Chapter
stringclasses
18 values
sentence_range
stringlengths
3
9
Text
stringlengths
7
7.34k
1
3518-3521
1 1 –tan x 34 tan sin cos x x x 35 ( ) 2 1 log x x + 36 ( ) 2 ( 1) log x x x x + + 37
1
3519-3522
tan sin cos x x x 35 ( ) 2 1 log x x + 36 ( ) 2 ( 1) log x x x x + + 37 ( ) 3 1 4 sin tan 1 – x x x8 + Choose the correct answer in Exercises 38 and 39
1
3520-3523
( ) 2 1 log x x + 36 ( ) 2 ( 1) log x x x x + + 37 ( ) 3 1 4 sin tan 1 – x x x8 + Choose the correct answer in Exercises 38 and 39 38
1
3521-3524
( ) 2 ( 1) log x x x x + + 37 ( ) 3 1 4 sin tan 1 – x x x8 + Choose the correct answer in Exercises 38 and 39 38 10 9 10 10 10 log 10 x e x x dx x + + ∫ equals (A) 10x – x10 + C (B) 10x + x10 + C (C) (10x – x10)–1 + C (D) log (10x + x10) + C 39
1
3522-3525
( ) 3 1 4 sin tan 1 – x x x8 + Choose the correct answer in Exercises 38 and 39 38 10 9 10 10 10 log 10 x e x x dx x + + ∫ equals (A) 10x – x10 + C (B) 10x + x10 + C (C) (10x – x10)–1 + C (D) log (10x + x10) + C 39 2 2 equals sin xdxcos x ∫ (A) tan x + cot x + C (B) tan x – cot x + C (C) tan x cot x + C (D) tan x – cot 2x + C 7
1
3523-3526
38 10 9 10 10 10 log 10 x e x x dx x + + ∫ equals (A) 10x – x10 + C (B) 10x + x10 + C (C) (10x – x10)–1 + C (D) log (10x + x10) + C 39 2 2 equals sin xdxcos x ∫ (A) tan x + cot x + C (B) tan x – cot x + C (C) tan x cot x + C (D) tan x – cot 2x + C 7 3
1
3524-3527
10 9 10 10 10 log 10 x e x x dx x + + ∫ equals (A) 10x – x10 + C (B) 10x + x10 + C (C) (10x – x10)–1 + C (D) log (10x + x10) + C 39 2 2 equals sin xdxcos x ∫ (A) tan x + cot x + C (B) tan x – cot x + C (C) tan x cot x + C (D) tan x – cot 2x + C 7 3 2 Integration using trigonometric identities When the integrand involves some trigonometric functions, we use some known identities to find the integral as illustrated through the following example
1
3525-3528
2 2 equals sin xdxcos x ∫ (A) tan x + cot x + C (B) tan x – cot x + C (C) tan x cot x + C (D) tan x – cot 2x + C 7 3 2 Integration using trigonometric identities When the integrand involves some trigonometric functions, we use some known identities to find the integral as illustrated through the following example Example 7 Find (i) 2 ∫cos x dx (ii) sin 2 cos 3 x x dx ∫ (iii) 3 ∫sin x dx 306 MATHEMATICS Solution (i) Recall the identity cos 2x = 2 cos2 x – 1, which gives cos2x = 1 cos 2 2 x + Therefore, ∫cos2 x dx = 1 (1+ cos 2 ) 2 x dx ∫ = 1 1 cos 2 2 2 dx x dx + ∫ ∫ = 1 sin 2 C 2 4 x x + + (ii) Recall the identity sin x cos y = 1 2 [sin (x + y) + sin (x – y)] (Why
1
3526-3529
3 2 Integration using trigonometric identities When the integrand involves some trigonometric functions, we use some known identities to find the integral as illustrated through the following example Example 7 Find (i) 2 ∫cos x dx (ii) sin 2 cos 3 x x dx ∫ (iii) 3 ∫sin x dx 306 MATHEMATICS Solution (i) Recall the identity cos 2x = 2 cos2 x – 1, which gives cos2x = 1 cos 2 2 x + Therefore, ∫cos2 x dx = 1 (1+ cos 2 ) 2 x dx ∫ = 1 1 cos 2 2 2 dx x dx + ∫ ∫ = 1 sin 2 C 2 4 x x + + (ii) Recall the identity sin x cos y = 1 2 [sin (x + y) + sin (x – y)] (Why ) Then sin 2 cos 3 ∫ x xdx = 1 sin 5 sin 2 •     ∫ ∫ x dx x dx = 1 1 cos 5 cos C 2 –5 x x   + +     = 1 1 cos 5 cos C 10 2 – x x + + (iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that sin3x = 3sin sin 3 4 x – x Therefore, 3 ∫sin x dx = 3 1 sin sin 3 4 4 x dx – x dx ∫ ∫ = 3 1 – cos cos 3 C 4 12 x x + + Alternatively, 3 2 sin sin sin x dx x x dx = ∫ ∫ = (1– cos2 x) sin x dx ∫ Put cos x = t so that – sin x dx = dt Therefore, 3 ∫sin x dx = ( ) 1 – t2 dt −∫ = 3 2 C t3 – dt t dt – t + = + + ∫ ∫ = 3 1 cos cos C 3 – x x + + Remark It can be shown using trigonometric identities that both answers are equivalent
1
3527-3530
2 Integration using trigonometric identities When the integrand involves some trigonometric functions, we use some known identities to find the integral as illustrated through the following example Example 7 Find (i) 2 ∫cos x dx (ii) sin 2 cos 3 x x dx ∫ (iii) 3 ∫sin x dx 306 MATHEMATICS Solution (i) Recall the identity cos 2x = 2 cos2 x – 1, which gives cos2x = 1 cos 2 2 x + Therefore, ∫cos2 x dx = 1 (1+ cos 2 ) 2 x dx ∫ = 1 1 cos 2 2 2 dx x dx + ∫ ∫ = 1 sin 2 C 2 4 x x + + (ii) Recall the identity sin x cos y = 1 2 [sin (x + y) + sin (x – y)] (Why ) Then sin 2 cos 3 ∫ x xdx = 1 sin 5 sin 2 •     ∫ ∫ x dx x dx = 1 1 cos 5 cos C 2 –5 x x   + +     = 1 1 cos 5 cos C 10 2 – x x + + (iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that sin3x = 3sin sin 3 4 x – x Therefore, 3 ∫sin x dx = 3 1 sin sin 3 4 4 x dx – x dx ∫ ∫ = 3 1 – cos cos 3 C 4 12 x x + + Alternatively, 3 2 sin sin sin x dx x x dx = ∫ ∫ = (1– cos2 x) sin x dx ∫ Put cos x = t so that – sin x dx = dt Therefore, 3 ∫sin x dx = ( ) 1 – t2 dt −∫ = 3 2 C t3 – dt t dt – t + = + + ∫ ∫ = 3 1 cos cos C 3 – x x + + Remark It can be shown using trigonometric identities that both answers are equivalent INTEGRALS 307 EXERCISE 7
1
3528-3531
Example 7 Find (i) 2 ∫cos x dx (ii) sin 2 cos 3 x x dx ∫ (iii) 3 ∫sin x dx 306 MATHEMATICS Solution (i) Recall the identity cos 2x = 2 cos2 x – 1, which gives cos2x = 1 cos 2 2 x + Therefore, ∫cos2 x dx = 1 (1+ cos 2 ) 2 x dx ∫ = 1 1 cos 2 2 2 dx x dx + ∫ ∫ = 1 sin 2 C 2 4 x x + + (ii) Recall the identity sin x cos y = 1 2 [sin (x + y) + sin (x – y)] (Why ) Then sin 2 cos 3 ∫ x xdx = 1 sin 5 sin 2 •     ∫ ∫ x dx x dx = 1 1 cos 5 cos C 2 –5 x x   + +     = 1 1 cos 5 cos C 10 2 – x x + + (iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that sin3x = 3sin sin 3 4 x – x Therefore, 3 ∫sin x dx = 3 1 sin sin 3 4 4 x dx – x dx ∫ ∫ = 3 1 – cos cos 3 C 4 12 x x + + Alternatively, 3 2 sin sin sin x dx x x dx = ∫ ∫ = (1– cos2 x) sin x dx ∫ Put cos x = t so that – sin x dx = dt Therefore, 3 ∫sin x dx = ( ) 1 – t2 dt −∫ = 3 2 C t3 – dt t dt – t + = + + ∫ ∫ = 3 1 cos cos C 3 – x x + + Remark It can be shown using trigonometric identities that both answers are equivalent INTEGRALS 307 EXERCISE 7 3 Find the integrals of the functions in Exercises 1 to 22: 1
1
3529-3532
) Then sin 2 cos 3 ∫ x xdx = 1 sin 5 sin 2 •     ∫ ∫ x dx x dx = 1 1 cos 5 cos C 2 –5 x x   + +     = 1 1 cos 5 cos C 10 2 – x x + + (iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that sin3x = 3sin sin 3 4 x – x Therefore, 3 ∫sin x dx = 3 1 sin sin 3 4 4 x dx – x dx ∫ ∫ = 3 1 – cos cos 3 C 4 12 x x + + Alternatively, 3 2 sin sin sin x dx x x dx = ∫ ∫ = (1– cos2 x) sin x dx ∫ Put cos x = t so that – sin x dx = dt Therefore, 3 ∫sin x dx = ( ) 1 – t2 dt −∫ = 3 2 C t3 – dt t dt – t + = + + ∫ ∫ = 3 1 cos cos C 3 – x x + + Remark It can be shown using trigonometric identities that both answers are equivalent INTEGRALS 307 EXERCISE 7 3 Find the integrals of the functions in Exercises 1 to 22: 1 sin2 (2x + 5) 2
1
3530-3533
INTEGRALS 307 EXERCISE 7 3 Find the integrals of the functions in Exercises 1 to 22: 1 sin2 (2x + 5) 2 sin 3x cos 4x 3
1
3531-3534
3 Find the integrals of the functions in Exercises 1 to 22: 1 sin2 (2x + 5) 2 sin 3x cos 4x 3 cos 2x cos 4x cos 6x 4
1
3532-3535
sin2 (2x + 5) 2 sin 3x cos 4x 3 cos 2x cos 4x cos 6x 4 sin3 (2x + 1) 5
1
3533-3536
sin 3x cos 4x 3 cos 2x cos 4x cos 6x 4 sin3 (2x + 1) 5 sin3 x cos3 x 6
1
3534-3537
cos 2x cos 4x cos 6x 4 sin3 (2x + 1) 5 sin3 x cos3 x 6 sin x sin 2x sin 3x 7
1
3535-3538
sin3 (2x + 1) 5 sin3 x cos3 x 6 sin x sin 2x sin 3x 7 sin 4x sin 8x 8
1
3536-3539
sin3 x cos3 x 6 sin x sin 2x sin 3x 7 sin 4x sin 8x 8 1 cos 1 cos – xx + 9
1
3537-3540
sin x sin 2x sin 3x 7 sin 4x sin 8x 8 1 cos 1 cos – xx + 9 cos 1 cos x x + 10
1
3538-3541
sin 4x sin 8x 8 1 cos 1 cos – xx + 9 cos 1 cos x x + 10 sin4 x 11
1
3539-3542
1 cos 1 cos – xx + 9 cos 1 cos x x + 10 sin4 x 11 cos4 2x 12
1
3540-3543
cos 1 cos x x + 10 sin4 x 11 cos4 2x 12 2 sin 1 cos x x + 13
1
3541-3544
sin4 x 11 cos4 2x 12 2 sin 1 cos x x + 13 cos 2 cos 2 cos x –cos x – α α 14
1
3542-3545
cos4 2x 12 2 sin 1 cos x x + 13 cos 2 cos 2 cos x –cos x – α α 14 cos sin 1 sin 2 x – x x + 15
1
3543-3546
2 sin 1 cos x x + 13 cos 2 cos 2 cos x –cos x – α α 14 cos sin 1 sin 2 x – x x + 15 tan3 2x sec 2x 16
1
3544-3547
cos 2 cos 2 cos x –cos x – α α 14 cos sin 1 sin 2 x – x x + 15 tan3 2x sec 2x 16 tan4x 17
1
3545-3548
cos sin 1 sin 2 x – x x + 15 tan3 2x sec 2x 16 tan4x 17 3 3 2 2 sin cos sin cos x x x x + 18
1
3546-3549
tan3 2x sec 2x 16 tan4x 17 3 3 2 2 sin cos sin cos x x x x + 18 2 2 cos 2 2sin xcos x x + 19
1
3547-3550
tan4x 17 3 3 2 2 sin cos sin cos x x x x + 18 2 2 cos 2 2sin xcos x x + 19 3 1 sin xcos x 20
1
3548-3551
3 3 2 2 sin cos sin cos x x x x + 18 2 2 cos 2 2sin xcos x x + 19 3 1 sin xcos x 20 ( ) 2 cos 2 cos sin x x x + 21
1
3549-3552
2 2 cos 2 2sin xcos x x + 19 3 1 sin xcos x 20 ( ) 2 cos 2 cos sin x x x + 21 sin – 1 (cos x) 22
1
3550-3553
3 1 sin xcos x 20 ( ) 2 cos 2 cos sin x x x + 21 sin – 1 (cos x) 22 1 cos ( ) cos ( ) x – a x – b Choose the correct answer in Exercises 23 and 24
1
3551-3554
( ) 2 cos 2 cos sin x x x + 21 sin – 1 (cos x) 22 1 cos ( ) cos ( ) x – a x – b Choose the correct answer in Exercises 23 and 24 23
1
3552-3555
sin – 1 (cos x) 22 1 cos ( ) cos ( ) x – a x – b Choose the correct answer in Exercises 23 and 24 23 2 2 2 2 sin cos is equal to sin xcos x dx x x − ∫ (A) tan x + cot x + C (B) tan x + cosec x + C (C) – tan x + cot x + C (D) tan x + sec x + C 24
1
3553-3556
1 cos ( ) cos ( ) x – a x – b Choose the correct answer in Exercises 23 and 24 23 2 2 2 2 sin cos is equal to sin xcos x dx x x − ∫ (A) tan x + cot x + C (B) tan x + cosec x + C (C) – tan x + cot x + C (D) tan x + sec x + C 24 (12 ) equals cos ( ) x x e x +e xdx ∫ (A) – cot (exx) + C (B) tan (xex) + C (C) tan (ex) + C (D) cot (ex) + C 7
1
3554-3557
23 2 2 2 2 sin cos is equal to sin xcos x dx x x − ∫ (A) tan x + cot x + C (B) tan x + cosec x + C (C) – tan x + cot x + C (D) tan x + sec x + C 24 (12 ) equals cos ( ) x x e x +e xdx ∫ (A) – cot (exx) + C (B) tan (xex) + C (C) tan (ex) + C (D) cot (ex) + C 7 4 Integrals of Some Particular Functions In this section, we mention below some important formulae of integrals and apply them for integrating many other related standard integrals: (1) ∫ 2 2 1 – = log + C 2 + dx– x a a x a x a 308 MATHEMATICS (2) ∫ 2 2 1 + = log + C 2 – dx– a x a a x a x (3) ∫ – 1 2 2 1 tan C dx x = + a a x + a (4) ∫ 2 2 2 2 = log + – +C – dx x x a x a (5) ∫ – 1 2 2 = sin + C – dx ax a x (6) ∫ 2 2 2 2 = log + + + C + dx x x a x a We now prove the above results: (1) We have 2 12 1 ( ) ( ) x – a x a x – a = + = 1 ( ) – ( ) 1 1 1 2 ( ) ( ) 2 x a x – a – a x – a x a a x – a x a   +   =     + +     Therefore, 2 2 1 2 dx dx dx – a x – a x a x – a   =   +   ∫ ∫ ∫ = [ ] 1 log ( )| log ( )| C 2 | x – a – | x a a + + = 1 log C 2 x – a a x a + + (2) In view of (1) above, we have 2 2 1 1 ( ) ( ) 2 ( ) ( ) – a x a x a a x a x a x   + + − =   + −   = 1 1 1 2a a x a x   +   − +   INTEGRALS 309 Therefore, 2 –2 dx a x ∫ = 1 2 dx dx a a x a x   +   − +   ∫ ∫ = 1 [ log | | log | |] C 2 a x a x a − − + + + = 1 log C 2 a x a a +x + − �Note The technique used in (1) will be explained in Section 7
1
3555-3558
2 2 2 2 sin cos is equal to sin xcos x dx x x − ∫ (A) tan x + cot x + C (B) tan x + cosec x + C (C) – tan x + cot x + C (D) tan x + sec x + C 24 (12 ) equals cos ( ) x x e x +e xdx ∫ (A) – cot (exx) + C (B) tan (xex) + C (C) tan (ex) + C (D) cot (ex) + C 7 4 Integrals of Some Particular Functions In this section, we mention below some important formulae of integrals and apply them for integrating many other related standard integrals: (1) ∫ 2 2 1 – = log + C 2 + dx– x a a x a x a 308 MATHEMATICS (2) ∫ 2 2 1 + = log + C 2 – dx– a x a a x a x (3) ∫ – 1 2 2 1 tan C dx x = + a a x + a (4) ∫ 2 2 2 2 = log + – +C – dx x x a x a (5) ∫ – 1 2 2 = sin + C – dx ax a x (6) ∫ 2 2 2 2 = log + + + C + dx x x a x a We now prove the above results: (1) We have 2 12 1 ( ) ( ) x – a x a x – a = + = 1 ( ) – ( ) 1 1 1 2 ( ) ( ) 2 x a x – a – a x – a x a a x – a x a   +   =     + +     Therefore, 2 2 1 2 dx dx dx – a x – a x a x – a   =   +   ∫ ∫ ∫ = [ ] 1 log ( )| log ( )| C 2 | x – a – | x a a + + = 1 log C 2 x – a a x a + + (2) In view of (1) above, we have 2 2 1 1 ( ) ( ) 2 ( ) ( ) – a x a x a a x a x a x   + + − =   + −   = 1 1 1 2a a x a x   +   − +   INTEGRALS 309 Therefore, 2 –2 dx a x ∫ = 1 2 dx dx a a x a x   +   − +   ∫ ∫ = 1 [ log | | log | |] C 2 a x a x a − − + + + = 1 log C 2 a x a a +x + − �Note The technique used in (1) will be explained in Section 7 5
1
3556-3559
(12 ) equals cos ( ) x x e x +e xdx ∫ (A) – cot (exx) + C (B) tan (xex) + C (C) tan (ex) + C (D) cot (ex) + C 7 4 Integrals of Some Particular Functions In this section, we mention below some important formulae of integrals and apply them for integrating many other related standard integrals: (1) ∫ 2 2 1 – = log + C 2 + dx– x a a x a x a 308 MATHEMATICS (2) ∫ 2 2 1 + = log + C 2 – dx– a x a a x a x (3) ∫ – 1 2 2 1 tan C dx x = + a a x + a (4) ∫ 2 2 2 2 = log + – +C – dx x x a x a (5) ∫ – 1 2 2 = sin + C – dx ax a x (6) ∫ 2 2 2 2 = log + + + C + dx x x a x a We now prove the above results: (1) We have 2 12 1 ( ) ( ) x – a x a x – a = + = 1 ( ) – ( ) 1 1 1 2 ( ) ( ) 2 x a x – a – a x – a x a a x – a x a   +   =     + +     Therefore, 2 2 1 2 dx dx dx – a x – a x a x – a   =   +   ∫ ∫ ∫ = [ ] 1 log ( )| log ( )| C 2 | x – a – | x a a + + = 1 log C 2 x – a a x a + + (2) In view of (1) above, we have 2 2 1 1 ( ) ( ) 2 ( ) ( ) – a x a x a a x a x a x   + + − =   + −   = 1 1 1 2a a x a x   +   − +   INTEGRALS 309 Therefore, 2 –2 dx a x ∫ = 1 2 dx dx a a x a x   +   − +   ∫ ∫ = 1 [ log | | log | |] C 2 a x a x a − − + + + = 1 log C 2 a x a a +x + − �Note The technique used in (1) will be explained in Section 7 5 (3) Put x = a tan θ
1
3557-3560
4 Integrals of Some Particular Functions In this section, we mention below some important formulae of integrals and apply them for integrating many other related standard integrals: (1) ∫ 2 2 1 – = log + C 2 + dx– x a a x a x a 308 MATHEMATICS (2) ∫ 2 2 1 + = log + C 2 – dx– a x a a x a x (3) ∫ – 1 2 2 1 tan C dx x = + a a x + a (4) ∫ 2 2 2 2 = log + – +C – dx x x a x a (5) ∫ – 1 2 2 = sin + C – dx ax a x (6) ∫ 2 2 2 2 = log + + + C + dx x x a x a We now prove the above results: (1) We have 2 12 1 ( ) ( ) x – a x a x – a = + = 1 ( ) – ( ) 1 1 1 2 ( ) ( ) 2 x a x – a – a x – a x a a x – a x a   +   =     + +     Therefore, 2 2 1 2 dx dx dx – a x – a x a x – a   =   +   ∫ ∫ ∫ = [ ] 1 log ( )| log ( )| C 2 | x – a – | x a a + + = 1 log C 2 x – a a x a + + (2) In view of (1) above, we have 2 2 1 1 ( ) ( ) 2 ( ) ( ) – a x a x a a x a x a x   + + − =   + −   = 1 1 1 2a a x a x   +   − +   INTEGRALS 309 Therefore, 2 –2 dx a x ∫ = 1 2 dx dx a a x a x   +   − +   ∫ ∫ = 1 [ log | | log | |] C 2 a x a x a − − + + + = 1 log C 2 a x a a +x + − �Note The technique used in (1) will be explained in Section 7 5 (3) Put x = a tan θ Then dx = a sec2 θ dθ
1
3558-3561
5 (3) Put x = a tan θ Then dx = a sec2 θ dθ Therefore, 2 2 dx x +a ∫ = 2 2 2 2 θ θ secθ tan a d a +a ∫ = 1 1 1 1 θ θ C tan C – x d a a a a = + = + ∫ (4) Let x = a secθ
1
3559-3562
(3) Put x = a tan θ Then dx = a sec2 θ dθ Therefore, 2 2 dx x +a ∫ = 2 2 2 2 θ θ secθ tan a d a +a ∫ = 1 1 1 1 θ θ C tan C – x d a a a a = + = + ∫ (4) Let x = a secθ Then dx = a secθ tan θ d θ
1
3560-3563
Then dx = a sec2 θ dθ Therefore, 2 2 dx x +a ∫ = 2 2 2 2 θ θ secθ tan a d a +a ∫ = 1 1 1 1 θ θ C tan C – x d a a a a = + = + ∫ (4) Let x = a secθ Then dx = a secθ tan θ d θ Therefore, 2 2 dx x −a ∫ = 2 2 2 secθ tanθ θ sec θ a d a −a ∫ = 1 secθ θ d =log secθ + tanθ + C ∫ = 2 1 2 log 1 C x x – a a + + = 2 2 1 log log C x x – a a + − + = 2 2 log + C x x – a + , where C = C1 – log |a| (5) Let x = a sinθ
1
3561-3564
Therefore, 2 2 dx x +a ∫ = 2 2 2 2 θ θ secθ tan a d a +a ∫ = 1 1 1 1 θ θ C tan C – x d a a a a = + = + ∫ (4) Let x = a secθ Then dx = a secθ tan θ d θ Therefore, 2 2 dx x −a ∫ = 2 2 2 secθ tanθ θ sec θ a d a −a ∫ = 1 secθ θ d =log secθ + tanθ + C ∫ = 2 1 2 log 1 C x x – a a + + = 2 2 1 log log C x x – a a + − + = 2 2 log + C x x – a + , where C = C1 – log |a| (5) Let x = a sinθ Then dx = a cosθ dθ
1
3562-3565
Then dx = a secθ tan θ d θ Therefore, 2 2 dx x −a ∫ = 2 2 2 secθ tanθ θ sec θ a d a −a ∫ = 1 secθ θ d =log secθ + tanθ + C ∫ = 2 1 2 log 1 C x x – a a + + = 2 2 1 log log C x x – a a + − + = 2 2 log + C x x – a + , where C = C1 – log |a| (5) Let x = a sinθ Then dx = a cosθ dθ Therefore, 2 2 dx a −x ∫ = 2 2 2 θ θ θ cos sin a d a – a ∫ = θ = θ + C = sin1 C – x d a + ∫ (6) Let x = a tanθ
1
3563-3566
Therefore, 2 2 dx x −a ∫ = 2 2 2 secθ tanθ θ sec θ a d a −a ∫ = 1 secθ θ d =log secθ + tanθ + C ∫ = 2 1 2 log 1 C x x – a a + + = 2 2 1 log log C x x – a a + − + = 2 2 log + C x x – a + , where C = C1 – log |a| (5) Let x = a sinθ Then dx = a cosθ dθ Therefore, 2 2 dx a −x ∫ = 2 2 2 θ θ θ cos sin a d a – a ∫ = θ = θ + C = sin1 C – x d a + ∫ (6) Let x = a tanθ Then dx = a sec2θ dθ
1
3564-3567
Then dx = a cosθ dθ Therefore, 2 2 dx a −x ∫ = 2 2 2 θ θ θ cos sin a d a – a ∫ = θ = θ + C = sin1 C – x d a + ∫ (6) Let x = a tanθ Then dx = a sec2θ dθ Therefore, 2 2 dx x +a ∫ = 2 2 2 2 θ θ θ sec tan a d a +a ∫ = 1 θ θ secθ θ = log (sec tan ) C d + + ∫ 310 MATHEMATICS = 2 1 2 log 1 C x x a a + + + = 2 1 log log C x x a |a| 2 + + − + = 2 log C x x a2 + + + , where C = C1 – log |a| Applying these standard formulae, we now obtain some more formulae which are useful from applications point of view and can be applied directly to evaluate other integrals
1
3565-3568
Therefore, 2 2 dx a −x ∫ = 2 2 2 θ θ θ cos sin a d a – a ∫ = θ = θ + C = sin1 C – x d a + ∫ (6) Let x = a tanθ Then dx = a sec2θ dθ Therefore, 2 2 dx x +a ∫ = 2 2 2 2 θ θ θ sec tan a d a +a ∫ = 1 θ θ secθ θ = log (sec tan ) C d + + ∫ 310 MATHEMATICS = 2 1 2 log 1 C x x a a + + + = 2 1 log log C x x a |a| 2 + + − + = 2 log C x x a2 + + + , where C = C1 – log |a| Applying these standard formulae, we now obtain some more formulae which are useful from applications point of view and can be applied directly to evaluate other integrals (7) To find the integral 2 dx ax bx c + + ∫ , we write ax 2 + bx + c = 2 2 2 2 2 4 b c b c b a x x a x – a a a a a         + + = + +                   Now, put b2 x t a + = so that dx = dt and writing 2 2 42 c –b k a a = ±
1
3566-3569
Then dx = a sec2θ dθ Therefore, 2 2 dx x +a ∫ = 2 2 2 2 θ θ θ sec tan a d a +a ∫ = 1 θ θ secθ θ = log (sec tan ) C d + + ∫ 310 MATHEMATICS = 2 1 2 log 1 C x x a a + + + = 2 1 log log C x x a |a| 2 + + − + = 2 log C x x a2 + + + , where C = C1 – log |a| Applying these standard formulae, we now obtain some more formulae which are useful from applications point of view and can be applied directly to evaluate other integrals (7) To find the integral 2 dx ax bx c + + ∫ , we write ax 2 + bx + c = 2 2 2 2 2 4 b c b c b a x x a x – a a a a a         + + = + +                   Now, put b2 x t a + = so that dx = dt and writing 2 2 42 c –b k a a = ± We find the integral reduced to the form 2 2 1 dt a t ∫±k depending upon the sign of 2 42 c a–b a       and hence can be evaluated
1
3567-3570
Therefore, 2 2 dx x +a ∫ = 2 2 2 2 θ θ θ sec tan a d a +a ∫ = 1 θ θ secθ θ = log (sec tan ) C d + + ∫ 310 MATHEMATICS = 2 1 2 log 1 C x x a a + + + = 2 1 log log C x x a |a| 2 + + − + = 2 log C x x a2 + + + , where C = C1 – log |a| Applying these standard formulae, we now obtain some more formulae which are useful from applications point of view and can be applied directly to evaluate other integrals (7) To find the integral 2 dx ax bx c + + ∫ , we write ax 2 + bx + c = 2 2 2 2 2 4 b c b c b a x x a x – a a a a a         + + = + +                   Now, put b2 x t a + = so that dx = dt and writing 2 2 42 c –b k a a = ± We find the integral reduced to the form 2 2 1 dt a t ∫±k depending upon the sign of 2 42 c a–b a       and hence can be evaluated (8) To find the integral of the type 2 dx ax bx c + + ∫ , proceeding as in (7), we obtain the integral using the standard formulae
1
3568-3571
(7) To find the integral 2 dx ax bx c + + ∫ , we write ax 2 + bx + c = 2 2 2 2 2 4 b c b c b a x x a x – a a a a a         + + = + +                   Now, put b2 x t a + = so that dx = dt and writing 2 2 42 c –b k a a = ± We find the integral reduced to the form 2 2 1 dt a t ∫±k depending upon the sign of 2 42 c a–b a       and hence can be evaluated (8) To find the integral of the type 2 dx ax bx c + + ∫ , proceeding as in (7), we obtain the integral using the standard formulae (9) To find the integral of the type 2 px q dx ax bx c ++ + ∫ , where p, q, a, b, c are constants, we are to find real numbers A, B such that 2 + = A ( ) + B = A (2 ) + B d px q ax bx c ax b dx + + + To determine A and B, we equate from both sides the coefficients of x and the constant terms
1
3569-3572
We find the integral reduced to the form 2 2 1 dt a t ∫±k depending upon the sign of 2 42 c a–b a       and hence can be evaluated (8) To find the integral of the type 2 dx ax bx c + + ∫ , proceeding as in (7), we obtain the integral using the standard formulae (9) To find the integral of the type 2 px q dx ax bx c ++ + ∫ , where p, q, a, b, c are constants, we are to find real numbers A, B such that 2 + = A ( ) + B = A (2 ) + B d px q ax bx c ax b dx + + + To determine A and B, we equate from both sides the coefficients of x and the constant terms A and B are thus obtained and hence the integral is reduced to one of the known forms
1
3570-3573
(8) To find the integral of the type 2 dx ax bx c + + ∫ , proceeding as in (7), we obtain the integral using the standard formulae (9) To find the integral of the type 2 px q dx ax bx c ++ + ∫ , where p, q, a, b, c are constants, we are to find real numbers A, B such that 2 + = A ( ) + B = A (2 ) + B d px q ax bx c ax b dx + + + To determine A and B, we equate from both sides the coefficients of x and the constant terms A and B are thus obtained and hence the integral is reduced to one of the known forms INTEGRALS 311 (10) For the evaluation of the integral of the type 2 ( ) px q dx ax bx c + + + ∫ , we proceed as in (9) and transform the integral into known standard forms
1
3571-3574
(9) To find the integral of the type 2 px q dx ax bx c ++ + ∫ , where p, q, a, b, c are constants, we are to find real numbers A, B such that 2 + = A ( ) + B = A (2 ) + B d px q ax bx c ax b dx + + + To determine A and B, we equate from both sides the coefficients of x and the constant terms A and B are thus obtained and hence the integral is reduced to one of the known forms INTEGRALS 311 (10) For the evaluation of the integral of the type 2 ( ) px q dx ax bx c + + + ∫ , we proceed as in (9) and transform the integral into known standard forms Let us illustrate the above methods by some examples
1
3572-3575
A and B are thus obtained and hence the integral is reduced to one of the known forms INTEGRALS 311 (10) For the evaluation of the integral of the type 2 ( ) px q dx ax bx c + + + ∫ , we proceed as in (9) and transform the integral into known standard forms Let us illustrate the above methods by some examples Example 8 Find the following integrals: (i) 2 16 dx ∫x − (ii) 2 2 dx x −x ∫ Solution (i) We have 2 2 2 16 4 dx dx x x – = − ∫ ∫ = 4 log C 8 xx –4 1 + + [by 7
1
3573-3576
INTEGRALS 311 (10) For the evaluation of the integral of the type 2 ( ) px q dx ax bx c + + + ∫ , we proceed as in (9) and transform the integral into known standard forms Let us illustrate the above methods by some examples Example 8 Find the following integrals: (i) 2 16 dx ∫x − (ii) 2 2 dx x −x ∫ Solution (i) We have 2 2 2 16 4 dx dx x x – = − ∫ ∫ = 4 log C 8 xx –4 1 + + [by 7 4 (1)] (ii) ( ) 2 2 2 1 1 = − ∫ ∫ dx dx x x – x – Put x – 1 = t
1
3574-3577
Let us illustrate the above methods by some examples Example 8 Find the following integrals: (i) 2 16 dx ∫x − (ii) 2 2 dx x −x ∫ Solution (i) We have 2 2 2 16 4 dx dx x x – = − ∫ ∫ = 4 log C 8 xx –4 1 + + [by 7 4 (1)] (ii) ( ) 2 2 2 1 1 = − ∫ ∫ dx dx x x – x – Put x – 1 = t Then dx = dt
1
3575-3578
Example 8 Find the following integrals: (i) 2 16 dx ∫x − (ii) 2 2 dx x −x ∫ Solution (i) We have 2 2 2 16 4 dx dx x x – = − ∫ ∫ = 4 log C 8 xx –4 1 + + [by 7 4 (1)] (ii) ( ) 2 2 2 1 1 = − ∫ ∫ dx dx x x – x – Put x – 1 = t Then dx = dt Therefore, 2 2 dx x −x ∫ = 2 1 dt – t ∫ = sin1 ( ) C – t + [by 7
1
3576-3579
4 (1)] (ii) ( ) 2 2 2 1 1 = − ∫ ∫ dx dx x x – x – Put x – 1 = t Then dx = dt Therefore, 2 2 dx x −x ∫ = 2 1 dt – t ∫ = sin1 ( ) C – t + [by 7 4 (5)] = sin1 ( –1) C – x + Example 9 Find the following integrals : (i) 2 6 13 dx x −x + ∫ (ii) 32 13 10 dx x x + − ∫ (iii) 52 2 dx x x − ∫ Solution (i) We have x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4 So, 6 13 dx x 2 −x + ∫ = ( ) 2 2 1 3 2 dx x – + ∫ Let x – 3 = t
1
3577-3580
Then dx = dt Therefore, 2 2 dx x −x ∫ = 2 1 dt – t ∫ = sin1 ( ) C – t + [by 7 4 (5)] = sin1 ( –1) C – x + Example 9 Find the following integrals : (i) 2 6 13 dx x −x + ∫ (ii) 32 13 10 dx x x + − ∫ (iii) 52 2 dx x x − ∫ Solution (i) We have x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4 So, 6 13 dx x 2 −x + ∫ = ( ) 2 2 1 3 2 dx x – + ∫ Let x – 3 = t Then dx = dt Therefore, 6 13 dx x 2 −x + ∫ = 1 2 2 1 tan C 2 2 2 – dt t t = + + ∫ [by 7
1
3578-3581
Therefore, 2 2 dx x −x ∫ = 2 1 dt – t ∫ = sin1 ( ) C – t + [by 7 4 (5)] = sin1 ( –1) C – x + Example 9 Find the following integrals : (i) 2 6 13 dx x −x + ∫ (ii) 32 13 10 dx x x + − ∫ (iii) 52 2 dx x x − ∫ Solution (i) We have x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4 So, 6 13 dx x 2 −x + ∫ = ( ) 2 2 1 3 2 dx x – + ∫ Let x – 3 = t Then dx = dt Therefore, 6 13 dx x 2 −x + ∫ = 1 2 2 1 tan C 2 2 2 – dt t t = + + ∫ [by 7 4 (3)] = 1 1 3 tan C 2 2 – x – + 312 MATHEMATICS (ii) The given integral is of the form 7
1
3579-3582
4 (5)] = sin1 ( –1) C – x + Example 9 Find the following integrals : (i) 2 6 13 dx x −x + ∫ (ii) 32 13 10 dx x x + − ∫ (iii) 52 2 dx x x − ∫ Solution (i) We have x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4 So, 6 13 dx x 2 −x + ∫ = ( ) 2 2 1 3 2 dx x – + ∫ Let x – 3 = t Then dx = dt Therefore, 6 13 dx x 2 −x + ∫ = 1 2 2 1 tan C 2 2 2 – dt t t = + + ∫ [by 7 4 (3)] = 1 1 3 tan C 2 2 – x – + 312 MATHEMATICS (ii) The given integral is of the form 7 4 (7)
1
3580-3583
Then dx = dt Therefore, 6 13 dx x 2 −x + ∫ = 1 2 2 1 tan C 2 2 2 – dt t t = + + ∫ [by 7 4 (3)] = 1 1 3 tan C 2 2 – x – + 312 MATHEMATICS (ii) The given integral is of the form 7 4 (7) We write the denominator of the integrand, 32 13 10 x x – + = 2 13 10 3 3 3 x x –   +     = 2 2 13 17 3 6 6 x –       +               (completing the square) Thus 3 13 10 dx x x 2 + − ∫ = 2 2 31 13 17 6 6 dx x    + −         ∫ Put 13 6 x t + =
1
3581-3584
4 (3)] = 1 1 3 tan C 2 2 – x – + 312 MATHEMATICS (ii) The given integral is of the form 7 4 (7) We write the denominator of the integrand, 32 13 10 x x – + = 2 13 10 3 3 3 x x –   +     = 2 2 13 17 3 6 6 x –       +               (completing the square) Thus 3 13 10 dx x x 2 + − ∫ = 2 2 31 13 17 6 6 dx x    + −         ∫ Put 13 6 x t + = Then dx = dt
1
3582-3585
4 (7) We write the denominator of the integrand, 32 13 10 x x – + = 2 13 10 3 3 3 x x –   +     = 2 2 13 17 3 6 6 x –       +               (completing the square) Thus 3 13 10 dx x x 2 + − ∫ = 2 2 31 13 17 6 6 dx x    + −         ∫ Put 13 6 x t + = Then dx = dt Therefore, 3 13 10 dx x x 2 + − ∫ = 2 2 31 17 6 dt t   −     ∫ = 1 17 1 6 log C 17 17 3 2 6 6 t – t + × × + [by 7
1
3583-3586
We write the denominator of the integrand, 32 13 10 x x – + = 2 13 10 3 3 3 x x –   +     = 2 2 13 17 3 6 6 x –       +               (completing the square) Thus 3 13 10 dx x x 2 + − ∫ = 2 2 31 13 17 6 6 dx x    + −         ∫ Put 13 6 x t + = Then dx = dt Therefore, 3 13 10 dx x x 2 + − ∫ = 2 2 31 17 6 dt t   −     ∫ = 1 17 1 6 log C 17 17 3 2 6 6 t – t + × × + [by 7 4 (i)] = 1 13 17 1 6 6 log C 13 17 17 6 6 x – x + + + + = 1 1 6 4 log C 17 6 xx30 − + + = 1 1 3 2 1 1 log C log 17 5 17 3 xx − + + + = 1 3 2 log C 17 xx5 − + + , where C = 1 1 1 C 17log 3 + INTEGRALS 313 (iii) We have 2 2 5 2 5 5 dx dx x x x x – 2 =   −     ∫ ∫ = 2 2 1 5 1 1 5 5 dx x – –             ∫ (completing the square) Put 1 5 x – t =
1
3584-3587
Then dx = dt Therefore, 3 13 10 dx x x 2 + − ∫ = 2 2 31 17 6 dt t   −     ∫ = 1 17 1 6 log C 17 17 3 2 6 6 t – t + × × + [by 7 4 (i)] = 1 13 17 1 6 6 log C 13 17 17 6 6 x – x + + + + = 1 1 6 4 log C 17 6 xx30 − + + = 1 1 3 2 1 1 log C log 17 5 17 3 xx − + + + = 1 3 2 log C 17 xx5 − + + , where C = 1 1 1 C 17log 3 + INTEGRALS 313 (iii) We have 2 2 5 2 5 5 dx dx x x x x – 2 =   −     ∫ ∫ = 2 2 1 5 1 1 5 5 dx x – –             ∫ (completing the square) Put 1 5 x – t = Then dx = dt
1
3585-3588
Therefore, 3 13 10 dx x x 2 + − ∫ = 2 2 31 17 6 dt t   −     ∫ = 1 17 1 6 log C 17 17 3 2 6 6 t – t + × × + [by 7 4 (i)] = 1 13 17 1 6 6 log C 13 17 17 6 6 x – x + + + + = 1 1 6 4 log C 17 6 xx30 − + + = 1 1 3 2 1 1 log C log 17 5 17 3 xx − + + + = 1 3 2 log C 17 xx5 − + + , where C = 1 1 1 C 17log 3 + INTEGRALS 313 (iii) We have 2 2 5 2 5 5 dx dx x x x x – 2 =   −     ∫ ∫ = 2 2 1 5 1 1 5 5 dx x – –             ∫ (completing the square) Put 1 5 x – t = Then dx = dt Therefore, 5 2 dx x x 2 − ∫ = 2 2 1 5 1 5 dt t –      ∫ = 2 2 1 1 log C 5 5 t t –   + +     [by 7
1
3586-3589
4 (i)] = 1 13 17 1 6 6 log C 13 17 17 6 6 x – x + + + + = 1 1 6 4 log C 17 6 xx30 − + + = 1 1 3 2 1 1 log C log 17 5 17 3 xx − + + + = 1 3 2 log C 17 xx5 − + + , where C = 1 1 1 C 17log 3 + INTEGRALS 313 (iii) We have 2 2 5 2 5 5 dx dx x x x x – 2 =   −     ∫ ∫ = 2 2 1 5 1 1 5 5 dx x – –             ∫ (completing the square) Put 1 5 x – t = Then dx = dt Therefore, 5 2 dx x x 2 − ∫ = 2 2 1 5 1 5 dt t –      ∫ = 2 2 1 1 log C 5 5 t t –   + +     [by 7 4 (4)] = 2 1 1 2 log C 5 5 5 x x – x – + + Example 10 Find the following integrals: (i) 2 2 6 5 x dx x x 2 ++ + ∫ (ii) 2 3 5 4 x dx x x + − + ∫ Solution (i) Using the formula 7
1
3587-3590
Then dx = dt Therefore, 5 2 dx x x 2 − ∫ = 2 2 1 5 1 5 dt t –      ∫ = 2 2 1 1 log C 5 5 t t –   + +     [by 7 4 (4)] = 2 1 1 2 log C 5 5 5 x x – x – + + Example 10 Find the following integrals: (i) 2 2 6 5 x dx x x 2 ++ + ∫ (ii) 2 3 5 4 x dx x x + − + ∫ Solution (i) Using the formula 7 4 (9), we express x + 2 = ( ) 2 A 2 6 5 B d x x dx + + + = A (4 6) B x + + Equating the coefficients of x and the constant terms from both sides, we get 4A = 1 and 6A + B = 2 or A = 1 4 and B = 1 2
1
3588-3591
Therefore, 5 2 dx x x 2 − ∫ = 2 2 1 5 1 5 dt t –      ∫ = 2 2 1 1 log C 5 5 t t –   + +     [by 7 4 (4)] = 2 1 1 2 log C 5 5 5 x x – x – + + Example 10 Find the following integrals: (i) 2 2 6 5 x dx x x 2 ++ + ∫ (ii) 2 3 5 4 x dx x x + − + ∫ Solution (i) Using the formula 7 4 (9), we express x + 2 = ( ) 2 A 2 6 5 B d x x dx + + + = A (4 6) B x + + Equating the coefficients of x and the constant terms from both sides, we get 4A = 1 and 6A + B = 2 or A = 1 4 and B = 1 2 Therefore, 2 2 6 5 xx x 2 ++ + ∫ = 1 4 6 1 4 2 2 6 5 2 6 5 x dx dx x x x x 2 2 + + + + + + ∫ ∫ = 1 2 1 1 I I 4 2 + (say)
1
3589-3592
4 (4)] = 2 1 1 2 log C 5 5 5 x x – x – + + Example 10 Find the following integrals: (i) 2 2 6 5 x dx x x 2 ++ + ∫ (ii) 2 3 5 4 x dx x x + − + ∫ Solution (i) Using the formula 7 4 (9), we express x + 2 = ( ) 2 A 2 6 5 B d x x dx + + + = A (4 6) B x + + Equating the coefficients of x and the constant terms from both sides, we get 4A = 1 and 6A + B = 2 or A = 1 4 and B = 1 2 Therefore, 2 2 6 5 xx x 2 ++ + ∫ = 1 4 6 1 4 2 2 6 5 2 6 5 x dx dx x x x x 2 2 + + + + + + ∫ ∫ = 1 2 1 1 I I 4 2 + (say) (1) 314 MATHEMATICS In I1, put 2x2 + 6x + 5 = t, so that (4x + 6) dx = dt Therefore, I1 = 1 log C dt t t = + ∫ = 2 1 log | 2 6 5| C x x + + +
1
3590-3593
4 (9), we express x + 2 = ( ) 2 A 2 6 5 B d x x dx + + + = A (4 6) B x + + Equating the coefficients of x and the constant terms from both sides, we get 4A = 1 and 6A + B = 2 or A = 1 4 and B = 1 2 Therefore, 2 2 6 5 xx x 2 ++ + ∫ = 1 4 6 1 4 2 2 6 5 2 6 5 x dx dx x x x x 2 2 + + + + + + ∫ ∫ = 1 2 1 1 I I 4 2 + (say) (1) 314 MATHEMATICS In I1, put 2x2 + 6x + 5 = t, so that (4x + 6) dx = dt Therefore, I1 = 1 log C dt t t = + ∫ = 2 1 log | 2 6 5| C x x + + + (2) and I2 = 2 2 1 5 2 2 6 5 3 2 dx dx x x x x = + + + + ∫ ∫ = 2 2 21 3 1 2 2 dx x    + +         ∫ Put 3 2 x t + = , so that dx = dt, we get I2 = 2 2 21 1 2 dt t   +     ∫ = 1 2 1 tan 2 C 1 2 2 – t + × [by 7
1
3591-3594
Therefore, 2 2 6 5 xx x 2 ++ + ∫ = 1 4 6 1 4 2 2 6 5 2 6 5 x dx dx x x x x 2 2 + + + + + + ∫ ∫ = 1 2 1 1 I I 4 2 + (say) (1) 314 MATHEMATICS In I1, put 2x2 + 6x + 5 = t, so that (4x + 6) dx = dt Therefore, I1 = 1 log C dt t t = + ∫ = 2 1 log | 2 6 5| C x x + + + (2) and I2 = 2 2 1 5 2 2 6 5 3 2 dx dx x x x x = + + + + ∫ ∫ = 2 2 21 3 1 2 2 dx x    + +         ∫ Put 3 2 x t + = , so that dx = dt, we get I2 = 2 2 21 1 2 dt t   +     ∫ = 1 2 1 tan 2 C 1 2 2 – t + × [by 7 4 (3)] = 1 2 3 tan 2 + C 2 – x  +    = ( ) 1 2 tan 2 3 + C – x +
1
3592-3595
(1) 314 MATHEMATICS In I1, put 2x2 + 6x + 5 = t, so that (4x + 6) dx = dt Therefore, I1 = 1 log C dt t t = + ∫ = 2 1 log | 2 6 5| C x x + + + (2) and I2 = 2 2 1 5 2 2 6 5 3 2 dx dx x x x x = + + + + ∫ ∫ = 2 2 21 3 1 2 2 dx x    + +         ∫ Put 3 2 x t + = , so that dx = dt, we get I2 = 2 2 21 1 2 dt t   +     ∫ = 1 2 1 tan 2 C 1 2 2 – t + × [by 7 4 (3)] = 1 2 3 tan 2 + C 2 – x  +    = ( ) 1 2 tan 2 3 + C – x + (3) Using (2) and (3) in (1), we get ( ) 2 1 2 1 1 log 2 6 5 tan 2 3 C 4 2 2 6 5 – x dx x x x x x 2 + = + + + + + + + ∫ where, C = 1 2 C C 4 2 + (ii) This integral is of the form given in 7
1
3593-3596
(2) and I2 = 2 2 1 5 2 2 6 5 3 2 dx dx x x x x = + + + + ∫ ∫ = 2 2 21 3 1 2 2 dx x    + +         ∫ Put 3 2 x t + = , so that dx = dt, we get I2 = 2 2 21 1 2 dt t   +     ∫ = 1 2 1 tan 2 C 1 2 2 – t + × [by 7 4 (3)] = 1 2 3 tan 2 + C 2 – x  +    = ( ) 1 2 tan 2 3 + C – x + (3) Using (2) and (3) in (1), we get ( ) 2 1 2 1 1 log 2 6 5 tan 2 3 C 4 2 2 6 5 – x dx x x x x x 2 + = + + + + + + + ∫ where, C = 1 2 C C 4 2 + (ii) This integral is of the form given in 7 4 (10)
1
3594-3597
4 (3)] = 1 2 3 tan 2 + C 2 – x  +    = ( ) 1 2 tan 2 3 + C – x + (3) Using (2) and (3) in (1), we get ( ) 2 1 2 1 1 log 2 6 5 tan 2 3 C 4 2 2 6 5 – x dx x x x x x 2 + = + + + + + + + ∫ where, C = 1 2 C C 4 2 + (ii) This integral is of the form given in 7 4 (10) Let us express x + 3 = 2 A (5 4 ) + B d – x – x dx = A (– 4 – 2x) + B Equating the coefficients of x and the constant terms from both sides, we get – 2A = 1 and – 4 A + B = 3, i
1
3595-3598
(3) Using (2) and (3) in (1), we get ( ) 2 1 2 1 1 log 2 6 5 tan 2 3 C 4 2 2 6 5 – x dx x x x x x 2 + = + + + + + + + ∫ where, C = 1 2 C C 4 2 + (ii) This integral is of the form given in 7 4 (10) Let us express x + 3 = 2 A (5 4 ) + B d – x – x dx = A (– 4 – 2x) + B Equating the coefficients of x and the constant terms from both sides, we get – 2A = 1 and – 4 A + B = 3, i e
1
3596-3599
4 (10) Let us express x + 3 = 2 A (5 4 ) + B d – x – x dx = A (– 4 – 2x) + B Equating the coefficients of x and the constant terms from both sides, we get – 2A = 1 and – 4 A + B = 3, i e , A = 1 2 – and B = 1 INTEGRALS 315 Therefore, 2 3 5 4 x dx x x + − − ∫ = ( ) 2 2 4 2 21 5 4 5 4 – – x dx dx – x x x x + − − − − ∫ ∫ = –21 I1 + I2
1
3597-3600
Let us express x + 3 = 2 A (5 4 ) + B d – x – x dx = A (– 4 – 2x) + B Equating the coefficients of x and the constant terms from both sides, we get – 2A = 1 and – 4 A + B = 3, i e , A = 1 2 – and B = 1 INTEGRALS 315 Therefore, 2 3 5 4 x dx x x + − − ∫ = ( ) 2 2 4 2 21 5 4 5 4 – – x dx dx – x x x x + − − − − ∫ ∫ = –21 I1 + I2 (1) In I1, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt
1
3598-3601
e , A = 1 2 – and B = 1 INTEGRALS 315 Therefore, 2 3 5 4 x dx x x + − − ∫ = ( ) 2 2 4 2 21 5 4 5 4 – – x dx dx – x x x x + − − − − ∫ ∫ = –21 I1 + I2 (1) In I1, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt Therefore, I1= ( ) 2 4 2 5 4 – x dx dt t x x − = − − ∫ ∫ = 1 2 C t + = 2 1 2 5 4 – x – x +C
1
3599-3602
, A = 1 2 – and B = 1 INTEGRALS 315 Therefore, 2 3 5 4 x dx x x + − − ∫ = ( ) 2 2 4 2 21 5 4 5 4 – – x dx dx – x x x x + − − − − ∫ ∫ = –21 I1 + I2 (1) In I1, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt Therefore, I1= ( ) 2 4 2 5 4 – x dx dt t x x − = − − ∫ ∫ = 1 2 C t + = 2 1 2 5 4 – x – x +C (2) Now consider I2 = 2 2 5 4 9 ( 2) dx dx x x – x = − − + ∫ ∫ Put x + 2 = t, so that dx = dt
1
3600-3603
(1) In I1, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt Therefore, I1= ( ) 2 4 2 5 4 – x dx dt t x x − = − − ∫ ∫ = 1 2 C t + = 2 1 2 5 4 – x – x +C (2) Now consider I2 = 2 2 5 4 9 ( 2) dx dx x x – x = − − + ∫ ∫ Put x + 2 = t, so that dx = dt Therefore, I2 = 1 2 2 2 sin 3+ C 3 – dt t t = − ∫ [by 7
1
3601-3604
Therefore, I1= ( ) 2 4 2 5 4 – x dx dt t x x − = − − ∫ ∫ = 1 2 C t + = 2 1 2 5 4 – x – x +C (2) Now consider I2 = 2 2 5 4 9 ( 2) dx dx x x – x = − − + ∫ ∫ Put x + 2 = t, so that dx = dt Therefore, I2 = 1 2 2 2 sin 3+ C 3 – dt t t = − ∫ [by 7 4 (5)] = 1 2 2 sin C 3 – x + +
1
3602-3605
(2) Now consider I2 = 2 2 5 4 9 ( 2) dx dx x x – x = − − + ∫ ∫ Put x + 2 = t, so that dx = dt Therefore, I2 = 1 2 2 2 sin 3+ C 3 – dt t t = − ∫ [by 7 4 (5)] = 1 2 2 sin C 3 – x + + (3) Substituting (2) and (3) in (1), we obtain 2 1 2 3 2 5 – 4 – + sin C 3 5 4 – x x – x x – x – x + + = + ∫ , where 1 2 C C C 2 – = EXERCISE 7
1
3603-3606
Therefore, I2 = 1 2 2 2 sin 3+ C 3 – dt t t = − ∫ [by 7 4 (5)] = 1 2 2 sin C 3 – x + + (3) Substituting (2) and (3) in (1), we obtain 2 1 2 3 2 5 – 4 – + sin C 3 5 4 – x x – x x – x – x + + = + ∫ , where 1 2 C C C 2 – = EXERCISE 7 4 Integrate the functions in Exercises 1 to 23
1
3604-3607
4 (5)] = 1 2 2 sin C 3 – x + + (3) Substituting (2) and (3) in (1), we obtain 2 1 2 3 2 5 – 4 – + sin C 3 5 4 – x x – x x – x – x + + = + ∫ , where 1 2 C C C 2 – = EXERCISE 7 4 Integrate the functions in Exercises 1 to 23 1
1
3605-3608
(3) Substituting (2) and (3) in (1), we obtain 2 1 2 3 2 5 – 4 – + sin C 3 5 4 – x x – x x – x – x + + = + ∫ , where 1 2 C C C 2 – = EXERCISE 7 4 Integrate the functions in Exercises 1 to 23 1 2 6 3 1 x x + 2
1
3606-3609
4 Integrate the functions in Exercises 1 to 23 1 2 6 3 1 x x + 2 2 1 1 4x + 3
1
3607-3610
1 2 6 3 1 x x + 2 2 1 1 4x + 3 ( ) 2 1 2 1 – x + 4
1
3608-3611
2 6 3 1 x x + 2 2 1 1 4x + 3 ( ) 2 1 2 1 – x + 4 2 1 9 –25 x 5
1
3609-3612
2 1 1 4x + 3 ( ) 2 1 2 1 – x + 4 2 1 9 –25 x 5 4 3 1 2 x x + 6
1
3610-3613
( ) 2 1 2 1 – x + 4 2 1 9 –25 x 5 4 3 1 2 x x + 6 2 6 1 x x − 7
1
3611-3614
2 1 9 –25 x 5 4 3 1 2 x x + 6 2 6 1 x x − 7 2 1 1 x – x – 8
1
3612-3615
4 3 1 2 x x + 6 2 6 1 x x − 7 2 1 1 x – x – 8 2 6 6 x x a + 9
1
3613-3616
2 6 1 x x − 7 2 1 1 x – x – 8 2 6 6 x x a + 9 2 2 sec tan 4 x x + 316 MATHEMATICS 10
1
3614-3617
2 1 1 x – x – 8 2 6 6 x x a + 9 2 2 sec tan 4 x x + 316 MATHEMATICS 10 2 1 2 2 x +x + 11
1
3615-3618
2 6 6 x x a + 9 2 2 sec tan 4 x x + 316 MATHEMATICS 10 2 1 2 2 x +x + 11 2 1 9 6 5 x +x + 12
1
3616-3619
2 2 sec tan 4 x x + 316 MATHEMATICS 10 2 1 2 2 x +x + 11 2 1 9 6 5 x +x + 12 2 1 7 –6 x – x 13
1
3617-3620
2 1 2 2 x +x + 11 2 1 9 6 5 x +x + 12 2 1 7 –6 x – x 13 ( )( ) 1 1 2 x – x – 14