Chapter
stringclasses
18 values
sentence_range
stringlengths
3
9
Text
stringlengths
7
7.34k
1
1218-1221
Rationalised 2023-24 54 MATHEMATICS ANote This does not mean that AB ≠ BA for every pair of matrices A, B for which AB and BA, are defined For instance, If 1 0 3 0 A , B 0 2 0 4     = =         , then AB = BA = 3 0 0 8       Observe that multiplication of diagonal matrices of same order will be commutative Zero matrix as the product of two non zero matrices We know that, for real numbers a, b if ab = 0, then either a = 0 or b = 0 This need not be true for matrices, we will observe this through an example
1
1219-1222
For instance, If 1 0 3 0 A , B 0 2 0 4     = =         , then AB = BA = 3 0 0 8       Observe that multiplication of diagonal matrices of same order will be commutative Zero matrix as the product of two non zero matrices We know that, for real numbers a, b if ab = 0, then either a = 0 or b = 0 This need not be true for matrices, we will observe this through an example Example 15 Find AB, if 0 1 A 0 −2   =     and 3 5 B 0 0   =    
1
1220-1223
Zero matrix as the product of two non zero matrices We know that, for real numbers a, b if ab = 0, then either a = 0 or b = 0 This need not be true for matrices, we will observe this through an example Example 15 Find AB, if 0 1 A 0 −2   =     and 3 5 B 0 0   =     Solution We have 0 1 3 5 0 0 AB 0 2 0 0 0 0 −       = =            
1
1221-1224
This need not be true for matrices, we will observe this through an example Example 15 Find AB, if 0 1 A 0 −2   =     and 3 5 B 0 0   =     Solution We have 0 1 3 5 0 0 AB 0 2 0 0 0 0 −       = =             Thus, if the product of two matrices is a zero matrix, it is not necessary that one of the matrices is a zero matrix
1
1222-1225
Example 15 Find AB, if 0 1 A 0 −2   =     and 3 5 B 0 0   =     Solution We have 0 1 3 5 0 0 AB 0 2 0 0 0 0 −       = =             Thus, if the product of two matrices is a zero matrix, it is not necessary that one of the matrices is a zero matrix 3
1
1223-1226
Solution We have 0 1 3 5 0 0 AB 0 2 0 0 0 0 −       = =             Thus, if the product of two matrices is a zero matrix, it is not necessary that one of the matrices is a zero matrix 3 4
1
1224-1227
Thus, if the product of two matrices is a zero matrix, it is not necessary that one of the matrices is a zero matrix 3 4 6 Properties of multiplication of matrices The multiplication of matrices possesses the following properties, which we state without proof
1
1225-1228
3 4 6 Properties of multiplication of matrices The multiplication of matrices possesses the following properties, which we state without proof 1
1
1226-1229
4 6 Properties of multiplication of matrices The multiplication of matrices possesses the following properties, which we state without proof 1 The associative law For any three matrices A, B and C
1
1227-1230
6 Properties of multiplication of matrices The multiplication of matrices possesses the following properties, which we state without proof 1 The associative law For any three matrices A, B and C We have (AB) C = A (BC), whenever both sides of the equality are defined
1
1228-1231
1 The associative law For any three matrices A, B and C We have (AB) C = A (BC), whenever both sides of the equality are defined 2
1
1229-1232
The associative law For any three matrices A, B and C We have (AB) C = A (BC), whenever both sides of the equality are defined 2 The distributive law For three matrices A, B and C
1
1230-1233
We have (AB) C = A (BC), whenever both sides of the equality are defined 2 The distributive law For three matrices A, B and C (i) A (B+C) = AB + AC (ii) (A+B) C = AC + BC, whenever both sides of equality are defined
1
1231-1234
2 The distributive law For three matrices A, B and C (i) A (B+C) = AB + AC (ii) (A+B) C = AC + BC, whenever both sides of equality are defined 3
1
1232-1235
The distributive law For three matrices A, B and C (i) A (B+C) = AB + AC (ii) (A+B) C = AC + BC, whenever both sides of equality are defined 3 The existence of multiplicative identity For every square matrix A, there exist an identity matrix of same order such that IA = AI = A
1
1233-1236
(i) A (B+C) = AB + AC (ii) (A+B) C = AC + BC, whenever both sides of equality are defined 3 The existence of multiplicative identity For every square matrix A, there exist an identity matrix of same order such that IA = AI = A Now, we shall verify these properties by examples
1
1234-1237
3 The existence of multiplicative identity For every square matrix A, there exist an identity matrix of same order such that IA = AI = A Now, we shall verify these properties by examples Example 16 If 1 1 1 1 3 1 2 3 4 A 2 0 3 , B 0 2 and C 2 0 2 1 3 1 2 1 4 −     −       = = =       −       − −     , find A(BC), (AB)C and show that (AB)C = A(BC)
1
1235-1238
The existence of multiplicative identity For every square matrix A, there exist an identity matrix of same order such that IA = AI = A Now, we shall verify these properties by examples Example 16 If 1 1 1 1 3 1 2 3 4 A 2 0 3 , B 0 2 and C 2 0 2 1 3 1 2 1 4 −     −       = = =       −       − −     , find A(BC), (AB)C and show that (AB)C = A(BC) Rationalised 2023-24 MATRICES 55 Solution We have 1 1 1 1 3 1 0 1 3 2 4 2 1 AB 2 0 3 0 2 2 0 3 6 0 12 1 18 3 1 2 1 4 3 0 2 9 2 8 1 15 − + + + −                 = = + − + + = −                 − − + − − +         (AB) (C) 2 2 4 0 6 2 8 1 2 1 1 2 3 4 1 18 1 36 2 0 3 36 4 18 2 0 2 1 1 15 1 30 2 0 3 30 4 15 + + − − +     −       = − = − + − + − − +       −       + + − − +     = 4 4 4 7 35 2 39 22 31 2 27 11 −     − −     −   Now BC = 1 6 2 0 3 6 4 3 1 3 1 2 3 4 0 2 0 4 0 0 0 4 0 2 2 0 2 1 1 4 1 8 2 0 3 8 4 4 + + − − +     −       = + + − +       −       − − + − + − − +     = 7 2 3 1 4 0 4 2 7 2 11 8 − −     −     − −   Therefore A(BC) = 7 2 3 1 1 1 1 2 0 3 4 0 4 2 3 1 2 7 2 11 8 − − −         −         − − −     = 7 4 7 2 0 2 3 4 11 1 2 8 14 0 21 4 0 6 6 0 33 2 0 24 21 4 14 6 0 4 9 4 22 3 2 16 + − + + − − + − + −     + + + − − + − − + +     − + + − − + − − − +   = 4 4 4 7 35 2 39 22 31 2 27 11 −     − −     −  
1
1236-1239
Now, we shall verify these properties by examples Example 16 If 1 1 1 1 3 1 2 3 4 A 2 0 3 , B 0 2 and C 2 0 2 1 3 1 2 1 4 −     −       = = =       −       − −     , find A(BC), (AB)C and show that (AB)C = A(BC) Rationalised 2023-24 MATRICES 55 Solution We have 1 1 1 1 3 1 0 1 3 2 4 2 1 AB 2 0 3 0 2 2 0 3 6 0 12 1 18 3 1 2 1 4 3 0 2 9 2 8 1 15 − + + + −                 = = + − + + = −                 − − + − − +         (AB) (C) 2 2 4 0 6 2 8 1 2 1 1 2 3 4 1 18 1 36 2 0 3 36 4 18 2 0 2 1 1 15 1 30 2 0 3 30 4 15 + + − − +     −       = − = − + − + − − +       −       + + − − +     = 4 4 4 7 35 2 39 22 31 2 27 11 −     − −     −   Now BC = 1 6 2 0 3 6 4 3 1 3 1 2 3 4 0 2 0 4 0 0 0 4 0 2 2 0 2 1 1 4 1 8 2 0 3 8 4 4 + + − − +     −       = + + − +       −       − − + − + − − +     = 7 2 3 1 4 0 4 2 7 2 11 8 − −     −     − −   Therefore A(BC) = 7 2 3 1 1 1 1 2 0 3 4 0 4 2 3 1 2 7 2 11 8 − − −         −         − − −     = 7 4 7 2 0 2 3 4 11 1 2 8 14 0 21 4 0 6 6 0 33 2 0 24 21 4 14 6 0 4 9 4 22 3 2 16 + − + + − − + − + −     + + + − − + − − + +     − + + − − + − − − +   = 4 4 4 7 35 2 39 22 31 2 27 11 −     − −     −   Clearly, (AB) C = A (BC) Rationalised 2023-24 56 MATHEMATICS Example 17 If 0 6 7 0 1 1 2 A 6 0 8 , B 1 0 2 , C 2 7 8 0 1 2 0 3             = − = = −             −       Calculate AC, BC and (A + B)C
1
1237-1240
Example 16 If 1 1 1 1 3 1 2 3 4 A 2 0 3 , B 0 2 and C 2 0 2 1 3 1 2 1 4 −     −       = = =       −       − −     , find A(BC), (AB)C and show that (AB)C = A(BC) Rationalised 2023-24 MATRICES 55 Solution We have 1 1 1 1 3 1 0 1 3 2 4 2 1 AB 2 0 3 0 2 2 0 3 6 0 12 1 18 3 1 2 1 4 3 0 2 9 2 8 1 15 − + + + −                 = = + − + + = −                 − − + − − +         (AB) (C) 2 2 4 0 6 2 8 1 2 1 1 2 3 4 1 18 1 36 2 0 3 36 4 18 2 0 2 1 1 15 1 30 2 0 3 30 4 15 + + − − +     −       = − = − + − + − − +       −       + + − − +     = 4 4 4 7 35 2 39 22 31 2 27 11 −     − −     −   Now BC = 1 6 2 0 3 6 4 3 1 3 1 2 3 4 0 2 0 4 0 0 0 4 0 2 2 0 2 1 1 4 1 8 2 0 3 8 4 4 + + − − +     −       = + + − +       −       − − + − + − − +     = 7 2 3 1 4 0 4 2 7 2 11 8 − −     −     − −   Therefore A(BC) = 7 2 3 1 1 1 1 2 0 3 4 0 4 2 3 1 2 7 2 11 8 − − −         −         − − −     = 7 4 7 2 0 2 3 4 11 1 2 8 14 0 21 4 0 6 6 0 33 2 0 24 21 4 14 6 0 4 9 4 22 3 2 16 + − + + − − + − + −     + + + − − + − − + +     − + + − − + − − − +   = 4 4 4 7 35 2 39 22 31 2 27 11 −     − −     −   Clearly, (AB) C = A (BC) Rationalised 2023-24 56 MATHEMATICS Example 17 If 0 6 7 0 1 1 2 A 6 0 8 , B 1 0 2 , C 2 7 8 0 1 2 0 3             = − = = −             −       Calculate AC, BC and (A + B)C Also, verify that (A + B)C = AC + BC Solution Now, 0 7 8 A+B 5 0 10 8 6 0     = −     −   So (A + B) C = 0 7 8 2 0 14 24 10 5 0 10 2 10 0 30 20 8 6 0 3 16 12 0 28 − +                 − − = − + + =                 − + +         Further AC = 0 6 7 2 0 12 21 9 6 0 8 2 12 0 24 12 7 8 0 3 14 16 0 30 − +                 − − = − + + =                 − + +         and BC = 0 1 1 2 0 2 3 1 1 0 2 2 2 0 6 8 1 2 0 3 2 4 0 2 − +                 − = + + =                 − + −         So AC + BC = 9 1 10 12 8 20 30 2 28             + =             −       Clearly, (A + B) C = AC + BC Example 18 If 1 2 3 A 3 2 1 4 2 1     = −       , then show that A3 – 23A – 40 I = O Solution We have 2 1 2 3 1 2 3 19 4 8 A A
1
1238-1241
Rationalised 2023-24 MATRICES 55 Solution We have 1 1 1 1 3 1 0 1 3 2 4 2 1 AB 2 0 3 0 2 2 0 3 6 0 12 1 18 3 1 2 1 4 3 0 2 9 2 8 1 15 − + + + −                 = = + − + + = −                 − − + − − +         (AB) (C) 2 2 4 0 6 2 8 1 2 1 1 2 3 4 1 18 1 36 2 0 3 36 4 18 2 0 2 1 1 15 1 30 2 0 3 30 4 15 + + − − +     −       = − = − + − + − − +       −       + + − − +     = 4 4 4 7 35 2 39 22 31 2 27 11 −     − −     −   Now BC = 1 6 2 0 3 6 4 3 1 3 1 2 3 4 0 2 0 4 0 0 0 4 0 2 2 0 2 1 1 4 1 8 2 0 3 8 4 4 + + − − +     −       = + + − +       −       − − + − + − − +     = 7 2 3 1 4 0 4 2 7 2 11 8 − −     −     − −   Therefore A(BC) = 7 2 3 1 1 1 1 2 0 3 4 0 4 2 3 1 2 7 2 11 8 − − −         −         − − −     = 7 4 7 2 0 2 3 4 11 1 2 8 14 0 21 4 0 6 6 0 33 2 0 24 21 4 14 6 0 4 9 4 22 3 2 16 + − + + − − + − + −     + + + − − + − − + +     − + + − − + − − − +   = 4 4 4 7 35 2 39 22 31 2 27 11 −     − −     −   Clearly, (AB) C = A (BC) Rationalised 2023-24 56 MATHEMATICS Example 17 If 0 6 7 0 1 1 2 A 6 0 8 , B 1 0 2 , C 2 7 8 0 1 2 0 3             = − = = −             −       Calculate AC, BC and (A + B)C Also, verify that (A + B)C = AC + BC Solution Now, 0 7 8 A+B 5 0 10 8 6 0     = −     −   So (A + B) C = 0 7 8 2 0 14 24 10 5 0 10 2 10 0 30 20 8 6 0 3 16 12 0 28 − +                 − − = − + + =                 − + +         Further AC = 0 6 7 2 0 12 21 9 6 0 8 2 12 0 24 12 7 8 0 3 14 16 0 30 − +                 − − = − + + =                 − + +         and BC = 0 1 1 2 0 2 3 1 1 0 2 2 2 0 6 8 1 2 0 3 2 4 0 2 − +                 − = + + =                 − + −         So AC + BC = 9 1 10 12 8 20 30 2 28             + =             −       Clearly, (A + B) C = AC + BC Example 18 If 1 2 3 A 3 2 1 4 2 1     = −       , then show that A3 – 23A – 40 I = O Solution We have 2 1 2 3 1 2 3 19 4 8 A A A 3 2 1 3 2 1 1 12 8 4 2 1 4 2 1 14 6 15             = = − − =                   Rationalised 2023-24 MATRICES 57 So A3 = A A2 = 1 2 3 19 4 8 63 46 69 3 2 1 1 12 8 69 6 23 4 2 1 14 6 15 92 46 63             − = −                   Now A3 – 23A – 40I = 63 46 69 1 2 3 1 0 0 69 6 23 – 23 3 2 1 – 40 0 1 0 92 46 63 4 2 1 0 0 1             − −                   = 63 46 69 23 46 69 40 0 0 69 6 23 69 46 23 0 40 0 92 46 63 92 46 23 0 0 40 − − − −             − + − − + −             − − − −       = 63 23 40 46 46 0 69 69 0 69 69 0 6 46 40 23 23 0 92 92 0 46 46 0 63 23 40 − − − + − +     − + − + − − +     − + − + − −   = 0 0 0 0 0 0 O 0 0 0     =       Example 19 In a legislative assembly election, a political group hired a public relations firm to promote its candidate in three ways: telephone, house calls, and letters
1
1239-1242
Clearly, (AB) C = A (BC) Rationalised 2023-24 56 MATHEMATICS Example 17 If 0 6 7 0 1 1 2 A 6 0 8 , B 1 0 2 , C 2 7 8 0 1 2 0 3             = − = = −             −       Calculate AC, BC and (A + B)C Also, verify that (A + B)C = AC + BC Solution Now, 0 7 8 A+B 5 0 10 8 6 0     = −     −   So (A + B) C = 0 7 8 2 0 14 24 10 5 0 10 2 10 0 30 20 8 6 0 3 16 12 0 28 − +                 − − = − + + =                 − + +         Further AC = 0 6 7 2 0 12 21 9 6 0 8 2 12 0 24 12 7 8 0 3 14 16 0 30 − +                 − − = − + + =                 − + +         and BC = 0 1 1 2 0 2 3 1 1 0 2 2 2 0 6 8 1 2 0 3 2 4 0 2 − +                 − = + + =                 − + −         So AC + BC = 9 1 10 12 8 20 30 2 28             + =             −       Clearly, (A + B) C = AC + BC Example 18 If 1 2 3 A 3 2 1 4 2 1     = −       , then show that A3 – 23A – 40 I = O Solution We have 2 1 2 3 1 2 3 19 4 8 A A A 3 2 1 3 2 1 1 12 8 4 2 1 4 2 1 14 6 15             = = − − =                   Rationalised 2023-24 MATRICES 57 So A3 = A A2 = 1 2 3 19 4 8 63 46 69 3 2 1 1 12 8 69 6 23 4 2 1 14 6 15 92 46 63             − = −                   Now A3 – 23A – 40I = 63 46 69 1 2 3 1 0 0 69 6 23 – 23 3 2 1 – 40 0 1 0 92 46 63 4 2 1 0 0 1             − −                   = 63 46 69 23 46 69 40 0 0 69 6 23 69 46 23 0 40 0 92 46 63 92 46 23 0 0 40 − − − −             − + − − + −             − − − −       = 63 23 40 46 46 0 69 69 0 69 69 0 6 46 40 23 23 0 92 92 0 46 46 0 63 23 40 − − − + − +     − + − + − − +     − + − + − −   = 0 0 0 0 0 0 O 0 0 0     =       Example 19 In a legislative assembly election, a political group hired a public relations firm to promote its candidate in three ways: telephone, house calls, and letters The cost per contact (in paise) is given in matrix A as A = 40 Telephone 100 Housecall 50 Letter Cost per contact          The number of contacts of each type made in two cities X and Y is given by Telephone Housecall Letter 1000 500 5000 X B Y 3000 1000 10,000 →   =  →  
1
1240-1243
Also, verify that (A + B)C = AC + BC Solution Now, 0 7 8 A+B 5 0 10 8 6 0     = −     −   So (A + B) C = 0 7 8 2 0 14 24 10 5 0 10 2 10 0 30 20 8 6 0 3 16 12 0 28 − +                 − − = − + + =                 − + +         Further AC = 0 6 7 2 0 12 21 9 6 0 8 2 12 0 24 12 7 8 0 3 14 16 0 30 − +                 − − = − + + =                 − + +         and BC = 0 1 1 2 0 2 3 1 1 0 2 2 2 0 6 8 1 2 0 3 2 4 0 2 − +                 − = + + =                 − + −         So AC + BC = 9 1 10 12 8 20 30 2 28             + =             −       Clearly, (A + B) C = AC + BC Example 18 If 1 2 3 A 3 2 1 4 2 1     = −       , then show that A3 – 23A – 40 I = O Solution We have 2 1 2 3 1 2 3 19 4 8 A A A 3 2 1 3 2 1 1 12 8 4 2 1 4 2 1 14 6 15             = = − − =                   Rationalised 2023-24 MATRICES 57 So A3 = A A2 = 1 2 3 19 4 8 63 46 69 3 2 1 1 12 8 69 6 23 4 2 1 14 6 15 92 46 63             − = −                   Now A3 – 23A – 40I = 63 46 69 1 2 3 1 0 0 69 6 23 – 23 3 2 1 – 40 0 1 0 92 46 63 4 2 1 0 0 1             − −                   = 63 46 69 23 46 69 40 0 0 69 6 23 69 46 23 0 40 0 92 46 63 92 46 23 0 0 40 − − − −             − + − − + −             − − − −       = 63 23 40 46 46 0 69 69 0 69 69 0 6 46 40 23 23 0 92 92 0 46 46 0 63 23 40 − − − + − +     − + − + − − +     − + − + − −   = 0 0 0 0 0 0 O 0 0 0     =       Example 19 In a legislative assembly election, a political group hired a public relations firm to promote its candidate in three ways: telephone, house calls, and letters The cost per contact (in paise) is given in matrix A as A = 40 Telephone 100 Housecall 50 Letter Cost per contact          The number of contacts of each type made in two cities X and Y is given by Telephone Housecall Letter 1000 500 5000 X B Y 3000 1000 10,000 →   =  →   Find the total amount spent by the group in the two cities X and Y
1
1241-1244
A 3 2 1 3 2 1 1 12 8 4 2 1 4 2 1 14 6 15             = = − − =                   Rationalised 2023-24 MATRICES 57 So A3 = A A2 = 1 2 3 19 4 8 63 46 69 3 2 1 1 12 8 69 6 23 4 2 1 14 6 15 92 46 63             − = −                   Now A3 – 23A – 40I = 63 46 69 1 2 3 1 0 0 69 6 23 – 23 3 2 1 – 40 0 1 0 92 46 63 4 2 1 0 0 1             − −                   = 63 46 69 23 46 69 40 0 0 69 6 23 69 46 23 0 40 0 92 46 63 92 46 23 0 0 40 − − − −             − + − − + −             − − − −       = 63 23 40 46 46 0 69 69 0 69 69 0 6 46 40 23 23 0 92 92 0 46 46 0 63 23 40 − − − + − +     − + − + − − +     − + − + − −   = 0 0 0 0 0 0 O 0 0 0     =       Example 19 In a legislative assembly election, a political group hired a public relations firm to promote its candidate in three ways: telephone, house calls, and letters The cost per contact (in paise) is given in matrix A as A = 40 Telephone 100 Housecall 50 Letter Cost per contact          The number of contacts of each type made in two cities X and Y is given by Telephone Housecall Letter 1000 500 5000 X B Y 3000 1000 10,000 →   =  →   Find the total amount spent by the group in the two cities X and Y Rationalised 2023-24 58 MATHEMATICS Solution We have BA = 40,000 50,000 250,000 X Y 120,000 +100,000 +500,000 + + →     →   = 340,000 X Y 720,000 →     →   So the total amount spent by the group in the two cities is 340,000 paise and 720,000 paise, i
1
1242-1245
The cost per contact (in paise) is given in matrix A as A = 40 Telephone 100 Housecall 50 Letter Cost per contact          The number of contacts of each type made in two cities X and Y is given by Telephone Housecall Letter 1000 500 5000 X B Y 3000 1000 10,000 →   =  →   Find the total amount spent by the group in the two cities X and Y Rationalised 2023-24 58 MATHEMATICS Solution We have BA = 40,000 50,000 250,000 X Y 120,000 +100,000 +500,000 + + →     →   = 340,000 X Y 720,000 →     →   So the total amount spent by the group in the two cities is 340,000 paise and 720,000 paise, i e
1
1243-1246
Find the total amount spent by the group in the two cities X and Y Rationalised 2023-24 58 MATHEMATICS Solution We have BA = 40,000 50,000 250,000 X Y 120,000 +100,000 +500,000 + + →     →   = 340,000 X Y 720,000 →     →   So the total amount spent by the group in the two cities is 340,000 paise and 720,000 paise, i e , ` 3400 and ` 7200, respectively
1
1244-1247
Rationalised 2023-24 58 MATHEMATICS Solution We have BA = 40,000 50,000 250,000 X Y 120,000 +100,000 +500,000 + + →     →   = 340,000 X Y 720,000 →     →   So the total amount spent by the group in the two cities is 340,000 paise and 720,000 paise, i e , ` 3400 and ` 7200, respectively EXERCISE 3
1
1245-1248
e , ` 3400 and ` 7200, respectively EXERCISE 3 2 1
1
1246-1249
, ` 3400 and ` 7200, respectively EXERCISE 3 2 1 Let 2 4 1 3 2 5 A , B , C 3 2 2 5 3 4 −       = = =       −       Find each of the following: (i) A + B (ii) A – B (iii) 3A – C (iv) AB (v) BA 2
1
1247-1250
EXERCISE 3 2 1 Let 2 4 1 3 2 5 A , B , C 3 2 2 5 3 4 −       = = =       −       Find each of the following: (i) A + B (ii) A – B (iii) 3A – C (iv) AB (v) BA 2 Compute the following: (i) a b a b b a b a     +     −    (ii) 2 2 2 2 2 2 2 2 2 2 2 2 a b b c ab bc ac ab a c a b   + +   +     − − + +       (iii) 1 4 6 12 7 6 8 5 16 8 0 5 2 8 5 3 2 4 − −         +             (iv) 2 2 2 2 2 2 2 2 cos sin sin cos sin cos cos sin x x x x x x x x     +             3
1
1248-1251
2 1 Let 2 4 1 3 2 5 A , B , C 3 2 2 5 3 4 −       = = =       −       Find each of the following: (i) A + B (ii) A – B (iii) 3A – C (iv) AB (v) BA 2 Compute the following: (i) a b a b b a b a     +     −    (ii) 2 2 2 2 2 2 2 2 2 2 2 2 a b b c ab bc ac ab a c a b   + +   +     − − + +       (iii) 1 4 6 12 7 6 8 5 16 8 0 5 2 8 5 3 2 4 − −         +             (iv) 2 2 2 2 2 2 2 2 cos sin sin cos sin cos cos sin x x x x x x x x     +             3 Compute the indicated products
1
1249-1252
Let 2 4 1 3 2 5 A , B , C 3 2 2 5 3 4 −       = = =       −       Find each of the following: (i) A + B (ii) A – B (iii) 3A – C (iv) AB (v) BA 2 Compute the following: (i) a b a b b a b a     +     −    (ii) 2 2 2 2 2 2 2 2 2 2 2 2 a b b c ab bc ac ab a c a b   + +   +     − − + +       (iii) 1 4 6 12 7 6 8 5 16 8 0 5 2 8 5 3 2 4 − −         +             (iv) 2 2 2 2 2 2 2 2 cos sin sin cos sin cos cos sin x x x x x x x x     +             3 Compute the indicated products (i) a b a b b a b a −         −    (ii) 1 2 3           [2 3 4] (iii) 1 2 1 2 3 2 3 2 3 1 −             (iv) 2 3 4 1 3 5 3 4 5 0 2 4 4 5 6 3 0 5 −                     (v) 2 1 1 0 1 3 2 1 2 1 1 1           −    −  (vi) 2 3 3 1 3 1 0 1 0 2 3 1 −   −         −      Rationalised 2023-24 MATRICES 59 4
1
1250-1253
Compute the following: (i) a b a b b a b a     +     −    (ii) 2 2 2 2 2 2 2 2 2 2 2 2 a b b c ab bc ac ab a c a b   + +   +     − − + +       (iii) 1 4 6 12 7 6 8 5 16 8 0 5 2 8 5 3 2 4 − −         +             (iv) 2 2 2 2 2 2 2 2 cos sin sin cos sin cos cos sin x x x x x x x x     +             3 Compute the indicated products (i) a b a b b a b a −         −    (ii) 1 2 3           [2 3 4] (iii) 1 2 1 2 3 2 3 2 3 1 −             (iv) 2 3 4 1 3 5 3 4 5 0 2 4 4 5 6 3 0 5 −                     (v) 2 1 1 0 1 3 2 1 2 1 1 1           −    −  (vi) 2 3 3 1 3 1 0 1 0 2 3 1 −   −         −      Rationalised 2023-24 MATRICES 59 4 If 1 2 3 3 1 2 4 1 2 A 5 0 2 , B 4 2 5 and C 0 3 2 1 1 1 2 0 3 1 2 3 − −             = = =             − −       , then compute (A+B) and (B – C)
1
1251-1254
Compute the indicated products (i) a b a b b a b a −         −    (ii) 1 2 3           [2 3 4] (iii) 1 2 1 2 3 2 3 2 3 1 −             (iv) 2 3 4 1 3 5 3 4 5 0 2 4 4 5 6 3 0 5 −                     (v) 2 1 1 0 1 3 2 1 2 1 1 1           −    −  (vi) 2 3 3 1 3 1 0 1 0 2 3 1 −   −         −      Rationalised 2023-24 MATRICES 59 4 If 1 2 3 3 1 2 4 1 2 A 5 0 2 , B 4 2 5 and C 0 3 2 1 1 1 2 0 3 1 2 3 − −             = = =             − −       , then compute (A+B) and (B – C) Also, verify that A + (B – C) = (A + B) – C
1
1252-1255
(i) a b a b b a b a −         −    (ii) 1 2 3           [2 3 4] (iii) 1 2 1 2 3 2 3 2 3 1 −             (iv) 2 3 4 1 3 5 3 4 5 0 2 4 4 5 6 3 0 5 −                     (v) 2 1 1 0 1 3 2 1 2 1 1 1           −    −  (vi) 2 3 3 1 3 1 0 1 0 2 3 1 −   −         −      Rationalised 2023-24 MATRICES 59 4 If 1 2 3 3 1 2 4 1 2 A 5 0 2 , B 4 2 5 and C 0 3 2 1 1 1 2 0 3 1 2 3 − −             = = =             − −       , then compute (A+B) and (B – C) Also, verify that A + (B – C) = (A + B) – C 5
1
1253-1256
If 1 2 3 3 1 2 4 1 2 A 5 0 2 , B 4 2 5 and C 0 3 2 1 1 1 2 0 3 1 2 3 − −             = = =             − −       , then compute (A+B) and (B – C) Also, verify that A + (B – C) = (A + B) – C 5 If 2 5 2 3 1 1 3 3 5 5 1 2 4 1 2 4 A and B 3 3 3 5 5 5 7 2 7 6 2 2 3 3 5 5 5                 = =                     , then compute 3A – 5B
1
1254-1257
Also, verify that A + (B – C) = (A + B) – C 5 If 2 5 2 3 1 1 3 3 5 5 1 2 4 1 2 4 A and B 3 3 3 5 5 5 7 2 7 6 2 2 3 3 5 5 5                 = =                     , then compute 3A – 5B 6
1
1255-1258
5 If 2 5 2 3 1 1 3 3 5 5 1 2 4 1 2 4 A and B 3 3 3 5 5 5 7 2 7 6 2 2 3 3 5 5 5                 = =                     , then compute 3A – 5B 6 Simplify cos sin sin cos cos + sin sin cos cos sin θ θ θ − θ     θ θ     − θ θ θ θ     7
1
1256-1259
If 2 5 2 3 1 1 3 3 5 5 1 2 4 1 2 4 A and B 3 3 3 5 5 5 7 2 7 6 2 2 3 3 5 5 5                 = =                     , then compute 3A – 5B 6 Simplify cos sin sin cos cos + sin sin cos cos sin θ θ θ − θ     θ θ     − θ θ θ θ     7 Find X and Y, if (i) 7 0 3 0 X + Y and X – Y 2 5 0 3     = =         (ii) 2 3 2 2 2X + 3Y and 3X 2Y 4 0 1 −5     = + =     −     8
1
1257-1260
6 Simplify cos sin sin cos cos + sin sin cos cos sin θ θ θ − θ     θ θ     − θ θ θ θ     7 Find X and Y, if (i) 7 0 3 0 X + Y and X – Y 2 5 0 3     = =         (ii) 2 3 2 2 2X + 3Y and 3X 2Y 4 0 1 −5     = + =     −     8 Find X, if Y = 3 2 1 4       and 2X + Y = 1 0 3 2     −  9
1
1258-1261
Simplify cos sin sin cos cos + sin sin cos cos sin θ θ θ − θ     θ θ     − θ θ θ θ     7 Find X and Y, if (i) 7 0 3 0 X + Y and X – Y 2 5 0 3     = =         (ii) 2 3 2 2 2X + 3Y and 3X 2Y 4 0 1 −5     = + =     −     8 Find X, if Y = 3 2 1 4       and 2X + Y = 1 0 3 2     −  9 Find x and y, if 1 3 0 5 6 2 0 1 2 1 8 y x       + =             10
1
1259-1262
Find X and Y, if (i) 7 0 3 0 X + Y and X – Y 2 5 0 3     = =         (ii) 2 3 2 2 2X + 3Y and 3X 2Y 4 0 1 −5     = + =     −     8 Find X, if Y = 3 2 1 4       and 2X + Y = 1 0 3 2     −  9 Find x and y, if 1 3 0 5 6 2 0 1 2 1 8 y x       + =             10 Solve the equation for x, y, z and t, if 1 1 3 5 2 3 3 0 2 4 6 x z y t −       + =             11
1
1260-1263
Find X, if Y = 3 2 1 4       and 2X + Y = 1 0 3 2     −  9 Find x and y, if 1 3 0 5 6 2 0 1 2 1 8 y x       + =             10 Solve the equation for x, y, z and t, if 1 1 3 5 2 3 3 0 2 4 6 x z y t −       + =             11 If 2 1 10 3 1 5 x y −       + =             , find the values of x and y
1
1261-1264
Find x and y, if 1 3 0 5 6 2 0 1 2 1 8 y x       + =             10 Solve the equation for x, y, z and t, if 1 1 3 5 2 3 3 0 2 4 6 x z y t −       + =             11 If 2 1 10 3 1 5 x y −       + =             , find the values of x and y 12
1
1262-1265
Solve the equation for x, y, z and t, if 1 1 3 5 2 3 3 0 2 4 6 x z y t −       + =             11 If 2 1 10 3 1 5 x y −       + =             , find the values of x and y 12 Given 6 4 3 1 2 3 x y x x y z w w z w +       = +       − +       , find the values of x, y, z and w
1
1263-1266
If 2 1 10 3 1 5 x y −       + =             , find the values of x and y 12 Given 6 4 3 1 2 3 x y x x y z w w z w +       = +       − +       , find the values of x, y, z and w Rationalised 2023-24 60 MATHEMATICS 13
1
1264-1267
12 Given 6 4 3 1 2 3 x y x x y z w w z w +       = +       − +       , find the values of x, y, z and w Rationalised 2023-24 60 MATHEMATICS 13 If cos sin 0 F ( ) sin cos 0 0 0 1 x x x x x −     =       , show that F(x) F(y) = F(x + y)
1
1265-1268
Given 6 4 3 1 2 3 x y x x y z w w z w +       = +       − +       , find the values of x, y, z and w Rationalised 2023-24 60 MATHEMATICS 13 If cos sin 0 F ( ) sin cos 0 0 0 1 x x x x x −     =       , show that F(x) F(y) = F(x + y) 14
1
1266-1269
Rationalised 2023-24 60 MATHEMATICS 13 If cos sin 0 F ( ) sin cos 0 0 0 1 x x x x x −     =       , show that F(x) F(y) = F(x + y) 14 Show that (i) 5 1 2 1 2 1 5 1 6 7 3 4 3 4 6 7 − −         ≠                 (ii) 1 2 3 1 1 0 1 1 0 1 2 3 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 2 3 4 2 3 4 1 1 0 − −                 − ≠ −                         15
1
1267-1270
If cos sin 0 F ( ) sin cos 0 0 0 1 x x x x x −     =       , show that F(x) F(y) = F(x + y) 14 Show that (i) 5 1 2 1 2 1 5 1 6 7 3 4 3 4 6 7 − −         ≠                 (ii) 1 2 3 1 1 0 1 1 0 1 2 3 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 2 3 4 2 3 4 1 1 0 − −                 − ≠ −                         15 Find A2 – 5A + 6I, if 2 0 1 A 2 1 3 1 1 0     =     −   16
1
1268-1271
14 Show that (i) 5 1 2 1 2 1 5 1 6 7 3 4 3 4 6 7 − −         ≠                 (ii) 1 2 3 1 1 0 1 1 0 1 2 3 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 2 3 4 2 3 4 1 1 0 − −                 − ≠ −                         15 Find A2 – 5A + 6I, if 2 0 1 A 2 1 3 1 1 0     =     −   16 If 1 0 2 A 0 2 1 2 0 3     =       , prove that A3 – 6A2 + 7A + 2I = 0 17
1
1269-1272
Show that (i) 5 1 2 1 2 1 5 1 6 7 3 4 3 4 6 7 − −         ≠                 (ii) 1 2 3 1 1 0 1 1 0 1 2 3 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 2 3 4 2 3 4 1 1 0 − −                 − ≠ −                         15 Find A2 – 5A + 6I, if 2 0 1 A 2 1 3 1 1 0     =     −   16 If 1 0 2 A 0 2 1 2 0 3     =       , prove that A3 – 6A2 + 7A + 2I = 0 17 If 3 2 1 0 A and I= 4 2 0 1 −     =     −     , find k so that A2 = kA – 2I 18
1
1270-1273
Find A2 – 5A + 6I, if 2 0 1 A 2 1 3 1 1 0     =     −   16 If 1 0 2 A 0 2 1 2 0 3     =       , prove that A3 – 6A2 + 7A + 2I = 0 17 If 3 2 1 0 A and I= 4 2 0 1 −     =     −     , find k so that A2 = kA – 2I 18 If 0 tan 2 A tan 0 2 α   −   =   α       and I is the identity matrix of order 2, show that I + A = (I – A) cos sin sin cos α − α     α α   19
1
1271-1274
If 1 0 2 A 0 2 1 2 0 3     =       , prove that A3 – 6A2 + 7A + 2I = 0 17 If 3 2 1 0 A and I= 4 2 0 1 −     =     −     , find k so that A2 = kA – 2I 18 If 0 tan 2 A tan 0 2 α   −   =   α       and I is the identity matrix of order 2, show that I + A = (I – A) cos sin sin cos α − α     α α   19 A trust fund has ` 30,000 that must be invested in two different types of bonds
1
1272-1275
If 3 2 1 0 A and I= 4 2 0 1 −     =     −     , find k so that A2 = kA – 2I 18 If 0 tan 2 A tan 0 2 α   −   =   α       and I is the identity matrix of order 2, show that I + A = (I – A) cos sin sin cos α − α     α α   19 A trust fund has ` 30,000 that must be invested in two different types of bonds The first bond pays 5% interest per year, and the second bond pays 7% interest per year
1
1273-1276
If 0 tan 2 A tan 0 2 α   −   =   α       and I is the identity matrix of order 2, show that I + A = (I – A) cos sin sin cos α − α     α α   19 A trust fund has ` 30,000 that must be invested in two different types of bonds The first bond pays 5% interest per year, and the second bond pays 7% interest per year Using matrix multiplication, determine how to divide ` 30,000 among the two types of bonds
1
1274-1277
A trust fund has ` 30,000 that must be invested in two different types of bonds The first bond pays 5% interest per year, and the second bond pays 7% interest per year Using matrix multiplication, determine how to divide ` 30,000 among the two types of bonds If the trust fund must obtain an annual total interest of: (a) ` 1800 (b) ` 2000 Rationalised 2023-24 MATRICES 61 20
1
1275-1278
The first bond pays 5% interest per year, and the second bond pays 7% interest per year Using matrix multiplication, determine how to divide ` 30,000 among the two types of bonds If the trust fund must obtain an annual total interest of: (a) ` 1800 (b) ` 2000 Rationalised 2023-24 MATRICES 61 20 The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books
1
1276-1279
Using matrix multiplication, determine how to divide ` 30,000 among the two types of bonds If the trust fund must obtain an annual total interest of: (a) ` 1800 (b) ` 2000 Rationalised 2023-24 MATRICES 61 20 The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books Their selling prices are ` 80, ` 60 and ` 40 each respectively
1
1277-1280
If the trust fund must obtain an annual total interest of: (a) ` 1800 (b) ` 2000 Rationalised 2023-24 MATRICES 61 20 The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books Their selling prices are ` 80, ` 60 and ` 40 each respectively Find the total amount the bookshop will receive from selling all the books using matrix algebra
1
1278-1281
The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books Their selling prices are ` 80, ` 60 and ` 40 each respectively Find the total amount the bookshop will receive from selling all the books using matrix algebra Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively
1
1279-1282
Their selling prices are ` 80, ` 60 and ` 40 each respectively Find the total amount the bookshop will receive from selling all the books using matrix algebra Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively Choose the correct answer in Exercises 21 and 22
1
1280-1283
Find the total amount the bookshop will receive from selling all the books using matrix algebra Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively Choose the correct answer in Exercises 21 and 22 21
1
1281-1284
Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively Choose the correct answer in Exercises 21 and 22 21 The restriction on n, k and p so that PY + WY will be defined are: (A) k = 3, p = n (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3 (D) k = 2, p = 3 22
1
1282-1285
Choose the correct answer in Exercises 21 and 22 21 The restriction on n, k and p so that PY + WY will be defined are: (A) k = 3, p = n (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3 (D) k = 2, p = 3 22 If n = p, then the order of the matrix 7X – 5Z is: (A) p × 2 (B) 2 × n (C) n × 3 (D) p × n 3
1
1283-1286
21 The restriction on n, k and p so that PY + WY will be defined are: (A) k = 3, p = n (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3 (D) k = 2, p = 3 22 If n = p, then the order of the matrix 7X – 5Z is: (A) p × 2 (B) 2 × n (C) n × 3 (D) p × n 3 5
1
1284-1287
The restriction on n, k and p so that PY + WY will be defined are: (A) k = 3, p = n (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3 (D) k = 2, p = 3 22 If n = p, then the order of the matrix 7X – 5Z is: (A) p × 2 (B) 2 × n (C) n × 3 (D) p × n 3 5 Transpose of a Matrix In this section, we shall learn about transpose of a matrix and special types of matrices such as symmetric and skew symmetric matrices
1
1285-1288
If n = p, then the order of the matrix 7X – 5Z is: (A) p × 2 (B) 2 × n (C) n × 3 (D) p × n 3 5 Transpose of a Matrix In this section, we shall learn about transpose of a matrix and special types of matrices such as symmetric and skew symmetric matrices Definition 3 If A = [aij] be an m × n matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A
1
1286-1289
5 Transpose of a Matrix In this section, we shall learn about transpose of a matrix and special types of matrices such as symmetric and skew symmetric matrices Definition 3 If A = [aij] be an m × n matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A Transpose of the matrix A is denoted by A′ or (AT)
1
1287-1290
Transpose of a Matrix In this section, we shall learn about transpose of a matrix and special types of matrices such as symmetric and skew symmetric matrices Definition 3 If A = [aij] be an m × n matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A Transpose of the matrix A is denoted by A′ or (AT) In other words, if A = [aij]m × n, then A′ = [aji]n × m
1
1288-1291
Definition 3 If A = [aij] be an m × n matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A Transpose of the matrix A is denoted by A′ or (AT) In other words, if A = [aij]m × n, then A′ = [aji]n × m For example, if 2 3 3 2 3 5 3 3 0 A 3 1 , then A 1 5 1 0 1 5 5 × ×         = ′ =   −       −       3
1
1289-1292
Transpose of the matrix A is denoted by A′ or (AT) In other words, if A = [aij]m × n, then A′ = [aji]n × m For example, if 2 3 3 2 3 5 3 3 0 A 3 1 , then A 1 5 1 0 1 5 5 × ×         = ′ =   −       −       3 5
1
1290-1293
In other words, if A = [aij]m × n, then A′ = [aji]n × m For example, if 2 3 3 2 3 5 3 3 0 A 3 1 , then A 1 5 1 0 1 5 5 × ×         = ′ =   −       −       3 5 1 Properties of transpose of the matrices We now state the following properties of transpose of matrices without proof
1
1291-1294
For example, if 2 3 3 2 3 5 3 3 0 A 3 1 , then A 1 5 1 0 1 5 5 × ×         = ′ =   −       −       3 5 1 Properties of transpose of the matrices We now state the following properties of transpose of matrices without proof These may be verified by taking suitable examples
1
1292-1295
5 1 Properties of transpose of the matrices We now state the following properties of transpose of matrices without proof These may be verified by taking suitable examples (i)For any matrices A and B of suitable orders, we have (A′)′ = A, (ii) (kA)′ = kA′ (where k is any constant) (iii) (A + B)′ = A′ + B′ (iv) (A B)′ = B′ A′ Example 20 If 2 1 2 3 3 2 A and B 1 2 4 4 2 0   −   = =         , verify that (i) (A′)′ = A, (ii) (A + B)′ = A′ + B′, (iii) (kB)′ = kB′, where k is any constant
1
1293-1296
1 Properties of transpose of the matrices We now state the following properties of transpose of matrices without proof These may be verified by taking suitable examples (i)For any matrices A and B of suitable orders, we have (A′)′ = A, (ii) (kA)′ = kA′ (where k is any constant) (iii) (A + B)′ = A′ + B′ (iv) (A B)′ = B′ A′ Example 20 If 2 1 2 3 3 2 A and B 1 2 4 4 2 0   −   = =         , verify that (i) (A′)′ = A, (ii) (A + B)′ = A′ + B′, (iii) (kB)′ = kB′, where k is any constant Rationalised 2023-24 62 MATHEMATICS Solution (i) We have A = ( ) 3 4 3 3 2 3 3 2 A 3 2 A A 4 2 0 4 2 0 2 0         ′ ′ ′ ⇒ = ⇒ = =               Thus (A′)′ = A (ii) We have A = 3 3 2 , 4 2 0       B = 2 1 2 5 3 1 4 A B 1 2 4 5 4 4   −   − ⇒ + =         Therefore (A + B)′ = 5 5 3 1 4 4 4     −       Now A′ = 3 4 2 1 3 2 , B 1 2 , 2 0 2 4         ′ = −             So A′ + B′ = 5 5 43 1 4 4     −       Thus (A + B)′ = A′ + B′ (iii) We have kB = k 2 1 2 2 2 1 2 4 2 4 k k k k k k − −     =         Then (kB)′ = 2 2 1 2 1 2 B 2 4 2 4 k k k k k k k k         ′ − = − =             Thus (kB)′ = kB′ Rationalised 2023-24 MATRICES 63 Example 21 If [ ] 2 A 4 , B 1 3 6 5 −    = = −       , verify that (AB)′ = B′A′
1
1294-1297
These may be verified by taking suitable examples (i)For any matrices A and B of suitable orders, we have (A′)′ = A, (ii) (kA)′ = kA′ (where k is any constant) (iii) (A + B)′ = A′ + B′ (iv) (A B)′ = B′ A′ Example 20 If 2 1 2 3 3 2 A and B 1 2 4 4 2 0   −   = =         , verify that (i) (A′)′ = A, (ii) (A + B)′ = A′ + B′, (iii) (kB)′ = kB′, where k is any constant Rationalised 2023-24 62 MATHEMATICS Solution (i) We have A = ( ) 3 4 3 3 2 3 3 2 A 3 2 A A 4 2 0 4 2 0 2 0         ′ ′ ′ ⇒ = ⇒ = =               Thus (A′)′ = A (ii) We have A = 3 3 2 , 4 2 0       B = 2 1 2 5 3 1 4 A B 1 2 4 5 4 4   −   − ⇒ + =         Therefore (A + B)′ = 5 5 3 1 4 4 4     −       Now A′ = 3 4 2 1 3 2 , B 1 2 , 2 0 2 4         ′ = −             So A′ + B′ = 5 5 43 1 4 4     −       Thus (A + B)′ = A′ + B′ (iii) We have kB = k 2 1 2 2 2 1 2 4 2 4 k k k k k k − −     =         Then (kB)′ = 2 2 1 2 1 2 B 2 4 2 4 k k k k k k k k         ′ − = − =             Thus (kB)′ = kB′ Rationalised 2023-24 MATRICES 63 Example 21 If [ ] 2 A 4 , B 1 3 6 5 −    = = −       , verify that (AB)′ = B′A′ Solution We have A = [ ] 2 4 , B 1 3 6 5 −    = −       then AB = [ ] 2 4 1 3 6 5 −    −       = 2 6 12 4 12 24 5 15 30 − −     −     −   Now A′ = [–2 4 5] , 1 B 3 6     ′ =    −  B′A′ = [ ] 1 2 4 5 3 2 4 5 6 12 15 (AB) 6 12 24 30 −         ′ − = − =         − − −     Clearly (AB)′ = B′A′ 3
1
1295-1298
(i)For any matrices A and B of suitable orders, we have (A′)′ = A, (ii) (kA)′ = kA′ (where k is any constant) (iii) (A + B)′ = A′ + B′ (iv) (A B)′ = B′ A′ Example 20 If 2 1 2 3 3 2 A and B 1 2 4 4 2 0   −   = =         , verify that (i) (A′)′ = A, (ii) (A + B)′ = A′ + B′, (iii) (kB)′ = kB′, where k is any constant Rationalised 2023-24 62 MATHEMATICS Solution (i) We have A = ( ) 3 4 3 3 2 3 3 2 A 3 2 A A 4 2 0 4 2 0 2 0         ′ ′ ′ ⇒ = ⇒ = =               Thus (A′)′ = A (ii) We have A = 3 3 2 , 4 2 0       B = 2 1 2 5 3 1 4 A B 1 2 4 5 4 4   −   − ⇒ + =         Therefore (A + B)′ = 5 5 3 1 4 4 4     −       Now A′ = 3 4 2 1 3 2 , B 1 2 , 2 0 2 4         ′ = −             So A′ + B′ = 5 5 43 1 4 4     −       Thus (A + B)′ = A′ + B′ (iii) We have kB = k 2 1 2 2 2 1 2 4 2 4 k k k k k k − −     =         Then (kB)′ = 2 2 1 2 1 2 B 2 4 2 4 k k k k k k k k         ′ − = − =             Thus (kB)′ = kB′ Rationalised 2023-24 MATRICES 63 Example 21 If [ ] 2 A 4 , B 1 3 6 5 −    = = −       , verify that (AB)′ = B′A′ Solution We have A = [ ] 2 4 , B 1 3 6 5 −    = −       then AB = [ ] 2 4 1 3 6 5 −    −       = 2 6 12 4 12 24 5 15 30 − −     −     −   Now A′ = [–2 4 5] , 1 B 3 6     ′ =    −  B′A′ = [ ] 1 2 4 5 3 2 4 5 6 12 15 (AB) 6 12 24 30 −         ′ − = − =         − − −     Clearly (AB)′ = B′A′ 3 6 Symmetric and Skew Symmetric Matrices Definition 4 A square matrix A = [aij] is said to be symmetric if A′ = A, that is, [aij] = [aji] for all possible values of i and j
1
1296-1299
Rationalised 2023-24 62 MATHEMATICS Solution (i) We have A = ( ) 3 4 3 3 2 3 3 2 A 3 2 A A 4 2 0 4 2 0 2 0         ′ ′ ′ ⇒ = ⇒ = =               Thus (A′)′ = A (ii) We have A = 3 3 2 , 4 2 0       B = 2 1 2 5 3 1 4 A B 1 2 4 5 4 4   −   − ⇒ + =         Therefore (A + B)′ = 5 5 3 1 4 4 4     −       Now A′ = 3 4 2 1 3 2 , B 1 2 , 2 0 2 4         ′ = −             So A′ + B′ = 5 5 43 1 4 4     −       Thus (A + B)′ = A′ + B′ (iii) We have kB = k 2 1 2 2 2 1 2 4 2 4 k k k k k k − −     =         Then (kB)′ = 2 2 1 2 1 2 B 2 4 2 4 k k k k k k k k         ′ − = − =             Thus (kB)′ = kB′ Rationalised 2023-24 MATRICES 63 Example 21 If [ ] 2 A 4 , B 1 3 6 5 −    = = −       , verify that (AB)′ = B′A′ Solution We have A = [ ] 2 4 , B 1 3 6 5 −    = −       then AB = [ ] 2 4 1 3 6 5 −    −       = 2 6 12 4 12 24 5 15 30 − −     −     −   Now A′ = [–2 4 5] , 1 B 3 6     ′ =    −  B′A′ = [ ] 1 2 4 5 3 2 4 5 6 12 15 (AB) 6 12 24 30 −         ′ − = − =         − − −     Clearly (AB)′ = B′A′ 3 6 Symmetric and Skew Symmetric Matrices Definition 4 A square matrix A = [aij] is said to be symmetric if A′ = A, that is, [aij] = [aji] for all possible values of i and j For example 3 2 3 A 2 1
1
1297-1300
Solution We have A = [ ] 2 4 , B 1 3 6 5 −    = −       then AB = [ ] 2 4 1 3 6 5 −    −       = 2 6 12 4 12 24 5 15 30 − −     −     −   Now A′ = [–2 4 5] , 1 B 3 6     ′ =    −  B′A′ = [ ] 1 2 4 5 3 2 4 5 6 12 15 (AB) 6 12 24 30 −         ′ − = − =         − − −     Clearly (AB)′ = B′A′ 3 6 Symmetric and Skew Symmetric Matrices Definition 4 A square matrix A = [aij] is said to be symmetric if A′ = A, that is, [aij] = [aji] for all possible values of i and j For example 3 2 3 A 2 1 5 1 3 1 1     = − −     −   is a symmetric matrix as A′ = A Definition 5 A square matrix A = [aij] is said to be skew symmetric matrix if A′ = – A, that is aji = – aij for all possible values of i and j
1
1298-1301
6 Symmetric and Skew Symmetric Matrices Definition 4 A square matrix A = [aij] is said to be symmetric if A′ = A, that is, [aij] = [aji] for all possible values of i and j For example 3 2 3 A 2 1 5 1 3 1 1     = − −     −   is a symmetric matrix as A′ = A Definition 5 A square matrix A = [aij] is said to be skew symmetric matrix if A′ = – A, that is aji = – aij for all possible values of i and j Now, if we put i = j, we have aii = – aii
1
1299-1302
For example 3 2 3 A 2 1 5 1 3 1 1     = − −     −   is a symmetric matrix as A′ = A Definition 5 A square matrix A = [aij] is said to be skew symmetric matrix if A′ = – A, that is aji = – aij for all possible values of i and j Now, if we put i = j, we have aii = – aii Therefore 2aii = 0 or aii = 0 for all i’s
1
1300-1303
5 1 3 1 1     = − −     −   is a symmetric matrix as A′ = A Definition 5 A square matrix A = [aij] is said to be skew symmetric matrix if A′ = – A, that is aji = – aij for all possible values of i and j Now, if we put i = j, we have aii = – aii Therefore 2aii = 0 or aii = 0 for all i’s This means that all the diagonal elements of a skew symmetric matrix are zero
1
1301-1304
Now, if we put i = j, we have aii = – aii Therefore 2aii = 0 or aii = 0 for all i’s This means that all the diagonal elements of a skew symmetric matrix are zero Rationalised 2023-24 64 MATHEMATICS For example, the matrix 0 B 0 0 e f e g f g     = −    − −   is a skew symmetric matrix as B′= –B Now, we are going to prove some results of symmetric and skew-symmetric matrices
1
1302-1305
Therefore 2aii = 0 or aii = 0 for all i’s This means that all the diagonal elements of a skew symmetric matrix are zero Rationalised 2023-24 64 MATHEMATICS For example, the matrix 0 B 0 0 e f e g f g     = −    − −   is a skew symmetric matrix as B′= –B Now, we are going to prove some results of symmetric and skew-symmetric matrices Theorem 1 For any square matrix A with real number entries, A + A′ is a symmetric matrix and A – A′ is a skew symmetric matrix
1
1303-1306
This means that all the diagonal elements of a skew symmetric matrix are zero Rationalised 2023-24 64 MATHEMATICS For example, the matrix 0 B 0 0 e f e g f g     = −    − −   is a skew symmetric matrix as B′= –B Now, we are going to prove some results of symmetric and skew-symmetric matrices Theorem 1 For any square matrix A with real number entries, A + A′ is a symmetric matrix and A – A′ is a skew symmetric matrix Proof Let B = A + A′, then B′ = (A + A′)′ = A′ + (A′)′ (as (A + B)′ = A′ + B′) = A′ + A (as (A′)′ = A) = A + A′ (as A + B = B + A) = B Therefore B = A + A′ is a symmetric matrix Now let C = A – A′ C′ = (A – A′)′ = A′ – (A′)′ (Why
1
1304-1307
Rationalised 2023-24 64 MATHEMATICS For example, the matrix 0 B 0 0 e f e g f g     = −    − −   is a skew symmetric matrix as B′= –B Now, we are going to prove some results of symmetric and skew-symmetric matrices Theorem 1 For any square matrix A with real number entries, A + A′ is a symmetric matrix and A – A′ is a skew symmetric matrix Proof Let B = A + A′, then B′ = (A + A′)′ = A′ + (A′)′ (as (A + B)′ = A′ + B′) = A′ + A (as (A′)′ = A) = A + A′ (as A + B = B + A) = B Therefore B = A + A′ is a symmetric matrix Now let C = A – A′ C′ = (A – A′)′ = A′ – (A′)′ (Why ) = A′ – A (Why
1
1305-1308
Theorem 1 For any square matrix A with real number entries, A + A′ is a symmetric matrix and A – A′ is a skew symmetric matrix Proof Let B = A + A′, then B′ = (A + A′)′ = A′ + (A′)′ (as (A + B)′ = A′ + B′) = A′ + A (as (A′)′ = A) = A + A′ (as A + B = B + A) = B Therefore B = A + A′ is a symmetric matrix Now let C = A – A′ C′ = (A – A′)′ = A′ – (A′)′ (Why ) = A′ – A (Why ) = – (A – A′) = – C Therefore C = A – A′ is a skew symmetric matrix
1
1306-1309
Proof Let B = A + A′, then B′ = (A + A′)′ = A′ + (A′)′ (as (A + B)′ = A′ + B′) = A′ + A (as (A′)′ = A) = A + A′ (as A + B = B + A) = B Therefore B = A + A′ is a symmetric matrix Now let C = A – A′ C′ = (A – A′)′ = A′ – (A′)′ (Why ) = A′ – A (Why ) = – (A – A′) = – C Therefore C = A – A′ is a skew symmetric matrix Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix
1
1307-1310
) = A′ – A (Why ) = – (A – A′) = – C Therefore C = A – A′ is a skew symmetric matrix Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix Proof Let A be a square matrix, then we can write 1 1 A (A A ) (A A ) 2 2 ′ ′ = + + − From the Theorem 1, we know that (A + A′) is a symmetric matrix and (A – A′) is a skew symmetric matrix
1
1308-1311
) = – (A – A′) = – C Therefore C = A – A′ is a skew symmetric matrix Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix Proof Let A be a square matrix, then we can write 1 1 A (A A ) (A A ) 2 2 ′ ′ = + + − From the Theorem 1, we know that (A + A′) is a symmetric matrix and (A – A′) is a skew symmetric matrix Since for any matrix A, (kA)′ = kA′, it follows that 1 (A A ) 2 ′ + Rationalised 2023-24 MATRICES 65 is symmetric matrix and 1 (A A ) 2 ′ − is skew symmetric matrix
1
1309-1312
Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix Proof Let A be a square matrix, then we can write 1 1 A (A A ) (A A ) 2 2 ′ ′ = + + − From the Theorem 1, we know that (A + A′) is a symmetric matrix and (A – A′) is a skew symmetric matrix Since for any matrix A, (kA)′ = kA′, it follows that 1 (A A ) 2 ′ + Rationalised 2023-24 MATRICES 65 is symmetric matrix and 1 (A A ) 2 ′ − is skew symmetric matrix Thus, any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix
1
1310-1313
Proof Let A be a square matrix, then we can write 1 1 A (A A ) (A A ) 2 2 ′ ′ = + + − From the Theorem 1, we know that (A + A′) is a symmetric matrix and (A – A′) is a skew symmetric matrix Since for any matrix A, (kA)′ = kA′, it follows that 1 (A A ) 2 ′ + Rationalised 2023-24 MATRICES 65 is symmetric matrix and 1 (A A ) 2 ′ − is skew symmetric matrix Thus, any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix Example 22 Express the matrix 2 2 4 B 1 3 4 1 2 3 − −     = −     − −   as the sum of a symmetric and a skew symmetric matrix
1
1311-1314
Since for any matrix A, (kA)′ = kA′, it follows that 1 (A A ) 2 ′ + Rationalised 2023-24 MATRICES 65 is symmetric matrix and 1 (A A ) 2 ′ − is skew symmetric matrix Thus, any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix Example 22 Express the matrix 2 2 4 B 1 3 4 1 2 3 − −     = −     − −   as the sum of a symmetric and a skew symmetric matrix Solution Here B′ = 2 1 1 2 3 2 4 4 3 −     − −     − −   Let P = 4 3 3 1 1 (B + B ) 3 6 2 2 2 3 2 6 − −     ′ = −    − −   = 3 3 2 2 2 3 3 1 32 1 3 2 − −       −      − −     , Now P′ = 3 3 2 2 2 3 3 1 2 3 1 3 2 − −       −      − −     = P Thus P = 1 (B + B ) 2 ′ is a symmetric matrix
1
1312-1315
Thus, any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix Example 22 Express the matrix 2 2 4 B 1 3 4 1 2 3 − −     = −     − −   as the sum of a symmetric and a skew symmetric matrix Solution Here B′ = 2 1 1 2 3 2 4 4 3 −     − −     − −   Let P = 4 3 3 1 1 (B + B ) 3 6 2 2 2 3 2 6 − −     ′ = −    − −   = 3 3 2 2 2 3 3 1 32 1 3 2 − −       −      − −     , Now P′ = 3 3 2 2 2 3 3 1 2 3 1 3 2 − −       −      − −     = P Thus P = 1 (B + B ) 2 ′ is a symmetric matrix Also, let Q = 1 5 0 2 2 0 1 5 1 1 1 (B – B ) 1 0 6 0 3 2 2 2 5 6 0 5 3 0 2 − −     − −         ′ = =       −       −     Rationalised 2023-24 66 MATHEMATICS Then Q′ = 1 5 0 2 3 1 0 3 Q 52 3 0 2       − − = −     −      Thus Q = 1 (B – B ) 2 ′ is a skew symmetric matrix
1
1313-1316
Example 22 Express the matrix 2 2 4 B 1 3 4 1 2 3 − −     = −     − −   as the sum of a symmetric and a skew symmetric matrix Solution Here B′ = 2 1 1 2 3 2 4 4 3 −     − −     − −   Let P = 4 3 3 1 1 (B + B ) 3 6 2 2 2 3 2 6 − −     ′ = −    − −   = 3 3 2 2 2 3 3 1 32 1 3 2 − −       −      − −     , Now P′ = 3 3 2 2 2 3 3 1 2 3 1 3 2 − −       −      − −     = P Thus P = 1 (B + B ) 2 ′ is a symmetric matrix Also, let Q = 1 5 0 2 2 0 1 5 1 1 1 (B – B ) 1 0 6 0 3 2 2 2 5 6 0 5 3 0 2 − −     − −         ′ = =       −       −     Rationalised 2023-24 66 MATHEMATICS Then Q′ = 1 5 0 2 3 1 0 3 Q 52 3 0 2       − − = −     −      Thus Q = 1 (B – B ) 2 ′ is a skew symmetric matrix Now 3 3 1 5 2 0 2 2 2 2 2 2 4 3 1 P + Q 3 1 0 3 1 3 4 B 2 2 1 2 3 3 5 1 3 3 0 2 2 − − − −         − −       −       = + = − =         − −       −    − −         Thus, B is represented as the sum of a symmetric and a skew symmetric matrix
1
1314-1317
Solution Here B′ = 2 1 1 2 3 2 4 4 3 −     − −     − −   Let P = 4 3 3 1 1 (B + B ) 3 6 2 2 2 3 2 6 − −     ′ = −    − −   = 3 3 2 2 2 3 3 1 32 1 3 2 − −       −      − −     , Now P′ = 3 3 2 2 2 3 3 1 2 3 1 3 2 − −       −      − −     = P Thus P = 1 (B + B ) 2 ′ is a symmetric matrix Also, let Q = 1 5 0 2 2 0 1 5 1 1 1 (B – B ) 1 0 6 0 3 2 2 2 5 6 0 5 3 0 2 − −     − −         ′ = =       −       −     Rationalised 2023-24 66 MATHEMATICS Then Q′ = 1 5 0 2 3 1 0 3 Q 52 3 0 2       − − = −     −      Thus Q = 1 (B – B ) 2 ′ is a skew symmetric matrix Now 3 3 1 5 2 0 2 2 2 2 2 2 4 3 1 P + Q 3 1 0 3 1 3 4 B 2 2 1 2 3 3 5 1 3 3 0 2 2 − − − −         − −       −       = + = − =         − −       −    − −         Thus, B is represented as the sum of a symmetric and a skew symmetric matrix EXERCISE 3
1
1315-1318
Also, let Q = 1 5 0 2 2 0 1 5 1 1 1 (B – B ) 1 0 6 0 3 2 2 2 5 6 0 5 3 0 2 − −     − −         ′ = =       −       −     Rationalised 2023-24 66 MATHEMATICS Then Q′ = 1 5 0 2 3 1 0 3 Q 52 3 0 2       − − = −     −      Thus Q = 1 (B – B ) 2 ′ is a skew symmetric matrix Now 3 3 1 5 2 0 2 2 2 2 2 2 4 3 1 P + Q 3 1 0 3 1 3 4 B 2 2 1 2 3 3 5 1 3 3 0 2 2 − − − −         − −       −       = + = − =         − −       −    − −         Thus, B is represented as the sum of a symmetric and a skew symmetric matrix EXERCISE 3 3 1
1
1316-1319
Now 3 3 1 5 2 0 2 2 2 2 2 2 4 3 1 P + Q 3 1 0 3 1 3 4 B 2 2 1 2 3 3 5 1 3 3 0 2 2 − − − −         − −       −       = + = − =         − −       −    − −         Thus, B is represented as the sum of a symmetric and a skew symmetric matrix EXERCISE 3 3 1 Find the transpose of each of the following matrices: (i) 5 21 1          −  (ii) 1 1 2 3 −       (iii) 1 5 6 3 5 6 2 3 1 −       −   2
1
1317-1320
EXERCISE 3 3 1 Find the transpose of each of the following matrices: (i) 5 21 1          −  (ii) 1 1 2 3 −       (iii) 1 5 6 3 5 6 2 3 1 −       −   2 If 1 2 3 4 1 5 A 5 7 9 and B 1 2 0 2 1 1 1 3 1 − − −         = =         −    , then verify that (i) (A + B)′ = A′ + B′, (ii) (A – B)′ = A′ – B′ 3