INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
Run encoding to encode the label into the CDF target.
def encode_label(label_data): """Run encoding to encode the label into the CDF target. """ systole = label_data[:, 1] diastole = label_data[:, 2] systole_encode = np.array([ (x < np.arange(600)) for x in systole ], dtype=np.uint8) diastole_encode = np.array([ (x < np.arange(600)) for x in diastole ], dtype=np.uint8) return systole_encode, diastole_encode
coco ann: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id'] iscrowd: crowd instances are handled by marking their overlaps with all categories to -1 and later excluded in training bbox: [x1, y1, w, h] :param index: coco image id :return: roidb entry
def _load_annotation(self, _coco, coco_ind_to_class_ind, index): """ coco ann: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id'] iscrowd: crowd instances are handled by marking their overlaps with all categories to -1 and later excluded in training bbox: [x1, y1, w, h] :param index: coco image id :return: roidb entry """ im_ann = _coco.loadImgs(index)[0] filename = self._image_file_tmpl.format(im_ann['file_name']) width = im_ann['width'] height = im_ann['height'] annIds = _coco.getAnnIds(imgIds=index, iscrowd=None) objs = _coco.loadAnns(annIds) # sanitize bboxes valid_objs = [] for obj in objs: x, y, w, h = obj['bbox'] x1 = np.max((0, x)) y1 = np.max((0, y)) x2 = np.min((width - 1, x1 + np.max((0, w - 1)))) y2 = np.min((height - 1, y1 + np.max((0, h - 1)))) if obj['area'] > 0 and x2 >= x1 and y2 >= y1: obj['clean_bbox'] = [x1, y1, x2, y2] valid_objs.append(obj) objs = valid_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs,), dtype=np.int32) for ix, obj in enumerate(objs): cls = coco_ind_to_class_ind[obj['category_id']] boxes[ix, :] = obj['clean_bbox'] gt_classes[ix] = cls roi_rec = {'index': index, 'image': filename, 'height': height, 'width': width, 'boxes': boxes, 'gt_classes': gt_classes, 'flipped': False} return roi_rec
example results [{"image_id": 42, "category_id": 18, "bbox": [258.15,41.29,348.26,243.78], "score": 0.236}, ...]
def _write_coco_results(self, _coco, detections): """ example results [{"image_id": 42, "category_id": 18, "bbox": [258.15,41.29,348.26,243.78], "score": 0.236}, ...] """ cats = [cat['name'] for cat in _coco.loadCats(_coco.getCatIds())] class_to_coco_ind = dict(zip(cats, _coco.getCatIds())) results = [] for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue logger.info('collecting %s results (%d/%d)' % (cls, cls_ind, self.num_classes - 1)) coco_cat_id = class_to_coco_ind[cls] results.extend(self._coco_results_one_category(detections[cls_ind], coco_cat_id)) logger.info('writing results json to %s' % self._result_file) with open(self._result_file, 'w') as f: json.dump(results, f, sort_keys=True, indent=4)
Draw random samples from an approximately log-uniform or Zipfian distribution. This operation randomly samples *num_sampled* candidates the range of integers [0, range_max). The elements of sampled_candidates are drawn with replacement from the base distribution. The base distribution for this operator is an approximately log-uniform or Zipfian distribution: P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1) This sampler is useful when the true classes approximately follow such a distribution. For example, if the classes represent words in a lexicon sorted in decreasing order of \ frequency. If your classes are not ordered by decreasing frequency, do not use this op. Additionaly, it also returns the number of times each of the \ true classes and the sampled classes is expected to occur. Parameters ---------- true_classes : NDArray A 1-D NDArray of the target classes. num_sampled: int The number of classes to randomly sample. range_max: int The number of possible classes. ctx : Context Device context of output. Default is current context. Returns ------- samples: NDArray The sampled candidate classes in 1-D `int64` dtype. expected_count_true: NDArray The expected count for true classes in 1-D `float64` dtype. expected_count_sample: NDArray The expected count for sampled candidates in 1-D `float64` dtype. Examples -------- >>> true_cls = mx.nd.array([3]) >>> samples, exp_count_true, exp_count_sample = mx.nd.contrib.rand_zipfian(true_cls, 4, 5) >>> samples [1 3 3 3] <NDArray 4 @cpu(0)> >>> exp_count_true [ 0.12453879] <NDArray 1 @cpu(0)> >>> exp_count_sample [ 0.22629439 0.12453879 0.12453879 0.12453879] <NDArray 4 @cpu(0)>
def rand_zipfian(true_classes, num_sampled, range_max, ctx=None): """Draw random samples from an approximately log-uniform or Zipfian distribution. This operation randomly samples *num_sampled* candidates the range of integers [0, range_max). The elements of sampled_candidates are drawn with replacement from the base distribution. The base distribution for this operator is an approximately log-uniform or Zipfian distribution: P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1) This sampler is useful when the true classes approximately follow such a distribution. For example, if the classes represent words in a lexicon sorted in decreasing order of \ frequency. If your classes are not ordered by decreasing frequency, do not use this op. Additionaly, it also returns the number of times each of the \ true classes and the sampled classes is expected to occur. Parameters ---------- true_classes : NDArray A 1-D NDArray of the target classes. num_sampled: int The number of classes to randomly sample. range_max: int The number of possible classes. ctx : Context Device context of output. Default is current context. Returns ------- samples: NDArray The sampled candidate classes in 1-D `int64` dtype. expected_count_true: NDArray The expected count for true classes in 1-D `float64` dtype. expected_count_sample: NDArray The expected count for sampled candidates in 1-D `float64` dtype. Examples -------- >>> true_cls = mx.nd.array([3]) >>> samples, exp_count_true, exp_count_sample = mx.nd.contrib.rand_zipfian(true_cls, 4, 5) >>> samples [1 3 3 3] <NDArray 4 @cpu(0)> >>> exp_count_true [ 0.12453879] <NDArray 1 @cpu(0)> >>> exp_count_sample [ 0.22629439 0.12453879 0.12453879 0.12453879] <NDArray 4 @cpu(0)> """ if ctx is None: ctx = current_context() log_range = math.log(range_max + 1) rand = uniform(0, log_range, shape=(num_sampled,), dtype='float64', ctx=ctx) # make sure sampled_classes are in the range of [0, range_max) sampled_classes = (rand.exp() - 1).astype('int64') % range_max true_cls = true_classes.as_in_context(ctx).astype('float64') expected_count_true = ((true_cls + 2.0) / (true_cls + 1.0)).log() / log_range * num_sampled # cast sampled classes to fp64 to avoid interget division sampled_cls_fp64 = sampled_classes.astype('float64') expected_prob_sampled = ((sampled_cls_fp64 + 2.0) / (sampled_cls_fp64 + 1.0)).log() / log_range expected_count_sampled = expected_prob_sampled * num_sampled return sampled_classes, expected_count_true, expected_count_sampled
Run a for loop with user-defined computation over NDArrays on dimension 0. This operator simulates a for loop and body has the computation for an iteration of the for loop. It runs the computation in body on each slice from the input NDArrays. body takes two arguments as input and outputs a tuple of two elements, as illustrated below:: out, states = body(data1, states) data1 can be either an NDArray or a list of NDArrays. If data is an NDArray, data1 is an NDArray. Otherwise, data1 is a list of NDArrays and has the same size as data. states is a list of NDArrays and have the same size as init_states. Similarly, out can be either an NDArray or a list of NDArrays, which are concatenated as the first output of foreach; states from the last execution of body are the second output of foreach. The computation done by this operator is equivalent to the pseudo code below when the input data is NDArray:: states = init_states outs = [] for i in data.shape[0]: s = data[i] out, states = body(s, states) outs.append(out) outs = stack(*outs) Parameters ---------- body : a Python function. Define computation in an iteration. data: an NDArray or a list of NDArrays. The input data. init_states: an NDArray or nested lists of NDArrays. The initial values of the loop states. name: string. The name of the operator. Returns ------- outputs: an NDArray or nested lists of NDArrays. The output data concatenated from the output of all iterations. states: an NDArray or nested lists of NDArrays. The loop states in the last iteration. Examples -------- >>> step = lambda data, states: (data + states[0], [states[0] * 2]) >>> data = mx.nd.random.uniform(shape=(2, 10)) >>> states = [mx.nd.random.uniform(shape=(10))] >>> outs, states = mx.nd.contrib.foreach(step, data, states)
def foreach(body, data, init_states): """Run a for loop with user-defined computation over NDArrays on dimension 0. This operator simulates a for loop and body has the computation for an iteration of the for loop. It runs the computation in body on each slice from the input NDArrays. body takes two arguments as input and outputs a tuple of two elements, as illustrated below:: out, states = body(data1, states) data1 can be either an NDArray or a list of NDArrays. If data is an NDArray, data1 is an NDArray. Otherwise, data1 is a list of NDArrays and has the same size as data. states is a list of NDArrays and have the same size as init_states. Similarly, out can be either an NDArray or a list of NDArrays, which are concatenated as the first output of foreach; states from the last execution of body are the second output of foreach. The computation done by this operator is equivalent to the pseudo code below when the input data is NDArray:: states = init_states outs = [] for i in data.shape[0]: s = data[i] out, states = body(s, states) outs.append(out) outs = stack(*outs) Parameters ---------- body : a Python function. Define computation in an iteration. data: an NDArray or a list of NDArrays. The input data. init_states: an NDArray or nested lists of NDArrays. The initial values of the loop states. name: string. The name of the operator. Returns ------- outputs: an NDArray or nested lists of NDArrays. The output data concatenated from the output of all iterations. states: an NDArray or nested lists of NDArrays. The loop states in the last iteration. Examples -------- >>> step = lambda data, states: (data + states[0], [states[0] * 2]) >>> data = mx.nd.random.uniform(shape=(2, 10)) >>> states = [mx.nd.random.uniform(shape=(10))] >>> outs, states = mx.nd.contrib.foreach(step, data, states) """ def check_input(inputs, in_type, msg): is_NDArray_or_list = True if isinstance(inputs, list): for i in inputs: if not isinstance(i, in_type): is_NDArray_or_list = False break else: is_NDArray_or_list = isinstance(inputs, in_type) assert is_NDArray_or_list, msg flatten, _ = _flatten(data, "foreach input") check_input(flatten, ndarray.NDArray, "data should be an NDArray or a nested list of NDArrays") flatten, _ = _flatten(init_states, "foreach states") check_input(flatten, ndarray.NDArray, "init_states should be an NDArray or a nested list of NDArrays") not_data_list = isinstance(data, ndarray.NDArray) num_iters = data.shape[0] if not_data_list else data[0].shape[0] states = init_states outputs = [] for i in range(num_iters): if not_data_list: eles = data[i] else: eles = [d[i] for d in data] outs, states = body(eles, states) outs, out_fmt = _flatten(outs, "foreach output") outputs.append(outs) outputs = zip(*outputs) tmp_outputs = [] for out in outputs: tmp_outputs.append(ndarray.op.stack(*out)) outputs = tmp_outputs outputs, _ = _regroup(outputs, out_fmt) return (outputs, states)
Run a while loop with user-defined computation and loop condition. This operator simulates a while loop which iterately does customized computation as long as the condition is satisfied. `loop_vars` is a list of NDArrays on which the computation uses. `cond` is a user-defined function, used as the loop condition. It consumes `loop_vars`, and produces a scalar MXNet NDArray, indicating the termination of the loop. The loop ends when `cond` returns false (zero). The `cond` is variadic, and its signature should be `cond(*loop_vars) => NDArray`. `func` is a user-defined function, used as the loop body. It also consumes `loop_vars`, and produces `step_output` and `new_loop_vars` at each step. In each step, `step_output` should contain the same number elements. Through all steps, the i-th element of `step_output` should have the same shape and dtype. Also, `new_loop_vars` should contain the same number of elements as `loop_vars`, and the corresponding element should have the same shape and dtype. The `func` is variadic, and its signature should be `func(*loop_vars) => (NDArray or nested List[NDArray] step_output, NDArray or nested List[NDArray] new_loop_vars)`. `max_iterations` is a scalar that defines the maximum number of iterations allowed. This function returns two lists. The first list has the length of `|step_output|`, in which the i-th element are all i-th elements of `step_output` from all steps, stacked along axis 0. The second list has the length of `|loop_vars|`, which represents final states of loop variables. .. warning:: For now, the axis 0 of all NDArrays in the first list are `max_iterations`, due to lack of dynamic shape inference. .. warning:: When `cond` is never satisfied, we assume `step_output` is empty, because it cannot be inferred. This is different from the symbolic version. Parameters ---------- cond: a Python function. The loop condition. func: a Python function. The loop body. loop_vars: an NDArray or nested lists of NDArrays. The initial values of the loop variables. max_iterations: a python int. Maximum number of iterations. Returns ------ outputs: an NDArray or nested lists of NDArrays stacked output from each step states: an NDArray or nested lists of NDArrays final state Examples -------- >>> cond = lambda i, s: i <= 5 >>> func = lambda i, s: ([i + s], [i + 1, s + i]) >>> loop_vars = (mx.nd.array([0], dtype="int64"), mx.nd.array([1], dtype="int64")) >>> outputs, states = mx.nd.contrib.while_loop(cond, func, loop_vars, max_iterations=10) >>> outputs [ [[ 1] [ 2] [ 4] [ 7] [11] [16] [...] # undefined value [...] [...] [...]] <NDArray 6x1 @cpu(0)>] >>> states [ [6] <NDArray 1 @cpu(0)>, [16] <NDArray 1 @cpu(0)>]
def while_loop(cond, func, loop_vars, max_iterations=None): """Run a while loop with user-defined computation and loop condition. This operator simulates a while loop which iterately does customized computation as long as the condition is satisfied. `loop_vars` is a list of NDArrays on which the computation uses. `cond` is a user-defined function, used as the loop condition. It consumes `loop_vars`, and produces a scalar MXNet NDArray, indicating the termination of the loop. The loop ends when `cond` returns false (zero). The `cond` is variadic, and its signature should be `cond(*loop_vars) => NDArray`. `func` is a user-defined function, used as the loop body. It also consumes `loop_vars`, and produces `step_output` and `new_loop_vars` at each step. In each step, `step_output` should contain the same number elements. Through all steps, the i-th element of `step_output` should have the same shape and dtype. Also, `new_loop_vars` should contain the same number of elements as `loop_vars`, and the corresponding element should have the same shape and dtype. The `func` is variadic, and its signature should be `func(*loop_vars) => (NDArray or nested List[NDArray] step_output, NDArray or nested List[NDArray] new_loop_vars)`. `max_iterations` is a scalar that defines the maximum number of iterations allowed. This function returns two lists. The first list has the length of `|step_output|`, in which the i-th element are all i-th elements of `step_output` from all steps, stacked along axis 0. The second list has the length of `|loop_vars|`, which represents final states of loop variables. .. warning:: For now, the axis 0 of all NDArrays in the first list are `max_iterations`, due to lack of dynamic shape inference. .. warning:: When `cond` is never satisfied, we assume `step_output` is empty, because it cannot be inferred. This is different from the symbolic version. Parameters ---------- cond: a Python function. The loop condition. func: a Python function. The loop body. loop_vars: an NDArray or nested lists of NDArrays. The initial values of the loop variables. max_iterations: a python int. Maximum number of iterations. Returns ------ outputs: an NDArray or nested lists of NDArrays stacked output from each step states: an NDArray or nested lists of NDArrays final state Examples -------- >>> cond = lambda i, s: i <= 5 >>> func = lambda i, s: ([i + s], [i + 1, s + i]) >>> loop_vars = (mx.nd.array([0], dtype="int64"), mx.nd.array([1], dtype="int64")) >>> outputs, states = mx.nd.contrib.while_loop(cond, func, loop_vars, max_iterations=10) >>> outputs [ [[ 1] [ 2] [ 4] [ 7] [11] [16] [...] # undefined value [...] [...] [...]] <NDArray 6x1 @cpu(0)>] >>> states [ [6] <NDArray 1 @cpu(0)>, [16] <NDArray 1 @cpu(0)>] """ def _to_python_scalar(inputs, type_, name): """Converts "inputs", possibly typed mxnet NDArray, a numpy ndarray, other python types, to the given type """ if isinstance(inputs, ndarray.NDArray): inputs = inputs.asscalar() try: inputs = type_(inputs) except: raise ValueError("Cannot convert %s to python %s" % (name, type_.__name__)) return inputs def _func_wrapper(loop_vars): """This wrapper unifies "func: loop_vars -> new_loop_vars" and "func: loop_vars -> (step_output, new_loop_vars)" into "func: loop_vars -> (None or tuple of step_outputs, tuple of new_loop_vars) """ step_output, new_loop_vars = func(*loop_vars) if step_output is None: step_output = [] if new_loop_vars is None: new_loop_vars = [] if isinstance(step_output, tuple): step_output = list(step_output) if isinstance(new_loop_vars, tuple): new_loop_vars = list(new_loop_vars) new_loop_vars = _as_list(new_loop_vars) if len(loop_vars) != len(new_loop_vars): raise ValueError("The length of loop_vars should be consistent during the loop") return step_output, new_loop_vars if max_iterations is None: raise ValueError("max_iterations should be specified") max_iterations = _to_python_scalar(max_iterations, int, "max_iteration") # It should be work as fine if loop_vars are empty I guess, # but it is semantically unnecessary to include this case. if len(loop_vars) == 0: raise ValueError("loop_vars should contain at least one element") steps = 0 outputs = [] # there might not be an iteration. out_fmt = None not_loop_var_list = isinstance(loop_vars, ndarray.NDArray) loop_vars = _as_list(loop_vars) while steps < max_iterations and \ _to_python_scalar(cond(*loop_vars), bool, "Return value of cond"): # loop condition step_output, loop_vars = _func_wrapper(loop_vars) step_output, out_fmt = _flatten(step_output, "while output") outputs.append(step_output) steps += 1 if len(outputs) != steps or len(step_output) != len(outputs[0]): raise ValueError("Number of elements in step_output should be the same in each step") stacked_outputs = [] for i_th, items in enumerate(zip(*outputs), 1): # `mx.ndarray.pad` only support 4-D or 5-D inputs for now # so we could not use it. items = [x.expand_dims(0) for x in items] if steps != max_iterations and items: pad_shape = [max_iterations - steps] + list(items[0].shape[1: ]) pad = ndarray.empty( shape=pad_shape, ctx=items[0].context, dtype=items[0].dtype, ) items = list(items) + [pad] try: stacked_outputs.append(ndarray.op.concat(*items, dim=0)) except ValueError: raise ValueError("\n".join( ["Shapes of %d-th elements in step_outputs are inconsistent, which are:" % i_th] + [" Step %d, shape is %s" % (i, str(x.shape)) for i, x in enumerate(items)] )) if out_fmt is not None: stacked_outputs, _ = _regroup(stacked_outputs, out_fmt) if not_loop_var_list: loop_vars = loop_vars[0] return stacked_outputs, loop_vars
Run an if-then-else using user-defined condition and computation This operator simulates a if-like branch which chooses to do one of the two customized computations according to the specified condition. `pred` is a scalar MXNet NDArray, indicating which branch of computation should be used. `then_func` is a user-defined function, used as computation of the then branch. It produces `outputs`, which is a list of NDArrays. The signature of `then_func` should be `then_func() => NDArray or nested List[NDArray]`. `else_func` is a user-defined function, used as computation of the else branch. It produces `outputs`, which is a list of NDArrays. The signature of `else_func` should be `else_func() => NDArray or nested List[NDArray]`. The `outputs` produces by `then_func` and `else_func` should have the same number of elements, all of which should be in the same shape, of the same dtype and stype. This function returns a list of symbols, representing the computation result. Parameters ---------- pred: a MXNet NDArray representing a scalar. The branch condition. then_func: a Python function. The computation to be executed if `pred` is true. else_func: a Python function. The computation to be executed if `pred` is false. Returns ------- outputs: an NDArray or nested lists of NDArrays, representing the result of computation. Examples -------- >>> a, b = mx.nd.array([1]), mx.nd.array([2]) >>> pred = a * b < 5 >>> then_func = lambda: (a + 5) * (b + 5) >>> else_func = lambda: (a - 5) * (b - 5) >>> outputs = mx.nd.contrib.cond(pred, then_func, else_func) >>> outputs[0] [42.] <NDArray 1 @cpu(0)>
def cond(pred, then_func, else_func): """Run an if-then-else using user-defined condition and computation This operator simulates a if-like branch which chooses to do one of the two customized computations according to the specified condition. `pred` is a scalar MXNet NDArray, indicating which branch of computation should be used. `then_func` is a user-defined function, used as computation of the then branch. It produces `outputs`, which is a list of NDArrays. The signature of `then_func` should be `then_func() => NDArray or nested List[NDArray]`. `else_func` is a user-defined function, used as computation of the else branch. It produces `outputs`, which is a list of NDArrays. The signature of `else_func` should be `else_func() => NDArray or nested List[NDArray]`. The `outputs` produces by `then_func` and `else_func` should have the same number of elements, all of which should be in the same shape, of the same dtype and stype. This function returns a list of symbols, representing the computation result. Parameters ---------- pred: a MXNet NDArray representing a scalar. The branch condition. then_func: a Python function. The computation to be executed if `pred` is true. else_func: a Python function. The computation to be executed if `pred` is false. Returns ------- outputs: an NDArray or nested lists of NDArrays, representing the result of computation. Examples -------- >>> a, b = mx.nd.array([1]), mx.nd.array([2]) >>> pred = a * b < 5 >>> then_func = lambda: (a + 5) * (b + 5) >>> else_func = lambda: (a - 5) * (b - 5) >>> outputs = mx.nd.contrib.cond(pred, then_func, else_func) >>> outputs[0] [42.] <NDArray 1 @cpu(0)> """ def _to_python_scalar(inputs, type_, name): """Converts "inputs", possibly typed mxnet NDArray, a numpy ndarray, other python types, to the given type """ if hasattr(inputs, "asscalar"): inputs = inputs.asscalar() try: inputs = type_(inputs) except: raise ValueError("Cannot convert %s to python %s" % (name, type_.__name__)) return inputs branch = _to_python_scalar(pred, bool, "pred") if branch: return then_func() else: return else_func()
Performs an element-wise check to determine if the NDArray contains an infinite element or not. Parameters ---------- input : NDArray An N-D NDArray. Returns ------- output: NDArray The output NDarray, with same shape as input, where 1 indicates the array element is finite i.e. not equal to positive or negative infinity and 0 in places where it is positive or negative infinity. Examples -------- >>> data = mx.nd.array([np.inf, -np.inf, np.NINF, -1]) >>> output = mx.nd.contrib.isfinite(data) >>> output [0. 0. 0. 1.] <NDArray 4 @cpu(0)>
def isfinite(data): """Performs an element-wise check to determine if the NDArray contains an infinite element or not. Parameters ---------- input : NDArray An N-D NDArray. Returns ------- output: NDArray The output NDarray, with same shape as input, where 1 indicates the array element is finite i.e. not equal to positive or negative infinity and 0 in places where it is positive or negative infinity. Examples -------- >>> data = mx.nd.array([np.inf, -np.inf, np.NINF, -1]) >>> output = mx.nd.contrib.isfinite(data) >>> output [0. 0. 0. 1.] <NDArray 4 @cpu(0)> """ is_data_not_nan = data == data is_data_not_infinite = data.abs() != np.inf return ndarray.logical_and(is_data_not_infinite, is_data_not_nan)
LSTM Cell symbol
def vanilla_lstm(num_hidden, indata, prev_state, param, seqidx, layeridx, is_batchnorm=False, gamma=None, beta=None, name=None): """LSTM Cell symbol""" i2h = mx.sym.FullyConnected(data=indata, weight=param.i2h_weight, bias=param.i2h_bias, num_hidden=num_hidden * 4, name="t%d_l%d_i2h" % (seqidx, layeridx)) if is_batchnorm: if name is not None: i2h = batchnorm(net=i2h, gamma=gamma, beta=beta, name="%s_batchnorm" % name) else: i2h = batchnorm(net=i2h, gamma=gamma, beta=beta) h2h = mx.sym.FullyConnected(data=prev_state.h, weight=param.h2h_weight, bias=param.h2h_bias, num_hidden=num_hidden * 4, name="t%d_l%d_h2h" % (seqidx, layeridx)) gates = i2h + h2h slice_gates = mx.sym.SliceChannel(gates, num_outputs=4, name="t%d_l%d_slice" % (seqidx, layeridx)) in_gate = mx.sym.Activation(slice_gates[0], act_type="sigmoid") in_transform = mx.sym.Activation(slice_gates[1], act_type="tanh") forget_gate = mx.sym.Activation(slice_gates[2], act_type="sigmoid") out_gate = mx.sym.Activation(slice_gates[3], act_type="sigmoid") next_c = (forget_gate * prev_state.c) + (in_gate * in_transform) next_h = out_gate * mx.sym.Activation(next_c, act_type="tanh") return LSTMState(c=next_c, h=next_h)
LSTM Cell symbol
def lstm(num_hidden, indata, prev_state, param, seqidx, layeridx, dropout=0., num_hidden_proj=0, is_batchnorm=False, gamma=None, beta=None, name=None): """LSTM Cell symbol""" # dropout input if dropout > 0.: indata = mx.sym.Dropout(data=indata, p=dropout) i2h = mx.sym.FullyConnected(data=indata, weight=param.i2h_weight, bias=param.i2h_bias, num_hidden=num_hidden * 4, name="t%d_l%d_i2h" % (seqidx, layeridx)) if is_batchnorm: if name is not None: i2h = batchnorm(net=i2h, gamma=gamma, beta=beta, name="%s_batchnorm" % name) else: i2h = batchnorm(net=i2h, gamma=gamma, beta=beta) h2h = mx.sym.FullyConnected(data=prev_state.h, weight=param.h2h_weight, # bias=param.h2h_bias, no_bias=True, num_hidden=num_hidden * 4, name="t%d_l%d_h2h" % (seqidx, layeridx)) gates = i2h + h2h slice_gates = mx.sym.SliceChannel(gates, num_outputs=4, name="t%d_l%d_slice" % (seqidx, layeridx)) Wcidc = mx.sym.broadcast_mul(param.c2i_bias, prev_state.c) + slice_gates[0] in_gate = mx.sym.Activation(Wcidc, act_type="sigmoid") in_transform = mx.sym.Activation(slice_gates[1], act_type="tanh") Wcfdc = mx.sym.broadcast_mul(param.c2f_bias, prev_state.c) + slice_gates[2] forget_gate = mx.sym.Activation(Wcfdc, act_type="sigmoid") next_c = (forget_gate * prev_state.c) + (in_gate * in_transform) Wcoct = mx.sym.broadcast_mul(param.c2o_bias, next_c) + slice_gates[3] out_gate = mx.sym.Activation(Wcoct, act_type="sigmoid") next_h = out_gate * mx.sym.Activation(next_c, act_type="tanh") if num_hidden_proj > 0: proj_next_h = mx.sym.FullyConnected(data=next_h, weight=param.ph2h_weight, no_bias=True, num_hidden=num_hidden_proj, name="t%d_l%d_ph2h" % (seqidx, layeridx)) return LSTMState(c=next_c, h=proj_next_h) else: return LSTMState(c=next_c, h=next_h)
read, resize, transform image, return im_tensor, im_info, gt_boxes roi_rec should have keys: ["image", "boxes", "gt_classes", "flipped"] 0 --- x (width, second dim of im) | y (height, first dim of im)
def get_image(roi_rec, short, max_size, mean, std): """ read, resize, transform image, return im_tensor, im_info, gt_boxes roi_rec should have keys: ["image", "boxes", "gt_classes", "flipped"] 0 --- x (width, second dim of im) | y (height, first dim of im) """ im = imdecode(roi_rec['image']) if roi_rec["flipped"]: im = im[:, ::-1, :] im, im_scale = resize(im, short, max_size) height, width = im.shape[:2] im_info = np.array([height, width, im_scale], dtype=np.float32) im_tensor = transform(im, mean, std) # gt boxes: (x1, y1, x2, y2, cls) if roi_rec['gt_classes'].size > 0: gt_inds = np.where(roi_rec['gt_classes'] != 0)[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = roi_rec['boxes'][gt_inds, :] gt_boxes[:, 4] = roi_rec['gt_classes'][gt_inds] # scale gt_boxes gt_boxes[:, 0:4] *= im_scale else: gt_boxes = np.empty((0, 5), dtype=np.float32) return im_tensor, im_info, gt_boxes
Return BGR image read by opencv
def imdecode(image_path): """Return BGR image read by opencv""" import os assert os.path.exists(image_path), image_path + ' not found' im = cv2.imread(image_path) return im
only resize input image to target size and return scale :param im: BGR image input by opencv :param short: one dimensional size (the short side) :param max_size: one dimensional max size (the long side) :return: resized image (NDArray) and scale (float)
def resize(im, short, max_size): """ only resize input image to target size and return scale :param im: BGR image input by opencv :param short: one dimensional size (the short side) :param max_size: one dimensional max size (the long side) :return: resized image (NDArray) and scale (float) """ im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(short) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) return im, im_scale
transform into mxnet tensor, subtract pixel size and transform to correct format :param im: [height, width, channel] in BGR :param mean: [RGB pixel mean] :param std: [RGB pixel std var] :return: [batch, channel, height, width]
def transform(im, mean, std): """ transform into mxnet tensor, subtract pixel size and transform to correct format :param im: [height, width, channel] in BGR :param mean: [RGB pixel mean] :param std: [RGB pixel std var] :return: [batch, channel, height, width] """ im_tensor = np.zeros((3, im.shape[0], im.shape[1])) for i in range(3): im_tensor[i, :, :] = (im[:, :, 2 - i] - mean[i]) / std[i] return im_tensor
transform from mxnet im_tensor to ordinary RGB image im_tensor is limited to one image :param im_tensor: [batch, channel, height, width] :param mean: [RGB pixel mean] :param std: [RGB pixel std var] :return: im [height, width, channel(RGB)]
def transform_inverse(im_tensor, mean, std): """ transform from mxnet im_tensor to ordinary RGB image im_tensor is limited to one image :param im_tensor: [batch, channel, height, width] :param mean: [RGB pixel mean] :param std: [RGB pixel std var] :return: im [height, width, channel(RGB)] """ assert im_tensor.shape[0] == 3 im = im_tensor.transpose((1, 2, 0)) im = im * std + mean im = im.astype(np.uint8) return im
vertically stack tensors by adding a new axis expand dims if only 1 tensor :param tensor_list: list of tensor to be stacked vertically :param pad: label to pad with :return: tensor with max shape
def tensor_vstack(tensor_list, pad=0): """ vertically stack tensors by adding a new axis expand dims if only 1 tensor :param tensor_list: list of tensor to be stacked vertically :param pad: label to pad with :return: tensor with max shape """ if len(tensor_list) == 1: return tensor_list[0][np.newaxis, :] ndim = len(tensor_list[0].shape) dimensions = [len(tensor_list)] # first dim is batch size for dim in range(ndim): dimensions.append(max([tensor.shape[dim] for tensor in tensor_list])) dtype = tensor_list[0].dtype if pad == 0: all_tensor = np.zeros(tuple(dimensions), dtype=dtype) elif pad == 1: all_tensor = np.ones(tuple(dimensions), dtype=dtype) else: all_tensor = np.full(tuple(dimensions), pad, dtype=dtype) if ndim == 1: for ind, tensor in enumerate(tensor_list): all_tensor[ind, :tensor.shape[0]] = tensor elif ndim == 2: for ind, tensor in enumerate(tensor_list): all_tensor[ind, :tensor.shape[0], :tensor.shape[1]] = tensor elif ndim == 3: for ind, tensor in enumerate(tensor_list): all_tensor[ind, :tensor.shape[0], :tensor.shape[1], :tensor.shape[2]] = tensor else: raise Exception('Sorry, unimplemented.') return all_tensor
Get distance matrix given a matrix. Used in testing.
def get_distance_matrix(x): """Get distance matrix given a matrix. Used in testing.""" square = nd.sum(x ** 2.0, axis=1, keepdims=True) distance_square = square + square.transpose() - (2.0 * nd.dot(x, x.transpose())) return nd.sqrt(distance_square)
Evaluate embeddings based on Recall@k.
def evaluate_emb(emb, labels): """Evaluate embeddings based on Recall@k.""" d_mat = get_distance_matrix(emb) d_mat = d_mat.asnumpy() labels = labels.asnumpy() names = [] accs = [] for k in [1, 2, 4, 8, 16]: names.append('Recall@%d' % k) correct, cnt = 0.0, 0.0 for i in range(emb.shape[0]): d_mat[i, i] = 1e10 nns = argpartition(d_mat[i], k)[:k] if any(labels[i] == labels[nn] for nn in nns): correct += 1 cnt += 1 accs.append(correct/cnt) return names, accs
Get learning rate based on schedule.
def get_lr(lr, epoch, steps, factor): """Get learning rate based on schedule.""" for s in steps: if epoch >= s: lr *= factor return lr
Training function.
def train(epochs, ctx): """Training function.""" if isinstance(ctx, mx.Context): ctx = [ctx] net.initialize(mx.init.Xavier(magnitude=2), ctx=ctx) opt_options = {'learning_rate': opt.lr, 'wd': opt.wd} if opt.optimizer == 'sgd': opt_options['momentum'] = 0.9 if opt.optimizer == 'adam': opt_options['epsilon'] = 1e-7 trainer = gluon.Trainer(net.collect_params(), opt.optimizer, opt_options, kvstore=opt.kvstore) if opt.lr_beta > 0.0: # Jointly train class-specific beta. # See "sampling matters in deep embedding learning" paper for details. beta.initialize(mx.init.Constant(opt.beta), ctx=ctx) trainer_beta = gluon.Trainer([beta], 'sgd', {'learning_rate': opt.lr_beta, 'momentum': 0.9}, kvstore=opt.kvstore) loss = MarginLoss(margin=opt.margin, nu=opt.nu) best_val = 0.0 for epoch in range(epochs): tic = time.time() prev_loss, cumulative_loss = 0.0, 0.0 # Learning rate schedule. trainer.set_learning_rate(get_lr(opt.lr, epoch, steps, opt.factor)) logging.info('Epoch %d learning rate=%f', epoch, trainer.learning_rate) if opt.lr_beta > 0.0: trainer_beta.set_learning_rate(get_lr(opt.lr_beta, epoch, steps, opt.factor)) logging.info('Epoch %d beta learning rate=%f', epoch, trainer_beta.learning_rate) # Inner training loop. for i in range(200): batch = train_data.next() data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0) label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0) Ls = [] with ag.record(): for x, y in zip(data, label): a_indices, anchors, positives, negatives, _ = net(x) if opt.lr_beta > 0.0: L = loss(anchors, positives, negatives, beta, y[a_indices]) else: L = loss(anchors, positives, negatives, opt.beta, None) # Store the loss and do backward after we have done forward # on all GPUs for better speed on multiple GPUs. Ls.append(L) cumulative_loss += nd.mean(L).asscalar() for L in Ls: L.backward() # Update. trainer.step(batch.data[0].shape[0]) if opt.lr_beta > 0.0: trainer_beta.step(batch.data[0].shape[0]) if (i+1) % opt.log_interval == 0: logging.info('[Epoch %d, Iter %d] training loss=%f' % ( epoch, i+1, cumulative_loss - prev_loss)) prev_loss = cumulative_loss logging.info('[Epoch %d] training loss=%f'%(epoch, cumulative_loss)) logging.info('[Epoch %d] time cost: %f'%(epoch, time.time()-tic)) names, val_accs = test(ctx) for name, val_acc in zip(names, val_accs): logging.info('[Epoch %d] validation: %s=%f'%(epoch, name, val_acc)) if val_accs[0] > best_val: best_val = val_accs[0] logging.info('Saving %s.' % opt.save_model_prefix) net.save_parameters('%s.params' % opt.save_model_prefix) return best_val
Returns symbol for LSTM model up to loss/softmax
def _lstm_unroll_base(num_lstm_layer, seq_len, num_hidden): """ Returns symbol for LSTM model up to loss/softmax""" param_cells = [] last_states = [] for i in range(num_lstm_layer): param_cells.append(LSTMParam(i2h_weight=mx.sym.Variable("l%d_i2h_weight" % i), i2h_bias=mx.sym.Variable("l%d_i2h_bias" % i), h2h_weight=mx.sym.Variable("l%d_h2h_weight" % i), h2h_bias=mx.sym.Variable("l%d_h2h_bias" % i))) state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i), h=mx.sym.Variable("l%d_init_h" % i)) last_states.append(state) assert len(last_states) == num_lstm_layer # embedding layer data = mx.sym.Variable('data') wordvec = mx.sym.SliceChannel(data=data, num_outputs=seq_len, squeeze_axis=1) hidden_all = [] for seqidx in range(seq_len): hidden = wordvec[seqidx] for i in range(num_lstm_layer): next_state = _lstm( num_hidden=num_hidden, indata=hidden, prev_state=last_states[i], param=param_cells[i], seqidx=seqidx, layeridx=i) hidden = next_state.h last_states[i] = next_state hidden_all.append(hidden) hidden_concat = mx.sym.Concat(*hidden_all, dim=0) pred_fc = mx.sym.FullyConnected(data=hidden_concat, num_hidden=11, name="pred_fc") return pred_fc
Adds Symbol.contrib.ctc_loss on top of pred symbol and returns the resulting symbol
def _add_warp_ctc_loss(pred, seq_len, num_label, label): """ Adds Symbol.contrib.ctc_loss on top of pred symbol and returns the resulting symbol """ label = mx.sym.Reshape(data=label, shape=(-1,)) label = mx.sym.Cast(data=label, dtype='int32') return mx.sym.WarpCTC(data=pred, label=label, label_length=num_label, input_length=seq_len)
Adds Symbol.WapCTC on top of pred symbol and returns the resulting symbol
def _add_mxnet_ctc_loss(pred, seq_len, label): """ Adds Symbol.WapCTC on top of pred symbol and returns the resulting symbol """ pred_ctc = mx.sym.Reshape(data=pred, shape=(-4, seq_len, -1, 0)) loss = mx.sym.contrib.ctc_loss(data=pred_ctc, label=label) ctc_loss = mx.sym.MakeLoss(loss) softmax_class = mx.symbol.SoftmaxActivation(data=pred) softmax_loss = mx.sym.MakeLoss(softmax_class) softmax_loss = mx.sym.BlockGrad(softmax_loss) return mx.sym.Group([softmax_loss, ctc_loss])
Adds CTC loss on top of pred symbol and returns the resulting symbol
def _add_ctc_loss(pred, seq_len, num_label, loss_type): """ Adds CTC loss on top of pred symbol and returns the resulting symbol """ label = mx.sym.Variable('label') if loss_type == 'warpctc': print("Using WarpCTC Loss") sm = _add_warp_ctc_loss(pred, seq_len, num_label, label) else: print("Using MXNet CTC Loss") assert loss_type == 'ctc' sm = _add_mxnet_ctc_loss(pred, seq_len, label) return sm
Creates an unrolled LSTM symbol for inference if loss_type is not specified, and for training if loss_type is specified. loss_type must be one of 'ctc' or 'warpctc' Parameters ---------- num_lstm_layer: int seq_len: int num_hidden: int num_label: int loss_type: str 'ctc' or 'warpctc' Returns ------- mxnet.symbol.symbol.Symbol
def lstm_unroll(num_lstm_layer, seq_len, num_hidden, num_label, loss_type=None): """ Creates an unrolled LSTM symbol for inference if loss_type is not specified, and for training if loss_type is specified. loss_type must be one of 'ctc' or 'warpctc' Parameters ---------- num_lstm_layer: int seq_len: int num_hidden: int num_label: int loss_type: str 'ctc' or 'warpctc' Returns ------- mxnet.symbol.symbol.Symbol """ # Create the base (shared between training and inference) and add loss to the end pred = _lstm_unroll_base(num_lstm_layer, seq_len, num_hidden) if loss_type: # Training mode, add loss return _add_ctc_loss(pred, seq_len, num_label, loss_type) else: # Inference mode, add softmax return mx.sym.softmax(data=pred, name='softmax')
Returns name and shape of init states of LSTM network Parameters ---------- batch_size: list of tuple of str and tuple of int and int num_lstm_layer: int num_hidden: int Returns ------- list of tuple of str and tuple of int and int
def init_states(batch_size, num_lstm_layer, num_hidden): """ Returns name and shape of init states of LSTM network Parameters ---------- batch_size: list of tuple of str and tuple of int and int num_lstm_layer: int num_hidden: int Returns ------- list of tuple of str and tuple of int and int """ init_c = [('l%d_init_c' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] return init_c + init_h
ctypes implementation of imperative invoke wrapper
def _imperative_invoke(handle, ndargs, keys, vals, out): """ctypes implementation of imperative invoke wrapper""" if out is not None: original_output = out if isinstance(out, NDArrayBase): out = (out,) num_output = ctypes.c_int(len(out)) output_vars = c_handle_array(out) output_vars = ctypes.cast(output_vars, ctypes.POINTER(NDArrayHandle)) else: original_output = None output_vars = ctypes.POINTER(NDArrayHandle)() num_output = ctypes.c_int(0) # return output stypes to avoid the c_api call for checking # a handle's stype in _ndarray_cls out_stypes = ctypes.POINTER(ctypes.c_int)() check_call(_LIB.MXImperativeInvokeEx( ctypes.c_void_p(handle), ctypes.c_int(len(ndargs)), c_handle_array(ndargs), ctypes.byref(num_output), ctypes.byref(output_vars), ctypes.c_int(len(keys)), c_str_array(keys), c_str_array([str(s) for s in vals]), ctypes.byref(out_stypes))) if original_output is not None: return original_output if num_output.value == 1: return _ndarray_cls(ctypes.cast(output_vars[0], NDArrayHandle), stype=out_stypes[0]) else: return [_ndarray_cls(ctypes.cast(output_vars[i], NDArrayHandle), stype=out_stypes[i]) for i in range(num_output.value)]
Set status to training/not training. When training, graph will be constructed for gradient computation. Operators will also run with ctx.is_train=True. For example, Dropout will drop inputs randomly when is_train=True while simply passing through if is_train=False. Parameters ---------- is_train: bool Returns ------- previous state before this set.
def set_is_training(is_train): """Set status to training/not training. When training, graph will be constructed for gradient computation. Operators will also run with ctx.is_train=True. For example, Dropout will drop inputs randomly when is_train=True while simply passing through if is_train=False. Parameters ---------- is_train: bool Returns ------- previous state before this set. """ prev = ctypes.c_int() check_call(_LIB.MXAutogradSetIsTraining( ctypes.c_int(is_train), ctypes.byref(prev))) check_call(_LIB.MXAutogradSetIsRecording( ctypes.c_int(is_train), ctypes.byref(prev))) return bool(prev.value)
Compute the gradients of outputs w.r.t variables. Parameters ---------- outputs: list of NDArray out_grads: list of NDArray or None
def backward(outputs, out_grads=None, retain_graph=False): """Compute the gradients of outputs w.r.t variables. Parameters ---------- outputs: list of NDArray out_grads: list of NDArray or None """ assert isinstance(outputs, (list, tuple)), \ "outputs must be a list or tuple of NDArrays" if out_grads is None: check_call(_LIB.MXAutogradBackward( len(outputs), c_handle_array(outputs), ctypes.c_void_p(0), ctypes.c_int(retain_graph))) return ograd_handles = [] for arr in out_grads: if arr is not None: ograd_handles.append(arr.handle) else: ograd_handles.append(NDArrayHandle(0)) assert len(ograd_handles) == len(outputs), \ "outputs and out_grads must have the same length" check_call(_LIB.MXAutogradBackward( len(outputs), c_handle_array(outputs), c_array(NDArrayHandle, ograd_handles), ctypes.c_int(retain_graph)))
Return function that computes both gradient of arguments and loss value. Parameters ---------- func: a python function The forward (loss) function. argnum: an int or a list of int The index of argument to calculate gradient for. Returns ------- grad_and_loss_func: a python function A function that would compute both the gradient of arguments and loss value.
def grad_and_loss(func, argnum=None): """Return function that computes both gradient of arguments and loss value. Parameters ---------- func: a python function The forward (loss) function. argnum: an int or a list of int The index of argument to calculate gradient for. Returns ------- grad_and_loss_func: a python function A function that would compute both the gradient of arguments and loss value. """ @functools.wraps(func) def wrapped(*args): """Wrapped function.""" variables = args if argnum is not None: argnum_ = argnum if isinstance(argnum, list) else [argnum] variables = [args[i] for i in argnum_] for x in variables: assert isinstance(x, NDArray), "type of autograd input should NDArray." grads = [zeros_like(x) for x in variables] mark_variables(variables, grads) with train_section(): outputs = func(*args) compute_gradient([outputs] if isinstance(outputs, NDArray) else outputs) return grads, outputs return wrapped
Return function that computes gradient of arguments. Parameters ---------- func: a python function The forward (loss) function. argnum: an int or a list of int The index of argument to calculate gradient for. Returns ------- grad_func: a python function A function that would compute the gradient of arguments. Examples -------- >>> # autograd supports dynamic graph which is changed >>> # every instance >>> def func(x): >>> r = random.randint(0, 1) >>> if r % 2: >>> return x**2 >>> else: >>> return x/3 >>> # use `grad(func)` to get the gradient function >>> for x in range(10): >>> grad_func = grad(func) >>> inputs = nd.array([[1, 2, 3], [4, 5, 6]]) >>> grad_vals = grad_func(inputs)
def grad(func, argnum=None): """Return function that computes gradient of arguments. Parameters ---------- func: a python function The forward (loss) function. argnum: an int or a list of int The index of argument to calculate gradient for. Returns ------- grad_func: a python function A function that would compute the gradient of arguments. Examples -------- >>> # autograd supports dynamic graph which is changed >>> # every instance >>> def func(x): >>> r = random.randint(0, 1) >>> if r % 2: >>> return x**2 >>> else: >>> return x/3 >>> # use `grad(func)` to get the gradient function >>> for x in range(10): >>> grad_func = grad(func) >>> inputs = nd.array([[1, 2, 3], [4, 5, 6]]) >>> grad_vals = grad_func(inputs) """ grad_with_loss_func = grad_and_loss(func, argnum) @functools.wraps(grad_with_loss_func) def wrapped(*args): return grad_with_loss_func(*args)[0] return wrapped
Splits an NDArray into `num_slice` slices along `batch_axis`. Usually used for data parallelism where each slices is sent to one device (i.e. GPU). Parameters ---------- data : NDArray A batch of data. num_slice : int Number of desired slices. batch_axis : int, default 0 The axis along which to slice. even_split : bool, default True Whether to force all slices to have the same number of elements. If `True`, an error will be raised when `num_slice` does not evenly divide `data.shape[batch_axis]`. Returns ------- list of NDArray Return value is a list even if `num_slice` is 1.
def split_data(data, num_slice, batch_axis=0, even_split=True): """Splits an NDArray into `num_slice` slices along `batch_axis`. Usually used for data parallelism where each slices is sent to one device (i.e. GPU). Parameters ---------- data : NDArray A batch of data. num_slice : int Number of desired slices. batch_axis : int, default 0 The axis along which to slice. even_split : bool, default True Whether to force all slices to have the same number of elements. If `True`, an error will be raised when `num_slice` does not evenly divide `data.shape[batch_axis]`. Returns ------- list of NDArray Return value is a list even if `num_slice` is 1. """ size = data.shape[batch_axis] if even_split and size % num_slice != 0: raise ValueError( "data with shape %s cannot be evenly split into %d slices along axis %d. " \ "Use a batch size that's multiple of %d or set even_split=False to allow " \ "uneven partitioning of data."%( str(data.shape), num_slice, batch_axis, num_slice)) step = size // num_slice # If size < num_slice, make fewer slices if not even_split and size < num_slice: step = 1 num_slice = size if batch_axis == 0: slices = [data[i*step:(i+1)*step] if i < num_slice - 1 else data[i*step:size] for i in range(num_slice)] elif even_split: slices = ndarray.split(data, num_outputs=num_slice, axis=batch_axis) else: slices = [ndarray.slice_axis(data, batch_axis, i*step, (i+1)*step) if i < num_slice - 1 else ndarray.slice_axis(data, batch_axis, i*step, size) for i in range(num_slice)] return slices
Splits an NDArray into `len(ctx_list)` slices along `batch_axis` and loads each slice to one context in `ctx_list`. Parameters ---------- data : NDArray A batch of data. ctx_list : list of Context A list of Contexts. batch_axis : int, default 0 The axis along which to slice. even_split : bool, default True Whether to force all slices to have the same number of elements. Returns ------- list of NDArray Each corresponds to a context in `ctx_list`.
def split_and_load(data, ctx_list, batch_axis=0, even_split=True): """Splits an NDArray into `len(ctx_list)` slices along `batch_axis` and loads each slice to one context in `ctx_list`. Parameters ---------- data : NDArray A batch of data. ctx_list : list of Context A list of Contexts. batch_axis : int, default 0 The axis along which to slice. even_split : bool, default True Whether to force all slices to have the same number of elements. Returns ------- list of NDArray Each corresponds to a context in `ctx_list`. """ if not isinstance(data, ndarray.NDArray): data = ndarray.array(data, ctx=ctx_list[0]) if len(ctx_list) == 1: return [data.as_in_context(ctx_list[0])] slices = split_data(data, len(ctx_list), batch_axis, even_split) return [i.as_in_context(ctx) for i, ctx in zip(slices, ctx_list)]
Rescales NDArrays so that the sum of their 2-norm is smaller than `max_norm`. Parameters ---------- arrays : list of NDArray max_norm : float check_isfinite : bool, default True If True, check that the total_norm is finite (not nan or inf). This requires a blocking .asscalar() call. Returns ------- NDArray or float Total norm. Return type is NDArray of shape (1,) if check_isfinite is False. Otherwise a float is returned.
def clip_global_norm(arrays, max_norm, check_isfinite=True): """Rescales NDArrays so that the sum of their 2-norm is smaller than `max_norm`. Parameters ---------- arrays : list of NDArray max_norm : float check_isfinite : bool, default True If True, check that the total_norm is finite (not nan or inf). This requires a blocking .asscalar() call. Returns ------- NDArray or float Total norm. Return type is NDArray of shape (1,) if check_isfinite is False. Otherwise a float is returned. """ def _norm(array): if array.stype == 'default': x = array.reshape((-1,)) return ndarray.dot(x, x) return array.norm().square() assert len(arrays) > 0 ctx = arrays[0].context total_norm = ndarray.add_n(*[_norm(arr).as_in_context(ctx) for arr in arrays]) total_norm = ndarray.sqrt(total_norm) if check_isfinite: if not np.isfinite(total_norm.asscalar()): warnings.warn( UserWarning('nan or inf is detected. ' 'Clipping results will be undefined.'), stacklevel=2) scale = max_norm / (total_norm + 1e-8) scale = ndarray.min(ndarray.concat(scale, ndarray.ones(1, ctx=ctx), dim=0)) for arr in arrays: arr *= scale.as_in_context(arr.context) if check_isfinite: return total_norm.asscalar() else: return total_norm
Indent string
def _indent(s_, numSpaces): """Indent string """ s = s_.split('\n') if len(s) == 1: return s_ first = s.pop(0) s = [first] + [(numSpaces * ' ') + line for line in s] s = '\n'.join(s) return s
Check whether the sha1 hash of the file content matches the expected hash. Parameters ---------- filename : str Path to the file. sha1_hash : str Expected sha1 hash in hexadecimal digits. Returns ------- bool Whether the file content matches the expected hash.
def check_sha1(filename, sha1_hash): """Check whether the sha1 hash of the file content matches the expected hash. Parameters ---------- filename : str Path to the file. sha1_hash : str Expected sha1 hash in hexadecimal digits. Returns ------- bool Whether the file content matches the expected hash. """ sha1 = hashlib.sha1() with open(filename, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) return sha1.hexdigest() == sha1_hash
Download an given URL Parameters ---------- url : str URL to download path : str, optional Destination path to store downloaded file. By default stores to the current directory with same name as in url. overwrite : bool, optional Whether to overwrite destination file if already exists. sha1_hash : str, optional Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified but doesn't match. retries : integer, default 5 The number of times to attempt the download in case of failure or non 200 return codes verify_ssl : bool, default True Verify SSL certificates. Returns ------- str The file path of the downloaded file.
def download(url, path=None, overwrite=False, sha1_hash=None, retries=5, verify_ssl=True): """Download an given URL Parameters ---------- url : str URL to download path : str, optional Destination path to store downloaded file. By default stores to the current directory with same name as in url. overwrite : bool, optional Whether to overwrite destination file if already exists. sha1_hash : str, optional Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified but doesn't match. retries : integer, default 5 The number of times to attempt the download in case of failure or non 200 return codes verify_ssl : bool, default True Verify SSL certificates. Returns ------- str The file path of the downloaded file. """ if path is None: fname = url.split('/')[-1] # Empty filenames are invalid assert fname, 'Can\'t construct file-name from this URL. ' \ 'Please set the `path` option manually.' else: path = os.path.expanduser(path) if os.path.isdir(path): fname = os.path.join(path, url.split('/')[-1]) else: fname = path assert retries >= 0, "Number of retries should be at least 0, currently it's {}".format( retries) if not verify_ssl: warnings.warn( 'Unverified HTTPS request is being made (verify_ssl=False). ' 'Adding certificate verification is strongly advised.') if overwrite or not os.path.exists(fname) or (sha1_hash and not check_sha1(fname, sha1_hash)): dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname))) if not os.path.exists(dirname): os.makedirs(dirname) while retries + 1 > 0: # Disable pyling too broad Exception # pylint: disable=W0703 try: print('Downloading {} from {}...'.format(fname, url)) r = requests.get(url, stream=True, verify=verify_ssl) if r.status_code != 200: raise RuntimeError('Failed downloading url {}'.format(url)) # create uuid for temporary files random_uuid = str(uuid.uuid4()) with open('{}.{}'.format(fname, random_uuid), 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) # if the target file exists(created by other processes) # and have the same hash with target file # delete the temporary file if not os.path.exists(fname) or (sha1_hash and not check_sha1(fname, sha1_hash)): # atmoic operation in the same file system _replace_atomic('{}.{}'.format(fname, random_uuid), fname) else: try: os.remove('{}.{}'.format(fname, random_uuid)) except OSError: pass finally: warnings.warn( 'File {} exists in file system so the downloaded file is deleted'.format(fname)) if sha1_hash and not check_sha1(fname, sha1_hash): raise UserWarning( 'File {} is downloaded but the content hash does not match.' ' The repo may be outdated or download may be incomplete. ' 'If the "repo_url" is overridden, consider switching to ' 'the default repo.'.format(fname)) break except Exception as e: retries -= 1 if retries <= 0: raise e else: print('download failed due to {}, retrying, {} attempt{} left' .format(repr(e), retries, 's' if retries > 1 else '')) return fname
Return the base URL for Gluon dataset and model repository.
def _get_repo_url(): """Return the base URL for Gluon dataset and model repository.""" default_repo = 'https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/' repo_url = os.environ.get('MXNET_GLUON_REPO', default_repo) if repo_url[-1] != '/': repo_url = repo_url+'/' return repo_url
Return the URL for hosted file in Gluon repository. Parameters ---------- namespace : str Namespace of the file. filename : str Name of the file
def _get_repo_file_url(namespace, filename): """Return the URL for hosted file in Gluon repository. Parameters ---------- namespace : str Namespace of the file. filename : str Name of the file """ return '{base_url}{namespace}/{filename}'.format(base_url=_get_repo_url(), namespace=namespace, filename=filename)
Print at most `limit` elements of list.
def _brief_print_list(lst, limit=7): """Print at most `limit` elements of list.""" lst = list(lst) if len(lst) > limit: return _brief_print_list(lst[:limit//2], limit) + ', ..., ' + \ _brief_print_list(lst[-limit//2:], limit) return ', '.join(["'%s'"%str(i) for i in lst])
Create a symbol function by handle and function name.
def _make_symbol_function(handle, name, func_name): """Create a symbol function by handle and function name.""" code, doc_str = _generate_symbol_function_code(handle, name, func_name) local = {} exec(code, None, local) # pylint: disable=exec-used symbol_function = local[func_name] symbol_function.__name__ = func_name symbol_function.__doc__ = doc_str symbol_function.__module__ = 'mxnet.symbol' return symbol_function
Generate row ids based on the current mini-batch
def batch_row_ids(data_batch): """ Generate row ids based on the current mini-batch """ item = data_batch.data[0] user = data_batch.data[1] return {'user_weight': user.astype(np.int64), 'item_weight': item.astype(np.int64)}
Generate row ids for all rows
def all_row_ids(data_batch): """ Generate row ids for all rows """ all_users = mx.nd.arange(0, MOVIELENS['max_user'], dtype='int64') all_movies = mx.nd.arange(0, MOVIELENS['max_movie'], dtype='int64') return {'user_weight': all_users, 'item_weight': all_movies}
Convert caffe model Parameters ---------- prototxt_fname : str Filename of the prototxt model definition caffemodel_fname : str Filename of the binary caffe model output_prefix : str, optinoal If given, then save the converted MXNet into output_prefx+'.json' and output_prefx+'.params' Returns ------- sym : Symbol Symbol convereted from prototxt arg_params : list of NDArray Argument parameters aux_params : list of NDArray Aux parameters input_dim : tuple Input dimension
def convert_model(prototxt_fname, caffemodel_fname, output_prefix=None): """Convert caffe model Parameters ---------- prototxt_fname : str Filename of the prototxt model definition caffemodel_fname : str Filename of the binary caffe model output_prefix : str, optinoal If given, then save the converted MXNet into output_prefx+'.json' and output_prefx+'.params' Returns ------- sym : Symbol Symbol convereted from prototxt arg_params : list of NDArray Argument parameters aux_params : list of NDArray Aux parameters input_dim : tuple Input dimension """ sym, input_dim = convert_symbol(prototxt_fname) arg_shapes, _, aux_shapes = sym.infer_shape(data=tuple(input_dim)) arg_names = sym.list_arguments() aux_names = sym.list_auxiliary_states() arg_shape_dic = dict(zip(arg_names, arg_shapes)) aux_shape_dic = dict(zip(aux_names, aux_shapes)) arg_params = {} aux_params = {} first_conv = True layers, names = caffe_parser.read_caffemodel(prototxt_fname, caffemodel_fname) layer_iter = caffe_parser.layer_iter(layers, names) layers_proto = caffe_parser.get_layers(caffe_parser.read_prototxt(prototxt_fname)) for layer_name, layer_type, layer_blobs in layer_iter: if layer_type == 'Convolution' or layer_type == 'InnerProduct' \ or layer_type == 4 or layer_type == 14 or layer_type == 'PReLU' \ or layer_type == 'Deconvolution' or layer_type == 39 or layer_type == 'Normalize': if layer_type == 'PReLU': assert (len(layer_blobs) == 1) wmat = layer_blobs[0].data weight_name = layer_name + '_gamma' arg_params[weight_name] = mx.nd.zeros(wmat.shape) arg_params[weight_name][:] = wmat continue if layer_type == 'Normalize': assert (len(layer_blobs) == 1) weight_name = layer_name + '_scale' wmat = layer_blobs[0].data arg_params[weight_name] = mx.nd.zeros((1, len(wmat), 1, 1)) arg_params[weight_name][:] = np.array(list(wmat)).reshape((1, len(wmat), 1, 1)) continue wmat_dim = [] if getattr(layer_blobs[0].shape, 'dim', None) is not None: if len(layer_blobs[0].shape.dim) > 0: wmat_dim = layer_blobs[0].shape.dim else: wmat_dim = [layer_blobs[0].num, layer_blobs[0].channels, layer_blobs[0].height, layer_blobs[0].width] else: wmat_dim = list(layer_blobs[0].shape) wmat = np.array(layer_blobs[0].data).reshape(wmat_dim) channels = wmat_dim[1] if channels == 3 or channels == 4: # RGB or RGBA if first_conv: # Swapping BGR of caffe into RGB in mxnet wmat[:, [0, 2], :, :] = wmat[:, [2, 0], :, :] assert(wmat.flags['C_CONTIGUOUS'] is True) sys.stdout.write('converting layer {0}, wmat shape = {1}'.format( layer_name, wmat.shape)) if len(layer_blobs) == 2: bias = np.array(layer_blobs[1].data) bias = bias.reshape((bias.shape[0], 1)) assert(bias.flags['C_CONTIGUOUS'] is True) bias_name = layer_name + "_bias" if bias_name not in arg_shape_dic: print(bias_name + ' not found in arg_shape_dic.') continue bias = bias.reshape(arg_shape_dic[bias_name]) arg_params[bias_name] = mx.nd.zeros(bias.shape) arg_params[bias_name][:] = bias sys.stdout.write(', bias shape = {}'.format(bias.shape)) sys.stdout.write('\n') sys.stdout.flush() wmat = wmat.reshape((wmat.shape[0], -1)) weight_name = layer_name + "_weight" if weight_name not in arg_shape_dic: print(weight_name + ' not found in arg_shape_dic.') continue wmat = wmat.reshape(arg_shape_dic[weight_name]) arg_params[weight_name] = mx.nd.zeros(wmat.shape) arg_params[weight_name][:] = wmat if first_conv and (layer_type == 'Convolution' or layer_type == 4): first_conv = False elif layer_type == 'Scale': if 'scale' in layer_name: bn_name = layer_name.replace('scale', 'bn') elif 'sc' in layer_name: bn_name = layer_name.replace('sc', 'bn') else: assert False, 'Unknown name convention for bn/scale' gamma = np.array(layer_blobs[0].data) beta = np.array(layer_blobs[1].data) # beta = np.expand_dims(beta, 1) beta_name = '{}_beta'.format(bn_name) gamma_name = '{}_gamma'.format(bn_name) beta = beta.reshape(arg_shape_dic[beta_name]) gamma = gamma.reshape(arg_shape_dic[gamma_name]) arg_params[beta_name] = mx.nd.zeros(beta.shape) arg_params[gamma_name] = mx.nd.zeros(gamma.shape) arg_params[beta_name][:] = beta arg_params[gamma_name][:] = gamma assert gamma.flags['C_CONTIGUOUS'] is True assert beta.flags['C_CONTIGUOUS'] is True print('converting scale layer, beta shape = {}, gamma shape = {}'.format( beta.shape, gamma.shape)) elif layer_type == 'BatchNorm': bn_name = layer_name mean = np.array(layer_blobs[0].data) var = np.array(layer_blobs[1].data) rescale_factor = layer_blobs[2].data[0] if rescale_factor != 0: rescale_factor = 1 / rescale_factor mean_name = '{}_moving_mean'.format(bn_name) var_name = '{}_moving_var'.format(bn_name) mean = mean.reshape(aux_shape_dic[mean_name]) var = var.reshape(aux_shape_dic[var_name]) aux_params[mean_name] = mx.nd.zeros(mean.shape) aux_params[var_name] = mx.nd.zeros(var.shape) # Get the original epsilon for idx, layer in enumerate(layers_proto): if layer.name == bn_name: bn_index = idx eps_caffe = layers_proto[bn_index].batch_norm_param.eps # Compensate for the epsilon shift performed in convert_symbol eps_symbol = float(sym.attr_dict()[bn_name + '_moving_mean']['eps']) eps_correction = eps_caffe - eps_symbol # Fill parameters aux_params[mean_name][:] = mean * rescale_factor aux_params[var_name][:] = var * rescale_factor + eps_correction assert var.flags['C_CONTIGUOUS'] is True assert mean.flags['C_CONTIGUOUS'] is True print('converting batchnorm layer, mean shape = {}, var shape = {}'.format( mean.shape, var.shape)) fix_gamma = layers_proto[bn_index+1].type != 'Scale' if fix_gamma: gamma_name = '{}_gamma'.format(bn_name) gamma = np.array(np.ones(arg_shape_dic[gamma_name])) beta_name = '{}_beta'.format(bn_name) beta = np.array(np.zeros(arg_shape_dic[beta_name])) arg_params[beta_name] = mx.nd.zeros(beta.shape) arg_params[gamma_name] = mx.nd.zeros(gamma.shape) arg_params[beta_name][:] = beta arg_params[gamma_name][:] = gamma assert gamma.flags['C_CONTIGUOUS'] is True assert beta.flags['C_CONTIGUOUS'] is True else: print('\tskipping layer {} of type {}'.format(layer_name, layer_type)) assert len(layer_blobs) == 0 if output_prefix is not None: model = mx.mod.Module(symbol=sym, label_names=None) model.bind(data_shapes=[('data', tuple(input_dim))]) model.init_params(arg_params=arg_params, aux_params=aux_params) model.save_checkpoint(output_prefix, 0) return sym, arg_params, aux_params, input_dim
Parse Caffe prototxt into symbol string
def _parse_proto(prototxt_fname): """Parse Caffe prototxt into symbol string """ proto = caffe_parser.read_prototxt(prototxt_fname) # process data layer input_name, input_dim, layers = _get_input(proto) # only support single input, so always use `data` as the input data mapping = {input_name: 'data'} need_flatten = {input_name: False} symbol_string = "import mxnet as mx\ndata = mx.symbol.Variable(name='data')\n" flatten_count = 0 output_name = "" prev_name = None _output_name = {} # convert reset layers one by one for i, layer in enumerate(layers): type_string = '' param_string = '' skip_layer = False name = re.sub('[-/]', '_', layer.name) for k in range(len(layer.bottom)): if layer.bottom[k] in _output_name: _output_name[layer.bottom[k]]['count'] = _output_name[layer.bottom[k]]['count']+1 else: _output_name[layer.bottom[k]] = {'count':0} for k in range(len(layer.top)): if layer.top[k] in _output_name: _output_name[layer.top[k]]['count'] = _output_name[layer.top[k]]['count']+1 else: _output_name[layer.top[k]] = {'count':0, 'name':name} if layer.type == 'Convolution' or layer.type == 4: type_string = 'mx.symbol.Convolution' param_string = _convert_conv_param(layer.convolution_param) need_flatten[name] = True if layer.type == 'Deconvolution' or layer.type == 39: type_string = 'mx.symbol.Deconvolution' param_string = _convert_conv_param(layer.convolution_param) need_flatten[name] = True if layer.type == 'Pooling' or layer.type == 17: type_string = 'mx.symbol.Pooling' param_string = _convert_pooling_param(layer.pooling_param) need_flatten[name] = True if layer.type == 'ReLU' or layer.type == 18: type_string = 'mx.symbol.Activation' param_string = "act_type='relu'" param = layer.relu_param if hasattr(param, 'negative_slope'): if param.negative_slope > 0: type_string = 'mx.symbol.LeakyReLU' param_string = "act_type='leaky', slope=%f" % param.negative_slope need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'TanH' or layer.type == 23: type_string = 'mx.symbol.Activation' param_string = "act_type='tanh'" need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Sigmoid' or layer.type == 19: type_string = 'mx.symbol.Activation' param_string = "act_type='sigmoid'" need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'LRN' or layer.type == 15: type_string = 'mx.symbol.LRN' param = layer.lrn_param param_string = "alpha=%f, beta=%f, knorm=%f, nsize=%d" % ( param.alpha, param.beta, param.k, param.local_size) need_flatten[name] = True if layer.type == 'InnerProduct' or layer.type == 14: type_string = 'mx.symbol.FullyConnected' param = layer.inner_product_param param_string = "num_hidden=%d, no_bias=%s" % ( param.num_output, not param.bias_term) need_flatten[name] = False if layer.type == 'Dropout' or layer.type == 6: type_string = 'mx.symbol.Dropout' param = layer.dropout_param param_string = "p=%f" % param.dropout_ratio need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Softmax' or layer.type == 20: type_string = 'mx.symbol.SoftmaxOutput' if layer.type == 'Flatten' or layer.type == 8: type_string = 'mx.symbol.Flatten' need_flatten[name] = False if layer.type == 'Split' or layer.type == 22: type_string = 'split' # will process later if layer.type == 'Concat' or layer.type == 3: type_string = 'mx.symbol.Concat' need_flatten[name] = True if layer.type == 'Crop': type_string = 'mx.symbol.Crop' need_flatten[name] = True param_string = 'center_crop=True' if layer.type == 'BatchNorm': type_string = 'mx.symbol.BatchNorm' param = layer.batch_norm_param # CuDNN requires eps to be greater than 1e-05 # We compensate for this change in convert_model epsilon = param.eps if (epsilon <= 1e-05): epsilon = 1e-04 # if next layer is scale, don't fix gamma fix_gamma = layers[i+1].type != 'Scale' param_string = 'use_global_stats=%s, fix_gamma=%s, eps=%f' % ( param.use_global_stats, fix_gamma, epsilon) need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Scale': assert layers[i-1].type == 'BatchNorm' need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] skip_layer = True prev_name = re.sub('[-/]', '_', layers[i-1].name) if layer.type == 'PReLU': type_string = 'mx.symbol.LeakyReLU' param = layer.prelu_param param_string = "act_type='prelu', slope=%f" % param.filler.value need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if layer.type == 'Eltwise': type_string = 'mx.symbol.broadcast_add' param = layer.eltwise_param param_string = "" need_flatten[name] = False if layer.type == 'Reshape': type_string = 'mx.symbol.Reshape' need_flatten[name] = False param = layer.reshape_param param_string = "shape=(%s)" % (','.join(param.shape.dim),) if layer.type == 'AbsVal': type_string = 'mx.symbol.abs' need_flatten[name] = need_flatten[mapping[layer.bottom[0]]] if skip_layer: assert len(layer.bottom) == 1 symbol_string += "%s = %s\n" % (name, prev_name) elif type_string == '': raise ValueError('Unknown layer %s!' % layer.type) elif type_string != 'split': bottom = layer.bottom if param_string != "": param_string = ", " + param_string if len(bottom) == 1: if need_flatten[mapping[bottom[0]]] and type_string == 'mx.symbol.FullyConnected': flatten_name = "flatten_%d" % flatten_count symbol_string += "%s=mx.symbol.Flatten(name='%s', data=%s)\n" % ( flatten_name, flatten_name, mapping[bottom[0]]) flatten_count += 1 need_flatten[flatten_name] = False bottom[0] = flatten_name mapping[bottom[0]] = bottom[0] symbol_string += "%s = %s(name='%s', data=%s %s)\n" % ( name, type_string, name, mapping[bottom[0]], param_string) else: if layer.type == 'Eltwise' and param.operation == 1 and len(param.coeff) > 0: symbol_string += "%s = " % name symbol_string += " + ".join(["%s * %s" % ( mapping[bottom[i]], param.coeff[i]) for i in range(len(param.coeff))]) symbol_string += "\n" else: symbol_string += "%s = %s(name='%s', *[%s] %s)\n" % ( name, type_string, name, ','.join( [mapping[x] for x in bottom]), param_string) for j in range(len(layer.top)): mapping[layer.top[j]] = name output_name = name output_name = [] for i in _output_name: if 'name' in _output_name[i] and _output_name[i]['count'] == 0: output_name.append(_output_name[i]['name']) return symbol_string, output_name, input_dim
Convert caffe model definition into Symbol Parameters ---------- prototxt_fname : str Filename of the prototxt file Returns ------- Symbol Converted Symbol tuple Input shape
def convert_symbol(prototxt_fname): """Convert caffe model definition into Symbol Parameters ---------- prototxt_fname : str Filename of the prototxt file Returns ------- Symbol Converted Symbol tuple Input shape """ sym, output_name, input_dim = _parse_proto(prototxt_fname) exec(sym) # pylint: disable=exec-used _locals = locals() ret = [] for i in output_name: exec("ret = " + i, globals(), _locals) # pylint: disable=exec-used ret.append(_locals['ret']) ret = mx.sym.Group(ret) return ret, input_dim
r"""VGG model from the `"Very Deep Convolutional Networks for Large-Scale Image Recognition" <https://arxiv.org/abs/1409.1556>`_ paper. Parameters ---------- num_layers : int Number of layers for the variant of densenet. Options are 11, 13, 16, 19. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters.
def get_vgg(num_layers, pretrained=False, ctx=cpu(), root=os.path.join(base.data_dir(), 'models'), **kwargs): r"""VGG model from the `"Very Deep Convolutional Networks for Large-Scale Image Recognition" <https://arxiv.org/abs/1409.1556>`_ paper. Parameters ---------- num_layers : int Number of layers for the variant of densenet. Options are 11, 13, 16, 19. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. """ layers, filters = vgg_spec[num_layers] net = VGG(layers, filters, **kwargs) if pretrained: from ..model_store import get_model_file batch_norm_suffix = '_bn' if kwargs.get('batch_norm') else '' net.load_parameters(get_model_file('vgg%d%s'%(num_layers, batch_norm_suffix), root=root), ctx=ctx) return net
check function consistency with uniform random numbers
def check_with_uniform(uf, arg_shapes, dim=None, npuf=None, rmin=-10, type_list=[np.float32]): """check function consistency with uniform random numbers""" if isinstance(arg_shapes, int): assert dim shape = tuple(np.random.randint(1, int(1000**(1.0/dim)), size=dim)) arg_shapes = [shape] * arg_shapes for dtype in type_list: ndarray_arg = [] numpy_arg = [] for s in arg_shapes: npy = np.random.uniform(rmin, 10, s).astype(dtype) narr = mx.nd.array(npy, dtype=dtype) ndarray_arg.append(narr) numpy_arg.append(npy) out1 = uf(*ndarray_arg) if npuf is None: out2 = uf(*numpy_arg).astype(dtype) else: out2 = npuf(*numpy_arg).astype(dtype) assert out1.shape == out2.shape if isinstance(out1, mx.nd.NDArray): out1 = out1.asnumpy() if dtype == np.float16: assert reldiff(out1, out2) < 2e-3 else: assert reldiff(out1, out2) < 1e-6
Remove images without usable rois
def filter_roidb(self): """Remove images without usable rois""" num_roidb = len(self._roidb) self._roidb = [roi_rec for roi_rec in self._roidb if len(roi_rec['gt_classes'])] num_after = len(self._roidb) logger.info('filter roidb: {} -> {}'.format(num_roidb, num_after))
Only flip boxes coordinates, images will be flipped when loading into network
def append_flipped_images(self): """Only flip boxes coordinates, images will be flipped when loading into network""" logger.info('%s append flipped images to roidb' % self._name) roidb_flipped = [] for roi_rec in self._roidb: boxes = roi_rec['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = roi_rec['width'] - oldx2 - 1 boxes[:, 2] = roi_rec['width'] - oldx1 - 1 assert (boxes[:, 2] >= boxes[:, 0]).all() roi_rec_flipped = roi_rec.copy() roi_rec_flipped['boxes'] = boxes roi_rec_flipped['flipped'] = True roidb_flipped.append(roi_rec_flipped) self._roidb.extend(roidb_flipped)
r"""Return location for the pretrained on local file system. This function will download from online model zoo when model cannot be found or has mismatch. The root directory will be created if it doesn't exist. Parameters ---------- name : str Name of the model. root : str, default $MXNET_HOME/models Location for keeping the model parameters. Returns ------- file_path Path to the requested pretrained model file.
def get_model_file(name, root=os.path.join(base.data_dir(), 'models')): r"""Return location for the pretrained on local file system. This function will download from online model zoo when model cannot be found or has mismatch. The root directory will be created if it doesn't exist. Parameters ---------- name : str Name of the model. root : str, default $MXNET_HOME/models Location for keeping the model parameters. Returns ------- file_path Path to the requested pretrained model file. """ file_name = '{name}-{short_hash}'.format(name=name, short_hash=short_hash(name)) root = os.path.expanduser(root) file_path = os.path.join(root, file_name+'.params') sha1_hash = _model_sha1[name] if os.path.exists(file_path): if check_sha1(file_path, sha1_hash): return file_path else: logging.warning('Mismatch in the content of model file detected. Downloading again.') else: logging.info('Model file not found. Downloading to %s.', file_path) util.makedirs(root) zip_file_path = os.path.join(root, file_name+'.zip') repo_url = os.environ.get('MXNET_GLUON_REPO', apache_repo_url) if repo_url[-1] != '/': repo_url = repo_url + '/' download(_url_format.format(repo_url=repo_url, file_name=file_name), path=zip_file_path, overwrite=True) with zipfile.ZipFile(zip_file_path) as zf: zf.extractall(root) os.remove(zip_file_path) if check_sha1(file_path, sha1_hash): return file_path else: raise ValueError('Downloaded file has different hash. Please try again.')
r"""Purge all pretrained model files in local file store. Parameters ---------- root : str, default '$MXNET_HOME/models' Location for keeping the model parameters.
def purge(root=os.path.join(base.data_dir(), 'models')): r"""Purge all pretrained model files in local file store. Parameters ---------- root : str, default '$MXNET_HOME/models' Location for keeping the model parameters. """ root = os.path.expanduser(root) files = os.listdir(root) for f in files: if f.endswith(".params"): os.remove(os.path.join(root, f))
given image index, find out full path Parameters: ---------- index: int index of a specific image Returns: ---------- full path of this image
def image_path_from_index(self, index): """ given image index, find out full path Parameters: ---------- index: int index of a specific image Returns: ---------- full path of this image """ assert self.image_set_index is not None, "Dataset not initialized" name = self.image_set_index[index] image_file = os.path.join(self.image_dir, 'images', name) assert os.path.isfile(image_file), 'Path does not exist: {}'.format(image_file) return image_file
initialize all entries given annotation json file Parameters: ---------- anno_file: str annotation json file shuffle: bool whether to shuffle image list
def _load_all(self, anno_file, shuffle): """ initialize all entries given annotation json file Parameters: ---------- anno_file: str annotation json file shuffle: bool whether to shuffle image list """ image_set_index = [] labels = [] coco = COCO(anno_file) img_ids = coco.getImgIds() # deal with class names cats = [cat['name'] for cat in coco.loadCats(coco.getCatIds())] class_to_coco_ind = dict(zip(cats, coco.getCatIds())) class_to_ind = dict(zip(self.classes, range(len(self.classes)))) coco_ind_to_class_ind = dict([(class_to_coco_ind[cls], class_to_ind[cls]) for cls in self.classes[0:]]) for img_id in img_ids: # filename image_info = coco.loadImgs(img_id)[0] filename = image_info["file_name"] subdir = filename.split('_')[1] height = image_info["height"] width = image_info["width"] # label anno_ids = coco.getAnnIds(imgIds=img_id) annos = coco.loadAnns(anno_ids) label = [] for anno in annos: cat_id = coco_ind_to_class_ind[anno['category_id']] bbox = anno["bbox"] assert len(bbox) == 4 xmin = float(bbox[0]) / width ymin = float(bbox[1]) / height xmax = xmin + float(bbox[2]) / width ymax = ymin + float(bbox[3]) / height label.append([cat_id, xmin, ymin, xmax, ymax, 0]) if label: labels.append(np.array(label)) image_set_index.append(os.path.join(subdir, filename)) if shuffle: import random indices = list(range(len(image_set_index))) random.shuffle(indices) image_set_index = [image_set_index[i] for i in indices] labels = [labels[i] for i in indices] # store the results self.image_set_index = image_set_index self.labels = labels
Initializes the parameters and auxiliary states.
def init_params(self, initializer=mx.init.Uniform(0.01), **kwargs): """Initializes the parameters and auxiliary states. """ self._module.init_params(initializer=initializer, **kwargs)
Forward computation. States from previous forward computation are carried to the current iteration if `carry_state` is set to `True`.
def forward(self, data_batch, is_train=None, carry_state=True): """Forward computation. States from previous forward computation are carried to the current iteration if `carry_state` is set to `True`. """ # propagate states from the previous iteration if carry_state: if isinstance(self._next_states, (int, float)): self._module.set_states(value=self._next_states) else: self._module.set_states(states=self._next_states) self._module.forward(data_batch, is_train=is_train) outputs = self._module.get_outputs(merge_multi_context=False) self._next_states = outputs[:-1]
Updates parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. Gradients are clipped by their global norm if `max_norm` is set. Parameters ---------- max_norm: float, optional If set, clip values of all gradients the ratio of the sum of their norms.
def update(self, max_norm=None): """Updates parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. Gradients are clipped by their global norm if `max_norm` is set. Parameters ---------- max_norm: float, optional If set, clip values of all gradients the ratio of the sum of their norms. """ if max_norm is not None: self._clip_by_global_norm(max_norm) self._module.update()
Clips gradient norm. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. The method is first used in `[ICML2013] On the difficulty of training recurrent neural networks` Parameters ---------- max_norm : float or int The maximum clipping threshold of the gradient norm. Returns ------- norm_val : float The computed norm of the gradients.
def _clip_by_global_norm(self, max_norm): """Clips gradient norm. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. The method is first used in `[ICML2013] On the difficulty of training recurrent neural networks` Parameters ---------- max_norm : float or int The maximum clipping threshold of the gradient norm. Returns ------- norm_val : float The computed norm of the gradients. """ assert self._module.binded and self._module.params_initialized \ and self._module.optimizer_initialized grad_array = [] for grad in self._module._exec_group.grad_arrays: grad_array += grad return mx.gluon.utils.clip_global_norm(grad_array, max_norm)
Image visualization and preservation :param title: title :param X: images to visualized :param name: saved picture`s name :return:
def visual(title, X, name): """Image visualization and preservation :param title: title :param X: images to visualized :param name: saved picture`s name :return: """ assert len(X.shape) == 4 X = X.transpose((0, 2, 3, 1)) X = np.clip((X - np.min(X))*(255.0/(np.max(X) - np.min(X))), 0, 255).astype(np.uint8) n = np.ceil(np.sqrt(X.shape[0])) buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8) for i, img in enumerate(X): fill_buf(buff, i, img, X.shape[1:3]) buff = buff[:, :, ::-1] plt.imshow(buff) plt.title(title) plt.savefig(name)
Get the translation of images
def transformer(data, label): """Get the translation of images""" # resize to 64x64 data = mx.image.imresize(data, 64, 64) # transpose from (64, 64, 3) to (3, 64, 64) data = mx.nd.transpose(data, (2, 0, 1)) # normalize to [-1, 1] data = data.astype(np.float32)/128 - 1 # if image is greyscale, repeat 3 times to get RGB image. if data.shape[0] == 1: data = mx.nd.tile(data, (3, 1, 1)) return data, label
Load the dataset and split it to train/valid data :param dataset_name: string Returns: train_data: int array training dataset val_data: int array valid dataset
def get_dataset(dataset_name): """Load the dataset and split it to train/valid data :param dataset_name: string Returns: train_data: int array training dataset val_data: int array valid dataset """ # mnist if dataset == "mnist": train_data = gluon.data.DataLoader( gluon.data.vision.MNIST('./data', train=True, transform=transformer), batch_size, shuffle=True, last_batch='discard') val_data = gluon.data.DataLoader( gluon.data.vision.MNIST('./data', train=False, transform=transformer), batch_size, shuffle=False) # cifar10 elif dataset == "cifar10": train_data = gluon.data.DataLoader( gluon.data.vision.CIFAR10('./data', train=True, transform=transformer), batch_size, shuffle=True, last_batch='discard') val_data = gluon.data.DataLoader( gluon.data.vision.CIFAR10('./data', train=False, transform=transformer), batch_size, shuffle=False) return train_data, val_data
Get net G
def get_netG(): """Get net G""" # build the generator netG = nn.Sequential() with netG.name_scope(): # input is Z, going into a convolution netG.add(nn.Conv2DTranspose(ngf * 8, 4, 1, 0, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 4 x 4 netG.add(nn.Conv2DTranspose(ngf * 4, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*4) x 8 x 8 netG.add(nn.Conv2DTranspose(ngf * 2, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*2) x 16 x 16 netG.add(nn.Conv2DTranspose(ngf, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf) x 32 x 32 netG.add(nn.Conv2DTranspose(nc, 4, 2, 1, use_bias=False)) netG.add(nn.Activation('tanh')) # state size. (nc) x 64 x 64 return netG
Get the netD
def get_netD(): """Get the netD""" # build the discriminator netD = nn.Sequential() with netD.name_scope(): # input is (nc) x 64 x 64 netD.add(nn.Conv2D(ndf, 4, 2, 1, use_bias=False)) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 32 x 32 netD.add(nn.Conv2D(ndf * 2, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf*2) x 16 x 16 netD.add(nn.Conv2D(ndf * 4, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf*4) x 8 x 8 netD.add(nn.Conv2D(ndf * 8, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf*8) x 4 x 4 netD.add(nn.Conv2D(2, 4, 1, 0, use_bias=False)) # state size. 2 x 1 x 1 return netD
Get configurations for net
def get_configurations(netG, netD): """Get configurations for net""" # loss loss = gluon.loss.SoftmaxCrossEntropyLoss() # initialize the generator and the discriminator netG.initialize(mx.init.Normal(0.02), ctx=ctx) netD.initialize(mx.init.Normal(0.02), ctx=ctx) # trainer for the generator and the discriminator trainerG = gluon.Trainer(netG.collect_params(), 'adam', {'learning_rate': opt.lr, 'beta1': opt.beta1}) trainerD = gluon.Trainer(netD.collect_params(), 'adam', {'learning_rate': opt.lr, 'beta1': opt.beta1}) return loss, trainerG, trainerD
Entry point to dcgan
def main(): """Entry point to dcgan""" print("|------- new changes!!!!!!!!!") # to get the dataset and net configuration train_data, val_data = get_dataset(dataset) netG = get_netG() netD = get_netD() loss, trainerG, trainerD = get_configurations(netG, netD) # set labels real_label = mx.nd.ones((opt.batch_size,), ctx=ctx) fake_label = mx.nd.zeros((opt.batch_size,), ctx=ctx) metric = mx.metric.Accuracy() print('Training... ') stamp = datetime.now().strftime('%Y_%m_%d-%H_%M') iter = 0 # to metric the network loss_d = [] loss_g = [] inception_score = [] for epoch in range(opt.nepoch): tic = time.time() btic = time.time() for data, _ in train_data: ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### # train with real_t data = data.as_in_context(ctx) noise = mx.nd.random.normal(0, 1, shape=(opt.batch_size, nz, 1, 1), ctx=ctx) with autograd.record(): output = netD(data) # reshape output from (opt.batch_size, 2, 1, 1) to (opt.batch_size, 2) output = output.reshape((opt.batch_size, 2)) errD_real = loss(output, real_label) metric.update([real_label, ], [output, ]) with autograd.record(): fake = netG(noise) output = netD(fake.detach()) output = output.reshape((opt.batch_size, 2)) errD_fake = loss(output, fake_label) errD = errD_real + errD_fake errD.backward() metric.update([fake_label,], [output,]) trainerD.step(opt.batch_size) ############################ # (2) Update G network: maximize log(D(G(z))) ########################### with autograd.record(): output = netD(fake) output = output.reshape((-1, 2)) errG = loss(output, real_label) errG.backward() trainerG.step(opt.batch_size) name, acc = metric.get() logging.info('discriminator loss = %f, generator loss = %f, binary training acc = %f at iter %d epoch %d' , mx.nd.mean(errD).asscalar(), mx.nd.mean(errG).asscalar(), acc, iter, epoch) if iter % niter == 0: visual('gout', fake.asnumpy(), name=os.path.join(outf, 'fake_img_iter_%d.png' % iter)) visual('data', data.asnumpy(), name=os.path.join(outf, 'real_img_iter_%d.png' % iter)) # record the metric data loss_d.append(errD) loss_g.append(errG) if opt.inception_score: score, _ = get_inception_score(fake) inception_score.append(score) iter = iter + 1 btic = time.time() name, acc = metric.get() metric.reset() logging.info('\nbinary training acc at epoch %d: %s=%f', epoch, name, acc) logging.info('time: %f', time.time() - tic) # save check_point if check_point: netG.save_parameters(os.path.join(outf, 'generator_epoch_%d.params' %epoch)) netD.save_parameters(os.path.join(outf, 'discriminator_epoch_%d.params' % epoch)) # save parameter netG.save_parameters(os.path.join(outf, 'generator.params')) netD.save_parameters(os.path.join(outf, 'discriminator.params')) # visualization the inception_score as a picture if opt.inception_score: ins_save(inception_score)
Gets a customized logger. .. note:: `getLogger` is deprecated. Use `get_logger` instead.
def getLogger(name=None, filename=None, filemode=None, level=WARNING): """Gets a customized logger. .. note:: `getLogger` is deprecated. Use `get_logger` instead. """ warnings.warn("getLogger is deprecated, Use get_logger instead.", DeprecationWarning, stacklevel=2) return get_logger(name, filename, filemode, level)
Gets a customized logger. Parameters ---------- name: str, optional Name of the logger. filename: str, optional The filename to which the logger's output will be sent. filemode: str, optional The file mode to open the file (corresponding to `filename`), default is 'a' if `filename` is not ``None``. level: int, optional The `logging` level for the logger. See: https://docs.python.org/2/library/logging.html#logging-levels Returns ------- Logger A customized `Logger` object. Example ------- ## get_logger call with default parameters. >>> from mxnet.log import get_logger >>> logger = get_logger("Test") >>> logger.warn("Hello World") W0505 00:29:47 3525 <stdin>:<module>:1] Hello World ## get_logger call with WARNING level. >>> import logging >>> logger = get_logger("Test2", level=logging.WARNING) >>> logger.warn("Hello World") W0505 00:30:50 3525 <stdin>:<module>:1] Hello World >>> logger.debug("Hello World") # This doesn't return anything as the level is logging.WARNING. ## get_logger call with DEBUG level. >>> logger = get_logger("Test3", level=logging.DEBUG) >>> logger.debug("Hello World") # Logs the debug output as the level is logging.DEBUG. D0505 00:31:30 3525 <stdin>:<module>:1] Hello World
def get_logger(name=None, filename=None, filemode=None, level=WARNING): """Gets a customized logger. Parameters ---------- name: str, optional Name of the logger. filename: str, optional The filename to which the logger's output will be sent. filemode: str, optional The file mode to open the file (corresponding to `filename`), default is 'a' if `filename` is not ``None``. level: int, optional The `logging` level for the logger. See: https://docs.python.org/2/library/logging.html#logging-levels Returns ------- Logger A customized `Logger` object. Example ------- ## get_logger call with default parameters. >>> from mxnet.log import get_logger >>> logger = get_logger("Test") >>> logger.warn("Hello World") W0505 00:29:47 3525 <stdin>:<module>:1] Hello World ## get_logger call with WARNING level. >>> import logging >>> logger = get_logger("Test2", level=logging.WARNING) >>> logger.warn("Hello World") W0505 00:30:50 3525 <stdin>:<module>:1] Hello World >>> logger.debug("Hello World") # This doesn't return anything as the level is logging.WARNING. ## get_logger call with DEBUG level. >>> logger = get_logger("Test3", level=logging.DEBUG) >>> logger.debug("Hello World") # Logs the debug output as the level is logging.DEBUG. D0505 00:31:30 3525 <stdin>:<module>:1] Hello World """ logger = logging.getLogger(name) if name is not None and not getattr(logger, '_init_done', None): logger._init_done = True if filename: mode = filemode if filemode else 'a' hdlr = logging.FileHandler(filename, mode) else: hdlr = logging.StreamHandler() # pylint: disable=redefined-variable-type # the `_Formatter` contain some escape character to # represent color, which is not suitable for FileHandler, # (TODO) maybe we can add another Formatter for FileHandler. hdlr.setFormatter(_Formatter()) logger.addHandler(hdlr) logger.setLevel(level) return logger
data preparation
def transformer(data, label): """ data preparation """ data = mx.image.imresize(data, IMAGE_SIZE, IMAGE_SIZE) data = mx.nd.transpose(data, (2, 0, 1)) data = data.astype(np.float32) / 128.0 - 1 return data, label
helper function to get dataloader
def get_training_data(batch_size): """ helper function to get dataloader""" return gluon.data.DataLoader( CIFAR10(train=True, transform=transformer), batch_size=batch_size, shuffle=True, last_batch='discard')
r"""ResNet V1 model from `"Deep Residual Learning for Image Recognition" <http://arxiv.org/abs/1512.03385>`_ paper. ResNet V2 model from `"Identity Mappings in Deep Residual Networks" <https://arxiv.org/abs/1603.05027>`_ paper. Parameters ---------- version : int Version of ResNet. Options are 1, 2. num_layers : int Numbers of layers. Options are 18, 34, 50, 101, 152. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters.
def get_resnet(version, num_layers, pretrained=False, ctx=cpu(), root=os.path.join(base.data_dir(), 'models'), **kwargs): r"""ResNet V1 model from `"Deep Residual Learning for Image Recognition" <http://arxiv.org/abs/1512.03385>`_ paper. ResNet V2 model from `"Identity Mappings in Deep Residual Networks" <https://arxiv.org/abs/1603.05027>`_ paper. Parameters ---------- version : int Version of ResNet. Options are 1, 2. num_layers : int Numbers of layers. Options are 18, 34, 50, 101, 152. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. """ assert num_layers in resnet_spec, \ "Invalid number of layers: %d. Options are %s"%( num_layers, str(resnet_spec.keys())) block_type, layers, channels = resnet_spec[num_layers] assert version >= 1 and version <= 2, \ "Invalid resnet version: %d. Options are 1 and 2."%version resnet_class = resnet_net_versions[version-1] block_class = resnet_block_versions[version-1][block_type] net = resnet_class(block_class, layers, channels, **kwargs) if pretrained: from ..model_store import get_model_file net.load_parameters(get_model_file('resnet%d_v%d'%(num_layers, version), root=root), ctx=ctx) return net
Helper function for random generators.
def _random_helper(random, sampler, params, shape, dtype, kwargs): """Helper function for random generators.""" if isinstance(params[0], Symbol): for i in params[1:]: assert isinstance(i, Symbol), \ "Distribution parameters must all have the same type, but got " \ "both %s and %s."%(type(params[0]), type(i)) return sampler(*params, shape=shape, dtype=dtype, **kwargs) elif isinstance(params[0], numeric_types): for i in params[1:]: assert isinstance(i, numeric_types), \ "Distribution parameters must all have the same type, but got " \ "both %s and %s."%(type(params[0]), type(i)) return random(*params, shape=shape, dtype=dtype, **kwargs) raise ValueError("Distribution parameters must be either Symbol or numbers, " "but got %s."%type(params[0]))
Draw random samples from a Poisson distribution. Samples are distributed according to a Poisson distribution parametrized by *lambda* (rate). Samples will always be returned as a floating point data type. Parameters ---------- lam : float or Symbol, optional Expectation of interval, should be >= 0. shape : int or tuple of ints, optional The number of samples to draw. If shape is, e.g., `(m, n)` and `lam` is a scalar, output shape will be `(m, n)`. If `lam` is an Symbol with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each entry in `lam`. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' Returns ------- Symbol If input `shape` has dimensions, e.g., `(m, n)`, and `lam` is a scalar, output shape will be `(m, n)`. If `lam` is an Symbol with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each entry in `lam`.
def poisson(lam=1, shape=_Null, dtype=_Null, **kwargs): """Draw random samples from a Poisson distribution. Samples are distributed according to a Poisson distribution parametrized by *lambda* (rate). Samples will always be returned as a floating point data type. Parameters ---------- lam : float or Symbol, optional Expectation of interval, should be >= 0. shape : int or tuple of ints, optional The number of samples to draw. If shape is, e.g., `(m, n)` and `lam` is a scalar, output shape will be `(m, n)`. If `lam` is an Symbol with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each entry in `lam`. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' Returns ------- Symbol If input `shape` has dimensions, e.g., `(m, n)`, and `lam` is a scalar, output shape will be `(m, n)`. If `lam` is an Symbol with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each entry in `lam`. """ return _random_helper(_internal._random_poisson, _internal._sample_poisson, [lam], shape, dtype, kwargs)
Draw random samples from a generalized negative binomial distribution. Samples are distributed according to a generalized negative binomial distribution parametrized by *mu* (mean) and *alpha* (dispersion). *alpha* is defined as *1/k* where *k* is the failure limit of the number of unsuccessful experiments (generalized to real numbers). Samples will always be returned as a floating point data type. Parameters ---------- mu : float or Symbol, optional Mean of the negative binomial distribution. alpha : float or Symbol, optional Alpha (dispersion) parameter of the negative binomial distribution. shape : int or tuple of ints, optional The number of samples to draw. If shape is, e.g., `(m, n)` and `mu` and `alpha` are scalars, output shape will be `(m, n)`. If `mu` and `alpha` are Symbols with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[mu, alpha)` pair. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' Returns ------- Symbol If input `shape` has dimensions, e.g., `(m, n)`, and `mu` and `alpha` are scalars, returned Symbol will resolve to shape `(m, n)`. If `mu` and `alpha` are Symbols with shape, e.g., `(x, y)`, returned Symbol will resolve to shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[mu, alpha)` pair.
def generalized_negative_binomial(mu=1, alpha=1, shape=_Null, dtype=_Null, **kwargs): """Draw random samples from a generalized negative binomial distribution. Samples are distributed according to a generalized negative binomial distribution parametrized by *mu* (mean) and *alpha* (dispersion). *alpha* is defined as *1/k* where *k* is the failure limit of the number of unsuccessful experiments (generalized to real numbers). Samples will always be returned as a floating point data type. Parameters ---------- mu : float or Symbol, optional Mean of the negative binomial distribution. alpha : float or Symbol, optional Alpha (dispersion) parameter of the negative binomial distribution. shape : int or tuple of ints, optional The number of samples to draw. If shape is, e.g., `(m, n)` and `mu` and `alpha` are scalars, output shape will be `(m, n)`. If `mu` and `alpha` are Symbols with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[mu, alpha)` pair. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' Returns ------- Symbol If input `shape` has dimensions, e.g., `(m, n)`, and `mu` and `alpha` are scalars, returned Symbol will resolve to shape `(m, n)`. If `mu` and `alpha` are Symbols with shape, e.g., `(x, y)`, returned Symbol will resolve to shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[mu, alpha)` pair. """ return _random_helper(_internal._random_generalized_negative_binomial, _internal._sample_generalized_negative_binomial, [mu, alpha], shape, dtype, kwargs)
Concurrent sampling from multiple multinomial distributions. .. note:: The input distribution must be normalized, i.e. `data` must sum to 1 along its last dimension. Parameters ---------- data : Symbol An *n* dimensional array whose last dimension has length `k`, where `k` is the number of possible outcomes of each multinomial distribution. For example, data with shape `(m, n, k)` specifies `m*n` multinomial distributions each with `k` possible outcomes. shape : int or tuple of ints, optional The number of samples to draw from each distribution. If shape is empty one sample will be drawn from each distribution. get_prob : bool, optional If true, a second array containing log likelihood of the drawn samples will also be returned. This is usually used for reinforcement learning, where you can provide reward as head gradient w.r.t. this array to estimate gradient. dtype : str or numpy.dtype, optional Data type of the sample output array. The default is int32. Note that the data type of the log likelihood array is the same with that of `data`. Returns ------- Symbol For input `data` with `n` dimensions and shape `(d1, d2, ..., dn-1, k)`, and input `shape` with shape `(s1, s2, ..., sx)`, returns a Symbol that resovles to shape `(d1, d2, ... dn-1, s1, s2, ..., sx)`. The `s1, s2, ... sx` dimensions of the returned Symbol's resolved value will consist of 0-indexed values sampled from each respective multinomial distribution provided in the `k` dimension of `data`. For the case `n`=1, and `x`=1 (one shape dimension), returned Symbol will resolve to shape `(s1,)`. If `get_prob` is set to True, this function returns a Symbol that will resolve to a list of outputs: `[ndarray_output, log_likelihood_output]`, where `log_likelihood_output` will resolve to the same shape as the sampled outputs in ndarray_output.
def multinomial(data, shape=_Null, get_prob=True, dtype='int32', **kwargs): """Concurrent sampling from multiple multinomial distributions. .. note:: The input distribution must be normalized, i.e. `data` must sum to 1 along its last dimension. Parameters ---------- data : Symbol An *n* dimensional array whose last dimension has length `k`, where `k` is the number of possible outcomes of each multinomial distribution. For example, data with shape `(m, n, k)` specifies `m*n` multinomial distributions each with `k` possible outcomes. shape : int or tuple of ints, optional The number of samples to draw from each distribution. If shape is empty one sample will be drawn from each distribution. get_prob : bool, optional If true, a second array containing log likelihood of the drawn samples will also be returned. This is usually used for reinforcement learning, where you can provide reward as head gradient w.r.t. this array to estimate gradient. dtype : str or numpy.dtype, optional Data type of the sample output array. The default is int32. Note that the data type of the log likelihood array is the same with that of `data`. Returns ------- Symbol For input `data` with `n` dimensions and shape `(d1, d2, ..., dn-1, k)`, and input `shape` with shape `(s1, s2, ..., sx)`, returns a Symbol that resovles to shape `(d1, d2, ... dn-1, s1, s2, ..., sx)`. The `s1, s2, ... sx` dimensions of the returned Symbol's resolved value will consist of 0-indexed values sampled from each respective multinomial distribution provided in the `k` dimension of `data`. For the case `n`=1, and `x`=1 (one shape dimension), returned Symbol will resolve to shape `(s1,)`. If `get_prob` is set to True, this function returns a Symbol that will resolve to a list of outputs: `[ndarray_output, log_likelihood_output]`, where `log_likelihood_output` will resolve to the same shape as the sampled outputs in ndarray_output. """ return _internal._sample_multinomial(data, shape, get_prob, dtype=dtype, **kwargs)
Single-shot multi-box detection with VGG 16 layers ConvNet This is a modified version, with fc6/fc7 layers replaced by conv layers And the network is slightly smaller than original VGG 16 network This is a training network with losses Parameters: ---------- num_classes: int number of object classes not including background nms_thresh : float non-maximum suppression threshold force_suppress : boolean whether suppress different class objects nms_topk : int apply NMS to top K detections Returns: ---------- mx.Symbol
def get_symbol_train(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400, **kwargs): """ Single-shot multi-box detection with VGG 16 layers ConvNet This is a modified version, with fc6/fc7 layers replaced by conv layers And the network is slightly smaller than original VGG 16 network This is a training network with losses Parameters: ---------- num_classes: int number of object classes not including background nms_thresh : float non-maximum suppression threshold force_suppress : boolean whether suppress different class objects nms_topk : int apply NMS to top K detections Returns: ---------- mx.Symbol """ data = mx.symbol.Variable(name="data") label = mx.symbol.Variable(name="label") # group 1 conv1_1 = mx.symbol.Convolution( data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1") relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1") conv1_2 = mx.symbol.Convolution( data=relu1_1, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_2") relu1_2 = mx.symbol.Activation(data=conv1_2, act_type="relu", name="relu1_2") pool1 = mx.symbol.Pooling( data=relu1_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool1") # group 2 conv2_1 = mx.symbol.Convolution( data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1") relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1") conv2_2 = mx.symbol.Convolution( data=relu2_1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_2") relu2_2 = mx.symbol.Activation(data=conv2_2, act_type="relu", name="relu2_2") pool2 = mx.symbol.Pooling( data=relu2_2, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool2") # group 3 conv3_1 = mx.symbol.Convolution( data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1") relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1") conv3_2 = mx.symbol.Convolution( data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2") relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2") conv3_3 = mx.symbol.Convolution( data=relu3_2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_3") relu3_3 = mx.symbol.Activation(data=conv3_3, act_type="relu", name="relu3_3") pool3 = mx.symbol.Pooling( data=relu3_3, pool_type="max", kernel=(2, 2), stride=(2, 2), \ pooling_convention="full", name="pool3") # group 4 conv4_1 = mx.symbol.Convolution( data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1") relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1") conv4_2 = mx.symbol.Convolution( data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2") relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2") conv4_3 = mx.symbol.Convolution( data=relu4_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_3") relu4_3 = mx.symbol.Activation(data=conv4_3, act_type="relu", name="relu4_3") pool4 = mx.symbol.Pooling( data=relu4_3, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool4") # group 5 conv5_1 = mx.symbol.Convolution( data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1") relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1") conv5_2 = mx.symbol.Convolution( data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2") relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="relu5_2") conv5_3 = mx.symbol.Convolution( data=relu5_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_3") relu5_3 = mx.symbol.Activation(data=conv5_3, act_type="relu", name="relu5_3") pool5 = mx.symbol.Pooling( data=relu5_3, pool_type="max", kernel=(3, 3), stride=(1, 1), pad=(1,1), name="pool5") # group 6 conv6 = mx.symbol.Convolution( data=pool5, kernel=(3, 3), pad=(6, 6), dilate=(6, 6), num_filter=1024, name="conv6") relu6 = mx.symbol.Activation(data=conv6, act_type="relu", name="relu6") # drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6") # group 7 conv7 = mx.symbol.Convolution( data=relu6, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="conv7") relu7 = mx.symbol.Activation(data=conv7, act_type="relu", name="relu7") # drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7") ### ssd extra layers ### conv8_1, relu8_1 = legacy_conv_act_layer(relu7, "8_1", 256, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv8_2, relu8_2 = legacy_conv_act_layer(relu8_1, "8_2", 512, kernel=(3,3), pad=(1,1), \ stride=(2,2), act_type="relu", use_batchnorm=False) conv9_1, relu9_1 = legacy_conv_act_layer(relu8_2, "9_1", 128, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv9_2, relu9_2 = legacy_conv_act_layer(relu9_1, "9_2", 256, kernel=(3,3), pad=(1,1), \ stride=(2,2), act_type="relu", use_batchnorm=False) conv10_1, relu10_1 = legacy_conv_act_layer(relu9_2, "10_1", 128, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv10_2, relu10_2 = legacy_conv_act_layer(relu10_1, "10_2", 256, kernel=(3,3), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv11_1, relu11_1 = legacy_conv_act_layer(relu10_2, "11_1", 128, kernel=(1,1), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) conv11_2, relu11_2 = legacy_conv_act_layer(relu11_1, "11_2", 256, kernel=(3,3), pad=(0,0), \ stride=(1,1), act_type="relu", use_batchnorm=False) # specific parameters for VGG16 network from_layers = [relu4_3, relu7, relu8_2, relu9_2, relu10_2, relu11_2] sizes = [[.1, .141], [.2,.272], [.37, .447], [.54, .619], [.71, .79], [.88, .961]] ratios = [[1,2,.5], [1,2,.5,3,1./3], [1,2,.5,3,1./3], [1,2,.5,3,1./3], \ [1,2,.5], [1,2,.5]] normalizations = [20, -1, -1, -1, -1, -1] steps = [ x / 300.0 for x in [8, 16, 32, 64, 100, 300]] num_channels = [512] loc_preds, cls_preds, anchor_boxes = multibox_layer(from_layers, \ num_classes, sizes=sizes, ratios=ratios, normalization=normalizations, \ num_channels=num_channels, clip=False, interm_layer=0, steps=steps) tmp = mx.symbol.contrib.MultiBoxTarget( *[anchor_boxes, label, cls_preds], overlap_threshold=.5, \ ignore_label=-1, negative_mining_ratio=3, minimum_negative_samples=0, \ negative_mining_thresh=.5, variances=(0.1, 0.1, 0.2, 0.2), name="multibox_target") loc_target = tmp[0] loc_target_mask = tmp[1] cls_target = tmp[2] cls_prob = mx.symbol.SoftmaxOutput(data=cls_preds, label=cls_target, \ ignore_label=-1, use_ignore=True, grad_scale=1., multi_output=True, \ normalization='valid', name="cls_prob") loc_loss_ = mx.symbol.smooth_l1(name="loc_loss_", \ data=loc_target_mask * (loc_preds - loc_target), scalar=1.0) loc_loss = mx.symbol.MakeLoss(loc_loss_, grad_scale=1., \ normalization='valid', name="loc_loss") # monitoring training status cls_label = mx.symbol.MakeLoss(data=cls_target, grad_scale=0, name="cls_label") det = mx.symbol.contrib.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \ name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress, variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk) det = mx.symbol.MakeLoss(data=det, grad_scale=0, name="det_out") # group output out = mx.symbol.Group([cls_prob, loc_loss, cls_label, det]) return out
Single-shot multi-box detection with VGG 16 layers ConvNet This is a modified version, with fc6/fc7 layers replaced by conv layers And the network is slightly smaller than original VGG 16 network This is the detection network Parameters: ---------- num_classes: int number of object classes not including background nms_thresh : float threshold of overlap for non-maximum suppression force_suppress : boolean whether suppress different class objects nms_topk : int apply NMS to top K detections Returns: ---------- mx.Symbol
def get_symbol(num_classes=20, nms_thresh=0.5, force_suppress=False, nms_topk=400, **kwargs): """ Single-shot multi-box detection with VGG 16 layers ConvNet This is a modified version, with fc6/fc7 layers replaced by conv layers And the network is slightly smaller than original VGG 16 network This is the detection network Parameters: ---------- num_classes: int number of object classes not including background nms_thresh : float threshold of overlap for non-maximum suppression force_suppress : boolean whether suppress different class objects nms_topk : int apply NMS to top K detections Returns: ---------- mx.Symbol """ net = get_symbol_train(num_classes) cls_preds = net.get_internals()["multibox_cls_pred_output"] loc_preds = net.get_internals()["multibox_loc_pred_output"] anchor_boxes = net.get_internals()["multibox_anchors_output"] cls_prob = mx.symbol.softmax(data=cls_preds, axis=1, name='cls_prob') out = mx.symbol.contrib.MultiBoxDetection(*[cls_prob, loc_preds, anchor_boxes], \ name="detection", nms_threshold=nms_thresh, force_suppress=force_suppress, variances=(0.1, 0.1, 0.2, 0.2), nms_topk=nms_topk) return out
Creates a model from previously saved checkpoint. Parameters ---------- prefix : str path prefix of saved model files. You should have "prefix-symbol.json", "prefix-xxxx.params", and optionally "prefix-xxxx.states", where xxxx is the epoch number. epoch : int epoch to load. load_optimizer_states : bool whether to load optimizer states. Checkpoint needs to have been made with save_optimizer_states=True. data_names : list of str Default is `('data')` for a typical model used in image classification. label_names : list of str Default is `('softmax_label')` for a typical model used in image classification. logger : Logger Default is `logging`. context : Context or list of Context Default is ``cpu()``. work_load_list : list of number Default ``None``, indicating uniform workload. fixed_param_names: list of str Default ``None``, indicating no network parameters are fixed.
def load(prefix, epoch, load_optimizer_states=False, **kwargs): """Creates a model from previously saved checkpoint. Parameters ---------- prefix : str path prefix of saved model files. You should have "prefix-symbol.json", "prefix-xxxx.params", and optionally "prefix-xxxx.states", where xxxx is the epoch number. epoch : int epoch to load. load_optimizer_states : bool whether to load optimizer states. Checkpoint needs to have been made with save_optimizer_states=True. data_names : list of str Default is `('data')` for a typical model used in image classification. label_names : list of str Default is `('softmax_label')` for a typical model used in image classification. logger : Logger Default is `logging`. context : Context or list of Context Default is ``cpu()``. work_load_list : list of number Default ``None``, indicating uniform workload. fixed_param_names: list of str Default ``None``, indicating no network parameters are fixed. """ sym, args, auxs = load_checkpoint(prefix, epoch) mod = Module(symbol=sym, **kwargs) mod._arg_params = args mod._aux_params = auxs mod.params_initialized = True if load_optimizer_states: mod._preload_opt_states = '%s-%04d.states'%(prefix, epoch) return mod
Saves current progress to checkpoint. Use `mx.callback.module_checkpoint` as `epoch_end_callback` to save during training. Parameters ---------- prefix : str The file prefix to checkpoint to. epoch : int The current epoch number. save_optimizer_states : bool Whether to save optimizer states to continue training.
def save_checkpoint(self, prefix, epoch, save_optimizer_states=False): """Saves current progress to checkpoint. Use `mx.callback.module_checkpoint` as `epoch_end_callback` to save during training. Parameters ---------- prefix : str The file prefix to checkpoint to. epoch : int The current epoch number. save_optimizer_states : bool Whether to save optimizer states to continue training. """ self._symbol.save('%s-symbol.json'%prefix) param_name = '%s-%04d.params' % (prefix, epoch) self.save_params(param_name) logging.info('Saved checkpoint to \"%s\"', param_name) if save_optimizer_states: state_name = '%s-%04d.states' % (prefix, epoch) self.save_optimizer_states(state_name) logging.info('Saved optimizer state to \"%s\"', state_name)
Internal function to reset binded state.
def _reset_bind(self): """Internal function to reset binded state.""" self.binded = False self._exec_group = None self._data_shapes = None self._label_shapes = None
Gets current parameters. Returns ------- `(arg_params, aux_params)` A pair of dictionaries each mapping parameter names to NDArray values.
def get_params(self): """Gets current parameters. Returns ------- `(arg_params, aux_params)` A pair of dictionaries each mapping parameter names to NDArray values. """ assert self.binded and self.params_initialized if self._params_dirty: self._sync_params_from_devices() return (self._arg_params, self._aux_params)
Initializes the parameters and auxiliary states. Parameters ---------- initializer : Initializer Called to initialize parameters if needed. arg_params : dict If not ``None``, should be a dictionary of existing arg_params. Initialization will be copied from that. aux_params : dict If not ``None``, should be a dictionary of existing aux_params. Initialization will be copied from that. allow_missing : bool If ``True``, params could contain missing values, and the initializer will be called to fill those missing params. force_init : bool If ``True``, will force re-initialize even if already initialized. allow_extra : boolean, optional Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor.
def init_params(self, initializer=Uniform(0.01), arg_params=None, aux_params=None, allow_missing=False, force_init=False, allow_extra=False): """Initializes the parameters and auxiliary states. Parameters ---------- initializer : Initializer Called to initialize parameters if needed. arg_params : dict If not ``None``, should be a dictionary of existing arg_params. Initialization will be copied from that. aux_params : dict If not ``None``, should be a dictionary of existing aux_params. Initialization will be copied from that. allow_missing : bool If ``True``, params could contain missing values, and the initializer will be called to fill those missing params. force_init : bool If ``True``, will force re-initialize even if already initialized. allow_extra : boolean, optional Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor. """ if self.params_initialized and not force_init: warnings.warn("Parameters already initialized and force_init=False. " "init_params call ignored.", stacklevel=2) return assert self.binded, 'call bind before initializing the parameters' def _impl(name, arr, cache): """Internal helper for parameter initialization""" if cache is not None: if name in cache: cache_arr = cache[name] # just in case the cached array is just the target itself if cache_arr is not arr: cache_arr.copyto(arr) else: if not allow_missing: raise RuntimeError("%s is not presented" % name) if initializer is not None: initializer(name, arr) else: initializer(name, arr) attrs = self._symbol.attr_dict() for name, arr in sorted(self._arg_params.items()): desc = InitDesc(name, attrs.get(name, None)) _impl(desc, arr, arg_params) for name, arr in sorted(self._aux_params.items()): desc = InitDesc(name, attrs.get(name, None)) _impl(desc, arr, aux_params) self.params_initialized = True self._params_dirty = False # copy the initialized parameters to devices self._exec_group.set_params(self._arg_params, self._aux_params, allow_extra=allow_extra)
Assigns parameter and aux state values. Parameters ---------- arg_params : dict Dictionary of name to `NDArray`. aux_params : dict Dictionary of name to `NDArray`. allow_missing : bool If ``True``, params could contain missing values, and the initializer will be called to fill those missing params. force_init : bool If ``True``, will force re-initialize even if already initialized. allow_extra : boolean, optional Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor. Examples -------- >>> # An example of setting module parameters. >>> sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, n_epoch_load) >>> mod.set_params(arg_params=arg_params, aux_params=aux_params)
def set_params(self, arg_params, aux_params, allow_missing=False, force_init=True, allow_extra=False): """Assigns parameter and aux state values. Parameters ---------- arg_params : dict Dictionary of name to `NDArray`. aux_params : dict Dictionary of name to `NDArray`. allow_missing : bool If ``True``, params could contain missing values, and the initializer will be called to fill those missing params. force_init : bool If ``True``, will force re-initialize even if already initialized. allow_extra : boolean, optional Whether allow extra parameters that are not needed by symbol. If this is True, no error will be thrown when arg_params or aux_params contain extra parameters that is not needed by the executor. Examples -------- >>> # An example of setting module parameters. >>> sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, n_epoch_load) >>> mod.set_params(arg_params=arg_params, aux_params=aux_params) """ if not allow_missing: self.init_params(initializer=None, arg_params=arg_params, aux_params=aux_params, allow_missing=allow_missing, force_init=force_init, allow_extra=allow_extra) return if self.params_initialized and not force_init: warnings.warn("Parameters already initialized and force_init=False. " "set_params call ignored.", stacklevel=2) return self._exec_group.set_params(arg_params, aux_params, allow_extra=allow_extra) # because we didn't update self._arg_params, they are dirty now. self._params_dirty = True self.params_initialized = True
Binds the symbols to construct executors. This is necessary before one can perform computation with the module. Parameters ---------- data_shapes : list of (str, tuple) Typically is ``data_iter.provide_data``. label_shapes : list of (str, tuple) Typically is ``data_iter.provide_label``. for_training : bool Default is ``True``. Whether the executors should be bound for training. inputs_need_grad : bool Default is ``False``. Whether the gradients to the input data need to be computed. Typically this is not needed. But this might be needed when implementing composition of modules. force_rebind : bool Default is ``False``. This function does nothing if the executors are already bound. But with this ``True``, the executors will be forced to rebind. shared_module : Module Default is ``None``. This is used in bucketing. When not ``None``, the shared module essentially corresponds to a different bucket -- a module with different symbol but with the same sets of parameters (e.g. unrolled RNNs with different lengths).
def bind(self, data_shapes, label_shapes=None, for_training=True, inputs_need_grad=False, force_rebind=False, shared_module=None, grad_req='write'): """Binds the symbols to construct executors. This is necessary before one can perform computation with the module. Parameters ---------- data_shapes : list of (str, tuple) Typically is ``data_iter.provide_data``. label_shapes : list of (str, tuple) Typically is ``data_iter.provide_label``. for_training : bool Default is ``True``. Whether the executors should be bound for training. inputs_need_grad : bool Default is ``False``. Whether the gradients to the input data need to be computed. Typically this is not needed. But this might be needed when implementing composition of modules. force_rebind : bool Default is ``False``. This function does nothing if the executors are already bound. But with this ``True``, the executors will be forced to rebind. shared_module : Module Default is ``None``. This is used in bucketing. When not ``None``, the shared module essentially corresponds to a different bucket -- a module with different symbol but with the same sets of parameters (e.g. unrolled RNNs with different lengths). """ # force rebinding is typically used when one want to switch from # training to prediction phase. if force_rebind: self._reset_bind() if self.binded: self.logger.warning('Already bound, ignoring bind()') return self.for_training = for_training self.inputs_need_grad = inputs_need_grad self._grad_req = grad_req if not for_training: assert not inputs_need_grad else: pass # this is not True, as some module might not contains a loss function # that consumes the labels # assert label_shapes is not None self._data_shapes, self._label_shapes = _parse_data_desc( self.data_names, self.label_names, data_shapes, label_shapes) if shared_module is not None: assert isinstance(shared_module, Module) and \ shared_module.binded and shared_module.params_initialized shared_group = shared_module._exec_group assert len(shared_group.execs) >= len(self._context) else: shared_group = None self._exec_group = DataParallelExecutorGroup(self._symbol, self._context, self._work_load_list, self._data_shapes, self._label_shapes, self._param_names, for_training, inputs_need_grad, shared_group, logger=self.logger, fixed_param_names=self._fixed_param_names, grad_req=grad_req, group2ctxs=self._group2ctxs, state_names=self._state_names) self._total_exec_bytes = self._exec_group._total_exec_bytes if shared_module is not None: self.params_initialized = True self._arg_params = shared_module._arg_params self._aux_params = shared_module._aux_params elif self.params_initialized: # if the parameters are already initialized, we are re-binding # so automatically copy the already initialized params self._exec_group.set_params(self._arg_params, self._aux_params) else: assert self._arg_params is None and self._aux_params is None param_arrays = [ zeros(shape=x[0].shape, dtype=x[0].dtype, stype=x[0].stype) for x in self._exec_group.param_arrays ] self._arg_params = {name:arr for name, arr in zip(self._param_names, param_arrays)} aux_arrays = [ zeros(x[0].shape, dtype=x[0].dtype) for x in self._exec_group.aux_arrays ] self._aux_params = {name:arr for name, arr in zip(self._aux_names, aux_arrays)} if shared_module is not None and shared_module.optimizer_initialized: self.borrow_optimizer(shared_module) self.binded = True
Reshapes the module for new input shapes. Parameters ---------- data_shapes : list of (str, tuple) Typically is ``data_iter.provide_data``. label_shapes : list of (str, tuple) Typically is ``data_iter.provide_label``.
def reshape(self, data_shapes, label_shapes=None): """Reshapes the module for new input shapes. Parameters ---------- data_shapes : list of (str, tuple) Typically is ``data_iter.provide_data``. label_shapes : list of (str, tuple) Typically is ``data_iter.provide_label``. """ assert self.binded self._data_shapes, self._label_shapes = _parse_data_desc( self.data_names, self.label_names, data_shapes, label_shapes) self._exec_group.reshape(self._data_shapes, self._label_shapes)
Installs and initializes optimizers. Parameters ---------- kvstore : str or KVStore Default `'local'`. optimizer : str or Optimizer Default `'sgd'` optimizer_params : dict Default `(('learning_rate', 0.01),)`. The default value is not a dictionary, just to avoid pylint warning of dangerous default values. force_init : bool Default ``False``, indicating whether we should force re-initializing the optimizer in the case an optimizer is already installed.
def init_optimizer(self, kvstore='local', optimizer='sgd', optimizer_params=(('learning_rate', 0.01),), force_init=False): """Installs and initializes optimizers. Parameters ---------- kvstore : str or KVStore Default `'local'`. optimizer : str or Optimizer Default `'sgd'` optimizer_params : dict Default `(('learning_rate', 0.01),)`. The default value is not a dictionary, just to avoid pylint warning of dangerous default values. force_init : bool Default ``False``, indicating whether we should force re-initializing the optimizer in the case an optimizer is already installed. """ assert self.binded and self.params_initialized if self.optimizer_initialized and not force_init: self.logger.warning('optimizer already initialized, ignoring...') return if self._params_dirty: self._sync_params_from_devices() (kvstore, update_on_kvstore) = \ _create_kvstore(kvstore, len(self._context), self._arg_params) batch_size = self._exec_group.batch_size if kvstore and 'dist' in kvstore.type and '_sync' in kvstore.type: batch_size *= kvstore.num_workers rescale_grad = 1.0/batch_size idx2name = {} if update_on_kvstore: idx2name.update(enumerate(self._exec_group.param_names)) else: for k in range(len(self._context)): idx2name.update({i*len(self._context)+k: n for i, n in enumerate(self._exec_group.param_names)}) if isinstance(optimizer, str): optimizer_params = dict(optimizer_params) if 'rescale_grad' not in optimizer_params: optimizer_params['rescale_grad'] = rescale_grad optimizer = opt.create(optimizer, sym=self.symbol, param_idx2name=idx2name, **optimizer_params) else: assert isinstance(optimizer, opt.Optimizer) if optimizer.rescale_grad != rescale_grad: #pylint: disable=no-member warnings.warn( "Optimizer created manually outside Module but rescale_grad " + "is not normalized to 1.0/batch_size/num_workers (%s vs. %s). "%( optimizer.rescale_grad, rescale_grad) + "Is this intended?", stacklevel=2) if not optimizer.idx2name: optimizer.idx2name = idx2name.copy() self._optimizer = optimizer self._kvstore = kvstore self._update_on_kvstore = update_on_kvstore self._updater = None if kvstore: if self._compression_params: kvstore.set_gradient_compression(self._compression_params) if update_on_kvstore: kvstore.set_optimizer(self._optimizer) # copy initialized local parameters to kvstore _initialize_kvstore(kvstore=kvstore, param_arrays=self._exec_group.param_arrays, arg_params=self._arg_params, param_names=self._param_names, update_on_kvstore=update_on_kvstore) if not update_on_kvstore: self._updater = opt.get_updater(optimizer) self.optimizer_initialized = True if self._preload_opt_states is not None: self.load_optimizer_states(self._preload_opt_states) self._preload_opt_states = None
Borrows optimizer from a shared module. Used in bucketing, where exactly the same optimizer (esp. kvstore) is used. Parameters ---------- shared_module : Module
def borrow_optimizer(self, shared_module): """Borrows optimizer from a shared module. Used in bucketing, where exactly the same optimizer (esp. kvstore) is used. Parameters ---------- shared_module : Module """ assert shared_module.optimizer_initialized self._optimizer = shared_module._optimizer self._kvstore = shared_module._kvstore self._update_on_kvstore = shared_module._update_on_kvstore self._updater = shared_module._updater self.optimizer_initialized = True
Forward computation. It supports data batches with different shapes, such as different batch sizes or different image sizes. If reshaping of data batch relates to modification of symbol or module, such as changing image layout ordering or switching from training to predicting, module rebinding is required. See Also ---------- :meth:`BaseModule.forward`. Parameters ---------- data_batch : DataBatch Could be anything with similar API implemented. is_train : bool Default is ``None``, which means ``is_train`` takes the value of ``self.for_training``.
def forward(self, data_batch, is_train=None): """Forward computation. It supports data batches with different shapes, such as different batch sizes or different image sizes. If reshaping of data batch relates to modification of symbol or module, such as changing image layout ordering or switching from training to predicting, module rebinding is required. See Also ---------- :meth:`BaseModule.forward`. Parameters ---------- data_batch : DataBatch Could be anything with similar API implemented. is_train : bool Default is ``None``, which means ``is_train`` takes the value of ``self.for_training``. """ assert self.binded and self.params_initialized curr_data_shapes = tuple(i.shape for i in self._data_shapes) if isinstance(data_batch, list): assert data_batch is not None, "Encountered empty data batch" new_data_shapes = [] for i in range(len(data_batch[0].data)): shape = data_batch[0].data[i].shape for db in data_batch: assert shape == db.data[i].shape, \ "All data batches in a list need to have the same shape" new_batch_size = len(data_batch) * shape[0] new_data_shapes.append((new_batch_size,) + shape[1:]) new_data_shapes = tuple(new_data_shapes) else: new_data_shapes = tuple(i.shape for i in data_batch.data) if curr_data_shapes != new_data_shapes: if hasattr(data_batch, "provide_data") and data_batch.provide_data: new_dshape = data_batch.provide_data else: new_dshape = [DataDesc(i.name, shape, i.dtype, i.layout) \ for i, shape in zip(self._data_shapes, new_data_shapes)] if hasattr(data_batch, "provide_label") and data_batch.provide_label: new_lshape = data_batch.provide_label elif hasattr(data_batch, "label") and data_batch.label: new_lshape = [DataDesc(i.name, j.shape, i.dtype, i.layout) \ for i, j in zip(self._label_shapes, data_batch.label)] else: new_lshape = None self.reshape(new_dshape, new_lshape) self._exec_group.forward(data_batch, is_train)
Backward computation. See Also ---------- :meth:`BaseModule.backward`. Parameters ---------- out_grads : NDArray or list of NDArray, optional Gradient on the outputs to be propagated back. This parameter is only needed when bind is called on outputs that are not a loss function.
def backward(self, out_grads=None): """Backward computation. See Also ---------- :meth:`BaseModule.backward`. Parameters ---------- out_grads : NDArray or list of NDArray, optional Gradient on the outputs to be propagated back. This parameter is only needed when bind is called on outputs that are not a loss function. """ assert self.binded and self.params_initialized self._exec_group.backward(out_grads=out_grads)
Updates parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. When KVStore is used to update parameters for multi-device or multi-machine training, a copy of the parameters are stored in KVStore. Note that for `row_sparse` parameters, this function does update the copy of parameters in KVStore, but doesn't broadcast the updated parameters to all devices / machines. Please call `prepare` to broadcast `row_sparse` parameters with the next batch of data. See Also ---------- :meth:`BaseModule.update`.
def update(self): """Updates parameters according to the installed optimizer and the gradients computed in the previous forward-backward batch. When KVStore is used to update parameters for multi-device or multi-machine training, a copy of the parameters are stored in KVStore. Note that for `row_sparse` parameters, this function does update the copy of parameters in KVStore, but doesn't broadcast the updated parameters to all devices / machines. Please call `prepare` to broadcast `row_sparse` parameters with the next batch of data. See Also ---------- :meth:`BaseModule.update`. """ assert self.binded and self.params_initialized and self.optimizer_initialized self._params_dirty = True if self._update_on_kvstore: _update_params_on_kvstore(self._exec_group.param_arrays, self._exec_group.grad_arrays, self._kvstore, self._exec_group.param_names) else: _update_params(self._exec_group.param_arrays, self._exec_group.grad_arrays, updater=self._updater, num_device=len(self._context), kvstore=self._kvstore, param_names=self._exec_group.param_names)
Gets outputs of the previous forward computation. If ``merge_multi_context`` is ``True``, it is like ``[out1, out2]``. Otherwise, it is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output elements are `NDArray`. When `merge_multi_context` is `False`, those `NDArray` might live on different devices. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArray or list of list of NDArray Output.
def get_outputs(self, merge_multi_context=True): """Gets outputs of the previous forward computation. If ``merge_multi_context`` is ``True``, it is like ``[out1, out2]``. Otherwise, it is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output elements are `NDArray`. When `merge_multi_context` is `False`, those `NDArray` might live on different devices. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArray or list of list of NDArray Output. """ assert self.binded and self.params_initialized return self._exec_group.get_outputs(merge_multi_context=merge_multi_context)
Gets the gradients with respect to the inputs of the module. If ``merge_multi_context`` is ``True``, it is like ``[grad1, grad2]``. Otherwise, it is like ``[[grad1_dev1, grad1_dev2], [grad2_dev1, grad2_dev2]]``. All the output elements are `NDArray`. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArray or list of list of NDArray Input gradients
def get_input_grads(self, merge_multi_context=True): """Gets the gradients with respect to the inputs of the module. If ``merge_multi_context`` is ``True``, it is like ``[grad1, grad2]``. Otherwise, it is like ``[[grad1_dev1, grad1_dev2], [grad2_dev1, grad2_dev2]]``. All the output elements are `NDArray`. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the outputs will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArray or list of list of NDArray Input gradients """ assert self.binded and self.params_initialized and self.inputs_need_grad return self._exec_group.get_input_grads(merge_multi_context=merge_multi_context)
Gets states from all devices. If `merge_multi_context` is ``True``, it is like ``[out1, out2]``. Otherwise, it is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output elements are `NDArray`. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the states will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArray or list of list of NDArray States
def get_states(self, merge_multi_context=True): """Gets states from all devices. If `merge_multi_context` is ``True``, it is like ``[out1, out2]``. Otherwise, it is like ``[[out1_dev1, out1_dev2], [out2_dev1, out2_dev2]]``. All the output elements are `NDArray`. Parameters ---------- merge_multi_context : bool Default is ``True``. In the case when data-parallelism is used, the states will be collected from multiple devices. A ``True`` value indicate that we should merge the collected results so that they look like from a single executor. Returns ------- list of NDArray or list of list of NDArray States """ assert self.binded and self.params_initialized return self._exec_group.get_states(merge_multi_context=merge_multi_context)
Evaluates and accumulates evaluation metric on outputs of the last forward computation. See Also ---------- :meth:`BaseModule.update_metric`. Parameters ---------- eval_metric : EvalMetric Evaluation metric to use. labels : list of NDArray if `pre_sliced` parameter is set to `False`, list of lists of NDArray otherwise. Typically `data_batch.label`. pre_sliced: bool Whether the labels are already sliced per device (default: False).
def update_metric(self, eval_metric, labels, pre_sliced=False): """Evaluates and accumulates evaluation metric on outputs of the last forward computation. See Also ---------- :meth:`BaseModule.update_metric`. Parameters ---------- eval_metric : EvalMetric Evaluation metric to use. labels : list of NDArray if `pre_sliced` parameter is set to `False`, list of lists of NDArray otherwise. Typically `data_batch.label`. pre_sliced: bool Whether the labels are already sliced per device (default: False). """ self._exec_group.update_metric(eval_metric, labels, pre_sliced)
Synchronizes parameters from devices to CPU. This function should be called after calling `update` that updates the parameters on the devices, before one can read the latest parameters from ``self._arg_params`` and ``self._aux_params``. For row_sparse parameters on devices, ther are pulled from KVStore with all row ids.
def _sync_params_from_devices(self): """Synchronizes parameters from devices to CPU. This function should be called after calling `update` that updates the parameters on the devices, before one can read the latest parameters from ``self._arg_params`` and ``self._aux_params``. For row_sparse parameters on devices, ther are pulled from KVStore with all row ids. """ self._exec_group.get_params(self._arg_params, self._aux_params) if self._kvstore and self._update_on_kvstore: for param_name, param_val in sorted(self._arg_params.items()): if param_val.stype == 'row_sparse': row_ids = nd.arange(0, param_val.shape[0], dtype='int64') self._kvstore.row_sparse_pull(param_name, param_val, row_ids=row_ids) self._params_dirty = False
Saves optimizer (updater) state to a file. Parameters ---------- fname : str Path to output states file.
def save_optimizer_states(self, fname): """Saves optimizer (updater) state to a file. Parameters ---------- fname : str Path to output states file. """ assert self.optimizer_initialized if self._update_on_kvstore: self._kvstore.save_optimizer_states(fname) else: with open(fname, 'wb') as fout: fout.write(self._updater.get_states())
Loads optimizer (updater) state from a file. Parameters ---------- fname : str Path to input states file.
def load_optimizer_states(self, fname): """Loads optimizer (updater) state from a file. Parameters ---------- fname : str Path to input states file. """ assert self.optimizer_initialized if self._update_on_kvstore: self._kvstore.load_optimizer_states(fname) else: self._updater.set_states(open(fname, 'rb').read())
Prepares the module for processing a data batch. Usually involves switching bucket and reshaping. For modules that contain `row_sparse` parameters in KVStore, it prepares the `row_sparse` parameters based on the sparse_row_id_fn. When KVStore is used to update parameters for multi-device or multi-machine training, a copy of the parameters are stored in KVStore. Note that for `row_sparse` parameters, the `update()` updates the copy of parameters in KVStore, but doesn't broadcast the updated parameters to all devices / machines. The `prepare` function is used to broadcast `row_sparse` parameters with the next batch of data. Parameters ---------- data_batch : DataBatch The current batch of data for forward computation. sparse_row_id_fn : A callback function The function takes `data_batch` as an input and returns a dict of str -> NDArray. The resulting dict is used for pulling row_sparse parameters from the kvstore, where the str key is the name of the param, and the value is the row id of the param to pull.
def prepare(self, data_batch, sparse_row_id_fn=None): '''Prepares the module for processing a data batch. Usually involves switching bucket and reshaping. For modules that contain `row_sparse` parameters in KVStore, it prepares the `row_sparse` parameters based on the sparse_row_id_fn. When KVStore is used to update parameters for multi-device or multi-machine training, a copy of the parameters are stored in KVStore. Note that for `row_sparse` parameters, the `update()` updates the copy of parameters in KVStore, but doesn't broadcast the updated parameters to all devices / machines. The `prepare` function is used to broadcast `row_sparse` parameters with the next batch of data. Parameters ---------- data_batch : DataBatch The current batch of data for forward computation. sparse_row_id_fn : A callback function The function takes `data_batch` as an input and returns a dict of str -> NDArray. The resulting dict is used for pulling row_sparse parameters from the kvstore, where the str key is the name of the param, and the value is the row id of the param to pull. ''' assert self.binded if sparse_row_id_fn is not None: if not self._kvstore or not self._update_on_kvstore: warnings.warn(UserWarning("Parameters are not updated in the KVStore. " "No need to call sparse_row_id_fn.")) else: row_ids = sparse_row_id_fn(data_batch) assert(isinstance(row_ids, dict)), "Expected dict output from sparse_row_id_fn" for param_name, row_id in row_ids.items(): param_idx = self._exec_group.param_names.index(param_name) param_val = self._exec_group.param_arrays[param_idx] assert(isinstance(param_val, (tuple, list))) if param_val[0].stype != 'row_sparse': warnings.warn(UserWarning("%s.stype is not 'row_sparse'. No need to " "perform row_sparse_pull." % param_name)) else: self._kvstore.row_sparse_pull(param_name, param_val, row_ids=row_id, priority=-param_idx)
Helper function for random generators.
def _random_helper(random, sampler, params, shape, dtype, ctx, out, kwargs): """Helper function for random generators.""" if isinstance(params[0], NDArray): for i in params[1:]: assert isinstance(i, NDArray), \ "Distribution parameters must all have the same type, but got " \ "both %s and %s."%(type(params[0]), type(i)) return sampler(*params, shape=shape, dtype=dtype, out=out, **kwargs) elif isinstance(params[0], numeric_types): if ctx is None: ctx = current_context() if shape is _Null and out is None: shape = 1 for i in params[1:]: assert isinstance(i, numeric_types), \ "Distribution parameters must all have the same type, but got " \ "both %s and %s."%(type(params[0]), type(i)) return random(*params, shape=shape, dtype=dtype, ctx=ctx, out=out, **kwargs) raise ValueError("Distribution parameters must be either NDArray or numbers, " "but got %s."%type(params[0]))
Draw random samples from a uniform distribution. Samples are uniformly distributed over the half-open interval *[low, high)* (includes *low*, but excludes *high*). Parameters ---------- low : float or NDArray, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or NDArray, optional Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. shape : int or tuple of ints, optional The number of samples to draw. If shape is, e.g., `(m, n)` and `low` and `high` are scalars, output shape will be `(m, n)`. If `low` and `high` are NDArrays with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[low, high)` pair. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' ctx : Context, optional Device context of output. Default is current context. Overridden by `low.context` when `low` is an NDArray. out : NDArray, optional Store output to an existing NDArray. Returns ------- NDArray An NDArray of type `dtype`. If input `shape` has shape, e.g., `(m, n)` and `low` and `high` are scalars, output shape will be `(m, n)`. If `low` and `high` are NDArrays with shape, e.g., `(x, y)`, then the return NDArray will have shape `(x, y, m, n)`, where `m*n` uniformly distributed samples are drawn for each `[low, high)` pair. Examples -------- >>> mx.nd.random.uniform(0, 1) [ 0.54881352] <NDArray 1 @cpu(0) >>> mx.nd.random.uniform(0, 1, ctx=mx.gpu(0)) [ 0.92514056] <NDArray 1 @gpu(0)> >>> mx.nd.random.uniform(-1, 1, shape=(2,)) [ 0.71589124 0.08976638] <NDArray 2 @cpu(0)> >>> low = mx.nd.array([1,2,3]) >>> high = mx.nd.array([2,3,4]) >>> mx.nd.random.uniform(low, high, shape=2) [[ 1.78653979 1.93707538] [ 2.01311183 2.37081361] [ 3.30491424 3.69977832]] <NDArray 3x2 @cpu(0)>
def uniform(low=0, high=1, shape=_Null, dtype=_Null, ctx=None, out=None, **kwargs): """Draw random samples from a uniform distribution. Samples are uniformly distributed over the half-open interval *[low, high)* (includes *low*, but excludes *high*). Parameters ---------- low : float or NDArray, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or NDArray, optional Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. shape : int or tuple of ints, optional The number of samples to draw. If shape is, e.g., `(m, n)` and `low` and `high` are scalars, output shape will be `(m, n)`. If `low` and `high` are NDArrays with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[low, high)` pair. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' ctx : Context, optional Device context of output. Default is current context. Overridden by `low.context` when `low` is an NDArray. out : NDArray, optional Store output to an existing NDArray. Returns ------- NDArray An NDArray of type `dtype`. If input `shape` has shape, e.g., `(m, n)` and `low` and `high` are scalars, output shape will be `(m, n)`. If `low` and `high` are NDArrays with shape, e.g., `(x, y)`, then the return NDArray will have shape `(x, y, m, n)`, where `m*n` uniformly distributed samples are drawn for each `[low, high)` pair. Examples -------- >>> mx.nd.random.uniform(0, 1) [ 0.54881352] <NDArray 1 @cpu(0) >>> mx.nd.random.uniform(0, 1, ctx=mx.gpu(0)) [ 0.92514056] <NDArray 1 @gpu(0)> >>> mx.nd.random.uniform(-1, 1, shape=(2,)) [ 0.71589124 0.08976638] <NDArray 2 @cpu(0)> >>> low = mx.nd.array([1,2,3]) >>> high = mx.nd.array([2,3,4]) >>> mx.nd.random.uniform(low, high, shape=2) [[ 1.78653979 1.93707538] [ 2.01311183 2.37081361] [ 3.30491424 3.69977832]] <NDArray 3x2 @cpu(0)> """ return _random_helper(_internal._random_uniform, _internal._sample_uniform, [low, high], shape, dtype, ctx, out, kwargs)
Draw random samples from a normal (Gaussian) distribution. Samples are distributed according to a normal distribution parametrized by *loc* (mean) and *scale* (standard deviation). Parameters ---------- loc : float or NDArray, optional Mean (centre) of the distribution. scale : float or NDArray, optional Standard deviation (spread or width) of the distribution. shape : int or tuple of ints, optional The number of samples to draw. If shape is, e.g., `(m, n)` and `loc` and `scale` are scalars, output shape will be `(m, n)`. If `loc` and `scale` are NDArrays with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[loc, scale)` pair. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' ctx : Context, optional Device context of output. Default is current context. Overridden by `loc.context` when `loc` is an NDArray. out : NDArray, optional Store output to an existing NDArray. Returns ------- NDArray An NDArray of type `dtype`. If input `shape` has shape, e.g., `(m, n)` and `loc` and `scale` are scalars, output shape will be `(m, n)`. If `loc` and `scale` are NDArrays with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[loc, scale)` pair. Examples -------- >>> mx.nd.random.normal(0, 1) [ 2.21220636] <NDArray 1 @cpu(0)> >>> mx.nd.random.normal(0, 1, ctx=mx.gpu(0)) [ 0.29253659] <NDArray 1 @gpu(0)> >>> mx.nd.random.normal(-1, 1, shape=(2,)) [-0.2259962 -0.51619542] <NDArray 2 @cpu(0)> >>> loc = mx.nd.array([1,2,3]) >>> scale = mx.nd.array([2,3,4]) >>> mx.nd.random.normal(loc, scale, shape=2) [[ 0.55912292 3.19566321] [ 1.91728961 2.47706747] [ 2.79666662 5.44254589]] <NDArray 3x2 @cpu(0)>
def normal(loc=0, scale=1, shape=_Null, dtype=_Null, ctx=None, out=None, **kwargs): """Draw random samples from a normal (Gaussian) distribution. Samples are distributed according to a normal distribution parametrized by *loc* (mean) and *scale* (standard deviation). Parameters ---------- loc : float or NDArray, optional Mean (centre) of the distribution. scale : float or NDArray, optional Standard deviation (spread or width) of the distribution. shape : int or tuple of ints, optional The number of samples to draw. If shape is, e.g., `(m, n)` and `loc` and `scale` are scalars, output shape will be `(m, n)`. If `loc` and `scale` are NDArrays with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[loc, scale)` pair. dtype : {'float16', 'float32', 'float64'}, optional Data type of output samples. Default is 'float32' ctx : Context, optional Device context of output. Default is current context. Overridden by `loc.context` when `loc` is an NDArray. out : NDArray, optional Store output to an existing NDArray. Returns ------- NDArray An NDArray of type `dtype`. If input `shape` has shape, e.g., `(m, n)` and `loc` and `scale` are scalars, output shape will be `(m, n)`. If `loc` and `scale` are NDArrays with shape, e.g., `(x, y)`, then output will have shape `(x, y, m, n)`, where `m*n` samples are drawn for each `[loc, scale)` pair. Examples -------- >>> mx.nd.random.normal(0, 1) [ 2.21220636] <NDArray 1 @cpu(0)> >>> mx.nd.random.normal(0, 1, ctx=mx.gpu(0)) [ 0.29253659] <NDArray 1 @gpu(0)> >>> mx.nd.random.normal(-1, 1, shape=(2,)) [-0.2259962 -0.51619542] <NDArray 2 @cpu(0)> >>> loc = mx.nd.array([1,2,3]) >>> scale = mx.nd.array([2,3,4]) >>> mx.nd.random.normal(loc, scale, shape=2) [[ 0.55912292 3.19566321] [ 1.91728961 2.47706747] [ 2.79666662 5.44254589]] <NDArray 3x2 @cpu(0)> """ return _random_helper(_internal._random_normal, _internal._sample_normal, [loc, scale], shape, dtype, ctx, out, kwargs)