python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging logger = logging.get_logger(__name__) def cosine_distance(image_embeds, text_embeds): normalized_image_embeds = nn.functional.normalize(image_embeds) normalized_text_embeds = nn.functional.normalize(text_embeds) return torch.mm(normalized_image_embeds, normalized_text_embeds.t()) class StableDiffusionSafetyChecker(PreTrainedModel): config_class = CLIPConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPConfig): super().__init__(config) self.vision_model = CLIPVisionModel(config.vision_config) self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False) @torch.no_grad() def forward(self, clip_input, images): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() result = [] batch_size = image_embeds.shape[0] for i in range(batch_size): result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 for concept_idx in range(len(special_cos_dist[0])): concept_cos = special_cos_dist[i][concept_idx] concept_threshold = self.special_care_embeds_weights[concept_idx].item() result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) adjustment = 0.01 for concept_idx in range(len(cos_dist[0])): concept_cos = cos_dist[i][concept_idx] concept_threshold = self.concept_embeds_weights[concept_idx].item() result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(concept_idx) result.append(result_img) has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result] for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if has_nsfw_concept: images[idx] = np.zeros(images[idx].shape) # black image if any(has_nsfw_concepts): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) return images, has_nsfw_concepts @torch.no_grad() def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) cos_dist = cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) special_care = torch.any(special_scores > 0, dim=1) special_adjustment = special_care * 0.01 special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) images[has_nsfw_concepts] = 0.0 # black image return images, has_nsfw_concepts
diffusers-main
src/diffusers/pipelines/stable_diffusion/safety_checker.py
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_flax_available, is_onnx_available, is_torch_available, is_transformers_available @dataclass class StableDiffusionPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. nsfw_content_detected (`List[bool]`) List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .safety_checker import StableDiffusionSafetyChecker if is_transformers_available() and is_onnx_available(): from .pipeline_stable_diffusion_onnx import StableDiffusionOnnxPipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class FlaxStableDiffusionPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. nsfw_content_detected (`List[bool]`) List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
diffusers-main
src/diffusers/pipelines/stable_diffusion/__init__.py
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from ...configuration_utils import FrozenDict from ...models import AutoencoderKL, UNet2DConditionModel from ...pipeline_utils import DiffusionPipeline from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from ...utils import deprecate, logging from . import StableDiffusionPipelineOutput from .safety_checker import StableDiffusionSafetyChecker logger = logging.get_logger(__name__) # pylint: disable=invalid-name class StableDiffusionPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, ): super().__init__() if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None: logger.warn( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): r""" Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go back to computing attention in one step. """ # set slice_size = `None` to disable `attention slicing` self.enable_attention_slicing(None) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: int = 512, width: int = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = text_embeddings.shape text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_embeddings.shape[1] uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1) uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8) latents_dtype = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( self.device ) else: latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(num_inference_steps) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand timesteps_tensor = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(i, t, latents) latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to( self.device ) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype) ) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers-main
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
import inspect from typing import Callable, List, Optional, Union import numpy as np import torch import PIL from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from ...configuration_utils import FrozenDict from ...models import AutoencoderKL, UNet2DConditionModel from ...pipeline_utils import DiffusionPipeline from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from ...utils import deprecate, logging from . import StableDiffusionPipelineOutput from .safety_checker import StableDiffusionSafetyChecker logger = logging.get_logger(__name__) # pylint: disable=invalid-name def preprocess(image): w, h = image.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=PIL.Image.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.0 * image - 1.0 class StableDiffusionImg2ImgPipeline(DiffusionPipeline): r""" Pipeline for text-guided image to image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, ): super().__init__() if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None: logger.warn( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): r""" Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go back to computing attention in one step. """ # set slice_size = `None` to disable `set_attention_slice` self.enable_attention_slicing(None) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], init_image: Union[torch.FloatTensor, PIL.Image.Image], strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[torch.Generator] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. init_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1. `init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # set timesteps self.scheduler.set_timesteps(num_inference_steps) if isinstance(init_image, PIL.Image.Image): init_image = preprocess(init_image) # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError("The length of `negative_prompt` should be equal to batch_size.") else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size * num_images_per_prompt, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # encode the init image into latents and scale the latents latents_dtype = text_embeddings.dtype init_image = init_image.to(device=self.device, dtype=latents_dtype) init_latent_dist = self.vae.encode(init_image).latent_dist init_latents = init_latent_dist.sample(generator=generator) init_latents = 0.18215 * init_latents if isinstance(prompt, str): prompt = [prompt] if len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {len(prompt)} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`init_image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many init images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(init_image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = len(prompt) // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt * num_images_per_prompt, dim=0) elif len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `init_image` of batch size {init_latents.shape[0]} to {len(prompt)} text prompts." ) else: init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0) # get the original timestep using init_timestep offset = self.scheduler.config.get("steps_offset", 0) init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) timesteps = self.scheduler.timesteps[-init_timestep] timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device) # add noise to latents using the timesteps noise = torch.randn(init_latents.shape, generator=generator, device=self.device, dtype=latents_dtype) init_latents = self.scheduler.add_noise(init_latents, noise, timesteps) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta latents = init_latents t_start = max(num_inference_steps - init_timestep + offset, 0) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand timesteps = self.scheduler.timesteps[t_start:].to(self.device) for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(i, t, latents) latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to( self.device ) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype) ) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers-main
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
import inspect from typing import Callable, List, Optional, Union import numpy as np from transformers import CLIPFeatureExtractor, CLIPTokenizer from ...onnx_utils import OnnxRuntimeModel from ...pipeline_utils import DiffusionPipeline from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from ...utils import logging from . import StableDiffusionPipelineOutput logger = logging.get_logger(__name__) class StableDiffusionOnnxPipeline(DiffusionPipeline): vae_decoder: OnnxRuntimeModel text_encoder: OnnxRuntimeModel tokenizer: CLIPTokenizer unet: OnnxRuntimeModel scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] safety_checker: OnnxRuntimeModel feature_extractor: CLIPFeatureExtractor def __init__( self, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPFeatureExtractor, ): super().__init__() self.register_modules( vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, eta: Optional[float] = 0.0, latents: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="np", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it latents_shape = (batch_size, 4, height // 8, width // 8) if latents is None: latents = np.random.randn(*latents_shape).astype(np.float32) elif latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") # set timesteps self.scheduler.set_timesteps(num_inference_steps) latents = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( sample=latent_model_input, timestep=np.array([t]), encoder_hidden_states=text_embeddings ) noise_pred = noise_pred[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample latents = np.array(latents) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(i, t, latents) latents = 1 / 0.18215 * latents image = self.vae_decoder(latent_sample=latents)[0] image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="np") image, has_nsfw_concept = self.safety_checker(clip_input=safety_checker_input.pixel_values, images=image) if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers-main
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_onnx.py
import inspect from typing import Callable, List, Optional, Union import numpy as np import torch import PIL from tqdm.auto import tqdm from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from ...configuration_utils import FrozenDict from ...models import AutoencoderKL, UNet2DConditionModel from ...pipeline_utils import DiffusionPipeline from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from ...utils import deprecate, logging from . import StableDiffusionPipelineOutput from .safety_checker import StableDiffusionSafetyChecker logger = logging.get_logger(__name__) def preprocess_image(image): w, h = image.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=PIL.Image.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.0 * image - 1.0 def preprocess_mask(mask): mask = mask.convert("L") w, h = mask.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST) mask = np.array(mask).astype(np.float32) / 255.0 mask = np.tile(mask, (4, 1, 1)) mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? mask = 1 - mask # repaint white, keep black mask = torch.from_numpy(mask) return mask class StableDiffusionInpaintPipeline(DiffusionPipeline): r""" Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, ): super().__init__() logger.info("`StableDiffusionInpaintPipeline` is experimental and will very likely change in the future.") if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None: logger.warn( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): r""" Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go back to computing attention in one step. """ # set slice_size = `None` to disable `set_attention_slice` self.enable_attention_slicing(None) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], init_image: Union[torch.FloatTensor, PIL.Image.Image], mask_image: Union[torch.FloatTensor, PIL.Image.Image], strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[torch.Generator] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. init_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. This is the image whose masked region will be inpainted. mask_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` is 1, the denoising process will be run on the masked area for the full number of iterations specified in `num_inference_steps`. `init_image` will be used as a reference for the masked area, adding more noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. num_inference_steps (`int`, *optional*, defaults to 50): The reference number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`, as explained above. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # set timesteps self.scheduler.set_timesteps(num_inference_steps) # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size * num_images_per_prompt, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # preprocess image if not isinstance(init_image, torch.FloatTensor): init_image = preprocess_image(init_image) # encode the init image into latents and scale the latents latents_dtype = text_embeddings.dtype init_image = init_image.to(device=self.device, dtype=latents_dtype) init_latent_dist = self.vae.encode(init_image).latent_dist init_latents = init_latent_dist.sample(generator=generator) init_latents = 0.18215 * init_latents # Expand init_latents for batch_size and num_images_per_prompt init_latents = torch.cat([init_latents] * batch_size * num_images_per_prompt, dim=0) init_latents_orig = init_latents # preprocess mask if not isinstance(mask_image, torch.FloatTensor): mask_image = preprocess_mask(mask_image) mask_image = mask_image.to(device=self.device, dtype=latents_dtype) mask = torch.cat([mask_image] * batch_size * num_images_per_prompt) # check sizes if not mask.shape == init_latents.shape: raise ValueError("The mask and init_image should be the same size!") # get the original timestep using init_timestep offset = self.scheduler.config.get("steps_offset", 0) init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) timesteps = self.scheduler.timesteps[-init_timestep] timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device) # add noise to latents using the timesteps noise = torch.randn(init_latents.shape, generator=generator, device=self.device, dtype=latents_dtype) init_latents = self.scheduler.add_noise(init_latents, noise, timesteps) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta latents = init_latents t_start = max(num_inference_steps - init_timestep + offset, 0) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand timesteps = self.scheduler.timesteps[t_start:].to(self.device) for i, t in tqdm(enumerate(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # masking init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t])) latents = (init_latents_proper * mask) + (latents * (1 - mask)) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(i, t, latents) latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to( self.device ) image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers-main
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from ...models import UNet2DModel from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput from ...schedulers import PNDMScheduler class PNDMPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet (`UNet2DModel`): U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): The `PNDMScheduler` to be used in combination with `unet` to denoise the encoded image. """ unet: UNet2DModel scheduler: PNDMScheduler def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, num_inference_steps: int = 50, generator: Optional[torch.Generator] = None, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, `optional`, defaults to 1): The number of images to generate. num_inference_steps (`int`, `optional`, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator`, `optional`): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, `optional`, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, `optional`, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # For more information on the sampling method you can take a look at Algorithm 2 of # the official paper: https://arxiv.org/pdf/2202.09778.pdf # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size), generator=generator, ) image = image.to(self.device) self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): model_output = self.unet(image, t).sample image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
diffusers-main
src/diffusers/pipelines/pndm/pipeline_pndm.py
# flake8: noqa from .pipeline_pndm import PNDMPipeline
diffusers-main
src/diffusers/pipelines/pndm/__init__.py
# flake8: noqa from .pipeline_ddpm import DDPMPipeline
diffusers-main
src/diffusers/pipelines/ddpm/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput class DDPMPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(1000) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. compute previous image: x_t -> t_t-1 image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
diffusers-main
src/diffusers/pipelines/ddpm/pipeline_ddpm.py
# coding=utf-8 # Copyright 2020 Optuna, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Logging utilities.""" import logging import os import sys import threading from logging import CRITICAL # NOQA from logging import DEBUG # NOQA from logging import ERROR # NOQA from logging import FATAL # NOQA from logging import INFO # NOQA from logging import NOTSET # NOQA from logging import WARN # NOQA from logging import WARNING # NOQA from typing import Optional from tqdm import auto as tqdm_lib _lock = threading.Lock() _default_handler: Optional[logging.Handler] = None log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _default_log_level = logging.WARNING _tqdm_active = True def _get_default_logging_level(): """ If DIFFUSERS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is not - fall back to `_default_log_level` """ env_level_str = os.getenv("DIFFUSERS_VERBOSITY", None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DIFFUSERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }" ) return _default_log_level def _get_library_name() -> str: return __name__.split(".")[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False def _reset_library_root_logger() -> None: global _default_handler with _lock: if not _default_handler: return library_root_logger = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _default_handler = None def get_log_levels_dict(): return log_levels def get_logger(name: Optional[str] = None) -> logging.Logger: """ Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom diffusers module. """ if name is None: name = _get_library_name() _configure_library_root_logger() return logging.getLogger(name) def get_verbosity() -> int: """ Return the current level for the 🤗 Diffusers' root logger as an int. Returns: `int`: The logging level. <Tip> 🤗 Diffusers has following logging levels: - 50: `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` - 40: `diffusers.logging.ERROR` - 30: `diffusers.logging.WARNING` or `diffusers.logging.WARN` - 20: `diffusers.logging.INFO` - 10: `diffusers.logging.DEBUG` </Tip>""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Diffusers' root logger. Args: verbosity (`int`): Logging level, e.g., one of: - `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` - `diffusers.logging.ERROR` - `diffusers.logging.WARNING` or `diffusers.logging.WARN` - `diffusers.logging.INFO` - `diffusers.logging.DEBUG` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) def set_verbosity_info(): """Set the verbosity to the `INFO` level.""" return set_verbosity(INFO) def set_verbosity_warning(): """Set the verbosity to the `WARNING` level.""" return set_verbosity(WARNING) def set_verbosity_debug(): """Set the verbosity to the `DEBUG` level.""" return set_verbosity(DEBUG) def set_verbosity_error(): """Set the verbosity to the `ERROR` level.""" return set_verbosity(ERROR) def disable_default_handler() -> None: """Disable the default handler of the HuggingFace Diffusers' root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def enable_default_handler() -> None: """Enable the default handler of the HuggingFace Diffusers' root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def add_handler(handler: logging.Handler) -> None: """adds a handler to the HuggingFace Diffusers' root logger.""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(handler) def remove_handler(handler: logging.Handler) -> None: """removes given handler from the HuggingFace Diffusers' root logger.""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(handler) def disable_propagation() -> None: """ Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _configure_library_root_logger() _get_library_root_logger().propagate = False def enable_propagation() -> None: """ Enable propagation of the library log outputs. Please disable the HuggingFace Diffusers' default handler to prevent double logging if the root logger has been configured. """ _configure_library_root_logger() _get_library_root_logger().propagate = True def enable_explicit_format() -> None: """ Enable explicit formatting for every HuggingFace Diffusers' logger. The explicit formatter is as follows: ``` [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE ``` All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s") handler.setFormatter(formatter) def reset_format() -> None: """ Resets the formatting for HuggingFace Diffusers' loggers. All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(None) def warning_advice(self, *args, **kwargs): """ This method is identical to `logger.warning()`, but if env var DIFFUSERS_NO_ADVISORY_WARNINGS=1 is set, this warning will not be printed """ no_advisory_warnings = os.getenv("DIFFUSERS_NO_ADVISORY_WARNINGS", False) if no_advisory_warnings: return self.warning(*args, **kwargs) logging.Logger.warning_advice = warning_advice class EmptyTqdm: """Dummy tqdm which doesn't do anything.""" def __init__(self, *args, **kwargs): # pylint: disable=unused-argument self._iterator = args[0] if args else None def __iter__(self): return iter(self._iterator) def __getattr__(self, _): """Return empty function.""" def empty_fn(*args, **kwargs): # pylint: disable=unused-argument return return empty_fn def __enter__(self): return self def __exit__(self, type_, value, traceback): return class _tqdm_cls: def __call__(self, *args, **kwargs): if _tqdm_active: return tqdm_lib.tqdm(*args, **kwargs) else: return EmptyTqdm(*args, **kwargs) def set_lock(self, *args, **kwargs): self._lock = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*args, **kwargs) def get_lock(self): if _tqdm_active: return tqdm_lib.tqdm.get_lock() tqdm = _tqdm_cls() def is_progress_bar_enabled() -> bool: """Return a boolean indicating whether tqdm progress bars are enabled.""" global _tqdm_active return bool(_tqdm_active) def enable_progress_bar(): """Enable tqdm progress bar.""" global _tqdm_active _tqdm_active = True def disable_progress_bar(): """Disable tqdm progress bar.""" global _tqdm_active _tqdm_active = False
diffusers-main
src/diffusers/utils/logging.py
# This file is autogenerated by the command `make fix-copies`, do not edit. # flake8: noqa from ..utils import DummyObject, requires_backends class StableDiffusionOnnxPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
diffusers-main
src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
# This file is autogenerated by the command `make fix-copies`, do not edit. # flake8: noqa from ..utils import DummyObject, requires_backends class ModelMixin(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class AutoencoderKL(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class UNet2DConditionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class UNet2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class VQModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) def get_constant_schedule(*args, **kwargs): requires_backends(get_constant_schedule, ["torch"]) def get_constant_schedule_with_warmup(*args, **kwargs): requires_backends(get_constant_schedule_with_warmup, ["torch"]) def get_cosine_schedule_with_warmup(*args, **kwargs): requires_backends(get_cosine_schedule_with_warmup, ["torch"]) def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs): requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"]) def get_linear_schedule_with_warmup(*args, **kwargs): requires_backends(get_linear_schedule_with_warmup, ["torch"]) def get_polynomial_decay_schedule_with_warmup(*args, **kwargs): requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"]) def get_scheduler(*args, **kwargs): requires_backends(get_scheduler, ["torch"]) class DiffusionPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DDIMPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DDPMPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class KarrasVePipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class LDMPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class PNDMPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ScoreSdeVePipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DDIMScheduler(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class DDPMScheduler(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class KarrasVeScheduler(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class PNDMScheduler(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class SchedulerMixin(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class ScoreSdeVeScheduler(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) class EMAModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
diffusers-main
src/diffusers/utils/dummy_pt_objects.py
import inspect import os import random import re import unittest from distutils.util import strtobool from pathlib import Path from typing import Union import PIL.Image import PIL.ImageOps import requests from packaging import version from .import_utils import is_flax_available, is_torch_available global_rng = random.Random() if is_torch_available(): import torch torch_device = "cuda" if torch.cuda.is_available() else "cpu" is_torch_higher_equal_than_1_12 = version.parse(version.parse(torch.__version__).base_version) >= version.parse( "1.12" ) if is_torch_higher_equal_than_1_12: torch_device = "mps" if torch.backends.mps.is_available() else torch_device def get_tests_dir(append_path=None): """ Args: append_path: optional path to append to the tests dir path Return: The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is joined after the `tests` dir the former is provided. """ # this function caller's __file__ caller__file__ = inspect.stack()[1][1] tests_dir = os.path.abspath(os.path.dirname(caller__file__)) while not tests_dir.endswith("tests"): tests_dir = os.path.dirname(tests_dir) if append_path: return os.path.join(tests_dir, append_path) else: return tests_dir def parse_flag_from_env(key, default=False): try: value = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _value = default else: # KEY is set, convert it to True or False. try: _value = strtobool(value) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no.") return _value _run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False) def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous() def slow(test_case): """ Decorator marking a test as slow. Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them. """ return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case) def require_flax(test_case): """ Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed """ return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case) def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image: """ Args: Loads `image` to a PIL Image. image (`str` or `PIL.Image.Image`): The image to convert to the PIL Image format. Returns: `PIL.Image.Image`: A PIL Image. """ if isinstance(image, str): if image.startswith("http://") or image.startswith("https://"): image = PIL.Image.open(requests.get(image, stream=True).raw) elif os.path.isfile(image): image = PIL.Image.open(image) else: raise ValueError( f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path" ) elif isinstance(image, PIL.Image.Image): image = image else: raise ValueError( "Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image." ) image = PIL.ImageOps.exif_transpose(image) image = image.convert("RGB") return image # --- pytest conf functions --- # # to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once pytest_opt_registered = {} def pytest_addoption_shared(parser): """ This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there. It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest` option. """ option = "--make-reports" if option not in pytest_opt_registered: parser.addoption( option, action="store", default=False, help="generate report files. The value of this option is used as a prefix to report names", ) pytest_opt_registered[option] = 1 def pytest_terminal_summary_main(tr, id): """ Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current directory. The report files are prefixed with the test suite name. This function emulates --duration and -rA pytest arguments. This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined there. Args: - tr: `terminalreporter` passed from `conftest.py` - id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other. NB: this functions taps into a private _pytest API and while unlikely, it could break should pytest do internal changes - also it calls default internal methods of terminalreporter which can be hijacked by various `pytest-` plugins and interfere. """ from _pytest.config import create_terminal_writer if not len(id): id = "tests" config = tr.config orig_writer = config.get_terminal_writer() orig_tbstyle = config.option.tbstyle orig_reportchars = tr.reportchars dir = "reports" Path(dir).mkdir(parents=True, exist_ok=True) report_files = { k: f"{dir}/{id}_{k}.txt" for k in [ "durations", "errors", "failures_long", "failures_short", "failures_line", "passes", "stats", "summary_short", "warnings", ] } # custom durations report # note: there is no need to call pytest --durations=XX to get this separate report # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66 dlist = [] for replist in tr.stats.values(): for rep in replist: if hasattr(rep, "duration"): dlist.append(rep) if dlist: dlist.sort(key=lambda x: x.duration, reverse=True) with open(report_files["durations"], "w") as f: durations_min = 0.05 # sec f.write("slowest durations\n") for i, rep in enumerate(dlist): if rep.duration < durations_min: f.write(f"{len(dlist)-i} durations < {durations_min} secs were omitted") break f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n") def summary_failures_short(tr): # expecting that the reports were --tb=long (default) so we chop them off here to the last frame reports = tr.getreports("failed") if not reports: return tr.write_sep("=", "FAILURES SHORT STACK") for rep in reports: msg = tr._getfailureheadline(rep) tr.write_sep("_", msg, red=True, bold=True) # chop off the optional leading extra frames, leaving only the last one longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S) tr._tw.line(longrepr) # note: not printing out any rep.sections to keep the report short # use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814 # note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g. # pytest-instafail does that) # report failures with line/short/long styles config.option.tbstyle = "auto" # full tb with open(report_files["failures_long"], "w") as f: tr._tw = create_terminal_writer(config, f) tr.summary_failures() # config.option.tbstyle = "short" # short tb with open(report_files["failures_short"], "w") as f: tr._tw = create_terminal_writer(config, f) summary_failures_short(tr) config.option.tbstyle = "line" # one line per error with open(report_files["failures_line"], "w") as f: tr._tw = create_terminal_writer(config, f) tr.summary_failures() with open(report_files["errors"], "w") as f: tr._tw = create_terminal_writer(config, f) tr.summary_errors() with open(report_files["warnings"], "w") as f: tr._tw = create_terminal_writer(config, f) tr.summary_warnings() # normal warnings tr.summary_warnings() # final warnings tr.reportchars = "wPpsxXEf" # emulate -rA (used in summary_passes() and short_test_summary()) with open(report_files["passes"], "w") as f: tr._tw = create_terminal_writer(config, f) tr.summary_passes() with open(report_files["summary_short"], "w") as f: tr._tw = create_terminal_writer(config, f) tr.short_test_summary() with open(report_files["stats"], "w") as f: tr._tw = create_terminal_writer(config, f) tr.summary_stats() # restore: tr._tw = orig_writer tr.reportchars = orig_reportchars config.option.tbstyle = orig_tbstyle
diffusers-main
src/diffusers/utils/testing_utils.py
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from .deprecation_utils import deprecate from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, USE_JAX, USE_TF, USE_TORCH, DummyObject, is_accelerate_available, is_flax_available, is_inflect_available, is_modelcards_available, is_onnx_available, is_scipy_available, is_tf_available, is_torch_available, is_transformers_available, is_unidecode_available, requires_backends, ) from .logging import get_logger from .outputs import BaseOutput if is_torch_available(): from .testing_utils import floats_tensor, load_image, parse_flag_from_env, slow, torch_device logger = get_logger(__name__) hf_cache_home = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) default_cache_path = os.path.join(hf_cache_home, "diffusers") CONFIG_NAME = "config.json" WEIGHTS_NAME = "diffusion_pytorch_model.bin" FLAX_WEIGHTS_NAME = "diffusion_flax_model.msgpack" ONNX_WEIGHTS_NAME = "model.onnx" HUGGINGFACE_CO_RESOLVE_ENDPOINT = "https://huggingface.co" DIFFUSERS_CACHE = default_cache_path DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules" HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules"))
diffusers-main
src/diffusers/utils/__init__.py
# This file is autogenerated by the command `make fix-copies`, do not edit. # flake8: noqa from ..utils import DummyObject, requires_backends class LDMTextToImagePipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) class StableDiffusionImg2ImgPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) class StableDiffusionInpaintPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) class StableDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"])
diffusers-main
src/diffusers/utils/dummy_torch_and_transformers_objects.py
# This file is autogenerated by the command `make fix-copies`, do not edit. # flake8: noqa from ..utils import DummyObject, requires_backends class FlaxStableDiffusionPipeline(metaclass=DummyObject): _backends = ["flax", "transformers"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax", "transformers"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax", "transformers"])
diffusers-main
src/diffusers/utils/dummy_flax_and_transformers_objects.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Import utilities: Utilities related to imports and our lazy inits. """ import importlib.util import os import sys from collections import OrderedDict from packaging import version from . import logging # The package importlib_metadata is in a different place, depending on the python version. if sys.version_info < (3, 8): import importlib_metadata else: import importlib.metadata as importlib_metadata logger = logging.get_logger(__name__) # pylint: disable=invalid-name ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) USE_TF = os.environ.get("USE_TF", "AUTO").upper() USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper() _torch_version = "N/A" if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES: _torch_available = importlib.util.find_spec("torch") is not None if _torch_available: try: _torch_version = importlib_metadata.version("torch") logger.info(f"PyTorch version {_torch_version} available.") except importlib_metadata.PackageNotFoundError: _torch_available = False else: logger.info("Disabling PyTorch because USE_TF is set") _torch_available = False _tf_version = "N/A" if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES: _tf_available = importlib.util.find_spec("tensorflow") is not None if _tf_available: candidates = ( "tensorflow", "tensorflow-cpu", "tensorflow-gpu", "tf-nightly", "tf-nightly-cpu", "tf-nightly-gpu", "intel-tensorflow", "intel-tensorflow-avx512", "tensorflow-rocm", "tensorflow-macos", "tensorflow-aarch64", ) _tf_version = None # For the metadata, we have to look for both tensorflow and tensorflow-cpu for pkg in candidates: try: _tf_version = importlib_metadata.version(pkg) break except importlib_metadata.PackageNotFoundError: pass _tf_available = _tf_version is not None if _tf_available: if version.parse(_tf_version) < version.parse("2"): logger.info(f"TensorFlow found but with version {_tf_version}. Diffusers requires version 2 minimum.") _tf_available = False else: logger.info(f"TensorFlow version {_tf_version} available.") else: logger.info("Disabling Tensorflow because USE_TORCH is set") _tf_available = False if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES: _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None if _flax_available: try: _jax_version = importlib_metadata.version("jax") _flax_version = importlib_metadata.version("flax") logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.") except importlib_metadata.PackageNotFoundError: _flax_available = False else: _flax_available = False _transformers_available = importlib.util.find_spec("transformers") is not None try: _transformers_version = importlib_metadata.version("transformers") logger.debug(f"Successfully imported transformers version {_transformers_version}") except importlib_metadata.PackageNotFoundError: _transformers_available = False _inflect_available = importlib.util.find_spec("inflect") is not None try: _inflect_version = importlib_metadata.version("inflect") logger.debug(f"Successfully imported inflect version {_inflect_version}") except importlib_metadata.PackageNotFoundError: _inflect_available = False _unidecode_available = importlib.util.find_spec("unidecode") is not None try: _unidecode_version = importlib_metadata.version("unidecode") logger.debug(f"Successfully imported unidecode version {_unidecode_version}") except importlib_metadata.PackageNotFoundError: _unidecode_available = False _modelcards_available = importlib.util.find_spec("modelcards") is not None try: _modelcards_version = importlib_metadata.version("modelcards") logger.debug(f"Successfully imported modelcards version {_modelcards_version}") except importlib_metadata.PackageNotFoundError: _modelcards_available = False _onnx_available = importlib.util.find_spec("onnxruntime") is not None if _onnx_available: candidates = ("onnxruntime", "onnxruntime-gpu", "onnxruntime-directml", "onnxruntime-openvino") _onnxruntime_version = None # For the metadata, we have to look for both onnxruntime and onnxruntime-gpu for pkg in candidates: try: _onnxruntime_version = importlib_metadata.version(pkg) break except importlib_metadata.PackageNotFoundError: pass _onnx_available = _onnxruntime_version is not None if _onnx_available: logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}") _scipy_available = importlib.util.find_spec("scipy") is not None try: _scipy_version = importlib_metadata.version("scipy") logger.debug(f"Successfully imported transformers version {_scipy_version}") except importlib_metadata.PackageNotFoundError: _scipy_available = False _accelerate_available = importlib.util.find_spec("accelerate") is not None try: _accelerate_version = importlib_metadata.version("accelerate") logger.debug(f"Successfully imported accelerate version {_accelerate_version}") except importlib_metadata.PackageNotFoundError: _accelerate_available = False def is_torch_available(): return _torch_available def is_tf_available(): return _tf_available def is_flax_available(): return _flax_available def is_transformers_available(): return _transformers_available def is_inflect_available(): return _inflect_available def is_unidecode_available(): return _unidecode_available def is_modelcards_available(): return _modelcards_available def is_onnx_available(): return _onnx_available def is_scipy_available(): return _scipy_available def is_accelerate_available(): return _accelerate_available # docstyle-ignore FLAX_IMPORT_ERROR = """ {0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the installation page: https://github.com/google/flax and follow the ones that match your environment. """ # docstyle-ignore INFLECT_IMPORT_ERROR = """ {0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install inflect` """ # docstyle-ignore PYTORCH_IMPORT_ERROR = """ {0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment. """ # docstyle-ignore ONNX_IMPORT_ERROR = """ {0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip install onnxruntime` """ # docstyle-ignore SCIPY_IMPORT_ERROR = """ {0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install scipy` """ # docstyle-ignore TENSORFLOW_IMPORT_ERROR = """ {0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the installation page: https://www.tensorflow.org/install and follow the ones that match your environment. """ # docstyle-ignore TRANSFORMERS_IMPORT_ERROR = """ {0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip install transformers` """ # docstyle-ignore UNIDECODE_IMPORT_ERROR = """ {0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install Unidecode` """ BACKENDS_MAPPING = OrderedDict( [ ("flax", (is_flax_available, FLAX_IMPORT_ERROR)), ("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)), ("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)), ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)), ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)), ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)), ("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)), ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)), ] ) def requires_backends(obj, backends): if not isinstance(backends, (list, tuple)): backends = [backends] name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__ checks = (BACKENDS_MAPPING[backend] for backend in backends) failed = [msg.format(name) for available, msg in checks if not available()] if failed: raise ImportError("".join(failed)) class DummyObject(type): """ Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by `requires_backend` each time a user tries to access any method of that class. """ def __getattr__(cls, key): if key.startswith("_"): return super().__getattr__(cls, key) requires_backends(cls, cls._backends)
diffusers-main
src/diffusers/utils/import_utils.py
# This file is autogenerated by the command `make fix-copies`, do not edit. # flake8: noqa from ..utils import DummyObject, requires_backends class LMSDiscreteScheduler(metaclass=DummyObject): _backends = ["torch", "scipy"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "scipy"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "scipy"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "scipy"])
diffusers-main
src/diffusers/utils/dummy_torch_and_scipy_objects.py
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def deprecate(*args, take_from: Optional[Union[Dict, Any]] = None, standard_warn=True): from .. import __version__ deprecated_kwargs = take_from values = () if not isinstance(args[0], tuple): args = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__version__).base_version) >= version.parse(version_name): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) warning = None if isinstance(deprecated_kwargs, dict) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(attribute),) warning = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(deprecated_kwargs, attribute): values += (getattr(deprecated_kwargs, attribute),) warning = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: warning = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: warning = warning + " " if standard_warn else "" warnings.warn(warning + message, DeprecationWarning) if isinstance(deprecated_kwargs, dict) and len(deprecated_kwargs) > 0: call_frame = inspect.getouterframes(inspect.currentframe())[1] filename = call_frame.filename line_number = call_frame.lineno function = call_frame.function key, value = next(iter(deprecated_kwargs.items())) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`") if len(values) == 0: return elif len(values) == 1: return values[0] return values
diffusers-main
src/diffusers/utils/deprecation_utils.py
# This file is autogenerated by the command `make fix-copies`, do not edit. # flake8: noqa from ..utils import DummyObject, requires_backends class FlaxModelMixin(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxUNet2DConditionModel(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxAutoencoderKL(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxDiffusionPipeline(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxDDIMScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxDDPMScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxKarrasVeScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxLMSDiscreteScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxPNDMScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxSchedulerMixin(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"]) class FlaxScoreSdeVeScheduler(metaclass=DummyObject): _backends = ["flax"] def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["flax"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["flax"])
diffusers-main
src/diffusers/utils/dummy_flax_objects.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Generic utilities """ from collections import OrderedDict from dataclasses import fields from typing import Any, Tuple import numpy as np from .import_utils import is_torch_available def is_tensor(x): """ Tests if `x` is a `torch.Tensor` or `np.ndarray`. """ if is_torch_available(): import torch if isinstance(x, torch.Tensor): return True return isinstance(x, np.ndarray) class BaseOutput(OrderedDict): """ Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular python dictionary. <Tip warning={true}> You can't unpack a `BaseOutput` directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple before. </Tip> """ def __post_init__(self): class_fields = fields(self) # Safety and consistency checks if not len(class_fields): raise ValueError(f"{self.__class__.__name__} has no fields.") first_field = getattr(self, class_fields[0].name) other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and isinstance(first_field, dict): for key, value in first_field.items(): self[key] = value else: for field in class_fields: v = getattr(self, field.name) if v is not None: self[field.name] = v def __delitem__(self, *args, **kwargs): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def setdefault(self, *args, **kwargs): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def pop(self, *args, **kwargs): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def update(self, *args, **kwargs): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__(self, k): if isinstance(k, str): inner_dict = {k: v for (k, v) in self.items()} return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self, name, value): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(name, value) super().__setattr__(name, value) def __setitem__(self, key, value): # Will raise a KeyException if needed super().__setitem__(key, value) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(key, value) def to_tuple(self) -> Tuple[Any]: """ Convert self to a tuple containing all the attributes/keys that are not `None`. """ return tuple(self[k] for k in self.keys())
diffusers-main
src/diffusers/utils/outputs.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional import torch import torch.nn.functional as F from torch import nn from einops import rearrange # TODO(danfu): upstream this to FlashAttention def check_cuda(): if not torch.cuda.is_available(): raise RuntimeError('CUDA is not available') cur_device = torch.cuda.current_device() dprops = torch.cuda.get_device_properties(cur_device) is_sm75 = dprops.major == 7 and dprops.minor == 5 is_sm8x = dprops.major == 8 and dprops.minor >= 0 return is_sm8x or is_sm75 try: from flash_attn.flash_attn_interface import flash_attn_unpadded_kvpacked_func from flash_attn.bert_padding import unpad_input, pad_input from flash_attn.flash_attention import FlashAttention flash_attn_installed = check_cuda() except ImportError: flash_attn_installed = False class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. Uses three q, k, v linear layers to compute attention. Parameters: channels (:obj:`int`): The number of channels in the input and output. num_head_channels (:obj:`int`, *optional*): The number of channels in each head. If None, then `num_heads` = 1. num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm. rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by. eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. """ def __init__( self, channels: int, num_head_channels: Optional[int] = None, num_groups: int = 32, rescale_output_factor: float = 1.0, eps: float = 1e-5, ): super().__init__() self.channels = channels self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 self.num_head_size = num_head_channels self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True) # define q,k,v as linear layers self.query = nn.Linear(channels, channels) self.key = nn.Linear(channels, channels) self.value = nn.Linear(channels, channels) self.rescale_output_factor = rescale_output_factor self.proj_attn = nn.Linear(channels, channels, 1) def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) return new_projection def forward(self, hidden_states): residual = hidden_states batch, channel, height, width = hidden_states.shape # norm hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) # proj to q, k, v query_proj = self.query(hidden_states) key_proj = self.key(hidden_states) value_proj = self.value(hidden_states) # transpose query_states = self.transpose_for_scores(query_proj) key_states = self.transpose_for_scores(key_proj) value_states = self.transpose_for_scores(value_proj) # get scores scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) # TODO: use baddmm attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) # compute attention output hidden_states = torch.matmul(attention_probs, value_states) hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,) hidden_states = hidden_states.view(new_hidden_states_shape) # compute next hidden_states hidden_states = self.proj_attn(hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) # res connect and rescale hidden_states = (hidden_states + residual) / self.rescale_output_factor return hidden_states class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image. Parameters: in_channels (:obj:`int`): The number of channels in the input and output. n_heads (:obj:`int`): The number of heads to use for multi-head attention. d_head (:obj:`int`): The number of channels in each head. depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use. context_dim (:obj:`int`, *optional*): The number of context dimensions to use. """ def __init__( self, in_channels: int, n_heads: int, d_head: int, depth: int = 1, dropout: float = 0.0, num_groups: int = 32, context_dim: Optional[int] = None, ): super().__init__() self.n_heads = n_heads self.d_head = d_head self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth) ] ) self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def _set_attention_slice(self, slice_size): for block in self.transformer_blocks: block._set_attention_slice(slice_size) def forward(self, hidden_states, context=None): # note: if no context is given, cross-attention defaults to self-attention batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) for block in self.transformer_blocks: hidden_states = block(hidden_states, context=context) hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2) hidden_states = self.proj_out(hidden_states) return hidden_states + residual class BasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (:obj:`int`): The number of channels in the input and output. n_heads (:obj:`int`): The number of heads to use for multi-head attention. d_head (:obj:`int`): The number of channels in each head. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention. gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network. checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing. """ def __init__( self, dim: int, n_heads: int, d_head: int, dropout=0.0, context_dim: Optional[int] = None, gated_ff: bool = True, checkpoint: bool = True, ): super().__init__() self.attn1 = CrossAttention( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention( query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def _set_attention_slice(self, slice_size): self.attn1._slice_size = slice_size self.attn2._slice_size = slice_size def forward(self, hidden_states, context=None): hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states return hidden_states class CrossAttention(nn.Module): r""" A cross attention layer. Parameters: query_dim (:obj:`int`): The number of channels in the query. context_dim (:obj:`int`, *optional*): The number of channels in the context. If not given, defaults to `query_dim`. heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0 ): super().__init__() inner_dim = dim_head * heads context_dim = context_dim if context_dim is not None else query_dim self.scale = dim_head**-0.5 self.heads = heads # for slice_size > 0 the attention score computation # is split across the batch axis to save memory # You can set slice_size with `set_attention_slice` self._slice_size = None self.dim_head = dim_head self.context_dim = context_dim self.query_dim = query_dim if self.context_dim == self.query_dim and self.dim_head <= 128 and (self.dim_head % 8) == 0 and flash_attn_installed: self.flash_attn = FlashAttention(self.scale) self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def forward(self, hidden_states, context=None, mask=None): batch_size, sequence_length, _ = hidden_states.shape query = self.to_q(hidden_states) context = context if context is not None else hidden_states key = self.to_k(context) value = self.to_v(context) dim = query.shape[-1] # TODO(PVP) - mask is currently never used. Remember to re-implement when used # attention, what we cannot get enough of if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim) return self.to_out(hidden_states) def _attention(self, query, key, value): batch_size = query.shape[0] if not flash_attn_installed or query.dtype == torch.float32 or (self.dim_head > 128 or (self.dim_head % 8) != 0): query = self.reshape_heads_to_batch_dim(query) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) # TODO: use baddbmm for better performance attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale attention_probs = attention_scores.softmax(dim=-1) # compute attention output hidden_states = torch.matmul(attention_probs, value) # reshape hidden_states out = self.reshape_batch_dim_to_heads(hidden_states) elif self.context_dim == self.query_dim: qkv = torch.stack([ query, key, value ], dim=2) qkv = rearrange(qkv, 'b s t (h d) -> b s t h d', h=self.heads) out, _ = self.flash_attn(qkv) out = rearrange(out, 'b s h d -> b s (h d)', h=self.heads) else: h = self.heads kv = torch.stack([key, value], dim=2) q_seqlen = query.shape[1] kv_seqlen = kv.shape[1] q = rearrange(query, 'b s (h d) -> (b s) h d', h=h) kv = rearrange(kv, 'b s t (h d) -> (b s) t h d', h=h) cu_seqlens_q = torch.arange(0, (batch_size + 1) * q_seqlen, step=q_seqlen, dtype=torch.int32, device=q.device) cu_seqlens_k = torch.arange(0, (batch_size + 1) * kv_seqlen, step=kv_seqlen, dtype=torch.int32, device=kv.device) out = flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, q_seqlen, kv_seqlen, 0.0, self.scale) out = rearrange(out, '(b s) h d -> b s (h d)', b = batch_size, h = h) return out def _sliced_attention(self, query, key, value, sequence_length, dim): batch_size_attention = query.shape[0] hidden_states = torch.zeros( (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype ) slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] for i in range(hidden_states.shape[0] // slice_size): start_idx = i * slice_size end_idx = (i + 1) * slice_size attn_slice = ( torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale ) # TODO: use baddbmm for better performance attn_slice = attn_slice.softmax(dim=-1) attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (:obj:`int`): The number of channels in the input. dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0 ): super().__init__() inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim project_in = GEGLU(dim, inner_dim) self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) def forward(self, hidden_states): return self.net(hidden_states) # feedforward class GEGLU(nn.Module): r""" A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim_in (:obj:`int`): The number of channels in the input. dim_out (:obj:`int`): The number of channels in the output. """ def __init__(self, dim_in: int, dim_out: int): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, hidden_states): hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) return hidden_states * F.gelu(gate)
diffusers-main
src/diffusers/models/attention.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.utils.checkpoint from ..configuration_utils import ConfigMixin, register_to_config from ..modeling_utils import ModelMixin from ..utils import BaseOutput, logging from .embeddings import TimestepEmbedding, Timesteps from .unet_blocks import ( CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UNetMidBlock2DCrossAttn, UpBlock2D, get_down_block, get_up_block, ) logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class UNet2DConditionOutput(BaseOutput): """ Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. """ sample: torch.FloatTensor class UNet2DConditionModel(ModelMixin, ConfigMixin): r""" UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep and returns sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the models (such as downloading or saving, etc.) Parameters: sample_size (`int`, *optional*): The size of the input sample. in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. flip_sin_to_cos (`bool`, *optional*, defaults to `False`): Whether to flip the sin to cos in the time embedding. freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): The tuple of downsample blocks to use. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): The tuple of upsample blocks to use. block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 4, out_channels: int = 4, center_input_sample: bool = False, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), layers_per_block: int = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: int = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 1280, attention_head_dim: int = 8, ): super().__init__() self.sample_size = sample_size time_embed_dim = block_out_channels[0] * 4 # input self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) # time self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) self.down_blocks = nn.ModuleList([]) self.mid_block = None self.up_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim, downsample_padding=downsample_padding, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock2DCrossAttn( in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift="default", cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim, resnet_groups=norm_num_groups, ) # count how many layers upsample the images self.num_upsamplers = 0 # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): is_final_block = i == len(block_out_channels) - 1 prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] # add upsample block for all BUT final layer if not is_final_block: add_upsample = True self.num_upsamplers += 1 else: add_upsample = False up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=add_upsample, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) def set_attention_slice(self, slice_size): if slice_size is not None and self.config.attention_head_dim % slice_size != 0: raise ValueError( f"Make sure slice_size {slice_size} is a divisor of " f"the number of heads used in cross_attention {self.config.attention_head_dim}" ) if slice_size is not None and slice_size > self.config.attention_head_dim: raise ValueError( f"Chunk_size {slice_size} has to be smaller or equal to " f"the number of heads used in cross_attention {self.config.attention_head_dim}" ) for block in self.down_blocks: if hasattr(block, "attentions") and block.attentions is not None: block.set_attention_slice(slice_size) self.mid_block.set_attention_slice(slice_size) for block in self.up_blocks: if hasattr(block, "attentions") and block.attentions is not None: block.set_attention_slice(slice_size) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)): module.gradient_checkpointing = value def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, return_dict: bool = True, ) -> Union[UNet2DConditionOutput, Tuple]: r""" Args: sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): logger.info("Forward upsample size to force interpolation output size.") forward_upsample_size = True # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) emb = self.time_embedding(t_emb) # 2. pre-process sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples # 4. mid sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) # 5. up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, upsample_size=upsample_size, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size ) # 6. post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if not return_dict: return (sample,) return UNet2DConditionOutput(sample=sample)
diffusers-main
src/diffusers/models/unet_2d_condition.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxSpatialTransformer from .resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D class FlaxCrossAttnDownBlock2D(nn.Module): r""" Cross Attention 2D Downsizing block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104 Parameters: in_channels (:obj:`int`): Input channels out_channels (:obj:`int`): Output channels dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate num_layers (:obj:`int`, *optional*, defaults to 1): Number of attention blocks layers attn_num_head_channels (:obj:`int`, *optional*, defaults to 1): Number of attention heads of each spatial transformer block add_downsample (:obj:`bool`, *optional*, defaults to `True`): Whether to add downsampling layer before each final output dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int out_channels: int dropout: float = 0.0 num_layers: int = 1 attn_num_head_channels: int = 1 add_downsample: bool = True dtype: jnp.dtype = jnp.float32 def setup(self): resnets = [] attentions = [] for i in range(self.num_layers): in_channels = self.in_channels if i == 0 else self.out_channels res_block = FlaxResnetBlock2D( in_channels=in_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(res_block) attn_block = FlaxSpatialTransformer( in_channels=self.out_channels, n_heads=self.attn_num_head_channels, d_head=self.out_channels // self.attn_num_head_channels, depth=1, dtype=self.dtype, ) attentions.append(attn_block) self.resnets = resnets self.attentions = attentions if self.add_downsample: self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True): output_states = () for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states, temb, deterministic=deterministic) hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) output_states += (hidden_states,) if self.add_downsample: hidden_states = self.downsamplers_0(hidden_states) output_states += (hidden_states,) return hidden_states, output_states class FlaxDownBlock2D(nn.Module): r""" Flax 2D downsizing block Parameters: in_channels (:obj:`int`): Input channels out_channels (:obj:`int`): Output channels dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate num_layers (:obj:`int`, *optional*, defaults to 1): Number of attention blocks layers add_downsample (:obj:`bool`, *optional*, defaults to `True`): Whether to add downsampling layer before each final output dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int out_channels: int dropout: float = 0.0 num_layers: int = 1 add_downsample: bool = True dtype: jnp.dtype = jnp.float32 def setup(self): resnets = [] for i in range(self.num_layers): in_channels = self.in_channels if i == 0 else self.out_channels res_block = FlaxResnetBlock2D( in_channels=in_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(res_block) self.resnets = resnets if self.add_downsample: self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) def __call__(self, hidden_states, temb, deterministic=True): output_states = () for resnet in self.resnets: hidden_states = resnet(hidden_states, temb, deterministic=deterministic) output_states += (hidden_states,) if self.add_downsample: hidden_states = self.downsamplers_0(hidden_states) output_states += (hidden_states,) return hidden_states, output_states class FlaxCrossAttnUpBlock2D(nn.Module): r""" Cross Attention 2D Upsampling block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104 Parameters: in_channels (:obj:`int`): Input channels out_channels (:obj:`int`): Output channels dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate num_layers (:obj:`int`, *optional*, defaults to 1): Number of attention blocks layers attn_num_head_channels (:obj:`int`, *optional*, defaults to 1): Number of attention heads of each spatial transformer block add_upsample (:obj:`bool`, *optional*, defaults to `True`): Whether to add upsampling layer before each final output dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int out_channels: int prev_output_channel: int dropout: float = 0.0 num_layers: int = 1 attn_num_head_channels: int = 1 add_upsample: bool = True dtype: jnp.dtype = jnp.float32 def setup(self): resnets = [] attentions = [] for i in range(self.num_layers): res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels res_block = FlaxResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(res_block) attn_block = FlaxSpatialTransformer( in_channels=self.out_channels, n_heads=self.attn_num_head_channels, d_head=self.out_channels // self.attn_num_head_channels, depth=1, dtype=self.dtype, ) attentions.append(attn_block) self.resnets = resnets self.attentions = attentions if self.add_upsample: self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) def __call__(self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, deterministic=True): for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) hidden_states = resnet(hidden_states, temb, deterministic=deterministic) hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) if self.add_upsample: hidden_states = self.upsamplers_0(hidden_states) return hidden_states class FlaxUpBlock2D(nn.Module): r""" Flax 2D upsampling block Parameters: in_channels (:obj:`int`): Input channels out_channels (:obj:`int`): Output channels prev_output_channel (:obj:`int`): Output channels from the previous block dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate num_layers (:obj:`int`, *optional*, defaults to 1): Number of attention blocks layers add_downsample (:obj:`bool`, *optional*, defaults to `True`): Whether to add downsampling layer before each final output dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int out_channels: int prev_output_channel: int dropout: float = 0.0 num_layers: int = 1 add_upsample: bool = True dtype: jnp.dtype = jnp.float32 def setup(self): resnets = [] for i in range(self.num_layers): res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels res_block = FlaxResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(res_block) self.resnets = resnets if self.add_upsample: self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) def __call__(self, hidden_states, res_hidden_states_tuple, temb, deterministic=True): for resnet in self.resnets: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) hidden_states = resnet(hidden_states, temb, deterministic=deterministic) if self.add_upsample: hidden_states = self.upsamplers_0(hidden_states) return hidden_states class FlaxUNetMidBlock2DCrossAttn(nn.Module): r""" Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104 Parameters: in_channels (:obj:`int`): Input channels dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate num_layers (:obj:`int`, *optional*, defaults to 1): Number of attention blocks layers attn_num_head_channels (:obj:`int`, *optional*, defaults to 1): Number of attention heads of each spatial transformer block dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int dropout: float = 0.0 num_layers: int = 1 attn_num_head_channels: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): # there is always at least one resnet resnets = [ FlaxResnetBlock2D( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) ] attentions = [] for _ in range(self.num_layers): attn_block = FlaxSpatialTransformer( in_channels=self.in_channels, n_heads=self.attn_num_head_channels, d_head=self.in_channels // self.attn_num_head_channels, depth=1, dtype=self.dtype, ) attentions.append(attn_block) res_block = FlaxResnetBlock2D( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(res_block) self.resnets = resnets self.attentions = attentions def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True): hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) hidden_states = resnet(hidden_states, temb, deterministic=deterministic) return hidden_states
diffusers-main
src/diffusers/models/unet_blocks_flax.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import flax.linen as nn import jax.numpy as jnp class FlaxAttentionBlock(nn.Module): r""" A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762 Parameters: query_dim (:obj:`int`): Input hidden states dimension heads (:obj:`int`, *optional*, defaults to 8): Number of heads dim_head (:obj:`int`, *optional*, defaults to 64): Hidden states dimension inside each head dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ query_dim: int heads: int = 8 dim_head: int = 64 dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): inner_dim = self.dim_head * self.heads self.scale = self.dim_head**-0.5 # Weights were exported with old names {to_q, to_k, to_v, to_out} self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q") self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k") self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v") self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0") def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = jnp.transpose(tensor, (0, 2, 1, 3)) tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = jnp.transpose(tensor, (0, 2, 1, 3)) tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def __call__(self, hidden_states, context=None, deterministic=True): context = hidden_states if context is None else context query_proj = self.query(hidden_states) key_proj = self.key(context) value_proj = self.value(context) query_states = self.reshape_heads_to_batch_dim(query_proj) key_states = self.reshape_heads_to_batch_dim(key_proj) value_states = self.reshape_heads_to_batch_dim(value_proj) # compute attentions attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states) attention_scores = attention_scores * self.scale attention_probs = nn.softmax(attention_scores, axis=2) # attend to values hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) hidden_states = self.proj_attn(hidden_states) return hidden_states class FlaxBasicTransformerBlock(nn.Module): r""" A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in: https://arxiv.org/abs/1706.03762 Parameters: dim (:obj:`int`): Inner hidden states dimension n_heads (:obj:`int`): Number of heads d_head (:obj:`int`): Hidden states dimension inside each head dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ dim: int n_heads: int d_head: int dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): # self attention self.attn1 = FlaxAttentionBlock(self.dim, self.n_heads, self.d_head, self.dropout, dtype=self.dtype) # cross attention self.attn2 = FlaxAttentionBlock(self.dim, self.n_heads, self.d_head, self.dropout, dtype=self.dtype) self.ff = FlaxGluFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype) self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype) def __call__(self, hidden_states, context, deterministic=True): # self attention residual = hidden_states hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic) hidden_states = hidden_states + residual # cross attention residual = hidden_states hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic) hidden_states = hidden_states + residual # feed forward residual = hidden_states hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic) hidden_states = hidden_states + residual return hidden_states class FlaxSpatialTransformer(nn.Module): r""" A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in: https://arxiv.org/pdf/1506.02025.pdf Parameters: in_channels (:obj:`int`): Input number of channels n_heads (:obj:`int`): Number of heads d_head (:obj:`int`): Hidden states dimension inside each head depth (:obj:`int`, *optional*, defaults to 1): Number of transformers block dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int n_heads: int d_head: int depth: int = 1 dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5) inner_dim = self.n_heads * self.d_head self.proj_in = nn.Conv( inner_dim, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) self.transformer_blocks = [ FlaxBasicTransformerBlock(inner_dim, self.n_heads, self.d_head, dropout=self.dropout, dtype=self.dtype) for _ in range(self.depth) ] self.proj_out = nn.Conv( inner_dim, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states, context, deterministic=True): batch, height, width, channels = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) hidden_states = self.proj_in(hidden_states) hidden_states = hidden_states.reshape(batch, height * width, channels) for transformer_block in self.transformer_blocks: hidden_states = transformer_block(hidden_states, context, deterministic=deterministic) hidden_states = hidden_states.reshape(batch, height, width, channels) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states + residual return hidden_states class FlaxGluFeedForward(nn.Module): r""" Flax module that encapsulates two Linear layers separated by a gated linear unit activation from: https://arxiv.org/abs/2002.05202 Parameters: dim (:obj:`int`): Inner hidden states dimension dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ dim: int dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): # The second linear layer needs to be called # net_2 for now to match the index of the Sequential layer self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype) self.net_2 = nn.Dense(self.dim, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True): hidden_states = self.net_0(hidden_states) hidden_states = self.net_2(hidden_states) return hidden_states class FlaxGEGLU(nn.Module): r""" Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim (:obj:`int`): Input hidden states dimension dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ dim: int dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 def setup(self): inner_dim = self.dim * 4 self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True): hidden_states = self.proj(hidden_states) hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2) return hidden_linear * nn.gelu(hidden_gelu)
diffusers-main
src/diffusers/models/attention_flax.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .unet_2d import UNet2DModel from .unet_2d_condition import UNet2DConditionModel from .vae import AutoencoderKL, VQModel if is_flax_available(): from .unet_2d_condition_flax import FlaxUNet2DConditionModel from .vae_flax import FlaxAutoencoderKL
diffusers-main
src/diffusers/models/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import flax.linen as nn import jax import jax.numpy as jnp class FlaxUpsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__(self, hidden_states): batch, height, width, channels = hidden_states.shape hidden_states = jax.image.resize( hidden_states, shape=(batch, height * 2, width * 2, channels), method="nearest", ) hidden_states = self.conv(hidden_states) return hidden_states class FlaxDownsample2D(nn.Module): out_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), # padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) hidden_states = self.conv(hidden_states) return hidden_states class FlaxResnetBlock2D(nn.Module): in_channels: int out_channels: int = None dropout_prob: float = 0.0 use_nin_shortcut: bool = None dtype: jnp.dtype = jnp.float32 def setup(self): out_channels = self.in_channels if self.out_channels is None else self.out_channels self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.conv1 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype) self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.dropout = nn.Dropout(self.dropout_prob) self.conv2 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut self.conv_shortcut = None if use_nin_shortcut: self.conv_shortcut = nn.Conv( out_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states, temb, deterministic=True): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.conv1(hidden_states) temb = self.time_emb_proj(nn.swish(temb)) temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1) hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.dropout(hidden_states, deterministic) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: residual = self.conv_shortcut(residual) return hidden_states + residual
diffusers-main
src/diffusers/models/resnet_flax.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch import nn from .attention import AttentionBlock, SpatialTransformer from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D def get_down_block( down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, downsample_padding=None, ): down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type if down_block_type == "DownBlock2D": return DownBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, ) elif down_block_type == "AttnDownBlock2D": return AttnDownBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, attn_num_head_channels=attn_num_head_channels, ) elif down_block_type == "CrossAttnDownBlock2D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") return CrossAttnDownBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, ) elif down_block_type == "SkipDownBlock2D": return SkipDownBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, downsample_padding=downsample_padding, ) elif down_block_type == "AttnSkipDownBlock2D": return AttnSkipDownBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, downsample_padding=downsample_padding, attn_num_head_channels=attn_num_head_channels, ) elif down_block_type == "DownEncoderBlock2D": return DownEncoderBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, ) def get_up_block( up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, ): up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type if up_block_type == "UpBlock2D": return UpBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, ) elif up_block_type == "CrossAttnUpBlock2D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") return CrossAttnUpBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, ) elif up_block_type == "AttnUpBlock2D": return AttnUpBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, attn_num_head_channels=attn_num_head_channels, ) elif up_block_type == "SkipUpBlock2D": return SkipUpBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, ) elif up_block_type == "AttnSkipUpBlock2D": return AttnSkipUpBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, attn_num_head_channels=attn_num_head_channels, ) elif up_block_type == "UpDecoderBlock2D": return UpDecoderBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, ) raise ValueError(f"{up_block_type} does not exist.") class UNetMidBlock2D(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, attention_type="default", output_scale_factor=1.0, **kwargs, ): super().__init__() self.attention_type = attention_type resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) # there is always at least one resnet resnets = [ ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] for _ in range(num_layers): attentions.append( AttentionBlock( in_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, num_groups=resnet_groups, ) ) resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states, temb=None, encoder_states=None): hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): if self.attention_type == "default": hidden_states = attn(hidden_states) else: hidden_states = attn(hidden_states, encoder_states) hidden_states = resnet(hidden_states, temb) return hidden_states class UNetMidBlock2DCrossAttn(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, attention_type="default", output_scale_factor=1.0, cross_attention_dim=1280, **kwargs, ): super().__init__() self.attention_type = attention_type self.attn_num_head_channels = attn_num_head_channels resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) # there is always at least one resnet resnets = [ ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] for _ in range(num_layers): attentions.append( SpatialTransformer( in_channels, attn_num_head_channels, in_channels // attn_num_head_channels, depth=1, context_dim=cross_attention_dim, num_groups=resnet_groups, ) ) resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def set_attention_slice(self, slice_size): if slice_size is not None and self.attn_num_head_channels % slice_size != 0: raise ValueError( f"Make sure slice_size {slice_size} is a divisor of " f"the number of heads used in cross_attention {self.attn_num_head_channels}" ) if slice_size is not None and slice_size > self.attn_num_head_channels: raise ValueError( f"Chunk_size {slice_size} has to be smaller or equal to " f"the number of heads used in cross_attention {self.attn_num_head_channels}" ) for attn in self.attentions: attn._set_attention_slice(slice_size) def forward(self, hidden_states, temb=None, encoder_hidden_states=None): hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): hidden_states = attn(hidden_states, encoder_hidden_states) hidden_states = resnet(hidden_states, temb) return hidden_states class AttnDownBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, attention_type="default", output_scale_factor=1.0, downsample_padding=1, add_downsample=True, ): super().__init__() resnets = [] attentions = [] self.attention_type = attention_type for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) attentions.append( AttentionBlock( out_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, num_groups=resnet_groups, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None def forward(self, hidden_states, temb=None): output_states = () for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states class CrossAttnDownBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, attention_type="default", output_scale_factor=1.0, downsample_padding=1, add_downsample=True, ): super().__init__() resnets = [] attentions = [] self.attention_type = attention_type self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) attentions.append( SpatialTransformer( out_channels, attn_num_head_channels, out_channels // attn_num_head_channels, depth=1, context_dim=cross_attention_dim, num_groups=resnet_groups, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def set_attention_slice(self, slice_size): if slice_size is not None and self.attn_num_head_channels % slice_size != 0: raise ValueError( f"Make sure slice_size {slice_size} is a divisor of " f"the number of heads used in cross_attention {self.attn_num_head_channels}" ) if slice_size is not None and slice_size > self.attn_num_head_channels: raise ValueError( f"Chunk_size {slice_size} has to be smaller or equal to " f"the number of heads used in cross_attention {self.attn_num_head_channels}" ) for attn in self.attentions: attn._set_attention_slice(slice_size) def forward(self, hidden_states, temb=None, encoder_hidden_states=None): output_states = () for resnet, attn in zip(self.resnets, self.attentions): if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn), hidden_states, encoder_hidden_states ) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, context=encoder_hidden_states) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states class DownBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, ): super().__init__() resnets = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, temb=None): output_states = () for resnet in self.resnets: if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) else: hidden_states = resnet(hidden_states, temb) output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states class DownEncoderBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, ): super().__init__() resnets = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None def forward(self, hidden_states): for resnet in self.resnets: hidden_states = resnet(hidden_states, temb=None) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) return hidden_states class AttnDownEncoderBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, ): super().__init__() resnets = [] attentions = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) attentions.append( AttentionBlock( out_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, num_groups=resnet_groups, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None def forward(self, hidden_states): for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states, temb=None) hidden_states = attn(hidden_states) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) return hidden_states class AttnSkipDownBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_pre_norm: bool = True, attn_num_head_channels=1, attention_type="default", output_scale_factor=np.sqrt(2.0), downsample_padding=1, add_downsample=True, ): super().__init__() self.attentions = nn.ModuleList([]) self.resnets = nn.ModuleList([]) self.attention_type = attention_type for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels self.resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(in_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions.append( AttentionBlock( out_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, ) ) if add_downsample: self.resnet_down = ResnetBlock2D( in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_in_shortcut=True, down=True, kernel="fir", ) self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)]) self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) else: self.resnet_down = None self.downsamplers = None self.skip_conv = None def forward(self, hidden_states, temb=None, skip_sample=None): output_states = () for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states) output_states += (hidden_states,) if self.downsamplers is not None: hidden_states = self.resnet_down(hidden_states, temb) for downsampler in self.downsamplers: skip_sample = downsampler(skip_sample) hidden_states = self.skip_conv(skip_sample) + hidden_states output_states += (hidden_states,) return hidden_states, output_states, skip_sample class SkipDownBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_pre_norm: bool = True, output_scale_factor=np.sqrt(2.0), add_downsample=True, downsample_padding=1, ): super().__init__() self.resnets = nn.ModuleList([]) for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels self.resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(in_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) if add_downsample: self.resnet_down = ResnetBlock2D( in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_in_shortcut=True, down=True, kernel="fir", ) self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)]) self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1)) else: self.resnet_down = None self.downsamplers = None self.skip_conv = None def forward(self, hidden_states, temb=None, skip_sample=None): output_states = () for resnet in self.resnets: hidden_states = resnet(hidden_states, temb) output_states += (hidden_states,) if self.downsamplers is not None: hidden_states = self.resnet_down(hidden_states, temb) for downsampler in self.downsamplers: skip_sample = downsampler(skip_sample) hidden_states = self.skip_conv(skip_sample) + hidden_states output_states += (hidden_states,) return hidden_states, output_states, skip_sample class AttnUpBlock2D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attention_type="default", attn_num_head_channels=1, output_scale_factor=1.0, add_upsample=True, ): super().__init__() resnets = [] attentions = [] self.attention_type = attention_type for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) attentions.append( AttentionBlock( out_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, num_groups=resnet_groups, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None def forward(self, hidden_states, res_hidden_states_tuple, temb=None): for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states class CrossAttnUpBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, attention_type="default", output_scale_factor=1.0, downsample_padding=1, add_upsample=True, ): super().__init__() resnets = [] attentions = [] self.attention_type = attention_type self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) attentions.append( SpatialTransformer( out_channels, attn_num_head_channels, out_channels // attn_num_head_channels, depth=1, context_dim=cross_attention_dim, num_groups=resnet_groups, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def set_attention_slice(self, slice_size): if slice_size is not None and self.attn_num_head_channels % slice_size != 0: raise ValueError( f"Make sure slice_size {slice_size} is a divisor of " f"the number of heads used in cross_attention {self.attn_num_head_channels}" ) if slice_size is not None and slice_size > self.attn_num_head_channels: raise ValueError( f"Chunk_size {slice_size} has to be smaller or equal to " f"the number of heads used in cross_attention {self.attn_num_head_channels}" ) for attn in self.attentions: attn._set_attention_slice(slice_size) self.gradient_checkpointing = False def forward( self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None, upsample_size=None, ): for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn), hidden_states, encoder_hidden_states ) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, context=encoder_hidden_states) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states class UpBlock2D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_upsample=True, ): super().__init__() resnets = [] for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): for resnet in self.resnets: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) else: hidden_states = resnet(hidden_states, temb) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states class UpDecoderBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_upsample=True, ): super().__init__() resnets = [] for i in range(num_layers): input_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=input_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None def forward(self, hidden_states): for resnet in self.resnets: hidden_states = resnet(hidden_states, temb=None) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states class AttnUpDecoderBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, output_scale_factor=1.0, add_upsample=True, ): super().__init__() resnets = [] attentions = [] for i in range(num_layers): input_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=input_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) attentions.append( AttentionBlock( out_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, num_groups=resnet_groups, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None def forward(self, hidden_states): for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states, temb=None) hidden_states = attn(hidden_states) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states class AttnSkipUpBlock2D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_pre_norm: bool = True, attn_num_head_channels=1, attention_type="default", output_scale_factor=np.sqrt(2.0), upsample_padding=1, add_upsample=True, ): super().__init__() self.attentions = nn.ModuleList([]) self.resnets = nn.ModuleList([]) self.attention_type = attention_type for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels self.resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(resnet_in_channels + res_skip_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions.append( AttentionBlock( out_channels, num_head_channels=attn_num_head_channels, rescale_output_factor=output_scale_factor, eps=resnet_eps, ) ) self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) if add_upsample: self.resnet_up = ResnetBlock2D( in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(out_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_in_shortcut=True, up=True, kernel="fir", ) self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.skip_norm = torch.nn.GroupNorm( num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True ) self.act = nn.SiLU() else: self.resnet_up = None self.skip_conv = None self.skip_norm = None self.act = None def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None): for resnet in self.resnets: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) hidden_states = self.attentions[0](hidden_states) if skip_sample is not None: skip_sample = self.upsampler(skip_sample) else: skip_sample = 0 if self.resnet_up is not None: skip_sample_states = self.skip_norm(hidden_states) skip_sample_states = self.act(skip_sample_states) skip_sample_states = self.skip_conv(skip_sample_states) skip_sample = skip_sample + skip_sample_states hidden_states = self.resnet_up(hidden_states, temb) return hidden_states, skip_sample class SkipUpBlock2D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_pre_norm: bool = True, output_scale_factor=np.sqrt(2.0), add_upsample=True, upsample_padding=1, ): super().__init__() self.resnets = nn.ModuleList([]) for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels self.resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min((resnet_in_channels + res_skip_channels) // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels) if add_upsample: self.resnet_up = ResnetBlock2D( in_channels=out_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=min(out_channels // 4, 32), groups_out=min(out_channels // 4, 32), dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, use_in_shortcut=True, up=True, kernel="fir", ) self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.skip_norm = torch.nn.GroupNorm( num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True ) self.act = nn.SiLU() else: self.resnet_up = None self.skip_conv = None self.skip_norm = None self.act = None def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None): for resnet in self.resnets: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) if skip_sample is not None: skip_sample = self.upsampler(skip_sample) else: skip_sample = 0 if self.resnet_up is not None: skip_sample_states = self.skip_norm(hidden_states) skip_sample_states = self.act(skip_sample_states) skip_sample_states = self.skip_conv(skip_sample_states) skip_sample = skip_sample + skip_sample_states hidden_states = self.resnet_up(hidden_states, temb) return hidden_states, skip_sample
diffusers-main
src/diffusers/models/unet_blocks.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..modeling_flax_utils import FlaxModelMixin from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .unet_blocks_flax import ( FlaxCrossAttnDownBlock2D, FlaxCrossAttnUpBlock2D, FlaxDownBlock2D, FlaxUNetMidBlock2DCrossAttn, FlaxUpBlock2D, ) @flax.struct.dataclass class FlaxUNet2DConditionOutput(BaseOutput): """ Args: sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`): Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. """ sample: jnp.ndarray @flax_register_to_config class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin): r""" FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep and returns sample shaped output. This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the models (such as downloading or saving, etc.) Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: sample_size (`int`, *optional*): The size of the input sample. in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D" up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D" block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. cross_attention_dim (`int`, *optional*, defaults to 768): The dimension of the cross attention features. dropout (`float`, *optional*, defaults to 0): Dropout probability for down, up and bottleneck blocks. """ sample_size: int = 32 in_channels: int = 4 out_channels: int = 4 down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") block_out_channels: Tuple[int] = (320, 640, 1280, 1280) layers_per_block: int = 2 attention_head_dim: int = 8 cross_attention_dim: int = 1280 dropout: float = 0.0 dtype: jnp.dtype = jnp.float32 freq_shift: int = 0 def init_weights(self, rng: jax.random.PRNGKey) -> FrozenDict: # init input tensors sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) sample = jnp.zeros(sample_shape, dtype=jnp.float32) timesteps = jnp.ones((1,), dtype=jnp.int32) encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"] def setup(self): block_out_channels = self.block_out_channels time_embed_dim = block_out_channels[0] * 4 # input self.conv_in = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time self.time_proj = FlaxTimesteps(block_out_channels[0], freq_shift=self.config.freq_shift) self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) # down down_blocks = [] output_channel = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 if down_block_type == "CrossAttnDownBlock2D": down_block = FlaxCrossAttnDownBlock2D( in_channels=input_channel, out_channels=output_channel, dropout=self.dropout, num_layers=self.layers_per_block, attn_num_head_channels=self.attention_head_dim, add_downsample=not is_final_block, dtype=self.dtype, ) else: down_block = FlaxDownBlock2D( in_channels=input_channel, out_channels=output_channel, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(down_block) self.down_blocks = down_blocks # mid self.mid_block = FlaxUNetMidBlock2DCrossAttn( in_channels=block_out_channels[-1], dropout=self.dropout, attn_num_head_channels=self.attention_head_dim, dtype=self.dtype, ) # up up_blocks = [] reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] is_final_block = i == len(block_out_channels) - 1 if up_block_type == "CrossAttnUpBlock2D": up_block = FlaxCrossAttnUpBlock2D( in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, num_layers=self.layers_per_block + 1, attn_num_head_channels=self.attention_head_dim, add_upsample=not is_final_block, dropout=self.dropout, dtype=self.dtype, ) else: up_block = FlaxUpBlock2D( in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, num_layers=self.layers_per_block + 1, add_upsample=not is_final_block, dropout=self.dropout, dtype=self.dtype, ) up_blocks.append(up_block) prev_output_channel = output_channel self.up_blocks = up_blocks # out self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5) self.conv_out = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__( self, sample, timesteps, encoder_hidden_states, return_dict: bool = True, train: bool = False, ) -> Union[FlaxUNet2DConditionOutput, Tuple]: r""" Args: sample (`jnp.ndarray`): (channel, height, width) noisy inputs tensor timestep (`jnp.ndarray` or `float` or `int`): timesteps encoder_hidden_states (`jnp.ndarray`): (channel, height, width) encoder hidden states return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a plain tuple. train (`bool`, *optional*, defaults to `False`): Use deterministic functions and disable dropout when not training. Returns: [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ # 1. time if not isinstance(timesteps, jnp.ndarray): timesteps = jnp.array([timesteps], dtype=jnp.int32) elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: timesteps = timesteps.astype(dtype=jnp.float32) timesteps = jnp.expand_dims(timesteps, 0) t_emb = self.time_proj(timesteps) t_emb = self.time_embedding(t_emb) # 2. pre-process sample = jnp.transpose(sample, (0, 2, 3, 1)) sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for down_block in self.down_blocks: if isinstance(down_block, FlaxCrossAttnDownBlock2D): sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) else: sample, res_samples = down_block(sample, t_emb, deterministic=not train) down_block_res_samples += res_samples # 4. mid sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) # 5. up for up_block in self.up_blocks: res_samples = down_block_res_samples[-(self.layers_per_block + 1) :] down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(up_block, FlaxCrossAttnUpBlock2D): sample = up_block( sample, temb=t_emb, encoder_hidden_states=encoder_hidden_states, res_hidden_states_tuple=res_samples, deterministic=not train, ) else: sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train) # 6. post-process sample = self.conv_norm_out(sample) sample = nn.silu(sample) sample = self.conv_out(sample) sample = jnp.transpose(sample, (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNet2DConditionOutput(sample=sample)
diffusers-main
src/diffusers/models/unet_2d_condition_flax.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import torch from torch import nn def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange( start=0, end=half_dim, dtype=torch.float32, device=timesteps.device ) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb class TimestepEmbedding(nn.Module): def __init__(self, channel: int, time_embed_dim: int, act_fn: str = "silu"): super().__init__() self.linear_1 = nn.Linear(channel, time_embed_dim) self.act = None if act_fn == "silu": self.act = nn.SiLU() self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim) def forward(self, sample): sample = self.linear_1(sample) if self.act is not None: sample = self.act(sample) sample = self.linear_2(sample) return sample class Timesteps(nn.Module): def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift def forward(self, timesteps): t_emb = get_timestep_embedding( timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, ) return t_emb class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" def __init__(self, embedding_size: int = 256, scale: float = 1.0): super().__init__() self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) # to delete later self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.weight = self.W def forward(self, x): x = torch.log(x) x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) return out
diffusers-main
src/diffusers/models/embeddings.py
from functools import partial import torch import torch.nn as nn import torch.nn.functional as F class Upsample2D(nn.Module): """ An upsampling layer with an optional convolution. Parameters: channels: channels in the inputs and outputs. use_conv: a bool determining if a convolution is applied. dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name conv = None if use_conv_transpose: conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) elif use_conv: conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if name == "conv": self.conv = conv else: self.Conv2d_0 = conv def forward(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels if self.use_conv_transpose: return self.conv(hidden_states) # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch # https://github.com/pytorch/pytorch/issues/86679 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if self.use_conv: if self.name == "conv": hidden_states = self.conv(hidden_states) else: hidden_states = self.Conv2d_0(hidden_states) return hidden_states class Downsample2D(nn.Module): """ A downsampling layer with an optional convolution. Parameters: channels: channels in the inputs and outputs. use_conv: a bool determining if a convolution is applied. dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = 2 self.name = name if use_conv: conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels conv = nn.AvgPool2d(kernel_size=stride, stride=stride) # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed if name == "conv": self.Conv2d_0 = conv self.conv = conv elif name == "Conv2d_0": self.conv = conv else: self.conv = conv def forward(self, hidden_states): assert hidden_states.shape[1] == self.channels if self.use_conv and self.padding == 0: pad = (0, 1, 0, 1) hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states class FirUpsample2D(nn.Module): def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): super().__init__() out_channels = out_channels if out_channels else channels if use_conv: self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) self.use_conv = use_conv self.fir_kernel = fir_kernel self.out_channels = out_channels def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1): """Fused `upsample_2d()` followed by `Conv2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. weight: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as `hidden_states`. """ assert isinstance(factor, int) and factor >= 1 # Setup filter kernel. if kernel is None: kernel = [1] * factor # setup kernel kernel = torch.tensor(kernel, dtype=torch.float32) if kernel.ndim == 1: kernel = torch.outer(kernel, kernel) kernel /= torch.sum(kernel) kernel = kernel * (gain * (factor**2)) if self.use_conv: convH = weight.shape[2] convW = weight.shape[3] inC = weight.shape[1] pad_value = (kernel.shape[0] - factor) - (convW - 1) stride = (factor, factor) # Determine data dimensions. output_shape = ( (hidden_states.shape[2] - 1) * factor + convH, (hidden_states.shape[3] - 1) * factor + convW, ) output_padding = ( output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH, output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW, ) assert output_padding[0] >= 0 and output_padding[1] >= 0 num_groups = hidden_states.shape[1] // inC # Transpose weights. weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4) weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) inverse_conv = F.conv_transpose2d( hidden_states, weight, stride=stride, output_padding=output_padding, padding=0 ) output = upfirdn2d_native( inverse_conv, torch.tensor(kernel, device=inverse_conv.device), pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1), ) else: pad_value = kernel.shape[0] - factor output = upfirdn2d_native( hidden_states, torch.tensor(kernel, device=hidden_states.device), up=factor, pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), ) return output def forward(self, hidden_states): if self.use_conv: height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel) height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) else: height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) return height class FirDownsample2D(nn.Module): def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): super().__init__() out_channels = out_channels if out_channels else channels if use_conv: self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) self.fir_kernel = fir_kernel self.use_conv = use_conv self.out_channels = out_channels def _downsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1): """Fused `Conv2d()` followed by `downsample_2d()`. Padding is performed only once at the beginning, not between the operations. The fused op is considerably more efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary order. Args: hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. weight: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same datatype as `x`. """ assert isinstance(factor, int) and factor >= 1 if kernel is None: kernel = [1] * factor # setup kernel kernel = torch.tensor(kernel, dtype=torch.float32) if kernel.ndim == 1: kernel = torch.outer(kernel, kernel) kernel /= torch.sum(kernel) kernel = kernel * gain if self.use_conv: _, _, convH, convW = weight.shape pad_value = (kernel.shape[0] - factor) + (convW - 1) stride_value = [factor, factor] upfirdn_input = upfirdn2d_native( hidden_states, torch.tensor(kernel, device=hidden_states.device), pad=((pad_value + 1) // 2, pad_value // 2), ) output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0) else: pad_value = kernel.shape[0] - factor output = upfirdn2d_native( hidden_states, torch.tensor(kernel, device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2), ) return output def forward(self, hidden_states): if self.use_conv: downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1) else: hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) return hidden_states class ResnetBlock2D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", kernel=None, output_scale_factor=1.0, use_in_shortcut=None, up=False, down=False, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.up = up self.down = down self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels is not None: self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) else: self.time_emb_proj = None self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.upsample = self.downsample = None if self.up: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") else: self.upsample = Upsample2D(in_channels, use_conv=False) elif self.down: if kernel == "fir": fir_kernel = (1, 3, 3, 1) self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) elif kernel == "sde_vp": self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) else: self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_tensor, temb): hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: input_tensor = self.upsample(input_tensor) hidden_states = self.upsample(hidden_states) elif self.downsample is not None: input_tensor = self.downsample(input_tensor) hidden_states = self.downsample(hidden_states) hidden_states = self.conv1(hidden_states) if temb is not None: temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] hidden_states = hidden_states + temb hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor class Mish(torch.nn.Module): def forward(self, hidden_states): return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) def upsample_2d(hidden_states, kernel=None, factor=2, gain=1): r"""Upsample2D a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: multiple of the upsampling factor. Args: hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: output: Tensor of the shape `[N, C, H * factor, W * factor]` """ assert isinstance(factor, int) and factor >= 1 if kernel is None: kernel = [1] * factor kernel = torch.tensor(kernel, dtype=torch.float32) if kernel.ndim == 1: kernel = torch.outer(kernel, kernel) kernel /= torch.sum(kernel) kernel = kernel * (gain * (factor**2)) pad_value = kernel.shape[0] - factor output = upfirdn2d_native( hidden_states, kernel.to(device=hidden_states.device), up=factor, pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), ) return output def downsample_2d(hidden_states, kernel=None, factor=2, gain=1): r"""Downsample2D a batch of 2D images with the given filter. Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the downsampling factor. Args: hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: output: Tensor of the shape `[N, C, H // factor, W // factor]` """ assert isinstance(factor, int) and factor >= 1 if kernel is None: kernel = [1] * factor kernel = torch.tensor(kernel, dtype=torch.float32) if kernel.ndim == 1: kernel = torch.outer(kernel, kernel) kernel /= torch.sum(kernel) kernel = kernel * gain pad_value = kernel.shape[0] - factor output = upfirdn2d_native( hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2) ) return output def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)): up_x = up_y = up down_x = down_y = down pad_x0 = pad_y0 = pad[0] pad_x1 = pad_y1 = pad[1] _, channel, in_h, in_w = tensor.shape tensor = tensor.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = tensor.shape kernel_h, kernel_w = kernel.shape out = tensor.view(-1, in_h, 1, in_w, 1, minor) # Temporary workaround for mps specific issue: https://github.com/pytorch/pytorch/issues/84535 if tensor.device.type == "mps": out = out.to("cpu") out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out.to(tensor.device) # Move back to mps if necessary out = out[ :, max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), :, ] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape( -1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w)
diffusers-main
src/diffusers/models/resnet.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..modeling_utils import ModelMixin from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block @dataclass class UNet2DOutput(BaseOutput): """ Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Hidden states output. Output of last layer of model. """ sample: torch.FloatTensor class UNet2DModel(ModelMixin, ConfigMixin): r""" UNet2DModel is a 2D UNet model that takes in a noisy sample and a timestep and returns sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the model (such as downloading or saving, etc.) Parameters: sample_size (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*): Input sample size. in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image. out_channels (`int`, *optional*, defaults to 3): Number of channels in the output. center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use. freq_shift (`int`, *optional*, defaults to 0): Frequency shift for fourier time embedding. flip_sin_to_cos (`bool`, *optional*, defaults to : obj:`False`): Whether to flip sin to cos for fourier time embedding. down_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to : obj:`(224, 448, 672, 896)`): Tuple of block output channels. layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block. mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block. downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension. norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for the normalization. norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for the normalization. """ @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 3, out_channels: int = 3, center_input_sample: bool = False, time_embedding_type: str = "positional", freq_shift: int = 0, flip_sin_to_cos: bool = True, down_block_types: Tuple[str] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"), up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"), block_out_channels: Tuple[int] = (224, 448, 672, 896), layers_per_block: int = 2, mid_block_scale_factor: float = 1, downsample_padding: int = 1, act_fn: str = "silu", attention_head_dim: int = 8, norm_num_groups: int = 32, norm_eps: float = 1e-5, ): super().__init__() self.sample_size = sample_size time_embed_dim = block_out_channels[0] * 4 # input self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) # time if time_embedding_type == "fourier": self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16) timestep_input_dim = 2 * block_out_channels[0] elif time_embedding_type == "positional": self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) self.down_blocks = nn.ModuleList([]) self.mid_block = None self.up_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attn_num_head_channels=attention_head_dim, downsample_padding=downsample_padding, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift="default", attn_num_head_channels=attention_head_dim, resnet_groups=norm_num_groups, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] is_final_block = i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attn_num_head_channels=attention_head_dim, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], return_dict: bool = True, ) -> Union[UNet2DOutput, Tuple]: r""" Args: sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple. Returns: [`~models.unet_2d.UNet2DOutput`] or `tuple`: [`~models.unet_2d.UNet2DOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device) t_emb = self.time_proj(timesteps) emb = self.time_embedding(t_emb) # 2. pre-process skip_sample = sample sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "skip_conv"): sample, res_samples, skip_sample = downsample_block( hidden_states=sample, temb=emb, skip_sample=skip_sample ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples # 4. mid sample = self.mid_block(sample, emb) # 5. up skip_sample = None for upsample_block in self.up_blocks: res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] if hasattr(upsample_block, "skip_conv"): sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample) else: sample = upsample_block(sample, res_samples, emb) # 6. post-process # make sure hidden states is in float32 # when running in half-precision sample = self.conv_norm_out(sample.float()).type(sample.dtype) sample = self.conv_act(sample) sample = self.conv_out(sample) if skip_sample is not None: sample += skip_sample if self.config.time_embedding_type == "fourier": timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:])))) sample = sample / timesteps if not return_dict: return (sample,) return UNet2DOutput(sample=sample)
diffusers-main
src/diffusers/models/unet_2d.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import flax.linen as nn import jax.numpy as jnp # This is like models.embeddings.get_timestep_embedding (PyTorch) but # less general (only handles the case we currently need). def get_sinusoidal_embeddings(timesteps, embedding_dim, freq_shift: float = 1): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. :param timesteps: a 1-D tensor of N indices, one per batch element. These may be fractional. :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] tensor of positional embeddings. """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - freq_shift) emb = jnp.exp(jnp.arange(half_dim) * -emb) emb = timesteps[:, None] * emb[None, :] emb = jnp.concatenate([jnp.cos(emb), jnp.sin(emb)], -1) return emb class FlaxTimestepEmbedding(nn.Module): r""" Time step Embedding Module. Learns embeddings for input time steps. Args: time_embed_dim (`int`, *optional*, defaults to `32`): Time step embedding dimension dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ time_embed_dim: int = 32 dtype: jnp.dtype = jnp.float32 @nn.compact def __call__(self, temb): temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="linear_1")(temb) temb = nn.silu(temb) temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="linear_2")(temb) return temb class FlaxTimesteps(nn.Module): r""" Wrapper Module for sinusoidal Time step Embeddings as described in https://arxiv.org/abs/2006.11239 Args: dim (`int`, *optional*, defaults to `32`): Time step embedding dimension """ dim: int = 32 freq_shift: float = 1 @nn.compact def __call__(self, timesteps): return get_sinusoidal_embeddings(timesteps, self.dim, freq_shift=self.freq_shift)
diffusers-main
src/diffusers/models/embeddings_flax.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers import math from functools import partial from typing import Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..modeling_flax_utils import FlaxModelMixin from ..utils import BaseOutput @flax.struct.dataclass class FlaxDecoderOutput(BaseOutput): """ Output of decoding method. Args: sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`): Decoded output sample of the model. Output of the last layer of the model. dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ sample: jnp.ndarray @flax.struct.dataclass class FlaxAutoencoderKLOutput(BaseOutput): """ Output of AutoencoderKL encoding method. Args: latent_dist (`FlaxDiagonalGaussianDistribution`): Encoded outputs of `Encoder` represented as the mean and logvar of `FlaxDiagonalGaussianDistribution`. `FlaxDiagonalGaussianDistribution` allows for sampling latents from the distribution. """ latent_dist: "FlaxDiagonalGaussianDistribution" class FlaxUpsample2D(nn.Module): """ Flax implementation of 2D Upsample layer Args: in_channels (`int`): Input channels dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.in_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__(self, hidden_states): batch, height, width, channels = hidden_states.shape hidden_states = jax.image.resize( hidden_states, shape=(batch, height * 2, width * 2, channels), method="nearest", ) hidden_states = self.conv(hidden_states) return hidden_states class FlaxDownsample2D(nn.Module): """ Flax implementation of 2D Downsample layer Args: in_channels (`int`): Input channels dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv = nn.Conv( self.in_channels, kernel_size=(3, 3), strides=(2, 2), padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states): pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim hidden_states = jnp.pad(hidden_states, pad_width=pad) hidden_states = self.conv(hidden_states) return hidden_states class FlaxResnetBlock2D(nn.Module): """ Flax implementation of 2D Resnet Block. Args: in_channels (`int`): Input channels out_channels (`int`): Output channels dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate groups (:obj:`int`, *optional*, defaults to `32`): The number of groups to use for group norm. use_nin_shortcut (:obj:`bool`, *optional*, defaults to `None`): Whether to use `nin_shortcut`. This activates a new layer inside ResNet block dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int out_channels: int = None dropout: float = 0.0 groups: int = 32 use_nin_shortcut: bool = None dtype: jnp.dtype = jnp.float32 def setup(self): out_channels = self.in_channels if self.out_channels is None else self.out_channels self.norm1 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6) self.conv1 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) self.norm2 = nn.GroupNorm(num_groups=self.groups, epsilon=1e-6) self.dropout_layer = nn.Dropout(self.dropout) self.conv2 = nn.Conv( out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut self.conv_shortcut = None if use_nin_shortcut: self.conv_shortcut = nn.Conv( out_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) def __call__(self, hidden_states, deterministic=True): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states = nn.swish(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: residual = self.conv_shortcut(residual) return hidden_states + residual class FlaxAttentionBlock(nn.Module): r""" Flax Convolutional based multi-head attention block for diffusion-based VAE. Parameters: channels (:obj:`int`): Input channels num_head_channels (:obj:`int`, *optional*, defaults to `None`): Number of attention heads num_groups (:obj:`int`, *optional*, defaults to `32`): The number of groups to use for group norm dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ channels: int num_head_channels: int = None num_groups: int = 32 dtype: jnp.dtype = jnp.float32 def setup(self): self.num_heads = self.channels // self.num_head_channels if self.num_head_channels is not None else 1 dense = partial(nn.Dense, self.channels, dtype=self.dtype) self.group_norm = nn.GroupNorm(num_groups=self.num_groups, epsilon=1e-6) self.query, self.key, self.value = dense(), dense(), dense() self.proj_attn = dense() def transpose_for_scores(self, projection): new_projection_shape = projection.shape[:-1] + (self.num_heads, -1) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) new_projection = projection.reshape(new_projection_shape) # (B, T, H, D) -> (B, H, T, D) new_projection = jnp.transpose(new_projection, (0, 2, 1, 3)) return new_projection def __call__(self, hidden_states): residual = hidden_states batch, height, width, channels = hidden_states.shape hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.reshape((batch, height * width, channels)) query = self.query(hidden_states) key = self.key(hidden_states) value = self.value(hidden_states) # transpose query = self.transpose_for_scores(query) key = self.transpose_for_scores(key) value = self.transpose_for_scores(value) # compute attentions scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) attn_weights = jnp.einsum("...qc,...kc->...qk", query * scale, key * scale) attn_weights = nn.softmax(attn_weights, axis=-1) # attend to values hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights) hidden_states = jnp.transpose(hidden_states, (0, 2, 1, 3)) new_hidden_states_shape = hidden_states.shape[:-2] + (self.channels,) hidden_states = hidden_states.reshape(new_hidden_states_shape) hidden_states = self.proj_attn(hidden_states) hidden_states = hidden_states.reshape((batch, height, width, channels)) hidden_states = hidden_states + residual return hidden_states class FlaxDownEncoderBlock2D(nn.Module): r""" Flax Resnet blocks-based Encoder block for diffusion-based VAE. Parameters: in_channels (:obj:`int`): Input channels out_channels (:obj:`int`): Output channels dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate num_layers (:obj:`int`, *optional*, defaults to 1): Number of Resnet layer block resnet_groups (:obj:`int`, *optional*, defaults to `32`): The number of groups to use for the Resnet block group norm add_downsample (:obj:`bool`, *optional*, defaults to `True`): Whether to add downsample layer dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int out_channels: int dropout: float = 0.0 num_layers: int = 1 resnet_groups: int = 32 add_downsample: bool = True dtype: jnp.dtype = jnp.float32 def setup(self): resnets = [] for i in range(self.num_layers): in_channels = self.in_channels if i == 0 else self.out_channels res_block = FlaxResnetBlock2D( in_channels=in_channels, out_channels=self.out_channels, dropout=self.dropout, groups=self.resnet_groups, dtype=self.dtype, ) resnets.append(res_block) self.resnets = resnets if self.add_downsample: self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True): for resnet in self.resnets: hidden_states = resnet(hidden_states, deterministic=deterministic) if self.add_downsample: hidden_states = self.downsamplers_0(hidden_states) return hidden_states class FlaxUpDecoderBlock2D(nn.Module): r""" Flax Resnet blocks-based Decoder block for diffusion-based VAE. Parameters: in_channels (:obj:`int`): Input channels out_channels (:obj:`int`): Output channels dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate num_layers (:obj:`int`, *optional*, defaults to 1): Number of Resnet layer block resnet_groups (:obj:`int`, *optional*, defaults to `32`): The number of groups to use for the Resnet block group norm add_upsample (:obj:`bool`, *optional*, defaults to `True`): Whether to add upsample layer dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int out_channels: int dropout: float = 0.0 num_layers: int = 1 resnet_groups: int = 32 add_upsample: bool = True dtype: jnp.dtype = jnp.float32 def setup(self): resnets = [] for i in range(self.num_layers): in_channels = self.in_channels if i == 0 else self.out_channels res_block = FlaxResnetBlock2D( in_channels=in_channels, out_channels=self.out_channels, dropout=self.dropout, groups=self.resnet_groups, dtype=self.dtype, ) resnets.append(res_block) self.resnets = resnets if self.add_upsample: self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True): for resnet in self.resnets: hidden_states = resnet(hidden_states, deterministic=deterministic) if self.add_upsample: hidden_states = self.upsamplers_0(hidden_states) return hidden_states class FlaxUNetMidBlock2D(nn.Module): r""" Flax Unet Mid-Block module. Parameters: in_channels (:obj:`int`): Input channels dropout (:obj:`float`, *optional*, defaults to 0.0): Dropout rate num_layers (:obj:`int`, *optional*, defaults to 1): Number of Resnet layer block resnet_groups (:obj:`int`, *optional*, defaults to `32`): The number of groups to use for the Resnet and Attention block group norm attn_num_head_channels (:obj:`int`, *optional*, defaults to `1`): Number of attention heads for each attention block dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int dropout: float = 0.0 num_layers: int = 1 resnet_groups: int = 32 attn_num_head_channels: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): resnet_groups = self.resnet_groups if self.resnet_groups is not None else min(self.in_channels // 4, 32) # there is always at least one resnet resnets = [ FlaxResnetBlock2D( in_channels=self.in_channels, out_channels=self.in_channels, dropout=self.dropout, groups=resnet_groups, dtype=self.dtype, ) ] attentions = [] for _ in range(self.num_layers): attn_block = FlaxAttentionBlock( channels=self.in_channels, num_head_channels=self.attn_num_head_channels, num_groups=resnet_groups, dtype=self.dtype, ) attentions.append(attn_block) res_block = FlaxResnetBlock2D( in_channels=self.in_channels, out_channels=self.in_channels, dropout=self.dropout, groups=resnet_groups, dtype=self.dtype, ) resnets.append(res_block) self.resnets = resnets self.attentions = attentions def __call__(self, hidden_states, deterministic=True): hidden_states = self.resnets[0](hidden_states, deterministic=deterministic) for attn, resnet in zip(self.attentions, self.resnets[1:]): hidden_states = attn(hidden_states) hidden_states = resnet(hidden_states, deterministic=deterministic) return hidden_states class FlaxEncoder(nn.Module): r""" Flax Implementation of VAE Encoder. This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: in_channels (:obj:`int`, *optional*, defaults to 3): Input channels out_channels (:obj:`int`, *optional*, defaults to 3): Output channels down_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`): DownEncoder block type block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`): Tuple containing the number of output channels for each block layers_per_block (:obj:`int`, *optional*, defaults to `2`): Number of Resnet layer for each block norm_num_groups (:obj:`int`, *optional*, defaults to `32`): norm num group act_fn (:obj:`str`, *optional*, defaults to `silu`): Activation function double_z (:obj:`bool`, *optional*, defaults to `False`): Whether to double the last output channels dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ in_channels: int = 3 out_channels: int = 3 down_block_types: Tuple[str] = ("DownEncoderBlock2D",) block_out_channels: Tuple[int] = (64,) layers_per_block: int = 2 norm_num_groups: int = 32 act_fn: str = "silu" double_z: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): block_out_channels = self.block_out_channels # in self.conv_in = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # downsampling down_blocks = [] output_channel = block_out_channels[0] for i, _ in enumerate(self.down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = FlaxDownEncoderBlock2D( in_channels=input_channel, out_channels=output_channel, num_layers=self.layers_per_block, resnet_groups=self.norm_num_groups, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(down_block) self.down_blocks = down_blocks # middle self.mid_block = FlaxUNetMidBlock2D( in_channels=block_out_channels[-1], resnet_groups=self.norm_num_groups, attn_num_head_channels=None, dtype=self.dtype, ) # end conv_out_channels = 2 * self.out_channels if self.double_z else self.out_channels self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6) self.conv_out = nn.Conv( conv_out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__(self, sample, deterministic: bool = True): # in sample = self.conv_in(sample) # downsampling for block in self.down_blocks: sample = block(sample, deterministic=deterministic) # middle sample = self.mid_block(sample, deterministic=deterministic) # end sample = self.conv_norm_out(sample) sample = nn.swish(sample) sample = self.conv_out(sample) return sample class FlaxDecoder(nn.Module): r""" Flax Implementation of VAE Decoder. This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: in_channels (:obj:`int`, *optional*, defaults to 3): Input channels out_channels (:obj:`int`, *optional*, defaults to 3): Output channels up_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`): UpDecoder block type block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`): Tuple containing the number of output channels for each block layers_per_block (:obj:`int`, *optional*, defaults to `2`): Number of Resnet layer for each block norm_num_groups (:obj:`int`, *optional*, defaults to `32`): norm num group act_fn (:obj:`str`, *optional*, defaults to `silu`): Activation function double_z (:obj:`bool`, *optional*, defaults to `False`): Whether to double the last output channels dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): parameters `dtype` """ in_channels: int = 3 out_channels: int = 3 up_block_types: Tuple[str] = ("UpDecoderBlock2D",) block_out_channels: int = (64,) layers_per_block: int = 2 norm_num_groups: int = 32 act_fn: str = "silu" dtype: jnp.dtype = jnp.float32 def setup(self): block_out_channels = self.block_out_channels # z to block_in self.conv_in = nn.Conv( block_out_channels[-1], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # middle self.mid_block = FlaxUNetMidBlock2D( in_channels=block_out_channels[-1], resnet_groups=self.norm_num_groups, attn_num_head_channels=None, dtype=self.dtype, ) # upsampling reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] up_blocks = [] for i, _ in enumerate(self.up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 up_block = FlaxUpDecoderBlock2D( in_channels=prev_output_channel, out_channels=output_channel, num_layers=self.layers_per_block + 1, resnet_groups=self.norm_num_groups, add_upsample=not is_final_block, dtype=self.dtype, ) up_blocks.append(up_block) prev_output_channel = output_channel self.up_blocks = up_blocks # end self.conv_norm_out = nn.GroupNorm(num_groups=self.norm_num_groups, epsilon=1e-6) self.conv_out = nn.Conv( self.out_channels, kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) def __call__(self, sample, deterministic: bool = True): # z to block_in sample = self.conv_in(sample) # middle sample = self.mid_block(sample, deterministic=deterministic) # upsampling for block in self.up_blocks: sample = block(sample, deterministic=deterministic) sample = self.conv_norm_out(sample) sample = nn.swish(sample) sample = self.conv_out(sample) return sample class FlaxDiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): # Last axis to account for channels-last self.mean, self.logvar = jnp.split(parameters, 2, axis=-1) self.logvar = jnp.clip(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = jnp.exp(0.5 * self.logvar) self.var = jnp.exp(self.logvar) if self.deterministic: self.var = self.std = jnp.zeros_like(self.mean) def sample(self, key): return self.mean + self.std * jax.random.normal(key, self.mean.shape) def kl(self, other=None): if self.deterministic: return jnp.array([0.0]) if other is None: return 0.5 * jnp.sum(self.mean**2 + self.var - 1.0 - self.logvar, axis=[1, 2, 3]) return 0.5 * jnp.sum( jnp.square(self.mean - other.mean) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, axis=[1, 2, 3], ) def nll(self, sample, axis=[1, 2, 3]): if self.deterministic: return jnp.array([0.0]) logtwopi = jnp.log(2.0 * jnp.pi) return 0.5 * jnp.sum(logtwopi + self.logvar + jnp.square(sample - self.mean) / self.var, axis=axis) def mode(self): return self.mean @flax_register_to_config class FlaxAutoencoderKL(nn.Module, FlaxModelMixin, ConfigMixin): r""" Flax Implementation of Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling. This model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: in_channels (:obj:`int`, *optional*, defaults to 3): Input channels out_channels (:obj:`int`, *optional*, defaults to 3): Output channels down_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(DownEncoderBlock2D)`): DownEncoder block type up_block_types (:obj:`Tuple[str]`, *optional*, defaults to `(UpDecoderBlock2D)`): UpDecoder block type block_out_channels (:obj:`Tuple[str]`, *optional*, defaults to `(64,)`): Tuple containing the number of output channels for each block layers_per_block (:obj:`int`, *optional*, defaults to `2`): Number of Resnet layer for each block act_fn (:obj:`str`, *optional*, defaults to `silu`): Activation function latent_channels (:obj:`int`, *optional*, defaults to `4`): Latent space channels norm_num_groups (:obj:`int`, *optional*, defaults to `32`): Norm num group sample_size (:obj:`int`, *optional*, defaults to `32`): Sample input size dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): parameters `dtype` """ in_channels: int = 3 out_channels: int = 3 down_block_types: Tuple[str] = ("DownEncoderBlock2D",) up_block_types: Tuple[str] = ("UpDecoderBlock2D",) block_out_channels: Tuple[int] = (64,) layers_per_block: int = 1 act_fn: str = "silu" latent_channels: int = 4 norm_num_groups: int = 32 sample_size: int = 32 dtype: jnp.dtype = jnp.float32 def setup(self): self.encoder = FlaxEncoder( in_channels=self.config.in_channels, out_channels=self.config.latent_channels, down_block_types=self.config.down_block_types, block_out_channels=self.config.block_out_channels, layers_per_block=self.config.layers_per_block, act_fn=self.config.act_fn, norm_num_groups=self.config.norm_num_groups, double_z=True, dtype=self.dtype, ) self.decoder = FlaxDecoder( in_channels=self.config.latent_channels, out_channels=self.config.out_channels, up_block_types=self.config.up_block_types, block_out_channels=self.config.block_out_channels, layers_per_block=self.config.layers_per_block, norm_num_groups=self.config.norm_num_groups, act_fn=self.config.act_fn, dtype=self.dtype, ) self.quant_conv = nn.Conv( 2 * self.config.latent_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) self.post_quant_conv = nn.Conv( self.config.latent_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype, ) def init_weights(self, rng: jax.random.PRNGKey) -> FrozenDict: # init input tensors sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) sample = jnp.zeros(sample_shape, dtype=jnp.float32) params_rng, dropout_rng, gaussian_rng = jax.random.split(rng, 3) rngs = {"params": params_rng, "dropout": dropout_rng, "gaussian": gaussian_rng} return self.init(rngs, sample)["params"] def encode(self, sample, deterministic: bool = True, return_dict: bool = True): sample = jnp.transpose(sample, (0, 2, 3, 1)) hidden_states = self.encoder(sample, deterministic=deterministic) moments = self.quant_conv(hidden_states) posterior = FlaxDiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return FlaxAutoencoderKLOutput(latent_dist=posterior) def decode(self, latents, deterministic: bool = True, return_dict: bool = True): if latents.shape[-1] != self.config.latent_channels: latents = jnp.transpose(latents, (0, 2, 3, 1)) hidden_states = self.post_quant_conv(latents) hidden_states = self.decoder(hidden_states, deterministic=deterministic) hidden_states = jnp.transpose(hidden_states, (0, 3, 1, 2)) if not return_dict: return (hidden_states,) return FlaxDecoderOutput(sample=hidden_states) def __call__(self, sample, sample_posterior=False, deterministic: bool = True, return_dict: bool = True): posterior = self.encode(sample, deterministic=deterministic, return_dict=return_dict) if sample_posterior: rng = self.make_rng("gaussian") hidden_states = posterior.latent_dist.sample(rng) else: hidden_states = posterior.latent_dist.mode() sample = self.decode(hidden_states, return_dict=return_dict).sample if not return_dict: return (sample,) return FlaxDecoderOutput(sample=sample)
diffusers-main
src/diffusers/models/vae_flax.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..modeling_utils import ModelMixin from ..utils import BaseOutput from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block @dataclass class DecoderOutput(BaseOutput): """ Output of decoding method. Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Decoded output sample of the model. Output of the last layer of the model. """ sample: torch.FloatTensor @dataclass class VQEncoderOutput(BaseOutput): """ Output of VQModel encoding method. Args: latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Encoded output sample of the model. Output of the last layer of the model. """ latents: torch.FloatTensor @dataclass class AutoencoderKLOutput(BaseOutput): """ Output of AutoencoderKL encoding method. Args: latent_dist (`DiagonalGaussianDistribution`): Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. `DiagonalGaussianDistribution` allows for sampling latents from the distribution. """ latent_dist: "DiagonalGaussianDistribution" class Encoder(nn.Module): def __init__( self, in_channels=3, out_channels=3, down_block_types=("DownEncoderBlock2D",), block_out_channels=(64,), layers_per_block=2, norm_num_groups=32, act_fn="silu", double_z=True, ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) self.mid_block = None self.down_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=self.layers_per_block, in_channels=input_channel, out_channels=output_channel, add_downsample=not is_final_block, resnet_eps=1e-6, downsample_padding=0, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attn_num_head_channels=None, temb_channels=None, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift="default", attn_num_head_channels=None, resnet_groups=norm_num_groups, temb_channels=None, ) # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() conv_out_channels = 2 * out_channels if double_z else out_channels self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) def forward(self, x): sample = x sample = self.conv_in(sample) # down for down_block in self.down_blocks: sample = down_block(sample) # middle sample = self.mid_block(sample) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample class Decoder(nn.Module): def __init__( self, in_channels=3, out_channels=3, up_block_types=("UpDecoderBlock2D",), block_out_channels=(64,), layers_per_block=2, norm_num_groups=32, act_fn="silu", ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) self.mid_block = None self.up_blocks = nn.ModuleList([]) # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=act_fn, output_scale_factor=1, resnet_time_scale_shift="default", attn_num_head_channels=None, resnet_groups=norm_num_groups, temb_channels=None, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, prev_output_channel=None, add_upsample=not is_final_block, resnet_eps=1e-6, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attn_num_head_channels=None, temb_channels=None, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) def forward(self, z): sample = z sample = self.conv_in(sample) # middle sample = self.mid_block(sample) # up for up_block in self.up_blocks: sample = up_block(sample) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample class VectorQuantizer(nn.Module): """ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix multiplications and allows for post-hoc remapping of indices. """ # NOTE: due to a bug the beta term was applied to the wrong term. for # backwards compatibility we use the buggy version by default, but you can # specify legacy=False to fix it. def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True): super().__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.legacy = legacy self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: self.re_embed = n_e self.sane_index_shape = sane_index_shape def remap_to_used(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) def forward(self, z): # reshape z -> (batch, height, width, channel) and flatten z = z.permute(0, 2, 3, 1).contiguous() z_flattened = z.view(-1, self.e_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = ( torch.sum(z_flattened**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t()) ) min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) perplexity = None min_encodings = None # compute loss for embedding if not self.legacy: loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) else: loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() if self.remap is not None: min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis min_encoding_indices = self.remap_to_used(min_encoding_indices) min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten if self.sane_index_shape: min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def get_codebook_entry(self, indices, shape): # shape specifying (batch, height, width, channel) if self.remap is not None: indices = indices.reshape(shape[0], -1) # add batch axis indices = self.unmap_to_all(indices) indices = indices.reshape(-1) # flatten again # get quantized latent vectors z_q = self.embedding(indices) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like( self.mean, device=self.parameters.device, dtype=self.parameters.dtype ) def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: device = self.parameters.device sample_device = "cpu" if device.type == "mps" else device sample = torch.randn(self.mean.shape, generator=generator, device=sample_device) # make sure sample is on the same device as the parameters and has same dtype sample = sample.to(device=device, dtype=self.parameters.dtype) x = self.mean + self.std * sample return x def kl(self, other=None): if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3], ) def nll(self, sample, dims=[1, 2, 3]): if self.deterministic: return torch.Tensor([0.0]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean class VQModel(ModelMixin, ConfigMixin): r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray Kavukcuoglu. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the model (such as downloading or saving, etc.) Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to : obj:`(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. sample_size (`int`, *optional*, defaults to `32`): TODO num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE. """ @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D",), up_block_types: Tuple[str] = ("UpDecoderBlock2D",), block_out_channels: Tuple[int] = (64,), layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 3, sample_size: int = 32, num_vq_embeddings: int = 256, norm_num_groups: int = 32, ): super().__init__() # pass init params to Encoder self.encoder = Encoder( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, double_z=False, ) self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) self.quantize = VectorQuantizer( num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False ) self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) # pass init params to Decoder self.decoder = Decoder( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, ) def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput: h = self.encoder(x) h = self.quant_conv(h) if not return_dict: return (h,) return VQEncoderOutput(latents=h) def decode( self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: quant, emb_loss, info = self.quantize(h) else: quant = h quant = self.post_quant_conv(quant) dec = self.decoder(quant) if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: r""" Args: sample (`torch.FloatTensor`): Input sample. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample h = self.encode(x).latents dec = self.decode(h).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec) class AutoencoderKL(ModelMixin, ConfigMixin): r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the model (such as downloading or saving, etc.) Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to : obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to : obj:`(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space. sample_size (`int`, *optional*, defaults to `32`): TODO """ @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D",), up_block_types: Tuple[str] = ("UpDecoderBlock2D",), block_out_channels: Tuple[int] = (64,), layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 4, norm_num_groups: int = 32, sample_size: int = 32, ): super().__init__() # pass init params to Encoder self.encoder = Encoder( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, double_z=True, ) # pass init params to Decoder self.decoder = Decoder( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, norm_num_groups=norm_num_groups, act_fn=act_fn, ) self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: z = self.post_quant_conv(z) dec = self.decoder(z) if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.FloatTensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[DecoderOutput, torch.FloatTensor]: r""" Args: sample (`torch.FloatTensor`): Input sample. sample_posterior (`bool`, *optional*, defaults to `False`): Whether to sample from the posterior. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec)
diffusers-main
src/diffusers/models/vae.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_torch_available, is_transformers_available from . import BaseDiffusersCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseDiffusersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env") download_parser.set_defaults(func=info_command_factory) def run(self): hub_version = huggingface_hub.__version__ pt_version = "not installed" pt_cuda_available = "NA" if is_torch_available(): import torch pt_version = torch.__version__ pt_cuda_available = torch.cuda.is_available() transformers_version = "not installed" if is_transformers_available: import transformers transformers_version = transformers.__version__ info = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
diffusers-main
src/diffusers/commands/env.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from argparse import ArgumentParser class BaseDiffusersCLICommand(ABC): @staticmethod @abstractmethod def register_subcommand(parser: ArgumentParser): raise NotImplementedError() @abstractmethod def run(self): raise NotImplementedError()
diffusers-main
src/diffusers/commands/__init__.py
#!/usr/bin/env python # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from .env import EnvironmentCommand def main(): parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]") commands_parser = parser.add_subparsers(help="diffusers-cli command helpers") # Register commands EnvironmentCommand.register_subcommand(commands_parser) # Let's go args = parser.parse_args() if not hasattr(args, "func"): parser.print_help() exit(1) # Run service = args.func(args) service.run() if __name__ == "__main__": main()
diffusers-main
src/diffusers/commands/diffusers_cli.py
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class KarrasVeSchedulerState: # setable values num_inference_steps: Optional[int] = None timesteps: Optional[jnp.ndarray] = None schedule: Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def create(cls): return cls() @dataclass class FlaxKarrasVeOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. derivative (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): Derivative of predicted original image sample (x_0). state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. """ prev_sample: jnp.ndarray derivative: jnp.ndarray state: KarrasVeSchedulerState class FlaxKarrasVeScheduler(FlaxSchedulerMixin, ConfigMixin): """ Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and the VE column of Table 1 from [1] for reference. [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." https://arxiv.org/abs/2011.13456 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. Args: sigma_min (`float`): minimum noise magnitude sigma_max (`float`): maximum noise magnitude s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, 1.011]. s_churn (`float`): the parameter controlling the overall amount of stochasticity. A reasonable range is [0, 100]. s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). A reasonable range is [0, 10]. s_max (`float`): the end value of the sigma range where we add noise. A reasonable range is [0.2, 80]. """ @register_to_config def __init__( self, sigma_min: float = 0.02, sigma_max: float = 100, s_noise: float = 1.007, s_churn: float = 80, s_min: float = 0.05, s_max: float = 50, ): self.state = KarrasVeSchedulerState.create() def set_timesteps( self, state: KarrasVeSchedulerState, num_inference_steps: int, shape: Tuple ) -> KarrasVeSchedulerState: """ Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ timesteps = jnp.arange(0, num_inference_steps)[::-1].copy() schedule = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=num_inference_steps, schedule=jnp.array(schedule, dtype=jnp.float32), timesteps=timesteps, ) def add_noise_to_input( self, state: KarrasVeSchedulerState, sample: jnp.ndarray, sigma: float, key: random.KeyArray, ) -> Tuple[jnp.ndarray, float]: """ Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a higher noise level sigma_hat = sigma_i + gamma_i*sigma_i. TODO Args: """ if self.config.s_min <= sigma <= self.config.s_max: gamma = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1) else: gamma = 0 # sample eps ~ N(0, S_noise^2 * I) key = random.split(key, num=1) eps = self.config.s_noise * random.normal(key=key, shape=sample.shape) sigma_hat = sigma + gamma * sigma sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def step( self, state: KarrasVeSchedulerState, model_output: jnp.ndarray, sigma_hat: float, sigma_prev: float, sample_hat: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxKarrasVeOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. sigma_hat (`float`): TODO sigma_prev (`float`): TODO sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class Returns: [`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] or `tuple`: Updated sample in the diffusion chain and derivative. [`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ pred_original_sample = sample_hat + sigma_hat * model_output derivative = (sample_hat - pred_original_sample) / sigma_hat sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) def step_correct( self, state: KarrasVeSchedulerState, model_output: jnp.ndarray, sigma_hat: float, sigma_prev: float, sample_hat: jnp.ndarray, sample_prev: jnp.ndarray, derivative: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxKarrasVeOutput, Tuple]: """ Correct the predicted sample based on the output model_output of the network. TODO complete description Args: state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. sigma_hat (`float`): TODO sigma_prev (`float`): TODO sample_hat (`torch.FloatTensor` or `np.ndarray`): TODO sample_prev (`torch.FloatTensor` or `np.ndarray`): TODO derivative (`torch.FloatTensor` or `np.ndarray`): TODO return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class Returns: prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO """ pred_original_sample = sample_prev + sigma_prev * model_output derivative_corr = (sample_prev - pred_original_sample) / sigma_prev sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) def add_noise(self, original_samples, noise, timesteps): raise NotImplementedError()
diffusers-main
src/diffusers/schedulers/scheduling_karras_ve_flax.py
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils import SchedulerMixin @dataclass class DDPMSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class DDPMScheduler(SchedulerMixin, ConfigMixin): """ Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and Langevin dynamics sampling. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details, see the original paper: https://arxiv.org/abs/2006.11239 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. variance_type (`str`): options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. clip_sample (`bool`, default `True`): option to clip predicted sample between -1 and 1 for numerical stability. """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[np.ndarray] = None, variance_type: str = "fixed_small", clip_sample: bool = True, ): if trained_betas is not None: self.betas = torch.from_numpy(trained_betas) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) elif beta_schedule == "sigmoid": # GeoDiff sigmoid schedule betas = torch.linspace(-6, 6, num_train_timesteps) self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.one = torch.tensor(1.0) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.num_inference_steps = None self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) self.variance_type = variance_type def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep Returns: `torch.FloatTensor`: scaled input sample """ return sample def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) self.num_inference_steps = num_inference_steps timesteps = np.arange( 0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps )[::-1].copy() self.timesteps = torch.from_numpy(timesteps).to(device) def _get_variance(self, t, predicted_variance=None, variance_type=None): alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t] if variance_type is None: variance_type = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": variance = torch.clamp(variance, min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": variance = torch.log(torch.clamp(variance, min=1e-20)) elif variance_type == "fixed_large": variance = self.betas[t] elif variance_type == "fixed_large_log": # Glide max_log variance = torch.log(self.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": min_log = variance max_log = self.betas[t] frac = (predicted_variance + 1) / 2 variance = frac * max_log + (1 - frac) * min_log return variance def step( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, predict_epsilon=True, generator=None, return_dict: bool = True, ) -> Union[DDPMSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. predict_epsilon (`bool`): optional flag to use when model predicts the samples directly instead of the noise, epsilon. generator: random number generator. return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class Returns: [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ t = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) else: predicted_variance = None # 1. compute alphas, betas alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if predict_epsilon: pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) else: pred_original_sample = model_output # 3. Clip "predicted x_0" if self.config.clip_sample: pred_original_sample = torch.clamp(pred_original_sample, -1, 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise variance = 0 if t > 0: noise = torch.randn( model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator ).to(model_output.device) variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise pred_prev_sample = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_ddpm.py
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim import math from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import FlaxSchedulerMixin, FlaxSchedulerOutput def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999) -> jnp.ndarray: """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return jnp.array(betas, dtype=jnp.float32) @flax.struct.dataclass class PNDMSchedulerState: # setable values _timesteps: jnp.ndarray num_inference_steps: Optional[int] = None prk_timesteps: Optional[jnp.ndarray] = None plms_timesteps: Optional[jnp.ndarray] = None timesteps: Optional[jnp.ndarray] = None # running values cur_model_output: Optional[jnp.ndarray] = None counter: int = 0 cur_sample: Optional[jnp.ndarray] = None ets: jnp.ndarray = jnp.array([]) @classmethod def create(cls, num_train_timesteps: int): return cls(_timesteps=jnp.arange(0, num_train_timesteps)[::-1]) @dataclass class FlaxPNDMSchedulerOutput(FlaxSchedulerOutput): state: PNDMSchedulerState class FlaxPNDMScheduler(FlaxSchedulerMixin, ConfigMixin): """ Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques, namely Runge-Kutta method and a linear multi-step method. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details, see the original paper: https://arxiv.org/abs/2202.09778 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`jnp.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. skip_prk_steps (`bool`): allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required before plms steps; defaults to `False`. set_alpha_to_one (`bool`, default `False`): each diffusion step uses the value of alphas product at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the value of alpha at step 0. steps_offset (`int`, default `0`): an offset added to the inference steps. You can use a combination of `offset=1` and `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in stable diffusion. """ @property def has_state(self): return True @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[jnp.ndarray] = None, skip_prk_steps: bool = False, set_alpha_to_one: bool = False, steps_offset: int = 0, ): if trained_betas is not None: self.betas = jnp.asarray(trained_betas) elif beta_schedule == "linear": self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0) self.final_alpha_cumprod = jnp.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. self.pndm_order = 4 # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 def create_state(self): return PNDMSchedulerState.create(num_train_timesteps=self.config.num_train_timesteps) def set_timesteps(self, state: PNDMSchedulerState, num_inference_steps: int, shape: Tuple) -> PNDMSchedulerState: """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ offset = self.config.steps_offset step_ratio = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round() + offset state = state.replace(num_inference_steps=num_inference_steps, _timesteps=_timesteps) if self.config.skip_prk_steps: # for some models like stable diffusion the prk steps can/should be skipped to # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51 state = state.replace( prk_timesteps=jnp.array([]), plms_timesteps=jnp.concatenate( [state._timesteps[:-1], state._timesteps[-2:-1], state._timesteps[-1:]] )[::-1], ) else: prk_timesteps = jnp.array(state._timesteps[-self.pndm_order :]).repeat(2) + jnp.tile( jnp.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order ) state = state.replace( prk_timesteps=(prk_timesteps[:-1].repeat(2)[1:-1])[::-1], plms_timesteps=state._timesteps[:-3][::-1], ) return state.replace( timesteps=jnp.concatenate([state.prk_timesteps, state.plms_timesteps]).astype(jnp.int32), counter=0, # Reserve space for the state variables cur_model_output=jnp.zeros(shape), cur_sample=jnp.zeros(shape), ets=jnp.zeros((4,) + shape), ) def scale_model_input( self, state: PNDMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None ) -> jnp.ndarray: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. sample (`jnp.ndarray`): input sample timestep (`int`, optional): current timestep Returns: `jnp.ndarray`: scaled input sample """ return sample def step( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.config.skip_prk_steps: prev_sample, state = self.step_plms( state=state, model_output=model_output, timestep=timestep, sample=sample ) else: prev_sample, state = jax.lax.switch( jnp.where(state.counter < len(state.prk_timesteps), 0, 1), (self.step_prk, self.step_plms), # Args to either branch state, model_output, timestep, sample, ) if not return_dict: return (prev_sample, state) return FlaxPNDMSchedulerOutput(prev_sample=prev_sample, state=state) def step_prk( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the solution to the differential equation. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) diff_to_prev = jnp.where( state.counter % 2, 0, self.config.num_train_timesteps // state.num_inference_steps // 2 ) prev_timestep = timestep - diff_to_prev timestep = state.prk_timesteps[state.counter // 4 * 4] def remainder_0(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int): return ( state.replace( cur_model_output=state.cur_model_output + 1 / 6 * model_output, ets=state.ets.at[ets_at].set(model_output), cur_sample=sample, ), model_output, ) def remainder_1(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int): return state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output), model_output def remainder_2(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int): return state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output), model_output def remainder_3(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int): model_output = state.cur_model_output + 1 / 6 * model_output return state.replace(cur_model_output=jnp.zeros_like(state.cur_model_output)), model_output state, model_output = jax.lax.switch( state.counter % 4, (remainder_0, remainder_1, remainder_2, remainder_3), # Args to either branch state, model_output, state.counter // 4, ) cur_sample = state.cur_sample prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output) state = state.replace(counter=state.counter + 1) return (prev_sample, state) def step_plms( self, state: PNDMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, ) -> Union[FlaxPNDMSchedulerOutput, Tuple]: """ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple times to approximate the solution. Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class Returns: [`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if not self.config.skip_prk_steps and len(state.ets) < 3: raise ValueError( f"{self.__class__} can only be run AFTER scheduler has been run " "in 'prk' mode for at least 12 iterations " "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py " "for more information." ) prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps prev_timestep = jnp.where(prev_timestep > 0, prev_timestep, 0) # Reference: # if state.counter != 1: # state.ets.append(model_output) # else: # prev_timestep = timestep # timestep = timestep + self.config.num_train_timesteps // state.num_inference_steps prev_timestep = jnp.where(state.counter == 1, timestep, prev_timestep) timestep = jnp.where( state.counter == 1, timestep + self.config.num_train_timesteps // state.num_inference_steps, timestep ) # Reference: # if len(state.ets) == 1 and state.counter == 0: # model_output = model_output # state.cur_sample = sample # elif len(state.ets) == 1 and state.counter == 1: # model_output = (model_output + state.ets[-1]) / 2 # sample = state.cur_sample # state.cur_sample = None # elif len(state.ets) == 2: # model_output = (3 * state.ets[-1] - state.ets[-2]) / 2 # elif len(state.ets) == 3: # model_output = (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12 # else: # model_output = (1 / 24) * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4]) def counter_0(state: PNDMSchedulerState): ets = state.ets.at[0].set(model_output) return state.replace( ets=ets, cur_sample=sample, cur_model_output=jnp.array(model_output, dtype=jnp.float32), ) def counter_1(state: PNDMSchedulerState): return state.replace( cur_model_output=(model_output + state.ets[0]) / 2, ) def counter_2(state: PNDMSchedulerState): ets = state.ets.at[1].set(model_output) return state.replace( ets=ets, cur_model_output=(3 * ets[1] - ets[0]) / 2, cur_sample=sample, ) def counter_3(state: PNDMSchedulerState): ets = state.ets.at[2].set(model_output) return state.replace( ets=ets, cur_model_output=(23 * ets[2] - 16 * ets[1] + 5 * ets[0]) / 12, cur_sample=sample, ) def counter_other(state: PNDMSchedulerState): ets = state.ets.at[3].set(model_output) next_model_output = (1 / 24) * (55 * ets[3] - 59 * ets[2] + 37 * ets[1] - 9 * ets[0]) ets = ets.at[0].set(ets[1]) ets = ets.at[1].set(ets[2]) ets = ets.at[2].set(ets[3]) return state.replace( ets=ets, cur_model_output=next_model_output, cur_sample=sample, ) counter = jnp.clip(state.counter, 0, 4) state = jax.lax.switch( counter, [counter_0, counter_1, counter_2, counter_3, counter_other], state, ) sample = state.cur_sample model_output = state.cur_model_output prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output) state = state.replace(counter=state.counter + 1) return (prev_sample, state) def _get_prev_sample(self, sample, timestep, prev_timestep, model_output): # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf # this function computes x_(t−δ) using the formula of (9) # Note that x_t needs to be added to both sides of the equation # Notation (<variable name> -> <name in paper> # alpha_prod_t -> α_t # alpha_prod_t_prev -> α_(t−δ) # beta_prod_t -> (1 - α_t) # beta_prod_t_prev -> (1 - α_(t−δ)) # sample -> x_t # model_output -> e_θ(x_t, t) # prev_sample -> x_(t−δ) alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = jnp.where(prev_timestep >= 0, self.alphas_cumprod[prev_timestep], self.final_alpha_cumprod) beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # corresponds to (α_(t−δ) - α_t) divided by # denominator of x_t in formula (9) and plus 1 # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) = # sqrt(α_(t−δ)) / sqrt(α_t)) sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) # corresponds to denominator of e_θ(x_t, t) in formula (9) model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( alpha_prod_t * beta_prod_t * alpha_prod_t_prev ) ** (0.5) # full formula (9) prev_sample = ( sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff ) return prev_sample def add_noise( self, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod[..., None] sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod[..., None] noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_pndm_flax.py
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin): """ The variance preserving stochastic differential equation (SDE) scheduler. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more information, see the original paper: https://arxiv.org/abs/2011.13456 UNDER CONSTRUCTION """ @register_to_config def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3): self.sigmas = None self.discrete_sigmas = None self.timesteps = None def set_timesteps(self, num_inference_steps, device: Union[str, torch.device] = None): self.timesteps = torch.linspace(1, self.config.sampling_eps, num_inference_steps, device=device) def step_pred(self, score, x, t, generator=None): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score log_mean_coeff = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) std = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) std = std.flatten() while len(std.shape) < len(score.shape): std = std.unsqueeze(-1) score = -score / std # compute dt = -1.0 / len(self.timesteps) beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) beta_t = beta_t.flatten() while len(beta_t.shape) < len(x.shape): beta_t = beta_t.unsqueeze(-1) drift = -0.5 * beta_t * x diffusion = torch.sqrt(beta_t) drift = drift - diffusion**2 * score x_mean = x + drift * dt # add noise noise = torch.randn(x.shape, layout=x.layout, generator=generator).to(x.device) x = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_sde_vp.py
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim import math from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import FlaxSchedulerMixin, FlaxSchedulerOutput def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> jnp.ndarray: """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return jnp.array(betas, dtype=jnp.float32) @flax.struct.dataclass class DDPMSchedulerState: # setable values timesteps: jnp.ndarray num_inference_steps: Optional[int] = None @classmethod def create(cls, num_train_timesteps: int): return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1]) @dataclass class FlaxDDPMSchedulerOutput(FlaxSchedulerOutput): state: DDPMSchedulerState class FlaxDDPMScheduler(FlaxSchedulerMixin, ConfigMixin): """ Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and Langevin dynamics sampling. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details, see the original paper: https://arxiv.org/abs/2006.11239 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. variance_type (`str`): options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. clip_sample (`bool`, default `True`): option to clip predicted sample between -1 and 1 for numerical stability. tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[jnp.ndarray] = None, variance_type: str = "fixed_small", clip_sample: bool = True, ): if trained_betas is not None: self.betas = jnp.asarray(trained_betas) elif beta_schedule == "linear": self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0) self.one = jnp.array(1.0) self.state = DDPMSchedulerState.create(num_train_timesteps=num_train_timesteps) self.variance_type = variance_type def set_timesteps(self, state: DDPMSchedulerState, num_inference_steps: int, shape: Tuple) -> DDPMSchedulerState: """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`DDIMSchedulerState`): the `FlaxDDPMScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) timesteps = jnp.arange( 0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps )[::-1] return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps) def _get_variance(self, t, predicted_variance=None, variance_type=None): alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t] if variance_type is None: variance_type = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": variance = jnp.clip(variance, a_min=1e-20) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": variance = jnp.log(jnp.clip(variance, a_min=1e-20)) elif variance_type == "fixed_large": variance = self.betas[t] elif variance_type == "fixed_large_log": # Glide max_log variance = jnp.log(self.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": min_log = variance max_log = self.betas[t] frac = (predicted_variance + 1) / 2 variance = frac * max_log + (1 - frac) * min_log return variance def step( self, state: DDPMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, key: random.KeyArray, predict_epsilon: bool = True, return_dict: bool = True, ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: state (`DDPMSchedulerState`): the `FlaxDDPMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. key (`random.KeyArray`): a PRNG key. predict_epsilon (`bool`): optional flag to use when model predicts the samples directly instead of the noise, epsilon. return_dict (`bool`): option for returning tuple rather than FlaxDDPMSchedulerOutput class Returns: [`FlaxDDPMSchedulerOutput`] or `tuple`: [`FlaxDDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ t = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: model_output, predicted_variance = jnp.split(model_output, sample.shape[1], axis=1) else: predicted_variance = None # 1. compute alphas, betas alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if predict_epsilon: pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) else: pred_original_sample = model_output # 3. Clip "predicted x_0" if self.config.clip_sample: pred_original_sample = jnp.clip(pred_original_sample, -1, 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise variance = 0 if t > 0: key = random.split(key, num=1) noise = random.normal(key=key, shape=model_output.shape) variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise pred_prev_sample = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=pred_prev_sample, state=state) def add_noise( self, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod[..., None] sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod[..., None] noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_ddpm_flax.py
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils import SchedulerMixin @dataclass class KarrasVeOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Derivative of predicted original image sample (x_0). pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.FloatTensor derivative: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None class KarrasVeScheduler(SchedulerMixin, ConfigMixin): """ Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and the VE column of Table 1 from [1] for reference. [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." https://arxiv.org/abs/2011.13456 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. Args: sigma_min (`float`): minimum noise magnitude sigma_max (`float`): maximum noise magnitude s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, 1.011]. s_churn (`float`): the parameter controlling the overall amount of stochasticity. A reasonable range is [0, 100]. s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). A reasonable range is [0, 10]. s_max (`float`): the end value of the sigma range where we add noise. A reasonable range is [0.2, 80]. """ @register_to_config def __init__( self, sigma_min: float = 0.02, sigma_max: float = 100, s_noise: float = 1.007, s_churn: float = 80, s_min: float = 0.05, s_max: float = 50, ): # standard deviation of the initial noise distribution self.init_noise_sigma = sigma_max # setable values self.num_inference_steps: int = None self.timesteps: np.IntTensor = None self.schedule: torch.FloatTensor = None # sigma(t_i) def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep Returns: `torch.FloatTensor`: scaled input sample """ return sample def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ self.num_inference_steps = num_inference_steps timesteps = np.arange(0, self.num_inference_steps)[::-1].copy() self.timesteps = torch.from_numpy(timesteps).to(device) schedule = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device) def add_noise_to_input( self, sample: torch.FloatTensor, sigma: float, generator: Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: """ Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a higher noise level sigma_hat = sigma_i + gamma_i*sigma_i. TODO Args: """ if self.config.s_min <= sigma <= self.config.s_max: gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1) else: gamma = 0 # sample eps ~ N(0, S_noise^2 * I) eps = self.config.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device) sigma_hat = sigma + gamma * sigma sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def step( self, model_output: torch.FloatTensor, sigma_hat: float, sigma_prev: float, sample_hat: torch.FloatTensor, return_dict: bool = True, ) -> Union[KarrasVeOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. sigma_hat (`float`): TODO sigma_prev (`float`): TODO sample_hat (`torch.FloatTensor`): TODO return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class KarrasVeOutput: updated sample in the diffusion chain and derivative (TODO double check). Returns: [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] or `tuple`: [`~schedulers.scheduling_karras_ve.KarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ pred_original_sample = sample_hat + sigma_hat * model_output derivative = (sample_hat - pred_original_sample) / sigma_hat sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample ) def step_correct( self, model_output: torch.FloatTensor, sigma_hat: float, sigma_prev: float, sample_hat: torch.FloatTensor, sample_prev: torch.FloatTensor, derivative: torch.FloatTensor, return_dict: bool = True, ) -> Union[KarrasVeOutput, Tuple]: """ Correct the predicted sample based on the output model_output of the network. TODO complete description Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. sigma_hat (`float`): TODO sigma_prev (`float`): TODO sample_hat (`torch.FloatTensor`): TODO sample_prev (`torch.FloatTensor`): TODO derivative (`torch.FloatTensor`): TODO return_dict (`bool`): option for returning tuple rather than KarrasVeOutput class Returns: prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO """ pred_original_sample = sample_prev + sigma_prev * model_output derivative_corr = (sample_prev - pred_original_sample) / sigma_prev sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample ) def add_noise(self, original_samples, noise, timesteps): raise NotImplementedError()
diffusers-main
src/diffusers/schedulers/scheduling_karras_ve.py
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import FlaxSchedulerMixin, FlaxSchedulerOutput @flax.struct.dataclass class ScoreSdeVeSchedulerState: # setable values timesteps: Optional[jnp.ndarray] = None discrete_sigmas: Optional[jnp.ndarray] = None sigmas: Optional[jnp.ndarray] = None @classmethod def create(cls): return cls() @dataclass class FlaxSdeVeOutput(FlaxSchedulerOutput): """ Output class for the ScoreSdeVeScheduler's step function output. Args: state (`ScoreSdeVeSchedulerState`): prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. prev_sample_mean (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps. """ state: ScoreSdeVeSchedulerState prev_sample: jnp.ndarray prev_sample_mean: Optional[jnp.ndarray] = None class FlaxScoreSdeVeScheduler(FlaxSchedulerMixin, ConfigMixin): """ The variance exploding stochastic differential equation (SDE) scheduler. For more information, see the original paper: https://arxiv.org/abs/2011.13456 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. snr (`float`): coefficient weighting the step from the model_output sample (from the network) to the random noise. sigma_min (`float`): initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the distribution of the data. sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model. sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to epsilon. correct_steps (`int`): number of correction steps performed on a produced sample. """ @register_to_config def __init__( self, num_train_timesteps: int = 2000, snr: float = 0.15, sigma_min: float = 0.01, sigma_max: float = 1348.0, sampling_eps: float = 1e-5, correct_steps: int = 1, ): state = ScoreSdeVeSchedulerState.create() self.state = self.set_sigmas(state, num_train_timesteps, sigma_min, sigma_max, sampling_eps) def set_timesteps( self, state: ScoreSdeVeSchedulerState, num_inference_steps: int, shape: Tuple, sampling_eps: float = None ) -> ScoreSdeVeSchedulerState: """ Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). """ sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps timesteps = jnp.linspace(1, sampling_eps, num_inference_steps) return state.replace(timesteps=timesteps) def set_sigmas( self, state: ScoreSdeVeSchedulerState, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None, ) -> ScoreSdeVeSchedulerState: """ Sets the noise scales used for the diffusion chain. Supporting function to be run before inference. The sigmas control the weight of the `drift` and `diffusion` components of sample update. Args: state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. sigma_min (`float`, optional): initial noise scale value (overrides value given at Scheduler instantiation). sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation). sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). """ sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps if state.timesteps is None: state = self.set_timesteps(state, num_inference_steps, sampling_eps) discrete_sigmas = jnp.exp(jnp.linspace(jnp.log(sigma_min), jnp.log(sigma_max), num_inference_steps)) sigmas = jnp.array([sigma_min * (sigma_max / sigma_min) ** t for t in state.timesteps]) return state.replace(discrete_sigmas=discrete_sigmas, sigmas=sigmas) def get_adjacent_sigma(self, state, timesteps, t): return jnp.where(timesteps == 0, jnp.zeros_like(t), state.discrete_sigmas[timesteps - 1]) def step_pred( self, state: ScoreSdeVeSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, key: random.KeyArray, return_dict: bool = True, ) -> Union[FlaxSdeVeOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. generator: random number generator. return_dict (`bool`): option for returning tuple rather than FlaxSdeVeOutput class Returns: [`FlaxSdeVeOutput`] or `tuple`: [`FlaxSdeVeOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.timesteps is None: raise ValueError( "`state.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) timestep = timestep * jnp.ones( sample.shape[0], ) timesteps = (timestep * (len(state.timesteps) - 1)).long() sigma = state.discrete_sigmas[timesteps] adjacent_sigma = self.get_adjacent_sigma(state, timesteps, timestep) drift = jnp.zeros_like(sample) diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods diffusion = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): diffusion = diffusion[:, None] drift = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of key = random.split(key, num=1) noise = random.normal(key=key, shape=sample.shape) prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean, state) return FlaxSdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean, state=state) def step_correct( self, state: ScoreSdeVeSchedulerState, model_output: jnp.ndarray, sample: jnp.ndarray, key: random.KeyArray, return_dict: bool = True, ) -> Union[FlaxSdeVeOutput, Tuple]: """ Correct the predicted sample based on the output model_output of the network. This is often run repeatedly after making the prediction for the previous timestep. Args: state (`ScoreSdeVeSchedulerState`): the `FlaxScoreSdeVeScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. generator: random number generator. return_dict (`bool`): option for returning tuple rather than FlaxSdeVeOutput class Returns: [`FlaxSdeVeOutput`] or `tuple`: [`FlaxSdeVeOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.timesteps is None: raise ValueError( "`state.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction key = random.split(key, num=1) noise = random.normal(key=key, shape=sample.shape) # compute step size from the model_output, the noise, and the snr grad_norm = jnp.linalg.norm(model_output) noise_norm = jnp.linalg.norm(noise) step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 step_size = step_size * jnp.ones(sample.shape[0]) # compute corrected sample: model_output term and noise term step_size = step_size.flatten() while len(step_size.shape) < len(sample.shape): step_size = step_size[:, None] prev_sample_mean = sample + step_size * model_output prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample, state) return FlaxSdeVeOutput(prev_sample=prev_sample, state=state) def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_sde_ve_flax.py
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from scipy import integrate from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import FlaxSchedulerMixin, FlaxSchedulerOutput @flax.struct.dataclass class LMSDiscreteSchedulerState: # setable values num_inference_steps: Optional[int] = None timesteps: Optional[jnp.ndarray] = None sigmas: Optional[jnp.ndarray] = None derivatives: jnp.ndarray = jnp.array([]) @classmethod def create(cls, num_train_timesteps: int, sigmas: jnp.ndarray): return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1], sigmas=sigmas) @dataclass class FlaxLMSSchedulerOutput(FlaxSchedulerOutput): state: LMSDiscreteSchedulerState class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin): """ Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`jnp.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[jnp.ndarray] = None, ): if trained_betas is not None: self.betas = jnp.asarray(trained_betas) elif beta_schedule == "linear": self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2 else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0) self.state = LMSDiscreteSchedulerState.create( num_train_timesteps=num_train_timesteps, sigmas=((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) def get_lms_coefficient(self, state, order, t, current_order): """ Compute a linear multistep coefficient. Args: order (TODO): t (TODO): current_order (TODO): """ def lms_derivative(tau): prod = 1.0 for k in range(order): if current_order == k: continue prod *= (tau - state.sigmas[t - k]) / (state.sigmas[t - current_order] - state.sigmas[t - k]) return prod integrated_coeff = integrate.quad(lms_derivative, state.sigmas[t], state.sigmas[t + 1], epsrel=1e-4)[0] return integrated_coeff def set_timesteps( self, state: LMSDiscreteSchedulerState, num_inference_steps: int, shape: Tuple ) -> LMSDiscreteSchedulerState: """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=jnp.float32) low_idx = jnp.floor(timesteps).astype(int) high_idx = jnp.ceil(timesteps).astype(int) frac = jnp.mod(timesteps, 1.0) sigmas = jnp.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] sigmas = jnp.concatenate([sigmas, jnp.array([0.0])]).astype(jnp.float32) return state.replace( num_inference_steps=num_inference_steps, timesteps=timesteps.astype(int), derivatives=jnp.array([]), sigmas=sigmas, ) def step( self, state: LMSDiscreteSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, order: int = 4, return_dict: bool = True, ) -> Union[FlaxLMSSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. order: coefficient for multi-step inference. return_dict (`bool`): option for returning tuple rather than FlaxLMSSchedulerOutput class Returns: [`FlaxLMSSchedulerOutput`] or `tuple`: [`FlaxLMSSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ sigma = state.sigmas[timestep] # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise pred_original_sample = sample - sigma * model_output # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma state = state.replace(derivatives=state.derivatives.append(derivative)) if len(state.derivatives) > order: state = state.replace(derivatives=state.derivatives.pop(0)) # 3. Compute linear multistep coefficients order = min(timestep + 1, order) lms_coeffs = [self.get_lms_coefficient(state, order, timestep, curr_order) for curr_order in range(order)] # 4. Compute previous sample based on the derivatives path prev_sample = sample + sum( coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(state.derivatives)) ) if not return_dict: return (prev_sample, state) return FlaxLMSSchedulerOutput(prev_sample=prev_sample, state=state) def add_noise( self, state: LMSDiscreteSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: sigma = state.sigmas[timesteps].flatten() while len(sigma.shape) < len(noise.shape): sigma = sigma[..., None] noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_lms_discrete_flax.py
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from scipy import integrate from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, deprecate from .scheduling_utils import SchedulerMixin @dataclass class LMSDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[np.ndarray] = None, ): if trained_betas is not None: self.betas = torch.from_numpy(trained_betas) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas) # standard deviation of the initial noise distribution self.init_noise_sigma = self.sigmas.max() # setable values self.num_inference_steps = None timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() self.timesteps = torch.from_numpy(timesteps) self.derivatives = [] self.is_scale_input_called = False def scale_model_input( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] ) -> torch.FloatTensor: """ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. Args: sample (`torch.FloatTensor`): input sample timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain Returns: `torch.FloatTensor`: scaled input sample """ if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) step_index = (self.timesteps == timestep).nonzero().item() sigma = self.sigmas[step_index] sample = sample / ((sigma**2 + 1) ** 0.5) self.is_scale_input_called = True return sample def get_lms_coefficient(self, order, t, current_order): """ Compute a linear multistep coefficient. Args: order (TODO): t (TODO): current_order (TODO): """ def lms_derivative(tau): prod = 1.0 for k in range(order): if current_order == k: continue prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k]) return prod integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0] return integrated_coeff def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, optional): the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas).to(device=device) self.timesteps = torch.from_numpy(timesteps).to(device=device) self.derivatives = [] def step( self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, order: int = 4, return_dict: bool = True, ) -> Union[LMSDiscreteSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`float`): current timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. order: coefficient for multi-step inference. return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class Returns: [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if not self.is_scale_input_called: warnings.warn( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) if ( isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor) ): deprecate( "timestep as an index", "0.7.0", "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `LMSDiscreteScheduler.step()` will not be supported in future versions. Make sure to pass" " one of the `scheduler.timesteps` as a timestep.", standard_warn=False, ) step_index = timestep else: step_index = (self.timesteps == timestep).nonzero().item() sigma = self.sigmas[step_index] # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise pred_original_sample = sample - sigma * model_output # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma self.derivatives.append(derivative) if len(self.derivatives) > order: self.derivatives.pop(0) # 3. Compute linear multistep coefficients order = min(step_index + 1, order) lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)] # 4. Compute previous sample based on the derivatives path prev_sample = sample + sum( coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives)) ) if not return_dict: return (prev_sample,) return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.FloatTensor, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) self.timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) schedule_timesteps = self.timesteps if isinstance(timesteps, torch.IntTensor) or isinstance(timesteps, torch.LongTensor): deprecate( "timesteps as indices", "0.7.0", "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `LMSDiscreteScheduler.add_noise()` will not be supported in future versions. Make sure to" " pass values from `scheduler.timesteps` as timesteps.", standard_warn=False, ) step_indices = timesteps else: step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = self.sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_lms_discrete.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils import is_flax_available, is_scipy_available, is_torch_available if is_torch_available(): from .scheduling_ddim import DDIMScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_utils import SchedulerMixin else: from ..utils.dummy_pt_objects import * # noqa F403 if is_flax_available(): from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import FlaxSchedulerMixin else: from ..utils.dummy_flax_objects import * # noqa F403 if is_scipy_available() and is_torch_available(): from .scheduling_lms_discrete import LMSDiscreteScheduler else: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
diffusers-main
src/diffusers/schedulers/__init__.py
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import FlaxSchedulerMixin, FlaxSchedulerOutput def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> jnp.ndarray: """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return jnp.array(betas, dtype=jnp.float32) @flax.struct.dataclass class DDIMSchedulerState: # setable values timesteps: jnp.ndarray alphas_cumprod: jnp.ndarray num_inference_steps: Optional[int] = None @classmethod def create(cls, num_train_timesteps: int, alphas_cumprod: jnp.ndarray): return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1], alphas_cumprod=alphas_cumprod) @dataclass class FlaxDDIMSchedulerOutput(FlaxSchedulerOutput): state: DDIMSchedulerState class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin): """ Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with non-Markovian guidance. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details, see the original paper: https://arxiv.org/abs/2010.02502 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`jnp.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. clip_sample (`bool`, default `True`): option to clip predicted sample between -1 and 1 for numerical stability. set_alpha_to_one (`bool`, default `True`): each diffusion step uses the value of alphas product at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the value of alpha at step 0. steps_offset (`int`, default `0`): an offset added to the inference steps. You can use a combination of `offset=1` and `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in stable diffusion. """ @property def has_state(self): return True @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", set_alpha_to_one: bool = True, steps_offset: int = 0, ): if beta_schedule == "linear": self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas # HACK for now - clean up later (PVP) self._alphas_cumprod = jnp.cumprod(self.alphas, axis=0) # At every step in ddim, we are looking into the previous alphas_cumprod # For the final step, there is no previous alphas_cumprod because we are already at 0 # `set_alpha_to_one` decides whether we set this parameter simply to one or # whether we use the final alpha of the "non-previous" one. self.final_alpha_cumprod = jnp.array(1.0) if set_alpha_to_one else float(self._alphas_cumprod[0]) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 def scale_model_input( self, state: DDIMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None ) -> jnp.ndarray: """ Args: state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance. sample (`jnp.ndarray`): input sample timestep (`int`, optional): current timestep Returns: `jnp.ndarray`: scaled input sample """ return sample def create_state(self): return DDIMSchedulerState.create( num_train_timesteps=self.config.num_train_timesteps, alphas_cumprod=self._alphas_cumprod ) def _get_variance(self, timestep, prev_timestep, alphas_cumprod): alpha_prod_t = alphas_cumprod[timestep] alpha_prod_t_prev = jnp.where(prev_timestep >= 0, alphas_cumprod[prev_timestep], self.final_alpha_cumprod) beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance def set_timesteps(self, state: DDIMSchedulerState, num_inference_steps: int, shape: Tuple) -> DDIMSchedulerState: """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`DDIMSchedulerState`): the `FlaxDDIMScheduler` state data class instance. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ offset = self.config.steps_offset step_ratio = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1] timesteps = timesteps + offset return state.replace(num_inference_steps=num_inference_steps, timesteps=timesteps) def step( self, state: DDIMSchedulerState, model_output: jnp.ndarray, timestep: int, sample: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxDDIMSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: state (`DDIMSchedulerState`): the `FlaxDDIMScheduler` state data class instance. model_output (`jnp.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`jnp.ndarray`): current instance of sample being created by diffusion process. key (`random.KeyArray`): a PRNG key. eta (`float`): weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`): TODO return_dict (`bool`): option for returning tuple rather than FlaxDDIMSchedulerOutput class Returns: [`FlaxDDIMSchedulerOutput`] or `tuple`: [`FlaxDDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if state.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # TODO(Patrick) - eta is always 0.0 for now, allow to be set in step function eta = 0.0 # 1. get previous step value (=t-1) prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps alphas_cumprod = state.alphas_cumprod # 2. compute alphas, betas alpha_prod_t = alphas_cumprod[timestep] alpha_prod_t_prev = jnp.where(prev_timestep >= 0, alphas_cumprod[prev_timestep], self.final_alpha_cumprod) beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) # 4. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) variance = self._get_variance(timestep, prev_timestep, alphas_cumprod) std_dev_t = eta * variance ** (0.5) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, state) return FlaxDDIMSchedulerOutput(prev_sample=prev_sample, state=state) def add_noise( self, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray, ) -> jnp.ndarray: sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod[:, None] sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.0 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod[:, None] noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_ddim_flax.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass import torch from ..utils import BaseOutput SCHEDULER_CONFIG_NAME = "scheduler_config.json" @dataclass class SchedulerOutput(BaseOutput): """ Base class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.FloatTensor class SchedulerMixin: """ Mixin containing common functions for the schedulers. """ config_name = SCHEDULER_CONFIG_NAME
diffusers-main
src/diffusers/schedulers/scheduling_utils.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass import jax.numpy as jnp from ..utils import BaseOutput SCHEDULER_CONFIG_NAME = "scheduler_config.json" @dataclass class FlaxSchedulerOutput(BaseOutput): """ Base class for the scheduler's step function output. Args: prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: jnp.ndarray class FlaxSchedulerMixin: """ Mixin containing common functions for the schedulers. """ config_name = SCHEDULER_CONFIG_NAME
diffusers-main
src/diffusers/schedulers/scheduling_utils_flax.py
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class SdeVeOutput(BaseOutput): """ Output class for the ScoreSdeVeScheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Mean averaged `prev_sample`. Same as `prev_sample`, only mean-averaged over previous timesteps. """ prev_sample: torch.FloatTensor prev_sample_mean: torch.FloatTensor class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin): """ The variance exploding stochastic differential equation (SDE) scheduler. For more information, see the original paper: https://arxiv.org/abs/2011.13456 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. snr (`float`): coefficient weighting the step from the model_output sample (from the network) to the random noise. sigma_min (`float`): initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the distribution of the data. sigma_max (`float`): maximum value used for the range of continuous timesteps passed into the model. sampling_eps (`float`): the end value of sampling, where timesteps decrease progressively from 1 to epsilon. correct_steps (`int`): number of correction steps performed on a produced sample. """ @register_to_config def __init__( self, num_train_timesteps: int = 2000, snr: float = 0.15, sigma_min: float = 0.01, sigma_max: float = 1348.0, sampling_eps: float = 1e-5, correct_steps: int = 1, ): # standard deviation of the initial noise distribution self.init_noise_sigma = sigma_max # setable values self.timesteps = None self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps) def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep Returns: `torch.FloatTensor`: scaled input sample """ return sample def set_timesteps( self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None ): """ Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). """ sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device) def set_sigmas( self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None ): """ Sets the noise scales used for the diffusion chain. Supporting function to be run before inference. The sigmas control the weight of the `drift` and `diffusion` components of sample update. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. sigma_min (`float`, optional): initial noise scale value (overrides value given at Scheduler instantiation). sigma_max (`float`, optional): final noise scale value (overrides value given at Scheduler instantiation). sampling_eps (`float`, optional): final timestep value (overrides value given at Scheduler instantiation). """ sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(num_inference_steps, sampling_eps) self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps)) self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def get_adjacent_sigma(self, timesteps, t): return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def step_pred( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[SdeVeOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. generator: random number generator. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) timestep = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) timesteps = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda timesteps = timesteps.to(self.discrete_sigmas.device) sigma = self.discrete_sigmas[timesteps].to(sample.device) adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device) drift = torch.zeros_like(sample) diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods diffusion = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): diffusion = diffusion.unsqueeze(-1) drift = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of noise = torch.randn(sample.shape, layout=sample.layout, generator=generator).to(sample.device) prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean) def step_correct( self, model_output: torch.FloatTensor, sample: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Correct the predicted sample based on the output model_output of the network. This is often run repeatedly after making the prediction for the previous timestep. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. generator: random number generator. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction noise = torch.randn(sample.shape, layout=sample.layout, generator=generator).to(sample.device) # compute step size from the model_output, the noise, and the snr grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 step_size = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term step_size = step_size.flatten() while len(step_size.shape) < len(sample.shape): step_size = step_size.unsqueeze(-1) prev_sample_mean = sample + step_size * model_output prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_sde_ve.py
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, deprecate from .scheduling_utils import SchedulerMixin @dataclass class DDIMSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor: """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas) class DDIMScheduler(SchedulerMixin, ConfigMixin): """ Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with non-Markovian guidance. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details, see the original paper: https://arxiv.org/abs/2010.02502 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. clip_sample (`bool`, default `True`): option to clip predicted sample between -1 and 1 for numerical stability. set_alpha_to_one (`bool`, default `True`): each diffusion step uses the value of alphas product at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the value of alpha at step 0. steps_offset (`int`, default `0`): an offset added to the inference steps. You can use a combination of `offset=1` and `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in stable diffusion. """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[np.ndarray] = None, clip_sample: bool = True, set_alpha_to_one: bool = True, steps_offset: int = 0, ): if trained_betas is not None: self.betas = torch.from_numpy(trained_betas) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # At every step in ddim, we are looking into the previous alphas_cumprod # For the final step, there is no previous alphas_cumprod because we are already at 0 # `set_alpha_to_one` decides whether we set this parameter simply to one or # whether we use the final alpha of the "non-previous" one. self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.num_inference_steps = None self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep Returns: `torch.FloatTensor`: scaled input sample """ return sample def _get_variance(self, timestep, prev_timestep): alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs): """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ deprecated_offset = deprecate( "offset", "0.7.0", "Please pass `steps_offset` to `__init__` instead.", take_from=kwargs ) offset = deprecated_offset or self.config.steps_offset self.num_inference_steps = num_inference_steps step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy() self.timesteps = torch.from_numpy(timesteps).to(device) self.timesteps += offset def step( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, eta: float = 0.0, use_clipped_model_output: bool = False, generator=None, return_dict: bool = True, ) -> Union[DDIMSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. eta (`float`): weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`): TODO generator: random number generator. return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class Returns: [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) # 4. Clip "predicted x_0" if self.config.clip_sample: pred_original_sample = torch.clamp(pred_original_sample, -1, 1) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) variance = self._get_variance(timestep, prev_timestep) std_dev_t = eta * variance ** (0.5) if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 device = model_output.device if torch.is_tensor(model_output) else "cpu" noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator).to(device) variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise prev_sample = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_ddim.py
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim import math from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import deprecate from .scheduling_utils import SchedulerMixin, SchedulerOutput def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class PNDMScheduler(SchedulerMixin, ConfigMixin): """ Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques, namely Runge-Kutta method and a linear multi-step method. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and [`~ConfigMixin.from_config`] functions. For more details, see the original paper: https://arxiv.org/abs/2202.09778 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. skip_prk_steps (`bool`): allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required before plms steps; defaults to `False`. set_alpha_to_one (`bool`, default `False`): each diffusion step uses the value of alphas product at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the value of alpha at step 0. steps_offset (`int`, default `0`): an offset added to the inference steps. You can use a combination of `offset=1` and `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in stable diffusion. """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[np.ndarray] = None, skip_prk_steps: bool = False, set_alpha_to_one: bool = False, steps_offset: int = 0, ): if trained_betas is not None: self.betas = torch.from_numpy(trained_betas) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. self.pndm_order = 4 # running values self.cur_model_output = 0 self.counter = 0 self.cur_sample = None self.ets = [] # setable values self.num_inference_steps = None self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy() self.prk_timesteps = None self.plms_timesteps = None self.timesteps = None def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs): """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ deprecated_offset = deprecate( "offset", "0.7.0", "Please pass `steps_offset` to `__init__` instead.", take_from=kwargs ) offset = deprecated_offset or self.config.steps_offset self.num_inference_steps = num_inference_steps step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round() self._timesteps += offset if self.config.skip_prk_steps: # for some models like stable diffusion the prk steps can/should be skipped to # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51 self.prk_timesteps = np.array([]) self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[ ::-1 ].copy() else: prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile( np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order ) self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy() self.plms_timesteps = self._timesteps[:-3][ ::-1 ].copy() # we copy to avoid having negative strides which are not supported by torch.from_numpy timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64) self.timesteps = torch.from_numpy(timesteps).to(device) self.ets = [] self.counter = 0 def step( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps: return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) else: return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) def step_prk( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the solution to the differential equation. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2 prev_timestep = timestep - diff_to_prev timestep = self.prk_timesteps[self.counter // 4 * 4] if self.counter % 4 == 0: self.cur_model_output += 1 / 6 * model_output self.ets.append(model_output) self.cur_sample = sample elif (self.counter - 1) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (self.counter - 2) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (self.counter - 3) % 4 == 0: model_output = self.cur_model_output + 1 / 6 * model_output self.cur_model_output = 0 # cur_sample should not be `None` cur_sample = self.cur_sample if self.cur_sample is not None else sample prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output) self.counter += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def step_plms( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple times to approximate the solution. Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if not self.config.skip_prk_steps and len(self.ets) < 3: raise ValueError( f"{self.__class__} can only be run AFTER scheduler has been run " "in 'prk' mode for at least 12 iterations " "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py " "for more information." ) prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps if self.counter != 1: self.ets.append(model_output) else: prev_timestep = timestep timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps if len(self.ets) == 1 and self.counter == 0: model_output = model_output self.cur_sample = sample elif len(self.ets) == 1 and self.counter == 1: model_output = (model_output + self.ets[-1]) / 2 sample = self.cur_sample self.cur_sample = None elif len(self.ets) == 2: model_output = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output) self.counter += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample Returns: `torch.FloatTensor`: scaled input sample """ return sample def _get_prev_sample(self, sample, timestep, prev_timestep, model_output): # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf # this function computes x_(t−δ) using the formula of (9) # Note that x_t needs to be added to both sides of the equation # Notation (<variable name> -> <name in paper> # alpha_prod_t -> α_t # alpha_prod_t_prev -> α_(t−δ) # beta_prod_t -> (1 - α_t) # beta_prod_t_prev -> (1 - α_(t−δ)) # sample -> x_t # model_output -> e_θ(x_t, t) # prev_sample -> x_(t−δ) alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # corresponds to (α_(t−δ) - α_t) divided by # denominator of x_t in formula (9) and plus 1 # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) = # sqrt(α_(t−δ)) / sqrt(α_t)) sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) # corresponds to denominator of e_θ(x_t, t) in formula (9) model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( alpha_prod_t * beta_prod_t * alpha_prod_t_prev ) ** (0.5) # full formula (9) prev_sample = ( sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff ) return prev_sample def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers-main
src/diffusers/schedulers/scheduling_pndm.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2021 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import re import collections import string import json import math import logging from tqdm import tqdm from transformer.tokenization import BasicTokenizer, whitespace_tokenize logger = logging.getLogger() RawResult = collections.namedtuple("RawResult",["unique_id", "start_logits", "end_logits"]) def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def get_tokens(s): if not s: return [] return normalize_answer(s).split() def compute_exact(a_gold, a_pred): return int(normalize_answer(a_gold) == normalize_answer(a_pred)) def compute_f1(a_gold, a_pred): gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return (normalize_answer(prediction) == normalize_answer(ground_truth)) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = collections.Counter(prediction_tokens) & collections.Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 1 for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: total += 1 if qa['id'] not in predictions: message = 'Unanswered question ' + qa['id'] + \ ' will receive score 0.' print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x['text'], qa['answers'])) prediction = predictions[qa['id']] exact_match += metric_max_over_ground_truths( exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths( f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {'exact_match': exact_match, 'f1': f1} # methods for SQuAD2.0 evaluation def make_qid_to_has_ans(dataset): qid_to_has_ans = {} for article in dataset: for p in article['paragraphs']: for qa in p['qas']: qid_to_has_ans[qa['id']] = bool(qa['answers']) return qid_to_has_ans def get_raw_scores(dataset, preds): exact_scores = {} f1_scores = {} for article in dataset: for p in article['paragraphs']: for qa in p['qas']: qid = qa['id'] gold_answers = [a['text'] for a in qa['answers'] if normalize_answer(a['text'])] if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [''] if qid not in preds: print('Missing prediction for %s' % qid) continue a_pred = preds[qid] # Take max over all gold answers exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers) f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers) return exact_scores, f1_scores def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def make_eval_dict(exact_scores, f1_scores, qid_list=None): if not qid_list: total = len(exact_scores) return collections.OrderedDict([ ('exact_match', 100.0 * sum(exact_scores.values()) / total), ('f1', 100.0 * sum(f1_scores.values()) / total), ('total', total), ]) else: total = len(qid_list) return collections.OrderedDict([ ('exact_match', 100.0 * sum(exact_scores[k] for k in qid_list) / total), ('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total), ('total', total), ]) def evaluate_v2(dataset, predictions): na_probs = {k: 0.0 for k in predictions} qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(dataset, predictions) exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans, 1.0) f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans, 1.0) out_eval = make_eval_dict(exact_thresh, f1_thresh) return out_eval class SquadExample(object): """ A single training/test example for the Squad dataset. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=None): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (self.qas_id) s += ", question_text: %s" % ( self.question_text) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.end_position: s += ", end_position: %d" % (self.end_position) if self.is_impossible: s += ", is_impossible: %r" % (self.is_impossible) return s class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, start_position=None, end_position=None, is_impossible=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training): """Loads a data file into a list of `InputBatch`s.""" unique_id = 1000000000 features = [] for (example_index, example) in tqdm(enumerate(examples)): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length start_position = None end_position = None if is_training and not example.is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and example.is_impossible: start_position = 0 end_position = 0 if example_index < 1: logger.info("*** Example ***") logger.info("unique_id: %s" % (unique_id)) logger.info("example_index: %s" % (example_index)) logger.info("doc_span_index: %s" % (doc_span_index)) logger.info("tokens: %s" % " ".join(tokens)) logger.info("token_to_orig_map: %s" % " ".join([ "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()])) logger.info("token_is_max_context: %s" % " ".join([ "%d:%s" % (x, y) for (x, y) in token_is_max_context.items() ])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info( "input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) if is_training and example.is_impossible: logger.info("impossible example") if is_training and not example.is_impossible: answer_text = " ".join(tokens[start_position:(end_position + 1)]) logger.info("start_position: %d" % (start_position)) logger.info("end_position: %d" % (end_position)) logger.info( "answer: %s" % (answer_text)) features.append( InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position, is_impossible=example.is_impossible)) unique_id += 1 return features def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heuristic between # `pred_text` and `orig_text` to get a character-to-character alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logger.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logger.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logger.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logger.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, verbose_logging, version_2_with_negative, null_score_diff_threshold,dev_dataset): example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min null score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't include the empty option in the n-best, include it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could only have single null prediction. # So we just create a nonce prediction in this case to avoid failure. if len(nbest) == 1: nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json if version_2_with_negative: result = evaluate_v2(dev_dataset, all_predictions) else: result = evaluate(dev_dataset, all_predictions) return result def read_squad_examples(input_file, is_training, version_2_with_negative): """Read a SQuAD json file into a list of SquadExample.""" with open(input_file, "r", encoding='utf-8') as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] cnt = 500000 for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if version_2_with_negative: if 'is_impossible' not in qa: qa['is_impossible'] = True is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) if len(examples) > cnt: break if len(examples) > cnt: break if len(examples) > cnt: break logger.info('load {} examples!'.format(len(examples))) return input_data,examples
bit-main
utils_squad.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # 2022.09.25 - Add distill_attn argument for removing attention distillation # Meta Platforms, Inc. <[email protected]> # # Copyright 2021 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import logging from transformer.file_utils import WEIGHTS_NAME, CONFIG_NAME, MISC_NAME from tqdm import tqdm, trange from torch.nn import CrossEntropyLoss, MSELoss from transformer.optimization import BertAdam from helper import * from utils_glue import * import numpy as np import pickle logging.basicConfig(level=logging.INFO) class KDLearner(object): def __init__(self, args, device, student_model, teacher_model=None,num_train_optimization_steps=None): self.args = args self.device = device self.n_gpu = torch.cuda.device_count() self.student_model = student_model self.teacher_model = teacher_model self.num_train_optimization_steps = num_train_optimization_steps self._check_params() def build(self, lr=None): self.prev_global_step = 0 if (self.args.distill_rep or self.args.distill_attn) and not self.args.distill_logit: stage = 'kd_stage1' elif self.args.distill_logit and not (self.args.distill_rep or self.args.distill_attn): stage = 'kd_stage2' elif self.args.distill_logit and (self.args.distill_rep or self.args.distill_attn): stage = 'kd_joint' else: stage = 'nokd' self.output_dir = os.path.join(self.args.output_dir, stage) if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) param_optimizer = list(self.student_model.named_parameters()) self.clip_params = {} for k, v in param_optimizer: if 'clip_' in k: self.clip_params[k] = v no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if (not any(nd in n for nd in no_decay) and not 'clip_' in n)], 'weight_decay': self.args.weight_decay}, {'params': [p for n, p in param_optimizer if (any(nd in n for nd in no_decay) and not 'clip_' in n)], 'weight_decay': 0.0}, {'params': [p for n, p in self.clip_params.items()], 'lr': self.args.clip_lr, 'weight_decay': self.args.clip_wd}, ] schedule = 'warmup_linear' learning_rate = self.args.learning_rate if not lr else lr self.optimizer = BertAdam(optimizer_grouped_parameters, schedule=schedule, lr=learning_rate, warmup=self.args.warmup_proportion, t_total=self.num_train_optimization_steps) logging.info("Optimizer prepared.") self._check_quantized_modules() self._setup_grad_scale_stats() def _do_eval(self, model, task_name, eval_dataloader, output_mode, eval_labels, num_labels): eval_loss = 0 nb_eval_steps = 0 preds = [] for batch_ in tqdm(eval_dataloader, desc="Evaluating"): batch_ = tuple(t.to(self.device) for t in batch_) with torch.no_grad(): input_ids, input_mask, segment_ids, label_ids, seq_lengths = batch_ logits, _, _ = model(input_ids, segment_ids, input_mask) # create eval loss and other metric required by the task if output_mode == "classification": loss_fct = CrossEntropyLoss() tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1)) elif output_mode == "regression": loss_fct = MSELoss() tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1)) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if len(preds) == 0: preds.append(logits.detach().cpu().numpy()) else: preds[0] = np.append( preds[0], logits.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = preds[0] if output_mode == "classification": preds = np.argmax(preds, axis=1) elif output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(task_name, preds, eval_labels.numpy()) result['eval_loss'] = eval_loss return result def evaluate(self, task_name, eval_dataloader, output_mode, eval_labels, num_labels, eval_examples, mm_eval_dataloader, mm_eval_labels): """ Evalutaion of checkpoints from models/. directly use args.student_model """ self.student_model.eval() result = self._do_eval(self.student_model, task_name, eval_dataloader, output_mode, eval_labels, num_labels) logging.info("***** Running evaluation, Task: %s, Job_id: %s *****" % (self.args.task_name, self.args.job_id)) logging.info(" Num examples = %d", len(eval_examples)) logging.info(" Batch size = %d", self.args.batch_size) logging.info("***** Eval results, Task: %s, Job_id: %s *****" % (self.args.task_name, self.args.job_id)) for key in sorted(result.keys()): logging.info(" %s = %s", key, str(result[key])) if task_name == "mnli": logging.info('MNLI-mm Evaluation') result = self._do_eval(self.student_model, 'mnli-mm', mm_eval_dataloader, output_mode, mm_eval_labels, num_labels) tmp_output_eval_file = os.path.join(self.args.output_dir + '-MM', "eval_results.txt") result_to_file(result, tmp_output_eval_file) def train(self, train_examples, task_name, output_mode, eval_labels, num_labels, train_dataloader, eval_dataloader, eval_examples, tokenizer, mm_eval_labels, mm_eval_dataloader): """ quant-aware pretraining + KD """ loss_mse = MSELoss() self.teacher_model.eval() teacher_results = self._do_eval(self.teacher_model, task_name, eval_dataloader, output_mode, eval_labels, num_labels) logging.info("Teacher network evaluation") for key in sorted(teacher_results.keys()): logging.info(" %s = %s", key, str(teacher_results[key])) self.teacher_model.train() global_step = self.prev_global_step best_dev_acc = 0.0 output_eval_file = os.path.join(self.args.output_dir, "eval_results.txt") logging.info("***** Running training, Task: %s, Job id: %s*****" % (self.args.task_name, self.args.job_id)) logging.info(" Distill rep: %d, Distill attn: %d, Distill logit: %d" % (self.args.distill_rep, self.args.distill_attn, self.args.distill_logit)) logging.info(" Num examples = %d", len(train_examples)) logging.info(" Batch size = %d", self.args.batch_size) logging.info(" Num steps = %d", self.num_train_optimization_steps) global_tr_loss = 0 for epoch_ in range(self.args.num_train_epochs): tr_loss = 0. tr_att_loss = 0. tr_rep_loss = 0. tr_cls_loss = 0. nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(train_dataloader): self.student_model.train() batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, label_ids, seq_lengths = batch att_loss = 0. rep_loss = 0. cls_loss = 0. rep_loss_layerwise = [] att_loss_layerwise = [] student_logits, student_atts, student_reps = self.student_model(input_ids, segment_ids, input_mask) if self.args.distill_logit or self.args.distill_rep or self.args.distill_attn: with torch.no_grad(): teacher_logits, teacher_atts, teacher_reps = self.teacher_model(input_ids, segment_ids, input_mask) loss = 0. if self.args.distill_logit: cls_loss = soft_cross_entropy(student_logits / self.args.temperature, teacher_logits / self.args.temperature) loss += cls_loss tr_cls_loss += cls_loss.item() if self.args.distill_rep or self.args.distill_attn: for student_att, teacher_att in zip(student_atts, teacher_atts): student_att = torch.where(student_att <= -1e2, torch.zeros_like(student_att).to(self.device), student_att) teacher_att = torch.where(teacher_att <= -1e2, torch.zeros_like(teacher_att).to(self.device), teacher_att) tmp_loss = loss_mse(student_att, teacher_att) att_loss += tmp_loss att_loss_layerwise.append(tmp_loss.item()) for student_rep, teacher_rep in zip(student_reps, teacher_reps): tmp_loss = loss_mse(student_rep, teacher_rep) rep_loss += tmp_loss rep_loss_layerwise.append(tmp_loss.item()) tr_att_loss += att_loss.item() tr_rep_loss += rep_loss.item() if self.args.distill_rep: loss += rep_loss if self.args.distill_attn: loss += att_loss else: if output_mode == "classification": loss_fct = CrossEntropyLoss() loss = loss_fct(student_logits, label_ids.view(-1)) elif output_mode == "regression": loss_mse = MSELoss() loss = loss_mse(student_logits.view(-1), label_ids.view(-1)) if self.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if self.args.gradient_accumulation_steps > 1: loss = loss / self.args.gradient_accumulation_steps loss.backward() tr_loss += loss.item() global_tr_loss += loss.item() nb_tr_examples += label_ids.size(0) nb_tr_steps += 1 # evaluation and save model if global_step % self.args.eval_step == 0 or \ global_step == len(train_dataloader)-1: logging.info(" Epoch = {} iter {} step".format(epoch_, global_step)) logging.info(" Num examples = %d", len(eval_examples)) logging.info(f" Previous best = {best_dev_acc}") loss = tr_loss / (step + 1) global_avg_loss = global_tr_loss / (global_step + 1) cls_loss = tr_cls_loss / (step + 1) att_loss = tr_att_loss / (step + 1) rep_loss = tr_rep_loss / (step + 1) self.student_model.eval() result = self._do_eval(self.student_model, task_name, eval_dataloader, output_mode, eval_labels, num_labels) result['global_step'] = global_step result['cls_loss'] = cls_loss result['att_loss'] = att_loss result['rep_loss'] = rep_loss result['loss'] = loss result['global_loss'] = global_avg_loss preds = student_logits.detach().cpu().numpy() train_label = label_ids.cpu().numpy() if output_mode == "classification": preds = np.argmax(preds, axis=1) elif output_mode == "regression": preds = np.squeeze(preds) result['train_batch_acc'] = list(compute_metrics(task_name, preds, train_label).values())[0] if self.args.distill_rep or self.args.distill_attn: logging.info("embedding layer rep_loss: %.8f" % (rep_loss_layerwise[0])) rep_loss_layerwise = rep_loss_layerwise[1:] for lid in range(len(rep_loss_layerwise)): logging.info("layer %d rep_loss: %.8f" % (lid+1, rep_loss_layerwise[lid])) logging.info("layer %d att_loss: %.8f" % (lid+1, att_loss_layerwise[lid])) result_to_file(result, output_eval_file) save_model = False if task_name in acc_tasks and result['acc'] > best_dev_acc: best_dev_acc = result['acc'] save_model = True if task_name in corr_tasks and result['corr'] > best_dev_acc: best_dev_acc = result['corr'] save_model = True if task_name in mcc_tasks and result['mcc'] > best_dev_acc: best_dev_acc = result['mcc'] save_model = True if save_model: self._save() if task_name == "mnli": logging.info('MNLI-mm Evaluation') result = self._do_eval(self.student_model, 'mnli-mm', mm_eval_dataloader, output_mode, mm_eval_labels, num_labels) result['global_step'] = global_step if not os.path.exists(self.output_dir + '-MM'): os.makedirs(self.output_dir + '-MM') tmp_output_eval_file = os.path.join(self.output_dir + '-MM', "eval_results.txt") result_to_file(result, tmp_output_eval_file) # if self.args.quantize_weight: # self.quanter.restore() if (step + 1) % self.args.gradient_accumulation_steps == 0: self.optimizer.step() self.optimizer.zero_grad() global_step += 1 def _save(self): logging.info("******************** Save model ********************") model_to_save = self.student_model.module if hasattr(self.student_model, 'module') else self.student_model output_model_file = os.path.join(self.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(self.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def _check_params(self): if not self.args.do_eval: assert self.teacher_model, 'teacher model must not be None in train mode.' def _check_quantized_modules(self): logging.info("Checking module types.") for k, m in self.student_model.named_modules(): if isinstance(m, torch.nn.Linear): logging.info('%s: %s' % (k, str(m))) def _setup_grad_scale_stats(self): self.grad_scale_stats = {'weight': None, \ 'bias': None, \ 'layer_norm': None, \ 'step_size/clip_val': None} self.ema_grad = 0.9 def check_grad_scale(self): logging.info("Check grad scale ratio: grad/w") for k, v in self.student_model.named_parameters(): if v.grad is not None: has_grad = True ratio = v.grad.norm(p=2) / v.data.norm(p=2) # print('%.6e, %s' % (ratio.float(), k)) else: has_grad = False logging.info('params: %s has no gradient' % k) continue # update grad_scale stats if 'weight' in k and v.ndimension() == 2: key = 'weight' elif 'bias' in k and v.ndimension() == 1: key = 'bias' elif 'LayerNorm' in k and 'weight' in k and v.ndimension() == 1: key = 'layer_norm' elif 'clip_' in k: key = 'step_size/clip_val' else: key = None if key and has_grad: if self.grad_scale_stats[key]: self.grad_scale_stats[key] = self.ema_grad * self.grad_scale_stats[key] + (1-self.ema_grad) * ratio else: self.grad_scale_stats[key] = ratio for (key, val) in self.grad_scale_stats.items(): if val is not None: logging.info('%.6e, %s' % (val, key))
bit-main
kd_learner_glue.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2021 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import string import random import torch def generate_job_id(): return ''.join(random.sample(string.ascii_letters+string.digits, 5)) def init_logging(log_path): if not os.path.isdir(os.path.dirname(log_path)): print("Log path does not exist. Create a new one.") os.makedirs(os.path.dirname(log_path)) if os.path.exists(log_path): print("%s already exists. replace it with current experiment." % log_path) os.system('rm %s' % log_path) logger = logging.getLogger() logger.setLevel(logging.INFO) logFormatter = logging.Formatter('%(asctime)s [%(levelname)s]: %(message)s') fileHandler = logging.FileHandler(log_path) fileHandler.setFormatter(logFormatter) logger.addHandler(fileHandler) consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logFormatter) logger.addHandler(consoleHandler) def print_args(args): for k, v in zip(args.keys(), args.values()): logging.info("{0}: {1}".format(k, v)) def soft_cross_entropy(predicts, targets): student_likelihood = torch.nn.functional.log_softmax(predicts, dim=-1) targets_prob = torch.nn.functional.softmax(targets, dim=-1) return (- targets_prob * student_likelihood).mean() def visualize_clip(clip_dict): # assert len(clip_dict) > 0, 'empty clip_dict, possibly not learnable_scalling.' logging.info("Visualizing learnable clipping vals...") for n, p in clip_dict.items(): if p.nelement() == 2: # PACT clip val has two elements logging.info("PACT clip_val: %s: (%.4f, %.4f)" % (n, p[0].item(), p[1].item())) elif p.nelement() == 1: # Alpha has only one element logging.info("Alpha: %s: %.4f" % (n, p.item())) def result_to_file(result, file_name): with open(file_name, "a") as writer: logging.info("***** Eval results *****") for key in sorted(result.keys()): if result[key]>0.0: logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key])))
bit-main
helper.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # 2022.09.25 - Add support for using quantized Bert model as teacher # Meta Platforms, Inc. <[email protected]> # # Copyright 2021 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import argparse import os import random import numpy as np import torch import copy from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.nn import MSELoss from transformer.configuration_bert import BertConfig from transformer.tokenization import BertTokenizer from transformer.optimization import BertAdam, WarmupLinearSchedule from transformer.file_utils import WEIGHTS_NAME, CONFIG_NAME from transformer.modeling_bert import BertForQuestionAnswering from transformer.modeling_bert_quant import BertForQuestionAnswering as QuantBertForQuestionAnswering from helper import * import pickle from kd_learner_squad import KDLearner from utils_squad import write_predictions,read_squad_examples,InputFeatures,convert_examples_to_features def main(): parser = argparse.ArgumentParser() parser.add_argument("--job_id", default='tmp', type=str, help='jobid to save training logs') parser.add_argument("--data_dir", default=None, type=str,help="The root dir of glue data") parser.add_argument("--teacher_model", default='', type=str, help="The teacher model dir.") parser.add_argument("--student_model", default='', type=str, help="The student model dir.") parser.add_argument("--vocab_dir", default='', type=str, help="The vocab.txt dir.") parser.add_argument("--task_name", default=None, type=str, help="The name of the glue task to train.") parser.add_argument("--output_dir", default='output', type=str,help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument("--max_seq_length", default=None, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences longer than this will be truncated, and sequences shorter than this will be padded.") parser.add_argument("--batch_size", default=None, type=int, help="Total batch size for training.") parser.add_argument("--learning_rate", default=None, type=float, help="The initial learning rate for Adam.") parser.add_argument('--weight_decay', '--wd', default=0.01, type=float, metavar='W', help='weight decay') parser.add_argument("--num_train_epochs", default=None, type=int, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--do_eval", action='store_true') parser.add_argument('--eval_step', type=int, default=100) # distillation params parser.add_argument('--aug_train', action='store_true', help="Whether using data augmentation or not") parser.add_argument('--distill_logit', action='store_true', help="Whether using distillation logits or not") parser.add_argument('--distill_rep', action='store_true', help="Whether using distillation reps or not") parser.add_argument('--distill_attn', action='store_true', help="Whether using distillation attns or not") parser.add_argument('--temperature', type=float, default=1.) # quantization params parser.add_argument("--weight_bits", default=1, type=int, help="number of bits for weight") parser.add_argument("--weight_quant_method", default='bwn', type=str, choices=['bwn', 'uniform'], help="weight quantization methods") parser.add_argument("--input_bits", default=1, type=int, help="number of bits for activation") parser.add_argument("--input_quant_method", default='uniform', type=str, help="weight quantization methods") parser.add_argument('--not_quantize_attention', action='store_true', help="Keep attention calculations in 32-bit.") parser.add_argument('--learnable_scaling', action='store_true', default=True) parser.add_argument("--ACT2FN", default='relu', type=str, help='use relu for positive outputs.') # training config parser.add_argument('--sym_quant_ffn_attn', action='store_true', help='whether use sym quant for attn score and ffn after act') # default asym parser.add_argument('--sym_quant_qkvo', action='store_true', default=True, help='whether use asym quant for Q/K/V and others.') # default sym parser.add_argument('--clip_init_file', default='threshold_std.pkl', help='files to restore init clip values.') parser.add_argument('--clip_init_val', default=2.5, type=float, help='init value of clip_vals, default to (-2.5, +2.5).') parser.add_argument('--clip_lr', default=1e-4, type=float, help='Use a seperate lr for clip_vals / stepsize') parser.add_argument('--clip_wd', default=0.0, type=float, help='weight decay for clip_vals / stepsize') # layerwise quantization config parser.add_argument('--embed_layerwise', default=False, type=lambda x: bool(int(x))) parser.add_argument('--weight_layerwise', default=True, type=lambda x: bool(int(x))) parser.add_argument('--input_layerwise', default=True, type=lambda x: bool(int(x))) parser.add_argument('--version_2_with_negative', action='store_true') parser.add_argument("--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.") parser.add_argument("--max_query_length", default=64, type=int, help="The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument("--max_answer_length", default=30, type=int, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument('--null_score_diff_threshold', type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.") args = parser.parse_args() args.do_lower_case = True log_dir = os.path.join(args.output_dir, 'record_%s.log' % args.job_id) init_logging(log_dir) print_args(vars(args)) # Prepare devices device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() logging.info("device: {} n_gpu: {}".format(device, n_gpu)) # Prepare seed random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) tokenizer = BertTokenizer.from_pretrained(args.teacher_model, do_lower_case=True) config = BertConfig.from_pretrained(args.teacher_model) config.num_labels = 2 student_config = copy.deepcopy(config) student_config.weight_bits = args.weight_bits student_config.input_bits = args.input_bits student_config.weight_quant_method = args.weight_quant_method student_config.input_quant_method = args.input_quant_method student_config.clip_init_val = args.clip_init_val student_config.learnable_scaling = args.learnable_scaling student_config.sym_quant_qkvo = args.sym_quant_qkvo student_config.sym_quant_ffn_attn = args.sym_quant_ffn_attn student_config.embed_layerwise = args.embed_layerwise student_config.weight_layerwise = args.weight_layerwise student_config.input_layerwise = args.input_layerwise student_config.hidden_act = args.ACT2FN student_config.not_quantize_attention = args.not_quantize_attention logging.info("***** Training data *****") input_file = 'train-v2.0.json' if args.version_2_with_negative else 'train-v1.1.json' input_file = os.path.join(args.data_dir,input_file) if os.path.exists(input_file+'.features.pkl'): logging.info(" loading from cache %s", input_file+'.features.pkl') train_features = pickle.load(open(input_file+'.features.pkl', 'rb')) else: _, train_examples = read_squad_examples(input_file=input_file, is_training=True, version_2_with_negative=args.version_2_with_negative) train_features = convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=True) pickle.dump(train_features, open(input_file+'.features.pkl','wb')) args.batch_size = args.batch_size // args.gradient_accumulation_steps num_train_optimization_steps = int( len(train_features) / args.batch_size / args.gradient_accumulation_steps) * args.num_train_epochs logging.info(" Num examples = %d", len(train_features)) logging.info(" Num total steps = %d", num_train_optimization_steps) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size) logging.info("***** Evaluation data *****") input_file = 'dev-v2.0.json' if args.version_2_with_negative else 'dev-v1.1.json' args.dev_file = os.path.join(args.data_dir,input_file) dev_dataset, eval_examples = read_squad_examples( input_file=args.dev_file, is_training=False, version_2_with_negative=args.version_2_with_negative) eval_features = convert_examples_to_features( examples=eval_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=False) logging.info(" Num examples = %d", len(eval_features)) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size) if not args.do_eval: if hasattr(config, "input_bits") and config.input_bits < 32: teacher_model = QuantBertForQuestionAnswering.from_pretrained(args.teacher_model, config=config) else: teacher_model = BertForQuestionAnswering.from_pretrained(args.teacher_model, config=config) teacher_model.to(device) if n_gpu > 1: teacher_model = torch.nn.DataParallel(teacher_model) student_model = QuantBertForQuestionAnswering.from_pretrained(args.student_model, config=student_config) student_model.to(device) if n_gpu > 1: student_model = torch.nn.DataParallel(student_model) learner = KDLearner(args, device, student_model, teacher_model,num_train_optimization_steps) if args.do_eval: """ evaluation """ learner.eval(student_model, eval_dataloader, eval_features, eval_examples, dev_dataset) return 0 learner.args.distill_logit = True learner.args.distill_rep = True learner.args.distill_attn = False learner.build(lr=args.learning_rate) learner.train(train_dataloader, eval_dataloader, eval_features, eval_examples, dev_dataset) del learner return 0 if __name__ == "__main__": main()
bit-main
quant_task_distill_squad.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # 2022.09.25 - Add default learning rate and batch size # Meta Platforms, Inc. <[email protected]> # # Copyright 2021 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import sys import csv from scipy.stats import pearsonr, spearmanr from sklearn.metrics import matthews_corrcoef, f1_score import torch from torch.utils.data import TensorDataset logger = logging.getLogger() acc_tasks = ["mnli", "mrpc", "sst-2", "qqp", "qnli", "rte"] corr_tasks = ["sts-b"] mcc_tasks = ["cola"] class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, seq_length=None): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.seq_length = seq_length self.label_id = label_id class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for the test set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_aug_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train_aug.tsv")), "aug") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] if set_type == 'test': label = None else: label = line[0] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test") def get_aug_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train_aug.tsv")), "aug") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] if set_type == 'test': label = None else: label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test") class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_aug_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train_aug.tsv")), "aug") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] if set_type == 'test': for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[1] label = None examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) else: for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_aug_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train_aug.tsv")), "aug") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == 'test': text_a = line[1] label = None else: text_a = line[0] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_aug_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train_aug.tsv")), "aug") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[7] text_b = line[8] if set_type== 'test': label = None else: label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QqpProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_aug_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train_aug.tsv")), "aug") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) try: if set_type=='test': text_a = line[1] text_b = line[2] label = None else: text_a = line[3] text_b = line[4] label = line[5] except IndexError: continue examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_aug_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train_aug.tsv")), "aug") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) if set_type=='test': text_a = line[1] text_b = line[2] label = None else: text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_aug_examples(self, data_dir): return self._create_examples( self._read_tsv(os.path.join(data_dir, "train_aug.tsv")), "aug") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) if set_type=='test': text_a = line[1] text_b = line[2] label = None else: text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_mode): """Loads a data file into a list of `InputBatch`s.""" label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) if tokens_b: tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) seq_length = len(input_ids) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length try: if output_mode == "classification": label_id = label_map[example.label] elif output_mode == "regression": label_id = float(example.label) else: raise KeyError(output_mode) except: label_id = 0 if ex_index < 1: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("label: {}".format(example.label)) logger.info("label_id: {}".format(label_id)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, seq_length=seq_length)) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def simple_accuracy(preds, labels): return (preds == labels).mean() def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds) return { "acc": acc, "f1": f1, "acc_and_f1": (acc + f1) / 2, } def pearson_and_spearman(preds, labels): pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def compute_metrics(task_name, preds, labels): assert len(preds) == len(labels) if task_name == "cola": return {"mcc": matthews_corrcoef(labels, preds)} elif task_name == "sst-2": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mrpc": return acc_and_f1(preds, labels) elif task_name == "sts-b": return pearson_and_spearman(preds, labels) elif task_name == "qqp": return acc_and_f1(preds, labels) elif task_name == "mnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mnli-mm": return {"acc": simple_accuracy(preds, labels)} elif task_name == "qnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "rte": return {"acc": simple_accuracy(preds, labels)} elif task_name == "wnli": return {"acc": simple_accuracy(preds, labels)} else: raise KeyError(task_name) def get_tensor_data(output_mode, features): if output_mode == "classification": all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long) elif output_mode == "regression": all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float) all_seq_lengths = torch.tensor([f.seq_length for f in features], dtype=torch.long) all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) tensor_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_seq_lengths) return tensor_data, all_label_ids processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mnli-mm": MnliMismatchedProcessor, "mrpc": MrpcProcessor, "sst-2": Sst2Processor, "sts-b": StsbProcessor, "qqp": QqpProcessor, "qnli": QnliProcessor, "rte": RteProcessor, "wnli": WnliProcessor } output_modes = { "cola": "classification", "mnli": "classification", "mrpc": "classification", "sst-2": "classification", "sts-b": "regression", "qqp": "classification", "qnli": "classification", "rte": "classification", "wnli": "classification" } # intermediate distillation default parameters default_params = { "cola": {"num_train_epochs": 50, "max_seq_length": 64, "batch_size": 16, "learning_rate": 5e-4 }, "mnli": {"num_train_epochs": 6, "max_seq_length": 128, "batch_size": 16, "learning_rate": 2e-4 }, "mrpc": {"num_train_epochs": 20, "max_seq_length": 128, "batch_size": 8, "learning_rate": 5e-4 }, "sst-2": {"num_train_epochs": 10, "max_seq_length": 64, "batch_size": 8, "learning_rate": 1e-4 }, "sts-b": {"num_train_epochs": 20, "max_seq_length": 128, "batch_size": 8, "learning_rate": 5e-4 }, "qqp": {"num_train_epochs": 6, "max_seq_length": 128, "batch_size": 32, "learning_rate": 2e-4 }, "qnli": {"num_train_epochs": 10, "max_seq_length": 128, "batch_size": 8, "learning_rate": 2e-4 }, "rte": {"num_train_epochs": 20, "max_seq_length": 128, "batch_size": 8, "learning_rate": 5e-4 } }
bit-main
utils_glue.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # 2022.09.25 - Add distill_attn argument for removing attention distillation # Meta Platforms, Inc. <[email protected]> # # Copyright 2021 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import logging from transformer.file_utils import WEIGHTS_NAME, CONFIG_NAME, MISC_NAME from tqdm import tqdm, trange from torch.nn import CrossEntropyLoss, MSELoss from transformer.optimization import BertAdam from helper import * from utils_squad import * import numpy as np import pickle logging.basicConfig(level=logging.INFO) class KDLearner(object): def __init__(self, args, device, student_model, teacher_model=None, num_train_optimization_steps = None): self.args = args self.device = device self.n_gpu = torch.cuda.device_count() self.student_model = student_model self.teacher_model = teacher_model self.num_train_optimization_steps = num_train_optimization_steps self._check_params() self.name = 'kd_' # learner suffix for saving def build(self, lr=None): self.prev_global_step = 0 if (self.args.distill_rep or self.args.distill_attn) and not self.args.distill_logit: self.stage = 'kd_stage1' elif self.args.distill_logit and not (self.args.distill_rep or self.args.distill_attn): self.stage = 'kd_stage2' elif self.args.distill_logit and (self.args.distill_rep or self.args.distill_attn): self.stage = 'kd_joint' else: self.stage = 'nokd' self.output_dir = os.path.join(self.args.output_dir, self.stage) if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) param_optimizer = list(self.student_model.named_parameters()) self.clip_params = {} for k, v in param_optimizer: if 'clip_' in k: self.clip_params[k] = v no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if (not any(nd in n for nd in no_decay) and not 'clip_' in n)], 'weight_decay': self.args.weight_decay}, {'params': [p for n, p in param_optimizer if (any(nd in n for nd in no_decay) and not 'clip_' in n)], 'weight_decay': 0.0}, {'params': [p for n, p in self.clip_params.items()], 'lr': self.args.clip_lr, 'weight_decay': self.args.clip_wd}, ] schedule = 'warmup_linear' learning_rate = self.args.learning_rate if not lr else lr self.optimizer = BertAdam(optimizer_grouped_parameters, schedule=schedule, lr=learning_rate, warmup=self.args.warmup_proportion, t_total=self.num_train_optimization_steps) logging.info("Optimizer prepared.") self._check_quantized_modules() self._setup_grad_scale_stats() def eval(self, model,dataloader,features,examples,dataset): all_results = [] for _,batch_ in tqdm(enumerate(dataloader)): batch_ = tuple(t.to(self.device) for t in batch_) input_ids, input_mask, segment_ids, example_indices = batch_ with torch.no_grad(): (batch_start_logits, batch_end_logits),_,_ = model(input_ids, segment_ids, input_mask) for i, example_index in enumerate(example_indices): start_logits = batch_start_logits[i].detach().cpu().tolist() end_logits = batch_end_logits[i].detach().cpu().tolist() eval_feature = features[example_index.item()] unique_id = int(eval_feature.unique_id) all_results.append(RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) return write_predictions(examples, features, all_results, self.args.n_best_size, self.args.max_answer_length, True, False, self.args.version_2_with_negative, self.args.null_score_diff_threshold,dataset) def train(self, train_dataloader, eval_dataloader, eval_features, eval_examples, dev_dataset): """ quant-aware pretraining + KD """ # Prepare loss functions loss_mse = MSELoss() self.teacher_model.eval() teacher_results = self.eval(self.teacher_model, eval_dataloader,eval_features,eval_examples, dev_dataset) logging.info("Teacher network evaluation") for key in sorted(teacher_results.keys()): logging.info(" %s = %s", key, str(teacher_results[key])) # self.teacher_model.train() # switch to train mode to supervise students # Train and evaluate # num_layers = self.student_model.config.num_hidden_layers + 1 global_step = 0 best_dev_f1 = 0.0 output_eval_file = os.path.join(self.output_dir, "eval_results.txt") logging.info(" Distill rep: %d, Distill attn: %d, Distill logit: %d" % (self.args.distill_rep, self.args.distill_attn, self.args.distill_logit)) logging.info(" Batch size = %d", self.args.batch_size) logging.info(" Num steps = %d", self.num_train_optimization_steps) global_tr_loss = 0 # record global average training loss to plot for epoch_ in range(int(self.args.num_train_epochs)): tr_loss = 0. tr_att_loss = 0. tr_rep_loss = 0. tr_cls_loss = 0. for step, batch in enumerate(train_dataloader): self.student_model.train() batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, start_positions, end_positions = batch att_loss = 0. rep_loss = 0. cls_loss = 0. rep_loss_layerwise = [] att_loss_layerwise = [] loss = 0. if self.args.distill_logit or (self.args.distill_rep or self.args.distill_attn): # use distillation student_logits, student_atts, student_reps = self.student_model(input_ids, segment_ids, input_mask) with torch.no_grad(): teacher_logits, teacher_atts, teacher_reps = self.teacher_model(input_ids, segment_ids, input_mask) # NOTE: config loss according to stage if self.args.distill_logit: soft_start_ce_loss = soft_cross_entropy(student_logits[0], teacher_logits[0]) soft_end_ce_loss = soft_cross_entropy(student_logits[1], teacher_logits[1]) cls_loss = soft_start_ce_loss+soft_end_ce_loss loss+=cls_loss tr_cls_loss += cls_loss.item() if (self.args.distill_rep or self.args.distill_attn): for student_att, teacher_att in zip(student_atts, teacher_atts): student_att = torch.where(student_att <= -1e2, torch.zeros_like(student_att).to(self.device), student_att) teacher_att = torch.where(teacher_att <= -1e2, torch.zeros_like(teacher_att).to(self.device), teacher_att) tmp_loss = loss_mse(student_att, teacher_att) att_loss += tmp_loss att_loss_layerwise.append(tmp_loss.item()) for student_rep, teacher_rep in zip(student_reps, teacher_reps): tmp_loss = loss_mse(student_rep, teacher_rep) rep_loss += tmp_loss rep_loss_layerwise.append(tmp_loss.item()) # rep_loss_layerwise = rep_loss_layerwise[1:] # remove embed dist tr_att_loss += att_loss.item() tr_rep_loss += rep_loss.item() if self.args.distill_rep: loss += rep_loss if self.args.distill_attn: loss += att_loss else: cls_loss, _, _ = self.student_model(input_ids, segment_ids, input_mask,start_positions, end_positions) loss+=cls_loss tr_cls_loss += cls_loss.item() if self.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if self.args.gradient_accumulation_steps > 1: loss = loss / self.args.gradient_accumulation_steps loss.backward() tr_loss += loss.item() global_tr_loss += loss.item() # evaluation and save model if global_step % self.args.eval_step == 0 or \ global_step == len(train_dataloader)-1: logging.info("***** KDLearner %s Running evaluation, Job_id: %s *****" % (self.stage, self.args.job_id)) logging.info(" Epoch = {} iter {} step".format(epoch_, global_step)) logging.info(f" Previous best = {best_dev_f1}") loss = tr_loss / (step + 1) global_avg_loss = global_tr_loss / (global_step + 1) cls_loss = tr_cls_loss / (step + 1) att_loss = tr_att_loss / (step + 1) rep_loss = tr_rep_loss / (step + 1) self.student_model.eval() result = self.eval(self.student_model, eval_dataloader,eval_features,eval_examples, dev_dataset) result['global_step'] = global_step result['train_cls_loss'] = cls_loss result['att_loss'] = att_loss result['rep_loss'] = rep_loss result['loss'] = loss result['global_loss'] = global_avg_loss if (self.args.distill_rep or self.args.distill_attn): # add the layerwise loss on rep and att logging.info("embedding layer rep_loss: %.8f" % (rep_loss_layerwise[0])) rep_loss_layerwise = rep_loss_layerwise[1:] for lid in range(len(rep_loss_layerwise)): logging.info("layer %d rep_loss: %.8f" % (lid+1, rep_loss_layerwise[lid])) logging.info("layer %d att_loss: %.8f" % (lid+1, att_loss_layerwise[lid])) result_to_file(result, output_eval_file) save_model = False if result['f1'] > best_dev_f1: best_dev_f1 = result['f1'] save_model = True if save_model: self._save() # if self.args.quantize_weight: # self.quanter.restore() if (step + 1) % self.args.gradient_accumulation_steps == 0: self.optimizer.step() self.optimizer.zero_grad() global_step += 1 def _save(self): logging.info("******************** Save model ********************") model_to_save = self.student_model.module if hasattr(self.student_model, 'module') else self.student_model output_model_file = os.path.join(self.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(self.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) def _check_params(self): if not self.args.do_eval: assert self.teacher_model, 'teacher model must not be None in train mode.' def _check_quantized_modules(self): logging.info("Checking module types.") for k, m in self.student_model.named_modules(): if isinstance(m, torch.nn.Linear): logging.info('%s: %s' % (k, str(m))) def _setup_grad_scale_stats(self): self.grad_scale_stats = {'weight': None, \ 'bias': None, \ 'layer_norm': None, \ 'step_size/clip_val': None} self.ema_grad = 0.9 def check_grad_scale(self): logging.info("Check grad scale ratio: grad/w") for k, v in self.student_model.named_parameters(): if v.grad is not None: has_grad = True ratio = v.grad.norm(p=2) / v.data.norm(p=2) # print('%.6e, %s' % (ratio.float(), k)) else: has_grad = False logging.info('params: %s has no gradient' % k) continue # update grad_scale stats if 'weight' in k and v.ndimension() == 2: key = 'weight' elif 'bias' in k and v.ndimension() == 1: key = 'bias' elif 'LayerNorm' in k and 'weight' in k and v.ndimension() == 1: key = 'layer_norm' elif 'clip_' in k: key = 'step_size/clip_val' else: key = None if key and has_grad: if self.grad_scale_stats[key]: self.grad_scale_stats[key] = self.ema_grad * self.grad_scale_stats[key] + (1-self.ema_grad) * ratio else: self.grad_scale_stats[key] = ratio for (key, val) in self.grad_scale_stats.items(): if val is not None: logging.info('%.6e, %s' % (val, key))
bit-main
kd_learner_squad.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # 2022.09.25 - Add support for using quantized Bert model as teacher # Meta Platforms, Inc. <[email protected]> # # Copyright 2021 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import argparse import copy from kd_learner_glue import KDLearner from helper import * from utils_glue import * from transformer.tokenization import BertTokenizer from torch.utils.data import DataLoader, RandomSampler, SequentialSampler,TensorDataset from transformer.configuration_bert import BertConfig from transformer.modeling_bert import BertForSequenceClassification from transformer.modeling_bert_quant import BertForSequenceClassification as QuantBertForSequenceClassification from transformer.file_utils import WEIGHTS_NAME, CONFIG_NAME def main(): parser = argparse.ArgumentParser() parser.add_argument("--job_id", default='tmp', type=str, help='jobid to save training logs') parser.add_argument("--data_dir", default=None, type=str,help="The root dir of glue data") parser.add_argument("--teacher_model", default='', type=str, help="The teacher model dir.") parser.add_argument("--student_model", default='', type=str, help="The student model dir.") parser.add_argument("--vocab_dir", default='', type=str, help="The vocab.txt dir.") parser.add_argument("--task_name", default=None, type=str, help="The name of the glue task to train.") parser.add_argument("--output_dir", default='output', type=str,help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument("--max_seq_length", default=None, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences longer than this will be truncated, and sequences shorter than this will be padded.") parser.add_argument("--batch_size", default=None, type=int, help="Total batch size for training.") parser.add_argument("--learning_rate", default=None, type=float, help="The initial learning rate for Adam.") parser.add_argument('--weight_decay', '--wd', default=0.01, type=float, metavar='W', help='weight decay') parser.add_argument("--num_train_epochs", default=None, type=int, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--do_eval", action='store_true') parser.add_argument('--eval_step', type=int, default=100) # distillation params parser.add_argument('--aug_train', action='store_true', help="Whether using data augmentation or not") parser.add_argument('--distill_logit', action='store_true', help="Whether using distillation logits or not") parser.add_argument('--distill_rep', action='store_true', help="Whether using distillation reps or not") parser.add_argument('--distill_attn', action='store_true', help="Whether using distillation attns or not") parser.add_argument('--temperature', type=float, default=1.) # quantization params parser.add_argument("--weight_bits", default=1, type=int, help="number of bits for weight") parser.add_argument("--weight_quant_method", default='bwn', type=str, choices=['bwn', 'uniform'], help="weight quantization methods") parser.add_argument("--input_bits", default=1, type=int, help="number of bits for activation") parser.add_argument("--input_quant_method", default='uniform', type=str, help="weight quantization methods") parser.add_argument('--not_quantize_attention', action='store_true', help="Keep attention calculations in 32-bit.") parser.add_argument('--learnable_scaling', action='store_true', default=True) parser.add_argument("--ACT2FN", default='relu', type=str, help='use relu for positive outputs.') # training config parser.add_argument('--sym_quant_ffn_attn', action='store_true', help='whether use sym quant for attn score and ffn after act') # default asym parser.add_argument('--sym_quant_qkvo', action='store_true', default=True, help='whether use asym quant for Q/K/V and others.') # default sym parser.add_argument('--clip_init_file', default='threshold_std.pkl', help='files to restore init clip values.') parser.add_argument('--clip_init_val', default=2.5, type=float, help='init value of clip_vals, default to (-2.5, +2.5).') parser.add_argument('--clip_lr', default=1e-4, type=float, help='Use a seperate lr for clip_vals / stepsize') parser.add_argument('--clip_wd', default=0.0, type=float, help='weight decay for clip_vals / stepsize') # layerwise quantization config parser.add_argument('--embed_layerwise', default=False, type=lambda x: bool(int(x))) parser.add_argument('--weight_layerwise', default=True, type=lambda x: bool(int(x))) parser.add_argument('--input_layerwise', default=True, type=lambda x: bool(int(x))) args = parser.parse_args() args.do_lower_case = True log_dir = os.path.join(args.output_dir, 'record_%s.log' % args.job_id) init_logging(log_dir) # Prepare devices device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() logging.info("device: {} n_gpu: {}".format(device, n_gpu)) # Prepare seed random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) # Prepare task settings if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) task_name = args.task_name.lower() # restore the default setting if they are None if args.learning_rate is None: if task_name in default_params: args.learning_rate = default_params[task_name]["learning_rate"] if args.num_train_epochs is None: if task_name in default_params: args.num_train_epochs = default_params[task_name]["num_train_epochs"] if args.batch_size is None: if task_name in default_params: args.batch_size = default_params[task_name]["batch_size"] #args.batch_size = int(args.batch_size*n_gpu) if args.max_seq_length == None: if task_name in default_params: args.max_seq_length = default_params[task_name]["max_seq_length"] if task_name not in processors: raise ValueError("Task not found: %s" % task_name) print_args(vars(args)) processor = processors[task_name]() output_mode = output_modes[task_name] label_list = processor.get_labels() num_labels = len(label_list) tokenizer = BertTokenizer.from_pretrained(args.vocab_dir, do_lower_case=args.do_lower_case) config = BertConfig.from_pretrained(args.teacher_model) config.num_labels = num_labels student_config = copy.deepcopy(config) student_config.weight_bits = args.weight_bits student_config.input_bits = args.input_bits student_config.weight_quant_method = args.weight_quant_method student_config.input_quant_method = args.input_quant_method student_config.clip_init_val = args.clip_init_val student_config.learnable_scaling = args.learnable_scaling student_config.sym_quant_qkvo = args.sym_quant_qkvo student_config.sym_quant_ffn_attn = args.sym_quant_ffn_attn student_config.embed_layerwise = args.embed_layerwise student_config.weight_layerwise = args.weight_layerwise student_config.input_layerwise = args.input_layerwise student_config.hidden_act = args.ACT2FN student_config.not_quantize_attention = args.not_quantize_attention num_train_optimization_steps = 0 if not args.do_eval: if args.aug_train: train_examples = processor.get_aug_examples(args.data_dir) else: train_examples = processor.get_train_examples(args.data_dir) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.batch_size = args.batch_size // args.gradient_accumulation_steps train_features = convert_examples_to_features(train_examples, label_list, args.max_seq_length, tokenizer, output_mode) train_data, _ = get_tensor_data(output_mode, train_features) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size) num_train_optimization_steps = int( len(train_features) / args.batch_size / args.gradient_accumulation_steps) * args.num_train_epochs eval_examples = processor.get_dev_examples(args.data_dir) eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, output_mode) eval_data, eval_labels = get_tensor_data(output_mode, eval_features) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size) if task_name == "mnli": processor = processors["mnli-mm"]() if not os.path.exists(args.output_dir + '-MM'): os.makedirs(args.output_dir + '-MM') mm_eval_examples = processor.get_dev_examples(args.data_dir) mm_eval_features = convert_examples_to_features( mm_eval_examples, label_list, args.max_seq_length, tokenizer, output_mode) mm_eval_data, mm_eval_labels = get_tensor_data(output_mode, mm_eval_features) logging.info("***** Running mm evaluation *****") logging.info(" Num examples = %d", len(mm_eval_examples)) mm_eval_sampler = SequentialSampler(mm_eval_data) mm_eval_dataloader = DataLoader(mm_eval_data, sampler=mm_eval_sampler, batch_size=args.batch_size) else: mm_eval_labels = None mm_eval_dataloader = None if not args.do_eval: # need the teacher model for training if hasattr(config, "input_bits") and config.input_bits < 32: teacher_model = QuantBertForSequenceClassification.from_pretrained(args.teacher_model, config=config) else: teacher_model = BertForSequenceClassification.from_pretrained(args.teacher_model, config=config) teacher_model.to(device) if n_gpu > 1: teacher_model = torch.nn.DataParallel(teacher_model) else: teacher_model = None student_model = QuantBertForSequenceClassification.from_pretrained(args.student_model, config=student_config) student_model.to(device) if n_gpu > 1: student_model = torch.nn.DataParallel(student_model) learner = KDLearner(args, device, student_model, teacher_model,num_train_optimization_steps) learner.args.distill_logit = True learner.args.distill_rep = True learner.args.distill_attn = False learner.build(lr=args.learning_rate) learner.train(train_examples, task_name, output_mode, eval_labels, num_labels, train_dataloader, eval_dataloader, eval_examples, tokenizer, mm_eval_dataloader=mm_eval_dataloader, mm_eval_labels=mm_eval_labels) del learner return 0 if __name__ == "__main__": main()
bit-main
quant_task_distill_glue.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Configuration base class and utilities.""" from __future__ import (absolute_import, division, print_function, unicode_literals) import copy import json import logging import os from io import open from .file_utils import cached_path, CONFIG_NAME logger = logging.getLogger(__name__) class PretrainedConfig(object): r""" Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations. Note: A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights. It only affects the model's configuration. Class attributes (overridden by derived classes): - ``pretrained_config_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained model configurations as values. Parameters: ``finetuning_task``: string, default `None`. Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint. ``num_labels``: integer, default `2`. Number of classes to use when the model is a classification model (sequences/tokens) ``output_attentions``: boolean, default `False`. Should the model returns attentions weights. ``output_hidden_states``: string, default `False`. Should the model returns all hidden-states. ``torchscript``: string, default `False`. Is the model used with Torchscript. """ pretrained_config_archive_map = {} def __init__(self, **kwargs): self.finetuning_task = kwargs.pop('finetuning_task', None) self.num_labels = kwargs.pop('num_labels', 2) self.output_attentions = kwargs.pop('output_attentions', False) self.output_hidden_states = kwargs.pop('output_hidden_states', False) self.output_past = kwargs.pop('output_past', True) # Not used by all models self.torchscript = kwargs.pop('torchscript', False) # Only used by PyTorch models self.use_bfloat16 = kwargs.pop('use_bfloat16', False) self.pruned_heads = kwargs.pop('pruned_heads', {}) def save_pretrained(self, save_directory): """ Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the :func:`~transformers.PretrainedConfig.from_pretrained` class method. """ assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved" # If we save using the predefined names, we can load using `from_pretrained` output_config_file = os.path.join(save_directory, CONFIG_NAME) self.to_json_file(output_config_file) logger.info("Configuration saved in {}".format(output_config_file)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration. Parameters: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``. - a path to a `directory` containing a configuration file saved using the :func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``. - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading. - The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. return_unused_kwargs: (`optional`) bool: - If False, then this function returns just the final configuration object. - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored. Examples:: # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a # derived class: BertConfig config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json') config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False) assert config.output_attention == True config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False, return_unused_kwargs=True) assert config.output_attention == True assert unused_kwargs == {'foo': False} """ config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) logger.info("loading configuration file {}".format(config_file)) # Load config config = cls.from_json_file(config_file) if hasattr(config, 'pruned_heads'): config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items()) # Update config with kwargs if needed to_remove = [] for key, value in kwargs.items(): if hasattr(config, key): setattr(config, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) logger.info("Model config %s", str(config)) return config @classmethod def from_dict(cls, json_object): """Constructs a `Config` from a Python dictionary of parameters.""" config = cls(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): setattr(config, key, value) return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __eq__(self, other): return self.__dict__ == other.__dict__ def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path): """ Save this instance to a json file.""" with open(json_file_path, "w", encoding='utf-8') as writer: writer.write(self.to_json_string())
bit-main
transformer/configuration_utils.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BERT model configuration """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import sys from io import open from .configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json", 'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json", 'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json", 'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json", 'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json", 'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json", 'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json", 'bert-base-german-dbmdz-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.json", 'bert-base-german-dbmdz-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.json", } class BertConfig(PretrainedConfig): r""" :class:`~transformers.BertConfig` is the configuration class to store the configuration of a `BertModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size_or_config_json_file=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, **kwargs): super(BertConfig, self).__init__(**kwargs) if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2 and isinstance(vocab_size_or_config_json_file, unicode)): with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps else: raise ValueError("First argument must be either a vocabulary size (int)" " or the path to a pretrained model config file (str)")
bit-main
transformer/configuration_bert.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # 2022.09.25 - Add elastic quantization support # Meta Platforms, Inc. <[email protected]> # # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" from __future__ import absolute_import, division, print_function, unicode_literals import copy import json import logging import math import os import shutil import tarfile import tempfile import sys from io import open import torch import torch.nn.functional as F from torch import nn from torch.nn import CrossEntropyLoss from torch.autograd import Variable from torch.nn.parameter import Parameter from .file_utils import WEIGHTS_NAME, CONFIG_NAME from .configuration_bert import BertConfig from .utils_quant import QuantizeLinear, QuantizeEmbedding, act_quant_fn, AlphaInit logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", 'bert-base-chinese': "", } BERT_CONFIG_NAME = 'bert_config.json' TF_WEIGHTS_NAME = 'model.ckpt' class LearnableBias(nn.Module): def __init__(self, out_chn): super(LearnableBias, self).__init__() self.bias = nn.Parameter(torch.zeros(out_chn), requires_grad=True) def forward(self, x): out = x + self.bias.expand_as(x) return out def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def swish(x): return x * torch.sigmoid(x) try: from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm except ImportError: logger.info( "Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu} NORM = {'layer_norm': BertLayerNorm} class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = QuantizeEmbedding(config.vocab_size, config.hidden_size, padding_idx=0, clip_val=config.clip_init_val, weight_bits=config.weight_bits, weight_quant_method=config.weight_quant_method, embed_layerwise=config.embed_layerwise, learnable=config.learnable_scaling, symmetric=config.sym_quant_qkvo) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): seq_length = input_ids.size(1) position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int( config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.input_bits = config.input_bits self.sym_quant_ffn_attn = config.sym_quant_ffn_attn self.sym_quant_qkvo = config.sym_quant_qkvo self.input_layerwise = config.input_layerwise self.input_quant_method = config.input_quant_method self.quantize_attention_probs = not config.not_quantize_attention self.query = QuantizeLinear(config.hidden_size, self.all_head_size, clip_val=config.clip_init_val, weight_bits=config.weight_bits, input_bits=config.input_bits, weight_layerwise=config.weight_layerwise, input_layerwise=config.input_layerwise, weight_quant_method=config.weight_quant_method, input_quant_method=config.input_quant_method, learnable=config.learnable_scaling, symmetric=config.sym_quant_qkvo) self.key = QuantizeLinear(config.hidden_size, self.all_head_size, clip_val=config.clip_init_val, weight_bits=config.weight_bits, input_bits=config.input_bits, weight_layerwise=config.weight_layerwise, input_layerwise=config.input_layerwise, weight_quant_method=config.weight_quant_method, input_quant_method=config.input_quant_method, learnable=config.learnable_scaling, symmetric=config.sym_quant_qkvo) self.value = QuantizeLinear(config.hidden_size, self.all_head_size, clip_val=config.clip_init_val, weight_bits=config.weight_bits, input_bits=config.input_bits, weight_layerwise=config.weight_layerwise, input_layerwise=config.input_layerwise, weight_quant_method=config.weight_quant_method, input_quant_method=config.input_quant_method, learnable=config.learnable_scaling, symmetric=config.sym_quant_qkvo) self.move_q = LearnableBias(self.all_head_size) self.move_k = LearnableBias(self.all_head_size) self.move_v = LearnableBias(self.all_head_size) if config.input_quant_method == 'uniform' and config.input_bits < 32: self.register_buffer('clip_query', torch.Tensor([-config.clip_init_val, config.clip_init_val])) self.register_buffer('clip_key', torch.Tensor([-config.clip_init_val, config.clip_init_val])) self.register_buffer('clip_value', torch.Tensor([-config.clip_init_val, config.clip_init_val])) self.register_buffer('clip_attn', torch.Tensor([-config.clip_init_val, config.clip_init_val])) if config.learnable_scaling: self.clip_query = nn.Parameter(self.clip_query) self.clip_key = nn.Parameter(self.clip_key) self.clip_value = nn.Parameter(self.clip_value) self.clip_attn = nn.Parameter(self.clip_attn) elif (config.input_quant_method == 'elastic' or config.input_quant_method == 'bwn') and config.input_bits < 32: self.clip_query = AlphaInit(torch.tensor(1.0)) self.clip_key = AlphaInit(torch.tensor(1.0)) self.clip_value = AlphaInit(torch.tensor(1.0)) self.clip_attn = AlphaInit(torch.tensor(1.0)) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[ :-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask, output_att=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) if self.input_bits < 32: query_layer = self.move_q(mixed_query_layer) key_layer = self.move_k(mixed_key_layer) value_layer = self.move_v(mixed_value_layer) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) if self.input_bits < 32: query_layer = act_quant_fn(query_layer, self.clip_query, self.input_bits, quant_method=self.input_quant_method, symmetric=self.sym_quant_qkvo, layerwise=self.input_layerwise) key_layer = act_quant_fn(key_layer, self.clip_key, self.input_bits, quant_method=self.input_quant_method, symmetric=self.sym_quant_qkvo, layerwise=self.input_layerwise) value_layer = act_quant_fn(value_layer, self.clip_value, self.input_bits, quant_method=self.input_quant_method, symmetric=self.sym_quant_qkvo, layerwise=self.input_layerwise) attention_scores = torch.matmul( query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / \ math.sqrt(self.attention_head_size) attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) if self.input_bits < 32 and self.quantize_attention_probs: attention_probs = act_quant_fn(attention_probs, self.clip_attn, self.input_bits, quant_method=self.input_quant_method, symmetric=self.sym_quant_ffn_attn, layerwise=self.input_layerwise) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[ :-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer, attention_scores class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output, layer_att = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output, layer_att class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = QuantizeLinear(config.hidden_size, config.hidden_size, clip_val=config.clip_init_val, weight_bits=config.weight_bits, input_bits=config.input_bits, weight_layerwise=config.weight_layerwise, input_layerwise=config.input_layerwise, weight_quant_method=config.weight_quant_method, input_quant_method=config.input_quant_method, learnable=config.learnable_scaling, symmetric=config.sym_quant_qkvo) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = QuantizeLinear(config.hidden_size, config.intermediate_size, clip_val=config.clip_init_val, weight_bits=config.weight_bits, input_bits=config.input_bits, weight_layerwise=config.weight_layerwise, input_layerwise=config.input_layerwise, weight_quant_method=config.weight_quant_method, input_quant_method=config.input_quant_method, learnable=config.learnable_scaling, symmetric=config.sym_quant_qkvo) if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = QuantizeLinear(config.intermediate_size, config.hidden_size, clip_val=config.clip_init_val, weight_bits=config.weight_bits, input_bits=config.input_bits, weight_layerwise=config.weight_layerwise, input_layerwise=config.input_layerwise, weight_quant_method=config.weight_quant_method, input_quant_method=config.input_quant_method, learnable=config.learnable_scaling, symmetric=config.sym_quant_ffn_attn) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask): attention_output, layer_att = self.attention( hidden_states, attention_mask) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output, layer_att class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask): all_encoder_layers = [] all_encoder_atts = [] for _, layer_module in enumerate(self.layer): all_encoder_layers.append(hidden_states) hidden_states, layer_att = layer_module( hidden_states, attention_mask) all_encoder_atts.append(layer_att) all_encoder_layers.append(hidden_states) return all_encoder_layers, all_encoder_atts class BertPooler(nn.Module): def __init__(self, config, recurs=None): super(BertPooler, self).__init__() self.dense = QuantizeLinear(config.hidden_size, config.hidden_size, clip_val=config.clip_init_val, weight_bits=config.weight_bits, input_bits=config.input_bits, weight_layerwise=config.weight_layerwise, input_layerwise=config.input_layerwise, weight_quant_method=config.weight_quant_method, input_quant_method=config.input_quant_method, learnable=config.learnable_scaling, symmetric=config.sym_quant_qkvo) self.activation = nn.Tanh() self.config = config def forward(self, hidden_states): pooled_output = hidden_states[-1][:, 0] pooled_output = self.dense(pooled_output) pooled_output = self.activation(pooled_output) return pooled_output class BertPreTrainedModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super(BertPreTrainedModel, self).__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config def init_bert_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_( mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_scratch(cls, pretrained_model_name_or_path, *inputs, **kwargs): resolved_config_file = os.path.join( pretrained_model_name_or_path, CONFIG_NAME) config = BertConfig.from_json_file(resolved_config_file) logger.info("Model config {}".format(config)) model = cls(config, *inputs, **kwargs) return model @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): """ Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name_or_path: either: - a str with the name of a pre-trained model to load selected in the list of: . `bert-base-uncased` . `bert-large-uncased` . `bert-base-cased` . `bert-large-cased` . `bert-base-multilingual-uncased` . `bert-base-multilingual-cased` . `bert-base-chinese` - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `model.chkpt` a TensorFlow checkpoint from_tf: should we load the weights from a locally saved TensorFlow checkpoint cache_dir: an optional path to a folder in which the pre-trained models will be cached. state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ state_dict = kwargs.get('state_dict', None) kwargs.pop('state_dict', None) from_tf = kwargs.get('from_tf', False) kwargs.pop('from_tf', None) config = kwargs.get('config', None) kwargs.pop('config', None) if config is None: # Load config config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) config = BertConfig.from_json_file(config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None and not from_tf: weights_path = os.path.join( pretrained_model_name_or_path, WEIGHTS_NAME) logger.info("Loading model {}".format(weights_path)) state_dict = torch.load(weights_path, map_location='cpu') if from_tf: # Directly load from a TensorFlow checkpoint weights_path = os.path.join( pretrained_model_name_or_path, TF_WEIGHTS_NAME) return load_tf_weights_in_bert(model, weights_path) # Load from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') start_prefix = '' if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()): start_prefix = 'bert.' logger.info('loading model...') load(model, prefix=start_prefix) logger.info('done!') if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( model.__class__.__name__, "\n\t".join(error_msgs))) return model class BertModel(BertPreTrainedModel): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: output a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: output only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a classifier pretrained on top of the hidden state associated to the first character of the input (`CLS`) to train on the Next-Sentence task (see BERT's paper). Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = modeling.BertModel(config=config) all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, output_att=True): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings(input_ids, token_type_ids) encoded_layers, layer_atts = self.encoder(embedding_output, extended_attention_mask) pooled_output = self.pooler(encoded_layers) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] if not output_att: return encoded_layers, pooled_output return encoded_layers, layer_atts, pooled_output class BertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super(BertForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, output_att=False, output_hidden=False): sequence_output, att_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=True, output_att=True) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return loss, att_output, sequence_output else: return logits, att_output, sequence_output class BertForQuestionAnswering(BertPreTrainedModel): r""" **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-start scores (before SoftMax). **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-end scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" input_text = "[CLS] " + question + " [SEP] " + text + " [SEP]" input_ids = tokenizer.encode(input_text) token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))] start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids])) all_tokens = tokenizer.convert_ids_to_tokens(input_ids) print(' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1])) # a nice puppet """ def __init__(self, config): super(BertForQuestionAnswering, self).__init__(config) self.num_labels = 2 self.bert = BertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, self.num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None): sequence_output, att_output, _ = self.bert(input_ids,token_type_ids,attention_mask) logits = self.qa_outputs(sequence_output[-1]) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if start_positions is not None and end_positions is not None: if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 return total_loss, att_output, sequence_output return (start_logits, end_logits), att_output, sequence_output
bit-main
transformer/modeling_bert_quant.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import logging import math class LearnableBias(nn.Module): def __init__(self, out_chn): super(LearnableBias, self).__init__() self.bias = nn.Parameter(torch.zeros(out_chn), requires_grad=True) def forward(self, x): out = x + self.bias.expand_as(x) return out class ElasticQuantBinarizerSigned(torch.autograd.Function): """ Modified from Learned Step-size Quantization. https://arxiv.org/abs/1902.08153 """ @staticmethod def forward(ctx, input, alpha, num_bits, layerwise): """ :param input: input to be quantized :param alpha: the step size :param num_bits: quantization bits :param layerwise: rowwise quant :return: quantized output """ if not layerwise: # TODO raise NotImplementedError ctx.num_bits = num_bits if num_bits == 32: return input if num_bits == 1: Qn = -1 Qp = 1 else: Qn = -2 ** (num_bits - 1) Qp = 2 ** (num_bits - 1) - 1 eps = torch.tensor(0.00001).float().to(alpha.device) if alpha.item() == 1.0 and (not alpha.initialized): alpha.initialize_wrapper(input, num_bits, symmetric=True, init_method='default') alpha = torch.where(alpha > eps, alpha, eps) assert alpha > 0, 'alpha = {:.6f} becomes non-positive'.format(alpha) grad_scale = 1.0 / math.sqrt(input.numel()) if not Qp else 1.0 / math.sqrt(input.numel() * Qp) ctx.save_for_backward(input, alpha) ctx.other = grad_scale, Qn, Qp if num_bits == 1: q_w = input.sign() else: q_w = (input / alpha).round().clamp(Qn, Qp) w_q = q_w * alpha return w_q @staticmethod def backward(ctx, grad_output): if ctx.num_bits == 32: return grad_output, None, None, None input_, alpha = ctx.saved_tensors grad_scale, Qn, Qp = ctx.other q_w = input_ / alpha indicate_small = (q_w < Qn).float() indicate_big = (q_w > Qp).float() indicate_middle = 1.0 - indicate_small - indicate_big # this is more cpu-friendly than torch.ones(input_.shape) if ctx.num_bits == 1: grad_alpha = ((input_.sign()) * grad_output * grad_scale).sum().unsqueeze(dim=0) else: grad_alpha = ((indicate_small * Qn + indicate_big * Qp + indicate_middle * ( -q_w + q_w.round())) * grad_output * grad_scale).sum().unsqueeze(dim=0) grad_input = indicate_middle * grad_output return grad_input, grad_alpha, None, None class ElasticQuantBinarizerUnsigned(torch.autograd.Function): """ Modified from Learned Step-size Quantization. https://arxiv.org/abs/1902.08153 """ @staticmethod def forward(ctx, input, alpha, num_bits, layerwise): """ :param input: input to be quantized :param alpha: the step size :param num_bits: quantization bits :param layerwise: rowwise quant :return: quantized output """ if not layerwise: # TODO raise NotImplementedError ctx.num_bits = num_bits if num_bits == 32: return input Qn = 0 Qp = 2 ** (num_bits) - 1 if num_bits == 1: input_ = input else: min_val = input.min().item() input_ = input - min_val eps = torch.tensor(0.00001).float().to(alpha.device) if alpha.item() == 1.0 and (not alpha.initialized): alpha.initialize_wrapper(input, num_bits, symmetric=False, init_method='default') alpha = torch.where(alpha > eps, alpha, eps) assert alpha > 0, 'alpha = {:.6f} becomes non-positive'.format(alpha) grad_scale = 1.0 / math.sqrt(input.numel() * Qp) ctx.save_for_backward(input_, alpha) ctx.other = grad_scale, Qn, Qp q_w = (input_ / alpha).round().clamp(Qn, Qp) w_q = q_w * alpha if num_bits != 1: w_q = w_q + min_val return w_q @staticmethod def backward(ctx, grad_output): if ctx.num_bits == 32: return grad_output, None, None, None input_, alpha = ctx.saved_tensors grad_scale, Qn, Qp = ctx.other q_w = input_ / alpha indicate_small = (q_w < Qn).float() indicate_big = (q_w > Qp).float() indicate_middle = 1.0 - indicate_small - indicate_big # this is more cpu-friendly than torch.ones(input_.shape) grad_alpha = ((indicate_small * Qn + indicate_big * Qp + indicate_middle * ( -q_w + q_w.round())) * grad_output * grad_scale).sum().unsqueeze(dim=0) grad_input = indicate_middle * grad_output return grad_input, grad_alpha, None, None class AlphaInit(nn.Parameter): def __init__(self, tensor): super(AlphaInit, self).__new__(nn.Parameter, data=tensor) self.initialized = False def _initialize(self, init_tensor): assert not self.initialized, 'already initialized.' self.data.copy_(init_tensor) self.initialized = True def initialize_wrapper(self, tensor, num_bits, symmetric, init_method='default'): Qp = 2 ** (num_bits - 1) - 1 if symmetric else 2 ** (num_bits) - 1 if Qp == 0: Qp = 1.0 if init_method == 'default': init_val = 2 * tensor.abs().mean() / math.sqrt(Qp) if symmetric \ else 4 * tensor.abs().mean() / math.sqrt(Qp) elif init_method == 'uniform': init_val = 1./(2*Qp+1) if symmetric else 1./Qp self._initialize(init_val) class BwnQuantizer(torch.autograd.Function): """Binary Weight Network (BWN) Ref: https://arxiv.org/abs/1603.05279 """ @staticmethod def forward(ctx, input, clip_val, num_bits, layerwise): """ :param input: tensor to be binarized :return: quantized tensor """ ctx.save_for_backward(input) if layerwise: s = input.size() m = input.norm(p=1).div(input.nelement()) e = input.mean() result = (input-e).sign().mul(m.expand(s)) else: n = input[0].nelement() # W of size axb, return a vector of ax1 s = input.size() m = input.norm(1, 1, keepdim=True).div(n) e = input.mean() result = (input-e).sign().mul(m.expand(s)) return result @staticmethod def backward(ctx, grad_output): """ :param ctx: saved non-clipped full-precision tensor and clip_val :param grad_output: gradient ert the quantized tensor :return: estimated gradient wrt the full-precision tensor """ grad_input = grad_output.clone() return grad_input, None, None, None def act_quant_fn(input, clip_val, num_bits, symmetric, quant_method, layerwise): if num_bits == 32: return input elif quant_method == "bwn" and num_bits == 1: quant_fn = BwnQuantizer elif quant_method == "elastic" and num_bits >= 1 and symmetric: quant_fn = ElasticQuantBinarizerSigned elif quant_method == "elastic" and num_bits >= 1 and not symmetric: quant_fn = ElasticQuantBinarizerUnsigned else: raise ValueError("Unknownquant_method") input = quant_fn.apply(input, clip_val, num_bits, layerwise) return input def weight_quant_fn(weight, clip_val, num_bits, symmetric, quant_method, layerwise): if num_bits == 32: return weight elif quant_method == "bwn" and num_bits == 1: quant_fn = BwnQuantizer else: raise ValueError("Unknown quant_method") weight = quant_fn.apply(weight, clip_val, num_bits, layerwise) return weight class QuantizeLinear(nn.Linear): def __init__(self, *kargs, clip_val=2.5, weight_bits=8, input_bits=8, learnable=False, symmetric=True, weight_layerwise=True, input_layerwise=True, weight_quant_method="twn", input_quant_method="uniform", **kwargs): super(QuantizeLinear, self).__init__(*kargs, **kwargs) self.weight_bits = weight_bits self.input_bits = input_bits self.learnable = learnable self.symmetric = symmetric self.weight_layerwise = weight_layerwise self.input_layerwise = input_layerwise self.weight_quant_method = weight_quant_method self.input_quant_method = input_quant_method self._build_weight_clip_val(weight_quant_method, learnable, init_val=clip_val) self._build_input_clip_val(input_quant_method, learnable, init_val=clip_val) self.move = LearnableBias(self.weight.shape[1]) def _build_weight_clip_val(self, quant_method, learnable, init_val): if quant_method == 'uniform': # init_val = self.weight.mean().item() + 3 * self.weight.std().item() self.register_buffer('weight_clip_val', torch.tensor([-init_val, init_val])) if learnable: self.weight_clip_val = nn.Parameter(self.weight_clip_val) elif quant_method == 'elastic': assert learnable, 'Elastic method must use leranable step size!' self.weight_clip_val = AlphaInit(torch.tensor(1.0)) # stepsize will be initialized in the first quantization else: self.register_buffer('weight_clip_val', None) def _build_input_clip_val(self, quant_method, learnable, init_val): if quant_method == 'uniform': self.register_buffer('input_clip_val', torch.tensor([-init_val, init_val])) if learnable: self.input_clip_val = nn.Parameter(self.input_clip_val) elif quant_method == 'elastic' or quant_method == 'bwn': assert learnable, 'Elastic method must use leranable step size!' self.input_clip_val = AlphaInit(torch.tensor(1.0)) # stepsize will be initialized in the first quantization else: self.register_buffer('input_clip_val', None) def forward(self, input): # quantize weight weight = weight_quant_fn(self.weight, self.weight_clip_val, num_bits=self.weight_bits, symmetric=self.symmetric, quant_method=self.weight_quant_method, layerwise=self.weight_layerwise) # quantize input input = self.move(input) input = act_quant_fn(input, self.input_clip_val, num_bits=self.input_bits, symmetric=self.symmetric, quant_method=self.input_quant_method, layerwise=self.input_layerwise) out = nn.functional.linear(input, weight) if not self.bias is None: out += self.bias.view(1, -1).expand_as(out) return out class QuantizeEmbedding(nn.Embedding): def __init__(self, *kargs, clip_val=2.5, weight_bits=8, learnable=False, symmetric=True, embed_layerwise=False, weight_quant_method="twn", **kwargs): super(QuantizeEmbedding, self).__init__(*kargs, **kwargs) self.weight_bits = weight_bits self.learnable = learnable self.symmetric = symmetric self.embed_layerwise = embed_layerwise self.weight_quant_method = weight_quant_method self._build_embed_clip_val(weight_quant_method, learnable, init_val=clip_val) def _build_embed_clip_val(self, quant_method, learnable, init_val): if quant_method == 'uniform': self.register_buffer('embed_clip_val', torch.tensor([-init_val, init_val])) if learnable: self.embed_clip_val = nn.Parameter(self.embed_clip_val) elif quant_method == 'elastic': assert learnable, 'Elastic method must use leranable step size!' self.embed_clip_val = AlphaInit(torch.tensor(1.0)) # stepsize will be initialized in the first quantization else: self.register_buffer('embed_clip_val', None) def forward(self, input): weight = weight_quant_fn(self.weight, self.embed_clip_val, num_bits=self.weight_bits, symmetric=self.symmetric, quant_method=self.weight_quant_method, layerwise=self.embed_layerwise) out = nn.functional.embedding( input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse) return out
bit-main
transformer/utils_quant.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch optimization for BERT model.""" import math import torch from torch.optim import Optimizer from torch.optim.optimizer import required from torch.nn.utils import clip_grad_norm_ import logging import abc import sys logger = logging.getLogger(__name__) if sys.version_info >= (3, 4): ABC = abc.ABC else: ABC = abc.ABCMeta('ABC', (), {}) class _LRSchedule(ABC): """ Parent of all LRSchedules here. """ warn_t_total = False # is set to True for schedules where progressing beyond t_total steps doesn't make sense def __init__(self, warmup=0.002, t_total=-1, **kw): """ :param warmup: what fraction of t_total steps will be used for linear warmup :param t_total: how many training steps (updates) are planned :param kw: """ super(_LRSchedule, self).__init__(**kw) if t_total < 0: logger.warning("t_total value of {} results in schedule not being applied".format(t_total)) if not 0.0 <= warmup < 1.0 and not warmup == -1: raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) warmup = max(warmup, 0.) self.warmup, self.t_total = float(warmup), float(t_total) self.warned_for_t_total_at_progress = -1 def get_lr(self, step, nowarn=False): """ :param step: which of t_total steps we're on :param nowarn: set to True to suppress warning regarding training beyond specified 't_total' steps :return: learning rate multiplier for current update """ if self.t_total < 0: return 1. progress = float(step) / self.t_total ret = self.get_lr_(progress) # warning for exceeding t_total (only active with warmup_linear if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress: logger.warning( "Training beyond specified 't_total'. Learning rate multiplier set to {}. Please set 't_total' of {} correctly." .format(ret, self.__class__.__name__)) self.warned_for_t_total_at_progress = progress # end warning return ret @abc.abstractmethod def get_lr_(self, progress): """ :param progress: value between 0 and 1 (unless going beyond t_total steps) specifying training progress :return: learning rate multiplier for current update """ return 1. class ConstantLR(_LRSchedule): def get_lr_(self, progress): return 1. class WarmupCosineSchedule(_LRSchedule): """ Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. Decreases learning rate from 1. to 0. over remaining `1 - warmup` steps following a cosine curve. If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup. """ warn_t_total = True def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw): """ :param warmup: see LRSchedule :param t_total: see LRSchedule :param cycles: number of cycles. Default: 0.5, corresponding to cosine decay from 1. at progress==warmup and 0 at progress==1. :param kw: """ super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw) self.cycles = cycles def get_lr_(self, progress): if progress < self.warmup: return progress / self.warmup else: progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup return 0.5 * (1. + math.cos(math.pi * self.cycles * 2 * progress)) class WarmupCosineWithHardRestartsSchedule(WarmupCosineSchedule): """ Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying learning rate (with hard restarts). """ def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw): super(WarmupCosineWithHardRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw) assert(cycles >= 1.) def get_lr_(self, progress): if progress < self.warmup: return progress / self.warmup else: progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup ret = 0.5 * (1. + math.cos(math.pi * ((self.cycles * progress) % 1))) return ret class WarmupCosineWithWarmupRestartsSchedule(WarmupCosineWithHardRestartsSchedule): """ All training progress is divided in `cycles` (default=1.) parts of equal length. Every part follows a schedule with the first `warmup` fraction of the training steps linearly increasing from 0. to 1., followed by a learning rate decreasing from 1. to 0. following a cosine curve. """ def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw): assert(warmup * cycles < 1.) warmup = warmup * cycles if warmup >= 0 else warmup super(WarmupCosineWithWarmupRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw) def get_lr_(self, progress): progress = progress * self.cycles % 1. if progress < self.warmup: return progress / self.warmup else: progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup ret = 0.5 * (1. + math.cos(math.pi * progress)) return ret class WarmupConstantSchedule(_LRSchedule): """ Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. Keeps learning rate equal to 1. after warmup. """ def get_lr_(self, progress): if progress < self.warmup: return progress / self.warmup return 1. class WarmupLinearSchedule(_LRSchedule): """ Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. Linearly decreases learning rate from 1. to 0. over remaining `1 - warmup` steps. """ warn_t_total = True def get_lr_(self, progress): if progress < self.warmup: return progress / self.warmup return max((progress - 1.) / (self.warmup - 1.), 0.) SCHEDULES = { None: ConstantLR, "none": ConstantLR, "warmup_cosine": WarmupCosineSchedule, "warmup_constant": WarmupConstantSchedule, "warmup_linear": WarmupLinearSchedule } class BertAdam(Optimizer): """Implements BERT version of Adam algorithm with weight decay fix. Params: lr: learning rate warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 t_total: total number of training steps for the learning rate schedule, -1 means constant learning rate of 1. (no warmup regardless of warmup setting). Default: -1 schedule: schedule to use for the warmup (see above). Can be `'warmup_linear'`, `'warmup_constant'`, `'warmup_cosine'`, `'none'`, `None` or a `_LRSchedule` object (see below). If `None` or `'none'`, learning rate is always kept constant. Default : `'warmup_linear'` b1: Adams b1. Default: 0.9 b2: Adams b2. Default: 0.999 e: Adams epsilon. Default: 1e-6 weight_decay: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 """ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0.0 <= b1 < 1.0: raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) if not e >= 0.0: raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) # initialize schedule object if not isinstance(schedule, _LRSchedule): schedule_type = SCHEDULES[schedule] schedule = schedule_type(warmup=warmup, t_total=t_total) else: if warmup != -1 or t_total != -1: logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. " "Please specify custom warmup and t_total in _LRSchedule object.") defaults = dict(lr=lr, schedule=schedule, b1=b1, b2=b2, e=e, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(BertAdam, self).__init__(params, defaults) def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] lr_scheduled = group['lr'] lr_scheduled *= group['schedule'].get_lr(state['step']) lr.append(lr_scheduled) return lr def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['next_m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['next_v'] = torch.zeros_like(p.data) next_m, next_v = state['next_m'], state['next_v'] beta1, beta2 = group['b1'], group['b2'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time next_m.mul_(beta1).add_(1 - beta1, grad) next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) update = next_m / (next_v.sqrt() + group['e']) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data lr_scheduled = group['lr'] lr_scheduled *= group['schedule'].get_lr(state['step']) update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 # No bias correction # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] return loss
bit-main
transformer/optimization.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import logging import os import unicodedata from io import open logger = logging.getLogger(__name__) PRETRAINED_VOCAB_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", } PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, } VOCAB_NAME = 'vocab.txt' def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with open(vocab_file, "r", encoding="utf-8") as reader: while True: token = reader.readline() if not token: break token = token.strip() vocab[token] = index index += 1 return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class BertTokenizer(object): """Runs end-to-end tokenization: punctuation splitting + wordpiece""" def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True, basic_only=False, never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): """Constructs a BertTokenizer. Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, never_split=never_split) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) self.max_len = max_len if max_len is not None else int(1e12) self.basic_only = basic_only def tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text): if self.basic_only: split_tokens.append(token) else: for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def convert_tokens_to_ids(self, tokens): """Converts a sequence of tokens into ids using the vocab.""" ids = [] for token in tokens: ids.append(self.vocab.get(token, self.vocab['[UNK]'])) if len(ids) > self.max_len: logger.warning( "Token indices sequence length is longer than the specified maximum " " sequence length for this BERT model ({} > {}). Running this" " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) ) return ids def convert_ids_to_tokens(self, ids): """Converts a sequence of ids in wordpiece tokens using the vocab.""" tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens def save_vocabulary(self, vocab_path): """Save the tokenizer vocabulary to a directory or file.""" index = 0 if os.path.isdir(vocab_path): vocab_file = os.path.join(vocab_path, VOCAB_NAME) with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format(vocab_file)) index = token_index writer.write(token + u'\n') index += 1 return vocab_file @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. """ # assert pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP resolved_vocab_file = os.path.join(pretrained_model_name_or_path, 'vocab.txt') max_len = 512 kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) # Instantiate tokenizer. tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizer class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True, never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case self.never_split = never_split def tokenize(self, text): """Tokenizes a piece of text.""" text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case and token not in self.never_split: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" if text in self.never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False
bit-main
transformer/tokenization.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" from __future__ import absolute_import, division, print_function, unicode_literals import copy import json import logging import math import os import shutil import tarfile import tempfile import sys from io import open import torch import torch.nn.functional as F from torch import nn from torch.nn import CrossEntropyLoss from torch.autograd import Variable from torch.nn.parameter import Parameter from .file_utils import WEIGHTS_NAME, CONFIG_NAME from .configuration_bert import BertConfig logger = logging.getLogger(__name__) PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz", 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz", 'bert-base-chinese': "", } BERT_CONFIG_NAME = 'bert_config.json' TF_WEIGHTS_NAME = 'model.ckpt' def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def swish(x): return x * torch.sigmoid(x) try: from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm except ImportError: logger.info( "Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu} NORM = {'layer_norm': BertLayerNorm} class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): seq_length = input_ids.size(1) position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int( config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[ :-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask, output_att=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # quantize before compute scores attention_scores = torch.matmul( query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / \ math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) if attention_mask is not None: attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[ :-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer, attention_scores class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output, layer_att = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output, layer_att class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask): attention_output, layer_att = self.attention( hidden_states, attention_mask) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output, layer_att class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask): all_encoder_layers = [] all_encoder_atts = [] for _, layer_module in enumerate(self.layer): all_encoder_layers.append(hidden_states) hidden_states, layer_att = layer_module( hidden_states, attention_mask) all_encoder_atts.append(layer_att) all_encoder_layers.append(hidden_states) return all_encoder_layers, all_encoder_atts class BertPooler(nn.Module): def __init__(self, config, recurs=None): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() self.config = config def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. "-1" refers to last layer pooled_output = hidden_states[-1][:, 0] pooled_output = self.dense(pooled_output) pooled_output = self.activation(pooled_output) return pooled_output class BertPreTrainedModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super(BertPreTrainedModel, self).__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config def init_bert_weights(self, module): """ Initialize the weights. """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_( mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_scratch(cls, pretrained_model_name_or_path, *inputs, **kwargs): resolved_config_file = os.path.join( pretrained_model_name_or_path, CONFIG_NAME) config = BertConfig.from_json_file(resolved_config_file) logger.info("Model config {}".format(config)) model = cls(config, *inputs, **kwargs) return model @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): """ Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name_or_path: either: - a str with the name of a pre-trained model to load selected in the list of: . `bert-base-uncased` . `bert-large-uncased` . `bert-base-cased` . `bert-large-cased` . `bert-base-multilingual-uncased` . `bert-base-multilingual-cased` . `bert-base-chinese` - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `model.chkpt` a TensorFlow checkpoint from_tf: should we load the weights from a locally saved TensorFlow checkpoint cache_dir: an optional path to a folder in which the pre-trained models will be cached. state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ state_dict = kwargs.get('state_dict', None) kwargs.pop('state_dict', None) from_tf = kwargs.get('from_tf', False) kwargs.pop('from_tf', None) config = kwargs.get('config', None) kwargs.pop('config', None) if config is None: # Load config config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) config = BertConfig.from_json_file(config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) if state_dict is None and not from_tf: weights_path = os.path.join( pretrained_model_name_or_path, WEIGHTS_NAME) logger.info("Loading model {}".format(weights_path)) state_dict = torch.load(weights_path, map_location='cpu') if from_tf: # Directly load from a TensorFlow checkpoint weights_path = os.path.join( pretrained_model_name_or_path, TF_WEIGHTS_NAME) return load_tf_weights_in_bert(model, weights_path) # Load from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') start_prefix = '' if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()): start_prefix = 'bert.' logger.info('loading model...') load(model, prefix=start_prefix) logger.info('done!') if len(missing_keys) > 0: logger.info("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: logger.info("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( model.__class__.__name__, "\n\t".join(error_msgs))) return model class BertModel(BertPreTrainedModel): def __init__(self, config): super(BertModel, self).__init__(config) self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, output_att=True): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings(input_ids, token_type_ids) encoded_layers, layer_atts = self.encoder(embedding_output,extended_attention_mask) pooled_output = self.pooler(encoded_layers) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] if not output_att: return encoded_layers, pooled_output return encoded_layers, layer_atts, pooled_output class BertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super(BertForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): sequence_output, att_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return loss, att_output, sequence_output return logits, att_output, sequence_output class BertForQuestionAnswering(BertPreTrainedModel): r""" **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-start scores (before SoftMax). **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` Span-end scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" input_text = "[CLS] " + question + " [SEP] " + text + " [SEP]" input_ids = tokenizer.encode(input_text) token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))] start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids])) all_tokens = tokenizer.convert_ids_to_tokens(input_ids) print(' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1])) # a nice puppet """ def __init__(self, config): super(BertForQuestionAnswering, self).__init__(config) self.num_labels = 2 self.bert = BertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, self.num_labels) self.apply(self.init_bert_weights) def forward(self, input_ids=None, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None): sequence_output, att_output, _ = self.bert(input_ids,token_type_ids,attention_mask) logits = self.qa_outputs(sequence_output[-1]) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if start_positions is not None and end_positions is not None: if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 return total_loss, att_output, sequence_output return (start_logits, end_logits), att_output, sequence_output
bit-main
transformer/modeling_bert.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp Copyright by the AllenNLP authors. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import json import logging import os import shutil import tempfile import fnmatch from functools import wraps from hashlib import sha256 import sys from io import open import boto3 import requests from botocore.exceptions import ClientError from tqdm import tqdm try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse try: from pathlib import Path PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', Path.home() / '.pytorch_pretrained_bert')) except (AttributeError, ImportError): PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', os.path.join(os.path.expanduser("~"), '.pytorch_pretrained_bert')) CONFIG_NAME = "config.json" WEIGHTS_NAME = "pytorch_model.bin" MISC_NAME = "misc.bin" logger = logging.getLogger(__name__) # pylint: disable=invalid-name def url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. """ url_bytes = url.encode('utf-8') url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode('utf-8') etag_hash = sha256(etag_bytes) filename += '.' + etag_hash.hexdigest() return filename def filename_to_url(filename, cache_dir=None): """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BERT_CACHE if sys.version_info[0] == 3 and isinstance(cache_dir, Path): cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): raise EnvironmentError("file {} not found".format(cache_path)) meta_path = cache_path + '.json' if not os.path.exists(meta_path): raise EnvironmentError("file {} not found".format(meta_path)) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata['url'] etag = metadata['etag'] return url, etag def cached_path(url_or_filename, cache_dir=None): """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BERT_CACHE if sys.version_info[0] == 3 and isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if sys.version_info[0] == 3 and isinstance(cache_dir, Path): cache_dir = str(cache_dir) parsed = urlparse(url_or_filename) if parsed.scheme in ('http', 'https', 's3'): # URL, so get it from the cache (downloading if necessary) return get_from_cache(url_or_filename, cache_dir) elif os.path.exists(url_or_filename): # File, and it exists. return url_or_filename elif parsed.scheme == '': # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) def split_s3_path(url): """Split a full s3 path into the bucket name and path.""" parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError("bad s3 path {}".format(url)) bucket_name = parsed.netloc s3_path = parsed.path # Remove '/' at beginning of path. if s3_path.startswith("/"): s3_path = s3_path[1:] return bucket_name, s3_path def s3_request(func): """ Wrapper function for s3 requests in order to create more helpful error messages. """ @wraps(func) def wrapper(url, *args, **kwargs): try: return func(url, *args, **kwargs) except ClientError as exc: if int(exc.response["Error"]["Code"]) == 404: raise EnvironmentError("file {} not found".format(url)) else: raise return wrapper @s3_request def s3_etag(url): """Check ETag on S3 object.""" s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_object = s3_resource.Object(bucket_name, s3_path) return s3_object.e_tag @s3_request def s3_get(url, temp_file): """Pull a file directly from S3.""" s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) def http_get(url, temp_file): req = requests.get(url, stream=True) content_length = req.headers.get('Content-Length') total = int(content_length) if content_length is not None else None progress = tqdm(unit="B", total=total) for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def get_from_cache(url, cache_dir=None): """ Given a URL, look for the corresponding dataset in the local cache. If it's not there, download it. Then return the path to the cached file. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BERT_CACHE if sys.version_info[0] == 3 and isinstance(cache_dir, Path): cache_dir = str(cache_dir) if not os.path.exists(cache_dir): os.makedirs(cache_dir) # Get eTag to add to filename, if it exists. if url.startswith("s3://"): etag = s3_etag(url) else: try: response = requests.head(url, allow_redirects=True) if response.status_code != 200: etag = None else: etag = response.headers.get("ETag") except EnvironmentError: etag = None if sys.version_info[0] == 2 and etag is not None: etag = etag.decode('utf-8') filename = url_to_filename(url, etag) # get cache path to put the file cache_path = os.path.join(cache_dir, filename) # If we don't have a connection (etag is None) and can't identify the file # try to get the last downloaded one if not os.path.exists(cache_path) and etag is None: matching_files = fnmatch.filter(os.listdir(cache_dir), filename + '.*') matching_files = list(filter(lambda s: not s.endswith('.json'), matching_files)) if matching_files: cache_path = os.path.join(cache_dir, matching_files[-1]) if not os.path.exists(cache_path): # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with tempfile.NamedTemporaryFile() as temp_file: logger.info("%s not found in cache, downloading to %s", url, temp_file.name) # GET file object if url.startswith("s3://"): s3_get(url, temp_file) else: http_get(url, temp_file) # we are copying the file before closing it, so flush to avoid truncation temp_file.flush() # shutil.copyfileobj() starts at the current position, so go to the start temp_file.seek(0) logger.info("copying %s to cache at %s", temp_file.name, cache_path) with open(cache_path, 'wb') as cache_file: shutil.copyfileobj(temp_file, cache_file) logger.info("creating metadata file for %s", cache_path) meta = {'url': url, 'etag': etag} meta_path = cache_path + '.json' with open(meta_path, 'w') as meta_file: output_string = json.dumps(meta) if sys.version_info[0] == 2 and isinstance(output_string, str): output_string = unicode(output_string, 'utf-8') # The beauty of python 2 meta_file.write(output_string) logger.info("removing temp file %s", temp_file.name) return cache_path def read_set_from_file(filename): ''' Extract a de-duped collection (set) of text from a file. Expected file format is one item per line. ''' collection = set() with open(filename, 'r', encoding='utf-8') as file_: for line in file_: collection.add(line.rstrip()) return collection def get_file_extension(path, dot=True, lower=True): ext = os.path.splitext(path)[1] ext = ext if dot else ext[1:] return ext.lower() if lower else ext
bit-main
transformer/file_utils.py
from IPython.core.display import display_html, HTML, display_javascript, Javascript import json import numpy as np import inspect import re from collections import defaultdict from copy import deepcopy class TransactionManager: """ Class for maintaining a set of n_threads + 1 states Allows these states to be read and written to by threads, the latter via supplied functions Commits are also modeled explicitly Visualization of a supplied set of txns in the txn viewer """ def __init__(self, n_threads, initial_main_vals=None): self.n_threads = n_threads # The state for each variable is stored as a row # where indices correspond to thread number, RAM is FIRST element self._state = defaultdict(lambda : [0]*(self.n_threads + 1)) # Set initial values in global / RAM if initial_main_vals: for var, val in initial_main_vals.iteritems(): self._state[var][0] = val # Start with an initial state self._log = [{ 'thread': -1, 'operation': 'initial', 'state': dict(deepcopy(self._state)) }] def commit(self, thread): """Commit the actions since the last commit""" # TODO: implement actual functionality! self._log.append({ 'thread': thread, 'operation': 'COMMIT', 'state': dict(deepcopy(self._state)) }) def abort(self, thread): """Abort the actions since the last commit""" # TODO: implement actual functionality! self._log.append({ 'thread': thread, 'operation': 'ABORT', 'state': dict(deepcopy(self._state)) }) def read(self, thread, var): """Read var from disk / global into thread local state""" self._state[var][thread+1] = self._state[var][0] self._log.append({ 'thread': thread, 'operation': 'READ(%s)' % var, 'state': dict(deepcopy(self._state)) }) return self._state[var][thread+1] def write(self, thread, var, val): self.write_fn(thread, var, value=val) def write_fn(self, thread, var, value=None, f=None): if value and not hasattr(value, '__call__'): val = value val_string = str(value) elif f and hasattr(f, '__call__'): val = f(self._state[var][thread+1]) val_string = lambda_function_repr(f) else: raise Exception('f or value must be specified.') old = self._state[var][0] self._state[var][0] = val self._state[var][thread+1] = val # Also set local value self._log.append({ 'thread': thread, 'operation': 'WRITE(%s, %s)' % (var, val_string), 'var': var, 'old': old, 'new': val, 'state': dict(deepcopy(self._state)) }) def print_log(self): for line in self._log: print line def display(self, chart_num=0, configs_in={}): """Display the TXN viewer based on full current log""" # dump input txns to jsonfor transfer to js with open('txnLog.json', 'wb') as f: json.dump(self._log, f) # merge default configs config = { 'chartNum': chart_num, 'numThreads': self.n_threads } config.update(configs_in) js = ''.join('var %s = %s\n' % (k,v) for k,v in config.iteritems()) # JS js += open('txnViewer.js', 'rb').read() js_libs = [ '//d3js.org/d3.v3.min.js', 'https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js', 'https://ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/jquery-ui.min.js' ] # HTML html_scripts = [ '<link rel="stylesheet" href="https://ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/themes/smoothness/jquery-ui.css">' ] html=""" <head>{0}</head> <h3>TXN VIEWER</h3> <table style="border: none; border-collapse: collapse;"> <tr style="border: none;"> <td style="border: none;"> <div id="top-spacer-{1}"></div> <div id="chart-{1}"></div> <div id="slider-{1}"></div> </td> <td style="vertical-align:top; border: none;"> <table id="vals-{1}"></table> </td> </tr> <tr style="border: none;"> <td colspan="2" style="border: none;"><h4>The Log</h4></td> </tr> <tr><td colspan="2"><div id="log-{1}"></td></tr> </table> """.format(''.join(html_scripts), chart_num) # Display in IPython notebook display_html(HTML(data=html)) display_javascript(Javascript(data=js, lib=js_libs)) def lambda_function_repr(f): try: return re.search(r'lambda.*?:(.*?)(,|\)$)', inspect.getsource(f).strip()).group(1).strip() except AttributeError: return '?'
cs145-notebooks-2016-master
lecture-7-8/txn_viewer.py
from collections import namedtuple, OrderedDict from copy import copy import numpy as np from IPython.core.display import display_html, HTML, display_javascript, Javascript import json import random class BufferMemoryException(Exception): pass class PageNotFoundException(Exception): pass class FileNotFoundException(Exception): pass class Page: def __init__(self, fid, pid, size, data=None): self.file_id = fid self.id = pid self.size = size if data is None: self._data = [None]*size else: self.set_all(data) self._i = 0 def size(self, count_empty=False): return len(filter(lambda e : e or count_empty, self._data)) def get(self, i): if i < self.size: return self._data[i] else: raise IndexError def pop(self): # TODO FINISH THIS!!! x = self._data[self._i] self._data[self._i] = None self._i += 1 return x def peek(self): # TODO: Finish this! return self._data[self._i] def is_empty(self): return len([d for d in self._data if d is not None]) == 0 def set(self, i, val): if i < self.size: self._data[i] = val else: raise IndexError def set_all(self, data): if len(data) != self.size: raise Exception("Data and page size do not match") else: self._data = data def copy(self): return Page(self.file_id, self.id, self.size, data=copy(self._data)) def get_data_copy(self): return copy(self._data) def __iter__(self): return iter(self._data) def next(self): if self._i < self.size: self._i += 1 return self.get(self._i-1) else: raise StopIteration() def __str__(self): return "<Page(file_id=%s, id=%s, data=%s)>" % (self.file_id, self.id, self.data) def __repr__(self): return self.__str__() class FileIterator: """ Simple class for iterating through a file and reading successive elements of pages By default, the FileIterator only uses a single page (frame) of the buffer, And either gets the next element in the page or releases it and reads in a new one from disk """ def __init__(self, b, file_id): self.buffer = b self.file_id = file_id self.file_size = len(self.buffer.get_file(file_id)) self.P = self.buffer.page_size self._page = None self._p = -1 # The page index self._e = self.P - 1 # The element index self._current_value = None def _next_page(self): """Release the current page & get next non-null page, stopping iteration if EOF reached""" if self._page: self.buffer.release(self._page) if self._p < self.file_size - 1: self._p += 1 self._page = self.buffer.read(self.file_id, self._p) if self._page is None: self._next_page() else: self._p = -1 self._e = self.P - 1 raise StopIteration def next(self): """ Get next *element* of the pages in the file Handles reading / flushing pages so that at most one page is in the buffer """ # Iterate the element counter and get next page if at end of current one self._e += 1 if self._e == self.P: self._e = 0 self._next_page() # Get the next element x = self._page.get(self._e) # Skip None elements by recursing if x is None: x = self.next() self._current_value = x return x def get_next(self): """Returns None instead of StopIteration exception if EOF reached""" try: return self.next() except StopIteration: return None def erase_current(self): """ Deletes the current element from page, still storing it in FileIterator Mostly for animations """ self._page.set(self._e, None) self.buffer.log_buffer_data_diffs() def peek(self): """Returns the current value in the stream without advancing it""" return self._current_value def __iter__(self): return self class FileWriter: """ A simple class for writing to a file By default the FileWriter only takes up a single page (frame) in the buffer, flushing to disk when full """ def __init__(self, b, file_id): self.buffer = b self.file_id = file_id self.P = self.buffer.page_size self._page = None self._i = 0 # The page index self.pages_written = 0 def append(self, x): """Adds an element to the next free slot in a current or new page""" # Load new page, then set next element if self._page is None: self._page = self.buffer.new_page(self.file_id) self._i = 0 self._page.set(self._i, x) self._i += 1 # Also log for animation self.buffer.log_buffer_data_diffs() # If page is full, flush here if self._i == self.P: self.buffer.flush(self._page) self.pages_written += 1 self._page = None def close(self): """Closes the writer""" if self._page is not None: self.buffer.flush(self._page) self.pages_written += 1 class Buffer: def __init__(self, page_size=4, buffer_size=4, sequential_cost=1.0, buffer_queue_indicator=None): self.buffer_size = buffer_size self.page_size = page_size # Display tooltip over e.g. LRU, MRU self.buffer_queue_indicator = buffer_queue_indicator # The buffer is a hash table of pages, of fixed size self._buffer = [None]*self.buffer_size self._buffer_order = [] self._buffer_map = {} # The disk is a list of files, which are lists of pages self._disk = [] # Keep track of the last read / write fid,pid for sequential discount self._last_id = None self._sequential_cost = sequential_cost # The log records read & write operations between disk, buffer and main (name??) self._io_count = { 'bufferReads': 0, 'bufferWrites': 0, 'diskReads': 0, 'diskWrites': 0 } self._log = [] # for d3 animations self._chart_num = 0 self._pages_start_state = [] self._diff_log_start = 0 self._buffer_stale = [None]*self.buffer_size def buffer_is_full(self): return len(filter(lambda x : x is None, self._buffer)) == 0 def get_empty_buffer_slot(self): for i in range(len(self._buffer)): if self._buffer[i] is None: return i else: raise BufferMemoryException def get_empty_disk_slot(self): i = -1 for i in range(len(self._disk)): if self._disk[i] is None: self._disk[i] = [] return i self._disk.append([]) return i + 1 def get_file_size(self, file_id, count_empty=False): return len(filter(lambda p : p or count_empty, self._disk[file_id])) def _update_log(self, op, page, buffer_idx, old_location, new_location, keep_old, file_id=None, show=True, tooltip_content=None): fid = page.file_id if page else file_id pid = page.id if page else None page_data = page.get_data_copy() if page else None self._log.append({ "operation": op, "oldLocation": old_location, "newLocation": new_location, "file": fid, "page": pid, "bufferIndex": buffer_idx, "pageData": page_data, "keepOld": keep_old, "ioCount": copy(self._io_count), "show": show, "tooltipContent": tooltip_content }) def print_log(self): for l in self._log: print '%s : id=(%s,%s) : %s -> %s [bi=%s]' % (l['operation'], l['file'], l['page'], l['oldLocation'], l['newLocation'], l['bufferIndex']) def get_buffer_page(self, idx): """Returns page & buffer index of specific page by buffer order""" if type(idx) == int: if idx >= self.buffer_size: raise BufferMemoryException else: if idx == 'LRU': j = 0 elif idx == 'MRU': j = -1 else: raise Exception("Unrecognized index type.") if len(self._buffer_order) > 0: i = self._buffer_order[j] else: return None, None return self._buffer[i], i def update_buffer_queue_indicator(self, remove_idx=None, add_idx=None): """ Updates the buffer order queue = tracks order in which pages were put in buffer Sends tooltip updates to log for a separate tooltip to indicate e.g. LRU/MRU """ if remove_idx is not None: self._buffer_order = filter(lambda i : i != remove_idx, self._buffer_order) if add_idx is not None: self._buffer_order.append(add_idx) if self.buffer_queue_indicator: page, buffer_idx = self.get_buffer_page(self.buffer_queue_indicator) self._update_log('TOOLTIP-2', page, buffer_idx, 'BUFFER', 'BUFFER', False, tooltip_content=self.buffer_queue_indicator) def read(self, fid, pid): """ Attempts to read page from buffer, else tries to load a copy of the page from disk Throws exceptions if page not in buffer and buffer is full or page not found on disk """ id = (fid, pid) self.log_buffer_data_diffs() # Not in buffer and buffer full! if id not in self._buffer_map and self.buffer_is_full(): raise BufferMemoryException # File and/or page not found! elif fid >= len(self._disk) or pid >= len(self._disk[fid]): raise PageNotFoundException else: # If not already in buffer, read from disk to buffer # Find an empty slot in the buffer and insert copy of page from disk if id not in self._buffer_map: if self._last_id == (id[0], id[1]-1): self._io_count['diskReads'] += self._sequential_cost else: self._io_count['diskReads'] += 1 i = self.get_empty_buffer_slot() page = self._disk[fid][pid].copy() self._buffer[i] = page self._buffer_map[id] = i self._update_log('READ FROM DISK', page, i, 'DISK', 'BUFFER', True) # log for sequential discounting self._last_id = id # Perform & record read *from* buffer, adjust buffer use order i = self._buffer_map[id] self.update_buffer_queue_indicator(remove_idx=i, add_idx=i) self._io_count['bufferReads'] += 1 page = self._buffer[i] self._update_log('Read from Buffer', page, i, 'BUFFER', 'BUFFER', False) return page def new_page(self, fid): """ Creates a new page, in buffer only, returning the page """ # Buffer full! if self.buffer_is_full(): raise BufferMemoryException # New page must be assigned to a file, and this file must already exist on disk! elif fid >= len(self._disk): raise FileNotFoundException # Create in buffer- log this (mainly for animation) else: # Get the next index for the file, append an empty placeholder in the file on disk # TODO: replace this method, have them do manually? pid = len(self._disk[fid]) self._disk[fid].append(None) # Place a new page in the buffer page = Page(fid, pid, self.page_size) i = self.get_empty_buffer_slot() self._buffer[i] = page self._buffer_stale[i] = page.copy() self._buffer_map[(fid, pid)] = i self.update_buffer_queue_indicator(add_idx=i) self._update_log('Write to Buffer', page, i, None, 'BUFFER', False) return page def release(self, page): """ Releases page from buffer without flushing to disk, clearing the buffer frame """ self.log_buffer_data_diffs() id = (page.file_id, page.id) # Must be in buffer! if id not in self._buffer_map: raise PageNotFoundException # Release from buffer without flushing to disk else: i = self._buffer_map.pop(id) self.update_buffer_queue_indicator(remove_idx=i) self._update_log('RELEASE', page, i, 'BUFFER', None, False) self._buffer[i] = None def flush(self, page): """ Writes the page to buffer, then flushes the page in buffer to disk, clearing it from buffer """ self.log_buffer_data_diffs() fid = page.file_id pid = page.id id = (fid, pid) # Must be in buffer! if id not in self._buffer_map: raise PageNotFoundException # Must have a file to write to! elif page.file_id >= len(self._disk): raise FileNotFoundException # Flush to disk: remove from buffer, buffer map, place in disk else: if self._last_id == (id[0], id[1]-1): self._io_count['diskWrites'] += self._sequential_cost else: self._io_count['diskWrites'] += 1 self._update_log('FLUSH TO DISK', page, self._buffer_map[id], 'BUFFER', 'DISK', False) i = self._buffer_map.pop(id) self._disk[fid][pid] = self._buffer[i] self._buffer[i] = None self.update_buffer_queue_indicator(remove_idx=i) # log for sequential discounting self._last_id = id def get_file(self, fid): """ Gets a file from disk, which is just a list of page ids """ if fid >= len(self._disk): raise FileNotFoundException else: return range(len(self._disk[fid])) def get_file_len(self, fid): return len(self.get_file(fid)) def new_file(self): """ Creates a new file on disk, returns the file id """ file_id = self.get_empty_disk_slot() self._update_log('NEWFILE', None, None, None, None, False, file_id=file_id) return file_id def delete_file(self, file_id): self._disk[file_id] = None self._update_log('DELETEFILE', None, None, None, None, False, file_id=file_id) def log_buffer_data_diffs(self): """ The user can modify the data in the buffer directly We want to have a record of these updates though for logging & animation """ for i,page in enumerate(self._buffer): if page is not None: # Note: only show + log IO count if an actual data change vs. initialization diff = self._buffer_stale[i] and not np.array_equal(page.get_data_copy(), self._buffer_stale[i].get_data_copy()) if self._buffer_stale[i] is None or diff: self._update_log('WRITE (Buffer)', page, i, 'BUFFER', 'BUFFER', False, show=False) self._buffer_stale[i] = page.copy() if diff: self._io_count['bufferWrites'] += 1 def display(self, speed=1000, from_start=False, reset_io=False, buffer_num=0): """ Display an animation, based on a starting state & the logged diff Once this is called, the starting state & log mark are advanced """ self.log_buffer_data_diffs() # Create a new html pane with unique id chart_id = '%s-%s' % (buffer_num, self._chart_num) html = """ <table> <tr><th><i>IO Counts</i></th><th>R</th><th>W</th></tr> <tr> <td><i>To/from Buffer</i></td> <td id="chart-{0}-bufferReads">0</td> <td id="chart-{0}-bufferWrites">0</td> </tr> <tr> <td><b>To/from Disk</b></td> <td id="chart-{0}-diskReads">0</td> <td id="chart-{0}-diskWrites">0</td> </tr> </table> <br /> <div class="tooltip" id="chart-{0}-tooltip" style="position:absolute; z-index:100; color:white; background:black; opacity:0.7; padding:3px; border-radius:5px; display:none;">TOOLTIP!</div> <div class="tooltip" id="chart-{0}-tooltip-2" style="position:absolute; z-index:100; color:white; background:black; opacity:0.7; padding:3px; border-radius:5px; display:none;">TOOLTIP!</div> <div id="chart-{0}"></div> """.format(chart_id) # Dump log to json file with open('pagesLog.json', 'wb') as f: json.dump(self._log, f) # Create animation in js/d3 js_configs = { 'DURATION': speed, 'chartNum': chart_id, 'numBufferPages': self.buffer_size, 'pageSize': self.page_size, 'numDiskPages': 5, 'logStart': self._diff_log_start if not from_start else 0 } js = js_file_with_configs('compModel.js', js_configs) js_libs = [ 'https://d3js.org/d3.v3.min.js', 'https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js', 'https://ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/jquery-ui.min.js' ] display_html(HTML(data=html)) display_javascript(Javascript(data=js, lib=js_libs)) self._chart_num += 1 # Advance current animation state in log self.display_set_mark(reset_io=reset_io) def display_set_mark(self, reset_io=True): """ Set mark so that next display command starts animation at this point Also reset IO counter """ self._diff_log_start = len(self._log) if reset_io: for k in self._io_count.iterkeys(): self._io_count[k] = 0 def js_file_with_configs(fpath, configs): """ Take in a js filepath and a dictionary of configs to be passed in as global vars """ js = '' for k,v in configs.iteritems(): if type(v) == str: js += 'var %s = "%s"\n' % (k,v) elif type(v) in [int, float]: js += 'var %s = %s\n' % (k,v) js += open(fpath, 'rb').read() return js def new_rand_file(b, r, l, sorted=False): vals = random.sample(range(r), l) if sorted: vals.sort() fid = b.new_file() fw = FileWriter(b, fid) for v in vals: fw.append(v) fw.close() return fid
cs145-notebooks-2016-master
bonus/io_backend.py
from collections import namedtuple, OrderedDict from copy import copy import numpy as np from IPython.core.display import display_html, HTML, display_javascript, Javascript import json import random class BufferMemoryException(Exception): pass class PageNotFoundException(Exception): pass class FileNotFoundException(Exception): pass class Page: def __init__(self, fid, pid, size, data=None): self.file_id = fid self.id = pid self.size = size if data is None: self._data = [None]*size else: self.set_all(data) self._i = 0 def size(self, count_empty=False): return len(filter(lambda e : e or count_empty, self._data)) def get(self, i): if i < self.size: return self._data[i] else: raise IndexError def pop(self): # TODO FINISH THIS!!! x = self._data[self._i] self._data[self._i] = None self._i += 1 return x def peek(self): # TODO: Finish this! return self._data[self._i] def is_empty(self): return len([d for d in self._data if d is not None]) == 0 def set(self, i, val): if i < self.size: self._data[i] = val else: raise IndexError def set_all(self, data): if len(data) != self.size: raise Exception("Data and page size do not match") else: self._data = data def copy(self): return Page(self.file_id, self.id, self.size, data=copy(self._data)) def get_data_copy(self): return copy(self._data) def __iter__(self): return iter(self._data) def next(self): if self._i < self.size: self._i += 1 return self.get(self._i-1) else: raise StopIteration() def __str__(self): return "<Page(file_id=%s, id=%s, data=%s)>" % (self.file_id, self.id, self.data) def __repr__(self): return self.__str__() class FileIterator: """ Simple class for iterating through a file and reading successive elements of pages By default, the FileIterator only uses a single page (frame) of the buffer, And either gets the next element in the page or releases it and reads in a new one from disk """ def __init__(self, b, file_id): self.buffer = b self.file_id = file_id self.file_size = len(self.buffer.get_file(file_id)) self.P = self.buffer.page_size self._page = None self._p = -1 # The page index self._e = self.P - 1 # The element index self._current_value = None def _next_page(self): """Release the current page & get next non-null page, stopping iteration if EOF reached""" if self._page: self.buffer.release(self._page) if self._p < self.file_size - 1: self._p += 1 self._page = self.buffer.read(self.file_id, self._p) if self._page is None: self._next_page() else: self._p = -1 self._e = self.P - 1 raise StopIteration def next(self): """ Get next *element* of the pages in the file Handles reading / flushing pages so that at most one page is in the buffer """ # Iterate the element counter and get next page if at end of current one self._e += 1 if self._e == self.P: self._e = 0 self._next_page() # Get the next element x = self._page.get(self._e) # Skip None elements by recursing if x is None: x = self.next() self._current_value = x return x def get_next(self): """Returns None instead of StopIteration exception if EOF reached""" try: return self.next() except StopIteration: return None def erase_current(self): """ Deletes the current element from page, still storing it in FileIterator Mostly for animations """ self._page.set(self._e, None) self.buffer.log_buffer_data_diffs() def peek(self): """Returns the current value in the stream without advancing it""" return self._current_value def __iter__(self): return self class FileWriter: """ A simple class for writing to a file By default the FileWriter only takes up a single page (frame) in the buffer, flushing to disk when full """ def __init__(self, b, file_id): self.buffer = b self.file_id = file_id self.P = self.buffer.page_size self._page = None self._i = 0 # The page index self.pages_written = 0 def append(self, x): """Adds an element to the next free slot in a current or new page""" # Load new page, then set next element if self._page is None: self._page = self.buffer.new_page(self.file_id) self._i = 0 self._page.set(self._i, x) self._i += 1 # Also log for animation self.buffer.log_buffer_data_diffs() # If page is full, flush here if self._i == self.P: self.buffer.flush(self._page) self.pages_written += 1 self._page = None def close(self): """Closes the writer""" if self._page is not None: self.buffer.flush(self._page) self.pages_written += 1 class Buffer: def __init__(self, page_size=4, buffer_size=4, sequential_cost=1.0, buffer_queue_indicator=None): self.buffer_size = buffer_size self.page_size = page_size # Display tooltip over e.g. LRU, MRU self.buffer_queue_indicator = buffer_queue_indicator # The buffer is a hash table of pages, of fixed size self._buffer = [None]*self.buffer_size self._buffer_order = [] self._buffer_map = {} # The disk is a list of files, which are lists of pages self._disk = [] # Keep track of the last read / write fid,pid for sequential discount self._last_id = None self._sequential_cost = sequential_cost # The log records read & write operations between disk, buffer and main (name??) self._io_count = { 'bufferReads': 0, 'bufferWrites': 0, 'diskReads': 0, 'diskWrites': 0 } self._log = [] # for d3 animations self._chart_num = 0 self._pages_start_state = [] self._diff_log_start = 0 self._buffer_stale = [None]*self.buffer_size def buffer_is_full(self): return len(filter(lambda x : x is None, self._buffer)) == 0 def get_empty_buffer_slot(self): for i in range(len(self._buffer)): if self._buffer[i] is None: return i else: raise BufferMemoryException def get_empty_disk_slot(self): i = -1 for i in range(len(self._disk)): if self._disk[i] is None: self._disk[i] = [] return i self._disk.append([]) return i + 1 def get_file_size(self, file_id, count_empty=False): return len(filter(lambda p : p or count_empty, self._disk[file_id])) def _update_log(self, op, page, buffer_idx, old_location, new_location, keep_old, file_id=None, show=True, tooltip_content=None): fid = page.file_id if page else file_id pid = page.id if page else None page_data = page.get_data_copy() if page else None self._log.append({ "operation": op, "oldLocation": old_location, "newLocation": new_location, "file": fid, "page": pid, "bufferIndex": buffer_idx, "pageData": page_data, "keepOld": keep_old, "ioCount": copy(self._io_count), "show": show, "tooltipContent": tooltip_content }) def print_log(self): for l in self._log: print '%s : id=(%s,%s) : %s -> %s [bi=%s]' % (l['operation'], l['file'], l['page'], l['oldLocation'], l['newLocation'], l['bufferIndex']) def get_buffer_page(self, idx): """Returns page & buffer index of specific page by buffer order""" if type(idx) == int: if idx >= self.buffer_size: raise BufferMemoryException else: if idx == 'LRU': j = 0 elif idx == 'MRU': j = -1 else: raise Exception("Unrecognized index type.") if len(self._buffer_order) > 0: i = self._buffer_order[j] else: return None, None return self._buffer[i], i def update_buffer_queue_indicator(self, remove_idx=None, add_idx=None): """ Updates the buffer order queue = tracks order in which pages were put in buffer Sends tooltip updates to log for a separate tooltip to indicate e.g. LRU/MRU """ if remove_idx is not None: self._buffer_order = filter(lambda i : i != remove_idx, self._buffer_order) if add_idx is not None: self._buffer_order.append(add_idx) if self.buffer_queue_indicator: page, buffer_idx = self.get_buffer_page(self.buffer_queue_indicator) self._update_log('TOOLTIP-2', page, buffer_idx, 'BUFFER', 'BUFFER', False, tooltip_content=self.buffer_queue_indicator) def read(self, fid, pid): """ Attempts to read page from buffer, else tries to load a copy of the page from disk Throws exceptions if page not in buffer and buffer is full or page not found on disk """ id = (fid, pid) self.log_buffer_data_diffs() # Not in buffer and buffer full! if id not in self._buffer_map and self.buffer_is_full(): raise BufferMemoryException # File and/or page not found! elif fid >= len(self._disk) or pid >= len(self._disk[fid]): raise PageNotFoundException else: # If not already in buffer, read from disk to buffer # Find an empty slot in the buffer and insert copy of page from disk if id not in self._buffer_map: if self._last_id == (id[0], id[1]-1): self._io_count['diskReads'] += self._sequential_cost else: self._io_count['diskReads'] += 1 i = self.get_empty_buffer_slot() page = self._disk[fid][pid].copy() self._buffer[i] = page self._buffer_map[id] = i self._update_log('READ FROM DISK', page, i, 'DISK', 'BUFFER', True) # log for sequential discounting self._last_id = id # Perform & record read *from* buffer, adjust buffer use order i = self._buffer_map[id] self.update_buffer_queue_indicator(remove_idx=i, add_idx=i) self._io_count['bufferReads'] += 1 page = self._buffer[i] self._update_log('Read from Buffer', page, i, 'BUFFER', 'BUFFER', False) return page def new_page(self, fid): """ Creates a new page, in buffer only, returning the page """ # Buffer full! if self.buffer_is_full(): raise BufferMemoryException # New page must be assigned to a file, and this file must already exist on disk! elif fid >= len(self._disk): raise FileNotFoundException # Create in buffer- log this (mainly for animation) else: # Get the next index for the file, append an empty placeholder in the file on disk # TODO: replace this method, have them do manually? pid = len(self._disk[fid]) self._disk[fid].append(None) # Place a new page in the buffer page = Page(fid, pid, self.page_size) i = self.get_empty_buffer_slot() self._buffer[i] = page self._buffer_stale[i] = page.copy() self._buffer_map[(fid, pid)] = i self.update_buffer_queue_indicator(add_idx=i) self._update_log('Write to Buffer', page, i, None, 'BUFFER', False) return page def release(self, page): """ Releases page from buffer without flushing to disk, clearing the buffer frame """ self.log_buffer_data_diffs() id = (page.file_id, page.id) # Must be in buffer! if id not in self._buffer_map: raise PageNotFoundException # Release from buffer without flushing to disk else: i = self._buffer_map.pop(id) self.update_buffer_queue_indicator(remove_idx=i) self._update_log('RELEASE', page, i, 'BUFFER', None, False) self._buffer[i] = None def flush(self, page): """ Writes the page to buffer, then flushes the page in buffer to disk, clearing it from buffer """ self.log_buffer_data_diffs() fid = page.file_id pid = page.id id = (fid, pid) # Must be in buffer! if id not in self._buffer_map: raise PageNotFoundException # Must have a file to write to! elif page.file_id >= len(self._disk): raise FileNotFoundException # Flush to disk: remove from buffer, buffer map, place in disk else: if self._last_id == (id[0], id[1]-1): self._io_count['diskWrites'] += self._sequential_cost else: self._io_count['diskWrites'] += 1 self._update_log('FLUSH TO DISK', page, self._buffer_map[id], 'BUFFER', 'DISK', False) i = self._buffer_map.pop(id) self._disk[fid][pid] = self._buffer[i] self._buffer[i] = None self.update_buffer_queue_indicator(remove_idx=i) # log for sequential discounting self._last_id = id def get_file(self, fid): """ Gets a file from disk, which is just a list of page ids """ if fid >= len(self._disk): raise FileNotFoundException else: return range(len(self._disk[fid])) def get_file_len(self, fid): return len(self.get_file(fid)) def new_file(self): """ Creates a new file on disk, returns the file id """ file_id = self.get_empty_disk_slot() self._update_log('NEWFILE', None, None, None, None, False, file_id=file_id) return file_id def delete_file(self, file_id): self._disk[file_id] = None self._update_log('DELETEFILE', None, None, None, None, False, file_id=file_id) def log_buffer_data_diffs(self): """ The user can modify the data in the buffer directly We want to have a record of these updates though for logging & animation """ for i,page in enumerate(self._buffer): if page is not None: # Note: only show + log IO count if an actual data change vs. initialization diff = self._buffer_stale[i] and not np.array_equal(page.get_data_copy(), self._buffer_stale[i].get_data_copy()) if self._buffer_stale[i] is None or diff: self._update_log('WRITE (Buffer)', page, i, 'BUFFER', 'BUFFER', False, show=False) self._buffer_stale[i] = page.copy() if diff: self._io_count['bufferWrites'] += 1 def display(self, speed=1000, from_start=False, reset_io=False, buffer_num=0): """ Display an animation, based on a starting state & the logged diff Once this is called, the starting state & log mark are advanced """ self.log_buffer_data_diffs() # Create a new html pane with unique id chart_id = '%s-%s' % (buffer_num, self._chart_num) html = """ <table> <tr><th><i>IO Counts</i></th><th>R</th><th>W</th></tr> <tr> <td><i>To/from Buffer</i></td> <td id="chart-{0}-bufferReads">0</td> <td id="chart-{0}-bufferWrites">0</td> </tr> <tr> <td><b>To/from Disk</b></td> <td id="chart-{0}-diskReads">0</td> <td id="chart-{0}-diskWrites">0</td> </tr> </table> <br /> <div class="tooltip" id="chart-{0}-tooltip" style="position:absolute; z-index:100; color:white; background:black; opacity:0.7; padding:3px; border-radius:5px; display:none;">TOOLTIP!</div> <div class="tooltip" id="chart-{0}-tooltip-2" style="position:absolute; z-index:100; color:white; background:black; opacity:0.7; padding:3px; border-radius:5px; display:none;">TOOLTIP!</div> <div id="chart-{0}"></div> """.format(chart_id) # Dump log to json file with open('pagesLog.json', 'wb') as f: json.dump(self._log, f) # Create animation in js/d3 js_configs = { 'DURATION': speed, 'chartNum': chart_id, 'numBufferPages': self.buffer_size, 'pageSize': self.page_size, 'numDiskPages': 5, 'logStart': self._diff_log_start if not from_start else 0 } js = js_file_with_configs('compModel.js', js_configs) js_libs = [ 'https://d3js.org/d3.v3.min.js', 'https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js', 'https://ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/jquery-ui.min.js' ] display_html(HTML(data=html)) display_javascript(Javascript(data=js, lib=js_libs)) self._chart_num += 1 # Advance current animation state in log self.display_set_mark(reset_io=reset_io) def display_set_mark(self, reset_io=True): """ Set mark so that next display command starts animation at this point Also reset IO counter """ self._diff_log_start = len(self._log) if reset_io: for k in self._io_count.iterkeys(): self._io_count[k] = 0 def js_file_with_configs(fpath, configs): """ Take in a js filepath and a dictionary of configs to be passed in as global vars """ js = '' for k,v in configs.iteritems(): if type(v) == str: js += 'var %s = "%s"\n' % (k,v) elif type(v) in [int, float]: js += 'var %s = %s\n' % (k,v) js += open(fpath, 'rb').read() return js def new_rand_file(b, r, l, sorted=False): vals = random.sample(range(r), l) if sorted: vals.sort() fid = b.new_file() fw = FileWriter(b, fid) for v in vals: fw.append(v) fw.close() return fid
cs145-notebooks-2016-master
lecture-14-15/io_backend.py
from IPython.core.display import display_html, HTML def to_html_table(res, style=None): html = '<table' + (' style="' + style + '"' if style else '') + '><tr><th>' html += '</th><th>'.join(res.keys) + '</th></tr><tr><td>' html += '</td></tr><tr><td>'.join(['</td><td>'.join([str(cell) for cell in row]) for row in list(res)]) return html + '</tr></table>' def side_by_side(l, r): s = "display: inline-block;" html = to_html_table(l, style=s) + ' ' + to_html_table(r, style=s) display_html(HTML(data=html))
cs145-notebooks-2016-master
lecture-14-15/display_tools.py
# Utilities import csv import numpy as np from collections import namedtuple from collections import defaultdict from collections import Counter def loadData(): PlayerTeam = namedtuple('PlayerTeam','teamname playername') PlayerCollege = namedtuple('PlayerCollege', 'playername collegename') teams = [] for line in csv.reader(open("playerteam.csv", "rb"), delimiter='\t'): p = PlayerTeam._make(line) teams.append(p) colleges = [] for line in csv.reader(open("playercollege.csv", "rb"), delimiter='\t'): p = PlayerCollege._make(line) colleges.append(p) return teams, colleges def partitionTable(table, hashfunction,buckets): hRes = defaultdict(list) for b in range(buckets): hRes[b] = [] attribute = 'playername' for s in table: hRes[hashfunction(getattr(s, attribute),buckets)].append(s) return hRes
cs145-notebooks-2016-master
PS3/nfl.py
from collections import namedtuple, OrderedDict from copy import copy import numpy as np from IPython.core.display import display_html, HTML, display_javascript, Javascript import json import random class BufferMemoryException(Exception): pass class PageNotFoundException(Exception): pass class FileNotFoundException(Exception): pass class Page: def __init__(self, fid, pid, size, data=None): self.file_id = fid self.id = pid self.size = size if data is None: self._data = [None]*size else: self.set_all(data) self._i = 0 def size(self, count_empty=False): return len(filter(lambda e : e or count_empty, self._data)) def get(self, i): if i < self.size: return self._data[i] else: raise IndexError def pop(self): # TODO FINISH THIS!!! x = self._data[self._i] self._data[self._i] = None self._i += 1 return x def peek(self): # TODO: Finish this! return self._data[self._i] def is_empty(self): return len([d for d in self._data if d is not None]) == 0 def set(self, i, val): if i < self.size: self._data[i] = val else: raise IndexError def set_all(self, data): if len(data) != self.size: raise Exception("Data and page size do not match") else: self._data = data def copy(self): return Page(self.file_id, self.id, self.size, data=copy(self._data)) def get_data_copy(self): return copy(self._data) def __iter__(self): return iter(self._data) def next(self): if self._i < self.size: self._i += 1 return self.get(self._i-1) else: raise StopIteration() def __str__(self): return "<Page(file_id=%s, id=%s, data=%s)>" % (self.file_id, self.id, self.data) def __repr__(self): return self.__str__() class FileIterator: """ Simple class for iterating through a file and reading successive elements of pages By default, the FileIterator only uses a single page (frame) of the buffer, And either gets the next element in the page or releases it and reads in a new one from disk """ def __init__(self, b, file_id): self.buffer = b self.file_id = file_id self.file_size = len(self.buffer.get_file(file_id)) self.P = self.buffer.page_size self._page = None self._p = -1 # The page index self._e = self.P - 1 # The element index self._current_value = None def _next_page(self): """Release the current page & get next non-null page, stopping iteration if EOF reached""" if self._page: self.buffer.release(self._page) if self._p < self.file_size - 1: self._p += 1 self._page = self.buffer.read(self.file_id, self._p) if self._page is None: self._next_page() else: self._p = -1 self._e = self.P - 1 raise StopIteration def next(self): """ Get next *element* of the pages in the file Handles reading / flushing pages so that at most one page is in the buffer """ # Iterate the element counter and get next page if at end of current one self._e += 1 if self._e == self.P: self._e = 0 self._next_page() # Get the next element x = self._page.get(self._e) # Skip None elements by recursing if x is None: x = self.next() self._current_value = x return x def get_next(self): """Returns None instead of StopIteration exception if EOF reached""" try: return self.next() except StopIteration: return None def erase_current(self): """ Deletes the current element from page, still storing it in FileIterator Mostly for animations """ self._page.set(self._e, None) self.buffer.log_buffer_data_diffs() def peek(self): """Returns the current value in the stream without advancing it""" return self._current_value def __iter__(self): return self class FileWriter: """ A simple class for writing to a file By default the FileWriter only takes up a single page (frame) in the buffer, flushing to disk when full """ def __init__(self, b, file_id): self.buffer = b self.file_id = file_id self.P = self.buffer.page_size self._page = None self._i = 0 # The page index self.pages_written = 0 def append(self, x): """Adds an element to the next free slot in a current or new page""" # Load new page, then set next element if self._page is None: self._page = self.buffer.new_page(self.file_id) self._i = 0 self._page.set(self._i, x) self._i += 1 # Also log for animation self.buffer.log_buffer_data_diffs() # If page is full, flush here if self._i == self.P: self.buffer.flush(self._page) self.pages_written += 1 self._page = None def close(self): """Closes the writer""" if self._page is not None: self.buffer.flush(self._page) self.pages_written += 1 class Buffer: def __init__(self, page_size=4, buffer_size=4, sequential_cost=1.0, buffer_queue_indicator=None): self.buffer_size = buffer_size self.page_size = page_size # Display tooltip over e.g. LRU, MRU self.buffer_queue_indicator = buffer_queue_indicator # The buffer is a hash table of pages, of fixed size self._buffer = [None]*self.buffer_size self._buffer_order = [] self._buffer_map = {} # The disk is a list of files, which are lists of pages self._disk = [] # Keep track of the last read / write fid,pid for sequential discount self._last_id = None self._sequential_cost = sequential_cost # The log records read & write operations between disk, buffer and main (name??) self._io_count = { 'bufferReads': 0, 'bufferWrites': 0, 'diskReads': 0, 'diskWrites': 0 } self._log = [] # for d3 animations self._chart_num = 0 self._pages_start_state = [] self._diff_log_start = 0 self._buffer_stale = [None]*self.buffer_size def buffer_is_full(self): return len(filter(lambda x : x is None, self._buffer)) == 0 def get_empty_buffer_slot(self): for i in range(len(self._buffer)): if self._buffer[i] is None: return i else: raise BufferMemoryException def get_empty_disk_slot(self): i = -1 for i in range(len(self._disk)): if self._disk[i] is None: self._disk[i] = [] return i self._disk.append([]) return i + 1 def get_file_size(self, file_id, count_empty=False): return len(filter(lambda p : p or count_empty, self._disk[file_id])) def _update_log(self, op, page, buffer_idx, old_location, new_location, keep_old, file_id=None, show=True, tooltip_content=None): fid = page.file_id if page else file_id pid = page.id if page else None page_data = page.get_data_copy() if page else None self._log.append({ "operation": op, "oldLocation": old_location, "newLocation": new_location, "file": fid, "page": pid, "bufferIndex": buffer_idx, "pageData": page_data, "keepOld": keep_old, "ioCount": copy(self._io_count), "show": show, "tooltipContent": tooltip_content }) def print_log(self): for l in self._log: print '%s : id=(%s,%s) : %s -> %s [bi=%s]' % (l['operation'], l['file'], l['page'], l['oldLocation'], l['newLocation'], l['bufferIndex']) def get_buffer_page(self, idx): """Returns page & buffer index of specific page by buffer order""" if type(idx) == int: if idx >= self.buffer_size: raise BufferMemoryException else: if idx == 'LRU': j = 0 elif idx == 'MRU': j = -1 else: raise Exception("Unrecognized index type.") if len(self._buffer_order) > 0: i = self._buffer_order[j] else: return None, None return self._buffer[i], i def update_buffer_queue_indicator(self, remove_idx=None, add_idx=None): """ Updates the buffer order queue = tracks order in which pages were put in buffer Sends tooltip updates to log for a separate tooltip to indicate e.g. LRU/MRU """ if remove_idx is not None: self._buffer_order = filter(lambda i : i != remove_idx, self._buffer_order) if add_idx is not None: self._buffer_order.append(add_idx) if self.buffer_queue_indicator: page, buffer_idx = self.get_buffer_page(self.buffer_queue_indicator) self._update_log('TOOLTIP-2', page, buffer_idx, 'BUFFER', 'BUFFER', False, tooltip_content=self.buffer_queue_indicator) def read(self, fid, pid): """ Attempts to read page from buffer, else tries to load a copy of the page from disk Throws exceptions if page not in buffer and buffer is full or page not found on disk """ id = (fid, pid) self.log_buffer_data_diffs() # Not in buffer and buffer full! if id not in self._buffer_map and self.buffer_is_full(): raise BufferMemoryException # File and/or page not found! elif fid >= len(self._disk) or pid >= len(self._disk[fid]): raise PageNotFoundException else: # If not already in buffer, read from disk to buffer # Find an empty slot in the buffer and insert copy of page from disk if id not in self._buffer_map: if self._last_id == (id[0], id[1]-1): self._io_count['diskReads'] += self._sequential_cost else: self._io_count['diskReads'] += 1 i = self.get_empty_buffer_slot() page = self._disk[fid][pid].copy() self._buffer[i] = page self._buffer_map[id] = i self._update_log('READ FROM DISK', page, i, 'DISK', 'BUFFER', True) # log for sequential discounting self._last_id = id # Perform & record read *from* buffer, adjust buffer use order i = self._buffer_map[id] self.update_buffer_queue_indicator(remove_idx=i, add_idx=i) self._io_count['bufferReads'] += 1 page = self._buffer[i] self._update_log('Read from Buffer', page, i, 'BUFFER', 'BUFFER', False) return page def new_page(self, fid): """ Creates a new page, in buffer only, returning the page """ # Buffer full! if self.buffer_is_full(): raise BufferMemoryException # New page must be assigned to a file, and this file must already exist on disk! elif fid >= len(self._disk): raise FileNotFoundException # Create in buffer- log this (mainly for animation) else: # Get the next index for the file, append an empty placeholder in the file on disk # TODO: replace this method, have them do manually? pid = len(self._disk[fid]) self._disk[fid].append(None) # Place a new page in the buffer page = Page(fid, pid, self.page_size) i = self.get_empty_buffer_slot() self._buffer[i] = page self._buffer_stale[i] = page.copy() self._buffer_map[(fid, pid)] = i self.update_buffer_queue_indicator(add_idx=i) self._update_log('Write to Buffer', page, i, None, 'BUFFER', False) return page def release(self, page): """ Releases page from buffer without flushing to disk, clearing the buffer frame """ self.log_buffer_data_diffs() id = (page.file_id, page.id) # Must be in buffer! if id not in self._buffer_map: raise PageNotFoundException # Release from buffer without flushing to disk else: i = self._buffer_map.pop(id) self.update_buffer_queue_indicator(remove_idx=i) self._update_log('RELEASE', page, i, 'BUFFER', None, False) self._buffer[i] = None def flush(self, page): """ Writes the page to buffer, then flushes the page in buffer to disk, clearing it from buffer """ self.log_buffer_data_diffs() fid = page.file_id pid = page.id id = (fid, pid) # Must be in buffer! if id not in self._buffer_map: raise PageNotFoundException # Must have a file to write to! elif page.file_id >= len(self._disk): raise FileNotFoundException # Flush to disk: remove from buffer, buffer map, place in disk else: if self._last_id == (id[0], id[1]-1): self._io_count['diskWrites'] += self._sequential_cost else: self._io_count['diskWrites'] += 1 self._update_log('FLUSH TO DISK', page, self._buffer_map[id], 'BUFFER', 'DISK', False) i = self._buffer_map.pop(id) self._disk[fid][pid] = self._buffer[i] self._buffer[i] = None self.update_buffer_queue_indicator(remove_idx=i) # log for sequential discounting self._last_id = id def get_file(self, fid): """ Gets a file from disk, which is just a list of page ids """ if fid >= len(self._disk): raise FileNotFoundException else: return range(len(self._disk[fid])) def get_file_len(self, fid): return len(self.get_file(fid)) def new_file(self): """ Creates a new file on disk, returns the file id """ file_id = self.get_empty_disk_slot() self._update_log('NEWFILE', None, None, None, None, False, file_id=file_id) return file_id def delete_file(self, file_id): self._disk[file_id] = None self._update_log('DELETEFILE', None, None, None, None, False, file_id=file_id) def log_buffer_data_diffs(self): """ The user can modify the data in the buffer directly We want to have a record of these updates though for logging & animation """ for i,page in enumerate(self._buffer): if page is not None: # Note: only show + log IO count if an actual data change vs. initialization diff = self._buffer_stale[i] and not np.array_equal(page.get_data_copy(), self._buffer_stale[i].get_data_copy()) if self._buffer_stale[i] is None or diff: self._update_log('WRITE (Buffer)', page, i, 'BUFFER', 'BUFFER', False, show=False) self._buffer_stale[i] = page.copy() if diff: self._io_count['bufferWrites'] += 1 def display(self, speed=1000, from_start=False, reset_io=False, buffer_num=0): """ Display an animation, based on a starting state & the logged diff Once this is called, the starting state & log mark are advanced """ self.log_buffer_data_diffs() # Create a new html pane with unique id chart_id = '%s-%s' % (buffer_num, self._chart_num) html = """ <table> <tr><th><i>IO Counts</i></th><th>R</th><th>W</th></tr> <tr> <td><i>To/from Buffer</i></td> <td id="chart-{0}-bufferReads">0</td> <td id="chart-{0}-bufferWrites">0</td> </tr> <tr> <td><b>To/from Disk</b></td> <td id="chart-{0}-diskReads">0</td> <td id="chart-{0}-diskWrites">0</td> </tr> </table> <br /> <div class="tooltip" id="chart-{0}-tooltip" style="position:absolute; z-index:100; color:white; background:black; opacity:0.7; padding:3px; border-radius:5px; display:none;">TOOLTIP!</div> <div class="tooltip" id="chart-{0}-tooltip-2" style="position:absolute; z-index:100; color:white; background:black; opacity:0.7; padding:3px; border-radius:5px; display:none;">TOOLTIP!</div> <div id="chart-{0}"></div> """.format(chart_id) # Dump log to json file with open('pagesLog.json', 'wb') as f: json.dump(self._log, f) # Create animation in js/d3 js_configs = { 'DURATION': speed, 'chartNum': chart_id, 'numBufferPages': self.buffer_size, 'pageSize': self.page_size, 'numDiskPages': 5, 'logStart': self._diff_log_start if not from_start else 0 } js = js_file_with_configs('compModel.js', js_configs) js_libs = [ 'https://d3js.org/d3.v3.min.js', 'https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js', 'https://ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/jquery-ui.min.js' ] display_html(HTML(data=html)) display_javascript(Javascript(data=js, lib=js_libs)) self._chart_num += 1 # Advance current animation state in log self.display_set_mark(reset_io=reset_io) def display_set_mark(self, reset_io=True): """ Set mark so that next display command starts animation at this point Also reset IO counter """ self._diff_log_start = len(self._log) if reset_io: for k in self._io_count.iterkeys(): self._io_count[k] = 0 def js_file_with_configs(fpath, configs): """ Take in a js filepath and a dictionary of configs to be passed in as global vars """ js = '' for k,v in configs.iteritems(): if type(v) == str: js += 'var %s = "%s"\n' % (k,v) elif type(v) in [int, float]: js += 'var %s = %s\n' % (k,v) js += open(fpath, 'rb').read() return js def new_rand_file(b, r, l, sorted=False): vals = random.sample(range(r), l) if sorted: vals.sort() fid = b.new_file() fw = FileWriter(b, fid) for v in vals: fw.append(v) fw.close() return fid
cs145-notebooks-2016-master
PS3/io_backend.py
from IPython.core.display import display_html, HTML def to_html_table(res, style=None): html = '<table' + (' style="' + style + '"' if style else '') + '><tr><th>' html += '</th><th>'.join(res.keys) + '</th></tr><tr><td>' html += '</td></tr><tr><td>'.join(['</td><td>'.join([str(cell) for cell in row]) for row in list(res)]) return html + '</tr></table>' def side_by_side(l, r): s = "display: inline-block;" html = to_html_table(l, style=s) + ' ' + to_html_table(r, style=s) display_html(HTML(data=html))
cs145-notebooks-2016-master
lecture-16/display_tools.py
# TODO: # 1. Remove asserts and replace with exceptions. # 2. There is a lot of unpythonic code in here, someone who likes python can fix it :) def get_result(x): return [tuple(t) for t in x] def generate_dict(t, schema_index): d = dict() for x in schema_index.keys(): d[x] = t[schema_index[x]] return tuple(sorted(list(d.iteritems()))) # Schema-aware comparison def compare_results(x,y): # First check the results are the same tupe. if set(x.schema) <> set(y.schema): return False # Now, we want to compare them as sets but the attribute orders may be different, # so we turn each tuple into a dictionary xd = map(lambda t : generate_dict(t, x.schema_index),get_result(x)) yd = map(lambda t : generate_dict(t, y.schema_index),get_result(y)) return set(xd) == set(yd) class OpBase: def __init__(self, schema, children): self.schema = list(schema) self.schema_index = dict([(b,a) for (a,b) in enumerate(self.schema)]) self.in_count = 0 self.out_count = 0 self.children = children #self.count_reads = True #self.op_str = None def __repr__(self): return "{0}".format(self.schema) # Get an index for an attribute def resolve_attribute(self, x): if x not in self.schema: raise NameError("{0} not found in {1}".format(x,self.schema)) return self.schema_index[x] # helper function to resolve many attributes def resolve_attributes(self, attr): return [self.resolve_attribute(x) for x in attr] # Code for counting the number of tuples "flowing by" def reset_count(self): self.in_count = 0 self.out_count = 0 for c in self.children: c.reset_count() def total_count(self): return self.in_count + sum([c.total_count() for c in self.children if c.count_reads]) def count_str(self, offset): out = " "*(4*offset) + "*" + " {0} ".format(self.op_str) if self.count_reads: out += "[tuples read in: {0} out: {1}]".format(self.in_count, self.out_count) return out + "\n" def toCount(self, offset=0): return self.count_str(offset) + ''.join([c.toCount(offset+1) for c in self.children]) # This takes in a relation with an optional name. # All operators yield a set of tuples and define a schema class BaseRelation(OpBase): def __init__(self, res, name=None): self.res = res self.name = name self.count_reads = False OpBase.__init__(self, res.keys, []) self.op_str = "{0}({1}) has {2} tuples".format(self.name, ','.join(self.schema), len(self.res)) def __iter__(self): for r in self.res: self.in_count += 1 self.out_count += 1 yield r def toMD(self): return "{0}({1})".format(self.name, ','.join(self.schema)) class Select(OpBase): """Selection attr=val""" def __init__(self, attr,val,op): self.in_op = op self.attr = attr self.v = val in_schema = self.in_op.schema self.op_str = "$\sigma_{{{0}={1}}}$".format(self.attr, self.v) assert(attr in in_schema) # TOOD: replace with an exception! OpBase.__init__(self, in_schema, [self.in_op]) # Schema Unchanged self.count_reads = True def __iter__(self): idx = self.in_op.resolve_attribute(self.attr) for r in self.in_op: self.in_count += 1 if r[idx] == self.v: self.out_count += 1 yield r def toMD(self): return "$\sigma_{{{0}={1}}}$({2})".format(self.attr, self.v, self.in_op.toMD()) class Project(OpBase): """Projection.""" def __init__(self, attributes, op): self.attributes = attributes self.in_op = op self.op_str = "$\Pi_{{{0}}}$".format(self.attributes) assert(all([x in self.in_op.schema for x in attributes])) # TODO: replace with an exception OpBase.__init__(self, self.attributes, [self.in_op]) # Schema changes! self.count_reads = True def project_helper(self, idx_list, t): return tuple([t[i] for i in idx_list]) def __iter__(self): idx_list = self.in_op.resolve_attributes(self.attributes) # Remove duplicates in_e = [self.project_helper(idx_list,t) for t in self.in_op] self.in_count += len(in_e) for u in set(in_e): self.out_count += 1 yield u def toMD(self): return "$\Pi_{{{0}}}$({1})".format(','.join(self.attributes), self.in_op.toMD()) class CrossProduct(OpBase): """Cross Product""" def __init__(self, op1, op2): self.l = op1 self.r = op2 s1 = set(op1.schema) s2 = set(op2.schema) self.op_str = "$\times$" # Make sure the schemas are distinct if len(s1.intersection(s2)) != 0: raise ValueError("Schemas must be distinct!") OpBase.__init__(self, s1.union(s2), [op1,op2]) # Schema changes! self.count_reads = True def __iter__(self): for x in self.l: self.in_count += 1 for y in self.r: self.in_count += 1 self.out_count += 1 yield tuple(x) + tuple(y) def toMD(self): return "{0} $\\times$ {1}".format(self.l.toMD(), self.r.toMD()) class NJoin(OpBase): """Natural Join""" def __init__(self, op1, op2): self.l = op1 self.r = op2 s1 = set(op1.schema) s2 = set(op2.schema) self.common = s1.intersection(s2) self.op_str = "$\Join_{{{0}}}$".format(','.join(self.common)) OpBase.__init__(self, op1.schema + filter(lambda x : x not in self.common, op2.schema), [op1,op2]) self.count_reads = True def __iter__(self): # return common attributes in index-order of the *left* relation idx_cl = sorted(self.l.resolve_attributes(self.common)) common_left_order = [c for i,c in sorted([(self.l.resolve_attribute(c),c) for c in self.common])] idx_cr = self.r.resolve_attributes(common_left_order) # return the attributes unique to the right relation in the *right* relation's order idx_r = sorted(self.r.resolve_attributes(set(self.r.schema).difference(self.common))) for x in self.l: self.in_count += 1 for y in self.r: self.in_count += 1 if all([x[idx_cl[i]] == y[idx_cr[i]] for i in range(len(self.common))]): self.out_count += 1 ty = tuple([y[i] for i in idx_r]) yield tuple(x) + tuple(ty) def toMD(self): return "( {0} ) $\Join_{{{2}}}$ ( {1} )".format(self.l.toMD(), self.r.toMD(), ','.join(self.common)) class Union(OpBase): """Union""" def __init__(self, op1, op2): self.l = op1 self.r = op2 self.op_str = "$\\bigcup$" assert(op1.schema == op2.schema) OpBase.__init__(self, op1.schema, [op1,op2]) self.count_reads = True def __iter__(self): ll = get_result(self.l) rl = get_result(self.r) self.in_count += len(ll) self.in_count += len(rl) ls = set(ll) rs = set(rl) for x in ls.union(rs): self.out_count += 1 yield x def toMD(self): return "( {0} ) $\\bigcup$ ( {1} )".format(self.l.toMD(), self.r.toMD()) class Difference(OpBase): """Difference""" def __init__(self, op1, op2): self.l = op1 self.r = op2 self.op_str = "-" assert(op1.schema == op2.schema) OpBase.__init__(self, op1.schema, [op1,op2]) self.count_reads = True def __iter__(self): ll = get_result(self.l) rl = get_result(self.r) self.in_count += len(ll) self.in_count += len(rl) ls = set(ll) rs = set(rl) for x in ls.difference(rs): self.out_count += 1 yield x def toMD(self): return "( {0} ) - ( {1} )".format(self.l.toMD(), self.r.toMD())
cs145-notebooks-2016-master
lecture-16/relation_algebra.py
from IPython.core.display import display_html, HTML def to_html_table(res, style=None): html = '<table' + (' style="' + style + '"' if style else '') + '><tr><th>' html += '</th><th>'.join(res.keys) + '</th></tr><tr><td>' html += '</td></tr><tr><td>'.join(['</td><td>'.join([str(cell) for cell in row]) for row in list(res)]) return html + '</tr></table>' def side_by_side(l, r): s = "display: inline-block;" html = to_html_table(l, style=s) + ' ' + to_html_table(r, style=s) display_html(HTML(data=html))
cs145-notebooks-2016-master
lecture-17/display_tools.py
# TODO: # 1. Remove asserts and replace with exceptions. # 2. There is a lot of unpythonic code in here, someone who likes python can fix it :) def get_result(x): return [tuple(t) for t in x] def generate_dict(t, schema_index): d = dict() for x in schema_index.keys(): d[x] = t[schema_index[x]] return tuple(sorted(list(d.iteritems()))) # Schema-aware comparison def compare_results(x,y): # First check the results are the same tupe. if set(x.schema) <> set(y.schema): return False # Now, we want to compare them as sets but the attribute orders may be different, # so we turn each tuple into a dictionary xd = map(lambda t : generate_dict(t, x.schema_index),get_result(x)) yd = map(lambda t : generate_dict(t, y.schema_index),get_result(y)) return set(xd) == set(yd) class OpBase: def __init__(self, schema, children): self.schema = list(schema) self.schema_index = dict([(b,a) for (a,b) in enumerate(self.schema)]) self.in_count = 0 self.out_count = 0 self.children = children #self.count_reads = True #self.op_str = None def __repr__(self): return "{0}".format(self.schema) # Get an index for an attribute def resolve_attribute(self, x): if x not in self.schema: raise NameError("{0} not found in {1}".format(x,self.schema)) return self.schema_index[x] # helper function to resolve many attributes def resolve_attributes(self, attr): return [self.resolve_attribute(x) for x in attr] # Code for counting the number of tuples "flowing by" def reset_count(self): self.in_count = 0 self.out_count = 0 for c in self.children: c.reset_count() def total_count(self): return self.in_count + sum([c.total_count() for c in self.children if c.count_reads]) def count_str(self, offset): out = " "*(4*offset) + "*" + " {0} ".format(self.op_str) if self.count_reads: out += "[tuples read in: {0} out: {1}]".format(self.in_count, self.out_count) return out + "\n" def toCount(self, offset=0): return self.count_str(offset) + ''.join([c.toCount(offset+1) for c in self.children]) # This takes in a relation with an optional name. # All operators yield a set of tuples and define a schema class BaseRelation(OpBase): def __init__(self, res, name=None): self.res = res self.name = name self.count_reads = False OpBase.__init__(self, res.keys, []) self.op_str = "{0}({1}) has {2} tuples".format(self.name, ','.join(self.schema), len(self.res)) def __iter__(self): for r in self.res: self.in_count += 1 self.out_count += 1 yield r def toMD(self): return "{0}({1})".format(self.name, ','.join(self.schema)) class Select(OpBase): """Selection attr=val""" def __init__(self, attr,val,op): self.in_op = op self.attr = attr self.v = val in_schema = self.in_op.schema self.op_str = "$\sigma_{{{0}={1}}}$".format(self.attr, self.v) assert(attr in in_schema) # TOOD: replace with an exception! OpBase.__init__(self, in_schema, [self.in_op]) # Schema Unchanged self.count_reads = True def __iter__(self): idx = self.in_op.resolve_attribute(self.attr) for r in self.in_op: self.in_count += 1 if r[idx] == self.v: self.out_count += 1 yield r def toMD(self): return "$\sigma_{{{0}={1}}}$({2})".format(self.attr, self.v, self.in_op.toMD()) class Project(OpBase): """Projection.""" def __init__(self, attributes, op): self.attributes = attributes self.in_op = op self.op_str = "$\Pi_{{{0}}}$".format(self.attributes) assert(all([x in self.in_op.schema for x in attributes])) # TODO: replace with an exception OpBase.__init__(self, self.attributes, [self.in_op]) # Schema changes! self.count_reads = True def project_helper(self, idx_list, t): return tuple([t[i] for i in idx_list]) def __iter__(self): idx_list = self.in_op.resolve_attributes(self.attributes) # Remove duplicates in_e = [self.project_helper(idx_list,t) for t in self.in_op] self.in_count += len(in_e) for u in set(in_e): self.out_count += 1 yield u def toMD(self): return "$\Pi_{{{0}}}$({1})".format(','.join(self.attributes), self.in_op.toMD()) class CrossProduct(OpBase): """Cross Product""" def __init__(self, op1, op2): self.l = op1 self.r = op2 s1 = set(op1.schema) s2 = set(op2.schema) self.op_str = "$\times$" # Make sure the schemas are distinct if len(s1.intersection(s2)) != 0: raise ValueError("Schemas must be distinct!") OpBase.__init__(self, s1.union(s2), [op1,op2]) # Schema changes! self.count_reads = True def __iter__(self): for x in self.l: self.in_count += 1 for y in self.r: self.in_count += 1 self.out_count += 1 yield tuple(x) + tuple(y) def toMD(self): return "{0} $\\times$ {1}".format(self.l.toMD(), self.r.toMD()) class NJoin(OpBase): """Natural Join""" def __init__(self, op1, op2): self.l = op1 self.r = op2 s1 = set(op1.schema) s2 = set(op2.schema) self.common = s1.intersection(s2) self.op_str = "$\Join_{{{0}}}$".format(','.join(self.common)) OpBase.__init__(self, op1.schema + filter(lambda x : x not in self.common, op2.schema), [op1,op2]) self.count_reads = True def __iter__(self): # return common attributes in index-order of the *left* relation idx_cl = sorted(self.l.resolve_attributes(self.common)) common_left_order = [c for i,c in sorted([(self.l.resolve_attribute(c),c) for c in self.common])] idx_cr = self.r.resolve_attributes(common_left_order) # return the attributes unique to the right relation in the *right* relation's order idx_r = sorted(self.r.resolve_attributes(set(self.r.schema).difference(self.common))) for x in self.l: self.in_count += 1 for y in self.r: self.in_count += 1 if all([x[idx_cl[i]] == y[idx_cr[i]] for i in range(len(self.common))]): self.out_count += 1 ty = tuple([y[i] for i in idx_r]) yield tuple(x) + tuple(ty) def toMD(self): return "( {0} ) $\Join_{{{2}}}$ ( {1} )".format(self.l.toMD(), self.r.toMD(), ','.join(self.common)) class Union(OpBase): """Union""" def __init__(self, op1, op2): self.l = op1 self.r = op2 self.op_str = "$\\bigcup$" assert(op1.schema == op2.schema) OpBase.__init__(self, op1.schema, [op1,op2]) self.count_reads = True def __iter__(self): ll = get_result(self.l) rl = get_result(self.r) self.in_count += len(ll) self.in_count += len(rl) ls = set(ll) rs = set(rl) for x in ls.union(rs): self.out_count += 1 yield x def toMD(self): return "( {0} ) $\\bigcup$ ( {1} )".format(self.l.toMD(), self.r.toMD()) class Difference(OpBase): """Difference""" def __init__(self, op1, op2): self.l = op1 self.r = op2 self.op_str = "-" assert(op1.schema == op2.schema) OpBase.__init__(self, op1.schema, [op1,op2]) self.count_reads = True def __iter__(self): ll = get_result(self.l) rl = get_result(self.r) self.in_count += len(ll) self.in_count += len(rl) ls = set(ll) rs = set(rl) for x in ls.difference(rs): self.out_count += 1 yield x def toMD(self): return "( {0} ) - ( {1} )".format(self.l.toMD(), self.r.toMD())
cs145-notebooks-2016-master
lecture-17/relation_algebra.py
# A = set(["name", "category"]) # These are the attribute set. # fds = [ (set(["name"]),"color"), # (set(["category"]), "department"), # (set(["color", "category"]), "price") ] def to_set(x): """Convert input int, string, list, tuple, set -> set""" if type(x) == set: return x elif type(x) in [list, set]: return set(x) elif type(x) in [str, int]: return set([x]) else: raise Exception("Unrecognized type.") def fd_to_str((lhs,rhs)): return ",".join(to_set(lhs)) + " -> " + ",".join(to_set(rhs)) def fds_to_str(fds): return "\n\t".join(map(fd_to_str, fds)) def set_to_str(x): return "{" + ",".join(x) + "}" def fd_applies_to(fd, x): lhs, rhs = map(to_set, fd) return lhs.issubset(x) def print_setup(A, fds): print("Attributes = " + set_to_str(A)) print("FDs = \t" + fds_to_str(fds)) """Does the FD apply""" def fd_applies(x, (lhs,rhs)): return to_set(lhs).issubset(x) def compute_closure(x, fds, verbose=False): bChanged = True # We will repeat until there are no changes. x_ret = x.copy() # Make a copy of the input to hold x^{+} while bChanged: bChanged = False # Must change on each iteration for fd in fds: # loop through all the FDs. (lhs, rhs) = map(to_set, fd) # recall: lhs -> rhs if fd_applies_to(fd, x_ret) and not rhs.issubset(x_ret): x_ret = x_ret.union(rhs) if verbose: print("Using FD " + fd_to_str(fd)) print("\t Updated x to " + set_to_str(x_ret)) bChanged = True return x_ret def is_fd_implied(fds, lhs, rhs, verbose=False): """Check if lhs -> rhs is implied by the given set of fds""" xp = compute_closure(lhs,fds,verbose=verbose) if verbose: print(set_to_str(lhs) +"+ = "+ set_to_str(xp)) return to_set(rhs).issubset(xp) def is_superkey(A,B,fds, verbose=False): """Check if A is a super key in B according to the fds""" return is_fd_implied(fds, A, B) import itertools def is_key(A,B,fds,verbose=False): """Check if A is a key in B wrt to fds""" m=len(A) subsets = set(itertools.combinations(A, m-1)) return is_superkey(A,B,fds) and all(not is_superkey(set(SA),B,fds) for SA in subsets) # # Key example from lecture # def key_example(): xmC=set(["A","B"]) xmB=set(["A","C"]) xmA=set(["B","C"]) B =set(["A","B","C"]) fd1=(xmC,"C"); fd2=(xmB,"B"); fd3=(xmA,"A") fds=[fd1,fd2,fd3] return is_key(xmA,B,fds) and is_key(xmB,B,fds) and is_key(xmC,B,fds) from IPython.core.display import display_html, HTML def to_html_table(res, style=None): html = '<table' + (' style="' + style + '"' if style else '') + '><tr><th>' html += '</th><th>'.join(res.keys) + '</th></tr><tr><td>' html += '</td></tr><tr><td>'.join(['</td><td>'.join([str(cell) for cell in row]) for row in list(res)]) return html + '</tr></table>' def display_side_by_side(l, r): s = "display: inline-block;" html = to_html_table(l, style=s) + ' ' + to_html_table(r, style=s) display_html(HTML(data=html))
cs145-notebooks-2016-master
lecture-5-6/closure.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from typing import Optional from overrides import overrides from allennlp.training.metrics.metric import Metric import torch import numpy as np from curiosity.util import get_logger log = get_logger(__name__) @Metric.register("mean_reciprocal_rank") class MeanReciprocalRank(Metric): def __init__(self): self._reciprocal_ranks = [] def __call__(self, logits: torch.Tensor, labels: torch.Tensor, mask: torch.Tensor): """ logits and labels should be the same shape. Labels should be an array of 0/1s to indicate if the document is relevant. We don't need a mask here since we select nonzero labels and masked entries in labels are never equal to 1 (Pedro is pretty sure) """ n_relevent = labels.sum().item() if n_relevent == 0: # None are relevent, no-op return preds = logits.argsort(dim=-1, descending=True) # nonzeros occur where there are predictions to make # (n_nonzero, 3) # 3 = dims for batch, turn and fact indices = labels.nonzero() # TODO: This could be batched, but its a pain all_ranks = [] # import ipdb; ipdb.set_trace() for batch_idx, turn_idx, fact_idx in indices: # List of predictions, first element is index # of top ranked document, second of second-top, etc inst_preds = preds[batch_idx, turn_idx] rank = (inst_preds == fact_idx).nonzero().reshape(-1) all_ranks.append(rank) all_ranks = torch.cat(all_ranks) # rank starts at zero from torch, += 1 for inversing it reciprocal_ranks = 1 / (1 + all_ranks).float() self._reciprocal_ranks.extend(reciprocal_ranks.cpu().numpy().tolist()) return reciprocal_ranks.mean() @overrides def get_metric(self, reset: bool = False) -> float: if len(self._reciprocal_ranks) == 0: log.warn("Taking MRR of zero length list") mrr = 0.0 else: mrr = np.array(self._reciprocal_ranks).mean() if reset: self.reset() return mrr @overrides def reset(self): self._reciprocal_ranks = [] @Metric.register("multilabel_micro_precision") class MultilabelMicroF1(Metric): """ For a problem of (batch_size, *, n_classes) that is multilabel, compute the precision, recall, F1 and take the average. This is the micro average since each prediction bumps the weight by one, whereas the macro average would compute accuracy by class, then average the classes This assumes that each class logit represents a binary cross entropy problem """ def __init__(self) -> None: self._precision_correct_count = 0.0 self._precision_total_count = 0.0 self._recall_correct_count = 0.0 self._recall_total_count = 0.0 def __call__( self, predictions: torch.Tensor, gold_labels: torch.Tensor, mask: Optional[torch.Tensor] = None, ): """ Parameters ---------- predictions : ``torch.Tensor``, required. A tensor of predictions of shape (batch_size, ...). gold_labels : ``torch.Tensor``, required. A tensor of the same shape as ``predictions``. mask: ``torch.Tensor``, optional (default = None). A tensor of the same shape as ``predictions``. """ predictions, gold_labels, mask = self.unwrap_to_tensors( predictions, gold_labels, mask ) # Some sanity checks. if gold_labels.size() != predictions.size(): raise ValueError( f"gold_labels must have shape == predictions.size() but " f"found tensor of shape: {gold_labels.size()}" ) if mask is not None and mask.size() != predictions.size(): raise ValueError( f"mask must have shape == predictions.size() but " f"found tensor of shape: {mask.size()}" ) if mask is not None: # mask out early to zero out preds/labels to count predictions = predictions * mask gold_labels = gold_labels * mask # Don't care about batch anymore since its micro-averaged predictions = predictions.view(-1) gold_labels = gold_labels.view(-1) # Find when they are equal, then only count places where the # model actually made a prediction # If (first is result, second is contrib to denom): # - gold is zero and pred is zero -> zero, no contrib # - gold is one and pred is zero -> zero, no contrib # - gold is zero and pred is one -> zero, contrib # - gold is one and pred is one -> one, contrib precision = predictions.eq(gold_labels).long() * predictions self._precision_correct_count += precision.sum().item() self._precision_total_count += predictions.sum().item() # Find where they are equal, then only count places where the # gold label was true recall = predictions.eq(gold_labels).long() * gold_labels self._recall_correct_count += recall.sum().item() self._recall_total_count += gold_labels.sum().item() def get_metric(self, reset: bool = False): """ Returns ------- The accumulated accuracy. """ precision = self._precision_correct_count / max( self._precision_total_count, 1.0 ) recall = self._recall_correct_count / max(self._recall_total_count, 1.0) f1 = 2 * (precision * recall) / max(precision + recall, 1.0) if reset: self.reset() return { "precision": precision, "recall": recall, "f1": f1, } @overrides def reset(self): self._precision_correct_count = 0.0 self._precision_total_count = 0.0 self._recall_correct_count = 0.0 self._recall_total_count = 0.0
curiosity-main
curiosity/metrics.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. """ A database containing all the wikipedia/entity linking information. """ import random import re import subprocess import os from contextlib import contextmanager from collections import defaultdict from typing import List, Tuple, Dict, NamedTuple from sqlalchemy import Boolean, Integer, ForeignKey, Column, Text, create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import ( Load, sessionmaker, scoped_session, relationship, selectinload, ) from sqlalchemy.orm.scoping import ScopedSession def md5sum(filename: str) -> str: return ( subprocess.run( f"md5sum {filename}", shell=True, stdout=subprocess.PIPE, check=True ) .stdout.decode("utf-8") .split()[0] ) def verify_checksum(checksum: str, filename: str) -> None: if os.path.exists(filename): file_checksum = md5sum(filename) if checksum != file_checksum: raise ValueError(f"Incorrect checksum for: {filename}") else: raise ValueError(f"File does not exist: {filename}") REF_RE = r"< ref >.*?< \/ ref >" def clean_text(text: str) -> str: """ Sometimes the wiki text has formatting that I missed, like refs. To avoid reparsing/relinking text, this is a patch fix to do it JIT """ return re.sub(REF_RE, "", text) Base = declarative_base() def create_sql(sql_path: str): engine = create_engine(f"sqlite:///{sql_path}") Base.metadata.bind = engine factory = sessionmaker(bind=engine) session_cls = scoped_session(factory) return engine, session_cls() class EntityLink(NamedTuple): """ This represents a single fact in the frontend """ page_entity: str mention_entity: str section_title: str pageviews: int context: str is_location: bool # Having database ids is helpful for backlinking and uniqueness fact_id: int mention_id: int class Curriculum(NamedTuple): views: int entities: List[Tuple[str, int]] class Fact(Base): __tablename__ = "fact" id = Column(Integer, primary_key=True) page = Column(Text(), nullable=False, index=True) section_idx = Column(Integer, nullable=False) section_title = Column(Text(), nullable=False, index=True) paragraph_idx = Column(Integer, nullable=False) text = Column(Text(), nullable=False) pageviews = Column(Integer, nullable=False) mentions = relationship("Mention") class Mention(Base): __tablename__ = "mention" id = Column(Integer, primary_key=True) is_location = Column(Boolean, nullable=False) pageviews = Column(Integer, nullable=False) # Duplicate of Fact.page for speed, these never diverge so its safe page = Column(Text(), nullable=False) title = Column(Text(), nullable=False) fact_id = Column(Integer, ForeignKey("fact.id"), nullable=False) fact = relationship("Fact", back_populates="mentions") class WikiSummary(Base): __tablename__ = "wiki" id = Column(Integer, primary_key=True) title = Column(Text(), nullable=False, index=True) text = Column(Text(), nullable=False) is_simple = Column(Boolean, nullable=False) class CuriosityStore: """ Convenience class for reading all data """ def __init__(self, sql_path) -> None: self._engine = create_engine(f"sqlite:///{sql_path}") Base.metadata.bind = self._engine self._pages: List[str] = self._cache_pages() @property @contextmanager def _session_scope(self) -> ScopedSession: session = scoped_session(sessionmaker(bind=self._engine)) try: yield session session.commit() except Exception: session.rollback() raise finally: session.close() def _cache_pages(self) -> List[str]: with self._session_scope as session: rows = session.query(Fact.page).distinct().all() return [r[0] for r in rows] def get_fact_lookup(self): with self._session_scope as session: rows = session.query(Fact).all() return {f.id: f.text for f in rows} def get_focus_entities(self): """ Return all possible focus entities """ return self._pages def random_entity(self) -> str: if "CURIOSITY_ENTITY" in os.environ: entity = os.environ["CURIOSITY_ENTITY"] if entity in self._pages: return entity return random.choice(self._pages) def random_sections(self, page_entity: str, n: int) -> List[str]: with self._session_scope as session: rows = ( session.query(Fact) .filter_by(page=page_entity) .filter(Fact.section_title != "Body") .group_by(Fact.section_title) .all() ) section_names = [r.section_title for r in rows] if n > len(section_names): raise ValueError(f"Not enough sections: {len(section_names)} vs {n}") return random.sample(section_names, n) def get_links(self, page_entity: str) -> List[EntityLink]: """ For the given page_entity, return all entity links on the page """ with self._session_scope as session: rows = ( session.query(Fact) .filter_by(page=page_entity) .options(selectinload(Fact.mentions)) ) links = [] for fact in rows: for mention in fact.mentions: links.append( EntityLink( fact.page, mention.title, fact.section_title, mention.pageviews, fact.text, mention.is_location, fact.id, mention.id, ) ) return links def get_facts(self, page_entity: str, known_entity: str) -> List[EntityLink]: """ Find all facts on focus_entity's page that match known_entity """ with self._session_scope as session: rows = ( session.query(Mention) .filter(Mention.page == page_entity) .filter(Mention.title == known_entity) .group_by(Mention.fact_id) .all() ) return [ EntityLink( m.fact.page, m.title, m.fact.section_title, m.pageviews, clean_text(m.fact.text), m.is_location, m.fact_id, m.id, ) for m in rows ] def get_sections(self, page_entity: str) -> List[str]: """ Get all the valid sections for this page """ with self._session_scope as session: rows = ( session.query(Fact) .filter_by(page=page_entity) .group_by(Fact.section_title) .options(Load(Fact).load_only("page", "section_title")) .all() ) return [r.section_title for r in rows] def get_page_facts(self, page_entity: str) -> List[EntityLink]: """ For the given page_entity, return unique facts """ with self._session_scope as session: rows = ( session.query(Fact) .filter_by(page=page_entity) .options(selectinload(Fact.mentions)) ) links = [] for fact in rows: links.append( EntityLink( fact.page, fact.mentions[0].title, fact.section_title, fact.mentions[0].pageviews, fact.text, fact.mentions[0].is_location, fact.id, fact.mentions[0].id, ) ) return links def get_section_facts(self, page_entity: str, section: str) -> List[EntityLink]: with self._session_scope as session: rows = ( session.query(Fact) .filter_by(page=page_entity, section_title=section) .options(selectinload(Fact.mentions)) .all() ) return [ # Use first mention for now, its not too important, but could be # improved to random later EntityLink( f.page, f.mentions[0].title, f.section_title, f.mentions[0].pageviews, clean_text(f.text), f.mentions[0].is_location, f.id, f.mentions[0].id, ) for f in rows ] def get_entity_summary(self, page_entity: str) -> str: with self._session_scope as session: return ( session.query(WikiSummary) .filter_by(title=page_entity) .first() .text.strip() ) def prominence_curriculum(self) -> Dict[str, Curriculum]: """ For each page, return a curriculum. """ with self._session_scope as session: page_mentions = ( session.query(Fact) .options( selectinload(Fact.mentions), Load(Fact).load_only("page", "pageviews"), Load(Mention).load_only("pageviews", "title"), ) .all() ) curr = defaultdict(lambda: {"views": 0, "entities": set()}) for fact in page_mentions: curr[fact.page]["views"] = fact.pageviews current_mentions = curr[fact.page]["entities"] for m in fact.mentions: current_mentions.add((m.title, m.pageviews)) return curr
curiosity-main
curiosity/db.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import os import numpy as np from overrides import overrides from allennlp.common.util import JsonDict from allennlp.data import Instance from allennlp.predictors.predictor import Predictor from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.models import Model from curiosity.db import verify_checksum, create_sql, Fact @Predictor.register('curiosity_predictor') class CuriosityPredictor(Predictor): @overrides def __init__(self, model: Model, dataset_reader: DatasetReader, frozen: bool = True) -> None: if frozen: model.eval() self._model = model self._dataset_reader = dataset_reader self.cuda_device = next(self._model.named_parameters())[1].get_device() # Hard coded fact loading db_path = os.path.join('dialog_data', 'wiki_sql.sqlite.db') engine, session = create_sql(db_path) facts = ( session .query(Fact) .all() ) self._dataset_reader._fact_lookup = {f.id: f for f in facts} @overrides def predict_json(self, inputs: JsonDict) -> JsonDict: dialogs = inputs['dialogs'] out = [] for i, d in enumerate(dialogs): if i == 30: # Early termination to save time break instance = self._dataset_reader.text_to_instance(d) prediction = self.predict_instance(instance) # Label predictions for this dialog label_prediction = { 'dialog_id': d['dialog_id'] } for k, v in prediction.items(): if k != 'loss': label_prediction[k] = np.argmax(v, axis=1).tolist() out.append(label_prediction) return out
curiosity-main
curiosity/predictors.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from typing import Dict, Optional, Union import math import torch from torch import nn from allennlp.nn.util import ( get_text_field_mask, sequence_cross_entropy_with_logits, masked_mean, ) from allennlp.data.vocabulary import Vocabulary from allennlp.models import Model from allennlp.modules.text_field_embedders import TextFieldEmbedder from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder from allennlp.modules.seq2vec_encoders import Seq2VecEncoder from allennlp.modules.time_distributed import TimeDistributed from allennlp.training.metrics import CategoricalAccuracy, Average from curiosity.nn import FactRanker from curiosity.metrics import MeanReciprocalRank, MultilabelMicroF1 from curiosity.reader import DIALOG_ACT_LABELS from curiosity.bert import BertEncoder def gelu(x): return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0))) class GeLU(nn.Module): __constants__ = ["inplace"] def __init__(self, inplace=False): super(GeLU, self).__init__() self.inplace = inplace def forward(self, input_): return gelu(input_) class Clamp(nn.Module): def __init__(self, should_clamp: bool = False): super(Clamp, self).__init__() self._should_clamp = should_clamp def forward(self, input_): if self._should_clamp: return 0.0 * input_ else: return input_ @Model.register("curiosity_model") class CuriosityModel(Model): def __init__( self, vocab: Vocabulary, use_glove: bool, use_bert: bool, bert_trainable: bool, bert_name: str, mention_embedder: TextFieldEmbedder, dialog_context: Seq2SeqEncoder, fact_ranker: FactRanker, dropout_prob: float, sender_emb_size: int, act_emb_size: int, fact_loss_weight: float, fact_pos_weight: float, utter_embedder: TextFieldEmbedder = None, utter_context: Seq2VecEncoder = None, disable_known_entities: bool = False, disable_dialog_acts: bool = False, disable_likes: bool = False, disable_facts: bool = False, ): super().__init__(vocab) self._disable_known_entities = disable_known_entities self._disable_dialog_acts = disable_dialog_acts self._clamp_dialog_acts = Clamp(should_clamp=disable_dialog_acts) self._disable_likes = disable_likes self._clamp_likes = Clamp(should_clamp=disable_likes) self._disable_facts = disable_facts self._clamp_facts = Clamp(should_clamp=disable_facts) self._fact_loss_weight = fact_loss_weight self._fact_pos_weight = fact_pos_weight self._sender_emb_size = sender_emb_size self._sender_emb = nn.Embedding(2, sender_emb_size) # Easier to use a matrix as embeddings, given the input format self._act_embedder = nn.Linear( vocab.get_vocab_size(DIALOG_ACT_LABELS), act_emb_size, bias=False ) self._mention_embedder = mention_embedder if int(use_glove) + int(use_bert) != 1: raise ValueError("Cannot use bert and glove together") self._use_glove = use_glove self._use_bert = use_bert self._bert_trainable = bert_trainable self._bert_name = bert_name self._utter_embedder = utter_embedder self._utter_context = utter_context # Bert encoder is embedder + context if use_bert: # Not trainable for now self._bert_encoder = BertEncoder( self._bert_name, requires_grad=bert_trainable ) self._dist_utter_context = None self._utter_dim = self._bert_encoder.get_output_dim() else: self._bert_encoder = None self._dist_utter_context = TimeDistributed(self._utter_context) self._utter_dim = self._utter_context.get_output_dim() self._dialog_context = dialog_context self._fact_ranker = fact_ranker # Easier to code as cross entropy with two classes # Likes are per message, for only assistant messages self._like_classifier = nn.Linear(self._dialog_context.get_output_dim(), 2) self._like_accuracy = CategoricalAccuracy() self._like_loss_metric = Average() # Transform the word_dim entity reps to hidden_dim self._focus_net = nn.Sequential( nn.Linear( self._mention_embedder.get_output_dim(), self._dialog_context.get_output_dim(), ), GeLU(), ) self._known_net = nn.Sequential( nn.Linear( self._mention_embedder.get_output_dim(), self._dialog_context.get_output_dim(), ), GeLU(), Clamp(should_clamp=disable_known_entities), ) # If we don't use known, then disable gradient to it self._known_net.requires_grad = not disable_known_entities # Dialog acts are per message, for all messages # This network predicts the dialog act of the current message # for both student and teacher self._da_classifier = nn.Sequential( nn.Linear( self._utter_dim + self._dialog_context.get_output_dim(), self._dialog_context.get_output_dim(), ), GeLU(), nn.Linear( self._dialog_context.get_output_dim(), vocab.get_vocab_size(DIALOG_ACT_LABELS), ), ) self._da_bce_loss = torch.nn.BCEWithLogitsLoss(reduction="none") self._da_f1_metric = MultilabelMicroF1() self._da_loss_metric = Average() # This network predicts what the next action should be # It predicts for user and assistant since there isn't a real # reason to restrict that self._policy_classifier = nn.Sequential( nn.Linear( self._dialog_context.get_output_dim(), self._dialog_context.get_output_dim(), ), GeLU(), nn.Linear( self._dialog_context.get_output_dim(), vocab.get_vocab_size(DIALOG_ACT_LABELS), ), ) self._policy_bce_loss = torch.nn.BCEWithLogitsLoss(reduction="none") self._policy_f1_metric = MultilabelMicroF1() self._policy_loss_metric = Average() self._fact_mrr = MeanReciprocalRank() self._fact_loss_metric = Average() self._dropout_prob = dropout_prob self._dropout = nn.Dropout(dropout_prob) # Fact use is much less prevalant, about 9 times less so, so factor that in self._fact_bce_loss = torch.nn.BCEWithLogitsLoss( reduction="none", pos_weight=torch.Tensor([self._fact_pos_weight]) ) def get_metrics(self, reset: bool = False): da_metrics = self._da_f1_metric.get_metric(reset=reset) policy_metrics = self._policy_f1_metric.get_metric(reset=reset) metrics_to_report = { "like_accuracy": self._like_accuracy.get_metric(reset=reset), "like_loss": self._like_loss_metric.get_metric(reset=reset), "fact_mrr": self._fact_mrr.get_metric(reset=reset), "fact_loss": self._fact_loss_metric.get_metric(reset=reset), "da_loss": self._da_loss_metric.get_metric(reset=reset), "da_micro_f1": da_metrics["f1"], "da_micro_precision": da_metrics["precision"], "da_micro_recall": da_metrics["recall"], "policy_micro_f1": policy_metrics["f1"], "policy_micro_precision": policy_metrics["precision"], "policy_micro_recall": policy_metrics["recall"], } metrics_to_report["total"] = ( metrics_to_report["fact_mrr"] + metrics_to_report["policy_micro_f1"] + metrics_to_report["da_micro_f1"] + metrics_to_report["like_accuracy"] ) return metrics_to_report def forward( self, messages: Dict[str, torch.Tensor], # (batch_size, n_turns, n_facts, n_words) facts: Dict[str, torch.Tensor], # (batch_size, n_turns) senders: torch.Tensor, # (batch_size, n_turns, n_acts) dialog_acts: torch.Tensor, # (batch_size, n_turns) dialog_acts_mask: torch.Tensor, # (batch_size, n_entities) known_entities: Dict[str, torch.Tensor], # (batch_size, 1) focus_entity: Dict[str, torch.Tensor], # (batch_size, n_turns, n_facts) fact_labels: Optional[torch.Tensor] = None, # (batch_size, n_turns, 2) likes: Optional[torch.Tensor] = None, metadata: Optional[Dict] = None, ): output = {} # Take care of the easy stuff first # (batch_size, n_entities) known_entities_mask = get_text_field_mask(known_entities) # (batch_size, n_turns, sender_emb_size) sender_emb = self._sender_emb(senders) known_emb = self._mention_embedder(known_entities) # TODO: This could instead of averaged, be attended known_vec = self._known_net( masked_mean(known_emb, known_entities_mask.unsqueeze(-1), dim=1) ) # There is always exactly one entity focus_emb = self._focus_net(self._mention_embedder(focus_entity)[:, 0, :]) if self._use_bert: # (batch_size, n_turns, n_words, emb_dim) context, utter_mask = self._bert_encoder(messages) context = self._dropout(context) else: # (batch_size, n_turns) # This is the mask since not all dialogs have same number # of turns utter_mask = get_text_field_mask(messages) # (batch_size, n_turns, n_words) # Mask since not all utterances have same number of words # Wrapping dim skips over n_messages dim text_mask = get_text_field_mask(messages, num_wrapping_dims=1) # (batch_size, n_turns, n_words, emb_dim) embed = self._dropout(self._utter_embedder(messages)) # (batch_size, n_turns, hidden_dim) context = self._dist_utter_context(embed, text_mask) # (batch_size, n_turns, act_emb_size) act_emb = self._act_embedder(dialog_acts.float()) act_emb = self._clamp_dialog_acts(act_emb) # (batch_size, n_turns, hidden_dim + known_dim + focus_dim + sender_dim + act_dim) n_turns = context.shape[1] full_context = torch.cat( ( context, sender_emb, act_emb, focus_emb[:, None, :].repeat_interleave(n_turns, 1), known_vec[:, None, :].repeat_interleave(n_turns, 1), ), dim=-1, ) # (batch_size, n_turns, hidden_dim) # This assumes dialog_context does not peek into future dialog_context = self._dialog_context(full_context, utter_mask) # shift context one right, pad with zeros at front # This makes it so that utter_t is paired with context_t-1 # which is what we want # This is useful in a few different places, so compute it here once shape = dialog_context.shape shifted_context = torch.cat( ( dialog_context.new_zeros([shape[0], 1, shape[2]]), dialog_context[:, :-1, :], ), dim=1, ) has_loss = False if self._disable_dialog_acts: da_loss = 0 policy_loss = 0 else: # Dialog act per utter loss has_loss = True da_loss = self._compute_da_loss( output, context, shifted_context, utter_mask, dialog_acts, dialog_acts_mask, ) # Policy loss policy_loss = self._compute_policy_loss( output, shifted_context, utter_mask, dialog_acts, dialog_acts_mask ) if self._disable_facts: # If facts are disabled, don't output anything related # to them fact_loss = 0 else: if self._use_bert: # (batch_size, n_turns, n_words, emb_dim) fact_repr, fact_mask = self._bert_encoder(facts) fact_repr = self._dropout(fact_repr) fact_mask[:, ::2] = 0 else: # (batch_size, n_turns, n_facts) # Wrapping dim skips over n_messages fact_mask = get_text_field_mask(facts, num_wrapping_dims=1) # In addition to masking padded facts, also explicitly mask # user turns just in case fact_mask[:, ::2] = 0 # (batch_size, n_turns, n_facts, n_words) # Wrapping dim skips over n_turns and n_facts fact_text_mask = get_text_field_mask(facts, num_wrapping_dims=2) # (batch_size, n_turns, n_facts, n_words, emb_dim) # Share encoder with utter encoder # Again, stupid dimensions fact_embed = self._dropout(self._utter_embedder(facts)) shape = fact_embed.shape word_dim = shape[-2] emb_dim = shape[-1] reshaped_facts = fact_embed.view(-1, word_dim, emb_dim) reshaped_fact_text_mask = fact_text_mask.view(-1, word_dim) reshaped_fact_repr = self._utter_context( reshaped_facts, reshaped_fact_text_mask ) # No more emb dimension or word/seq dim fact_repr = reshaped_fact_repr.view(shape[:-2] + (-1,)) fact_logits = self._fact_ranker( shifted_context, fact_repr, ) output["fact_logits"] = fact_logits if fact_labels is not None: has_loss = True fact_loss = self._compute_fact_loss(fact_logits, fact_labels, fact_mask) self._fact_loss_metric(fact_loss.item()) self._fact_mrr(fact_logits, fact_labels, mask=fact_mask) else: fact_loss = 0 if self._disable_likes: like_loss = 0 else: has_loss = True # (batch_size, n_turns, 2) like_logits = self._like_classifier(dialog_context) output["like_logits"] = like_logits # There are several masks here to get the loss/metrics correct # - utter_mask: mask out positions that do not have an utterance # - user_mask: mask out positions that have a user utterances # since their turns are never liked # Using new_ones() preserves the type of the tensor user_mask = utter_mask.new_ones(utter_mask.shape) # Since the user is always even, this masks out user positions user_mask[:, ::2] = 0 final_mask = utter_mask * user_mask masked_likes = likes * final_mask if likes is not None: has_loss = True like_loss = sequence_cross_entropy_with_logits( like_logits, masked_likes, final_mask ) self._like_accuracy(like_logits, masked_likes, final_mask) self._like_loss_metric(like_loss.item()) else: like_loss = 0 if has_loss: output["loss"] = ( self._fact_loss_weight * fact_loss + like_loss + da_loss + policy_loss ) return output def _compute_da_loss( self, output_dict, messages: torch.Tensor, shifted_context: torch.Tensor, utter_mask: torch.Tensor, dialog_acts: torch.Tensor, dialog_acts_mask: torch.Tensor, ): """ Given utterance at turn t, get the context (utter + acts) from t-1, the utter_t, and predict the act """ message_w_context = torch.cat((messages, shifted_context), dim=-1) # (batch_size, n_turns, n_dialog_acts) da_logits = self._da_classifier(message_w_context) output_dict["da_logits"] = da_logits da_unreduced_loss = self._da_bce_loss(da_logits, dialog_acts.float()) # Note: the last dimension is expanded from singleton to n_dialog_acts # Since the mask is at turn level # (batch_size, n_turns, n_dialog_acts) da_combined_mask = ( dialog_acts_mask.float().unsqueeze(-1) * utter_mask.float().unsqueeze(-1) ).expand_as(da_unreduced_loss) da_unreduced_loss = da_combined_mask * da_unreduced_loss # Mean loss over non-masked inputs, avoid division by zero da_loss = da_unreduced_loss.sum() / da_combined_mask.sum().clamp(min=1) da_loss_item = da_loss.item() self._da_loss_metric(da_loss_item) # (batch_size, n_turns, n_dialog_acts) da_preds = (torch.sigmoid(da_logits) > 0.5).long() self._da_f1_metric(da_preds, dialog_acts, da_combined_mask.long()) return da_loss def _compute_policy_loss( self, output_dict, shifted_context: torch.Tensor, utter_mask: torch.Tensor, dialog_acts: torch.Tensor, dialog_acts_mask: torch.Tensor, ): """ Given utterance at turn t, get the context (utter + acts) from t-1, the utter_t, and predict the act """ # (batch_size, n_turns, n_dialog_acts) policy_logits = self._policy_classifier(shifted_context) output_dict["policy_logits"] = policy_logits policy_unreduced_loss = self._policy_bce_loss( policy_logits, dialog_acts.float() ) # Note: the last dimension is expanded from singleton to n_dialog_acts # Since the mask is at turn level # (batch_size, n_turns, n_dialog_acts) policy_combined_mask = ( dialog_acts_mask.float().unsqueeze(-1) * utter_mask.float().unsqueeze(-1) ).expand_as(policy_unreduced_loss) policy_unreduced_loss = policy_combined_mask * policy_unreduced_loss # Mean loss over non-masked inputs, avoid division by zero policy_loss = policy_unreduced_loss.sum() / policy_combined_mask.sum().clamp( min=1 ) policy_loss_item = policy_loss.item() self._policy_loss_metric(policy_loss_item) # (batch_size, n_turns, n_dialog_acts) policy_preds = (torch.sigmoid(policy_logits) > 0.5).long() self._policy_f1_metric(policy_preds, dialog_acts, policy_combined_mask.long()) return policy_loss def _compute_fact_loss( self, logits: torch.Tensor, fact_labels: torch.Tensor, fact_mask: torch.Tensor ): # Don't reduce to mask out padded facts unreduced_loss = self._fact_bce_loss(logits, fact_labels) total_loss = (unreduced_loss * fact_mask.float()).sum() mean_loss = total_loss / fact_mask.float().sum() return mean_loss
curiosity-main
curiosity/models.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. """ Implement very simple similarity search """ from typing import List, Optional import pickle from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from curiosity.db import Fact, create_sql class Similarity: def __init__(self, wiki_sql_path: Optional[str] = None) -> None: self._wiki_sql_path = wiki_sql_path self._vectorizer = TfidfVectorizer( stop_words="english", ngram_range=(1, 2), strip_accents="unicode", decode_error="ignore", ) def train(self) -> None: if self._wiki_sql_path is None: raise ValueError("Cannot fit tfidf with wiki_sql_path unset") _, session = create_sql(self._wiki_sql_path) docs = [r[0] for r in session.query(Fact.text).all()] self._vectorizer.fit(docs) def save(self, tfidf_path: str) -> None: with open(tfidf_path, "wb") as f: pickle.dump(self._vectorizer, f) def load(self, tfidf_path: str) -> None: with open(tfidf_path, "rb") as f: self._vectorizer = pickle.load(f) def score(self, query: str, docs: List[str]) -> List[float]: query_vector = self._vectorizer.transform([query]) doc_vectors = self._vectorizer.transform(docs) return cosine_similarity(query_vector, doc_vectors)[0].tolist()
curiosity-main
curiosity/similarity.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import logging def get_logger(name): log = logging.getLogger(name) if len(log.handlers) < 2: formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) fh = logging.FileHandler("curio-model.log") fh.setLevel(logging.INFO) fh.setFormatter(formatter) sh = logging.StreamHandler() sh.setLevel(logging.INFO) sh.setFormatter(formatter) log.addHandler(fh) log.addHandler(sh) log.setLevel(logging.INFO) return log
curiosity-main
curiosity/util.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from typing import Dict import torch from overrides import overrides from allennlp.common.registrable import Registrable from allennlp.modules.similarity_functions.similarity_function import SimilarityFunction class FactRanker(torch.nn.Module, Registrable): @overrides def forward(self, dialog_context: torch.Tensor, fact_repr: torch.Tensor) -> Dict: """ Accept the dialog context, fact representations, and fact labels to produce logits/loss for fact ranking The output should be a dictionary with keys 'logits' only if labels are None, else 'logits' and 'loss' """ raise NotImplementedError @FactRanker.register("mean_logit_ranker") class MeanLogitRanker(FactRanker): def __init__(self, similarity_function: SimilarityFunction): super().__init__() self._similarity_function = similarity_function @overrides def forward( self, # TODO: pass in the prior message # (batch_size, n_turns, dc_dim) shifted_dialog_context: torch.Tensor, # One representation vector per fact # (batch_size, n_turns, n_facts, repr_dim) fact_repr: torch.Tensor, ) -> Dict: # Make the dims work shifted_dc_unsqueeze = shifted_dialog_context.unsqueeze(2) logits = self._similarity_function(shifted_dc_unsqueeze, fact_repr) return logits
curiosity-main
curiosity/nn.py
curiosity-main
curiosity/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from typing import Dict, Optional, Union import math import torch from torch import nn from allennlp.nn.util import ( get_text_field_mask, sequence_cross_entropy_with_logits, masked_mean ) from allennlp.data.vocabulary import Vocabulary from allennlp.models import Model from allennlp.modules.text_field_embedders import TextFieldEmbedder from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder from allennlp.modules.feedforward import FeedForward from allennlp.modules.seq2vec_encoders import Seq2VecEncoder from allennlp.modules.time_distributed import TimeDistributed from allennlp.training.metrics import CategoricalAccuracy, Average from curiosity.nn import FactRanker from curiosity.metrics import MeanReciprocalRank, MultilabelMicroF1 from curiosity.reader import DIALOG_ACT_LABELS from curiosity.bert import BertEncoder def gelu(x): return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0))) class GeLU(nn.Module): __constants__ = ['inplace'] def __init__(self, inplace=False): super(GeLU, self).__init__() self.inplace = inplace def forward(self, input_): return gelu(input_) class Clamp(nn.Module): def __init__(self, should_clamp: bool = False): super(Clamp, self).__init__() self._should_clamp = should_clamp def forward(self, input_): if self._should_clamp: return 0.0 * input_ else: return input_ @Model.register('baseline_curiosity_model') class CuriosityBaselineModel(Model): def __init__(self, vocab: Vocabulary, use_glove: bool, use_bert: bool, bert_trainable: bool, bert_name: str, mention_embedder: TextFieldEmbedder, dialog_context: FeedForward, fact_ranker: FactRanker, dropout_prob: float, sender_emb_size: int, act_emb_size: int, fact_loss_weight: float, fact_pos_weight: float, utter_embedder: TextFieldEmbedder = None, utter_context: Seq2VecEncoder = None, disable_known_entities: bool = False, disable_dialog_acts: bool = False, disable_likes: bool = False, disable_facts: bool = False): super().__init__(vocab) self._disable_known_entities = disable_known_entities self._disable_dialog_acts = disable_dialog_acts self._clamp_dialog_acts = Clamp(should_clamp=disable_dialog_acts) self._disable_likes = disable_likes self._clamp_likes = Clamp(should_clamp=disable_likes) self._disable_facts = disable_facts self._clamp_facts = Clamp(should_clamp=disable_facts) self._fact_loss_weight = fact_loss_weight self._fact_pos_weight = fact_pos_weight if int(use_glove) + int(use_bert) != 1: raise ValueError('Cannot use bert and glove together') self._use_glove = use_glove self._use_bert = use_bert self._bert_trainable = bert_trainable self._bert_name = bert_name self._utter_embedder = utter_embedder self._utter_context = utter_context # Bert encoder is embedder + context if use_bert: # Not trainable for now print('Using BERT encoder ...') self._bert_encoder = BertEncoder( self._bert_name, requires_grad=bert_trainable ) self._dist_utter_context = None self._utter_dim = self._bert_encoder.get_output_dim() else: print('Using LSTM encoder ...') self._bert_encoder = None self._dist_utter_context = TimeDistributed(self._utter_context) self._utter_dim = self._utter_context.get_output_dim() self._dialog_context = dialog_context self._fact_ranker = fact_ranker # Easier to code as cross entropy with two classes # Likes are per message, for only assistant messages self._like_classifier = nn.Linear( self._dialog_context.get_output_dim(), 2 ) self._like_accuracy = CategoricalAccuracy() self._like_loss_metric = Average() # Dialog acts are per message, for all messages # This network predicts the dialog act of the current message # for both student and teacher self._da_classifier = nn.Sequential( nn.Linear( self._utter_dim + self._dialog_context.get_output_dim(), self._dialog_context.get_output_dim() ), GeLU(), nn.Linear( self._dialog_context.get_output_dim(), vocab.get_vocab_size(DIALOG_ACT_LABELS) ) ) self._da_bce_loss = torch.nn.BCEWithLogitsLoss(reduction='none') self._da_f1_metric = MultilabelMicroF1() self._da_loss_metric = Average() # This network predicts what the next action should be # It predicts for user and assistant since there isn't a real # reason to restrict that self._policy_classifier = nn.Sequential( nn.Linear( self._dialog_context.get_output_dim(), self._dialog_context.get_output_dim() ), GeLU(), nn.Linear( self._dialog_context.get_output_dim(), vocab.get_vocab_size(DIALOG_ACT_LABELS) ) ) self._policy_bce_loss = torch.nn.BCEWithLogitsLoss(reduction='none') self._policy_f1_metric = MultilabelMicroF1() self._policy_loss_metric = Average() self._fact_mrr = MeanReciprocalRank() self._fact_loss_metric = Average() self._dropout_prob = dropout_prob self._dropout = nn.Dropout(dropout_prob) # Fact use is much less prevalant, about 9 times less so, so factor that in self._fact_bce_loss = torch.nn.BCEWithLogitsLoss( reduction='none', pos_weight=torch.Tensor([self._fact_pos_weight]) ) def get_metrics(self, reset: bool = False): da_metrics = self._da_f1_metric.get_metric(reset=reset) policy_metrics = self._policy_f1_metric.get_metric(reset=reset) metrics_to_report = { 'like_accuracy': self._like_accuracy.get_metric(reset=reset), 'like_loss': self._like_loss_metric.get_metric(reset=reset), 'fact_mrr': self._fact_mrr.get_metric(reset=reset), 'fact_loss': self._fact_loss_metric.get_metric(reset=reset), 'da_loss': self._da_loss_metric.get_metric(reset=reset), 'da_micro_f1': da_metrics['f1'], 'da_micro_precision': da_metrics['precision'], 'da_micro_recall': da_metrics['recall'], 'policy_micro_f1': policy_metrics['f1'], 'policy_micro_precision': policy_metrics['precision'], 'policy_micro_recall': policy_metrics['recall'], } metrics_to_report['total'] = \ metrics_to_report['fact_mrr'] + \ metrics_to_report['policy_micro_f1'] + \ metrics_to_report['da_micro_f1'] + \ metrics_to_report['like_accuracy'] return metrics_to_report def forward(self, messages: Dict[str, torch.Tensor], # (batch_size, n_turns, n_facts, n_words) facts: Dict[str, torch.Tensor], # (batch_size, n_turns) senders: torch.Tensor, # (batch_size, n_turns, n_acts) dialog_acts: torch.Tensor, # (batch_size, n_turns) dialog_acts_mask: torch.Tensor, # (batch_size, n_entities) known_entities: Dict[str, torch.Tensor], # (batch_size, 1) focus_entity: Dict[str, torch.Tensor], # (batch_size, n_turns, n_facts) fact_labels: Optional[torch.Tensor] = None, # (batch_size, n_turns, 2) likes: Optional[torch.Tensor] = None, metadata: Optional[Dict] = None): output = {} # Take care of the easy stuff first if self._use_bert: # (batch_size, n_turns, n_words, emb_dim) context, utter_mask = self._bert_encoder(messages) context = self._dropout(context) else: # (batch_size, n_turns) # This is the mask since not all dialogs have same number # of turns utter_mask = get_text_field_mask(messages) # (batch_size, n_turns, n_words) # Mask since not all utterances have same number of words # Wrapping dim skips over n_messages dim text_mask = get_text_field_mask(messages, num_wrapping_dims=1) # (batch_size, n_turns, n_words, emb_dim) embed = self._dropout(self._utter_embedder(messages)) # (batch_size, n_turns, hidden_dim) context = self._dist_utter_context(embed, text_mask) # (batch_size, n_turns, hidden_dim) # n_turns = context.shape[1] dialog_context = self._dialog_context(context) # (batch_size, n_turns, hidden_dim) # This assumes dialog_context does not peek into future # dialog_context = self._dialog_context(full_context, utter_mask) # shift context one right, pad with zeros at front # This makes it so that utter_t is paired with context_t-1 # which is what we want # This is useful in a few different places, so compute it here once shape = dialog_context.shape shifted_context = torch.cat(( dialog_context.new_zeros([shape[0], 1, shape[2]]), dialog_context[:, :-1, :] ), dim=1) has_loss = False if self._disable_dialog_acts: da_loss = 0 policy_loss = 0 else: # Dialog act per utter loss has_loss = True da_loss = self._compute_da_loss( output, context, shifted_context, utter_mask, dialog_acts, dialog_acts_mask ) # Policy loss policy_loss = self._compute_policy_loss( output, shifted_context, utter_mask, dialog_acts, dialog_acts_mask ) if self._disable_facts: # If facts are disabled, don't output anything related # to them fact_loss = 0 else: if self._use_bert: # (batch_size, n_turns, n_words, emb_dim) fact_repr, fact_mask = self._bert_encoder(facts) fact_repr = self._dropout(fact_repr) fact_mask[:, ::2] = 0 else: # (batch_size, n_turns, n_facts) # Wrapping dim skips over n_messages fact_mask = get_text_field_mask(facts, num_wrapping_dims=1) # In addition to masking padded facts, also explicitly mask # user turns just in case fact_mask[:, ::2] = 0 # (batch_size, n_turns, n_facts, n_words) # Wrapping dim skips over n_turns and n_facts fact_text_mask = get_text_field_mask(facts, num_wrapping_dims=2) # (batch_size, n_turns, n_facts, n_words, emb_dim) # Share encoder with utter encoder # Again, stupid dimensions fact_embed = self._dropout(self._utter_embedder(facts)) shape = fact_embed.shape word_dim = shape[-2] emb_dim = shape[-1] reshaped_facts = fact_embed.view(-1, word_dim, emb_dim) reshaped_fact_text_mask = fact_text_mask.view(-1, word_dim) reshaped_fact_repr = self._utter_context( reshaped_facts, reshaped_fact_text_mask ) # No more emb dimension or word/seq dim fact_repr = reshaped_fact_repr.view(shape[:-2] + (-1,)) fact_logits = self._fact_ranker( shifted_context, fact_repr, ) output['fact_logits'] = fact_logits if fact_labels is not None: has_loss = True fact_loss = self._compute_fact_loss( fact_logits, fact_labels, fact_mask ) self._fact_loss_metric(fact_loss.item()) self._fact_mrr(fact_logits, fact_labels, mask=fact_mask) else: fact_loss = 0 if self._disable_likes: like_loss = 0 else: has_loss = True # (batch_size, n_turns, 2) like_logits = self._like_classifier(dialog_context) output['like_logits'] = like_logits # There are several masks here to get the loss/metrics correct # - utter_mask: mask out positions that do not have an utterance # - user_mask: mask out positions that have a user utterances # since their turns are never liked # Using new_ones() preserves the type of the tensor user_mask = utter_mask.new_ones(utter_mask.shape) # Since the user is always even, this masks out user positions user_mask[:, ::2] = 0 final_mask = utter_mask * user_mask masked_likes = likes * final_mask if likes is not None: has_loss = True like_loss = sequence_cross_entropy_with_logits( like_logits, masked_likes, final_mask ) self._like_accuracy(like_logits, masked_likes, final_mask) self._like_loss_metric(like_loss.item()) else: like_loss = 0 if has_loss: output['loss'] = ( self._fact_loss_weight * fact_loss + like_loss + da_loss + policy_loss ) return output def _compute_da_loss(self, output_dict, messages: torch.Tensor, shifted_context: torch.Tensor, utter_mask: torch.Tensor, dialog_acts: torch.Tensor, dialog_acts_mask: torch.Tensor): """ Given utterance at turn t, get the context (utter + acts) from t-1, the utter_t, and predict the act """ message_w_context = torch.cat(( messages, shifted_context ), dim=-1) # (batch_size, n_turns, n_dialog_acts) da_logits = self._da_classifier(message_w_context) output_dict['da_logits'] = da_logits da_unreduced_loss = self._da_bce_loss(da_logits, dialog_acts.float()) # Note: the last dimension is expanded from singleton to n_dialog_acts # Since the mask is at turn level # (batch_size, n_turns, n_dialog_acts) da_combined_mask = ( dialog_acts_mask.float().unsqueeze(-1) * utter_mask.float().unsqueeze(-1) ).expand_as(da_unreduced_loss) da_unreduced_loss = da_combined_mask * da_unreduced_loss # Mean loss over non-masked inputs, avoid division by zero da_loss = da_unreduced_loss.sum() / da_combined_mask.sum().clamp(min=1) da_loss_item = da_loss.item() self._da_loss_metric(da_loss_item) # (batch_size, n_turns, n_dialog_acts) da_preds = (torch.sigmoid(da_logits) > .5).long() self._da_f1_metric(da_preds, dialog_acts, da_combined_mask.long()) return da_loss def _compute_policy_loss(self, output_dict, shifted_context: torch.Tensor, utter_mask: torch.Tensor, dialog_acts: torch.Tensor, dialog_acts_mask: torch.Tensor): """ Given utterance at turn t, get the context (utter + acts) from t-1, the utter_t, and predict the act """ # (batch_size, n_turns, n_dialog_acts) policy_logits = self._policy_classifier(shifted_context) output_dict['policy_logits'] = policy_logits policy_unreduced_loss = self._policy_bce_loss(policy_logits, dialog_acts.float()) # Note: the last dimension is expanded from singleton to n_dialog_acts # Since the mask is at turn level # (batch_size, n_turns, n_dialog_acts) policy_combined_mask = ( dialog_acts_mask.float().unsqueeze(-1) * utter_mask.float().unsqueeze(-1) ).expand_as(policy_unreduced_loss) policy_unreduced_loss = policy_combined_mask * policy_unreduced_loss # Mean loss over non-masked inputs, avoid division by zero policy_loss = policy_unreduced_loss.sum() / policy_combined_mask.sum().clamp(min=1) policy_loss_item = policy_loss.item() self._policy_loss_metric(policy_loss_item) # (batch_size, n_turns, n_dialog_acts) policy_preds = (torch.sigmoid(policy_logits) > .5).long() self._policy_f1_metric(policy_preds, dialog_acts, policy_combined_mask.long()) return policy_loss def _compute_fact_loss(self, logits: torch.Tensor, fact_labels: torch.Tensor, fact_mask: torch.Tensor): # Don't reduce to mask out padded facts unreduced_loss = self._fact_bce_loss(logits, fact_labels) total_loss = ( unreduced_loss * fact_mask.float() ).sum() mean_loss = total_loss / fact_mask.float().sum() return mean_loss
curiosity-main
curiosity/baseline_models.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. """ Reader for curiosity dialog dataset. Below is a sample json with relevant structure { "dialogs": [ { "messages": [ { "message": "Hi, what do you know about St. Louis' history?", "liked": false, "sender": "user", "facts": [] }, { "message": "St. Louis had among worst air pollution in U.S.?", "liked": true, "sender": "assistant", "facts": [ { "fid": 54538, "used": true }, { "fid": 54472, "used": false }, { "fid": 54490, "used": false }, { "fid": 54701, "used": false }, { "fid": 54646, "used": false }, { "fid": 54681, "used": false }, { "fid": 54746, "used": false }, { "fid": 54523, "used": false }, { "fid": 54526, "used": false } ] }, ], "known_entities": [ "Major League Baseball", "United Kingdom", "United States", "United States Census Bureau", "Missouri River" ], "focus_entity": "St. Louis", "dialog_id": 77, "inferred_steps": false, "created_time": 1568060716, "aspects": [ "History", "Education" ], "first_aspect": "History", "second_aspect": "Education", "shuffle_facts": true, "related_entities": [ "Auguste Chouteau", "Spain", "Susan Polgar", "Darby, Pennsylvania", "MacArthur Bridge (St. Louis)", "Christ Church Cathedral, Oxford", "Mound City, Illinois", "Major League Baseball", "United Kingdom", "United States", "Washington University in St. Louis", "United States Census Bureau", "Greater St. Louis", "Missouri River" ] } ] } """ from typing import Dict, Optional, List import json import csv import os import numpy as np from overrides import overrides from allennlp.common.util import START_SYMBOL, END_SYMBOL from allennlp.data.instance import Instance from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.fields import ( TextField, ListField, MetadataField, LabelField, ArrayField, MultiLabelField, ) from allennlp.data.tokenizers import Token, Tokenizer, WordTokenizer from allennlp.data.tokenizers.word_splitter import JustSpacesWordSplitter from curiosity.db import verify_checksum, create_sql, Fact USER = "user" ASSISTANT = "assistant" DIALOG_ACT_LABELS = "dialog_act_labels" class MultiLabelFieldListCompat(MultiLabelField): """ Fixes a bug where if the field is used in a ListField, that the number of labels is lost and causes an error. """ @overrides def empty_field(self): return MultiLabelField( [], self._label_namespace, skip_indexing=True, num_labels=self._num_labels ) def to_long_field(nums: List[int]) -> ArrayField: return ArrayField(np.array(nums, dtype=np.long), dtype=np.long) @DatasetReader.register("curiosity_dialog") class CuriosityDialogReader(DatasetReader): def __init__( self, tokenizer: Tokenizer = None, mention_tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, mention_indexers: Dict[str, TokenIndexer] = None, ): super().__init__() self._tokenizer = tokenizer or WordTokenizer() self._token_indexers = token_indexers or { "tokens": SingleIdTokenIndexer(lowercase_tokens=True), } self._mention_indexers = mention_indexers or { "mentions": SingleIdTokenIndexer(), } self._mention_tokenizer = mention_tokenizer or WordTokenizer( word_splitter=JustSpacesWordSplitter(), ) self._fact_lookup: Optional[Dict[int, Fact]] = None @overrides def _read(self, file_path: str): """ file_path should point to a curiosity dialog file. In addition, the directory that contains that file should also contain the sqlite database associated with the dialogs named as below - wiki_sql.sqlite.db The intent is that there are """ with open(file_path) as f: dataset = json.load(f) dialogs = dataset["dialogs"] directory = os.path.dirname(file_path) db_path = os.path.join(directory, "wiki_sql.sqlite.db") engine, session = create_sql(db_path) facts = session.query(Fact).all() self._fact_lookup = {f.id: f for f in facts} verify_checksum(dataset["db_checksum"], db_path) # store = CuriosityStore(db_path) # fact_lookup = store.get_fact_lookup() # TODO: Add in facts for _, d in enumerate(dialogs): yield self.text_to_instance(d) session.close() @overrides def text_to_instance(self, dialog: Dict, ignore_fact: bool = False): msg_texts = [] msg_senders = [] msg_likes = [] msg_acts = [] msg_act_mask = [] msg_facts = [] msg_fact_labels = [] metadata_fact_labels = [] if len(dialog["messages"]) == 0: raise ValueError("There are no dialog messages") known_entities = [ Token(text="ENTITY/" + t.replace(" ", "_"), idx=idx) for idx, t in enumerate(dialog["known_entities"]) ] if len(known_entities) == 0: known_entities.append(Token(text="@@YOUKNOWNOTHING@@", idx=0)) known_entities_field = TextField(known_entities, self._mention_indexers) focus_entity = dialog["focus_entity"] focus_entity_field = TextField( [Token(text="ENTITY/" + focus_entity.replace(" ", "_"), idx=0)], self._mention_indexers, ) for msg in dialog["messages"]: tokenized_msg = self._tokenizer.tokenize(msg["message"]) msg_texts.append(TextField(tokenized_msg, self._token_indexers)) msg_senders.append(0 if msg["sender"] == USER else 1) msg_likes.append( LabelField( "liked" if msg["liked"] else "not_liked", label_namespace="like_labels", ) ) if msg["dialog_acts"] is None: dialog_acts = ["@@NODA@@"] act_mask = 0 else: dialog_acts = msg["dialog_acts"] act_mask = 1 dialog_acts_field = MultiLabelFieldListCompat( dialog_acts, label_namespace=DIALOG_ACT_LABELS ) msg_acts.append(dialog_acts_field) msg_act_mask.append(act_mask) curr_facts_text = [] curr_facts_labels = [] curr_metadata_fact_labels = [] if msg["sender"] == ASSISTANT: for idx, f in enumerate(msg["facts"]): if ignore_fact: fact_text = "dummy fact" else: fact = self._fact_lookup[f["fid"]] fact_text = fact.text # TODO: These are already space tokenized tokenized_fact = self._tokenizer.tokenize(fact_text) # 99% of text length is 77 tokenized_fact = tokenized_fact[:80] curr_facts_text.append( TextField(tokenized_fact, self._token_indexers) ) if f["used"]: curr_facts_labels.append(idx) curr_metadata_fact_labels.append(idx) else: # Users don't have facts, but lets avoid divide by zero curr_facts_text.append( TextField([Token(text="@@NOFACT@@", idx=0)], self._token_indexers) ) msg_facts.append(ListField(curr_facts_text)) # Add in a label if there are no correct indices if len(curr_facts_labels) == 0: curr_metadata_fact_labels.append(-1) n_facts = len(curr_facts_text) fact_label_arr = np.zeros(n_facts, dtype=np.float32) if len(curr_facts_labels) > 0: fact_label_arr[curr_facts_labels] = 1 msg_fact_labels.append(ArrayField(fact_label_arr, dtype=np.float32)) metadata_fact_labels.append(curr_metadata_fact_labels) return Instance( { "messages": ListField(msg_texts), "facts": ListField(msg_facts), "fact_labels": ListField(msg_fact_labels), "likes": ListField(msg_likes), "dialog_acts": ListField(msg_acts), "dialog_acts_mask": to_long_field(msg_act_mask), "senders": to_long_field(msg_senders), "focus_entity": focus_entity_field, "known_entities": known_entities_field, "metadata": MetadataField( { "dialog_id": dialog["dialog_id"], "n_message": len(msg_texts), "fact_labels": metadata_fact_labels, "known_entities": dialog["known_entities"], "focus_entity": dialog["focus_entity"], } ), } ) @DatasetReader.register("curiosity_paraphrase") class CuriosityParaphraseReader(DatasetReader): def __init__( self, filter_user_messages: bool = True, filter_empty_facts: bool = True, lazy: bool = False, ) -> None: super().__init__(lazy) self._tokenizer = WordTokenizer( word_splitter=JustSpacesWordSplitter(), ) self._token_indexers = {"tokens": SingleIdTokenIndexer()} self._fact_lookup: Optional[Dict[int, Fact]] = None self._filter_user_messages = filter_user_messages self._filter_empty_facts = filter_empty_facts @overrides def _read(self, file_path: str): """ file_path should point to a curiosity dialog file. In addition, the directory that contains that file should also contain the sqlite database associated with the dialogs named as below - wiki_sql.sqlite.db """ with open(file_path) as f: dataset = json.load(f) dialogs = dataset["dialogs"] directory = os.path.dirname(file_path) db_path = os.path.join(directory, "wiki_sql.sqlite.db") engine, session = create_sql(db_path) facts = session.query(Fact).all() self._fact_lookup = {f.id: f for f in facts} verify_checksum(dataset["db_checksum"], db_path) # store = CuriosityStore(db_path) # fact_lookup = store.get_fact_lookup() # TODO: Add in facts for d in dialogs: for msg in d["messages"]: # Filter out user messages if self._filter_user_messages and msg["sender"] == USER: continue # Filter out messages without paired facts, if required if self._filter_empty_facts: facts_used = [f for f in msg["facts"] if f["used"]] if len(facts_used) == 0: continue yield self.text_to_instance(msg, d) session.close() @overrides def text_to_instance(self, msg: Dict, d: Dict): # (1) Prepare facts # Set max length of each fact text: 300 characters fact_texts = [ self._fact_lookup[f["fid"]].text[:300] for f in msg["facts"] if f["used"] ] # Aggregate facts aggregated_fact_text = " ".join(fact_texts) # If it doesn't have any fact, put a default symbol if aggregated_fact_text == "": aggregated_fact_text = "@@NOFACT@@" # Wrap each sentence with start and end symbols aggregated_fact_text = "{start_symbol} {text} {end_symbol}".format( start_symbol=START_SYMBOL, text=aggregated_fact_text, end_symbol=END_SYMBOL ) # Tokenize facts tokenized_fact = self._tokenizer.tokenize(aggregated_fact_text)[:150] # (2) Prepare messages message = msg["message"] if msg["message"] != "" else "@@NOMESSAGE@@" # Wrap each sentence with start and end symbols message = "{start_symbol} {text} {end_symbol}".format( start_symbol=START_SYMBOL, text=message, end_symbol=END_SYMBOL ) # Tokenize tokenized_message = self._tokenizer.tokenize(message)[:150] # (3) Prepare dialog acts dialog_acts = ( msg["dialog_acts"] if msg["dialog_acts"] is not None else ["@@NODA@@"] ) # (4) Prepare sender information sender = "user" if msg["sender"] == USER else "teacher" return Instance( { "source_tokens": TextField(tokenized_fact, self._token_indexers), "target_tokens": TextField(tokenized_message, self._token_indexers), "dialog_acts": MultiLabelField( dialog_acts, label_namespace=DIALOG_ACT_LABELS ), "sender": LabelField(sender, label_namespace="sender"), "metadata": MetadataField( { "dialog_id": d["dialog_id"], "n_message": len(d["messages"]), } ), } ) @DatasetReader.register("fact_paraphrase") class FactParaphraseReader(DatasetReader): def __init__( self, filter_empty_facts: bool = True, lazy: bool = False, ) -> None: super().__init__(lazy) self._tokenizer = WordTokenizer( word_splitter=JustSpacesWordSplitter(), ) self._token_indexers = {"tokens": SingleIdTokenIndexer()} self._fact_lookup: Optional[Dict[int, Fact]] = None self._filter_empty_facts = filter_empty_facts @overrides def _read(self, file_path: str): """ file_path should point to a fact paraphrase dataset file. It assumes the following format: {fact}\t{paraphrased}\n ... """ with open(file_path) as f: reader = csv.reader(f, delimiter="\t") for row in reader: if self._filter_empty_facts and row[0] == "": continue yield self.text_to_instance(row) @overrides def text_to_instance(self, row: List): # (1) Prepare facts # Set max length of each fact text: 300 characters fact = row[0][:300] # If it doesn't have any fact, put a default symbol if fact == "": fact = "@@NOFACT@@" # Tokenize facts tokenized_fact = ( [Token(START_SYMBOL)] + self._tokenizer.tokenize(fact)[:150] + [Token(END_SYMBOL)] ) # (2) Prepare the paraphrased message message = row[1] # Tokenize tokenized_message = ( [Token(START_SYMBOL)] + self._tokenizer.tokenize(message)[:150] + [Token(END_SYMBOL)] ) # (3) Prepare dialog acts dialog_acts = ["@@NODA@@"] # (4) Prepare sender information sender = "teacher" return Instance( { "source_tokens": TextField(tokenized_fact, self._token_indexers), "target_tokens": TextField(tokenized_message, self._token_indexers), "dialog_acts": MultiLabelField( dialog_acts, label_namespace="dialog_acts" ), "sender": LabelField(sender, label_namespace="sender"), "metadata": MetadataField( { "dialog_id": -1, "n_message": -1, } ), } )
curiosity-main
curiosity/reader.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import os import json from itertools import cycle import click import _jsonnet from curiosity.stats import ( MajorityLikes, TfidfFactBaseline, MajorityDialogActs, MajorityPolicyActs, save_metrics, fact_length_stats, ) from curiosity.util import get_logger log = get_logger(__name__) TRAIN_DIALOGS = "dialog_data/curiosity_dialogs.train.json" VAL_DIALOGS = "dialog_data/curiosity_dialogs.val.json" TEST_DIALOGS = "dialog_data/curiosity_dialogs.test.json" ZERO_DIALOGS = "dialog_data/curiosity_dialogs.test_zero.json" @click.group() def cli(): pass @cli.command() @click.argument("metrics_dir") def majority(metrics_dir): """ Obtain a majority baseline for like prediction """ model = MajorityLikes() model.train(TRAIN_DIALOGS) val_score = model.score(VAL_DIALOGS) test_score = model.score(TEST_DIALOGS) zero_score = model.score(ZERO_DIALOGS) log.info("Like prediction") log.info(f"Validation Score: {val_score}") log.info(f"Test Score: {test_score}") log.info(f"Zero Score: {zero_score}") save_metrics( { "best_validation_like_accuracy": val_score, }, os.path.join(metrics_dir, "like_majority_val_metrics.json"), ) save_metrics( { "best_validation_like_accuracy": test_score, }, os.path.join(metrics_dir, "like_majority_test_metrics.json"), ) save_metrics( { "best_validation_like_accuracy": zero_score, }, os.path.join(metrics_dir, "like_majority_zero_metrics.json"), ) @cli.command() @click.argument("metrics_dir") def majority_da(metrics_dir): """ Obtain a majority baseline for dialog acts prediction """ model = MajorityDialogActs() model.train(TRAIN_DIALOGS) val_score = model.score(VAL_DIALOGS) test_score = model.score(TEST_DIALOGS) zero_score = model.score(ZERO_DIALOGS) log.info("Dialog Acts prediction") log.info(f"Validation Score: {val_score}") log.info(f"Test Score: {test_score}") log.info(f"Zero Score: {zero_score}") save_metrics( { "best_validation_da_micro_f1": val_score, }, os.path.join(metrics_dir, "da_majority_val_metrics.json"), ) save_metrics( { "best_validation_da_micro_f1": test_score, }, os.path.join(metrics_dir, "da_majority_test_metrics.json"), ) save_metrics( { "best_validation_da_micro_f1": zero_score, }, os.path.join(metrics_dir, "da_majority_zero_metrics.json"), ) @cli.command() @click.argument("metrics_dir") def majority_policy(metrics_dir): """ Obtain a majority baseline for policy acts prediction """ model = MajorityPolicyActs() model.train(TRAIN_DIALOGS) val_score = model.score(VAL_DIALOGS) test_score = model.score(TEST_DIALOGS) zero_score = model.score(ZERO_DIALOGS) log.info("Policy Acts prediction") log.info(f"Validation Score: {val_score}") log.info(f"Test Score: {test_score}") log.info(f"Zero Score: {zero_score}") save_metrics( { "best_validation_policy_micro_f1": val_score, }, os.path.join(metrics_dir, "policy_majority_val_metrics.json"), ) save_metrics( { "best_validation_policy_micro_f1": test_score, }, os.path.join(metrics_dir, "policy_majority_test_metrics.json"), ) save_metrics( { "best_validation_policy_micro_f1": zero_score, }, os.path.join(metrics_dir, "policy_majority_zero_metrics.json"), ) @cli.command() @click.argument("tfidf_path") @click.argument("wiki_sql_path") @click.argument("metrics_dir") def fact_tfidf(tfidf_path, wiki_sql_path, metrics_dir): """ Train and evaluate a tfidf baseline in the same format as the allennlp models """ model = TfidfFactBaseline(tfidf_path, wiki_sql_path=wiki_sql_path) val_score = model.score(VAL_DIALOGS) test_score = model.score(TEST_DIALOGS) zero_score = model.score(ZERO_DIALOGS) log.info("Fact Prediction") log.info(f"Validation Score: {val_score}") log.info(f"Test Score: {test_score}") log.info(f"Zero Score: {zero_score}") save_metrics( {"best_validation_fact_mrr": val_score}, os.path.join(metrics_dir, "mrr_tfidf_val_metrics.json"), ) save_metrics( {"best_validation_fact_mrr": test_score}, os.path.join(metrics_dir, "mrr_tfidf_test_metrics.json"), ) save_metrics( {"best_validation_fact_mrr": zero_score}, os.path.join(metrics_dir, "mrr_tfidf_zero_metrics.json"), ) @cli.command() @click.argument("data_path") def fact_lengths(data_path): fact_length_stats(data_path) @cli.command() @click.option("--gpu", multiple=True) @click.argument("metrics_dir") def gen_configs(gpu, metrics_dir): """ Create the configuration files for the different models. This is separate from hyper parameter tuning and directly corresponds to models in the paper table The gpu flag can be taken multiple times and indicates to write jobs configured to use those gpus. """ gpu_list = [] if isinstance(gpu, (tuple, list)): if len(gpu) == 0: gpu_list.append(-1) else: for e in gpu: gpu_list.append(int(e)) elif isinstance(gpu, int): gpu_list.append(gpu) elif isinstance(gpu, str): gpu_list.append(int(gpu)) else: raise ValueError("wrong input type") gpu_list = cycle(gpu_list) # Note: key should be valid in a unix filename # Values must be strings that represent jsonnet "code" # These names are shared to the figure plotting code since the filename # is based on it all_configs = { # This is the full model, so default params "glove_bilstm": {}, # Ablations leaving on out "glove_bilstm-known": {"disable_known_entities": "true"}, # Completely ablate out anything related to dialog acts "glove_bilstm-da": {"disable_dialog_acts": "true"}, # Completely ablate out anything related to likes "glove_bilstm-like": {"disable_likes": "true"}, # Completley ablate out anything related to facts "glove_bilstm-facts": {"disable_facts": "true"}, # This is the full model, so default params "bert": {"use_glove": "false", "use_bert": "true"}, # Ablations leaving on out "bert-known": { "disable_known_entities": "true", "use_glove": "false", "use_bert": "true", }, # Completely ablate out anything related to dialog acts "bert-da": { "disable_dialog_acts": "true", "use_glove": "false", "use_bert": "true", }, # Completely ablate out anything related to likes "bert-like": { "disable_likes": "true", "use_glove": "false", "use_bert": "true", }, # Completley ablate out anything related to facts "bert-facts": { "disable_facts": "true", "use_glove": "false", "use_bert": "true", }, } with open("run_allennlp.sh", "w") as exp_f: exp_f.write("#!/usr/bin/env bash\n") for name, conf in all_configs.items(): model_conf: str = _jsonnet.evaluate_file( "configs/model.jsonnet", tla_codes=conf ) config_path = os.path.join("configs/generated", name + ".json") model_path = os.path.join("models", name) with open(config_path, "w") as f: f.write(model_conf) job_gpu = next(gpu_list) if job_gpu != -1: gpu_option = ( " -o '" + json.dumps({"trainer": {"cuda_device": job_gpu}}) + "'" ) else: gpu_option = "" exp_f.write(f"# Experiments for: {name}\n") exp_f.write( f"allennlp train --include-package curiosity -s {model_path} -f {config_path}{gpu_option}\n" ) val_out = os.path.join(metrics_dir, f"{name}_val_metrics.json") test_out = os.path.join(metrics_dir, f"{name}_test_metrics.json") zero_out = os.path.join(metrics_dir, f"{name}_zero_metrics.json") exp_f.write( f"allennlp evaluate --include-package curiosity{gpu_option} --output-file {val_out} {model_path} {VAL_DIALOGS}\n" ) exp_f.write( f"allennlp evaluate --include-package curiosity{gpu_option} --output-file {test_out} {model_path} {TEST_DIALOGS}\n" ) exp_f.write( f"allennlp evaluate --include-package curiosity{gpu_option} --output-file {zero_out} {model_path} {ZERO_DIALOGS}\n" ) exp_f.write("\n") @cli.command() @click.argument("emb_path") @click.argument("out_path") def filter_emb(emb_path, out_path): """ Given a path to a valid pretrained embeddings file from wikipedia2vec, filter out anything that is not an entity: IE not prefixed with ENTITY/ """ with open(emb_path) as in_f: rows = [] _, dim = next(in_f).strip().split() dim = dim for line in in_f: if line.startswith("ENTITY/"): rows.append(line) with open(out_path, "w") as out_f: out_f.write(f"{len(rows)} {dim}\n") for r in rows: out_f.write(r) if __name__ == "__main__": cli()
curiosity-main
curiosity/cli.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. """ This file computes baseline accuracies based on majority based voting """ from typing import Dict, Optional, List import json import numpy as np import pandas as pd from allennlp.data.tokenizers.token import Token from curiosity.reader import CuriosityDialogReader from curiosity.similarity import Similarity from curiosity.util import get_logger log = get_logger(__name__) ASSISTANT_IDX = 1 def save_metrics(metrics: Dict, out_path: str): """ Save an allennlp compatible metrics dictionary """ out_dict = { "best_epoch": 0, "peak_cpu_memory_MB": 0, "training_duration": "0:00:0", "training_start_epoch": 0, "training_epochs": 0, "epoch": 0, "training_like_accuracy": 0.0, "training_loss": 0.0, "training_cpu_memory_MB": 0.0, "validation_like_accuracy": 0.0, "validation_loss": 0.0, "best_validation_like_accuracy": 0.0, "best_validation_loss": 0.0, } for key, val in metrics.items(): out_dict[key] = val with open(out_path, "w") as f: json.dump(out_dict, f) class MajorityLikes: def __init__(self): self._n_total_assistant_msgs = 0 self._n_liked_assistant_msgs = 0 self._like_all = True def train(self, data_path: str) -> None: log.info(f"Training majority classifier with: {data_path}") self._n_total_assistant_msgs = 0 self._n_liked_assistant_msgs = 0 n_messages = 0 dialogs = CuriosityDialogReader().read(data_path) log.info(f"N Dialogs: {len(dialogs)}") for d in dialogs: dialog_senders = d["senders"].array dialog_likes = d["likes"] for sender, liked in zip(dialog_senders, dialog_likes): # Only care about assistant messages if sender == ASSISTANT_IDX: if liked.label == "liked": self._n_liked_assistant_msgs += 1 self._n_total_assistant_msgs += 1 n_messages += 1 self._n_total_assistant_msgs = max(1, self._n_total_assistant_msgs) log.info(f"N Liked Assistant Messages: {self._n_liked_assistant_msgs}") log.info(f"N Total Assistant Messages: {self._n_total_assistant_msgs}") log.info(f"N Total Messages: {n_messages}") if (self._n_liked_assistant_msgs / self._n_total_assistant_msgs) > 0.5: self._like_all = True else: self._like_all = False log.info(f"Majority Class Liked: {self._like_all}") def score(self, data_path: str) -> float: log.info(f"Scoring majority classifier with: {data_path}") dialogs = CuriosityDialogReader().read(data_path) log.info(f"N Dialogs: {len(dialogs)}") correct = 0 total = 0 n_messages = 0 for d in dialogs: dialog_senders = d["senders"].array dialog_likes = d["likes"] for sender, liked in zip(dialog_senders, dialog_likes): if sender == ASSISTANT_IDX: label = liked.label # If liked and majority class in training was liked if label == "liked" and self._like_all: correct += 1 # If not liked and majority class in training was not liked elif label == "liked" and not self._like_all: correct += 1 total += 1 n_messages += 1 log.info(f"N Correct Assistant Messages: {correct}") log.info(f"N Total Assistant Messages: {total}") log.info(f"N Total Messages: {n_messages}") total = max(1, total) return correct / total class MajorityDialogActs: def __init__(self): self._n_total_assistant_msgs = 0 self._n_total_acts = 0 self._count_per_turn = {} self._majority_per_turn = {} self._count = {} self._majority = None def train(self, data_path: str) -> None: log.info(f"Training majority classifier with: {data_path}") self._n_total_assistant_msgs = 0 n_messages = 0 dialogs = CuriosityDialogReader().read(data_path) log.info(f"N Dialogs: {len(dialogs)}") for d in dialogs: dialog_senders = d["senders"].array dialog_acts_list = d["dialog_acts"] for i in range(len(dialog_senders)): sender = dialog_senders[i] acts = dialog_acts_list[i].labels # Only care about assistant messages if sender != ASSISTANT_IDX: # Histogram stat per turn if i not in self._count_per_turn: self._count_per_turn[i] = {} for act in acts: # Histogram stat per turn self._count_per_turn[i][act] = ( self._count_per_turn[i].get(act, 0) + 1 ) # Histogram stat overall self._count[act] = self._count.get(act, 0) + 1 # Total count self._n_total_acts += 1 self._n_total_assistant_msgs += 1 n_messages += 1 self._n_total_assistant_msgs = max(1, self._n_total_assistant_msgs) log.info(f"N Total User Messages: {self._n_total_acts}") log.info(f"N Total Acts: {self._n_total_assistant_msgs}") log.info(f"N Total Messages: {n_messages}") # Sort count overall lst = [(count, act) for act, count in self._count.items()] lst.sort(reverse=True) # Majority act in this turn self._majority = lst[0][1] for turn_idx, act_stat in self._count_per_turn.items(): # Sort count_per_turn for each turn_idx lst = [(count, act) for act, count in act_stat.items()] lst.sort(reverse=True) if len(lst) != 0: majority_act = lst[0][1] else: majority_act = self._majority # Majority act in this turn self._majority_per_turn[turn_idx] = majority_act print("Turn: %d, Majority Act: %s" % (turn_idx, majority_act)) log.info(f"Majority Act: {self._majority}") log.info(f"Majority Map: {self._majority_per_turn}") log.info(f"Count Map Per Turn: {self._count_per_turn}") log.info(f"Count Map: {self._count}") def score(self, data_path: str) -> float: log.info(f"Scoring majority classifier with: {data_path}") dialogs = CuriosityDialogReader().read(data_path) log.info(f"N Dialogs: {len(dialogs)}") correct = 0 total = 0 n_messages = 0 for d in dialogs: dialog_senders = d["senders"].array dialog_acts_list = d["dialog_acts"] for i in range(len(dialog_senders)): sender = dialog_senders[i] acts = dialog_acts_list[i].labels if sender != ASSISTANT_IDX: for act in acts: if i in self._majority_per_turn: if act == self._majority_per_turn[i]: correct += 1 else: if act == self._majority: correct += 1 total += len(acts) n_messages += 1 log.info(f"N Correct Acts: {correct}") log.info(f"N Total Acts: {total}") log.info(f"N Total Messages: {n_messages}") total = max(1, total) n_messages = max(1, n_messages) p = correct / n_messages # assumes 1 prediction per message r = correct / total f1 = 2 * (p * r) / (p + r) return f1 class MajorityPolicyActs: def __init__(self): self._n_total_assistant_msgs = 0 self._n_total_acts = 0 self._count_per_turn = {} self._majority_per_turn = {} self._count = {} self._majority = None def train(self, data_path: str) -> None: log.info(f"Training majority classifier with: {data_path}") self._n_total_assistant_msgs = 0 n_messages = 0 dialogs = CuriosityDialogReader().read(data_path) log.info(f"N Dialogs: {len(dialogs)}") for d in dialogs: dialog_senders = d["senders"].array dialog_acts_list = d["dialog_acts"] for i in range(len(dialog_senders)): sender = dialog_senders[i] acts = dialog_acts_list[i].labels # Histogram stat per turn if i not in self._count_per_turn: self._count_per_turn[i] = {} # Only care about assistant messages if sender == ASSISTANT_IDX: for act in acts: # Histogram stat per turn self._count_per_turn[i][act] = ( self._count_per_turn[i].get(act, 0) + 1 ) # Histogram stat overall self._count[act] = self._count.get(act, 0) + 1 # Total count self._n_total_acts += 1 self._n_total_assistant_msgs += 1 n_messages += 1 self._n_total_assistant_msgs = max(1, self._n_total_assistant_msgs) log.info(f"N Total Assistant Messages: {self._n_total_acts}") log.info(f"N Total Acts: {self._n_total_assistant_msgs}") log.info(f"N Total Messages: {n_messages}") # Sort count overall lst = [(count, act) for act, count in self._count.items()] lst.sort(reverse=True) # Majority act in this turn self._majority = lst[0][1] for turn_idx, act_stat in self._count_per_turn.items(): # Sort count_per_turn for each turn_idx lst = [(count, act) for act, count in act_stat.items()] lst.sort(reverse=True) if len(lst) != 0: majority_act = lst[0][1] else: majority_act = self._majority # Majority act in this turn self._majority_per_turn[turn_idx] = majority_act print("Turn: %d, Majority Act: %s" % (turn_idx, majority_act)) log.info(f"Majority Act: {self._majority}") log.info(f"Majority Map: {self._majority_per_turn}") log.info(f"Count Map Per Turn: {self._count_per_turn}") log.info(f"Count Map: {self._count}") def score(self, data_path: str) -> float: log.info(f"Scoring majority classifier with: {data_path}") dialogs = CuriosityDialogReader().read(data_path) log.info(f"N Dialogs: {len(dialogs)}") correct = 0 total = 0 n_messages = 0 for d in dialogs: dialog_senders = d["senders"].array dialog_acts_list = d["dialog_acts"] for i in range(len(dialog_senders)): sender = dialog_senders[i] acts = dialog_acts_list[i].labels if sender == ASSISTANT_IDX: for act in acts: if i in self._majority_per_turn: if act == self._majority_per_turn[i]: correct += 1 else: if act == self._majority: correct += 1 total += len(acts) n_messages += 1 log.info(f"N Correct Acts: {correct}") log.info(f"N Total Acts: {total}") log.info(f"N Total Messages: {n_messages}") total = max(1, total) n_messages = max(1, n_messages) p = correct / n_messages # assumes 1 prediction per message r = correct / total f1 = 2 * (p * r) / (p + r) return f1 def tokens_to_str(tokens: List[Token]) -> str: return " ".join(t.text for t in tokens) class TfidfFactBaseline: """ Implements a simplistic baseline. This uses the tfidf vectorizer fit for ranking facts shown to annotators. The highest similarity fact is selected as the used fact. For metrics, precision and recall are both computed. In the data, more than one fact is rarely used, even if its possible to do. """ def __init__(self, tfidf_path: str, wiki_sql_path: Optional[str] = None): self._similarity = Similarity() self._similarity.load(tfidf_path) def score(self, data_path: str): dialogs = CuriosityDialogReader().read(data_path) n_assistant_messages = 0 all_rr = [] for d in dialogs: msg_history = [] dialog_senders = d["senders"].array dialog_facts = d["facts"] dialog_fact_labels = d["fact_labels"] dialog_messages = d["messages"] for msg, sender, facts, fact_labels in zip( dialog_messages, dialog_senders, dialog_facts, dialog_fact_labels ): if sender == ASSISTANT_IDX: context = " ".join(msg_history) fact_texts = [tokens_to_str(tokens) for tokens in facts] doc_scores = self._similarity.score(context, fact_texts) # First get a list where first position is maximal score sorted_scores = np.argsort(-np.array(doc_scores)) exists_rel_doc = False best_rank = None for rel_idx in fact_labels.array: if rel_idx != -1: # Then find the rank + 1 of the relevant doc exists_rel_doc = True # import ipdb;ipdb.set_trace(); rank = np.where(sorted_scores == rel_idx)[0][0] + 1 # We only care about the best rank, if there are multiple # relevant docs if best_rank is None or rank < best_rank: best_rank = rank # Ignore this example if there is no relevant doc if exists_rel_doc: all_rr.append(1 / best_rank) n_assistant_messages += 1 # Only add the actually used message after prediction # Add user and assistant messages msg_text = tokens_to_str(msg.tokens) msg_history.append(msg_text) mean_rr = np.mean(all_rr) log.info(f"Msgs with Facts: {len(all_rr)}") log.info(f"Total Assistant Msgs: {n_assistant_messages}") log.info(f"MRR: {mean_rr}") return mean_rr def fact_length_stats(data_path: str): dialogs = CuriosityDialogReader().read(data_path) fact_lengths = [] for d in dialogs: for facts in d["facts"]: for f in facts: fact_lengths.append({"n_tokens": f.sequence_length()}) df = pd.DataFrame(fact_lengths) summary = df.describe(percentiles=[0.25, 0.5, 0.75, 0.8, 0.9, 0.95, 0.99]) log.info(f"Summary\n{summary}")
curiosity-main
curiosity/stats.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from typing import Dict, Union import torch from pytorch_pretrained_bert.modeling import BertModel from allennlp.modules.token_embedders.bert_token_embedder import PretrainedBertModel class BertEncoder(torch.nn.Module): """ Adapted from https://github.com/allenai/allennlp/blob/v0.8.5/allennlp/models/bert_for_classification.py and https://github.com/allenai/allennlp/blob/master/allennlp/modules/seq2vec_encoders/bert_pooler.py#L14-L67 I ran into a lot of trouble trying to get this to work more generically and gave up to just implement as a manual switch """ def __init__( self, bert_model: Union[str, BertModel], requires_grad: bool = True, index: str = "bert", ) -> None: super().__init__() if isinstance(bert_model, str): self.bert_model = PretrainedBertModel.load(bert_model) else: self.bert_model = bert_model for param in self.bert_model.parameters(): param.requires_grad = requires_grad self._embedding_dim = self.bert_model.config.hidden_size self._index = index def forward(self, tokens: Dict[str, torch.LongTensor]) -> torch.Tensor: # pylint: disable=arguments-differ input_ids = tokens[self._index] token_type_ids = tokens[f"{self._index}-type-ids"] input_mask = (input_ids != 0).long() # transformers lib doesn't like extra dimensions, and TimeDistributed # expects a tensor # This works since we only need independent encodings of each piece of text if input_ids.dim() > 2: shape = input_ids.shape word_dim = shape[-1] reshaped_input_ids = input_ids.view(-1, word_dim) reshaped_token_type_ids = token_type_ids.view(-1, word_dim) reshaped_input_mask = input_mask.view(-1, word_dim) _, reshaped_pooled = self.bert_model( input_ids=reshaped_input_ids, token_type_ids=reshaped_token_type_ids, attention_mask=reshaped_input_mask, ) pooled = reshaped_pooled.view(shape[:-1] + (-1,)) else: _, pooled = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, ) # Current mask is wordpiece mask, we want an utterance mask # So search for utterances with all masked wordpieces utter_mask = (input_mask.sum(dim=-1) != 0).long() return pooled, utter_mask def get_output_dim(self) -> int: return self._embedding_dim
curiosity-main
curiosity/bert.py
#!/usr/bin/env python3 #Copyright (c) Facebook, Inc. and its affiliates. """ Reader for curiosity dialog dataset. Below is a sample json with relevant structure { "dialogs": [ { "messages": [ { "message": "Hi, what do you know about St. Louis' history?", "liked": false, "sender": "user", "facts": [] }, { "message": "St. Louis had among worst air pollution in U.S.?", "liked": true, "sender": "assistant", "facts": [ { "fid": 54538, "used": true }, { "fid": 54472, "used": false }, { "fid": 54490, "used": false }, { "fid": 54701, "used": false }, { "fid": 54646, "used": false }, { "fid": 54681, "used": false }, { "fid": 54746, "used": false }, { "fid": 54523, "used": false }, { "fid": 54526, "used": false } ] }, ], "known_entities": [ "Major League Baseball", "United Kingdom", "United States", "United States Census Bureau", "Missouri River" ], "focus_entity": "St. Louis", "dialog_id": 77, "inferred_steps": false, "created_time": 1568060716, "aspects": [ "History", "Education" ], "first_aspect": "History", "second_aspect": "Education", "shuffle_facts": true, "related_entities": [ "Auguste Chouteau", "Spain", "Susan Polgar", "Darby, Pennsylvania", "MacArthur Bridge (St. Louis)", "Christ Church Cathedral, Oxford", "Mound City, Illinois", "Major League Baseball", "United Kingdom", "United States", "Washington University in St. Louis", "United States Census Bureau", "Greater St. Louis", "Missouri River" ] } ] } """ from typing import Dict, Optional, List import json import csv import os import numpy as np from overrides import overrides from allennlp.common.util import START_SYMBOL, END_SYMBOL from allennlp.data.instance import Instance from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.fields import ( TextField, ListField, MetadataField, LabelField, ArrayField, MultiLabelField ) from allennlp.data.tokenizers import Token, Tokenizer, WordTokenizer from allennlp.data.tokenizers.word_splitter import JustSpacesWordSplitter from curiosity.db import verify_checksum, create_sql, Fact USER = 'user' ASSISTANT = 'assistant' DIALOG_ACT_LABELS = 'dialog_act_labels' MESSAGE_CUMULATIVE = False DIALOG_MAX_LENGTH = 80 class MultiLabelFieldListCompat(MultiLabelField): """ Fixes a bug where if the field is used in a ListField, that the number of labels is lost and causes an error. """ @overrides def empty_field(self): return MultiLabelField( [], self._label_namespace, skip_indexing=True, num_labels=self._num_labels ) def to_long_field(nums: List[int]) -> ArrayField: return ArrayField(np.array(nums, dtype=np.long), dtype=np.long) @DatasetReader.register('baseline_curiosity_dialog') class BaselineCuriosityDialogReader(DatasetReader): def __init__(self, tokenizer: Tokenizer = None, mention_tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, mention_indexers: Dict[str, TokenIndexer] = None): super().__init__() self._tokenizer = tokenizer or WordTokenizer() self._token_indexers = token_indexers or { 'tokens': SingleIdTokenIndexer(lowercase_tokens=True), } self._mention_indexers = mention_indexers or { 'mentions': SingleIdTokenIndexer(), } self._mention_tokenizer = mention_tokenizer or WordTokenizer( word_splitter=JustSpacesWordSplitter(), ) self._fact_lookup: Optional[Dict[int, Fact]] = None @overrides def _read(self, file_path: str): """ file_path should point to a curiosity dialog file. In addition, the directory that contains that file should also contain the sqlite database associated with the dialogs named as below - wiki_sql.sqlite.db The intent is that there are """ with open(file_path) as f: dataset = json.load(f) dialogs = dataset['dialogs'] directory = os.path.dirname(file_path) db_path = os.path.join(directory, 'wiki_sql.sqlite.db') engine, session = create_sql(db_path) facts = ( session .query(Fact) .all() ) self._fact_lookup = {f.id: f for f in facts} verify_checksum(dataset['db_checksum'], db_path) # store = CuriosityStore(db_path) # fact_lookup = store.get_fact_lookup() # TODO: Add in facts for _, d in enumerate(dialogs): yield self.text_to_instance(d) session.close() @overrides def text_to_instance(self, dialog: Dict, ignore_fact: bool = False): msg_texts = [] msg_senders = [] msg_likes = [] msg_acts = [] msg_act_mask = [] msg_facts = [] msg_fact_labels = [] metadata_fact_labels = [] if len(dialog['messages']) == 0: raise ValueError('There are no dialog messages') known_entities = [ Token(text='ENTITY/' + t.replace(' ', '_'), idx=idx) for idx, t in enumerate(dialog['known_entities']) ] if len(known_entities) == 0: known_entities.append(Token(text='@@YOUKNOWNOTHING@@', idx=0)) known_entities_field = TextField(known_entities, self._mention_indexers) focus_entity = dialog['focus_entity'] focus_entity_field = TextField( [Token(text='ENTITY/' + focus_entity.replace(' ', '_'), idx=0)], self._mention_indexers ) prev_msg = '' for msg in dialog['messages']: if MESSAGE_CUMULATIVE: if prev_msg == '': cur_message = msg['message'] else: if len(prev_msg) > DIALOG_MAX_LENGTH: prev_msg = ' '.join(prev_msg[-DIALOG_MAX_LENGTH:].split(' ')[1:]) cur_message = prev_msg + ' ' + msg['message'] prev_msg = cur_message else: cur_message = msg['message'] tokenized_msg = self._tokenizer.tokenize(cur_message) msg_texts.append(TextField(tokenized_msg, self._token_indexers)) msg_senders.append(0 if msg['sender'] == USER else 1) msg_likes.append(LabelField( 'liked' if msg['liked'] else 'not_liked', label_namespace='like_labels' )) if msg['dialog_acts'] is None: dialog_acts = ['@@NODA@@'] act_mask = 0 else: dialog_acts = msg['dialog_acts'] act_mask = 1 dialog_acts_field = MultiLabelFieldListCompat( dialog_acts, label_namespace=DIALOG_ACT_LABELS) msg_acts.append(dialog_acts_field) msg_act_mask.append(act_mask) curr_facts_text = [] curr_facts_labels = [] curr_metadata_fact_labels = [] if msg['sender'] == ASSISTANT: for idx, f in enumerate(msg['facts']): if ignore_fact: fact_text = 'dummy fact' else: fact = self._fact_lookup[f['fid']] fact_text = fact.text # TODO: These are already space tokenized tokenized_fact = self._tokenizer.tokenize(fact_text) # 99% of text length is 77 tokenized_fact = tokenized_fact[:DIALOG_MAX_LENGTH] curr_facts_text.append( TextField(tokenized_fact, self._token_indexers) ) if f['used']: curr_facts_labels.append(idx) curr_metadata_fact_labels.append(idx) else: # Users don't have facts, but lets avoid divide by zero curr_facts_text.append(TextField( [Token(text='@@NOFACT@@', idx=0)], self._token_indexers )) msg_facts.append(ListField(curr_facts_text)) # Add in a label if there are no correct indices if len(curr_facts_labels) == 0: curr_metadata_fact_labels.append(-1) n_facts = len(curr_facts_text) fact_label_arr = np.zeros(n_facts, dtype=np.float32) if len(curr_facts_labels) > 0: fact_label_arr[curr_facts_labels] = 1 msg_fact_labels.append(ArrayField(fact_label_arr, dtype=np.float32)) metadata_fact_labels.append(curr_metadata_fact_labels) return Instance({ 'messages': ListField(msg_texts), 'facts': ListField(msg_facts), 'fact_labels': ListField(msg_fact_labels), 'likes': ListField(msg_likes), 'dialog_acts': ListField(msg_acts), 'dialog_acts_mask': to_long_field(msg_act_mask), 'senders': to_long_field(msg_senders), 'focus_entity': focus_entity_field, 'known_entities': known_entities_field, 'metadata': MetadataField({ 'dialog_id': dialog['dialog_id'], 'n_message': len(msg_texts), 'fact_labels': metadata_fact_labels, 'known_entities': dialog['known_entities'], 'focus_entity': dialog['focus_entity'] }) }) @DatasetReader.register('multi_turn_baseline_curiosity_dialog') class MultiTurnBaselineCuriosityDialogReader(DatasetReader): def __init__(self, tokenizer: Tokenizer = None, mention_tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, mention_indexers: Dict[str, TokenIndexer] = None): super().__init__() self._tokenizer = tokenizer or WordTokenizer() self._token_indexers = token_indexers or { 'tokens': SingleIdTokenIndexer(lowercase_tokens=True), } self._mention_indexers = mention_indexers or { 'mentions': SingleIdTokenIndexer(), } self._mention_tokenizer = mention_tokenizer or WordTokenizer( word_splitter=JustSpacesWordSplitter(), ) self._fact_lookup: Optional[Dict[int, Fact]] = None @overrides def _read(self, file_path: str): """ file_path should point to a curiosity dialog file. In addition, the directory that contains that file should also contain the sqlite database associated with the dialogs named as below - wiki_sql.sqlite.db The intent is that there are """ with open(file_path) as f: dataset = json.load(f) dialogs = dataset['dialogs'] directory = os.path.dirname(file_path) db_path = os.path.join(directory, 'wiki_sql.sqlite.db') engine, session = create_sql(db_path) facts = ( session .query(Fact) .all() ) self._fact_lookup = {f.id: f for f in facts} verify_checksum(dataset['db_checksum'], db_path) # store = CuriosityStore(db_path) # fact_lookup = store.get_fact_lookup() # TODO: Add in facts for _, d in enumerate(dialogs): yield self.text_to_instance(d) session.close() @overrides def text_to_instance(self, dialog: Dict, ignore_fact: bool = False): msg_texts = [] msg_senders = [] msg_likes = [] msg_acts = [] msg_act_mask = [] msg_facts = [] msg_fact_labels = [] metadata_fact_labels = [] if len(dialog['messages']) == 0: raise ValueError('There are no dialog messages') known_entities = [ Token(text='ENTITY/' + t.replace(' ', '_'), idx=idx) for idx, t in enumerate(dialog['known_entities']) ] if len(known_entities) == 0: known_entities.append(Token(text='@@YOUKNOWNOTHING@@', idx=0)) known_entities_field = TextField(known_entities, self._mention_indexers) focus_entity = dialog['focus_entity'] focus_entity_field = TextField( [Token(text='ENTITY/' + focus_entity.replace(' ', '_'), idx=0)], self._mention_indexers ) prev_msg = '' for msg in dialog['messages']: if True: if prev_msg == '': cur_message = msg['message'] else: if len(prev_msg) > DIALOG_MAX_LENGTH: prev_msg = ' '.join(prev_msg[-DIALOG_MAX_LENGTH:].split(' ')[1:]) cur_message = prev_msg + ' ' + msg['message'] prev_msg = cur_message else: cur_message = msg['message'] tokenized_msg = self._tokenizer.tokenize(cur_message) msg_texts.append(TextField(tokenized_msg, self._token_indexers)) msg_senders.append(0 if msg['sender'] == USER else 1) msg_likes.append(LabelField( 'liked' if msg['liked'] else 'not_liked', label_namespace='like_labels' )) if msg['dialog_acts'] is None: dialog_acts = ['@@NODA@@'] act_mask = 0 else: dialog_acts = msg['dialog_acts'] act_mask = 1 dialog_acts_field = MultiLabelFieldListCompat( dialog_acts, label_namespace=DIALOG_ACT_LABELS) msg_acts.append(dialog_acts_field) msg_act_mask.append(act_mask) curr_facts_text = [] curr_facts_labels = [] curr_metadata_fact_labels = [] if msg['sender'] == ASSISTANT: for idx, f in enumerate(msg['facts']): if ignore_fact: fact_text = 'dummy fact' else: fact = self._fact_lookup[f['fid']] fact_text = fact.text # TODO: These are already space tokenized tokenized_fact = self._tokenizer.tokenize(fact_text) # 99% of text length is 77 tokenized_fact = tokenized_fact[:DIALOG_MAX_LENGTH] curr_facts_text.append( TextField(tokenized_fact, self._token_indexers) ) if f['used']: curr_facts_labels.append(idx) curr_metadata_fact_labels.append(idx) else: # Users don't have facts, but lets avoid divide by zero curr_facts_text.append(TextField( [Token(text='@@NOFACT@@', idx=0)], self._token_indexers )) msg_facts.append(ListField(curr_facts_text)) # Add in a label if there are no correct indices if len(curr_facts_labels) == 0: curr_metadata_fact_labels.append(-1) n_facts = len(curr_facts_text) fact_label_arr = np.zeros(n_facts, dtype=np.float32) if len(curr_facts_labels) > 0: fact_label_arr[curr_facts_labels] = 1 msg_fact_labels.append(ArrayField(fact_label_arr, dtype=np.float32)) metadata_fact_labels.append(curr_metadata_fact_labels) return Instance({ 'messages': ListField(msg_texts), 'facts': ListField(msg_facts), 'fact_labels': ListField(msg_fact_labels), 'likes': ListField(msg_likes), 'dialog_acts': ListField(msg_acts), 'dialog_acts_mask': to_long_field(msg_act_mask), 'senders': to_long_field(msg_senders), 'focus_entity': focus_entity_field, 'known_entities': known_entities_field, 'metadata': MetadataField({ 'dialog_id': dialog['dialog_id'], 'n_message': len(msg_texts), 'fact_labels': metadata_fact_labels, 'known_entities': dialog['known_entities'], 'focus_entity': dialog['focus_entity'] }) })
curiosity-main
curiosity/baseline_reader.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from typing import Dict, List, Tuple, Optional import numpy from overrides import overrides import torch import torch.nn.functional as F from torch.nn.modules.linear import Linear from torch.nn.modules.rnn import LSTMCell from torch.nn import EmbeddingBag, Sequential from allennlp.common.checks import ConfigurationError from allennlp.common.util import START_SYMBOL, END_SYMBOL from allennlp.data.vocabulary import Vocabulary from allennlp.modules.attention import LegacyAttention from allennlp.modules import Attention, TextFieldEmbedder, Seq2SeqEncoder from allennlp.modules.similarity_functions import SimilarityFunction from allennlp.models.model import Model from allennlp.modules.token_embedders import Embedding from allennlp.modules.feedforward import FeedForward from allennlp.nn import util, RegularizerApplicator from allennlp.nn.beam_search import BeamSearch from allennlp.training.metrics import BLEU @Model.register("curiosity_paraphrase_seq2seq") class FactParaphraseSeq2Seq(Model): """ Given facts and dialog acts, it generates the paraphrased message. TODO: add dialog & dialog acts history This implementation is based off the default SimpleSeq2Seq model, which takes a sequence, encodes it, and then uses the encoded representations to decode another sequence. """ def __init__( self, vocab: Vocabulary, source_embedder: TextFieldEmbedder, source_encoder: Seq2SeqEncoder, max_decoding_steps: int, dialog_acts_encoder: FeedForward = None, attention: Attention = None, attention_function: SimilarityFunction = None, n_dialog_acts: int = None, beam_size: int = None, target_namespace: str = "tokens", target_embedding_dim: int = None, scheduled_sampling_ratio: float = 0.0, use_bleu: bool = True, use_dialog_acts: bool = True, regularizers: Optional[RegularizerApplicator] = None, ) -> None: super().__init__(vocab, regularizers) self._target_namespace = target_namespace self._scheduled_sampling_ratio = scheduled_sampling_ratio # We need the start symbol to provide as the input at the first # timestep of decoding, and end symbol as a way to indicate the end # of the decoded sequence. self._start_index = self.vocab.get_token_index( START_SYMBOL, self._target_namespace ) self._end_index = self.vocab.get_token_index(END_SYMBOL, self._target_namespace) if use_bleu: pad_index = self.vocab.get_token_index( self.vocab._padding_token, self._target_namespace ) self._bleu = BLEU( exclude_indices={pad_index, self._end_index, self._start_index} ) else: self._bleu = None # At prediction time, we use a beam search to find the most # likely sequence of target tokens. beam_size = beam_size or 1 self._max_decoding_steps = max_decoding_steps self._beam_search = BeamSearch( self._end_index, max_steps=max_decoding_steps, beam_size=beam_size ) # Dense embedding of source (Facts) vocab tokens. self._source_embedder = source_embedder # Encodes the sequence of source embeddings into a sequence of hidden states. self._source_encoder = source_encoder if use_dialog_acts: # Dense embedding of dialog acts. da_embedding_dim = dialog_acts_encoder.get_input_dim() self._dialog_acts_embedder = EmbeddingBag(n_dialog_acts, da_embedding_dim) # Encodes dialog acts self._dialog_acts_encoder = dialog_acts_encoder else: self._dialog_acts_embedder = None self._dialog_acts_encoder = None num_classes = self.vocab.get_vocab_size(self._target_namespace) # Attention mechanism applied to the encoder output for each step. if attention: if attention_function: raise ConfigurationError( "You can only specify an attention module or an " "attention function, but not both." ) self._attention = attention elif attention_function: self._attention = LegacyAttention(attention_function) else: self._attention = None # Dense embedding of vocab words in the target space. target_embedding_dim = target_embedding_dim or source_embedder.get_output_dim() self._target_embedder = Embedding(num_classes, target_embedding_dim) # Decoder output dim needs to be the same as the encoder output dim # since we initialize the hidden state of the decoder with the final # hidden state of the encoder. self._encoder_output_dim = self._source_encoder.get_output_dim() if use_dialog_acts: self._merge_encoder = Sequential( Linear( self._source_encoder.get_output_dim() + self._dialog_acts_encoder.get_output_dim(), self._encoder_output_dim, ) ) self._decoder_output_dim = self._encoder_output_dim if self._attention: # If using attention, a weighted average over encoder outputs will # be concatenated to the previous target embedding to form the input # to the decoder at each time step. self._decoder_input_dim = self._decoder_output_dim + target_embedding_dim else: # Otherwise, the input to the decoder is just the previous target embedding. self._decoder_input_dim = target_embedding_dim # We'll use an LSTM cell as the recurrent cell that produces a hidden state # for the decoder at each time step. # TODO (pradeep): Do not hardcode decoder cell type. self._decoder_cell = LSTMCell(self._decoder_input_dim, self._decoder_output_dim) # We project the hidden state from the decoder into the output vocabulary space # in order to get log probabilities of each target token, at each time step. self._output_projection_layer = Linear(self._decoder_output_dim, num_classes) def take_step( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor] ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Take a decoding step. This is called by the beam search class. """ # shape: (group_size, num_classes) output_projections, state = self._prepare_output_projections( last_predictions, state ) # shape: (group_size, num_classes) class_log_probabilities = F.log_softmax(output_projections, dim=-1) return class_log_probabilities, state @overrides def forward( self, # type: ignore source_tokens: Dict[str, torch.LongTensor], target_tokens: Dict[str, torch.LongTensor] = None, dialog_acts: Optional[torch.Tensor] = None, sender: Optional[torch.Tensor] = None, metadata: Optional[Dict] = None, ) -> Dict[str, torch.Tensor]: """ Make foward pass with decoder logic for producing the entire target sequence. """ source_state, dialog_acts_state = self._encode(source_tokens, dialog_acts) if target_tokens: state = self._init_decoder_state(source_state, dialog_acts_state) # The `_forward_loop` decodes the input sequence and # computes the loss during training and validation. output_dict = self._forward_loop(state, target_tokens) else: output_dict = {} if not self.training: state = self._init_decoder_state(source_state, dialog_acts_state) predictions = self._forward_beam_search(state) output_dict.update(predictions) if target_tokens and self._bleu: # shape: (batch_size, beam_size, max_sequence_length) top_k_predictions = output_dict["predictions"] # shape: (batch_size, max_predicted_sequence_length) best_predictions = top_k_predictions[:, 0, :] self._bleu(best_predictions, target_tokens["tokens"]) return output_dict @overrides def decode(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Finalize predictions. """ predicted_indices = output_dict["predictions"] if not isinstance(predicted_indices, numpy.ndarray): predicted_indices = predicted_indices.detach().cpu().numpy() all_predicted_tokens = [] for indices in predicted_indices: # Beam search gives us the top k results for each source sentence # in the batch but we just want the single best. if len(indices.shape) > 1: indices = indices[0] indices = list(indices) # Collect indices till the first end_symbol if self._end_index in indices: indices = indices[: indices.index(self._end_index)] predicted_tokens = [ self.vocab.get_token_from_index(x, namespace=self._target_namespace) for x in indices ] all_predicted_tokens.append(predicted_tokens) output_dict["predicted_tokens"] = all_predicted_tokens return output_dict def _encode( self, source_tokens: Dict[str, torch.Tensor], dialog_acts: torch.Tensor = None ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: # Encode source tokens source_state = self._encode_source_tokens(source_tokens) # Encode dialog acts if self._dialog_acts_encoder: dialog_acts_state = self._encode_dialog_acts(dialog_acts) else: dialog_acts_state = None return (source_state, dialog_acts_state) def _encode_source_tokens( self, source_tokens: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: # shape: (batch_size, max_input_sequence_length, encoder_input_dim) embedded_input = self._source_embedder(source_tokens) # shape: (batch_size, max_input_sequence_length) source_mask = util.get_text_field_mask(source_tokens) # shape: (batch_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = self._source_encoder(embedded_input, source_mask) return {"source_mask": source_mask, "encoder_outputs": encoder_outputs} def _encode_dialog_acts(self, dialog_acts: torch.Tensor) -> torch.Tensor: # shape: (batch_size, dialog_acts_embeddings_size) embedded_dialog_acts = self._dialog_acts_embedder(dialog_acts) # shape: (batch_size, dim_encoder) dialog_acts_state = self._dialog_acts_encoder(embedded_dialog_acts) return dialog_acts_state def _init_decoder_state( self, source_state: Dict[str, torch.Tensor], dialog_acts_state: torch.Tensor = None, ) -> Dict[str, torch.Tensor]: batch_size = source_state["source_mask"].size(0) # shape: (batch_size, encoder_output_dim) final_encoder_output = util.get_final_encoder_states( source_state["encoder_outputs"], source_state["source_mask"], self._source_encoder.is_bidirectional(), ) # Condition the source tokens state with dialog acts state if self._dialog_acts_encoder: final_encoder_output = self._merge_encoder( torch.cat([final_encoder_output, dialog_acts_state], dim=1) ) # Initialize the decoder hidden state with the final output of the encoder. # shape: (batch_size, decoder_output_dim) source_state["decoder_hidden"] = final_encoder_output # shape: (batch_size, decoder_output_dim) source_state["decoder_context"] = source_state["encoder_outputs"].new_zeros( batch_size, self._decoder_output_dim ) return source_state def _forward_loop( self, state: Dict[str, torch.Tensor], target_tokens: Dict[str, torch.LongTensor] = None, ) -> Dict[str, torch.Tensor]: """ Make forward pass during training or do greedy search during prediction. Notes ----- We really only use the predictions from the method to test that beam search with a beam size of 1 gives the same results. """ # shape: (batch_size, max_input_sequence_length) source_mask = state["source_mask"] batch_size = source_mask.size()[0] if target_tokens: # shape: (batch_size, max_target_sequence_length) targets = target_tokens["tokens"] _, target_sequence_length = targets.size() # The last input from the target is either padding or the end symbol. # Either way, we don't have to process it. num_decoding_steps = target_sequence_length - 1 else: num_decoding_steps = self._max_decoding_steps # Initialize target predictions with the start index. # shape: (batch_size,) last_predictions = source_mask.new_full( (batch_size,), fill_value=self._start_index ) step_logits: List[torch.Tensor] = [] step_predictions: List[torch.Tensor] = [] for timestep in range(num_decoding_steps): if self.training and torch.rand(1).item() < self._scheduled_sampling_ratio: # Use gold tokens at test time and at a rate of # 1 - _scheduled_sampling_ratio during training. # shape: (batch_size,) input_choices = last_predictions elif not target_tokens: # shape: (batch_size,) input_choices = last_predictions else: # shape: (batch_size,) input_choices = targets[:, timestep] # shape: (batch_size, num_classes) output_projections, state = self._prepare_output_projections( input_choices, state ) # list of tensors, shape: (batch_size, 1, num_classes) step_logits.append(output_projections.unsqueeze(1)) # shape: (batch_size, num_classes) class_probabilities = F.softmax(output_projections, dim=-1) # shape (predicted_classes): (batch_size,) _, predicted_classes = torch.max(class_probabilities, 1) # shape (predicted_classes): (batch_size,) last_predictions = predicted_classes step_predictions.append(last_predictions.unsqueeze(1)) # shape: (batch_size, num_decoding_steps) predictions = torch.cat(step_predictions, 1) output_dict = {"predictions": predictions} if target_tokens: # shape: (batch_size, num_decoding_steps, num_classes) logits = torch.cat(step_logits, 1) # Compute loss. target_mask = util.get_text_field_mask(target_tokens) loss = self._get_loss(logits, targets, target_mask) output_dict["loss"] = loss return output_dict def _forward_beam_search( self, state: Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: """Make forward pass during prediction using a beam search.""" batch_size = state["source_mask"].size()[0] start_predictions = state["source_mask"].new_full( (batch_size,), fill_value=self._start_index ) # shape (all_top_k_predictions): (batch_size, beam_size, num_decoding_steps) # shape (log_probabilities): (batch_size, beam_size) all_top_k_predictions, log_probabilities = self._beam_search.search( start_predictions, state, self.take_step ) output_dict = { "class_log_probabilities": log_probabilities, "predictions": all_top_k_predictions, } return output_dict def _prepare_output_projections( self, last_predictions: torch.Tensor, state: Dict[str, torch.Tensor] ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """ Decode current state and last prediction to produce produce projections into the target space, which can then be used to get probabilities of each target token for the next step. Inputs are the same as for `take_step()`. """ # shape: (group_size, max_input_sequence_length, encoder_output_dim) encoder_outputs = state["encoder_outputs"] # shape: (group_size, max_input_sequence_length) source_mask = state["source_mask"] # shape: (group_size, decoder_output_dim) decoder_hidden = state["decoder_hidden"] # shape: (group_size, decoder_output_dim) decoder_context = state["decoder_context"] # shape: (group_size, target_embedding_dim) embedded_input = self._target_embedder(last_predictions) if self._attention: # shape: (group_size, encoder_output_dim) attended_input = self._prepare_attended_input( decoder_hidden, encoder_outputs, source_mask ) # shape: (group_size, decoder_output_dim + target_embedding_dim) decoder_input = torch.cat((attended_input, embedded_input), -1) else: # shape: (group_size, target_embedding_dim) decoder_input = embedded_input # shape (decoder_hidden): (batch_size, decoder_output_dim) # shape (decoder_context): (batch_size, decoder_output_dim) decoder_hidden, decoder_context = self._decoder_cell( decoder_input, (decoder_hidden, decoder_context) ) state["decoder_hidden"] = decoder_hidden state["decoder_context"] = decoder_context # shape: (group_size, num_classes) output_projections = self._output_projection_layer(decoder_hidden) return output_projections, state def _prepare_attended_input( self, decoder_hidden_state: torch.LongTensor = None, encoder_outputs: torch.LongTensor = None, encoder_outputs_mask: torch.LongTensor = None, ) -> torch.Tensor: """Apply attention over encoder outputs and decoder state.""" # Ensure mask is also a FloatTensor. Or else the multiplication within # attention will complain. # shape: (batch_size, max_input_sequence_length) encoder_outputs_mask = encoder_outputs_mask.float() # shape: (batch_size, max_input_sequence_length) input_weights = self._attention( decoder_hidden_state, encoder_outputs, encoder_outputs_mask ) # shape: (batch_size, encoder_output_dim) attended_input = util.weighted_sum(encoder_outputs, input_weights) return attended_input @staticmethod def _get_loss( logits: torch.LongTensor, targets: torch.LongTensor, target_mask: torch.LongTensor, ) -> torch.Tensor: # shape: (batch_size, num_decoding_steps) relevant_targets = targets[:, 1:].contiguous() # shape: (batch_size, num_decoding_steps) relevant_mask = target_mask[:, 1:].contiguous() return util.sequence_cross_entropy_with_logits( logits, relevant_targets, relevant_mask ) @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: all_metrics: Dict[str, float] = {} if self._bleu and not self.training: all_metrics.update(self._bleu.get_metric(reset=reset)) return all_metrics
curiosity-main
curiosity/paraphrase_models.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from curiosity.reader import CuriosityDialogReader, USER, ASSISTANT def test_text_to_instance(): facts_0 = [ {"fid": 1, "used": True}, {"fid": 1, "used": False}, {"fid": 1, "used": False}, ] facts_1 = [ {"fid": 1, "used": False}, {"fid": 1, "used": False}, {"fid": 1, "used": False}, ] facts_2 = [ {"fid": 1, "used": False}, {"fid": 1, "used": True}, {"fid": 1, "used": True}, ] messages = [ {"sender": USER, "message": "first text", "liked": False}, { "sender": ASSISTANT, "message": "second text", "liked": True, "facts": facts_0, }, {"sender": USER, "message": "third text", "liked": False}, { "sender": ASSISTANT, "message": "fourth text", "liked": True, "facts": facts_1, }, {"sender": USER, "message": "fifth text", "liked": False}, { "sender": ASSISTANT, "message": "sixth text", "liked": False, "facts": facts_2, }, ] dialog = {"messages": messages, "dialog_id": 0} instance = CuriosityDialogReader().text_to_instance(dialog, ignore_fact=True) like_labels = [l.label for l in instance["likes"]] assert like_labels == [ "not_liked", "liked", "not_liked", "liked", "not_liked", "not_liked", ] fact_labels = instance["fact_labels"] # Users have 1 dummy fact assert len(fact_labels[0].array) == 1 assert len(fact_labels[2].array) == 1 assert len(fact_labels[4].array) == 1 assert fact_labels[0].array[0] == 0 assert fact_labels[2].array[0] == 0 assert fact_labels[4].array[0] == 0 assert list(fact_labels[1].array) == [1, 0, 0] assert list(fact_labels[3].array) == [0, 0, 0] assert list(fact_labels[5].array) == [0, 1, 1]
curiosity-main
curiosity/tests/test_reader.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import torch import pytest from curiosity.metrics import MeanReciprocalRank def test_mrr(): logits = torch.tensor([1, 2, 0.5, 0, 4, 3]).reshape(1, 1, -1) labels = torch.tensor([0, 1, 0, 0, 0, 1]).reshape(1, 1, -1) mask = torch.tensor([1]).reshape(1, 1, -1) metric = MeanReciprocalRank() mrr = metric(logits, labels, mask) # predicted order of documents # preds: 4, 5, 1, 0, 2, 3 # True doc idxs: 1, 5 # +1 is to make first position/index correspond to rank 1 # Perfect score is 1 # MRR of true docs: 1 / (2 + 1) + 1 / (1 + 1) = 1 / 3 + 1 / 2 # relevant ranks: assert pytest.approx(1 / 3 + 1 / 2, mrr.item())
curiosity-main
curiosity/tests/test_metrics.py
curiosity-main
curiosity/tests/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import glob import os import shutil from os import path from typing import List from setuptools import find_packages, setup cwd = os.path.dirname(os.path.abspath(__file__)) version = "0.0.1" try: if not os.getenv("RELEASE"): from datetime import date today = date.today() day = today.strftime("b%Y%m%d") version += day except Exception: pass requirements = [ "importlib", "numpy", "Pillow", "mock", "torch", "pytorch-lightning==1.8.6", "opencv-python", "parameterized", # Downgrade the protobuf package to 3.20.x or lower, related: # https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates # https://github.com/protocolbuffers/protobuf/issues/10051 "protobuf==3.20.2", ] def d2go_gather_files(dst_module, file_path, extension="*") -> List[str]: """ Return a list of files to include in d2go submodule. Copy over the corresponding files. """ # Use absolute paths while symlinking. source_configs_dir = path.join(path.dirname(path.realpath(__file__)), file_path) destination = path.join(path.dirname(path.realpath(__file__)), "d2go", dst_module) # Symlink the config directory inside package to have a cleaner pip install. # Remove stale symlink/directory from a previous build. if path.exists(source_configs_dir): if path.islink(destination): os.unlink(destination) elif path.isdir(destination): shutil.rmtree(destination) if not path.exists(destination): try: os.symlink(source_configs_dir, destination) except OSError: # Fall back to copying if symlink fails: ex. on Windows. shutil.copytree(source_configs_dir, destination) config_paths = glob.glob(os.path.join(file_path + extension), recursive=True) return config_paths if __name__ == "__main__": setup( name="d2go", version=version, author="Mobile Vision", url="https://github.com/facebookresearch/d2go", description="D2Go", long_description=open("README.md").read(), long_description_content_type="text/markdown", license="Apache-2.0", install_requires=requirements, packages=find_packages(exclude=["tools", "tests"]), package_data={ "d2go": [ "LICENSE", ], "d2go.configs": d2go_gather_files("configs", "configs", "**/*.yaml"), "d2go.tools": d2go_gather_files("tools", "tools", "**/*.py"), "d2go.tests": d2go_gather_files("tests", "tests", "**/*helper.py"), }, entry_points={ "console_scripts": [ "d2go.exporter = d2go.tools.exporter:cli", "d2go.train_net = d2go.tools.train_net:cli", ] }, )
d2go-main
setup.py