INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
Download, convert and save a caffe model
def convert_caffe_model(model_name, meta_info, dst_dir='./model'): """Download, convert and save a caffe model""" (prototxt, caffemodel, mean) = download_caffe_model(model_name, meta_info, dst_dir) model_name = os.path.join(dst_dir, model_name) convert_model(prototxt, caffemodel, model_name) if isinstance(mean, str): mx_mean = model_name + '-mean.nd' convert_mean(mean, mx_mean) mean = mx_mean return (model_name, mean)
Run _func with multi-process using params.
def multi_p_run(tot_num, _func, worker, params, n_process): """ Run _func with multi-process using params. """ from multiprocessing import Process, Queue out_q = Queue() procs = [] split_num = split_seq(list(range(0, tot_num)), n_process) print(tot_num, ">>", split_num) split_len = len(split_num) if n_process > split_len: n_process = split_len for i in range(n_process): _p = Process(target=_func, args=(worker, split_num[i][0], split_num[i][1], params, out_q)) _p.daemon = True procs.append(_p) _p.start() try: result = [] for i in range(n_process): result.append(out_q.get()) for i in procs: i.join() except KeyboardInterrupt: print('Killing all the children in the pool.') for i in procs: i.terminate() i.join() return -1 while not out_q.empty(): print(out_q.get(block=False)) return result
Split the number(sam_num) into numbers by n_tile
def split_seq(sam_num, n_tile): """ Split the number(sam_num) into numbers by n_tile """ import math print(sam_num) print(n_tile) start_num = sam_num[0::int(math.ceil(len(sam_num) / (n_tile)))] end_num = start_num[1::] end_num.append(len(sam_num)) return [[i, j] for i, j in zip(start_num, end_num)]
put worker
def put_worker(func, from_idx, to_idx, params, out_q): """ put worker """ succ, fail = func(from_idx, to_idx, params) return out_q.put({'succ': succ, 'fail': fail})
create a namedtuple with default values
def namedtuple_with_defaults(typename, field_names, default_values=()): """ create a namedtuple with default values """ T = collections.namedtuple(typename, field_names) T.__new__.__defaults__ = (None, ) * len(T._fields) if isinstance(default_values, collections.Mapping): prototype = T(**default_values) else: prototype = T(*default_values) T.__new__.__defaults__ = tuple(prototype) return T
merge dict a, b, with b overriding keys in a
def merge_dict(a, b): """ merge dict a, b, with b overriding keys in a """ c = a.copy() c.update(b) return c
accept list of namedtuple, return a dict of zipped fields
def zip_namedtuple(nt_list): """ accept list of namedtuple, return a dict of zipped fields """ if not nt_list: return dict() if not isinstance(nt_list, list): nt_list = [nt_list] for nt in nt_list: assert type(nt) == type(nt_list[0]) ret = {k : [v] for k, v in nt_list[0]._asdict().items()} for nt in nt_list[1:]: for k, v in nt._asdict().items(): ret[k].append(v) return ret
convert raw configuration to unified dictionary
def config_as_dict(cfg): """ convert raw configuration to unified dictionary """ ret = cfg.__dict__.copy() # random cropping params del ret['rand_crop_samplers'] assert isinstance(cfg.rand_crop_samplers, list) ret = merge_dict(ret, zip_namedtuple(cfg.rand_crop_samplers)) num_crop_sampler = len(cfg.rand_crop_samplers) ret['num_crop_sampler'] = num_crop_sampler # must specify the # ret['rand_crop_prob'] = 1.0 / (num_crop_sampler + 1) * num_crop_sampler # random padding params del ret['rand_pad'] ret = merge_dict(ret, cfg.rand_pad._asdict()) # color jitter del ret['color_jitter'] ret = merge_dict(ret, cfg.color_jitter._asdict()) return ret
Imports the ONNX model file, passed as a parameter, into MXNet symbol and parameters. Operator support and coverage - https://cwiki.apache.org/confluence/display/MXNET/MXNet-ONNX+Integration Parameters ---------- model_file : str ONNX model file name Returns ------- sym : :class:`~mxnet.symbol.Symbol` MXNet symbol object arg_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray` Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format aux_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray` Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format Notes ----- This method is available when you ``import mxnet.contrib.onnx``
def import_model(model_file): """Imports the ONNX model file, passed as a parameter, into MXNet symbol and parameters. Operator support and coverage - https://cwiki.apache.org/confluence/display/MXNET/MXNet-ONNX+Integration Parameters ---------- model_file : str ONNX model file name Returns ------- sym : :class:`~mxnet.symbol.Symbol` MXNet symbol object arg_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray` Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format aux_params : dict of ``str`` to :class:`~mxnet.ndarray.NDArray` Dict of converted parameters stored in ``mxnet.ndarray.NDArray`` format Notes ----- This method is available when you ``import mxnet.contrib.onnx`` """ graph = GraphProto() try: import onnx except ImportError: raise ImportError("Onnx and protobuf need to be installed. " + "Instructions to install - https://github.com/onnx/onnx") # loads model file and returns ONNX protobuf object model_proto = onnx.load_model(model_file) sym, arg_params, aux_params = graph.from_onnx(model_proto.graph) return sym, arg_params, aux_params
Returns the name and shape information of input and output tensors of the given ONNX model file. Notes ----- This method is available when you ``import mxnet.contrib.onnx`` Parameters ---------- model_file : str ONNX model file name Returns ------- model_metadata : dict A dictionary object mapping various metadata to its corresponding value. The dictionary will have the following template:: 'input_tensor_data' : list of tuples representing the shape of the input paramters 'output_tensor_data' : list of tuples representing the shape of the output of the model
def get_model_metadata(model_file): """ Returns the name and shape information of input and output tensors of the given ONNX model file. Notes ----- This method is available when you ``import mxnet.contrib.onnx`` Parameters ---------- model_file : str ONNX model file name Returns ------- model_metadata : dict A dictionary object mapping various metadata to its corresponding value. The dictionary will have the following template:: 'input_tensor_data' : list of tuples representing the shape of the input paramters 'output_tensor_data' : list of tuples representing the shape of the output of the model """ graph = GraphProto() try: import onnx except ImportError: raise ImportError("Onnx and protobuf need to be installed. " + "Instructions to install - https://github.com/onnx/onnx") model_proto = onnx.load_model(model_file) metadata = graph.get_graph_metadata(model_proto.graph) return metadata
wrapper for a small Convolution group Parameters: ---------- from_layer : mx.symbol continue on which layer name : str base name of the new layers num_filter : int how many filters to use in Convolution layer kernel : tuple (int, int) kernel size (h, w) pad : tuple (int, int) padding size (h, w) stride : tuple (int, int) stride size (h, w) act_type : str activation type, can be relu... use_batchnorm : bool whether to use batch normalization Returns: ---------- (conv, relu) mx.Symbols
def legacy_conv_act_layer(from_layer, name, num_filter, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False): """ wrapper for a small Convolution group Parameters: ---------- from_layer : mx.symbol continue on which layer name : str base name of the new layers num_filter : int how many filters to use in Convolution layer kernel : tuple (int, int) kernel size (h, w) pad : tuple (int, int) padding size (h, w) stride : tuple (int, int) stride size (h, w) act_type : str activation type, can be relu... use_batchnorm : bool whether to use batch normalization Returns: ---------- (conv, relu) mx.Symbols """ assert not use_batchnorm, "batchnorm not yet supported" bias = mx.symbol.Variable(name="conv{}_bias".format(name), init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'}) conv = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=kernel, pad=pad, \ stride=stride, num_filter=num_filter, name="conv{}".format(name)) relu = mx.symbol.Activation(data=conv, act_type=act_type, \ name="{}{}".format(act_type, name)) if use_batchnorm: relu = mx.symbol.BatchNorm(data=relu, name="bn{}".format(name)) return conv, relu
Wrapper function to extract features from base network, attaching extra layers and SSD specific layers Parameters ---------- from_layers : list of str feature extraction layers, use '' for add extra layers For example: from_layers = ['relu4_3', 'fc7', '', '', '', ''] which means extract feature from relu4_3 and fc7, adding 4 extra layers on top of fc7 num_filters : list of int number of filters for extra layers, you can use -1 for extracted features, however, if normalization and scale is applied, the number of filter for that layer must be provided. For example: num_filters = [512, -1, 512, 256, 256, 256] strides : list of int strides for the 3x3 convolution appended, -1 can be used for extracted feature layers pads : list of int paddings for the 3x3 convolution, -1 can be used for extracted layers min_filter : int minimum number of filters used in 1x1 convolution Returns ------- list of mx.Symbols
def multi_layer_feature(body, from_layers, num_filters, strides, pads, min_filter=128): """Wrapper function to extract features from base network, attaching extra layers and SSD specific layers Parameters ---------- from_layers : list of str feature extraction layers, use '' for add extra layers For example: from_layers = ['relu4_3', 'fc7', '', '', '', ''] which means extract feature from relu4_3 and fc7, adding 4 extra layers on top of fc7 num_filters : list of int number of filters for extra layers, you can use -1 for extracted features, however, if normalization and scale is applied, the number of filter for that layer must be provided. For example: num_filters = [512, -1, 512, 256, 256, 256] strides : list of int strides for the 3x3 convolution appended, -1 can be used for extracted feature layers pads : list of int paddings for the 3x3 convolution, -1 can be used for extracted layers min_filter : int minimum number of filters used in 1x1 convolution Returns ------- list of mx.Symbols """ # arguments check assert len(from_layers) > 0 assert isinstance(from_layers[0], str) and len(from_layers[0].strip()) > 0 assert len(from_layers) == len(num_filters) == len(strides) == len(pads) internals = body.get_internals() layers = [] for k, params in enumerate(zip(from_layers, num_filters, strides, pads)): from_layer, num_filter, s, p = params if from_layer.strip(): # extract from base network layer = internals[from_layer.strip() + '_output'] layers.append(layer) else: # attach from last feature layer assert len(layers) > 0 assert num_filter > 0 layer = layers[-1] num_1x1 = max(min_filter, num_filter // 2) conv_1x1 = conv_act_layer(layer, 'multi_feat_%d_conv_1x1' % (k), num_1x1, kernel=(1, 1), pad=(0, 0), stride=(1, 1), act_type='relu') conv_3x3 = conv_act_layer(conv_1x1, 'multi_feat_%d_conv_3x3' % (k), num_filter, kernel=(3, 3), pad=(p, p), stride=(s, s), act_type='relu') layers.append(conv_3x3) return layers
the basic aggregation module for SSD detection. Takes in multiple layers, generate multiple object detection targets by customized layers Parameters: ---------- from_layers : list of mx.symbol generate multibox detection from layers num_classes : int number of classes excluding background, will automatically handle background in this function sizes : list or list of list [min_size, max_size] for all layers or [[], [], []...] for specific layers ratios : list or list of list [ratio1, ratio2...] for all layers or [[], [], ...] for specific layers normalizations : int or list of int use normalizations value for all layers or [...] for specific layers, -1 indicate no normalizations and scales num_channels : list of int number of input layer channels, used when normalization is enabled, the length of list should equals to number of normalization layers clip : bool whether to clip out-of-image boxes interm_layer : int if > 0, will add a intermediate Convolution layer steps : list specify steps for each MultiBoxPrior layer, leave empty, it will calculate according to layer dimensions Returns: ---------- list of outputs, as [loc_preds, cls_preds, anchor_boxes] loc_preds : localization regression prediction cls_preds : classification prediction anchor_boxes : generated anchor boxes
def multibox_layer(from_layers, num_classes, sizes=[.2, .95], ratios=[1], normalization=-1, num_channels=[], clip=False, interm_layer=0, steps=[]): """ the basic aggregation module for SSD detection. Takes in multiple layers, generate multiple object detection targets by customized layers Parameters: ---------- from_layers : list of mx.symbol generate multibox detection from layers num_classes : int number of classes excluding background, will automatically handle background in this function sizes : list or list of list [min_size, max_size] for all layers or [[], [], []...] for specific layers ratios : list or list of list [ratio1, ratio2...] for all layers or [[], [], ...] for specific layers normalizations : int or list of int use normalizations value for all layers or [...] for specific layers, -1 indicate no normalizations and scales num_channels : list of int number of input layer channels, used when normalization is enabled, the length of list should equals to number of normalization layers clip : bool whether to clip out-of-image boxes interm_layer : int if > 0, will add a intermediate Convolution layer steps : list specify steps for each MultiBoxPrior layer, leave empty, it will calculate according to layer dimensions Returns: ---------- list of outputs, as [loc_preds, cls_preds, anchor_boxes] loc_preds : localization regression prediction cls_preds : classification prediction anchor_boxes : generated anchor boxes """ assert len(from_layers) > 0, "from_layers must not be empty list" assert num_classes > 0, \ "num_classes {} must be larger than 0".format(num_classes) assert len(ratios) > 0, "aspect ratios must not be empty list" if not isinstance(ratios[0], list): # provided only one ratio list, broadcast to all from_layers ratios = [ratios] * len(from_layers) assert len(ratios) == len(from_layers), \ "ratios and from_layers must have same length" assert len(sizes) > 0, "sizes must not be empty list" if len(sizes) == 2 and not isinstance(sizes[0], list): # provided size range, we need to compute the sizes for each layer assert sizes[0] > 0 and sizes[0] < 1 assert sizes[1] > 0 and sizes[1] < 1 and sizes[1] > sizes[0] tmp = np.linspace(sizes[0], sizes[1], num=(len(from_layers)-1)) # Ref for start_offset value: # https://arxiv.org/abs/1512.02325 start_offset = 0.1 min_sizes = [start_offset] + tmp.tolist() max_sizes = tmp.tolist() + [tmp[-1]+start_offset] sizes = zip(min_sizes, max_sizes) assert len(sizes) == len(from_layers), \ "sizes and from_layers must have same length" if not isinstance(normalization, list): normalization = [normalization] * len(from_layers) assert len(normalization) == len(from_layers) assert sum(x > 0 for x in normalization) <= len(num_channels), \ "must provide number of channels for each normalized layer" if steps: assert len(steps) == len(from_layers), "provide steps for all layers or leave empty" loc_pred_layers = [] cls_pred_layers = [] anchor_layers = [] num_classes += 1 # always use background as label 0 for k, from_layer in enumerate(from_layers): from_name = from_layer.name # normalize if normalization[k] > 0: from_layer = mx.symbol.L2Normalization(data=from_layer, \ mode="channel", name="{}_norm".format(from_name)) scale = mx.symbol.Variable(name="{}_scale".format(from_name), shape=(1, num_channels.pop(0), 1, 1), init=mx.init.Constant(normalization[k]), attr={'__wd_mult__': '0.1'}) from_layer = mx.symbol.broadcast_mul(lhs=scale, rhs=from_layer) if interm_layer > 0: from_layer = mx.symbol.Convolution(data=from_layer, kernel=(3,3), \ stride=(1,1), pad=(1,1), num_filter=interm_layer, \ name="{}_inter_conv".format(from_name)) from_layer = mx.symbol.Activation(data=from_layer, act_type="relu", \ name="{}_inter_relu".format(from_name)) # estimate number of anchors per location # here I follow the original version in caffe # TODO: better way to shape the anchors?? size = sizes[k] assert len(size) > 0, "must provide at least one size" size_str = "(" + ",".join([str(x) for x in size]) + ")" ratio = ratios[k] assert len(ratio) > 0, "must provide at least one ratio" ratio_str = "(" + ",".join([str(x) for x in ratio]) + ")" num_anchors = len(size) -1 + len(ratio) # create location prediction layer num_loc_pred = num_anchors * 4 bias = mx.symbol.Variable(name="{}_loc_pred_conv_bias".format(from_name), init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'}) loc_pred = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=(3,3), \ stride=(1,1), pad=(1,1), num_filter=num_loc_pred, \ name="{}_loc_pred_conv".format(from_name)) loc_pred = mx.symbol.transpose(loc_pred, axes=(0,2,3,1)) loc_pred = mx.symbol.Flatten(data=loc_pred) loc_pred_layers.append(loc_pred) # create class prediction layer num_cls_pred = num_anchors * num_classes bias = mx.symbol.Variable(name="{}_cls_pred_conv_bias".format(from_name), init=mx.init.Constant(0.0), attr={'__lr_mult__': '2.0'}) cls_pred = mx.symbol.Convolution(data=from_layer, bias=bias, kernel=(3,3), \ stride=(1,1), pad=(1,1), num_filter=num_cls_pred, \ name="{}_cls_pred_conv".format(from_name)) cls_pred = mx.symbol.transpose(cls_pred, axes=(0,2,3,1)) cls_pred = mx.symbol.Flatten(data=cls_pred) cls_pred_layers.append(cls_pred) # create anchor generation layer if steps: step = (steps[k], steps[k]) else: step = '(-1.0, -1.0)' anchors = mx.symbol.contrib.MultiBoxPrior(from_layer, sizes=size_str, ratios=ratio_str, clip=clip, name="{}_anchors".format(from_name), steps=step) anchors = mx.symbol.Flatten(data=anchors) anchor_layers.append(anchors) loc_preds = mx.symbol.Concat(*loc_pred_layers, num_args=len(loc_pred_layers), \ dim=1, name="multibox_loc_pred") cls_preds = mx.symbol.Concat(*cls_pred_layers, num_args=len(cls_pred_layers), \ dim=1) cls_preds = mx.symbol.Reshape(data=cls_preds, shape=(0, -1, num_classes)) cls_preds = mx.symbol.transpose(cls_preds, axes=(0, 2, 1), name="multibox_cls_pred") anchor_boxes = mx.symbol.Concat(*anchor_layers, \ num_args=len(anchor_layers), dim=1) anchor_boxes = mx.symbol.Reshape(data=anchor_boxes, shape=(0, -1, 4), name="multibox_anchors") return [loc_preds, cls_preds, anchor_boxes]
Apply weighting to loss. Parameters ---------- loss : Symbol The loss to be weighted. weight : float or None Global scalar weight for loss. sample_weight : Symbol or None Per sample weighting. Must be broadcastable to the same shape as loss. For example, if loss has shape (64, 10) and you want to weight each sample in the batch separately, `sample_weight` should have shape (64, 1). Returns ------- loss : Symbol Weighted loss
def _apply_weighting(F, loss, weight=None, sample_weight=None): """Apply weighting to loss. Parameters ---------- loss : Symbol The loss to be weighted. weight : float or None Global scalar weight for loss. sample_weight : Symbol or None Per sample weighting. Must be broadcastable to the same shape as loss. For example, if loss has shape (64, 10) and you want to weight each sample in the batch separately, `sample_weight` should have shape (64, 1). Returns ------- loss : Symbol Weighted loss """ if sample_weight is not None: loss = F.broadcast_mul(loss, sample_weight) if weight is not None: assert isinstance(weight, numeric_types), "weight must be a number" loss = loss * weight return loss
Reshapes x to the same shape as y.
def _reshape_like(F, x, y): """Reshapes x to the same shape as y.""" return x.reshape(y.shape) if F is ndarray else F.reshape_like(x, y)
create TV gradient executor with input binded on img
def get_tv_grad_executor(img, ctx, tv_weight): """create TV gradient executor with input binded on img """ if tv_weight <= 0.0: return None nchannel = img.shape[1] simg = mx.sym.Variable("img") skernel = mx.sym.Variable("kernel") channels = mx.sym.SliceChannel(simg, num_outputs=nchannel) out = mx.sym.Concat(*[ mx.sym.Convolution(data=channels[i], weight=skernel, num_filter=1, kernel=(3, 3), pad=(1,1), no_bias=True, stride=(1,1)) for i in range(nchannel)]) kernel = mx.nd.array(np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]) .reshape((1, 1, 3, 3)), ctx) / 8.0 out = out * tv_weight return out.bind(ctx, args={"img": img, "kernel": kernel})
Train a neural style network. Args are from argparse and control input, output, hyper-parameters. callback allows for display of training progress.
def train_nstyle(args, callback=None): """Train a neural style network. Args are from argparse and control input, output, hyper-parameters. callback allows for display of training progress. """ # input dev = mx.gpu(args.gpu) if args.gpu >= 0 else mx.cpu() content_np = PreprocessContentImage(args.content_image, args.max_long_edge) style_np = PreprocessStyleImage(args.style_image, shape=content_np.shape) size = content_np.shape[2:] # model Executor = namedtuple('Executor', ['executor', 'data', 'data_grad']) model_module = importlib.import_module('model_' + args.model) style, content = model_module.get_symbol() gram, gscale = style_gram_symbol(size, style) model_executor = model_module.get_executor(gram, content, size, dev) model_executor.data[:] = style_np model_executor.executor.forward() style_array = [] for i in range(len(model_executor.style)): style_array.append(model_executor.style[i].copyto(mx.cpu())) model_executor.data[:] = content_np model_executor.executor.forward() content_array = model_executor.content.copyto(mx.cpu()) # delete the executor del model_executor style_loss, content_loss = get_loss(gram, content) model_executor = model_module.get_executor( style_loss, content_loss, size, dev) grad_array = [] for i in range(len(style_array)): style_array[i].copyto(model_executor.arg_dict["target_gram_%d" % i]) grad_array.append(mx.nd.ones((1,), dev) * (float(args.style_weight) / gscale[i])) grad_array.append(mx.nd.ones((1,), dev) * (float(args.content_weight))) print([x.asscalar() for x in grad_array]) content_array.copyto(model_executor.arg_dict["target_content"]) # train # initialize img with random noise img = mx.nd.zeros(content_np.shape, ctx=dev) img[:] = mx.rnd.uniform(-0.1, 0.1, img.shape) lr = mx.lr_scheduler.FactorScheduler(step=args.lr_sched_delay, factor=args.lr_sched_factor) optimizer = mx.optimizer.NAG( learning_rate = args.lr, wd = 0.0001, momentum=0.95, lr_scheduler = lr) optim_state = optimizer.create_state(0, img) logging.info('start training arguments %s', args) old_img = img.copyto(dev) clip_norm = 1 * np.prod(img.shape) tv_grad_executor = get_tv_grad_executor(img, dev, args.tv_weight) for e in range(args.max_num_epochs): img.copyto(model_executor.data) model_executor.executor.forward() model_executor.executor.backward(grad_array) gnorm = mx.nd.norm(model_executor.data_grad).asscalar() if gnorm > clip_norm: model_executor.data_grad[:] *= clip_norm / gnorm if tv_grad_executor is not None: tv_grad_executor.forward() optimizer.update(0, img, model_executor.data_grad + tv_grad_executor.outputs[0], optim_state) else: optimizer.update(0, img, model_executor.data_grad, optim_state) new_img = img eps = (mx.nd.norm(old_img - new_img) / mx.nd.norm(new_img)).asscalar() old_img = new_img.copyto(dev) logging.info('epoch %d, relative change %f', e, eps) if eps < args.stop_eps: logging.info('eps < args.stop_eps, training finished') break if callback: cbdata = { 'eps': eps, 'epoch': e+1, } if (e+1) % args.save_epochs == 0: outfn = args.output_dir + 'e_'+str(e+1)+'.jpg' npimg = new_img.asnumpy() SaveImage(npimg, outfn, args.remove_noise) if callback: cbdata['filename'] = outfn cbdata['img'] = npimg if callback: callback(cbdata) final_fn = args.output_dir + '/final.jpg' SaveImage(new_img.asnumpy(), final_fn)
Load data/label from dataset
def _get_batch(self): """ Load data/label from dataset """ batch_data = mx.nd.zeros((self.batch_size, 3, self._data_shape[0], self._data_shape[1])) batch_label = [] for i in range(self.batch_size): if (self._current + i) >= self._size: if not self.is_train: continue # use padding from middle in each epoch idx = (self._current + i + self._size // 2) % self._size index = self._index[idx] else: index = self._index[self._current + i] # index = self.debug_index im_path = self._imdb.image_path_from_index(index) with open(im_path, 'rb') as fp: img_content = fp.read() img = mx.img.imdecode(img_content) gt = self._imdb.label_from_index(index).copy() if self.is_train else None data, label = self._data_augmentation(img, gt) batch_data[i] = data if self.is_train: batch_label.append(label) self._data = {'data': batch_data} if self.is_train: self._label = {'label': mx.nd.array(np.array(batch_label))} else: self._label = {'label': None}
perform data augmentations: crop, mirror, resize, sub mean, swap channels...
def _data_augmentation(self, data, label): """ perform data augmentations: crop, mirror, resize, sub mean, swap channels... """ if self.is_train and self._rand_samplers: rand_crops = [] for rs in self._rand_samplers: rand_crops += rs.sample(label) num_rand_crops = len(rand_crops) # randomly pick up one as input data if num_rand_crops > 0: index = int(np.random.uniform(0, 1) * num_rand_crops) width = data.shape[1] height = data.shape[0] crop = rand_crops[index][0] xmin = int(crop[0] * width) ymin = int(crop[1] * height) xmax = int(crop[2] * width) ymax = int(crop[3] * height) if xmin >= 0 and ymin >= 0 and xmax <= width and ymax <= height: data = mx.img.fixed_crop(data, xmin, ymin, xmax-xmin, ymax-ymin) else: # padding mode new_width = xmax - xmin new_height = ymax - ymin offset_x = 0 - xmin offset_y = 0 - ymin data_bak = data data = mx.nd.full((new_height, new_width, 3), 128, dtype='uint8') data[offset_y:offset_y+height, offset_x:offset_x + width, :] = data_bak label = rand_crops[index][1] if self.is_train: interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, \ cv2.INTER_NEAREST, cv2.INTER_LANCZOS4] else: interp_methods = [cv2.INTER_LINEAR] interp_method = interp_methods[int(np.random.uniform(0, 1) * len(interp_methods))] data = mx.img.imresize(data, self._data_shape[1], self._data_shape[0], interp_method) if self.is_train and self._rand_mirror: if np.random.uniform(0, 1) > 0.5: data = mx.nd.flip(data, axis=1) valid_mask = np.where(label[:, 0] > -1)[0] tmp = 1.0 - label[valid_mask, 1] label[valid_mask, 1] = 1.0 - label[valid_mask, 3] label[valid_mask, 3] = tmp data = mx.nd.transpose(data, (2,0,1)) data = data.astype('float32') data = data - self._mean_pixels return data, label
Gets MNIST dataset
def get_mnist(): """ Gets MNIST dataset """ np.random.seed(1234) # set seed for deterministic ordering mnist_data = mx.test_utils.get_mnist() X = np.concatenate([mnist_data['train_data'], mnist_data['test_data']]) Y = np.concatenate([mnist_data['train_label'], mnist_data['test_label']]) p = np.random.permutation(X.shape[0]) X = X[p].reshape((X.shape[0], -1)).astype(np.float32)*5 Y = Y[p] return X, Y
Get input slice from the input shape. Parameters ---------- batch_size : int The number of samples in a mini-batch. work_load_list : list of float or int, optional The list of work load for different devices, in the same order as `ctx`. Returns ------- slices : list of slice The split slices to get a specific slice. Raises ------ ValueError In case of too many splits, leading to some empty slices.
def _split_input_slice(batch_size, work_load_list): """Get input slice from the input shape. Parameters ---------- batch_size : int The number of samples in a mini-batch. work_load_list : list of float or int, optional The list of work load for different devices, in the same order as `ctx`. Returns ------- slices : list of slice The split slices to get a specific slice. Raises ------ ValueError In case of too many splits, leading to some empty slices. """ total_work_load = sum(work_load_list) batch_num_list = [round(work_load * batch_size / total_work_load) for work_load in work_load_list] batch_num_sum = sum(batch_num_list) if batch_num_sum < batch_size: batch_num_list[-1] += batch_size - batch_num_sum slices = [] end = 0 for batch_num in batch_num_list: begin = int(min((end, batch_size))) end = int(min((begin + batch_num, batch_size))) if begin >= end: raise ValueError('Too many slices. Some splits are empty.') slices.append(slice(begin, end)) return slices
Check the argument names of symbol. This function checks the duplication of arguments in Symbol. The check is done for feedforward net for now. Parameters ---------- symbol : Symbol The network configuration.
def _check_arguments(symbol): """Check the argument names of symbol. This function checks the duplication of arguments in Symbol. The check is done for feedforward net for now. Parameters ---------- symbol : Symbol The network configuration. """ arg_set = set() arg_names = symbol.list_arguments() for name in arg_names: if name in arg_set: raise ValueError(('Find duplicated argument name \"%s\", ' + 'please make the weight name non-duplicated(using name arguments), ' + 'arguments are %s') % (name, str(arg_names))) arg_set.add(name) aux_set = set() aux_names = symbol.list_auxiliary_states() for name in aux_names: if name in aux_set: raise ValueError( ('Find duplicated auxiliary param name \"%s\", ' + 'please make the weight name non-duplicated(using name arguments), ' + 'arguments are %s, auxiliary params are %s' ) % (name, str(arg_names), str(aux_names))) aux_set.add(name)
Load a list of arrays into a list of arrays specified by slices.
def _load_general(data, targets): """Load a list of arrays into a list of arrays specified by slices.""" for d_src, d_targets in zip(data, targets): if isinstance(d_targets, nd.NDArray): d_src.copyto(d_targets) else: assert d_targets[-1][0].stop == d_src.shape[0], \ "Batch size miss match. Expected %d, got %d"%( \ d_targets[-1][0].stop, d_src.shape[0]) for slice_idx, d_dst in d_targets: d_src[slice_idx].copyto(d_dst)
bind executor for bucketing, potentially sharing data with an existing executor.
def _bind_exec(sym, ctx, input_shapes, param_names, need_grad=False, base_exec=None, shared_data_arrays=None, input_types=None, logger=logging): """bind executor for bucketing, potentially sharing data with an existing executor.""" arg_shape, _, aux_shape = sym.infer_shape(**input_shapes) assert(arg_shape is not None) if input_types is None: input_types = {k: mx_real_t for k in input_shapes.keys()} arg_types, _, aux_types = sym.infer_type(**input_types) assert(arg_types is not None) arg_arrays = [] grad_arrays = {} if need_grad is not False else None arg_names = sym.list_arguments() if need_grad is False: need_grad = set() elif need_grad is True: need_grad = set(arg_names) - set(input_shapes.keys()) elif isinstance(need_grad, set): pass else: raise AssertionError("need_grad must be boolean or set.") grad_req = {name:('write' if name in need_grad else 'null') for name in arg_names} # create or borrow arguments and gradients for i, name in enumerate(arg_names): if not name in param_names: # data or label if shared_data_arrays is not None and \ name in shared_data_arrays: arg_arr = shared_data_arrays[name] if np.prod(arg_arr.shape) >= np.prod(arg_shape[i]): # good, we can share this memory assert(arg_types[i] == arg_arr.dtype) arg_arr = arg_arr.reshape(arg_shape[i]) else: logger.warning(('bucketing: data "%s" has a shape %s' % (name, arg_shape[i])) + (', which is larger than already allocated ') + ('shape %s' % (arg_arr.shape,)) + ('. Need to re-allocate. Consider putting ') + ('default_bucket_key to be the bucket taking the largest ') + ('input for better memory sharing.')) arg_arr = nd.zeros(arg_shape[i], ctx, dtype=arg_types[i]) # replace existing shared array because the new one is bigger shared_data_arrays[name] = arg_arr else: arg_arr = nd.zeros(arg_shape[i], ctx, dtype=arg_types[i]) if shared_data_arrays is not None: shared_data_arrays[name] = arg_arr arg_arrays.append(arg_arr) else: # model parameter if base_exec is None: arg_arr = nd.zeros(arg_shape[i], ctx, dtype=arg_types[i]) if name in need_grad: grad_arr = nd.zeros(arg_shape[i], ctx, dtype=arg_types[i]) grad_arrays[name] = grad_arr else: arg_arr = base_exec.arg_dict[name] assert arg_arr.shape == arg_shape[i] assert arg_arr.dtype == arg_types[i] if name in need_grad: grad_arrays[name] = base_exec.grad_dict[name] arg_arrays.append(arg_arr) # create or borrow aux variables if base_exec is None: aux_arrays = [nd.zeros(s, ctx, dtype=t) for s, t in zip(aux_shape, aux_types)] else: for i, a in enumerate(base_exec.aux_arrays): assert aux_shape[i] == a.shape assert aux_types[i] == a.dtype aux_arrays = [a for a in base_exec.aux_arrays] executor = sym.bind(ctx=ctx, args=arg_arrays, args_grad=grad_arrays, aux_states=aux_arrays, grad_req=grad_req, shared_exec=base_exec) return executor
Load data and labels into arrays.
def load_data_batch(self, data_batch): """Load data and labels into arrays.""" _load_data(data_batch, self.data_arrays) _load_label(data_batch, self.label_arrays)
Perform a forward pass on each executor.
def forward(self, is_train=False): """Perform a forward pass on each executor.""" for texec in self.train_execs: texec.forward(is_train=is_train)
Update evaluation metric with label and current outputs.
def update_metric(self, metric, labels, pre_sliced=False): """Update evaluation metric with label and current outputs.""" for current_exec, (texec, islice) in enumerate(zip(self.train_execs, self.slices)): if not pre_sliced: labels_slice = [label[islice] for label in labels] else: labels_slice = labels[current_exec] metric.update(labels_slice, texec.outputs)
Install monitor on all executors.
def install_monitor(self, monitor): """Install monitor on all executors.""" if self.sym_gen is not None: raise NotImplementedError("Monitoring is not implemented for bucketing") for train_exec in self.execgrp.train_execs: monitor.install(train_exec)
Set parameter and aux values. Parameters ---------- arg_params : list of NDArray Source parameter arrays aux_params : list of NDArray Source aux arrays.
def set_params(self, arg_params, aux_params): """Set parameter and aux values. Parameters ---------- arg_params : list of NDArray Source parameter arrays aux_params : list of NDArray Source aux arrays. """ for texec in self.execgrp.train_execs: texec.copy_params_from(arg_params, aux_params)
Load data and labels into arrays.
def load_data_batch(self, data_batch): """Load data and labels into arrays.""" if self.sym_gen is not None: key = data_batch.bucket_key if key not in self.execgrp_bucket: # create new bucket entry symbol = self.sym_gen(key) execgrp = DataParallelExecutorGroup(symbol, self.arg_names, self.param_names, self.ctx, self.slices, data_batch, shared_group=self.execgrp) self.execgrp_bucket[key] = execgrp self.curr_execgrp = self.execgrp_bucket[key] else: self.curr_execgrp = self.execgrp self.curr_execgrp.load_data_batch(data_batch)
Update metric with the current executor.
def update_metric(self, metric, labels, pre_sliced=False): """Update metric with the current executor.""" self.curr_execgrp.update_metric(metric, labels, pre_sliced)
Clear all contents in the relay memory
def clear(self): """ Clear all contents in the relay memory """ self.states[:] = 0 self.actions[:] = 0 self.rewards[:] = 0 self.terminate_flags[:] = 0 self.top = 0 self.size = 0
Get Header Guard Convention for DMLC Projects. For headers in include, directly use the path For headers in src, use project name plus path Examples: with project-name = dmlc include/dmlc/timer.h -> DMLC_TIMTER_H_ src/io/libsvm_parser.h -> DMLC_IO_LIBSVM_PARSER_H_
def get_header_guard_dmlc(filename): """Get Header Guard Convention for DMLC Projects. For headers in include, directly use the path For headers in src, use project name plus path Examples: with project-name = dmlc include/dmlc/timer.h -> DMLC_TIMTER_H_ src/io/libsvm_parser.h -> DMLC_IO_LIBSVM_PARSER_H_ """ fileinfo = cpplint.FileInfo(filename) file_path_from_root = fileinfo.RepositoryName() inc_list = ['include', 'api', 'wrapper'] if file_path_from_root.find('src/') != -1 and _HELPER.project_name is not None: idx = file_path_from_root.find('src/') file_path_from_root = _HELPER.project_name + file_path_from_root[idx + 3:] else: for spath in inc_list: prefix = spath + os.sep if file_path_from_root.startswith(prefix): file_path_from_root = re.sub('^' + prefix, '', file_path_from_root) break return re.sub(r'[-./\s]', '_', file_path_from_root).upper() + '_'
Process a file.
def process(fname, allow_type): """Process a file.""" fname = str(fname) # HACK: ignore op.h which is automatically generated if fname.endswith('op.h'): return arr = fname.rsplit('.', 1) if fname.find('#') != -1 or arr[-1] not in allow_type: return if arr[-1] in CXX_SUFFIX: _HELPER.process_cpp(fname, arr[-1]) if arr[-1] in PYTHON_SUFFIX: _HELPER.process_python(fname)
Main entry function.
def main(): """Main entry function.""" if len(sys.argv) < 3: print('Usage: <project-name> <filetype> <list-of-path to traverse>') print('\tfiletype can be python/cpp/all') exit(-1) _HELPER.project_name = sys.argv[1] file_type = sys.argv[2] allow_type = [] if file_type == 'python' or file_type == 'all': allow_type += [x for x in PYTHON_SUFFIX] if file_type == 'cpp' or file_type == 'all': allow_type += [x for x in CXX_SUFFIX] allow_type = set(allow_type) if os.name != 'nt': sys.stderr = codecs.StreamReaderWriter(sys.stderr, codecs.getreader('utf8'), codecs.getwriter('utf8'), 'replace') for path in sys.argv[3:]: if os.path.isfile(path): process(path, allow_type) else: for root, dirs, files in os.walk(path): for name in files: process(os.path.join(root, name), allow_type) nerr = _HELPER.print_summary(sys.stderr) sys.exit(nerr > 0)
Print summary of certain result map.
def _print_summary_map(strm, result_map, ftype): """Print summary of certain result map.""" if len(result_map) == 0: return 0 npass = len([x for k, x in result_map.iteritems() if len(x) == 0]) strm.write('=====%d/%d %s files passed check=====\n' % (npass, len(result_map), ftype)) for fname, emap in result_map.iteritems(): if len(emap) == 0: continue strm.write('%s: %d Errors of %d Categories map=%s\n' % ( fname, sum(emap.values()), len(emap), str(emap))) return len(result_map) - npass
Process a cpp file.
def process_cpp(self, path, suffix): """Process a cpp file.""" _cpplint_state.ResetErrorCounts() cpplint.ProcessFile(str(path), _cpplint_state.verbose_level) _cpplint_state.PrintErrorCounts() errors = _cpplint_state.errors_by_category.copy() if suffix == 'h': self.cpp_header_map[str(path)] = errors else: self.cpp_src_map[str(path)] = errors
Process a python file.
def process_python(self, path): """Process a python file.""" (pylint_stdout, pylint_stderr) = epylint.py_run( ' '.join([str(path)] + self.pylint_opts), return_std=True) emap = {} print(pylint_stderr.read()) for line in pylint_stdout: sys.stderr.write(line) key = line.split(':')[-1].split('(')[0].strip() if key not in self.pylint_cats: continue if key not in emap: emap[key] = 1 else: emap[key] += 1 sys.stderr.write('\n') self.python_map[str(path)] = emap
Print summary of lint.
def print_summary(self, strm): """Print summary of lint.""" nerr = 0 nerr += LintHelper._print_summary_map(strm, self.cpp_header_map, 'cpp-header') nerr += LintHelper._print_summary_map(strm, self.cpp_src_map, 'cpp-soruce') nerr += LintHelper._print_summary_map(strm, self.python_map, 'python') if nerr == 0: strm.write('All passed!\n') else: strm.write('%d files failed lint\n' % nerr) return nerr
Start server/scheduler.
def _init_kvstore_server_module(): """Start server/scheduler.""" is_worker = ctypes.c_int() check_call(_LIB.MXKVStoreIsWorkerNode(ctypes.byref(is_worker))) if is_worker.value == 0: kvstore = create('dist') server = KVStoreServer(kvstore) server.run() sys.exit()
Return the server controller.
def _controller(self): """Return the server controller.""" def server_controller(cmd_id, cmd_body, _): """Server controler.""" if not self.init_logginig: # the reason put the codes here is because we cannot get # kvstore.rank earlier head = '%(asctime)-15s Server[' + str( self.kvstore.rank) + '] %(message)s' logging.basicConfig(level=logging.DEBUG, format=head) self.init_logginig = True if cmd_id == 0: try: optimizer = pickle.loads(cmd_body) except: raise self.kvstore.set_optimizer(optimizer) else: print("server %d, unknown command (%d, %s)" % ( self.kvstore.rank, cmd_id, cmd_body)) return server_controller
Run the server, whose behavior is like. >>> while receive(x): ... if is_command x: controller(x) ... else if is_key_value x: updater(x)
def run(self): """Run the server, whose behavior is like. >>> while receive(x): ... if is_command x: controller(x) ... else if is_key_value x: updater(x) """ _ctrl_proto = ctypes.CFUNCTYPE(None, ctypes.c_int, ctypes.c_char_p, ctypes.c_void_p) check_call(_LIB.MXKVStoreRunServer(self.handle, _ctrl_proto(self._controller()), None))
Generate function for ndarray op by handle and function name.
def _generate_ndarray_function_code(handle, name, func_name, signature_only=False): """Generate function for ndarray op by handle and function name.""" real_name = ctypes.c_char_p() desc = ctypes.c_char_p() num_args = mx_uint() arg_names = ctypes.POINTER(ctypes.c_char_p)() arg_types = ctypes.POINTER(ctypes.c_char_p)() arg_descs = ctypes.POINTER(ctypes.c_char_p)() key_var_num_args = ctypes.c_char_p() ret_type = ctypes.c_char_p() check_call(_LIB.MXSymbolGetAtomicSymbolInfo( handle, ctypes.byref(real_name), ctypes.byref(desc), ctypes.byref(num_args), ctypes.byref(arg_names), ctypes.byref(arg_types), ctypes.byref(arg_descs), ctypes.byref(key_var_num_args), ctypes.byref(ret_type))) narg = int(num_args.value) arg_names = [py_str(arg_names[i]) for i in range(narg)] arg_types = [py_str(arg_types[i]) for i in range(narg)] key_var_num_args = py_str(key_var_num_args.value) ret_type = py_str(ret_type.value) if ret_type.value is not None else '' doc_str = _build_doc(name, py_str(desc.value), arg_names, arg_types, [py_str(arg_descs[i]) for i in range(narg)], key_var_num_args, ret_type) dtype_name = None arr_name = None ndsignature = [] signature = [] ndarg_names = [] kwarg_names = [] for i in range(narg): name, atype = arg_names[i], arg_types[i] if name == 'dtype': dtype_name = name signature.append('%s=_Null'%name) elif atype.startswith('NDArray') or atype.startswith('Symbol'): assert not arr_name, \ "Op can only have one argument with variable " \ "size and it must be the last argument." if atype.endswith('[]'): ndsignature.append('*%s'%name) arr_name = name else: ndsignature.append('%s=None'%name) ndarg_names.append(name) else: signature.append('%s=_Null'%name) kwarg_names.append(name) signature.append('out=None') signature.append('name=None') signature.append('**kwargs') signature = ndsignature + signature code = [] if arr_name: code.append(""" def %s(*%s, **kwargs):"""%(func_name, arr_name)) if not signature_only: code.append(""" ndargs = [] for i in {}: assert isinstance(i, NDArrayBase), \\ "Positional arguments must have NDArray type, " \\ "but got %s"%str(i) ndargs.append(i)""".format(arr_name)) if dtype_name is not None: code.append(""" if '%s' in kwargs: kwargs['%s'] = _np.dtype(kwargs['%s']).name"""%( dtype_name, dtype_name, dtype_name)) code.append(""" _ = kwargs.pop('name', None) out = kwargs.pop('out', None) keys = list(kwargs.keys()) vals = list(kwargs.values())""") else: code.append(""" def %s(%s):"""%(func_name, ', '.join(signature))) if not signature_only: code.append(""" ndargs = [] keys = list(kwargs.keys()) vals = list(kwargs.values())""") # NDArray args for name in ndarg_names: # pylint: disable=redefined-argument-from-local code.append(""" if {name} is not None: assert isinstance({name}, NDArrayBase), \\ "Argument {name} must have NDArray type, but got %s"%str({name}) ndargs.append({name})""".format(name=name)) # kwargs for name in kwarg_names: # pylint: disable=redefined-argument-from-local code.append(""" if %s is not _Null: keys.append('%s') vals.append(%s)"""%(name, name, name)) # dtype if dtype_name is not None: code.append(""" if %s is not _Null: keys.append('%s') vals.append(_np.dtype(%s).name)"""%(dtype_name, dtype_name, dtype_name)) if not signature_only: code.append(""" return _imperative_invoke(%d, ndargs, keys, vals, out)"""%( handle.value)) else: code.append(""" return (0,)""") doc_str_lines = _os.linesep+''.join([' '+s if s.strip() else s for s in 'r"""{doc_str}"""'.format(doc_str=doc_str) .splitlines(True)]) code.insert(1, doc_str_lines) return ''.join(code), doc_str
Create a NDArray function from the FunctionHandle.
def _make_ndarray_function(handle, name, func_name): """Create a NDArray function from the FunctionHandle.""" code, doc_str = _generate_ndarray_function_code(handle, name, func_name) local = {} exec(code, None, local) # pylint: disable=exec-used ndarray_function = local[func_name] ndarray_function.__name__ = func_name ndarray_function.__doc__ = doc_str ndarray_function.__module__ = 'mxnet.ndarray' return ndarray_function
Counts tokens in the specified string. For token_delim=\'<td>\' and seq_delim=\'<sd>\', a specified string of two sequences of tokens may look like:: <td>token1<td>token2<td>token3<td><sd><td>token4<td>token5<td><sd> <td> and <sd> are regular expressions. Make use of \\\\ to allow special characters as delimiters. The list of special characters can be found at https://docs.python.org/3/library/re.html. Parameters ---------- source_str : str A source string of tokens. token_delim : str, default ' ' A token delimiter. seq_delim : str, default '\\\\n' A sequence delimiter. to_lower : bool, default False Whether to convert the source source_str to the lower case. counter_to_update : collections.Counter or None, default None The collections.Counter instance to be updated with the token counts of `source_str`. If None, return a new collections.Counter instance counting tokens from `source_str`. Returns ------- collections.Counter The `counter_to_update` collections.Counter instance after being updated with the token counts of `source_str`. If `counter_to_update` is None, return a new collections.Counter instance counting tokens from `source_str`. Examples -------- >>> source_str = ' Life is great ! \\n life is good . \\n' >>> count_tokens_from_str(token_line, ' ', '\\n', True) Counter({'!': 1, '.': 1, 'good': 1, 'great': 1, 'is': 2, 'life': 2}) >>> source_str = '*Life*is*great*!*\\n*life*is*good*.*\\n' >>> count_tokens_from_str(token_line, '\\*', '\\n', True) Counter({'is': 2, 'life': 2, '!': 1, 'great': 1, 'good': 1, '.': 1})
def count_tokens_from_str(source_str, token_delim=' ', seq_delim='\n', to_lower=False, counter_to_update=None): """Counts tokens in the specified string. For token_delim=\'<td>\' and seq_delim=\'<sd>\', a specified string of two sequences of tokens may look like:: <td>token1<td>token2<td>token3<td><sd><td>token4<td>token5<td><sd> <td> and <sd> are regular expressions. Make use of \\\\ to allow special characters as delimiters. The list of special characters can be found at https://docs.python.org/3/library/re.html. Parameters ---------- source_str : str A source string of tokens. token_delim : str, default ' ' A token delimiter. seq_delim : str, default '\\\\n' A sequence delimiter. to_lower : bool, default False Whether to convert the source source_str to the lower case. counter_to_update : collections.Counter or None, default None The collections.Counter instance to be updated with the token counts of `source_str`. If None, return a new collections.Counter instance counting tokens from `source_str`. Returns ------- collections.Counter The `counter_to_update` collections.Counter instance after being updated with the token counts of `source_str`. If `counter_to_update` is None, return a new collections.Counter instance counting tokens from `source_str`. Examples -------- >>> source_str = ' Life is great ! \\n life is good . \\n' >>> count_tokens_from_str(token_line, ' ', '\\n', True) Counter({'!': 1, '.': 1, 'good': 1, 'great': 1, 'is': 2, 'life': 2}) >>> source_str = '*Life*is*great*!*\\n*life*is*good*.*\\n' >>> count_tokens_from_str(token_line, '\\*', '\\n', True) Counter({'is': 2, 'life': 2, '!': 1, 'great': 1, 'good': 1, '.': 1}) """ source_str = filter(None, re.split(token_delim + '|' + seq_delim, source_str)) if to_lower: source_str = [t.lower() for t in source_str] if counter_to_update is None: return collections.Counter(source_str) else: counter_to_update.update(source_str) return counter_to_update
Return a new array of given shape and type, filled with zeros. Parameters ---------- shape : int or tuple of int The shape of the empty array ctx : Context, optional An optional device context (default is the current default context) dtype : str or numpy.dtype, optional An optional value type (default is `float32`) stype: string, optional The storage type of the empty array, such as 'row_sparse', 'csr', etc. Returns ------- NDArray, CSRNDArray or RowSparseNDArray A created array Examples -------- >>> mx.nd.zeros((1,2), mx.cpu(), stype='csr') <CSRNDArray 1x2 @cpu(0)> >>> mx.nd.zeros((1,2), mx.cpu(), 'float16', stype='row_sparse').asnumpy() array([[ 0., 0.]], dtype=float16)
def zeros(shape, ctx=None, dtype=None, stype=None, **kwargs): """Return a new array of given shape and type, filled with zeros. Parameters ---------- shape : int or tuple of int The shape of the empty array ctx : Context, optional An optional device context (default is the current default context) dtype : str or numpy.dtype, optional An optional value type (default is `float32`) stype: string, optional The storage type of the empty array, such as 'row_sparse', 'csr', etc. Returns ------- NDArray, CSRNDArray or RowSparseNDArray A created array Examples -------- >>> mx.nd.zeros((1,2), mx.cpu(), stype='csr') <CSRNDArray 1x2 @cpu(0)> >>> mx.nd.zeros((1,2), mx.cpu(), 'float16', stype='row_sparse').asnumpy() array([[ 0., 0.]], dtype=float16) """ if stype is None or stype == 'default': return _zeros_ndarray(shape, ctx, dtype, **kwargs) else: return _zeros_sparse_ndarray(stype, shape, ctx, dtype, **kwargs)
Returns a new array of given shape and type, without initializing entries. Parameters ---------- shape : int or tuple of int The shape of the empty array. ctx : Context, optional An optional device context (default is the current default context). dtype : str or numpy.dtype, optional An optional value type (default is `float32`). stype : str, optional An optional storage type (default is `default`). Returns ------- NDArray, CSRNDArray or RowSparseNDArray A created array. Examples -------- >>> mx.nd.empty(1) <NDArray 1 @cpu(0)> >>> mx.nd.empty((1,2), mx.gpu(0)) <NDArray 1x2 @gpu(0)> >>> mx.nd.empty((1,2), mx.gpu(0), 'float16') <NDArray 1x2 @gpu(0)> >>> mx.nd.empty((1,2), stype='csr') <CSRNDArray 1x2 @cpu(0)>
def empty(shape, ctx=None, dtype=None, stype=None): """Returns a new array of given shape and type, without initializing entries. Parameters ---------- shape : int or tuple of int The shape of the empty array. ctx : Context, optional An optional device context (default is the current default context). dtype : str or numpy.dtype, optional An optional value type (default is `float32`). stype : str, optional An optional storage type (default is `default`). Returns ------- NDArray, CSRNDArray or RowSparseNDArray A created array. Examples -------- >>> mx.nd.empty(1) <NDArray 1 @cpu(0)> >>> mx.nd.empty((1,2), mx.gpu(0)) <NDArray 1x2 @gpu(0)> >>> mx.nd.empty((1,2), mx.gpu(0), 'float16') <NDArray 1x2 @gpu(0)> >>> mx.nd.empty((1,2), stype='csr') <CSRNDArray 1x2 @cpu(0)> """ if stype is None or stype == 'default': return _empty_ndarray(shape, ctx, dtype) else: return _empty_sparse_ndarray(stype, shape, ctx, dtype)
Creates an array from any object exposing the array interface. Parameters ---------- source_array : array_like An object exposing the array interface, an object whose `__array__` method returns an array, or any (nested) sequence. ctx : Context, optional Device context (default is the current default context). dtype : str or numpy.dtype, optional The data type of the output array. The default dtype is ``source_array.dtype`` if `source_array` is an `NDArray`, `float32` otherwise. Returns ------- NDArray, RowSparseNDArray or CSRNDArray An array with the same contents as the `source_array`. Examples -------- >>> import numpy as np >>> mx.nd.array([1, 2, 3]) <NDArray 3 @cpu(0)> >>> mx.nd.array([[1, 2], [3, 4]]) <NDArray 2x2 @cpu(0)> >>> mx.nd.array(np.zeros((3, 2))) <NDArray 3x2 @cpu(0)> >>> mx.nd.array(np.zeros((3, 2)), mx.gpu(0)) <NDArray 3x2 @gpu(0)> >>> mx.nd.array(mx.nd.zeros((3, 2), stype='row_sparse')) <RowSparseNDArray 3x2 @cpu(0)>
def array(source_array, ctx=None, dtype=None): """Creates an array from any object exposing the array interface. Parameters ---------- source_array : array_like An object exposing the array interface, an object whose `__array__` method returns an array, or any (nested) sequence. ctx : Context, optional Device context (default is the current default context). dtype : str or numpy.dtype, optional The data type of the output array. The default dtype is ``source_array.dtype`` if `source_array` is an `NDArray`, `float32` otherwise. Returns ------- NDArray, RowSparseNDArray or CSRNDArray An array with the same contents as the `source_array`. Examples -------- >>> import numpy as np >>> mx.nd.array([1, 2, 3]) <NDArray 3 @cpu(0)> >>> mx.nd.array([[1, 2], [3, 4]]) <NDArray 2x2 @cpu(0)> >>> mx.nd.array(np.zeros((3, 2))) <NDArray 3x2 @cpu(0)> >>> mx.nd.array(np.zeros((3, 2)), mx.gpu(0)) <NDArray 3x2 @gpu(0)> >>> mx.nd.array(mx.nd.zeros((3, 2), stype='row_sparse')) <RowSparseNDArray 3x2 @cpu(0)> """ if spsp is not None and isinstance(source_array, spsp.csr.csr_matrix): return _sparse_array(source_array, ctx=ctx, dtype=dtype) elif isinstance(source_array, NDArray) and source_array.stype != 'default': return _sparse_array(source_array, ctx=ctx, dtype=dtype) else: return _array(source_array, ctx=ctx, dtype=dtype)
Loads an array from file. See more details in ``save``. Parameters ---------- fname : str The filename. Returns ------- list of NDArray, RowSparseNDArray or CSRNDArray, or \ dict of str to NDArray, RowSparseNDArray or CSRNDArray Loaded data.
def load(fname): """Loads an array from file. See more details in ``save``. Parameters ---------- fname : str The filename. Returns ------- list of NDArray, RowSparseNDArray or CSRNDArray, or \ dict of str to NDArray, RowSparseNDArray or CSRNDArray Loaded data. """ if not isinstance(fname, string_types): raise TypeError('fname required to be a string') out_size = mx_uint() out_name_size = mx_uint() handles = ctypes.POINTER(NDArrayHandle)() names = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXNDArrayLoad(c_str(fname), ctypes.byref(out_size), ctypes.byref(handles), ctypes.byref(out_name_size), ctypes.byref(names))) if out_name_size.value == 0: return [_ndarray_cls(NDArrayHandle(handles[i])) for i in range(out_size.value)] else: assert out_name_size.value == out_size.value return dict( (py_str(names[i]), _ndarray_cls(NDArrayHandle(handles[i]))) for i in range(out_size.value))
Loads an array dictionary or list from a buffer See more details in ``save``. Parameters ---------- buf : str Buffer containing contents of a file as a string or bytes. Returns ------- list of NDArray, RowSparseNDArray or CSRNDArray, or \ dict of str to NDArray, RowSparseNDArray or CSRNDArray Loaded data.
def load_frombuffer(buf): """Loads an array dictionary or list from a buffer See more details in ``save``. Parameters ---------- buf : str Buffer containing contents of a file as a string or bytes. Returns ------- list of NDArray, RowSparseNDArray or CSRNDArray, or \ dict of str to NDArray, RowSparseNDArray or CSRNDArray Loaded data. """ if not isinstance(buf, string_types + tuple([bytes])): raise TypeError('buf required to be a string or bytes') out_size = mx_uint() out_name_size = mx_uint() handles = ctypes.POINTER(NDArrayHandle)() names = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXNDArrayLoadFromBuffer(buf, mx_uint(len(buf)), ctypes.byref(out_size), ctypes.byref(handles), ctypes.byref(out_name_size), ctypes.byref(names))) if out_name_size.value == 0: return [_ndarray_cls(NDArrayHandle(handles[i])) for i in range(out_size.value)] else: assert out_name_size.value == out_size.value return dict( (py_str(names[i]), _ndarray_cls(NDArrayHandle(handles[i]))) for i in range(out_size.value))
Saves a list of arrays or a dict of str->array to file. Examples of filenames: - ``/path/to/file`` - ``s3://my-bucket/path/to/file`` (if compiled with AWS S3 supports) - ``hdfs://path/to/file`` (if compiled with HDFS supports) Parameters ---------- fname : str The filename. data : NDArray, RowSparseNDArray or CSRNDArray, \ or list of NDArray, RowSparseNDArray or CSRNDArray, \ or dict of str to NDArray, RowSparseNDArray or CSRNDArray The data to save. Examples -------- >>> x = mx.nd.zeros((2,3)) >>> y = mx.nd.ones((1,4)) >>> mx.nd.save('my_list', [x,y]) >>> mx.nd.save('my_dict', {'x':x, 'y':y}) >>> mx.nd.load('my_list') [<NDArray 2x3 @cpu(0)>, <NDArray 1x4 @cpu(0)>] >>> mx.nd.load('my_dict') {'y': <NDArray 1x4 @cpu(0)>, 'x': <NDArray 2x3 @cpu(0)>}
def save(fname, data): """Saves a list of arrays or a dict of str->array to file. Examples of filenames: - ``/path/to/file`` - ``s3://my-bucket/path/to/file`` (if compiled with AWS S3 supports) - ``hdfs://path/to/file`` (if compiled with HDFS supports) Parameters ---------- fname : str The filename. data : NDArray, RowSparseNDArray or CSRNDArray, \ or list of NDArray, RowSparseNDArray or CSRNDArray, \ or dict of str to NDArray, RowSparseNDArray or CSRNDArray The data to save. Examples -------- >>> x = mx.nd.zeros((2,3)) >>> y = mx.nd.ones((1,4)) >>> mx.nd.save('my_list', [x,y]) >>> mx.nd.save('my_dict', {'x':x, 'y':y}) >>> mx.nd.load('my_list') [<NDArray 2x3 @cpu(0)>, <NDArray 1x4 @cpu(0)>] >>> mx.nd.load('my_dict') {'y': <NDArray 1x4 @cpu(0)>, 'x': <NDArray 2x3 @cpu(0)>} """ if isinstance(data, NDArray): data = [data] handles = c_array(NDArrayHandle, []) if isinstance(data, dict): str_keys = data.keys() nd_vals = data.values() if any(not isinstance(k, string_types) for k in str_keys) or \ any(not isinstance(v, NDArray) for v in nd_vals): raise TypeError('save only accept dict str->NDArray or list of NDArray') keys = c_str_array(str_keys) handles = c_handle_array(nd_vals) elif isinstance(data, list): if any(not isinstance(v, NDArray) for v in data): raise TypeError('save only accept dict str->NDArray or list of NDArray') keys = None handles = c_handle_array(data) else: raise ValueError("data needs to either be a NDArray, dict of str, NDArray pairs " "or a list of NDarrays.") check_call(_LIB.MXNDArraySave(c_str(fname), mx_uint(len(handles)), handles, keys))
Get the common prefix for all names
def _common_prefix(names): """Get the common prefix for all names""" if not names: return '' prefix = names[0] for name in names: i = 0 while i < len(prefix) and i < len(name) and prefix[i] == name[i]: i += 1 prefix = prefix[:i] return prefix
Utility function that helps in inferring DType of args and auxs params from given input param. Parameters ---------- in_params: List of Symbol List of input symbol variables. out_params: Symbol Output symbol variable. arg_params: List of Str List of names of argument parametrs. aux_params: List of Str List of names of auxiliary parameters. default_dtype: numpy.dtype or str, default 'float32' Default data type for arg_params and aux_params, if unable to infer the type. Returns ------- arg_types: List of numpy.dtype List of arg_params type. Order is same as arg_params. Defaults to 'float32', if unable to infer type. aux_types: List of numpy.dtype List of aux_params type. Order is same as aux_params. Defaults to 'float32', if unable to infer type.
def _infer_param_types(in_params, out_params, arg_params, aux_params, default_dtype=mx_real_t): """Utility function that helps in inferring DType of args and auxs params from given input param. Parameters ---------- in_params: List of Symbol List of input symbol variables. out_params: Symbol Output symbol variable. arg_params: List of Str List of names of argument parametrs. aux_params: List of Str List of names of auxiliary parameters. default_dtype: numpy.dtype or str, default 'float32' Default data type for arg_params and aux_params, if unable to infer the type. Returns ------- arg_types: List of numpy.dtype List of arg_params type. Order is same as arg_params. Defaults to 'float32', if unable to infer type. aux_types: List of numpy.dtype List of aux_params type. Order is same as aux_params. Defaults to 'float32', if unable to infer type. """ arg_types = None aux_types = None # Get Input symbol details. This will be used to infer types of # other parameters. input_sym_names = [in_param.name for in_param in in_params] # Try to infer input types. If not successful, we will set default dtype. # If successful, we will try to infer other params in the graph. input_sym_arg_types = [] can_infer_input_type = True for in_param in in_params: input_sym_arg_type = in_param.infer_type()[0] if not input_sym_arg_type or len(input_sym_arg_type) < 1: can_infer_input_type = False break else: input_sym_arg_types.append(in_param.infer_type()[0][0]) # Try to infer types of other parameters. if can_infer_input_type: params = {k:v for k, v in zip(input_sym_names, input_sym_arg_types)} arg_types, _, aux_types = out_params.infer_type(**params) if arg_types is None or len(arg_types) != len(arg_params): arg_types = [] for _ in arg_params: arg_types.append(default_dtype) if aux_types is None or len(aux_types) != len(aux_params): aux_types = [] for _ in aux_params: aux_types.append(default_dtype) return (arg_types, aux_types)
Creates prefix and params for new `Block`.
def create(prefix, params, hint): """Creates prefix and params for new `Block`.""" current = getattr(_BlockScope._current, "value", None) if current is None: if prefix is None: if not hasattr(_name.NameManager._current, "value"): _name.NameManager._current.value = _name.NameManager() prefix = _name.NameManager._current.value.get(None, hint) + '_' if params is None: params = ParameterDict(prefix) else: params = ParameterDict(params.prefix, params) return prefix, params if prefix is None: count = current._counter.get(hint, 0) prefix = '%s%d_'%(hint, count) current._counter[hint] = count + 1 if params is None: parent = current._block.params params = ParameterDict(parent.prefix+prefix, parent._shared) else: params = ParameterDict(params.prefix, params) return current._block.prefix+prefix, params
Returns a :py:class:`ParameterDict` containing this :py:class:`Block` and all of its children's Parameters(default), also can returns the select :py:class:`ParameterDict` which match some given regular expressions. For example, collect the specified parameters in ['conv1_weight', 'conv1_bias', 'fc_weight', 'fc_bias']:: model.collect_params('conv1_weight|conv1_bias|fc_weight|fc_bias') or collect all parameters whose names end with 'weight' or 'bias', this can be done using regular expressions:: model.collect_params('.*weight|.*bias') Parameters ---------- select : str regular expressions Returns ------- The selected :py:class:`ParameterDict`
def collect_params(self, select=None): """Returns a :py:class:`ParameterDict` containing this :py:class:`Block` and all of its children's Parameters(default), also can returns the select :py:class:`ParameterDict` which match some given regular expressions. For example, collect the specified parameters in ['conv1_weight', 'conv1_bias', 'fc_weight', 'fc_bias']:: model.collect_params('conv1_weight|conv1_bias|fc_weight|fc_bias') or collect all parameters whose names end with 'weight' or 'bias', this can be done using regular expressions:: model.collect_params('.*weight|.*bias') Parameters ---------- select : str regular expressions Returns ------- The selected :py:class:`ParameterDict` """ # We need to check here because blocks inside containers are not supported. self._check_container_with_block() ret = ParameterDict(self._params.prefix) if not select: ret.update(self.params) else: pattern = re.compile(select) ret.update({name:value for name, value in self.params.items() if pattern.match(name)}) for cld in self._children.values(): ret.update(cld.collect_params(select=select)) return ret
[Deprecated] Please use save_parameters. Note that if you want load from SymbolBlock later, please use export instead. Save parameters to file. filename : str Path to file.
def save_params(self, filename): """[Deprecated] Please use save_parameters. Note that if you want load from SymbolBlock later, please use export instead. Save parameters to file. filename : str Path to file. """ warnings.warn("save_params is deprecated. Please use save_parameters. " "Note that if you want load from SymbolBlock later, please " "use export instead. For details, see " "https://mxnet.incubator.apache.org/tutorials/gluon/save_lo" "ad_params.html") try: self.collect_params().save(filename, strip_prefix=self.prefix) except ValueError as e: raise ValueError('%s\nsave_params is deprecated. Using ' \ 'save_parameters may resolve this error.'%e.message)
Load parameters from file previously saved by `save_parameters`. Parameters ---------- filename : str Path to parameter file. ctx : Context or list of Context, default cpu() Context(s) to initialize loaded parameters on. allow_missing : bool, default False Whether to silently skip loading parameters not represents in the file. ignore_extra : bool, default False Whether to silently ignore parameters from the file that are not present in this Block. References ---------- `Saving and Loading Gluon Models \ <https://mxnet.incubator.apache.org/tutorials/gluon/save_load_params.html>`_
def load_parameters(self, filename, ctx=None, allow_missing=False, ignore_extra=False): """Load parameters from file previously saved by `save_parameters`. Parameters ---------- filename : str Path to parameter file. ctx : Context or list of Context, default cpu() Context(s) to initialize loaded parameters on. allow_missing : bool, default False Whether to silently skip loading parameters not represents in the file. ignore_extra : bool, default False Whether to silently ignore parameters from the file that are not present in this Block. References ---------- `Saving and Loading Gluon Models \ <https://mxnet.incubator.apache.org/tutorials/gluon/save_load_params.html>`_ """ loaded = ndarray.load(filename) params = self._collect_params_with_prefix() if not loaded and not params: return if not any('.' in i for i in loaded.keys()): # legacy loading del loaded self.collect_params().load( filename, ctx, allow_missing, ignore_extra, self.prefix) return if not allow_missing: for name in params.keys(): assert name in loaded, \ "Parameter '%s' is missing in file '%s', which contains parameters: %s. " \ "Set allow_missing=True to ignore missing parameters."%( name, filename, _brief_print_list(loaded.keys())) for name in loaded: if not ignore_extra and name not in params: raise ValueError( "Parameter '%s' loaded from file '%s' is not present in ParameterDict, " \ "which contains parameters %s. Set ignore_extra=True to ignore. "%( name, filename, _brief_print_list(self._params.keys()))) if name in params: params[name]._load_init(loaded[name], ctx)
[Deprecated] Please use load_parameters. Load parameters from file. filename : str Path to parameter file. ctx : Context or list of Context, default cpu() Context(s) to initialize loaded parameters on. allow_missing : bool, default False Whether to silently skip loading parameters not represents in the file. ignore_extra : bool, default False Whether to silently ignore parameters from the file that are not present in this Block.
def load_params(self, filename, ctx=None, allow_missing=False, ignore_extra=False): """[Deprecated] Please use load_parameters. Load parameters from file. filename : str Path to parameter file. ctx : Context or list of Context, default cpu() Context(s) to initialize loaded parameters on. allow_missing : bool, default False Whether to silently skip loading parameters not represents in the file. ignore_extra : bool, default False Whether to silently ignore parameters from the file that are not present in this Block. """ warnings.warn("load_params is deprecated. Please use load_parameters.") self.load_parameters(filename, ctx, allow_missing, ignore_extra)
Registers block as a child of self. :py:class:`Block` s assigned to self as attributes will be registered automatically.
def register_child(self, block, name=None): """Registers block as a child of self. :py:class:`Block` s assigned to self as attributes will be registered automatically.""" if name is None: name = str(len(self._children)) self._children[name] = block
r"""Registers a forward pre-hook on the block. The hook function is called immediately before :func:`forward`. It should not modify the input or output. Parameters ---------- hook : callable The forward hook function of form `hook(block, input) -> None`. Returns ------- :class:`mxnet.gluon.utils.HookHandle`
def register_forward_pre_hook(self, hook): r"""Registers a forward pre-hook on the block. The hook function is called immediately before :func:`forward`. It should not modify the input or output. Parameters ---------- hook : callable The forward hook function of form `hook(block, input) -> None`. Returns ------- :class:`mxnet.gluon.utils.HookHandle` """ handle = HookHandle() handle.attach(self._forward_pre_hooks, hook) return handle
r"""Registers a forward hook on the block. The hook function is called immediately after :func:`forward`. It should not modify the input or output. Parameters ---------- hook : callable The forward hook function of form `hook(block, input, output) -> None`. Returns ------- :class:`mxnet.gluon.utils.HookHandle`
def register_forward_hook(self, hook): r"""Registers a forward hook on the block. The hook function is called immediately after :func:`forward`. It should not modify the input or output. Parameters ---------- hook : callable The forward hook function of form `hook(block, input, output) -> None`. Returns ------- :class:`mxnet.gluon.utils.HookHandle` """ handle = HookHandle() handle.attach(self._forward_hooks, hook) return handle
r"""Applies ``fn`` recursively to every child block as well as self. Parameters ---------- fn : callable Function to be applied to each submodule, of form `fn(block)`. Returns ------- this block
def apply(self, fn): r"""Applies ``fn`` recursively to every child block as well as self. Parameters ---------- fn : callable Function to be applied to each submodule, of form `fn(block)`. Returns ------- this block """ for cld in self._children.values(): cld.apply(fn) fn(self) return self
Initializes :py:class:`Parameter` s of this :py:class:`Block` and its children. Equivalent to ``block.collect_params().initialize(...)`` Parameters ---------- init : Initializer Global default Initializer to be used when :py:meth:`Parameter.init` is ``None``. Otherwise, :py:meth:`Parameter.init` takes precedence. ctx : Context or list of Context Keeps a copy of Parameters on one or many context(s). verbose : bool, default False Whether to verbosely print out details on initialization. force_reinit : bool, default False Whether to force re-initialization if parameter is already initialized.
def initialize(self, init=initializer.Uniform(), ctx=None, verbose=False, force_reinit=False): """Initializes :py:class:`Parameter` s of this :py:class:`Block` and its children. Equivalent to ``block.collect_params().initialize(...)`` Parameters ---------- init : Initializer Global default Initializer to be used when :py:meth:`Parameter.init` is ``None``. Otherwise, :py:meth:`Parameter.init` takes precedence. ctx : Context or list of Context Keeps a copy of Parameters on one or many context(s). verbose : bool, default False Whether to verbosely print out details on initialization. force_reinit : bool, default False Whether to force re-initialization if parameter is already initialized. """ self.collect_params().initialize(init, ctx, verbose, force_reinit)
Activates or deactivates :py:class:`HybridBlock` s recursively. Has no effect on non-hybrid children. Parameters ---------- active : bool, default True Whether to turn hybrid on or off. static_alloc : bool, default False Statically allocate memory to improve speed. Memory usage may increase. static_shape : bool, default False Optimize for invariant input shapes between iterations. Must also set static_alloc to True. Change of input shapes is still allowed but slower.
def hybridize(self, active=True, **kwargs): """Activates or deactivates :py:class:`HybridBlock` s recursively. Has no effect on non-hybrid children. Parameters ---------- active : bool, default True Whether to turn hybrid on or off. static_alloc : bool, default False Statically allocate memory to improve speed. Memory usage may increase. static_shape : bool, default False Optimize for invariant input shapes between iterations. Must also set static_alloc to True. Change of input shapes is still allowed but slower. """ for cld in self._children.values(): cld.hybridize(active, **kwargs)
Cast this Block to use another data type. Parameters ---------- dtype : str or numpy.dtype The new data type.
def cast(self, dtype): """Cast this Block to use another data type. Parameters ---------- dtype : str or numpy.dtype The new data type. """ for child in self._children.values(): child.cast(dtype) for _, param in self.params.items(): param.cast(dtype)
Print the summary of the model's output and parameters. The network must have been initialized, and must not have been hybridized. Parameters ---------- inputs : object Any input that the model supports. For any tensor in the input, only :class:`mxnet.ndarray.NDArray` is supported.
def summary(self, *inputs): """Print the summary of the model's output and parameters. The network must have been initialized, and must not have been hybridized. Parameters ---------- inputs : object Any input that the model supports. For any tensor in the input, only :class:`mxnet.ndarray.NDArray` is supported. """ summary = OrderedDict() seen = set() hooks = [] def _get_shape_str(args): def flatten(args): if not isinstance(args, (list, tuple)): return [args], int(0) flat = [] fmts = [] for i in args: arg, fmt = flatten(i) flat.extend(arg) fmts.append(fmt) return flat, fmts def regroup(args, fmt): if isinstance(fmt, int): if fmt == 0: return args[0], args[1:] return args[:fmt], args[fmt:] ret = [] for i in fmt: res, args = regroup(args, i) ret.append(res) return ret, args flat_args, fmts = flatten(args) flat_arg_shapes = [x.shape if isinstance(x, ndarray.NDArray) else x for x in flat_args] shapes = regroup(flat_arg_shapes, fmts)[0] if isinstance(shapes, list): shape_str = str(shapes)[1:-1] else: shape_str = str(shapes) return shape_str.replace('L', '') def _register_summary_hook(block): assert not isinstance(block, HybridBlock) or not block._active, \ '"{}" must not be hybridized to print summary.'.format(block.name) def _summary_hook(block, _, outputs): class_name = block.__class__.__name__ block_idx = len(summary) - 1 m_key = '%s-%i' % (class_name, block_idx+1) summary[m_key] = OrderedDict() summary[m_key]['output_shape'] = _get_shape_str(outputs) params = 0 summary[m_key]['trainable'] = 0 summary[m_key]['shared'] = 0 for p in block.params.values(): params += p.data().size summary[m_key]['trainable'] += 0 if p.grad_req == 'null' else p.data().size if p in seen: summary[m_key]['shared'] += p.data().size else: seen.add(p) summary[m_key]['n_params'] = params from .nn.basic_layers import Sequential, HybridSequential if not isinstance(block, (Sequential, HybridSequential)): hooks.append(block.register_forward_hook(_summary_hook)) summary['Input'] = OrderedDict() summary['Input']['output_shape'] = _get_shape_str(inputs) summary['Input']['n_params'] = 0 summary['Input']['trainable'] = 0 summary['Input']['shared'] = 0 try: self.apply(_register_summary_hook) self(*inputs) line_format = '{:>20} {:>42} {:>15}' print('-'*80) print(line_format.format('Layer (type)', 'Output Shape', 'Param #')) print('='*80) total_params = 0 trainable_params = 0 shared_params = 0 for layer in summary: print(line_format.format(layer, str(summary[layer]['output_shape']), summary[layer]['n_params'])) total_params += summary[layer]['n_params'] trainable_params += summary[layer]['trainable'] shared_params += summary[layer]['shared'] print('='*80) print('Parameters in forward computation graph, duplicate included') print(' Total params: ' + str(total_params)) print(' Trainable params: ' + str(trainable_params)) print(' Non-trainable params: ' + str(total_params - trainable_params)) print('Shared params in forward computation graph: ' + str(shared_params)) print('Unique parameters in model: ' + str(total_params - shared_params)) print('-'*80) finally: for h in hooks: h.detach()
Generic infer attributes.
def _infer_attrs(self, infer_fn, attr, *args): """Generic infer attributes.""" inputs, out = self._get_graph(*args) args, _ = _flatten(args, "input") with warnings.catch_warnings(record=True) as w: arg_attrs, _, aux_attrs = getattr(out, infer_fn)( **{i.name: getattr(j, attr) for i, j in zip(inputs, args)}) if arg_attrs is None: raise ValueError(w[0].message) sdict = {i: j for i, j in zip(out.list_arguments(), arg_attrs)} sdict.update({name : attr for name, attr in \ zip(out.list_auxiliary_states(), aux_attrs)}) for i in self.collect_params().values(): setattr(i, attr, sdict[i.name])
Export HybridBlock to json format that can be loaded by `SymbolBlock.imports`, `mxnet.mod.Module` or the C++ interface. .. note:: When there are only one input, it will have name `data`. When there Are more than one inputs, they will be named as `data0`, `data1`, etc. Parameters ---------- path : str Path to save model. Two files `path-symbol.json` and `path-xxxx.params` will be created, where xxxx is the 4 digits epoch number. epoch : int Epoch number of saved model.
def export(self, path, epoch=0): """Export HybridBlock to json format that can be loaded by `SymbolBlock.imports`, `mxnet.mod.Module` or the C++ interface. .. note:: When there are only one input, it will have name `data`. When there Are more than one inputs, they will be named as `data0`, `data1`, etc. Parameters ---------- path : str Path to save model. Two files `path-symbol.json` and `path-xxxx.params` will be created, where xxxx is the 4 digits epoch number. epoch : int Epoch number of saved model. """ if not self._cached_graph: raise RuntimeError( "Please first call block.hybridize() and then run forward with " "this block at least once before calling export.") sym = self._cached_graph[1] sym.save('%s-symbol.json'%path) arg_names = set(sym.list_arguments()) aux_names = set(sym.list_auxiliary_states()) arg_dict = {} for name, param in self.collect_params().items(): if name in arg_names: arg_dict['arg:%s'%name] = param._reduce() else: assert name in aux_names arg_dict['aux:%s'%name] = param._reduce() ndarray.save('%s-%04d.params'%(path, epoch), arg_dict)
Defines the forward computation. Arguments can be either :py:class:`NDArray` or :py:class:`Symbol`.
def forward(self, x, *args): """Defines the forward computation. Arguments can be either :py:class:`NDArray` or :py:class:`Symbol`.""" if isinstance(x, NDArray): with x.context as ctx: if self._active: return self._call_cached_op(x, *args) try: params = {i: j.data(ctx) for i, j in self._reg_params.items()} except DeferredInitializationError: self._deferred_infer_shape(x, *args) for _, i in self.params.items(): i._finish_deferred_init() params = {i: j.data(ctx) for i, j in self._reg_params.items()} return self.hybrid_forward(ndarray, x, *args, **params) assert isinstance(x, Symbol), \ "HybridBlock requires the first argument to forward be either " \ "Symbol or NDArray, but got %s"%type(x) params = {i: j.var() for i, j in self._reg_params.items()} with self.name_scope(): return self.hybrid_forward(symbol, x, *args, **params)
Import model previously saved by `HybridBlock.export` or `Module.save_checkpoint` as a SymbolBlock for use in Gluon. Parameters ---------- symbol_file : str Path to symbol file. input_names : list of str List of input variable names param_file : str, optional Path to parameter file. ctx : Context, default None The context to initialize SymbolBlock on. Returns ------- SymbolBlock SymbolBlock loaded from symbol and parameter files. Examples -------- >>> net1 = gluon.model_zoo.vision.resnet18_v1( ... prefix='resnet', pretrained=True) >>> net1.hybridize() >>> x = mx.nd.random.normal(shape=(1, 3, 32, 32)) >>> out1 = net1(x) >>> net1.export('net1', epoch=1) >>> >>> net2 = gluon.SymbolBlock.imports( ... 'net1-symbol.json', ['data'], 'net1-0001.params') >>> out2 = net2(x)
def imports(symbol_file, input_names, param_file=None, ctx=None): """Import model previously saved by `HybridBlock.export` or `Module.save_checkpoint` as a SymbolBlock for use in Gluon. Parameters ---------- symbol_file : str Path to symbol file. input_names : list of str List of input variable names param_file : str, optional Path to parameter file. ctx : Context, default None The context to initialize SymbolBlock on. Returns ------- SymbolBlock SymbolBlock loaded from symbol and parameter files. Examples -------- >>> net1 = gluon.model_zoo.vision.resnet18_v1( ... prefix='resnet', pretrained=True) >>> net1.hybridize() >>> x = mx.nd.random.normal(shape=(1, 3, 32, 32)) >>> out1 = net1(x) >>> net1.export('net1', epoch=1) >>> >>> net2 = gluon.SymbolBlock.imports( ... 'net1-symbol.json', ['data'], 'net1-0001.params') >>> out2 = net2(x) """ sym = symbol.load(symbol_file) if isinstance(input_names, str): input_names = [input_names] inputs = [symbol.var(i) for i in input_names] ret = SymbolBlock(sym, inputs) if param_file is not None: ret.collect_params().load(param_file, ctx=ctx) return ret
Calculates the expectation of the gradients per epoch for each parameter w.r.t number of batches Parameters ---------- grad_dict: dict dictionary that maps parameter name to gradients in the mod executor group num_batches: int number of batches Returns ---------- grad_dict: dict dictionary with new keys mapping to gradients expectations
def calc_expectation(grad_dict, num_batches): """Calculates the expectation of the gradients per epoch for each parameter w.r.t number of batches Parameters ---------- grad_dict: dict dictionary that maps parameter name to gradients in the mod executor group num_batches: int number of batches Returns ---------- grad_dict: dict dictionary with new keys mapping to gradients expectations """ for key in grad_dict.keys(): grad_dict[str.format(key+"_expectation")] = mx.ndarray.sum(grad_dict[key], axis=0) / num_batches return grad_dict
Calculates the variance of the gradients per epoch for each parameter w.r.t number of batches Parameters ---------- grad_dict: dict dictionary that maps parameter name to gradients in the mod executor group num_batches: int number of batches param_names: str parameter name in the module Returns ---------- grad_dict: dict dictionary with new keys mapping to gradients variance
def calc_variance(grad_dict, num_batches, param_names): """Calculates the variance of the gradients per epoch for each parameter w.r.t number of batches Parameters ---------- grad_dict: dict dictionary that maps parameter name to gradients in the mod executor group num_batches: int number of batches param_names: str parameter name in the module Returns ---------- grad_dict: dict dictionary with new keys mapping to gradients variance """ for i in range(len(param_names)): diff_sqr = mx.ndarray.square(mx.nd.subtract(grad_dict[param_names[i]], grad_dict[str.format(param_names[i]+"_expectation")])) grad_dict[str.format(param_names[i] + "_variance")] = mx.ndarray.sum(diff_sqr, axis=0) / num_batches
Create directories recursively if they don't exist. os.makedirs(exist_ok=True) is not available in Python2
def makedirs(d): """Create directories recursively if they don't exist. os.makedirs(exist_ok=True) is not available in Python2""" if sys.version_info[0] < 3: from distutils.dir_util import mkpath mkpath(d) else: os.makedirs(d, exist_ok=True)
r"""AlexNet model from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters.
def alexnet(pretrained=False, ctx=cpu(), root=os.path.join(base.data_dir(), 'models'), **kwargs): r"""AlexNet model from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. """ net = AlexNet(**kwargs) if pretrained: from ..model_store import get_model_file net.load_parameters(get_model_file('alexnet', root=root), ctx=ctx) return net
computes f1, precision and recall on the entity class
def classifer_metrics(label, pred): """ computes f1, precision and recall on the entity class """ prediction = np.argmax(pred, axis=1) label = label.astype(int) pred_is_entity = prediction != not_entity_index label_is_entity = label != not_entity_index corr_pred = (prediction == label) == (pred_is_entity == True) #how many entities are there? num_entities = np.sum(label_is_entity) entity_preds = np.sum(pred_is_entity) #how many times did we correctly predict an entity? correct_entitites = np.sum(corr_pred[pred_is_entity]) #precision: when we predict entity, how often are we right? precision = correct_entitites/entity_preds if entity_preds == 0: precision = np.nan #recall: of the things that were an entity, how many did we catch? recall = correct_entitites / num_entities if num_entities == 0: recall = np.nan f1 = 2 * precision * recall / (precision + recall) return precision, recall, f1
Construct data iter Parameters ---------- batch_size: int num_embed: int pre_trained_word2vec: boolean identify the pre-trained layers or not Returns ---------- train_set: DataIter Train DataIter valid: DataIter Valid DataIter sentences_size: int array dimensions embedded_size: int array dimensions vocab_size: int array dimensions
def data_iter(batch_size, num_embed, pre_trained_word2vec=False): """Construct data iter Parameters ---------- batch_size: int num_embed: int pre_trained_word2vec: boolean identify the pre-trained layers or not Returns ---------- train_set: DataIter Train DataIter valid: DataIter Valid DataIter sentences_size: int array dimensions embedded_size: int array dimensions vocab_size: int array dimensions """ print('Loading data...') if pre_trained_word2vec: word2vec = data_helpers.load_pretrained_word2vec('data/rt.vec') x, y = data_helpers.load_data_with_word2vec(word2vec) # reshape for convolution input x = np.reshape(x, (x.shape[0], 1, x.shape[1], x.shape[2])) embedded_size = x.shape[-1] sentences_size = x.shape[2] vocabulary_size = -1 else: x, y, vocab, vocab_inv = data_helpers.load_data() embedded_size = num_embed sentences_size = x.shape[1] vocabulary_size = len(vocab) # randomly shuffle data np.random.seed(10) shuffle_indices = np.random.permutation(np.arange(len(y))) x_shuffled = x[shuffle_indices] y_shuffled = y[shuffle_indices] # split train/valid set x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:] y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:] print('Train/Valid split: %d/%d' % (len(y_train), len(y_dev))) print('train shape:', x_train.shape) print('valid shape:', x_dev.shape) print('sentence max words', sentences_size) print('embedding size', embedded_size) print('vocab size', vocabulary_size) train_set = mx.io.NDArrayIter( x_train, y_train, batch_size, shuffle=True) valid = mx.io.NDArrayIter( x_dev, y_dev, batch_size) return train_set, valid, sentences_size, embedded_size, vocabulary_size
Generate network symbol Parameters ---------- batch_size: int sentences_size: int num_embed: int vocabulary_size: int num_label: int filter_list: list num_filter: int dropout: int pre_trained_word2vec: boolean identify the pre-trained layers or not Returns ---------- sm: symbol data: list of str data names softmax_label: list of str label names
def sym_gen(batch_size, sentences_size, num_embed, vocabulary_size, num_label=2, filter_list=None, num_filter=100, dropout=0.0, pre_trained_word2vec=False): """Generate network symbol Parameters ---------- batch_size: int sentences_size: int num_embed: int vocabulary_size: int num_label: int filter_list: list num_filter: int dropout: int pre_trained_word2vec: boolean identify the pre-trained layers or not Returns ---------- sm: symbol data: list of str data names softmax_label: list of str label names """ input_x = mx.sym.Variable('data') input_y = mx.sym.Variable('softmax_label') # embedding layer if not pre_trained_word2vec: embed_layer = mx.sym.Embedding(data=input_x, input_dim=vocabulary_size, output_dim=num_embed, name='vocab_embed') conv_input = mx.sym.Reshape(data=embed_layer, target_shape=(batch_size, 1, sentences_size, num_embed)) else: conv_input = input_x # create convolution + (max) pooling layer for each filter operation pooled_outputs = [] for i, filter_size in enumerate(filter_list): convi = mx.sym.Convolution(data=conv_input, kernel=(filter_size, num_embed), num_filter=num_filter) relui = mx.sym.Activation(data=convi, act_type='relu') pooli = mx.sym.Pooling(data=relui, pool_type='max', kernel=(sentences_size - filter_size + 1, 1), stride=(1, 1)) pooled_outputs.append(pooli) # combine all pooled outputs total_filters = num_filter * len(filter_list) concat = mx.sym.Concat(*pooled_outputs, dim=1) h_pool = mx.sym.Reshape(data=concat, target_shape=(batch_size, total_filters)) # dropout layer if dropout > 0.0: h_drop = mx.sym.Dropout(data=h_pool, p=dropout) else: h_drop = h_pool # fully connected cls_weight = mx.sym.Variable('cls_weight') cls_bias = mx.sym.Variable('cls_bias') fc = mx.sym.FullyConnected(data=h_drop, weight=cls_weight, bias=cls_bias, num_hidden=num_label) # softmax output sm = mx.sym.SoftmaxOutput(data=fc, label=input_y, name='softmax') return sm, ('data',), ('softmax_label',)
Train cnn model Parameters ---------- symbol_data: symbol train_iterator: DataIter Train DataIter valid_iterator: DataIter Valid DataIter data_column_names: list of str Defaults to ('data') for a typical model used in image classification target_names: list of str Defaults to ('softmax_label') for a typical model used in image classification
def train(symbol_data, train_iterator, valid_iterator, data_column_names, target_names): """Train cnn model Parameters ---------- symbol_data: symbol train_iterator: DataIter Train DataIter valid_iterator: DataIter Valid DataIter data_column_names: list of str Defaults to ('data') for a typical model used in image classification target_names: list of str Defaults to ('softmax_label') for a typical model used in image classification """ devs = mx.cpu() # default setting if args.gpus is not None: for i in args.gpus.split(','): mx.gpu(int(i)) devs = mx.gpu() module = mx.mod.Module(symbol_data, data_names=data_column_names, label_names=target_names, context=devs) module.fit(train_data=train_iterator, eval_data=valid_iterator, eval_metric='acc', kvstore=args.kv_store, optimizer=args.optimizer, optimizer_params={'learning_rate': args.lr}, initializer=mx.initializer.Uniform(0.1), num_epoch=args.num_epochs, batch_end_callback=mx.callback.Speedometer(args.batch_size, args.disp_batches), epoch_end_callback=save_model())
convert the caltech101 mat file to images Examples -------- python convert_data.py --dataset /home/ubuntu/datasets/caltech101/data/caltech101_silhouettes_28.mat --save_path /home/ubuntu/datasets/caltech101/data/ --invert --height 32 --width 32
def convert_mat_to_images(args): '''convert the caltech101 mat file to images Examples -------- python convert_data.py --dataset /home/ubuntu/datasets/caltech101/data/caltech101_silhouettes_28.mat --save_path /home/ubuntu/datasets/caltech101/data/ --invert --height 32 --width 32 ''' dataset = scipy.io.loadmat("{}/{}".format(args.save_path, args.dataset)) # image pixel data X = dataset['X'] # image class labels (not used in this project) Y = dataset['Y'] total_image = X.shape[0] h=args.height w=args.width for i in range(total_image): img = X[i] img = np.reshape(img, (28, 28)) if args.invert: img = (1-img)*255 else: img = img*255 img = Image.fromarray(img, 'L') img = img.rotate(-90) img = img.resize([h, w], Image.BILINEAR) img.save(args.save_path + '/img' + str(i) + '.png')
Build using CMake
def build(args) -> None: """Build using CMake""" venv_exe = shutil.which('virtualenv') pyexe = shutil.which(args.pyexe) if not venv_exe: logging.warn("virtualenv wasn't found in path, it's recommended to install virtualenv to manage python environments") if not pyexe: logging.warn("Python executable %s not found in path", args.pyexe) if args.cmake_options: cmake = CMake(args.cmake_options) else: cmake = CMake() cmake() create_virtualenv(venv_exe, pyexe, args.venv)
Create a linear regression network for performing SVRG optimization. Parameters ---------- batch_size: int Size of data split update_freq: int Update Frequency for calculating full gradients Returns ---------- di: mx.io.NDArrayIter Data iterator update_freq: SVRGModule An instance of SVRGModule for performing SVRG optimization
def create_network(batch_size, update_freq): """Create a linear regression network for performing SVRG optimization. Parameters ---------- batch_size: int Size of data split update_freq: int Update Frequency for calculating full gradients Returns ---------- di: mx.io.NDArrayIter Data iterator update_freq: SVRGModule An instance of SVRGModule for performing SVRG optimization """ import logging head = '%(asctime)-15s %(message)s' logging.basicConfig(level=logging.INFO, format=head) train_data = np.random.randint(1, 5, [1000, 2]) weights = np.array([1.0, 2.0]) train_label = train_data.dot(weights) di = mx.io.NDArrayIter(train_data, train_label, batch_size=batch_size, shuffle=True, label_name='lin_reg_label') X = mx.sym.Variable('data') Y = mx.symbol.Variable('lin_reg_label') fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden=1) lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro") mod = SVRGModule( symbol=lro, data_names=['data'], label_names=['lin_reg_label'], update_freq=update_freq, logger=logging ) return di, mod
r"""SqueezeNet model from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" <https://arxiv.org/abs/1602.07360>`_ paper. SqueezeNet 1.1 model from the `official SqueezeNet repo <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy. Parameters ---------- version : str Version of squeezenet. Options are '1.0', '1.1'. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters.
def get_squeezenet(version, pretrained=False, ctx=cpu(), root=os.path.join(base.data_dir(), 'models'), **kwargs): r"""SqueezeNet model from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" <https://arxiv.org/abs/1602.07360>`_ paper. SqueezeNet 1.1 model from the `official SqueezeNet repo <https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy. Parameters ---------- version : str Version of squeezenet. Options are '1.0', '1.1'. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. """ net = SqueezeNet(version, **kwargs) if pretrained: from ..model_store import get_model_file net.load_parameters(get_model_file('squeezenet%s'%version, root=root), ctx=ctx) return net
Helper function to parse operator attributes in required format.
def parse_helper(attrs, attrs_name, alt_value=None): """Helper function to parse operator attributes in required format.""" tuple_re = re.compile('\([0-9L|,| ]+\)') if not attrs: return alt_value attrs_str = None if attrs.get(attrs_name) is None else str(attrs.get(attrs_name)) if attrs_str is None: return alt_value attrs_match = tuple_re.search(attrs_str) if attrs_match is not None: if attrs_match.span() == (0, len(attrs_str)): dims = eval(attrs_str) return dims else: raise AttributeError("Malformed %s dimensions: %s" % (attrs_name, str(attrs_str))) return alt_value
Helper function to convert padding format for pad operator.
def transform_padding(pad_width): """Helper function to convert padding format for pad operator. """ num_pad_values = len(pad_width) onnx_pad_width = [0]*num_pad_values start_index = 0 # num_pad_values will always be multiple of 2 end_index = int(num_pad_values/2) for idx in range(0, num_pad_values): if idx % 2 == 0: onnx_pad_width[start_index] = pad_width[idx] start_index += 1 else: onnx_pad_width[end_index] = pad_width[idx] end_index += 1 return onnx_pad_width
Helper function to convert string to list. Used to convert shape attribute string to list format.
def convert_string_to_list(string_val): """Helper function to convert string to list. Used to convert shape attribute string to list format. """ result_list = [] list_string = string_val.split(',') for val in list_string: val = str(val.strip()) val = val.replace("(", "") val = val.replace(")", "") val = val.replace("L", "") val = val.replace("[", "") val = val.replace("]", "") if val not in ("", "None"): result_list.append(int(val)) return result_list
Helper function to get inputs
def get_inputs(node, kwargs): """Helper function to get inputs""" name = node["name"] proc_nodes = kwargs["proc_nodes"] index_lookup = kwargs["index_lookup"] inputs = node["inputs"] attrs = node.get("attrs", {}) input_nodes = [] for ip in inputs: input_node_id = index_lookup[ip[0]] input_nodes.append(proc_nodes[input_node_id].name) return name, input_nodes, attrs
Helper function to create a basic operator node that doesn't contain op specific attrs
def create_basic_op_node(op_name, node, kwargs): """Helper function to create a basic operator node that doesn't contain op specific attrs""" name, input_nodes, _ = get_inputs(node, kwargs) node = onnx.helper.make_node( op_name, input_nodes, [name], name=name ) return [node]
Helper function to convert weights and inputs.
def convert_weights_and_inputs(node, **kwargs): """Helper function to convert weights and inputs. """ name, _, _ = get_inputs(node, kwargs) if kwargs["is_input"] is False: weights = kwargs["weights"] initializer = kwargs["initializer"] np_arr = weights[name] data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np_arr.dtype] dims = np.shape(np_arr) tensor_node = onnx.helper.make_tensor_value_info(name, data_type, dims) initializer.append( onnx.helper.make_tensor( name=name, data_type=data_type, dims=dims, vals=np_arr.flatten().tolist(), raw=False, ) ) return [tensor_node] else: tval_node = onnx.helper.make_tensor_value_info(name, kwargs["in_type"], kwargs["in_shape"]) return [tval_node]
Map MXNet's convolution operator attributes to onnx's Conv operator and return the created node.
def convert_convolution(node, **kwargs): """Map MXNet's convolution operator attributes to onnx's Conv operator and return the created node. """ name, input_nodes, attrs = get_inputs(node, kwargs) kernel_dims = list(parse_helper(attrs, "kernel")) stride_dims = list(parse_helper(attrs, "stride", [1, 1])) pad_dims = list(parse_helper(attrs, "pad", [0, 0])) num_group = int(attrs.get("num_group", 1)) dilations = list(parse_helper(attrs, "dilate", [1, 1])) pad_dims = pad_dims + pad_dims conv_node = onnx.helper.make_node( "Conv", inputs=input_nodes, outputs=[name], kernel_shape=kernel_dims, strides=stride_dims, dilations=dilations, pads=pad_dims, group=num_group, name=name ) return [conv_node]
Map MXNet's deconvolution operator attributes to onnx's ConvTranspose operator and return the created node.
def convert_deconvolution(node, **kwargs): """Map MXNet's deconvolution operator attributes to onnx's ConvTranspose operator and return the created node. """ name, inputs, attrs = get_inputs(node, kwargs) kernel_dims = list(parse_helper(attrs, "kernel")) stride_dims = list(parse_helper(attrs, "stride", [1, 1])) pad_dims = list(parse_helper(attrs, "pad", [0, 0])) num_group = int(attrs.get("num_group", 1)) dilations = list(parse_helper(attrs, "dilate", [1, 1])) adj_dims = list(parse_helper(attrs, "adj", [0, 0])) pad_dims = pad_dims + pad_dims deconv_node = onnx.helper.make_node( "ConvTranspose", inputs=inputs, outputs=[name], kernel_shape=kernel_dims, strides=stride_dims, dilations=dilations, output_padding=adj_dims, pads=pad_dims, group=num_group, name=name ) return [deconv_node]
Map MXNet's crop operator attributes to onnx's Crop operator and return the created node.
def convert_crop(node, **kwargs): """Map MXNet's crop operator attributes to onnx's Crop operator and return the created node. """ name, inputs, attrs = get_inputs(node, kwargs) num_inputs = len(inputs) y, x = list(parse_helper(attrs, "offset", [0, 0])) h, w = list(parse_helper(attrs, "h_w", [0, 0])) if num_inputs > 1: h, w = kwargs["out_shape"][-2:] border = [x, y, x + w, y + h] crop_node = onnx.helper.make_node( "Crop", inputs=[inputs[0]], outputs=[name], border=border, scale=[1, 1], name=name ) logging.warning( "Using an experimental ONNX operator: Crop. " \ "Its definition can change.") return [crop_node]
Map MXNet's FullyConnected operator attributes to onnx's Gemm operator and return the created node.
def convert_fully_connected(node, **kwargs): """Map MXNet's FullyConnected operator attributes to onnx's Gemm operator and return the created node. """ name, input_nodes, attrs = get_inputs(node, kwargs) initializer = kwargs["initializer"] no_bias = get_boolean_attribute_value(attrs, "no_bias") fcnode = [] op_name = "flatten_" + str(kwargs["idx"]) flatten_node = onnx.helper.make_node( 'Flatten', inputs=[input_nodes[0]], outputs=[op_name], name=op_name ) input_nodes[0] = op_name fcnode.append(flatten_node) if no_bias: data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype('int64')] bias_name = "bias" + str(kwargs["idx"]) tensor_node = onnx.helper.make_tensor_value_info(bias_name, data_type, (1,)) initializer.append( onnx.helper.make_tensor( name=bias_name, data_type=data_type, dims=(1,), vals=[0], raw=False, ) ) input_nodes.append(bias_name) fcnode.append(tensor_node) node = onnx.helper.make_node( "Gemm", input_nodes, # input (A, B, C) - C can be in place [name], # output alpha=1.0, beta=1.0, transA=False, transB=True, name=name ) fcnode.append(node) return fcnode
Map MXNet's BatchNorm operator attributes to onnx's BatchNormalization operator and return the created node.
def convert_batchnorm(node, **kwargs): """Map MXNet's BatchNorm operator attributes to onnx's BatchNormalization operator and return the created node. """ name, input_nodes, attrs = get_inputs(node, kwargs) momentum = float(attrs.get("momentum", 0.9)) eps = float(attrs.get("eps", 0.001)) bn_node = onnx.helper.make_node( "BatchNormalization", input_nodes, [name], name=name, epsilon=eps, momentum=momentum, # MXNet computes mean and variance per feature for batchnorm # Default for onnx is across all spatial features. So disabling the parameter. spatial=0 ) return [bn_node]
Map MXNet's Activation operator attributes to onnx's Tanh/Relu operator and return the created node.
def convert_activation(node, **kwargs): """Map MXNet's Activation operator attributes to onnx's Tanh/Relu operator and return the created node. """ name, input_nodes, attrs = get_inputs(node, kwargs) act_type = attrs["act_type"] # Creating a dictionary here, but if this titlecase pattern # mxnet_name.title() act_types = { "tanh": "Tanh", "relu": "Relu", "sigmoid": "Sigmoid", "softrelu": "Softplus", "softsign": "Softsign" } act_name = act_types.get(act_type) if act_name: node = onnx.helper.make_node( act_name, input_nodes, [name], name=name ) else: raise AttributeError( "Activation %s not implemented or recognized in the converter" % act_type ) return [node]
Map MXNet's pad operator attributes to onnx's Pad operator and return the created node.
def convert_pad(node, **kwargs): """Map MXNet's pad operator attributes to onnx's Pad operator and return the created node. """ name, input_nodes, attrs = get_inputs(node, kwargs) mxnet_pad_width = convert_string_to_list(attrs.get("pad_width")) onnx_pad_width = transform_padding(mxnet_pad_width) pad_mode = attrs.get("mode") if pad_mode == "constant": pad_value = float(attrs.get("constant_value")) \ if "constant_value" in attrs else 0.0 node = onnx.helper.make_node( 'Pad', inputs=input_nodes, outputs=[name], mode='constant', value=pad_value, pads=onnx_pad_width, name=name ) else: node = onnx.helper.make_node( 'Pad', inputs=input_nodes, outputs=[name], mode=pad_mode, pads=onnx_pad_width, name=name ) return [node]
create extra transpose node for dot operator
def create_helper_trans_node(op_name, input_node, node_name): """create extra transpose node for dot operator""" node_name = op_name + "_" + node_name trans_node = onnx.helper.make_node( 'Transpose', inputs=[input_node], outputs=[node_name], name=node_name ) return trans_node
Map MXNet's dot operator attributes to onnx's MatMul and Transpose operators based on the values set for transpose_a, transpose_b attributes.
def convert_dot(node, **kwargs): """Map MXNet's dot operator attributes to onnx's MatMul and Transpose operators based on the values set for transpose_a, transpose_b attributes.""" name, input_nodes, attrs = get_inputs(node, kwargs) input_node_a = input_nodes[0] input_node_b = input_nodes[1] trans_a_node = None trans_b_node = None trans_a = get_boolean_attribute_value(attrs, "transpose_a") trans_b = get_boolean_attribute_value(attrs, "transpose_b") op_name = "transpose" + str(kwargs["idx"]) if trans_a: trans_a_node = create_helper_trans_node(op_name, input_nodes[0], 'a') input_node_a = op_name+"_a" if trans_b: trans_b_node = create_helper_trans_node(op_name, input_nodes[1], 'b') input_node_b = op_name+"_b" matmul_node = onnx.helper.make_node( 'MatMul', inputs=[input_node_a, input_node_b], outputs=[name], name=name ) if not trans_a and not trans_b: return [matmul_node] elif trans_a and not trans_b: return [trans_a_node, matmul_node] elif trans_b and not trans_a: return [trans_b_node, matmul_node] else: return [trans_a_node, trans_b_node, matmul_node]
Map MXNet's _linalg_gemm2 operator attributes to onnx's MatMul and Transpose operators based on the values set for transpose_a, transpose_b attributes. Return multiple nodes created.
def convert_linalg_gemm2(node, **kwargs): """Map MXNet's _linalg_gemm2 operator attributes to onnx's MatMul and Transpose operators based on the values set for transpose_a, transpose_b attributes. Return multiple nodes created. """ name, input_nodes, attrs = get_inputs(node, kwargs) # Getting the attributes and assigning default values. alpha = float(attrs.get("alpha", 1.0)) trans_a = get_boolean_attribute_value(attrs, "transpose_a") trans_b = get_boolean_attribute_value(attrs, "transpose_b") op_name = "transpose" + str(kwargs["idx"]) if alpha == 1.0 and trans_a == 0 and trans_b == 0: matmul_node = onnx.helper.make_node( 'MatMul', inputs=input_nodes, outputs=[name], name=name ) return [matmul_node] elif trans_a == 1 and trans_b == 0: op_name = "transpose" + str(kwargs["idx"]) node_name = op_name+"_a" trans_a_node = onnx.helper.make_node( 'Transpose', inputs=[input_nodes[0]], outputs=[op_name+"_a"], name=node_name ) matmul_node = onnx.helper.make_node( 'MatMul', inputs=[node_name, input_nodes[1]], outputs=[name], name=name ) return [trans_a_node, matmul_node] elif trans_a == 0 and trans_b == 1: node_name = op_name + "_b" trans_b_node = onnx.helper.make_node( 'Transpose', inputs=[input_nodes[1]], outputs=[op_name+"_b"], name=node_name ) matmul_node = onnx.helper.make_node( 'MatMul', inputs=[input_nodes[0], node_name], outputs=[name], name=name ) return [trans_b_node, matmul_node] else: node_name_a = op_name+"_a" trans_a_node = onnx.helper.make_node( 'Transpose', inputs=[input_nodes[0]], outputs=[op_name+"_a"], name=node_name_a ) node_name_b = op_name + "_b" trans_b_node = onnx.helper.make_node( 'Transpose', inputs=[input_nodes[1]], outputs=[op_name+"_b"], name=node_name_b ) matmul_node = onnx.helper.make_node( 'MatMul', inputs=input_nodes, outputs=[name], name=name ) return [trans_a_node, trans_b_node, matmul_node]
Map MXNet's Pooling operator attributes to onnx's MaxPool/AveragePool/GlobalMaxPool/GlobalAveragePool operators based on the input node's attributes and return the created node.
def convert_pooling(node, **kwargs): """Map MXNet's Pooling operator attributes to onnx's MaxPool/AveragePool/GlobalMaxPool/GlobalAveragePool operators based on the input node's attributes and return the created node. """ name, input_nodes, attrs = get_inputs(node, kwargs) kernel = eval(attrs["kernel"]) pool_type = attrs["pool_type"] if attrs.get("pool_type") else "max" stride = eval(attrs["stride"]) if attrs.get("stride") else (1, 1) global_pool = get_boolean_attribute_value(attrs, "global_pool") p_value = attrs.get('p_value', 'None') pooling_convention = attrs.get('pooling_convention', 'valid') if pooling_convention == 'full': pooling_warning = "Pooling: ONNX currently doesn't support pooling_convention. " \ "This might lead to shape or accuracy issues. " \ "https://github.com/onnx/onnx/issues/549" logging.warning(pooling_warning) pad_dims = list(parse_helper(attrs, "pad", [0, 0])) pad_dims = pad_dims + pad_dims pool_types = {"max": "MaxPool", "avg": "AveragePool", "lp": "LpPool"} global_pool_types = {"max": "GlobalMaxPool", "avg": "GlobalAveragePool", "lp": "GlobalLpPool"} if pool_type == 'lp' and p_value == 'None': raise AttributeError('ONNX requires a p value for LpPool and GlobalLpPool') if global_pool: if pool_type == 'lp': node = onnx.helper.make_node( global_pool_types[pool_type], input_nodes, # input [name], p=int(p_value), name=name ) else: node = onnx.helper.make_node( global_pool_types[pool_type], input_nodes, # input [name], name=name ) else: if pool_type == 'lp': node = onnx.helper.make_node( pool_types[pool_type], input_nodes, # input [name], p=int(p_value), kernel_shape=kernel, pads=pad_dims, strides=stride, name=name ) else: node = onnx.helper.make_node( pool_types[pool_type], input_nodes, # input [name], kernel_shape=kernel, pads=pad_dims, strides=stride, name=name ) return [node]
Map MXNet's InstanceNorm operator attributes to onnx's InstanceNormalization operator based on the input node's attributes and return the created node.
def convert_instancenorm(node, **kwargs): """Map MXNet's InstanceNorm operator attributes to onnx's InstanceNormalization operator based on the input node's attributes and return the created node. """ name, input_nodes, attrs = get_inputs(node, kwargs) eps = float(attrs.get("eps", 0.001)) node = onnx.helper.make_node( 'InstanceNormalization', inputs=input_nodes, outputs=[name], name=name, epsilon=eps) return [node]