INSTRUCTION
stringlengths 1
46.3k
| RESPONSE
stringlengths 75
80.2k
|
---|---|
Download, convert and save a caffe model
|
def convert_caffe_model(model_name, meta_info, dst_dir='./model'):
"""Download, convert and save a caffe model"""
(prototxt, caffemodel, mean) = download_caffe_model(model_name, meta_info, dst_dir)
model_name = os.path.join(dst_dir, model_name)
convert_model(prototxt, caffemodel, model_name)
if isinstance(mean, str):
mx_mean = model_name + '-mean.nd'
convert_mean(mean, mx_mean)
mean = mx_mean
return (model_name, mean)
|
Run _func with multi-process using params.
|
def multi_p_run(tot_num, _func, worker, params, n_process):
"""
Run _func with multi-process using params.
"""
from multiprocessing import Process, Queue
out_q = Queue()
procs = []
split_num = split_seq(list(range(0, tot_num)), n_process)
print(tot_num, ">>", split_num)
split_len = len(split_num)
if n_process > split_len:
n_process = split_len
for i in range(n_process):
_p = Process(target=_func,
args=(worker, split_num[i][0], split_num[i][1],
params, out_q))
_p.daemon = True
procs.append(_p)
_p.start()
try:
result = []
for i in range(n_process):
result.append(out_q.get())
for i in procs:
i.join()
except KeyboardInterrupt:
print('Killing all the children in the pool.')
for i in procs:
i.terminate()
i.join()
return -1
while not out_q.empty():
print(out_q.get(block=False))
return result
|
Split the number(sam_num) into numbers by n_tile
|
def split_seq(sam_num, n_tile):
"""
Split the number(sam_num) into numbers by n_tile
"""
import math
print(sam_num)
print(n_tile)
start_num = sam_num[0::int(math.ceil(len(sam_num) / (n_tile)))]
end_num = start_num[1::]
end_num.append(len(sam_num))
return [[i, j] for i, j in zip(start_num, end_num)]
|
put worker
|
def put_worker(func, from_idx, to_idx, params, out_q):
"""
put worker
"""
succ, fail = func(from_idx, to_idx, params)
return out_q.put({'succ': succ, 'fail': fail})
|
create a namedtuple with default values
|
def namedtuple_with_defaults(typename, field_names, default_values=()):
""" create a namedtuple with default values """
T = collections.namedtuple(typename, field_names)
T.__new__.__defaults__ = (None, ) * len(T._fields)
if isinstance(default_values, collections.Mapping):
prototype = T(**default_values)
else:
prototype = T(*default_values)
T.__new__.__defaults__ = tuple(prototype)
return T
|
merge dict a, b, with b overriding keys in a
|
def merge_dict(a, b):
""" merge dict a, b, with b overriding keys in a """
c = a.copy()
c.update(b)
return c
|
accept list of namedtuple, return a dict of zipped fields
|
def zip_namedtuple(nt_list):
""" accept list of namedtuple, return a dict of zipped fields """
if not nt_list:
return dict()
if not isinstance(nt_list, list):
nt_list = [nt_list]
for nt in nt_list:
assert type(nt) == type(nt_list[0])
ret = {k : [v] for k, v in nt_list[0]._asdict().items()}
for nt in nt_list[1:]:
for k, v in nt._asdict().items():
ret[k].append(v)
return ret
|
convert raw configuration to unified dictionary
|
def config_as_dict(cfg):
""" convert raw configuration to unified dictionary """
ret = cfg.__dict__.copy()
# random cropping params
del ret['rand_crop_samplers']
assert isinstance(cfg.rand_crop_samplers, list)
ret = merge_dict(ret, zip_namedtuple(cfg.rand_crop_samplers))
num_crop_sampler = len(cfg.rand_crop_samplers)
ret['num_crop_sampler'] = num_crop_sampler # must specify the #
ret['rand_crop_prob'] = 1.0 / (num_crop_sampler + 1) * num_crop_sampler
# random padding params
del ret['rand_pad']
ret = merge_dict(ret, cfg.rand_pad._asdict())
# color jitter
del ret['color_jitter']
ret = merge_dict(ret, cfg.color_jitter._asdict())
return ret
|
Imports the ONNX model file, passed as a parameter, into MXNet symbol and parameters.
Operator support and coverage -
https://cwiki.apache.org/confluence/display/MXNET/MXNet-ONNX+Integration
Parameters
----------
model_file : str
ONNX model file name
Returns
-------
sym : :class:`~mxnet.symbol.Symbol`
MXNet symbol object
arg_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray`
Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format
aux_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray`
Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format
Notes
-----
This method is available when you ``import mxnet.contrib.onnx``
|
def import_model(model_file):
"""Imports the ONNX model file, passed as a parameter, into MXNet symbol and parameters.
Operator support and coverage -
https://cwiki.apache.org/confluence/display/MXNET/MXNet-ONNX+Integration
Parameters
----------
model_file : str
ONNX model file name
Returns
-------
sym : :class:`~mxnet.symbol.Symbol`
MXNet symbol object
arg_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray`
Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format
aux_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray`
Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format
Notes
-----
This method is available when you ``import mxnet.contrib.onnx``
"""
graph = GraphProto()
try:
import onnx
except ImportError:
raise ImportError("Onnx and protobuf need to be installed. "
+ "Instructions to install - https://github.com/onnx/onnx")
# loads model file and returns ONNX protobuf object
model_proto = onnx.load_model(model_file)
sym, arg_params, aux_params = graph.from_onnx(model_proto.graph)
return sym, arg_params, aux_params
|
Returns the name and shape information of input and output tensors of the given ONNX model file.
Notes
-----
This method is available when you ``import mxnet.contrib.onnx``
Parameters
----------
model_file : str
ONNX model file name
Returns
-------
model_metadata : dict
A dictionary object mapping various metadata to its corresponding value.
The dictionary will have the following template::
'input_tensor_data' : list of tuples representing the shape of the input paramters
'output_tensor_data' : list of tuples representing the shape of the output of the model
|
def get_model_metadata(model_file):
"""
Returns the name and shape information of input and output tensors of the given ONNX model file.
Notes
-----
This method is available when you ``import mxnet.contrib.onnx``
Parameters
----------
model_file : str
ONNX model file name
Returns
-------
model_metadata : dict
A dictionary object mapping various metadata to its corresponding value.
The dictionary will have the following template::
'input_tensor_data' : list of tuples representing the shape of the input paramters
'output_tensor_data' : list of tuples representing the shape of the output of the model
"""
graph = GraphProto()
try:
import onnx
except ImportError:
raise ImportError("Onnx and protobuf need to be installed. "
+ "Instructions to install - https://github.com/onnx/onnx")
model_proto = onnx.load_model(model_file)
metadata = graph.get_graph_metadata(model_proto.graph)
return metadata
|
wrapper for a small Convolution group
Parameters:
----------
from_layer : mx.symbol
continue on which layer
name : str
base name of the new layers
num_filter : int
how many filters to use in Convolution layer
kernel : tuple (int, int)
kernel size (h, w)
pad : tuple (int, int)
padding size (h, w)
stride : tuple (int, int)
stride size (h, w)
act_type : str
activation type, can be relu...
use_batchnorm : bool
whether to use batch normalization
Returns:
----------
(conv, relu) mx.Symbols
|
def legacy_conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \
stride=(1,1), act_type="relu", use_batchnorm=False):
"""
wrapper for a small Convolution group
Parameters:
----------
from_layer : mx.symbol
continue on which layer
name : str
base name of the new layers
num_filter : int
how many filters to use in Convolution layer
kernel : tuple (int, int)
kernel size (h, w)
pad : tuple (int, int)
padding size (h, w)
stride : tuple (int, int)
stride size (h, w)
act_type : str
activation type, can be relu...
use_batchnorm : bool
whether to use batch normalization
Returns:
----------
(conv, relu) mx.Symbols
"""
assert not use_batchnorm, "batchnorm not yet supported"
bias = mx.symbol.Variable(name="conv{}_bias".format(name),
init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'})
conv = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=kernel, pad=pad, \
stride=stride, num_filter=num_filter, name="conv{}".format(name))
relu = mx.symbol.Activation(data=conv, act_type=act_type, \
name="{}{}".format(act_type, name))
if use_batchnorm:
relu = mx.symbol.BatchNorm(data=relu, name="bn{}".format(name))
return conv, relu
|
Wrapper function to extract features from base network, attaching extra
layers and SSD specific layers
Parameters
----------
from_layers : list of str
feature extraction layers, use '' for add extra layers
For example:
from_layers = ['relu4_3', 'fc7', '', '', '', '']
which means extract feature from relu4_3 and fc7, adding 4 extra layers
on top of fc7
num_filters : list of int
number of filters for extra layers, you can use -1 for extracted features,
however, if normalization and scale is applied, the number of filter for
that layer must be provided.
For example:
num_filters = [512, -1, 512, 256, 256, 256]
strides : list of int
strides for the 3x3 convolution appended, -1 can be used for extracted
feature layers
pads : list of int
paddings for the 3x3 convolution, -1 can be used for extracted layers
min_filter : int
minimum number of filters used in 1x1 convolution
Returns
-------
list of mx.Symbols
|
def multi_layer_feature(body, from_layers, num_filters, strides, pads, min_filter=128):
"""Wrapper function to extract features from base network, attaching extra
layers and SSD specific layers
Parameters
----------
from_layers : list of str
feature extraction layers, use '' for add extra layers
For example:
from_layers = ['relu4_3', 'fc7', '', '', '', '']
which means extract feature from relu4_3 and fc7, adding 4 extra layers
on top of fc7
num_filters : list of int
number of filters for extra layers, you can use -1 for extracted features,
however, if normalization and scale is applied, the number of filter for
that layer must be provided.
For example:
num_filters = [512, -1, 512, 256, 256, 256]
strides : list of int
strides for the 3x3 convolution appended, -1 can be used for extracted
feature layers
pads : list of int
paddings for the 3x3 convolution, -1 can be used for extracted layers
min_filter : int
minimum number of filters used in 1x1 convolution
Returns
-------
list of mx.Symbols
"""
# arguments check
assert len(from_layers) > 0
assert isinstance(from_layers[0], str) and len(from_layers[0].strip()) > 0
assert len(from_layers) == len(num_filters) == len(strides) == len(pads)
internals = body.get_internals()
layers = []
for k, params in enumerate(zip(from_layers, num_filters, strides, pads)):
from_layer, num_filter, s, p = params
if from_layer.strip():
# extract from base network
layer = internals[from_layer.strip() + '_output']
layers.append(layer)
else:
# attach from last feature layer
assert len(layers) > 0
assert num_filter > 0
layer = layers[-1]
num_1x1 = max(min_filter, num_filter // 2)
conv_1x1 = conv_act_layer(layer, 'multi_feat_%d_conv_1x1' % (k),
num_1x1, kernel=(1, 1), pad=(0, 0), stride=(1, 1), act_type='relu')
conv_3x3 = conv_act_layer(conv_1x1, 'multi_feat_%d_conv_3x3' % (k),
num_filter, kernel=(3, 3), pad=(p, p), stride=(s, s), act_type='relu')
layers.append(conv_3x3)
return layers
|
the basic aggregation module for SSD detection. Takes in multiple layers,
generate multiple object detection targets by customized layers
Parameters:
----------
from_layers : list of mx.symbol
generate multibox detection from layers
num_classes : int
number of classes excluding background, will automatically handle
background in this function
sizes : list or list of list
[min_size, max_size] for all layers or [[], [], []...] for specific layers
ratios : list or list of list
[ratio1, ratio2...] for all layers or [[], [], ...] for specific layers
normalizations : int or list of int
use normalizations value for all layers or [...] for specific layers,
-1 indicate no normalizations and scales
num_channels : list of int
number of input layer channels, used when normalization is enabled, the
length of list should equals to number of normalization layers
clip : bool
whether to clip out-of-image boxes
interm_layer : int
if > 0, will add a intermediate Convolution layer
steps : list
specify steps for each MultiBoxPrior layer, leave empty, it will calculate
according to layer dimensions
Returns:
----------
list of outputs, as [loc_preds, cls_preds, anchor_boxes]
loc_preds : localization regression prediction
cls_preds : classification prediction
anchor_boxes : generated anchor boxes
|
def multibox_layer(from_layers, num_classes, sizes=[.2, .95],
ratios=[1], normalization=-1, num_channels=[],
clip=False, interm_layer=0, steps=[]):
"""
the basic aggregation module for SSD detection. Takes in multiple layers,
generate multiple object detection targets by customized layers
Parameters:
----------
from_layers : list of mx.symbol
generate multibox detection from layers
num_classes : int
number of classes excluding background, will automatically handle
background in this function
sizes : list or list of list
[min_size, max_size] for all layers or [[], [], []...] for specific layers
ratios : list or list of list
[ratio1, ratio2...] for all layers or [[], [], ...] for specific layers
normalizations : int or list of int
use normalizations value for all layers or [...] for specific layers,
-1 indicate no normalizations and scales
num_channels : list of int
number of input layer channels, used when normalization is enabled, the
length of list should equals to number of normalization layers
clip : bool
whether to clip out-of-image boxes
interm_layer : int
if > 0, will add a intermediate Convolution layer
steps : list
specify steps for each MultiBoxPrior layer, leave empty, it will calculate
according to layer dimensions
Returns:
----------
list of outputs, as [loc_preds, cls_preds, anchor_boxes]
loc_preds : localization regression prediction
cls_preds : classification prediction
anchor_boxes : generated anchor boxes
"""
assert len(from_layers) > 0, "from_layers must not be empty list"
assert num_classes > 0, \
"num_classes {} must be larger than 0".format(num_classes)
assert len(ratios) > 0, "aspect ratios must not be empty list"
if not isinstance(ratios[0], list):
# provided only one ratio list, broadcast to all from_layers
ratios = [ratios] * len(from_layers)
assert len(ratios) == len(from_layers), \
"ratios and from_layers must have same length"
assert len(sizes) > 0, "sizes must not be empty list"
if len(sizes) == 2 and not isinstance(sizes[0], list):
# provided size range, we need to compute the sizes for each layer
assert sizes[0] > 0 and sizes[0] < 1
assert sizes[1] > 0 and sizes[1] < 1 and sizes[1] > sizes[0]
tmp = np.linspace(sizes[0], sizes[1], num=(len(from_layers)-1))
# Ref for start_offset value:
# https://arxiv.org/abs/1512.02325
start_offset = 0.1
min_sizes = [start_offset] + tmp.tolist()
max_sizes = tmp.tolist() + [tmp[-1]+start_offset]
sizes = zip(min_sizes, max_sizes)
assert len(sizes) == len(from_layers), \
"sizes and from_layers must have same length"
if not isinstance(normalization, list):
normalization = [normalization] * len(from_layers)
assert len(normalization) == len(from_layers)
assert sum(x > 0 for x in normalization) <= len(num_channels), \
"must provide number of channels for each normalized layer"
if steps:
assert len(steps) == len(from_layers), "provide steps for all layers or leave empty"
loc_pred_layers = []
cls_pred_layers = []
anchor_layers = []
num_classes += 1 # always use background as label 0
for k, from_layer in enumerate(from_layers):
from_name = from_layer.name
# normalize
if normalization[k] > 0:
from_layer = mx.symbol.L2Normalization(data=from_layer, \
mode="channel", name="{}_norm".format(from_name))
scale = mx.symbol.Variable(name="{}_scale".format(from_name),
shape=(1, num_channels.pop(0), 1, 1),
init=mx.init.Constant(normalization[k]),
attr={'__wd_mult__': '0.1'})
from_layer = mx.symbol.broadcast_mul(lhs=scale, rhs=from_layer)
if interm_layer > 0:
from_layer = mx.symbol.Convolution(data=from_layer, kernel=(3,3), \
stride=(1,1), pad=(1,1), num_filter=interm_layer, \
name="{}_inter_conv".format(from_name))
from_layer = mx.symbol.Activation(data=from_layer, act_type="relu", \
name="{}_inter_relu".format(from_name))
# estimate number of anchors per location
# here I follow the original version in caffe
# TODO: better way to shape the anchors??
size = sizes[k]
assert len(size) > 0, "must provide at least one size"
size_str = "(" + ",".join([str(x) for x in size]) + ")"
ratio = ratios[k]
assert len(ratio) > 0, "must provide at least one ratio"
ratio_str = "(" + ",".join([str(x) for x in ratio]) + ")"
num_anchors = len(size) -1 + len(ratio)
# create location prediction layer
num_loc_pred = num_anchors * 4
bias = mx.symbol.Variable(name="{}_loc_pred_conv_bias".format(from_name),
init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'})
loc_pred = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=(3,3), \
stride=(1,1), pad=(1,1), num_filter=num_loc_pred, \
name="{}_loc_pred_conv".format(from_name))
loc_pred = mx.symbol.transpose(loc_pred, axes=(0,2,3,1))
loc_pred = mx.symbol.Flatten(data=loc_pred)
loc_pred_layers.append(loc_pred)
# create class prediction layer
num_cls_pred = num_anchors * num_classes
bias = mx.symbol.Variable(name="{}_cls_pred_conv_bias".format(from_name),
init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'})
cls_pred = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=(3,3), \
stride=(1,1), pad=(1,1), num_filter=num_cls_pred, \
name="{}_cls_pred_conv".format(from_name))
cls_pred = mx.symbol.transpose(cls_pred, axes=(0,2,3,1))
cls_pred = mx.symbol.Flatten(data=cls_pred)
cls_pred_layers.append(cls_pred)
# create anchor generation layer
if steps:
step = (steps[k], steps[k])
else:
step = '(-1.0, -1.0)'
anchors = mx.symbol.contrib.MultiBoxPrior(from_layer, sizes=size_str, ratios=ratio_str,
clip=clip, name="{}_anchors".format(from_name),
steps=step)
anchors = mx.symbol.Flatten(data=anchors)
anchor_layers.append(anchors)
loc_preds = mx.symbol.Concat(*loc_pred_layers, num_args=len(loc_pred_layers), \
dim=1, name="multibox_loc_pred")
cls_preds = mx.symbol.Concat(*cls_pred_layers, num_args=len(cls_pred_layers), \
dim=1)
cls_preds = mx.symbol.Reshape(data=cls_preds, shape=(0, -1, num_classes))
cls_preds = mx.symbol.transpose(cls_preds, axes=(0, 2, 1), name="multibox_cls_pred")
anchor_boxes = mx.symbol.Concat(*anchor_layers, \
num_args=len(anchor_layers), dim=1)
anchor_boxes = mx.symbol.Reshape(data=anchor_boxes, shape=(0, -1, 4), name="multibox_anchors")
return [loc_preds, cls_preds, anchor_boxes]
|
Apply weighting to loss.
Parameters
----------
loss : Symbol
The loss to be weighted.
weight : float or None
Global scalar weight for loss.
sample_weight : Symbol or None
Per sample weighting. Must be broadcastable to
the same shape as loss. For example, if loss has
shape (64, 10) and you want to weight each sample
in the batch separately, `sample_weight` should have
shape (64, 1).
Returns
-------
loss : Symbol
Weighted loss
|
def _apply_weighting(F, loss, weight=None, sample_weight=None):
"""Apply weighting to loss.
Parameters
----------
loss : Symbol
The loss to be weighted.
weight : float or None
Global scalar weight for loss.
sample_weight : Symbol or None
Per sample weighting. Must be broadcastable to
the same shape as loss. For example, if loss has
shape (64, 10) and you want to weight each sample
in the batch separately, `sample_weight` should have
shape (64, 1).
Returns
-------
loss : Symbol
Weighted loss
"""
if sample_weight is not None:
loss = F.broadcast_mul(loss, sample_weight)
if weight is not None:
assert isinstance(weight, numeric_types), "weight must be a number"
loss = loss * weight
return loss
|
Reshapes x to the same shape as y.
|
def _reshape_like(F, x, y):
"""Reshapes x to the same shape as y."""
return x.reshape(y.shape) if F is ndarray else F.reshape_like(x, y)
|
create TV gradient executor with input binded on img
|
def get_tv_grad_executor(img, ctx, tv_weight):
"""create TV gradient executor with input binded on img
"""
if tv_weight <= 0.0:
return None
nchannel = img.shape[1]
simg = mx.sym.Variable("img")
skernel = mx.sym.Variable("kernel")
channels = mx.sym.SliceChannel(simg, num_outputs=nchannel)
out = mx.sym.Concat(*[
mx.sym.Convolution(data=channels[i], weight=skernel,
num_filter=1,
kernel=(3, 3), pad=(1,1),
no_bias=True, stride=(1,1))
for i in range(nchannel)])
kernel = mx.nd.array(np.array([[0, -1, 0],
[-1, 4, -1],
[0, -1, 0]])
.reshape((1, 1, 3, 3)),
ctx) / 8.0
out = out * tv_weight
return out.bind(ctx, args={"img": img,
"kernel": kernel})
|
Train a neural style network.
Args are from argparse and control input, output, hyper-parameters.
callback allows for display of training progress.
|
def train_nstyle(args, callback=None):
"""Train a neural style network.
Args are from argparse and control input, output, hyper-parameters.
callback allows for display of training progress.
"""
# input
dev = mx.gpu(args.gpu) if args.gpu >= 0 else mx.cpu()
content_np = PreprocessContentImage(args.content_image, args.max_long_edge)
style_np = PreprocessStyleImage(args.style_image, shape=content_np.shape)
size = content_np.shape[2:]
# model
Executor = namedtuple('Executor', ['executor', 'data', 'data_grad'])
model_module = importlib.import_module('model_' + args.model)
style, content = model_module.get_symbol()
gram, gscale = style_gram_symbol(size, style)
model_executor = model_module.get_executor(gram, content, size, dev)
model_executor.data[:] = style_np
model_executor.executor.forward()
style_array = []
for i in range(len(model_executor.style)):
style_array.append(model_executor.style[i].copyto(mx.cpu()))
model_executor.data[:] = content_np
model_executor.executor.forward()
content_array = model_executor.content.copyto(mx.cpu())
# delete the executor
del model_executor
style_loss, content_loss = get_loss(gram, content)
model_executor = model_module.get_executor(
style_loss, content_loss, size, dev)
grad_array = []
for i in range(len(style_array)):
style_array[i].copyto(model_executor.arg_dict["target_gram_%d" % i])
grad_array.append(mx.nd.ones((1,), dev) * (float(args.style_weight) / gscale[i]))
grad_array.append(mx.nd.ones((1,), dev) * (float(args.content_weight)))
print([x.asscalar() for x in grad_array])
content_array.copyto(model_executor.arg_dict["target_content"])
# train
# initialize img with random noise
img = mx.nd.zeros(content_np.shape, ctx=dev)
img[:] = mx.rnd.uniform(-0.1, 0.1, img.shape)
lr = mx.lr_scheduler.FactorScheduler(step=args.lr_sched_delay,
factor=args.lr_sched_factor)
optimizer = mx.optimizer.NAG(
learning_rate = args.lr,
wd = 0.0001,
momentum=0.95,
lr_scheduler = lr)
optim_state = optimizer.create_state(0, img)
logging.info('start training arguments %s', args)
old_img = img.copyto(dev)
clip_norm = 1 * np.prod(img.shape)
tv_grad_executor = get_tv_grad_executor(img, dev, args.tv_weight)
for e in range(args.max_num_epochs):
img.copyto(model_executor.data)
model_executor.executor.forward()
model_executor.executor.backward(grad_array)
gnorm = mx.nd.norm(model_executor.data_grad).asscalar()
if gnorm > clip_norm:
model_executor.data_grad[:] *= clip_norm / gnorm
if tv_grad_executor is not None:
tv_grad_executor.forward()
optimizer.update(0, img,
model_executor.data_grad + tv_grad_executor.outputs[0],
optim_state)
else:
optimizer.update(0, img, model_executor.data_grad, optim_state)
new_img = img
eps = (mx.nd.norm(old_img - new_img) / mx.nd.norm(new_img)).asscalar()
old_img = new_img.copyto(dev)
logging.info('epoch %d, relative change %f', e, eps)
if eps < args.stop_eps:
logging.info('eps < args.stop_eps, training finished')
break
if callback:
cbdata = {
'eps': eps,
'epoch': e+1,
}
if (e+1) % args.save_epochs == 0:
outfn = args.output_dir + 'e_'+str(e+1)+'.jpg'
npimg = new_img.asnumpy()
SaveImage(npimg, outfn, args.remove_noise)
if callback:
cbdata['filename'] = outfn
cbdata['img'] = npimg
if callback:
callback(cbdata)
final_fn = args.output_dir + '/final.jpg'
SaveImage(new_img.asnumpy(), final_fn)
|
Load data/label from dataset
|
def _get_batch(self):
"""
Load data/label from dataset
"""
batch_data = mx.nd.zeros((self.batch_size, 3, self._data_shape[0], self._data_shape[1]))
batch_label = []
for i in range(self.batch_size):
if (self._current + i) >= self._size:
if not self.is_train:
continue
# use padding from middle in each epoch
idx = (self._current + i + self._size // 2) % self._size
index = self._index[idx]
else:
index = self._index[self._current + i]
# index = self.debug_index
im_path = self._imdb.image_path_from_index(index)
with open(im_path, 'rb') as fp:
img_content = fp.read()
img = mx.img.imdecode(img_content)
gt = self._imdb.label_from_index(index).copy() if self.is_train else None
data, label = self._data_augmentation(img, gt)
batch_data[i] = data
if self.is_train:
batch_label.append(label)
self._data = {'data': batch_data}
if self.is_train:
self._label = {'label': mx.nd.array(np.array(batch_label))}
else:
self._label = {'label': None}
|
perform data augmentations: crop, mirror, resize, sub mean, swap channels...
|
def _data_augmentation(self, data, label):
"""
perform data augmentations: crop, mirror, resize, sub mean, swap channels...
"""
if self.is_train and self._rand_samplers:
rand_crops = []
for rs in self._rand_samplers:
rand_crops += rs.sample(label)
num_rand_crops = len(rand_crops)
# randomly pick up one as input data
if num_rand_crops > 0:
index = int(np.random.uniform(0, 1) * num_rand_crops)
width = data.shape[1]
height = data.shape[0]
crop = rand_crops[index][0]
xmin = int(crop[0] * width)
ymin = int(crop[1] * height)
xmax = int(crop[2] * width)
ymax = int(crop[3] * height)
if xmin >= 0 and ymin >= 0 and xmax <= width and ymax <= height:
data = mx.img.fixed_crop(data, xmin, ymin, xmax-xmin, ymax-ymin)
else:
# padding mode
new_width = xmax - xmin
new_height = ymax - ymin
offset_x = 0 - xmin
offset_y = 0 - ymin
data_bak = data
data = mx.nd.full((new_height, new_width, 3), 128, dtype='uint8')
data[offset_y:offset_y+height, offset_x:offset_x + width, :] = data_bak
label = rand_crops[index][1]
if self.is_train:
interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, \
cv2.INTER_NEAREST, cv2.INTER_LANCZOS4]
else:
interp_methods = [cv2.INTER_LINEAR]
interp_method = interp_methods[int(np.random.uniform(0, 1) * len(interp_methods))]
data = mx.img.imresize(data, self._data_shape[1], self._data_shape[0], interp_method)
if self.is_train and self._rand_mirror:
if np.random.uniform(0, 1) > 0.5:
data = mx.nd.flip(data, axis=1)
valid_mask = np.where(label[:, 0] > -1)[0]
tmp = 1.0 - label[valid_mask, 1]
label[valid_mask, 1] = 1.0 - label[valid_mask, 3]
label[valid_mask, 3] = tmp
data = mx.nd.transpose(data, (2,0,1))
data = data.astype('float32')
data = data - self._mean_pixels
return data, label
|
Gets MNIST dataset
|
def get_mnist():
""" Gets MNIST dataset """
np.random.seed(1234) # set seed for deterministic ordering
mnist_data = mx.test_utils.get_mnist()
X = np.concatenate([mnist_data['train_data'], mnist_data['test_data']])
Y = np.concatenate([mnist_data['train_label'], mnist_data['test_label']])
p = np.random.permutation(X.shape[0])
X = X[p].reshape((X.shape[0], -1)).astype(np.float32)*5
Y = Y[p]
return X, Y
|
Get input slice from the input shape.
Parameters
----------
batch_size : int
The number of samples in a mini-batch.
work_load_list : list of float or int, optional
The list of work load for different devices,
in the same order as `ctx`.
Returns
-------
slices : list of slice
The split slices to get a specific slice.
Raises
------
ValueError
In case of too many splits, leading to some empty slices.
|
def _split_input_slice(batch_size, work_load_list):
"""Get input slice from the input shape.
Parameters
----------
batch_size : int
The number of samples in a mini-batch.
work_load_list : list of float or int, optional
The list of work load for different devices,
in the same order as `ctx`.
Returns
-------
slices : list of slice
The split slices to get a specific slice.
Raises
------
ValueError
In case of too many splits, leading to some empty slices.
"""
total_work_load = sum(work_load_list)
batch_num_list = [round(work_load * batch_size / total_work_load)
for work_load in work_load_list]
batch_num_sum = sum(batch_num_list)
if batch_num_sum < batch_size:
batch_num_list[-1] += batch_size - batch_num_sum
slices = []
end = 0
for batch_num in batch_num_list:
begin = int(min((end, batch_size)))
end = int(min((begin + batch_num, batch_size)))
if begin >= end:
raise ValueError('Too many slices. Some splits are empty.')
slices.append(slice(begin, end))
return slices
|
Check the argument names of symbol.
This function checks the duplication of arguments in Symbol.
The check is done for feedforward net for now.
Parameters
----------
symbol : Symbol
The network configuration.
|
def _check_arguments(symbol):
"""Check the argument names of symbol.
This function checks the duplication of arguments in Symbol.
The check is done for feedforward net for now.
Parameters
----------
symbol : Symbol
The network configuration.
"""
arg_set = set()
arg_names = symbol.list_arguments()
for name in arg_names:
if name in arg_set:
raise ValueError(('Find duplicated argument name \"%s\", ' +
'please make the weight name non-duplicated(using name arguments), ' +
'arguments are %s') % (name, str(arg_names)))
arg_set.add(name)
aux_set = set()
aux_names = symbol.list_auxiliary_states()
for name in aux_names:
if name in aux_set:
raise ValueError(
('Find duplicated auxiliary param name \"%s\", ' +
'please make the weight name non-duplicated(using name arguments), ' +
'arguments are %s, auxiliary params are %s'
) % (name, str(arg_names), str(aux_names)))
aux_set.add(name)
|
Load a list of arrays into a list of arrays specified by slices.
|
def _load_general(data, targets):
"""Load a list of arrays into a list of arrays specified by slices."""
for d_src, d_targets in zip(data, targets):
if isinstance(d_targets, nd.NDArray):
d_src.copyto(d_targets)
else:
assert d_targets[-1][0].stop == d_src.shape[0], \
"Batch size miss match. Expected %d, got %d"%( \
d_targets[-1][0].stop, d_src.shape[0])
for slice_idx, d_dst in d_targets:
d_src[slice_idx].copyto(d_dst)
|
bind executor for bucketing, potentially sharing data with an existing executor.
|
def _bind_exec(sym, ctx, input_shapes, param_names, need_grad=False,
base_exec=None, shared_data_arrays=None, input_types=None, logger=logging):
"""bind executor for bucketing, potentially sharing data with an existing executor."""
arg_shape, _, aux_shape = sym.infer_shape(**input_shapes)
assert(arg_shape is not None)
if input_types is None:
input_types = {k: mx_real_t for k in input_shapes.keys()}
arg_types, _, aux_types = sym.infer_type(**input_types)
assert(arg_types is not None)
arg_arrays = []
grad_arrays = {} if need_grad is not False else None
arg_names = sym.list_arguments()
if need_grad is False:
need_grad = set()
elif need_grad is True:
need_grad = set(arg_names) - set(input_shapes.keys())
elif isinstance(need_grad, set):
pass
else:
raise AssertionError("need_grad must be boolean or set.")
grad_req = {name:('write' if name in need_grad else 'null') for name in arg_names}
# create or borrow arguments and gradients
for i, name in enumerate(arg_names):
if not name in param_names:
# data or label
if shared_data_arrays is not None and \
name in shared_data_arrays:
arg_arr = shared_data_arrays[name]
if np.prod(arg_arr.shape) >= np.prod(arg_shape[i]):
# good, we can share this memory
assert(arg_types[i] == arg_arr.dtype)
arg_arr = arg_arr.reshape(arg_shape[i])
else:
logger.warning(('bucketing: data "%s" has a shape %s' % (name, arg_shape[i])) +
(', which is larger than already allocated ') +
('shape %s' % (arg_arr.shape,)) +
('. Need to re-allocate. Consider putting ') +
('default_bucket_key to be the bucket taking the largest ') +
('input for better memory sharing.'))
arg_arr = nd.zeros(arg_shape[i], ctx, dtype=arg_types[i])
# replace existing shared array because the new one is bigger
shared_data_arrays[name] = arg_arr
else:
arg_arr = nd.zeros(arg_shape[i], ctx, dtype=arg_types[i])
if shared_data_arrays is not None:
shared_data_arrays[name] = arg_arr
arg_arrays.append(arg_arr)
else:
# model parameter
if base_exec is None:
arg_arr = nd.zeros(arg_shape[i], ctx, dtype=arg_types[i])
if name in need_grad:
grad_arr = nd.zeros(arg_shape[i], ctx, dtype=arg_types[i])
grad_arrays[name] = grad_arr
else:
arg_arr = base_exec.arg_dict[name]
assert arg_arr.shape == arg_shape[i]
assert arg_arr.dtype == arg_types[i]
if name in need_grad:
grad_arrays[name] = base_exec.grad_dict[name]
arg_arrays.append(arg_arr)
# create or borrow aux variables
if base_exec is None:
aux_arrays = [nd.zeros(s, ctx, dtype=t) for s, t in zip(aux_shape, aux_types)]
else:
for i, a in enumerate(base_exec.aux_arrays):
assert aux_shape[i] == a.shape
assert aux_types[i] == a.dtype
aux_arrays = [a for a in base_exec.aux_arrays]
executor = sym.bind(ctx=ctx, args=arg_arrays, args_grad=grad_arrays,
aux_states=aux_arrays,
grad_req=grad_req, shared_exec=base_exec)
return executor
|
Load data and labels into arrays.
|
def load_data_batch(self, data_batch):
"""Load data and labels into arrays."""
_load_data(data_batch, self.data_arrays)
_load_label(data_batch, self.label_arrays)
|
Perform a forward pass on each executor.
|
def forward(self, is_train=False):
"""Perform a forward pass on each executor."""
for texec in self.train_execs:
texec.forward(is_train=is_train)
|
Update evaluation metric with label and current outputs.
|
def update_metric(self, metric, labels, pre_sliced=False):
"""Update evaluation metric with label and current outputs."""
for current_exec, (texec, islice) in enumerate(zip(self.train_execs, self.slices)):
if not pre_sliced:
labels_slice = [label[islice] for label in labels]
else:
labels_slice = labels[current_exec]
metric.update(labels_slice, texec.outputs)
|
Install monitor on all executors.
|
def install_monitor(self, monitor):
"""Install monitor on all executors."""
if self.sym_gen is not None:
raise NotImplementedError("Monitoring is not implemented for bucketing")
for train_exec in self.execgrp.train_execs:
monitor.install(train_exec)
|
Set parameter and aux values.
Parameters
----------
arg_params : list of NDArray
Source parameter arrays
aux_params : list of NDArray
Source aux arrays.
|
def set_params(self, arg_params, aux_params):
"""Set parameter and aux values.
Parameters
----------
arg_params : list of NDArray
Source parameter arrays
aux_params : list of NDArray
Source aux arrays.
"""
for texec in self.execgrp.train_execs:
texec.copy_params_from(arg_params, aux_params)
|
Load data and labels into arrays.
|
def load_data_batch(self, data_batch):
"""Load data and labels into arrays."""
if self.sym_gen is not None:
key = data_batch.bucket_key
if key not in self.execgrp_bucket:
# create new bucket entry
symbol = self.sym_gen(key)
execgrp = DataParallelExecutorGroup(symbol, self.arg_names,
self.param_names, self.ctx,
self.slices, data_batch,
shared_group=self.execgrp)
self.execgrp_bucket[key] = execgrp
self.curr_execgrp = self.execgrp_bucket[key]
else:
self.curr_execgrp = self.execgrp
self.curr_execgrp.load_data_batch(data_batch)
|
Update metric with the current executor.
|
def update_metric(self, metric, labels, pre_sliced=False):
"""Update metric with the current executor."""
self.curr_execgrp.update_metric(metric, labels, pre_sliced)
|
Clear all contents in the relay memory
|
def clear(self):
"""
Clear all contents in the relay memory
"""
self.states[:] = 0
self.actions[:] = 0
self.rewards[:] = 0
self.terminate_flags[:] = 0
self.top = 0
self.size = 0
|
Get Header Guard Convention for DMLC Projects.
For headers in include, directly use the path
For headers in src, use project name plus path
Examples: with project-name = dmlc
include/dmlc/timer.h -> DMLC_TIMTER_H_
src/io/libsvm_parser.h -> DMLC_IO_LIBSVM_PARSER_H_
|
def get_header_guard_dmlc(filename):
"""Get Header Guard Convention for DMLC Projects.
For headers in include, directly use the path
For headers in src, use project name plus path
Examples: with project-name = dmlc
include/dmlc/timer.h -> DMLC_TIMTER_H_
src/io/libsvm_parser.h -> DMLC_IO_LIBSVM_PARSER_H_
"""
fileinfo = cpplint.FileInfo(filename)
file_path_from_root = fileinfo.RepositoryName()
inc_list = ['include', 'api', 'wrapper']
if file_path_from_root.find('src/') != -1 and _HELPER.project_name is not None:
idx = file_path_from_root.find('src/')
file_path_from_root = _HELPER.project_name + file_path_from_root[idx + 3:]
else:
for spath in inc_list:
prefix = spath + os.sep
if file_path_from_root.startswith(prefix):
file_path_from_root = re.sub('^' + prefix, '', file_path_from_root)
break
return re.sub(r'[-./\s]', '_', file_path_from_root).upper() + '_'
|
Process a file.
|
def process(fname, allow_type):
"""Process a file."""
fname = str(fname)
# HACK: ignore op.h which is automatically generated
if fname.endswith('op.h'):
return
arr = fname.rsplit('.', 1)
if fname.find('#') != -1 or arr[-1] not in allow_type:
return
if arr[-1] in CXX_SUFFIX:
_HELPER.process_cpp(fname, arr[-1])
if arr[-1] in PYTHON_SUFFIX:
_HELPER.process_python(fname)
|
Main entry function.
|
def main():
"""Main entry function."""
if len(sys.argv) < 3:
print('Usage: <project-name> <filetype> <list-of-path to traverse>')
print('\tfiletype can be python/cpp/all')
exit(-1)
_HELPER.project_name = sys.argv[1]
file_type = sys.argv[2]
allow_type = []
if file_type == 'python' or file_type == 'all':
allow_type += [x for x in PYTHON_SUFFIX]
if file_type == 'cpp' or file_type == 'all':
allow_type += [x for x in CXX_SUFFIX]
allow_type = set(allow_type)
if os.name != 'nt':
sys.stderr = codecs.StreamReaderWriter(sys.stderr,
codecs.getreader('utf8'),
codecs.getwriter('utf8'),
'replace')
for path in sys.argv[3:]:
if os.path.isfile(path):
process(path, allow_type)
else:
for root, dirs, files in os.walk(path):
for name in files:
process(os.path.join(root, name), allow_type)
nerr = _HELPER.print_summary(sys.stderr)
sys.exit(nerr > 0)
|
Print summary of certain result map.
|
def _print_summary_map(strm, result_map, ftype):
"""Print summary of certain result map."""
if len(result_map) == 0:
return 0
npass = len([x for k, x in result_map.iteritems() if len(x) == 0])
strm.write('=====%d/%d %s files passed check=====\n' % (npass, len(result_map), ftype))
for fname, emap in result_map.iteritems():
if len(emap) == 0:
continue
strm.write('%s: %d Errors of %d Categories map=%s\n' % (
fname, sum(emap.values()), len(emap), str(emap)))
return len(result_map) - npass
|
Process a cpp file.
|
def process_cpp(self, path, suffix):
"""Process a cpp file."""
_cpplint_state.ResetErrorCounts()
cpplint.ProcessFile(str(path), _cpplint_state.verbose_level)
_cpplint_state.PrintErrorCounts()
errors = _cpplint_state.errors_by_category.copy()
if suffix == 'h':
self.cpp_header_map[str(path)] = errors
else:
self.cpp_src_map[str(path)] = errors
|
Process a python file.
|
def process_python(self, path):
"""Process a python file."""
(pylint_stdout, pylint_stderr) = epylint.py_run(
' '.join([str(path)] + self.pylint_opts), return_std=True)
emap = {}
print(pylint_stderr.read())
for line in pylint_stdout:
sys.stderr.write(line)
key = line.split(':')[-1].split('(')[0].strip()
if key not in self.pylint_cats:
continue
if key not in emap:
emap[key] = 1
else:
emap[key] += 1
sys.stderr.write('\n')
self.python_map[str(path)] = emap
|
Print summary of lint.
|
def print_summary(self, strm):
"""Print summary of lint."""
nerr = 0
nerr += LintHelper._print_summary_map(strm, self.cpp_header_map, 'cpp-header')
nerr += LintHelper._print_summary_map(strm, self.cpp_src_map, 'cpp-soruce')
nerr += LintHelper._print_summary_map(strm, self.python_map, 'python')
if nerr == 0:
strm.write('All passed!\n')
else:
strm.write('%d files failed lint\n' % nerr)
return nerr
|
Start server/scheduler.
|
def _init_kvstore_server_module():
"""Start server/scheduler."""
is_worker = ctypes.c_int()
check_call(_LIB.MXKVStoreIsWorkerNode(ctypes.byref(is_worker)))
if is_worker.value == 0:
kvstore = create('dist')
server = KVStoreServer(kvstore)
server.run()
sys.exit()
|
Return the server controller.
|
def _controller(self):
"""Return the server controller."""
def server_controller(cmd_id, cmd_body, _):
"""Server controler."""
if not self.init_logginig:
# the reason put the codes here is because we cannot get
# kvstore.rank earlier
head = '%(asctime)-15s Server[' + str(
self.kvstore.rank) + '] %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
self.init_logginig = True
if cmd_id == 0:
try:
optimizer = pickle.loads(cmd_body)
except:
raise
self.kvstore.set_optimizer(optimizer)
else:
print("server %d, unknown command (%d, %s)" % (
self.kvstore.rank, cmd_id, cmd_body))
return server_controller
|
Run the server, whose behavior is like.
>>> while receive(x):
... if is_command x: controller(x)
... else if is_key_value x: updater(x)
|
def run(self):
"""Run the server, whose behavior is like.
>>> while receive(x):
... if is_command x: controller(x)
... else if is_key_value x: updater(x)
"""
_ctrl_proto = ctypes.CFUNCTYPE(None, ctypes.c_int, ctypes.c_char_p, ctypes.c_void_p)
check_call(_LIB.MXKVStoreRunServer(self.handle, _ctrl_proto(self._controller()), None))
|
Generate function for ndarray op by handle and function name.
|
def _generate_ndarray_function_code(handle, name, func_name, signature_only=False):
"""Generate function for ndarray op by handle and function name."""
real_name = ctypes.c_char_p()
desc = ctypes.c_char_p()
num_args = mx_uint()
arg_names = ctypes.POINTER(ctypes.c_char_p)()
arg_types = ctypes.POINTER(ctypes.c_char_p)()
arg_descs = ctypes.POINTER(ctypes.c_char_p)()
key_var_num_args = ctypes.c_char_p()
ret_type = ctypes.c_char_p()
check_call(_LIB.MXSymbolGetAtomicSymbolInfo(
handle, ctypes.byref(real_name), ctypes.byref(desc),
ctypes.byref(num_args),
ctypes.byref(arg_names),
ctypes.byref(arg_types),
ctypes.byref(arg_descs),
ctypes.byref(key_var_num_args),
ctypes.byref(ret_type)))
narg = int(num_args.value)
arg_names = [py_str(arg_names[i]) for i in range(narg)]
arg_types = [py_str(arg_types[i]) for i in range(narg)]
key_var_num_args = py_str(key_var_num_args.value)
ret_type = py_str(ret_type.value) if ret_type.value is not None else ''
doc_str = _build_doc(name,
py_str(desc.value),
arg_names,
arg_types,
[py_str(arg_descs[i]) for i in range(narg)],
key_var_num_args,
ret_type)
dtype_name = None
arr_name = None
ndsignature = []
signature = []
ndarg_names = []
kwarg_names = []
for i in range(narg):
name, atype = arg_names[i], arg_types[i]
if name == 'dtype':
dtype_name = name
signature.append('%s=_Null'%name)
elif atype.startswith('NDArray') or atype.startswith('Symbol'):
assert not arr_name, \
"Op can only have one argument with variable " \
"size and it must be the last argument."
if atype.endswith('[]'):
ndsignature.append('*%s'%name)
arr_name = name
else:
ndsignature.append('%s=None'%name)
ndarg_names.append(name)
else:
signature.append('%s=_Null'%name)
kwarg_names.append(name)
signature.append('out=None')
signature.append('name=None')
signature.append('**kwargs')
signature = ndsignature + signature
code = []
if arr_name:
code.append("""
def %s(*%s, **kwargs):"""%(func_name, arr_name))
if not signature_only:
code.append("""
ndargs = []
for i in {}:
assert isinstance(i, NDArrayBase), \\
"Positional arguments must have NDArray type, " \\
"but got %s"%str(i)
ndargs.append(i)""".format(arr_name))
if dtype_name is not None:
code.append("""
if '%s' in kwargs:
kwargs['%s'] = _np.dtype(kwargs['%s']).name"""%(
dtype_name, dtype_name, dtype_name))
code.append("""
_ = kwargs.pop('name', None)
out = kwargs.pop('out', None)
keys = list(kwargs.keys())
vals = list(kwargs.values())""")
else:
code.append("""
def %s(%s):"""%(func_name, ', '.join(signature)))
if not signature_only:
code.append("""
ndargs = []
keys = list(kwargs.keys())
vals = list(kwargs.values())""")
# NDArray args
for name in ndarg_names: # pylint: disable=redefined-argument-from-local
code.append("""
if {name} is not None:
assert isinstance({name}, NDArrayBase), \\
"Argument {name} must have NDArray type, but got %s"%str({name})
ndargs.append({name})""".format(name=name))
# kwargs
for name in kwarg_names: # pylint: disable=redefined-argument-from-local
code.append("""
if %s is not _Null:
keys.append('%s')
vals.append(%s)"""%(name, name, name))
# dtype
if dtype_name is not None:
code.append("""
if %s is not _Null:
keys.append('%s')
vals.append(_np.dtype(%s).name)"""%(dtype_name, dtype_name, dtype_name))
if not signature_only:
code.append("""
return _imperative_invoke(%d, ndargs, keys, vals, out)"""%(
handle.value))
else:
code.append("""
return (0,)""")
doc_str_lines = _os.linesep+''.join([' '+s if s.strip() else s
for s in 'r"""{doc_str}"""'.format(doc_str=doc_str)
.splitlines(True)])
code.insert(1, doc_str_lines)
return ''.join(code), doc_str
|
Create a NDArray function from the FunctionHandle.
|
def _make_ndarray_function(handle, name, func_name):
"""Create a NDArray function from the FunctionHandle."""
code, doc_str = _generate_ndarray_function_code(handle, name, func_name)
local = {}
exec(code, None, local) # pylint: disable=exec-used
ndarray_function = local[func_name]
ndarray_function.__name__ = func_name
ndarray_function.__doc__ = doc_str
ndarray_function.__module__ = 'mxnet.ndarray'
return ndarray_function
|
Counts tokens in the specified string.
For token_delim=\'<td>\' and seq_delim=\'<sd>\', a specified string of two sequences of
tokens may look like::
<td>token1<td>token2<td>token3<td><sd><td>token4<td>token5<td><sd>
<td> and <sd> are regular expressions. Make use of \\\\ to allow special characters as
delimiters. The list of
special characters can be found at https://docs.python.org/3/library/re.html.
Parameters
----------
source_str : str
A source string of tokens.
token_delim : str, default ' '
A token delimiter.
seq_delim : str, default '\\\\n'
A sequence delimiter.
to_lower : bool, default False
Whether to convert the source source_str to the lower case.
counter_to_update : collections.Counter or None, default None
The collections.Counter instance to be updated with the token counts of `source_str`. If
None, return a new collections.Counter instance counting tokens from `source_str`.
Returns
-------
collections.Counter
The `counter_to_update` collections.Counter instance after being updated with the token
counts of `source_str`. If `counter_to_update` is None, return a new collections.Counter
instance counting tokens from `source_str`.
Examples
--------
>>> source_str = ' Life is great ! \\n life is good . \\n'
>>> count_tokens_from_str(token_line, ' ', '\\n', True)
Counter({'!': 1, '.': 1, 'good': 1, 'great': 1, 'is': 2, 'life': 2})
>>> source_str = '*Life*is*great*!*\\n*life*is*good*.*\\n'
>>> count_tokens_from_str(token_line, '\\*', '\\n', True)
Counter({'is': 2, 'life': 2, '!': 1, 'great': 1, 'good': 1, '.': 1})
|
def count_tokens_from_str(source_str, token_delim=' ', seq_delim='\n',
to_lower=False, counter_to_update=None):
"""Counts tokens in the specified string.
For token_delim=\'<td>\' and seq_delim=\'<sd>\', a specified string of two sequences of
tokens may look like::
<td>token1<td>token2<td>token3<td><sd><td>token4<td>token5<td><sd>
<td> and <sd> are regular expressions. Make use of \\\\ to allow special characters as
delimiters. The list of
special characters can be found at https://docs.python.org/3/library/re.html.
Parameters
----------
source_str : str
A source string of tokens.
token_delim : str, default ' '
A token delimiter.
seq_delim : str, default '\\\\n'
A sequence delimiter.
to_lower : bool, default False
Whether to convert the source source_str to the lower case.
counter_to_update : collections.Counter or None, default None
The collections.Counter instance to be updated with the token counts of `source_str`. If
None, return a new collections.Counter instance counting tokens from `source_str`.
Returns
-------
collections.Counter
The `counter_to_update` collections.Counter instance after being updated with the token
counts of `source_str`. If `counter_to_update` is None, return a new collections.Counter
instance counting tokens from `source_str`.
Examples
--------
>>> source_str = ' Life is great ! \\n life is good . \\n'
>>> count_tokens_from_str(token_line, ' ', '\\n', True)
Counter({'!': 1, '.': 1, 'good': 1, 'great': 1, 'is': 2, 'life': 2})
>>> source_str = '*Life*is*great*!*\\n*life*is*good*.*\\n'
>>> count_tokens_from_str(token_line, '\\*', '\\n', True)
Counter({'is': 2, 'life': 2, '!': 1, 'great': 1, 'good': 1, '.': 1})
"""
source_str = filter(None,
re.split(token_delim + '|' + seq_delim, source_str))
if to_lower:
source_str = [t.lower() for t in source_str]
if counter_to_update is None:
return collections.Counter(source_str)
else:
counter_to_update.update(source_str)
return counter_to_update
|
Return a new array of given shape and type, filled with zeros.
Parameters
----------
shape : int or tuple of int
The shape of the empty array
ctx : Context, optional
An optional device context (default is the current default context)
dtype : str or numpy.dtype, optional
An optional value type (default is `float32`)
stype: string, optional
The storage type of the empty array, such as 'row_sparse', 'csr', etc.
Returns
-------
NDArray, CSRNDArray or RowSparseNDArray
A created array
Examples
--------
>>> mx.nd.zeros((1,2), mx.cpu(), stype='csr')
<CSRNDArray 1x2 @cpu(0)>
>>> mx.nd.zeros((1,2), mx.cpu(), 'float16', stype='row_sparse').asnumpy()
array([[ 0., 0.]], dtype=float16)
|
def zeros(shape, ctx=None, dtype=None, stype=None, **kwargs):
"""Return a new array of given shape and type, filled with zeros.
Parameters
----------
shape : int or tuple of int
The shape of the empty array
ctx : Context, optional
An optional device context (default is the current default context)
dtype : str or numpy.dtype, optional
An optional value type (default is `float32`)
stype: string, optional
The storage type of the empty array, such as 'row_sparse', 'csr', etc.
Returns
-------
NDArray, CSRNDArray or RowSparseNDArray
A created array
Examples
--------
>>> mx.nd.zeros((1,2), mx.cpu(), stype='csr')
<CSRNDArray 1x2 @cpu(0)>
>>> mx.nd.zeros((1,2), mx.cpu(), 'float16', stype='row_sparse').asnumpy()
array([[ 0., 0.]], dtype=float16)
"""
if stype is None or stype == 'default':
return _zeros_ndarray(shape, ctx, dtype, **kwargs)
else:
return _zeros_sparse_ndarray(stype, shape, ctx, dtype, **kwargs)
|
Returns a new array of given shape and type, without initializing entries.
Parameters
----------
shape : int or tuple of int
The shape of the empty array.
ctx : Context, optional
An optional device context (default is the current default context).
dtype : str or numpy.dtype, optional
An optional value type (default is `float32`).
stype : str, optional
An optional storage type (default is `default`).
Returns
-------
NDArray, CSRNDArray or RowSparseNDArray
A created array.
Examples
--------
>>> mx.nd.empty(1)
<NDArray 1 @cpu(0)>
>>> mx.nd.empty((1,2), mx.gpu(0))
<NDArray 1x2 @gpu(0)>
>>> mx.nd.empty((1,2), mx.gpu(0), 'float16')
<NDArray 1x2 @gpu(0)>
>>> mx.nd.empty((1,2), stype='csr')
<CSRNDArray 1x2 @cpu(0)>
|
def empty(shape, ctx=None, dtype=None, stype=None):
"""Returns a new array of given shape and type, without initializing entries.
Parameters
----------
shape : int or tuple of int
The shape of the empty array.
ctx : Context, optional
An optional device context (default is the current default context).
dtype : str or numpy.dtype, optional
An optional value type (default is `float32`).
stype : str, optional
An optional storage type (default is `default`).
Returns
-------
NDArray, CSRNDArray or RowSparseNDArray
A created array.
Examples
--------
>>> mx.nd.empty(1)
<NDArray 1 @cpu(0)>
>>> mx.nd.empty((1,2), mx.gpu(0))
<NDArray 1x2 @gpu(0)>
>>> mx.nd.empty((1,2), mx.gpu(0), 'float16')
<NDArray 1x2 @gpu(0)>
>>> mx.nd.empty((1,2), stype='csr')
<CSRNDArray 1x2 @cpu(0)>
"""
if stype is None or stype == 'default':
return _empty_ndarray(shape, ctx, dtype)
else:
return _empty_sparse_ndarray(stype, shape, ctx, dtype)
|
Creates an array from any object exposing the array interface.
Parameters
----------
source_array : array_like
An object exposing the array interface, an object whose `__array__`
method returns an array, or any (nested) sequence.
ctx : Context, optional
Device context (default is the current default context).
dtype : str or numpy.dtype, optional
The data type of the output array. The default dtype is ``source_array.dtype``
if `source_array` is an `NDArray`, `float32` otherwise.
Returns
-------
NDArray, RowSparseNDArray or CSRNDArray
An array with the same contents as the `source_array`.
Examples
--------
>>> import numpy as np
>>> mx.nd.array([1, 2, 3])
<NDArray 3 @cpu(0)>
>>> mx.nd.array([[1, 2], [3, 4]])
<NDArray 2x2 @cpu(0)>
>>> mx.nd.array(np.zeros((3, 2)))
<NDArray 3x2 @cpu(0)>
>>> mx.nd.array(np.zeros((3, 2)), mx.gpu(0))
<NDArray 3x2 @gpu(0)>
>>> mx.nd.array(mx.nd.zeros((3, 2), stype='row_sparse'))
<RowSparseNDArray 3x2 @cpu(0)>
|
def array(source_array, ctx=None, dtype=None):
"""Creates an array from any object exposing the array interface.
Parameters
----------
source_array : array_like
An object exposing the array interface, an object whose `__array__`
method returns an array, or any (nested) sequence.
ctx : Context, optional
Device context (default is the current default context).
dtype : str or numpy.dtype, optional
The data type of the output array. The default dtype is ``source_array.dtype``
if `source_array` is an `NDArray`, `float32` otherwise.
Returns
-------
NDArray, RowSparseNDArray or CSRNDArray
An array with the same contents as the `source_array`.
Examples
--------
>>> import numpy as np
>>> mx.nd.array([1, 2, 3])
<NDArray 3 @cpu(0)>
>>> mx.nd.array([[1, 2], [3, 4]])
<NDArray 2x2 @cpu(0)>
>>> mx.nd.array(np.zeros((3, 2)))
<NDArray 3x2 @cpu(0)>
>>> mx.nd.array(np.zeros((3, 2)), mx.gpu(0))
<NDArray 3x2 @gpu(0)>
>>> mx.nd.array(mx.nd.zeros((3, 2), stype='row_sparse'))
<RowSparseNDArray 3x2 @cpu(0)>
"""
if spsp is not None and isinstance(source_array, spsp.csr.csr_matrix):
return _sparse_array(source_array, ctx=ctx, dtype=dtype)
elif isinstance(source_array, NDArray) and source_array.stype != 'default':
return _sparse_array(source_array, ctx=ctx, dtype=dtype)
else:
return _array(source_array, ctx=ctx, dtype=dtype)
|
Loads an array from file.
See more details in ``save``.
Parameters
----------
fname : str
The filename.
Returns
-------
list of NDArray, RowSparseNDArray or CSRNDArray, or \
dict of str to NDArray, RowSparseNDArray or CSRNDArray
Loaded data.
|
def load(fname):
"""Loads an array from file.
See more details in ``save``.
Parameters
----------
fname : str
The filename.
Returns
-------
list of NDArray, RowSparseNDArray or CSRNDArray, or \
dict of str to NDArray, RowSparseNDArray or CSRNDArray
Loaded data.
"""
if not isinstance(fname, string_types):
raise TypeError('fname required to be a string')
out_size = mx_uint()
out_name_size = mx_uint()
handles = ctypes.POINTER(NDArrayHandle)()
names = ctypes.POINTER(ctypes.c_char_p)()
check_call(_LIB.MXNDArrayLoad(c_str(fname),
ctypes.byref(out_size),
ctypes.byref(handles),
ctypes.byref(out_name_size),
ctypes.byref(names)))
if out_name_size.value == 0:
return [_ndarray_cls(NDArrayHandle(handles[i])) for i in range(out_size.value)]
else:
assert out_name_size.value == out_size.value
return dict(
(py_str(names[i]), _ndarray_cls(NDArrayHandle(handles[i])))
for i in range(out_size.value))
|
Loads an array dictionary or list from a buffer
See more details in ``save``.
Parameters
----------
buf : str
Buffer containing contents of a file as a string or bytes.
Returns
-------
list of NDArray, RowSparseNDArray or CSRNDArray, or \
dict of str to NDArray, RowSparseNDArray or CSRNDArray
Loaded data.
|
def load_frombuffer(buf):
"""Loads an array dictionary or list from a buffer
See more details in ``save``.
Parameters
----------
buf : str
Buffer containing contents of a file as a string or bytes.
Returns
-------
list of NDArray, RowSparseNDArray or CSRNDArray, or \
dict of str to NDArray, RowSparseNDArray or CSRNDArray
Loaded data.
"""
if not isinstance(buf, string_types + tuple([bytes])):
raise TypeError('buf required to be a string or bytes')
out_size = mx_uint()
out_name_size = mx_uint()
handles = ctypes.POINTER(NDArrayHandle)()
names = ctypes.POINTER(ctypes.c_char_p)()
check_call(_LIB.MXNDArrayLoadFromBuffer(buf,
mx_uint(len(buf)),
ctypes.byref(out_size),
ctypes.byref(handles),
ctypes.byref(out_name_size),
ctypes.byref(names)))
if out_name_size.value == 0:
return [_ndarray_cls(NDArrayHandle(handles[i])) for i in range(out_size.value)]
else:
assert out_name_size.value == out_size.value
return dict(
(py_str(names[i]), _ndarray_cls(NDArrayHandle(handles[i])))
for i in range(out_size.value))
|
Saves a list of arrays or a dict of str->array to file.
Examples of filenames:
- ``/path/to/file``
- ``s3://my-bucket/path/to/file`` (if compiled with AWS S3 supports)
- ``hdfs://path/to/file`` (if compiled with HDFS supports)
Parameters
----------
fname : str
The filename.
data : NDArray, RowSparseNDArray or CSRNDArray, \
or list of NDArray, RowSparseNDArray or CSRNDArray, \
or dict of str to NDArray, RowSparseNDArray or CSRNDArray
The data to save.
Examples
--------
>>> x = mx.nd.zeros((2,3))
>>> y = mx.nd.ones((1,4))
>>> mx.nd.save('my_list', [x,y])
>>> mx.nd.save('my_dict', {'x':x, 'y':y})
>>> mx.nd.load('my_list')
[<NDArray 2x3 @cpu(0)>, <NDArray 1x4 @cpu(0)>]
>>> mx.nd.load('my_dict')
{'y': <NDArray 1x4 @cpu(0)>, 'x': <NDArray 2x3 @cpu(0)>}
|
def save(fname, data):
"""Saves a list of arrays or a dict of str->array to file.
Examples of filenames:
- ``/path/to/file``
- ``s3://my-bucket/path/to/file`` (if compiled with AWS S3 supports)
- ``hdfs://path/to/file`` (if compiled with HDFS supports)
Parameters
----------
fname : str
The filename.
data : NDArray, RowSparseNDArray or CSRNDArray, \
or list of NDArray, RowSparseNDArray or CSRNDArray, \
or dict of str to NDArray, RowSparseNDArray or CSRNDArray
The data to save.
Examples
--------
>>> x = mx.nd.zeros((2,3))
>>> y = mx.nd.ones((1,4))
>>> mx.nd.save('my_list', [x,y])
>>> mx.nd.save('my_dict', {'x':x, 'y':y})
>>> mx.nd.load('my_list')
[<NDArray 2x3 @cpu(0)>, <NDArray 1x4 @cpu(0)>]
>>> mx.nd.load('my_dict')
{'y': <NDArray 1x4 @cpu(0)>, 'x': <NDArray 2x3 @cpu(0)>}
"""
if isinstance(data, NDArray):
data = [data]
handles = c_array(NDArrayHandle, [])
if isinstance(data, dict):
str_keys = data.keys()
nd_vals = data.values()
if any(not isinstance(k, string_types) for k in str_keys) or \
any(not isinstance(v, NDArray) for v in nd_vals):
raise TypeError('save only accept dict str->NDArray or list of NDArray')
keys = c_str_array(str_keys)
handles = c_handle_array(nd_vals)
elif isinstance(data, list):
if any(not isinstance(v, NDArray) for v in data):
raise TypeError('save only accept dict str->NDArray or list of NDArray')
keys = None
handles = c_handle_array(data)
else:
raise ValueError("data needs to either be a NDArray, dict of str, NDArray pairs "
"or a list of NDarrays.")
check_call(_LIB.MXNDArraySave(c_str(fname),
mx_uint(len(handles)),
handles,
keys))
|
Get the common prefix for all names
|
def _common_prefix(names):
"""Get the common prefix for all names"""
if not names:
return ''
prefix = names[0]
for name in names:
i = 0
while i < len(prefix) and i < len(name) and prefix[i] == name[i]:
i += 1
prefix = prefix[:i]
return prefix
|
Utility function that helps in inferring DType of args and auxs params
from given input param.
Parameters
----------
in_params: List of Symbol
List of input symbol variables.
out_params: Symbol
Output symbol variable.
arg_params: List of Str
List of names of argument parametrs.
aux_params: List of Str
List of names of auxiliary parameters.
default_dtype: numpy.dtype or str, default 'float32'
Default data type for arg_params and aux_params, if unable to infer the type.
Returns
-------
arg_types: List of numpy.dtype
List of arg_params type. Order is same as arg_params.
Defaults to 'float32', if unable to infer type.
aux_types: List of numpy.dtype
List of aux_params type. Order is same as aux_params.
Defaults to 'float32', if unable to infer type.
|
def _infer_param_types(in_params, out_params, arg_params, aux_params, default_dtype=mx_real_t):
"""Utility function that helps in inferring DType of args and auxs params
from given input param.
Parameters
----------
in_params: List of Symbol
List of input symbol variables.
out_params: Symbol
Output symbol variable.
arg_params: List of Str
List of names of argument parametrs.
aux_params: List of Str
List of names of auxiliary parameters.
default_dtype: numpy.dtype or str, default 'float32'
Default data type for arg_params and aux_params, if unable to infer the type.
Returns
-------
arg_types: List of numpy.dtype
List of arg_params type. Order is same as arg_params.
Defaults to 'float32', if unable to infer type.
aux_types: List of numpy.dtype
List of aux_params type. Order is same as aux_params.
Defaults to 'float32', if unable to infer type.
"""
arg_types = None
aux_types = None
# Get Input symbol details. This will be used to infer types of
# other parameters.
input_sym_names = [in_param.name for in_param in in_params]
# Try to infer input types. If not successful, we will set default dtype.
# If successful, we will try to infer other params in the graph.
input_sym_arg_types = []
can_infer_input_type = True
for in_param in in_params:
input_sym_arg_type = in_param.infer_type()[0]
if not input_sym_arg_type or len(input_sym_arg_type) < 1:
can_infer_input_type = False
break
else:
input_sym_arg_types.append(in_param.infer_type()[0][0])
# Try to infer types of other parameters.
if can_infer_input_type:
params = {k:v for k, v in zip(input_sym_names, input_sym_arg_types)}
arg_types, _, aux_types = out_params.infer_type(**params)
if arg_types is None or len(arg_types) != len(arg_params):
arg_types = []
for _ in arg_params:
arg_types.append(default_dtype)
if aux_types is None or len(aux_types) != len(aux_params):
aux_types = []
for _ in aux_params:
aux_types.append(default_dtype)
return (arg_types, aux_types)
|
Creates prefix and params for new `Block`.
|
def create(prefix, params, hint):
"""Creates prefix and params for new `Block`."""
current = getattr(_BlockScope._current, "value", None)
if current is None:
if prefix is None:
if not hasattr(_name.NameManager._current, "value"):
_name.NameManager._current.value = _name.NameManager()
prefix = _name.NameManager._current.value.get(None, hint) + '_'
if params is None:
params = ParameterDict(prefix)
else:
params = ParameterDict(params.prefix, params)
return prefix, params
if prefix is None:
count = current._counter.get(hint, 0)
prefix = '%s%d_'%(hint, count)
current._counter[hint] = count + 1
if params is None:
parent = current._block.params
params = ParameterDict(parent.prefix+prefix, parent._shared)
else:
params = ParameterDict(params.prefix, params)
return current._block.prefix+prefix, params
|
Returns a :py:class:`ParameterDict` containing this :py:class:`Block` and all of its
children's Parameters(default), also can returns the select :py:class:`ParameterDict`
which match some given regular expressions.
For example, collect the specified parameters in ['conv1_weight', 'conv1_bias', 'fc_weight',
'fc_bias']::
model.collect_params('conv1_weight|conv1_bias|fc_weight|fc_bias')
or collect all parameters whose names end with 'weight' or 'bias', this can be done
using regular expressions::
model.collect_params('.*weight|.*bias')
Parameters
----------
select : str
regular expressions
Returns
-------
The selected :py:class:`ParameterDict`
|
def collect_params(self, select=None):
"""Returns a :py:class:`ParameterDict` containing this :py:class:`Block` and all of its
children's Parameters(default), also can returns the select :py:class:`ParameterDict`
which match some given regular expressions.
For example, collect the specified parameters in ['conv1_weight', 'conv1_bias', 'fc_weight',
'fc_bias']::
model.collect_params('conv1_weight|conv1_bias|fc_weight|fc_bias')
or collect all parameters whose names end with 'weight' or 'bias', this can be done
using regular expressions::
model.collect_params('.*weight|.*bias')
Parameters
----------
select : str
regular expressions
Returns
-------
The selected :py:class:`ParameterDict`
"""
# We need to check here because blocks inside containers are not supported.
self._check_container_with_block()
ret = ParameterDict(self._params.prefix)
if not select:
ret.update(self.params)
else:
pattern = re.compile(select)
ret.update({name:value for name, value in self.params.items() if pattern.match(name)})
for cld in self._children.values():
ret.update(cld.collect_params(select=select))
return ret
|
[Deprecated] Please use save_parameters. Note that if you want load
from SymbolBlock later, please use export instead.
Save parameters to file.
filename : str
Path to file.
|
def save_params(self, filename):
"""[Deprecated] Please use save_parameters. Note that if you want load
from SymbolBlock later, please use export instead.
Save parameters to file.
filename : str
Path to file.
"""
warnings.warn("save_params is deprecated. Please use save_parameters. "
"Note that if you want load from SymbolBlock later, please "
"use export instead. For details, see "
"https://mxnet.incubator.apache.org/tutorials/gluon/save_lo"
"ad_params.html")
try:
self.collect_params().save(filename, strip_prefix=self.prefix)
except ValueError as e:
raise ValueError('%s\nsave_params is deprecated. Using ' \
'save_parameters may resolve this error.'%e.message)
|
Load parameters from file previously saved by `save_parameters`.
Parameters
----------
filename : str
Path to parameter file.
ctx : Context or list of Context, default cpu()
Context(s) to initialize loaded parameters on.
allow_missing : bool, default False
Whether to silently skip loading parameters not represents in the file.
ignore_extra : bool, default False
Whether to silently ignore parameters from the file that are not
present in this Block.
References
----------
`Saving and Loading Gluon Models \
<https://mxnet.incubator.apache.org/tutorials/gluon/save_load_params.html>`_
|
def load_parameters(self, filename, ctx=None, allow_missing=False,
ignore_extra=False):
"""Load parameters from file previously saved by `save_parameters`.
Parameters
----------
filename : str
Path to parameter file.
ctx : Context or list of Context, default cpu()
Context(s) to initialize loaded parameters on.
allow_missing : bool, default False
Whether to silently skip loading parameters not represents in the file.
ignore_extra : bool, default False
Whether to silently ignore parameters from the file that are not
present in this Block.
References
----------
`Saving and Loading Gluon Models \
<https://mxnet.incubator.apache.org/tutorials/gluon/save_load_params.html>`_
"""
loaded = ndarray.load(filename)
params = self._collect_params_with_prefix()
if not loaded and not params:
return
if not any('.' in i for i in loaded.keys()):
# legacy loading
del loaded
self.collect_params().load(
filename, ctx, allow_missing, ignore_extra, self.prefix)
return
if not allow_missing:
for name in params.keys():
assert name in loaded, \
"Parameter '%s' is missing in file '%s', which contains parameters: %s. " \
"Set allow_missing=True to ignore missing parameters."%(
name, filename, _brief_print_list(loaded.keys()))
for name in loaded:
if not ignore_extra and name not in params:
raise ValueError(
"Parameter '%s' loaded from file '%s' is not present in ParameterDict, " \
"which contains parameters %s. Set ignore_extra=True to ignore. "%(
name, filename, _brief_print_list(self._params.keys())))
if name in params:
params[name]._load_init(loaded[name], ctx)
|
[Deprecated] Please use load_parameters.
Load parameters from file.
filename : str
Path to parameter file.
ctx : Context or list of Context, default cpu()
Context(s) to initialize loaded parameters on.
allow_missing : bool, default False
Whether to silently skip loading parameters not represents in the file.
ignore_extra : bool, default False
Whether to silently ignore parameters from the file that are not
present in this Block.
|
def load_params(self, filename, ctx=None, allow_missing=False,
ignore_extra=False):
"""[Deprecated] Please use load_parameters.
Load parameters from file.
filename : str
Path to parameter file.
ctx : Context or list of Context, default cpu()
Context(s) to initialize loaded parameters on.
allow_missing : bool, default False
Whether to silently skip loading parameters not represents in the file.
ignore_extra : bool, default False
Whether to silently ignore parameters from the file that are not
present in this Block.
"""
warnings.warn("load_params is deprecated. Please use load_parameters.")
self.load_parameters(filename, ctx, allow_missing, ignore_extra)
|
Registers block as a child of self. :py:class:`Block` s assigned to self as
attributes will be registered automatically.
|
def register_child(self, block, name=None):
"""Registers block as a child of self. :py:class:`Block` s assigned to self as
attributes will be registered automatically."""
if name is None:
name = str(len(self._children))
self._children[name] = block
|
r"""Registers a forward pre-hook on the block.
The hook function is called immediately before :func:`forward`.
It should not modify the input or output.
Parameters
----------
hook : callable
The forward hook function of form `hook(block, input) -> None`.
Returns
-------
:class:`mxnet.gluon.utils.HookHandle`
|
def register_forward_pre_hook(self, hook):
r"""Registers a forward pre-hook on the block.
The hook function is called immediately before :func:`forward`.
It should not modify the input or output.
Parameters
----------
hook : callable
The forward hook function of form `hook(block, input) -> None`.
Returns
-------
:class:`mxnet.gluon.utils.HookHandle`
"""
handle = HookHandle()
handle.attach(self._forward_pre_hooks, hook)
return handle
|
r"""Registers a forward hook on the block.
The hook function is called immediately after :func:`forward`.
It should not modify the input or output.
Parameters
----------
hook : callable
The forward hook function of form `hook(block, input, output) -> None`.
Returns
-------
:class:`mxnet.gluon.utils.HookHandle`
|
def register_forward_hook(self, hook):
r"""Registers a forward hook on the block.
The hook function is called immediately after :func:`forward`.
It should not modify the input or output.
Parameters
----------
hook : callable
The forward hook function of form `hook(block, input, output) -> None`.
Returns
-------
:class:`mxnet.gluon.utils.HookHandle`
"""
handle = HookHandle()
handle.attach(self._forward_hooks, hook)
return handle
|
r"""Applies ``fn`` recursively to every child block as well as self.
Parameters
----------
fn : callable
Function to be applied to each submodule, of form `fn(block)`.
Returns
-------
this block
|
def apply(self, fn):
r"""Applies ``fn`` recursively to every child block as well as self.
Parameters
----------
fn : callable
Function to be applied to each submodule, of form `fn(block)`.
Returns
-------
this block
"""
for cld in self._children.values():
cld.apply(fn)
fn(self)
return self
|
Initializes :py:class:`Parameter` s of this :py:class:`Block` and its children.
Equivalent to ``block.collect_params().initialize(...)``
Parameters
----------
init : Initializer
Global default Initializer to be used when :py:meth:`Parameter.init` is ``None``.
Otherwise, :py:meth:`Parameter.init` takes precedence.
ctx : Context or list of Context
Keeps a copy of Parameters on one or many context(s).
verbose : bool, default False
Whether to verbosely print out details on initialization.
force_reinit : bool, default False
Whether to force re-initialization if parameter is already initialized.
|
def initialize(self, init=initializer.Uniform(), ctx=None, verbose=False,
force_reinit=False):
"""Initializes :py:class:`Parameter` s of this :py:class:`Block` and its children.
Equivalent to ``block.collect_params().initialize(...)``
Parameters
----------
init : Initializer
Global default Initializer to be used when :py:meth:`Parameter.init` is ``None``.
Otherwise, :py:meth:`Parameter.init` takes precedence.
ctx : Context or list of Context
Keeps a copy of Parameters on one or many context(s).
verbose : bool, default False
Whether to verbosely print out details on initialization.
force_reinit : bool, default False
Whether to force re-initialization if parameter is already initialized.
"""
self.collect_params().initialize(init, ctx, verbose, force_reinit)
|
Activates or deactivates :py:class:`HybridBlock` s recursively. Has no effect on
non-hybrid children.
Parameters
----------
active : bool, default True
Whether to turn hybrid on or off.
static_alloc : bool, default False
Statically allocate memory to improve speed. Memory usage may increase.
static_shape : bool, default False
Optimize for invariant input shapes between iterations. Must also
set static_alloc to True. Change of input shapes is still allowed
but slower.
|
def hybridize(self, active=True, **kwargs):
"""Activates or deactivates :py:class:`HybridBlock` s recursively. Has no effect on
non-hybrid children.
Parameters
----------
active : bool, default True
Whether to turn hybrid on or off.
static_alloc : bool, default False
Statically allocate memory to improve speed. Memory usage may increase.
static_shape : bool, default False
Optimize for invariant input shapes between iterations. Must also
set static_alloc to True. Change of input shapes is still allowed
but slower.
"""
for cld in self._children.values():
cld.hybridize(active, **kwargs)
|
Cast this Block to use another data type.
Parameters
----------
dtype : str or numpy.dtype
The new data type.
|
def cast(self, dtype):
"""Cast this Block to use another data type.
Parameters
----------
dtype : str or numpy.dtype
The new data type.
"""
for child in self._children.values():
child.cast(dtype)
for _, param in self.params.items():
param.cast(dtype)
|
Print the summary of the model's output and parameters.
The network must have been initialized, and must not have been hybridized.
Parameters
----------
inputs : object
Any input that the model supports. For any tensor in the input, only
:class:`mxnet.ndarray.NDArray` is supported.
|
def summary(self, *inputs):
"""Print the summary of the model's output and parameters.
The network must have been initialized, and must not have been hybridized.
Parameters
----------
inputs : object
Any input that the model supports. For any tensor in the input, only
:class:`mxnet.ndarray.NDArray` is supported.
"""
summary = OrderedDict()
seen = set()
hooks = []
def _get_shape_str(args):
def flatten(args):
if not isinstance(args, (list, tuple)):
return [args], int(0)
flat = []
fmts = []
for i in args:
arg, fmt = flatten(i)
flat.extend(arg)
fmts.append(fmt)
return flat, fmts
def regroup(args, fmt):
if isinstance(fmt, int):
if fmt == 0:
return args[0], args[1:]
return args[:fmt], args[fmt:]
ret = []
for i in fmt:
res, args = regroup(args, i)
ret.append(res)
return ret, args
flat_args, fmts = flatten(args)
flat_arg_shapes = [x.shape if isinstance(x, ndarray.NDArray) else x
for x in flat_args]
shapes = regroup(flat_arg_shapes, fmts)[0]
if isinstance(shapes, list):
shape_str = str(shapes)[1:-1]
else:
shape_str = str(shapes)
return shape_str.replace('L', '')
def _register_summary_hook(block):
assert not isinstance(block, HybridBlock) or not block._active, \
'"{}" must not be hybridized to print summary.'.format(block.name)
def _summary_hook(block, _, outputs):
class_name = block.__class__.__name__
block_idx = len(summary) - 1
m_key = '%s-%i' % (class_name, block_idx+1)
summary[m_key] = OrderedDict()
summary[m_key]['output_shape'] = _get_shape_str(outputs)
params = 0
summary[m_key]['trainable'] = 0
summary[m_key]['shared'] = 0
for p in block.params.values():
params += p.data().size
summary[m_key]['trainable'] += 0 if p.grad_req == 'null' else p.data().size
if p in seen:
summary[m_key]['shared'] += p.data().size
else:
seen.add(p)
summary[m_key]['n_params'] = params
from .nn.basic_layers import Sequential, HybridSequential
if not isinstance(block, (Sequential, HybridSequential)):
hooks.append(block.register_forward_hook(_summary_hook))
summary['Input'] = OrderedDict()
summary['Input']['output_shape'] = _get_shape_str(inputs)
summary['Input']['n_params'] = 0
summary['Input']['trainable'] = 0
summary['Input']['shared'] = 0
try:
self.apply(_register_summary_hook)
self(*inputs)
line_format = '{:>20} {:>42} {:>15}'
print('-'*80)
print(line_format.format('Layer (type)', 'Output Shape', 'Param #'))
print('='*80)
total_params = 0
trainable_params = 0
shared_params = 0
for layer in summary:
print(line_format.format(layer,
str(summary[layer]['output_shape']),
summary[layer]['n_params']))
total_params += summary[layer]['n_params']
trainable_params += summary[layer]['trainable']
shared_params += summary[layer]['shared']
print('='*80)
print('Parameters in forward computation graph, duplicate included')
print(' Total params: ' + str(total_params))
print(' Trainable params: ' + str(trainable_params))
print(' Non-trainable params: ' + str(total_params - trainable_params))
print('Shared params in forward computation graph: ' + str(shared_params))
print('Unique parameters in model: ' + str(total_params - shared_params))
print('-'*80)
finally:
for h in hooks:
h.detach()
|
Generic infer attributes.
|
def _infer_attrs(self, infer_fn, attr, *args):
"""Generic infer attributes."""
inputs, out = self._get_graph(*args)
args, _ = _flatten(args, "input")
with warnings.catch_warnings(record=True) as w:
arg_attrs, _, aux_attrs = getattr(out, infer_fn)(
**{i.name: getattr(j, attr) for i, j in zip(inputs, args)})
if arg_attrs is None:
raise ValueError(w[0].message)
sdict = {i: j for i, j in zip(out.list_arguments(), arg_attrs)}
sdict.update({name : attr for name, attr in \
zip(out.list_auxiliary_states(), aux_attrs)})
for i in self.collect_params().values():
setattr(i, attr, sdict[i.name])
|
Export HybridBlock to json format that can be loaded by
`SymbolBlock.imports`, `mxnet.mod.Module` or the C++ interface.
.. note:: When there are only one input, it will have name `data`. When there
Are more than one inputs, they will be named as `data0`, `data1`, etc.
Parameters
----------
path : str
Path to save model. Two files `path-symbol.json` and `path-xxxx.params`
will be created, where xxxx is the 4 digits epoch number.
epoch : int
Epoch number of saved model.
|
def export(self, path, epoch=0):
"""Export HybridBlock to json format that can be loaded by
`SymbolBlock.imports`, `mxnet.mod.Module` or the C++ interface.
.. note:: When there are only one input, it will have name `data`. When there
Are more than one inputs, they will be named as `data0`, `data1`, etc.
Parameters
----------
path : str
Path to save model. Two files `path-symbol.json` and `path-xxxx.params`
will be created, where xxxx is the 4 digits epoch number.
epoch : int
Epoch number of saved model.
"""
if not self._cached_graph:
raise RuntimeError(
"Please first call block.hybridize() and then run forward with "
"this block at least once before calling export.")
sym = self._cached_graph[1]
sym.save('%s-symbol.json'%path)
arg_names = set(sym.list_arguments())
aux_names = set(sym.list_auxiliary_states())
arg_dict = {}
for name, param in self.collect_params().items():
if name in arg_names:
arg_dict['arg:%s'%name] = param._reduce()
else:
assert name in aux_names
arg_dict['aux:%s'%name] = param._reduce()
ndarray.save('%s-%04d.params'%(path, epoch), arg_dict)
|
Defines the forward computation. Arguments can be either
:py:class:`NDArray` or :py:class:`Symbol`.
|
def forward(self, x, *args):
"""Defines the forward computation. Arguments can be either
:py:class:`NDArray` or :py:class:`Symbol`."""
if isinstance(x, NDArray):
with x.context as ctx:
if self._active:
return self._call_cached_op(x, *args)
try:
params = {i: j.data(ctx) for i, j in self._reg_params.items()}
except DeferredInitializationError:
self._deferred_infer_shape(x, *args)
for _, i in self.params.items():
i._finish_deferred_init()
params = {i: j.data(ctx) for i, j in self._reg_params.items()}
return self.hybrid_forward(ndarray, x, *args, **params)
assert isinstance(x, Symbol), \
"HybridBlock requires the first argument to forward be either " \
"Symbol or NDArray, but got %s"%type(x)
params = {i: j.var() for i, j in self._reg_params.items()}
with self.name_scope():
return self.hybrid_forward(symbol, x, *args, **params)
|
Import model previously saved by `HybridBlock.export` or
`Module.save_checkpoint` as a SymbolBlock for use in Gluon.
Parameters
----------
symbol_file : str
Path to symbol file.
input_names : list of str
List of input variable names
param_file : str, optional
Path to parameter file.
ctx : Context, default None
The context to initialize SymbolBlock on.
Returns
-------
SymbolBlock
SymbolBlock loaded from symbol and parameter files.
Examples
--------
>>> net1 = gluon.model_zoo.vision.resnet18_v1(
... prefix='resnet', pretrained=True)
>>> net1.hybridize()
>>> x = mx.nd.random.normal(shape=(1, 3, 32, 32))
>>> out1 = net1(x)
>>> net1.export('net1', epoch=1)
>>>
>>> net2 = gluon.SymbolBlock.imports(
... 'net1-symbol.json', ['data'], 'net1-0001.params')
>>> out2 = net2(x)
|
def imports(symbol_file, input_names, param_file=None, ctx=None):
"""Import model previously saved by `HybridBlock.export` or
`Module.save_checkpoint` as a SymbolBlock for use in Gluon.
Parameters
----------
symbol_file : str
Path to symbol file.
input_names : list of str
List of input variable names
param_file : str, optional
Path to parameter file.
ctx : Context, default None
The context to initialize SymbolBlock on.
Returns
-------
SymbolBlock
SymbolBlock loaded from symbol and parameter files.
Examples
--------
>>> net1 = gluon.model_zoo.vision.resnet18_v1(
... prefix='resnet', pretrained=True)
>>> net1.hybridize()
>>> x = mx.nd.random.normal(shape=(1, 3, 32, 32))
>>> out1 = net1(x)
>>> net1.export('net1', epoch=1)
>>>
>>> net2 = gluon.SymbolBlock.imports(
... 'net1-symbol.json', ['data'], 'net1-0001.params')
>>> out2 = net2(x)
"""
sym = symbol.load(symbol_file)
if isinstance(input_names, str):
input_names = [input_names]
inputs = [symbol.var(i) for i in input_names]
ret = SymbolBlock(sym, inputs)
if param_file is not None:
ret.collect_params().load(param_file, ctx=ctx)
return ret
|
Calculates the expectation of the gradients per epoch for each parameter w.r.t number of batches
Parameters
----------
grad_dict: dict
dictionary that maps parameter name to gradients in the mod executor group
num_batches: int
number of batches
Returns
----------
grad_dict: dict
dictionary with new keys mapping to gradients expectations
|
def calc_expectation(grad_dict, num_batches):
"""Calculates the expectation of the gradients per epoch for each parameter w.r.t number of batches
Parameters
----------
grad_dict: dict
dictionary that maps parameter name to gradients in the mod executor group
num_batches: int
number of batches
Returns
----------
grad_dict: dict
dictionary with new keys mapping to gradients expectations
"""
for key in grad_dict.keys():
grad_dict[str.format(key+"_expectation")] = mx.ndarray.sum(grad_dict[key], axis=0) / num_batches
return grad_dict
|
Calculates the variance of the gradients per epoch for each parameter w.r.t number of batches
Parameters
----------
grad_dict: dict
dictionary that maps parameter name to gradients in the mod executor group
num_batches: int
number of batches
param_names: str
parameter name in the module
Returns
----------
grad_dict: dict
dictionary with new keys mapping to gradients variance
|
def calc_variance(grad_dict, num_batches, param_names):
"""Calculates the variance of the gradients per epoch for each parameter w.r.t number of batches
Parameters
----------
grad_dict: dict
dictionary that maps parameter name to gradients in the mod executor group
num_batches: int
number of batches
param_names: str
parameter name in the module
Returns
----------
grad_dict: dict
dictionary with new keys mapping to gradients variance
"""
for i in range(len(param_names)):
diff_sqr = mx.ndarray.square(mx.nd.subtract(grad_dict[param_names[i]],
grad_dict[str.format(param_names[i]+"_expectation")]))
grad_dict[str.format(param_names[i] + "_variance")] = mx.ndarray.sum(diff_sqr, axis=0) / num_batches
|
Create directories recursively if they don't exist. os.makedirs(exist_ok=True) is not
available in Python2
|
def makedirs(d):
"""Create directories recursively if they don't exist. os.makedirs(exist_ok=True) is not
available in Python2"""
if sys.version_info[0] < 3:
from distutils.dir_util import mkpath
mkpath(d)
else:
os.makedirs(d, exist_ok=True)
|
r"""AlexNet model from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default $MXNET_HOME/models
Location for keeping the model parameters.
|
def alexnet(pretrained=False, ctx=cpu(),
root=os.path.join(base.data_dir(), 'models'), **kwargs):
r"""AlexNet model from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default $MXNET_HOME/models
Location for keeping the model parameters.
"""
net = AlexNet(**kwargs)
if pretrained:
from ..model_store import get_model_file
net.load_parameters(get_model_file('alexnet', root=root), ctx=ctx)
return net
|
computes f1, precision and recall on the entity class
|
def classifer_metrics(label, pred):
"""
computes f1, precision and recall on the entity class
"""
prediction = np.argmax(pred, axis=1)
label = label.astype(int)
pred_is_entity = prediction != not_entity_index
label_is_entity = label != not_entity_index
corr_pred = (prediction == label) == (pred_is_entity == True)
#how many entities are there?
num_entities = np.sum(label_is_entity)
entity_preds = np.sum(pred_is_entity)
#how many times did we correctly predict an entity?
correct_entitites = np.sum(corr_pred[pred_is_entity])
#precision: when we predict entity, how often are we right?
precision = correct_entitites/entity_preds
if entity_preds == 0:
precision = np.nan
#recall: of the things that were an entity, how many did we catch?
recall = correct_entitites / num_entities
if num_entities == 0:
recall = np.nan
f1 = 2 * precision * recall / (precision + recall)
return precision, recall, f1
|
Construct data iter
Parameters
----------
batch_size: int
num_embed: int
pre_trained_word2vec: boolean
identify the pre-trained layers or not
Returns
----------
train_set: DataIter
Train DataIter
valid: DataIter
Valid DataIter
sentences_size: int
array dimensions
embedded_size: int
array dimensions
vocab_size: int
array dimensions
|
def data_iter(batch_size, num_embed, pre_trained_word2vec=False):
"""Construct data iter
Parameters
----------
batch_size: int
num_embed: int
pre_trained_word2vec: boolean
identify the pre-trained layers or not
Returns
----------
train_set: DataIter
Train DataIter
valid: DataIter
Valid DataIter
sentences_size: int
array dimensions
embedded_size: int
array dimensions
vocab_size: int
array dimensions
"""
print('Loading data...')
if pre_trained_word2vec:
word2vec = data_helpers.load_pretrained_word2vec('data/rt.vec')
x, y = data_helpers.load_data_with_word2vec(word2vec)
# reshape for convolution input
x = np.reshape(x, (x.shape[0], 1, x.shape[1], x.shape[2]))
embedded_size = x.shape[-1]
sentences_size = x.shape[2]
vocabulary_size = -1
else:
x, y, vocab, vocab_inv = data_helpers.load_data()
embedded_size = num_embed
sentences_size = x.shape[1]
vocabulary_size = len(vocab)
# randomly shuffle data
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]
# split train/valid set
x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
print('Train/Valid split: %d/%d' % (len(y_train), len(y_dev)))
print('train shape:', x_train.shape)
print('valid shape:', x_dev.shape)
print('sentence max words', sentences_size)
print('embedding size', embedded_size)
print('vocab size', vocabulary_size)
train_set = mx.io.NDArrayIter(
x_train, y_train, batch_size, shuffle=True)
valid = mx.io.NDArrayIter(
x_dev, y_dev, batch_size)
return train_set, valid, sentences_size, embedded_size, vocabulary_size
|
Generate network symbol
Parameters
----------
batch_size: int
sentences_size: int
num_embed: int
vocabulary_size: int
num_label: int
filter_list: list
num_filter: int
dropout: int
pre_trained_word2vec: boolean
identify the pre-trained layers or not
Returns
----------
sm: symbol
data: list of str
data names
softmax_label: list of str
label names
|
def sym_gen(batch_size, sentences_size, num_embed, vocabulary_size,
num_label=2, filter_list=None, num_filter=100,
dropout=0.0, pre_trained_word2vec=False):
"""Generate network symbol
Parameters
----------
batch_size: int
sentences_size: int
num_embed: int
vocabulary_size: int
num_label: int
filter_list: list
num_filter: int
dropout: int
pre_trained_word2vec: boolean
identify the pre-trained layers or not
Returns
----------
sm: symbol
data: list of str
data names
softmax_label: list of str
label names
"""
input_x = mx.sym.Variable('data')
input_y = mx.sym.Variable('softmax_label')
# embedding layer
if not pre_trained_word2vec:
embed_layer = mx.sym.Embedding(data=input_x,
input_dim=vocabulary_size,
output_dim=num_embed,
name='vocab_embed')
conv_input = mx.sym.Reshape(data=embed_layer, target_shape=(batch_size, 1, sentences_size, num_embed))
else:
conv_input = input_x
# create convolution + (max) pooling layer for each filter operation
pooled_outputs = []
for i, filter_size in enumerate(filter_list):
convi = mx.sym.Convolution(data=conv_input, kernel=(filter_size, num_embed), num_filter=num_filter)
relui = mx.sym.Activation(data=convi, act_type='relu')
pooli = mx.sym.Pooling(data=relui, pool_type='max', kernel=(sentences_size - filter_size + 1, 1), stride=(1, 1))
pooled_outputs.append(pooli)
# combine all pooled outputs
total_filters = num_filter * len(filter_list)
concat = mx.sym.Concat(*pooled_outputs, dim=1)
h_pool = mx.sym.Reshape(data=concat, target_shape=(batch_size, total_filters))
# dropout layer
if dropout > 0.0:
h_drop = mx.sym.Dropout(data=h_pool, p=dropout)
else:
h_drop = h_pool
# fully connected
cls_weight = mx.sym.Variable('cls_weight')
cls_bias = mx.sym.Variable('cls_bias')
fc = mx.sym.FullyConnected(data=h_drop, weight=cls_weight, bias=cls_bias, num_hidden=num_label)
# softmax output
sm = mx.sym.SoftmaxOutput(data=fc, label=input_y, name='softmax')
return sm, ('data',), ('softmax_label',)
|
Train cnn model
Parameters
----------
symbol_data: symbol
train_iterator: DataIter
Train DataIter
valid_iterator: DataIter
Valid DataIter
data_column_names: list of str
Defaults to ('data') for a typical model used in image classification
target_names: list of str
Defaults to ('softmax_label') for a typical model used in image classification
|
def train(symbol_data, train_iterator, valid_iterator, data_column_names, target_names):
"""Train cnn model
Parameters
----------
symbol_data: symbol
train_iterator: DataIter
Train DataIter
valid_iterator: DataIter
Valid DataIter
data_column_names: list of str
Defaults to ('data') for a typical model used in image classification
target_names: list of str
Defaults to ('softmax_label') for a typical model used in image classification
"""
devs = mx.cpu() # default setting
if args.gpus is not None:
for i in args.gpus.split(','):
mx.gpu(int(i))
devs = mx.gpu()
module = mx.mod.Module(symbol_data, data_names=data_column_names, label_names=target_names, context=devs)
module.fit(train_data=train_iterator,
eval_data=valid_iterator,
eval_metric='acc',
kvstore=args.kv_store,
optimizer=args.optimizer,
optimizer_params={'learning_rate': args.lr},
initializer=mx.initializer.Uniform(0.1),
num_epoch=args.num_epochs,
batch_end_callback=mx.callback.Speedometer(args.batch_size, args.disp_batches),
epoch_end_callback=save_model())
|
convert the caltech101 mat file to images
Examples
--------
python convert_data.py --dataset /home/ubuntu/datasets/caltech101/data/caltech101_silhouettes_28.mat --save_path /home/ubuntu/datasets/caltech101/data/ --invert --height 32 --width 32
|
def convert_mat_to_images(args):
'''convert the caltech101 mat file to images
Examples
--------
python convert_data.py --dataset /home/ubuntu/datasets/caltech101/data/caltech101_silhouettes_28.mat --save_path /home/ubuntu/datasets/caltech101/data/ --invert --height 32 --width 32
'''
dataset = scipy.io.loadmat("{}/{}".format(args.save_path, args.dataset))
# image pixel data
X = dataset['X']
# image class labels (not used in this project)
Y = dataset['Y']
total_image = X.shape[0]
h=args.height
w=args.width
for i in range(total_image):
img = X[i]
img = np.reshape(img, (28, 28))
if args.invert:
img = (1-img)*255
else:
img = img*255
img = Image.fromarray(img, 'L')
img = img.rotate(-90)
img = img.resize([h, w], Image.BILINEAR)
img.save(args.save_path + '/img' + str(i) + '.png')
|
Build using CMake
|
def build(args) -> None:
"""Build using CMake"""
venv_exe = shutil.which('virtualenv')
pyexe = shutil.which(args.pyexe)
if not venv_exe:
logging.warn("virtualenv wasn't found in path, it's recommended to install virtualenv to manage python environments")
if not pyexe:
logging.warn("Python executable %s not found in path", args.pyexe)
if args.cmake_options:
cmake = CMake(args.cmake_options)
else:
cmake = CMake()
cmake()
create_virtualenv(venv_exe, pyexe, args.venv)
|
Create a linear regression network for performing SVRG optimization.
Parameters
----------
batch_size: int
Size of data split
update_freq: int
Update Frequency for calculating full gradients
Returns
----------
di: mx.io.NDArrayIter
Data iterator
update_freq: SVRGModule
An instance of SVRGModule for performing SVRG optimization
|
def create_network(batch_size, update_freq):
"""Create a linear regression network for performing SVRG optimization.
Parameters
----------
batch_size: int
Size of data split
update_freq: int
Update Frequency for calculating full gradients
Returns
----------
di: mx.io.NDArrayIter
Data iterator
update_freq: SVRGModule
An instance of SVRGModule for performing SVRG optimization
"""
import logging
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.INFO, format=head)
train_data = np.random.randint(1, 5, [1000, 2])
weights = np.array([1.0, 2.0])
train_label = train_data.dot(weights)
di = mx.io.NDArrayIter(train_data, train_label, batch_size=batch_size, shuffle=True, label_name='lin_reg_label')
X = mx.sym.Variable('data')
Y = mx.symbol.Variable('lin_reg_label')
fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden=1)
lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro")
mod = SVRGModule(
symbol=lro,
data_names=['data'],
label_names=['lin_reg_label'], update_freq=update_freq, logger=logging
)
return di, mod
|
r"""SqueezeNet model from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <0.5MB model size" <https://arxiv.org/abs/1602.07360>`_ paper.
SqueezeNet 1.1 model from the `official SqueezeNet repo
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Parameters
----------
version : str
Version of squeezenet. Options are '1.0', '1.1'.
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default $MXNET_HOME/models
Location for keeping the model parameters.
|
def get_squeezenet(version, pretrained=False, ctx=cpu(),
root=os.path.join(base.data_dir(), 'models'), **kwargs):
r"""SqueezeNet model from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <0.5MB model size" <https://arxiv.org/abs/1602.07360>`_ paper.
SqueezeNet 1.1 model from the `official SqueezeNet repo
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Parameters
----------
version : str
Version of squeezenet. Options are '1.0', '1.1'.
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default $MXNET_HOME/models
Location for keeping the model parameters.
"""
net = SqueezeNet(version, **kwargs)
if pretrained:
from ..model_store import get_model_file
net.load_parameters(get_model_file('squeezenet%s'%version, root=root), ctx=ctx)
return net
|
Helper function to parse operator attributes in required format.
|
def parse_helper(attrs, attrs_name, alt_value=None):
"""Helper function to parse operator attributes in required format."""
tuple_re = re.compile('\([0-9L|,| ]+\)')
if not attrs:
return alt_value
attrs_str = None if attrs.get(attrs_name) is None else str(attrs.get(attrs_name))
if attrs_str is None:
return alt_value
attrs_match = tuple_re.search(attrs_str)
if attrs_match is not None:
if attrs_match.span() == (0, len(attrs_str)):
dims = eval(attrs_str)
return dims
else:
raise AttributeError("Malformed %s dimensions: %s" % (attrs_name, str(attrs_str)))
return alt_value
|
Helper function to convert padding format for pad operator.
|
def transform_padding(pad_width):
"""Helper function to convert padding format for pad operator.
"""
num_pad_values = len(pad_width)
onnx_pad_width = [0]*num_pad_values
start_index = 0
# num_pad_values will always be multiple of 2
end_index = int(num_pad_values/2)
for idx in range(0, num_pad_values):
if idx % 2 == 0:
onnx_pad_width[start_index] = pad_width[idx]
start_index += 1
else:
onnx_pad_width[end_index] = pad_width[idx]
end_index += 1
return onnx_pad_width
|
Helper function to convert string to list.
Used to convert shape attribute string to list format.
|
def convert_string_to_list(string_val):
"""Helper function to convert string to list.
Used to convert shape attribute string to list format.
"""
result_list = []
list_string = string_val.split(',')
for val in list_string:
val = str(val.strip())
val = val.replace("(", "")
val = val.replace(")", "")
val = val.replace("L", "")
val = val.replace("[", "")
val = val.replace("]", "")
if val not in ("", "None"):
result_list.append(int(val))
return result_list
|
Helper function to get inputs
|
def get_inputs(node, kwargs):
"""Helper function to get inputs"""
name = node["name"]
proc_nodes = kwargs["proc_nodes"]
index_lookup = kwargs["index_lookup"]
inputs = node["inputs"]
attrs = node.get("attrs", {})
input_nodes = []
for ip in inputs:
input_node_id = index_lookup[ip[0]]
input_nodes.append(proc_nodes[input_node_id].name)
return name, input_nodes, attrs
|
Helper function to create a basic operator
node that doesn't contain op specific attrs
|
def create_basic_op_node(op_name, node, kwargs):
"""Helper function to create a basic operator
node that doesn't contain op specific attrs"""
name, input_nodes, _ = get_inputs(node, kwargs)
node = onnx.helper.make_node(
op_name,
input_nodes,
[name],
name=name
)
return [node]
|
Helper function to convert weights and inputs.
|
def convert_weights_and_inputs(node, **kwargs):
"""Helper function to convert weights and inputs.
"""
name, _, _ = get_inputs(node, kwargs)
if kwargs["is_input"] is False:
weights = kwargs["weights"]
initializer = kwargs["initializer"]
np_arr = weights[name]
data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np_arr.dtype]
dims = np.shape(np_arr)
tensor_node = onnx.helper.make_tensor_value_info(name, data_type, dims)
initializer.append(
onnx.helper.make_tensor(
name=name,
data_type=data_type,
dims=dims,
vals=np_arr.flatten().tolist(),
raw=False,
)
)
return [tensor_node]
else:
tval_node = onnx.helper.make_tensor_value_info(name, kwargs["in_type"], kwargs["in_shape"])
return [tval_node]
|
Map MXNet's convolution operator attributes to onnx's Conv operator
and return the created node.
|
def convert_convolution(node, **kwargs):
"""Map MXNet's convolution operator attributes to onnx's Conv operator
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
kernel_dims = list(parse_helper(attrs, "kernel"))
stride_dims = list(parse_helper(attrs, "stride", [1, 1]))
pad_dims = list(parse_helper(attrs, "pad", [0, 0]))
num_group = int(attrs.get("num_group", 1))
dilations = list(parse_helper(attrs, "dilate", [1, 1]))
pad_dims = pad_dims + pad_dims
conv_node = onnx.helper.make_node(
"Conv",
inputs=input_nodes,
outputs=[name],
kernel_shape=kernel_dims,
strides=stride_dims,
dilations=dilations,
pads=pad_dims,
group=num_group,
name=name
)
return [conv_node]
|
Map MXNet's deconvolution operator attributes to onnx's ConvTranspose operator
and return the created node.
|
def convert_deconvolution(node, **kwargs):
"""Map MXNet's deconvolution operator attributes to onnx's ConvTranspose operator
and return the created node.
"""
name, inputs, attrs = get_inputs(node, kwargs)
kernel_dims = list(parse_helper(attrs, "kernel"))
stride_dims = list(parse_helper(attrs, "stride", [1, 1]))
pad_dims = list(parse_helper(attrs, "pad", [0, 0]))
num_group = int(attrs.get("num_group", 1))
dilations = list(parse_helper(attrs, "dilate", [1, 1]))
adj_dims = list(parse_helper(attrs, "adj", [0, 0]))
pad_dims = pad_dims + pad_dims
deconv_node = onnx.helper.make_node(
"ConvTranspose",
inputs=inputs,
outputs=[name],
kernel_shape=kernel_dims,
strides=stride_dims,
dilations=dilations,
output_padding=adj_dims,
pads=pad_dims,
group=num_group,
name=name
)
return [deconv_node]
|
Map MXNet's crop operator attributes to onnx's Crop operator
and return the created node.
|
def convert_crop(node, **kwargs):
"""Map MXNet's crop operator attributes to onnx's Crop operator
and return the created node.
"""
name, inputs, attrs = get_inputs(node, kwargs)
num_inputs = len(inputs)
y, x = list(parse_helper(attrs, "offset", [0, 0]))
h, w = list(parse_helper(attrs, "h_w", [0, 0]))
if num_inputs > 1:
h, w = kwargs["out_shape"][-2:]
border = [x, y, x + w, y + h]
crop_node = onnx.helper.make_node(
"Crop",
inputs=[inputs[0]],
outputs=[name],
border=border,
scale=[1, 1],
name=name
)
logging.warning(
"Using an experimental ONNX operator: Crop. " \
"Its definition can change.")
return [crop_node]
|
Map MXNet's FullyConnected operator attributes to onnx's Gemm operator
and return the created node.
|
def convert_fully_connected(node, **kwargs):
"""Map MXNet's FullyConnected operator attributes to onnx's Gemm operator
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
initializer = kwargs["initializer"]
no_bias = get_boolean_attribute_value(attrs, "no_bias")
fcnode = []
op_name = "flatten_" + str(kwargs["idx"])
flatten_node = onnx.helper.make_node(
'Flatten',
inputs=[input_nodes[0]],
outputs=[op_name],
name=op_name
)
input_nodes[0] = op_name
fcnode.append(flatten_node)
if no_bias:
data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype('int64')]
bias_name = "bias" + str(kwargs["idx"])
tensor_node = onnx.helper.make_tensor_value_info(bias_name, data_type, (1,))
initializer.append(
onnx.helper.make_tensor(
name=bias_name,
data_type=data_type,
dims=(1,),
vals=[0],
raw=False,
)
)
input_nodes.append(bias_name)
fcnode.append(tensor_node)
node = onnx.helper.make_node(
"Gemm",
input_nodes, # input (A, B, C) - C can be in place
[name], # output
alpha=1.0,
beta=1.0,
transA=False,
transB=True,
name=name
)
fcnode.append(node)
return fcnode
|
Map MXNet's BatchNorm operator attributes to onnx's BatchNormalization operator
and return the created node.
|
def convert_batchnorm(node, **kwargs):
"""Map MXNet's BatchNorm operator attributes to onnx's BatchNormalization operator
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
momentum = float(attrs.get("momentum", 0.9))
eps = float(attrs.get("eps", 0.001))
bn_node = onnx.helper.make_node(
"BatchNormalization",
input_nodes,
[name],
name=name,
epsilon=eps,
momentum=momentum,
# MXNet computes mean and variance per feature for batchnorm
# Default for onnx is across all spatial features. So disabling the parameter.
spatial=0
)
return [bn_node]
|
Map MXNet's Activation operator attributes to onnx's Tanh/Relu operator
and return the created node.
|
def convert_activation(node, **kwargs):
"""Map MXNet's Activation operator attributes to onnx's Tanh/Relu operator
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
act_type = attrs["act_type"]
# Creating a dictionary here, but if this titlecase pattern
# mxnet_name.title()
act_types = {
"tanh": "Tanh",
"relu": "Relu",
"sigmoid": "Sigmoid",
"softrelu": "Softplus",
"softsign": "Softsign"
}
act_name = act_types.get(act_type)
if act_name:
node = onnx.helper.make_node(
act_name,
input_nodes,
[name],
name=name
)
else:
raise AttributeError(
"Activation %s not implemented or recognized in the converter" % act_type
)
return [node]
|
Map MXNet's pad operator attributes to onnx's Pad operator
and return the created node.
|
def convert_pad(node, **kwargs):
"""Map MXNet's pad operator attributes to onnx's Pad operator
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
mxnet_pad_width = convert_string_to_list(attrs.get("pad_width"))
onnx_pad_width = transform_padding(mxnet_pad_width)
pad_mode = attrs.get("mode")
if pad_mode == "constant":
pad_value = float(attrs.get("constant_value")) \
if "constant_value" in attrs else 0.0
node = onnx.helper.make_node(
'Pad',
inputs=input_nodes,
outputs=[name],
mode='constant',
value=pad_value,
pads=onnx_pad_width,
name=name
)
else:
node = onnx.helper.make_node(
'Pad',
inputs=input_nodes,
outputs=[name],
mode=pad_mode,
pads=onnx_pad_width,
name=name
)
return [node]
|
create extra transpose node for dot operator
|
def create_helper_trans_node(op_name, input_node, node_name):
"""create extra transpose node for dot operator"""
node_name = op_name + "_" + node_name
trans_node = onnx.helper.make_node(
'Transpose',
inputs=[input_node],
outputs=[node_name],
name=node_name
)
return trans_node
|
Map MXNet's dot operator attributes to onnx's
MatMul and Transpose operators based on the values set for
transpose_a, transpose_b attributes.
|
def convert_dot(node, **kwargs):
"""Map MXNet's dot operator attributes to onnx's
MatMul and Transpose operators based on the values set for
transpose_a, transpose_b attributes."""
name, input_nodes, attrs = get_inputs(node, kwargs)
input_node_a = input_nodes[0]
input_node_b = input_nodes[1]
trans_a_node = None
trans_b_node = None
trans_a = get_boolean_attribute_value(attrs, "transpose_a")
trans_b = get_boolean_attribute_value(attrs, "transpose_b")
op_name = "transpose" + str(kwargs["idx"])
if trans_a:
trans_a_node = create_helper_trans_node(op_name, input_nodes[0], 'a')
input_node_a = op_name+"_a"
if trans_b:
trans_b_node = create_helper_trans_node(op_name, input_nodes[1], 'b')
input_node_b = op_name+"_b"
matmul_node = onnx.helper.make_node(
'MatMul',
inputs=[input_node_a, input_node_b],
outputs=[name],
name=name
)
if not trans_a and not trans_b:
return [matmul_node]
elif trans_a and not trans_b:
return [trans_a_node, matmul_node]
elif trans_b and not trans_a:
return [trans_b_node, matmul_node]
else:
return [trans_a_node, trans_b_node, matmul_node]
|
Map MXNet's _linalg_gemm2 operator attributes to onnx's
MatMul and Transpose operators based on the values set for
transpose_a, transpose_b attributes.
Return multiple nodes created.
|
def convert_linalg_gemm2(node, **kwargs):
"""Map MXNet's _linalg_gemm2 operator attributes to onnx's
MatMul and Transpose operators based on the values set for
transpose_a, transpose_b attributes.
Return multiple nodes created.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
# Getting the attributes and assigning default values.
alpha = float(attrs.get("alpha", 1.0))
trans_a = get_boolean_attribute_value(attrs, "transpose_a")
trans_b = get_boolean_attribute_value(attrs, "transpose_b")
op_name = "transpose" + str(kwargs["idx"])
if alpha == 1.0 and trans_a == 0 and trans_b == 0:
matmul_node = onnx.helper.make_node(
'MatMul',
inputs=input_nodes,
outputs=[name],
name=name
)
return [matmul_node]
elif trans_a == 1 and trans_b == 0:
op_name = "transpose" + str(kwargs["idx"])
node_name = op_name+"_a"
trans_a_node = onnx.helper.make_node(
'Transpose',
inputs=[input_nodes[0]],
outputs=[op_name+"_a"],
name=node_name
)
matmul_node = onnx.helper.make_node(
'MatMul',
inputs=[node_name, input_nodes[1]],
outputs=[name],
name=name
)
return [trans_a_node, matmul_node]
elif trans_a == 0 and trans_b == 1:
node_name = op_name + "_b"
trans_b_node = onnx.helper.make_node(
'Transpose',
inputs=[input_nodes[1]],
outputs=[op_name+"_b"],
name=node_name
)
matmul_node = onnx.helper.make_node(
'MatMul',
inputs=[input_nodes[0], node_name],
outputs=[name],
name=name
)
return [trans_b_node, matmul_node]
else:
node_name_a = op_name+"_a"
trans_a_node = onnx.helper.make_node(
'Transpose',
inputs=[input_nodes[0]],
outputs=[op_name+"_a"],
name=node_name_a
)
node_name_b = op_name + "_b"
trans_b_node = onnx.helper.make_node(
'Transpose',
inputs=[input_nodes[1]],
outputs=[op_name+"_b"],
name=node_name_b
)
matmul_node = onnx.helper.make_node(
'MatMul',
inputs=input_nodes,
outputs=[name],
name=name
)
return [trans_a_node, trans_b_node, matmul_node]
|
Map MXNet's Pooling operator attributes to onnx's
MaxPool/AveragePool/GlobalMaxPool/GlobalAveragePool operators
based on the input node's attributes and return the created node.
|
def convert_pooling(node, **kwargs):
"""Map MXNet's Pooling operator attributes to onnx's
MaxPool/AveragePool/GlobalMaxPool/GlobalAveragePool operators
based on the input node's attributes and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
kernel = eval(attrs["kernel"])
pool_type = attrs["pool_type"] if attrs.get("pool_type") else "max"
stride = eval(attrs["stride"]) if attrs.get("stride") else (1, 1)
global_pool = get_boolean_attribute_value(attrs, "global_pool")
p_value = attrs.get('p_value', 'None')
pooling_convention = attrs.get('pooling_convention', 'valid')
if pooling_convention == 'full':
pooling_warning = "Pooling: ONNX currently doesn't support pooling_convention. " \
"This might lead to shape or accuracy issues. " \
"https://github.com/onnx/onnx/issues/549"
logging.warning(pooling_warning)
pad_dims = list(parse_helper(attrs, "pad", [0, 0]))
pad_dims = pad_dims + pad_dims
pool_types = {"max": "MaxPool", "avg": "AveragePool", "lp": "LpPool"}
global_pool_types = {"max": "GlobalMaxPool", "avg": "GlobalAveragePool",
"lp": "GlobalLpPool"}
if pool_type == 'lp' and p_value == 'None':
raise AttributeError('ONNX requires a p value for LpPool and GlobalLpPool')
if global_pool:
if pool_type == 'lp':
node = onnx.helper.make_node(
global_pool_types[pool_type],
input_nodes, # input
[name],
p=int(p_value),
name=name
)
else:
node = onnx.helper.make_node(
global_pool_types[pool_type],
input_nodes, # input
[name],
name=name
)
else:
if pool_type == 'lp':
node = onnx.helper.make_node(
pool_types[pool_type],
input_nodes, # input
[name],
p=int(p_value),
kernel_shape=kernel,
pads=pad_dims,
strides=stride,
name=name
)
else:
node = onnx.helper.make_node(
pool_types[pool_type],
input_nodes, # input
[name],
kernel_shape=kernel,
pads=pad_dims,
strides=stride,
name=name
)
return [node]
|
Map MXNet's InstanceNorm operator attributes to onnx's InstanceNormalization operator
based on the input node's attributes and return the created node.
|
def convert_instancenorm(node, **kwargs):
"""Map MXNet's InstanceNorm operator attributes to onnx's InstanceNormalization operator
based on the input node's attributes and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
eps = float(attrs.get("eps", 0.001))
node = onnx.helper.make_node(
'InstanceNormalization',
inputs=input_nodes,
outputs=[name],
name=name,
epsilon=eps)
return [node]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.