int(round(np.sqrt(target_area / new_ratio))) if new_w <= w and new_h <= h: x0 = random.randint(0, w - new_w) y0 = random.randint(0, h - new_h) out = fixed_crop(src, x0, y0, new_w, new_h, size, interp) return out, (x0, y0, new_w, new_h) # fall back to center_crop return center_crop(src, size, interp)
Creates an augmenter list. Parameters ---------- data_shape : tuple of int Shape for output data resize : int Resize shorter edge if larger than 0 at the begining rand_crop : bool Whether to enable random cropping other than center crop rand_resize : bool Whether to enable random sized cropping, require rand_crop to be enabled rand_gray : float [0, 1], probability to convert to grayscale for all channels, the number of channels will not be reduced to 1 rand_mirror : bool Whether to apply horizontal flip to image with probability 0.5 mean : np.ndarray or None Mean pixel values for [r, g, b] std : np.ndarray or None Standard deviations for [r, g, b] brightness : float Brightness jittering range (percent) contrast : float Contrast jittering range (percent) saturation : float Saturation jittering range (percent) hue : float Hue jittering range (percent) pca_noise : float Pca noise level (percent) inter_method : int, default=2(Area-based) Interpolation method for all resizing operations Possible values: 0: Nearest Neighbors Interpolation. 1: Bilinear interpolation. 2: Area-based (resampling using pixel area relation). It may be a preferred method for image decimation, as it gives moire-free results. But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). 3: Bicubic interpolation over 4x4 pixel neighborhood. 4: Lanczos interpolation over 8x8 pixel neighborhood. 9: Cubic for enlarge, area for shrink, bilinear for others 10: Random select from interpolation method metioned above. Note: When shrinking an image, it will generally look best with AREA-based interpolation, whereas, when enlarging an image, it will generally look best with Bicubic (slow) or Bilinear (faster but still looks OK). Examples -------- >>> # An example of creating multiple augmenters >>> augs = mx.image.CreateAugmenter(data_shape=(3, 300, 300), rand_mirror=True, ... mean=True, brightness=0.125, contrast=0.125, rand_gray=0.05, ... saturation=0.125, pca_noise=0.05, inter_method=10) >>> # dump the details >>> for aug in augs: ... aug.dumps()
def CreateAugmenter(data_shape, resize=0, rand_crop=False, rand_resize=False, rand_mirror=False, mean=None, std=None, brightness=0, contrast=0, saturation=0, hue=0, pca_noise=0, rand_gray=0, inter_method=2): """Creates an augmenter list. Parameters ---------- data_shape : tuple of int Shape for output data resize : int Resize shorter edge if larger than 0 at the begining rand_crop : bool Whether to enable random cropping other than center crop rand_resize : bool Whether to enable random sized cropping, require rand_crop to be enabled rand_gray : float [0, 1], probability to convert to grayscale for all channels, the number of channels will not be reduced to 1 rand_mirror : bool Whether to apply horizontal flip to image with probability 0.5 mean : np.ndarray or None Mean pixel values for [r, g, b] std : np.ndarray or None Standard deviations for [r, g, b] brightness : float Brightness jittering range (percent) contrast : float Contrast jittering range (percent) saturation : float Saturation jittering range (percent) hue : float Hue jittering range (percent) pca_noise : float Pca noise level (percent) inter_method : int, default=2(Area-based) Interpolation method for all resizing operations Possible values: 0: Nearest Neighbors Interpolation. 1: Bilinear interpolation. 2: Area-based (resampling using pixel area relation). It may be a preferred method for image decimation, as it gives moire-free results. But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). 3: Bicubic interpolation over 4x4 pixel neighborhood. 4: Lanczos interpolation over 8x8 pixel neighborhood. 9: Cubic for enlarge, area for shrink, bilinear for others 10: Random select from interpolation method metioned above. Note: When shrinking an image, it will generally look best with AREA-based interpolation, whereas, when enlarging an image, it will generally look best with Bicubic (slow) or Bilinear (faster but still looks OK). Examples -------- >>> # An example of creating multiple augmenters >>> augs = mx.image.CreateAugmenter(data_shape=(3, 300, 300), rand_mirror=True, ... mean=True, brightness=0.125, contrast=0.125, rand_gray=0.05, ... saturation=0.125, pca_noise=0.05, inter_method=10) >>> # dump the details >>> for aug in augs: ... aug.dumps() """ auglist = [] if resize > 0: auglist.append(ResizeAug(resize, inter_method)) crop_size = (data_shape[2], data_shape[1]) if rand_resize: assert rand_crop auglist.append(RandomSizedCropAug(crop_size, 0.08, (3.0 / 4.0, 4.0 / 3.0), inter_method)) elif rand_crop: auglist.append(RandomCropAug(crop_size, inter_method)) else: auglist.append(CenterCropAug(crop_size, inter_method)) if rand_mirror: auglist.append(HorizontalFlipAug(0.5)) auglist.append(CastAug()) if brightness or contrast or saturation: auglist.append(ColorJitterAug(brightness, contrast, saturation)) if hue: auglist.append(HueJitterAug(hue)) if pca_noise > 0: eigval = np.array([55.46, 4.794, 1.148]) eigvec = np.array([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]) auglist.append(LightingAug(pca_noise, eigval, eigvec)) if rand_gray > 0: auglist.append(RandomGrayAug(rand_gray)) if mean is True: mean = nd.array([123.68, 116.28, 103.53]) elif mean is not None: assert isinstance(mean, (np.ndarray, nd.NDArray)) and mean.shape[0] in [1, 3] if std is True: std = nd.array([58.395, 57.12, 57.375]) elif std is not None: assert isinstance(std, (np.ndarray, nd.NDArray)) and std.shape[0] in [1, 3] if mean is not None or std is not None: auglist.append(ColorNormalizeAug(mean, std)) return auglist
Saves the Augmenter to string Returns ------- str JSON formatted string that describes the Augmenter.
def dumps(self): """Saves the Augmenter to string Returns ------- str JSON formatted string that describes the Augmenter. """ return json.dumps([self.__class__.__name__.lower(), self._kwargs])
Override the default to avoid duplicate dump.
def dumps(self): """Override the default to avoid duplicate dump.""" return [self.__class__.__name__.lower(), [x.dumps() for x in self.ts]]
Resets the iterator to the beginning of the data.
def reset(self): """Resets the iterator to the beginning of the data.""" if self.seq is not None and self.shuffle: random.shuffle(self.seq) if self.last_batch_handle != 'roll_over' or \ self._cache_data is None: if self.imgrec is not None: self.imgrec.reset() self.cur = 0 if self._allow_read is False: self._allow_read = True
Resets the iterator and ignore roll over data
def hard_reset(self): """Resets the iterator and ignore roll over data""" if self.seq is not None and self.shuffle: random.shuffle(self.seq) if self.imgrec is not None: self.imgrec.reset() self.cur = 0 self._allow_read = True self._cache_data = None self._cache_label = None self._cache_idx = None
Helper function for reading in next sample.
def next_sample(self): """Helper function for reading in next sample.""" if self._allow_read is False: raise StopIteration if self.seq is not None: if self.cur < self.num_image: idx = self.seq[self.cur] else: if self.last_batch_handle != 'discard': self.cur = 0 raise StopIteration self.cur += 1 if self.imgrec is not None: s = self.imgrec.read_idx(idx) header, img = recordio.unpack(s) if self.imglist is None: return header.label, img else: return self.imglist[idx][0], img else: label, fname = self.imglist[idx] return label, self.read_image(fname) else: s = self.imgrec.read() if s is None: if self.last_batch_handle != 'discard': self.imgrec.reset() raise StopIteration header, img = recordio.unpack(s) return header.label, img
Helper function for batchifying data
def _batchify(self, batch_data, batch_label, start=0): """Helper function for batchifying data""" i = start batch_size = self.batch_size try: while i < batch_size: label, s = self.next_sample() data = self.imdecode(s) try: self.check_valid_image(data) except RuntimeError as e: logging.debug('Invalid image, skipping: %s', str(e)) continue data = self.augmentation_transform(data) assert i < batch_size, 'Batch size must be multiples of augmenter output length' batch_data[i] = self.postprocess_data(data) batch_label[i] = label i += 1 except StopIteration: if not i: raise StopIteration return i
Decodes a string or byte string to an NDArray. See mx.img.imdecode for more details.
def imdecode(self, s): """Decodes a string or byte string to an NDArray. See mx.img.imdecode for more details.""" def locate(): """Locate the image file/index if decode fails.""" if self.seq is not None: idx = self.seq[(self.cur % self.num_image) - 1] else: idx = (self.cur % self.num_image) - 1 if self.imglist is not None: _, fname = self.imglist[idx] msg = "filename: {}".format(fname) else: msg = "index: {}".format(idx) return "Broken image " + msg try: img = imdecode(s) except Exception as e: raise RuntimeError("{}, {}".format(locate(), e)) return img
Reads an input image `fname` and returns the decoded raw bytes. Examples -------- >>> dataIter.read_image('Face.jpg') # returns decoded raw bytes.
def read_image(self, fname): """Reads an input image `fname` and returns the decoded raw bytes. Examples -------- >>> dataIter.read_image('Face.jpg') # returns decoded raw bytes. """ with open(os.path.join(self.path_root, fname), 'rb') as fin: img = fin.read() return img
evaluate accuracy
def facc(label, pred): """ evaluate accuracy """ pred = pred.ravel() label = label.ravel() return ((pred > 0.5) == label).mean()
Convert character vectors to integer vectors.
def word_to_vector(word): """ Convert character vectors to integer vectors. """ vector = [] for char in list(word): vector.append(char2int(char)) return vector
Convert integer vectors to character vectors.
def vector_to_word(vector): """ Convert integer vectors to character vectors. """ word = "" for vec in vector: word = word + int2char(vec) return word
Convert integer vectors to character vectors for batch.
def char_conv(out): """ Convert integer vectors to character vectors for batch. """ out_conv = list() for i in range(out.shape[0]): tmp_str = '' for j in range(out.shape[1]): if int(out[i][j]) >= 0: tmp_char = int2char(int(out[i][j])) if int(out[i][j]) == 27: tmp_char = '' tmp_str = tmp_str + tmp_char out_conv.append(tmp_str) return out_conv
Add a pooling layer to the model. This is our own implementation of add_pooling since current CoreML's version (0.5.0) of builder doesn't provide support for padding types apart from valid. This support will be added in the next release of coremltools. When that happens, this can be removed. Parameters ---------- builder: NeuralNetworkBuilder A neural network builder object. name: str The name of this layer. height: int Height of pooling region. width: int Number of elements to be padded on the right side of the input blob. stride_height: int Stride along the height direction. stride_width: int Stride along the height direction. layer_type: str Type of pooling performed. Can either be 'MAX', 'AVERAGE' or 'L2'. padding_type: str Option for the output blob shape. Can be either 'VALID' , 'SAME' or 'INCLUDE_LAST_PIXEL'. Kindly look at NeuralNetwork.proto for details. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. padding_top, padding_bottom, padding_left, padding_right: int values of height (top, bottom) and width (left, right) padding to be used if padding type is "VALID" or "INCLUDE_LAST_PIXEL" same_padding_asymmetry_mode : str. Type of asymmetric padding to be used when padding_type = 'SAME'. Kindly look at NeuralNetwork.proto for details. Can be either 'BOTTOM_RIGHT_HEAVY' or 'TOP_LEFT_HEAVY'. exclude_pad_area: boolean Whether to exclude padded area in the pooling operation. Defaults to True. - If True, the value of the padded area will be excluded. - If False, the padded area will be included. This flag is only used with average pooling. is_global: boolean Whether the pooling operation is global. Defaults to False. - If True, the pooling operation is global -- the pooling region is of the same size of the input blob. Parameters height, width, stride_height, stride_width will be ignored. - If False, the pooling operation is not global. See Also -------- add_convolution, add_pooling, add_activation
def add_pooling_with_padding_types(builder, name, height, width, stride_height, stride_width, layer_type, padding_type, input_name, output_name, padding_top = 0, padding_bottom = 0, padding_left = 0, padding_right = 0, same_padding_asymmetry_mode = 'BOTTOM_RIGHT_HEAVY', exclude_pad_area = True, is_global = False): """ Add a pooling layer to the model. This is our own implementation of add_pooling since current CoreML's version (0.5.0) of builder doesn't provide support for padding types apart from valid. This support will be added in the next release of coremltools. When that happens, this can be removed. Parameters ---------- builder: NeuralNetworkBuilder A neural network builder object. name: str The name of this layer. height: int Height of pooling region. width: int Number of elements to be padded on the right side of the input blob. stride_height: int Stride along the height direction. stride_width: int Stride along the height direction. layer_type: str Type of pooling performed. Can either be 'MAX', 'AVERAGE' or 'L2'. padding_type: str Option for the output blob shape. Can be either 'VALID' , 'SAME' or 'INCLUDE_LAST_PIXEL'. Kindly look at NeuralNetwork.proto for details. input_name: str The input blob name of this layer. output_name: str The output blob name of this layer. padding_top, padding_bottom, padding_left, padding_right: int values of height (top, bottom) and width (left, right) padding to be used if padding type is "VALID" or "INCLUDE_LAST_PIXEL" same_padding_asymmetry_mode : str. Type of asymmetric padding to be used when padding_type = 'SAME'. Kindly look at NeuralNetwork.proto for details. Can be either 'BOTTOM_RIGHT_HEAVY' or 'TOP_LEFT_HEAVY'. exclude_pad_area: boolean Whether to exclude padded area in the pooling operation. Defaults to True. - If True, the value of the padded area will be excluded. - If False, the padded area will be included. This flag is only used with average pooling. is_global: boolean Whether the pooling operation is global. Defaults to False. - If True, the pooling operation is global -- the pooling region is of the same size of the input blob. Parameters height, width, stride_height, stride_width will be ignored. - If False, the pooling operation is not global. See Also -------- add_convolution, add_pooling, add_activation """ spec = builder.spec nn_spec = builder.nn_spec # Add a new layer spec_layer = nn_spec.layers.add() spec_layer.name = name spec_layer.input.append(input_name) spec_layer.output.append(output_name) spec_layer_params = spec_layer.pooling # Set the parameters spec_layer_params.type = \ _NeuralNetwork_pb2.PoolingLayerParams.PoolingType.Value(layer_type) if padding_type == 'VALID': height_border = spec_layer_params.valid.paddingAmounts.borderAmounts.add() height_border.startEdgeSize = padding_top height_border.endEdgeSize = padding_bottom width_border = spec_layer_params.valid.paddingAmounts.borderAmounts.add() width_border.startEdgeSize = padding_left width_border.endEdgeSize = padding_right elif padding_type == 'SAME': if not (same_padding_asymmetry_mode == 'BOTTOM_RIGHT_HEAVY' or same_padding_asymmetry_mode == 'TOP_LEFT_HEAVY'): raise ValueError("Invalid value %d of same_padding_asymmetry_mode parameter" % same_padding_asymmetry_mode) spec_layer_params.same.asymmetryMode = _NeuralNetwork_pb2.SamePadding.SamePaddingMode.Value(same_padding_asymmetry_mode) elif padding_type == 'INCLUDE_LAST_PIXEL': if padding_top != padding_bottom or padding_left != padding_right: raise ValueError("Only symmetric padding is supported with the INCLUDE_LAST_PIXEL padding type") spec_layer_params.includeLastPixel.paddingAmounts.append(padding_top) spec_layer_params.includeLastPixel.paddingAmounts.append(padding_left) spec_layer_params.kernelSize.append(height) spec_layer_params.kernelSize.append(width) spec_layer_params.stride.append(stride_height) spec_layer_params.stride.append(stride_width) spec_layer_params.avgPoolExcludePadding = exclude_pad_area spec_layer_params.globalPooling = is_global
Get path to all the frame in view SAX and contain complete frames
def get_frames(root_path): """Get path to all the frame in view SAX and contain complete frames""" ret = [] for root, _, files in os.walk(root_path): root=root.replace('\\','/') files=[s for s in files if ".dcm" in s] if len(files) == 0 or not files[0].endswith(".dcm") or root.find("sax") == -1: continue prefix = files[0].rsplit('-', 1)[0] fileset = set(files) expected = ["%s-%04d.dcm" % (prefix, i + 1) for i in range(30)] if all(x in fileset for x in expected): ret.append([root + "/" + x for x in expected]) # sort for reproduciblity return sorted(ret, key = lambda x: x[0])
crop center and resize
def crop_resize(img, size): """crop center and resize""" if img.shape[0] < img.shape[1]: img = img.T # we crop image from center short_egde = min(img.shape[:2]) yy = int((img.shape[0] - short_egde) / 2) xx = int((img.shape[1] - short_egde) / 2) crop_img = img[yy : yy + short_egde, xx : xx + short_egde] # resize to 64, 64 resized_img = transform.resize(crop_img, (size, size)) resized_img *= 255 return resized_img.astype("uint8")
construct and return generator
def get_generator(): """ construct and return generator """ g_net = gluon.nn.Sequential() with g_net.name_scope(): g_net.add(gluon.nn.Conv2DTranspose( channels=512, kernel_size=4, strides=1, padding=0, use_bias=False)) g_net.add(gluon.nn.BatchNorm()) g_net.add(gluon.nn.LeakyReLU(0.2)) g_net.add(gluon.nn.Conv2DTranspose( channels=256, kernel_size=4, strides=2, padding=1, use_bias=False)) g_net.add(gluon.nn.BatchNorm()) g_net.add(gluon.nn.LeakyReLU(0.2)) g_net.add(gluon.nn.Conv2DTranspose( channels=128, kernel_size=4, strides=2, padding=1, use_bias=False)) g_net.add(gluon.nn.BatchNorm()) g_net.add(gluon.nn.LeakyReLU(0.2)) g_net.add(gluon.nn.Conv2DTranspose( channels=64, kernel_size=4, strides=2, padding=1, use_bias=False)) g_net.add(gluon.nn.BatchNorm()) g_net.add(gluon.nn.LeakyReLU(0.2)) g_net.add(gluon.nn.Conv2DTranspose(channels=3, kernel_size=4, strides=2, padding=1, use_bias=False)) g_net.add(gluon.nn.Activation('tanh')) return g_net
construct and return descriptor
def get_descriptor(ctx): """ construct and return descriptor """ d_net = gluon.nn.Sequential() with d_net.name_scope(): d_net.add(SNConv2D(num_filter=64, kernel_size=4, strides=2, padding=1, in_channels=3, ctx=ctx)) d_net.add(gluon.nn.LeakyReLU(0.2)) d_net.add(SNConv2D(num_filter=128, kernel_size=4, strides=2, padding=1, in_channels=64, ctx=ctx)) d_net.add(gluon.nn.LeakyReLU(0.2)) d_net.add(SNConv2D(num_filter=256, kernel_size=4, strides=2, padding=1, in_channels=128, ctx=ctx)) d_net.add(gluon.nn.LeakyReLU(0.2)) d_net.add(SNConv2D(num_filter=512, kernel_size=4, strides=2, padding=1, in_channels=256, ctx=ctx)) d_net.add(gluon.nn.LeakyReLU(0.2)) d_net.add(SNConv2D(num_filter=1, kernel_size=4, strides=1, padding=0, in_channels=512, ctx=ctx)) return d_net
spectral normalization
def _spectral_norm(self): """ spectral normalization """ w = self.params.get('weight').data(self.ctx) w_mat = nd.reshape(w, [w.shape[0], -1]) _u = self.u.data(self.ctx) _v = None for _ in range(POWER_ITERATION): _v = nd.L2Normalization(nd.dot(_u, w_mat)) _u = nd.L2Normalization(nd.dot(_v, w_mat.T)) sigma = nd.sum(nd.dot(_u, w_mat) * _v) if sigma == 0.: sigma = EPSILON with autograd.pause(): self.u.set_data(_u) return w / sigma
Compute the length of the output sequence after 1D convolution along time. Note that this function is in line with the function used in Convolution1D class from Keras. Params: input_length (int): Length of the input sequence. filter_size (int): Width of the convolution kernel. border_mode (str): Only support `same` or `valid`. stride (int): Stride size used in 1D convolution. dilation (int)
def conv_output_length(input_length, filter_size, border_mode, stride, dilation=1): """ Compute the length of the output sequence after 1D convolution along time. Note that this function is in line with the function used in Convolution1D class from Keras. Params: input_length (int): Length of the input sequence. filter_size (int): Width of the convolution kernel. border_mode (str): Only support `same` or `valid`. stride (int): Stride size used in 1D convolution. dilation (int) """ if input_length is None: return None assert border_mode in {'same', 'valid'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if border_mode == 'same': output_length = input_length elif border_mode == 'valid': output_length = input_length - dilated_filter_size + 1 return (output_length + stride - 1) // stride
Compute the spectrogram for a real signal. The parameters follow the naming convention of matplotlib.mlab.specgram Args: samples (1D array): input audio signal fft_length (int): number of elements in fft window sample_rate (scalar): sample rate hop_length (int): hop length (relative offset between neighboring fft windows). Returns: x (2D array): spectrogram [frequency x time] freq (1D array): frequency of each row in x Note: This is a truncating computation e.g. if fft_length=10, hop_length=5 and the signal has 23 elements, then the last 3 elements will be truncated.
def spectrogram(samples, fft_length=256, sample_rate=2, hop_length=128): """ Compute the spectrogram for a real signal. The parameters follow the naming convention of matplotlib.mlab.specgram Args: samples (1D array): input audio signal fft_length (int): number of elements in fft window sample_rate (scalar): sample rate hop_length (int): hop length (relative offset between neighboring fft windows). Returns: x (2D array): spectrogram [frequency x time] freq (1D array): frequency of each row in x Note: This is a truncating computation e.g. if fft_length=10, hop_length=5 and the signal has 23 elements, then the last 3 elements will be truncated. """ assert not np.iscomplexobj(samples), "Must not pass in complex numbers" window = np.hanning(fft_length)[:, None] window_norm = np.sum(window ** 2) # The scaling below follows the convention of # matplotlib.mlab.specgram which is the same as # matlabs specgram. scale = window_norm * sample_rate trunc = (len(samples) - fft_length) % hop_length x = samples[:len(samples) - trunc] # "stride trick" reshape to include overlap nshape = (fft_length, (len(x) - fft_length) // hop_length + 1) nstrides = (x.strides[0], x.strides[0] * hop_length) x = as_strided(x, shape=nshape, strides=nstrides) # window stride sanity check assert np.all(x[:, 1] == samples[hop_length:(hop_length + fft_length)]) # broadcast window, compute fft over columns and square mod # This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). x = np.fft.rfft(x * window, axis=0) x = np.absolute(x) ** 2 # scale, 2.0 for everything except dc and fft_length/2 x[1:-1, :] *= (2.0 / scale) x[(0, -1), :] /= scale freqs = float(sample_rate) / fft_length * np.arange(x.shape[0]) return x, freqs
Calculate the log of linear spectrogram from FFT energy Params: filename (str): Path to the audio file step (int): Step size in milliseconds between windows window (int): FFT window size in milliseconds max_freq (int): Only FFT bins corresponding to frequencies between [0, max_freq] are returned eps (float): Small value to ensure numerical stability (for ln(x))
def spectrogram_from_file(filename, step=10, window=20, max_freq=None, eps=1e-14, overwrite=False, save_feature_as_csvfile=False): """ Calculate the log of linear spectrogram from FFT energy Params: filename (str): Path to the audio file step (int): Step size in milliseconds between windows window (int): FFT window size in milliseconds max_freq (int): Only FFT bins corresponding to frequencies between [0, max_freq] are returned eps (float): Small value to ensure numerical stability (for ln(x)) """ csvfilename = filename.replace(".wav", ".csv") if (os.path.isfile(csvfilename) is False) or overwrite: with soundfile.SoundFile(filename) as sound_file: audio = sound_file.read(dtype='float32') sample_rate = sound_file.samplerate if audio.ndim >= 2: audio = np.mean(audio, 1) if max_freq is None: max_freq = sample_rate / 2 if max_freq > sample_rate / 2: raise ValueError("max_freq must not be greater than half of " " sample rate") if step > window: raise ValueError("step size must not be greater than window size") hop_length = int(0.001 * step * sample_rate) fft_length = int(0.001 * window * sample_rate) pxx, freqs = spectrogram( audio, fft_length=fft_length, sample_rate=sample_rate, hop_length=hop_length) ind = np.where(freqs <= max_freq)[0][-1] + 1 res = np.transpose(np.log(pxx[:ind, :] + eps)) if save_feature_as_csvfile: np.savetxt(csvfilename, res) return res else: return np.loadtxt(csvfilename)
generate random cropping boxes according to parameters if satifactory crops generated, apply to ground-truth as well Parameters: ---------- label : numpy.array (n x 5 matrix) ground-truths Returns: ---------- list of (crop_box, label) tuples, if failed, return empty list []
def sample(self, label): """ generate random cropping boxes according to parameters if satifactory crops generated, apply to ground-truth as well Parameters: ---------- label : numpy.array (n x 5 matrix) ground-truths Returns: ---------- list of (crop_box, label) tuples, if failed, return empty list [] """ samples = [] count = 0 for trial in range(self.max_trials): if count >= self.max_sample: return samples scale = np.random.uniform(self.min_scale, self.max_scale) min_ratio = max(self.min_aspect_ratio, scale * scale) max_ratio = min(self.max_aspect_ratio, 1. / scale / scale) ratio = math.sqrt(np.random.uniform(min_ratio, max_ratio)) width = scale * ratio height = scale / ratio left = np.random.uniform(0., 1 - width) top = np.random.uniform(0., 1 - height) rand_box = (left, top, left + width, top + height) valid_mask = np.where(label[:, 0] > -1)[0] gt = label[valid_mask, :] ious = self._check_satisfy(rand_box, gt) if ious is not None: # transform gt labels after crop, discard bad ones l, t, r, b = rand_box new_gt_boxes = [] new_width = r - l new_height = b - t for i in range(valid_mask.size): if ious[i] > 0: xmin = max(0., (gt[i, 1] - l) / new_width) ymin = max(0., (gt[i, 2] - t) / new_height) xmax = min(1., (gt[i, 3] - l) / new_width) ymax = min(1., (gt[i, 4] - t) / new_height) new_gt_boxes.append([gt[i, 0], xmin, ymin, xmax, ymax]) if not new_gt_boxes: continue new_gt_boxes = np.array(new_gt_boxes) label = np.lib.pad(new_gt_boxes, ((0, label.shape[0]-new_gt_boxes.shape[0]), (0,0)), \ 'constant', constant_values=(-1, -1)) samples.append((rand_box, label)) count += 1 return samples
check if overlap with any gt box is larger than threshold
def _check_satisfy(self, rand_box, gt_boxes): """ check if overlap with any gt box is larger than threshold """ l, t, r, b = rand_box num_gt = gt_boxes.shape[0] ls = np.ones(num_gt) * l ts = np.ones(num_gt) * t rs = np.ones(num_gt) * r bs = np.ones(num_gt) * b mask = np.where(ls < gt_boxes[:, 1])[0] ls[mask] = gt_boxes[mask, 1] mask = np.where(ts < gt_boxes[:, 2])[0] ts[mask] = gt_boxes[mask, 2] mask = np.where(rs > gt_boxes[:, 3])[0] rs[mask] = gt_boxes[mask, 3] mask = np.where(bs > gt_boxes[:, 4])[0] bs[mask] = gt_boxes[mask, 4] w = rs - ls w[w < 0] = 0 h = bs - ts h[h < 0] = 0 inter_area = h * w union_area = np.ones(num_gt) * max(0, r - l) * max(0, b - t) union_area += (gt_boxes[:, 3] - gt_boxes[:, 1]) * (gt_boxes[:, 4] - gt_boxes[:, 2]) union_area -= inter_area ious = inter_area / union_area ious[union_area <= 0] = 0 max_iou = np.amax(ious) if max_iou < self.min_overlap: return None # check ground-truth constraint if self.config['gt_constraint'] == 'center': for i in range(ious.shape[0]): if ious[i] > 0: gt_x = (gt_boxes[i, 1] + gt_boxes[i, 3]) / 2.0 gt_y = (gt_boxes[i, 2] + gt_boxes[i, 4]) / 2.0 if gt_x < l or gt_x > r or gt_y < t or gt_y > b: return None elif self.config['gt_constraint'] == 'corner': for i in range(ious.shape[0]): if ious[i] > 0: if gt_boxes[i, 1] < l or gt_boxes[i, 3] > r \ or gt_boxes[i, 2] < t or gt_boxes[i, 4] > b: return None return ious
generate random padding boxes according to parameters if satifactory padding generated, apply to ground-truth as well Parameters: ---------- label : numpy.array (n x 5 matrix) ground-truths Returns: ---------- list of (crop_box, label) tuples, if failed, return empty list []
def sample(self, label): """ generate random padding boxes according to parameters if satifactory padding generated, apply to ground-truth as well Parameters: ---------- label : numpy.array (n x 5 matrix) ground-truths Returns: ---------- list of (crop_box, label) tuples, if failed, return empty list [] """ samples = [] count = 0 for trial in range(self.max_trials): if count >= self.max_sample: return samples scale = np.random.uniform(self.min_scale, self.max_scale) min_ratio = max(self.min_aspect_ratio, scale * scale) max_ratio = min(self.max_aspect_ratio, 1. / scale / scale) ratio = math.sqrt(np.random.uniform(min_ratio, max_ratio)) width = scale * ratio if width < 1: continue height = scale / ratio if height < 1: continue left = np.random.uniform(0., 1 - width) top = np.random.uniform(0., 1 - height) right = left + width bot = top + height rand_box = (left, top, right, bot) valid_mask = np.where(label[:, 0] > -1)[0] gt = label[valid_mask, :] new_gt_boxes = [] for i in range(gt.shape[0]): xmin = (gt[i, 1] - left) / width ymin = (gt[i, 2] - top) / height xmax = (gt[i, 3] - left) / width ymax = (gt[i, 4] - top) / height new_size = min(xmax - xmin, ymax - ymin) if new_size < self.min_gt_scale: new_gt_boxes = [] break new_gt_boxes.append([gt[i, 0], xmin, ymin, xmax, ymax]) if not new_gt_boxes: continue new_gt_boxes = np.array(new_gt_boxes) label = np.lib.pad(new_gt_boxes, ((0, label.shape[0]-new_gt_boxes.shape[0]), (0,0)), \ 'constant', constant_values=(-1, -1)) samples.append((rand_box, label)) count += 1 return samples
Measure time cost of running a function
def measure_cost(repeat, scipy_trans_lhs, scipy_dns_lhs, func_name, *args, **kwargs): """Measure time cost of running a function """ mx.nd.waitall() args_list = [] for arg in args: args_list.append(arg) start = time.time() if scipy_trans_lhs: args_list[0] = np.transpose(args_list[0]) if scipy_dns_lhs else sp.spmatrix.transpose(args_list[0]) for _ in range(repeat): func_name(*args_list, **kwargs) mx.nd.waitall() end = time.time() diff = end - start return diff / repeat
Print information about the annotation file. :return:
def info(self): """ Print information about the annotation file. :return: """ for key, value in self.dataset['info'].items(): print('{}: {}'.format(key, value))
filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids
def getCatIds(self, catNms=[], supNms=[], catIds=[]): """ filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids """ catNms = catNms if type(catNms) == list else [catNms] supNms = supNms if type(supNms) == list else [supNms] catIds = catIds if type(catIds) == list else [catIds] if len(catNms) == len(supNms) == len(catIds) == 0: cats = self.dataset['categories'] else: cats = self.dataset['categories'] cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] ids = [cat['id'] for cat in cats] return ids
Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects
def loadAnns(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects """ if type(ids) == list: return [self.anns[id] for id in ids] elif type(ids) == int: return [self.anns[ids]]
Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects
def loadCats(self, ids=[]): """ Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects """ if type(ids) == list: return [self.cats[id] for id in ids] elif type(ids) == int: return [self.cats[ids]]
Load anns with the specified ids. :param ids (int array) : integer ids specifying img :return: imgs (object array) : loaded img objects
def loadImgs(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying img :return: imgs (object array) : loaded img objects """ if type(ids) == list: return [self.imgs[id] for id in ids] elif type(ids) == int: return [self.imgs[ids]]
Display the specified annotations. :param anns (array of object): annotations to display :return: None
def showAnns(self, anns): """ Display the specified annotations. :param anns (array of object): annotations to display :return: None """ if len(anns) == 0: return 0 if 'segmentation' in anns[0] or 'keypoints' in anns[0]: datasetType = 'instances' elif 'caption' in anns[0]: datasetType = 'captions' else: raise Exception('datasetType not supported') if datasetType == 'instances': ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in anns: c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] if 'segmentation' in ann: if type(ann['segmentation']) == list: # polygon for seg in ann['segmentation']: poly = np.array(seg).reshape((int(len(seg)/2), 2)) polygons.append(Polygon(poly)) color.append(c) else: # mask raise NotImplementedError("maskUtils disabled!") if 'keypoints' in ann and type(ann['keypoints']) == list: # turn skeleton into zero-based index sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 kp = np.array(ann['keypoints']) x = kp[0::3] y = kp[1::3] v = kp[2::3] for sk in sks: if np.all(v[sk]>0): plt.plot(x[sk],y[sk], linewidth=3, color=c) plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) ax.add_collection(p) p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2) ax.add_collection(p) elif datasetType == 'captions': for ann in anns: print(ann['caption'])
Download COCO images from mscoco.org server. :param tarDir (str): COCO results directory name imgIds (list): images to be downloaded :return:
def download(self, tarDir = None, imgIds = [] ): ''' Download COCO images from mscoco.org server. :param tarDir (str): COCO results directory name imgIds (list): images to be downloaded :return: ''' if tarDir is None: print('Please specify target directory') return -1 if len(imgIds) == 0: imgs = self.imgs.values() else: imgs = self.loadImgs(imgIds) N = len(imgs) if not os.path.exists(tarDir): os.makedirs(tarDir) for i, img in enumerate(imgs): tic = time.time() fname = os.path.join(tarDir, img['file_name']) if not os.path.exists(fname): urlretrieve(img['coco_url'], fname) print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic))
Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} :param data (numpy.ndarray) :return: annotations (python nested list)
def loadNumpyAnnotations(self, data): """ Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} :param data (numpy.ndarray) :return: annotations (python nested list) """ print('Converting ndarray to lists...') assert(type(data) == np.ndarray) print(data.shape) assert(data.shape[1] == 7) N = data.shape[0] ann = [] for i in range(N): if i % 1000000 == 0: print('{}/{}'.format(i,N)) ann += [{ 'image_id' : int(data[i, 0]), 'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], 'score' : data[i, 5], 'category_id': int(data[i, 6]), }] return ann
Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array)
def annToRLE(self, ann): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ t = self.imgs[ann['image_id']] h, w = t['height'], t['width'] segm = ann['segmentation'] if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code # rles = maskUtils.frPyObjects(segm, h, w) # rle = maskUtils.merge(rles) raise NotImplementedError("maskUtils disabled!") elif type(segm['counts']) == list: # uncompressed RLE # rle = maskUtils.frPyObjects(segm, h, w) raise NotImplementedError("maskUtils disabled!") else: # rle rle = ann['segmentation'] return rle
Save cnn model Returns ---------- callback: A callback function that can be passed as epoch_end_callback to fit
def save_model(): """Save cnn model Returns ---------- callback: A callback function that can be passed as epoch_end_callback to fit """ if not os.path.exists("checkpoint"): os.mkdir("checkpoint") return mx.callback.do_checkpoint("checkpoint/checkpoint", args.save_period)
Construct highway net Parameters ---------- data: Returns ---------- Highway Networks
def highway(data): """Construct highway net Parameters ---------- data: Returns ---------- Highway Networks """ _data = data high_weight = mx.sym.Variable('high_weight') high_bias = mx.sym.Variable('high_bias') high_fc = mx.sym.FullyConnected(data=data, weight=high_weight, bias=high_bias, num_hidden=300, name='high_fc') high_relu = mx.sym.Activation(high_fc, act_type='relu') high_trans_weight = mx.sym.Variable('high_trans_weight') high_trans_bias = mx.sym.Variable('high_trans_bias') high_trans_fc = mx.sym.FullyConnected(data=_data, weight=high_trans_weight, bias=high_trans_bias, num_hidden=300, name='high_trans_sigmoid') high_trans_sigmoid = mx.sym.Activation(high_trans_fc, act_type='sigmoid') return high_relu * high_trans_sigmoid + _data * (1 - high_trans_sigmoid)
Train cnn model Parameters ---------- symbol_data: symbol train_iterator: DataIter Train DataIter valid_iterator: DataIter Valid DataIter data_column_names: list of str Defaults to ('data') for a typical model used in image classification target_names: list of str Defaults to ('softmax_label') for a typical model used in image classification
def train(symbol_data, train_iterator, valid_iterator, data_column_names, target_names): """Train cnn model Parameters ---------- symbol_data: symbol train_iterator: DataIter Train DataIter valid_iterator: DataIter Valid DataIter data_column_names: list of str Defaults to ('data') for a typical model used in image classification target_names: list of str Defaults to ('softmax_label') for a typical model used in image classification """ devs = mx.cpu() # default setting if args.gpus is not None: for i in args.gpus.split(','): mx.gpu(int(i)) devs = mx.gpu() module = mx.mod.Module(symbol_data, data_names=data_column_names, label_names=target_names, context=devs) init_params = { 'vocab_embed_weight': {'uniform': 0.1}, 'convolution0_weight': {'uniform': 0.1}, 'convolution0_bias': {'costant': 0}, 'convolution1_weight': {'uniform': 0.1}, 'convolution1_bias': {'costant': 0}, 'convolution2_weight': {'uniform': 0.1}, 'convolution2_bias': {'costant': 0}, 'high_weight': {'uniform': 0.1}, 'high_bias': {'costant': 0}, 'high_trans_weight': {'uniform': 0.1}, 'high_trans_bias': {'costant': -2}, 'cls_weight': {'uniform': 0.1}, 'cls_bias': {'costant': 0}, } # custom init_params module.bind(data_shapes=train_iterator.provide_data, label_shapes=train_iterator.provide_label) module.init_params(CustomInit(init_params)) lr_sch = mx.lr_scheduler.FactorScheduler(step=25000, factor=0.999) module.init_optimizer( optimizer='rmsprop', optimizer_params={'learning_rate': 0.0005, 'lr_scheduler': lr_sch}) def norm_stat(d): return mx.nd.norm(d) / np.sqrt(d.size) mon = mx.mon.Monitor(25000, norm_stat) module.fit(train_data=train_iterator, eval_data=valid_iterator, eval_metric='acc', kvstore=args.kv_store, monitor=mon, num_epoch=args.num_epochs, batch_end_callback=mx.callback.Speedometer(args.batch_size, args.disp_batches), epoch_end_callback=save_model())
Collate data into batch.
def default_batchify_fn(data): """Collate data into batch.""" if isinstance(data[0], nd.NDArray): return nd.stack(*data) elif isinstance(data[0], tuple): data = zip(*data) return [default_batchify_fn(i) for i in data] else: data = np.asarray(data) return nd.array(data, dtype=data.dtype)
Collate data into batch. Use shared memory for stacking.
def default_mp_batchify_fn(data): """Collate data into batch. Use shared memory for stacking.""" if isinstance(data[0], nd.NDArray): out = nd.empty((len(data),) + data[0].shape, dtype=data[0].dtype, ctx=context.Context('cpu_shared', 0)) return nd.stack(*data, out=out) elif isinstance(data[0], tuple): data = zip(*data) return [default_mp_batchify_fn(i) for i in data] else: data = np.asarray(data) return nd.array(data, dtype=data.dtype, ctx=context.Context('cpu_shared', 0))
Move data into new context.
def _as_in_context(data, ctx): """Move data into new context.""" if isinstance(data, nd.NDArray): return data.as_in_context(ctx) elif isinstance(data, (list, tuple)): return [_as_in_context(d, ctx) for d in data] return data
Worker loop for multiprocessing DataLoader.
def worker_loop_v1(dataset, key_queue, data_queue, batchify_fn): """Worker loop for multiprocessing DataLoader.""" while True: idx, samples = key_queue.get() if idx is None: break batch = batchify_fn([dataset[i] for i in samples]) data_queue.put((idx, batch))
Fetcher loop for fetching data from queue and put in reorder dict.
def fetcher_loop_v1(data_queue, data_buffer, pin_memory=False, pin_device_id=0, data_buffer_lock=None): """Fetcher loop for fetching data from queue and put in reorder dict.""" while True: idx, batch = data_queue.get() if idx is None: break if pin_memory: batch = _as_in_context(batch, context.cpu_pinned(pin_device_id)) else: batch = _as_in_context(batch, context.cpu()) if data_buffer_lock is not None: with data_buffer_lock: data_buffer[idx] = batch else: data_buffer[idx] = batch
Function for processing data in worker process.
def _worker_fn(samples, batchify_fn, dataset=None): """Function for processing data in worker process.""" # pylint: disable=unused-argument # it is required that each worker process has to fork a new MXIndexedRecordIO handle # preserving dataset as global variable can save tons of overhead and is safe in new process global _worker_dataset batch = batchify_fn([_worker_dataset[i] for i in samples]) buf = io.BytesIO() ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(batch) return buf.getvalue()
Send object
def send(self, obj): """Send object""" buf = io.BytesIO() ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(obj) self.send_bytes(buf.getvalue())
Assign next batch workload to workers.
def _push_next(self): """Assign next batch workload to workers.""" r = next(self._iter, None) if r is None: return self._key_queue.put((self._sent_idx, r)) self._sent_idx += 1
Shutdown internal workers by pushing terminate signals.
def shutdown(self): """Shutdown internal workers by pushing terminate signals.""" if not self._shutdown: # send shutdown signal to the fetcher and join data queue first # Remark: loop_fetcher need to be joined prior to the workers. # otherwise, the the fetcher may fail at getting data self._data_queue.put((None, None)) self._fetcher.join() # send shutdown signal to all worker processes for _ in range(self._num_workers): self._key_queue.put((None, None)) # force shut down any alive worker processes for w in self._workers: if w.is_alive(): w.terminate() self._shutdown = True
Assign next batch workload to workers.
def _push_next(self): """Assign next batch workload to workers.""" r = next(self._iter, None) if r is None: return async_ret = self._worker_pool.apply_async( self._worker_fn, (r, self._batchify_fn, self._dataset)) self._data_buffer[self._sent_idx] = async_ret self._sent_idx += 1
Returns ctype arrays for the key-value args, and the whether string keys are used. For internal use only.
def _ctype_key_value(keys, vals): """ Returns ctype arrays for the key-value args, and the whether string keys are used. For internal use only. """ if isinstance(keys, (tuple, list)): assert(len(keys) == len(vals)) c_keys = [] c_vals = [] use_str_keys = None for key, val in zip(keys, vals): c_key_i, c_val_i, str_keys_i = _ctype_key_value(key, val) c_keys += c_key_i c_vals += c_val_i use_str_keys = str_keys_i if use_str_keys is None else use_str_keys assert(use_str_keys == str_keys_i), "inconsistent types of keys detected." c_keys_arr = c_array(ctypes.c_char_p, c_keys) if use_str_keys \ else c_array(ctypes.c_int, c_keys) c_vals_arr = c_array(ctypes.c_void_p, c_vals) return (c_keys_arr, c_vals_arr, use_str_keys) assert(isinstance(keys, (int,) + string_types)), \ "unexpected type for keys: " + str(type(keys)) use_str_keys = isinstance(keys, string_types) if isinstance(vals, NDArray): c_keys = c_str_array([keys]) if use_str_keys \ else c_array_buf(ctypes.c_int, array('i', [keys])) return (c_keys, c_handle_array([vals]), use_str_keys) else: for value in vals: assert(isinstance(value, NDArray)) c_keys = c_str_array([keys] * len(vals)) if use_str_keys \ else c_array_buf(ctypes.c_int, array('i', [keys] * len(vals))) return (c_keys, c_handle_array(vals), use_str_keys)
Returns ctype arrays for keys and values(converted to strings) in a dictionary
def _ctype_dict(param_dict): """ Returns ctype arrays for keys and values(converted to strings) in a dictionary """ assert(isinstance(param_dict, dict)), \ "unexpected type for param_dict: " + str(type(param_dict)) c_keys = c_array(ctypes.c_char_p, [c_str(k) for k in param_dict.keys()]) c_vals = c_array(ctypes.c_char_p, [c_str(str(v)) for v in param_dict.values()]) return (c_keys, c_vals)
A wrapper for the user-defined handle.
def _updater_wrapper(updater): """A wrapper for the user-defined handle.""" def updater_handle(key, lhs_handle, rhs_handle, _): """ ctypes function """ lhs = _ndarray_cls(NDArrayHandle(lhs_handle)) rhs = _ndarray_cls(NDArrayHandle(rhs_handle)) updater(key, lhs, rhs) return updater_handle
Creates a new KVStore. For single machine training, there are two commonly used types: ``local``: Copies all gradients to CPU memory and updates weights there. ``device``: Aggregates gradients and updates weights on GPUs. With this setting, the KVStore also attempts to use GPU peer-to-peer communication, potentially accelerating the communication. For distributed training, KVStore also supports a number of types: ``dist_sync``: Behaves similarly to ``local`` but with one major difference. With ``dist_sync``, batch-size now means the batch size used on each machine. So if there are ``n`` machines and we use batch size ``b``, then ``dist_sync`` behaves like ``local`` with batch size ``n * b``. ``dist_device_sync``: Identical to ``dist_sync`` with the difference similar to ``device`` vs ``local``. ``dist_async``: Performs asynchronous updates. The weights are updated whenever gradients are received from any machine. No two updates happen on the same weight at the same time. However, the order is not guaranteed. Parameters ---------- name : {'local', 'device', 'nccl', 'dist_sync', 'dist_device_sync', 'dist_async'} The type of KVStore. Returns ------- kv : KVStore The created KVStore.
def create(name='local'): """Creates a new KVStore. For single machine training, there are two commonly used types: ``local``: Copies all gradients to CPU memory and updates weights there. ``device``: Aggregates gradients and updates weights on GPUs. With this setting, the KVStore also attempts to use GPU peer-to-peer communication, potentially accelerating the communication. For distributed training, KVStore also supports a number of types: ``dist_sync``: Behaves similarly to ``local`` but with one major difference. With ``dist_sync``, batch-size now means the batch size used on each machine. So if there are ``n`` machines and we use batch size ``b``, then ``dist_sync`` behaves like ``local`` with batch size ``n * b``. ``dist_device_sync``: Identical to ``dist_sync`` with the difference similar to ``device`` vs ``local``. ``dist_async``: Performs asynchronous updates. The weights are updated whenever gradients are received from any machine. No two updates happen on the same weight at the same time. However, the order is not guaranteed. Parameters ---------- name : {'local', 'device', 'nccl', 'dist_sync', 'dist_device_sync', 'dist_async'} The type of KVStore. Returns ------- kv : KVStore The created KVStore. """ if not isinstance(name, string_types): raise TypeError('name must be a string') handle = KVStoreHandle() check_call(_LIB.MXKVStoreCreate(c_str(name), ctypes.byref(handle))) kv = KVStore(handle) set_kvstore_handle(kv.handle) return kv
Initializes a single or a sequence of key-value pairs into the store. For each key, one must `init` it before calling `push` or `pull`. When multiple workers invoke `init` for the same key, only the value supplied by worker with rank `0` is used. This function returns after data has been initialized successfully. Parameters ---------- key : str, int, or sequence of str or int The keys. value : NDArray, RowSparseNDArray or sequence of NDArray or RowSparseNDArray Values corresponding to the keys. Examples -------- >>> # init a single key-value pair >>> shape = (2,3) >>> kv = mx.kv.create('local') >>> kv.init('3', mx.nd.ones(shape)*2) >>> a = mx.nd.zeros(shape) >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] >>> # init a list of key-value pairs >>> keys = ['5', '7', '9'] >>> kv.init(keys, [mx.nd.ones(shape)]*len(keys)) >>> # init a row_sparse value >>> kv.init('4', mx.nd.ones(shape).tostype('row_sparse')) >>> b = mx.nd.sparse.zeros('row_sparse', shape) >>> kv.row_sparse_pull('4', row_ids=mx.nd.array([0, 1]), out=b) >>> print b <RowSparseNDArray 2x3 @cpu(0)>
def init(self, key, value): """ Initializes a single or a sequence of key-value pairs into the store. For each key, one must `init` it before calling `push` or `pull`. When multiple workers invoke `init` for the same key, only the value supplied by worker with rank `0` is used. This function returns after data has been initialized successfully. Parameters ---------- key : str, int, or sequence of str or int The keys. value : NDArray, RowSparseNDArray or sequence of NDArray or RowSparseNDArray Values corresponding to the keys. Examples -------- >>> # init a single key-value pair >>> shape = (2,3) >>> kv = mx.kv.create('local') >>> kv.init('3', mx.nd.ones(shape)*2) >>> a = mx.nd.zeros(shape) >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] >>> # init a list of key-value pairs >>> keys = ['5', '7', '9'] >>> kv.init(keys, [mx.nd.ones(shape)]*len(keys)) >>> # init a row_sparse value >>> kv.init('4', mx.nd.ones(shape).tostype('row_sparse')) >>> b = mx.nd.sparse.zeros('row_sparse', shape) >>> kv.row_sparse_pull('4', row_ids=mx.nd.array([0, 1]), out=b) >>> print b <RowSparseNDArray 2x3 @cpu(0)> """ ckeys, cvals, use_str_keys = _ctype_key_value(key, value) if use_str_keys: check_call(_LIB.MXKVStoreInitEx(self.handle, mx_uint(len(ckeys)), ckeys, cvals)) else: check_call(_LIB.MXKVStoreInit(self.handle, mx_uint(len(ckeys)), ckeys, cvals))
Pushes a single or a sequence of key-value pairs into the store. This function returns immediately after adding an operator to the engine. The actual operation is executed asynchronously. If there are consecutive pushes to the same key, there is no guarantee on the serialization of pushes. The execution of a push does not guarantee that all previous pushes are finished. There is no synchronization between workers. One can use ``_barrier()`` to sync all workers. Parameters ---------- key : str, int, or sequence of str or int Keys. value : NDArray, RowSparseNDArray, list of NDArray or RowSparseNDArray, or list of list of NDArray or RowSparseNDArray Values corresponding to the keys. priority : int, optional The priority of the push operation. Higher priority push operations are likely to be executed before other push actions. Examples -------- >>> # push a single key-value pair >>> kv.push('3', mx.nd.ones(shape)*8) >>> kv.pull('3', out=a) # pull out the value >>> print a.asnumpy() [[ 8. 8. 8.] [ 8. 8. 8.]] >>> # aggregate the value and the push >>> gpus = [mx.gpu(i) for i in range(4)] >>> b = [mx.nd.ones(shape, gpu) for gpu in gpus] >>> kv.push('3', b) >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 4. 4. 4.] [ 4. 4. 4.]] >>> # push a list of keys. >>> # single device >>> keys = ['4', '5', '6'] >>> kv.push(keys, [mx.nd.ones(shape)]*len(keys)) >>> b = [mx.nd.zeros(shape)]*len(keys) >>> kv.pull(keys, out=b) >>> print b[1].asnumpy() [[ 1. 1. 1.] [ 1. 1. 1.]] >>> # multiple devices: >>> keys = ['7', '8', '9'] >>> b = [[mx.nd.ones(shape, gpu) for gpu in gpus]] * len(keys) >>> kv.push(keys, b) >>> kv.pull(keys, out=b) >>> print b[1][1].asnumpy() [[ 4. 4. 4.] [ 4. 4. 4.]] >>> # push a row_sparse value >>> b = mx.nd.sparse.zeros('row_sparse', shape) >>> kv.init('10', mx.nd.sparse.zeros('row_sparse', shape)) >>> kv.push('10', mx.nd.ones(shape).tostype('row_sparse')) >>> # pull out the value >>> kv.row_sparse_pull('10', row_ids=mx.nd.array([0, 1]), out=b) >>> print b <RowSparseNDArray 2x3 @cpu(0)>
def push(self, key, value, priority=0): """ Pushes a single or a sequence of key-value pairs into the store. This function returns immediately after adding an operator to the engine. The actual operation is executed asynchronously. If there are consecutive pushes to the same key, there is no guarantee on the serialization of pushes. The execution of a push does not guarantee that all previous pushes are finished. There is no synchronization between workers. One can use ``_barrier()`` to sync all workers. Parameters ---------- key : str, int, or sequence of str or int Keys. value : NDArray, RowSparseNDArray, list of NDArray or RowSparseNDArray, or list of list of NDArray or RowSparseNDArray Values corresponding to the keys. priority : int, optional The priority of the push operation. Higher priority push operations are likely to be executed before other push actions. Examples -------- >>> # push a single key-value pair >>> kv.push('3', mx.nd.ones(shape)*8) >>> kv.pull('3', out=a) # pull out the value >>> print a.asnumpy() [[ 8. 8. 8.] [ 8. 8. 8.]] >>> # aggregate the value and the push >>> gpus = [mx.gpu(i) for i in range(4)] >>> b = [mx.nd.ones(shape, gpu) for gpu in gpus] >>> kv.push('3', b) >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 4. 4. 4.] [ 4. 4. 4.]] >>> # push a list of keys. >>> # single device >>> keys = ['4', '5', '6'] >>> kv.push(keys, [mx.nd.ones(shape)]*len(keys)) >>> b = [mx.nd.zeros(shape)]*len(keys) >>> kv.pull(keys, out=b) >>> print b[1].asnumpy() [[ 1. 1. 1.] [ 1. 1. 1.]] >>> # multiple devices: >>> keys = ['7', '8', '9'] >>> b = [[mx.nd.ones(shape, gpu) for gpu in gpus]] * len(keys) >>> kv.push(keys, b) >>> kv.pull(keys, out=b) >>> print b[1][1].asnumpy() [[ 4. 4. 4.] [ 4. 4. 4.]] >>> # push a row_sparse value >>> b = mx.nd.sparse.zeros('row_sparse', shape) >>> kv.init('10', mx.nd.sparse.zeros('row_sparse', shape)) >>> kv.push('10', mx.nd.ones(shape).tostype('row_sparse')) >>> # pull out the value >>> kv.row_sparse_pull('10', row_ids=mx.nd.array([0, 1]), out=b) >>> print b <RowSparseNDArray 2x3 @cpu(0)> """ ckeys, cvals, use_str_keys = _ctype_key_value(key, value) if use_str_keys: check_call(_LIB.MXKVStorePushEx( self.handle, mx_uint(len(ckeys)), ckeys, cvals, ctypes.c_int(priority))) else: check_call(_LIB.MXKVStorePush( self.handle, mx_uint(len(ckeys)), ckeys, cvals, ctypes.c_int(priority)))
Pulls a single value or a sequence of values from the store. This function returns immediately after adding an operator to the engine. Subsequent attempts to read from the `out` variable will be blocked until the pull operation completes. `pull` is executed asynchronously after all previous `pull` calls and only the last `push` call for the same input key(s) are finished. The returned values are guaranteed to be the latest values in the store. pull with `RowSparseNDArray` is not supported for dist kvstore. Please use ``row_sparse_pull`` instead. Parameters ---------- key : str, int, or sequence of str or int Keys. out: NDArray or list of NDArray or list of list of NDArray Values corresponding to the keys. priority : int, optional The priority of the pull operation. Higher priority pull operations are likely to be executed before other pull actions. ignore_sparse: bool, optional, default True Whether to ignore sparse arrays in the request. Examples -------- >>> # pull a single key-value pair >>> a = mx.nd.zeros(shape) >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] >>> # pull into multiple devices >>> b = [mx.nd.ones(shape, gpu) for gpu in gpus] >>> kv.pull('3', out=b) >>> print b[1].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] >>> # pull a list of key-value pairs. >>> # On single device >>> keys = ['5', '7', '9'] >>> b = [mx.nd.zeros(shape)]*len(keys) >>> kv.pull(keys, out=b) >>> print b[1].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] >>> # On multiple devices >>> keys = ['6', '8', '10'] >>> b = [[mx.nd.ones(shape, gpu) for gpu in gpus]] * len(keys) >>> kv.pull(keys, out=b) >>> print b[1][1].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]]
def pull(self, key, out=None, priority=0, ignore_sparse=True): """ Pulls a single value or a sequence of values from the store. This function returns immediately after adding an operator to the engine. Subsequent attempts to read from the `out` variable will be blocked until the pull operation completes. `pull` is executed asynchronously after all previous `pull` calls and only the last `push` call for the same input key(s) are finished. The returned values are guaranteed to be the latest values in the store. pull with `RowSparseNDArray` is not supported for dist kvstore. Please use ``row_sparse_pull`` instead. Parameters ---------- key : str, int, or sequence of str or int Keys. out: NDArray or list of NDArray or list of list of NDArray Values corresponding to the keys. priority : int, optional The priority of the pull operation. Higher priority pull operations are likely to be executed before other pull actions. ignore_sparse: bool, optional, default True Whether to ignore sparse arrays in the request. Examples -------- >>> # pull a single key-value pair >>> a = mx.nd.zeros(shape) >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] >>> # pull into multiple devices >>> b = [mx.nd.ones(shape, gpu) for gpu in gpus] >>> kv.pull('3', out=b) >>> print b[1].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] >>> # pull a list of key-value pairs. >>> # On single device >>> keys = ['5', '7', '9'] >>> b = [mx.nd.zeros(shape)]*len(keys) >>> kv.pull(keys, out=b) >>> print b[1].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] >>> # On multiple devices >>> keys = ['6', '8', '10'] >>> b = [[mx.nd.ones(shape, gpu) for gpu in gpus]] * len(keys) >>> kv.pull(keys, out=b) >>> print b[1][1].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] """ assert(out is not None) ckeys, cvals, use_str_keys = _ctype_key_value(key, out) if use_str_keys: check_call(_LIB.MXKVStorePullWithSparseEx(self.handle, mx_uint(len(ckeys)), ckeys, cvals, ctypes.c_int(priority), ctypes.c_bool(ignore_sparse))) else: check_call(_LIB.MXKVStorePullWithSparse(self.handle, mx_uint(len(ckeys)), ckeys, cvals, ctypes.c_int(priority), ctypes.c_bool(ignore_sparse)))
Pulls a single RowSparseNDArray value or a sequence of RowSparseNDArray values \ from the store with specified row_ids. When there is only one row_id, KVStoreRowSparsePull \ is invoked just once and the result is broadcast to all the rest of outputs. `row_sparse_pull` is executed asynchronously after all previous `pull`/`row_sparse_pull` calls and the last `push` call for the same input key(s) are finished. The returned values are guaranteed to be the latest values in the store. Parameters ---------- key : str, int, or sequence of str or int Keys. out: RowSparseNDArray or list of RowSparseNDArray or list of list of RowSparseNDArray Values corresponding to the keys. The stype is expected to be row_sparse priority : int, optional The priority of the pull operation. Higher priority pull operations are likely to be executed before other pull actions. row_ids : NDArray or list of NDArray The row_ids for which to pull for each value. Each row_id is an 1-D NDArray \ whose values don't have to be unique nor sorted. Examples -------- >>> shape = (3, 3) >>> kv.init('3', mx.nd.ones(shape).tostype('row_sparse')) >>> a = mx.nd.sparse.zeros('row_sparse', shape) >>> row_ids = mx.nd.array([0, 2], dtype='int64') >>> kv.row_sparse_pull('3', out=a, row_ids=row_ids) >>> print a.asnumpy() [[ 1. 1. 1.] [ 0. 0. 0.] [ 1. 1. 1.]] >>> duplicate_row_ids = mx.nd.array([2, 2], dtype='int64') >>> kv.row_sparse_pull('3', out=a, row_ids=duplicate_row_ids) >>> print a.asnumpy() [[ 0. 0. 0.] [ 0. 0. 0.] [ 1. 1. 1.]] >>> unsorted_row_ids = mx.nd.array([1, 0], dtype='int64') >>> kv.row_sparse_pull('3', out=a, row_ids=unsorted_row_ids) >>> print a.asnumpy() [[ 1. 1. 1.] [ 1. 1. 1.] [ 0. 0. 0.]]
def row_sparse_pull(self, key, out=None, priority=0, row_ids=None): """ Pulls a single RowSparseNDArray value or a sequence of RowSparseNDArray values \ from the store with specified row_ids. When there is only one row_id, KVStoreRowSparsePull \ is invoked just once and the result is broadcast to all the rest of outputs. `row_sparse_pull` is executed asynchronously after all previous `pull`/`row_sparse_pull` calls and the last `push` call for the same input key(s) are finished. The returned values are guaranteed to be the latest values in the store. Parameters ---------- key : str, int, or sequence of str or int Keys. out: RowSparseNDArray or list of RowSparseNDArray or list of list of RowSparseNDArray Values corresponding to the keys. The stype is expected to be row_sparse priority : int, optional The priority of the pull operation. Higher priority pull operations are likely to be executed before other pull actions. row_ids : NDArray or list of NDArray The row_ids for which to pull for each value. Each row_id is an 1-D NDArray \ whose values don't have to be unique nor sorted. Examples -------- >>> shape = (3, 3) >>> kv.init('3', mx.nd.ones(shape).tostype('row_sparse')) >>> a = mx.nd.sparse.zeros('row_sparse', shape) >>> row_ids = mx.nd.array([0, 2], dtype='int64') >>> kv.row_sparse_pull('3', out=a, row_ids=row_ids) >>> print a.asnumpy() [[ 1. 1. 1.] [ 0. 0. 0.] [ 1. 1. 1.]] >>> duplicate_row_ids = mx.nd.array([2, 2], dtype='int64') >>> kv.row_sparse_pull('3', out=a, row_ids=duplicate_row_ids) >>> print a.asnumpy() [[ 0. 0. 0.] [ 0. 0. 0.] [ 1. 1. 1.]] >>> unsorted_row_ids = mx.nd.array([1, 0], dtype='int64') >>> kv.row_sparse_pull('3', out=a, row_ids=unsorted_row_ids) >>> print a.asnumpy() [[ 1. 1. 1.] [ 1. 1. 1.] [ 0. 0. 0.]] """ assert(out is not None) assert(row_ids is not None) if isinstance(row_ids, NDArray): row_ids = [row_ids] assert(isinstance(row_ids, list)), \ "row_ids should be NDArray or list of NDArray" first_out = out # whether row_ids are the same single_rowid = False if len(row_ids) == 1 and isinstance(out, list): single_rowid = True first_out = [out[0]] ckeys, cvals, use_str_keys = _ctype_key_value(key, first_out) _, crow_ids, _ = _ctype_key_value(key, row_ids) assert(len(crow_ids) == len(cvals)), \ "the number of row_ids doesn't match the number of values" if use_str_keys: check_call(_LIB.MXKVStorePullRowSparseEx( self.handle, mx_uint(len(ckeys)), ckeys, cvals, crow_ids, ctypes.c_int(priority))) else: check_call(_LIB.MXKVStorePullRowSparse( self.handle, mx_uint(len(ckeys)), ckeys, cvals, crow_ids, ctypes.c_int(priority))) # the result can be copied to other devices without invoking row_sparse_pull # if the indices are the same if single_rowid: for out_i in out[1:]: out[0].copyto(out_i)
Specifies type of low-bit quantization for gradient compression \ and additional arguments depending on the type of compression being used. 2bit Gradient Compression takes a positive float `threshold`. The technique works by thresholding values such that positive values in the gradient above threshold will be set to threshold. Negative values whose absolute values are higher than threshold, will be set to the negative of threshold. Values whose absolute values are less than threshold will be set to 0. By doing so, each value in the gradient is in one of three states. 2bits are used to represent these states, and every 16 float values in the original gradient can be represented using one float. This compressed representation can reduce communication costs. The difference between these thresholded values and original values is stored at the sender's end as residual and added to the gradient in the next iteration. When kvstore is 'local', gradient compression is used to reduce communication between multiple devices (gpus). Gradient is quantized on each GPU which computed the gradients, then sent to the GPU which merges the gradients. This receiving GPU dequantizes the gradients and merges them. Note that this increases memory usage on each GPU because of the residual array stored. When kvstore is 'dist', gradient compression is used to reduce communication from worker to sender. Gradient is quantized on each worker which computed the gradients, then sent to the server which dequantizes this data and merges the gradients from each worker. Note that this increases CPU memory usage on each worker because of the residual array stored. Only worker to server communication is compressed in this setting. If each machine has multiple GPUs, currently this GPU to GPU or GPU to CPU communication is not compressed. Server to worker communication (in the case of pull) is also not compressed. To use 2bit compression, we need to specify `type` as `2bit`. Only specifying `type` would use default value for the threshold. To completely specify the arguments for 2bit compression, we would need to pass a dictionary which includes `threshold` like: {'type': '2bit', 'threshold': 0.5} Parameters ---------- compression_params : dict A dictionary specifying the type and parameters for gradient compression. The key `type` in this dictionary is a required string argument and specifies the type of gradient compression. Currently `type` can be only `2bit` Other keys in this dictionary are optional and specific to the type of gradient compression.
def set_gradient_compression(self, compression_params): """ Specifies type of low-bit quantization for gradient compression \ and additional arguments depending on the type of compression being used. 2bit Gradient Compression takes a positive float `threshold`. The technique works by thresholding values such that positive values in the gradient above threshold will be set to threshold. Negative values whose absolute values are higher than threshold, will be set to the negative of threshold. Values whose absolute values are less than threshold will be set to 0. By doing so, each value in the gradient is in one of three states. 2bits are used to represent these states, and every 16 float values in the original gradient can be represented using one float. This compressed representation can reduce communication costs. The difference between these thresholded values and original values is stored at the sender's end as residual and added to the gradient in the next iteration. When kvstore is 'local', gradient compression is used to reduce communication between multiple devices (gpus). Gradient is quantized on each GPU which computed the gradients, then sent to the GPU which merges the gradients. This receiving GPU dequantizes the gradients and merges them. Note that this increases memory usage on each GPU because of the residual array stored. When kvstore is 'dist', gradient compression is used to reduce communication from worker to sender. Gradient is quantized on each worker which computed the gradients, then sent to the server which dequantizes this data and merges the gradients from each worker. Note that this increases CPU memory usage on each worker because of the residual array stored. Only worker to server communication is compressed in this setting. If each machine has multiple GPUs, currently this GPU to GPU or GPU to CPU communication is not compressed. Server to worker communication (in the case of pull) is also not compressed. To use 2bit compression, we need to specify `type` as `2bit`. Only specifying `type` would use default value for the threshold. To completely specify the arguments for 2bit compression, we would need to pass a dictionary which includes `threshold` like: {'type': '2bit', 'threshold': 0.5} Parameters ---------- compression_params : dict A dictionary specifying the type and parameters for gradient compression. The key `type` in this dictionary is a required string argument and specifies the type of gradient compression. Currently `type` can be only `2bit` Other keys in this dictionary are optional and specific to the type of gradient compression. """ if ('device' in self.type) or ('dist' in self.type): # pylint: disable=unsupported-membership-test ckeys, cvals = _ctype_dict(compression_params) check_call(_LIB.MXKVStoreSetGradientCompression(self.handle, mx_uint(len(compression_params)), ckeys, cvals)) else: raise Exception('Gradient compression is not supported for this type of kvstore')
Registers an optimizer with the kvstore. When using a single machine, this function updates the local optimizer. If using multiple machines and this operation is invoked from a worker node, it will serialized the optimizer with pickle and send it to all servers. The function returns after all servers have been updated. Parameters ---------- optimizer : Optimizer The new optimizer for the store Examples -------- >>> kv = mx.kv.create() >>> shape = (2, 2) >>> weight = mx.nd.zeros(shape) >>> kv.init(3, weight) >>> # set the optimizer for kvstore as the default SGD optimizer >>> kv.set_optimizer(mx.optimizer.SGD()) >>> grad = mx.nd.ones(shape) >>> kv.push(3, grad) >>> kv.pull(3, out = weight) >>> # weight is updated via gradient descent >>> weight.asnumpy() array([[-0.01, -0.01], [-0.01, -0.01]], dtype=float32)
def set_optimizer(self, optimizer): """ Registers an optimizer with the kvstore. When using a single machine, this function updates the local optimizer. If using multiple machines and this operation is invoked from a worker node, it will serialized the optimizer with pickle and send it to all servers. The function returns after all servers have been updated. Parameters ---------- optimizer : Optimizer The new optimizer for the store Examples -------- >>> kv = mx.kv.create() >>> shape = (2, 2) >>> weight = mx.nd.zeros(shape) >>> kv.init(3, weight) >>> # set the optimizer for kvstore as the default SGD optimizer >>> kv.set_optimizer(mx.optimizer.SGD()) >>> grad = mx.nd.ones(shape) >>> kv.push(3, grad) >>> kv.pull(3, out = weight) >>> # weight is updated via gradient descent >>> weight.asnumpy() array([[-0.01, -0.01], [-0.01, -0.01]], dtype=float32) """ is_worker = ctypes.c_int() check_call(_LIB.MXKVStoreIsWorkerNode(ctypes.byref(is_worker))) # pylint: disable=invalid-name if 'dist' in self.type and is_worker.value: # pylint: disable=unsupported-membership-test # send the optimizer to server try: # use ASCII protocol 0, might be slower, but not a big ideal optim_str = py_str(pickle.dumps(optimizer, 0)) except: raise cmd = _get_kvstore_server_command_type('kController') self._send_command_to_servers(cmd, optim_str) if optimizer.multi_precision: cmd = _get_kvstore_server_command_type('kSetMultiPrecision') self._send_command_to_servers(cmd, '') else: self._set_updater(opt.get_updater(optimizer))
Returns the type of this kvstore. Returns ------- type : str the string type
def type(self): """ Returns the type of this kvstore. Returns ------- type : str the string type """ kv_type = ctypes.c_char_p() check_call(_LIB.MXKVStoreGetType(self.handle, ctypes.byref(kv_type))) return py_str(kv_type.value)
Returns the rank of this worker node. Returns ------- rank : int The rank of this node, which is in range [0, num_workers())
def rank(self): """ Returns the rank of this worker node. Returns ------- rank : int The rank of this node, which is in range [0, num_workers()) """ rank = ctypes.c_int() check_call(_LIB.MXKVStoreGetRank(self.handle, ctypes.byref(rank))) return rank.value
Returns the number of worker nodes. Returns ------- size :int The number of worker nodes.
def num_workers(self): """Returns the number of worker nodes. Returns ------- size :int The number of worker nodes. """ size = ctypes.c_int() check_call(_LIB.MXKVStoreGetGroupSize(self.handle, ctypes.byref(size))) return size.value
Saves the optimizer (updater) state to a file. This is often used when checkpointing the model during training. Parameters ---------- fname : str Path to the output states file. dump_optimizer : bool, default False Whether to also save the optimizer itself. This would also save optimizer information such as learning rate and weight decay schedules.
def save_optimizer_states(self, fname, dump_optimizer=False): """Saves the optimizer (updater) state to a file. This is often used when checkpointing the model during training. Parameters ---------- fname : str Path to the output states file. dump_optimizer : bool, default False Whether to also save the optimizer itself. This would also save optimizer information such as learning rate and weight decay schedules. """ assert self._updater is not None, "Cannot save states for distributed training" with open(fname, 'wb') as fout: fout.write(self._updater.get_states(dump_optimizer))
Loads the optimizer (updater) state from the file. Parameters ---------- fname : str Path to input states file.
def load_optimizer_states(self, fname): """Loads the optimizer (updater) state from the file. Parameters ---------- fname : str Path to input states file. """ assert self._updater is not None, "Cannot load states for distributed training" self._updater.set_states(open(fname, 'rb').read())
Sets a push updater into the store. This function only changes the local store. When running on multiple machines one must use `set_optimizer`. Parameters ---------- updater : function The updater function. Examples -------- >>> def update(key, input, stored): ... print "update on key: %d" % key ... stored += input * 2 >>> kv._set_updater(update) >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 4. 4. 4.] [ 4. 4. 4.]] >>> kv.push('3', mx.nd.ones(shape)) update on key: 3 >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 6. 6. 6.] [ 6. 6. 6.]]
def _set_updater(self, updater): """Sets a push updater into the store. This function only changes the local store. When running on multiple machines one must use `set_optimizer`. Parameters ---------- updater : function The updater function. Examples -------- >>> def update(key, input, stored): ... print "update on key: %d" % key ... stored += input * 2 >>> kv._set_updater(update) >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 4. 4. 4.] [ 4. 4. 4.]] >>> kv.push('3', mx.nd.ones(shape)) update on key: 3 >>> kv.pull('3', out=a) >>> print a.asnumpy() [[ 6. 6. 6.] [ 6. 6. 6.]] """ self._updater = updater # set updater with int keys _updater_proto = ctypes.CFUNCTYPE( None, ctypes.c_int, NDArrayHandle, NDArrayHandle, ctypes.c_void_p) self._updater_func = _updater_proto(_updater_wrapper(updater)) # set updater with str keys _str_updater_proto = ctypes.CFUNCTYPE( None, ctypes.c_char_p, NDArrayHandle, NDArrayHandle, ctypes.c_void_p) self._str_updater_func = _str_updater_proto(_updater_wrapper(updater)) check_call(_LIB.MXKVStoreSetUpdaterEx(self.handle, self._updater_func, self._str_updater_func, None))
Sends a command to all server nodes. Sending command to a server node will cause that server node to invoke ``KVStoreServer.controller`` to execute the command. This function returns after the command has been executed on all server nodes. Parameters ---------- head : int the head of the command. body : str the body of the command.
def _send_command_to_servers(self, head, body): """Sends a command to all server nodes. Sending command to a server node will cause that server node to invoke ``KVStoreServer.controller`` to execute the command. This function returns after the command has been executed on all server nodes. Parameters ---------- head : int the head of the command. body : str the body of the command. """ check_call(_LIB.MXKVStoreSendCommmandToServers( self.handle, mx_uint(head), c_str(body)))
Add a module to the chain. Parameters ---------- module : BaseModule The new module to add. kwargs : ``**keywords`` All the keyword arguments are saved as meta information for the added module. The currently known meta includes - `take_labels`: indicating whether the module expect to take labels when doing computation. Note any module in the chain can take labels (not necessarily only the top most one), and they all take the same labels passed from the original data batch for the `SequentialModule`. Returns ------- self This function returns `self` to allow us to easily chain a series of `add` calls. Examples -------- >>> # An example of addinging two modules to a chain. >>> seq_mod = mx.mod.SequentialModule() >>> seq_mod.add(mod1) >>> seq_mod.add(mod2)
def add(self, module, **kwargs): """Add a module to the chain. Parameters ---------- module : BaseModule The new module to add. kwargs : ``**keywords`` All the keyword arguments are saved as meta information for the added module. The currently known meta includes - `take_labels`: indicating whether the module expect to take labels when doing computation. Note any module in the chain can take labels (not necessarily only the top most one), and they all take the same labels passed from the original data batch for the `SequentialModule`. Returns ------- self This function returns `self` to allow us to easily chain a series of `add` calls. Examples -------- >>> # An example of addinging two modules to a chain. >>> seq_mod = mx.mod.SequentialModule() >>> seq_mod.add(mod1) >>> seq_mod.add(mod2) """ self._modules.append(module) # a sanity check to avoid typo for key in kwargs: assert key in self._meta_keys, ('Unknown meta "%s", a typo?' % key) self._metas.append(kwargs) # after adding new modules, we are reset back to raw states, needs # to bind, init_params, etc. self.binded = False self.params_initialized = False self.optimizer_initialized = False return self
Gets current parameters. Returns ------- (arg_params, aux_params) A pair of dictionaries each mapping parameter names to NDArray values. This is a merged dictionary of all the parameters in the modules.
def get_params(self): """Gets current parameters. Returns ------- (arg_params, aux_params) A pair of dictionaries each mapping parameter names to NDArray values. This is a merged dictionary of all the parameters in the modules. """ assert self.binded and self.params_initialized arg_params = dict() aux_params = dict() for module in self._modules: arg, aux = module.get_params() arg_params.update(arg) aux_params.update(aux) return (arg_params, aux_params)
Initializes parameters. Parameters ---------- initializer : Initializer arg_params : dict Default ``None``. Existing parameters. This has higher priority than `initializer`. aux_params : dict Default ``None``. Existing auxiliary states. This has higher priority than `initializer`. allow_missing : bool Allow missing values in `arg_params` and `aux_params` (if not ``None``). In this case, missing values will be filled with `initializer`. force_init : bool Default ``False``. allow_extra : boolean, optional Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor.
def init_params(self, initializer=Uniform(0.01), arg_params=None, aux_params=None, allow_missing=False, force_init=False, allow_extra=False): """Initializes parameters. Parameters ---------- initializer : Initializer arg_params : dict Default ``None``. Existing parameters. This has higher priority than `initializer`. aux_params : dict Default ``None``. Existing auxiliary states. This has higher priority than `initializer`. allow_missing : bool Allow missing values in `arg_params` and `aux_params` (if not ``None``). In this case, missing values will be filled with `initializer`. force_init : bool Default ``False``. allow_extra : boolean, optional Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor. """ if self.params_initialized and not force_init: return assert self.binded, 'call bind before initializing the parameters' for module in self._modules: module.init_params(initializer=initializer, arg_params=arg_params, aux_params=aux_params, allow_missing=allow_missing, force_init=force_init, allow_extra=allow_extra) # make sure we do not have duplicated parameter names def _check_name(known_names, new_names, modules, i): """Internal function to help checking duplicated names.""" for name in new_names: assert not name in known_names, "Duplicated parameter names: " + \ ('name "%s" in layer %d (%s) is already ' % (name, i, type(modules[i]))) + \ ('used in layer %d (%s).' % (known_names[name], type(modules[known_names[name]]))) known_names[name] = i arg_names = dict() aux_names = dict() for i_layer, module in enumerate(self._modules): arg_params, aux_params = module.get_params() _check_name(arg_names, arg_params.keys(), self._modules, i_layer) _check_name(aux_names, aux_params.keys(), self._modules, i_layer) self.params_initialized = True
Binds the symbols to construct executors. This is necessary before one can perform computation with the module. Parameters ---------- data_shapes : list of (str, tuple) Typically is `data_iter.provide_data`. label_shapes : list of (str, tuple) Typically is `data_iter.provide_label`. for_training : bool Default is ``True``. Whether the executors should be bind for training. inputs_need_grad : bool Default is ``False``. Whether the gradients to the input data need to be computed. Typically this is not needed. But this might be needed when implementing composition of modules. force_rebind : bool Default is ``False``. This function does nothing if the executors are already bound. But with this ``True``, the executors will be forced to rebind. shared_module : Module Default is ``None``. Currently shared module is not supported for `SequentialModule`. grad_req : str, list of str, dict of str to str Requirement for gradient accumulation. Can be 'write', 'add', or 'null' (default to 'write'). Can be specified globally (str) or for each argument (list, dict).
def bind(self, data_shapes, label_shapes=None, for_training=True, inputs_need_grad=False, force_rebind=False, shared_module=None, grad_req='write'): """Binds the symbols to construct executors. This is necessary before one can perform computation with the module. Parameters ---------- data_shapes : list of (str, tuple) Typically is `data_iter.provide_data`. label_shapes : list of (str, tuple) Typically is `data_iter.provide_label`. for_training : bool Default is ``True``. Whether the executors should be bind for training. inputs_need_grad : bool Default is ``False``. Whether the gradients to the input data need to be computed. Typically this is not needed. But this might be needed when implementing composition of modules. force_rebind : bool Default is ``False``. This function does nothing if the executors are already bound. But with this ``True``, the executors will be forced to rebind. shared_module : Module Default is ``None``. Currently shared module is not supported for `SequentialModule`. grad_req : str, list of str, dict of str to str Requirement for gradient accumulation. Can be 'write', 'add', or 'null' (default to 'write'). Can be specified globally (str) or for each argument (list, dict). """ if self.binded and not force_rebind: self.logger.warning('Already bound, ignoring bind()') return if inputs_need_grad: assert for_training is True assert shared_module is None, 'Shared module is not supported' assert len(self._modules) > 0, 'Attempting to bind an empty SequentialModule' self.binded = True # the same label shapes are used for all chained modules self._label_shapes = label_shapes my_data_shapes = data_shapes anybody_ever_needs_label = False for i_layer, module in enumerate(self._modules): meta = self._metas[i_layer] if SequentialModule.META_TAKE_LABELS in meta and \ meta[SequentialModule.META_TAKE_LABELS]: my_label_shapes = label_shapes anybody_ever_needs_label = True else: my_label_shapes = None my_inputs_need_grad = bool(inputs_need_grad or (for_training and i_layer > 0)) if meta.get(SequentialModule.META_AUTO_WIRING, False): data_names = module.data_names assert len(data_names) == len(my_data_shapes) my_data_shapes = [(new_name, shape) for (new_name, (_, shape)) in zip(data_names, my_data_shapes)] module.bind(data_shapes=my_data_shapes, label_shapes=my_label_shapes, for_training=for_training, inputs_need_grad=my_inputs_need_grad, force_rebind=force_rebind, shared_module=None, grad_req=grad_req) # the output of the previous module is the data of the next module my_data_shapes = module.output_shapes if not anybody_ever_needs_label: # then I do not need label either self._label_shapes = None
Installs and initializes optimizers. Parameters ---------- kvstore : str or KVStore Default `'local'`. optimizer : str or Optimizer Default `'sgd'` optimizer_params : dict Default ``(('learning_rate', 0.01),)``. The default value is not a dictionary, just to avoid pylint warning of dangerous default values. force_init : bool Default ``False``, indicating whether we should force re-initializing the optimizer in the case an optimizer is already installed.
def init_optimizer(self, kvstore='local', optimizer='sgd', optimizer_params=(('learning_rate', 0.01),), force_init=False): """Installs and initializes optimizers. Parameters ---------- kvstore : str or KVStore Default `'local'`. optimizer : str or Optimizer Default `'sgd'` optimizer_params : dict Default ``(('learning_rate', 0.01),)``. The default value is not a dictionary, just to avoid pylint warning of dangerous default values. force_init : bool Default ``False``, indicating whether we should force re-initializing the optimizer in the case an optimizer is already installed. """ assert self.binded and self.params_initialized if self.optimizer_initialized and not force_init: self.logger.warning('optimizer already initialized, ignoring.') return for module in self._modules: module.init_optimizer(kvstore=kvstore, optimizer=optimizer, optimizer_params=optimizer_params, force_init=force_init) self.optimizer_initialized = True
Forward computation. Parameters ---------- data_batch : DataBatch is_train : bool Default is ``None``, in which case `is_train` is take as ``self.for_training``.
def forward(self, data_batch, is_train=None): """Forward computation. Parameters ---------- data_batch : DataBatch is_train : bool Default is ``None``, in which case `is_train` is take as ``self.for_training``. """ assert self.binded and self.params_initialized # make a shallow copy, just to maintain necessary properties (if any) like # bucket_key, pad, etc. data_batch = copy.copy(data_batch) for i_layer, module in enumerate(self._modules): module.forward(data_batch, is_train=is_train) if i_layer+1 == len(self._modules): # the last layer, do not need to do the followings break data_batch.data = module.get_outputs() if hasattr(data_batch, 'provide_data'): # need to update this, in case the internal module is using bucketing # or whatever data_names = [x[0] for x in module.output_shapes] assert len(data_names) == len(data_batch.data) data_batch.provide_data = [(name, x.shape) for name, x in zip(data_names, data_batch.data)]
Backward computation.
def backward(self, out_grads=None): """Backward computation.""" assert self.binded and self.params_initialized for i_layer, module in reversed(list(zip(range(len(self._modules)), self._modules))): module.backward(out_grads=out_grads) if i_layer == 0: break out_grads = module.get_input_grads()
Updates parameters according to installed optimizer and the gradient computed in the previous forward-backward cycle.
def update(self): """Updates parameters according to installed optimizer and the gradient computed in the previous forward-backward cycle. """ assert self.binded and self.params_initialized and self.optimizer_initialized for module in self._modules: module.update()
Gets outputs from a previous forward computation. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArray or list of list of NDArray If `merge_multi_context` is ``True``, it is like ``[out1, out2]``. Otherwise, it is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output elements are numpy arrays.
def get_outputs(self, merge_multi_context=True): """Gets outputs from a previous forward computation. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArray or list of list of NDArray If `merge_multi_context` is ``True``, it is like ``[out1, out2]``. Otherwise, it is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output elements are numpy arrays. """ assert self.binded and self.params_initialized return self._modules[-1].get_outputs(merge_multi_context=merge_multi_context)
Gets the gradients with respect to the inputs of the module. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArrays or list of list of NDArrays If `merge_multi_context` is ``True``, it is like ``[grad1, grad2]``. Otherwise, it is like ``[[grad1_dev1, grad1_dev2], [grad2_dev1, grad2_dev2]]``. All the output elements are `NDArray`.
def get_input_grads(self, merge_multi_context=True): """Gets the gradients with respect to the inputs of the module. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArrays or list of list of NDArrays If `merge_multi_context` is ``True``, it is like ``[grad1, grad2]``. Otherwise, it is like ``[[grad1_dev1, grad1_dev2], [grad2_dev1, grad2_dev2]]``. All the output elements are `NDArray`. """ assert self.binded and self.params_initialized and self.inputs_need_grad return self._modules[0].get_input_grads(merge_multi_context=merge_multi_context)
Evaluates and accumulates evaluation metric on outputs of the last forward computation. Parameters ---------- eval_metric : EvalMetric labels : list of NDArray Typically ``data_batch.label``.
def update_metric(self, eval_metric, labels, pre_sliced=False): """Evaluates and accumulates evaluation metric on outputs of the last forward computation. Parameters ---------- eval_metric : EvalMetric labels : list of NDArray Typically ``data_batch.label``. """ assert self.binded and self.params_initialized for meta, module in zip(self._metas, self._modules): if SequentialModule.META_TAKE_LABELS in meta and \ meta[SequentialModule.META_TAKE_LABELS]: module.update_metric(eval_metric, labels, pre_sliced)
Installs monitor on all executors.
def install_monitor(self, mon): """Installs monitor on all executors.""" assert self.binded for module in self._modules: module.install_monitor(mon)
Generate the iterator of mnist dataset
def get_iterator(data_shape, use_caffe_data): """Generate the iterator of mnist dataset""" def get_iterator_impl_mnist(args, kv): """return train and val iterators for mnist""" # download data get_mnist_ubyte() flat = False if len(data_shape) != 1 else True train = mx.io.MNISTIter( image="data/train-images-idx3-ubyte", label="data/train-labels-idx1-ubyte", input_shape=data_shape, batch_size=args.batch_size, shuffle=True, flat=flat, num_parts=kv.num_workers, part_index=kv.rank) val = mx.io.MNISTIter( image="data/t10k-images-idx3-ubyte", label="data/t10k-labels-idx1-ubyte", input_shape=data_shape, batch_size=args.batch_size, flat=flat, num_parts=kv.num_workers, part_index=kv.rank) return (train, val) def get_iterator_impl_caffe(args, kv): flat = False if len(data_shape) != 1 else True train = mx.io.CaffeDataIter( prototxt= 'layer { \ name: "mnist" \ type: "Data" \ top: "data" \ top: "label" \ include { \ phase: TRAIN \ } \ transform_param { \ scale: 0.00390625 \ } \ data_param { \ source: "mnist_train_lmdb" \ batch_size: 64 \ backend: LMDB \ } \ }', flat=flat, num_examples=60000 # float32 is the default, so left out here in order to illustrate ) val = mx.io.CaffeDataIter( prototxt= 'layer { \ name: "mnist" \ type: "Data" \ top: "data" \ top: "label" \ include { \ phase: TEST \ } \ transform_param { \ scale: 0.00390625 \ } \ data_param { \ source: "mnist_test_lmdb" \ batch_size: 100 \ backend: LMDB \ } \ }', flat=flat, num_examples=10000, dtype="float32" # float32 is the default ) return train, val if use_caffe_data: return get_iterator_impl_caffe else: return get_iterator_impl_mnist
The function is used to run predictions on the audio files in the directory `pred_directory`. Parameters ---------- net: The model that has been trained. prediction_dir: string, default ./Test The directory that contains the audio files on which predictions are to be made
def predict(prediction_dir='./Test'): """The function is used to run predictions on the audio files in the directory `pred_directory`. Parameters ---------- net: The model that has been trained. prediction_dir: string, default ./Test The directory that contains the audio files on which predictions are to be made """ if not os.path.exists(prediction_dir): warnings.warn("The directory on which predictions are to be made is not found!") return if len(os.listdir(prediction_dir)) == 0: warnings.warn("The directory on which predictions are to be made is empty! Exiting...") return # Loading synsets if not os.path.exists('./synset.txt'): warnings.warn("The synset or labels for the dataset do not exist. Please run the training script first.") return with open("./synset.txt", "r") as f: synset = [l.rstrip() for l in f] net = get_net(len(synset)) print("Trying to load the model with the saved parameters...") if not os.path.exists("./net.params"): warnings.warn("The model does not have any saved parameters... Cannot proceed! Train the model first") return net.load_parameters("./net.params") file_names = os.listdir(prediction_dir) full_file_names = [os.path.join(prediction_dir, item) for item in file_names] from transforms import MFCC mfcc = MFCC() print("\nStarting predictions for audio files in ", prediction_dir, " ....\n") for filename in full_file_names: # Argument kaiser_fast to res_type is faster than 'kaiser_best'. To reduce the load time, passing kaiser_fast. X1, _ = librosa.load(filename, res_type='kaiser_fast') transformed_test_data = mfcc(mx.nd.array(X1)) output = net(transformed_test_data.reshape((1, -1))) prediction = nd.argmax(output, axis=1) print(filename, " -> ", synset[(int)(prediction.asscalar())])
Thread loop for generating data Parameters ---------- proc_id: int Process id alive: multiprocessing.Value variable for signaling whether process should continue or not queue: multiprocessing.Queue queue for passing data back fn: function function object that returns a sample to be pushed into the queue
def _proc_loop(proc_id, alive, queue, fn): """Thread loop for generating data Parameters ---------- proc_id: int Process id alive: multiprocessing.Value variable for signaling whether process should continue or not queue: multiprocessing.Queue queue for passing data back fn: function function object that returns a sample to be pushed into the queue """ print("proc {} started".format(proc_id)) try: while alive.value: data = fn() put_success = False while alive.value and not put_success: try: queue.put(data, timeout=0.5) put_success = True except QFullExcept: # print("Queue Full") pass except KeyboardInterrupt: print("W: interrupt received, stopping process {} ...".format(proc_id)) print("Closing process {}".format(proc_id)) queue.close()
Start processes if not already started
def _init_proc(self): """Start processes if not already started""" if not self.proc: self.proc = [ mp.Process(target=self._proc_loop, args=(i, self.alive, self.queue, self.fn)) for i in range(self.num_proc) ] self.alive.value = True for p in self.proc: p.start()
Resets the generator by stopping all processes
def reset(self): """Resets the generator by stopping all processes""" self.alive.value = False qsize = 0 try: while True: self.queue.get(timeout=0.1) qsize += 1 except QEmptyExcept: pass print("Queue size on reset: {}".format(qsize)) for i, p in enumerate(self.proc): p.join() self.proc.clear()
Create a base class with a metaclass.
def with_metaclass(meta, *bases): """Create a base class with a metaclass.""" # This requires a bit of explanation: the basic idea is to make a dummy # metaclass for one level of class instantiation that replaces itself with # the actual metaclass. class metaclass(type): def __new__(cls, name, this_bases, d): return meta(name, bases, d) @classmethod def __prepare__(cls, name, this_bases): return meta.__prepare__(name, bases) return type.__new__(metaclass, 'temporary_class', (), {})
Load library by searching possible path.
def _load_lib(): """Load library by searching possible path.""" lib_path = libinfo.find_lib_path() lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_LOCAL) # DMatrix functions lib.MXGetLastError.restype = ctypes.c_char_p return lib
Create ctypes array from a Python array. Parameters ---------- ctype : ctypes data type Data type of the array we want to convert to, such as mx_float. values : tuple or list Data content. Returns ------- out : ctypes array Created ctypes array. Examples -------- >>> x = mx.base.c_array(mx.base.mx_float, [1, 2, 3]) >>> print len(x) 3 >>> x[1] 2.0
def c_array(ctype, values): """Create ctypes array from a Python array. Parameters ---------- ctype : ctypes data type Data type of the array we want to convert to, such as mx_float. values : tuple or list Data content. Returns ------- out : ctypes array Created ctypes array. Examples -------- >>> x = mx.base.c_array(mx.base.mx_float, [1, 2, 3]) >>> print len(x) 3 >>> x[1] 2.0 """ out = (ctype * len(values))() out[:] = values return out
Create ctypes const void ** from a list of MXNet objects with handles. Parameters ---------- objs : list of NDArray/Symbol. MXNet objects. Returns ------- (ctypes.c_void_p * len(objs)) A void ** pointer that can be passed to C API.
def c_handle_array(objs): """Create ctypes const void ** from a list of MXNet objects with handles. Parameters ---------- objs : list of NDArray/Symbol. MXNet objects. Returns ------- (ctypes.c_void_p * len(objs)) A void ** pointer that can be passed to C API. """ arr = (ctypes.c_void_p * len(objs))() arr[:] = [o.handle for o in objs] return arr
Convert a ctypes pointer to a numpy array. The resulting NumPy array shares the memory with the pointer. Parameters ---------- cptr : ctypes.POINTER(mx_float) pointer to the memory region shape : tuple Shape of target `NDArray`. Returns ------- out : numpy_array A numpy array : numpy array.
def ctypes2numpy_shared(cptr, shape): """Convert a ctypes pointer to a numpy array. The resulting NumPy array shares the memory with the pointer. Parameters ---------- cptr : ctypes.POINTER(mx_float) pointer to the memory region shape : tuple Shape of target `NDArray`. Returns ------- out : numpy_array A numpy array : numpy array. """ if not isinstance(cptr, ctypes.POINTER(mx_float)): raise RuntimeError('expected float pointer') size = 1 for s in shape: size *= s dbuffer = (mx_float * size).from_address(ctypes.addressof(cptr.contents)) return _np.frombuffer(dbuffer, dtype=_np.float32).reshape(shape)
Build argument docs in python style. arg_names : list of str Argument names. arg_types : list of str Argument type information. arg_descs : list of str Argument description information. remove_dup : boolean, optional Whether remove duplication or not. Returns ------- docstr : str Python docstring of parameter sections.
def build_param_doc(arg_names, arg_types, arg_descs, remove_dup=True): """Build argument docs in python style. arg_names : list of str Argument names. arg_types : list of str Argument type information. arg_descs : list of str Argument description information. remove_dup : boolean, optional Whether remove duplication or not. Returns ------- docstr : str Python docstring of parameter sections. """ param_keys = set() param_str = [] for key, type_info, desc in zip(arg_names, arg_types, arg_descs): if key in param_keys and remove_dup: continue if key == 'num_args': continue param_keys.add(key) ret = '%s : %s' % (key, type_info) if len(desc) != 0: ret += '\n ' + desc param_str.append(ret) doc_str = ('Parameters\n' + '----------\n' + '%s\n') doc_str = doc_str % ('\n'.join(param_str)) return doc_str
Append the definition position to each function contained in module. Examples -------- # Put the following codes at the end of a file add_fileline_to_docstring(__name__)
def add_fileline_to_docstring(module, incursive=True): """Append the definition position to each function contained in module. Examples -------- # Put the following codes at the end of a file add_fileline_to_docstring(__name__) """ def _add_fileline(obj): """Add fileinto to a object. """ if obj.__doc__ is None or 'From:' in obj.__doc__: return fname = inspect.getsourcefile(obj) if fname is None: return try: line = inspect.getsourcelines(obj)[-1] except IOError: return obj.__doc__ += '\n\nFrom:%s:%d' % (fname, line) if isinstance(module, str): module = sys.modules[module] for _, obj in inspect.getmembers(module): if inspect.isbuiltin(obj): continue if inspect.isfunction(obj): _add_fileline(obj) if inspect.ismethod(obj): _add_fileline(obj.__func__) if inspect.isclass(obj) and incursive: add_fileline_to_docstring(obj, False)